Science.gov

Sample records for p2x7 receptors mediate

  1. P2X7 receptor activation mediates retinal ganglion cell death in a human retina model of ischemic neurodegeneration.

    PubMed

    Niyadurupola, Nuwan; Sidaway, Peter; Ma, Ning; Rhodes, Jeremy D; Broadway, David C; Sanderson, Julie

    2013-03-01

    There is evidence implicating ischemia and excitotoxicity in the pathogenesis of glaucoma. ATP-mediated excitotoxicity via activation of the P2X7 receptor (P2X7R) has been proposed to play a role in retinal ganglion cell (RGC) degeneration in this disease. The aim of this research was to determine whether stimulation of the P2X7R mediated ischemia-induced RGC death in the human retina. Human organotypic retinal cultures were exposed to the P2X7R agonist 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP) and simulated ischemia (oxygen/glucose deprivation) in the presence or absence of the P2X7R antagonist, Brilliant Blue G (BBG). Neuronal death in the RGC layer was quantified by neuronal nuclei (NeuN)-positive cell counts and quantitative real-time PCR for THY-1 mRNA. The P2X7R was localized by immunohistochemistry and P2X7R mRNA profiling using a cryosectioning technique. P2X7R stimulation by BzATP (100 μM) induced loss of RGC markers in human organotypic retinal cultures (HORCs), which was inhibited by BBG (1 μM). Simulated ischemia led to loss of RGCs that was also inhibited by BBG, indicating that ischemia-induced RGC degeneration was mediated by the P2X7R. The P2X7R was immunolocalized to the outer and inner plexiform layers of the human retina, and P2X7R mRNA expression was confirmed in the inner retina and ganglion cell layer. These studies demonstrated that stimulation of the P2X7R can mediate RGC death and that this mechanism plays a role in ischemia-induced neurodegeneration in the human retina.

  2. P2X7 receptor-mediated PARP1 activity regulates astroglial death in the rat hippocampus following status epilepticus

    PubMed Central

    Kim, Ji Yang; Ko, Ah-Reum; Kim, Ji-Eun

    2015-01-01

    Poly(ADP-ribose) polymerase-1 (PARP1) plays a regulatory role in apoptosis, necrosis, and other cellular processes after injury. Recently, we revealed that PARP1 regulates the differential neuronal/astroglial responses to pilocarpine-induced status epilepticus (SE) in the distinct brain regions. In addition, P2X7 receptor (P2X7R), an ATP-gated ion channel, activation accelerates astroglial apoptosis, while it attenuates clasmatodendrosis (lysosome-derived autophagic astroglial death). Therefore, we investigated whether P2X7R regulates regional specific astroglial PARP1 expression/activation in response to SE. In the present study, P2X7R activation exacerbates SE-induced astroglial apoptosis, while P2X7R inhibition attenuates it accompanied by increasing PARP1 activity in the molecular layer of the dentate gyrus following SE. In the CA1 region, however, P2X7R inhibition deteriorates SE-induced clasmatodendrosis via PARP1 activation following SE. Taken together, our findings suggest that P2X7R function may affect SE-induced astroglial death by regulating PARP1 activation/expression in regional-specific manner. Therefore, the selective modulation of P2X7R-mediated PARP1 functions may be a considerable strategy for controls in various types of cell deaths. PMID:26388738

  3. P2X7 receptor-mediated killing of an intracellular parasite, Toxoplasma gondii, by human and murine macrophages1

    PubMed Central

    Lees, Michael P.; Fuller, Stephen J.; McLeod, Rima; Boulter, Nicola R.; Miller, Catherine M.; Zakrzewski, Alana M.; Mui, Ernest J.; Witola, William H.; Coyne, Jessica J.; Hargrave, Aubrey C.; Jamieson, Sarra E.; Blackwell, Jenefer M.; Wiley, James S.; Smith, Nicholas C.

    2010-01-01

    The P2X7 receptor (P2X7R)4 is highly expressed on the macrophage cell surface and activation of infected cells by extracellular ATP has been shown to kill intracellular bacteria and parasites. Furthermore, single nucleotide polymorphisms (SNPs) that decrease receptor function reduce the ability of human macrophages to kill Mycobacterium tuberculosis and are associated with extrapulmonary tuberculosis. In this paper we show that macrophages from people with the 1513C (rs3751143) loss-of-function P2X7R SNP are less effective in killing intracellular Toxoplasma gondii after exposure to ATP compared with macrophages from people with the 1513A wild-type allele. Supporting a P2X7R-specific effect on T. gondii, macrophages from P2X7R knock-out mice (P2X7R−/−) are unable to kill T. gondii as effectively as macrophages from wild-type mice. We show that P2X7R-mediated T. gondii killing occurs in parallel with host cell apoptosis and is independent of NO production. PMID:20488797

  4. The Specificity Protein Factor Sp1 Mediates Transcriptional Regulation of P2X7 Receptors in the Nervous System*

    PubMed Central

    García-Huerta, Paula; Díaz-Hernandez, Miguel; Delicado, Esmerilda G.; Pimentel-Santillana, María; Miras-Portugal, Mª Teresa; Gómez-Villafuertes, Rosa

    2012-01-01

    P2X7 receptors are involved not only in physiological functions but also in pathological brain processes. Although an increasing number of findings indicate that altered receptor expression has a causative role in neurodegenerative diseases and cancer, little is known about how expression of P2rx7 gene is controlled. Here we reported the first molecular and functional evidence that Specificity protein 1 (Sp1) transcription factor plays a pivotal role in the transcriptional regulation of P2X7 receptor. We delimited a minimal region in the murine P2rx7 promoter containing four SP1 sites, two of them being highly conserved in mammals. The functionality of these SP1 sites was confirmed by site-directed mutagenesis and Sp1 overexpression/down-regulation in neuroblastoma cells. Inhibition of Sp1-mediated transcriptional activation by mithramycin A reduced endogenous P2X7 receptor levels in primary cultures of cortical neurons and astrocytes. Using P2rx7-EGFP transgenic mice that express enhanced green fluorescent protein under the control of P2rx7 promoter, we found a high correlation between reporter expression and Sp1 levels in the brain, demonstrating that Sp1 is a key element in the transcriptional regulation of P2X7 receptor in the nervous system. Finally, we found that Sp1 mediates P2X7 receptor up-regulation in neuroblastoma cells cultured in the absence of serum, a condition that enhances chromatin accessibility and facilitates the exposure of SP1 binding sites. PMID:23139414

  5. P2X7 Receptors in Neurological and Cardiovascular Disorders

    PubMed Central

    Skaper, Stephen D.; Debetto, Patrizia; Giusti, Pietro

    2009-01-01

    P2X receptors are ATP-gated cation channels that mediate fast excitatory transmission in diverse regions of the brain and spinal cord. Several P2X receptor subtypