Sample records for p2 transport code

  1. Calculation of the Neoclassical Radial Electric Field using a Gyrokinetic δ f Code

    NASA Astrophysics Data System (ADS)

    Lewandowski, J. L. V.; Boozer, A.; Williams, J.; Lin, Z.; Zarnstorff, M.

    2000-10-01

    The calculation of the radial electric field in stellarator devices is an important issue in neoclassical transport. The radial electric field, which is also related to the formation of transport barriers, can affect the anomalous transport. In stellarator configurations which depart only weakly from axi-symmetry, a direct Monte Carlo calculations of the radial electric is difficult due to the large statistical fluctuations. We present a novel method based on the evaluation of the perpendicular ( p_⊥ ) and parallel ( p_|| ) pressures. The variation of widehatp ≡ ( p_|| + p_⊥ ) /2 on the magnetic surface provides a low-noise calculation of the radial electric field. The low-noise method has been implemented in a three-dimensional gyro-kinetic particle code [1]. The calculation of the radial electric field for the National Compact Stellarator Experiment [2] will be presented. [ 1 ] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. White Science 281, 1835 (1998). [ 2 ] A. Reiman et al, invited talk (this conference).

  2. Multi-species ion transport in ICF relevant conditions

    NASA Astrophysics Data System (ADS)

    Vold, Erik; Kagan, Grigory; Simakov, Andrei; Molvig, Kim; Yin, Lin; Albright, Brian

    2017-10-01

    Classical transport theory based on Chapman-Enskog methods provides self consistent approximations for kinetic fluxes of mass, heat and momentum for each ion species in a multi-ion plasma characterized with a small Knudsen number. A numerical method for solving the classic forms of multi-ion transport, self-consistently including heat and species mass fluxes relative to the center of mass, is given in [Kagan-Baalrud, arXiv '16] and similar transport coefficients result from recent derivations [Simakov-Molvig, PoP, '16]. We have implemented a combination of these methods in a standalone test code and in xRage, an adaptive-mesh radiation hydrodynamics code, at LANL. Transport mixing is examined between a DT fuel and a CH capsule shell in ICF conditions. The four ion species develop individual self-similar density profiles under the assumption of P-T equilibrium in 1D and show interesting early time transient pressure and center of mass velocity behavior when P-T equilibrium is not enforced. Some 2D results are explored to better understand the transport mix in combination with convective flow driven by macroscopic fluid instabilities at the fuel-capsule interface. Early transient and some 2D behaviors from the fluid transport are compared to kinetic code results. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Advanced Simulation and Computing (ASC) Program.

  3. 14 CFR 217.10 - Instructions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and the other pertaining to on-flight markets. For example, the routing (A-B-C-D) consists of three..., Singapore A-3—Airport code Origin A-4—Airport code Destination A-5—Service class (mark an X) F G L P Q By aircraft type— B-1—Aircraft type code B-2—Revenue aircraft departures B-3—Revenue passengers transported B...

  4. 14 CFR 217.10 - Instructions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and the other pertaining to on-flight markets. For example, the routing (A-B-C-D) consists of three..., Singapore A-3—Airport code Origin A-4—Airport code Destination A-5—Service class (mark an X) F G L P Q By aircraft type— B-1—Aircraft type code B-2—Revenue aircraft departures B-3—Revenue passengers transported B...

  5. 14 CFR 217.10 - Instructions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and the other pertaining to on-flight markets. For example, the routing (A-B-C-D) consists of three..., Singapore A-3—Airport code Origin A-4—Airport code Destination A-5—Service class (mark an X) F G L P Q By aircraft type— B-1—Aircraft type code B-2—Revenue aircraft departures B-3—Revenue passengers transported B...

  6. Generic reactive transport codes as flexible tools to integrate soil organic matter degradation models with water, transport and geochemistry in soils

    NASA Astrophysics Data System (ADS)

    Jacques, Diederik; Gérard, Fréderic; Mayer, Uli; Simunek, Jirka; Leterme, Bertrand

    2016-04-01

    A large number of organic matter degradation, CO2 transport and dissolved organic matter models have been developed during the last decades. However, organic matter degradation models are in many cases strictly hard-coded in terms of organic pools, degradation kinetics and dependency on environmental variables. The scientific input of the model user is typically limited to the adjustment of input parameters. In addition, the coupling with geochemical soil processes including aqueous speciation, pH-dependent sorption and colloid-facilitated transport are not incorporated in many of these models, strongly limiting the scope of their application. Furthermore, the most comprehensive organic matter degradation models are combined with simplified representations of flow and transport processes in the soil system. We illustrate the capability of generic reactive transport codes to overcome these shortcomings. The formulations of reactive transport codes include a physics-based continuum representation of flow and transport processes, while biogeochemical reactions can be described as equilibrium processes constrained by thermodynamic principles and/or kinetic reaction networks. The flexibility of these type of codes allows for straight-forward extension of reaction networks, permits the inclusion of new model components (e.g.: organic matter pools, rate equations, parameter dependency on environmental conditions) and in such a way facilitates an application-tailored implementation of organic matter degradation models and related processes. A numerical benchmark involving two reactive transport codes (HPx and MIN3P) demonstrates how the process-based simulation of transient variably saturated water flow (Richards equation), solute transport (advection-dispersion equation), heat transfer and diffusion in the gas phase can be combined with a flexible implementation of a soil organic matter degradation model. The benchmark includes the production of leachable organic matter and inorganic carbon in the aqueous and gaseous phases, as well as different decomposition functions with first-order, linear dependence or nonlinear dependence on a biomass pool. In addition, we show how processes such as local bioturbation (bio-diffusion) can be included implicitly through a Fickian formulation of transport of soil organic matter. Coupling soil organic matter models with generic and flexible reactive transport codes offers a valuable tool to enhance insights into coupled physico-chemical processes at different scales within the scope of C-biogeochemical cycles, possibly linked with other chemical elements such as plant nutrients and pollutants.

  7. Background and Recent Progress in Anomalous Transport Simulation

    DTIC Science & Technology

    2017-07-19

    NUMBER (Include area code) 19 July 2017 Briefing Charts 14 June 2017 - 19 July 2017 Background and Recent Progress in Anomalous Transport Simulation ...and Recent Progress in Anomalous Transport Simulation 19 Jul 2017 Justin Koo AFRL/RQRS Edwards AFB, CA 2DISTRIBUTION A: Approved for public release...Baalrud, S.D. and Chabert, P., “Theory for the anomalous electron transport in Hall effect thrusters. I. Insights from particle-in-cell simulations

  8. A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom

    2008-11-01

    Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.

  9. Stable isotope reactive transport modeling in water-rock interactions during CO2 injection

    NASA Astrophysics Data System (ADS)

    Hidalgo, Juan J.; Lagneau, Vincent; Agrinier, Pierre

    2010-05-01

    Stable isotopes can be of great usefulness in the characterization and monitoring of CO2 sequestration sites. Stable isotopes can be used to track the migration of the CO2 plume and identify leakage sources. Moreover, they provide unique information about the chemical reactions that take place on the CO2-water-rock system. However, there is a lack of appropriate tools that help modelers to incorporate stable isotope information into the flow and transport models used in CO2 sequestration problems. In this work, we present a numerical tool for modeling the transport of stable isotopes in groundwater reactive systems. The code is an extension of the groundwater single-phase flow and reactive transport code HYTEC [2]. HYTEC's transport module was modified to include element isotopes as separate species. This way, it is able to track isotope composition of the system by computing the mixing between the background water and the injected solution accounting for the dependency of diffusion on the isotope mass. The chemical module and database have been expanded to included isotopic exchange with minerals and the isotope fractionation associated with chemical reactions and mineral dissolution or precipitation. The performance of the code is illustrated through a series of column synthetic models. The code is also used to model the aqueous phase CO2 injection test carried out at the Lamont-Doherty Earth Observatory site (Palisades, New York, USA) [1]. References [1] N. Assayag, J. Matter, M. Ader, D. Goldberg, and P. Agrinier. Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects. Chemical Geology, 265(1-2):227-235, July 2009. [2] Jan van der Lee, Laurent De Windt, Vincent Lagneau, and Patrick Goblet. Module-oriented modeling of reactive transport with HYTEC. Computers & Geosciences, 29(3):265-275, April 2003.

  10. Moving from Batch to Field Using the RT3D Reactive Transport Modeling System

    NASA Astrophysics Data System (ADS)

    Clement, T. P.; Gautam, T. R.

    2002-12-01

    The public domain reactive transport code RT3D (Clement, 1997) is a general-purpose numerical code for solving coupled, multi-species reactive transport in saturated groundwater systems. The code uses MODFLOW to simulate flow and several modules of MT3DMS to simulate the advection and dispersion processes. RT3D employs the operator-split strategy which allows the code solve the coupled reactive transport problem in a modular fashion. The coupling between reaction and transport is defined through a separate module where the reaction equations are specified. The code supports a versatile user-defined reaction option that allows users to define their own reaction system through a Fortran-90 subroutine, known as the RT3D-reaction package. Further a utility code, known as BATCHRXN, allows the users to independently test and debug their reaction package. To analyze a new reaction system at a batch scale, users should first run BATCHRXN to test the ability of their reaction package to model the batch data. After testing, the reaction package can simply be ported to the RT3D environment to study the model response under 1-, 2-, or 3-dimensional transport conditions. This paper presents example problems that demonstrate the methods for moving from batch to field-scale simulations using BATCHRXN and RT3D codes. The first example describes a simple first-order reaction system for simulating the sequential degradation of Tetrachloroethene (PCE) and its daughter products. The second example uses a relatively complex reaction system for describing the multiple degradation pathways of Tetrachloroethane (PCA) and its daughter products. References 1) Clement, T.P, RT3D - A modular computer code for simulating reactive multi-species transport in 3-Dimensional groundwater aquifers, Battelle Pacific Northwest National Laboratory Research Report, PNNL-SA-28967, September, 1997. Available at: http://bioprocess.pnl.gov/rt3d.htm.

  11. Involvement of riboflavin transporter RFVT2/Slc52a2 in hepatic homeostasis of riboflavin in mice.

    PubMed

    Yao, Yoshiaki; Yonezawa, Atsushi; Yoshimatsu, Hiroki; Omura, Tomohiro; Masuda, Satohiro; Matsubara, Kazuo

    2013-08-15

    Riboflavin (vitamin B2) acts as an intermediary during various biochemical oxidation-reduction reactions in the liver. Hepatic riboflavin homeostasis is suggested to be maintained through its transporter(s). Riboflavin transporters, RFVT2/Slc52a2 and RFVT3/Slc52a3, have been identified in rodents. However, the role of each RFVT in the hepatic homeostasis of riboflavin has not yet been fully clarified. In this study, we assessed the contribution of each RFVT to riboflavin uptake into the liver using in vitro and in vivo studies. The uptake of riboflavin by mouse primary hepatocytes increased in a time-dependent and a concentration-dependent manner. Riboflavin transport was independent of extracellular Na(+). However, the uptake decreased slightly along with the extracellular pH increases. Real-time PCR analysis revealed that the mRNA level of Slc52a2, or coding for mouse (m)RFVT2, in the mouse liver was 10 times higher than that of Slc52a3 (coding for mRFVT3). The uptake of riboflavin at pH 7.4 by primary hepatocytes was significantly decreased by the transfection of Slc52a2-small interfering RNA (siRNA), but not Slc52a3-siRNA. Furthermore, we also confirmed the contribution of riboflavin transporters in vivo. The riboflavin concentrations in plasma, but not in the liver, were significantly decreased in mice fed on a riboflavin-deficient diet for 8 weeks. The expression of Slc52a2 mRNA was significantly upregulated by riboflavin deprivation. These results strongly suggest that mRFVT2 was involved in hepatic riboflavin homeostasis. © 2013 Elsevier B.V. All rights reserved.

  12. 3D-radiative transfer in terrestrial atmosphere: An efficient parallel numerical procedure

    NASA Astrophysics Data System (ADS)

    Bass, L. P.; Germogenova, T. A.; Nikolaeva, O. V.; Kokhanovsky, A. A.; Kuznetsov, V. S.

    2003-04-01

    Light propagation and scattering in terrestrial atmosphere is usually studied in the framework of the 1D radiative transfer theory [1]. However, in reality particles (e.g., ice crystals, solid and liquid aerosols, cloud droplets) are randomly distributed in 3D space. In particular, their concentrations vary both in vertical and horizontal directions. Therefore, 3D effects influence modern cloud and aerosol retrieval procedures, which are currently based on the 1D radiative transfer theory. It should be pointed out that the standard radiative transfer equation allows to study these more complex situations as well [2]. In recent year the parallel version of the 2D and 3D RADUGA code has been developed. This version is successfully used in gammas and neutrons transport problems [3]. Applications of this code to radiative transfer in atmosphere problems are contained in [4]. Possibilities of code RADUGA are presented in [5]. The RADUGA code system is an universal solver of radiative transfer problems for complicated models, including 2D and 3D aerosol and cloud fields with arbitrary scattering anisotropy, light absorption, inhomogeneous underlying surface and topography. Both delta type and distributed light sources can be accounted for in the framework of the algorithm developed. The accurate numerical procedure is based on the new discrete ordinate SWDD scheme [6]. The algorithm is specifically designed for parallel supercomputers. The version RADUGA 5.1(P) can run on MBC1000M [7] (768 processors with 10 Gb of hard disc memory for each processor). The peak productivity is equal 1 Tfl. Corresponding scalar version RADUGA 5.1 is working on PC. As a first example of application of the algorithm developed, we have studied the shadowing effects of clouds on neighboring cloudless atmosphere, depending on the cloud optical thickness, surface albedo, and illumination conditions. This is of importance for modern satellite aerosol retrieval algorithms development. [1] Sobolev, V. V., 1972: Light scattering in planetary atmosphere, M.:Nauka. [2] Evans, K. F., 1998: The spherical harmonic discrete ordinate method for three dimensional atmospheric radiative transfer, J. Atmos. Sci., 55, 429 446. [3] L.P. Bass, T.A. Germogenova, V.S. Kuznetsov, O.V. Nikolaeva. RADUGA 5.1 and RADUGA 5.1(P) codes for stationary transport equation solution in 2D and 3D geometries on one and multiprocessors computers. Report on seminar “Algorithms and Codes for neutron physical of nuclear reactor calculations” (Neutronica 2001), Obninsk, Russia, 30 October 2 November 2001. [4] T.A. Germogenova, L.P. Bass, V.S. Kuznetsov, O.V. Nikolaeva. Mathematical modeling on parallel computers solar and laser radiation transport in 3D atmosphere. Report on International Symposium CIS countries “Atmosphere radiation”, 18 21 June 2002, St. Peterburg, Russia, p. 15 16. [5] L.P. Bass, T.A. Germogenova, O.V. Nikolaeva, V.S. Kuznetsov. Radiative Transfer Universal 2D 3D Code RADUGA 5.1(P) for Multiprocessor Computer. Abstract. Poster report on this Meeting. [6] L.P. Bass, O.V. Nikolaeva. Correct calculation of Angular Flux Distribution in Strongly Heterogeneous Media and Voids. Proc. of Joint International Conference on Mathematical Methods and Supercomputing for Nuclear Applications, Saratoga Springs, New York, October 5 9, 1997, p. 995 1004. [7] http://www/jscc.ru

  13. Description of Transport Codes for Space Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.

    2011-01-01

    This slide presentation describes transport codes and their use for studying and designing space radiation shielding. When combined with risk projection models radiation transport codes serve as the main tool for study radiation and designing shielding. There are three criteria for assessing the accuracy of transport codes: (1) Ground-based studies with defined beams and material layouts, (2) Inter-comparison of transport code results for matched boundary conditions and (3) Comparisons to flight measurements. These three criteria have a very high degree with NASA's HZETRN/QMSFRG.

  14. Implementation of an anomalous radial transport model for continuum kinetic edge codes

    NASA Astrophysics Data System (ADS)

    Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.

    2007-11-01

    Radial plasma transport in magnetic fusion devices is often dominated by plasma turbulence compared to neoclassical collisional transport. Continuum kinetic edge codes [such as the (2d,2v) transport version of TEMPEST and also EGK] compute the collisional transport directly, but there is a need to model the anomalous transport from turbulence for long-time transport simulations. Such a model is presented and results are shown for its implementation in the TEMPEST gyrokinetic edge code. The model includes velocity-dependent convection and diffusion coefficients expressed as a Hermite polynominals in velocity. The specification of the Hermite coefficients can be set, e.g., by specifying the ratio of particle and energy transport as in fluid transport codes. The anomalous transport terms preserve the property of no particle flux into unphysical regions of velocity space. TEMPEST simulations are presented showing the separate control of particle and energy anomalous transport, and comparisons are made with neoclassical transport also included.

  15. Multiple copies of genes coding for electron transport proteins in the bacterium Nitrosomonas europaea.

    PubMed

    McTavish, H; LaQuier, F; Arciero, D; Logan, M; Mundfrom, G; Fuchs, J A; Hooper, A B

    1993-04-01

    The genome of Nitrosomonas europaea contains at least three copies each of the genes coding for hydroxylamine oxidoreductase (HAO) and cytochrome c554. A copy of an HAO gene is always located within 2.7 kb of a copy of a cytochrome c554 gene. Cytochrome P-460, a protein that shares very unusual spectral features with HAO, was found to be encoded by a gene separate from the HAO genes.

  16. Role of Secondary Transporters and Phosphotransferase Systems in Glucose Transport by Oenococcus oeni ▿

    PubMed Central

    Kim, Ok Bin; Richter, Hanno; Zaunmüller, Tanja; Graf, Sabrina; Unden, Gottfried

    2011-01-01

    Glucose uptake by the heterofermentative lactic acid bacterium Oenococcus oeni B1 was studied at the physiological and gene expression levels. Glucose- or fructose-grown bacteria catalyzed uptake of [14C]glucose over a pH range from pH 4 to 9, with maxima at pHs 5.5 and 7. Uptake occurred in two-step kinetics in a high- and low-affinity reaction. The high-affinity uptake followed Michaelis-Menten kinetics and required energization. It accumulated the radioactivity of glucose by a factor of 55 within the bacteria. A large portion (about 80%) of the uptake of glucose was inhibited by protonophores and ionophores. Uptake of the glucose at neutral pH was not sensitive to degradation of the proton potential, Δp. Expression of the genes OEOE_0819 and OEOE_1574 (here referred to as 0819 and 1574), coding for secondary transporters, was induced by glucose as identified by quantitative real-time (RT)-PCR. The genes 1574 and 0819 were able to complement growth of a Bacillus subtilis hexose transport-deficient mutant on glucose but not on fructose. The genes 1574 and 0819 therefore encode secondary transporters for glucose, and the transports are presumably Δp dependent. O. oeni codes, in addition, for a phosphotransferase transport system (PTS) (gene OEOE_0464 [0464] for the permease) with similarity to the fructose- and mannose-specific PTS of lactic acid bacteria. Quantitative RT-PCR showed induction of the gene 0464 by glucose and by fructose. The data suggest that the PTS is responsible for Δp-independent hexose transport at neutral pH and for the residual Δp-independent transport of hexoses at acidic pH. PMID:22020640

  17. CRUNCH_PARALLEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumaker, Dana E.; Steefel, Carl I.

    The code CRUNCH_PARALLEL is a parallel version of the CRUNCH code. CRUNCH code version 2.0 was previously released by LLNL, (UCRL-CODE-200063). Crunch is a general purpose reactive transport code developed by Carl Steefel and Yabusake (Steefel Yabsaki 1996). The code handles non-isothermal transport and reaction in one, two, and three dimensions. The reaction algorithm is generic in form, handling an arbitrary number of aqueous and surface complexation as well as mineral dissolution/precipitation. A standardized database is used containing thermodynamic and kinetic data. The code includes advective, dispersive, and diffusive transport.

  18. SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, D; Fowler, T

    2004-06-15

    A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrorsmore » and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior.« less

  19. Validating the performance of correlated fission multiplicity implementation in radiation transport codes with subcritical neutron multiplication benchmark experiments

    DOE PAGES

    Arthur, Jennifer; Bahran, Rian; Hutchinson, Jesson; ...

    2018-06-14

    Historically, radiation transport codes have uncorrelated fission emissions. In reality, the particles emitted by both spontaneous and induced fissions are correlated in time, energy, angle, and multiplicity. This work validates the performance of various current Monte Carlo codes that take into account the underlying correlated physics of fission neutrons, specifically neutron multiplicity distributions. The performance of 4 Monte Carlo codes - MCNP®6.2, MCNP®6.2/FREYA, MCNP®6.2/CGMF, and PoliMi - was assessed using neutron multiplicity benchmark experiments. In addition, MCNP®6.2 simulations were run using JEFF-3.2 and JENDL-4.0, rather than ENDF/B-VII.1, data for 239Pu and 240Pu. The sensitive benchmark parameters that in this workmore » represent the performance of each correlated fission multiplicity Monte Carlo code include the singles rate, the doubles rate, leakage multiplication, and Feynman histograms. Although it is difficult to determine which radiation transport code shows the best overall performance in simulating subcritical neutron multiplication inference benchmark measurements, it is clear that correlations exist between the underlying nuclear data utilized by (or generated by) the various codes, and the correlated neutron observables of interest. This could prove useful in nuclear data validation and evaluation applications, in which a particular moment of the neutron multiplicity distribution is of more interest than the other moments. It is also quite clear that, because transport is handled by MCNP®6.2 in 3 of the 4 codes, with the 4th code (PoliMi) being based on an older version of MCNP®, the differences in correlated neutron observables of interest are most likely due to the treatment of fission event generation in each of the different codes, as opposed to the radiation transport.« less

  20. Validating the performance of correlated fission multiplicity implementation in radiation transport codes with subcritical neutron multiplication benchmark experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, Jennifer; Bahran, Rian; Hutchinson, Jesson

    Historically, radiation transport codes have uncorrelated fission emissions. In reality, the particles emitted by both spontaneous and induced fissions are correlated in time, energy, angle, and multiplicity. This work validates the performance of various current Monte Carlo codes that take into account the underlying correlated physics of fission neutrons, specifically neutron multiplicity distributions. The performance of 4 Monte Carlo codes - MCNP®6.2, MCNP®6.2/FREYA, MCNP®6.2/CGMF, and PoliMi - was assessed using neutron multiplicity benchmark experiments. In addition, MCNP®6.2 simulations were run using JEFF-3.2 and JENDL-4.0, rather than ENDF/B-VII.1, data for 239Pu and 240Pu. The sensitive benchmark parameters that in this workmore » represent the performance of each correlated fission multiplicity Monte Carlo code include the singles rate, the doubles rate, leakage multiplication, and Feynman histograms. Although it is difficult to determine which radiation transport code shows the best overall performance in simulating subcritical neutron multiplication inference benchmark measurements, it is clear that correlations exist between the underlying nuclear data utilized by (or generated by) the various codes, and the correlated neutron observables of interest. This could prove useful in nuclear data validation and evaluation applications, in which a particular moment of the neutron multiplicity distribution is of more interest than the other moments. It is also quite clear that, because transport is handled by MCNP®6.2 in 3 of the 4 codes, with the 4th code (PoliMi) being based on an older version of MCNP®, the differences in correlated neutron observables of interest are most likely due to the treatment of fission event generation in each of the different codes, as opposed to the radiation transport.« less

  1. 76 FR 42761 - Agency Information Collection Activities: Request for Comments of a Previously Approved...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    .... Department of Transportation, 1200 New Jersey Avenue, SE., Room W62-317, Washington, DC 20590; 202-366-3784... variety of service agents. Estimated total number of respondents is 2,620,309. Estimated Number of...-18-11; 8:45 am] BILLING CODE 4910-9-P ...

  2. First ERO2.0 modeling of Be erosion and non-local transport in JET ITER-like wall

    NASA Astrophysics Data System (ADS)

    Romazanov, J.; Borodin, D.; Kirschner, A.; Brezinsek, S.; Silburn, S.; Huber, A.; Huber, V.; Bufferand, H.; Firdaouss, M.; Brömmel, D.; Steinbusch, B.; Gibbon, P.; Lasa, A.; Borodkina, I.; Eksaeva, A.; Linsmeier, Ch; Contributors, JET

    2017-12-01

    ERO is a Monte-Carlo code for modeling plasma-wall interaction and 3D plasma impurity transport for applications in fusion research. The code has undergone a significant upgrade (ERO2.0) which allows increasing the simulation volume in order to cover the entire plasma edge of a fusion device, allowing a more self-consistent treatment of impurity transport and comparison with a larger number and variety of experimental diagnostics. In this contribution, the physics-relevant technical innovations of the new code version are described and discussed. The new capabilities of the code are demonstrated by modeling of beryllium (Be) erosion of the main wall during JET limiter discharges. Results for erosion patterns along the limiter surfaces and global Be transport including incident particle distributions are presented. A novel synthetic diagnostic, which mimics experimental wide-angle 2D camera images, is presented and used for validating various aspects of the code, including erosion, magnetic shadowing, non-local impurity transport, and light emission simulation.

  3. Reactive transport codes for subsurface environmental simulation

    DOE PAGES

    Steefel, C. I.; Appelo, C. A. J.; Arora, B.; ...

    2014-09-26

    A general description of the mathematical and numerical formulations used in modern numerical reactive transport codes relevant for subsurface environmental simulations is presented. The formulations are followed by short descriptions of commonly used and available subsurface simulators that consider continuum representations of flow, transport, and reactions in porous media. These formulations are applicable to most of the subsurface environmental benchmark problems included in this special issue. The list of codes described briefly here includes PHREEQC, HPx, PHT3D, OpenGeoSys (OGS), HYTEC, ORCHESTRA, TOUGHREACT, eSTOMP, HYDROGEOCHEM, CrunchFlow, MIN3P, and PFLOTRAN. The descriptions include a high-level list of capabilities for each of themore » codes, along with a selective list of applications that highlight their capabilities and historical development.« less

  4. Simulations of electron transport and ignition for direct-drive fast-ignition targets

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Anderson, K. S.; Betti, R.; Gotcheva, V.; Myatt, J.; Delettrez, J. A.; Skupsky, S.; Theobald, W.; Stoeckl, C.

    2008-11-01

    The performance of high-gain, fast-ignition fusion targets is investigated using one-dimensional hydrodynamic simulations of implosion and two-dimensional (2D) hybrid fluid-particle simulations of hot-electron transport, ignition, and burn. The 2D/3D hybrid-particle-in-cell code LSP [D. R. Welch et al., Nucl. Instrum. Methods Phys. Res. A 464, 134 (2001)] and the 2D fluid code DRACO [P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)] are integrated to simulate the hot-electron transport and heating for direct-drive fast-ignition targets. LSP simulates the transport of hot electrons from the place where they are generated to the dense fuel core where their energy is absorbed. DRACO includes the physics required to simulate compression, ignition, and burn of fast-ignition targets. The self-generated resistive magnetic field is found to collimate the hot-electron beam, increase the coupling efficiency of hot electrons with the target, and reduce the minimum energy required for ignition. Resistive filamentation of the hot-electron beam is also observed. The minimum energy required for ignition is found for hot electrons with realistic angular spread and Maxwellian energy-distribution function.

  5. Resonance charge transfer, transport cross sections, and collision integrals for N(+)(3P)-N(4S0) and O(+)(4S0)-O(3P) interactions

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene

    1991-01-01

    N2(+) and O2(+) potential energy curves have been constructed by combining measured data with the results from electronic structure calculations. These potential curves have been employed to determine accurate charge exchange cross sections, transport cross sections, and collision integrals for ground state N(+)-N and O(+)-O interactions. The cross sections have been calculated from a semiclassical approximation to the scattering using a computer code that fits a spline curve through the discrete potential data and incorporates the proper long-range behavior of the interactions forces. The collision integrals are tabulated for a broad range of temperatures 250-100,000 K and are intended to reduce the uncertainty in the values of the transport properties of nonequilibrium air, particularly at high temperatures.

  6. MILSTAMP TACs: Military Standard Transportation and Movement Procedures Transportation Account Codes. Volume 2

    DTIC Science & Technology

    1987-02-15

    this chapter. NO - If shipment is not second des - tination transportation , obtain fund cite per yes response for question 2 above. 4. For Direct Support...return . . . . . . . . .0 . . . . . . . a. . .. A820 (8) LOGAIR/QUICKTRANS. Transportation Account Codes de - signed herein are applicable to the...oo~• na~- Transportation Tis Document Contains Tasotto Missing Page/s That Are Unavailable In The And Original Document Movement sdocument has boon

  7. Mutations in SLC2A2 Gene Reveal hGLUT2 Function in Pancreatic β Cell Development*

    PubMed Central

    Michau, Aurélien; Guillemain, Ghislaine; Grosfeld, Alexandra; Vuillaumier-Barrot, Sandrine; Grand, Teddy; Keck, Mathilde; L'Hoste, Sébastien; Chateau, Danielle; Serradas, Patricia; Teulon, Jacques; De Lonlay, Pascale; Scharfmann, Raphaël; Brot-Laroche, Edith; Leturque, Armelle; Le Gall, Maude

    2013-01-01

    The structure-function relationships of sugar transporter-receptor hGLUT2 coded by SLC2A2 and their impact on insulin secretion and β cell differentiation were investigated through the detailed characterization of a panel of mutations along the protein. We studied naturally occurring SLC2A2 variants or mutants: two single-nucleotide polymorphisms and four proposed inactivating mutations associated to Fanconi-Bickel syndrome. We also engineered mutations based on sequence alignment and conserved amino acids in selected domains. The single-nucleotide polymorphisms P68L and T110I did not impact on sugar transport as assayed in Xenopus oocytes. All the Fanconi-Bickel syndrome-associated mutations invalidated glucose transport by hGLUT2 either through absence of protein at the plasma membrane (G20D and S242R) or through loss of transport capacity despite membrane targeting (P417L and W444R), pointing out crucial amino acids for hGLUT2 transport function. In contrast, engineered mutants were located at the plasma membrane and able to transport sugar, albeit with modified kinetic parameters. Notably, these mutations resulted in gain of function. G20S and L368P mutations increased insulin secretion in the absence of glucose. In addition, these mutants increased insulin-positive cell differentiation when expressed in cultured rat embryonic pancreas. F295Y mutation induced β cell differentiation even in the absence of glucose, suggesting that mutated GLUT2, as a sugar receptor, triggers a signaling pathway independently of glucose transport and metabolism. Our results describe the first gain of function mutations for hGLUT2, revealing the importance of its receptor versus transporter function in pancreatic β cell development and insulin secretion. PMID:23986439

  8. Comparisons of anomalous and collisional radial transport with a continuum kinetic edge code

    NASA Astrophysics Data System (ADS)

    Bodi, K.; Krasheninnikov, S.; Cohen, R.; Rognlien, T.

    2009-05-01

    Modeling of anomalous (turbulence-driven) radial transport in controlled-fusion plasmas is necessary for long-time transport simulations. Here the focus is continuum kinetic edge codes such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory, but the model also has wider application. Our previously developed anomalous diagonal transport matrix model with velocity-dependent convection and diffusion coefficients allows contact with typical fluid transport models (e.g., UEDGE). Results are presented that combine the anomalous transport model and collisional transport owing to ion drift orbits utilizing a Krook collision operator that conserves density and energy. Comparison is made of the relative magnitudes and possible synergistic effects of the two processes for typical tokamak device parameters.

  9. Proton Dose Assessment to the Human Eye Using Monte Carlo N-Particle Transport Code (MCNPX)

    DTIC Science & Technology

    2006-08-01

    current treatments are applied using an infrared diode laser 10 (projecting a spot size of 2-3 mm), used for about 1 minute per exposure. The laser heats...1983. Shultis J, Faw R. An MCNP Primer. Available at: http:// ww2 .mne.ksu.edu/-jks/MCNPprmr.pdf. Accessed 3 January 2006. Stys P, Lopachin R

  10. METHES: A Monte Carlo collision code for the simulation of electron transport in low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Rabie, M.; Franck, C. M.

    2016-06-01

    We present a freely available MATLAB code for the simulation of electron transport in arbitrary gas mixtures in the presence of uniform electric fields. For steady-state electron transport, the program provides the transport coefficients, reaction rates and the electron energy distribution function. The program uses established Monte Carlo techniques and is compatible with the electron scattering cross section files from the open-access Plasma Data Exchange Project LXCat. The code is written in object-oriented design, allowing the tracing and visualization of the spatiotemporal evolution of electron swarms and the temporal development of the mean energy and the electron number due to attachment and/or ionization processes. We benchmark our code with well-known model gases as well as the real gases argon, N2, O2, CF4, SF6 and mixtures of N2 and O2.

  11. Comparison of Transport Codes, HZETRN, HETC and FLUKA, Using 1977 GCR Solar Minimum Spectra

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Slaba, Tony C.; Tripathi, Ram K.; Blattnig, Steve R.; Norbury, John W.; Badavi, Francis F.; Townsend, Lawrence W.; Handler, Thomas; Gabriel, Tony A.; Pinsky, Lawrence S.; hide

    2009-01-01

    The HZETRN deterministic radiation transport code is one of several tools developed to analyze the effects of harmful galactic cosmic rays (GCR) and solar particle events (SPE) on mission planning, astronaut shielding and instrumentation. This paper is a comparison study involving the two Monte Carlo transport codes, HETC-HEDS and FLUKA, and the deterministic transport code, HZETRN. Each code is used to transport ions from the 1977 solar minimum GCR spectrum impinging upon a 20 g/cm2 Aluminum slab followed by a 30 g/cm2 water slab. This research is part of a systematic effort of verification and validation to quantify the accuracy of HZETRN and determine areas where it can be improved. Comparisons of dose and dose equivalent values at various depths in the water slab are presented in this report. This is followed by a comparison of the proton fluxes, and the forward, backward and total neutron fluxes at various depths in the water slab. Comparisons of the secondary light ion 2H, 3H, 3He and 4He fluxes are also examined.

  12. Many-integrated core (MIC) technology for accelerating Monte Carlo simulation of radiation transport: A study based on the code DPM

    NASA Astrophysics Data System (ADS)

    Rodriguez, M.; Brualla, L.

    2018-04-01

    Monte Carlo simulation of radiation transport is computationally demanding to obtain reasonably low statistical uncertainties of the estimated quantities. Therefore, it can benefit in a large extent from high-performance computing. This work is aimed at assessing the performance of the first generation of the many-integrated core architecture (MIC) Xeon Phi coprocessor with respect to that of a CPU consisting of a double 12-core Xeon processor in Monte Carlo simulation of coupled electron-photonshowers. The comparison was made twofold, first, through a suite of basic tests including parallel versions of the random number generators Mersenne Twister and a modified implementation of RANECU. These tests were addressed to establish a baseline comparison between both devices. Secondly, through the p DPM code developed in this work. p DPM is a parallel version of the Dose Planning Method (DPM) program for fast Monte Carlo simulation of radiation transport in voxelized geometries. A variety of techniques addressed to obtain a large scalability on the Xeon Phi were implemented in p DPM. Maximum scalabilities of 84 . 2 × and 107 . 5 × were obtained in the Xeon Phi for simulations of electron and photon beams, respectively. Nevertheless, in none of the tests involving radiation transport the Xeon Phi performed better than the CPU. The disadvantage of the Xeon Phi with respect to the CPU owes to the low performance of the single core of the former. A single core of the Xeon Phi was more than 10 times less efficient than a single core of the CPU for all radiation transport simulations.

  13. MCNP capabilities for nuclear well logging calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forster, R.A.; Little, R.C.; Briesmeister, J.F.

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. This paper discusses how the general-purpose continuous-energy Monte Carlo code MCNP ({und M}onte {und C}arlo {und n}eutron {und p}hoton), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tallymore » characteristics with standard MCNP features. The time-dependent capability of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data.« less

  14. Adaptation of Flux-Corrected Transport Algorithms for Modeling Dusty Flows.

    DTIC Science & Technology

    1983-12-20

    Defense Comunications Agency Olcy Attn XLA Washington, DC 20305 01cy Attn nTW-2 (ADR CNW D I: Attn Code 240 for) Olcy Attn NL-STN O Library Olcy Attn...Library Olcy Attn TIC-Library Olcy Attn R Welch Olcy Attn M Johnson Los Alamos National Scientific Lab. Mail Station 5000 Information Science, Inc. P

  15. Benchmarking NNWSI flow and transport codes: COVE 1 results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayden, N.K.

    1985-06-01

    The code verification (COVE) activity of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project is the first step in certification of flow and transport codes used for NNWSI performance assessments of a geologic repository for disposing of high-level radioactive wastes. The goals of the COVE activity are (1) to demonstrate and compare the numerical accuracy and sensitivity of certain codes, (2) to identify and resolve problems in running typical NNWSI performance assessment calculations, and (3) to evaluate computer requirements for running the codes. This report describes the work done for COVE 1, the first step in benchmarking some of themore » codes. Isothermal calculations for the COVE 1 benchmarking have been completed using the hydrologic flow codes SAGUARO, TRUST, and GWVIP; the radionuclide transport codes FEMTRAN and TRUMP; and the coupled flow and transport code TRACR3D. This report presents the results of three cases of the benchmarking problem solved for COVE 1, a comparison of the results, questions raised regarding sensitivities to modeling techniques, and conclusions drawn regarding the status and numerical sensitivities of the codes. 30 refs.« less

  16. 77 FR 43645 - Petition for Waiver of Compliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ...] Petition for Waiver of Compliance In accordance with Part 211 of Title 49 of the Code of Federal... Transportation (CSX), has petitioned the Federal Railroad Administration (FRA) for a waiver of compliance from... Compliance. [FR Doc. 2012-18081 Filed 7-24-12; 8:45 am] BILLING CODE 4910-06-P ...

  17. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    DOE PAGES

    Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; ...

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO 2 sequestration sites to track the migration of the CO 2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO 2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO 2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport modulemore » of TOUGHREACT was modified to include separate isotopic species of CO 2 gas and dissolved inorganic carbon (CO 2, CO 3 2-, HCO 3 -,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO 2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.« less

  18. Modelling reactive transport in a phosphogypsum dump, Venezia, Italia

    NASA Astrophysics Data System (ADS)

    Calcara, Massimo; Borgia, Andrea; Cattaneo, Laura; Bartolo, Sergio; Clemente, Gianni; Glauco Amoroso, Carlo; Lo Re, Fabio; Tozzato, Elena

    2013-04-01

    We develop a reactive-transport porous media flow model for a phosphogypsum dump located on the intertidal deposits of the Venetian Lagoon: 1. we construct a complex conceptual and geologic model from field data using the GMS™ graphical user interface; 2. the geological model is mapped onto a rectangular MODFLOW grid; 3. using the TMT2 FORTRAN90 code we translate this grid into the MESH, INCON and GENER input files for the TOUGH2 series of codes; 4. we run TOUGH-REACT to model flow and reactive transport in the dump and the sediments below it. The model includes 3 different dump materials (phosphogypsum, bituminous and hazardous wastes) with the pores saturated by specific fluids. The sediments below the dump are formed by an intertidal sequence of calcareous sands and silts, in addition to clays and organic deposits, all of which are initially saturated with lagoon salty waters. The recharge rain-water dilutes the dump fluids. In turn, the percolates from the dump react with the underlying sediments and the sea water that saturates them. Simulation results have been compared with chemical sampled analyses. In fact, in spite of the simplicity of our model we are able to show how the pH becomes neutral at a short distance below the dump, a fact observed during aquifer monitoring. The spatial and temporal evolution of dissolution and precipitation reactions occur in our model much alike reality. Mobility of some elements, such as divalent iron, are reduced by specific and concurrent conditions of pH from near-neutrality to moderately high values and positive redox potential; opposite conditions favour mobility of potentially toxic metals such as Cr, As Cd and Pb. Vertical movement are predominant. Trend should be therefore heavily influenced by pH and Eh values. If conditions are favourable to mobility, concentration of these substances in the bottom strata could be high. However, simulation suggest that the sediments tend to reduce the transport potential of contaminants.

  19. P1 Nonconforming Finite Element Method for the Solution of Radiation Transport Problems

    NASA Technical Reports Server (NTRS)

    Kang, Kab S.

    2002-01-01

    The simulation of radiation transport in the optically thick flux-limited diffusion regime has been identified as one of the most time-consuming tasks within large simulation codes. Due to multimaterial complex geometry, the radiation transport system must often be solved on unstructured grids. In this paper, we investigate the behavior and the benefits of the unstructured P(sub 1) nonconforming finite element method, which has proven to be flexible and effective on related transport problems, in solving unsteady implicit nonlinear radiation diffusion problems using Newton and Picard linearization methods. Key words. nonconforrning finite elements, radiation transport, inexact Newton linearization, multigrid preconditioning

  20. Development of a 1.5D plasma transport code for coupling to full orbit runaway electron simulations

    NASA Astrophysics Data System (ADS)

    Lore, J. D.; Del Castillo-Negrete, D.; Baylor, L.; Carbajal, L.

    2017-10-01

    A 1.5D (1D radial transport + 2D equilibrium geometry) plasma transport code is being developed to simulate runaway electron generation, mitigation, and avoidance by coupling to the full-orbit kinetic electron transport code KORC. The 1.5D code solves the time-dependent 1D flux surface averaged transport equations with sources for plasma density, pressure, and poloidal magnetic flux, along with the Grad-Shafranov equilibrium equation for the 2D flux surface geometry. Disruption mitigation is simulated by introducing an impurity neutral gas `pellet', with impurity densities and electron cooling calculated from ionization, recombination, and line emission rate coefficients. Rapid cooling of the electrons increases the resistivity, inducing an electric field which can be used as an input to KORC. The runaway electron current is then included in the parallel Ohm's law in the transport equations. The 1.5D solver will act as a driver for coupled simulations to model effects such as timescales for thermal quench, runaway electron generation, and pellet impurity mixtures for runaway avoidance. Current progress on the code and details of the numerical algorithms will be presented. Work supported by the US DOE under DE-AC05-00OR22725.

  1. ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug-drug interactions.

    PubMed

    Marquez, Béatrice; Van Bambeke, Françoise

    2011-05-01

    Nine proteins of the ABC superfamily (P-glycoprotein, 7 MRPs and BCRP) are involved in multidrug transport. Being localised at the surface of endothelial or epithelial cells, they expel drugs back to the external medium (if located at the apical side [P-glycoprotein, BCRP, MRP2, MRP4 in the kidney]) or to the blood (if located at the basolateral side [MRP1, MRP3, MRP4, MRP5]), modulating thereby their absorption, distribution, and elimination. In the CNS, most transporters are oriented to expel drugs to the blood. Transporters also cooperate with Phase I/Phase II metabolism enzymes by eliminating drug metabolites. Their major features are (i) their capacity to recognize drugs belonging to unrelated pharmacological classes, and (ii) their redundancy, a single molecule being possibly substrate for different transporters. This ensures an efficient protection of the body against invasion by xenobiotics. Competition for transport is now characterized as a mechanism of interaction between co-administered drugs, one molecule limiting the transport of the other, potentially affecting bioavailability, distribution, and/or elimination. Again, this mechanism reinforces drug interactions mediated by cytochrome P450 inhibition, as many substrates of P-glycoprotein and CYP3A4 are common. Induction of the expression of genes coding for MDR transporters is another mechanism of drug interaction, which could affect all drug substrates of the up-regulated transporter. Overexpression of MDR transporters confers resistance to anticancer agents and other therapies. All together, these data justify why studying drug active transport should be part of the evaluation of new drugs, as recently recommended by the FDA.

  2. MPACT Standard Input User s Manual, Version 2.2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Benjamin S.; Downar, Thomas; Fitzgerald, Andrew

    The MPACT (Michigan PArallel Charactistics based Transport) code is designed to perform high-fidelity light water reactor (LWR) analysis using whole-core pin-resolved neutron transport calculations on modern parallel-computing hardware. The code consists of several libraries which provide the functionality necessary to solve steady-state eigenvalue problems. Several transport capabilities are available within MPACT including both 2-D and 3-D Method of Characteristics (MOC). A three-dimensional whole core solution based on the 2D-1D solution method provides the capability for full core depletion calculations.

  3. Measurements and modeling of transport and impurity radial profiles in the EXTRAP T2R reversed field pinch

    NASA Astrophysics Data System (ADS)

    Kuldkepp, M.; Brunsell, P. R.; Cecconello, M.; Dux, R.; Menmuir, S.; Rachlew, E.

    2006-09-01

    Radial impurity profiles of oxygen in the rebuilt reversed field pinch EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] have been measured with a multichannel spectrometer. Absolute ion densities for oxygen peak between 1-4×1010cm-3 for a central electron density of 1×1013cm-3. Transport simulations with the one-dimensional transport code STRAHL with a diffusion coefficient of 20m2 s-1 yield density profiles similar to those measured. Direct measurement of the ion profile evolution during pulsed poloidal current drive suggests that the diffusion coefficient is reduced by a factor ˜2 in the core but remains unaffected toward the edge. Core transport is not significantly affected by the radial magnetic field growth seen at the edge in discharges without feedback control. This indicates that the mode core amplitude remains the same while the mode eigenfunction increases at the edge.

  4. Analysis of On-Board Oxygen and Nitrogen Generation Systems for Surface Vessels.

    DTIC Science & Technology

    1983-06-01

    and Pressure Vessel Code SAE AIR 822 Oxygen for General Aviation Aircraft SAE AIR 825 Oxygen for Aircrafts SAE AIR 1059 Transportation and Maintenance...OF THE TITLE MIL-T-27730 Threaded Components MIL-P-27401 A 40 Micron Filter For Nitrogen MIL-V-33650 Internal Straight Threads ASME Code VIII Boiler

  5. Comparing Turbulence Simulation with Experiment in DIII-D

    NASA Astrophysics Data System (ADS)

    Ross, D. W.; Bravenec, R. V.; Dorland, W.; Beer, M. A.; Hammett, G. W.; McKee, G. R.; Murakami, M.; Jackson, G. L.

    2000-10-01

    Gyrofluid simulations of DIII-D discharges with the GRYFFIN code(D. W. Ross et al.), Transport Task Force Workshop, Burlington, VT, (2000). are compared with transport and fluctuation measurements. The evolution of confinement-improved discharges(G. R. McKee et al.), Phys. Plasmas 7, 1870 (200) is studied at early times following impurity injection, when EXB rotational shear plays a small role. The ion thermal transport predicted by the code is consistent with the experimental values. Experimentally, changes in density profiles resulting from the injection of neon, lead to reduction in fluctuation levels and transport following the injection. This triggers subsequent changes in the shearing rate that further reduce the turbulence.(M. Murakami et al.), European Physical Society, Budapest (2000); M. Murakami et al., this meeting. Estimated uncertainties in the plasma profiles, however, make it difficult to simulate these reductions with the code. These cases will also be studied with the GS2 gyrokinetic code.

  6. Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients

    NASA Astrophysics Data System (ADS)

    Evoli, Carmelo; Gaggero, Daniele; Vittino, Andrea; Di Bernardo, Giuseppe; Di Mauro, Mattia; Ligorini, Arianna; Ullio, Piero; Grasso, Dario

    2017-02-01

    We present version 2 of the DRAGON code designed for computing realistic predictions of the CR densities in the Galaxy. The code numerically solves the interstellar CR transport equation (including inhomogeneous and anisotropic diffusion, either in space and momentum, advective transport and energy losses), under realistic conditions. The new version includes an updated numerical solver and several models for the astrophysical ingredients involved in the transport equation. Improvements in the accuracy of the numerical solution are proved against analytical solutions and in reference diffusion scenarios. The novel features implemented in the code allow to simulate the diverse scenarios proposed to reproduce the most recent measurements of local and diffuse CR fluxes, going beyond the limitations of the homogeneous galactic transport paradigm. To this end, several applications using DRAGON2 are presented as well. This new version facilitates the users to include their own physical models by means of a modular C++ structure.

  7. Fully-kinetic Ion Simulation of Global Electrostatic Turbulent Transport in C-2U

    NASA Astrophysics Data System (ADS)

    Fulton, Daniel; Lau, Calvin; Bao, Jian; Lin, Zhihong; Tajima, Toshiki; TAE Team

    2017-10-01

    Understanding the nature of particle and energy transport in field-reversed configuration (FRC) plasmas is a crucial step towards an FRC-based fusion reactor. The C-2U device at Tri Alpha Energy (TAE) achieved macroscopically stable plasmas and electron energy confinement time which scaled favorably with electron temperature. This success led to experimental and theoretical investigation of turbulence in C-2U, including gyrokinetic ion simulations with the Gyrokinetic Toroidal Code (GTC). A primary objective of TAE's new C-2W device is to explore transport scaling in an extended parameter regime. In concert with the C-2W experimental campaign, numerical efforts have also been extended in A New Code (ANC) to use fully-kinetic (FK) ions and a Vlasov-Poisson field solver. Global FK ion simulations are presented. Future code development is also discussed.

  8. Fate and Transport of Nitrogen and Carbon with Decomposition of Organic Matter in a Reduced Paddy Field Based on a Coupled Nitrogen-Carbon Cycling Model Using the HP1 Code

    NASA Astrophysics Data System (ADS)

    Toride, N.; Matsuoka, K.

    2017-12-01

    In order to predict the fate and transport of nitrogen in a reduced paddy field as a result of decomposition of organic matter, we implemented within the PHREEQC program a modified coupled carbon and nitrogen cycling model based on the LEACHM code. SOM decay processes from organic carbon (Org-C) to biomass carbon (Bio-C), humus carbon (Hum-C), and carbon dioxide (CO2) were described using first-order kinetics. Bio-C was recycled into the organic pool. When oxygen was available in an aerobic condition, O2 was used to produce CO2 as an electron accepter. When O2 availability is low, other electron acceptors such as NO3-, Mn4+, Fe3+, SO42-, were used depending on the redox potential. Decomposition of Org-N was related to the carbon cycle using the C/N ratio. Mineralization and immobilization were determined based on available NH4-N and the nitrogen demand for the formation of biomass and humus. Although nitrification was independently described with the first-order decay process, denitrification was linked with the SOM decay since NO3- was an electron accepter for the CO2 production. Proton reactions were coupled with the nitrification from NH4+ to NO3-, and the ammonium generation from NH3 to NH4+. Furthermore, cation and anion exchange reactions were included with the permanent negative charges and the pH dependent variable charges. The carbon and nitrogen cycling model described with PHREEQC was linked with HYDRUS-1D using the HP1 code. Various nitrogen and carbon transport scenarios were demonstrated for the application of organic matter to a saturated paddy soil.

  9. Comparing simulation of plasma turbulence with experiment

    NASA Astrophysics Data System (ADS)

    Ross, David W.; Bravenec, Ronald V.; Dorland, William; Beer, Michael A.; Hammett, G. W.; McKee, George R.; Fonck, Raymond J.; Murakami, Masanori; Burrell, Keith H.; Jackson, Gary L.; Staebler, Gary M.

    2002-01-01

    The direct quantitative correspondence between theoretical predictions and the measured plasma fluctuations and transport is tested by performing nonlinear gyro-Landau-fluid simulations with the GRYFFIN (or ITG) code [W. Dorland and G. W. Hammett, Phys. Fluids B 5, 812 (1993); M. A. Beer and G. W. Hammett, Phys. Plasmas 3, 4046 (1996)]. In an L-mode reference discharge in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)], which has relatively large fluctuations and transport, the turbulence is dominated by ion temperature gradient (ITG) modes. Trapped electron modes and impurity drift waves also play a role. Density fluctuations are measured by beam emission spectroscopy [R. J. Fonck, P. A. Duperrex, and S. F. Paul, Rev. Sci. Instrum. 61, 3487 (1990)]. Experimental fluxes and corresponding diffusivities are analyzed by the TRANSP code [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, edited by B. Coppi, G. G. Leotta, D. Pfirsch, R. Pozzoli, and E. Sindoni (Pergamon, Oxford, 1980), Vol. 1, p. 19]. The shape of the simulated wave number spectrum is close to the measured one. The simulated ion thermal transport, corrected for E×B low shear, exceeds the experimental value by a factor of 1.5 to 2.0. The simulation overestimates the density fluctuation level by an even larger factor. On the other hand, the simulation underestimates the electron thermal transport, which may be accounted for by modes that are not accessible to the simulation or to the BES measurement.

  10. u-Constacyclic codes over F_p+u{F}_p and their applications of constructing new non-binary quantum codes

    NASA Astrophysics Data System (ADS)

    Gao, Jian; Wang, Yongkang

    2018-01-01

    Structural properties of u-constacyclic codes over the ring F_p+u{F}_p are given, where p is an odd prime and u^2=1. Under a special Gray map from F_p+u{F}_p to F_p^2, some new non-binary quantum codes are obtained by this class of constacyclic codes.

  11. PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan

    PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface processes, has been designed from the ground up to run efficiently on machines ranging from leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++ codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to manage parallel solvers, data structures and communication. Features of the code include a modular input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple realization simulations with multiple processors permore » realization in a seamless manner, and multiple modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently implemented in the code include homogeneous aqueous complexing reactions and heterogeneous mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption model. PFLOTRAN has demonstrated petascale performance using 2{sup 17} processor cores with over 2 billion degrees of freedom. Accomplishments achieved to date include applications to the Hanford 300 Area and modeling CO{sub 2} sequestration in deep geologic formations.« less

  12. Goblet Cell Hyperplasia Requires High Bicarbonate Transport To Support Mucin Release.

    PubMed

    Gorrieri, Giulia; Scudieri, Paolo; Caci, Emanuela; Schiavon, Marco; Tomati, Valeria; Sirci, Francesco; Napolitano, Francesco; Carrella, Diego; Gianotti, Ambra; Musante, Ilaria; Favia, Maria; Casavola, Valeria; Guerra, Lorenzo; Rea, Federico; Ravazzolo, Roberto; Di Bernardo, Diego; Galietta, Luis J V

    2016-10-27

    Goblet cell hyperplasia, a feature of asthma and other respiratory diseases, is driven by the Th-2 cytokines IL-4 and IL-13. In human bronchial epithelial cells, we find that IL-4 induces the expression of many genes coding for ion channels and transporters, including TMEM16A, SLC26A4, SLC12A2, and ATP12A. At the functional level, we find that IL-4 enhances calcium- and cAMP-activated chloride/bicarbonate secretion, resulting in high bicarbonate concentration and alkaline pH in the fluid covering the apical surface of epithelia. Importantly, mucin release, elicited by purinergic stimulation, requires the presence of bicarbonate in the basolateral solution and is defective in cells derived from cystic fibrosis patients. In conclusion, our results suggest that Th-2 cytokines induce a profound change in expression and function in multiple ion channels and transporters that results in enhanced bicarbonate transport ability. This change is required as an important mechanism to favor release and clearance of mucus.

  13. Goblet Cell Hyperplasia Requires High Bicarbonate Transport To Support Mucin Release

    PubMed Central

    Gorrieri, Giulia; Scudieri, Paolo; Caci, Emanuela; Schiavon, Marco; Tomati, Valeria; Sirci, Francesco; Napolitano, Francesco; Carrella, Diego; Gianotti, Ambra; Musante, Ilaria; Favia, Maria; Casavola, Valeria; Guerra, Lorenzo; Rea, Federico; Ravazzolo, Roberto; Di Bernardo, Diego; Galietta, Luis J. V.

    2016-01-01

    Goblet cell hyperplasia, a feature of asthma and other respiratory diseases, is driven by the Th-2 cytokines IL-4 and IL-13. In human bronchial epithelial cells, we find that IL-4 induces the expression of many genes coding for ion channels and transporters, including TMEM16A, SLC26A4, SLC12A2, and ATP12A. At the functional level, we find that IL-4 enhances calcium- and cAMP-activated chloride/bicarbonate secretion, resulting in high bicarbonate concentration and alkaline pH in the fluid covering the apical surface of epithelia. Importantly, mucin release, elicited by purinergic stimulation, requires the presence of bicarbonate in the basolateral solution and is defective in cells derived from cystic fibrosis patients. In conclusion, our results suggest that Th-2 cytokines induce a profound change in expression and function in multiple ion channels and transporters that results in enhanced bicarbonate transport ability. This change is required as an important mechanism to favor release and clearance of mucus. PMID:27786259

  14. Shielding evaluation for solar particle events using MCNPX, PHITS and OLTARIS codes

    NASA Astrophysics Data System (ADS)

    Aghara, S. K.; Sriprisan, S. I.; Singleterry, R. C.; Sato, T.

    2015-01-01

    Detailed analyses of Solar Particle Events (SPE) were performed to calculate primary and secondary particle spectra behind aluminum, at various thicknesses in water. The simulations were based on Monte Carlo (MC) radiation transport codes, MCNPX 2.7.0 and PHITS 2.64, and the space radiation analysis website called OLTARIS (On-Line Tool for the Assessment of Radiation in Space) version 3.4 (uses deterministic code, HZETRN, for transport). The study is set to investigate the impact of SPEs spectra transporting through 10 or 20 g/cm2 Al shield followed by 30 g/cm2 of water slab. Four historical SPE events were selected and used as input source spectra particle differential spectra for protons, neutrons, and photons are presented. The total particle fluence as a function of depth is presented. In addition to particle flux, the dose and dose equivalent values are calculated and compared between the codes and with the other published results. Overall, the particle fluence spectra from all three codes show good agreement with the MC codes showing closer agreement compared to the OLTARIS results. The neutron particle fluence from OLTARIS is lower than the results from MC codes at lower energies (E < 100 MeV). Based on mean square difference analysis the results from MCNPX and PHITS agree better for fluence, dose and dose equivalent when compared to OLTARIS results.

  15. 3D unstructured-mesh radiation transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morel, J.

    1997-12-31

    Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options:more » $$S{_}n$$ (discrete-ordinates), $$P{_}n$$ (spherical harmonics), and $$SP{_}n$$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $$S{_}n$$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.« less

  16. Comprehensive comparison of two protein family of P-ATPases (13A1 and 13A3) in insects.

    PubMed

    Seddigh, Samin

    2017-06-01

    The P-type ATPases (P-ATPases) are present in all living cells where they mediate ion transport across membranes on the expense of ATP hydrolysis. Different ions which are transported by these pumps are protons like calcium, sodium, potassium, and heavy metals such as manganese, iron, copper, and zinc. Maintenance of the proper gradients for essential ions across cellular membranes makes P-ATPases crucial for cell survival. In this study, characterization of two families of P-ATPases including P-ATPase 13A1 and P-ATPase 13A3 protein was compared in two different insect species from different orders. According to the conserved motifs found with MEME, nine motifs were shared by insects of 13A1 family but eight in 13A3 family. Seven different insect species from 13A1 and five samples from 13A3 family were selected as the representative samples for functional and structural analyses. The structural and functional analyses were performed with ProtParam, SOPMA, SignalP 4.1, TMHMM 2.0, ProtScale and ProDom tools in the ExPASy database. The tertiary structure of Bombus terrestris as a sample of each family of insects were predicted by the Phyre2 and TM-score servers and their similarities were verified by SuperPose server. The tertiary structures were predicted via the "c3b9bA" model (PDB Accession Code: 3B9B) in P-ATPase 13A1 family and "c2zxeA" model (PDB Accession Code: 2ZXE) in P-ATPase 13A3 family. A phylogenetic tree was constructed with MEGA 6.06 software using the Neighbor-joining method. According to the results, there was a high identity of P-ATPase families so that they should be derived from a common ancestor however they belonged to separate groups. In protein-protein interaction analysis by STRING 10.0, six common enriched pathways of KEGG were identified in B. terrestris in both families. The obtained data provide a background for bioinformatic studies of the function and evolution of other insects and organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Differential Cross Section Kinematics for 3-dimensional Transport Codes

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank

    2008-01-01

    In support of the development of 3-dimensional transport codes, this paper derives the relevant relativistic particle kinematic theory. Formulas are given for invariant, spectral and angular distributions in both the lab (spacecraft) and center of momentum frames, for collisions involving 2, 3 and n - body final states.

  18. Electron linear accelerator production and purification of scandium-47 from titanium dioxide targets.

    PubMed

    Rotsch, David A; Brown, M Alex; Nolen, Jerry A; Brossard, Thomas; Henning, Walter F; Chemerisov, Sergey D; Gromov, Roman G; Greene, John

    2018-01-01

    The photonuclear production of no-carrier-added (NCA) 47 Sc from solid Nat TiO 2 and the subsequent chemical processing and purification have been developed. Scandium-47 was produced by the 48 Ti(γ,p) 47 Sc reaction with Bremsstrahlung photons produced from the braking of electrons in a high-Z (W or Ta) convertor. Production yields were simulated with the PHITS code (Particle and Heavy Ion Transport-code System) and compared to experimental results. Irradiated TiO 2 targets were dissolved in fuming H 2 SO 4 in the presence of Na 2 SO 4 and 47 Sc was purified using the commercially available Eichrom DGA resin. Typical 47 Sc recovery yields were >90% with excellent specific activity for small batches (<185 MBq batches). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Electron linear accelerator production and purification of scandium-47 from titanium dioxide targets

    DOE PAGES

    Rotsch, David A.; Brown, M. Alex; Nolen, Jerry A.; ...

    2017-11-06

    Here, the photonuclear production of no-carrier-added (NCA) 47Sc from solid NatTiO 2 and the subsequent chemical processing and purification have been developed. Scandium-47 was produced by the 48Ti(γ,p) 47Sc reaction with Bremsstrahlung photons produced from the braking of electrons in a high-Z (W or Ta) convertor. Production yields were simulated with the PHITS code (Particle and Heavy Ion Transport-code System) and compared to experimental results. Irradiated TiO 2 targets were dissolved in fuming H 2SO 4 in the presence of Na 2SO 4 and 47Sc was purified using the commercially available Eichrom DGA resin. Typical 47Sc recovery yields were >90%more » with excellent specific activity for small batches (<185 MBq batches).« less

  20. Electron linear accelerator production and purification of scandium-47 from titanium dioxide targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotsch, David A.; Brown, M. Alex; Nolen, Jerry A.

    Here, the photonuclear production of no-carrier-added (NCA) 47Sc from solid NatTiO 2 and the subsequent chemical processing and purification have been developed. Scandium-47 was produced by the 48Ti(γ,p) 47Sc reaction with Bremsstrahlung photons produced from the braking of electrons in a high-Z (W or Ta) convertor. Production yields were simulated with the PHITS code (Particle and Heavy Ion Transport-code System) and compared to experimental results. Irradiated TiO 2 targets were dissolved in fuming H 2SO 4 in the presence of Na 2SO 4 and 47Sc was purified using the commercially available Eichrom DGA resin. Typical 47Sc recovery yields were >90%more » with excellent specific activity for small batches (<185 MBq batches).« less

  1. Measured solubilities and speciations of neptunium, plutonium, and americium in a typical groundwater (J-13) from the Yucca Mountain region; Milestone report 3010-WBS 1.2.3.4.1.3.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitsche, H.; Gatti, R.C.; Standifer, E.M.

    1993-07-01

    Solubility and speciation data are important in understanding aqueous radionuclide transport through the geosphere. They define the source term for transport retardation processes such as sorption and colloid formation. Solubility and speciation data are useful in verifying the validity of geochemical codes that are part of predictive transport models. Results are presented from solubility and speciation experiments of {sup 237}NpO{sub 2}{sup +}, {sup 239}Pu{sup 4+}, {sup 241}Am{sup 3+}/Nd{sup 3+}, and {sup 243}Am{sup 3+} in J-13 groundwater (from the Yucca Mountain region, Nevada, which is being investigated as a potential high-level nuclear waste disposal site) at three different temperatures (25{degree}, 60{degree},more » and 90{degree}C) and pH values (5.9, 7.0, and 8.5). The solubility-controlling steady-state solids were identified and the speciation and/or oxidation states present in the supernatant solutions were determined. The neptunium solubility decreased with increasing temperature and pH. Plutonium concentrations decreased with increasing temperature and showed no trend with pH. The americium solutions showed no clear solubility trend with increasing temperature and increasing pH.« less

  2. ITS version 5.0 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    ITS is a powerful and user-friendly software package permitting state of the art Monte Carlo solution of linear time-independent couple electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theoristsmore » alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2)multigroup codes with adjoint transport capabilities, and (3) parallel implementations of all ITS codes. Moreover the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.« less

  3. Modelling of Pesticide Transport During An Injection Experiment In A Physical and Geochemical Heterogeneous Aquifer

    NASA Astrophysics Data System (ADS)

    Hojberg, A. L.; Engesgaard, P.; Bjerg, P. L.

    The fate of selected pesticides under natural groundwater conditions was studied by natural gradient short and long term injection experiments in a shallow uncon- fined aerobic aquifer. Bentazone, DNOC, MCPP, dichlorprop, isoproturon, and BAM (dichlobenil metabolite) were injected in aqueous solution with bromide as a nonre- active tracer. The Bromide and pesticide plumes were sampled during the initial 25 m of migration in a dense monitoring net of multilevel samplers. The aquifer was physical and geochemical heterogeneous, which affected transport of several of the pesticides. A 3D reactive transport code was developed including one- and two-site linear/nonlinear equilibrium/nonequilibrium sorption and first-order as well as single Monod degradation kinetic coupled to microbial growth. Model simulations demon- strated that microbial growth was likely supported by the phenoxy acids MCPP and dichlorprop, while degradation of DNOC was adequately described by first-order degradation with no initial lag time. An observed vertical increase in pH was observed at the site and implemented in the transport code. The numerical analysis indicated that degradation of the three degradable pesticides may have been affected by vertical pH variations. Spatial variability in observed DNOC sorption was similarly suspected to be an effect of varying pH. pH dependency on DNOC sorption was confirmed by the model recognized by a match to observed breakthrough at the individual sampling points, when pH variation was included in the simulations.

  4. Investigating ebullition in a sand column using dissolved gas analysis and reactive transport modeling

    USGS Publications Warehouse

    Amos, Richard T.; Mayer, K. Ulrich

    2006-01-01

    Ebullition of gas bubbles through saturated sediments can enhance the migration of gases through the subsurface, affect the rate of biogeochemical processes, and potentially enhance the emission of important greenhouse gases to the atmosphere. To better understand the parameters controlling ebullition, methanogenic conditions were produced in a column experiment and ebullition through the column was monitored and quantified through dissolved gas analysis and reactive transport modeling. Dissolved gas analysis showed rapid transport of CH4 vertically through the column at rates several times faster than the bromide tracer and the more soluble gas CO2, indicating that ebullition was the main transport mechanism for CH4. An empirically derived formulation describing ebullition was integrated into the reactive transport code MIN3P allowing this process to be investigated on the REV scale in a complex geochemical framework. The simulations provided insights into the parameters controlling ebullition and show that, over the duration of the experiment, 36% of the CH4 and 19% of the CO2 produced were transported to the top of the column through ebullition.

  5. P-adic valued models of swarm behaviour

    NASA Astrophysics Data System (ADS)

    Schumann, Andrew

    2017-07-01

    The swarm behaviour can be fully determined by attractants (food pieces) which change the directions of swarm propagation. If we assume that at each time step the swarm can find out not more than p - 1 attractants, then the swarm behaviour can be coded by p-adic integers. The main task of any swarm is to logistically optimize the road system connecting the reachable attractants. In the meanwhile, the transporting network of the swarm has loops (circles) and permanently changes, e.g. the swarm occupies some attractants and leaves the others. However, this complex dynamics can be effectively coded by p-adic integers. This allows us to represent the swarm behaviour as a calculation on p-adic valued strings.

  6. 76 FR 63161 - Airworthiness Directives; Aviointeriors S.p.A. Passenger Seat 12M Series, Installed on But Not...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... of the United States Code specifies the FAA's authority to issue rules on aviation safety. Subtitle I... proposed actions to address it. Subject (d) Air Transport Association (ATA) of America Code 25: Equipment...,400--04013 Tor Tre Ponti, Italy; telephone 0039-0773- 689330 or 0039-0773-689291; fax 0039-0773-631546...

  7. Safety Criticality Standards Using the French CRISTAL Code Package: Application to the AREVA NP UO{sub 2} Fuel Fabrication Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doucet, M.; Durant Terrasson, L.; Mouton, J.

    2006-07-01

    Criticality safety evaluations implement requirements to proof of sufficient sub critical margins outside of the reactor environment for example in fuel fabrication plants. Basic criticality data (i.e., criticality standards) are used in the determination of sub critical margins for all processes involving plutonium or enriched uranium. There are several criticality international standards, e.g., ARH-600, which is one the US nuclear industry relies on. The French Nuclear Safety Authority (DGSNR and its advising body IRSN) has requested AREVA NP to review the criticality standards used for the evaluation of its Low Enriched Uranium fuel fabrication plants with CRISTAL V0, the recentlymore » updated French criticality evaluation package. Criticality safety is a concern for every phase of the fabrication process including UF{sub 6} cylinder storage, UF{sub 6}-UO{sub 2} conversion, powder storage, pelletizing, rod loading, assembly fabrication, and assembly transportation. Until 2003, the accepted criticality standards were based on the French CEA work performed in the late seventies with the APOLLO1 cell/assembly computer code. APOLLO1 is a spectral code, used for evaluating the basic characteristics of fuel assemblies for reactor physics applications, which has been enhanced to perform criticality safety calculations. Throughout the years, CRISTAL, starting with APOLLO1 and MORET 3 (a 3D Monte Carlo code), has been improved to account for the growth of its qualification database and for increasing user requirements. Today, CRISTAL V0 is an up-to-date computational tool incorporating a modern basic microscopic cross section set based on JEF2.2 and the comprehensive APOLLO2 and MORET 4 codes. APOLLO2 is well suited for criticality standards calculations as it includes a sophisticated self shielding approach, a P{sub ij} flux determination, and a 1D transport (S{sub n}) process. CRISTAL V0 is the result of more than five years of development work focusing on theoretical approaches and the implementation of user-friendly graphical interfaces. Due to its comprehensive physical simulation and thanks to its broad qualification database with more than a thousand benchmark/calculation comparisons, CRISTAL V0 provides outstanding and reliable accuracy for criticality evaluations for configurations covering the entire fuel cycle (i.e. from enrichment, pellet/assembly fabrication, transportation, to fuel reprocessing). After a brief description of the calculation scheme and the physics algorithms used in this code package, results for the various fissile media encountered in a UO{sub 2} fuel fabrication plant will be detailed and discussed. (authors)« less

  8. Investigation of Fluctuation-Induced Electron Transport in Hall Thrusters with a 2D Hybrid Code in the Azimuthal and Axial Coordinates

    NASA Astrophysics Data System (ADS)

    Fernandez, Eduardo; Borelli, Noah; Cappelli, Mark; Gascon, Nicolas

    2003-10-01

    Most current Hall thruster simulation efforts employ either 1D (axial), or 2D (axial and radial) codes. These descriptions crucially depend on the use of an ad-hoc perpendicular electron mobility. Several models for the mobility are typically invoked: classical, Bohm, empirically based, wall-induced, as well as combinations of the above. Experimentally, it is observed that fluctuations and electron transport depend on axial distance and operating parameters. Theoretically, linear stability analyses have predicted a number of unstable modes; yet the nonlinear character of the fluctuations and/or their contribution to electron transport remains poorly understood. Motivated by these observations, a 2D code in the azimuthal and axial coordinates has been written. In particular, the simulation self-consistently calculates the azimuthal disturbances resulting in fluctuating drifts, which in turn (if properly correlated with plasma density disturbances) result in fluctuation-driven electron transport. The characterization of the turbulence at various operating parameters and across the channel length is also the object of this study. A description of the hybrid code used in the simulation as well as the initial results will be presented.

  9. 49 CFR 178.905 - Large Packaging identification codes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Large Packaging identification codes. 178.905... FOR PACKAGINGS Large Packagings Standards § 178.905 Large Packaging identification codes. Large packaging code designations consist of: two numerals specified in paragraph (a) of this section; followed by...

  10. Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evoli, Carmelo; Gaggero, Daniele; Vittino, Andrea

    2017-02-01

    We present version 2 of the DRAGON code designed for computing realistic predictions of the CR densities in the Galaxy. The code numerically solves the interstellar CR transport equation (including inhomogeneous and anisotropic diffusion, either in space and momentum, advective transport and energy losses), under realistic conditions. The new version includes an updated numerical solver and several models for the astrophysical ingredients involved in the transport equation. Improvements in the accuracy of the numerical solution are proved against analytical solutions and in reference diffusion scenarios. The novel features implemented in the code allow to simulate the diverse scenarios proposed tomore » reproduce the most recent measurements of local and diffuse CR fluxes, going beyond the limitations of the homogeneous galactic transport paradigm. To this end, several applications using DRAGON2 are presented as well. This new version facilitates the users to include their own physical models by means of a modular C++ structure.« less

  11. Karyopherin-mediated nuclear import of the homing endonuclease VMA1-derived endonuclease is required for self-propagation of the coding region.

    PubMed

    Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu

    2003-03-01

    VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region.

  12. Karyopherin-Mediated Nuclear Import of the Homing Endonuclease VMA1-Derived Endonuclease Is Required for Self-Propagation of the Coding Region

    PubMed Central

    Nagai, Yuri; Nogami, Satoru; Kumagai-Sano, Fumi; Ohya, Yoshikazu

    2003-01-01

    VMA1-derived endonuclease (VDE), a site-specific endonuclease in Saccharomyces cerevisiae, enters the nucleus to generate a double-strand break in the VDE-negative allelic locus, mediating the self-propagating gene conversion called homing. Although VDE is excluded from the nucleus in mitotic cells, it relocalizes at premeiosis, becoming localized in both the nucleus and the cytoplasm in meiosis. The nuclear localization of VDE is induced by inactivation of TOR kinases, which constitute central regulators of cell differentiation in S. cerevisiae, and by nutrient depletion. A functional genomic approach revealed that at least two karyopherins, Srp1p and Kap142p, are required for the nuclear localization pattern. Genetic and physical interactions between Srp1p and VDE imply direct involvement of karyopherin-mediated nuclear transport in this process. Inactivation of TOR signaling or acquisition of an extra nuclear localization signal in the VDE coding region leads to artificial nuclear localization of VDE and thereby induces homing even during mitosis. These results serve as evidence that VDE utilizes the host systems of nutrient signal transduction and nucleocytoplasmic transport to ensure the propagation of its coding region. PMID:12588991

  13. Development of the V4.2m5 and V5.0m0 Multigroup Cross Section Libraries for MPACT for PWR and BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog; Clarno, Kevin T.; Gentry, Cole

    2017-03-01

    The MPACT neutronics module of the Consortium for Advanced Simulation of Light Water Reactors (CASL) core simulator is a 3-D whole core transport code being developed for the CASL toolset, Virtual Environment for Reactor Analysis (VERA). Key characteristics of the MPACT code include (1) a subgroup method for resonance selfshielding and (2) a whole-core transport solver with a 2-D/1-D synthesis method. The MPACT code requires a cross section library to support all the MPACT core simulation capabilities which would be the most influencing component for simulation accuracy.

  14. Cap 'n' collar C regulates genes responsible for imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Gaddelapati, Sharath Chandra; Kalsi, Megha; Roy, Amit; Palli, Subba Reddy

    2018-08-01

    The Colorado potato beetle (CPB), Leptinotarsa decemlineata developed resistance to imidacloprid after exposure to this insecticide for multiple generations. Our previous studies showed that xenobiotic transcription factor, cap 'n' collar isoform C (CncC) regulates the expression of multiple cytochrome P450 genes, which play essential roles in resistance to plant allelochemicals and insecticides. In this study, we sought to obtain a comprehensive picture of the genes regulated by CncC in imidacloprid-resistant CPB. We performed sequencing of RNA isolated from imidacloprid-resistant CPB treated with dsRNA targeting CncC or gene coding for green fluorescent protein (control). Comparative transcriptome analysis showed that CncC regulated the expression of 1798 genes, out of which 1499 genes were downregulated in CncC knockdown beetles. Interestingly, expression of 79% of imidacloprid induced P450 genes requires CncC. We performed quantitative real-time PCR to verify the reduction in the expression of 20 genes including those coding for detoxification enzymes (P450s, glutathione S-transferases, and esterases) and ABC transporters. The genes coding for ABC transporters are induced in insecticide resistant CPB and require CncC for their expression. Knockdown of genes coding for ABC transporters simultaneously or individually caused an increase in imidacloprid-induced mortality in resistant beetles confirming their contribution to insecticide resistance. These studies identified CncC as a transcription factor involved in regulation of genes responsible for imidacloprid resistance. Small molecule inhibitors of CncC or suppression of CncC by RNAi could provide effective synergists for pest control or management of insecticide resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Genes Related to Ion-Transport and Energy Production Are Upregulated in Response to CO2-Driven pH Decrease in Corals: New Insights from Transcriptome Analysis

    PubMed Central

    Vidal-Dupiol, Jeremie; Zoccola, Didier; Tambutté, Eric; Grunau, Christoph; Cosseau, Céline; Smith, Kristina M.; Freitag, Michael; Dheilly, Nolwenn M.; Allemand, Denis; Tambutté, Sylvie

    2013-01-01

    Since the preindustrial era, the average surface ocean pH has declined by 0.1 pH units and is predicted to decline by an additional 0.3 units by the year 2100. Although subtle, this decreasing pH has profound effects on the seawater saturation state of carbonate minerals and is thus predicted to impact on calcifying organisms. Among these are the scleractinian corals, which are the main builders of tropical coral reefs. Several recent studies have evaluated the physiological impact of low pH, particularly in relation to coral growth and calcification. However, very few studies have focused on the impact of low pH at the global molecular level. In this context we investigated global transcriptomic modifications in a scleractinian coral (Pocillopora damicornis) exposed to pH 7.4 compared to pH 8.1during a 3-week period. The RNAseq approach shows that 16% of our transcriptome was affected by the treatment with 6% of upregulations and 10% of downregulations. A more detailed analysis suggests that the downregulations are less coordinated than the upregulations and allowed the identification of several biological functions of interest. In order to better understand the links between these functions and the pH, transcript abundance of 48 candidate genes was quantified by q-RT-PCR (corals exposed at pH 7.2 and 7.8 for 3 weeks). The combined results of these two approaches suggest that pH≥7.4 induces an upregulation of genes coding for proteins involved in calcium and carbonate transport, conversion of CO2 into HCO3 − and organic matrix that may sustain calcification. Concomitantly, genes coding for heterotrophic and autotrophic related proteins are upregulated. This can reflect that low pH may increase the coral energy requirements, leading to an increase of energetic metabolism with the mobilization of energy reserves. In addition, the uncoordinated downregulations measured can reflect a general trade-off mechanism that may enable energy reallocation. PMID:23544045

  16. A polymorphism in a transporter of testosterone is a determinant of androgen independence in prostate cancer.

    PubMed

    Sharifi, Nima; Hamada, Akinobu; Sissung, Tristan; Danesi, Romano; Venzon, David; Baum, Caitlin; Gulley, James L; Price, Douglas K; Dahut, William L; Figg, William D

    2008-08-05

    To determine if patients with advanced prostate cancer carrying a polymorphism that codes for a more active testosterone transporter have less durable responses to androgen-deprivation therapy (ADT) than patients not carrying this polymorphism. We previously determined that a polymorphism in SLCO1B3 affects testosterone transport and that those men who have at least one wild-type T allele at the 334 T > G polymorphism in this gene have a shorter survival. We hypothesized that the T allele which increases testosterone transport would be associated with a shorter interval from ADT to androgen independence. We examined the association between this SLCO1B3 polymorphism and time from ADT to androgen independence, ADT to prostate-specific antigen (PSA) nadir and PSA nadir to androgen independence in 68 Caucasian patients with advanced prostate cancer who were treated with ADT with metastatic disease (D2) or biochemical failure with no metastatic disease (D0). When examined separately, patients in the individual stages tended to have a shorter time to androgen independence with the T allele in the D0 (P = 0.11) and D2 (P = 0.18) groups. Combining these groups and stratifying by stage yielded a statistically significant shorter time to androgen independence with the T allele (P = 0.048). A polymorphism in a transporter that increases testosterone import is associated with a shorter time to androgen independence in patients with prostate cancer who are treated with ADT.

  17. Measured solubilities and speciations from oversaturation experiments of neptunium, plutonium, and americium in UE-25p No. 1 well water from the Yucca Mountain region: Milestone report 3329-WBS1.2.3.4.1.3.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitsche, H.; Roberts, K.; Prussin, T.

    1994-04-01

    Solubility and speciation are important in understanding aqueous radionuclide transport through the geosphere. They define the source term for transport retardation processes such as sorption and colloid formation. Solubility and speciation data are useful in verifying the validity of geochemical codes that are a part of predictive transport models. Results are presented from solubility and speciation experiments of {sup 237}NpO{sub 2}{sup +}, {sup 239}Pu{sup 4+}, and {sup 241}Am{sup 3+}/Nd{sup 3+} in a modified UE-25p No. 1 groundwater (from the Yucca Mountain region, Nevada, which is being investigated as a potential high-level nuclear waste disposal site) at two different temperatures (25{degree}more » and 60{degree}C) and three pH values (6.0, 7.0, 8.5). The solubility-controlling steady-state solids were identified and the speciation and/or oxidation states present in the supernatant solutions were determined. The neptunium solubility decreased with increasing temperature and pH. Plutonium concentrations significantly decreased with increasing temperature at pH 6 and 7. The concentration at pH 8.5 hardly decreased at all with increasing temperature. At both temperatures the concentrations were highest at pH 8.5, lowest at pH 7, and in between at pH 6. For the americium/neodymium solutions, the solubility decreased significantly with increasing temperature and increased somewhat with increasing pH.« less

  18. Coupling ANIMO and MT3DMS for 3D regional-scale modeling of nutrient transport in soil and groundwater

    NASA Astrophysics Data System (ADS)

    Janssen, G.; Del Val Alonso, L.; Groenendijk, P.; Griffioen, J.

    2012-12-01

    We developed an on-line coupling between the 1D/quasi-2D nutrient transport model ANIMO and the 3D groundwater transport model code MT3DMS. ANIMO is a detailed, process-oriented model code for the simulation of nitrate leaching to groundwater, N- and P-loads on surface waters and emissions of greenhouse gasses. It is the leading nutrient fate and transport code in the Netherlands where it is used primarily for the evaluation of fertilization related legislation. In addition, the code is applied frequently in international research projects. MT3DMS is probably the most commonly used groundwater solute transport package worldwide. The on-line model coupling ANIMO-MT3DMS combines the state-of-the-art descriptions of the biogeochemical cycles in ANIMO with the advantages of using a 3D approach for the transport through the saturated domain. These advantages include accounting for regional lateral transport, considering groundwater-surface water interactions more explicitly, and the possibility of using MODFLOW to obtain the flow fields. An additional merit of the on-line coupling concept is that it preserves feedbacks between the saturated and unsaturated zone. We tested ANIMO-MT3DMS by simulating nutrient transport for the period 1970-2007 in a Dutch agricultural polder catchment covering an area of 118 km2. The transient groundwater flow field had a temporal resolution of one day and was calculated with MODFLOW-MetaSWAP. The horizontal resolution of the model grid was 100x100m and consisted of 25 layers of varying thickness. To keep computation times manageable, we prepared MT3DMS for parallel computing, which in itself is a relevant development for a large community of groundwater transport modelers. For the parameterization of the soil, we applied a standard classification approach, representing the area by 60 units with unique combinations of soil type, land use and geohydrological setting. For the geochemical parameterization of the deeper subsurface, however, we applied a novel geostatistical technique, which allocates reactivity parameters to the grid cells by sampling from these parameters' cumulative frequency distribution (CDF) functions. These CDF functions are derived for each relevant geohydrological unit present in the model domain, from datasets of groundwater and sediment analyses. The nutrient loads on the surface water system and the nutrient concentrations in groundwater, simulated by the transport model, are in fair agreement with field measurements. The experience with the test model constitutes a proof-of-concept, justifying further developments towards application of ANIMO-MT3DMS in actual regional decision-making processes.

  19. Shielding evaluation for solar particle events using MCNPX, PHITS and OLTARIS codes.

    PubMed

    Aghara, S K; Sriprisan, S I; Singleterry, R C; Sato, T

    2015-01-01

    Detailed analyses of Solar Particle Events (SPE) were performed to calculate primary and secondary particle spectra behind aluminum, at various thicknesses in water. The simulations were based on Monte Carlo (MC) radiation transport codes, MCNPX 2.7.0 and PHITS 2.64, and the space radiation analysis website called OLTARIS (On-Line Tool for the Assessment of Radiation in Space) version 3.4 (uses deterministic code, HZETRN, for transport). The study is set to investigate the impact of SPEs spectra transporting through 10 or 20 g/cm(2) Al shield followed by 30 g/cm(2) of water slab. Four historical SPE events were selected and used as input source spectra particle differential spectra for protons, neutrons, and photons are presented. The total particle fluence as a function of depth is presented. In addition to particle flux, the dose and dose equivalent values are calculated and compared between the codes and with the other published results. Overall, the particle fluence spectra from all three codes show good agreement with the MC codes showing closer agreement compared to the OLTARIS results. The neutron particle fluence from OLTARIS is lower than the results from MC codes at lower energies (E<100 MeV). Based on mean square difference analysis the results from MCNPX and PHITS agree better for fluence, dose and dose equivalent when compared to OLTARIS results. Copyright © 2015 The Committee on Space Research (COSPAR). All rights reserved.

  20. Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, Masanori; Park, Jin Myung; Giruzzi, G.

    2011-01-01

    Recent progress on ITER steady-state (SS) scenario modelling by the ITPA-IOS group is reviewed. Code-to-code benchmarks as the IOS group's common activities for the two SS scenarios (weak shear scenario and internal transport barrier scenario) are discussed in terms of transport, kinetic profiles, and heating and current drive (CD) sources using various transport codes. Weak magnetic shear scenarios integrate the plasma core and edge by combining a theory-based transport model (GLF23) with scaled experimental boundary profiles. The edge profiles (at normalized radius rho = 0.8-1.0) are adopted from an edge-localized mode-averaged analysis of a DIII-D ITER demonstration discharge. A fullymore » noninductive SS scenario is achieved with fusion gain Q = 4.3, noninductive fraction f(NI) = 100%, bootstrap current fraction f(BS) = 63% and normalized beta beta(N) = 2.7 at plasma current I(p) = 8MA and toroidal field B(T) = 5.3 T using ITER day-1 heating and CD capability. Substantial uncertainties come from outside the radius of setting the boundary conditions (rho = 0.8). The present simulation assumed that beta(N)(rho) at the top of the pedestal (rho = 0.91) is about 25% above the peeling-ballooning threshold. ITER will have a challenge to achieve the boundary, considering different operating conditions (T(e)/T(i) approximate to 1 and density peaking). Overall, the experimentally scaled edge is an optimistic side of the prediction. A number of SS scenarios with different heating and CD mixes in a wide range of conditions were explored by exploiting the weak-shear steady-state solution procedure with the GLF23 transport model and the scaled experimental edge. The results are also presented in the operation space for DT neutron power versus stationary burn pulse duration with assumed poloidal flux availability at the beginning of stationary burn, indicating that the long pulse operation goal (3000s) at I(p) = 9 MA is possible. Source calculations in these simulations have been revised for electron cyclotron current drive including parallel momentum conservation effects and for neutral beam current drive with finite orbit and magnetic pitch effects.« less

  1. Energy transport in plasmas produced by a high brightness krypton fluoride laser focused to a line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Hadithi, Y.; Tallents, G.J.; Zhang, J.

    A high brightness krypton fluoride Raman laser (wavelength 0.268 [mu]m) generating 0.3 TW, 12 ps pulses with 20 [mu]rad beam divergence and a prepulse of less than 10[sup [minus]10] has been focused to produce a 10 [mu]m wide line focus (irradiances [similar to]0.8--4[times]10[sup 15] W cm[sup [minus]2]) on plastic targets with a diagnostic sodium fluoride (NaF) layer buried within the target. Axial and lateral transport of energy has been measured by analysis of x-ray images of the line focus and from x-ray spectra emitted by the layer of NaF with varying overlay thicknesses. It is shown that the ratio ofmore » the distance between the critical density surface and the ablation surface to the laser focal width controls lateral transport in a similar manner as for previous spot focus experiments. The measured axial energy transport is compared to MEDUSA [J. P. Christiansen, D. E. T. F. Ashby, and K. V. Roberts, Comput. Phys. Commun. [bold 7], 271 (1974)] one-dimensional hydrodynamic code simulations with an average atom post-processor for predicting spectral line intensities. An energy absorption of [similar to]10% in the code gives agreement with the experimental axial penetration. Various measured line ratios of hydrogen- and helium-like Na and F are investigated as temperature diagnostics in the NaF layer using the RATION [R. W. Lee, B. L. Whitten, and R. E. Strout, J. Quant. Spectrosc. Radiat. Transfer [bold 32], 91 (1984)] code.« less

  2. BOXER: Fine-flux Cross Section Condensation, 2D Few Group Diffusion and Transport Burnup Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2010-02-01

    Neutron transport, calculation of multiplication factor and neutron fluxes in 2-D configurations: cell calculations, 2-D diffusion and transport, and burnup. Preparation of a cross section library for the code BOXER from a basic library in ENDF/B format (ETOBOX).

  3. 49 CFR 174.2 - Limitation on actions by states, local governments, and Indian tribes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., and Indian tribes. 174.2 Section 174.2 Transportation Other Regulations Relating to Transportation..., and Indian tribes. Sections 5125 and 20106 of Title 49, United States Code, limit the authority of states, political subdivisions of states, and Indian tribes to impose requirements on the transportation...

  4. 49 CFR 174.2 - Limitation on actions by states, local governments, and Indian tribes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., and Indian tribes. 174.2 Section 174.2 Transportation Other Regulations Relating to Transportation..., and Indian tribes. Sections 5125 and 20106 of Title 49, United States Code, limit the authority of states, political subdivisions of states, and Indian tribes to impose requirements on the transportation...

  5. A Conference on Spacecraft Charging Technology - 1978, held at U.S. Air Force Academy, Colorado Springs, Colorado, October 31 - November 2, 1978.

    DTIC Science & Technology

    1978-01-01

    complex, applications of the code . NASCAP CODE DESCRIPTION The NASCAP code is a finite-element spacecraft-charging simulation that is written in FORTRAN ...transport code POEM (ref. 1), is applicable to arbitrary dielectrics, source spectra, and current time histories. The code calculations are illustrated by...iaxk ’. Vlbouced _DstributionL- 9TNA Availability Codes %ELECTEf Nationa Aeronautics and Dist. Spec al TAvalland/or. MAY 2 21980 Space Administration

  6. BRYNTRN: A baryon transport model

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Chun, Sang Y.; Hong, B. S.; Buck, Warren W.; Lamkin, S. L.; Ganapol, Barry D.; Khan, Ferdous; Cucinotta, Francis A.

    1989-01-01

    The development of an interaction data base and a numerical solution to the transport of baryons through an arbitrary shield material based on a straight ahead approximation of the Boltzmann equation are described. The code is most accurate for continuous energy boundary values, but gives reasonable results for discrete spectra at the boundary using even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O). The resulting computer code is self-contained, efficient and ready to use. The code requires only a very small fraction of the computer resources required for Monte Carlo codes.

  7. Crystal structures of two Bordetella pertussis periplasmic receptors contribute to defining a novel pyroglutamic acid binding DctP subfamily.

    PubMed

    Rucktooa, Prakash; Antoine, Rudy; Herrou, Julien; Huvent, Isabelle; Locht, Camille; Jacob-Dubuisson, Françoise; Villeret, Vincent; Bompard, Coralie

    2007-06-29

    Gram-negative bacteria have developed several different transport systems for solute uptake. One of these, the tripartite ATP independent periplasmic transport system (TRAP-T), makes use of an extracytoplasmic solute receptor (ESR) which captures specific solutes with high affinity and transfers them to their partner permease complex located in the bacterial inner membrane. We hereby report the structures of DctP6 and DctP7, two such ESRs from Bordetella pertussis. These two proteins display a high degree of sequence and structural similarity and possess the "Venus flytrap" fold characteristic of ESRs, comprising two globular alpha/beta domains hinged together to form a ligand binding cleft. DctP6 and DctP7 both show a closed conformation due to the presence of one pyroglutamic acid molecule bound by highly conserved residues in their respective ligand binding sites. BLAST analyses have revealed that the DctP6 and DctP7 residues involved in ligand binding are strictly present in a number of predicted TRAP-T ESRs from other bacteria. In most cases, the genes encoding these TRAP-T systems are located in the vicinity of a gene coding for a pyroglutamic acid metabolising enzyme. Both the high degree of conservation of these ligand binding residues and the genomic context of these TRAP-T-coding operons in a number of bacterial species, suggest that DctP6 and DctP7 constitute the prototypes of a novel TRAP-T DctP subfamily involved in pyroglutamic acid transport.

  8. VENTURE: a code block for solving multigroup neutronics problems applying the finite-difference diffusion-theory approximation to neutron transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.

    1975-10-01

    The computer code block VENTURE, designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P$sub 1$) in up to three- dimensional geometry is described. A variety of types of problems may be solved: the usual eigenvalue problem, a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations, or an indirect criticality search on nuclide concentrations, or on dimensions. First- order perturbation analysis capability is available at the macroscopic cross section level. (auth)

  9. Late-onset manifestation of antenatal Bartter syndrome as a result of residual function of the mutated renal Na+-K+-2Cl- co-transporter.

    PubMed

    Pressler, Carsten A; Heinzinger, Jolanta; Jeck, Nikola; Waldegger, Petra; Pechmann, Ulla; Reinalter, Stephan; Konrad, Martin; Beetz, Rolf; Seyberth, Hannsjörg W; Waldegger, Siegfried

    2006-08-01

    Genetic defects of the Na+-K+-2Cl- (NKCC2) sodium potassium chloride co-transporter result in severe, prenatal-onset renal salt wasting accompanied by polyhydramnios, prematurity, and life-threatening hypovolemia of the neonate (antenatal Bartter syndrome or hyperprostaglandin E syndrome). Herein are described two brothers who presented with hyperuricemia, mild metabolic alkalosis, low serum potassium levels, and bilateral medullary nephrocalcinosis at the ages of 13 and 15 yr. Impaired function of sodium chloride reabsorption along the thick ascending limb of Henle's loop was deduced from a reduced increase in diuresis and urinary chloride excretion upon application of furosemide. Molecular genetic analysis revealed that the brothers were compound heterozygotes for mutations in the SLC12A1 gene coding for the NKCC2 co-transporter. Functional analysis of the mutated rat NKCC2 protein by tracer-flux assays after heterologous expression in Xenopus oocytes revealed significant residual transport activity of the NKCC2 p.F177Y mutant construct in contrast to no activity of the NKCC2-D918fs frameshift mutant construct. However, coexpression of the two mutants was not significantly different from that of NKCC2-F177Y alone or wild type. Membrane expression of NKCC2-F177Y as determined by luminometric surface quantification was not significantly different from wild-type protein, pointing to an intrinsic partial transport defect caused by the p.F177Y mutation. The partial function of NKCC2-F177Y, which is not negatively affected by NKCC2-D918fs, therefore explains a mild and late-onset phenotype and for the first time establishes a mild phenotype-associated SLC12A1 gene mutation.

  10. Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L.M.; Hochstedler, R.D.

    1997-02-01

    Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of themore » accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).« less

  11. Extension of the BRYNTRN code to monoenergetic light ion beams

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Badavi, Francis F.

    1994-01-01

    A monoenergetic version of the BRYNTRN transport code is extended to beam transport of light ions (H-2, H-3, He-3, and He-4) in shielding materials (thick targets). The redistribution of energy in nuclear reactions is included in transport solutions that use nuclear fragmentation models. We also consider an equilibrium target-fragment spectrum for nuclei with mass number greater than four to include target fragmentation effects in the linear energy transfer (LET) spectrum. Illustrative results for water and aluminum shielding, including energy and LET spectra, are discussed for high-energy beams of H-2 and He-4.

  12. Modeling long-term uptake and re-volatilization of semi-volatile organic compounds (SVOCs) across the soil-atmosphere interface.

    PubMed

    Bao, Zhongwen; Haberer, Christina; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter

    2015-12-15

    Soil-atmosphere exchange is important for the environmental fate and atmospheric transport of many semi-volatile organic compounds (SVOCs). This study focuses on modeling the vapor phase exchange of semi-volatile hydrophobic organic pollutants between soil and the atmosphere using the multicomponent reactive transport code MIN3P. MIN3P is typically applied to simulate aqueous and vapor phase transport and reaction processes in the subsurface. We extended the code to also include an atmospheric boundary layer where eddy diffusion takes place. The relevant processes and parameters affecting soil-atmosphere exchange were investigated in several 1-D model scenarios and at various time scales (from years to centuries). Phenanthrene was chosen as a model compound, but results apply for other hydrophobic organic compounds as well. Gaseous phenanthrene was assumed to be constantly supplied to the system during a pollution period and a subsequent regulation period (with a 50% decline in the emission rate). Our results indicate that long-term soil-atmosphere exchange of phenanthrene is controlled by the soil compartment - re-volatilization thus depends on soil properties. A sensitivity analysis showed that accumulation and transport in soils in the short term is dominated by diffusion, whereas in the long term groundwater recharge and biodegradation become relevant. As expected, sorption causes retardation and slows down transport and biodegradation. If atmospheric concentration is reduced (e.g. after environmental regulations), re-volatilization from soil to the atmosphere occurs only for a relatively short time period. Therefore, the model results demonstrate that soils generally are sinks for atmospheric pollutants. The atmospheric boundary layer is only relevant for time scales of less than one month. The extended MIN3P code can also be applied to simulate fluctuating concentrations in the atmosphere, for instance due to temperature changes in the topsoil. Copyright © 2015. Published by Elsevier B.V.

  13. Boltzmann Transport Code Update: Parallelization and Integrated Design Updates

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Nealy, J. E.; DeAngelis, G.; Feldman, G. A.; Chokshi, S.

    2003-01-01

    The on going efforts at developing a web site for radiation analysis is expected to result in an increased usage of the High Charge and Energy Transport Code HZETRN. It would be nice to be able to do the requested calculations quickly and efficiently. Therefore the question arose, "Could the implementation of parallel processing speed up the calculations required?" To answer this question two modifications of the HZETRN computer code were created. The first modification selected the shield material of Al(2219) , then polyethylene and then Al(2219). The modified Fortran code was labeled 1SSTRN.F. The second modification considered the shield material of CO2 and Martian regolith. This modified Fortran code was labeled MARSTRN.F.

  14. Effects of Impurities in CO2 Spreading Model Development for Field Experiments in the Framework of the CO2QUEST Project

    NASA Astrophysics Data System (ADS)

    Rebscher, D.; Wolf, J. L.; Jung, B.; Bensabat, J.; Segev, R.; Niemi, A. P.

    2014-12-01

    The aim of the CO2QUEST project (Impact of the Quality of CO2 on Storage and Transport) is to investigate the effect of typical impurities in the CO2 stream captured from fossil fuel power plants on its safe and economic transportation and deep geologic storage. An important part of this EU funded project is to enhance the understanding of typical impurity effects in a CO2 stream regarding the performance of the storage. Based on the experimental site Heletz in Israel, where injection tests of water as well as of super-critical pure and impure CO2 will be conducted, numerical simulations are performed. These studies illustrate flow and transport of CO2 and brine as well as impurities induced chemical reactions in relation to changes in the reservoir, e.g. porosity, permeability, pH-value, and mineral composition. Using different THC codes (TOUGH2-ECO2N, TOUGHREACT, PFLOTRAN), the spatial distribution of CO2 and impurities, both in the supercritical and aqueous phases, are calculated. The equation of state (EOS) of above numerical codes are properly modified to deal with binary/tertiary gas mixtures (e.g. CO2-N2 or CO2-SO2). In addition, simulations for a push-pull test of about 10 days duration are performed, which will be validated against experimental field data. Preliminary results are as follows: (a) As expected, the injection of SO2 leads to a strong decrease in pH-value, hence, the total dissolution of carbonate minerals could be observed. (b) Due to the acidic attack on clay minerals , which is enhanced compared to a pure CO2 dissolution, a higher amount of metal ions are released, in particular Fe2+ and Mg2+ by a factor of 25 and 10, respectively. Whereas secondary precipitation occurs only for sulphur minerals, namely anhydrite and pyrite. (c) The co-injection of CO2 with N2 changes physical properties of the gas mixture. Increasing N2 contents induces density decrease of the gas mixture, resulting in faster and wider plume migration compared to the pure CO2 injection case.

  15. 78 FR 24200 - Ocean Transportation Intermediary License Applicants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ...: Hsiao-Ling Chen, President (QI), Application Type: QI Change Matus International, Inc. (NVO & OFF), 411 N. Oak Street, Inglewood, CA 90302, Officers: Anthony S. Pineda, Treasurer (QI), Allan J. Matus...] BILLING CODE 6730-01-P ...

  16. 76 FR 25692 - Ocean Transportation Intermediary License; Revocation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ...: 169094N. Name : Trans Port Agencies, Inc. Address: 1790 Yardley-Langhorne Road, Suite 202, Yardley, PA... Certification and Licensing. [FR Doc. 2011-10932 Filed 5-4-11; 8:45 am] BILLING CODE 6730-01-P ...

  17. Aesthetic amenities and safety hazards associated with walking and bicycling for transportation in New York City.

    PubMed

    Lovasi, Gina S; Schwartz-Soicher, Ofira; Neckerman, Kathryn M; Konty, Kevin; Kerker, Bonnie; Quinn, James; Rundle, Andrew

    2013-02-01

    One strategy to address health problems related to insufficient physical activity is to examine modifiable neighborhood characteristics associated with active transportation. The aim of this study is to evaluate whether neighborhoods with more aesthetic amenities (sidewalk cafés, street trees, and clean sidewalks) and fewer safety hazards (pedestrian-auto fatalities and homicides) are associated with active transportation. The 2003 Community Health Survey in New York City, which asked about active transportation (walking or bicycling >10 blocks) in the past 30 days, was linked to ZIP-code population census and built environment characteristics. Adjusted associations were estimated for dichotomous (any active transportation versus none) and continuous (trip frequency) active transportation outcomes. Among 8,034 adults, those living near sidewalk cafés were 10 % more likely to report active transportation (p = 0.01). Homicide rate was associated with less frequent active transportation among those reporting any active transportation (p = 0.002). Investments in aesthetic amenities or homicide prevention may help to promote active transportation.

  18. Aesthetic amenities and safety hazards associated with walking and bicycling for transportation in New York City

    PubMed Central

    Lovasi, Gina S.; Schwartz-Soicher, Ofira; Neckerman, Kathryn; Konty, Kevin; Kerker, Bonnie; Quinn, James; Rundle, Andrew

    2013-01-01

    Background One strategy to address health problems related to insufficient physical activity is to examine modifiable neighborhood characteristics associated with active transportation. Purpose To evaluate whether neighborhoods with more aesthetic amenities (sidewalk cafés, street trees, clean sidewalks) and fewer safety hazards (pedestrian-auto fatalities, homicides) are associated with active transportation. Methods The 2003 Community Health Survey in New York City, which asked about active transportation (walking or bicycling >10 blocks) in the past 30 days, was linked to ZIP-code population census and built environment characteristics. Adjusted associations were estimated for dichotomous (any active transportation versus none), and continuous (log-transformed trip frequency) active transportation outcomes. Results Among 8,034 adults, those living near sidewalk cafés were 10% more likely to report active transportation (p=0.01). Homicide rate was associated with less frequent active transportation among those reporting active transportation (p=0.002). Conclusions Investments in aesthetic amenities or homicide prevention may help to promote active transportation. PMID:23011913

  19. Transport of Light Ions in Matter

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Cucinotta, F. A.; Tai, H.; Shinn, J. L.; Chun, S. Y.; Tripathi, R. K.; Sihver, L.

    1998-01-01

    A recent set of light ion experiments are analyzed using the Green's function method of solving the Boltzmann equation for ions of high charge and energy (the GRNTRN transport code) and the NUCFRG2 fragmentation database generator code. Although the NUCFRG2 code reasonably represents the fragmentation of heavy ions, the effects of light ion fragmentation requires a more detailed nuclear model including shell structure and short range correlations appearing as tightly bound clusters in the light ion nucleus. The most recent NTJCFRG2 code is augmented with a quasielastic alpha knockout model and semiempirical adjustments (up to 30 percent in charge removal) in the fragmentation process allowing reasonable agreement with the experiments to be obtained. A final resolution of the appropriate cross sections must await the full development of a coupled channel reaction model in which shell structure and clustering can be accurately evaluated.

  20. Theoretical study of the gas-phase reactions of iodine atoms ((2)P(3/2)) with H(2), H(2)O, HI, and OH.

    PubMed

    Canneaux, Sébastien; Xerri, Bertrand; Louis, Florent; Cantrel, Laurent

    2010-09-02

    The rate constants of the reactions of iodine atoms with H(2), H(2)O, HI, and OH have been estimated using 39, 21, 13, and 39 different levels of theory, respectively, and have been compared to the available literature values over the temperature range of 250-2500 K. The aim of this methodological work is to demonstrate that standard theoretical methods are adequate to obtain quantitative rate constants for the reactions involving iodine-containing species. Geometry optimizations and vibrational frequency calculations are performed using three methods (MP2, MPW1K, and BHandHLYP) combined with three basis sets (cc-pVTZ, cc-pVQZ, and 6-311G(d,p)). Single-point energy calculations are performed with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (pertubatively) electron excitations CCSD(T) using the cc-pVnZ (n = T, Q, and 5), aug-cc-pVnZ (n = T, Q, and 5), 6-311G(d,p), 6-311+G(3df,2p), and 6-311++G(3df,3pd) basis sets. Canonical transition state theory with a simple Wigner tunneling correction is used to predict the rate constants as a function of temperature. CCSD(T)/cc-pVnZ//MP2/cc-pVTZ (n = T and Q), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), and CCSD(T)/6-311++G(3df,3pd)//MP2/6-311G(d,p) levels of theory provide accurate kinetic rate constants when compared to available literature data. The use of the CCSD(T)/cc-pVQZ//MP2/cc-pVTZ and CCSD(T)/6-311++G(3df,3pd) levels of theory allows one to obtain a better agreement with the literature data for all reactions with the exception of the I + H(2) reaction R(1) . This computational procedure has been also used to predict rate constants for some reactions where no available experimental data exist. The use of quantum chemistry tools could be therefore extended to other elements and next applied to develop kinetic networks involving various fission products, steam, and hydrogen in the absence of literature data. The final objective is to implement the kinetics of gaseous reactions in the ASTEC (Accident Source Term Evaluation Code) code to improve speciation of fission transport, which can be transported along the Reactor Coolant System (RCS) of a Pressurized Water Reactor (PWR) in case of a severe accident.

  1. Evolution of extreme stomach pH in bilateria inferred from gastric alkalization mechanisms in basal deuterostomes

    PubMed Central

    Stumpp, Meike; Hu, Marian Y.; Tseng, Yung-Che; Guh, Ying-Jeh; Chen, Yi-Chih; Yu, Jr-Kai; Su, Yi-Hsien; Hwang, Pung-Pung

    2015-01-01

    The stomachs of most vertebrates operate at an acidic pH of 2 generated by the gastric H+/K+-ATPase located in parietal cells. The acidic pH in stomachs of vertebrates is believed to aid digestion and to protect against environmental pathogens. Little attention has been placed on whether acidic gastric pH regulation is a vertebrate character or a deuterostome ancestral trait. Here, we report alkaline conditions up to pH 10.5 in the larval digestive systems of ambulacraria (echinoderm + hemichordate), the closest relative of the chordate. Microelectrode measurements in combination with specific inhibitors for acid-base transporters and ion pumps demonstrated that the gastric alkalization machinery in sea urchin larvae is mainly based on direct H+ secretion from the stomach lumen and involves a conserved set of ion pumps and transporters. Hemichordate larvae additionally utilized HCO3− transport pathways to generate even more alkaline digestive conditions. Molecular analyses in combination with acidification experiments supported these findings and identified genes coding for ion pumps energizing gastric alkalization. Given that insect larval guts were also reported to be alkaline, our discovery raises the hypothesis that the bilaterian ancestor utilized alkaline digestive system while the vertebrate lineage has evolved a strategy to strongly acidify their stomachs. PMID:26051042

  2. Evolution of extreme stomach pH in bilateria inferred from gastric alkalization mechanisms in basal deuterostomes.

    PubMed

    Stumpp, Meike; Hu, Marian Y; Tseng, Yung-Che; Guh, Ying-Jeh; Chen, Yi-Chih; Yu, Jr-Kai; Su, Yi-Hsien; Hwang, Pung-Pung

    2015-06-08

    The stomachs of most vertebrates operate at an acidic pH of 2 generated by the gastric H(+)/K(+)-ATPase located in parietal cells. The acidic pH in stomachs of vertebrates is believed to aid digestion and to protect against environmental pathogens. Little attention has been placed on whether acidic gastric pH regulation is a vertebrate character or a deuterostome ancestral trait. Here, we report alkaline conditions up to pH 10.5 in the larval digestive systems of ambulacraria (echinoderm + hemichordate), the closest relative of the chordate. Microelectrode measurements in combination with specific inhibitors for acid-base transporters and ion pumps demonstrated that the gastric alkalization machinery in sea urchin larvae is mainly based on direct H(+) secretion from the stomach lumen and involves a conserved set of ion pumps and transporters. Hemichordate larvae additionally utilized HCO3(-) transport pathways to generate even more alkaline digestive conditions. Molecular analyses in combination with acidification experiments supported these findings and identified genes coding for ion pumps energizing gastric alkalization. Given that insect larval guts were also reported to be alkaline, our discovery raises the hypothesis that the bilaterian ancestor utilized alkaline digestive system while the vertebrate lineage has evolved a strategy to strongly acidify their stomachs.

  3. Los Alamos radiation transport code system on desktop computing platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.

    The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. Themore » current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines.« less

  4. High Z neoclassical transport: Application and limitation of analytical formulae for modelling JET experimental parameters

    NASA Astrophysics Data System (ADS)

    Breton, S.; Casson, F. J.; Bourdelle, C.; Angioni, C.; Belli, E.; Camenen, Y.; Citrin, J.; Garbet, X.; Sarazin, Y.; Sertoli, M.; JET Contributors

    2018-01-01

    Heavy impurities, such as tungsten (W), can exhibit strongly poloidally asymmetric density profiles in rotating or radio frequency heated plasmas. In the metallic environment of JET, the poloidal asymmetry of tungsten enhances its neoclassical transport up to an order of magnitude, so that neoclassical convection dominates over turbulent transport in the core. Accounting for asymmetries in neoclassical transport is hence necessary in the integrated modeling framework. The neoclassical drift kinetic code, NEO [E. Belli and J. Candy, Plasma Phys. Controlled Fusion P50, 095010 (2008)], includes the impact of poloidal asymmetries on W transport. However, the computational cost required to run NEO slows down significantly integrated modeling. A previous analytical formulation to describe heavy impurity neoclassical transport in the presence of poloidal asymmetries in specific collisional regimes [C. Angioni and P. Helander, Plasma Phys. Controlled Fusion 56, 124001 (2014)] is compared in this work to numerical results from NEO. Within the domain of validity of the formula, the factor for reducing the temperature screening due to poloidal asymmetries had to be empirically adjusted. After adjustment, the modified formula can reproduce NEO results outside of its definition domain, with some limitations: When main ions are in the banana regime, the formula reproduces NEO results whatever the collisionality regime of impurities, provided that the poloidal asymmetry is not too large. However, for very strong poloidal asymmetries, agreement requires impurities in the Pfirsch-Schlüter regime. Within the JETTO integrated transport code, the analytical formula combined with the poloidally symmetric neoclassical code NCLASS [W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)] predicts the same tungsten profile as NEO in certain cases, while saving a factor of one thousand in computer time, which can be useful in scoping studies. The parametric dependencies of the temperature screening reduction due to poloidal asymmetries would need to be better characterised for this faster model to be extended to a more general applicability.

  5. Transport studies in high-performance field reversed configuration plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, S., E-mail: sgupta@trialphaenergy.com; Barnes, D. C.; Dettrick, S. A.

    2016-05-15

    A significant improvement of field reversed configuration (FRC) lifetime and plasma confinement times in the C-2 plasma, called High Performance FRC regime, has been observed with neutral beam injection (NBI), improved edge stability, and better wall conditioning [Binderbauer et al., Phys. Plasmas 22, 056110 (2015)]. A Quasi-1D (Q1D) fluid transport code has been developed and employed to carry out transport analysis of such C-2 plasma conditions. The Q1D code is coupled to a Monte-Carlo code to incorporate the effect of fast ions, due to NBI, on the background FRC plasma. Numerically, the Q1D transport behavior with enhanced transport coefficients (butmore » with otherwise classical parametric dependencies) such as 5 times classical resistive diffusion, classical thermal ion conductivity, 20 times classical electron thermal conductivity, and classical fast ion behavior fit with the experimentally measured time evolution of the excluded flux radius, line-integrated density, and electron/ion temperature. The numerical study shows near sustainment of poloidal flux for nearly 1 ms in the presence of NBI.« less

  6. Simulations of 4D edge transport and dynamics using the TEMPEST gyro-kinetic code

    NASA Astrophysics Data System (ADS)

    Rognlien, T. D.; Cohen, B. I.; Cohen, R. H.; Dorr, M. R.; Hittinger, J. A. F.; Kerbel, G. D.; Nevins, W. M.; Xiong, Z.; Xu, X. Q.

    2006-10-01

    Simulation results are presented for tokamak edge plasmas with a focus on the 4D (2r,2v) option of the TEMPEST continuum gyro-kinetic code. A detailed description of a variety of kinetic simulations is reported, including neoclassical radial transport from Coulomb collisions, electric field generation, dynamic response to perturbations by geodesic acoustic modes, and parallel transport on open magnetic-field lines. Comparison is made between the characteristics of the plasma solutions on closed and open magnetic-field line regions separated by a magnetic separatrix, and simple physical models are used to qualitatively explain the differences observed in mean flow and electric-field generation. The status of extending the simulations to 5D turbulence will be summarized. The code structure used in this ongoing project is also briefly described, together with future plans.

  7. Atmospheric Dispersion Capability for T2VOC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldenburg, Curtis M.

    2005-09-19

    Atmospheric transport by variable-K theory dispersion has been added to T2VOC. The new code, T2VOCA, models flow and transport in the subsurface identically to T2VOC, but includes also the capability for modeling passive multicomponent variable-K theory dispersion in an atmospheric region assumed to be flat, horizontal, and with a logarithmic wind profile. The specification of the logarithmic wind profile in the T2VOC input file is automated through the use of a build code called ATMDISPV. The new capability is demonstrated on 2-D and 3-D example problems described in this report.

  8. Recent Improvements of Particle and Heavy Ion Transport code System: PHITS

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiko; Niita, Koji; Iwamoto, Yosuke; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shin-ichiro; Kai, Takeshi; Matsuda, Norihiro; Okumura, Keisuke; Kai, Tetsuya; Iwase, Hiroshi; Sihver, Lembit

    2017-09-01

    The Particle and Heavy Ion Transport code System, PHITS, has been developed under the collaboration of several research institutes in Japan and Europe. This system can simulate the transport of most particles with energy levels up to 1 TeV (per nucleon for ion) using different nuclear reaction models and data libraries. More than 2,500 registered researchers and technicians have used this system for various applications such as accelerator design, radiation shielding and protection, medical physics, and space- and geo-sciences. This paper summarizes the physics models and functions recently implemented in PHITS, between versions 2.52 and 2.88, especially those related to source generation useful for simulating brachytherapy and internal exposures of radioisotopes.

  9. Estimation of dose delivered to accelerator devices from stripping of 18.5 MeV/n 238U ions using the FLUKA code

    NASA Astrophysics Data System (ADS)

    Oranj, Leila Mokhtari; Lee, Hee-Seock; Leitner, Mario Santana

    2017-12-01

    In Korea, a heavy ion accelerator facility (RAON) has been designed for production of rare isotopes. The 90° bending section of this accelerator includes a 1.3- μm-carbon stripper followed by two dipole magnets and other devices. An incident beam is 18.5 MeV/n 238U33+,34+ ions passing through the carbon stripper at the beginning of the section. The two dipoles are tuned to transport 238U ions with specific charge states of 77+, 78+, 79+, 80+ and 81+. Then other ions will be deflected at the bends and cause beam losses. These beam losses are a concern to the devices of transport/beam line. The absorbed dose in devices and prompt dose in the tunnel were calculated using the FLUKA code in order to estimate radiation damage of such devices located at the 90° bending section and for the radiation protection. A novel method to transport multi-charged 238U ions beam was applied in the FLUKA code by using charge distribution of 238U ions after the stripper obtained from LISE++ code. The calculated results showed that the absorbed dose in the devices is influenced by the geometrical arrangement. The maximum dose was observed at the coils of first, second, fourth and fifth quadruples placed after first dipole magnet. The integrated doses for 30 years of operation with 9.5 p μA 238U ions were about 2 MGy for those quadrupoles. In conclusion, the protection of devices particularly, quadruples would be necessary to reduce the damage to devices. Moreover, results showed that the prompt radiation penetrated within the first 60 - 120 cm of concrete.

  10. Comparison of space radiation calculations for deterministic and Monte Carlo transport codes

    NASA Astrophysics Data System (ADS)

    Lin, Zi-Wei; Adams, James; Barghouty, Abdulnasser; Randeniya, Sharmalee; Tripathi, Ram; Watts, John; Yepes, Pablo

    For space radiation protection of astronauts or electronic equipments, it is necessary to develop and use accurate radiation transport codes. Radiation transport codes include deterministic codes, such as HZETRN from NASA and UPROP from the Naval Research Laboratory, and Monte Carlo codes such as FLUKA, the Geant4 toolkit and HETC-HEDS. The deterministic codes and Monte Carlo codes complement each other in that deterministic codes are very fast while Monte Carlo codes are more elaborate. Therefore it is important to investigate how well the results of deterministic codes compare with those of Monte Carlo transport codes and where they differ. In this study we evaluate these different codes in their space radiation applications by comparing their output results in the same given space radiation environments, shielding geometry and material. Typical space radiation environments such as the 1977 solar minimum galactic cosmic ray environment are used as the well-defined input, and simple geometries made of aluminum, water and/or polyethylene are used to represent the shielding material. We then compare various outputs of these codes, such as the dose-depth curves and the flux spectra of different fragments and other secondary particles. These comparisons enable us to learn more about the main differences between these space radiation transport codes. At the same time, they help us to learn the qualitative and quantitative features that these transport codes have in common.

  11. Novel oligonucleotide primers reveal a high diversity of microbes which drive phosphorous turnover in soil.

    PubMed

    Bergkemper, Fabian; Kublik, Susanne; Lang, Friederike; Krüger, Jaane; Vestergaard, Gisle; Schloter, Michael; Schulz, Stefanie

    2016-06-01

    Phosphorus (P) is of central importance for cellular life but likewise a limiting macronutrient in numerous environments. Certainly microorganisms have proven their ability to increase the phosphorus bioavailability by mineralization of organic-P and solubilization of inorganic-P. On the other hand they efficiently take up P and compete with other biota for phosphorus. However the actual microbial community that is associated to the turnover of this crucial macronutrient in different ecosystems remains largely anonymous especially taking effects of seasonality and spatial heterogeneity into account. In this study seven oligonucleotide primers are presented which target genes coding for microbial acid and alkaline phosphatases (phoN, phoD), phytases (appA), phosphonatases (phnX) as well as the quinoprotein glucose dehydrogenase (gcd) and different P transporters (pitA, pstS). Illumina amplicon sequencing of soil genomic DNA underlined the high rate of primer specificity towards the respective target gene which usually ranged between 98% and 100% (phoN: 87%). As expected the primers amplified genes from a broad diversity of distinct microorganisms. Using DNA from a beech dominated forest soil, the highest microbial diversity was detected for the alkaline phosphatase (phoD) gene which was amplified from 15 distinct phyla respectively 81 families. Noteworthy the primers also allowed amplification of phoD from 6 fungal orders. The genes coding for acid phosphatase (phoN) and the quinoprotein glucose dehydrogenase (gcd) were amplified from 20 respectively 17 different microbial orders. In comparison the phytase and phosphonatase (appA, phnX) primers covered 13 bacterial orders from 2 different phyla respectively. Although the amplified microbial diversity was apparently limited both primers reliably detected all orders that contributed to the P turnover in the investigated soil as revealed by a previous metagenomic approach. Genes that code for microbial P transporter (pitA, pstS) were amplified from 13 respectively 9 distinct microbial orders. Accordingly the introduced primers represent a valuable tool for further analysis of the microbial community involved in the turnover of phosphorus in soils but most likely also in other environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Minimizing stellarator turbulent transport by geometric optimization

    NASA Astrophysics Data System (ADS)

    Mynick, H. E.

    2010-11-01

    Up to now, a transport optimized stellarator has meant one optimized to minimize neoclassical transport,ootnotetextH.E. Mynick, Phys. Plasmas 13, 058102 (2006). while the task of also mitigating turbulent transport, usually the dominant transport channel in such designs, has not been addressed, due to the complexity of plasma turbulence in stellarators. However, with the advent of gyrokinetic codes valid for 3D geometries such as GENE,ootnotetextF. Jenko, W. Dorland, M. Kotschenreuther, B.N. Rogers, Phys. Plasmas 7, 1904 (2000). and stellarator optimization codes such as STELLOPT,ootnotetextA. Reiman, G. Fu, S. Hirshman, L. Ku, et al, Plasma Phys. Control. Fusion 41 B273 (1999). designing stellarators to also reduce turbulent transport has become a realistic possibility. We have been using GENE to characterize the dependence of turbulent transport on stellarator geometry,ootnotetextH.E Mynick, P.A. Xanthopoulos, A.H. Boozer, Phys.Plasmas 16 110702 (2009). and to identify key geometric quantities which control the transport level. From the information obtained from these GENE studies, we are developing proxy functions which approximate the level of turbulent transport one may expect in a machine of a given geometry, and have extended STELLOPT to use these in its cost function, obtaining stellarator configurations with turbulent transport levels substantially lower than those in the original designs.

  13. Whole Device Modeling of Compact Tori: Stability and Transport Modeling of C-2W

    NASA Astrophysics Data System (ADS)

    Dettrick, Sean; Fulton, Daniel; Lau, Calvin; Lin, Zhihong; Ceccherini, Francesco; Galeotti, Laura; Gupta, Sangeeta; Onofri, Marco; Tajima, Toshiki; TAE Team

    2017-10-01

    Recent experimental evidence from the C-2U FRC experiment shows that the confinement of energy improves with inverse collisionality, similar to other high beta toroidal devices, NSTX and MAST. This motivated the construction of a new FRC experiment, C-2W, to study the energy confinement scaling at higher electron temperature. Tri Alpha Energy is working towards catalysing a community-wide collaboration to develop a Whole Device Model (WDM) of Compact Tori. One application of the WDM is the study of stability and transport properties of C-2W using two particle-in-cell codes, ANC and FPIC. These codes can be used to find new stable operating points, and to make predictions of the turbulent transport at those points. They will be used in collaboration with the C-2W experimental program to validate the codes against C-2W, mitigate experimental risk inherent in the exploration of new parameter regimes, accelerate the optimization of experimental operating scenarios, and to find operating points for future FRC reactor designs.

  14. Modeling of InP metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Black, Linda R.; Clark, Ivan O.; Kui, J.; Jesser, William A.

    1991-01-01

    The growth of InP by metalorganic chemical vapor deposition (MOCVD) in a horizontal reactor is being modeled with a commercially available computational fluid dynamics modeling code. The mathematical treatment of the MOCVD process has four primary areas of concern: 1) transport phenomena, 2) chemistry, 3) boundary conditions, and 4) numerical solution methods. The transport processes involved in CVD are described by conservation of total mass, momentum, energy, and atomic species. Momentum conservation is described by a generalized form of the Navier-Stokes equation for a Newtonian fluid and laminar flow. The effect of Soret diffusion on the transport of particular chemical species and on the predicted deposition rate is examined. Both gas-phase and surface chemical reactions are employed in the model. Boundary conditions are specified at the inlet and walls of the reactor for temperature, fluid flow and chemical species. The coupled set of equations described above is solved by a finite difference method over a nonuniform rectilinear grid in both two and three dimensions. The results of the 2-D computational model is presented for gravity levels of zero- and one-g. The predicted growth rates at one-g are compared to measured growth rates on fused silica substrates.

  15. Radioactive Sediment Transport on Ogaki Dam Reservoir in Fukushima Evacuated Zone: Numerical Simulation Studies by 2-D River Simulation Code

    NASA Astrophysics Data System (ADS)

    Yamada, Susumu; Kitamura, Akihiro; Kurikami, Hiroshi; Machida, Masahiko

    2015-04-01

    Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on March 2011 released significant quantities of radionuclides to atmosphere. The most significant nuclide is radioactive cesium isotopes. Therefore, the movement of the cesium is one of the critical issues for the environmental assessment. Since the cesium is strongly sorbed by soil particles, the cesium transport can be regarded as the sediment transport which is mainly brought about by the aquatic system such as a river and a lake. In this research, our target is the sediment transport on Ogaki dam reservoir which is located in about 16 km northwest from FDNPP. The reservoir is one of the principal irrigation dam reservoirs in Fukushima Prefecture and its upstream river basin was heavily contaminated by radioactivity. We simulate the sediment transport on the reservoir using 2-D river simulation code named Nays2D originally developed by Shimizu et al. (The latest version of Nays2D is available as a code included in iRIC (http://i-ric.org/en/), which is a river flow and riverbed variation analysis software package). In general, a 2-D simulation code requires a huge amount of calculation time. Therefore, we parallelize the code and execute it on a parallel computer. We examine the relationship between the behavior of the sediment transport and the height of the reservoir exit. The simulation result shows that almost all the sand that enter into the reservoir deposit close to the entrance of the reservoir for any height of the exit. The amounts of silt depositing within the reservoir slightly increase by raising the height of the exit. However, that of the clay dramatically increases. Especially, more than half of the clay deposits, if the exit is sufficiently high. These results demonstrate that the water level of the reservoir has a strong influence on the amount of the clay discharged from the reservoir. As a result, we conclude that the tuning of the water level has a possibility for controlling the recontamination to the downstream.

  16. Functional analysis of human aromatic amino acid transporter MCT10/TAT1 using the yeast Saccharomyces cerevisiae.

    PubMed

    Uemura, Satoshi; Mochizuki, Takahiro; Kurosaka, Goyu; Hashimoto, Takanori; Masukawa, Yuki; Abe, Fumiyoshi

    2017-10-01

    Tryptophan is an essential amino acid in humans and an important serotonin and melatonin precursor. Monocarboxylate transporter MCT10 is a member of the SLC16A family proteins that mediates low-affinity tryptophan transport across basolateral membranes of kidney, small intestine, and liver epithelial cells, although the precise transport mechanism remains unclear. Here we developed a simple functional assay to analyze tryptophan transport by human MCT10 using a deletion mutant for the high-affinity tryptophan permease Tat2 in Saccharomyces cerevisiae. tat2Δtrp1 cells are defective in growth in YPD medium because tyrosine present in the medium competes for the low-affinity tryptophan permease Tat1 with tryptophan. MCT10 appeared to allow growth of tat2Δtrp1 cells in YPD medium, and accumulate in cells deficient for Rsp5 ubiquitin ligase. These results suggest that MCT10 is functional in yeast, and is subject to ubiquitin-dependent quality control. Whereas growth of Tat2-expressing cells was significantly impaired by neutral pH, that of MCT10-expressing cells was nearly unaffected. This property is consistent with the transport mechanism of MCT10 via facilitated diffusion without a need for pH gradient across the plasma membrane. Single-nucleotide polymorphisms (SNPs) are known to occur in the human MCT10 coding region. Among eight SNP amino acid changes in MCT10, the N81K mutation completely abrogated tryptophan import without any abnormalities in the expression or localization. In the MCT10 modeled structure, N81 appeared to protrude into the putative trajectory of tryptophan. Plasma membrane localization of MCT10 and the variant proteins was also verified in human embryonic kidney 293T cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. 49 CFR Appendix C to Part 215 - FRA Freight Car Standards Defect Code

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false FRA Freight Car Standards Defect Code C Appendix C... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. C Appendix C to... 13/4″. (C)(1) Rim thickness is 11/16″ or less; (2) Rim thickness is 5/8″ or less; (3) Rim thickness...

  18. Identification and functional characterization of genetic variants of human organic cation transporters in a Korean population.

    PubMed

    Kang, Ho-Jin; Song, Im-Sook; Shin, Ho Jung; Kim, Woo-Young; Lee, Choong-Hee; Shim, Joo-Cheol; Zhou, Hong-Hao; Lee, Sang Seop; Shin, Jae-Gook

    2007-04-01

    Genetic variants of three human organic cation transporter genes (hOCTs) were extensively explored in a Korean population. The functional changes of hOCT2 variants were evaluated in vitro, and those genetic polymorphisms of hOCTs were compared among different ethnic populations. From direct DNA sequencing, 7 of 13 coding variants were nonsynonymous single-nucleotide polymorphisms (SNPs), including four variants from hOCT1 (F160L, P283L, P341L, and M408V) and three from hOCT2 (T199I, T201M, and A270S), whereas 6 were synonymous SNPs. The linkage disequilibrium analysis presented for three independent LD blocks for each hOCT gene showed no significant linkage among all three hOCT genes. The transporter activities of MDCK cells that overexpress the hOCT2-T199I, -T201M, and -A270S variants showed significantly decreased uptake of [(3)H]methyl-4-phenylpyridinium acetate (MPP(+)) or [(14)C]tetraethylammonium compared with those cells that overexpress wild-type hOCT2, and the estimated kinetic parameters of these variants for [(3)H]MPP(+) uptake in oocytes showed a 2- to 5-fold increase in K(m) values and a 10- to 20-fold decrease in V(max) values. The allele frequencies of the five functional variants hOCT1-P283L, -P341L, and hOCT2-T199I, -T201M, and -A270S were 1.3, 17, 0.7, 0.7, and 11%, respectively, in a Korean population; the frequency distributions of these variants were not significantly different from those of Chinese and Vietnamese populations. These findings suggest that genetic variants of hOCTs are not linked among three genes in a Korean population, and several of the hOCT genetic variants cause decreased transport activity in vitro compared with the wild type, although the clinical relevance of these variants remains to be evaluated.

  19. Root Water Uptake and Tracer Transport in a Lupin Root System: Integration of Magnetic Resonance Images and the Numerical Model RSWMS

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Vanderborght, Jan; Haber-Pohlmeier, Sabina; Wienke, Sandra; Vereecken, Harry; Javaux, Mathieu

    2010-05-01

    Combination of experimental studies with detailed deterministic models help understand root water uptake processes. Recently, Javaux et al. developed the RSWMS model by integration of Doussańs root model into the well established SWMS code[1], which simulates water and solute transport in unsaturated soil [2, 3]. In order to confront RSWMS modeling results to experimental data, we used Magnetic Resonance Imaging (MRI) technique to monitor root water uptake in situ. Non-invasive 3-D imaging of root system architecture, water content distributions and tracer transport by MR were performed and compared with numerical model calculations. Two MRI experiments were performed and modeled: i) water uptake during drought stress and ii) transport of a locally injected tracer (Gd-DTPA) to the soil-root system driven by root water uptake. Firstly, the high resolution MRI image (0.23x0.23x0.5mm) of the root system was transferred into a continuous root system skeleton by a combination of thresholding, region-growing filtering and final manual 3D redrawing of the root strands. Secondly, the two experimental scenarios were simulated by RSWMS with a resolution of about 3mm. For scenario i) the numerical simulations could reproduce the general trend that is the strong water depletion from the top layer of the soil. However, the creation of depletion zones in the vicinity of the roots could not be simulated, due to a poor initial evaluation of the soil hydraulic properties, which equilibrates instantaneously larger differences in water content. The determination of unsaturated conductivities at low water content was needed to improve the model calculations. For scenario ii) simulations confirmed the solute transport towards the roots by advection. 1. Simunek, J., T. Vogel, and M.T. van Genuchten, The SWMS_2D Code for Simulating Water Flow and Solute Transport in Two-Dimensional Variably Saturated Media. Version 1.21. 1994, U.S. Salinity Laboratory, USDA, ARS: Riverside, California. 2. Javaux, M., et al., Use of a Three-Dimensional Detailed Modeling Approach for Predicting Root Water Uptake. Vadose Zone J., 2008. 7(3): p. 1079-1088. 3. Schröder, T., et al., Effect of Local Soil Hydraulic Conductivity Drop Using a Three Dimensional Root Water Uptake Model. Vadose Zone J., 2008. 7(3): p. 1089-1098.

  20. Modeling anomalous radial transport in kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.

    2009-11-01

    Anomalous transport is typically the dominant component of the radial transport in magnetically confined plasmas, where the physical origin of this transport is believed to be plasma turbulence. A model is presented for anomalous transport that can be used in continuum kinetic edge codes like TEMPEST, NEO and the next-generation code being developed by the Edge Simulation Laboratory. The model can also be adapted to particle-based codes. It is demonstrated that the model with a velocity-dependent diffusion and convection terms can match a diagonal gradient-driven transport matrix as found in contemporary fluid codes, but can also include off-diagonal effects. The anomalous transport model is also combined with particle drifts and a particle/energy-conserving Krook collision operator to study possible synergistic effects with neoclassical transport. For the latter study, a velocity-independent anomalous diffusion coefficient is used to mimic the effect of long-wavelength ExB turbulence.

  1. Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.

    1994-02-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters,more » and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user`s guide, and a programmer`s guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user`s guide to the model with emphasis on running the code. The user`s guide contains information about the model input and output. The third section is a programmer`s guide to the code. It discusses the hardware and software required to run the code. The programmer`s guide also discusses program structure and each of the program elements.« less

  2. An operon from Lactobacillus helveticus composed of a proline iminopeptidase gene (pepI) and two genes coding for putative members of the ABC transporter family of proteins.

    PubMed

    Varmanen, P; Rantanen, T; Palva, A

    1996-12-01

    A proline iminopeptidase gene (pepI) of an industrial Lactobacillus helveticus strain was cloned and found to be organized in an operon-like structure of three open reading frames (ORF1, ORF2 and ORF3). ORF1 was preceded by a typical prokaryotic promoter region, and a putative transcription terminator was found downstream of ORF3, identified as the pepI gene. Using primer-extension analyses, only one transcription start site, upstream of ORF1, was identifiable in the predicted operon. Although the size of mRNA could not be judged by Northern analysis either with ORF1-, ORF2- or pepI-specific probes, reverse transcription-PCR analyses further supported the operon structure of the three genes. ORF1, ORF2 and ORF3 had coding capacities for 50.7, 24.5 and 33.8 kDa proteins, respectively. The ORF3-encoded PepI protein showed 65% identity with the PepI proteins from Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus delbrueckii subsp. lactis. The ORF1-encoded protein had significant homology with several members of the ABC transporter family but, with two distinct putative ATP-binding sites, it would represent an unusual type among the bacterial ABC transporters. ORF2 encoded a putative integral membrane protein also characteristic of the ABC transporter family. The pepI gene was overexpressed in Escherichia coli. Purified PepI hydrolysed only di and tripeptides with proline in the first position. Optimum PepI activity was observed at pH 7.5 and 40 degrees C. A gel filtration analysis indicated that PepI is a dimer of M(r) 53,000. PepI was shown to be a metal-independent serine peptidase having thiol groups at or near the active site. Kinetic studies with proline-p-nitroanilide as substrate revealed Km and Vmax values of 0.8 mM and 350 mmol min-1 mg-1, respectively, and a very high turnover number of 135,000 s-1.

  3. Aeroelastic Tailoring Study of N+2 Low-Boom Supersonic Commercial Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2015-01-01

    The Lockheed Martins N+2 Low-boom Supersonic Commercial Transport (LSCT) aircraft is optimized in this study through the use of a multidisciplinary design optimization tool developed at the NASA Armstrong Flight Research Center. A total of 111 design variables are used in the first optimization run. Total structural weight is the objective function in this optimization run. Design requirements for strength, buckling, and flutter are selected as constraint functions during the first optimization run. The MSC Nastran code is used to obtain the modal, strength, and buckling characteristics. Flutter and trim analyses are based on ZAERO code and landing and ground control loads are computed using an in-house code.

  4. Measurements of angular flux on surface of Li/sub 2/O slab assemblies and their analysis by a direct integration transport code ''BERMUDA''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maekawa, H.; Oyama, Y.

    1983-09-01

    Angle-dependent neutron leakage spectra above 0.5 MeV from Li/sub 2/O slab assemblies were measured accurately by the time-of-flight method. The measured angles were 0/sup 0/, 12.2/sup 0/, 24.9/sup 0/, 41.8/sup 0/ and 66.8/sup 0/. The sizes of Li/sub 2/O assemblies were 31.4 cm in equivalent radius and 5.06, 20.24 and 40.48 cm in thickness. The data were analyzed by a new transport code ''BERMUDA-2DN''. Time-independent transport equation is solved for two-dimensional, cylindrical, multi-regional geometry using the direct integration method in a multi-group model. The group transfer kernels are accurately obtained from the double-differential cross section data without using Legendre expansion.more » The results were compared absolutely. While there exist discrepancies partially, the calculational spectra agree well with the experimental ones as a whole. The BERMUDA code was demonstrated to be useful for the analyses of the fusion neutronics and shielding.« less

  5. 49 CFR 173.52 - Classification codes and compatibility groups of explosives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Classification codes and compatibility groups of... Class 1 § 173.52 Classification codes and compatibility groups of explosives. (a) The classification..., consists of the division number followed by the compatibility group letter. Compatibility group letters are...

  6. Regulation of glycolysis in Kluyveromyces lactis: role of KlGCR1 and KlGCR2 in glucose uptake and catabolism.

    PubMed

    Neil, H; Lemaire, M; Wésolowski-Louvel, M

    2004-03-01

    In Kluyveromyces lactis, the casein kinase I (Rag8p) regulates the transcription of glycolytic genes and the expression of the low-affinity glucose transporter gene RAG1. This control involves the transcription factor Sck1p, a homologue of Sgc1p of Saccharomyces cerevisiae. SGC1 is known to interact genetically with ScGCR1 and ScGCR2, which code for regulators of glycolytic gene expression. Therefore, we studied the role of KlGCR1 and KlGCR2 genes in K. lactis. The Klgcr1 null mutant could not grow on glucose when respiration was blocked by antimycin A (Rag(- )phenotype). In contrast, the Klgcr2 null mutant could grow under the same conditions, although at a reduced rate. In both mutants, the transcription of glycolytic genes was affected, while that of ribosomal protein genes was not modified. Furthermore, the transcription of the glucose permease genes was also found to be affected in the two mutants, although dissimilarly. While RAG1 transcription decreased at high glucose concentrations, the expression of the high-affinity glucose permease gene HGT1 was unexpectedly impaired under gluconeogenic conditions, in the absence of glucose. Gel mobility shift assays performed with purified maltose-binding protein-KlGcr1p showed that KlGcr1p could interact directly with the promoters of the glycolytic genes, but not with the promoters of the glucose permease genes. Thus, the control exerted by KlGcr1p and KlGcr2p upon glucose transporter genes is probably indirect.

  7. hybrid\\scriptsize{{MANTIS}}: a CPU-GPU Monte Carlo method for modeling indirect x-ray detectors with columnar scintillators

    NASA Astrophysics Data System (ADS)

    Sharma, Diksha; Badal, Andreu; Badano, Aldo

    2012-04-01

    The computational modeling of medical imaging systems often requires obtaining a large number of simulated images with low statistical uncertainty which translates into prohibitive computing times. We describe a novel hybrid approach for Monte Carlo simulations that maximizes utilization of CPUs and GPUs in modern workstations. We apply the method to the modeling of indirect x-ray detectors using a new and improved version of the code \\scriptsize{{MANTIS}}, an open source software tool used for the Monte Carlo simulations of indirect x-ray imagers. We first describe a GPU implementation of the physics and geometry models in fast\\scriptsize{{DETECT}}2 (the optical transport model) and a serial CPU version of the same code. We discuss its new features like on-the-fly column geometry and columnar crosstalk in relation to the \\scriptsize{{MANTIS}} code, and point out areas where our model provides more flexibility for the modeling of realistic columnar structures in large area detectors. Second, we modify \\scriptsize{{PENELOPE}} (the open source software package that handles the x-ray and electron transport in \\scriptsize{{MANTIS}}) to allow direct output of location and energy deposited during x-ray and electron interactions occurring within the scintillator. This information is then handled by optical transport routines in fast\\scriptsize{{DETECT}}2. A load balancer dynamically allocates optical transport showers to the GPU and CPU computing cores. Our hybrid\\scriptsize{{MANTIS}} approach achieves a significant speed-up factor of 627 when compared to \\scriptsize{{MANTIS}} and of 35 when compared to the same code running only in a CPU instead of a GPU. Using hybrid\\scriptsize{{MANTIS}}, we successfully hide hours of optical transport time by running it in parallel with the x-ray and electron transport, thus shifting the computational bottleneck from optical to x-ray transport. The new code requires much less memory than \\scriptsize{{MANTIS}} and, as a result, allows us to efficiently simulate large area detectors.

  8. Solar Proton Transport within an ICRU Sphere Surrounded by a Complex Shield: Combinatorial Geometry

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    The 3DHZETRN code, with improved neutron and light ion (Z (is) less than 2) transport procedures, was recently developed and compared to Monte Carlo (MC) simulations using simplified spherical geometries. It was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in general combinatorial geometry. A more complex shielding structure with internal parts surrounding a tissue sphere is considered and compared against MC simulations. It is shown that even in the more complex geometry, 3DHZETRN agrees well with the MC codes and maintains a high degree of computational efficiency.

  9. CEM2k and LAQGSM Codes as Event-Generators for Space Radiation Shield and Cosmic Rays Propagation Applications

    NASA Technical Reports Server (NTRS)

    Mashnik, S. G.; Gudima, K. K.; Sierk, A. J.; Moskalenko, I. V.

    2002-01-01

    Space radiation shield applications and studies of cosmic ray propagation in the Galaxy require reliable cross sections to calculate spectra of secondary particles and yields of the isotopes produced in nuclear reactions induced both by particles and nuclei at energies from threshold to hundreds of GeV per nucleon. Since the data often exist in a very limited energy range or sometimes not at all, the only way to obtain an estimate of the production cross sections is to use theoretical models and codes. Recently, we have developed improved versions of the Cascade-Exciton Model (CEM) of nuclear reactions: the codes CEM97 and CEM2k for description of particle-nucleus reactions at energies up to about 5 GeV. In addition, we have developed a LANL version of the Quark-Gluon String Model (LAQGSM) to describe reactions induced both by particles and nuclei at energies up to hundreds of GeVhucleon. We have tested and benchmarked the CEM and LAQGSM codes against a large variety of experimental data and have compared their results with predictions by other currently available models and codes. Our benchmarks show that CEM and LAQGSM codes have predictive powers no worse than other currently used codes and describe many reactions better than other codes; therefore both our codes can be used as reliable event-generators for space radiation shield and cosmic ray propagation applications. The CEM2k code is being incorporated into the transport code MCNPX (and several other transport codes), and we plan to incorporate LAQGSM into MCNPX in the near future. Here, we present the current status of the CEM2k and LAQGSM codes, and show results and applications to studies of cosmic ray propagation in the Galaxy.

  10. Knowledge of and attitude towards road traffic codes among commercial motorcycle riders in Anambra State.

    PubMed

    Adogu, O U; Ilika, A L

    2006-12-01

    Road traffic accidents (rtas) represent a major epidemic of non communicable disease in the country and has since escalated with the introduction of the new phenomenon of commercial motorcycle transportation such as is found in the two urban towns of nnewi and Awka of Anambra state, Nigeria. making use of a pre-tested, semi structured, interviewer administered questionnaire, relevant data on socio demographic and motorcycle characteristics were collected from a sample of commercial motorcyclists selected by systematic sampling technique. their knowledge of and attitude towards road traffic and safety codes were elicited. The result showed that the all-male commercial motorcyclists had a mean age of 30+8.9 years. one hundred and seventy six (32.6%) possessed good knowledge of road traffic codes and safety, while 35 (6.5%) exhibited good attitude towards them. both knowledge of and attitude towards traffic codes and safety improved with increase in educational level (p<0.005, p<0.001 respectively). the younger motorcyclists also possessed statistically significant better knowledge of traffic codes than their older counterparts (p<0.025). attitude to traffic codes and safety had no association with age of the motorcyclists (p>0.25). the study has provided useful information on the knowledge of and attitude towards road traffic and safety codes among commercial motorcyclists in nigeria. pursuit of knowledge through formal and informal education should run pari pasu with efforts to improve the nigerian economy in order to ensure a sustainable positive attitudinal change towards road traffic codes and safety among commercial motorcyclists.

  11. Effect of Nonlocal Electron Transport in Both Directions on the Symmetry of Polar-Drive--Ignition Targets

    NASA Astrophysics Data System (ADS)

    Delettrez, J. A.; Collins, T. J. B.; Shvydky, A.; Moses, G.; Cao, D.; Marinak, M. M.

    2012-10-01

    A nonlocal, multigroup diffusion model for thermal electron transportfootnotetextG. P. Schurtz, Ph. D. Nicola"i, and M. Busquet, Phys. Plasmas 7, 4238 (2000). has been added to the 2-D hydrodynamic code DRACO. This model has been applied to simulations of polar-drive (PD) NIF ignition designs. Previous simulations were carried out with a constant flux-limiter model in both the radial and transverse directions. Due to the nonsymmetry of PD illumination, these implosions suffer from low-mode nonuniformities that affect their performance. Nonlocal electron transport in both directions is expected to reduce these nonuniformities. The 2-D thermal electron flux from simulations, using either the nonlocal model or the standard flux-limited approach, will be compared and the effect of the nonlocal transport model on the growth of the nonuniformities and on target performance will be presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  12. Diversity in the glucose transporter-4 gene (SLC2A4) in humans reflects the action of natural selection along the old-world primates evolution.

    PubMed

    Tarazona-Santos, Eduardo; Fabbri, Cristina; Yeager, Meredith; Magalhaes, Wagner C; Burdett, Laurie; Crenshaw, Andrew; Pettener, Davide; Chanock, Stephen J

    2010-03-23

    Glucose is an important source of energy for living organisms. In vertebrates it is ingested with the diet and transported into the cells by conserved mechanisms and molecules, such as the trans-membrane Glucose Transporters (GLUTs). Members of this family have tissue specific expression, biochemical properties and physiologic functions that together regulate glucose levels and distribution. GLUT4 -coded by SLC2A4 (17p13) is an insulin-sensitive transporter with a critical role in glucose homeostasis and diabetes pathogenesis, preferentially expressed in the adipose tissue, heart muscle and skeletal muscle. We tested the hypothesis that natural selection acted on SLC2A4. We re-sequenced SLC2A4 and genotyped 104 SNPs along a approximately 1 Mb region flanking this gene in 102 ethnically diverse individuals. Across the studied populations (African, European, Asian and Latin-American), all the eight common SNPs are concentrated in the N-terminal region upstream of exon 7 ( approximately 3700 bp), while the C-terminal region downstream of intron 6 ( approximately 2600 bp) harbors only 6 singletons, a pattern that is not compatible with neutrality for this part of the gene. Tests of neutrality based on comparative genomics suggest that: (1) episodes of natural selection (likely a selective sweep) predating the coalescent of human lineages, within the last 25 million years, account for the observed reduced diversity downstream of intron 6 and, (2) the target of natural selection may not be in the SLC2A4 coding sequence. We propose that the contrast in the pattern of genetic variation between the N-terminal and C-terminal regions are signatures of the action of natural selection and thus follow-up studies should investigate the functional importance of different regions of the SLC2A4 gene.

  13. Transport modeling of convection dominated helicon discharges in Proto-MPEX with the B2.5-Eirene code

    NASA Astrophysics Data System (ADS)

    Owen, L. W.; Rapp, J.; Canik, J.; Lore, J. D.

    2017-11-01

    Data-constrained interpretative analyses of plasma transport in convection dominated helicon discharges in the Proto-MPEX linear device, and predictive calculations with additional Electron Cyclotron Heating/Electron Bernstein Wave (ECH/EBW) heating, are reported. The B2.5-Eirene code, in which the multi-fluid plasma code B2.5 is coupled to the kinetic Monte Carlo neutrals code Eirene, is used to fit double Langmuir probe measurements and fast camera data in front of a stainless-steel target. The absorbed helicon and ECH power (11 kW) and spatially constant anomalous transport coefficients that are deduced from fitting of the probe and optical data are additionally used for predictive simulations of complete axial distributions of the densities, temperatures, plasma flow velocities, particle and energy fluxes, and possible effects of alternate fueling and pumping scenarios. The somewhat hollow electron density and temperature radial profiles from the probe data suggest that Trivelpiece-Gould wave absorption is the dominant helicon electron heating source in the discharges analyzed here. There is no external ion heating, but the corresponding calculated ion temperature radial profile is not hollow. Rather it reflects ion heating by the electron-ion equilibration terms in the energy balance equations and ion radial transport resulting from the hollow density profile. With the absorbed power and the transport model deduced from fitting the sheath limited discharge data, calculated conduction limited higher recycling conditions were produced by reducing the pumping and increasing the gas fueling rate, resulting in an approximate doubling of the target ion flux and reduction of the target heat flux.

  14. Next-generation acceleration and code optimization for light transport in turbid media using GPUs

    PubMed Central

    Alerstam, Erik; Lo, William Chun Yip; Han, Tianyi David; Rose, Jonathan; Andersson-Engels, Stefan; Lilge, Lothar

    2010-01-01

    A highly optimized Monte Carlo (MC) code package for simulating light transport is developed on the latest graphics processing unit (GPU) built for general-purpose computing from NVIDIA - the Fermi GPU. In biomedical optics, the MC method is the gold standard approach for simulating light transport in biological tissue, both due to its accuracy and its flexibility in modelling realistic, heterogeneous tissue geometry in 3-D. However, the widespread use of MC simulations in inverse problems, such as treatment planning for PDT, is limited by their long computation time. Despite its parallel nature, optimizing MC code on the GPU has been shown to be a challenge, particularly when the sharing of simulation result matrices among many parallel threads demands the frequent use of atomic instructions to access the slow GPU global memory. This paper proposes an optimization scheme that utilizes the fast shared memory to resolve the performance bottleneck caused by atomic access, and discusses numerous other optimization techniques needed to harness the full potential of the GPU. Using these techniques, a widely accepted MC code package in biophotonics, called MCML, was successfully accelerated on a Fermi GPU by approximately 600x compared to a state-of-the-art Intel Core i7 CPU. A skin model consisting of 7 layers was used as the standard simulation geometry. To demonstrate the possibility of GPU cluster computing, the same GPU code was executed on four GPUs, showing a linear improvement in performance with an increasing number of GPUs. The GPU-based MCML code package, named GPU-MCML, is compatible with a wide range of graphics cards and is released as an open-source software in two versions: an optimized version tuned for high performance and a simplified version for beginners (http://code.google.com/p/gpumcml). PMID:21258498

  15. Multi-D Full Boltzmann Neutrino Hydrodynamic Simulations in Core Collapse Supernovae and their detailed comparison with Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Nagakura, Hiroki; Richers, Sherwood; Ott, Christian; Iwakami, Wakana; Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi

    2017-01-01

    We have developed a multi-d radiation-hydrodynamic code which solves first-principles Boltzmann equation for neutrino transport. It is currently applicable specifically for core-collapse supernovae (CCSNe), but we will extend their applicability to further extreme phenomena such as black hole formation and coalescence of double neutron stars. In this meeting, I will discuss about two things; (1) detailed comparison with a Monte-Carlo neutrino transport (2) axisymmetric CCSNe simulations. The project (1) gives us confidence of our code. The Monte-Carlo code has been developed by Caltech group and it is specialized to obtain a steady state. Among CCSNe community, this is the first attempt to compare two different methods for multi-d neutrino transport. I will show the result of these comparison. For the project (2), I particularly focus on the property of neutrino distribution function in the semi-transparent region where only first-principle Boltzmann solver can appropriately handle the neutrino transport. In addition to these analyses, I will also discuss the ``explodability'' by neutrino heating mechanism.

  16. Particle acceleration and transport at a 2D CME-driven shock using the HAFv3 and PATH Code

    NASA Astrophysics Data System (ADS)

    Li, G.; Ao, X.; Fry, C. D.; Verkhoglyadova, O. P.; Zank, G. P.

    2012-12-01

    We study particle acceleration at a 2D CME-driven shock and the subsequent transport in the inner heliosphere (up to 2 AU) by coupling the kinematic Hakamada-Akasofu-Fry version 3 (HAFv3) solar wind model (Hakamada and Akasofu, 1982, Fry et al. 2003) with the Particle Acceleration and Transport in the Heliosphere (PATH) model (Zank et al., 2000, Li et al., 2003, 2005, Verkhoglyadova et al. 2009). The HAFv3 provides the evolution of a two-dimensional shock geometry and other plasma parameters, which are fed into the PATH model to investigate the effect of a varying shock geometry on particle acceleration and transport. The transport module of the PATH model is parallelized and utilizes the state-of-the-art GPU computation technique to achieve a rapid physics-based numerical description of the interplanetary energetic particles. Together with a fast execution of the HAFv3 model, the coupled code gives us a possibility to nowcast/forecast the interplanetary radiation environment.

  17. Numerical Simulation of Doped Targets for ICF

    NASA Astrophysics Data System (ADS)

    Phillips, Lee; Gardner, John H.; Bodner, Stephen E.; Colombant, Denis; Klapisch, Marcel; Bar-Shalom, Avraham

    1997-11-01

    The ablative Rayleigh-Taylor (RT) instability can be reduced by preheating the ablator, thereby reducing the peak density and increasing the mass ablation velocity. The ablator can be preheated with radiation from higher Z dopants.(Gardner, J.H., Bodner, S.E., Dahlburg, J.P., Phys. Fluids 3), 1070 (1991) Dopants also reduce the density gradient at the ablator, which provides a second mechanism to reduce the RT growth rate. We have recently developed a more sophisticated and detailed radiation package that uses opacities generated by an STA code, with non-LTE radiation transport based on the Busquet method. This radiation package has been incorporated into NRL's FAST2D radiation hydrodynamics code, which has been used to evaluate and optimize the use of various dopants that can provide interesting levels of preheat for an ICF target.

  18. ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William

    2008-04-01

    ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a methodmore » for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.« less

  19. Intercomparison of Monte Carlo radiation transport codes to model TEPC response in low-energy neutron and gamma-ray fields.

    PubMed

    Ali, F; Waker, A J; Waller, E J

    2014-10-01

    Tissue-equivalent proportional counters (TEPC) can potentially be used as a portable and personal dosemeter in mixed neutron and gamma-ray fields, but what hinders this use is their typically large physical size. To formulate compact TEPC designs, the use of a Monte Carlo transport code is necessary to predict the performance of compact designs in these fields. To perform this modelling, three candidate codes were assessed: MCNPX 2.7.E, FLUKA 2011.2 and PHITS 2.24. In each code, benchmark simulations were performed involving the irradiation of a 5-in. TEPC with monoenergetic neutron fields and a 4-in. wall-less TEPC with monoenergetic gamma-ray fields. The frequency and dose mean lineal energies and dose distributions calculated from each code were compared with experimentally determined data. For the neutron benchmark simulations, PHITS produces data closest to the experimental values and for the gamma-ray benchmark simulations, FLUKA yields data closest to the experimentally determined quantities. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. PdSlt2 Penicillium digitatum mitogen-activated-protein kinase controls sporulation and virulence during citrus fruit infection.

    PubMed

    de Ramón-Carbonell, Marta; Sánchez-Torres, Paloma

    2017-12-01

    The Slt2 mitogen-activated protein (MAP) kinase homologue of Penicillium digitatum, the most relevant pathogen-producing citrus green mould decay during postharvest, was identified and explored. The P. digitatum Slt2-MAPK coding gene (PdSlt2) was functionally characterized by homologous gene elimination and transcriptomic evaluation. The absence of PdSlt2 gene resulted in significantly reduced virulence during citrus infection. The ΔPdSlt2 mutants were also defective in asexual reproduction, showing impairment of sporulation during citrus infection. Gene expression analysis revealed that PdSlt2 was highly induced during citrus fruit infection at early stages (1 dpi). Moreover, PdSlt2 deletion altered gene expression profiles. The relative gene expression (RGE) of fungicide resistance- and fungal virulence-related genes showed that PdSlt2 acts as negative regulator of several transporter encoding genes (ABC and MFS transporters) and a positive regulator of two sterol demethylases. This study indicates that PdSlt2 MAPK is functionally preserved in P. digitatum and highlights the relevant role of the PdSlt2 MAP kinase-mediated signalling pathway in regulating diverse genes crucial for infection and asexual reproduction. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  1. Abcb1 in Pigs: Molecular cloning, tissues distribution, functional analysis, and its effect on pharmacokinetics of enrofloxacin

    PubMed Central

    Guo, Tingting; Huang, Jinhu; Zhang, Hongyu; Dong, Lingling; Guo, Dawei; Guo, Li; He, Fang; Bhutto, Zohaib Ahmed; Wang, Liping

    2016-01-01

    P-glycoprotein (P-gp) is one of the best-known ATP-dependent efflux transporters, contributing to differences in pharmacokinetics and drug-drug interactions. Until now, studies on pig P-gp have been scarce. In our studies, the full-length porcine P-gp cDNA was cloned and expressed in a Madin-Darby Canine Kidney (MDCK) cell line. P-gp expression was then determined in tissues and its role in the pharmacokinetics of oral enrofloxacin in pigs was studied. The coding region of pig Abcb1 gene was 3,861 bp, encoding 1,286 amino acid residues (Mw = 141,966). Phylogenetic analysis indicated a close evolutionary relationship between porcine P-gp and those of cow and sheep. Pig P-gp was successfully stably overexpressed in MDCK cells and had efflux activity for rhodamine 123, a substrate of P-gp. Tissue distribution analysis indicated that P-gp was highly expressed in brain capillaries, small intestine, and liver. In MDCK-pAbcb1 cells, enrofloxacin was transported by P-gp with net efflux ratio of 2.48 and the efflux function was blocked by P-gp inhibitor verapamil. High expression of P-gp in the small intestine could modify the pharmacokinetics of orally administrated enrofloxacin by increasing the Cmax, AUC and Ka, which was demonstrated using verapamil, an inhibitor of P-gp. PMID:27572343

  2. BRYNTRN: A baryon transport computer code, computation procedures and data base

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Chun, Sang Y.; Buck, Warren W.; Khan, Ferdous; Cucinotta, Frank

    1988-01-01

    The development is described of an interaction data base and a numerical solution to the transport of baryons through the arbitrary shield material based on a straight ahead approximation of the Boltzmann equation. The code is most accurate for continuous energy boundary values but gives reasonable results for discrete spectra at the boundary with even a relatively coarse energy grid (30 points) and large spatial increments (1 cm in H2O).

  3. A Deterministic Transport Code for Space Environment Electrons

    NASA Technical Reports Server (NTRS)

    Nealy, John E.; Chang, C. K.; Norman, Ryan B.; Blattnig, Steve R.; Badavi, Francis F.; Adamczyk, Anne M.

    2010-01-01

    A deterministic computational procedure has been developed to describe transport of space environment electrons in various shield media. This code is an upgrade and extension of an earlier electron code. Whereas the former code was formulated on the basis of parametric functions derived from limited laboratory data, the present code utilizes well established theoretical representations to describe the relevant interactions and transport processes. The shield material specification has been made more general, as have the pertinent cross sections. A combined mean free path and average trajectory approach has been used in the transport formalism. Comparisons with Monte Carlo calculations are presented.

  4. Testing density-dependent groundwater models: Two-dimensional steady state unstable convection in infinite, finite and inclined porous layers

    USGS Publications Warehouse

    Weatherill, D.; Simmons, C.T.; Voss, C.I.; Robinson, N.I.

    2004-01-01

    This study proposes the use of several problems of unstable steady state convection with variable fluid density in a porous layer of infinite horizontal extent as two-dimensional (2-D) test cases for density-dependent groundwater flow and solute transport simulators. Unlike existing density-dependent model benchmarks, these problems have well-defined stability criteria that are determined analytically. These analytical stability indicators can be compared with numerical model results to test the ability of a code to accurately simulate buoyancy driven flow and diffusion. The basic analytical solution is for a horizontally infinite fluid-filled porous layer in which fluid density decreases with depth. The proposed test problems include unstable convection in an infinite horizontal box, in a finite horizontal box, and in an infinite inclined box. A dimensionless Rayleigh number incorporating properties of the fluid and the porous media determines the stability of the layer in each case. Testing the ability of numerical codes to match both the critical Rayleigh number at which convection occurs and the wavelength of convection cells is an addition to the benchmark problems currently in use. The proposed test problems are modelled in 2-D using the SUTRA [SUTRA-A model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Water-Resources Investigations Report, 02-4231, 2002. 250 p] density-dependent groundwater flow and solute transport code. For the case of an infinite horizontal box, SUTRA results show a distinct change from stable to unstable behaviour around the theoretical critical Rayleigh number of 4??2 and the simulated wavelength of unstable convection agrees with that predicted by the analytical solution. The effects of finite layer aspect ratio and inclination on stability indicators are also tested and numerical results are in excellent agreement with theoretical stability criteria and with numerical results previously reported in traditional fluid mechanics literature. ?? 2004 Elsevier Ltd. All rights reserved.

  5. Identification of two novel mutations in the SLC45A2 gene in a Hungarian pedigree affected by unusual OCA type 4.

    PubMed

    Tóth, Lola; Fábos, Beáta; Farkas, Katalin; Sulák, Adrienn; Tripolszki, Kornélia; Széll, Márta; Nagy, Nikoletta

    2017-03-15

    Oculocutaneous albinism (OCA) is a clinically and genetically heterogenic group of pigmentation abnormalities. OCA type IV (OCA4, OMIM 606574) develops due to homozygous or compound heterozygous mutations in the solute carrier family 45, member 2 (SLC45A2) gene. This gene encodes a membrane-associated transport protein, which regulates tyrosinase activity and, thus, melanin content by changing melanosomal pH and disrupting the incorporation of copper into tyrosinase. Here we report two Hungarian siblings affected by an unusual OCA4 phenotype. After genomic DNA was isolated from peripheral blood of the patients, the coding regions of the SLC45A2 gene were sequenced. In silico tools were applied to identify the functional impact of the newly detected mutations. Direct sequencing of the SLC45A2 gene revealed two novel, heterozygous mutations, one missense (c.1226G > A, p.Gly409Asp) and one nonsense (c.1459C > T, p.Gln437*), which were present in both patients, suggesting the mutations were compound heterozygous. In silico tools suggest that these variations are disease causing mutations. The newly identified mutations may affect the transmembrane domains of the protein, and could impair transport function, resulting in decreases in both melanosomal pH and tyrosinase activity. Our study provides expands on the mutation spectrum of the SLC45A2 gene and the genetic background of OCA4.

  6. Converting Panax ginseng DNA and chemical fingerprints into two-dimensional barcode.

    PubMed

    Cai, Yong; Li, Peng; Li, Xi-Wen; Zhao, Jing; Chen, Hai; Yang, Qing; Hu, Hao

    2017-07-01

    In this study, we investigated how to convert the Panax ginseng DNA sequence code and chemical fingerprints into a two-dimensional code. In order to improve the compression efficiency, GATC2Bytes and digital merger compression algorithms are proposed. HPLC chemical fingerprint data of 10 groups of P. ginseng from Northeast China and the internal transcribed spacer 2 (ITS2) sequence code as the DNA sequence code were ready for conversion. In order to convert such data into a two-dimensional code, the following six steps were performed: First, the chemical fingerprint characteristic data sets were obtained through the inflection filtering algorithm. Second, precompression processing of such data sets is undertaken. Third, precompression processing was undertaken with the P. ginseng DNA (ITS2) sequence codes. Fourth, the precompressed chemical fingerprint data and the DNA (ITS2) sequence code were combined in accordance with the set data format. Such combined data can be compressed by Zlib, an open source data compression algorithm. Finally, the compressed data generated a two-dimensional code called a quick response code (QR code). Through the abovementioned converting process, it can be found that the number of bytes needed for storing P. ginseng chemical fingerprints and its DNA (ITS2) sequence code can be greatly reduced. After GTCA2Bytes algorithm processing, the ITS2 compression rate reaches 75% and the chemical fingerprint compression rate exceeds 99.65% via filtration and digital merger compression algorithm processing. Therefore, the overall compression ratio even exceeds 99.36%. The capacity of the formed QR code is around 0.5k, which can easily and successfully be read and identified by any smartphone. P. ginseng chemical fingerprints and its DNA (ITS2) sequence code can form a QR code after data processing, and therefore the QR code can be a perfect carrier of the authenticity and quality of P. ginseng information. This study provides a theoretical basis for the development of a quality traceability system of traditional Chinese medicine based on a two-dimensional code.

  7. Plasma Heating Simulation in the VASIMR System

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.; ChangDiaz, Franklin R.; Squire, Jared P.; Carter, Mark D.

    2005-01-01

    The paper describes the recent development in the simulation of the ion-cyclotron acceleration of the plasma in the VASIMR experiment. The modeling is done using an improved EMIR code for RF field calculation together with particle trajectory code for plasma transport calculat ion. The simulation results correlate with experimental data on the p lasma loading and predict higher ICRH performance for a higher density plasma target. These simulations assist in optimizing the ICRF anten na so as to achieve higher VASIMR efficiency.

  8. 10 CFR 420.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Planning Organization means that organization required by the Department of Transportation, and designated... planning provisions in a Standard Metropolitan Statistical Area. Model Energy Code, 1993, including Errata, means the model building code published by the Council of American Building Officials, which is...

  9. Recent developments in multidimensional transport methods for the APOLLO 2 lattice code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zmijarevic, I.; Sanchez, R.

    1995-12-31

    A usual method of preparation of homogenized cross sections for reactor coarse-mesh calculations is based on two-dimensional multigroup transport treatment of an assembly together with an appropriate leakage model and reaction-rate-preserving homogenization technique. The actual generation of assembly spectrum codes based on collision probability methods is capable of treating complex geometries (i.e., irregular meshes of arbitrary shape), thus avoiding the modeling error that was introduced in codes with traditional tracking routines. The power and architecture of current computers allow the treatment of spatial domains comprising several mutually interacting assemblies using fine multigroup structure and retaining all geometric details of interest.more » Increasing safety requirements demand detailed two- and three-dimensional calculations for very heterogeneous problems such as control rod positioning, broken Pyrex rods, irregular compacting of mixed- oxide (MOX) pellets at an MOX-UO{sub 2} interface, and many others. An effort has been made to include accurate multi- dimensional transport methods in the APOLLO 2 lattice code. These include extension to three-dimensional axially symmetric geometries of the general-geometry collision probability module TDT and the development of new two- and three-dimensional characteristics methods for regular Cartesian meshes. In this paper we discuss the main features of recently developed multidimensional methods that are currently being tested.« less

  10. Comparison of Space Radiation Calculations from Deterministic and Monte Carlo Transport Codes

    NASA Technical Reports Server (NTRS)

    Adams, J. H.; Lin, Z. W.; Nasser, A. F.; Randeniya, S.; Tripathi, r. K.; Watts, J. W.; Yepes, P.

    2010-01-01

    The presentation outline includes motivation, radiation transport codes being considered, space radiation cases being considered, results for slab geometry, results from spherical geometry, and summary. ///////// main physics in radiation transport codes hzetrn uprop fluka geant4, slab geometry, spe, gcr,

  11. Scoping analysis of the Advanced Test Reactor using SN2ND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolters, E.; Smith, M.; SC)

    2012-07-26

    A detailed set of calculations was carried out for the Advanced Test Reactor (ATR) using the SN2ND solver of the UNIC code which is part of the SHARP multi-physics code being developed under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program in DOE-NE. The primary motivation of this work is to assess whether high fidelity deterministic transport codes can tackle coupled dynamics simulations of the ATR. The successful use of such codes in a coupled dynamics simulation can impact what experiments are performed and what power levels are permitted during those experiments at the ATR. The advantages of themore » SN2ND solver over comparable neutronics tools are its superior parallel performance and demonstrated accuracy on large scale homogeneous and heterogeneous reactor geometries. However, it should be noted that virtually no effort from this project was spent constructing a proper cross section generation methodology for the ATR usable in the SN2ND solver. While attempts were made to use cross section data derived from SCALE, the minimal number of compositional cross section sets were generated to be consistent with the reference Monte Carlo input specification. The accuracy of any deterministic transport solver is impacted by such an approach and clearly it causes substantial errors in this work. The reasoning behind this decision is justified given the overall funding dedicated to the task (two months) and the real focus of the work: can modern deterministic tools actually treat complex facilities like the ATR with heterogeneous geometry modeling. SN2ND has been demonstrated to solve problems with upwards of one trillion degrees of freedom which translates to tens of millions of finite elements, hundreds of angles, and hundreds of energy groups, resulting in a very high-fidelity model of the system unachievable by most deterministic transport codes today. A space-angle convergence study was conducted to determine the meshing and angular cubature requirements for the ATR, and also to demonstrate the feasibility of performing this analysis with a deterministic transport code capable of modeling heterogeneous geometries. The work performed indicates that a minimum of 260,000 linear finite elements combined with a L3T11 cubature (96 angles on the sphere) is required for both eigenvalue and flux convergence of the ATR. A critical finding was that the fuel meat and water channels must each be meshed with at least 3 'radial zones' for accurate flux convergence. A small number of 3D calculations were also performed to show axial mesh and eigenvalue convergence for a full core problem. Finally, a brief analysis was performed with different cross sections sets generated from DRAGON and SCALE, and the findings show that more effort will be required to improve the multigroup cross section generation process. The total number of degrees of freedom for a converged 27 group, 2D ATR problem is {approx}340 million. This number increases to {approx}25 billion for a 3D ATR problem. This scoping study shows that both 2D and 3D calculations are well within the capabilities of the current SN2ND solver, given the availability of a large-scale computing center such as BlueGene/P. However, dynamics calculations are not realistic without the implementation of improvements in the solver.« less

  12. Study of SOL in DIII-D tokamak with SOLPS suite of codes.

    NASA Astrophysics Data System (ADS)

    Pankin, Alexei; Bateman, Glenn; Brennan, Dylan; Coster, David; Hogan, John; Kritz, Arnold; Kukushkin, Andrey; Schnack, Dalton; Snyder, Phil

    2005-10-01

    The scrape-of-layer (SOL) region in DIII-D tokamak is studied with the SOLPS integrated suite of codes. The SOLPS package includes the 3D multi-species Monte-Carlo neutral code EIRINE and 2D multi-fluid code B2. The EIRINE and B2 codes are cross-coupled through B2-EIRINE interface. The results of SOLPS simulations are used in the integrated modeling of the plasma edge in DIII-D tokamak with the ASTRA transport code. Parameterized dependences for neutral particle fluxes that are computed with the SOLPS code are implemented in a model for the H-mode pedestal and ELMs [1] in the ASTRA code. The effects of neutrals on the H-mode pedestal and ELMs are studied in this report. [1] A. Y. Pankin, I. Voitsekhovitch, G. Bateman, et al., Plasma Phys. Control. Fusion 47, 483 (2005).

  13. Comparison of EGS4 and MCNP Monte Carlo codes when calculating radiotherapy depth doses.

    PubMed

    Love, P A; Lewis, D G; Al-Affan, I A; Smith, C W

    1998-05-01

    The Monte Carlo codes EGS4 and MCNP have been compared when calculating radiotherapy depth doses in water. The aims of the work were to study (i) the differences between calculated depth doses in water for a range of monoenergetic photon energies and (ii) the relative efficiency of the two codes for different electron transport energy cut-offs. The depth doses from the two codes agree with each other within the statistical uncertainties of the calculations (1-2%). The relative depth doses also agree with data tabulated in the British Journal of Radiology Supplement 25. A discrepancy in the dose build-up region may by attributed to the different electron transport algorithims used by EGS4 and MCNP. This discrepancy is considerably reduced when the improved electron transport routines are used in the latest (4B) version of MCNP. Timing calculations show that EGS4 is at least 50% faster than MCNP for the geometries used in the simulations.

  14. DoD Electronic Data Interchange (EDI) Convention: ASC X12 Transaction Set 832 Price Sales Catalog (Version 003030)

    DTIC Science & Technology

    1992-12-01

    DATA DES . ELEMENT NAME ATlNPUTES Conditional TD401 152 Special Handling Code C ID 2/3 Code specifying special transportation handling instructions. HAN...Executhre Age"t for Eketronic Conmnerce/Electmnlc Dots lnterchange/Protection of Logistica Undaasslfled/Serssltlve Systerr Executive Agent for EC/EDI...PRICEISALES CATALOG ANSI ASC X12 VERSIONIRELEASE 003030DOD_ 7 Communications Transport Protocol ISA /_Interchange Control Header GS/ Functional Group Header

  15. Activation of Two Different Resistance Mechanisms in Saccharomyces cerevisiae upon Exposure to Octanoic and Decanoic Acids▿ †

    PubMed Central

    Legras, J. L.; Erny, C.; Le Jeune, C.; Lollier, M.; Adolphe, Y.; Demuyter, C.; Delobel, P.; Blondin, B.; Karst, F.

    2010-01-01

    Medium-chain fatty acids (octanoic and decanoic acids) are well known as fermentation inhibitors. During must fermentation, the toxicity of these fatty acids is enhanced by ethanol and low pH, which favors their entrance in the cell, resulting in a decrease of internal pH. We present here the characterization of the mechanisms involved in the establishment of the resistance to these fatty acids. The analysis of the transcriptome response to the exposure to octanoic and decanoic acids revealed that two partially overlapping mechanisms are activated; both responses share many genes with an oxidative stress response, but some key genes were activated differentially. The transcriptome response to octanoic acid stress can be described mainly as a weak acid response, and it involves Pdr12p as the main transporter. The phenotypic analysis of knocked-out strains confirmed the role of the Pdr12p transporter under the control of WAR1 but also revealed the involvement of the Tpo1p major facilitator superfamily proteins (MFS) transporter in octanoic acid expulsion. In contrast, the resistance to decanoic acid is composite. It also involves the transporter Tpo1p and includes the activation of several genes of the beta-oxidation pathway and ethyl ester synthesis. Indeed, the induction of FAA1 and EEB1, coding for a long-chain fatty acyl coenzyme A synthetase and an alcohol acyltransferase, respectively, suggests a detoxification pathway through the production of decanoate ethyl ester. These results are confirmed by the sensitivity of strains bearing deletions for the transcription factors encoded by PDR1, STB5, OAF1, and PIP2 genes. PMID:20851956

  16. Faster Heavy Ion Transport for HZETRN

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.

    2013-01-01

    The deterministic particle transport code HZETRN was developed to enable fast and accurate space radiation transport through materials. As more complex transport solutions are implemented for neutrons, light ions (Z < 2), mesons, and leptons, it is important to maintain overall computational efficiency. In this work, the heavy ion (Z > 2) transport algorithm in HZETRN is reviewed, and a simple modification is shown to provide an approximate 5x decrease in execution time for galactic cosmic ray transport. Convergence tests and other comparisons are carried out to verify that numerical accuracy is maintained in the new algorithm.

  17. MCNP Version 6.2 Release Notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, Christopher John; Bull, Jeffrey S.; Solomon, C. J.

    Monte Carlo N-Particle or MCNP ® is a general-purpose Monte Carlo radiation-transport code designed to track many particle types over broad ranges of energies. This MCNP Version 6.2 follows the MCNP6.1.1 beta version and has been released in order to provide the radiation transport community with the latest feature developments and bug fixes for MCNP. Since the last release of MCNP major work has been conducted to improve the code base, add features, and provide tools to facilitate ease of use of MCNP version 6.2 as well as the analysis of results. These release notes serve as a general guidemore » for the new/improved physics, source, data, tallies, unstructured mesh, code enhancements and tools. For more detailed information on each of the topics, please refer to the appropriate references or the user manual which can be found at http://mcnp.lanl.gov. This release of MCNP version 6.2 contains 39 new features in addition to 172 bug fixes and code enhancements. There are still some 33 known issues the user should familiarize themselves with (see Appendix).« less

  18. 78 FR 21366 - Ocean Transportation Intermediary License Revocations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ..., CA 91748. Date Revoked: March 26, 2013. Reason: Voluntary Surrender of License. License No.: 022076NF..., 2013. Reason: Voluntary Surrender of License. Vern W. Hill, Director, Bureau of Certification and Licensing. [FR Doc. 2013-08387 Filed 4-9-13; 8:45 am] BILLING CODE 6730-01-P ...

  19. 78 FR 30922 - Ocean Transportation Intermediary License Revocations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ...: April 26, 2013. Reason: Voluntary Surrender of License. License No.: 021582F. Name: PNGL (USA) Inc. Address: 2730 Monterey Street, Suite 103, Torrance, CA 90503. Date Revoked: April 25, 2013. Reason.... [FR Doc. 2013-12234 Filed 5-22-13; 8:45 am] BILLING CODE 6730-01-P ...

  20. Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code

    NASA Astrophysics Data System (ADS)

    Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.

  1. Review of heavy charged particle transport in MCNP6.2

    NASA Astrophysics Data System (ADS)

    Zieb, K.; Hughes, H. G.; James, M. R.; Xu, X. G.

    2018-04-01

    The release of version 6.2 of the MCNP6 radiation transport code is imminent. To complement the newest release, a summary of the heavy charged particle physics models used in the 1 MeV to 1 GeV energy regime is presented. Several changes have been introduced into the charged particle physics models since the merger of the MCNP5 and MCNPX codes into MCNP6. This paper discusses the default models used in MCNP6 for continuous energy loss, energy straggling, and angular scattering of heavy charged particles. Explanations of the physics models' theories are included as well.

  2. Review of Heavy Charged Particle Transport in MCNP6.2

    DOE PAGES

    Zieb, Kristofer James Ekhart; Hughes, Henry Grady III; Xu, X. George; ...

    2018-01-05

    The release of version 6.2 of the MCNP6 radiation transport code is imminent. To complement the newest release, a summary of the heavy charged particle physics models used in the 1 MeV to 1 GeV energy regime is presented. Several changes have been introduced into the charged particle physics models since the merger of the MCNP5 and MCNPX codes into MCNP6. Here, this article discusses the default models used in MCNP6 for continuous energy loss, energy straggling, and angular scattering of heavy charged particles. Explanations of the physics models’ theories are included as well.

  3. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu

    2015-07-01

    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  4. Development of Tokamak Transport Solvers for Stiff Confinement Systems

    NASA Astrophysics Data System (ADS)

    St. John, H. E.; Lao, L. L.; Murakami, M.; Park, J. M.

    2006-10-01

    Leading transport models such as GLF23 [1] and MM95 [2] describe turbulent plasma energy, momentum and particle flows. In order to accommodate existing transport codes and associated solution methods effective diffusivities have to be derived from these turbulent flow models. This can cause significant problems in predicting unique solutions. We have developed a parallel transport code solver, GCNMP, that can accommodate both flow based and diffusivity based confinement models by solving the discretized nonlinear equations using modern Newton, trust region, steepest descent and homotopy methods. We present our latest development efforts, including multiple dynamic grids, application of two-level parallel schemes, and operator splitting techniques that allow us to combine flow based and diffusivity based models in tokamk simulations. 6pt [1] R.E. Waltz, et al., Phys. Plasmas 4, 7 (1997). [2] G. Bateman, et al., Phys. Plasmas 5, 1793 (1998).

  5. Cross-separatrix Coupling in Nonlinear Global Electrostatic Turbulent Transport in C-2U

    NASA Astrophysics Data System (ADS)

    Lau, Calvin; Fulton, Daniel; Bao, Jian; Lin, Zhihong; Binderbauer, Michl; Tajima, Toshiki; Schmitz, Lothar; TAE Team

    2017-10-01

    In recent years, the progress of the C-2/C-2U advanced beam-driven field-reversed configuration (FRC) experiments at Tri Alpha Energy, Inc. has pushed FRCs to transport limited regimes. Understanding particle and energy transport is a vital step towards an FRC reactor, and two particle-in-cell microturbulence codes, the Gyrokinetic Toroidal Code (GTC) and A New Code (ANC), are being developed and applied toward this goal. Previous local electrostatic GTC simulations find the core to be robustly stable with drift-wave instability only in the scrape-off layer (SOL) region. However, experimental measurements showed fluctuations in both regions; one possibility is that fluctuations in the core originate from the SOL, suggesting the need for non-local simulations with cross-separatrix coupling. Current global ANC simulations with gyrokinetic ions and adiabatic electrons find that non-local effects (1) modify linear growth-rates and frequencies of instabilities and (2) allow instability to move from the unstable SOL to the linearly stable core. Nonlinear spreading is also seen prior to mode saturation. We also report on the progress of the first turbulence simulations in the SOL. This work is supported by the Norman Rostoker Fellowship.

  6. "The Incorporation of National Emission Inventories into Version 2 of the Hemispheric Transport of Air Pollutants Inventory"

    EPA Science Inventory

    EPA’s National Emission Inventory has been incorporated into the Emission Database for Global Atmospheric Research-Hemispheric Transport of Air Pollutants (EDGAR-HTAP) version 2. This work involves the creation of a detailed mapping of EPA Source Classification Codes (SCC) to the...

  7. ICF target 2D modeling using Monte Carlo SNB electron thermal transport in DRACO

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2016-10-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup diffusion electron thermal transport method is adapted into a Monte Carlo (MC) transport method to better model angular and long mean free path non-local effects. The MC model was first implemented in the 1D LILAC code to verify consistency with the iSNB model. Implementation of the MC SNB model in the 2D DRACO code enables higher fidelity non-local thermal transport modeling in 2D implosions such as polar drive experiments on NIF. The final step is to optimize the MC model by hybridizing it with a MC version of the iSNB diffusion method. The hybrid method will combine the efficiency of a diffusion method in intermediate mean free path regions with the accuracy of a transport method in long mean free path regions allowing for improved computational efficiency while maintaining accuracy. Work to date on the method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  8. Shielding calculation and criticality safety analysis of spent fuel transportation cask in research reactors.

    PubMed

    Mohammadi, A; Hassanzadeh, M; Gharib, M

    2016-02-01

    In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Association of two synonymous splicing-associated CpG single nucleotide polymorphisms in calpain 10 and solute carrier family 2 member 2 with type 2 diabetes

    PubMed Central

    Karambataki, Maria; Malousi, Andigoni; Tzimagiorgis, Georgios; Haitoglou, Constantinos; Fragou, Aikaterini; Georgiou, Elisavet; Papadopoulou, Foteini; Krassas, Gerasimos E.; Kouidou, Sofia

    2017-01-01

    Coding synonymous single nucleotide polymorphisms (SNPs) have attracted little attention until recently. However, such SNPs located in epigenetic, CpG sites modifying exonic splicing enhancers (ESEs) can be informative with regards to the recently verified association of intragenic methylation and splicing. The present study describes the association of type 2 diabetes (T2D) with the exonic, synonymous, epigenetic SNPs, rs3749166 in calpain 10 (CAPN10) glucose transporter (GLUT4) translocator and rs5404 in solute carrier family 2, member 2 (SLC2A2), also termed GLUT2, which, according to prior bioinformatic analysis, strongly modify the splicing potential of glucose transport-associated genes. Previous association studies reveal that only rs5404 exhibits a strong negative T2D association, while data on the CAPN10 polymorphism are contradictory. In the present study DNA from blood samples of 99 Greek non-diabetic control subjects and 71 T2D patients was analyzed. In addition, relevant publicly available cases (40) resulting from examination of 110 Personal Genome Project data files were analyzed. The frequency of the rs3749166 A allele, was similar in the patients and non-diabetic control subjects. However, AG heterozygotes were more frequent among patients (73.24% for Greek patients and 54.55% for corresponding non-diabetic control subjects; P=0.0262; total cases, 52.99 and 75.00%, respectively; P=0.0039). The rs5404 T allele was only observed in CT heterozygotes (Greek non-diabetic control subjects, 39.39% and Greek patients, 22.54%; P=0.0205; total cases, 34.69 and 21.28%, respectively; P=0.0258). Notably, only one genotype, heterozygous AG/CC, was T2D-associated (Greek non-diabetic control subjects, 29.29% and Greek patients, 56.33%; P=0.004; total cases, 32.84 and 56.58%, respectively; P=0.0008). Furthermore, AG/CC was strongly associated with very high (≥8.5%) glycosylated plasma hemoglobin levels among patients (P=0.0002 for all cases). These results reveal the complex heterozygotic SNP association with T2D, and indicate possible synergies of these epigenetic, splicing-regulatory, synonymous SNPs, which modify the splicing potential of two alternative glucose transport-associated genes. PMID:28357066

  10. Performance Study of Monte Carlo Codes on Xeon Phi Coprocessors — Testing MCNP 6.1 and Profiling ARCHER Geometry Module on the FS7ONNi Problem

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Wolfe, Noah; Lin, Hui; Zieb, Kris; Ji, Wei; Caracappa, Peter; Carothers, Christopher; Xu, X. George

    2017-09-01

    This paper contains two parts revolving around Monte Carlo transport simulation on Intel Many Integrated Core coprocessors (MIC, also known as Xeon Phi). (1) MCNP 6.1 was recompiled into multithreading (OpenMP) and multiprocessing (MPI) forms respectively without modification to the source code. The new codes were tested on a 60-core 5110P MIC. The test case was FS7ONNi, a radiation shielding problem used in MCNP's verification and validation suite. It was observed that both codes became slower on the MIC than on a 6-core X5650 CPU, by a factor of 4 for the MPI code and, abnormally, 20 for the OpenMP code, and both exhibited limited capability of strong scaling. (2) We have recently added a Constructive Solid Geometry (CSG) module to our ARCHER code to provide better support for geometry modelling in radiation shielding simulation. The functions of this module are frequently called in the particle random walk process. To identify the performance bottleneck we developed a CSG proxy application and profiled the code using the geometry data from FS7ONNi. The profiling data showed that the code was primarily memory latency bound on the MIC. This study suggests that despite low initial porting e_ort, Monte Carlo codes do not naturally lend themselves to the MIC platform — just like to the GPUs, and that the memory latency problem needs to be addressed in order to achieve decent performance gain.

  11. Cloning of hydrogenase genes and fine structure analysis of an operon essential for H/sub 2/ metabolism in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankar, P.; Lee, J.H.; Shanmugam, K.T.

    1985-04-01

    Escherichia coli has two unlinked genes that code for hydrogenase synthesis and activity. The DNA fragments containing the two genes (hydA and hydB) were cloned into a plasmid vector, pBR322. The plasmids containing the hyd genes (pSE-290 and pSE-111 carrying the hydA and hydB genes, respectively) were used to genetically map a total of 51 mutant strains with defects in hydrogenase activity. A total of 37 mutants carried a mutation in the hydB gene, whereas the remaining 14 hyd were hydA. This complementation analysis also established the presence of two new genes, so far unidentified, one coding for formate dehydrogenase-2more » (fdv) and another producing an electron transport protein (fhl) coupling formate dehydrogenase-2 to hydrogenase. Three of the four genes, hydB, fhl, and fdv, may constitute a single operon, and all three genes are carried by a 5.6-kilobase-pair chromosomal DNA insert in plasmid pSE-128. Plasmids carrying a part of this 5.6-kilobase-pair DNA (pSE-130) or fragments derived from this DNA in different orientations (pSE-126 and pSE-129) inhibited the production of active formate hydrogenlyase. This inhibition occurred even in a prototrophic E. coli, strain K-10, but only during an early induction period. These results, based on complementation analysis with cloned DNA fragments, show that both hydA and hydB genes are essential for the production of active hydrogenase. For the expression of active formate hydrogenlyase, two other gene products, fhl and fdv are also needed. All four genes map between 58 and 59 min in the E. coli chromosome.« less

  12. Comparison of Calculations and Measurements of the Off-Axis Radiation Dose (SI) in Liquid Nitrogen as a Function of Radiation Length.

    DTIC Science & Technology

    1984-12-01

    radiation lengths. The off-axis dose in Silicon was calculated using the electron/photon transport code CYLTRAN and measured using thermal luminescent...various path lengths out to 2 radiation lengths. The cff-axis dose in Silicon was calculated using the electron/photon transport code CYLTRAN and measured... using thermal luminescent dosimeters (TLD’s). Calculations were performed on a CDC-7600 computer at Los Alamos National Laboratory and measurements

  13. Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus

    PubMed Central

    Mahajan, Anubha; Sim, Xueling; Ng, Hui Jin; Manning, Alisa; Rivas, Manuel A.; Highland, Heather M.; Locke, Adam E.; Grarup, Niels; Im, Hae Kyung; Cingolani, Pablo; Flannick, Jason; Fontanillas, Pierre; Fuchsberger, Christian; Gaulton, Kyle J.; Teslovich, Tanya M.; Rayner, N. William; Robertson, Neil R.; Beer, Nicola L.; Rundle, Jana K.; Bork-Jensen, Jette; Ladenvall, Claes; Blancher, Christine; Buck, David; Buck, Gemma; Burtt, Noël P.; Gabriel, Stacey; Gjesing, Anette P.; Groves, Christopher J.; Hollensted, Mette; Huyghe, Jeroen R.; Jackson, Anne U.; Jun, Goo; Justesen, Johanne Marie; Mangino, Massimo; Murphy, Jacquelyn; Neville, Matt; Onofrio, Robert; Small, Kerrin S.; Stringham, Heather M.; Syvänen, Ann-Christine; Trakalo, Joseph; Abecasis, Goncalo; Bell, Graeme I.; Blangero, John; Cox, Nancy J.; Duggirala, Ravindranath; Hanis, Craig L.; Seielstad, Mark; Wilson, James G.; Christensen, Cramer; Brandslund, Ivan; Rauramaa, Rainer; Surdulescu, Gabriela L.; Doney, Alex S. F.; Lannfelt, Lars; Linneberg, Allan; Isomaa, Bo; Tuomi, Tiinamaija; Jørgensen, Marit E.; Jørgensen, Torben; Kuusisto, Johanna; Uusitupa, Matti; Salomaa, Veikko; Spector, Timothy D.; Morris, Andrew D.; Palmer, Colin N. A.; Collins, Francis S.; Mohlke, Karen L.; Bergman, Richard N.; Ingelsson, Erik; Lind, Lars; Tuomilehto, Jaakko; Hansen, Torben; Watanabe, Richard M.; Prokopenko, Inga; Dupuis, Josee; Karpe, Fredrik; Groop, Leif; Laakso, Markku; Pedersen, Oluf; Florez, Jose C.; Morris, Andrew P.; Altshuler, David; Meigs, James B.; Boehnke, Michael; McCarthy, Mark I.; Lindgren, Cecilia M.; Gloyn, Anna L.

    2015-01-01

    Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights. PMID:25625282

  14. Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus.

    PubMed

    Mahajan, Anubha; Sim, Xueling; Ng, Hui Jin; Manning, Alisa; Rivas, Manuel A; Highland, Heather M; Locke, Adam E; Grarup, Niels; Im, Hae Kyung; Cingolani, Pablo; Flannick, Jason; Fontanillas, Pierre; Fuchsberger, Christian; Gaulton, Kyle J; Teslovich, Tanya M; Rayner, N William; Robertson, Neil R; Beer, Nicola L; Rundle, Jana K; Bork-Jensen, Jette; Ladenvall, Claes; Blancher, Christine; Buck, David; Buck, Gemma; Burtt, Noël P; Gabriel, Stacey; Gjesing, Anette P; Groves, Christopher J; Hollensted, Mette; Huyghe, Jeroen R; Jackson, Anne U; Jun, Goo; Justesen, Johanne Marie; Mangino, Massimo; Murphy, Jacquelyn; Neville, Matt; Onofrio, Robert; Small, Kerrin S; Stringham, Heather M; Syvänen, Ann-Christine; Trakalo, Joseph; Abecasis, Goncalo; Bell, Graeme I; Blangero, John; Cox, Nancy J; Duggirala, Ravindranath; Hanis, Craig L; Seielstad, Mark; Wilson, James G; Christensen, Cramer; Brandslund, Ivan; Rauramaa, Rainer; Surdulescu, Gabriela L; Doney, Alex S F; Lannfelt, Lars; Linneberg, Allan; Isomaa, Bo; Tuomi, Tiinamaija; Jørgensen, Marit E; Jørgensen, Torben; Kuusisto, Johanna; Uusitupa, Matti; Salomaa, Veikko; Spector, Timothy D; Morris, Andrew D; Palmer, Colin N A; Collins, Francis S; Mohlke, Karen L; Bergman, Richard N; Ingelsson, Erik; Lind, Lars; Tuomilehto, Jaakko; Hansen, Torben; Watanabe, Richard M; Prokopenko, Inga; Dupuis, Josee; Karpe, Fredrik; Groop, Leif; Laakso, Markku; Pedersen, Oluf; Florez, Jose C; Morris, Andrew P; Altshuler, David; Meigs, James B; Boehnke, Michael; McCarthy, Mark I; Lindgren, Cecilia M; Gloyn, Anna L

    2015-01-01

    Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.

  15. Beam-dynamics codes used at DARHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Jr., Carl August

    Several beam simulation codes are used to help gain a better understanding of beam dynamics in the DARHT LIAs. The most notable of these fall into the following categories: for beam production – Tricomp Trak orbit tracking code, LSP Particle in cell (PIC) code, for beam transport and acceleration – XTR static envelope and centroid code, LAMDA time-resolved envelope and centroid code, LSP-Slice PIC code, for coasting-beam transport to target – LAMDA time-resolved envelope code, LSP-Slice PIC code. These codes are also being used to inform the design of Scorpius.

  16. Clinical presentation and outcome of riboflavin transporter deficiency: mini review after five years of experience.

    PubMed

    Jaeger, Bregje; Bosch, Annet M

    2016-07-01

    Riboflavin (vitamin B2) is absorbed in the small intestine by the human riboflavin transporters RFVT1 and RFVT3. A third riboflavin transporter (RFVT2) is expressed in the brain. In 2010 it was demonstrated that mutations in the riboflavin transporter genes SLC52A2 (coding for RFVT2) and SLC52A3 (coding for RFVT3) cause a neurodegenerative disorder formerly known as Brown-Vialetto-Van Laere (BVVL) syndrome, now renamed to riboflavin transporter deficiency. Five years after the diagnosis of the first patient we performed a review of the literature to study the presentation, treatment and outcome of patients with a molecularly confirmed diagnosis of a riboflavin transporter deficiency. A search was performed in Medline, Pubmed using the search terms 'Brown-Vialetto-Van Laere syndrome' and 'riboflavin transporter' and articles were screened for case reports of patients with a molecular diagnosis of a riboflavin transporter deficiency. Reports on a total of 70 patients with a molecular diagnosis of a RFVT2 or RTVT3 deficiency were retrieved. The riboflavin transporter deficiencies present with weakness, cranial nerve deficits including hearing loss, sensory symptoms including sensory ataxia, feeding difficulties and respiratory difficulties which are caused by a sensorimotor axonal neuropathy and cranial neuropathy. Biochemical abnormalities may be absent and the diagnosis can only be made or rejected by molecular analysis of all genes. Treatment with oral supplementation of riboflavin is lifesaving. Therefore, if a riboflavin transporter deficiency is suspected, treatment must be started immediately without first awaiting the results of molecular diagnostics.

  17. A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions

    NASA Astrophysics Data System (ADS)

    Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia

    2010-09-01

    A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources.

  18. Genetic polymorphisms in the amino acid transporters LAT1 and LAT2 in relation to the pharmacokinetics and side effects of melphalan.

    PubMed

    Kühne, Annett; Kaiser, Rolf; Schirmer, Markus; Heider, Ulrike; Muhlke, Sabine; Niere, Wiebke; Overbeck, Tobias; Hohloch, Karin; Trümper, Lorenz; Sezer, Orhan; Brockmöller, Jürgen

    2007-07-01

    Melphalan is widely used in the treatment of multiple myeloma. Pharmacokinetics of this alkylating drug shows high inter-individual variability. As melphalan is a phenylalanine derivative, the pharmacokinetic variability may be determined by genetic polymorphisms in the L-type amino acid transporters LAT1 (SLC7A5) and LAT2 (SLC7A8). Pharmacokinetics were analysed in 64 patients after first administration of intravenous melphalan. Severity of side effects was documented according to WHO criteria. Genomic DNA was analysed for polymorphisms in LAT1 and LAT2 by sequencing of the entire coding region, intron-exon boundaries and 2 kb upstream promoter region. Selected polymorphisms in the common heavy chain of both transporters, the protein 4F2hc (SLC3A2), were analysed by single nucleotide primer extension. Melphalan pharmacokinetics was highly variable with up to 6.2-fold differences in total clearance. A total of 44 polymorphisms were identified in LAT1 and 21 polymorphisms in LAT2. From all variants, only five were in the coding region and only one heterozygous non-synonymous polymorphism (Ala94Thr) was found in LAT2. Numerous polymorphisms were found in the LAT1 and LAT2 5'-flanking regions but did not correlate with expression of the respective genes. No significant correlations could be observed between the polymorphisms in 4F2hc, LAT1, and LAT2 with melphalan pharmacokinetics or with melphalan side effects. The study confirmed that these transporter genes are highly conserved, particularly in the coding sequences. Genetic variation in 4F2hc, LAT1, and LAT2 does not appear to be a major cause of inter-individual variability in pharmacokinetics and of adverse reactions to melphalan.

  19. Electronic Structure and Transport in Magnetic Multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2008-02-18

    ORNL assisted Seagate Recording Heads Operations in the development of CIPS pin Valves for application as read sensors in hard disk drives. Personnel at ORNL were W. H. Butler and Xiaoguang Zhang. Dr. Olle Heinonen from Seagate RHO also participated. ORNL provided codes and materials parameters that were used by Seagate to model CIP GMR in their heads. The objectives were to: (1) develop a linearized Boltzmann transport code for describing CIP GMR based on realistic models of the band structure and interfaces in materials in CIP spin valves in disk drive heads; (2) calculate the materials parameters needed asmore » inputs to the Boltzmann code; and (3) transfer the technology to Seagate Recording Heads.« less

  20. Modification and benchmarking of MCNP for low-energy tungsten spectra.

    PubMed

    Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M

    2000-12-01

    The MCNP Monte Carlo radiation transport code was modified for diagnostic medical physics applications. In particular, the modified code was thoroughly benchmarked for the production of polychromatic tungsten x-ray spectra in the 30-150 kV range. Validating the modified code for coupled electron-photon transport with benchmark spectra was supplemented with independent electron-only and photon-only transport benchmarks. Major revisions to the code included the proper treatment of characteristic K x-ray production and scoring, new impact ionization cross sections, and new bremsstrahlung cross sections. Minor revisions included updated photon cross sections, electron-electron bremsstrahlung production, and K x-ray yield. The modified MCNP code is benchmarked to electron backscatter factors, x-ray spectra production, and primary and scatter photon transport.

  1. Scrape off layer modelling studies for SST-I

    NASA Astrophysics Data System (ADS)

    Warrier, M.; Jaishankar, S.; Deshpande, S.; Coster, D.; Schneider, R.; Chaturvedi, S.; Srinivasan, R.; Braams, B. J.; SST Team

    SOL modelling results for SST-1 (SST Team, Proceedings of the 16th IEEE/NPSS Symposium on Fusion Engineering, Champaign, IL, vol. II, 1995, p. 481) show a sheath limited flow regime. This is due to the low edge densities required by lower hybrid current drive (LHCD), coupled with high power input per unit volume. Coupled plasma-neutral transport studies using B2-Eirene [R. Schneider et al., J. Nucl. Mater. 196-198 (1992) 810] show significantly high charge exchange losses and radiated power from the core. It also shows that the heat flux to the inner divertor is higher than that to the outer divertor due to thinner inner SOL widths. The Monte-Carlo neutral transport code DEGAS [D. Heifitz et al., J. Comput. Phys. 46 (1982) 309] was used to optimise the baffle plate geometry and it was seen that a configuration where the baffle plate shields the main plasma from the divertor strike point results in reduced backflow of neutrals. The divertor erosion code DIVER (M. Warrier et al., SST Divertor Modelling Report, 1996-1997) was used to predict a steady state operating temperature for the SST divertor plate lying in the range 750-1000°C for which the erosion will be minimum.

  2. High-resolution simulations of multi-phase flow in magmatic-hydrothermal systems with realistic fluid properties

    NASA Astrophysics Data System (ADS)

    Geiger, S.; Driesner, T.; Matthai, S.; Heinrich, C.

    2002-12-01

    Realistic modelling of multi-phase fluid flow, energy and component transport in magmatic-hydrothermal systems is very challenging because hydrological properties of fluids and rocks vary over many orders of magnitude and the geometric complexities of such systems. Furthermore, density dependent component transport and transient permeability variations due to P-T changes and fluid-rock interactions introduce additional difficulties. As a result, the governing equations for the hydrodynamics, energy and component transport, and thermodynamics in magmatic hydrothermal systems are highly non-linear and strongly coupled. Essential requirements of a numerical formulation for such a system are: (1) a treatment of the hydrodynamics that can accurately resolve complex geological structures and represent the highly variable fluid velocities herein, (2) a realistic thermodynamic representation of the fluid properties including the wide P-T-X range of liquid+vapour coexistence for the highly saline fluids, and (3) an accurate handling of the highly contrasting transport properties of the two fluids. We are combining higher order finite-element (FE) methods with total variation diminishing finite volume (TVDFV) methods to model the hydrodynamics and energy and component transport of magmatic hydrothermal systems. Combined FE and TVDFV methods are mass and shock preserving, yield great geometric flexibility in 2D and 3D [2]. Furthermore, efficient matrix solvers can be employed to model fluid flow in geologically realistic structures [5]. The governing equations are linearized by operator-splitting and solved sequentially using a Picard iteration scheme. We chose the system water-NaCl as a realistic proxy for natural fluids occurring in magmatic-hydrothermal systems. An in-depth evaluation of the available experimental and theoretical data led to a consistent and accurate set of formulations for the PVTXH relations that are valid from 0 to 800 C, 0 to 500 MPa, and 0 to 1 XNaCl. Dynamic viscosities are currently approximated by the approach of Palliser and McKibbin [4]. The numerical solutions of the governing equations and the equation of state are embedded in our object-oriented C++ code CSP3D4.0 [6]. Comparisons of the numerical solutions carried out with CSP for solute transport with analytical solutions and classical test cases for density dependent flow (i.e., Elder problem [1]) show very good agreement. The numerical solutions carried out with CSP and the established United States Geological Survey code HYDROTHERM [3] for multi-phase flow and energy transport also yield a very good agreement. Fluid inclusion data can be used to constrain the PTX properties of the hydrothermal fluids in numerical solutions. [1] Journal of Fluid Mechanics 27, 609-623 [2] ANU Mathematical Research Report, MRR01-023 [3] USGS Water Investigations Report 94-4045 [4] Transport in Porous Media 33, 155-171 [5] AAPG Bulletin 80, 1763-1779 [6] CSP User's Guide, Dept. of Earth Sciences ETH Zurich

  3. Impaired riboflavin transport due to missense mutations in SLC52A2 causes Brown-Vialetto-Van Laere syndrome.

    PubMed

    Haack, Tobias B; Makowski, Christine; Yao, Yoshiaki; Graf, Elisabeth; Hempel, Maja; Wieland, Thomas; Tauer, Ulrike; Ahting, Uwe; Mayr, Johannes A; Freisinger, Peter; Yoshimatsu, Hiroki; Inui, Ken; Strom, Tim M; Meitinger, Thomas; Yonezawa, Atsushi; Prokisch, Holger

    2012-11-01

    Brown-Vialetto-Van Laere syndrome (BVVLS [MIM 211530]) is a rare neurological disorder characterized by infancy onset sensorineural deafness and ponto-bulbar palsy. Mutations in SLC52A3 (formerly C20orf54), coding for riboflavin transporter 2 (hRFT2), have been identified as the molecular genetic correlate in several individuals with BVVLS. Exome sequencing of just one single case revealed that compound heterozygosity for two pathogenic mutations in the SLC52A2 gene coding for riboflavin transporter 3 (hRFT3), another member of the riboflavin transporter family, is also associated with BVVLS. Overexpression studies confirmed that the gene products of both mutant alleles have reduced riboflavin transport activities. While mutations in SLC52A3 cause decreased plasma riboflavin levels, concordant with a role of SLC52A3 in riboflavin uptake from food, the SLC52A2-mutant individual had normal plasma riboflavin concentrations, a finding in line with a postulated function of SLC52A2 in riboflavin uptake from blood into target cells. Our results contribute to the understanding of human riboflavin metabolism and underscore its role in the pathogenesis of BVVLS, thereby providing a rational basis for a high-dose riboflavin treatment.

  4. The incorporation of the US national emission inventory into version 2 of the Hemispheric Transport of air Pollutants inventory

    EPA Science Inventory

    EPA's 2008 national emission inventory has been incorporated into version 2 of the Hemispheric Transport of Air Pollutants Inventory. This work involves the creation of a detailed mapping of EPA Source Classification Codes (SCC) to the International Nomenclature for Reporting Sy...

  5. ITER Simulations Using the PEDESTAL Module in the PTRANSP Code

    NASA Astrophysics Data System (ADS)

    Halpern, F. D.; Bateman, G.; Kritz, A. H.; Pankin, A. Y.; Budny, R. V.; Kessel, C.; McCune, D.; Onjun, T.

    2006-10-01

    PTRANSP simulations with a computed pedestal height are carried out for ITER scenarios including a standard ELMy H-mode (15 MA discharge) and a hybrid scenario (12MA discharge). It has been found that fusion power production predicted in simulations of ITER discharges depends sensitively on the height of the H-mode temperature pedestal [1]. In order to study this effect, the NTCC PEDESTAL module [2] has been implemented in PTRANSP code to provide boundary conditions used for the computation of the projected performance of ITER. The PEDESTAL module computes both the temperature and width of the pedestal at the edge of type I ELMy H-mode discharges once the threshold conditions for the H-mode are satisfied. The anomalous transport in the plasma core is predicted using the GLF23 or MMM95 transport models. To facilitate the steering of lengthy PTRANSP computations, the PTRANSP code has been modified to allow changes in the transport model when simulations are restarted. The PTRANSP simulation results are compared with corresponding results obtained using other integrated modeling codes.[1] G. Bateman, T. Onjun and A.H. Kritz, Plasma Physics and Controlled Fusion, 45, 1939 (2003).[2] T. Onjun, G. Bateman, A.H. Kritz, and G. Hammett, Phys. Plasmas 9, 5018 (2002).

  6. 76 FR 2744 - Disclosure of Code-Share Service by Air Carriers and Sellers of Air Transportation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... DEPARTMENT OF TRANSPORTATION Office of the Secretary Disclosure of Code-Share Service by Air Carriers and Sellers of Air Transportation AGENCY: Office of the Secretary, Department of Transportation..., their agents, and third party sellers of air transportation in view of recent amendments to 49 U.S.C...

  7. Pellet Injection in ITER with ∇B-induced Drift Effect using TASK/TR and HPI2 Codes

    NASA Astrophysics Data System (ADS)

    Kongkurd, R.; Wisitsorasak, A.

    2017-09-01

    The impact of pellet injection in International Thermonuclear Experimental Reactor (ITER) are investigated using integrated predictive modeling codes TASK/TR and HPI2 . In the core, the plasma profiles are predicted by the TASK/TR code in which the core transport models consist of a combination of the MMM95 anomalous transport model and NCLASS neoclassical transport. The pellet ablation in the plasma is described using neutral gas shielding (NGS) model with inclusion of the ∇B-induced \\overrightarrow{E}× \\overrightarrow{B} drift of the ionized ablated pellet particles. It is found that the high-field-side injection can deposit the pellet mass deeper than the injection from the low-field-side due to the advantage of the ∇B-induced drift. When pellets with deuterium-tritium mixing ratio of unity are launched with speed of 200 m/s, radius of 3 mm and injected at frequency of 2 Hz, the line average density and the plasma stored energy are increased by 80% and 25% respectively. The pellet material is mostly deposited at the normalized minor radius of 0.5 from the edge.

  8. Validation of the WIMSD4M cross-section generation code with benchmark results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deen, J.R.; Woodruff, W.L.; Leal, L.E.

    1995-01-01

    The WIMSD4 code has been adopted for cross-section generation in support of the Reduced Enrichment Research and Test Reactor (RERTR) program at Argonne National Laboratory (ANL). Subsequently, the code has undergone several updates, and significant improvements have been achieved. The capability of generating group-collapsed micro- or macroscopic cross sections from the ENDF/B-V library and the more recent evaluation, ENDF/B-VI, in the ISOTXS format makes the modified version of the WIMSD4 code, WIMSD4M, very attractive, not only for the RERTR program, but also for the reactor physics community. The intent of the present paper is to validate the WIMSD4M cross-section librariesmore » for reactor modeling of fresh water moderated cores. The results of calculations performed with multigroup cross-section data generated with the WIMSD4M code will be compared against experimental results. These results correspond to calculations carried out with thermal reactor benchmarks of the Oak Ridge National Laboratory (ORNL) unreflected HEU critical spheres, the TRX LEU critical experiments, and calculations of a modified Los Alamos HEU D{sub 2}O moderated benchmark critical system. The benchmark calculations were performed with the discrete-ordinates transport code, TWODANT, using WIMSD4M cross-section data. Transport calculations using the XSDRNPM module of the SCALE code system are also included. In addition to transport calculations, diffusion calculations with the DIF3D code were also carried out, since the DIF3D code is used in the RERTR program for reactor analysis and design. For completeness, Monte Carlo results of calculations performed with the VIM and MCNP codes are also presented.« less

  9. Computer Code for Transportation Network Design and Analysis

    DOT National Transportation Integrated Search

    1977-01-01

    This document describes the results of research into the application of the mathematical programming technique of decomposition to practical transportation network problems. A computer code called Catnap (for Control Analysis Transportation Network A...

  10. K₂p channels in plants and animals.

    PubMed

    González, Wendy; Valdebenito, Braulio; Caballero, Julio; Riadi, Gonzalo; Riedelsberger, Janin; Martínez, Gonzalo; Ramírez, David; Zúñiga, Leandro; Sepúlveda, Francisco V; Dreyer, Ingo; Janta, Michael; Becker, Dirk

    2015-05-01

    Two-pore domain potassium (K2P) channels are membrane proteins widely identified in mammals, plants, and other organisms. A functional channel is a dimer with each subunit comprising two pore-forming loops and four transmembrane domains. The genome of the model plant Arabidopsis thaliana harbors five genes coding for K2P channels. Homologs of Arabidopsis K2P channels have been found in all higher plants sequenced so far. As with the K2P channels in mammals, plant K2P channels are targets of external and internal stimuli, which fine-tune the electrical properties of the membrane for specialized transport and/or signaling tasks. Plant K2P channels are modulated by signaling molecules such as intracellular H(+) and calcium and physical factors like temperature and pressure. In this review, we ask the following: What are the similarities and differences between K2P channels in plants and animals in terms of their physiology? What is the nature of the last common ancestor (LCA) of these two groups of proteins? To answer these questions, we present physiological, structural, and phylogenetic evidence that discards the hypothesis proposing that the duplication and fusion that gave rise to the K2P channels occurred in a prokaryote LCA. Conversely, we argue that the K2P LCA was most likely a eukaryote organism. Consideration of plant and animal K2P channels in the same study is novel and likely to stimulate further exchange of ideas between students of these fields.

  11. Modelling of the reactive transport for rock salt-brine in geological repository systems based on improved thermodynamic database (Invited)

    NASA Astrophysics Data System (ADS)

    Müller, W.; Alkan, H.; Xie, M.; Moog, H.; Sonnenthal, E. L.

    2009-12-01

    The release and migration of toxic contaminants from the disposed wastes is one of the main issues in long-term safety assessment of geological repositories. In the engineered and geological barriers around the nuclear waste emplacements chemical interactions between the components of the system may affect the isolation properties considerably. As the chemical issues change the transport properties in the near and far field of a nuclear repository, modelling of the transport should also take the chemistry into account. The reactive transport modelling consists of two main components: a code that combines the possible chemical reactions with thermo-hydrogeological processes interactively and a thermodynamic databank supporting the required parameters for the calculation of the chemical reactions. In the last decade many thermo-hydrogeological codes were upgraded to include the modelling of the chemical processes. TOUGHREACT is one of these codes. This is an extension of the well known simulator TOUGH2 for modelling geoprocesses. The code is developed by LBNL (Lawrence Berkeley National Laboratory, Univ. of California) for the simulation of the multi-phase transport of gas and liquid in porous media including heat transfer. After the release of its first version in 1998, this code has been applied and improved many times in conjunction with considerations for nuclear waste emplacement. A recent version has been extended to calculate ion activities in concentrated salt solutions applying the Pitzer model. In TOUGHREACT, the incorporated equation of state module ECO2N is applied as the EOS module for non-isothermal multiphase flow in a fluid system of H2O-NaCl-CO2. The partitioning of H2O and CO2 between liquid and gas phases is modelled as a function of temperature, pressure, and salinity. This module is applicable for waste repositories being expected to generate or having originally CO2 in the fluid system. The enhanced TOUGHREACT uses an EQ3/6-formatted database for both Pitzer ion-interaction parameters and thermodynamic equilibrium constants. The reliability of the parameters is as important as the accuracy of the modelling tool. For this purpose the project THEREDA (www.thereda.de)was set up. The project aims at a comprehensive and internally consistent thermodynamic reference database for geochemical modelling of near and far-field processes occurring in repositories for radioactive wastes in various host rock formations. In the framework of the project all data necessary to perform thermodynamic equilibrium calculations for elevated temperature in the system of oceanic salts are under revision, and it is expected that related data will be available for download by 2010-03. In this paper the geochemical issues that can play an essential role for the transport of radioactive contaminants within and around waste repositories are discussed. Some generic calculations are given to illustrate the geochemical interactions and their probable effects on the transport properties around HLW emplacements and on CO2 generating and/or containing repository systems.

  12. ScintSim1: A new Monte Carlo simulation code for transport of optical photons in 2D arrays of scintillation detectors

    PubMed Central

    Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali

    2014-01-01

    Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. PMID:24600168

  13. ScintSim1: A new Monte Carlo simulation code for transport of optical photons in 2D arrays of scintillation detectors.

    PubMed

    Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali

    2014-01-01

    Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization.

  14. 76 FR 18072 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... DEPARTMENT OF TRANSPORTATION Office of the Secretary 49 CFR Part 40 Procedures for Transportation Workplace Drug and Alcohol Testing Programs CFR Correction In Title 49 of the Code of Federal Regulations, Parts 1 to 99, revised as of October 1, 2010, on page 571, in Sec. 40.97, add paragraphs (a)(2)(i) and...

  15. Theory-based transport simulations of TFTR L-mode temperature profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, G.

    1992-03-01

    The temperature profiles from a selection of Tokamak Fusion Test Reactor (TFTR) L-mode discharges (17{ital th} {ital European} {ital Conference} {ital on} {ital Controlled} {ital Fusion} {ital and} {ital Plasma} {ital Heating}, Amsterdam, 1990 (EPS, Petit-Lancy, Switzerland, 1990, p. 114)) are simulated with the 1 (1)/(2) -D baldur transport code (Comput. Phys. Commun. {bold 49}, 275 (1988)) using a combination of theoretically derived transport models, called the Multi-Mode Model (Comments Plasma Phys. Controlled Fusion {bold 11}, 165 (1988)). The present version of the Multi-Mode Model consists of effective thermal diffusivities resulting from trapped electron modes and ion temperature gradient ({eta}{submore » {ital i}}) modes, which dominate in the core of the plasma, together with resistive ballooning modes, which dominate in the periphery. Within the context of this transport model and the TFTR simulations reported here, the scaling of confinement with heating power comes from the temperature dependence of the {eta}{sub {ital i}} and trapped electron modes, while the scaling with current comes mostly from resistive ballooning modes.« less

  16. Review of Hybrid (Deterministic/Monte Carlo) Radiation Transport Methods, Codes, and Applications at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, John C; Peplow, Douglas E.; Mosher, Scott W

    2010-01-01

    This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(10{sup 2-4}), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less

  17. Integrating Geochemical Reactions with a Particle-Tracking Approach to Simulate Nitrogen Transport and Transformation in Aquifers

    NASA Astrophysics Data System (ADS)

    Cui, Z.; Welty, C.; Maxwell, R. M.

    2011-12-01

    Lagrangian, particle-tracking models are commonly used to simulate solute advection and dispersion in aquifers. They are computationally efficient and suffer from much less numerical dispersion than grid-based techniques, especially in heterogeneous and advectively-dominated systems. Although particle-tracking models are capable of simulating geochemical reactions, these reactions are often simplified to first-order decay and/or linear, first-order kinetics. Nitrogen transport and transformation in aquifers involves both biodegradation and higher-order geochemical reactions. In order to take advantage of the particle-tracking approach, we have enhanced an existing particle-tracking code SLIM-FAST, to simulate nitrogen transport and transformation in aquifers. The approach we are taking is a hybrid one: the reactive multispecies transport process is operator split into two steps: (1) the physical movement of the particles including the attachment/detachment to solid surfaces, which is modeled by a Lagrangian random-walk algorithm; and (2) multispecies reactions including biodegradation are modeled by coupling multiple Monod equations with other geochemical reactions. The coupled reaction system is solved by an ordinary differential equation solver. In order to solve the coupled system of equations, after step 1, the particles are converted to grid-based concentrations based on the mass and position of the particles, and after step 2 the newly calculated concentration values are mapped back to particles. The enhanced particle-tracking code is capable of simulating subsurface nitrogen transport and transformation in a three-dimensional domain with variably saturated conditions. Potential application of the enhanced code is to simulate subsurface nitrogen loading to the Chesapeake Bay and its tributaries. Implementation details, verification results of the enhanced code with one-dimensional analytical solutions and other existing numerical models will be presented in addition to a discussion of implementation challenges.

  18. 75 FR 18253 - Aviation Proceedings, Agreements Filed the Week Ending March 27, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... Week Ending March 27, 2010 The following Agreements were filed with the Department of Transportation... procedures governing proceedings to enforce these provisions. Answers may be filed within 21 days after the.... [FR Doc. 2010-8110 Filed 4-8-10; 8:45 am] BILLING CODE 4910-9X-P ...

  19. 76 FR 62408 - Ocean Transportation Intermediary License; Revocation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ..., Inc. Address: 40397 Big Oak Flat Road South, Oakhurst, CA 93644. Date Revoked: August 28, 2011. Reason: Failed to maintain a valid bond. License Number: 11272N. Name: Stalwart Shipping, Inc. Address: 40397 Big... Certification and Licensing. [FR Doc. 2011-25913 Filed 10-6-11; 8:45 am] BILLING CODE 6730-01-P ...

  20. 78 FR 48871 - Ocean Transportation Intermediary License Revocations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... 90815. Date Revoked: June 19, 2013. Reason: Voluntary Surrender of License. License No.: 022760F. Name... Revoked: July 5, 2013. Reason: Failed to maintain a valid bond. James A. Nussbaumer, Deputy Director, Bureau of Certification and Licensing. [FR Doc. 2013-19419 Filed 8-9-13; 8:45 am] BILLING CODE 6730-01-P ...

  1. User's manual for a material transport code on the Octopus Computer Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naymik, T.G.; Mendez, G.D.

    1978-09-15

    A code to simulate material transport through porous media was developed at Oak Ridge National Laboratory. This code has been modified and adapted for use at Lawrence Livermore Laboratory. This manual, in conjunction with report ORNL-4928, explains the input, output, and execution of the code on the Octopus Computer Network.

  2. Space Radiation Transport Code Development: 3DHZETRN

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    The space radiation transport code, HZETRN, has been used extensively for research, vehicle design optimization, risk analysis, and related applications. One of the simplifying features of the HZETRN transport formalism is the straight-ahead approximation, wherein all particles are assumed to travel along a common axis. This reduces the governing equation to one spatial dimension allowing enormous simplification and highly efficient computational procedures to be implemented. Despite the physical simplifications, the HZETRN code is widely used for space applications and has been found to agree well with fully 3D Monte Carlo simulations in many circumstances. Recent work has focused on the development of 3D transport corrections for neutrons and light ions (Z < 2) for which the straight-ahead approximation is known to be less accurate. Within the development of 3D corrections, well-defined convergence criteria have been considered, allowing approximation errors at each stage in model development to be quantified. The present level of development assumes the neutron cross sections have an isotropic component treated within N explicit angular directions and a forward component represented by the straight-ahead approximation. The N = 1 solution refers to the straight-ahead treatment, while N = 2 represents the bi-directional model in current use for engineering design. The figure below shows neutrons, protons, and alphas for various values of N at locations in an aluminum sphere exposed to a solar particle event (SPE) spectrum. The neutron fluence converges quickly in simple geometry with N > 14 directions. The improved code, 3DHZETRN, transports neutrons, light ions, and heavy ions under space-like boundary conditions through general geometry while maintaining a high degree of computational efficiency. A brief overview of the 3D transport formalism for neutrons and light ions is given, and extensive benchmarking results with the Monte Carlo codes Geant4, FLUKA, and PHITS are provided for a variety of boundary conditions and geometries. Improvements provided by the 3D corrections are made clear in the comparisons. Developments needed to connect 3DHZETRN to vehicle design and optimization studies will be discussed. Future theoretical development will relax the forward plus isotropic interaction assumption to more general angular dependence.

  3. Transport simulation of EAST long-pulse H-mode discharge with integrated modeling

    NASA Astrophysics Data System (ADS)

    Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.

    2018-04-01

    In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.

  4. Transport of pyruvate and lactate in yeast mitochondria.

    PubMed

    Briquet, M

    1977-02-07

    Evidence for the existence of mediated transport of pyruvate and lactate in isolated mitochondria of Saccharomyces cerevisiae is presented. 1. The mitochondrial oxidation of pyruvate is specifically inhibited by the monocarboxylic oxoacids alpha-ketoisocaproate and by alpha-cyano-3-hydroxycinnamate, while pyruvate and malate dehydrogenases activities are not inhibited. 2. The stimulation of the mitochondrial oxidations of succinate, alpha-ketoglutarate and citrate by pyruvate are also inhibited by alpha-cyano-3-hydroxycinnamate. 3. The [14C]pyruvate uptake by yeast mitochondria follows saturation kinetics and is completely inhibited by alpha-cyano-3-hydroxycinnamate. 4. Large amplitude passive swellings of mitochondria of the wild type and of cytoplasmic rho- and rho-n mutants are induced by isoosmotic ammonium pyruvate and lactate. These pH-dependent swellings are inhibited by alpha-cyano-3-hydroxycinnamate suggesting that the carrier system is not coded by mitochondrial DNA.

  5. Comparison of heavy-ion transport simulations: Collision integral in a box

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Xun; Wang, Yong-Jia; Colonna, Maria; Danielewicz, Pawel; Ono, Akira; Tsang, Manyee Betty; Wolter, Hermann; Xu, Jun; Chen, Lie-Wen; Cozma, Dan; Feng, Zhao-Qing; Das Gupta, Subal; Ikeno, Natsumi; Ko, Che-Ming; Li, Bao-An; Li, Qing-Feng; Li, Zhu-Xia; Mallik, Swagata; Nara, Yasushi; Ogawa, Tatsuhiko; Ohnishi, Akira; Oliinychenko, Dmytro; Papa, Massimo; Petersen, Hannah; Su, Jun; Song, Taesoo; Weil, Janus; Wang, Ning; Zhang, Feng-Shou; Zhang, Zhen

    2018-03-01

    Simulations by transport codes are indispensable to extract valuable physical information from heavy-ion collisions. In order to understand the origins of discrepancies among different widely used transport codes, we compare 15 such codes under controlled conditions of a system confined to a box with periodic boundary, initialized with Fermi-Dirac distributions at saturation density and temperatures of either 0 or 5 MeV. In such calculations, one is able to check separately the different ingredients of a transport code. In this second publication of the code evaluation project, we only consider the two-body collision term; i.e., we perform cascade calculations. When the Pauli blocking is artificially suppressed, the collision rates are found to be consistent for most codes (to within 1 % or better) with analytical results, or completely controlled results of a basic cascade code. In orderto reach that goal, it was necessary to eliminate correlations within the same pair of colliding particles that can be present depending on the adopted collision prescription. In calculations with active Pauli blocking, the blocking probability was found to deviate from the expected reference values. The reason is found in substantial phase-space fluctuations and smearing tied to numerical algorithms and model assumptions in the representation of phase space. This results in the reduction of the blocking probability in most transport codes, so that the simulated system gradually evolves away from the Fermi-Dirac toward a Boltzmann distribution. Since the numerical fluctuations are weaker in the Boltzmann-Uehling-Uhlenbeck codes, the Fermi-Dirac statistics is maintained there for a longer time than in the quantum molecular dynamics codes. As a result of this investigation, we are able to make judgements about the most effective strategies in transport simulations for determining the collision probabilities and the Pauli blocking. Investigation in a similar vein of other ingredients in transport calculations, like the mean-field propagation or the production of nucleon resonances and mesons, will be discussed in the future publications.

  6. Carbon Radiation Studies in the DIII-D Divertor with the Monte Carlo Impurity (MCI) Code

    NASA Astrophysics Data System (ADS)

    Evans, T. E.; Leonard, A. W.; West, W. P.; Finkenthal, D. F.; Fenstermacher, M. E.; Porter, G. D.; Chu, Y.

    1998-11-01

    Carbon sputtering and transport are modeled in the DIII--D divertor with the MCI code. Calculated 2-D radiation patterns are compared with measured radiation distributions. The results are particularly sensitive to Ti near the divertor target plates. For example, increasing the ion temperature from 8 eV to 20 eV in MCI raises P_rad^div from 1626 to 2862 kW. Although this presents difficulties in assessing which sputtering model best describes the plasma-surface interaction physics (because of experimental uncertainties in T_i), processes which either produce too much or too little radiated power compared to the measured value of 1718 kW can be eliminated. Based on this, the number of viable sputtering options has been reduced from 12 to 4. For the conditions studied, three of these options involve both physical and chemical sputtering, and one requires only physical sputtering.

  7. Performance and accuracy of criticality calculations performed using WARP – A framework for continuous energy Monte Carlo neutron transport in general 3D geometries on GPUs

    DOE PAGES

    Bergmann, Ryan M.; Rowland, Kelly L.; Radnović, Nikola; ...

    2017-05-01

    In this companion paper to "Algorithmic Choices in WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs" (doi:10.1016/j.anucene.2014.10.039), the WARP Monte Carlo neutron transport framework for graphics processing units (GPUs) is benchmarked against production-level central processing unit (CPU) Monte Carlo neutron transport codes for both performance and accuracy. We compare neutron flux spectra, multiplication factors, runtimes, speedup factors, and costs of various GPU and CPU platforms running either WARP, Serpent 2.1.24, or MCNP 6.1. WARP compares well with the results of the production-level codes, and it is shown that on the newestmore » hardware considered, GPU platforms running WARP are between 0.8 to 7.6 times as fast as CPU platforms running production codes. Also, the GPU platforms running WARP were between 15% and 50% as expensive to purchase and between 80% to 90% as expensive to operate as equivalent CPU platforms performing at an equal simulation rate.« less

  8. Performance and accuracy of criticality calculations performed using WARP – A framework for continuous energy Monte Carlo neutron transport in general 3D geometries on GPUs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, Ryan M.; Rowland, Kelly L.; Radnović, Nikola

    In this companion paper to "Algorithmic Choices in WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs" (doi:10.1016/j.anucene.2014.10.039), the WARP Monte Carlo neutron transport framework for graphics processing units (GPUs) is benchmarked against production-level central processing unit (CPU) Monte Carlo neutron transport codes for both performance and accuracy. We compare neutron flux spectra, multiplication factors, runtimes, speedup factors, and costs of various GPU and CPU platforms running either WARP, Serpent 2.1.24, or MCNP 6.1. WARP compares well with the results of the production-level codes, and it is shown that on the newestmore » hardware considered, GPU platforms running WARP are between 0.8 to 7.6 times as fast as CPU platforms running production codes. Also, the GPU platforms running WARP were between 15% and 50% as expensive to purchase and between 80% to 90% as expensive to operate as equivalent CPU platforms performing at an equal simulation rate.« less

  9. Parallel Higher-order Finite Element Method for Accurate Field Computations in Wakefield and PIC Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candel, A.; Kabel, A.; Lee, L.

    Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell)more » approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.« less

  10. Verification and benchmark testing of the NUFT computer code

    NASA Astrophysics Data System (ADS)

    Lee, K. H.; Nitao, J. J.; Kulshrestha, A.

    1993-10-01

    This interim report presents results of work completed in the ongoing verification and benchmark testing of the NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) computer code. NUFT is a suite of multiphase, multicomponent models for numerical solution of thermal and isothermal flow and transport in porous media, with application to subsurface contaminant transport problems. The code simulates the coupled transport of heat, fluids, and chemical components, including volatile organic compounds. Grid systems may be cartesian or cylindrical, with one-, two-, or fully three-dimensional configurations possible. In this initial phase of testing, the NUFT code was used to solve seven one-dimensional unsaturated flow and heat transfer problems. Three verification and four benchmarking problems were solved. In the verification testing, excellent agreement was observed between NUFT results and the analytical or quasianalytical solutions. In the benchmark testing, results of code intercomparison were very satisfactory. From these testing results, it is concluded that the NUFT code is ready for application to field and laboratory problems similar to those addressed here. Multidimensional problems, including those dealing with chemical transport, will be addressed in a subsequent report.

  11. Histochemical changes of occlusal surface enamel of permanent teeth, where dental caries is questionable vs sound enamel surfaces.

    PubMed

    Michalaki, M; Oulis, C J; Pandis, N; Eliades, G

    2016-12-01

    This in vitro study was to classify questionable for caries occlusal surfaces (QCOS) of permanent teeth according to ICDAS codes 1, 2, and 3 and to compare them in terms of enamel mineral composition with the areas of sound tissue of the same tooth. Partially impacted human molars (60) extracted for therapeutic reasons with QCOS were used in the study, photographed via a polarised light microscope and classified according to the ICDAS II (into codes 1, 2, or 3). The crowns were embedded in clear self-cured acrylic resin and longitudinally sectioned at the levels of the characterised lesions and studied by SEM/EDX, to assess enamel mineral composition of the QCOS. Univariate and multivariate random effect regressions were used for Ca (wt%), P (wt%), and Ca/P (wt%). The EDX analysis indicated changes in the Ca and P contents that were more prominent in ICDAS-II code 3 lesions compared to codes 1 and 2 lesions. In these lesions, Ca (wt%) and P (wt%) concentrations were significantly decreased (p = 0.01) in comparison with sound areas. Ca and P (wt%) contents were significantly lower (p = 0.02 and p = 0.01 respectively) for code 3 areas in comparison with codes 1 and 2 areas. Significantly higher (p = 0.01) Ca (wt%) and P (wt%) contents were found on sound areas compared to the lesion areas. The enamel of occlusal surfaces of permanent teeth with ICDAS 1, 2, and 3 lesions was found to have different Ca/P compositions, necessitating further investigation on whether these altered surfaces might behave differently on etching preparation before fissure sealant placement, compared to sound surfaces.

  12. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2007-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  13. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2007-06-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  14. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2007-09-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  15. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  16. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-01-18

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  17. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  18. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-12-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  19. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2007-02-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  20. CH-TRU Waste Content Codes (CH-TRUCON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2006-09-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  1. CH-TRU Waste Content Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington TRU Solutions LLC

    2008-01-16

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container.more » Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments" (10-day shipping period).« less

  2. 49 CFR Appendix C to Part 229 - FRA Locomotive Standards-Code of Defects

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false FRA Locomotive Standards-Code of Defects C Appendix C to Part 229 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Pt. 229, App. C...

  3. 49 CFR Appendix C to Part 229 - FRA Locomotive Standards-Code of Defects

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false FRA Locomotive Standards-Code of Defects C Appendix C to Part 229 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Pt. 229, App. C...

  4. 49 CFR Appendix C to Part 229 - FRA Locomotive Standards-Code of Defects

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false FRA Locomotive Standards-Code of Defects C Appendix C to Part 229 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Pt. 229, App. C...

  5. Physics of neutral gas jet interaction with magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Zhanhui; Xu, Xueqiao; Diamond, Patrick; Xu, Min; Duan, Xuru; Yu, Deliang; Zhou, Yulin; Shi, Yongfu; Nie, Lin; Ke, Rui; Zhong, Wulv; Shi, Zhongbing; Sun, Aiping; Li, Jiquan; Yao, Lianghua

    2017-10-01

    It is critical to understand the physics and transport dynamics during the plasma fuelling process. Plasma and neutral interactions involve the transfer of charge, momentum, and energy in ion-neutral and electron-neutral collisions. Thus, a seven field fluid model of neutral gas jet injection (NGJI) is obtained, which couples plasma density, heat, and momentum transport equations together with neutrals density and momentum transport equations of both molecules and atoms. Transport dynamics of plasma and neutrals are simulated for a complete range of discharge times, including steady state before NGJI, transport during NGJI, and relaxation after NGJI. With the trans-neut module of BOUT + + code, the simulations of mean profile variations and fueling depths during fueling have been benchmarked well with other codes and also validated with HL-2A experiment results. Both fast component (FC) and slow component (SC) of NGJI are simulated and validated with the HL-2A experimental measurements. The plasma blocking effect on the FC penetration is also simulated and validated well with the experiment. This work is supported by the National Natural Science Foundation of China under Grant No. 11575055.

  6. Cyclin A-mediated inhibition of intra-Golgi transport requires p34cdc2.

    PubMed

    Mackay, D; Kieckbusch, R; Adamczewski, J; Warren, G

    1993-12-28

    An in vitro assay was used to study the role of p34cdc2 in cyclin A-mediated vesicular transport inhibition. It was shown that the S-phase kinase p33cdk2 reduced the effect of cyclin A on transport assays performed with sHeLa cytosol, even though histone kinase was strongly activated. Also, transport with FT210 cytosol (which is temperature-sensitive for p34cdc2) was inhibited by cyclin A only at the permissive temperature. However, the phosphatase inhibitor microcystin inhibited transport without any requirement for p34cdc2 activity. These results show that transport is inhibited by cyclin A via p34cdc2, and also by another kinase, possibly downstream of p34cdc2.

  7. Ab initio calculation of transport properties between PbSe quantum dots facets with iodide ligands

    NASA Astrophysics Data System (ADS)

    Wang, B.; Patterson, R.; Chen, W.; Zhang, Z.; Yang, J.; Huang, S.; Shrestha, S.; Conibeer, G.

    2018-01-01

    The transport properties between Lead Selenide (PbSe) quantum dots decorated with iodide ligands has been studied using density functional theory (DFT). Quantum conductance at each selected energy levels has been calculated along with total density of states and projected density of states. The DFT calculation is carried on using a grid-based planar augmented wave (GPAW) code incorporated with the linear combination of atomic orbital (LCAO) mode and Perdew Burke Ernzerhof (PBE) exchange-correlation functional. Three iodide ligand attached low index facets including (001), (011), (111) are investigated in this work. P-orbital of iodide ligand majorly contributes to density of state (DOS) at near top valence band resulting a significant quantum conductance, whereas DOS of Pb p-orbital shows minor influence. Various values of quantum conductance observed along different planes are possibly reasoned from a combined effect electrical field over topmost surface and total distance between adjacent facets. Ligands attached to (001) and (011) planes possess similar bond length whereas it is significantly shortened in (111) plane, whereas transport between (011) has an overall low value due to newly formed electric field. On the other hand, (111) plane with a net surface dipole perpendicular to surface layers leading to stronger electron coupling suggests an apparent increase of transport probability. Apart from previously mentioned, the maximum transport energy levels located several eVs (1 2 eVs) from the edge of valence band top.

  8. Pore-scale simulation of CO2-water-rock interactions

    NASA Astrophysics Data System (ADS)

    Deng, H.; Molins, S.; Steefel, C. I.; DePaolo, D. J.

    2017-12-01

    In Geologic Carbon Storage (GCS) systems, the migration of scCO2 versus CO2-acidifed brine ultimately determines the extent of mineral trapping and caprock integrity, i.e. the long-term storage efficiency and security. While continuum scale multiphase reactive transport models are valuable for large scale investigations, they typically (over-)simplify pore-scale dynamics and cannot capture local heterogeneities that may be important. Therefore, pore-scale models are needed in order to provide mechanistic understanding of how fine scale structural variations and heterogeneous processes influence the transport and geochemistry in the context of multiphase flow, and to inform parameterization of continuum scale modeling. In this study, we investigate the interplay of different processes at pore scale (e.g. diffusion, reactions, and multiphase flow) through the coupling of a well-developed multiphase flow simulator with a sophisticated reactive transport code. The objectives are to understand where brine displaced by scCO2 will reside in a rough pore/fracture, and how the CO2-water-rock interactions may affect the redistribution of different phases. In addition, the coupled code will provide a platform for model testing in pore-scale multiphase reactive transport problems.

  9. Verification of fractional quasilinear renormalization theory using drift-wave turbulence simulations

    NASA Astrophysics Data System (ADS)

    Newman, D. E.; Sanchez, R.; Carreras, B. A.; van Milligen, B. Ph.

    2005-10-01

    A very recent renormalization scheme for turbulent transport has been formulated in terms fractional differential operators [1]. In this contribution, we test it against numerous tracer particle transport experiments carried out in simulations of drift-wave turbulence in slab geometry [2]. The simplified geometry allows that simulations be carried out for a sufficiently large number of decorrelation times so that the long-term dynamics captured by these operators can be made apparent. By changing the relative dominance of the polarization and ExB nolinearities artificially, we tune at will the degree of homogeneity and isotropy of the system. Additionally, externally-driven sheared flows can also be considered. This wide spectrum of options creates a superb environment to test the strengths and weaknesses of the fractional renormalization formalism. With it, the potential for application to more realistic geometries such as those in state-of-the-art tokamak turbulence codes will be assessed.References[1] R. S'anchez, B.A. Carreras, D.E. Newman, V. Lynch and B.Ph. van Milligen, submitted (2005) [2] D.E. Newman, P.W. Terry, P.H. Diamond and Y. Liang, Phys. Fluids B 5, 1140 (1993)

  10. Study of Second Stability for Global ITG Modes in MHD-stable Equilibria

    NASA Astrophysics Data System (ADS)

    Fivaz, Mathieu; Sauter, Olivier; Appert, Kurt; Tran, Trach-Minh; Vaclavik, Jan

    1997-11-01

    We study finite pressure effects on the Ion Temperature Gradient (ITG) instabilities; these modes are stabilized when the magnetic field gradient is reversed at high β [1]. This second stability regime for ITG modes is studied in details with a global linear gyrokinetic Particle-In-Cell code which takes the full toroidal MHD equilibrium data from the equilibrium solver CHEASE [2]. Both the trapped-ion and the toroidal ITG regimes are explored. In contrast to second stability for MHD ballooning modes, low magnetic shear and high values of the safety factor do not facilitate strongly the access to the second-stable ITG regime. The consequences for anomalous ion heat transport in tokamaks are explored. We use the results to find optimized configurations that are stable to ideal MHD modes for both the long (kink) and short (ballooning) wavelengths and where the ITG modes are stable or have very low growth rates; such configurations might present very low level of anomalous transport. [1] M. Fivaz, T.M. Tran, K. Appert, J. Vaclavik and S. E. Parker, Phys. Rev. Lett. 78, 1997, p. 3471 [2] H. Lütjens, A. Bondeson and O. Sauter, Comput. Phys. Commun. 97, 1996, p. 219

  11. 49 CFR Appendix C to Part 215 - FRA Freight Car Standards Defect Code

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false FRA Freight Car Standards Defect Code C Appendix C... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. C Appendix C to Part 215—FRA Freight Car Standards Defect Code The following defect code has been established for use...

  12. 49 CFR Appendix C to Part 215 - FRA Freight Car Standards Defect Code

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false FRA Freight Car Standards Defect Code C Appendix C... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. C Appendix C to Part 215—FRA Freight Car Standards Defect Code The following defect code has been established for use...

  13. 49 CFR Appendix C to Part 215 - FRA Freight Car Standards Defect Code

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false FRA Freight Car Standards Defect Code C Appendix C... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. C Appendix C to Part 215—FRA Freight Car Standards Defect Code The following defect code has been established for use...

  14. 49 CFR Appendix C to Part 215 - FRA Freight Car Standards Defect Code

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false FRA Freight Car Standards Defect Code C Appendix C... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Pt. 215, App. C Appendix C to Part 215—FRA Freight Car Standards Defect Code The following defect code has been established for use...

  15. Methods of treating complex space vehicle geometry for charged particle radiation transport

    NASA Technical Reports Server (NTRS)

    Hill, C. W.

    1973-01-01

    Current methods of treating complex geometry models for space radiation transport calculations are reviewed. The geometric techniques used in three computer codes are outlined. Evaluations of geometric capability and speed are provided for these codes. Although no code development work is included several suggestions for significantly improving complex geometry codes are offered.

  16. Interaction Between CO2-Rich Sulfate Solutions and Carbonate Reservoir Rocks from Atmospheric to Supercritical CO2 Conditions: Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Cama, J.; Garcia-Rios, M.; Luquot, L.; Soler Matamala, J. M.

    2014-12-01

    A test site for CO2 geological storage is situated in Hontomín (Spain) with a reservoir rock that is mainly composed of limestone. During and after CO2 injection, the resulting CO2-rich acid brine gives rise to the dissolution of carbonate minerals (calcite and dolomite) and gypsum (or anhydrite at depth) may precipitate since the reservoir brine contains sulfate. Experiments using columns filled with crushed limestone or dolostone were conducted under different P-pCO2 conditions (atmospheric: 1-10-3.5 bar; subcritical: 10-10 bar; and supercritical: 150-34 bar), T (25, 40 and 60 ºC) and input solution compositions (gypsum-undersaturated and gypsum-equilibrated solutions). We evaluated the effect of these parameters on the coupled reactions of calcite/dolomite dissolution and gypsum/anhydrite precipitation. The CrunchFlow and PhreeqC (v.3) numerical codes were used to perform reactive transport simulations of the experiments. Under the P-pCO2-T conditions, the volume of precipitated gypsum was smaller than the volume of dissolved carbonate minerals, yielding an increase in porosity (Δporosity up to ≈ 4%). A decrease in T favored limestone dissolution regardless of pCO2 owing to increasing undersaturation with decreasing temperature. However, gypsum precipitation was favored at high T and under atmospheric pCO2 conditions but not at high T and under 10 bar of pCO2 conditions. The increase in limestone dissolution with pCO2 was directly attributed to pH, which was more acidic at higher pCO2. Increasing pCO2, carbonate dissolution occurred along the column whereas it was localized in the very inlet under atmospheric conditions. This was due to the buffer capacity of the carbonic acid, which maintains pH at around 5 and keeps the solution undersaturated with respect to calcite and dolomite along the column. 1D reactive transport simulations reproduced the experimental data (carbonate dissolution and gypsum precipitation for different P-pCO2-T conditions). Drawing on reaction rate laws in the literature, we used the reactive surface area to fit the models to the experimental data. The values of the reactive surface area were much smaller than those calculated of the geometric areas.

  17. Characterization and functional analysis of the MAL and MPH Loci for maltose utilization in some ale and lager yeast strains.

    PubMed

    Vidgren, Virve; Ruohonen, Laura; Londesborough, John

    2005-12-01

    Maltose and maltotriose are the major sugars in brewer's wort. Brewer's yeasts contain multiple genes for maltose transporters. It is not known which of these express functional transporters. We correlated maltose transport kinetics with the genotypes of some ale and lager yeasts. Maltose transport by two ale strains was strongly inhibited by other alpha-glucosides, suggesting the use of broad substrate specificity transporters, such as Agt1p. Maltose transport by three lager strains was weakly inhibited by other alpha-glucosides, suggesting the use of narrow substrate specificity transporters. Hybridization studies showed that all five strains contained complete MAL1, MAL2, MAL3, and MAL4 loci, except for one ale strain, which lacked a MAL2 locus. All five strains also contained both AGT1 (coding a broad specificity alpha-glucoside transporter) and MAL11 alleles. MPH genes (maltose permease homologues) were present in the lager but not in the ale strains. During growth on maltose, the lager strains expressed AGT1 at low levels and MALx1 genes at high levels, whereas the ale strains expressed AGT1 at high levels and MALx1 genes at low levels. MPHx expression was negligible in all strains. The AGT1 sequences from the ale strains encoded full-length (616 amino acid) polypeptides, but those from both sequenced lager strains encoded truncated (394 amino acid) polypeptides that are unlikely to be functional transporters. Thus, despite the apparently similar genotypes of these ale and lager strains revealed by hybridization, maltose is predominantly carried by AGT1-encoded transporters in the ale strains and by MALx1-encoded transporters in the lager strains.

  18. Coulombic interactions during advection-dominated transport of ions in porous media

    NASA Astrophysics Data System (ADS)

    Muniruzzaman, Muhammad; Stolze, Lucien; Rolle, Massimo

    2017-04-01

    Solute transport of charged species in porous media is significantly affected by the electrochemical migration term resulting from the charge-induced interactions among dissolved ions and with solid surfaces. Therefore, the characterization of such Coulombic interactions and their effect on multicomponent ionic transport is of critical importance for assessing the fate of charged solutes in porous media. In this work we present a detailed investigation of the electrochemical effects during conservative multicomponent ionic transport in homogeneous and heterogeneous domains by means of laboratory bench-scale experiments and numerical simulations. The investigation aims at quantifying the key role of small-scale electrostatic interactions in flow-through systems, especially when advection is the dominant mass-transfer process. Considering dilute solutions of strong electrolytes (e.g., MgCl2 and NaBr) we report results showing the important role of Coulombic interactions in the lateral displacement of the different ionic species for steady-state transport scenarios in which the solutions are continuously injected through different portions of the flow-through chamber [1, 2]. Successively, we focus our attention on transient transport and pulse injection of the electrolytes. In these experiments high-resolution spatial and temporal monitoring of the ions' concentrations (600 samples; 1800 concentration measurements), at closely spaced outlet ports (5 mm), allowed us resolving the effects of charge interactions on the temporal breakthrough and spatial profiles of the cations and anions [3]. The interpretation of the experimental results requires a multicomponent modeling approach with an accurate description of local hydrodynamic dispersion, as well as the explicit quantification of the dispersive fluxes' cross-coupling due to the Coulombic interactions between the charged species. A new 2-D simulator [4], coupling the solution of the multicomponent ionic transport problem with the geochemical code PHREEQC has been developed and used to quantitatively interpret the experimental results. References [1] Rolle M., Muniruzzaman M., Haberer C.M. and P. Grathwohl (2013). Geochim. Cosmochim. Acta 120, 195-205. [2] Muniruzzaman M., Haberer C.M., Grathwohl P. and M. Rolle (2014). Geochim. Cosmochim. Acta 141, 656-669. [3] Muniruzzaman M. and M. Rolle (2017). Water Resour. Res. (in press). [4] Muniruzzaman M. and M. Rolle (2016). Adv. Water Resour. 98, 1-15.

  19. Verification of BWR Turbine Skyshine Dose with the MCNP5 Code Based on an Experiment Made at SHIMANE Nuclear Power Station

    NASA Astrophysics Data System (ADS)

    Tayama, Ryuichi; Wakasugi, Kenichi; Kawanaka, Ikunori; Kadota, Yoshinobu; Murakami, Yasuhiro

    We measured the skyshine dose from turbine buildings at Shimane Nuclear Power Station Unit 1 (NS-1) and Unit 2 (NS-2), and then compared it with the dose calculated with the Monte Carlo transport code MCNP5. The skyshine dose values calculated with the MCNP5 code agreed with the experimental data within a factor of 2.8, when the roof of the turbine building was precisely modeled. We concluded that our MCNP5 calculation was valid for BWR turbine skyshine dose evaluation.

  20. Evaluation of four-dimensional nonbinary LDPC-coded modulation for next-generation long-haul optical transport networks.

    PubMed

    Zhang, Yequn; Arabaci, Murat; Djordjevic, Ivan B

    2012-04-09

    Leveraging the advanced coherent optical communication technologies, this paper explores the feasibility of using four-dimensional (4D) nonbinary LDPC-coded modulation (4D-NB-LDPC-CM) schemes for long-haul transmission in future optical transport networks. In contrast to our previous works on 4D-NB-LDPC-CM which considered amplified spontaneous emission (ASE) noise as the dominant impairment, this paper undertakes transmission in a more realistic optical fiber transmission environment, taking into account impairments due to dispersion effects, nonlinear phase noise, Kerr nonlinearities, and stimulated Raman scattering in addition to ASE noise. We first reveal the advantages of using 4D modulation formats in LDPC-coded modulation instead of conventional two-dimensional (2D) modulation formats used with polarization-division multiplexing (PDM). Then we demonstrate that 4D LDPC-coded modulation schemes with nonbinary LDPC component codes significantly outperform not only their conventional PDM-2D counterparts but also the corresponding 4D bit-interleaved LDPC-coded modulation (4D-BI-LDPC-CM) schemes, which employ binary LDPC codes as component codes. We also show that the transmission reach improvement offered by the 4D-NB-LDPC-CM over 4D-BI-LDPC-CM increases as the underlying constellation size and hence the spectral efficiency of transmission increases. Our results suggest that 4D-NB-LDPC-CM can be an excellent candidate for long-haul transmission in next-generation optical networks.

  1. Light transport feature for SCINFUL.

    PubMed

    Etaati, G R; Ghal-Eh, N

    2008-03-01

    An extended version of the scintillator response function prediction code SCINFUL has been developed by incorporating PHOTRACK, a Monte Carlo light transport code. Comparisons of calculated and experimental results for organic scintillators exposed to neutrons show that the extended code improves the predictive capability of SCINFUL.

  2. NBCe1 (SLC4A4) a potential pH Regulator in Enamel Organ Cells during Enamel Development in the Mouse

    PubMed Central

    Jalali, R; Guo, J; Zandieh-Doulabi, B; Bervoets, TJM; Paine, ML; Boron, W; Parker, M; Bijvelds, MJC; Medina, JF; DenBesten, PK; Bronckers, ALJJ

    2016-01-01

    During formation of dental enamel maturation-stage ameloblasts express ion-transporting transmembrane proteins. The SLC4 family of ion-transporters regulates intra- and extracellular pH in eukaryotic cells by co-transporting HCO3− with Na+. Mutation in SLC4A4 (coding for the Na+ bicarbonate co-transporter NBCe1) induces developmental defects in human and murine enamel. We hypothesized that NBCe1 in dental epithelium is engaged in neutralizing protons released during crystal formation in the enamel space. We immunolocalized NBCe1 protein in mouse wild-type dental epithelium and examined the effect of NBCe1-null mutation on enamel formation in mice. Ameloblasts expressed gene transcripts for NBCe1 isoforms B/D/C/E. In wild-type mice weak to moderate immunostaining for NBCe1 with antibodies that recognize isoforms A/B/D/E and isoform C was seen in ameloblasts in secretory stage, no or very low staining in early maturation-stage but moderately to high staining in late maturation-stage. The papillary layer showed the opposite pattern and immunostained prominently at early maturation-stage but gradually showed less staining at mid- and late maturation-stage. In NBCe1−/− mice ameloblasts were disorganized, the enamel thin and severely hypomineralized. Enamel organs of CFTR−/− and AE2a,b−/− mice (believed to be pH regulators in ameloblasts) contained higher levels of NBCe1 protein than wild-type mice. Our data show that expression of NBCe1 in ameloblast and papillary layer cell depends on developmental stage and possibly responds to pH changes. PMID:25012520

  3. The NATA code; theory and analysis. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Bade, W. L.; Yos, J. M.

    1975-01-01

    The NATA code is a computer program for calculating quasi-one-dimensional gas flow in axisymmetric nozzles and rectangular channels, primarily to describe conditions in electric archeated wind tunnels. The program provides solutions based on frozen chemistry, chemical equilibrium, and nonequilibrium flow with finite reaction rates. The shear and heat flux on the nozzle wall are calculated and boundary layer displacement effects on the inviscid flow are taken into account. The program contains compiled-in thermochemical, chemical kinetic and transport cross section data for high-temperature air, CO2-N2-Ar mixtures, helium, and argon. It calculates stagnation conditions on axisymmetric or two-dimensional models and conditions on the flat surface of a blunt wedge. Included in the report are: definitions of the inputs and outputs; precoded data on gas models, reactions, thermodynamic and transport properties of species, and nozzle geometries; explanations of diagnostic outputs and code abort conditions; test problems; and a user's manual for an auxiliary program (NOZFIT) used to set up analytical curvefits to nozzle profiles.

  4. HZETRN: A heavy ion/nucleon transport code for space radiations

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Chun, Sang Y.; Badavi, Forooz F.; Townsend, Lawrence W.; Lamkin, Stanley L.

    1991-01-01

    The galactic heavy ion transport code (GCRTRN) and the nucleon transport code (BRYNTRN) are integrated into a code package (HZETRN). The code package is computer efficient and capable of operating in an engineering design environment for manned deep space mission studies. The nuclear data set used by the code is discussed including current limitations. Although the heavy ion nuclear cross sections are assumed constant, the nucleon-nuclear cross sections of BRYNTRN with full energy dependence are used. The relation of the final code to the Boltzmann equation is discussed in the context of simplifying assumptions. Error generation and propagation is discussed, and comparison is made with simplified analytic solutions to test numerical accuracy of the final results. A brief discussion of biological issues and their impact on fundamental developments in shielding technology is given.

  5. Modifying scoping codes to accurately calculate TMI-cores with lifetimes greater than 500 effective full-power days

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, D.; Levine, S.L.; Luoma, J.

    1992-01-01

    The Three Mile Island unit 1 core reloads have been designed using fast but accurate scoping codes, PSUI-LEOPARD and ADMARC. PSUI-LEOPARD has been normalized to EPRI-CPM2 results and used to calculate the two-group constants, whereas ADMARC is a modern two-dimensional, two-group diffusion theory nodal code. Problems in accuracy were encountered for cycles 8 and higher as the core lifetime was increased beyond 500 effective full-power days. This is because the heavier loaded cores in both {sup 235}U and {sup 10}B have harder neutron spectra, which produces a change in the transport effect in the baffle reflector region, and the burnablemore » poison (BP) simulations were not accurate enough for the cores containing the increased amount of {sup 10}B required in the BP rods. In the authors study, a technique has been developed to take into account the change in the transport effect in the baffle region by modifying the fast neutron diffusion coefficient as a function of cycle length and core exposure or burnup. A more accurate BP simulation method is also developed, using integral transport theory and CPM2 data, to calculate the BP contribution to the equivalent fuel assembly (supercell) two-group constants. The net result is that the accuracy of the scoping codes is as good as that produced by CASMO/SIMULATE or CPM2/SIMULATE when comparing with measured data.« less

  6. Implementation of radiation shielding calculation methods. Volume 1: Synopsis of methods and summary of results

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Disney, R. K.

    1971-01-01

    The work performed in the following areas is summarized: (1) Analysis of Realistic nuclear-propelled vehicle was analyzed using the Marshall Space Flight Center computer code package. This code package includes one and two dimensional discrete ordinate transport, point kernel, and single scatter techniques, as well as cross section preparation and data processing codes, (2) Techniques were developed to improve the automated data transfer in the coupled computation method of the computer code package and improve the utilization of this code package on the Univac-1108 computer system. (3) The MSFC master data libraries were updated.

  7. IPOLE - semi-analytic scheme for relativistic polarized radiative transport

    NASA Astrophysics Data System (ADS)

    Mościbrodzka, M.; Gammie, C. F.

    2018-03-01

    We describe IPOLE, a new public ray-tracing code for covariant, polarized radiative transport. The code extends the IBOTHROS scheme for covariant, unpolarized transport using two representations of the polarized radiation field: In the coordinate frame, it parallel transports the coherency tensor; in the frame of the plasma it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is implemented to be as spacetime- and coordinate- independent as possible. The emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, IPOLE is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth. We show that the code matches analytic results in flat space, and that it produces results that converge to those produced by Dexter's GRTRANS polarized transport code on a complicated model problem. We expect IPOLE will mainly find applications in modelling Event Horizon Telescope sources, but it may also be useful in other relativistic transport problems such as modelling for the IXPE mission.

  8. Benchmark test of transport calculations of gold and nickel activation with implications for neutron kerma at Hiroshima.

    PubMed

    Hoshi, M; Hiraoka, M; Hayakawa, N; Sawada, S; Munaka, M; Kuramoto, A; Oka, T; Iwatani, K; Shizuma, K; Hasai, H

    1992-11-01

    A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a 252Cf fission neutron source to validate the use of the code for the energy spectrum analyses of Hiroshima atomic bomb neutrons. Nuclear data libraries used in the Monte Carlo neutron and photon transport code calculation were ENDF/B-III, ENDF/B-IV, LASL-SUB, and ENDL-73. The neutron moderators used were granite (the main component of which is SiO2, with a small fraction of hydrogen), Newlight [polyethylene with 3.7% boron (natural)], ammonium chloride (NH4Cl), and water (H2O). Each moderator was 65 cm thick. The neutron detectors were gold and nickel foils, which were used to detect thermal and epithermal neutrons (4.9 eV) and fast neutrons (> 0.5 MeV), respectively. Measured activity data from neutron-irradiated gold and nickel foils in these moderators decreased to about 1/1,000th or 1/10,000th, which correspond to about 1,500 m ground distance from the hypocenter in Hiroshima. For both gold and nickel detectors, the measured activities and the calculated values agreed within 10%. The slopes of the depth-yield relations in each moderator, except granite, were similar for neutrons detected by the gold and nickel foils. From the results of these studies, the Monte Carlo neutron and photon transport code was verified to be accurate enough for use with the elements hydrogen, carbon, nitrogen, oxygen, silicon, chlorine, and cadmium, and for the incident 252Cf fission spectrum neutrons.

  9. Microarray-based transcriptome of Listeria monocytogenes adapted to sublethal concentrations of acetic acid, lactic acid, and hydrochloric acid.

    PubMed

    Tessema, Girum Tadesse; Møretrø, Trond; Snipen, Lars; Heir, Even; Holck, Askild; Naterstad, Kristine; Axelsson, Lars

    2012-09-01

    Listeria monocytogenes , an important foodborne pathogen, commonly encounters organic acids in food-related environments. The transcriptome of L. monocytogenes L502 was analyzed after adaptation to pH 5 in the presence of acetic acid, lactic acid, or hydrochloric acid (HCl) at 25 °C, representing a condition encountered in mildly acidic ready-to-eat food kept at room temperature. The acid-treated cells were compared with a reference culture with a pH of 6.7 at the time of RNA harvesting. The number of genes and magnitude of transcriptional responses were higher for the organic acids than for HCl. Protein coding genes described for low pH stress, energy transport and metabolism, virulence determinates, and acid tolerance response were commonly regulated in the 3 acid-stressed cultures. Interestingly, the transcriptional levels of histidine and cell wall biosynthetic operons were upregulated, indicating possible universal response against low pH stress in L. monocytogenes. The opuCABCD operon, coding proteins for compatible solutes transport, and the transcriptional regulator sigL were significantly induced in the organic acids, strongly suggesting key roles during organic acid stress. The present study revealed the complex transcriptional responses of L. monocytogenes towards food-related acidulants and opens the roadmap for more specific and in-depth future studies.

  10. 49 CFR 172.604 - Emergency response telephone number.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Emergency response telephone number. 172.604... telephone number. (a) A person who offers a hazardous material for transportation must provide an emergency response telephone number, including the area code, for use in an emergency involving the hazardous...

  11. Review of Hybrid (Deterministic/Monte Carlo) Radiation Transport Methods, Codes, and Applications at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, John C; Peplow, Douglas E.; Mosher, Scott W

    2011-01-01

    This paper provides a review of the hybrid (Monte Carlo/deterministic) radiation transport methods and codes used at the Oak Ridge National Laboratory and examples of their application for increasing the efficiency of real-world, fixed-source Monte Carlo analyses. The two principal hybrid methods are (1) Consistent Adjoint Driven Importance Sampling (CADIS) for optimization of a localized detector (tally) region (e.g., flux, dose, or reaction rate at a particular location) and (2) Forward Weighted CADIS (FW-CADIS) for optimizing distributions (e.g., mesh tallies over all or part of the problem space) or multiple localized detector regions (e.g., simultaneous optimization of two or moremore » localized tally regions). The two methods have been implemented and automated in both the MAVRIC sequence of SCALE 6 and ADVANTG, a code that works with the MCNP code. As implemented, the methods utilize the results of approximate, fast-running 3-D discrete ordinates transport calculations (with the Denovo code) to generate consistent space- and energy-dependent source and transport (weight windows) biasing parameters. These methods and codes have been applied to many relevant and challenging problems, including calculations of PWR ex-core thermal detector response, dose rates throughout an entire PWR facility, site boundary dose from arrays of commercial spent fuel storage casks, radiation fields for criticality accident alarm system placement, and detector response for special nuclear material detection scenarios and nuclear well-logging tools. Substantial computational speed-ups, generally O(102-4), have been realized for all applications to date. This paper provides a brief review of the methods, their implementation, results of their application, and current development activities, as well as a considerable list of references for readers seeking more information about the methods and/or their applications.« less

  12. Combined structural and compositional evolution of planetary rings due to micrometeoroid impacts and ballistic transport

    NASA Astrophysics Data System (ADS)

    Estrada, Paul R.; Durisen, Richard H.; Cuzzi, Jeffrey N.; Morgan, Demitri A.

    2015-05-01

    We introduce improved numerical techniques for simulating the structural and compositional evolution of planetary rings due to micrometeoroid bombardment and subsequent ballistic transport of impact ejecta. Our current, robust code is capable of modeling structural changes and pollution transport simultaneously over long times on both local and global scales. In this paper, we describe the methodology based on the original structural code of Durisen et al. (Durisen, R.H. et al. [1989]. Icarus 80, 136-166) and on the pollution transport code of Cuzzi and Estrada (Cuzzi, J.N., Estrada, P.R. [1998]. Icarus 132, 1-35). We provide demonstrative simulations to compare with, and extend upon previous work, as well as examples of how ballistic transport can maintain the observed structure in Saturn's rings using available Cassini occultation optical depth data. In particular, we explicitly verify the claim that the inner B (and presumably A) ring edge can be maintained over long periods of time due to an ejecta distribution that is heavily biased in the prograde direction through a balance between the sharpening effects of ballistic transport and the broadening effects of viscosity. We also see that a "ramp"-like feature forms over time just inside that edge. However, it does not remain linear for the duration of the runs presented here unless a less steep ejecta velocity distribution is adopted. We also model the C ring plateaus and find that their outer edges can be maintained at their observed sharpness for long periods due to ballistic transport. We hypothesize that the addition of a significant component of a retrograde-biased ejecta distribution may help explain the linearity of the ramp and could provide a mechanism for maintaining the sharpness of C ring plateau inner edges. This component would arise for the subset of micrometeoroid impacts which are destructive rather than merely cratering. Such a distribution will be introduced in future work.

  13. SOPHAEROS code development and its application to falcon tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lajtha, G.; Missirlian, M.; Kissane, M.

    1996-12-31

    One of the key issues in source-term evaluation in nuclear reactor severe accidents is determination of the transport behavior of fission products released from the degrading core. The SOPHAEROS computer code is being developed to predict fission product transport in a mechanistic way in light water reactor circuits. These applications of the SOPHAEROS code to the Falcon experiments, among others not presented here, indicate that the numerical scheme of the code is robust, and no convergence problems are encountered. The calculation is also very fast being three times longer on a Sun SPARC 5 workstation than real time and typicallymore » {approx} 10 times faster than an identical calculation with the VICTORIA code. The study demonstrates that the SOPHAEROS 1.3 code is a suitable tool for prediction of the vapor chemistry and fission product transport with a reasonable level of accuracy. Furthermore, the fexibility of the code material data bank allows improvement of understanding of fission product transport and deposition in the circuit. Performing sensitivity studies with different chemical species or with different properties (saturation pressure, chemical equilibrium constants) is very straightforward.« less

  14. Verification of the Hydrodynamic and Sediment Transport Hybrid Modeling System for Cumberland Sound and Kings Bay Navigation Channel, Georgia

    DTIC Science & Technology

    1989-07-01

    TECHNICAL REPORT HL-89-14 VERIFICATION OF THE HYDRODYNAMIC AND Si SEDIMENT TRANSPORT HYBRID MODELING SYSTEM FOR CUMBERLAND SOUND AND I’) KINGS BAY...Hydrodynamic and Sediment Transport Hybrid Modeling System for Cumberland Sound and Kings Bay Navigation Channel, Georgia 12 PERSONAL AUTHOR(S) Granat...Hydrodynamic results from RMA-2V were used in the numerical sediment transport code STUDH in modeling the interaction of the flow transport and

  15. Intact coding region of the serotonin transporter gene in obsessive-compulsive disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altemus, M.; Murphy, D.L.; Greenberg, B.

    1996-07-26

    Epidemiologic studies indicate that obsessive-compulsive disorder is genetically transmitted in some families, although no genetic abnormalities have been identified in individuals with this disorder. The selective response of obsessive-compulsive disorder to treatment with agents which block serotonin reuptake suggests the gene coding for the serotonin transporter as a candidate gene. The primary structure of the serotonin-transporter coding region was sequenced in 22 patients with obsessive-compulsive disorder, using direct PCR sequencing of cDNA synthesized from platelet serotonin-transporter mRNA. No variations in amino acid sequence were found among the obsessive-compulsive disorder patients or healthy controls. These results do not support a rolemore » for alteration in the primary structure of the coding region of the serotonin-transporter gene in the pathogenesis of obsessive-compulsive disorder. 27 refs.« less

  16. 76 FR 61354 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ..., Air and Radiation Docket, Mail code: 28221T, 1200 Pennsylvania Ave., NW., Washington, DC 20460, and (2...: Jose M. Solar, Office of Transportation and Air Quality, mail code 6406J, Environmental Protection...-343-2801; e-mail address: Solar[email protected] . SUPPLEMENTARY INFORMATION: EPA has submitted the...

  17. A Model for On-Offshore Sediment Transport in the Surfzone.

    DTIC Science & Technology

    1982-12-01

    34 Journal of Waterway Port, Coastal and Ocean Engineering, American Society of Civil Engineers, vol 108, no. WW2 , pp 163-179. Short, A. D. (1978) "Wave...PWO, Mayport FL; Utilities Engr Off. Rota Spain NAVTECHTRACEN SCE. Pensacola FL NAVWPNCEN Code 2636 China Lake; Code 3803 China Lake, CA NAVWPNSTA

  18. Multiprocessing MCNP on an IBM RS/6000 cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinney, G.W.; West, J.T.

    1993-01-01

    The advent of high-performance computer systems has brought to maturity programming concepts like vectorization, multiprocessing, and multitasking. While there are many schools of thought as to the most significant factor in obtaining order-of-magnitude increases in performance, such speedup can only be achieved by integrating the computer system and application code. Vectorization leads to faster manipulation of arrays by overlapping instruction CPU cycles. Discrete ordinates codes, which require the solving of large matrices, have proved to be major benefactors of vectorization. Monte Carlo transport, on the other hand, typically contains numerous logic statements and requires extensive redevelopment to benefit from vectorization.more » Multiprocessing and multitasking provide additional CPU cycles via multiple processors. Such systems are generally designed with either common memory access (multitasking) or distributed memory access. In both cases, theoretical speedup, as a function of the number of processors (P) and the fraction of task time that multiprocesses (f), can be formulated using Amdahl's Law S ((f,P) = 1 f + f/P). However, for most applications this theoretical limit cannot be achieved, due to additional terms not included in Amdahl's Law. Monte Carlo transport is a natural candidate for multiprocessing, since the particle tracks are generally independent and the precision of the result increases as the square root of the number of particles tracked.« less

  19. Impacts of DNAPL Source Treatment: Experimental and Modeling Assessment of the Benefits of Partial DNAPL Source Removal

    DTIC Science & Technology

    2009-09-01

    nuclear industry for conducting performance assessment calculations. The analytical FORTRAN code for the DNAPL source function, REMChlor, was...project. The first was to apply existing deterministic codes , such as T2VOC and UTCHEM, to the DNAPL source zone to simulate the remediation processes...but describe the spatial variability of source zones unlike one-dimensional flow and transport codes that assume homogeneity. The Lagrangian models

  20. Multi-zonal Navier-Stokes code with the LU-SGS scheme

    NASA Technical Reports Server (NTRS)

    Klopfer, G. H.; Yoon, S.

    1993-01-01

    The LU-SGS (lower upper symmetric Gauss Seidel) algorithm has been implemented into the Compressible Navier-Stokes, Finite Volume (CNSFV) code and validated with a multizonal Navier-Stokes simulation of a transonic turbulent flow around an Onera M6 transport wing. The convergence rate and robustness of the code have been improved and the computational cost has been reduced by at least a factor of 2 over the diagonal Beam-Warming scheme.

  1. Evolution of Structure and Composition in Saturn's Rings Due to Ballistic Transport of Micrometeoroid Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Estrada, P. R.; Durisen, R. H.; Cuzzi, J. N.

    2014-04-01

    We introduce improved numerical techniques for simulating the structural and compositional evolution of planetary rings due to micrometeoroid bombardment and subsequent ballistic transport of impact ejecta. Our current, robust code, which is based on the original structural code of [1] and on the pollution transport code of [3], is capable of modeling structural changes and pollution transport simultaneously over long times on both local and global scales. We provide demonstrative simulations to compare with, and extend upon previous work, as well as examples of how ballistic transport can maintain the observed structure in Saturn's rings using available Cassini occultation optical depth data.

  2. Retrieval of exoplanet emission spectra with HyDRA

    NASA Astrophysics Data System (ADS)

    Gandhi, Siddharth; Madhusudhan, Nikku

    2018-02-01

    Thermal emission spectra of exoplanets provide constraints on the chemical compositions, pressure-temperature (P-T) profiles, and energy transport in exoplanetary atmospheres. Accurate inferences of these properties rely on the robustness of the atmospheric retrieval methods employed. While extant retrieval codes have provided significant constraints on molecular abundances and temperature profiles in several exoplanetary atmospheres, the constraints on their deviations from thermal and chemical equilibria have yet to be fully explored. Our present work is a step in this direction. We report HyDRA, a disequilibrium retrieval framework for thermal emission spectra of exoplanetary atmospheres. The retrieval code uses the standard architecture of a parametric atmospheric model coupled with Bayesian statistical inference using the Nested Sampling algorithm. For a given dataset, the retrieved compositions and P-T profiles are used in tandem with the GENESIS self-consistent atmospheric model to constrain layer-by-layer deviations from chemical and radiative-convective equilibrium in the observable atmosphere. We demonstrate HyDRA on the Hot Jupiter WASP-43b with a high-precision emission spectrum. We retrieve an H2O mixing ratio of log(H2O) = -3.54^{+0.82}_{-0.52}, consistent with previous studies. We detect H2O and a combined CO/CO2 at 8-sigma significance. We find the dayside P-T profile to be consistent with radiative-convective equilibrium within the 1-sigma limits and with low day-night redistribution, consistent with previous studies. The derived compositions are also consistent with thermochemical equilibrium for the corresponding distribution of P-T profiles. In the era of high precision and high resolution emission spectroscopy, HyDRA provides a path to retrieve disequilibrium phenomena in exoplanetary atmospheres.

  3. Aerothermo-Structural Analysis of Low Cost Composite Nozzle/Inlet Components

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kuwigai; Challa, Preeli; Sree, Dave; Reddy, D.

    1999-01-01

    This research is a cooperative effort among the Turbomachinery and Propulsion Division of NASA Glenn, CCMR of NC A&T State University, and the Tuskegee University. The NC A&T is the lead center and Tuskegee University is the participating institution. Objectives of the research were to develop an integrated aerodynamic, thermal and structural analysis code for design of aircraft engine components, such as, nozzles and inlets made of textile composites; conduct design studies on typical inlets for hypersonic transportation vehicles and setup standards test examples and finally manufacture a scaled down composite inlet. These objectives are accomplished through the following seven tasks: (1) identify the relevant public domain codes for all three types of analysis; (2) evaluate the codes for the accuracy of results and computational efficiency; (3) develop aero-thermal and thermal structural mapping algorithms; (4) integrate all the codes into one single code; (5) write a graphical user interface to improve the user friendliness of the code; (6) conduct test studies for rocket based combined-cycle engine inlet; and finally (7) fabricate a demonstration inlet model using textile preform composites. Tasks one, two and six are being pursued. Selected and evaluated NPARC for flow field analysis, CSTEM for in-depth thermal analysis of inlets and nozzles and FRAC3D for stress analysis. These codes have been independently verified for accuracy and performance. In addition, graphical user interface based on micromechanics analysis for laminated as well as textile composites was developed. Demonstration of this code will be made at the conference. A rocket based combined cycle engine was selected for test studies. Flow field analysis of various inlet geometries were studied. Integration of codes is being continued. The codes developed are being applied to a candidate example of trailblazer engine proposed for space transportation. A successful development of the code will provide a simpler, faster and user-friendly tool for conducting design studies of aircraft and spacecraft engines, applicable in high speed civil transport and space missions.

  4. APOLLO: a general code for transport, slowing-down and thermalization calculations in heterogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavenoky, A.

    1973-01-01

    From national topical meeting on mathematical models and computational techniques for analysis of nuclear systems; Ann Arbor, Michigan, USA (8 Apr 1973). In mathematical models and computational techniques for analysis of nuclear systems. APOLLO calculates the space-and-energy-dependent flux for a one dimensional medium, in the multigroup approximation of the transport equation. For a one dimensional medium, refined collision probabilities have been developed for the resolution of the integral form of the transport equation; these collision probabilities increase accuracy and save computing time. The interaction between a few cells can also be treated by the multicell option of APOLLO. The diffusionmore » coefficient and the material buckling can be computed in the various B and P approximations with a linearly anisotropic scattering law, even in the thermal range of the spectrum. Eventually this coefficient is corrected for streaming by use of Benoist's theory. The self-shielding of the heavy isotopes is treated by a new and accurate technique which preserves the reaction rates of the fundamental fine structure flux. APOLLO can perform a depletion calculation for one cell, a group of cells or a complete reactor. The results of an APOLLO calculation are the space-and-energy-dependent flux, the material buckling or any reaction rate; these results can also be macroscopic cross sections used as input data for a 2D or 3D depletion and diffusion code in reactor geometry. 10 references. (auth)« less

  5. Monte Carlo determination of the conversion coefficients Hp(3)/Ka in a right cylinder phantom with 'PENELOPE' code. Comparison with 'MCNP' simulations.

    PubMed

    Daures, J; Gouriou, J; Bordy, J M

    2011-03-01

    This work has been performed within the frame of the European Union ORAMED project (Optimisation of RAdiation protection for MEDical staff). The main goal of the project is to improve standards of protection for medical staff for procedures resulting in potentially high exposures and to develop methodologies for better assessing and for reducing, exposures to medical staff. The Work Package WP2 is involved in the development of practical eye-lens dosimetry in interventional radiology. This study is complementary of the part of the ENEA report concerning the calculations with the MCNP-4C code of the conversion factors related to the operational quantity H(p)(3). In this study, a set of energy- and angular-dependent conversion coefficients (H(p)(3)/K(a)), in the newly proposed square cylindrical phantom made of ICRU tissue, have been calculated with the Monte-Carlo code PENELOPE and MCNP5. The H(p)(3) values have been determined in terms of absorbed dose, according to the definition of this quantity, and also with the kerma approximation as formerly reported in ICRU reports. At a low-photon energy (up to 1 MeV), the two results obtained with the two methods are consistent. Nevertheless, large differences are showed at a higher energy. This is mainly due to the lack of electronic equilibrium, especially for small angle incidences. The values of the conversion coefficients obtained with the MCNP-4C code published by ENEA quite agree with the kerma approximation calculations obtained with PENELOPE. We also performed the same calculations with the code MCNP5 with two types of tallies: F6 for kerma approximation and *F8 for estimating the absorbed dose that is, as known, due to secondary electrons. PENELOPE and MCNP5 results agree for the kerma approximation and for the absorbed dose calculation of H(p)(3) and prove that, for photon energies larger than 1 MeV, the transport of the secondary electrons has to be taken into account.

  6. Single-channel measurements of an N-acetylneuraminic acid-inducible outer membrane channel in Escherichia coli

    PubMed Central

    Giri, Janhavi; Tang, John M.; Wirth, Christophe; Peneff, Caroline M.

    2012-01-01

    NanC is an Escherichia coli outer membrane protein involved in sialic acid (Neu5Ac, i.e., N-acetylneuraminic acid) uptake. Expression of the NanC gene is induced and controlled by Neu5Ac. The transport mechanism of Neu5Ac is not known. The structure of NanC was recently solved (PDB code: 2WJQ) and includes a unique arrangement of positively charged (basic) side chains consistent with a role in acidic sugar transport. However, initial functional measurements of NanC failed to find its role in the transport of sialic acids, perhaps because of the ionic conditions used in the experiments. We show here that the ionic conditions generally preferred for measuring the function of outer-membrane porins are not appropriate for NanC. Single channels of NanC at pH 7.0 have: (1) conductance 100 pS to 800 pS in 100 mM KCl to 3 M KCl), (2) anion over cation selectivity (Vreversal = +16 mV in 250 mM KCl || 1 M KCl), and (3) two forms of voltage-dependent gating (channel closures above ±200 mV). Single-channel conductance decreases by 50% when HEPES concentration is increased from 100 μM to 100 mM in 250 mM KCl at pH 7.4, consistent with the two HEPES binding sites observed in the crystal structure. Studying alternative buffers, we find that phosphate interferes with the channel conductance. Single-channel conductance decreases by 19% when phosphate concentration is increased from 0 mM to 5 mM in 250 mM KCl at pH 8.0. Surprisingly, TRIS in the baths reacts with Ag|AgCl electrodes, producing artifacts even when the electrodes are on the far side of agar–KCl bridges. A suitable baseline solution for NanC is 250 mM KCl adjusted to pH 7.0 without buffer. PMID:22246445

  7. Voxel2MCNP: a framework for modeling, simulation and evaluation of radiation transport scenarios for Monte Carlo codes.

    PubMed

    Pölz, Stefan; Laubersheimer, Sven; Eberhardt, Jakob S; Harrendorf, Marco A; Keck, Thomas; Benzler, Andreas; Breustedt, Bastian

    2013-08-21

    The basic idea of Voxel2MCNP is to provide a framework supporting users in modeling radiation transport scenarios using voxel phantoms and other geometric models, generating corresponding input for the Monte Carlo code MCNPX, and evaluating simulation output. Applications at Karlsruhe Institute of Technology are primarily whole and partial body counter calibration and calculation of dose conversion coefficients. A new generic data model describing data related to radiation transport, including phantom and detector geometries and their properties, sources, tallies and materials, has been developed. It is modular and generally independent of the targeted Monte Carlo code. The data model has been implemented as an XML-based file format to facilitate data exchange, and integrated with Voxel2MCNP to provide a common interface for modeling, visualization, and evaluation of data. Also, extensions to allow compatibility with several file formats, such as ENSDF for nuclear structure properties and radioactive decay data, SimpleGeo for solid geometry modeling, ImageJ for voxel lattices, and MCNPX's MCTAL for simulation results have been added. The framework is presented and discussed in this paper and example workflows for body counter calibration and calculation of dose conversion coefficients is given to illustrate its application.

  8. Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas (GPS - TTBP) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chame, Jacqueline

    2011-05-27

    The goal of this project is the development of the Gyrokinetic Toroidal Code (GTC) Framework and its applications to problems related to the physics of turbulence and turbulent transport in tokamaks,. The project involves physics studies, code development, noise effect mitigation, supporting computer science efforts, diagnostics and advanced visualizations, verification and validation. Its main scientific themes are mesoscale dynamics and non-locality effects on transport, the physics of secondary structures such as zonal flows, and strongly coherent wave-particle interaction phenomena at magnetic precession resonances. Special emphasis is placed on the implications of these themes for rho-star and current scalings and formore » the turbulent transport of momentum. GTC-TTBP also explores applications to electron thermal transport, particle transport; ITB formation and cross-cuts such as edge-core coupling, interaction of energetic particles with turbulence and neoclassical tearing mode trigger dynamics. Code development focuses on major initiatives in the development of full-f formulations and the capacity to simulate flux-driven transport. In addition to the full-f -formulation, the project includes the development of numerical collision models and methods for coarse graining in phase space. Verification is pursued by linear stability study comparisons with the FULL and HD7 codes and by benchmarking with the GKV, GYSELA and other gyrokinetic simulation codes. Validation of gyrokinetic models of ion and electron thermal transport is pursed by systematic stressing comparisons with fluctuation and transport data from the DIII-D and NSTX tokamaks. The physics and code development research programs are supported by complementary efforts in computer sciences, high performance computing, and data management.« less

  9. 76 FR 21425 - Montreal, Maine & Atlantic Railway, Ltd.-Abandonment Exemption-in Aroostook County, ME

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. AB 1043 (Sub-No. 2X)] Montreal, Maine & Atlantic Railway, Ltd.--Abandonment Exemption-- in Aroostook County, ME On March 28, 2011... Van Buren, Aroostook County, Me. The line traverses United States Postal Service Zip Code 04785. In...

  10. 49 CFR 176.176 - Signals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Signals. 176.176 Section 176.176 Transportation... Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.176 Signals. When... exhibit the following signals: (a) By day, flag “B” (Bravo) of the international code of signals; and (b...

  11. 49 CFR 176.176 - Signals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Signals. 176.176 Section 176.176 Transportation... Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.176 Signals. When... exhibit the following signals: (a) By day, flag “B” (Bravo) of the international code of signals; and (b...

  12. 49 CFR 172.604 - Emergency response telephone number.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Emergency response telephone number. 172.604... telephone number. (a) A person who offers a hazardous material for transportation must provide an emergency response telephone number, including the area code, for use in the event of an emergency involving the...

  13. 49 CFR 176.176 - Signals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Signals. 176.176 Section 176.176 Transportation... Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.176 Signals. When... exhibit the following signals: (a) By day, flag “B” (Bravo) of the international code of signals; and (b...

  14. 49 CFR 176.176 - Signals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Signals. 176.176 Section 176.176 Transportation... Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.176 Signals. When... exhibit the following signals: (a) By day, flag “B” (Bravo) of the international code of signals; and (b...

  15. 49 CFR 176.176 - Signals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Signals. 176.176 Section 176.176 Transportation... Class 1 (Explosive) Materials Handling Class 1 (explosive) Materials in Port § 176.176 Signals. When... exhibit the following signals: (a) By day, flag “B” (Bravo) of the international code of signals; and (b...

  16. Overview of Recent Radiation Transport Code Comparisons for Space Applications

    NASA Astrophysics Data System (ADS)

    Townsend, Lawrence

    Recent advances in radiation transport code development for space applications have resulted in various comparisons of code predictions for a variety of scenarios and codes. Comparisons among both Monte Carlo and deterministic codes have been made and published by vari-ous groups and collaborations, including comparisons involving, but not limited to HZETRN, HETC-HEDS, FLUKA, GEANT, PHITS, and MCNPX. In this work, an overview of recent code prediction inter-comparisons, including comparisons to available experimental data, is presented and discussed, with emphases on those areas of agreement and disagreement among the various code predictions and published data.

  17. A comparative study of space radiation organ doses and associated cancer risks using PHITS and HZETRN.

    PubMed

    Bahadori, Amir A; Sato, Tatsuhiko; Slaba, Tony C; Shavers, Mark R; Semones, Edward J; Van Baalen, Mary; Bolch, Wesley E

    2013-10-21

    NASA currently uses one-dimensional deterministic transport to generate values of the organ dose equivalent needed to calculate stochastic radiation risk following crew space exposures. In this study, organ absorbed doses and dose equivalents are calculated for 50th percentile male and female astronaut phantoms using both the NASA High Charge and Energy Transport Code to perform one-dimensional deterministic transport and the Particle and Heavy Ion Transport Code System to perform three-dimensional Monte Carlo transport. Two measures of radiation risk, effective dose and risk of exposure-induced death (REID) are calculated using the organ dose equivalents resulting from the two methods of radiation transport. For the space radiation environments and simplified shielding configurations considered, small differences (<8%) in the effective dose and REID are found. However, for the galactic cosmic ray (GCR) boundary condition, compensating errors are observed, indicating that comparisons between the integral measurements of complex radiation environments and code calculations can be misleading. Code-to-code benchmarks allow for the comparison of differential quantities, such as secondary particle differential fluence, to provide insight into differences observed in integral quantities for particular components of the GCR spectrum.

  18. A comparative study of space radiation organ doses and associated cancer risks using PHITS and HZETRN

    NASA Astrophysics Data System (ADS)

    Bahadori, Amir A.; Sato, Tatsuhiko; Slaba, Tony C.; Shavers, Mark R.; Semones, Edward J.; Van Baalen, Mary; Bolch, Wesley E.

    2013-10-01

    NASA currently uses one-dimensional deterministic transport to generate values of the organ dose equivalent needed to calculate stochastic radiation risk following crew space exposures. In this study, organ absorbed doses and dose equivalents are calculated for 50th percentile male and female astronaut phantoms using both the NASA High Charge and Energy Transport Code to perform one-dimensional deterministic transport and the Particle and Heavy Ion Transport Code System to perform three-dimensional Monte Carlo transport. Two measures of radiation risk, effective dose and risk of exposure-induced death (REID) are calculated using the organ dose equivalents resulting from the two methods of radiation transport. For the space radiation environments and simplified shielding configurations considered, small differences (<8%) in the effective dose and REID are found. However, for the galactic cosmic ray (GCR) boundary condition, compensating errors are observed, indicating that comparisons between the integral measurements of complex radiation environments and code calculations can be misleading. Code-to-code benchmarks allow for the comparison of differential quantities, such as secondary particle differential fluence, to provide insight into differences observed in integral quantities for particular components of the GCR spectrum.

  19. Analytical three-dimensional neutron transport benchmarks for verification of nuclear engineering codes. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganapol, B.D.; Kornreich, D.E.

    Because of the requirement of accountability and quality control in the scientific world, a demand for high-quality analytical benchmark calculations has arisen in the neutron transport community. The intent of these benchmarks is to provide a numerical standard to which production neutron transport codes may be compared in order to verify proper operation. The overall investigation as modified in the second year renewal application includes the following three primary tasks. Task 1 on two dimensional neutron transport is divided into (a) single medium searchlight problem (SLP) and (b) two-adjacent half-space SLP. Task 2 on three-dimensional neutron transport covers (a) pointmore » source in arbitrary geometry, (b) single medium SLP, and (c) two-adjacent half-space SLP. Task 3 on code verification, includes deterministic and probabilistic codes. The primary aim of the proposed investigation was to provide a suite of comprehensive two- and three-dimensional analytical benchmarks for neutron transport theory applications. This objective has been achieved. The suite of benchmarks in infinite media and the three-dimensional SLP are a relatively comprehensive set of one-group benchmarks for isotropically scattering media. Because of time and resource limitations, the extensions of the benchmarks to include multi-group and anisotropic scattering are not included here. Presently, however, enormous advances in the solution for the planar Green`s function in an anisotropically scattering medium have been made and will eventually be implemented in the two- and three-dimensional solutions considered under this grant. Of particular note in this work are the numerical results for the three-dimensional SLP, which have never before been presented. The results presented were made possible only because of the tremendous advances in computing power that have occurred during the past decade.« less

  20. Radiation shielding quality assurance

    NASA Astrophysics Data System (ADS)

    Um, Dallsun

    For the radiation shielding quality assurance, the validity and reliability of the neutron transport code MCNP, which is now one of the most widely used radiation shielding analysis codes, were checked with lot of benchmark experiments. And also as a practical example, follows were performed in this thesis. One integral neutron transport experiment to measure the effect of neutron streaming in iron and void was performed with Dog-Legged Void Assembly in Knolls Atomic Power Laboratory in 1991. Neutron flux was measured six different places with the methane detectors and a BF-3 detector. The main purpose of the measurements was to provide benchmark against which various neutron transport calculation tools could be compared. Those data were used in verification of Monte Carlo Neutron & Photon Transport Code, MCNP, with the modeling for that. Experimental results and calculation results were compared in both ways, as the total integrated value of neutron fluxes along neutron energy range from 10 KeV to 2 MeV and as the neutron spectrum along with neutron energy range. Both results are well matched with the statistical error +/-20%. MCNP results were also compared with those of TORT, a three dimensional discrete ordinates code which was developed by Oak Ridge National Laboratory. MCNP results are superior to the TORT results at all detector places except one. This means that MCNP is proved as a very powerful tool for the analysis of neutron transport through iron & air and further it could be used as a powerful tool for the radiation shielding analysis. For one application of the analysis of variance (ANOVA) to neutron and gamma transport problems, uncertainties for the calculated values of critical K were evaluated as in the ANOVA on statistical data.

  1. Tough2{_}MP: A parallel version of TOUGH2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Keni; Wu, Yu-Shu; Ding, Chris

    2003-04-09

    TOUGH2{_}MP is a massively parallel version of TOUGH2. It was developed for running on distributed-memory parallel computers to simulate large simulation problems that may not be solved by the standard, single-CPU TOUGH2 code. The new code implements an efficient massively parallel scheme, while preserving the full capacity and flexibility of the original TOUGH2 code. The new software uses the METIS software package for grid partitioning and AZTEC software package for linear-equation solving. The standard message-passing interface is adopted for communication among processors. Numerical performance of the current version code has been tested on CRAY-T3E and IBM RS/6000 SP platforms. Inmore » addition, the parallel code has been successfully applied to real field problems of multi-million-cell simulations for three-dimensional multiphase and multicomponent fluid and heat flow, as well as solute transport. In this paper, we will review the development of the TOUGH2{_}MP, and discuss the basic features, modules, and their applications.« less

  2. Transport calculations and accelerator experiments needed for radiation risk assessment in space.

    PubMed

    Sihver, Lembit

    2008-01-01

    The major uncertainties on space radiation risk estimates in humans are associated to the poor knowledge of the biological effects of low and high LET radiation, with a smaller contribution coming from the characterization of space radiation field and its primary interactions with the shielding and the human body. However, to decrease the uncertainties on the biological effects and increase the accuracy of the risk coefficients for charged particles radiation, the initial charged-particle spectra from the Galactic Cosmic Rays (GCRs) and the Solar Particle Events (SPEs), and the radiation transport through the shielding material of the space vehicle and the human body, must be better estimated Since it is practically impossible to measure all primary and secondary particles from all possible position-projectile-target-energy combinations needed for a correct risk assessment in space, accurate particle and heavy ion transport codes must be used. These codes are also needed when estimating the risk for radiation induced failures in advanced microelectronics, such as single-event effects, etc., and the efficiency of different shielding materials. It is therefore important that the models and transport codes will be carefully benchmarked and validated to make sure they fulfill preset accuracy criteria, e.g. to be able to predict particle fluence, dose and energy distributions within a certain accuracy. When validating the accuracy of the transport codes, both space and ground based accelerator experiments are needed The efficiency of passive shielding and protection of electronic devices should also be tested in accelerator experiments and compared to simulations using different transport codes. In this paper different multipurpose particle and heavy ion transport codes will be presented, different concepts of shielding and protection discussed, as well as future accelerator experiments needed for testing and validating codes and shielding materials.

  3. Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frambati, S.; Frignani, M.

    2012-07-01

    We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design formore » radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)« less

  4. Radiation Transport Tools for Space Applications: A Review

    NASA Technical Reports Server (NTRS)

    Jun, Insoo; Evans, Robin; Cherng, Michael; Kang, Shawn

    2008-01-01

    This slide presentation contains a brief discussion of nuclear transport codes widely used in the space radiation community for shielding and scientific analyses. Seven radiation transport codes that are addressed. The two general methods (i.e., Monte Carlo Method, and the Deterministic Method) are briefly reviewed.

  5. Energy Levels and Oscillator Strengths for Ne-like Iron Ions

    NASA Astrophysics Data System (ADS)

    Zhong, J. Y.; Zhang, J.; Zhao, G.; Lu, X..

    2004-02-01

    Energy levels and oscillator strengths among the 27 fine-structure levels belonging to the (1s22s2)2p6, 2p53s, 2p53p and 2p53d configurations of neon-like iron ion have been calculated by using three atomic structure codes, RCN/RCG, AUTOSTRUCTURE (AS) and GRASP. The relativistic corrections of the wave functions are taken into account in RCN/RCG calculations. The results well agree with experimental and theoretical data wherever available. Finally the accuracy of three codes was analyzed.

  6. Guidelines for developing vectorizable computer programs

    NASA Technical Reports Server (NTRS)

    Miner, E. W.

    1982-01-01

    Some fundamental principles for developing computer programs which are compatible with array-oriented computers are presented. The emphasis is on basic techniques for structuring computer codes which are applicable in FORTRAN and do not require a special programming language or exact a significant penalty on a scalar computer. Researchers who are using numerical techniques to solve problems in engineering can apply these basic principles and thus develop transportable computer programs (in FORTRAN) which contain much vectorizable code. The vector architecture of the ASC is discussed so that the requirements of array processing can be better appreciated. The "vectorization" of a finite-difference viscous shock-layer code is used as an example to illustrate the benefits and some of the difficulties involved. Increases in computing speed with vectorization are illustrated with results from the viscous shock-layer code and from a finite-element shock tube code. The applicability of these principles was substantiated through running programs on other computers with array-associated computing characteristics, such as the Hewlett-Packard (H-P) 1000-F.

  7. Development of a new EMP code at LANL

    NASA Astrophysics Data System (ADS)

    Colman, J. J.; Roussel-Dupré, R. A.; Symbalisty, E. M.; Triplett, L. A.; Travis, B. J.

    2006-05-01

    A new code for modeling the generation of an electromagnetic pulse (EMP) by a nuclear explosion in the atmosphere is being developed. The source of the EMP is the Compton current produced by the prompt radiation (γ-rays, X-rays, and neutrons) of the detonation. As a first step in building a multi- dimensional EMP code we have written three kinetic codes, Plume, Swarm, and Rad. Plume models the transport of energetic electrons in air. The Plume code solves the relativistic Fokker-Planck equation over a specified energy range that can include ~ 3 keV to 50 MeV and computes the resulting electron distribution function at each cell in a two dimensional spatial grid. The energetic electrons are allowed to transport, scatter, and experience Coulombic drag. Swarm models the transport of lower energy electrons in air, spanning 0.005 eV to 30 keV. The swarm code performs a full 2-D solution to the Boltzmann equation for electrons in the presence of an applied electric field. Over this energy range the relevant processes to be tracked are elastic scattering, three body attachment, two body attachment, rotational excitation, vibrational excitation, electronic excitation, and ionization. All of these occur due to collisions between the electrons and neutral bodies in air. The Rad code solves the full radiation transfer equation in the energy range of 1 keV to 100 MeV. It includes effects of photo-absorption, Compton scattering, and pair-production. All of these codes employ a spherical coordinate system in momentum space and a cylindrical coordinate system in configuration space. The "z" axis of the momentum and configuration spaces is assumed to be parallel and we are currently also assuming complete spatial symmetry around the "z" axis. Benchmarking for each of these codes will be discussed as well as the way forward towards an integrated modern EMP code.

  8. Diagnosing somatisation disorder (P75) in routine general practice using the International Classification of Primary Care.

    PubMed

    Schaefert, Rainer; Laux, Gunter; Kaufmann, Claudia; Schellberg, Dieter; Bölter, Regine; Szecsenyi, Joachim; Sauer, Nina; Herzog, Wolfgang; Kuehlein, Thomas

    2010-09-01

    (i) To analyze general practitioners' diagnosis of somatisation disorder (P75) using the International Classification of Primary Care (ICPC)-2-E in routine general practice. (ii) To validate the distinctiveness of the ICD-10 to ICPC-2 conversion rule which maps ICD-10 dissociative/conversion disorder (F44) as well as half of the somatoform categories (F45.0-2) to P75 and codes the other half of these disorders (F45.3-9), including autonomic organ dysfunctions and pain syndromes, as symptom diagnoses plus a psychosocial code in a multiaxial manner. Cross-sectional analysis of routine data from a German research database comprising the electronic patient records of 32 general practitioners from 22 practices. For each P75 patient, control subjects matched for age, gender, and practice were selected from the 2007 yearly contact group (YCG) without a P75 diagnosis using a propensity-score algorithm that resulted in eight controls per P75 patient. Of the 49,423 patients in the YCG, P75 was diagnosed in 0.6% (302) and F45.3-9 in 1.8% (883) of cases; overall, somatisation syndromes were diagnosed in 2.4% of patients. The P75 coding pattern coincided with typical characteristics of severe, persistent medically unexplained symptoms (MUS). F45.3-9 was found to indicate moderate MUS that otherwise showed little clinical difference from P75. Pain syndromes exhibited an unspecific coding pattern. Mild and moderate MUS were predominantly recorded as symptom diagnoses. Psychosocial codes were rarely documented. ICPC-2 P75 was mainly diagnosed in cases of severe MUS. Multiaxial coding appears to be too complicated for routine primary care. Instead of splitting P75 and F45.3-9 diagnoses, it is proposed that the whole MUS spectrum should be conceptualized as a continuum model comprising categorizations of uncomplicated (mild) and complicated (moderate and severe) courses. Psychosocial factors require more attention. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  9. Fuego/Scefire MPMD Coupling L2 Milestone Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Flint; Tencer, John; Pautz, Shawn D.

    2017-09-01

    This milestone campaign was focused on coupling Sandia physics codes SIERRA low Mach module Fuego and RAMSES Boltzmann transport code Sceptre(Scefire). Fuego enables simulation of low Mach, turbulent, reacting, particle laden flows on unstructured meshes using CVFEM for abnormal thermal environments throughout SNL and the larger national security community. Sceptre provides simulation for photon, neutron, and charged particle transport on unstructured meshes using Discontinuous Galerkin for radiation effects calculations at SNL and elsewhere. Coupling these ”best of breed” codes enables efficient modeling of thermal/fluid environments with radiation transport, including fires (pool, propellant, composite) as well as those with directed radiantmore » fluxes. We seek to improve the experience of Fuego users who require radiation transport capabilities in two ways. The first is performance. We achieve this through leveraging additional computational resources for Scefire, reducing calculation times while leaving unaffected resources for fluid physics. This approach is new to Fuego, which previously utilized the same resources for both fluid and radiation solutions. The second improvement enables new radiation capabilities, including spectral (banded) radiation, beam boundary sources, and alternate radiation solvers (i.e. Pn). This summary provides an overview of these achievements.« less

  10. DIAPHANE: A portable radiation transport library for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Reed, Darren S.; Dykes, Tim; Cabezón, Rubén; Gheller, Claudio; Mayer, Lucio

    2018-05-01

    One of the most computationally demanding aspects of the hydrodynamical modelingof Astrophysical phenomena is the transport of energy by radiation or relativistic particles. Physical processes involving energy transport are ubiquitous and of capital importance in many scenarios ranging from planet formation to cosmic structure evolution, including explosive events like core collapse supernova or gamma-ray bursts. Moreover, the ability to model and hence understand these processes has often been limited by the approximations and incompleteness in the treatment of radiation and relativistic particles. The DIAPHANE project has focused on developing a portable and scalable library that handles the transport of radiation and particles (in particular neutrinos) independently of the underlying hydrodynamic code. In this work, we present the computational framework and the functionalities of the first version of the DIAPHANE library, which has been successfully ported to three different smoothed-particle hydrodynamic codes, GADGET2, GASOLINE and SPHYNX. We also present validation of different modules solving the equations of radiation and neutrino transport using different numerical schemes.

  11. A Cytogenetic Abnormality and Rare Coding Variants Identify ABCA13 as a Candidate Gene in Schizophrenia, Bipolar Disorder, and Depression

    PubMed Central

    Knight, Helen M.; Pickard, Benjamin S.; Maclean, Alan; Malloy, Mary P.; Soares, Dinesh C.; McRae, Allan F.; Condie, Alison; White, Angela; Hawkins, William; McGhee, Kevin; van Beck, Margaret; MacIntyre, Donald J.; Starr, John M.; Deary, Ian J.; Visscher, Peter M.; Porteous, David J.; Cannon, Ronald E.; St Clair, David; Muir, Walter J.; Blackwood, Douglas H.R.

    2009-01-01

    Schizophrenia and bipolar disorder are leading causes of morbidity across all populations, with heritability estimates of ∼80% indicating a substantial genetic component. Population genetics and genome-wide association studies suggest an overlap of genetic risk factors between these illnesses but it is unclear how this genetic component is divided between common gene polymorphisms, rare genomic copy number variants, and rare gene sequence mutations. We report evidence that the lipid transporter gene ABCA13 is a susceptibility factor for both schizophrenia and bipolar disorder. After the initial discovery of its disruption by a chromosome abnormality in a person with schizophrenia, we resequenced ABCA13 exons in 100 cases with schizophrenia and 100 controls. Multiple rare coding variants were identified including one nonsense and nine missense mutations and compound heterozygosity/homozygosity in six cases. Variants were genotyped in additional schizophrenia, bipolar, depression (n > 1600), and control (n > 950) cohorts and the frequency of all rare variants combined was greater than controls in schizophrenia (OR = 1.93, p = 0.0057) and bipolar disorder (OR = 2.71, p = 0.00007). The population attributable risk of these mutations was 2.2% for schizophrenia and 4.0% for bipolar disorder. In a study of 21 families of mutation carriers, we genotyped affected and unaffected relatives and found significant linkage (LOD = 4.3) of rare variants with a phenotype including schizophrenia, bipolar disorder, and major depression. These data identify a candidate gene, highlight the genetic overlap between schizophrenia, bipolar disorder, and depression, and suggest that rare coding variants may contribute significantly to risk of these disorders. PMID:19944402

  12. The appropriateness of emergency medical service responses in the eThekwini district of KwaZulu-Natal, South Africa.

    PubMed

    Newton, P R; Naidoo, R; Brysiewicz, P

    2015-09-19

     Emergency medical services (EMS) are sometimes required to respond to cases that are later found not to be emergencies, resulting in high levels of inappropriate responses. This study evaluated the extent to which this occurs.  All cases dispatched over 72 hours by the eThekwini EMS in Durban, South Africa, were prospectively enrolled in a quantitative descriptive study. Vehicle control forms containing dispatch data were matched and compared with patient report forms containing epidemiological and clinical data to describe the nature and extent of inappropriate responses based on patient need. Data were subjected to simple descriptive analysis, correlations and χ2 testing.  A total of 1 385 cases met the study inclusion criteria. Marked variations existed between dispatch and on-scene priority settings, most notably in the highest priority 'red-code' category, which constituted >56% of cases dispatched yet accounted for <2% at the scene (p<0.001). Conversely, >80% of 'red-code' dispatches required a lower priority response. When comparing resource allocation according to patient interventional needs, >58% of cases required either no intervention or transport only and almost 36% required basic life support intervention only (p<0.001). Moreover, <12% of advanced life support dispatches were for patients found to be 'red code' at the scene.  There is a significant mismatch between the dispatch of EMS resources and actual patient need in the eThekwini district, with significantly high levels of inappropriate emergency responses.

  13. Monitoring Cosmic Radiation Risk: Comparisons between Observations and Predictive Codes for Naval Aviation

    DTIC Science & Technology

    2009-01-01

    proton PARMA PHITS -based Analytical Radiation Model in the Atmosphere PCAIRE Predictive Code for Aircrew Radiation Exposure PHITS Particle and...radiation transport code utilized is called PARMA ( PHITS based Analytical Radiation Model in the Atmosphere) [36]. The particle fluxes calculated from the...same dose equivalent coefficient regulations from the ICRP-60 regulations. As a result, the transport codes utilized by EXPACS ( PHITS ) and CARI-6

  14. Monitoring Cosmic Radiation Risk: Comparisons Between Observations and Predictive Codes for Naval Aviation

    DTIC Science & Technology

    2009-07-05

    proton PARMA PHITS -based Analytical Radiation Model in the Atmosphere PCAIRE Predictive Code for Aircrew Radiation Exposure PHITS Particle and Heavy...transport code utilized is called PARMA ( PHITS based Analytical Radiation Model in the Atmosphere) [36]. The particle fluxes calculated from the input...dose equivalent coefficient regulations from the ICRP-60 regulations. As a result, the transport codes utilized by EXPACS ( PHITS ) and CARI-6 (PARMA

  15. Evaluation of non-coding variation in GLUT1 deficiency.

    PubMed

    Liu, Yu-Chi; Lee, Jia Wei Audrey; Bellows, Susannah T; Damiano, John A; Mullen, Saul A; Berkovic, Samuel F; Bahlo, Melanie; Scheffer, Ingrid E; Hildebrand, Michael S

    2016-12-01

    Loss-of-function mutations in SLC2A1, encoding glucose transporter-1 (GLUT-1), lead to dysfunction of glucose transport across the blood-brain barrier. Ten percent of cases with hypoglycorrhachia (fasting cerebrospinal fluid [CSF] glucose <2.2mmol/L) do not have mutations. We hypothesized that GLUT1 deficiency could be due to non-coding SLC2A1 variants. We performed whole exome sequencing of one proband with a GLUT1 phenotype and hypoglycorrhachia negative for SLC2A1 sequencing and copy number variants. We studied a further 55 patients with different epilepsies and low CSF glucose who did not have exonic mutations or copy number variants. We sequenced non-coding promoter and intronic regions. We performed mRNA studies for the recurrent intronic variant. The proband had a de novo splice site mutation five base pairs from the intron-exon boundary. Three of 55 patients had deep intronic SLC2A1 variants, including a recurrent variant in two. The recurrent variant produced less SLC2A1 mRNA transcript. Fasting CSF glucose levels show an age-dependent correlation, which makes the definition of hypoglycorrhachia challenging. Low CSF glucose levels may be associated with pathogenic SLC2A1 mutations including deep intronic SLC2A1 variants. Extending genetic screening to non-coding regions will enable diagnosis of more patients with GLUT1 deficiency, allowing implementation of the ketogenic diet to improve outcomes. © 2016 Mac Keith Press.

  16. Parallelization of a Monte Carlo particle transport simulation code

    NASA Astrophysics Data System (ADS)

    Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.

    2010-05-01

    We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.

  17. 49 CFR 171.25 - Additional requirements for the use of the IMDG Code.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Packages containing primary lithium batteries and cells that are transported in accordance with Special Provision 188 of the IMDG Code must be marked “PRIMARY LITHIUM BATTERIES—FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT” or “LITHIUM METAL BATTERIES—FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT.” This...

  18. 77 FR 18716 - Transportation Security Administration Postal Zip Code Change; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... organizational changes and it has no substantive effect on the public. DATES: Effective March 28, 2012. FOR... No. 1572-9] Transportation Security Administration Postal Zip Code Change; Technical Amendment AGENCY: Transportation Security Administration, DHS. ACTION: Final rule. SUMMARY: This rule is a technical change to...

  19. Performance of a Bounce-Averaged Global Model of Super-Thermal Electron Transport in the Earth's Magnetic Field

    NASA Technical Reports Server (NTRS)

    McGuire, Tim

    1998-01-01

    In this paper, we report the results of our recent research on the application of a multiprocessor Cray T916 supercomputer in modeling super-thermal electron transport in the earth's magnetic field. In general, this mathematical model requires numerical solution of a system of partial differential equations. The code we use for this model is moderately vectorized. By using Amdahl's Law for vector processors, it can be verified that the code is about 60% vectorized on a Cray computer. Speedup factors on the order of 2.5 were obtained compared to the unvectorized code. In the following sections, we discuss the methodology of improving the code. In addition to our goal of optimizing the code for solution on the Cray computer, we had the goal of scalability in mind. Scalability combines the concepts of portabilty with near-linear speedup. Specifically, a scalable program is one whose performance is portable across many different architectures with differing numbers of processors for many different problem sizes. Though we have access to a Cray at this time, the goal was to also have code which would run well on a variety of architectures.

  20. Not just a rural occurrence: differences in agricultural equipment crash characteristics by rural-urban crash site and proximity to town.

    PubMed

    Harland, Karisa K; Greenan, Mitchell; Ramirez, Marizen

    2014-09-01

    Although approximately one-third of agricultural equipment-related crashes occur near town, these crashes are thought to be a rural problem. This analysis examines differences between agricultural equipment-related crashes by their urban-rural distribution and distance from a town. Agricultural equipment crashes were collected from nine Midwest Departments of Transportation (2005-2008). Crash zip code was assigned as urban or rural (large, small and isolated) using Rural-Urban Commuting Areas. Crash proximity to a town was estimated with ArcGIS. Multivariable logistic regression was used to estimate the odds of crashing in an urban versus rural zip codes and across rural gradients. ANOVA analysis estimated mean distance (miles) from a crash site to a town. Over four years, 4444 crashes involved agricultural equipment. About 30% of crashes occurred in urban zip codes. Urban crashes were more likely to be non-collisions (aOR=1.69[1.24-2.30]), involve ≥2 vehicles (2 vehicles: aOR=1.58[1.14-2.20], 3+ vehicles: aOR=1.68[0.98-2.88]), occur in a town (aOR=2.06[1.73-2.45]) and within one mile of a town (aOR=1.65[1.40-1.95]) than rural crashes. The proportion of crashes within a town differed significantly across rural gradients (P<0.0001). Small rural crashes, compared to isolated rural crashes, were 1.98 (95%CI[1.28-3.06]) times more likely to be non-collisions. The distance from the crash to town differed significantly by the urban-rural distribution (P<0.0001). Crashes with agricultural equipment are unexpectedly common in urban areas and near towns and cities. Education among all roadway users, increased visibility of agricultural equipment and the development of complete rural roads are needed to increase road safety and prevent agricultural equipment-related crashes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Comparison of a 3-D multi-group SN particle transport code with Monte Carlo for intracavitary brachytherapy of the cervix uteri.

    PubMed

    Gifford, Kent A; Wareing, Todd A; Failla, Gregory; Horton, John L; Eifel, Patricia J; Mourtada, Firas

    2009-12-03

    A patient dose distribution was calculated by a 3D multi-group S N particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs-137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi-group S N particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within +/- 3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than +/- 1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs-137 CT-based patient geometry. Our data showed that a three-group cross-section set is adequate for Cs-137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations.

  2. Comparison of a 3D multi‐group SN particle transport code with Monte Carlo for intercavitary brachytherapy of the cervix uteri

    PubMed Central

    Wareing, Todd A.; Failla, Gregory; Horton, John L.; Eifel, Patricia J.; Mourtada, Firas

    2009-01-01

    A patient dose distribution was calculated by a 3D multi‐group SN particle transport code for intracavitary brachytherapy of the cervix uteri and compared to previously published Monte Carlo results. A Cs‐137 LDR intracavitary brachytherapy CT data set was chosen from our clinical database. MCNPX version 2.5.c, was used to calculate the dose distribution. A 3D multi‐group SN particle transport code, Attila version 6.1.1 was used to simulate the same patient. Each patient applicator was built in SolidWorks, a mechanical design package, and then assembled with a coordinate transformation and rotation for the patient. The SolidWorks exported applicator geometry was imported into Attila for calculation. Dose matrices were overlaid on the patient CT data set. Dose volume histograms and point doses were compared. The MCNPX calculation required 14.8 hours, whereas the Attila calculation required 22.2 minutes on a 1.8 GHz AMD Opteron CPU. Agreement between Attila and MCNPX dose calculations at the ICRU 38 points was within ±3%. Calculated doses to the 2 cc and 5 cc volumes of highest dose differed by not more than ±1.1% between the two codes. Dose and DVH overlays agreed well qualitatively. Attila can calculate dose accurately and efficiently for this Cs‐137 CT‐based patient geometry. Our data showed that a three‐group cross‐section set is adequate for Cs‐137 computations. Future work is aimed at implementing an optimized version of Attila for radiotherapy calculations. PACS number: 87.53.Jw

  3. Error-correcting codes on scale-free networks

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hoon; Ko, Young-Jo

    2004-06-01

    We investigate the potential of scale-free networks as error-correcting codes. We find that irregular low-density parity-check codes with the highest performance known to date have degree distributions well fitted by a power-law function p (k) ˜ k-γ with γ close to 2, which suggests that codes built on scale-free networks with appropriate power exponents can be good error-correcting codes, with a performance possibly approaching the Shannon limit. We demonstrate for an erasure channel that codes with a power-law degree distribution of the form p (k) = C (k+α)-γ , with k⩾2 and suitable selection of the parameters α and γ , indeed have very good error-correction capabilities.

  4. Atmospheric pressure fluctuations in the far infrasound range and emergency transport events coded as circulatory system diseases.

    PubMed

    Didyk, L A; Gorgo, Yu P; Dirckx, J J J; Bogdanov, V B; Buytaert, J A N; Lysenko, V A; Didyk, N P; Vershygora, A V; Erygina, V T

    2008-09-01

    This study examines whether a relation exists between rapid atmospheric pressure fluctuations, attributed to the far infrasound frequency range (APF), and a number of emergency transport events coded as circulatory system diseases (EEC). Over an entire year, the average integral amplitudes of APF in the range of periods from 3 s to 120 s over each hour (HA) were measured. Daily dynamics of HA averaged over the year revealed a wave shape with smooth increase from night to day followed by decrease from day to night. The total daily number of EEC within the city of Kiev, Ukraine, was related to the daily mean of HA (DHA) and to the ratio of HA averaged over the day time to HA averaged over the night time (Rdn), and was checked for confounding effects of classical meteorological variables through non-parametric regression algorithms. The number of EEC were significantly higher on days with high DHA (3.72-11.07 Pa, n = 87) compared to the low DHA (0.7-3.62 Pa, n = 260, p = 0.01), as well at days with low Rdn (0.21-1.64, n = 229) compared to the high Rdn (1.65-7.2, n = 118, p = 0.03). A difference between DHA and Rdn effects on the emergency events related to different categories of circulatory diseases points to a higher sensitivity of rheumatic and cerebro-vascular diseases to DHA, and ischaemic and hypertensive diseases to Rdn. Results suggest that APF could be considered as a meteorotropic factor capable of influencing circulatory system diseases.

  5. Atmospheric pressure fluctuations in the far infrasound range and emergency transport events coded as circulatory system diseases

    NASA Astrophysics Data System (ADS)

    Didyk, L. A.; Gorgo, Yu. P.; Dirckx, J. J. J.; Bogdanov, V. B.; Buytaert, J. A. N.; Lysenko, V. A.; Didyk, N. P.; Vershygora, A. V.; Erygina, V. T.

    2008-09-01

    This study examines whether a relation exists between rapid atmospheric pressure fluctuations, attributed to the far infrasound frequency range (APF), and a number of emergency transport events coded as circulatory system diseases (EEC). Over an entire year, the average integral amplitudes of APF in the range of periods from 3 s to 120 s over each hour (HA) were measured. Daily dynamics of HA averaged over the year revealed a wave shape with smooth increase from night to day followed by decrease from day to night. The total daily number of EEC within the city of Kiev, Ukraine, was related to the daily mean of HA (DHA) and to the ratio of HA averaged over the day time to HA averaged over the night time (Rdn), and was checked for confounding effects of classical meteorological variables through non-parametric regression algorithms. The number of EEC were significantly higher on days with high DHA (3.72 11.07 Pa, n = 87) compared to the low DHA (0.7 3.62 Pa, n = 260, p = 0.01), as well at days with low Rdn (0.21 1.64, n = 229) compared to the high Rdn (1.65 7.2, n = 118, p = 0.03). A difference between DHA and Rdn effects on the emergency events related to different categories of circulatory diseases points to a higher sensitivity of rheumatic and cerebro-vascular diseases to DHA, and ischaemic and hypertensive diseases to Rdn. Results suggest that APF could be considered as a meteorotropic factor capable of influencing circulatory system diseases.

  6. 49 CFR 178.338-16 - Inspection and testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Inspection and testing. 178.338-16 Section 178.338... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.338-16 Inspection and testing... Section VIII of the ASME Code. The welder and the welding procedure must be qualified in accordance with...

  7. MPACT Theory Manual, Version 2.2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downar, Thomas; Collins, Benjamin S.; Gehin, Jess C.

    2016-06-09

    This theory manual describes the three-dimensional (3-D) whole-core, pin-resolved transport calculation methodology employed in the MPACT code. To provide sub-pin level power distributions with sufficient accuracy, MPACT employs the method of characteristics (MOC) solutions in the framework of a 3-D coarse mesh finite difference (CMFD) formulation. MPACT provides a 3D MOC solution, but also a 2D/1D solution in which the 2D planar solution is provided by MOC and the axial coupling is resolved by one-dimensional (1-D) lower order (diffusion or P3) solutions. In Chapter 2 of the manual, the MOC methodology is described for calculating the regional angular and scalarmore » fluxes from the Boltzmann transport equation. In Chapter 3, the 2D/1D methodology is described, together with the description of the CMFD iteration process involving dynamic homogenization and solution of the multigroup CMFD linear system. A description of the MPACT depletion algorithm is given in Chapter 4, followed by a discussion of the subgroup and ESSM resonance processing methods in Chapter 5. The final Chapter 6 describes a simplified thermal hydraulics model in MPACT.« less

  8. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  9. Structure and variation of three canine genes involved in serotonin binding and transport: the serotonin receptor 1A gene (htr1A), serotonin receptor 2A gene (htr2A), and serotonin transporter gene (slc6A4).

    PubMed

    van den Berg, L; Kwant, L; Hestand, M S; van Oost, B A; Leegwater, P A J

    2005-01-01

    Aggressive behavior is the most frequently encountered behavioral problem in dogs. Abnormalities in brain serotonin metabolism have been described in aggressive dogs. We studied canine serotonergic genes to investigate genetic factors underlying canine aggression. Here, we describe the characterization of three genes of the canine serotonergic system: the serotonin receptor 1A and 2A gene (htr1A and htr2A) and the serotonin transporter gene (slc6A4). We isolated canine bacterial artificial chromosome clones containing these genes and designed oligonucleotides for genomic sequencing of coding regions and intron-exon boundaries. Golden retrievers were analyzed for DNA sequence variations. We found two nonsynonymous single nucleotide polymorphisms (SNPs) in the coding sequence of htr1A; one SNP close to a splice site in htr2A; and two SNPs in slc6A4, one in the coding sequence and one close to a splice site. In addition, we identified a polymorphic microsatellite marker for each gene. Htr1A is a strong candidate for involvement in the domestication of the dog. We genotyped the htr1A SNPs in 41 dogs of seven breeds with diverse behavioral characteristics. At least three SNP haplotypes were found. Our results do not support involvement of the gene in domestication.

  10. pH-sensitive interaction of HMG-CoA reductase inhibitors (statins) with organic anion transporting polypeptide 2B1.

    PubMed

    Varma, Manthena V; Rotter, Charles J; Chupka, Jonathan; Whalen, Kevin M; Duignan, David B; Feng, Bo; Litchfield, John; Goosen, Theunis C; El-Kattan, Ayman F

    2011-08-01

    The human organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) is ubiquitously expressed and may play an important role in the disposition of xenobiotics. The present study aimed to examine the role of OATP2B1 in the intestinal absorption and tissue uptake of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase inhibitors (statins). We first investigated the functional affinity of statins to the transporter as a function of extracellular pH, using OATP2B1-transfeced HEK293 cells. The results indicate that OATP2B1-mediated transport is significant for rosuvastatin, fluvastatin and atorvastatin, at neutral pH. However, OATP2B1 showed broader substrate specificity as well as enhanced transporter activity at acidic pH. Furthermore, uptake at acidic pH was diminished in the presence of proton ionophore, suggesting proton gradient as the driving force for OATP2B1 activity. Notably, passive transport rates are predominant or comparable to active transport rates for statins, except for rosuvastatin and fluvastatin. Second, we studied the effect of OATP modulators on statin uptake. At pH 6.0, OATP2B1-mediated transport of atorvastatin and cerivastatin was not inhibitable, while rosuvastatin transport was inhibited by E-3-S, rifamycin SV and cyclosporine with IC(50) values of 19.7 ± 3.3 μM, 0.53 ± 0.2 μM and 2.2 ± 0.4 μM, respectively. Rifamycin SV inhibited OATP2B1-mediated transport of E-3-S and rosuvastatin with similar IC(50) values at pH 6.0 and 7.4, suggesting that the inhibitor affinity is not pH-dependent. Finally, we noted that OATP2B1-mediated transport of E-3-S, but not rosuvastatin, is pH sensitive in intestinal epithelial (Caco-2) cells. However, uptake of E-3-S and rosuvastatin by Caco-2 cells was diminished in the presence of proton ionophore. The present results indicate that OATP2B1 may be involved in the tissue uptake of rosuvastatin and fluvastatin, while OATP2B1 may play a significant role in the intestinal absorption of several statins due to their transporter affinity at acidic pH.

  11. CRAC2 model description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, L.T.; Alpert, D.J.; Burke, R.P.

    1984-03-01

    The CRAC2 computer code is a revised version of CRAC (Calculation of Reactor Accident Consequences) which was developed for the Reactor Safety Study. This document provides an overview of the CRAC2 code and a description of each of the models used. Significant improvements incorporated into CRAC2 include an improved weather sequence sampling technique, a new evacuation model, and new output capabilities. In addition, refinements have been made to the atmospheric transport and deposition model. Details of the modeling differences between CRAC2 and CRAC are emphasized in the model descriptions.

  12. High-fidelity plasma codes for burn physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooley, James; Graziani, Frank; Marinak, Marty

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental datamore » and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.« less

  13. Solar Proton Transport Within an ICRU Sphere Surrounded by a Complex Shield: Ray-trace Geometry

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Wilson, John W.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z is less than or equal to 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency.

  14. Optimized aerodynamic design process for subsonic transport wing fitted with winglets. [wind tunnel model

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1979-01-01

    The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.

  15. Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool

    NASA Astrophysics Data System (ADS)

    Torlapati, Jagadish; Prabhakar Clement, T.

    2013-01-01

    We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does not require any additional software tools. The code can be easily adapted by others for simulating different types of laboratory-scale reactive transport experiments. We illustrate the capabilities of the tool by solving five benchmark problems with varying levels of reaction complexity. These literature-derived benchmarks are used to highlight the versatility of the code for solving a variety of practical reactive transport problems. The benchmarks are described in detail to provide a comprehensive database, which can be used by model developers to test other numerical codes. The VBA code presented in the study is a practical tool that can be used by laboratory researchers for analyzing both batch and column datasets within an EXCEL platform.

  16. Comparisons of 'Identical' Simulations by the Eulerian Gyrokinetic Codes GS2 and GYRO

    NASA Astrophysics Data System (ADS)

    Bravenec, R. V.; Ross, D. W.; Candy, J.; Dorland, W.; McKee, G. R.

    2003-10-01

    A major goal of the fusion program is to be able to predict tokamak transport from first-principles theory. To this end, the Eulerian gyrokinetic code GS2 was developed years ago and continues to be improved [1]. Recently, the Eulerian code GYRO was developed [2]. These codes are not subject to the statistical noise inherent to particle-in-cell (PIC) codes, and have been very successful in treating electromagnetic fluctuations. GS2 is fully spectral in the radial coordinate while GYRO uses finite-differences and ``banded" spectral schemes. To gain confidence in nonlinear simulations of experiment with these codes, ``apples-to-apples" comparisons (identical profile inputs, flux-tube geometry, two species, etc.) are first performed. We report on a series of linear and nonlinear comparisons (with overall agreement) including kinetic electrons, collisions, and shaped flux surfaces. We also compare nonlinear simulations of a DIII-D discharge to measurements of not only the fluxes but also the turbulence parameters. [1] F. Jenko, et al., Phys. Plasmas 7, 1904 (2000) and refs. therein. [2] J. Candy, J. Comput. Phys. 186, 545 (2003).

  17. A 2,4-dichlorophenoxyacetic acid degradation plasmid pM7012 discloses distribution of an unclassified megaplasmid group across bacterial species.

    PubMed

    Sakai, Yoriko; Ogawa, Naoto; Shimomura, Yumi; Fujii, Takeshi

    2014-03-01

    Analysis of the complete nucleotide sequence of plasmid pM7012 from 2,4-dichlorophenoxyacetic-acid (2,4-D)-degrading bacterium Burkholderia sp. M701 revealed that the plasmid had 582 142 bp, with 541 putative protein-coding sequences and 39 putative tRNA genes for the transport of the standard 20 aa. pM7012 contains sequences homologous to the regions involved in conjugal transfer and plasmid maintenance found in plasmids byi_2p from Burkholderia sp. YI23 and pBVIE01 from Burkholderia sp. G4. No relaxase gene was found in any of these plasmids, although genes for a type IV secretion system and type IV coupling proteins were identified. Plasmids with no relaxase gene have been classified as non-mobile plasmids. However, nucleotide sequences with a high level of similarity to the genes for plasmid transfer, plasmid maintenance, 2,4-D degradation and arsenic resistance contained on pM7012 were also detected in eight other megaplasmids (~600 or 900 kb) found in seven Burkholderia strains and a strain of Cupriavidus, which were isolated as 2,4-D-degrading bacteria in Japan and the United States. These results suggested that the 2,4-D degradation megaplasmids related to pM7012 are mobile and distributed across various bacterial species worldwide, and that the plasmid group could be distinguished from known mobile plasmid groups.

  18. Plasma Interactions with Mixed Materials and Impurity Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rognlien, T. D.; Beiersdorfer, Peter; Chernov, A.

    2016-10-28

    The project brings together three discipline areas at LLNL to develop advanced capability to predict the impact of plasma/material interactions (PMI) on metallic surfaces in magnetic fusion energy (MFE) devices. These areas are (1) modeling transport of wall impurity ions through the edge plasma to the core plasma, (2) construction of a laser blow-off (LBO) system for injecting precise amounts of metallic atoms into a tokamak plasma, and (3) material science analysis of fundamental processes that modify metallic surfaces during plasma bombardment. The focus is on tungsten (W), which is being used for the ITER divertor and in designs ofmore » future MFE devices. In area (1), we have worked with the University of California, San Diego (UCSD) on applications of the UEDGE/DUSTT coupled codes to predict the influx of impurity ions from W dust through the edge plasma, including periodic edge-plasma oscillations, and revived a parallel version of UEDGE to speed up these simulations. In addition, the impurity transport model in the 2D UEDGE code has been implemented into the 3D BOUT++ turbulence/transport code to allow fundamental analysis of the impact of strong plasma turbulence on the impurity transport. In area (2), construction and testing of the LBO injection system has been completed. The original plan to install the LBO on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton and its use to validate the impurity transport simulations is delayed owing to NSTX-U being offline for substantial magnetic coil repair period. In area (3), an analytic model has been developed to explain the growth of W tendrils (or fuzz) observed for helium-containing plasmas. Molecular dynamics calculations of W sputtering by W and deuterium (D) ions shows that a spatial blending of interatomic potentials is needed to describe the near-surface and deeper regions of the material.« less

  19. Thermal hydraulic-severe accident code interfaces for SCDAP/RELAP5/MOD3.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coryell, E.W.; Siefken, L.J.; Harvego, E.A.

    1997-07-01

    The SCDAP/RELAP5 computer code is designed to describe the overall reactor coolant system thermal-hydraulic response, core damage progression, and fission product release during severe accidents. The code is being developed at the Idaho National Engineering Laboratory under the primary sponsorship of the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission. The code is the result of merging the RELAP5, SCDAP, and COUPLE codes. The RELAP5 portion of the code calculates the overall reactor coolant system, thermal-hydraulics, and associated reactor system responses. The SCDAP portion of the code describes the response of the core and associated vessel structures.more » The COUPLE portion of the code describes response of lower plenum structures and debris and the failure of the lower head. The code uses a modular approach with the overall structure, input/output processing, and data structures following the pattern established for RELAP5. The code uses a building block approach to allow the code user to easily represent a wide variety of systems and conditions through a powerful input processor. The user can represent a wide variety of experiments or reactor designs by selecting fuel rods and other assembly structures from a range of representative core component models, and arrange them in a variety of patterns within the thermalhydraulic network. The COUPLE portion of the code uses two-dimensional representations of the lower plenum structures and debris beds. The flow of information between the different portions of the code occurs at each system level time step advancement. The RELAP5 portion of the code describes the fluid transport around the system. These fluid conditions are used as thermal and mass transport boundary conditions for the SCDAP and COUPLE structures and debris beds.« less

  20. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions.

    PubMed

    Zanin, Laura; Venuti, Silvia; Zamboni, Anita; Varanini, Zeno; Tomasi, Nicola; Pinton, Roberto

    2017-02-13

    Under limited iron (Fe) availability maize, a Strategy II plant, improves Fe acquisition through the release of phytosiderophores (PS) into the rhizosphere and the subsequent uptake of Fe-PS complexes into root cells. Occurrence of Strategy-I-like components and interactions with phosphorous (P) nutrition has been hypothesized based on molecular and physiological studies in grasses. In this report transcriptomic analysis (NimbleGen microarray) of Fe deficiency response revealed that maize roots modulated the expression levels of 724 genes (508 up- and 216 down-regulated, respectively). As expected, roots of Fe-deficient maize plants overexpressed genes involved in the synthesis and release of 2'-deoxymugineic acid (the main PS released by maize roots). A strong modulation of genes involved in regulatory aspects, Fe translocation, root morphological modification, primary metabolic pathways and hormonal metabolism was induced by the nutritional stress. Genes encoding transporters for Fe 2+ (ZmNRAMP1) and P (ZmPHT1;7 and ZmPHO1) were also up-regulated under Fe deficiency. Fe-deficient maize plants accumulated higher amounts of P than the Fe-sufficient ones, both in roots and shoots. The supply of 1 μM 59 Fe, as soluble (Fe-Citrate and Fe-PS) or sparingly soluble (Ferrihydrite) sources to deficient plants, caused a rapid down-regulation of genes coding for PS and Fe(III)-PS transport, as well as of ZmNRAMP1 and ZmPHT1;7. Levels of 32 P absorption essentially followed the rates of 59 Fe uptake in Fe-deficient plants during Fe resupply, suggesting that P accumulation might be regulated by Fe uptake in maize plants. The transcriptional response to Fe-deficiency in maize roots confirmed the modulation of known genes involved in the Strategy II and revealed the presence of Strategy I components usually described in dicots. Moreover, data here presented provide evidence of a close relationship between two essential nutrients for plants, Fe and P, and highlight a key role played by Fe and P transporters to preserve the homeostasis of these two nutrients in maize plants.

  1. Tobacco outlet density and converted versus native non-daily cigarette use in a national US sample

    PubMed Central

    Kirchner, Thomas R; Anesetti-Rothermel, Andrew; Bennett, Morgane; Gao, Hong; Carlos, Heather; Scheuermann, Taneisha S; Reitzel, Lorraine R; Ahluwalia, Jasjit S

    2017-01-01

    Objective Investigate whether non-daily smokers’ (NDS) cigarette price and purchase preferences, recent cessation attempts, and current intentions to quit are associated with the density of the retail cigarette product landscape surrounding their residential address. Participants Cross-sectional assessment of N=904 converted NDS (CNDS). who previously smoked every day, and N=297 native NDS (NNDS) who only smoked non-daily, drawn from a national panel. Outcome measures Kernel density estimation was used to generate a nationwide probability surface of tobacco outlets linked to participants’ residential ZIP code. Hierarchically nested log-linear models were compared to evaluate associations between outlet density, non-daily use patterns, price sensitivity and quit intentions. Results Overall, NDS in ZIP codes with greater outlet density were less likely than NDS in ZIP codes with lower outlet density to hold 6-month quit intentions when they also reported that price affected use patterns (G2=66.1, p<0.001) and purchase locations (G2=85.2, p<0.001). CNDS were more likely than NNDS to reside in ZIP codes with higher outlet density (G2=322.0, p<0.001). Compared with CNDS in ZIP codes with lower outlet density, CNDS in high-density ZIP codes were more likely to report that price influenced the amount they smoke (G2=43.9, p<0.001), and were more likely to look for better prices (G2=59.3, p<0.001). NDS residing in high-density ZIP codes were not more likely to report that price affected their cigarette brand choice compared with those in ZIP codes with lower density. Conclusions This paper provides initial evidence that the point-of-sale cigarette environment may be differentially associated with the maintenance of CNDS versus NNDS patterns. Future research should investigate how tobacco control efforts can be optimised to both promote cessation and curb the rising tide of non-daily smoking in the USA. PMID:26969172

  2. Comparison of FDNS liquid rocket engine plume computations with SPF/2

    NASA Technical Reports Server (NTRS)

    Kumar, G. N.; Griffith, D. O., II; Warsi, S. A.; Seaford, C. M.

    1993-01-01

    Prediction of a plume's shape and structure is essential to the evaluation of base region environments. The JANNAF standard plume flowfield analysis code SPF/2 predicts plumes well, but cannot analyze base regions. Full Navier-Stokes CFD codes can calculate both zones; however, before they can be used, they must be validated. The CFD code FDNS3D (Finite Difference Navier-Stokes Solver) was used to analyze the single plume of a Space Transportation Main Engine (STME) and comparisons were made with SPF/2 computations. Both frozen and finite rate chemistry models were employed as well as two turbulence models in SPF/2. The results indicate that FDNS3D plume computations agree well with SPF/2 predictions for liquid rocket engine plumes.

  3. Reassessment of the transport mechanism of the human zinc transporter SLC39A2.

    PubMed

    Franz, Marie Christine; Pujol-Gimenez, Jonai; Montalbetti, Nicolas; Fernandez-Tenorio, Miguel; DeGrado, Timothy R; Niggli, Ernst; Romero, Michael F; Hediger, Matthias A

    2018-05-23

    The human zinc transporter SLC39A2, also known as ZIP2, was shown to mediate zinc transport that could be inhibited at pH values below 7.0 and stimulated by HCO3-, suggesting a Zn2+/HCO3- cotransport mechanism (1). In contrast, recent experiments in our laboratory indicated that the functional activity of ZIP2 increases at acidic pH (2). The present study was therefore designed to reexamine the findings on the pH-dependence and to extend the functional characterization of ZIP2. Our current results show that ZIP2-mediated transport is modulated by extracellular pH, but independent of the H+ driving force. Also, in our experiments, ZIP2-mediated transport is not modulated by extracellular HCO3-. Moreover, high extracellular [K+], which induces depolarization, inhibited ZIP2-mediated transport, indicating that the transport mechanism is voltage-dependent. We also show that ZIP2-mediates the uptake of Cd2+ (Km~ 1.57 µM) in a pH-dependent manner (KH+ of ~66 nM). Cd2+ transport is inhibited by extracellular [Zn2+] (IC50~ 0.32 µM), [Cu2+] (IC50~ 1.81 µM) and to a lower extend by [Co2+], but not by [Mn2+] or [Ba2+]. Fe2+ is not transported by ZIP2. Accordingly, the substrate selectivity of ZIP2 decreases in the order Zn2+ > Cd2+ ≥ Cu2+ > Co2+. Altogether, we propose that ZIP2 is a facilitated divalent metal ion transporter that can be modulated by extracellular pH and membrane potential. Given that ZIP2 expression has been reported in acidic environments (3-5), we suggest that the herein described H+-mediated regulatory mechanism might be important to determine the velocity and direction of the transport process.

  4. Calculations of the energy levels and oscillator strengths of the Ne-like Fe Ion (Fe XVII)

    NASA Astrophysics Data System (ADS)

    Zhong, Jia-yong; Zhang, Jie; Zhao, Gang; Lu, Xin

    Energy levels and oscillator strengths among the 27 fine-structure levels belonging to the (ls 22s 2)2p 6, 2p 53s, 2p 53p and 2p 53d configurations of the neon-like iron ion have been calculated using three atomic structure codes RCN/RCG, AUTOSTRUCTURE (AS) and GRASP. Relativistic corrections of the wave functions are taken into account in the RCN/RCG calculation. The results agree well with the available experimental and theoretical data. The accuracy of the three codes is analysed.

  5. Multiple component codes based generalized LDPC codes for high-speed optical transport.

    PubMed

    Djordjevic, Ivan B; Wang, Ting

    2014-07-14

    A class of generalized low-density parity-check (GLDPC) codes suitable for optical communications is proposed, which consists of multiple local codes. It is shown that Hamming, BCH, and Reed-Muller codes can be used as local codes, and that the maximum a posteriori probability (MAP) decoding of these local codes by Ashikhmin-Lytsin algorithm is feasible in terms of complexity and performance. We demonstrate that record coding gains can be obtained from properly designed GLDPC codes, derived from multiple component codes. We then show that several recently proposed classes of LDPC codes such as convolutional and spatially-coupled codes can be described using the concept of GLDPC coding, which indicates that the GLDPC coding can be used as a unified platform for advanced FEC enabling ultra-high speed optical transport. The proposed class of GLDPC codes is also suitable for code-rate adaption, to adjust the error correction strength depending on the optical channel conditions.

  6. Quantum Mechanical Modeling of Ballistic MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The objective of this project was to develop theory, approximations, and computer code to model quasi 1D structures such as nanotubes, DNA, and MOSFETs: (1) Nanotubes: Influence of defects on ballistic transport, electro-mechanical properties, and metal-nanotube coupling; (2) DNA: Model electron transfer (biochemistry) and transport experiments, and sequence dependence of conductance; and (3) MOSFETs: 2D doping profiles, polysilicon depletion, source to drain and gate tunneling, understand ballistic limit.

  7. [In vitro absorption mechanism of strychnine and the transport interaction with liquiritin in Caco-2 cell monolayer model].

    PubMed

    Wang, Jun-jun; Liao, Xiao-huan; Ye, Min; Chen, Yong

    2010-09-01

    To study the effect of liquiritin (Liq) on the transport of strychnine (Str) in Caco-2 cell monolayer model, the transport parameters of Str, such as apparent permeability coefficient (P app (B-->A) and P app (A-->B)) and cumulative transport amount (TRcum), were determined and comparatively analyzed when Str was used solely and co-used with Liq. The effect of drug concentrations, conveying times, P-glycoprotein (P-gp) inhibitor verapamil and conveying liquor pH values on the transport of Str were also investigated. The results indicated that the absorption of Str in Caco-2 cell monolayer model was well and the passive transference was the main intestinal absorption mechanism of Str in the Caco-2 monolayer model, along with the excretion action mediated by P-gp. Liq enhanced the absorption of Str. Meanwhile, conveying liquor pH value had significant influence on the excretion transport of Str.

  8. Development of a new version of the Vehicle Protection Factor Code (VPF3)

    NASA Astrophysics Data System (ADS)

    Jamieson, Terrance J.

    1990-10-01

    The Vehicle Protection Factor (VPF) Code is an engineering tool for estimating radiation protection afforded by armoured vehicles and other structures exposed to neutron and gamma ray radiation from fission, thermonuclear, and fusion sources. A number of suggestions for modifications have been offered by users of early versions of the code. These include: implementing some of the more advanced features of the air transport rating code, ATR5, used to perform the air over ground radiation transport analyses; allowing the ability to study specific vehicle orientations within the free field; implementing an adjoint transport scheme to reduce the number of transport runs required; investigating the possibility of accelerating the transport scheme; and upgrading the computer automated design (CAD) package used by VPF. The generation of radiation free field fluences for infinite air geometries as required for aircraft analysis can be accomplished by using ATR with the air over ground correction factors disabled. Analysis of the effects of fallout bearing debris clouds on aircraft will require additional modelling of VPF.

  9. Understanding Local Spatial Variation Along the Care Continuum: The Potential Impact of Transportation Vulnerability on HIV Linkage to Care and Viral Suppression in High-Poverty Areas, Atlanta, Georgia.

    PubMed

    Goswami, Neela D; Schmitz, Michelle M; Sanchez, Travis; Dasgupta, Sharoda; Sullivan, Patrick; Cooper, Hannah; Rane, Deepali; Kelly, Jane; Del Rio, Carlos; Waller, Lance A

    2016-05-01

    Engagement in care is central to reducing mortality for HIV-infected persons and achieving the White House National AIDS Strategy of 80% viral suppression in the US by 2020. Where an HIV-infected person lives impacts his or her ability to achieve viral suppression. Reliable transportation access for healthcare may be a key determinant of this place-suppression relationship. ZIP code tabulation areas (ZCTAs) were the units of analysis. We used geospatial and ecologic analyses to examine spatial distributions of neighborhood-level variables (eg, transportation accessibility) and associations with: (1) community linkage to care, and (2) community viral suppression. Among Atlanta ZCTAs with data for newly diagnosed HIV cases (2006-2010), we used Moran I to evaluate spatial clustering and linear regression models to evaluate associations between neighborhood variables and outcomes. In 100 ZCTAs with 8413 newly diagnosed HIV-positive residents, a median of 60 HIV cases were diagnosed per ZCTA during the 5-year period. We found significant clustering of ZCTAs with low linkage to care and viral suppression (Moran I = 0.218, P < 0.05). In high-poverty ZCTAs, a 10% point increase in ZCTA-level household vehicle ownership was associated with a 4% point increase in linkage to care (P = 0.02, R = 0.16). In low-poverty ZCTAs, a 10% point increase in ZCTA-level household vehicle ownership was associated with a 30% point increase in ZCTA-level viral suppression (P = 0.01, R = 0.08). Correlations between transportation variables and community-level care linkage and viral suppression vary by area poverty level and provide opportunities for interventions beyond individual-level factors.

  10. Three-Dimensional, Primitive-Variable Model for Solid-Fuel Ramjet Combustion.

    DTIC Science & Technology

    1984-02-01

    INITIAL DISTRIBUTION LIST ,jo. of Copies 1. Library, Code 0212 2 Dean of Research, Code 012 2 Naval Postgraduate School Monterey, CA 93943 2...Dunlap I G. Jensen I P. Willoughby I P. LaForce 7. Chemical Propulsion Information Agency 2 APL-JHU Johns Hopkins Road Laurel, MD 20810 8. AFAPL 2 Wright-Patterson AFB, OH 45433 R. 0. Stull 19

  11. Groundwater transport of crater-lake brine at Poa´s Volcano, Costa Rica

    USGS Publications Warehouse

    Sanford, Ward E.; Konikow, Leonard F.; Rowe, Gary L.; Brantley, Susan L.

    1995-01-01

    Poa´s Volcano is an active stratovolcano in Costa Rica that has a lake in its active crater. The crater lake has high temperatures (50–90 °C), high acidity (pH ≈ 0.0), and a high dissolved-solids content (100 g/kg). The volcano has numerous freshwater springs on its flanks, but a few on the northwestern flank are highly acidic (pH = 1.6–2.5) and have high dissolved-solids concentrations (2–22 g/kg). This study analyzes the regional groundwater system at Poa´s and demonstrates the likelihood that the water discharging from the acidic springs in the Rio Agrio watershed originates at the acidic crater lake. Both heat and solute transport are analyzed on a regional scale through numerical simulations using the HST3D finite-difference model, which solves the coupled equations for fluid flow, heat transport, and solute transport. The code allows fluid viscosity and density to be functions of both temperature and solute concentration. The simulations use estimates for recharge to the mountain and a range of values and various distributions of permeability and porosity. Several sensitivity analyses are performed to test how the uncertainty in many of the model parameters affects the simulation results. These uncertainties yield an estimated range of travel times from the crater lake to the Rio Agrio springs of 1–30 years, which is in close agreement with the results of tritium analyses of the springs. Calculated groundwater fluxes into and out of the crater lake are both about several hundred kg/s. These fluxes must be accounted for in water budgets of the crater lake.

  12. A Monte Carlo Code for Relativistic Radiation Transport Around Kerr Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy David; Krolik, Julian H.

    2013-01-01

    We present a new code for radiation transport around Kerr black holes, including arbitrary emission and absorption mechanisms, as well as electron scattering and polarization. The code is particularly useful for analyzing accretion flows made up of optically thick disks and optically thin coronae. We give a detailed description of the methods employed in the code and also present results from a number of numerical tests to assess its accuracy and convergence.

  13. Multiprocessing MCNP on an IBN RS/6000 cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinney, G.W.; West, J.T.

    1993-01-01

    The advent of high-performance computer systems has brought to maturity programming concepts like vectorization, multiprocessing, and multitasking. While there are many schools of thought as to the most significant factor in obtaining order-of-magnitude increases in performance, such speedup can only be achieved by integrating the computer system and application code. Vectorization leads to faster manipulation of arrays by overlapping instruction CPU cycles. Discrete ordinates codes, which require the solving of large matrices, have proved to be major benefactors of vectorization. Monte Carlo transport, on the other hand, typically contains numerous logic statements and requires extensive redevelopment to benefit from vectorization.more » Multiprocessing and multitasking provide additional CPU cycles via multiple processors. Such systems are generally designed with either common memory access (multitasking) or distributed memory access. In both cases, theoretical speedup, as a function of the number of processors P and the fraction f of task time that multiprocesses, can be formulated using Amdahl's law: S(f, P) =1/(1-f+f/P). However, for most applications, this theoretical limit cannot be achieved because of additional terms (e.g., multitasking overhead, memory overlap, etc.) that are not included in Amdahl's law. Monte Carlo transport is a natural candidate for multiprocessing because the particle tracks are generally independent, and the precision of the result increases as the square Foot of the number of particles tracked.« less

  14. Multiprocessing MCNP on an IBM RS/6000 cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinney, G.W.; West, J.T.

    1993-03-01

    The advent of high-performance computer systems has brought to maturity programming concepts like vectorization, multiprocessing, and multitasking. While there are many schools of thought as to the most significant factor in obtaining order-of-magnitude increases in performance, such speedup can only be achieved by integrating the computer system and application code. Vectorization leads to faster manipulation of arrays by overlapping instruction CPU cycles. Discrete ordinates codes, which require the solving of large matrices, have proved to be major benefactors of vectorization. Monte Carlo transport, on the other hand, typically contains numerous logic statements and requires extensive redevelopment to benefit from vectorization.more » Multiprocessing and multitasking provide additional CPU cycles via multiple processors. Such systems are generally designed with either common memory access (multitasking) or distributed memory access. In both cases, theoretical speedup, as a function of the number of processors (P) and the fraction of task time that multiprocesses (f), can be formulated using Amdahl`s Law S ((f,P) = 1 f + f/P). However, for most applications this theoretical limit cannot be achieved, due to additional terms not included in Amdahl`s Law. Monte Carlo transport is a natural candidate for multiprocessing, since the particle tracks are generally independent and the precision of the result increases as the square root of the number of particles tracked.« less

  15. Benchmarking of Neutron Production of Heavy-Ion Transport Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models andmore » codes and additional benchmarking are required.« less

  16. Benchmarking of Heavy Ion Transport Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in designing and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models andmore » codes and additional benchmarking are required.« less

  17. Treating voxel geometries in radiation protection dosimetry with a patched version of the Monte Carlo codes MCNP and MCNPX.

    PubMed

    Burn, K W; Daffara, C; Gualdrini, G; Pierantoni, M; Ferrari, P

    2007-01-01

    The question of Monte Carlo simulation of radiation transport in voxel geometries is addressed. Patched versions of the MCNP and MCNPX codes are developed aimed at transporting radiation both in the standard geometry mode and in the voxel geometry treatment. The patched code reads an unformatted FORTRAN file derived from DICOM format data and uses special subroutines to handle voxel-to-voxel radiation transport. The various phases of the development of the methodology are discussed together with the new input options. Examples are given of employment of the code in internal and external dosimetry and comparisons with results from other groups are reported.

  18. Racial/ethnic disparities in emergency department waiting time for stroke patients in the United States.

    PubMed

    Karve, Sudeep J; Balkrishnan, Rajesh; Mohammad, Yousef M; Levine, Deborah A

    2011-01-01

    Emergency department waiting time (EDWT), the time from arrival at the ED to evaluation by an emergency physician, is a critical component of acute stroke care. We assessed racial/ethnic differences in EDWT in a national sample of patients with ischemic or hemorrhagic stroke. We identified 543 ED visits for ischemic stroke (International Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM] codes 433.x1, 434.xx, and 436.xx) and hemorrhagic stroke (ICD-9-CM codes 430.xx, 431.xx, and 432.xx) in persons age ≥ 18 years representing 2.1 million stroke-related ED visits in the United States using the National Hospital Ambulatory Medical Care Survey for years 1997-2000 and 2003-2005. Using linear regression (outcome, log-transformed EDWT) and logistic regression (outcome, EDWT > 10 minutes, based on National Institute of Neurological Disorders and Stroke guidelines), we adjusted associations between EDWT and race/ethnicity (non-Hispanic whites [designated whites herein], non-Hispanic blacks [blacks], and Hispanics) for age, sex, region, mode of transportation, insurance, hospital characteristics, triage status, hospital admission, stroke type, and survey year. Compared with whites, blacks had a longer EDWT in univariate analysis (67% longer, P = .03) and multivariate analysis (62% longer, P = .03), but Hispanics had a similar EDWT in both univariate analysis (31% longer, P = .65) and multivariate analysis (5% longer, P = .91). Longer EDWT was also seen with nonambulance mode of arrival, urban hospitals, or nonemergency triage. Race was significantly associated with EDWT > 10 minutes (whites, 55% [referent]; blacks, 70% [P = .03]; Hispanics, 62% [P = .53]). These differences persisted after adjustment (blacks: odds ratio [OR] = 2.08, 95% confidence interval [CI] = 1.05-4.09; Hispanics: OR = 1.07, 95% CI = 0.52-2.22). Blacks, but not Hispanics, had significantly longer EDWT than whites. The longer EDWT in black stroke patients may lead to treatment delays and sub-optimal stroke care. Published by Elsevier Inc.

  19. Exploring a QoS Driven Scheduling Approach for Peer-to-Peer Live Streaming Systems with Network Coding

    PubMed Central

    Cui, Laizhong; Lu, Nan; Chen, Fu

    2014-01-01

    Most large-scale peer-to-peer (P2P) live streaming systems use mesh to organize peers and leverage pull scheduling to transmit packets for providing robustness in dynamic environment. The pull scheduling brings large packet delay. Network coding makes the push scheduling feasible in mesh P2P live streaming and improves the efficiency. However, it may also introduce some extra delays and coding computational overhead. To improve the packet delay, streaming quality, and coding overhead, in this paper are as follows. we propose a QoS driven push scheduling approach. The main contributions of this paper are: (i) We introduce a new network coding method to increase the content diversity and reduce the complexity of scheduling; (ii) we formulate the push scheduling as an optimization problem and transform it to a min-cost flow problem for solving it in polynomial time; (iii) we propose a push scheduling algorithm to reduce the coding overhead and do extensive experiments to validate the effectiveness of our approach. Compared with previous approaches, the simulation results demonstrate that packet delay, continuity index, and coding ratio of our system can be significantly improved, especially in dynamic environments. PMID:25114968

  20. Development of Parallel Computing Framework to Enhance Radiation Transport Code Capabilities for Rare Isotope Beam Facility Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostin, Mikhail; Mokhov, Nikolai; Niita, Koji

    A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA andmore » MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.« less

  1. Comparison of fluence-to-dose conversion coefficients for deuterons, tritons and helions.

    PubMed

    Copeland, Kyle; Friedberg, Wallace; Sato, Tatsuhiko; Niita, Koji

    2012-02-01

    Secondary radiation in aircraft and spacecraft includes deuterons, tritons and helions. Two sets of fluence-to-effective dose conversion coefficients for isotropic exposure to these particles were compared: one used the particle and heavy ion transport code system (PHITS) radiation transport code coupled with the International Commission on Radiological Protection (ICRP) reference phantoms (PHITS-ICRP) and the other the Monte Carlo N-Particle eXtended (MCNPX) radiation transport code coupled with modified BodyBuilder™ phantoms (MCNPX-BB). Also, two sets of fluence-to-effective dose equivalent conversion coefficients calculated using the PHITS-ICRP combination were compared: one used quality factors based on linear energy transfer; the other used quality factors based on lineal energy (y). Finally, PHITS-ICRP effective dose coefficients were compared with PHITS-ICRP effective dose equivalent coefficients. The PHITS-ICRP and MCNPX-BB effective dose coefficients were similar, except at high energies, where MCNPX-BB coefficients were higher. For helions, at most energies effective dose coefficients were much greater than effective dose equivalent coefficients. For deuterons and tritons, coefficients were similar when their radiation weighting factor was set to 2.

  2. TREM2 is associated with increased risk for Alzheimer's disease in African Americans.

    PubMed

    Jin, Sheng Chih; Carrasquillo, Minerva M; Benitez, Bruno A; Skorupa, Tara; Carrell, David; Patel, Dwani; Lincoln, Sarah; Krishnan, Siddharth; Kachadoorian, Michaela; Reitz, Christiane; Mayeux, Richard; Wingo, Thomas S; Lah, James J; Levey, Allan I; Murrell, Jill; Hendrie, Hugh; Foroud, Tatiana; Graff-Radford, Neill R; Goate, Alison M; Cruchaga, Carlos; Ertekin-Taner, Nilüfer

    2015-04-10

    TREM2 encodes for triggering receptor expressed on myeloid cells 2 and has rare, coding variants that associate with risk for late-onset Alzheimer's disease (LOAD) in Caucasians of European and North-American origin. This study evaluated the role of TREM2 in LOAD risk in African-American (AA) subjects. We performed exonic sequencing and validation in two independent cohorts of >800 subjects. We selected six coding variants (p.R47H, p.R62H, p.D87N, p.E151K, p.W191X, and p.L211P) for case-control analyses in a total of 906 LOAD cases vs. 2,487 controls. We identified significant LOAD risk association with p.L211P (p=0.01, OR=1.27, 95%CI=1.05-1.54) and suggestive association with p.W191X (p=0.08, OR=1.35, 95%CI=0.97-1.87). Conditional analysis suggests that p.L211P, which is in linkage disequilibrium with p.W191X, may be the stronger variant of the two, but does not rule out independent contribution of the latter. TREM2 p.L211P resides within the cytoplasmic domain and p.W191X is a stop-gain mutation within the shorter TREM-2V transcript. The coding variants within the extracellular domain of TREM2 previously shown to confer LOAD risk in Caucasians were extremely rare in our AA cohort and did not associate with LOAD risk. Our findings suggest that TREM2 coding variants also confer LOAD risk in AA, but implicate variants within different regions of the gene than those identified for Caucasian subjects. These results underscore the importance of investigating different ethnic populations for disease risk variant discovery, which may uncover allelic heterogeneity with potentially diverse mechanisms of action.

  3. Diffusive deposition of aerosols in Phebus containment during FPT-2 test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontautas, A.; Urbonavicius, E.

    2012-07-01

    At present the lumped-parameter codes is the main tool to investigate the complex response of the containment of Nuclear Power Plant in case of an accident. Continuous development and validation of the codes is required to perform realistic investigation of the processes that determine the possible source term of radioactive products to the environment. Validation of the codes is based on the comparison of the calculated results with the measurements performed in experimental facilities. The most extensive experimental program to investigate fission product release from the molten fuel, transport through the cooling circuit and deposition in the containment is performedmore » in PHEBUS test facility. Test FPT-2 performed in this facility is considered for analysis of processes taking place in containment. Earlier performed investigations using COCOSYS code showed that the code could be successfully used for analysis of thermal-hydraulic processes and deposition of aerosols, but there was also noticed that diffusive deposition on the vertical walls does not fit well with the measured results. In the CPA module of ASTEC code there is implemented different model for diffusive deposition, therefore the PHEBUS containment model was transferred from COCOSYS code to ASTEC-CPA to investigate the influence of the diffusive deposition modelling. Analysis was performed using PHEBUS containment model of 16 nodes. The calculated thermal-hydraulic parameters are in good agreement with measured results, which gives basis for realistic simulation of aerosol transport and deposition processes. Performed investigations showed that diffusive deposition model has influence on the aerosol deposition distribution on different surfaces in the test facility. (authors)« less

  4. Extreme Physics

    NASA Astrophysics Data System (ADS)

    Colvin, Jeff; Larsen, Jon

    2013-11-01

    Acknowledgements; 1. Extreme environments: what, where, how; 2. Properties of dense and classical plasmas; 3. Laser energy absorption in matter; 4. Hydrodynamic motion; 5. Shocks; 6. Equation of state; 7. Ionization; 8. Thermal energy transport; 9. Radiation energy transport; 10. Magnetohydrodynamics; 11. Considerations for constructing radiation-hydrodynamics computer codes; 12. Numerical simulations; Appendix: units and constants, glossary of symbols; References; Bibliography; Index.

  5. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells

    PubMed Central

    Lara, Flavio Alves; Pohl, Paula C.; Gandara, Ana Caroline; Ferreira, Jessica da Silva; Nascimento-Silva, Maria Clara; Bechara, Gervásio Henrique; Sorgine, Marcos H. F.; Almeida, Igor C.; Vaz, Itabajara da Silva; Oliveira, Pedro L.

    2015-01-01

    In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus) microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA), a well-known inhibitor of ATP binding cassette (ABC) transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may represent a new molecular mechanism of resistance to pesticides. PMID:26258982

  6. Numerical Analysis of 2-D and 3-D MHD Flows Relevant to Fusion Applications

    DOE PAGES

    Khodak, Andrei

    2017-08-21

    Here, the analysis of many fusion applications such as liquid-metal blankets requires application of computational fluid dynamics (CFD) methods for electrically conductive liquids in geometrically complex regions and in the presence of a strong magnetic field. A current state of the art general purpose CFD code allows modeling of the flow in complex geometric regions, with simultaneous conjugated heat transfer analysis in liquid and surrounding solid parts. Together with a magnetohydrodynamics (MHD) capability, the general purpose CFD code will be a valuable tool for the design and optimization of fusion devices. This paper describes an introduction of MHD capability intomore » the general purpose CFD code CFX, part of the ANSYS Workbench. The code was adapted for MHD problems using a magnetic induction approach. CFX allows introduction of user-defined variables using transport or Poisson equations. For MHD adaptation of the code three additional transport equations were introduced for the components of the magnetic field, in addition to the Poisson equation for electric potential. The Lorentz force is included in the momentum transport equation as a source term. Fusion applications usually involve very strong magnetic fields, with values of the Hartmann number of up to tens of thousands. In this situation a system of MHD equations become very rigid with very large source terms and very strong variable gradients. To increase system robustness, special measures were introduced during the iterative convergence process, such as linearization using source coefficient for momentum equations. The MHD implementation in general purpose CFD code was tested against benchmarks, specifically selected for liquid-metal blanket applications. Results of numerical simulations using present implementation closely match analytical solutions for a Hartmann number of up to 1500 for a 2-D laminar flow in the duct of square cross section, with conducting and nonconducting walls. Results for a 3-D test case are also included.« less

  7. Numerical Analysis of 2-D and 3-D MHD Flows Relevant to Fusion Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodak, Andrei

    Here, the analysis of many fusion applications such as liquid-metal blankets requires application of computational fluid dynamics (CFD) methods for electrically conductive liquids in geometrically complex regions and in the presence of a strong magnetic field. A current state of the art general purpose CFD code allows modeling of the flow in complex geometric regions, with simultaneous conjugated heat transfer analysis in liquid and surrounding solid parts. Together with a magnetohydrodynamics (MHD) capability, the general purpose CFD code will be a valuable tool for the design and optimization of fusion devices. This paper describes an introduction of MHD capability intomore » the general purpose CFD code CFX, part of the ANSYS Workbench. The code was adapted for MHD problems using a magnetic induction approach. CFX allows introduction of user-defined variables using transport or Poisson equations. For MHD adaptation of the code three additional transport equations were introduced for the components of the magnetic field, in addition to the Poisson equation for electric potential. The Lorentz force is included in the momentum transport equation as a source term. Fusion applications usually involve very strong magnetic fields, with values of the Hartmann number of up to tens of thousands. In this situation a system of MHD equations become very rigid with very large source terms and very strong variable gradients. To increase system robustness, special measures were introduced during the iterative convergence process, such as linearization using source coefficient for momentum equations. The MHD implementation in general purpose CFD code was tested against benchmarks, specifically selected for liquid-metal blanket applications. Results of numerical simulations using present implementation closely match analytical solutions for a Hartmann number of up to 1500 for a 2-D laminar flow in the duct of square cross section, with conducting and nonconducting walls. Results for a 3-D test case are also included.« less

  8. A Benchmarking Initiative for Reactive Transport Modeling Applied to Subsurface Environmental Applications

    NASA Astrophysics Data System (ADS)

    Steefel, C. I.

    2015-12-01

    Over the last 20 years, we have seen the evolution of multicomponent reactive transport modeling and the expanding range and increasing complexity of subsurface environmental applications it is being used to address. Reactive transport modeling is being asked to provide accurate assessments of engineering performance and risk for important issues with far-reaching consequences. As a result, the complexity and detail of subsurface processes, properties, and conditions that can be simulated have significantly expanded. Closed form solutions are necessary and useful, but limited to situations that are far simpler than typical applications that combine many physical and chemical processes, in many cases in coupled form. In the absence of closed form and yet realistic solutions for complex applications, numerical benchmark problems with an accepted set of results will be indispensable to qualifying codes for various environmental applications. The intent of this benchmarking exercise, now underway for more than five years, is to develop and publish a set of well-described benchmark problems that can be used to demonstrate simulator conformance with norms established by the subsurface science and engineering community. The objective is not to verify this or that specific code--the reactive transport codes play a supporting role in this regard—but rather to use the codes to verify that a common solution of the problem can be achieved. Thus, the objective of each of the manuscripts is to present an environmentally-relevant benchmark problem that tests the conceptual model capabilities, numerical implementation, process coupling, and accuracy. The benchmark problems developed to date include 1) microbially-mediated reactions, 2) isotopes, 3) multi-component diffusion, 4) uranium fate and transport, 5) metal mobility in mining affected systems, and 6) waste repositories and related aspects.

  9. STELLTRANS: A Transport Analysis Suite for Stellarators

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Joseph; Lazerson, Samuel; Pablant, Novimir; Weir, Gavin; W7-X Team

    2016-10-01

    The stellarator transport code STELLTRANS allows us to better analyze the power balance in W7-X. Although profiles of temperature and density are measured experimentally, geometrical factors are needed in conjunction with these measurements to properly analyze heat flux densities in stellarators. The STELLTRANS code interfaces with VMEC to find an equilibrium flux surface configuration and with TRAVIS to determine the RF heating and current drive in the plasma. Stationary transport equations are then considered which are solved using a boundary value differential equation solver. The equations and quantities considered are averaged over flux surfaces to reduce the system to an essentially one dimensional problem. We have applied this code to data from W-7X and were able to calculate the heat flux coefficients. We will also present extensions of the code to a predictive capacity which would utilize DKES to find neoclassical transport coefficients to update the temperature and density profiles.

  10. Reducing time delays in the management of ischemic stroke patients in Northern Italy.

    PubMed

    Vidale, Simone; Arnaboldi, Marco; Bezzi, Giacomo; Bono, Giorgio; Grampa, Giampiero; Guidotti, Mario; Perrone, Patrizia; Salmaggi, Andrea; Zarcone, Davide; Zoli, Alberto; Agostoni, Elio

    2016-07-15

    Thrombolysis represents the best therapy for ischemic stroke but the main limitation of its administration is time. The avoidable delay is a concept reflecting the effectiveness of management pathway. For this reason, we projected a study concerning the detection of main delays with following introduction of corrective factors. In this paper we describe the results after these corrections. Consecutive patients admitted for ischemic stroke during a 3-months period to 35 hospitals of a macro-area of Northern Italy were enrolled. Each time of management was registered, identifying three main intervals: pre-hospital, in-hospital and total times. Previous corrective interventions were: 1.increasing of population awareness to use the Emergency Medical Service (EMS); 2.pre-notification of Emergency Department; 3.use of high urgency codes; 4.use of standardised operational algorithm. Statistical analysis was conducted using time-to-event analysis and Cox proportional hazard regression. 1084 patients were enrolled. EMS was alerted for 56.3% of subjects, mainly in females and severe strokes (p<0.001). Thrombolytic treatment was performed in 4.7% of patients. Median pre-hospital and in-hospital times were 113 and 105min, while total time was 240. High urgency codes at transport contributed to reduce pre-hospital and in-hospital time (p<0.05). EMS use and high urgency codes promoted thrombolysis. Treatment within 4.5hours from symptom onset was performed in 14% of patients more than the first phase of study. The implementation of an organizational system based on EMS and concomitant high urgency codes use was effective to reduce avoidable delay and to increase thrombolysis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Mutations in nsP1 and PE2 are critical determinants of Ross River virus-induced musculoskeletal inflammatory disease in a mouse model

    PubMed Central

    Jupille, Henri J.; Oko, Lauren; Stoermer, Kristina A.; Heise, Mark T.; Mahalingam, Suresh; Gunn, Bronwyn M.; Morrison, Thomas E.

    2010-01-01

    The viral determinants of Alphavirus-induced rheumatic disease have not been elucidated. We identified an RRV strain (DC5692) which, in contrast to the T48 strain, does not induce musculoskeletal inflammation in a mouse model of RRV disease. Substitution of the RRV T48 strain nonstructural protein 1 (nsP1) coding sequence with that from strain DC5692 generated a virus that was attenuated in vivo despite similar viral loads in tissues. In contrast, substitution of the T48 PE2 coding region with the PE2 coding region from DC5692 resulted in attenuation in vivo and reduced viral loads in tissues. In gain of virulence experiments, substitution of the DC5692 strain nsP1 and PE2 coding regions with those from the T48 strain was sufficient to restore full virulence to the DC5692 strain. These findings indicate that determinants in both nsP1 and PE2 have critical and distinct roles in the pathogenesis of RRV-induced musculoskeletal inflammatory disease in mice. PMID:21131014

  12. Contextual barriers to lifestyle physical activity interventions in Hong Kong.

    PubMed

    Eves, Frank F; Masters, Rich S W; McManus, Alison; Leung, Moon; Wong, Peggy; White, Mike J

    2008-05-01

    Increased lifestyle physical activity, for instance, use of active transport, is a current public health target. Active transport interventions that target stair climbing are consistently successful in English-speaking populations yet unsuccessful in Hong Kong. We report two further studies on active transport in the Hong Kong Chinese. Pedestrians on a mass transit escalator system (study 1) and in an air-conditioned shopping mall (study 2) were encouraged to take the stairs for their cardiovascular health by point-of-choice prompts. Observers coded sex, age, and walking on the mass transit system, with the additional variables of presence of children and bags coded in the shopping mall. In the first study, a 1-wk baseline was followed by 4 wk of intervention (N = 76,710) whereas in the second study (shopping mall) a 2-wk baseline was followed by a 2-wk intervention period (N = 18,257). A small but significant increase in stair climbing (+0.29%) on the mass transit system contrasted with no significant changes in the shopping mall (+0.09%). The active transport of walking on the mass transit system was reduced at higher rates of humidity and temperature, with steeper slopes for the effects of climate variables in men than in women. These studies confirm that lifestyle physical activity interventions do not have universal application. The context in which the behavior occurs (e.g., climate) may act as a barrier to active transport.

  13. Dynamical coupling between magnetic equilibrium and transport in tokamak scenario modelling, with application to current ramps

    NASA Astrophysics Data System (ADS)

    Fable, E.; Angioni, C.; Ivanov, A. A.; Lackner, K.; Maj, O.; Medvedev, S. Yu; Pautasso, G.; Pereverzev, G. V.; Treutterer, W.; the ASDEX Upgrade Team

    2013-07-01

    The modelling of tokamak scenarios requires the simultaneous solution of both the time evolution of the plasma kinetic profiles and of the magnetic equilibrium. Their dynamical coupling involves additional complications, which are not present when the two physical problems are solved separately. Difficulties arise in maintaining consistency in the time evolution among quantities which appear in both the transport and the Grad-Shafranov equations, specifically the poloidal and toroidal magnetic fluxes as a function of each other and of the geometry. The required consistency can be obtained by means of iteration cycles, which are performed outside the equilibrium code and which can have different convergence properties depending on the chosen numerical scheme. When these external iterations are performed, the stability of the coupled system becomes a concern. In contrast, if these iterations are not performed, the coupled system is numerically stable, but can become physically inconsistent. By employing a novel scheme (Fable E et al 2012 Nucl. Fusion submitted), which ensures stability and physical consistency among the same quantities that appear in both the transport and magnetic equilibrium equations, a newly developed version of the ASTRA transport code (Pereverzev G V et al 1991 IPP Report 5/42), which is coupled to the SPIDER equilibrium code (Ivanov A A et al 2005 32nd EPS Conf. on Plasma Physics (Tarragona, 27 June-1 July) vol 29C (ECA) P-5.063), in both prescribed- and free-boundary modes is presented here for the first time. The ASTRA-SPIDER coupled system is then applied to the specific study of the modelling of controlled current ramp-up in ASDEX Upgrade discharges.

  14. Inner Radiation Belt Representation of the Energetic Electron Environment: Model and Data Synthesis Using the Salammbo Radiation Belt Transport Code and Los Alamos Geosynchronous and GPS Energetic Particle Data

    NASA Technical Reports Server (NTRS)

    Friedel, R. H. W.; Bourdarie, S.; Fennell, J.; Kanekal, S.; Cayton, T. E.

    2004-01-01

    The highly energetic electron environment in the inner magnetosphere (GEO inward) has received a lot of research attention in resent years, as the dynamics of relativistic electron acceleration and transport are not yet fully understood. These electrons can cause deep dielectric charging in any space hardware in the MEO to GEO region. We use a new and novel approach to obtain a global representation of the inner magnetospheric energetic electron environment, which can reproduce the absolute environment (flux) for any spacecraft orbit in that region to within a factor of 2 for the energy range of 100 KeV to 5 MeV electrons, for any levels of magnetospheric activity. We combine the extensive set of inner magnetospheric energetic electron observations available at Los Alamos with the physics based Salammbo transport code, using the data assimilation technique of "nudging". This in effect input in-situ data into the code and allows the diffusion mechanisms in the code to interpolate the data into regions and times of no data availability. We present here details of the methods used, both in the data assimilation process and in the necessary inter-calibration of the input data used. We will present sample runs of the model/data code and compare the results to test spacecraft data not used in the data assimilation process.

  15. Design optimization of beta- and photovoltaic conversion devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichner, R.; Blum, A.; Fischer-Colbrie, E.

    1976-01-08

    This report presents the theoretical and experimental results of an LLL Electronics Engineering research program aimed at optimizing the design and electronic-material parameters of beta- and photovoltaic p-n junction conversion devices. To meet this objective, a comprehensive computer code has been developed that can handle a broad range of practical conditions. The physical model upon which the code is based is described first. Then, an example is given of a set of optimization calculations along with the resulting optimized efficiencies for silicon (Si) and gallium-arsenide (GaAs) devices. The model we have developed, however, is not limited to these materials. Itmore » can handle any appropriate material--single or polycrystalline-- provided energy absorption and electron-transport data are available. To check code validity, the performance of experimental silicon p-n junction devices (produced in-house) were measured under various light intensities and spectra as well as under tritium beta irradiation. The results of these tests were then compared with predicted results based on the known or best estimated device parameters. The comparison showed very good agreement between the calculated and the measured results.« less

  16. Histidine residues in the Na+-coupled ascorbic acid transporter-2 (SVCT2) are central regulators of SVCT2 function, modulating pH sensitivity, transporter kinetics, Na+ cooperativity, conformational stability, and subcellular localization.

    PubMed

    Ormazabal, Valeska; Zuñiga, Felipe A; Escobar, Elizabeth; Aylwin, Carlos; Salas-Burgos, Alexis; Godoy, Alejandro; Reyes, Alejandro M; Vera, Juan Carlos; Rivas, Coralia I

    2010-11-19

    Na(+)-coupled ascorbic acid transporter-2 (SVCT2) activity is impaired at acid pH, but little is known about the molecular determinants that define the transporter pH sensitivity. SVCT2 contains six histidine residues in its primary sequence, three of which are exofacial in the transporter secondary structure model. We used site-directed mutagenesis and treatment with diethylpyrocarbonate to identify histidine residues responsible for SVCT2 pH sensitivity. We conclude that five histidine residues, His(109), His(203), His(206), His(269), and His(413), are central regulators of SVCT2 function, participating to different degrees in modulating pH sensitivity, transporter kinetics, Na(+) cooperativity, conformational stability, and subcellular localization. Our results are compatible with a model in which (i) a single exofacial histidine residue, His(413), localized in the exofacial loop IV that connects transmembrane helices VII-VIII defines the pH sensitivity of SVCT2 through a mechanism involving a marked attenuation of the activation by Na(+) and loss of Na(+) cooperativity, which leads to a decreased V(max) without altering the transport K(m); (ii) exofacial histidine residues His(203), His(206), and His(413) may be involved in maintaining a functional interaction between exofacial loops II and IV and influence the general folding of the transporter; (iii) histidines 203, 206, 269, and 413 affect the transporter kinetics by modulating the apparent transport K(m); and (iv) histidine 109, localized at the center of transmembrane helix I, might be fundamental for the interaction of SVCT2 with the transported substrate ascorbic acid. Thus, histidine residues are central regulators of SVCT2 function.

  17. Electron transport model of dielectric charging

    NASA Technical Reports Server (NTRS)

    Beers, B. L.; Hwang, H. C.; Lin, D. L.; Pine, V. W.

    1979-01-01

    A computer code (SCCPOEM) was assembled to describe the charging of dielectrics due to irradiation by electrons. The primary purpose for developing the code was to make available a convenient tool for studying the internal fields and charge densities in electron-irradiated dielectrics. The code, which is based on the primary electron transport code POEM, is applicable to arbitrary dielectrics, source spectra, and current time histories. The code calculations are illustrated by a series of semianalytical solutions. Calculations to date suggest that the front face electric field is insufficient to cause breakdown, but that bulk breakdown fields can easily be exceeded.

  18. Capabilities overview of the MORET 5 Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Cochet, B.; Jinaphanh, A.; Heulers, L.; Jacquet, O.

    2014-06-01

    The MORET code is a simulation tool that solves the transport equation for neutrons using the Monte Carlo method. It allows users to model complex three-dimensional geometrical configurations, describe the materials, define their own tallies in order to analyse the results. The MORET code has been initially designed to perform calculations for criticality safety assessments. New features has been introduced in the MORET 5 code to expand its use for reactor applications. This paper presents an overview of the MORET 5 code capabilities, going through the description of materials, the geometry modelling, the transport simulation and the definition of the outputs.

  19. Comparative genomics and functional analysis of the NiaP family uncover nicotinate transporters from bacteria, plants, and mammals.

    PubMed

    Jeanguenin, Linda; Lara-Núñez, Aurora; Rodionov, Dmitry A; Osterman, Andrei L; Komarova, Nataliya Y; Rentsch, Doris; Gregory, Jesse F; Hanson, Andrew D

    2012-03-01

    The transporter(s) that mediate uptake of nicotinate and its N-methyl derivative trigonelline are not known in plants, and certain mammalian nicotinate transporters also remain unidentified. Potential candidates for these missing transporters include proteins from the ubiquitous NiaP family. In bacteria, niaP genes often belong to NAD-related regulons, and genetic evidence supports a role for Bacillus subtilis and Acinetobacter baumannii NiaP proteins in uptake of nicotinate or nicotinamide. Other bacterial niaP genes are, however, not in NAD-related regulons but cluster on the chromosome with choline-related (e.g., Ralstonia solanacearum and Burkholderia xenovorans) or thiamin-related (e.g., Thermus thermophilus) genes, implying that they might encode transporters for these compounds. Radiometric uptake assays using Lactococcus lactis cells expressing NiaP proteins showed that B. subtilis, R. solanacearum, and B. xenovorans NiaP transport nicotinate via an energy-dependent mechanism. Likewise, NiaP proteins from maize (GRMZM2G381453, GRMZM2G066801, and GRMZM2G081774), Arabidopsis (At3g13050), and mouse (SVOP) transported nicotinate; the Arabidopsis protein also transported trigonelline. In contrast, T. thermophilus NiaP transported only thiamin. None of the proteins tested transported choline or the thiazole and pyrimidine products of thiamin breakdown. The maize and Arabidopsis NiaP proteins are the first nicotinate transporters reported in plants, the Arabidopsis protein is the first trigonelline transporter, and mouse SVOP appears to represent a novel type of mammalian nicotinate transporter. More generally, these results indicate that specificity for nicotinate is conserved widely, but not absolutely, among pro- and eukaryotic NiaP family proteins.

  20. Geomagnetic Storm Impact On GPS Code Positioning

    NASA Astrophysics Data System (ADS)

    Uray, Fırat; Varlık, Abdullah; Kalaycı, İbrahim; Öǧütcü, Sermet

    2017-04-01

    This paper deals with the geomagnetic storm impact on GPS code processing with using GIPSY/OASIS research software. 12 IGS stations in mid-latitude were chosen to conduct the experiment. These IGS stations were classified as non-cross correlation receiver reporting P1 and P2 (NONCC-P1P2), non-cross correlation receiver reporting C1 and P2 (NONCC-C1P2) and cross-correlation (CC-C1P2) receiver. In order to keep the code processing consistency between the classified receivers, only P2 code observations from the GPS satellites were processed. Four extreme geomagnetic storms October 2003, day of the year (DOY), 29, 30 Halloween Storm, November 2003, DOY 20, November 2004, DOY 08 and four geomagnetic quiet days in 2005 (DOY 92, 98, 99, 100) were chosen for this study. 24-hour rinex data of the IGS stations were processed epoch-by-epoch basis. In this way, receiver clock and Earth Centered Earth Fixed (ECEF) Cartesian Coordinates were solved for a per-epoch basis for each day. IGS combined broadcast ephemeris file (brdc) were used to partly compensate the ionospheric effect on the P2 code observations. There is no tropospheric model was used for the processing. Jet Propulsion Laboratory Application Technology Satellites (JPL ATS) computed coordinates of the stations were taken as true coordinates. The differences of the computed ECEF coordinates and assumed true coordinates were resolved to topocentric coordinates (north, east, up). Root mean square (RMS) errors for each component were calculated for each day. The results show that two-dimensional and vertical accuracy decreases significantly during the geomagnetic storm days comparing with the geomagnetic quiet days. It is observed that vertical accuracy is much more affected than the horizontal accuracy by geomagnetic storm. Up to 50 meters error in vertical component has been observed in geomagnetic storm day. It is also observed that performance of Klobuchar ionospheric correction parameters during geomagnetic storm days cannot guarantee the improving accuracy due to the ionospheric scintillation.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleman, S.E.

    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.

  2. Adaptive Nodal Transport Methods for Reactor Transient Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Downar; E. Lewis

    2005-08-31

    Develop methods for adaptively treating the angular, spatial, and time dependence of the neutron flux in reactor transient analysis. These methods were demonstrated in the DOE transport nodal code VARIANT and the US NRC spatial kinetics code, PARCS.

  3. Use of Fluka to Create Dose Calculations

    NASA Technical Reports Server (NTRS)

    Lee, Kerry T.; Barzilla, Janet; Townsend, Lawrence; Brittingham, John

    2012-01-01

    Monte Carlo codes provide an effective means of modeling three dimensional radiation transport; however, their use is both time- and resource-intensive. The creation of a lookup table or parameterization from Monte Carlo simulation allows users to perform calculations with Monte Carlo results without replicating lengthy calculations. FLUKA Monte Carlo transport code was used to develop lookup tables and parameterizations for data resulting from the penetration of layers of aluminum, polyethylene, and water with areal densities ranging from 0 to 100 g/cm^2. Heavy charged ion radiation including ions from Z=1 to Z=26 and from 0.1 to 10 GeV/nucleon were simulated. Dose, dose equivalent, and fluence as a function of particle identity, energy, and scattering angle were examined at various depths. Calculations were compared against well-known results and against the results of other deterministic and Monte Carlo codes. Results will be presented.

  4. The EGS4 Code System: Solution of Gamma-ray and Electron Transport Problems

    DOE R&D Accomplishments Database

    Nelson, W. R.; Namito, Yoshihito

    1990-03-01

    In this paper we present an overview of the EGS4 Code System -- a general purpose package for the Monte Carlo simulation of the transport of electrons and photons. During the last 10-15 years EGS has been widely used to design accelerators and detectors for high-energy physics. More recently the code has been found to be of tremendous use in medical radiation physics and dosimetry. The problem-solving capabilities of EGS4 will be demonstrated by means of a variety of practical examples. To facilitate this review, we will take advantage of a new add-on package, called SHOWGRAF, to display particle trajectories in complicated geometries. These are shown as 2-D laser pictures in the written paper and as photographic slides of a 3-D high-resolution color monitor during the oral presentation. 11 refs., 15 figs.

  5. Particle Impact Erosion. Volume 4. User’s Manual Erosion Prediction Procedure for Rocket Nozzle Expansion Region

    DTIC Science & Technology

    1983-05-01

    empirical erosion model, with use of the debris-layer model optional. 1.1 INTERFACE WITH ISPP ISPP is a collection of computer codes designed to calculate...expansion with the ODK code, 4. A two-dimensional, two-phase nozzle expansion with the TD2P code, 5. A turbulent boundary layer solution along the...INPUT THERMODYNAMIC DATA FOR TEMPERATURESBELOW 300°K OIF NEEDED) NO A• 11 READ SSP NAMELIST (ODE. BAL. ODK . TD2P. TEL. NOZZLE GEOMETRY) PROfLM 2

  6. The Athena Astrophysical MHD Code in Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Skinner, M. A.; Ostriker, E. C.

    2011-10-01

    We have developed a method for implementing cylindrical coordinates in the Athena MHD code (Skinner & Ostriker 2010). The extension has been designed to alter the existing Cartesian-coordinates code (Stone et al. 2008) as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport, a central feature of the Athena algorithm, while making use of previously implemented code modules such as the eigensystems and Riemann solvers. Angular-momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully. We describe modifications for cylindrical coordinates of the higher-order spatial reconstruction and characteristic evolution steps as well as the finite-volume and constrained transport updates. Finally, we have developed a test suite of standard and novel problems in one-, two-, and three-dimensions designed to validate our algorithms and implementation and to be of use to other code developers. The code is suitable for use in a wide variety of astrophysical applications and is freely available for download on the web.

  7. Transport and equilibrium in field-reversed mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, J.K.

    Two plasma models relevant to compact torus research have been developed to study transport and equilibrium in field reversed mirrors. In the first model for small Larmor radius and large collision frequency, the plasma is described as an adiabatic hydromagnetic fluid. In the second model for large Larmor radius and small collision frequency, a kinetic theory description has been developed. Various aspects of the two models have been studied in five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes two dimensional equilibrium and one dimensional transport in a flux coordinate. The AV code calculates orbit average integralsmore » in a harmonic oscillator potential. The NEO code follows particle trajectories in a Hill's vortex magnetic field to study stochasticity, invariants of the motion, and orbit average formulas. The OHK code displays analytic psi(r), B/sub Z/(r), phi(r), E/sub r/(r) formulas developed for the kinetic theory description. The RES code calculates resonance curves to consider overlap regions relevant to stochastic orbit behavior.« less

  8. Benchmarking of neutron production of heavy-ion transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, I.; Ronningen, R. M.; Heilbronn, L.

    Document available in abstract form only, full text of document follows: Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondarymore » neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required. (authors)« less

  9. Verification of ARES transport code system with TAKEDA benchmarks

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Zhang, Bin; Zhang, Penghe; Chen, Mengteng; Zhao, Jingchang; Zhang, Shun; Chen, Yixue

    2015-10-01

    Neutron transport modeling and simulation are central to many areas of nuclear technology, including reactor core analysis, radiation shielding and radiation detection. In this paper the series of TAKEDA benchmarks are modeled to verify the critical calculation capability of ARES, a discrete ordinates neutral particle transport code system. SALOME platform is coupled with ARES to provide geometry modeling and mesh generation function. The Koch-Baker-Alcouffe parallel sweep algorithm is applied to accelerate the traditional transport calculation process. The results show that the eigenvalues calculated by ARES are in excellent agreement with the reference values presented in NEACRP-L-330, with a difference less than 30 pcm except for the first case of model 3. Additionally, ARES provides accurate fluxes distribution compared to reference values, with a deviation less than 2% for region-averaged fluxes in all cases. All of these confirms the feasibility of ARES-SALOME coupling and demonstrate that ARES has a good performance in critical calculation.

  10. Method for calculating internal radiation and ventilation with the ADINAT heat-flow code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butkovich, T.R.; Montan, D.N.

    1980-04-01

    One objective of the spent fuel test in Climax Stock granite (SFTC) is to correctly model the thermal transport, and the changes in the stress field and accompanying displacements from the application of the thermal loads. We have chosen the ADINA and ADINAT finite element codes to do these calculations. ADINAT is a heat transfer code compatible to the ADINA displacement and stress analysis code. The heat flow problem encountered at SFTC requires a code with conduction, radiation, and ventilation capabilities, which the present version of ADINAT does not have. We have devised a method for calculating internal radiation andmore » ventilation with the ADINAT code. This method effectively reproduces the results from the TRUMP multi-dimensional finite difference code, which correctly models radiative heat transport between drift surfaces, conductive and convective thermal transport to and through air in the drifts, and mass flow of air in the drifts. The temperature histories for each node in the finite element mesh calculated with ADINAT using this method can be used directly in the ADINA thermal-mechanical calculation.« less

  11. Activation of lysosomal P2X4 by ATP transported into lysosomes via VNUT/SLC17A9 using V‐ATPase generated voltage gradient as the driving force

    PubMed Central

    Zhong, Xi Zoë; Cao, Qi; Sun, Xue

    2016-01-01

    Key points SLC17A9 proteins function as a lysosomal ATP transporter responsible for lysosomal ATP accumulation.P2X4 receptors act as lysosomal ion channels activated by luminal ATP.SLC17A9‐mediated ATP transport across the lysosomal membrane is suppressed by Bafilomycin A1, the V‐ATPase inhibitor.SLC17A9 mainly uses voltage gradient but not pH gradient generated by the V‐ATPase as the driving force to transport ATP into the lysosome to activate P2X4. Abstract The lysosome contains abundant ATP which plays important roles in lysosome functions and in cell signalling. Recently, solute carrier family 17 member 9 (SLC17A9, also known as VNUT for vesicular nucleotide transporter) proteins were suggested to function as a lysosomal ATP transporter responsible for lysosomal ATP accumulation, and P2X4 receptors were suggested to be lysosomal ion channels that are activated by luminal ATP. However, the molecular mechanism of SLC17A9 transporting ATP and the regulatory mechanism of lysosomal P2X4 are largely unknown. In this study, we report that SLC17A9‐mediated ATP transport across lysosomal membranes is suppressed by Bafilomycin A1, the V‐ATPase inhibitor. By measuring P2X4 activity, which is indicative of ATP transport across lysosomal membranes, we further demonstrated that SLC17A9 mainly uses voltage gradient but not pH gradient as the driving force to transport ATP into lysosomes. This study provides a molecular mechanism for lysosomal ATP transport mediated by SLC17A9. It also suggests a regulatory mechanism of lysosomal P2X4 by SLC17A9. PMID:27477609

  12. Monte Carlo Modeling of the Initial Radiation Emitted by a Nuclear Device in the National Capital Region

    DTIC Science & Technology

    2013-07-01

    also simulated in the models. Data was derived from calculations using the three-dimensional Monte Carlo radiation transport code MCNP (Monte Carlo N...32  B.  MCNP PHYSICS OPTIONS ......................................................................................... 33  C.  HAZUS...input deck’) for the MCNP , Monte Carlo N-Particle, radiation transport code. MCNP is a general-purpose code designed to simulate neutron, photon

  13. Considerations of MCNP Monte Carlo code to be used as a radiotherapy treatment planning tool.

    PubMed

    Juste, B; Miro, R; Gallardo, S; Verdu, G; Santos, A

    2005-01-01

    The present work has simulated the photon and electron transport in a Theratron 780® (MDS Nordion)60Co radiotherapy unit, using the Monte Carlo transport code, MCNP (Monte Carlo N-Particle). This project explains mainly the different methodologies carried out to speedup calculations in order to apply this code efficiently in radiotherapy treatment planning.

  14. CTViz: A tool for the visualization of transport in nanocomposites.

    PubMed

    Beach, Benjamin; Brown, Joshua; Tarlton, Taylor; Derosa, Pedro A

    2016-05-01

    A visualization tool (CTViz) for charge transport processes in 3-D hybrid materials (nanocomposites) was developed, inspired by the need for a graphical application to assist in code debugging and data presentation of an existing in-house code. As the simulation code grew, troubleshooting problems grew increasingly difficult without an effective way to visualize 3-D samples and charge transport in those samples. CTViz is able to produce publication and presentation quality visuals of the simulation box, as well as static and animated visuals of the paths of individual carriers through the sample. CTViz was designed to provide a high degree of flexibility in the visualization of the data. A feature that characterizes this tool is the use of shade and transparency levels to highlight important details in the morphology or in the transport paths by hiding or dimming elements of little relevance to the current view. This is fundamental for the visualization of 3-D systems with complex structures. The code presented here provides these required capabilities, but has gone beyond the original design and could be used as is or easily adapted for the visualization of other particulate transport where transport occurs on discrete paths. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Dosimetric and microdosimetric analyses for blood exposed to reactor-derived thermal neutrons.

    PubMed

    Ali, F; Atanackovic, J; Boyer, C; Festarini, A; Kildea, J; Paterson, L C; Rogge, R; Stuart, M; Richardson, R B

    2018-06-06

    Thermal neutrons are found in reactor, radiotherapy, aircraft, and space environments. The purpose of this study was to characterise the dosimetry and microdosimetry of thermal neutron exposures, using three simulation codes, as a precursor to quantitative radiobiological studies using blood samples. An irradiation line was designed employing a pyrolytic graphite crystal or-alternatively-a super mirror to expose blood samples to thermal neutrons from the National Research Universal reactor to determine radiobiological parameters. The crystal was used when assessing the relative biological effectiveness for dicentric chromosome aberrations, and other biomarkers, in lymphocytes over a low absorbed dose range of 1.2-14 mGy. Higher exposures using a super mirror will allow the additional quantification of mitochondrial responses. The physical size of the thermal neutron fields and their respective wavelength distribution was determined using the McStas Monte Carlo code. Spinning the blood samples produced a spatially uniform absorbed dose as determined from Monte Carlo N-Particle version 6 simulations. The major part (71%) of the total absorbed dose to blood was determined to be from the 14 N(n,p) 14 C reaction and the remainder from the 1 H(n,γ) 2 H reaction. Previous radiobiological experiments at Canadian Nuclear Laboratories involving thermal neutron irradiation of blood yielded a relative biological effectiveness of 26 ± 7. Using the Particle and Heavy Ion Transport Code System, a similar value of ∼19 for the quality factor of thermal neutrons initiating the 14 N(n,p) 14 C reaction in soft tissue was determined by microdosimetric simulations. This calculated quality factor is of similar high value to the experimentally-derived relative biological effectiveness, and indicates the potential of thermal neutrons to induce deleterious health effects in superficial organs such as cataracts of the eye lens.

  16. Changes in cortisol release and heart rate variability in sport horses during long-distance road transport.

    PubMed

    Schmidt, A; Biau, S; Möstl, E; Becker-Birck, M; Morillon, B; Aurich, J; Faure, J-M; Aurich, C

    2010-04-01

    It is widely accepted that transport is stressful for horses, but only a few studies are available involving horses that are transported regularly and are accustomed to transport. We determined salivary cortisol immunoreactivity (IR), fecal cortisol metabolites, beat-to-beat (RR) interval, and heart rate variability (HRV) in transport-experienced horses (N=7) in response to a 2-d outbound road transport over 1370 km and 2-d return transport 8 d later. Salivary cortisol IR was low until 60 min before transport but had increased (P<0.05) 30 min before loading. Transport caused a further marked increase (P<0.001), but the response tended to decrease with each day of transport. Concentrations of fecal cortisol metabolites increased on the second day of both outbound and return transports and reached a maximum the following day (P<0.001). During the first 90 min on Day 1 of outbound transport, mean RR interval decreased (P<0.001). Standard deviations of RR interval (SDRR) decreased transiently (P<0.01). The root mean square of successive RR differences (RMSSD) decreased at the beginning of the outbound and return transports (P<0.01), reflecting reduced parasympathetic tone. On the first day of both outbound and return transports, a transient rise in geometric HRV variable standard deviation 2 (SD2) occurred (P<0.01), indicating increased sympathetic activity. In conclusion, transport of experienced horses leads to increased cortisol release and changes in heart rate and HRV, which is indicative of stress. The degree of these changes tended to be most pronounced on the first day of both outbound and return transport. Copyright 2009 Elsevier Inc. All rights reserved.

  17. 428-Gb/s single-channel coherent optical OFDM transmission over 960-km SSMF with constellation expansion and LDPC coding.

    PubMed

    Yang, Qi; Al Amin, Abdullah; Chen, Xi; Ma, Yiran; Chen, Simin; Shieh, William

    2010-08-02

    High-order modulation formats and advanced error correcting codes (ECC) are two promising techniques for improving the performance of ultrahigh-speed optical transport networks. In this paper, we present record receiver sensitivity for 107 Gb/s CO-OFDM transmission via constellation expansion to 16-QAM and rate-1/2 LDPC coding. We also show the single-channel transmission of a 428-Gb/s CO-OFDM signal over 960-km standard-single-mode-fiber (SSMF) without Raman amplification.

  18. Vector processing efficiency of plasma MHD codes by use of the FACOM 230-75 APU

    NASA Astrophysics Data System (ADS)

    Matsuura, T.; Tanaka, Y.; Naraoka, K.; Takizuka, T.; Tsunematsu, T.; Tokuda, S.; Azumi, M.; Kurita, G.; Takeda, T.

    1982-06-01

    In the framework of pipelined vector architecture, the efficiency of vector processing is assessed with respect to plasma MHD codes in nuclear fusion research. By using a vector processor, the FACOM 230-75 APU, the limit of the enhancement factor due to parallelism of current vector machines is examined for three numerical codes based on a fluid model. Reasonable speed-up factors of approximately 6,6 and 4 times faster than the highly optimized scalar version are obtained for ERATO (linear stability code), AEOLUS-R1 (nonlinear stability code) and APOLLO (1-1/2D transport code), respectively. Problems of the pipelined vector processors are discussed from the viewpoint of restructuring, optimization and choice of algorithms. In conclusion, the important concept of "concurrency within pipelined parallelism" is emphasized.

  19. Path Toward a Unified Geometry for Radiation Transport

    NASA Astrophysics Data System (ADS)

    Lee, Kerry

    The Direct Accelerated Geometry for Radiation Analysis and Design (DAGRAD) element of the RadWorks Project under Advanced Exploration Systems (AES) within the Space Technology Mission Directorate (STMD) of NASA will enable new designs and concepts of operation for radiation risk assessment, mitigation and protection. This element is designed to produce a solution that will allow NASA to calculate the transport of space radiation through complex CAD models using the state-of-the-art analytic and Monte Carlo radiation transport codes. Due to the inherent hazard of astronaut and spacecraft exposure to ionizing radiation in low-Earth orbit (LEO) or in deep space, risk analyses must be performed for all crew vehicles and habitats. Incorporating these analyses into the design process can minimize the mass needed solely for radiation protection. Transport of the radiation fields as they pass through shielding and body materials can be simulated using Monte Carlo techniques or described by the Boltzmann equation, which is obtained by balancing changes in particle fluxes as they traverse a small volume of material with the gains and losses caused by atomic and nuclear collisions. Deterministic codes that solve the Boltzmann transport equation, such as HZETRN (high charge and energy transport code developed by NASA LaRC), are generally computationally faster than Monte Carlo codes such as FLUKA, GEANT4, MCNP(X) or PHITS; however, they are currently limited to transport in one dimension, which poorly represents the secondary light ion and neutron radiation fields. NASA currently uses HZETRN space radiation transport software, both because it is computationally efficient and because proven methods have been developed for using this software to analyze complex geometries. Although Monte Carlo codes describe the relevant physics in a fully three-dimensional manner, their computational costs have thus far prevented their widespread use for analysis of complex CAD models, leading to the creation and maintenance of toolkit specific simplistic geometry models. The work presented here builds on the Direct Accelerated Geometry Monte Carlo (DAGMC) toolkit developed for use with the Monte Carlo N-Particle (MCNP) transport code. The work-flow for doing radiation transport on CAD models using MCNP and FLUKA has been demonstrated and the results of analyses on realistic spacecraft/habitats will be presented. Future work is planned that will further automate this process and enable the use of multiple radiation transport codes on identical geometry models imported from CAD. This effort will enhance the modeling tools used by NASA to accurately evaluate the astronaut space radiation risk and accurately determine the protection provided by as-designed exploration mission vehicles and habitats.

  20. Non-equilibrium Transport in Carbon based Adsorbate Systems

    NASA Astrophysics Data System (ADS)

    Fürst, Joachim; Brandbyge, Mads; Stokbro, Kurt; Jauho, Antti-Pekka

    2007-03-01

    We have used the Atomistix Tool Kit(ATK) and TranSIESTA[1] packages to investigate adsorption of iron atoms on a graphene sheet. The technique of both codes is based on density functional theory using local basis sets[2], and non-equilibrium Green's functions (NEGF) to calculate the charge distribution under external bias. Spin dependent electronic structure calculations are performed for different iron coverages. These reveal adsorption site dependent charge transfer from iron to graphene leading to screening effects. Transport calculations show spin dependent scattering of the transmission which is analysed obtaining the transmission eigenchannels for each spin type. The phenomena of electromigration of iron in these systems at finite bias will be discussed, estimating the so-called wind force from the reflection[3]. [1] M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro. Physical Review B (Condensed Matter and Materials Physics), 65(16):165401/11-7, 2002. [2] Jose M. Soler, Emilio Artacho, Julian D. Gale, Alberto Garcia, Javier Junquera, Pablo Ordejon, and Daniel Sanchez-Portal. Journal of Physics Condensed Matter, 14(11):2745-2779, 2002. [3] Sorbello. Theory of electromigration. Solid State Physics, 1997.

  1. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE PAGES

    Mehmani, Yashar; Schoenherr, Martin; Pasquali, Andrea; ...

    2015-09-28

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This paper provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.« less

  2. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.

    2016-09-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.« less

  3. Identification of Trends into Dose Calculations for Astronauts through Performing Sensitivity Analysis on Calculational Models Used by the Radiation Health Office

    NASA Technical Reports Server (NTRS)

    Adams, Thomas; VanBaalen, Mary

    2009-01-01

    The Radiation Health Office (RHO) determines each astronaut s cancer risk by using models to associate the amount of radiation dose that astronauts receive from spaceflight missions. The baryon transport codes (BRYNTRN), high charge (Z) and energy transport codes (HZETRN), and computer risk models are used to determine the effective dose received by astronauts in Low Earth orbit (LEO). This code uses an approximation of the Boltzman transport formula. The purpose of the project is to run this code for various International Space Station (ISS) flight parameters in order to gain a better understanding of how this code responds to different scenarios. The project will determine how variations in one set of parameters such as, the point of the solar cycle and altitude can affect the radiation exposure of astronauts during ISS missions. This project will benefit NASA by improving mission dosimetry.

  4. Simulations of neutron transport at low energy: a comparison between GEANT and MCNP.

    PubMed

    Colonna, N; Altieri, S

    2002-06-01

    The use of the simulation tool GEANT for neutron transport at energies below 20 MeV is discussed, in particular with regard to shielding and dose calculations. The reliability of the GEANT/MICAP package for neutron transport in a wide energy range has been verified by comparing the results of simulations performed with this package in a wide energy range with the prediction of MCNP-4B, a code commonly used for neutron transport at low energy. A reasonable agreement between the results of the two codes is found for the neutron flux through a slab of material (iron and ordinary concrete), as well as for the dose released in soft tissue by neutrons. These results justify the use of the GEANT/MICAP code for neutron transport in a wide range of applications, including health physics problems.

  5. Grassroots projects aimed at the built environment: Association with neighbourhood deprivation, land-use mix and injury risk to road users.

    PubMed

    Dubé, Anne Sophie; Beausoleil, Maude; Gosselin, Céline; Beaulme, Ginette; Paquin, Sophie; Pelletier, Anne; Goudreau, Sophie; Poirier, Marie-Hélène; Drouin, Louis; Gauvin, Lise

    2014-07-09

    1) To describe grassroots projects aimed at the built environment and associated with active transportation on the Island of Montreal; and 2) to examine associations between the number of projects and indicators of neighbourhood material and social deprivation and the built environment. We identified funding agencies and community groups conducting projects on built environments throughout the Island of Montreal. Through website consultation and a snowballing procedure, we inventoried projects that aimed at transforming built environments and that were carried out by community organizations between January 1, 2006, and November 1, 2010. We coded and validated information about project activities and created an interactive map using Geoclip software. Correlational analyses quantified associations between number of projects, neighbourhood characteristics and deprivation. A total of 134 community organizations were identified, and 183 grassroots projects were inventoried. A large number of projects were aimed at increasing awareness of/improving active or public transportation (n=95), improving road safety (n=84) and enhancing neighbourhood beautification and greening (n=69). The correlation between the presence of projects and the extent of neighbourhood material deprivation was small (Kendall's t=0.26, p<0.001), but in areas with greater social deprivation there were more projects (Kendall's t=0.38, p<0.001). Larger numbers of projects were also associated with the presence of more extensive land-use mix (Kendall's t=0.23, p<0.001) and a greater proportion of road intersections with injured pedestrians, cyclists and motor vehicle users (Kendall's t=0.43, p<0.001). There is significant community mobilization around built environments and active transportation. Investigations of the implementation processes and impacts are warranted.

  6. Full-Process Computer Model of Magnetron Sputter, Part I: Test Existing State-of-Art Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walton, C C; Gilmer, G H; Wemhoff, A P

    2007-09-26

    This work is part of a larger project to develop a modeling capability for magnetron sputter deposition. The process is divided into four steps: plasma transport, target sputter, neutral gas and sputtered atom transport, and film growth, shown schematically in Fig. 1. Each of these is simulated separately in this Part 1 of the project, which is jointly funded between CMLS and Engineering. The Engineering portion is the plasma modeling, in step 1. The plasma modeling was performed using the Object-Oriented Particle-In-Cell code (OOPIC) from UC Berkeley [1]. Figure 2 shows the electron density in the simulated region, using magneticmore » field strength input from experiments by Bohlmark [2], where a scale of 1% is used. Figures 3 and 4 depict the magnetic field components that were generated using two-dimensional linear interpolation of Bohlmark's experimental data. The goal of the overall modeling tool is to understand, and later predict, relationships between parameters of film deposition we can change (such as gas pressure, gun voltage, and target-substrate distance) and key properties of the results (such as film stress, density, and stoichiometry.) The simulation must use existing codes, either open-source or low-cost, not develop new codes. In part 1 (FY07) we identified and tested the best available code for each process step, then determined if it can cover the size and time scales we need in reasonable computation times. We also had to determine if the process steps are sufficiently decoupled that they can be treated separately, and identify any research-level issues preventing practical use of these codes. Part 2 will consider whether the codes can be (or need to be) made to talk to each other and integrated into a whole.« less

  7. Coupled multi-group neutron photon transport for the simulation of high-resolution gamma-ray spectroscopy applications

    NASA Astrophysics Data System (ADS)

    Burns, Kimberly Ann

    The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. In these applications, high-resolution gamma-ray spectrometers are used to preserve as much information as possible about the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used modeling tool for this type of problem, but computational times for many problems can be prohibitive. This work explores the use of coupled Monte Carlo-deterministic methods for the simulation of neutron-induced photons for high-resolution gamma-ray spectroscopy applications. RAdiation Detection Scenario Analysis Toolbox (RADSAT), a code which couples deterministic and Monte Carlo transport to perform radiation detection scenario analysis in three dimensions [1], was used as the building block for the methods derived in this work. RADSAT was capable of performing coupled deterministic-Monte Carlo simulations for gamma-only and neutron-only problems. The purpose of this work was to develop the methodology necessary to perform coupled neutron-photon calculations and add this capability to RADSAT. Performing coupled neutron-photon calculations requires four main steps: the deterministic neutron transport calculation, the neutron-induced photon spectrum calculation, the deterministic photon transport calculation, and the Monte Carlo detector response calculation. The necessary requirements for each of these steps were determined. A major challenge in utilizing multigroup deterministic transport methods for neutron-photon problems was maintaining the discrete neutron-induced photon signatures throughout the simulation. Existing coupled neutron-photon cross-section libraries and the methods used to produce neutron-induced photons were unsuitable for high-resolution gamma-ray spectroscopy applications. Central to this work was the development of a method for generating multigroup neutron-photon cross-sections in a way that separates the discrete and continuum photon emissions so the neutron-induced photon signatures were preserved. The RADSAT-NG cross-section library was developed as a specialized multigroup neutron-photon cross-section set for the simulation of high-resolution gamma-ray spectroscopy applications. The methodology and cross sections were tested using code-to-code comparison with MCNP5 [2] and NJOY [3]. A simple benchmark geometry was used for all cases compared with MCNP. The geometry consists of a cubical sample with a 252Cf neutron source on one side and a HPGe gamma-ray spectrometer on the opposing side. Different materials were examined in the cubical sample: polyethylene (C2H4), P, N, O, and Fe. The cross sections for each of the materials were compared to cross sections collapsed using NJOY. Comparisons of the volume-averaged neutron flux within the sample, volume-averaged photon flux within the detector, and high-purity gamma-ray spectrometer response (only for polyethylene) were completed using RADSAT and MCNP. The code-to-code comparisons show promising results for the coupled Monte Carlo-deterministic method. The RADSAT-NG cross-section production method showed good agreement with NJOY for all materials considered although some additional work is needed in the resonance region and in the first and last energy bin. Some cross section discrepancies existed in the lowest and highest energy bin, but the overall shape and magnitude of the two methods agreed. For the volume-averaged photon flux within the detector, typically the five most intense lines agree to within approximately 5% of the MCNP calculated flux for all of materials considered. The agreement in the code-to-code comparisons cases demonstrates a proof-of-concept of the method for use in RADSAT for coupled neutron-photon problems in high-resolution gamma-ray spectroscopy applications. One of the primary motivators for using the coupled method over pure Monte Carlo method is the potential for significantly lower computational times. For the code-to-code comparison cases, the run times for RADSAT were approximately 25--500 times shorter than for MCNP, as shown in Table 1. This was assuming a 40 mCi 252Cf neutron source and 600 seconds of "real-world" measurement time. The only variance reduction technique implemented in the MCNP calculation was forward biasing of the source toward the sample target. Improved MCNP runtimes could be achieved with the addition of more advanced variance reduction techniques.

  8. Efficient File Sharing by Multicast - P2P Protocol Using Network Coding and Rank Based Peer Selection

    NASA Technical Reports Server (NTRS)

    Stoenescu, Tudor M.; Woo, Simon S.

    2009-01-01

    In this work, we consider information dissemination and sharing in a distributed peer-to-peer (P2P highly dynamic communication network. In particular, we explore a network coding technique for transmission and a rank based peer selection method for network formation. The combined approach has been shown to improve information sharing and delivery to all users when considering the challenges imposed by the space network environments.

  9. An efficient HZETRN (a galactic cosmic ray transport code)

    NASA Technical Reports Server (NTRS)

    Shinn, Judy L.; Wilson, John W.

    1992-01-01

    An accurate and efficient engineering code for analyzing the shielding requirements against the high-energy galactic heavy ions is needed. The HZETRN is a deterministic code developed at Langley Research Center that is constantly under improvement both in physics and numerical computation and is targeted for such use. One problem area connected with the space-marching technique used in this code is the propagation of the local truncation error. By improving the numerical algorithms for interpolation, integration, and grid distribution formula, the efficiency of the code is increased by a factor of eight as the number of energy grid points is reduced. The numerical accuracy of better than 2 percent for a shield thickness of 150 g/cm(exp 2) is found when a 45 point energy grid is used. The propagating step size, which is related to the perturbation theory, is also reevaluated.

  10. Recent Updates to the MELCOR 1.8.2 Code for ITER Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrill, Brad J

    This report documents recent changes made to the MELCOR 1.8.2 computer code for application to the International Thermonuclear Experimental Reactor (ITER), as required by ITER Task Agreement ITA 81-18. There are four areas of change documented by this report. The first area is the addition to this code of a model for transporting HTO. The second area is the updating of the material oxidation correlations to match those specified in the ITER Safety Analysis Data List (SADL). The third area replaces a modification to an aerosol tranpsort subroutine that specified the nominal aerosol density internally with one that now allowsmore » the user to specify this density through user input. The fourth area corrected an error that existed in an air condensation subroutine of previous versions of this modified MELCOR code. The appendices of this report contain FORTRAN listings of the coding for these modifications.« less

  11. Newtonian CAFE: a new ideal MHD code to study the solar atmosphere

    NASA Astrophysics Data System (ADS)

    González-Avilés, J. J.; Cruz-Osorio, A.; Lora-Clavijo, F. D.; Guzmán, F. S.

    2015-12-01

    We present a new code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centres on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvénic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the Harten-Lax-van Leer-Einfeldt (HLLE) flux formula combined with Minmod, MC, and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.

  12. SHIELD and HZETRN comparisons of pion production cross sections

    NASA Astrophysics Data System (ADS)

    Norbury, John W.; Sobolevsky, Nikolai; Werneth, Charles M.

    2018-03-01

    A program of comparing American (NASA) and Russian (ROSCOSMOS) space radiation transport codes has recently begun, and the first paper directly comparing the NASA and ROSCOSMOS space radiation transport codes, HZETRN and SHIELD respectively has recently appeared. The present work represents the second time that NASA and ROSCOSMOS calculations have been directly compared, and the focus here is on models of pion production cross sections used in the two transport codes mentioned above. It was found that these models are in overall moderate agreement with each other and with experimental data. Disagreements that were found are discussed.

  13. Evaluation and utilization of beam simulation codes for the SNS ion source and low energy beam transport developmenta)

    NASA Astrophysics Data System (ADS)

    Han, B. X.; Welton, R. F.; Stockli, M. P.; Luciano, N. P.; Carmichael, J. R.

    2008-02-01

    Beam simulation codes PBGUNS, SIMION, and LORENTZ-3D were evaluated by modeling the well-diagnosed SNS base line ion source and low energy beam transport (LEBT) system. Then, an investigation was conducted using these codes to assist our ion source and LEBT development effort which is directed at meeting the SNS operational and also the power-upgrade project goals. A high-efficiency H- extraction system as well as magnetic and electrostatic LEBT configurations capable of transporting up to 100mA is studied using these simulation tools.

  14. On the Development of a Deterministic Three-Dimensional Radiation Transport Code

    NASA Technical Reports Server (NTRS)

    Rockell, Candice; Tweed, John

    2011-01-01

    Since astronauts on future deep space missions will be exposed to dangerous radiations, there is a need to accurately model the transport of radiation through shielding materials and to estimate the received radiation dose. In response to this need a three dimensional deterministic code for space radiation transport is now under development. The new code GRNTRN is based on a Green's function solution of the Boltzmann transport equation that is constructed in the form of a Neumann series. Analytical approximations will be obtained for the first three terms of the Neumann series and the remainder will be estimated by a non-perturbative technique . This work discusses progress made to date and exhibits some computations based on the first two Neumann series terms.

  15. 2nd-Order CESE Results For C1.4: Vortex Transport by Uniform Flow

    NASA Technical Reports Server (NTRS)

    Friedlander, David J.

    2015-01-01

    The Conservation Element and Solution Element (CESE) method was used as implemented in the NASA research code ez4d. The CESE method is a time accurate formulation with flux-conservation in both space and time. The method treats the discretized derivatives of space and time identically and while the 2nd-order accurate version was used, high-order versions exist, the 2nd-order accurate version was used. In regards to the ez4d code, it is an unstructured Navier-Stokes solver coded in C++ with serial and parallel versions available. As part of its architecture, ez4d has the capability to utilize multi-thread and Messaging Passage Interface (MPI) for parallel runs.

  16. AN OPEN-SOURCE NEUTRINO RADIATION HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, Evan, E-mail: evanoconnor@ncsu.edu; CITA, Canadian Institute for Theoretical Astrophysics, Toronto, M5S 3H8

    2015-08-15

    We present an open-source update to the spherically symmetric, general-relativistic hydrodynamics, core-collapse supernova (CCSN) code GR1D. The source code is available at http://www.GR1Dcode.org. We extend its capabilities to include a general-relativistic treatment of neutrino transport based on the moment formalisms of Shibata et al. and Cardall et al. We pay special attention to implementing and testing numerical methods and approximations that lessen the computational demand of the transport scheme by removing the need to invert large matrices. This is especially important for the implementation and development of moment-like transport methods in two and three dimensions. A critical component of neutrinomore » transport calculations is the neutrino–matter interaction coefficients that describe the production, absorption, scattering, and annihilation of neutrinos. In this article we also describe our open-source neutrino interaction library NuLib (available at http://www.nulib.org). We believe that an open-source approach to describing these interactions is one of the major steps needed to progress toward robust models of CCSNe and robust predictions of the neutrino signal. We show, via comparisons to full Boltzmann neutrino-transport simulations of CCSNe, that our neutrino transport code performs remarkably well. Furthermore, we show that the methods and approximations we employ to increase efficiency do not decrease the fidelity of our results. We also test the ability of our general-relativistic transport code to model failed CCSNe by evolving a 40-solar-mass progenitor to the onset of collapse to a black hole.« less

  17. Tobacco outlet density and converted versus native non-daily cigarette use in a national US sample.

    PubMed

    Kirchner, Thomas R; Anesetti-Rothermel, Andrew; Bennett, Morgane; Gao, Hong; Carlos, Heather; Scheuermann, Taneisha S; Reitzel, Lorraine R; Ahluwalia, Jasjit S

    2017-01-01

    Investigate whether non-daily smokers' (NDS) cigarette price and purchase preferences, recent cessation attempts, and current intentions to quit are associated with the density of the retail cigarette product landscape surrounding their residential address. Cross-sectional assessment of N=904 converted NDS (CNDS). who previously smoked every day, and N=297 native NDS (NNDS) who only smoked non-daily, drawn from a national panel. Kernel density estimation was used to generate a nationwide probability surface of tobacco outlets linked to participants' residential ZIP code. Hierarchically nested log-linear models were compared to evaluate associations between outlet density, non-daily use patterns, price sensitivity and quit intentions. Overall, NDS in ZIP codes with greater outlet density were less likely than NDS in ZIP codes with lower outlet density to hold 6-month quit intentions when they also reported that price affected use patterns (G 2 =66.1, p<0.001) and purchase locations (G 2 =85.2, p<0.001). CNDS were more likely than NNDS to reside in ZIP codes with higher outlet density (G 2 =322.0, p<0.001). Compared with CNDS in ZIP codes with lower outlet density, CNDS in high-density ZIP codes were more likely to report that price influenced the amount they smoke (G 2 =43.9, p<0.001), and were more likely to look for better prices (G 2 =59.3, p<0.001). NDS residing in high-density ZIP codes were not more likely to report that price affected their cigarette brand choice compared with those in ZIP codes with lower density. This paper provides initial evidence that the point-of-sale cigarette environment may be differentially associated with the maintenance of CNDS versus NNDS patterns. Future research should investigate how tobacco control efforts can be optimised to both promote cessation and curb the rising tide of non-daily smoking in the USA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Meson Production and Space Radiation

    NASA Astrophysics Data System (ADS)

    Norbury, John; Blattnig, Steve; Norman, Ryan; Aghara, Sukesh

    Protecting astronauts from the harmful effects of space radiation is an important priority for long duration space flight. The National Council on Radiation Protection (NCRP) has recently recommended that pion and other mesons should be included in space radiation transport codes, especially in connection with the Martian atmosphere. In an interesting accident of nature, the galactic cosmic ray spectrum has its peak intensity near the pion production threshold. The Boltzmann transport equation is structured in such a way that particle production cross sec-tions are multiplied by particle flux. Therefore, the peak of the incident flux of the galactic cosmic ray spectrum is more important than other regions of the spectrum and cross sections near the peak are enhanced. This happens with pion cross sections. The MCNPX Monte-Carlo transport code now has the capability of transporting heavy ions, and by using a galactic cosmic ray spectrum as input, recent work has shown that pions contribute about twenty percent of the dose from galactic cosmic rays behind a shield of 20 g/cm2 aluminum and 30 g/cm2 water. It is therefore important to include pion and other hadron production in transport codes designed for space radiation studies, such as HZETRN. The status of experimental hadron production data for energies relevant to space radiation will be reviewed, as well as the predictive capa-bilities of current theoretical hadron production cross section and space radiation transport models. Charged pions decay into muons and neutrinos, and neutral pions decay into photons. An electromagnetic cascade is produced as these particles build up in a material. The cascade and transport of pions, muons, electrons and photons will be discussed as they relate to space radiation. The importance of other hadrons, such as kaons, eta mesons and antiprotons will be considered as well. Efficient methods for calculating cross sections for meson production in nucleon-nucleon and nucleus-nucleus reactions will be presented. The NCRP has also recom-mended that more attention should be paid to neutron and light ion transport. The coupling of neutrons, light ions, mesons and other hadrons will be discussed.

  19. 49 CFR 178.33 - Specification 2P; inner nonrefillable metal receptacles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification 2P; inner nonrefillable metal receptacles. 178.33 Section 178.33 Transportation Other Regulations Relating to Transportation PIPELINE AND... nonrefillable metal receptacles. ...

  20. The NATA code: Theory and analysis, volume 1. [user manuals (computer programming) - gas dynamics, wind tunnels

    NASA Technical Reports Server (NTRS)

    Bade, W. L.; Yos, J. M.

    1975-01-01

    A computer program for calculating quasi-one-dimensional gas flow in axisymmetric and two-dimensional nozzles and rectangular channels is presented. Flow is assumed to start from a state of thermochemical equilibrium at a high temperature in an upstream reservoir. The program provides solutions based on frozen chemistry, chemical equilibrium, and nonequilibrium flow with finite reaction rates. Electronic nonequilibrium effects can be included using a two-temperature model. An approximate laminar boundary layer calculation is given for the shear and heat flux on the nozzle wall. Boundary layer displacement effects on the inviscid flow are considered also. Chemical equilibrium and transport property calculations are provided by subroutines. The code contains precoded thermochemical, chemical kinetic, and transport cross section data for high-temperature air, CO2-N2-Ar mixtures, helium, and argon. It provides calculations of the stagnation conditions on axisymmetric or two-dimensional models, and of the conditions on the flat surface of a blunt wedge. The primary purpose of the code is to describe the flow conditions and test conditions in electric arc heated wind tunnels.

  1. Reactive transport modeling in fractured rock: A state-of-the-science review

    NASA Astrophysics Data System (ADS)

    MacQuarrie, Kerry T. B.; Mayer, K. Ulrich

    2005-10-01

    The field of reactive transport modeling has expanded significantly in the past two decades and has assisted in resolving many issues in Earth Sciences. Numerical models allow for detailed examination of coupled transport and reactions, or more general investigation of controlling processes over geologic time scales. Reactive transport models serve to provide guidance in field data collection and, in particular, enable researchers to link modeling and hydrogeochemical studies. In this state-of-science review, the key objectives were to examine the applicability of reactive transport codes for exploring issues of redox stability to depths of several hundreds of meters in sparsely fractured crystalline rock, with a focus on the Canadian Shield setting. A conceptual model of oxygen ingress and redox buffering, within a Shield environment at time and space scales relevant to nuclear waste repository performance, is developed through a review of previous research. This conceptual model describes geochemical and biological processes and mechanisms materially important to understanding redox buffering capacity and radionuclide mobility in the far-field. Consistent with this model, reactive transport codes should ideally be capable of simulating the effects of changing recharge water compositions as a result of long-term climate change, and fracture-matrix interactions that may govern water-rock interaction. Other aspects influencing the suitability of reactive transport codes include the treatment of various reaction and transport time scales, the ability to apply equilibrium or kinetic formulations simultaneously, the need to capture feedback between water-rock interactions and porosity-permeability changes, and the representation of fractured crystalline rock environments as discrete fracture or dual continuum media. A review of modern multicomponent reactive transport codes indicates a relatively high-level of maturity. Within the Yucca Mountain nuclear waste disposal program, reactive transport codes of varying complexity have been applied to investigate the migration of radionuclides and the geochemical evolution of host rock around the planned disposal facility. Through appropriate near- and far-field application of dual continuum codes, this example demonstrates how reactive transport models have been applied to assist in constraining historic water infiltration rates, interpreting the sealing of flow paths due to mineral precipitation, and investigating post-closure geochemical monitoring strategies. Natural analogue modeling studies, although few in number, are also of key importance as they allow the comparison of model results with hydrogeochemical and paleohydrogeological data over geologic time scales.

  2. Tempest simulations of kinetic GAM mode and neoclassical turbulence

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Dimits, A. M.

    2007-11-01

    TEMPEST is a nonlinear five dimensional (3d2v) gyrokinetic continuum code for studies of H-mode edge plasma neoclassical transport and turbulence in real divertor geometry. The 4D TEMPEST code correctly produces frequency, collisionless damping of GAM and zonal flow with fully nonlinear Boltzmann electrons in homogeneous plasmas. For large q=4 to 9, the Tempest simulations show that a series of resonance at higher harmonics v||=φGqR0/n with n=4 become effective. The TEMPEST simulation also shows that GAM exists in edge plasma pedestal for steep density and temperature gradients, and an initial GAM relaxes to the standard neoclassical residual with neoclassical transport, rather than Rosenbluth-Hinton residual due to the presence of ion-ion collisions. The enhanced GAM damping explains experimental BES measurements on the edge q scaling of the GAM amplitude. Our 5D gyrokinetic code is built on 4D Tempest neoclassical code with extension to a fifth dimension in toroidal direction and with 3D domain decompositions. Progress on performing 5D neoclassical turbulence simulations will be reported.

  3. Cloning and characterization of the promoter regions from the parent and paralogous creatine transporter genes.

    PubMed

    Ndika, Joseph D T; Lusink, Vera; Beaubrun, Claudine; Kanhai, Warsha; Martinez-Munoz, Cristina; Jakobs, Cornelis; Salomons, Gajja S

    2014-01-10

    Interconversion between phosphocreatine and creatine, catalyzed by creatine kinase is crucial in the supply of ATP to tissues with high energy demand. Creatine's importance has been established by its use as an ergogenic aid in sport, as well as the development of intellectual disability in patients with congenital creatine deficiency. Creatine biosynthesis is complemented by dietary creatine uptake. Intracellular transport of creatine is carried out by a creatine transporter protein (CT1/CRT/CRTR) encoded by the SLC6A8 gene. Most tissues express this gene, with highest levels detected in skeletal muscle and kidney. There are lower levels of the gene detected in colon, brain, heart, testis and prostate. The mechanism(s) by which this regulation occurs is still poorly understood. A duplicated unprocessed pseudogene of SLC6A8-SLC6A10P has been mapped to chromosome 16p11.2 (contains the entire SLC6A8 gene, plus 2293 bp of 5'flanking sequence and its entire 3'UTR). Expression of SLC6A10P has so far only been shown in human testis and brain. It is still unclear as to what is the function of SLC6A10P. In a patient with autism, a chromosomal breakpoint that intersects the 5'flanking region of SLC6A10P was identified; suggesting that SLC6A10P is a non-coding RNA involved in autism. Our aim was to investigate the presence of cis-acting factor(s) that regulate expression of the creatine transporter, as well as to determine if these factors are functionally conserved upstream of the creatine transporter pseudogene. Via gene-specific PCR, cloning and functional luciferase assays we identified a 1104 bp sequence proximal to the mRNA start site of the SLC6A8 gene with promoter activity in five cell types. The corresponding 5'flanking sequence (1050 bp) on the pseudogene also had promoter activity in all 5 cell lines. Surprisingly the pseudogene promoter was stronger than that of its parent gene in 4 of the cell lines tested. To the best of our knowledge, this is the first experimental evidence of a pseudogene with stronger promoter activity than its parental gene. © 2013.

  4. Runaway electron production in DIII-D killer pellet experiments, calculated with the CQL3D/KPRAD model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R. W.; Chan, V. S.; Chiu, S. C.

    2000-11-01

    Runaway electrons are calculated to be produced during the rapid plasma cooling resulting from ''killer pellet'' injection experiments, in general agreement with observations in the DIII-D [J. L. Luxon , Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] tokamak. The time-dependent dynamics of the kinetic runaway distributions are obtained with the CQL3D [R. W. Harvey and M. G. McCoy, ''The CQL3D Code,'' in Proceedings of the IAEA Technical Committee Meeting on Numerical Modeling, Montreal, 1992 (International Atomic Energy Agency, Vienna, 1992), p. 489] collisional Fokker--Planck code, including the effect ofmore » small and large angle collisions and stochastic magnetic field transport losses. The background density, temperature, and Z{sub eff} are evolved according to the KPRAD [D. G. Whyte and T. E. Evans , in Proceedings of the 24th European Conference on Controlled Fusion and Plasma Physics, Berchtesgaden, Germany (European Physical Society, Petit-Lancy, 1997), Vol. 21A, p. 1137] deposition and radiation model of pellet--plasma interactions. Three distinct runway mechanisms are apparent: (1) prompt ''hot-tail runaways'' due to the residual hot electron tail remaining from the pre-cooling phase, (2) ''knock-on'' runaways produced by large-angle Coulomb collisions on existing high energy electrons, and (3) Dreicer ''drizzle'' runaway electrons due to diffusion of electrons up to the critical velocity for electron runaway. For electron densities below {approx}1x10{sup 15}cm{sup -3}, the hot-tail runaways dominate the early time evolution, and provide the seed population for late time knock-on runaway avalanche. For small enough stochastic magnetic field transport losses, the knock-on production of electrons balances the losses at late times. For losses due to radial magnetic field perturbations in excess of {approx}0.1% of the background field, i.e., {delta}B{sub r}/B{>=}0.001, the losses prevent late-time electron runaway.« less

  5. Analysis of dosimetry from the H.B. Robinson unit 2 pressure vessel benchmark using RAPTOR-M3G and ALPAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, G.A.

    2011-07-01

    Document available in abstract form only, full text of document follows: The dosimetry from the H. B. Robinson Unit 2 Pressure Vessel Benchmark is analyzed with a suite of Westinghouse-developed codes and data libraries. The radiation transport from the reactor core to the surveillance capsule and ex-vessel locations is performed by RAPTOR-M3G, a parallel deterministic radiation transport code that calculates high-resolution neutron flux information in three dimensions. The cross-section library used in this analysis is the ALPAN library, an Evaluated Nuclear Data File (ENDF)/B-VII.0-based library designed for reactor dosimetry and fluence analysis applications. Dosimetry is evaluated with the industry-standard SNLRMLmore » reactor dosimetry cross-section data library. (authors)« less

  6. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi

    2012-11-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  7. Genetic association analysis of ATP binding cassette protein family reveals a novel association of ABCB1 genetic variants with epilepsy risk, but not with drug-resistance.

    PubMed

    Balan, Shabeesh; Bharathan, Sumitha Prameela; Vellichiramal, Neetha Nanoth; Sathyan, Sanish; Joseph, Vijai; Radhakrishnan, Kurupath; Banerjee, Moinak

    2014-01-01

    Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED)-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype for AED-resistant epilepsy); juvenile myoclonic epilepsy (JME) (prototype for AED-responsive epilepsy); and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T) rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004). This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004) and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05) cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency for MTLE-HS in south Indian ancestry from Kerala.

  8. Improvement of the 2D/1D Method in MPACT Using the Sub-Plane Scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Aaron M; Collins, Benjamin S; Downar, Thomas

    Oak Ridge National Laboratory and the University of Michigan are jointly developing the MPACTcode to be the primary neutron transport code for the Virtual Environment for Reactor Applications (VERA). To solve the transport equation, MPACT uses the 2D/1D method, which decomposes the problem into a stack of 2D planes that are then coupled with a 1D axial calculation. MPACT uses the Method of Characteristics for the 2D transport calculations and P3 for the 1D axial calculations, then accelerates the solution using the 3D Coarse mesh Finite Dierence (CMFD) method. Increasing the number of 2D MOC planes will increase the accuracymore » of the alculation, but will increase the computational burden of the calculations and can cause slow convergence or instability. To prevent these problems while maintaining accuracy, the sub-plane scheme has been implemented in MPACT. This method sub-divides the MOC planes into sub-planes, refining the 1D P3 and 3D CMFD calculations without increasing the number of 2D MOC planes. To test the sub-plane scheme, three of the VERA Progression Problems were selected: Problem 3, a single assembly problem; Problem 4, a 3x3 assembly problem with control rods and pyrex burnable poisons; and Problem 5, a quarter core problem. These three problems demonstrated that the sub-plane scheme can accurately produce intra-plane axial flux profiles that preserve the accuracy of the fine mesh solution. The eigenvalue dierences are negligibly small, and dierences in 3D power distributions are less than 0.1% for realistic axial meshes. Furthermore, the convergence behavior with the sub-plane scheme compares favorably with the conventional 2D/1D method, and the computational expense is decreased for all calculations due to the reduction in expensive MOC calculations.« less

  9. Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior.

    PubMed

    Veenstra-VanderWeele, Jeremy; Muller, Christopher L; Iwamoto, Hideki; Sauer, Jennifer E; Owens, W Anthony; Shah, Charisma R; Cohen, Jordan; Mannangatti, Padmanabhan; Jessen, Tammy; Thompson, Brent J; Ye, Ran; Kerr, Travis M; Carneiro, Ana M; Crawley, Jacqueline N; Sanders-Bush, Elaine; McMahon, Douglas G; Ramamoorthy, Sammanda; Daws, Lynette C; Sutcliffe, James S; Blakely, Randy D

    2012-04-03

    Fifty years ago, increased whole-blood serotonin levels, or hyperserotonemia, first linked disrupted 5-HT homeostasis to Autism Spectrum Disorders (ASDs). The 5-HT transporter (SERT) gene (SLC6A4) has been associated with whole blood 5-HT levels and ASD susceptibility. Previously, we identified multiple gain-of-function SERT coding variants in children with ASD. Here we establish that transgenic mice expressing the most common of these variants, SERT Ala56, exhibit elevated, p38 MAPK-dependent transporter phosphorylation, enhanced 5-HT clearance rates and hyperserotonemia. These effects are accompanied by altered basal firing of raphe 5-HT neurons, as well as 5HT(1A) and 5HT(2A) receptor hypersensitivity. Strikingly, SERT Ala56 mice display alterations in social function, communication, and repetitive behavior. Our efforts provide strong support for the hypothesis that altered 5-HT homeostasis can impact risk for ASD traits and provide a model with construct and face validity that can support further analysis of ASD mechanisms and potentially novel treatments.

  10. The absorption and transport of magnolol in Caco-2 cell model.

    PubMed

    Wu, An-Guo; Zeng, Bao; Huang, Meng-Qiu; Li, Sheng-Mei; Chen, Jian-Nan; Lai, Xiao-Ping

    2013-03-01

    To investigate the absorption and transport mechanism of magnolol in Caco-2 cell model. A human intestinal epithelial cell model Caco-2 cell in vitro cultured was applied to study the absorption and transport of magnolol, the effects of time, donor concentration, P-gp inhibitor verapamil, pH and temperature on the absorption and transport of magnolol were investigated. The determination of magnolol was performed by high performance liquid chromatography, then the values of apparent permeability coefficient (P app ) and P ratio Basolateral-to-Apical (BL-to-AP)/Apical-to-Basolateral (AP-to-BL) were calculated. In Caco-2 cell model, comparing the amounts of transport of AP-to-BL and BL-to-AP, the latter was larger. At the same donor concentration, either the amounts of transport of AP-to-BL or BL-to-AP increased with increase in donor concentration and incubation time. Verapamil could significantly improve the amounts of transport of AP-to-BL. The transport of AP-to-BL and BL-to-AP depended on temperature, and there was no significant effect of pH on the transport of AP-to-BL. Magnolol could be transported through the intestinal mucosa via a passive diffusion mechanism primarily, coexisting with a carrier-mediated transport, at the same time, the efflux mechanism could be involved.

  11. The Optimal Convergence Rate of the p-Version of the Finite Element Method.

    DTIC Science & Technology

    1985-10-01

    commercial and research codes. The p-version and h-p versions are new developments. There is only one commercial code, the system PROBE ( Noetic Tech, St...Louis). The theoretical aspects have been studied only recently. The first theoretical paper appeared in 1981 (see [7)). See also [1), [7], [81, [9...model problem (2.2) (2.3) is a classical case of the elliptic equation problem on a nonsmooth domain. The structure of this problem is well studied

  12. Structure-activity relationships for xenobiotic transport substrates and inhibitory ligands of P-glycoprotein.

    PubMed Central

    Bain, L J; McLachlan, J B; LeBlanc, G A

    1997-01-01

    The multixenobiotic resistance phenotype is characterized by the reduced accumulation of xenobiotics by cells or organisms due to increased efflux of the compounds by P-glycoprotein (P-gp) or related transporters. An extensive xenobiotic database, consisting primarily of pesticides, was utilized in this study to identify molecular characteristics that render a xenobiotic susceptible to transport by or inhibition of P-gp. Transport substrates were differentiated by several molecular size/shape parameters, lipophilicity, and hydrogen bonding potential. Electrostatic features differentiated inhibitory ligands from compounds not catagorized as transport substrates and that did no interact with P-gp. A two-tiered system was developed using the derived structure-activity relationships to identify P-gp transport substrates and inhibitory ligands. Prediction accuracy of the approach was 82%. We then validated the system using six additional pesticides of which tow were predicted to be P-gp inhibitors and four were predicted to be noninteractors, based upon the structure-activity analyses. Experimental determinations using cells transfected with the human MDR1 gene demonstrated that five of the six pesticides were properly catagorized by the structure-activity analyses (83% accuracy). Finally, structure-activity analyses revealed that among P-gp inhibitors, relative inhibitory potency can be predicted based upon the surface area or volume of the compound. These results demonstrate that P-gp transport substrates and inhibitory ligands can be distinguished using molecular characteristics. Molecular characteristics of transport substrates suggest that P-gp may function in the elimination of hydroxylated metabolites of xenobiotics. Images Figure 1. A Figure 1. B Figure 1. C Figure 1. D Figure 1. E Figure 1. F Figure 1. G Figure 1. H Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. Figure 3. A Figure 3. B PMID:9347896

  13. ab initio MD simulations of geomaterials with ~1000 atoms

    NASA Astrophysics Data System (ADS)

    Martin, G. B.; Kirtman, B.; Spera, F. J.

    2009-12-01

    In the last two decades, ab initio studies of materials using Density Functional Theory (DFT) have increased exponentially in popularity. DFT codes are now used routinely to simulate properties of geomaterials--mainly silicates and geochemically important metals such as Fe. These materials are ubiquitous in the Earth’s mantle and core and in terrestrial exoplanets. Because of computational limitations, most First Principles Molecular Dynamics (FPMD) calculations are done on systems of only ~100 atoms for a few picoseconds. While this approach can be useful for calculating physical quantities related to crystal structure, vibrational frequency, and other lattice-scale properties (especially in crystals), it is statistically marginal for duplicating physical properties of the liquid state like transport and structure. In MD simulations in the NEV ensemble, temperature (T), and pressure (P) fluctuations scale as N-1/2; small particle number (N) systems are therefore characterized by greater statistical state point location uncertainty than large N systems. Previous studies have used codes such as VASP where CPU time increases with N2, making calculations with N much greater than 100 impractical. SIESTA (Soler, et al. 2002) is a DFT code that enables electronic structure and MD computations on larger systems (N~103) by making some approximations, such as localized numerical orbitals, that would be useful in modeling some properties of geomaterials. Here we test the applicability of SIESTA to simulate geosilicates, both hydrous and anhydrous, in the solid and liquid state. We have used SIESTA for lattice calculations of brucite, Mg(OH)2, that compare very well to experiment and calculations using CRYSTAL, another DFT code. Good agreement between more classical DFT calculations and SIESTA is needed to justify study of geosilicates using SIESTA across a range of pressures and temperatures relevant to the Earth’s interior. Thus, it is useful to adjust parameters in SIESTA in accordance with calculations from CRYSTAL as a check on feasibility. Results are reported here that suggest SIESTA may indeed be useful to model silicate liquids at very high T and P.

  14. Interaction of Monobenzamidine-Linked Trypanocides with the Trypanosoma brucei P2 Aminopurine Transporter

    PubMed Central

    Stewart, Mhairi L.; Boussard, Cyrille; Brun, Reto; Gilbert, Ian H.; Barrett, Michael P.

    2005-01-01

    Single benzamidine group-carrying compounds were shown to interact with the Trypanosoma brucei P2 aminopurine transporter. Replacement of the amidine with a guanidine group decreased affinity. Trypanocidal activity was evident, but compounds were equally toxic against trypanosomes lacking the P2 transporter, which indicates additional uptake routes for monobenzamidine-derived compounds. PMID:16304196

  15. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport.

    PubMed

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-06-01

    The aim of this study was to elucidate the intestinal epithelial cell efflux transport processes that are involved in the intestinal transport of the H(2) receptor antagonist nizatidine. The intestinal epithelial efflux transport mechanisms of nizatidine were investigated and characterized across Caco-2 cell monolayers, in the concentration range 0.05-10 mM in both apical-basolateral (AP-BL) and BL-AP directions, and the transport constants of P-glycoprotein (P-gp) efflux activity were calculated. The concentration-dependent effects of various P-gp (verapamil, quinidine, erythromycin, ketoconazole, and cyclosporine A), multidrug resistant-associated protein 2 (MRP2; MK-571, probenecid, indomethacin, and p-aminohipuric acid), and breast cancer resistance protein (BCRP; Fumitremorgin C) inhibitors on nizatidine bidirectional transport were examined. Nizatidine exhibited 7.7-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. All P-gp inhibitors investigated displayed concentration-dependent inhibition on nizatidine secretion in both directions. The IC(50) of verapamil on nizatidine P-gp secretion was 1.2 x 10(-2) mM. In the absence of inhibitors, nizatidine displayed concentration-dependent secretion, with one saturable (J(max) = 5.7 x 10(-3) nmol cm(-2) s(-1) and K(m) = 2.2 mM) and one nonsaturable component (K(d) = 7 x 10(-4) microL cm(-2) s(-1)). Under complete P-gp inhibition, nizatidine exhibited linear secretory flux, with a slope similar to the nonsaturable component. V(max) and K(m) estimated for nizatidine P-gp-mediated secretion were 4 x 10(-3) nmol cm(-2) s(-1) and 1.2 mM, respectively. No effect was obtained with the MRP2 or the BCRP inhibitors. Being a drug commonly used in pediatrics, adults, and elderly, nizatidine susceptibility to efflux transport by P-gp revealed in this paper may be of significance in its absorption, distribution, and clearance, as well as possible drug-drug interactions.

  16. Dust-Particle Transport in Tokamak Edge Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K

    2005-09-12

    Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensivemore » dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.« less

  17. Optimization of monitoring networks based on uncertainty quantification of model predictions of contaminant transport

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; Harp, D.

    2010-12-01

    The process of decision making to protect groundwater resources requires a detailed estimation of uncertainties in model predictions. Various uncertainties associated with modeling a natural system, such as: (1) measurement and computational errors; (2) uncertainties in the conceptual model and model-parameter estimates; (3) simplifications in model setup and numerical representation of governing processes, contribute to the uncertainties in the model predictions. Due to this combination of factors, the sources of predictive uncertainties are generally difficult to quantify individually. Decision support related to optimal design of monitoring networks requires (1) detailed analyses of existing uncertainties related to model predictions of groundwater flow and contaminant transport, (2) optimization of the proposed monitoring network locations in terms of their efficiency to detect contaminants and provide early warning. We apply existing and newly-proposed methods to quantify predictive uncertainties and to optimize well locations. An important aspect of the analysis is the application of newly-developed optimization technique based on coupling of Particle Swarm and Levenberg-Marquardt optimization methods which proved to be robust and computationally efficient. These techniques and algorithms are bundled in a software package called MADS. MADS (Model Analyses for Decision Support) is an object-oriented code that is capable of performing various types of model analyses and supporting model-based decision making. The code can be executed under different computational modes, which include (1) sensitivity analyses (global and local), (2) Monte Carlo analysis, (3) model calibration, (4) parameter estimation, (5) uncertainty quantification, and (6) model selection. The code can be externally coupled with any existing model simulator through integrated modules that read/write input and output files using a set of template and instruction files (consistent with the PEST I/O protocol). MADS can also be internally coupled with a series of built-in analytical simulators. MADS provides functionality to work directly with existing control files developed for the code PEST (Doherty 2009). To perform the computational modes mentioned above, the code utilizes (1) advanced Latin-Hypercube sampling techniques (including Improved Distributed Sampling), (2) various gradient-based Levenberg-Marquardt optimization methods, (3) advanced global optimization methods (including Particle Swarm Optimization), and (4) a selection of alternative objective functions. The code has been successfully applied to perform various model analyses related to environmental management of real contamination sites. Examples include source identification problems, quantification of uncertainty, model calibration, and optimization of monitoring networks. The methodology and software codes are demonstrated using synthetic and real case studies where monitoring networks are optimized taking into account the uncertainty in model predictions of contaminant transport.

  18. Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons

    PubMed Central

    Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan

    2012-01-01

    Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X3 receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X3 receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X3 receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X3 receptors. The α, β-MeATP-induced Ca2+ influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X3 receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X3 receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X3 receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels. PMID:22157653

  19. Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons.

    PubMed

    Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan

    2012-04-01

    Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X(3) receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X(3) receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X(3) receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X(3) receptors. The α, β-MeATP-induced Ca(2+) influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X(3) receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X(3) receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X(3) receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.

  20. Impact of thorium based molten salt reactor on the closure of the nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Jaradat, Safwan Qasim Mohammad

    Molten salt reactor (MSR) is one of six reactors selected by the Generation IV International Forum (GIF). The liquid fluoride thorium reactor (LFTR) is a MSR concept based on thorium fuel cycle. LFTR uses liquid fluoride salts as a nuclear fuel. It uses 232Th and 233U as the fertile and fissile materials, respectively. Fluoride salt of these nuclides is dissolved in a mixed carrier salt of lithium and beryllium (FLiBe). The objective of this research was to complete feasibility studies of a small commercial thermal LFTR. The focus was on neutronic calculations in order to prescribe core design parameter such as core size, fuel block pitch (p), fuel channel radius, fuel path, reflector thickness, fuel salt composition, and power. In order to achieve this objective, the applicability of Monte Carlo N-Particle Transport Code (MCNP) to MSR modeling was verified. Then, a prescription for conceptual small thermal reactor LFTR and relevant calculations were performed using MCNP to determine the main neutronic parameters of the core reactor. The MCNP code was used to study the reactor physics characteristics for the FUJI-U3 reactor. The results were then compared with the results obtained from the original FUJI-U3 using the reactor physics code SRAC95 and the burnup analysis code ORIPHY2. The results were comparable with each other. Based on the results, MCNP was found to be a reliable code to model a small thermal LFTR and study all the related reactor physics characteristics. The results of this study were promising and successful in demonstrating a prefatory small commercial LFTR design. The outcome of using a small core reactor with a diameter/height of 280/260 cm that would operate for more than five years at a power level of 150 MWth was studied. The fuel system 7LiF - BeF2 - ThF4 - UF4 with a (233U/ 232Th) = 2.01 % was the candidate fuel for this reactor core.

  1. Attenuation of Ethanol Withdrawal by Ceftriaxone-Induced Upregulation of Glutamate Transporter EAAT2

    PubMed Central

    Abulseoud, Osama A; Camsari, Ulas M; Ruby, Christina L; Kasasbeh, Aimen; Choi, Sun; Choi, Doo-Sup

    2014-01-01

    Alcohol withdrawal syndrome (AWS) is a potentially fatal outcome of severe alcohol dependence that presents a significant challenge to treatment. Although AWS is thought to be driven by a hyperglutamatergic brain state, benzodiazepines, which target the GABAergic system, comprise the first line of treatment for AWS. Using a rat model of ethanol withdrawal, we tested whether ceftriaxone, a β-lactam antibiotic known to increase the expression and activity of glutamate uptake transporter EAAT2, reduces the occurrence or severity of ethanol withdrawal manifestations. After a 2-week period of habituation to ethanol in two-bottle choice, alcohol-preferring (P) and Wistar rats received ethanol (4.0 g/kg) every 6 h for 3–5 consecutive days via gavage. Rats were then deprived of ethanol for 48 h during which time they received ceftriaxone (50 or 100 mg/kg, IP) or saline twice a day starting 12 h after the last ethanol administration. Withdrawal manifestations were captured by continuous video recording and coded. The evolution of ethanol withdrawal was markedly different for P rats vs Wistar rats, with withdrawal manifestations occurring >12 h later in P rats than in Wistar rats. Ceftriaxone 100 mg/kg per injection twice per day (200 mg/kg/day) reduced or abolished all manifestations of ethanol withdrawal in both rat variants and prevented withdrawal-induced escalation of alcohol intake. Finally, ceftriaxone treatment was associated with lasting upregulation of ethanol withdrawal-induced downregulation of EAAT2 in the striatum. Our data support the role of ceftriaxone in alleviating alcohol withdrawal and open a novel pharmacologic avenue that requires clinical evaluation in patients with AWS. PMID:24452391

  2. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica.

    PubMed

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Ledesma-Amaro, Rodrigo; Thévenieau, France; Nicaud, Jean-Marc

    2015-09-01

    Fatty acid (FA) transport and activation have been extensively studied in the model yeast species Saccharomyces cerevisiae but have rarely been examined in oleaginous yeasts, such as Yarrowia lipolytica. Because the latter begins to be used in biodiesel production, understanding its FA transport and activation mechanisms is essential. We found that Y. lipolytica has FA transport and activation proteins similar to those of S. cerevisiae (Faa1p, Pxa1p, Pxa2p, Ant1p) but mechanism of FA peroxisomal transport and activation differs greatly with that of S. cerevisiae. While the ScPxa1p/ScPxa2p heterodimer is essential for growth on long-chain FAs, ΔYlpxa1 ΔYlpxa2 is not impaired for growth on FAs. Meanwhile, ScAnt1p and YlAnt1p are both essential for yeast growth on medium-chain FAs, suggesting they function similarly. Interestingly, we found that the ΔYlpxa1 ΔYlpxa2 ΔYlant1 mutant was unable to grow on short-, medium-, or long-chain FAs, suggesting that YlPxa1p, YlPxa2p, and YlAnt1p belong to two different FA degradation pathways. We also found that YlFaa1p is involved in FA storage in lipid bodies and that FA remobilization largely depended on YlFat1p, YlPxa1p and YlPxa2p. This study is the first to comprehensively examine FA intracellular transport and activation in oleaginous yeast. Copyright © 2015. Published by Elsevier B.V.

  3. Reduced discretization error in HZETRN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaba, Tony C., E-mail: Tony.C.Slaba@nasa.gov; Blattnig, Steve R., E-mail: Steve.R.Blattnig@nasa.gov; Tweed, John, E-mail: jtweed@odu.edu

    2013-02-01

    The deterministic particle transport code HZETRN is an efficient analysis tool for studying the effects of space radiation on humans, electronics, and shielding materials. In a previous work, numerical methods in the code were reviewed, and new methods were developed that further improved efficiency and reduced overall discretization error. It was also shown that the remaining discretization error could be attributed to low energy light ions (A < 4) with residual ranges smaller than the physical step-size taken by the code. Accurately resolving the spectrum of low energy light particles is important in assessing risk associated with astronaut radiation exposure.more » In this work, modifications to the light particle transport formalism are presented that accurately resolve the spectrum of low energy light ion target fragments. The modified formalism is shown to significantly reduce overall discretization error and allows a physical approximation to be removed. For typical step-sizes and energy grids used in HZETRN, discretization errors for the revised light particle transport algorithms are shown to be less than 4% for aluminum and water shielding thicknesses as large as 100 g/cm{sup 2} exposed to both solar particle event and galactic cosmic ray environments.« less

  4. Effects of transport duration on maintenance behavior, heart rate and gastrointestinal tract temperature of market-weight pigs in 2 seasons.

    PubMed

    Goumon, S; Brown, J A; Faucitano, L; Bergeron, R; Widowski, T M; Crowe, T; Connor, M L; Gonyou, H W

    2013-10-01

    Welfare and meat quality of market-weight pigs may be negatively affected by transport duration and environmental temperatures, which vary considerably between seasons. This study evaluated the effects of 3 transport durations (6, 12, and 18 h) on the physiology and behavior of pigs in summer and winter in western Canada. Market-weight pigs were transported using a pot-belly trailer at an average loading density of 0.375 m(2)/100 kg. Four replicates of each transport duration were conducted during each season. Heart rate and gastrointestinal tract temperature (GTT) were monitored from loading to unloading in 16 pigs from 4 selected trailer compartments (n = 96 groups, total of 384 animals, BW = 120.8 ± 0.4 kg), namely top front (C1), top back (C4), middle front (C5), and bottom rear (C10). Behavior was recorded for pigs (948 and 924 animals, in summer and winter, respectively) in C1, C4, and C5 during transportation (standing, sitting, lying), and during 90 min in lairage (sitting, lying, drinking, latency to rest) for pigs in all 4 compartments. Transport was split into 7 periods: loading, pre-travel (PT), initial travel (IT), pre-arrival 1 (PA1) and 2 (PA2), unloading, and lairage. During IT and PA2, pigs spent less time lying in winter than summer (P < 0.05 and P < 0.05, respectively). During PA1, PA2, and unloading, a greater (P < 0.001) heart rate was found in pigs transported in winter compared with summer. During PA2, pigs subjected to the 18-h transport treatment in winter had a greater (P < 0.05) GTT than the other groups. In lairage, pigs transported for 18 h in winter drank more (P < 0.001) and took longer to rest (P < 0.01) than pigs from other groups. During PA1, pigs transported for 18 h had the greatest GTT (P < 0.001). At unloading, pigs transported for 6 h had the lowest GTT (P < 0.001). In lairage, pigs transported for 18 h spent less time lying than those transported for 6 or 12 h (P < 0.001). These results suggest that in winter, pigs increased their metabolism and were reluctant to rest on cold floors. Pigs transported for 18 h in winter showed greater evidence of thirst. It may be concluded that under western Canadian climatic conditions, long transports (18 h) in cold weather appear to be more detrimental to pig welfare.

  5. Magnetohydrodynamic modes analysis and control of Fusion Advanced Studies Torus high-current scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villone, F.; Mastrostefano, S.; Calabrò, G.

    2014-08-15

    One of the main FAST (Fusion Advanced Studies Torus) goals is to have a flexible experiment capable to test tools and scenarios for safe and reliable tokamak operation, in order to support ITER and help the final DEMO design. In particular, in this paper, we focus on operation close to a possible border of stability related to low-q operation. To this purpose, a new FAST scenario has then been designed at I{sub p} = 10 MA, B{sub T} = 8.5 T, q{sub 95} ≈ 2.3. Transport simulations, carried out by using the code JETTO and the first principle transport model GLF23, indicate that, under these conditions, FASTmore » could achieve an equivalent Q ≈ 3.5. FAST will be equipped with a set of internal active coils for feedback control, which will produce magnetic perturbation with toroidal number n = 1 or n = 2. Magnetohydrodynamic (MHD) mode analysis and feedback control simulations performed with the codes MARS, MARS-F, CarMa (both assuming the presence of a perfect conductive wall and using the exact 3D resistive wall structure) show the possibility of the FAST conductive structures to stabilize n = 1 ideal modes. This leaves therefore room for active mitigation of the resistive mode (down to a characteristic time of 1 ms) for safety purposes, i.e., to avoid dangerous MHD-driven plasma disruption, when working close to the machine limits and magnetic and kinetic energy density not far from reactor values.« less

  6. Pediatric severe sepsis in U.S. children's hospitals.

    PubMed

    Balamuth, Fran; Weiss, Scott L; Neuman, Mark I; Scott, Halden; Brady, Patrick W; Paul, Raina; Farris, Reid W D; McClead, Richard; Hayes, Katie; Gaieski, David; Hall, Matt; Shah, Samir S; Alpern, Elizabeth R

    2014-11-01

    To compare the prevalence, resource utilization, and mortality for pediatric severe sepsis identified using two established identification strategies. Observational cohort study from 2004 to 2012. Forty-four pediatric hospitals contributing data to the Pediatric Health Information Systems database. Children 18 years old or younger. We identified patients with severe sepsis or septic shock by using two International Classification of Diseases, 9th edition, Clinical Modification-based coding strategies: 1) combinations of International Classification of Diseases, 9th edition, Clinical Modification codes for infection plus organ dysfunction (combination code cohort); 2) International Classification of Diseases, 9th edition, Clinical Modification codes for severe sepsis and septic shock (sepsis code cohort). Outcomes included prevalence of severe sepsis, as well as hospital and ICU length of stay, and mortality. Outcomes were compared between the two cohorts examining aggregate differences over the study period and trends over time. The combination code cohort identified 176,124 hospitalizations (3.1% of all hospitalizations), whereas the sepsis code cohort identified 25,236 hospitalizations (0.45%), a seven-fold difference. Between 2004 and 2012, the prevalence of sepsis increased from 3.7% to 4.4% using the combination code cohort and from 0.4% to 0.7% using the sepsis code cohort (p < 0.001 for trend in each cohort). Length of stay (hospital and ICU) and costs decreased in both cohorts over the study period (p < 0.001). Overall, hospital mortality was higher in the sepsis code cohort than the combination code cohort (21.2% [95% CI, 20.7-21.8] vs 8.2% [95% CI, 8.0-8.3]). Over the 9-year study period, there was an absolute reduction in mortality of 10.9% (p < 0.001) in the sepsis code cohort and 3.8% (p < 0.001) in the combination code cohort. Prevalence of pediatric severe sepsis increased in the studied U.S. children's hospitals over the past 9 years, whereas resource utilization and mortality decreased. Epidemiologic estimates of pediatric severe sepsis varied up to seven-fold depending on the strategy used for case ascertainment.

  7. Pediatric Severe Sepsis in US Children’s Hospitals

    PubMed Central

    Balamuth, Fran; Weiss, Scott L.; Neuman, Mark I.; Scott, Halden; Brady, Patrick W.; Paul, Raina; Farris, Reid W.D.; McClead, Richard; Hayes, Katie; Gaieski, David; Hall, Matt; Shah, Samir S.; Alpern, Elizabeth R.

    2014-01-01

    Objective To compare the prevalence, resource utilization, and mortality for pediatric severe sepsis identified using two established identification strategies. Design Observational cohort study from 2004–2012. Setting Forty-four pediatric hospitals contributing data to the Pediatric Health Information Systems database. Patients Children ≤18 years of age. Measurements and Main Results We identified patients with severe sepsis or septic shock by using two International Classification of Diseases, 9th edition-Clinical Modification (ICD9-CM) based coding strategies: 1) combinations of ICD9-CM codes for infection plus organ dysfunction (combination code cohort); 2) ICD9-CM codes for severe sepsis and septic shock (sepsis code cohort). Outcomes included prevalence of severe sepsis, as well as hospital and intensive care unit (ICU) length of stay (LOS), and mortality. Outcomes were compared between the two cohorts examining aggregate differences over the study period and trends over time. The combination code cohort identified, 176,124 hospitalizations (3.1% of all hospitalizations), while the sepsis code cohort identified 25,236 hospitalizations (0.45%), a 7-fold difference. Between 2004 and 2012, the prevalence of sepsis increased from 3.7% to 4.4% using the combination code cohort and from 0.4% to 0.7% using the sepsis code cohort (p<0.001 for trend in each cohort). LOS (hospital and ICU) and costs decreased in both cohorts over the study period (p<0.001). Overall hospital mortality was higher in the sepsis code cohort than the combination code cohort (21.2%, (95% CI: 20.7–21.8 vs. 8.2%,(95% CI: 8.0–8.3). Over the 9 year study period, there was an absolute reduction in mortality of 10.9% (p<0.001) in the sepsis code cohort and 3.8% (p<0.001) in the combination code cohort. Conclusions Prevalence of pediatric severe sepsis increased in the studied US children’s hospitals over the past 9 years, though resource utilization and mortality decreased. Epidemiologic estimates of pediatric severe sepsis varied up to 7-fold depending on the strategy used for case ascertainment. PMID:25162514

  8. Simulation of the hybrid and steady state advanced operating modes in ITER

    NASA Astrophysics Data System (ADS)

    Kessel, C. E.; Giruzzi, G.; Sips, A. C. C.; Budny, R. V.; Artaud, J. F.; Basiuk, V.; Imbeaux, F.; Joffrin, E.; Schneider, M.; Murakami, M.; Luce, T.; St. John, Holger; Oikawa, T.; Hayashi, N.; Takizuka, T.; Ozeki, T.; Na, Y.-S.; Park, J. M.; Garcia, J.; Tucillo, A. A.

    2007-09-01

    Integrated simulations are performed to establish a physics basis, in conjunction with present tokamak experiments, for the operating modes in the International Thermonuclear Experimental Reactor (ITER). Simulations of the hybrid mode are done using both fixed and free-boundary 1.5D transport evolution codes including CRONOS, ONETWO, TSC/TRANSP, TOPICS and ASTRA. The hybrid operating mode is simulated using the GLF23 and CDBM05 energy transport models. The injected powers are limited to the negative ion neutral beam, ion cyclotron and electron cyclotron heating systems. Several plasma parameters and source parameters are specified for the hybrid cases to provide a comparison of 1.5D core transport modelling assumptions, source physics modelling assumptions, as well as numerous peripheral physics modelling. Initial results indicate that very strict guidelines will need to be imposed on the application of GLF23, for example, to make useful comparisons. Some of the variations among the simulations are due to source models which vary widely among the codes used. In addition, there are a number of peripheral physics models that should be examined, some of which include fusion power production, bootstrap current, treatment of fast particles and treatment of impurities. The hybrid simulations project to fusion gains of 5.6-8.3, βN values of 2.1-2.6 and fusion powers ranging from 350 to 500 MW, under the assumptions outlined in section 3. Simulations of the steady state operating mode are done with the same 1.5D transport evolution codes cited above, except the ASTRA code. In these cases the energy transport model is more difficult to prescribe, so that energy confinement models will range from theory based to empirically based. The injected powers include the same sources as used for the hybrid with the possible addition of lower hybrid. The simulations of the steady state mode project to fusion gains of 3.5-7, βN values of 2.3-3.0 and fusion powers of 290 to 415 MW, under the assumptions described in section 4. These simulations will be presented and compared with particular focus on the resulting temperature profiles, source profiles and peripheral physics profiles. The steady state simulations are at an early stage and are focused on developing a range of safety factor profiles with 100% non-inductive current.

  9. Study of no-man's land physics in the total-f gyrokinetic code XGC1

    NASA Astrophysics Data System (ADS)

    Ku, Seung Hoe; Chang, C. S.; Lang, J.

    2014-10-01

    While the ``transport shortfall'' in the ``no-man's land'' has been observed often in delta-f codes, it has not yet been observed in the global total-f gyrokinetic particle code XGC1. Since understanding the interaction between the edge and core transport appears to be a critical element in the prediction for ITER performance, understanding the no-man's land issue is an important physics research topic. Simulation results using the Holland case will be presented and the physics causing the shortfall phenomenon will be discussed. Nonlinear nonlocal interaction of turbulence, secondary flows, and transport appears to be the key.

  10. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    NASA Astrophysics Data System (ADS)

    Marocchino, A.; Atzeni, S.; Schiavi, A.

    2014-01-01

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.

  11. Development of Safety Analysis Code System of Beam Transport and Core for Accelerator Driven System

    NASA Astrophysics Data System (ADS)

    Aizawa, Naoto; Iwasaki, Tomohiko

    2014-06-01

    Safety analysis code system of beam transport and core for accelerator driven system (ADS) is developed for the analyses of beam transients such as the change of the shape and position of incident beam. The code system consists of the beam transport analysis part and the core analysis part. TRACE 3-D is employed in the beam transport analysis part, and the shape and incident position of beam at the target are calculated. In the core analysis part, the neutronics, thermo-hydraulics and cladding failure analyses are performed by the use of ADS dynamic calculation code ADSE on the basis of the external source database calculated by PHITS and the cross section database calculated by SRAC, and the programs of the cladding failure analysis for thermoelastic and creep. By the use of the code system, beam transient analyses are performed for the ADS proposed by Japan Atomic Energy Agency. As a result, the rapid increase of the cladding temperature happens and the plastic deformation is caused in several seconds. In addition, the cladding is evaluated to be failed by creep within a hundred seconds. These results have shown that the beam transients have caused a cladding failure.

  12. Equilibrium Spline Interface (ESI) for magnetic confinement codes

    NASA Astrophysics Data System (ADS)

    Li, Xujing; Zakharov, Leonid E.

    2017-12-01

    A compact and comprehensive interface between magneto-hydrodynamic (MHD) equilibrium codes and gyro-kinetic, particle orbit, MHD stability, and transport codes is presented. Its irreducible set of equilibrium data consists of three (in the 2-D case with occasionally one extra in the 3-D case) functions of coordinates and four 1-D radial profiles together with their first and mixed derivatives. The C reconstruction routines, accessible also from FORTRAN, allow the calculation of basis functions and their first derivatives at any position inside the plasma and in its vicinity. After this all vector fields and geometric coefficients, required for the above mentioned types of codes, can be calculated using only algebraic operations with no further interpolation or differentiation.

  13. Mayo Registry for Telemetry Efficacy in Arrest (MR TEA) study: An analysis of code status change following cardiopulmonary arrest.

    PubMed

    Snipelisky, David; Ray, Jordan; Matcha, Gautam; Roy, Archana; Chirila, Razvan; Maniaci, Michael; Bosworth, Veronica; Whitman, Anastasia; Lewis, Patricia; Vadeboncoeur, Tyler; Kusumoto, Fred; Burton, M Caroline

    2015-07-01

    Code status discussions are important during a hospitalization, yet variation in its practice exists. No data have assessed the likelihood of patients to change code status following a cardiopulmonary arrest. A retrospective review of all patients that experienced a cardiopulmonary arrest between May 1, 2008 and June 30, 2014 at an academic medical center was performed. The proportion of code status modifications to do not resuscitate (DNR) from full code was assessed. Baseline clinical characteristics, resuscitation factors, and 24-h post-resuscitation, hospital, and overall survival rates were compared between the two subsets. A total of 157 patients survived the index event and were included. One hundred and fifteen (73.2%) patients did not have a change in code status following the index event, while 42 (26.8%) changed code status to DNR. Clinical characteristics were similar between subsets, although patients in the change to DNR subset were older (average age 67.7 years) compared to the full code subset (average age 59.2 years; p = 0.005). Patients in the DNR subset had longer overall resuscitation efforts with less attempts at defibrillation. Compared to the DNR subset, patients that remained full code demonstrated higher 24-h post-resuscitation (n = 108, 93.9% versus n = 32, 76.2%; p = 0.001) and hospital (n = 50, 43.5% versus n = 6, 14.3%; p = 0.001) survival rates. Patients in the DNR subset were more likely to have neurologic deficits on discharge and shorter overall survival. Patient code status wishes do tend to change during critical periods within a hospitalization, adding emphasis for continued code status evaluation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Use of FEC coding to improve statistical multiplexing performance for video transport over ATM networks

    NASA Astrophysics Data System (ADS)

    Kurceren, Ragip; Modestino, James W.

    1998-12-01

    The use of forward error-control (FEC) coding, possibly in conjunction with ARQ techniques, has emerged as a promising approach for video transport over ATM networks for cell-loss recovery and/or bit error correction, such as might be required for wireless links. Although FEC provides cell-loss recovery capabilities it also introduces transmission overhead which can possibly cause additional cell losses. A methodology is described to maximize the number of video sources multiplexed at a given quality of service (QoS), measured in terms of decoded cell loss probability, using interlaced FEC codes. The transport channel is modelled as a block interference channel (BIC) and the multiplexer as single server, deterministic service, finite buffer supporting N users. Based upon an information-theoretic characterization of the BIC and large deviation bounds on the buffer overflow probability, the described methodology provides theoretically achievable upper limits on the number of sources multiplexed. Performance of specific coding techniques using interlaced nonbinary Reed-Solomon (RS) codes and binary rate-compatible punctured convolutional (RCPC) codes is illustrated.

  15. Clean Energy in City Codes: A Baseline Analysis of Municipal Codification across the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Jeffrey J.; Aznar, Alexandra; Dane, Alexander

    Municipal governments in the United States are well positioned to influence clean energy (energy efficiency and alternative energy) and transportation technology and strategy implementation within their jurisdictions through planning, programs, and codification. Municipal governments are leveraging planning processes and programs to shape their energy futures. There is limited understanding in the literature related to codification, the primary way that municipal governments enact enforceable policies. The authors fill the gap in the literature by documenting the status of municipal codification of clean energy and transportation across the United States. More directly, we leverage online databases of municipal codes to develop nationalmore » and state-specific representative samples of municipal governments by population size. Our analysis finds that municipal governments with the authority to set residential building energy codes within their jurisdictions frequently do so. In some cases, communities set codes higher than their respective state governments. Examination of codes across the nation indicates that municipal governments are employing their code as a policy mechanism to address clean energy and transportation.« less

  16. A theoretical study of the H-abstraction reactions from HOI by moist air radiolytic products (H, OH, and O (3P)) and iodine atoms (2P(3/2)).

    PubMed

    Hammaecher, Catherine; Canneaux, Sébastien; Louis, Florent; Cantrel, Laurent

    2011-06-23

    The rate constants of the reactions of HOI molecules with H, OH, O ((3)P), and I ((2)P(3/2)) atoms have been estimated over the temperature range 300-2500 K using four different levels of theory. Geometry optimizations and vibrational frequency calculations are performed using MP2 methods combined with two basis sets (cc-pVTZ and 6-311G(d,p)). Single-point energy calculations are performed with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (pertubatively) electron excitations CCSD(T) using the cc-pVTZ, cc-pVQZ, 6-311+G(3df,2p), and 6-311++G(3df,3pd) basis sets. Reaction enthalpies at 0 K were calculated at the CCSD(T)/cc-pVnZ//MP2/cc-pVTZ (n = T and Q), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), and CCSD(T)/6-311++G(3df,3pd)//MP2/6-311G(d,p) levels of theory and compared to the experimental values taken from the literature. Canonical transition-state theory with an Eckart tunneling correction is used to predict the rate constants as a function of temperature. The computational procedure has been used to predict rate constants for H-abstraction elementary reactions because there are actually no literature data to which the calculated rate constants can be directly compared. The final objective is to implement kinetics of gaseous reactions in the ASTEC (accident source term evaluation code) program to improve speciation of fission products, which can be transported along the reactor coolant system (RCS) of a pressurized water reactor (PWR) in the case of a severe accident.

  17. Suppression of turbulent transport in NSTX internal transport barriers

    NASA Astrophysics Data System (ADS)

    Yuh, Howard

    2008-11-01

    Electron transport will be important for ITER where fusion alphas and high-energy beam ions will primarily heat electrons. In the NSTX, internal transport barriers (ITBs) are observed in reversed (negative) shear discharges where diffusivities for electron and ion thermal channels and momentum are reduced. While neutral beam heating can produce ITBs in both electron and ion channels, High Harmonic Fast Wave (HHFW) heating can produce electron thermal ITBs under reversed magnetic shear conditions without momentum input. Interestingly, the location of the electron ITB does not necessarily match that of the ion ITB: the electron ITB correlates well with the minimum in the magnetic shear determined by Motional Stark Effect (MSE) [1] constrained equilibria, whereas the ion ITB better correlates with the maximum ExB shearing rate. Measured electron temperature gradients can exceed critical linear thresholds for ETG instability calculated by linear gyrokinetic codes in the ITB confinement region. The high-k microwave scattering diagnostic [2] shows reduced local density fluctuations at wavenumbers characteristic of electron turbulence for discharges with strongly negative magnetic shear versus weakly negative or positive magnetic shear. Fluctuation reductions are found to be spatially and temporally correlated with the local magnetic shear. These results are consistent with non-linear gyrokinetic simulations predictions showing the reduction of electron transport in negative magnetic shear conditions despite being linearly unstable [3]. Electron transport improvement via negative magnetic shear rather than ExB shear highlights the importance of current profile control in ITER and future devices. [1] F.M. Levinton, H. Yuh et al., PoP 14, 056119 [2] D.R. Smith, E. Mazzucato et al., RSI 75, 3840 [3] Jenko, F. and Dorland, W., PRL 89 225001

  18. Revealing the long-term landscape evolution of the South Atlantic passive continental margin, Brazil and Namibia, by thermokinematic numerical modeling using the software code Pecube.

    NASA Astrophysics Data System (ADS)

    Stippich, Christian; Glasmacher, Ulrich Anton; Hackspacher, Peter

    2015-04-01

    The aim of the research is to quantify the long-term landscape evolution of the South Atlantic passive continental margin (SAPCM) in SE-Brazil and NW-Namibia. Excellent onshore outcrop conditions and complete rift to post-rift archives between Sao Paulo and Porto Alegre and in the transition from Namibia to Angola (onshore Walvis ridge) allow a high precision quantification of exhumation, and uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate the published and partly published thermochronological data from Brazil and Namibia, and test lately published new concepts on causes of long-term landscape evolution at rifted margins. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE1,2 and FastScape3). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The data and models will allow separating the exogenous and endogenous forces and their process rates. References 1. Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, v.29, pp.787-794. 2. Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Goltzbacj, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, v.524-525, pp.1-28. 3. Braun, J. and Willett, S.D., 2013. A very efficient, O(n), implicit and parallel method to solve the basic stream power law equation governing fluvial incision and landscape evolution. Geomorphology, v.180-181, 170-179.

  19. The P-type ATPase CtpG preferentially transports Cd2+ across the Mycobacterium tuberculosis plasma membrane.

    PubMed

    López, Marcela; Quitian, Laudy-Viviana; Calderón, Martha-Nancy; Soto, Carlos-Y

    2018-04-01

    P 1B -type ATPases are involved in heavy metal transport across the plasma membrane. Some Mycobacterium tuberculosis P-type ATPases are induced during infection, suggesting that this type of transporter could play a critical role in mycobacterial survival. To date, the ion specificity of M. tuberculosis heavy metal-transporting P 1B -ATPases is not well understood. In this work, we observed that, although divalent heavy metal cations such as Cu 2+ , Co 2+ , Ni 2+ , Zn 2+ Cd 2+ and Pb 2+ stimulate the ATPase activity of the putative P 1B -type ATPase CtpG in the plasma membrane, whole cells of M. smegmatis expressing CtpG only tolerate high levels of Cd 2+ and Cu 2+ . As indicator of the catalytic constant, Michaelis-Menten kinetics showed that CtpG embedded in the mycobacterial cell membrane has a V max /K m ratio 7.4-fold higher for Cd 2+ than for Cu 2+ ions. Thus, although CtpG can accept different substrates in vitro, this P-type ATPase transports Cd 2+ more efficiently than other heavy metal cations across the mycobacterial plasma membrane.

  20. Complete sequence of Enterococcus faecium pVEF3 and the detection of an omega-epsilon-zeta toxin-antitoxin module and an ABC transporter.

    PubMed

    Sletvold, H; Johnsen, P J; Hamre, I; Simonsen, G S; Sundsfjord, A; Nielsen, K M

    2008-07-01

    Glycopeptide resistant Enterococcus faecium (GREF) persists on Norwegian poultry farms despite the ban on the growth promoter avoparcin. The biological basis for long-term persistence of avoparcin resistance is not fully understood. This study presents the complete DNA sequence of the E. faecium R-plasmid pVEF3 and functional studies of some plasmid-encoded traits (a toxin-antitoxin (TA) system and an ABC transporter) that may be of importance for plasmid persistence. The pVEF3 (63.1 kbp), isolated from an E. faecium strain of poultry origin sampled in Norway in 1999, has 71 coding sequences including the vanA avoparcin/vancomycin resistance encoding gene cluster. pVEF3 encodes the TA system omega-epsilon-zeta, and plasmid stability tests and transcription analysis show that omega-epsilon-zeta is functional in Enterococcus faecalis OGIX, although with decreasing effect over time. The predicted ABC transporter was not found to confer reduced susceptibility to any of the 28 substances tested. The TA system identified in the pVEF-type plasmids may contribute to vanA plasmid persistence on Norwegian poultry farms. However, size and compositional heterogeneity among E. faecium vanA plasmids suggest that additional plasmid maintenance systems in combination with host specific factors and frequent horizontal gene transfer and rearrangement causes the observed plasmid composition and distribution patterns.

  1. In situ calibration of neutron activation system on the large helical device

    NASA Astrophysics Data System (ADS)

    Pu, N.; Nishitani, T.; Isobe, M.; Ogawa, K.; Kawase, H.; Tanaka, T.; Li, S. Y.; Yoshihashi, S.; Uritani, A.

    2017-11-01

    In situ calibration of the neutron activation system on the Large Helical Device (LHD) was performed by using an intense 252Cf neutron source. To simulate a ring-shaped neutron source, we installed a railway inside the LHD vacuum vessel and made a train loaded with the 252Cf source run along a typical magnetic axis position. Three activation capsules loaded with thirty pieces of indium foils stacked with total mass of approximately 18 g were prepared. Each capsule was irradiated over 15 h while the train was circulating. The activation response coefficient (9.4 ± 1.2) × 10-8 of 115In(n, n')115mIn reaction obtained from the experiment is in good agreement with results from three-dimensional neutron transport calculations using the Monte Carlo neutron transport simulation code 6. The activation response coefficients of 2.45 MeV birth neutron and secondary 14.1 MeV neutron from deuterium plasma were evaluated from the activation response coefficient obtained in this calibration experiment with results from three-dimensional neutron calculations using the Monte Carlo neutron transport simulation code 6.

  2. Non-local electron transport validation using 2D DRACO simulations

    NASA Astrophysics Data System (ADS)

    Cao, Duc; Chenhall, Jeff; Moll, Eli; Prochaska, Alex; Moses, Gregory; Delettrez, Jacques; Collins, Tim

    2012-10-01

    Comparison of 2D DRACO simulations, using a modified versionfootnotetextprivate communications with M. Marinak and G. Zimmerman, LLNL. of the Schurtz, Nicolai and Busquet (SNB) algorithmfootnotetextSchurtz, Nicolai and Busquet, ``A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes,'' Phys. Plasmas 7, 4238(2000). for non-local electron transport, with direct drive shock timing experimentsfootnotetextT. Boehly, et. al., ``Multiple spherically converging shock waves in liquid deuterium,'' Phys. Plasmas 18, 092706(2011). and with the Goncharov non-local modelfootnotetextV. Goncharov, et. al., ``Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution,'' Phys. Plasmas 13, 012702(2006). in 1D LILAC will be presented. Addition of an improved SNB non-local electron transport algorithm in DRACO allows direct drive simulations with no need for an electron conduction flux limiter. Validation with shock timing experiments that mimic the laser pulse profile of direct drive ignition targets gives a higher confidence level in the predictive capability of the DRACO code. This research was supported by the University of Rochester Laboratory for Laser Energetics.

  3. Thermodynamic and transport properties of frozen and reacting pH2-oH2 mixtures

    NASA Technical Reports Server (NTRS)

    Carter, H. G.; Bullock, R. E.

    1972-01-01

    Application of experimental state data and spectroscopic term values shows that the thermodynamic and transport properties of reacting pH2-oH2 mixtures are considerably different than those of chemically frozen pH2 at temperatures below 300 R. Calculated H-S data also show that radiation-induced pH2-oH2 equilibration at constant enthalpy produces a temperature drop of at least 28 R, corresponding to an ideal shaft work loss of 15% or more for a turbine operating downstream from the point of conversion. Aside from differences in thermodynamic and transport properties, frozen pH2-oH2 mixtures may differ from pure pH2 on a purely hydrodynamical basis.

  4. Actinomyces spp. gene expression in root caries lesions

    PubMed Central

    Dame-Teixeira, Naile; Parolo, Clarissa Cavalcanti Fatturi; Maltz, Marisa; Tugnait, Aradhna; Devine, Deirdre; Do, Thuy

    2016-01-01

    Background The studies of the distribution of Actinomyces spp. on carious and non-carious root surfaces have not been able to confirm the association of these bacteria with root caries, although they were extensively implicated as a prime suspect in root caries. Objective The aim of this study was to observe the gene expression of Actinomyces spp. in the microbiota of root surfaces with and without caries. Design The oral biofilms from exposed sound root surface (SRS; n=10) and active root caries (RC; n=30) samples were collected. The total bacterial RNA was extracted, and the mRNA was isolated. Samples with low RNA concentration were pooled, yielding a final sample size of SRS=10 and RC=9. Complementary DNA (cDNA) libraries were prepared and sequenced on an Illumina® HiSeq 2500 system. Sequence reads were mapped to eight Actinomyces genomes. Count data were normalized using DESeq2 to analyse differential gene expression applying the Benjamini-Hochberg correction (false discovery rate [FDR]<0.001). Results Actinomyces spp. had similar numbers of reads (Mann-Whitney U-test; p>0.05), except for Actinomyces OT178 (p=0.001) and Actinomyces gerencseriae (p=0.004), which had higher read counts in the SRS. Genes that code for stress proteins (clp, dnaK, and groEL), enzymes of glycolysis pathways (including enolase and phosphoenolpyruvate carboxykinase), adhesion (Type-2 fimbrial and collagen-binding protein), and cell growth (EF-Tu) were highly – but not differentially (p>0.001) – expressed in both groups. Genes with the most significant upregulation in RC were those coding for hypothetical proteins and uracil DNA glycosylase (p=2.61E-17). The gene with the most significant upregulation in SRS was a peptide ABC transporter substrate-binding protein (log2FC=−6.00, FDR=2.37E-05). Conclusion There were similar levels of Actinomyces gene expression in both sound and carious root biofilms. These bacteria can be commensal in root surface sites but may be cariogenic due to survival mechanisms that allow them to exist in acid environments and to metabolize sugars, saving energy. PMID:27640531

  5. Path Toward a Unifid Geometry for Radiation Transport

    NASA Technical Reports Server (NTRS)

    Lee, Kerry; Barzilla, Janet; Davis, Andrew; Zachmann

    2014-01-01

    The Direct Accelerated Geometry for Radiation Analysis and Design (DAGRAD) element of the RadWorks Project under Advanced Exploration Systems (AES) within the Space Technology Mission Directorate (STMD) of NASA will enable new designs and concepts of operation for radiation risk assessment, mitigation and protection. This element is designed to produce a solution that will allow NASA to calculate the transport of space radiation through complex computer-aided design (CAD) models using the state-of-the-art analytic and Monte Carlo radiation transport codes. Due to the inherent hazard of astronaut and spacecraft exposure to ionizing radiation in low-Earth orbit (LEO) or in deep space, risk analyses must be performed for all crew vehicles and habitats. Incorporating these analyses into the design process can minimize the mass needed solely for radiation protection. Transport of the radiation fields as they pass through shielding and body materials can be simulated using Monte Carlo techniques or described by the Boltzmann equation, which is obtained by balancing changes in particle fluxes as they traverse a small volume of material with the gains and losses caused by atomic and nuclear collisions. Deterministic codes that solve the Boltzmann transport equation, such as HZETRN [high charge and energy transport code developed by NASA Langley Research Center (LaRC)], are generally computationally faster than Monte Carlo codes such as FLUKA, GEANT4, MCNP(X) or PHITS; however, they are currently limited to transport in one dimension, which poorly represents the secondary light ion and neutron radiation fields. NASA currently uses HZETRN space radiation transport software, both because it is computationally efficient and because proven methods have been developed for using this software to analyze complex geometries. Although Monte Carlo codes describe the relevant physics in a fully three-dimensional manner, their computational costs have thus far prevented their widespread use for analysis of complex CAD models, leading to the creation and maintenance of toolkit-specific simplistic geometry models. The work presented here builds on the Direct Accelerated Geometry Monte Carlo (DAGMC) toolkit developed for use with the Monte Carlo N-Particle (MCNP) transport code. The workflow for achieving radiation transport on CAD models using MCNP and FLUKA has been demonstrated and the results of analyses on realistic spacecraft/habitats will be presented. Future work is planned that will further automate this process and enable the use of multiple radiation transport codes on identical geometry models imported from CAD. This effort will enhance the modeling tools used by NASA to accurately evaluate the astronaut space radiation risk and accurately determine the protection provided by as-designed exploration mission vehicles and habitats

  6. Evolution of the carboxylate Jen transporters in fungi.

    PubMed

    Lodi, Tiziana; Diffels, Julie; Goffeau, André; Baret, Philippe V

    2007-08-01

    Synteny analysis is combined with sequence similarity and motif identification to trace the evolution of the putative monocarboxylate (lactate/pyruvate) transporters Jen1p and the dicarboxylate (succinate/fumarate/malate) transporters Jen2p in Hemiascomycetes yeasts and Euascomycetes fungi. It is concluded that a precursor form of Jen1p, named here preJen1p, arose by the duplication of an ancestral Jen2p, during the speciation of Yarrowia lipolytica, which was transferred into a new syntenic context. The Jen1p transporters differentiated from preJen1p in Kluyveromyces lactis, before the Whole Genome Duplication (WGD), and are conserved as a single copy in the Saccharomyces species. In contrast, the ancestral Jen2p was definitively lost just prior to the WGD and is absent in Saccharomyces.

  7. Biases in GNSS-Data Processing

    NASA Astrophysics Data System (ADS)

    Schaer, S. C.; Dach, R.; Lutz, S.; Meindl, M.; Beutler, G.

    2010-12-01

    Within the Global Positioning System (GPS) traditionally different types of pseudo-range measurements (P-code, C/A-code) are available on the first frequency that are tracked by the receivers with different technologies. For that reason, P1-C1 and P1-P2 Differential Code Biases (DCB) need to be considered in a GPS data processing with a mix of different receiver types. Since the Block IIR-M series of GPS satellites also provide C/A-code on the second frequency, P2-C2 DCB need to be added to the list of biases for maintenance. Potential quarter-cycle biases between different phase observables (specifically L2P and L2C) are another issue. When combining GNSS (currently GPS and GLONASS), careful consideration of inter-system biases (ISB) is indispensable, in particular when an adequate combination of individual GLONASS clock correction results from different sources (using, e.g., different software packages) is intended. Facing the GPS and GLONASS modernization programs and the upcoming GNSS, like the European Galileo and the Chinese Compass, an increasing number of types of biases is expected. The Center for Orbit Determination in Europe (CODE) is monitoring these GPS and GLONASS related biases for a long time based on RINEX files of the tracking network of the International GNSS Service (IGS) and in the frame of the data processing as one of the global analysis centers of the IGS. Within the presentation we give an overview on the stability of the biases based on the monitoring. Biases derived from different sources are compared. Finally, we give an outlook on the potential handling of such biases with the big variety of signals and systems expected in the future.

  8. 49 CFR 178.33 - Specification 2P; inner nonrefillable metal receptacles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 2P; inner nonrefillable metal receptacles. 178.33 Section 178.33 Transportation Other Regulations Relating to Transportation (Continued... nonrefillable metal receptacles. ...

  9. Tycho 2: A Proxy Application for Kinetic Transport Sweeps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Charles Kristopher; Warsa, James S.

    2016-09-14

    Tycho 2 is a proxy application that implements discrete ordinates (SN) kinetic transport sweeps on unstructured, 3D, tetrahedral meshes. It has been designed to be small and require minimal dependencies to make collaboration and experimentation as easy as possible. Tycho 2 has been released as open source software. The software is currently in a beta release with plans for a stable release (version 1.0) before the end of the year. The code is parallelized via MPI across spatial cells and OpenMP across angles. Currently, several parallelization algorithms are implemented.

  10. 1DTempPro: analyzing temperature profiles for groundwater/surface-water exchange

    USGS Publications Warehouse

    Voytek, Emily B.; Drenkelfuss, Anja; Day-Lewis, Frederick D.; Healy, Richard; Lane, John W.; Werkema, Dale D.

    2014-01-01

    A new computer program, 1DTempPro, is presented for the analysis of vertical one-dimensional (1D) temperature profiles under saturated flow conditions. 1DTempPro is a graphical user interface to the U.S. Geological Survey code Variably Saturated 2-Dimensional Heat Transport (VS2DH), which numerically solves the flow and heat-transport equations. Pre- and postprocessor features allow the user to calibrate VS2DH models to estimate vertical groundwater/surface-water exchange and also hydraulic conductivity for cases where hydraulic head is known.

  11. Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steefel, Carl; Hausrath, E.M.; Navarre-Sitchler, A.K.

    2008-03-15

    Where Martian rocks have been exposed to liquid water, chemistry versus depth profiles could elucidate both Martian climate history and potential for life. The persistence of primary minerals in weathered profiles constrains the exposure time to liquid water: on Earth, mineral persistence times range from {approx}10 ka (olivine) to {approx}250 ka (glass) to {approx}1Ma (pyroxene) to {approx}5Ma (plagioclase). Such persistence times suggest mineral persistence minima on Mars. However, Martian solutions may have been more acidic than on Earth. Relative mineral weathering rates observed for basalt in Svalbard (Norway) and Costa Rica demonstrate that laboratory pH trends can be used tomore » estimate exposure to liquid water both qualitatively (mineral absence or presence) and quantitatively (using reactive transport models). Qualitatively, if the Martian solution pH > {approx}2, glass should persist longer than olivine; therefore, persistence of glass may be a pH-indicator. With evidence for the pH of weathering, the reactive transport code CrunchFlow can quantitatively calculate the minimum duration of exposure to liquid water consistent with a chemical profile. For the profile measured on the surface of Humphrey in Gusev Crater, the minimum exposure time is 22 ka. If correct, this estimate is consistent with short-term, episodic alteration accompanied by ongoing surface erosion. More of these depth profiles should be measured to illuminate the weathering history of Mars.« less

  12. Geographic Variation in the Use of Low-Acuity Pediatric Emergency Medical Services.

    PubMed

    Gregory, Emily F; Chamberlain, James M; Teach, Stephen J; Engstrom, Ryan; Mathison, David J

    2017-02-01

    The aim of this study was to examine geographic variation in pediatric low-acuity emergency medical services (EMS) use in Washington, DC. This cross-sectional analysis of low-acuity EMS transports evaluated arrivals at 2 emergency departments and included 93% of pediatric transports in Washington, DC, during the study period. Low-acuity classification was defined as a triage emergency severity index of 4 or 5 not resulting in transfer, admission, or death. Logistic regression compared low-acuity visits arriving via EMS with all other low-acuity visits. Home zip code represented geographic location. Covariates included patient age, sex, race/ethnicity, hour of emergency department arrival, and insurance status. There were 45,454 low-acuity visits among children aged 0 to 17 years. Of these, 3304 (7.3%) arrived via EMS. The mean age was 5.6 (±5.0) years. Most were African American (84.3%) and had Medicaid insurance (87.3%). Geographic variation predicted EMS use. Adjusted odds ratios (ORs) of using EMS varied from 1.11 to 2.54 when compared with the lowest EMS use zip code. Odds of EMS use were higher among those with public insurance (adjusted OR [adj OR], 1.71; 95% confidence interval [CI], 1.46-2.00) and those with evening and overnight arrivals (evening arrival, adj OR of 1.65 and 95% CI of 1.47-1.86; overnight arrival, adj OR of 2.98 and 95% CI of 2.43-3.65). After adjusting for known covariates, residential zip code was associated with low-acuity EMS activation, stressing the importance of geographic variation in EMS use. Providing alternate means of transportation, or targeted education to certain residential areas, may decrease unnecessary EMS activation.

  13. Illite Dissolution Rates and Equation (100 to 280 dec C)

    DOE Data Explorer

    Carroll, Susan

    2014-10-17

    The objective of this suite of experiments was to develop a useful kinetic dissolution expression for illite applicable over an expanded range of solution pH and temperature conditions representative of subsurface conditions in natural and/or engineered geothermal reservoirs. Using our new data, the resulting rate equation is dependent on both pH and temperature and utilizes two specific dissolution mechanisms (a “neutral” and a “basic” mechanism). The form of this rate equation should be easily incorporated into most existing reactive transport codes for to predict rock-water interactions in EGS shear zones.

  14. TRANSP: status and planning

    NASA Astrophysics Data System (ADS)

    Andre, R.; Carlsson, J.; Gorelenkova, M.; Jardin, S.; Kaye, S.; Poli, F.; Yuan, X.

    2016-10-01

    TRANSP is an integrated interpretive and predictive transport analysis tool that incorporates state of the art heating/current drive sources and transport models. The treatments and transport solvers are becoming increasingly sophisticated and comprehensive. For instance, the ISOLVER component provides a free boundary equilibrium solution, while the PT- SOLVER transport solver is especially suited for stiff transport models such as TGLF. TRANSP incorporates high fidelity heating and current drive source models, such as NUBEAM for neutral beam injection, the beam tracing code TORBEAM for EC, TORIC for ICRF, the ray tracing TORAY and GENRAY for EC. The implementation of selected components makes efficient use of MPI for speed up of code calculations. Recently the GENRAY-CQL3D solver for modeling of LH heating and current drive has been implemented and currently being extended to multiple antennas, to allow modeling of EAST discharges. Also, GENRAY+CQL3D is being extended to the use of EC/EBW and of HHFW for NSTX-U. This poster will describe present uses of the code worldwide, as well as plans for upgrading the physics modules and code framework. Work supported by the US Department of Energy under DE-AC02-CH0911466.

  15. ecode - Electron Transport Algorithm Testing v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, Brian C.; Olson, Aaron J.; Bruss, Donald Eugene

    2016-10-05

    ecode is a Monte Carlo code used for testing algorithms related to electron transport. The code can read basic physics parameters, such as energy-dependent stopping powers and screening parameters. The code permits simple planar geometries of slabs or cubes. Parallelization consists of domain replication, with work distributed at the start of the calculation and statistical results gathered at the end of the calculation. Some basic routines (such as input parsing, random number generation, and statistics processing) are shared with the Integrated Tiger Series codes. A variety of algorithms for uncertainty propagation are incorporated based on the stochastic collocation and stochasticmore » Galerkin methods. These permit uncertainty only in the total and angular scattering cross sections. The code contains algorithms for simulating stochastic mixtures of two materials. The physics is approximate, ranging from mono-energetic and isotropic scattering to screened Rutherford angular scattering and Rutherford energy-loss scattering (simple electron transport models). No production of secondary particles is implemented, and no photon physics is implemented.« less

  16. Ketoconazole and the modulation of multidrug resistance-mediated transport in Caco-2 and MDCKII-MDR1 drug transport models.

    PubMed

    Fan, Y; Rodriguez-Proteau, R

    2008-02-01

    The hypothesis tested was that ketoconazole can modulate P-glycoprotein, thereby altering cellular uptake and apparent permeability (P(app)) of multidrug-resistant substrates, such as cyclosporin A (CSA) and digoxin, across Caco-2, MDCKII-MDR1, and MDCKII wild-type cell transport models. (3)H-CSA/(3)H-digoxin transport experiments were performed with and without co-exposure to ketoconazole, and (3)H-ketoconzole transport experiments were performed with and without co-exposure to dietary flavonoids, epigallocatechin-3-gallate, and xanthohumol. Ketoconazole (3 microM) reduced the P(app) efflux of CSA and digoxin from 5.07 x 10(-6) to 2.91 x 10(-6) cm s(-1) and from 2.60 x 10(-6) to 1.41 x 10(-6) cm s(-1), respectively, in Caco-2 cells. In the MDCKII-MDR1 cells, ketoconazole reduced the P(app) efflux of CSA and increased the P(app) absorption of digoxin. Cellular uptake of ketoconazole in the Caco-2 cells was significantly inhibited by CSA and digoxin, whereas epigallocatechin-3-gallate and xanthohumol exhibited biphasic responses. In conclusion, ketoconazole modulates the P(app) of P-glycoprotein substrates by interacting with MDR1 protein. Epigallocatechin-3-gallate and xanthohumol modulate the transport and uptake of ketoconazole.

  17. Computer codes for the evaluation of thermodynamic and transport properties for equilibrium air to 30000 K

    NASA Technical Reports Server (NTRS)

    Thompson, Richard A.; Lee, Kam-Pui; Gupta, Roop N.

    1991-01-01

    The computer codes developed here provide self-consistent thermodynamic and transport properties for equilibrium air for temperatures from 500 to 30000 K over a temperature range of 10 (exp -4) to 10 (exp -2) atm. These properties are computed through the use of temperature dependent curve fits for discrete values of pressure. Interpolation is employed for intermediate values of pressure. The curve fits are based on mixture values calculated from an 11-species air model. Individual species properties used in the mixture relations are obtained from a recent study by the present authors. A review and discussion of the sources and accuracy of the curve fitted data used herein are given in NASA RP 1260.

  18. Effects of Trx2p and Sec23p expression on stable production of hepatitis B surface antigen S domain in recombinant Saccharomyces cerevisiae.

    PubMed

    Park, Young-Kyoung; Jung, Sang-Min; Lim, Hyung-Kwon; Son, Young-Jin; Park, Yong-Cheol; Seo, Jin-Ho

    2012-08-31

    The S domain of hepatitis B virus surface antigen (sHBsAg) is the primary component for vaccine development against virus infection. For stable expression of sHBsAg in recombinant Saccharomyces cerevisiae, new accessory genes necessary for foreign protein expression were screened by DNA microarray. Among 600 genes of interest, genes coding for an activating protein of ATPase in Hsp90 (Aha1p), S. cerevisiae DnaJ (Scj1p), thioredoxin 2 (Trx2p) and a GTPase-activator specific for Sar1 (Sec23p) as well as Pdi1p were selected in transcriptome analysis, which are known to facilitate disulfide bond formation or induce protein transport in the secretion pathway. Individual and combinatorial expression of SEC23, TRX2 and PDI1 increased total sHBsAg concentration by 1.9-6.5-fold, relative to the control strain expressing sHBsAg only. Additionally, moderate expression of Kex2p protease able to cut off the signal peptide enhanced the portion of the authentic sHBsAg to total sHBsAg. Fed-batch fermentation of the S. cerevisiae 2805 strain coexpressing the sHBsAg, SEC23, PDI1 and KEX2 genes resulted in 70.6mg/L final sHBsAg concentration which was 5.6 times higher than that of the control. Transmission electron microscopic analysis of the yeast cells elucidated the effects of the accessory gene coexpression on the intracellular localization of sHBsAg. Like PDI1, coexpression of both SEC23 and/or TRX2 newly isolated in this study is expected to improve the target protein expression in S. cerevisiae. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. 49 CFR 171.25 - Additional requirements for the use of the IMDG Code.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 176 of this subchapter. (3) Packages containing primary lithium batteries and cells that are transported in accordance with Special Provision 188 of the IMDG Code must be marked “PRIMARY LITHIUM BATTERIES—FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT” or “LITHIUM METAL BATTERIES—FORBIDDEN FOR...

  20. 49 CFR 171.25 - Additional requirements for the use of the IMDG Code.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 176 of this subchapter. (3) Packages containing primary lithium batteries and cells that are transported in accordance with Special Provision 188 of the IMDG Code must be marked “PRIMARY LITHIUM BATTERIES—FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT” or “LITHIUM METAL BATTERIES—FORBIDDEN FOR...

  1. 49 CFR 171.25 - Additional requirements for the use of the IMDG Code.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 176 of this subchapter. (3) Packages containing primary lithium batteries and cells that are transported in accordance with Special Provision 188 of the IMDG Code must be marked “PRIMARY LITHIUM BATTERIES—FORBIDDEN FOR TRANSPORT ABOARD PASSENGER AIRCRAFT” or “LITHIUM METAL BATTERIES—FORBIDDEN FOR...

  2. Evaluation of Factors Influencing Accuracy of Principal Procedure Coding Based on ICD-9-CM: An Iranian Study

    PubMed Central

    Farzandipour, Mehrdad; Sheikhtaheri, Abbas

    2009-01-01

    To evaluate the accuracy of procedural coding and the factors that influence it, 246 records were randomly selected from four teaching hospitals in Kashan, Iran. “Recodes” were assigned blindly and then compared to the original codes. Furthermore, the coders' professional behaviors were carefully observed during the coding process. Coding errors were classified as major or minor. The relations between coding accuracy and possible effective factors were analyzed by χ2 or Fisher exact tests as well as the odds ratio (OR) and the 95 percent confidence interval for the OR. The results showed that using a tabular index for rechecking codes reduces errors (83 percent vs. 72 percent accuracy). Further, more thorough documentation by the clinician positively affected coding accuracy, though this relation was not significant. Readability of records decreased errors overall (p = .003), including major ones (p = .012). Moreover, records with no abbreviations had fewer major errors (p = .021). In conclusion, not using abbreviations, ensuring more readable documentation, and paying more attention to available information increased coding accuracy and the quality of procedure databases. PMID:19471647

  3. Nonperturbative methods in HZE ion transport

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Badavi, Francis F.; Costen, Robert C.; Shinn, Judy L.

    1993-01-01

    A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport. The code is established to operate on the Langley Research Center nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code is highly efficient and compares well with the perturbation approximations.

  4. Individual and Co Transport Study of Titanium Dioxide NPs and Zinc Oxide NPs in Porous Media

    PubMed Central

    Kumari, Jyoti; Mathur, Ankita; Rajeshwari, A.; Venkatesan, Arthi; S, Satyavati; Pulimi, Mrudula; Chandrasekaran, Natarajan; Nagarajan, R.; Mukherjee, Amitava

    2015-01-01

    The impact of pH and ionic strength on the mobility (individual and co-transport) and deposition kinetics of TiO2 and ZnO NPs in porous media was systematically investigated in this study. Packed column experiments were performed over a series of environmentally relevant ionic strengths with both NaCl (0.1−10 mM) and CaCl2 (0.01–0.1mM) solutions and at pH 5, 7, and 9. The transport of TiO2 NPs at pH 5 was not significantly affected by ZnO NPs in solution. At pH 7, a decrease in TiO2 NP transport was noted with co-existence of ZnO NPs, while at pH 9 an increase in the transport was observed. At pH 5 and 7, the transport of ZnO NPs was decreased when TiO2 NPs was present in the solution, and at pH 9, an increase was noted. The breakthrough curves (BTC) were noted to be sensitive to the solution chemistries; the decrease in the breakthrough plateau with increasing ionic strength was observed under all examined pH (5, 7, and 9). The retention profiles were the inverse of the plateaus of BTCs, as expected from mass balance considerations. Overall, the results from this study suggest that solution chemistries (ionic strength and pH) are likely the key factors that govern the individual and co-transport behavior of TiO2 and ZnO NPs in sand. PMID:26252479

  5. Edge turbulence and divertor heat flux width simulations of Alcator C-Mod discharges using an electromagnetic two-fluid model

    NASA Astrophysics Data System (ADS)

    Chen, B.; Xu, X. Q.; Xia, T. Y.; Porkolab, M.; Edlund, E.; LaBombard, B.; Terry, J.; Hughes, J. W.; Mao, S. F.; Ye, M. Y.; Wan, Y. X.

    2017-11-01

    The BOUT++ code has been exploited in order to improve the understanding of the role of turbulent modes in controlling edge transport and resulting scaling of the scrape-off layer (SOL) heat flux width. For the C-Mod enhanced D_α (EDA) H-mode discharges, BOUT++ six-field two-fluid nonlinear simulations show a reasonable agreement of upstream turbulence and divertor target heat flux behavior: (a) the simulated quasi-coherent modes show consistent characteristics of the frequency versus poloidal wave number spectra of the electromagnetic fluctuations when compared with experimental measurements: frequencies are around 60-120 kHz (experiment: about 70-110 kHz), k_θ are around 2.0 cm-1 which is similar to the phase contrast imaging data; (b) linear spectrum analysis is consistent with the nonlinear phase relationship calculation which indicates the dominance of resistive-ballooning modes and drift-Alfven wave instabilities; (c) the SOL heat flux width λq versus current I p scaling is reproduced by turbulent transport: the simulations yield similar λq to experimental measurements within a factor of 2. However the magnitudes of divertor heat fluxes can be varied, depending on the physics models, sources and sinks, sheath boundary conditions, or flux limiting coefficient; (d) Simple estimate by the ‘2-point model’ for λq is consistent with simulation. Moreover, blobby turbulent spreading is confirmed for these relatively high B p shots.

  6. PROTEUS-SN User Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shemon, Emily R.; Smith, Micheal A.; Lee, Changho

    2016-02-16

    PROTEUS-SN is a three-dimensional, highly scalable, high-fidelity neutron transport code developed at Argonne National Laboratory. The code is applicable to all spectrum reactor transport calculations, particularly those in which a high degree of fidelity is needed either to represent spatial detail or to resolve solution gradients. PROTEUS-SN solves the second order formulation of the transport equation using the continuous Galerkin finite element method in space, the discrete ordinates approximation in angle, and the multigroup approximation in energy. PROTEUS-SN’s parallel methodology permits the efficient decomposition of the problem by both space and angle, permitting large problems to run efficiently on hundredsmore » of thousands of cores. PROTEUS-SN can also be used in serial or on smaller compute clusters (10’s to 100’s of cores) for smaller homogenized problems, although it is generally more computationally expensive than traditional homogenized methodology codes. PROTEUS-SN has been used to model partially homogenized systems, where regions of interest are represented explicitly and other regions are homogenized to reduce the problem size and required computational resources. PROTEUS-SN solves forward and adjoint eigenvalue problems and permits both neutron upscattering and downscattering. An adiabatic kinetics option has recently been included for performing simple time-dependent calculations in addition to standard steady state calculations. PROTEUS-SN handles void and reflective boundary conditions. Multigroup cross sections can be generated externally using the MC2-3 fast reactor multigroup cross section generation code or internally using the cross section application programming interface (API) which can treat the subgroup or resonance table libraries. PROTEUS-SN is written in Fortran 90 and also includes C preprocessor definitions. The code links against the PETSc, METIS, HDF5, and MPICH libraries. It optionally links against the MOAB library and is a part of the SHARP multi-physics suite for coupled multi-physics analysis of nuclear reactors. This user manual describes how to set up a neutron transport simulation with the PROTEUS-SN code. A companion methodology manual describes the theory and algorithms within PROTEUS-SN.« less

  7. Web-based reactive transport modeling using PFLOTRAN

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Karra, S.; Lichtner, P. C.; Versteeg, R.; Zhang, Y.

    2017-12-01

    Actionable understanding of system behavior in the subsurface is required for a wide spectrum of societal and engineering needs by both commercial firms and government entities and academia. These needs include, for example, water resource management, precision agriculture, contaminant remediation, unconventional energy production, CO2 sequestration monitoring, and climate studies. Such understanding requires the ability to numerically model various coupled processes that occur across different temporal and spatial scales as well as multiple physical domains (reservoirs - overburden, surface-subsurface, groundwater-surface water, saturated-unsaturated zone). Currently, this ability is typically met through an in-house approach where computational resources, model expertise, and data for model parameterization are brought together to meet modeling needs. However, such an approach has multiple drawbacks which limit the application of high-end reactive transport codes such as the Department of Energy funded[?] PFLOTRAN code. In addition, while many end users have a need for the capabilities provided by high-end reactive transport codes, they do not have the expertise - nor the time required to obtain the expertise - to effectively use these codes. We have developed and are actively enhancing a cloud-based software platform through which diverse users are able to easily configure, execute, visualize, share, and interpret PFLOTRAN models. This platform consists of a web application and available on-demand HPC computational infrastructure. The web application consists of (1) a browser-based graphical user interface which allows users to configure models and visualize results interactively, and (2) a central server with back-end relational databases which hold configuration, data, modeling results, and Python scripts for model configuration, and (3) a HPC environment for on-demand model execution. We will discuss lessons learned in the development of this platform, the rationale for different interfaces, implementation choices, as well as the planned path forward.

  8. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less

  9. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    DOE PAGES

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    2017-12-10

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less

  10. Intestinal Transport Characteristics and Metabolism of C-Glucosyl Dihydrochalcone, Aspalathin.

    PubMed

    Bowles, Sandra; Joubert, Elizabeth; de Beer, Dalene; Louw, Johan; Brunschwig, Christel; Njoroge, Mathew; Lawrence, Nina; Wiesner, Lubbe; Chibale, Kelly; Muller, Christo

    2017-03-30

    Insight into the mechanisms of intestinal transport and metabolism of aspalathin will provide important information for dose optimisation, in particular for studies using mouse models. Aspalathin transportation across the intestinal barrier (Caco-2 monolayer) tested at 1-150 µM had an apparent rate of permeability (P app ) typical of poorly absorbed compounds (1.73 × 10 -6 cm/s). Major glucose transporters, sodium glucose linked transporter 1 (SGLT1) and glucose transporter 2 (GLUT2), and efflux protein (P-glycoprotein, PgP) (1.84 × 10 -6 cm/s; efflux ratio: 1.1) were excluded as primary transporters, since the P app of aspalathin was not affected by the presence of specific inhibitors. The P app of aspalathin was also not affected by constituents of aspalathin-enriched rooibos extracts, but was affected by high glucose concentration (20.5 mM), which decreased the P app value to 2.9 × 10 -7 cm/s. Aspalathin metabolites (sulphated, glucuronidated and methylated) were found in mouse urine, but not in blood, following an oral dose of 50 mg/kg body weight of the pure compound. Sulphates were the predominant metabolites. These findings suggest that aspalathin is absorbed and metabolised in mice to mostly sulphate conjugates detected in urine. Mechanistically, we showed that aspalathin is not actively transported by the glucose transporters, but presumably passes the monolayer paracellularly.

  11. Genome analysis of urease positive Serratia marcescens, co-producing SRT-2 and AAC(6')-Ic with multidrug efflux pumps for antimicrobial resistance.

    PubMed

    Srinivasan, Vijaya Bharathi; Rajamohan, Govindan

    2018-04-05

    In this study, we present the genome sequence of Serratia marcescens SM03, recovered from a human gut in India. The final assembly consists of 26 scaffolds (4620 coding DNA sequences, 5.08 Mb, 59.6% G + C ratio) and 79 tRNA genes. Analysis identified novel genes associated with lactose utilization, virulence, P-loop GTPases involved in urease production, CFA/I fimbriae apparatus and Yersinia - type CRISPR proteins. Antibiotic susceptibility testing indicated drug tolerant phenotype and inhibition assays demonstrated involvement of extrusion in resistance. Presence of enzymes SRT-2, AAC(6')-Ic, with additional Ybh transporter and EamA-like efflux pumps signifies the genetic plasticity observed in S. marcescens SM03. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Amino-terminal domain of the v-fms oncogene product includes a functional signal peptide that directs synthesis of a transforming glycoprotein in the absence of feline leukemia virus gag sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, E.F.; Roussel, M.F.; Hampe, A.

    1986-08-01

    The nucleotide sequence of a 5' segment of the human genomic c-fms proto-oncogene suggested that recombination between feline leukemia virus and feline c-fms sequences might have occurred in a region encoding the 5' untranslated portion of c-fms mRNA. The polyprotein precursor gP180/sup gag-fms/ encoded by the McDonough strain of feline sarcoma virus was therefore predicted to contain 34 v-fms-coded amino acids derived from sequences of the c-fms gene that are not ordinarily translated from the proto-oncogene mRNA. The (gP180/sup gag-fms/) polyprotein was cotranslationally cleaved near the gag-fms junction to remove its gag gene-coded portion. Determination of the amino-terminal sequence ofmore » the resulting v-fms-coded glycoprotein, gp120/sup v-fms/, showed that the site of proteolysis corresponded to a predicted signal peptidase cleavage site within the c-fms gene product. Together, these analyses suggested that the linked gag sequences may not be necessary for expression of a biologically active v-fms gene product. The gag-fms sequences of feline sarcoma virus strain McDonough and the v-fms sequences alone were inserted into a murine retroviral vector containing a neomycin resistance gene. The authors conclude that a cryptic hydrophobic signal peptide sequence in v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms gene product within membranous organelles. It seems likely that the proteolytic cleavage of gP180/gag-fms/ is mediated by signal peptidase and that the amino termini of gp140/sup v-fms/ and the c-fms gene product are identical.« less

  13. Liquid and gaseous oxygen safety review, volume 2

    NASA Technical Reports Server (NTRS)

    Lapin, A.

    1972-01-01

    Guidelines, codes, regulations and special procedures used in the design, installation, fabrication, testing and operations for protection against hazards involved with production, transportation, storage and system handling of oxygen are presented with a list of related references.

  14. Convergent evolution of Amadori opine catabolic systems in plasmids of Agrobacterium tumefaciens.

    PubMed

    Baek, Chang-Ho; Farrand, Stephen K; Lee, Ko-Eun; Park, Dae-Kyun; Lee, Jeong Kug; Kim, Kun-Soo

    2003-01-01

    Deoxyfructosyl glutamine (DFG, referred to elsewhere as dfg) is a naturally occurring Amadori compound found in rotting fruits and vegetables. DFG also is an opine and is found in tumors induced by chrysopine-type strains of Agrobacterium tumefaciens. Such strains catabolize this opine via a pathway coded for by their plasmids. NT1, a derivative of the nopaline-type A. tumefaciens strain C58 lacking pTiC58, can utilize DFG as the sole carbon source. Genes for utilization of DFG were mapped to the 543-kb accessory plasmid pAtC58. Two cosmid clones of pAtC58 allowed UIA5, a plasmid-free derivative of C58, harboring pSa-C that expresses MocC (mannopine [MOP] oxidoreductase that oxidizes MOP to DFG), to grow by using MOP as the sole carbon source. Genetic analysis of subclones indicated that the genes for utilization of DFG are located in a 6.2-kb BglII (Bg2) region adjacent to repABC-type genes probably responsible for the replication of pAtC58. This region contains five open reading frames organized into at least two transcriptional soc (santhopine catabolism) groups: socR and socABCD. Nucleotide sequence analysis and analyses of transposon-insertion mutations in the region showed that SocR negatively regulates the expression of socR itself and socABCD. SocA and SocB are responsible for transport of DFG and MOP. SocA is a homolog of known periplasmic amino acid binding proteins. The N-terminal half of SocB is a homolog of the transmembrane transporter proteins for several amino acids, and the C-terminal half is a homolog of the transporter-associated ATP-binding proteins. SocC and SocD could be responsible for the enzymatic degradation of DFG, being homologs of sugar oxidoreductases and an amadoriase from Corynebacterium sp., respectively. The protein products of socABCD are not related at the amino acid sequence level to those of the moc and mot genes of Ti plasmids responsible for utilization of DFG and MOP, indicating that these two sets of genes and their catabolic pathways have evolved convergently from independent origins.

  15. Radiation exposure for manned Mars surface missions

    NASA Technical Reports Server (NTRS)

    Simonsen, Lisa C.; Nealy, John E.; Townsend, Lawrence W.; Wilson, John W.

    1990-01-01

    The Langley cosmic ray transport code and the Langley nucleon transport code (BRYNTRN) are used to quantify the transport and attenuation of galactic cosmic rays (GCR) and solar proton flares through the Martian atmosphere. Surface doses are estimated using both a low density and a high density carbon dioxide model of the atmosphere which, in the vertical direction, provides a total of 16 g/sq cm and 22 g/sq cm of protection, respectively. At the Mars surface during the solar minimum cycle, a blood-forming organ (BFO) dose equivalent of 10.5 to 12 rem/yr due to galactic cosmic ray transport and attenuation is calculated. Estimates of the BFO dose equivalents which would have been incurred from the three large solar flare events of August 1972, November 1960, and February 1956 are also calculated at the surface. Results indicate surface BFO dose equivalents of approximately 2 to 5, 5 to 7, and 8 to 10 rem per event, respectively. Doses are also estimated at altitudes up to 12 km above the Martian surface where the atmosphere will provide less total protection.

  16. Space radiation dose estimates on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Simonsen, Lisa C.; Nealy, John E.; Townsend, Lawrence W.; Wilson, John W.

    1990-01-01

    The Langley cosmic ray transport code and the Langley nucleon transport code (BRYNTRN) are used to quantify the transport and attenuation of galactic cosmic rays (GCR) and solar proton flares through the Martian atmosphere. Surface doses are estimated using both a low density and a high density carbon dioxide model of the atmosphere which, in the vertical direction, provides a total of 16 g/sq cm and 22 g/sq cm of protection, respectively. At the Mars surface during the solar minimum cycle, a blood-forming organ (BFO) dose equivalent of 10.5 to 12 rem/yr due to galactic cosmic ray transport and attenuation is calculated. Estimates of the BFO dose equivalents which would have been incurred from the three large solar flare events of August 1972, November 1960, and February 1956 are also calculated at the surface. Results indicate surface BFO dose equivalents of approximately 2 to 5, 5 to 7, and 8 to 10 rem per event, respectively. Doses are also estimated at altitudes up to 12 km above the Martian surface where the atmosphere will provide less total protection.

  17. Suite of Benchmark Tests to Conduct Mesh-Convergence Analysis of Nonlinear and Non-constant Coefficient Transport Codes

    NASA Astrophysics Data System (ADS)

    Zamani, K.; Bombardelli, F. A.

    2014-12-01

    Verification of geophysics codes is imperative to avoid serious academic as well as practical consequences. In case that access to any given source code is not possible, the Method of Manufactured Solution (MMS) cannot be employed in code verification. In contrast, employing the Method of Exact Solution (MES) has several practical advantages. In this research, we first provide four new one-dimensional analytical solutions designed for code verification; these solutions are able to uncover the particular imperfections of the Advection-diffusion-reaction equation, such as nonlinear advection, diffusion or source terms, as well as non-constant coefficient equations. After that, we provide a solution of Burgers' equation in a novel setup. Proposed solutions satisfy the continuity of mass for the ambient flow, which is a crucial factor for coupled hydrodynamics-transport solvers. Then, we use the derived analytical solutions for code verification. To clarify gray-literature issues in the verification of transport codes, we designed a comprehensive test suite to uncover any imperfection in transport solvers via a hierarchical increase in the level of tests' complexity. The test suite includes hundreds of unit tests and system tests to check vis-a-vis the portions of the code. Examples for checking the suite start by testing a simple case of unidirectional advection; then, bidirectional advection and tidal flow and build up to nonlinear cases. We design tests to check nonlinearity in velocity, dispersivity and reactions. The concealing effect of scales (Peclet and Damkohler numbers) on the mesh-convergence study and appropriate remedies are also discussed. For the cases in which the appropriate benchmarks for mesh convergence study are not available, we utilize symmetry. Auxiliary subroutines for automation of the test suite and report generation are designed. All in all, the test package is not only a robust tool for code verification but it also provides comprehensive insight on the ADR solvers capabilities. Such information is essential for any rigorous computational modeling of ADR equation for surface/subsurface pollution transport. We also convey our experiences in finding several errors which were not detectable with routine verification techniques.

  18. SUTRA: A model for 2D or 3D saturated-unsaturated, variable-density ground-water flow with solute or energy transport

    USGS Publications Warehouse

    Voss, Clifford I.; Provost, A.M.

    2002-01-01

    SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in aquifers at near-well or regional scales, with either dispersed or relatively sharp transition zones between freshwater and saltwater. SUTRA energy-transport simulation may be employed to model thermal regimes in aquifers, subsurface heat conduction, aquifer thermal-energy storage systems, geothermal reservoirs, thermal pollution of aquifers, and natural hydrogeologic convection systems. Mesh construction, which is quite flexible for arbitrary geometries, employs quadrilateral finite elements in 2D Cartesian or radial-cylindrical coordinate systems, and hexahedral finite elements in 3D systems. 3D meshes are currently restricted to be logically rectangular; in other words, they are similar to deformable finite-difference-style grids. Permeabilities may be anisotropic and may vary in both direction and magnitude throughout the system, as may most other aquifer and fluid properties. Boundary conditions, sources and sinks may be time dependent. A number of input data checks are made to verify the input data set. An option is available for storing intermediate results and restarting a simulation at the intermediate time. Output options include fluid velocities, fluid mass and solute mass or energy budgets, and time-varying observations at points in the system. Both the mathematical basis for SUTRA and the program structure are highly general, and are modularized to allow for straightforward addition of new methods or processes to the simulation. The FORTRAN-90 coding stresses clarity and modularity rather than efficiency, providing easy access for later modifications.

  19. Fluorescein transport properties across artificial lipid membranes, Caco-2 cell monolayers and rat jejunum.

    PubMed

    Berginc, Katja; Zakelj, Simon; Levstik, Lea; Ursic, Darko; Kristl, Albin

    2007-05-01

    Membrane transport characteristics of a paracellular permeability marker fluorescein were evaluated using artificial membrane, Caco-2 cell monolayers and rat jejunum, all mounted in side-by-side diffusion cells. Modified Ringer buffers with varied pH values were applied as incubation salines on both sides of artificial membrane, cell culture monolayers or rat jejunum. Passive transport according to pH partition theory was determined using all three permeability models. In addition to that, active transport of fluorescein in the M-S (mucosal-to-serosal) direction through rat jejunum was observed. The highest M-S P(app) values regarding the active transport through the rat jejunum were observed in incubation saline with pH 6.5. Fluorescein transport through the rat jejunum was inhibited by DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) and alpha-CHC (alpha-cyano-4-hydroxycinnamic acid). Thus, we assume that two pH-dependent influx transporters could be involved in the fluorescein membrane transport through the intestinal (jejunal) epithelium. One is very likely an MCT (monocarboxylic acid cotransporter) isoform, inhibited by specific MCT inhibitor alpha-CHC, while the involvement of the second one with overlapping substrate/inhibitor specificities (most probably a member of the organic anion-transporting polypeptide family, inhibited at least partially by DIDS) could not be excluded.

  20. Final Technical Report for SBIR entitled Four-Dimensional Finite-Orbit-Width Fokker-Planck Code with Sources, for Neoclassical/Anomalous Transport Simulation of Ion and Electron Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R. W.; Petrov, Yu. V.

    2013-12-03

    Within the US Department of Energy/Office of Fusion Energy magnetic fusion research program, there is an important whole-plasma-modeling need for a radio-frequency/neutral-beam-injection (RF/NBI) transport-oriented finite-difference Fokker-Planck (FP) code with combined capabilities for 4D (2R2V) geometry near the fusion plasma periphery, and computationally less demanding 3D (1R2V) bounce-averaged capabilities for plasma in the core of fusion devices. Demonstration of proof-of-principle achievement of this goal has been carried out in research carried out under Phase I of the SBIR award. Two DOE-sponsored codes, the CQL3D bounce-average Fokker-Planck code in which CompX has specialized, and the COGENT 4D, plasma edge-oriented Fokker-Planck code whichmore » has been constructed by Lawrence Livermore National Laboratory and Lawrence Berkeley Laboratory scientists, where coupled. Coupling was achieved by using CQL3D calculated velocity distributions including an energetic tail resulting from NBI, as boundary conditions for the COGENT code over the two-dimensional velocity space on a spatial interface (flux) surface at a given radius near the plasma periphery. The finite-orbit-width fast ions from the CQL3D distributions penetrated into the peripheral plasma modeled by the COGENT code. This combined code demonstrates the feasibility of the proposed 3D/4D code. By combining these codes, the greatest computational efficiency is achieved subject to present modeling needs in toroidally symmetric magnetic fusion devices. The more efficient 3D code can be used in its regions of applicability, coupled to the more computationally demanding 4D code in higher collisionality edge plasma regions where that extended capability is necessary for accurate representation of the plasma. More efficient code leads to greater use and utility of the model. An ancillary aim of the project is to make the combined 3D/4D code user friendly. Achievement of full-coupling of these two Fokker-Planck codes will advance computational modeling of plasma devices important to the USDOE magnetic fusion energy program, in particular the DIII-D tokamak at General Atomics, San Diego, the NSTX spherical tokamak at Princeton, New Jersey, and the MST reversed-field-pinch Madison, Wisconsin. The validation studies of the code against the experiments will improve understanding of physics important for magnetic fusion, and will increase our design capabilities for achieving the goals of the International Tokamak Experimental Reactor (ITER) project in which the US is a participant and which seeks to demonstrate at least a factor of five in fusion power production divided by input power.« less

  1. MT3D-USGS version 1: A U.S. Geological Survey release of MT3DMS updated with new and expanded transport capabilities for use with MODFLOW

    USGS Publications Warehouse

    Bedekar, Vivek; Morway, Eric D.; Langevin, Christian D.; Tonkin, Matthew J.

    2016-09-30

    MT3D-USGS, a U.S. Geological Survey updated release of the groundwater solute transport code MT3DMS, includes new transport modeling capabilities to accommodate flow terms calculated by MODFLOW packages that were previously unsupported by MT3DMS and to provide greater flexibility in the simulation of solute transport and reactive solute transport. Unsaturated-zone transport and transport within streams and lakes, including solute exchange with connected groundwater, are among the new capabilities included in the MT3D-USGS code. MT3D-USGS also includes the capability to route a solute through dry cells that may occur in the Newton-Raphson formulation of MODFLOW (that is, MODFLOW-NWT). New chemical reaction Package options include the ability to simulate inter-species reactions and parent-daughter chain reactions. A new pump-and-treat recirculation package enables the simulation of dynamic recirculation with or without treatment for combinations of wells that are represented in the flow model, mimicking the above-ground treatment of extracted water. A reformulation of the treatment of transient mass storage improves conservation of mass and yields solutions for better agreement with analytical benchmarks. Several additional features of MT3D-USGS are (1) the separate specification of the partitioning coefficient (Kd) within mobile and immobile domains; (2) the capability to assign prescribed concentrations to the top-most active layer; (3) the change in mass storage owing to the change in water volume now appears as its own budget item in the global mass balance summary; (4) the ability to ignore cross-dispersion terms; (5) the definition of Hydrocarbon Spill-Source Package (HSS) mass loading zones using regular and irregular polygons, in addition to the currently supported circular zones; and (6) the ability to specify an absolute minimum thickness rather than the default percent minimum thickness in dry-cell circumstances.Benchmark problems that implement the new features and packages test the accuracy of new code through comparison to analytical benchmarks, as well as to solutions from other published codes. The input file structure for MT3D-USGS adheres to MT3DMS conventions for backward compatibility: the new capabilities and packages described herein are readily invoked by adding three-letter package name acronyms to the name file or by setting input flags as needed. Memory is managed in MT3D-USGS using FORTRAN modules in order to simplify code development and expansion.

  2. Sonic boom predictions using a modified Euler code

    NASA Technical Reports Server (NTRS)

    Siclari, Michael J.

    1992-01-01

    The environmental impact of a next generation fleet of high-speed civil transports (HSCT) is of great concern in the evaluation of the commercial development of such a transport. One of the potential environmental impacts of a high speed civilian transport is the sonic boom generated by the aircraft and its effects on the population, wildlife, and structures in the vicinity of its flight path. If an HSCT aircraft is restricted from flying overland routes due to excessive booms, the commercial feasibility of such a venture may be questionable. NASA has taken the lead in evaluating and resolving the issues surrounding the development of a high speed civilian transport through its High-Speed Research Program (HSRP). The present paper discusses the usage of a Computational Fluid Dynamics (CFD) nonlinear code in predicting the pressure signature and ultimately the sonic boom generated by a high speed civilian transport. NASA had designed, built, and wind tunnel tested two low boom configurations for flight at Mach 2 and Mach 3. Experimental data was taken at several distances from these models up to a body length from the axis of the aircraft. The near field experimental data serves as a test bed for computational fluid dynamic codes in evaluating their accuracy and reliability for predicting the behavior of future HSCT designs. Sonic boom prediction methodology exists which is based on modified linear theory. These methods can be used reliably if near field signatures are available at distances from the aircraft where nonlinear and three dimensional effects have diminished in importance. Up to the present time, the only reliable method to obtain this data was via the wind tunnel with costly model construction and testing. It is the intent of the present paper to apply a modified three dimensional Euler code to predict the near field signatures of the two low boom configurations recently tested by NASA.

  3. Solving iTOUGH2 simulation and optimization problems using the PEST protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finsterle, S.A.; Zhang, Y.

    2011-02-01

    The PEST protocol has been implemented into the iTOUGH2 code, allowing the user to link any simulation program (with ASCII-based inputs and outputs) to iTOUGH2's sensitivity analysis, inverse modeling, and uncertainty quantification capabilities. These application models can be pre- or post-processors of the TOUGH2 non-isothermal multiphase flow and transport simulator, or programs that are unrelated to the TOUGH suite of codes. PEST-style template and instruction files are used, respectively, to pass input parameters updated by the iTOUGH2 optimization routines to the model, and to retrieve the model-calculated values that correspond to observable variables. We summarize the iTOUGH2 capabilities and demonstratemore » the flexibility added by the PEST protocol for the solution of a variety of simulation-optimization problems. In particular, the combination of loosely coupled and tightly integrated simulation and optimization routines provides both the flexibility and control needed to solve challenging inversion problems for the analysis of multiphase subsurface flow and transport systems.« less

  4. SLCO2B1 and SLCO1B3 May Determine Time to Progression for Patients Receiving Androgen Deprivation Therapy for Prostate Cancer

    PubMed Central

    Yang, Ming; Xie, Wanling; Mostaghel, Elahe; Nakabayashi, Mari; Werner, Lillian; Sun, Tong; Pomerantz, Mark; Freedman, Matthew; Ross, Robert; Regan, Meredith; Sharifi, Nima; Figg, William Douglas; Balk, Steven; Brown, Myles; Taplin, Mary-Ellen; Oh, William K.; Lee, Gwo-Shu Mary; Kantoff, Philip W.

    2011-01-01

    Purpose Androgen deprivation therapy (ADT), an important treatment for advanced prostate cancer, is highly variable in its effectiveness. We hypothesized that genetic variants of androgen transporter genes, SLCO2B1 and SLCO1B3, may determine time to progression on ADT. Patients and Methods A cohort of 538 patients with prostate cancer treated with ADT was genotyped for SLCO2B1 and SLCO1B3 single nucleotide polymorphisms (SNP). The biologic function of a SLCO2B1 coding SNP in transporting androgen was examined through biochemical assays. Results Three SNPs in SLCO2B1 were associated with time to progression (TTP) on ADT (P < .05). The differences in median TTP for each of these polymorphisms were about 10 months. The SLCO2B1 genotype, which allows more efficient import of androgen, enhances cell growth and is associated with a shorter TTP on ADT. Patients carrying both SLCO2B1 and SLCO1B3 genotypes, which import androgens more efficiently, exhibited a median 2-year shorter TTP on ADT, demonstrating a gene-gene interaction (Pinteraction = .041). Conclusion Genetic variants of SLCO2B1 and SLCO1B3 may function as pharmacogenomic determinants of resistance to ADT in prostate cancer. PMID:21606417

  5. Integrated modelling framework for short pulse high energy density physics experiments

    NASA Astrophysics Data System (ADS)

    Sircombe, N. J.; Hughes, S. J.; Ramsay, M. G.

    2016-03-01

    Modelling experimental campaigns on the Orion laser at AWE, and developing a viable point-design for fast ignition (FI), calls for a multi-scale approach; a complete description of the problem would require an extensive range of physics which cannot realistically be included in a single code. For modelling the laser-plasma interaction (LPI) we need a fine mesh which can capture the dispersion of electromagnetic waves, and a kinetic model for each plasma species. In the dense material of the bulk target, away from the LPI region, collisional physics dominates. The transport of hot particles generated by the action of the laser is dependent on their slowing and stopping in the dense material and their need to draw a return current. These effects will heat the target, which in turn influences transport. On longer timescales, the hydrodynamic response of the target will begin to play a role as the pressure generated from isochoric heating begins to take effect. Recent effort at AWE [1] has focussed on the development of an integrated code suite based on: the particle in cell code EPOCH, to model LPI; the Monte-Carlo electron transport code THOR, to model the onward transport of hot electrons; and the radiation hydrodynamics code CORVUS, to model the hydrodynamic response of the target. We outline the methodology adopted, elucidate on the advantages of a robustly integrated code suite compared to a single code approach, demonstrate the integrated code suite's application to modelling the heating of buried layers on Orion, and assess the potential of such experiments for the validation of modelling capability in advance of more ambitious HEDP experiments, as a step towards a predictive modelling capability for FI.

  6. Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN

    PubMed Central

    Hammond, G E; Lichtner, P C; Mills, R T

    2014-01-01

    [1] To better inform the subsurface scientist on the expected performance of parallel simulators, this work investigates performance of the reactive multiphase flow and multicomponent biogeochemical transport code PFLOTRAN as it is applied to several realistic modeling scenarios run on the Jaguar supercomputer. After a brief introduction to the code's parallel layout and code design, PFLOTRAN's parallel performance (measured through strong and weak scalability analyses) is evaluated in the context of conceptual model layout, software and algorithmic design, and known hardware limitations. PFLOTRAN scales well (with regard to strong scaling) for three realistic problem scenarios: (1) in situ leaching of copper from a mineral ore deposit within a 5-spot flow regime, (2) transient flow and solute transport within a regional doublet, and (3) a real-world problem involving uranium surface complexation within a heterogeneous and extremely dynamic variably saturated flow field. Weak scalability is discussed in detail for the regional doublet problem, and several difficulties with its interpretation are noted. PMID:25506097

  7. Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN.

    PubMed

    Hammond, G E; Lichtner, P C; Mills, R T

    2014-01-01

    [1] To better inform the subsurface scientist on the expected performance of parallel simulators, this work investigates performance of the reactive multiphase flow and multicomponent biogeochemical transport code PFLOTRAN as it is applied to several realistic modeling scenarios run on the Jaguar supercomputer. After a brief introduction to the code's parallel layout and code design, PFLOTRAN's parallel performance (measured through strong and weak scalability analyses) is evaluated in the context of conceptual model layout, software and algorithmic design, and known hardware limitations. PFLOTRAN scales well (with regard to strong scaling) for three realistic problem scenarios: (1) in situ leaching of copper from a mineral ore deposit within a 5-spot flow regime, (2) transient flow and solute transport within a regional doublet, and (3) a real-world problem involving uranium surface complexation within a heterogeneous and extremely dynamic variably saturated flow field. Weak scalability is discussed in detail for the regional doublet problem, and several difficulties with its interpretation are noted.

  8. Magnetic, electronic transport and magneto-transport behaviours of (Co1-xMnx)2P compounds

    NASA Astrophysics Data System (ADS)

    Sun, N. K.; Zhang, Y. Q.; Li, Y. B.; Li, D.; Li, W. F.; Liu, W.; Zhao, X. G.; Zhang, Z. D.

    2006-10-01

    Magnetic, electronic transport and magneto-transport behaviours of (Co1-xMnx)2P (0.55 <= x <= 0.675) compounds have been systematically investigated. A typical metallic-conductivity behaviour is observed in the ferromagnetic compound (Co0.45Mn0.55)2P. The increase in the Mn concentration gives rise to dramatic changes in magnetic, electronic transport and magneto-transport behaviours. With increasing temperature, a first-order phase transition from antiferromagnetism to ferromagnetism takes place at about 145 K, 185 K and 240 K for x = 0.60, 0.625 and 0.65, respectively. (Co0.4Mn0.6)2P and (Co0.375Mn0.625)2P compounds experience a metal-insulator transition (Anderson transition) with decreasing temperature. An external magnetic field of 5 T strongly influences the Anderson transition, lowering the transition temperature from 80 to 55 K for (Co0.4Mn0.6)2P and from 115 to 70 K for (Co0.375Mn0.625)2P. In contrast with this metal-insulator transition, an insulating behaviour appears in the temperature range from 10 to 300 K for (Co0.35Mn0.65)2P and (Co0.325Mn0.675)2P compounds. Below the antiferromagnetic-ferromagnetic transition temperature TAF-F, a metamagnetic transition can be induced by an external magnetic field. The metamagnetic transition is accompanied by a maximum magnetoresistance ratio of -7%, -6.3% or -3.7% at 5 T in the (Co0.4Mn0.6)2P, (Co0.375Mn0.625)2P or (Co0.35Mn0.65)2P compound at 10 K. The mechanisms of magnetoresistive behaviours are discussed in terms of the formation of a super-zone gap in the antiferromagnetic state.

  9. Should One Use the Ray-by-Ray Approximation in Core-Collapse Supernova Simulations?

    DOE PAGES

    Skinner, M. Aaron; Burrows, Adam; Dolence, Joshua C.

    2016-10-28

    We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (Fornax) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12-, 15-, 20-, and 25-M⊙ progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+more » approach. Employing it leads to maximum post-bounce/preexplosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more “explodable.” In fact, for our 25-M⊙ progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.« less

  10. Should One Use the Ray-by-Ray Approximation in Core-collapse Supernova Simulations?

    NASA Astrophysics Data System (ADS)

    Skinner, M. Aaron; Burrows, Adam; Dolence, Joshua C.

    2016-11-01

    We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (Fornax) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12, 15, 20, and 25 M ⊙ progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+ approach. Employing it leads to maximum post-bounce/pre-explosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more “explodable.” In fact, for our 25 M ⊙ progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions, the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.

  11. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification.

    PubMed

    Gulati, Sonia; Balderes, Dina; Kim, Christine; Guo, Zhongmin A; Wilcox, Lisa; Area-Gomez, Estela; Snider, Jamie; Wolinski, Heimo; Stagljar, Igor; Granato, Juliana T; Ruggles, Kelly V; DeGiorgis, Joseph A; Kohlwein, Sepp D; Schon, Eric A; Sturley, Stephen L

    2015-11-01

    A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53-36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins. © FASEB.

  12. ABCG8 polymorphisms and renal disease in type 2 diabetic patients.

    PubMed

    Nicolas, Anthony; Fatima, Sehrish; Lamri, Amel; Bellili-Muñoz, Naima; Halimi, Jean-Michel; Saulnier, Pierre-Jean; Hadjadj, Samy; Velho, Gilberto; Marre, Michel; Roussel, Ronan; Fumeron, Frédéric

    2015-06-01

    Sterols, bile acids and their receptors have been involved in diabetic nephropathy. The ATP-binding cassette transporters G5 and G8 (ABCG5 and ABCG8) play an important role in intestinal sterol absorption and bile acid secretion. The aim of our study was to assess the associations between two ABCG8 coding polymorphisms, T400K and D19H, and the incidence of renal events in type 2 diabetic subjects. Participants were the 3137 French type 2 diabetic subjects with micro- or macro-albuminuria from the genetic substudy of the DIABHYCAR trial. The mean duration of follow-up was 4years. Renal events were defined as a doubling of serum creatinine concentration or end-stage renal disease at follow-up. We then used a second population (DIAB2NEPHROGENE) of 2140 type 2 diabetic patients for the purpose of validation. In DIABHYCAR, the 400K allele was significantly associated with a higher risk of incident renal events in a multiple adjusted model (HR: 1.75 [95% CI 1.20-2.56], P=0.003). This association was still significant after further adjustments for baseline values of estimated glomerular filtration rate and urinary albumin excretion. In the validation population, the 400K allele was associated with the prevalence of end-stage renal disease (OR=2.01 [95% CI 1.15-3.54], P=0.015). No significant association was found between the D19H polymorphism and the risk of diabetic nephropathy. A polymorphism of the sterol transporter ABCG8 has been associated with the prevalence of end-stage renal disease and with the incidence of new renal events in type 2 diabetic patients. Copyright © 2015. Published by Elsevier Inc.

  13. Newtonian CAFE: a new ideal MHD code to study the solar atmosphere

    NASA Astrophysics Data System (ADS)

    González, J. J.; Guzmán, F.

    2015-12-01

    In this work we present a new independent code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centers on the analysis of solar phenomena within the photosphere-corona region. In special the code is capable to simulate the propagation of impulsively generated linear and non-linear MHD waves in the non-isothermal solar atmosphere. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As 3D tests we present the propagation of MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the HLLE flux formula combined with Minmod, MC and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.

  14. Towards industrial-strength Navier-Stokes codes

    NASA Technical Reports Server (NTRS)

    Jou, Wen-Huei; Wigton, Laurence B.; Allmaras, Steven R.

    1992-01-01

    In this paper we discuss our experiences with Navier-Stokes (NS) codes using central differencing (CD) and scalar artificial dissipation (SAD). The NS-CDSAD codes have been developed by several researchers. Our results confirm that for typical commercial transport wing and wing/body configurations flying at transonic conditions with all turbulent boundary layers, NS-CDSAD codes, when used with the Johnson-King turbulence model, are capable of computing pressure distributions in excellent agreement with experimental data. However, results are not as good when laminar boundary layers are present. Exhaustive 2-D grid refinement studies supported by detailed analysis suggest that the numerical errors associated with SAD severely contaminate the solution in the laminar portion of the boundary layer. It is left as a challenge to the CFD community to find and fix the problems with Navier-Stokes codes and to produce a NS code which converges reliably and properly captures the laminar portion of the boundary layer on a reasonable grid.

  15. Identification of the Operon for the Sorbitol (Glucitol) Phosphoenolpyruvate:Sugar Phosphotransferase System in Streptococcus mutans

    PubMed Central

    Boyd, David A.; Thevenot, Tracy; Gumbmann, Markus; Honeyman, Allen L.; Hamilton, Ian R.

    2000-01-01

    Transposon mutagenesis and marker rescue were used to isolate and identify an 8.5-kb contiguous region containing six open reading frames constituting the operon for the sorbitol P-enolpyruvate phosphotransferase transport system (PTS) of Streptococcus mutans LT11. The first gene, srlD, codes for sorbitol-6-phosphate dehydrogenase, followed downstream by srlR, coding for a transcriptional regulator; srlM, coding for a putative activator; and the srlA, srlE, and srlB genes, coding for the EIIC, EIIBC, and EIIA components of the sorbitol PTS, respectively. Among all sorbitol PTS operons characterized to date, the srlD gene is found after the genes coding for the EII components; thus, the location of the gene in S. mutans is unique. The SrlR protein is similar to several transcriptional regulators found in Bacillus spp. that contain PTS regulator domains (J. Stülke, M. Arnaud, G. Rapoport, and I. Martin-Verstraete, Mol. Microbiol. 28:865–874, 1998), and its gene overlaps the srlM gene by 1 bp. The arrangement of these two regulatory genes is unique, having not been reported for other bacteria. PMID:10639465

  16. Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity.

    PubMed

    Hoch, Eitan; Lin, Wei; Chai, Jin; Hershfinkel, Michal; Fu, Dax; Sekler, Israel

    2012-05-08

    Zinc and cadmium are similar metal ions, but though Zn(2+) is an essential nutrient, Cd(2+) is a toxic and common pollutant linked to multiple disorders. Faster body turnover and ubiquitous distribution of Zn(2+) vs. Cd(2+) suggest that a mammalian metal transporter distinguishes between these metal ions. We show that the mammalian metal transporters, ZnTs, mediate cytosolic and vesicular Zn(2+) transport, but reject Cd(2+), thus constituting the first mammalian metal transporter with a refined selectivity against Cd(2+). Remarkably, the bacterial ZnT ortholog, YiiP, does not discriminate between Zn(2+) and Cd(2+). A phylogenetic comparison between the tetrahedral metal transport motif of YiiP and ZnTs identifies a histidine at the mammalian site that is critical for metal selectivity. Residue swapping at this position abolished metal selectivity of ZnTs, and fully reconstituted selective Zn(2+) transport of YiiP. Finally, we show that metal selectivity evolves through a reduction in binding but not the translocation of Cd(2+) by the transporter. Thus, our results identify a unique class of mammalian transporters and the structural motif required to discriminate between Zn(2+) and Cd(2+), and show that metal selectivity is tuned by a coordination-based mechanism that raises the thermodynamic barrier to Cd(2+) binding.

  17. Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity

    PubMed Central

    Hoch, Eitan; Lin, Wei; Chai, Jin; Hershfinkel, Michal; Fu, Dax; Sekler, Israel

    2012-01-01

    Zinc and cadmium are similar metal ions, but though Zn2+ is an essential nutrient, Cd2+ is a toxic and common pollutant linked to multiple disorders. Faster body turnover and ubiquitous distribution of Zn2+ vs. Cd2+ suggest that a mammalian metal transporter distinguishes between these metal ions. We show that the mammalian metal transporters, ZnTs, mediate cytosolic and vesicular Zn2+ transport, but reject Cd2+, thus constituting the first mammalian metal transporter with a refined selectivity against Cd2+. Remarkably, the bacterial ZnT ortholog, YiiP, does not discriminate between Zn2+ and Cd2+. A phylogenetic comparison between the tetrahedral metal transport motif of YiiP and ZnTs identifies a histidine at the mammalian site that is critical for metal selectivity. Residue swapping at this position abolished metal selectivity of ZnTs, and fully reconstituted selective Zn2+ transport of YiiP. Finally, we show that metal selectivity evolves through a reduction in binding but not the translocation of Cd2+ by the transporter. Thus, our results identify a unique class of mammalian transporters and the structural motif required to discriminate between Zn2+ and Cd2+, and show that metal selectivity is tuned by a coordination-based mechanism that raises the thermodynamic barrier to Cd2+ binding. PMID:22529353

  18. Numerically evaluating the bispectrum in curved field-space— with PyTransport 2.0

    NASA Astrophysics Data System (ADS)

    Ronayne, John W.; Mulryne, David J.

    2018-01-01

    We extend the transport framework for numerically evaluating the power spectrum and bispectrum in multi-field inflation to the case of a curved field-space metric. This method naturally accounts for all sub- and super-horizon tree level effects, including those induced by the curvature of the field-space. We present an open source implementation of our equations in an extension of the publicly available PyTransport code. Finally we illustrate how our technique is applied to examples of inflationary models with a non-trivial field-space metric.

  19. Structure of the classical scrape-off layer of a tokamak

    NASA Astrophysics Data System (ADS)

    Rozhansky, V.; Kaveeva, E.; Senichenkov, I.; Vekshina, E.

    2018-03-01

    The structure of the scrape-off layer (SOL) of a tokamak with little or no turbulent transport is analyzed. The analytical estimates of the density and electron temperature fall-off lengths of the SOL are put forward. It is demonstrated that the SOL width could be of the order of the ion poloidal gyroradius, as suggested in Goldston (2012 Nuclear Fusion 52 013009). The analytical results are supported by the results of the 2D simulations of the edge plasma with reduced transport coefficients performed by SOLPS-ITER transport code.

  20. MAP17 Is a Necessary Activator of Renal Na+/Glucose Cotransporter SGLT2

    PubMed Central

    Coady, Michael J.; El Tarazi, Abdulah; Santer, René; Bissonnette, Pierre; Sasseville, Louis J.; Calado, Joaquim; Lussier, Yoann; Dumayne, Christopher; Bichet, Daniel G.

    2017-01-01

    The renal proximal tubule reabsorbs 90% of the filtered glucose load through the Na+-coupled glucose transporter SGLT2, and specific inhibitors of SGLT2 are now available to patients with diabetes to increase urinary glucose excretion. Using expression cloning, we identified an accessory protein, 17 kDa membrane-associated protein (MAP17), that increased SGLT2 activity in RNA-injected Xenopus oocytes by two orders of magnitude. Significant stimulation of SGLT2 activity also occurred in opossum kidney cells cotransfected with SGLT2 and MAP17. Notably, transfection with MAP17 did not change the quantity of SGLT2 protein at the cell surface in either cell type. To confirm the physiologic relevance of the MAP17–SGLT2 interaction, we studied a cohort of 60 individuals with familial renal glucosuria. One patient without any identifiable mutation in the SGLT2 coding gene (SLC5A2) displayed homozygosity for a splicing mutation (c.176+1G>A) in the MAP17 coding gene (PDZK1IP1). In the proximal tubule and in other tissues, MAP17 is known to interact with PDZK1, a scaffolding protein linked to other transporters, including Na+/H+ exchanger 3, and to signaling pathways, such as the A-kinase anchor protein 2/protein kinase A pathway. Thus, these results provide the basis for a more thorough characterization of SGLT2 which would include the possible effects of its inhibition on colocalized renal transporters. PMID:27288013

Top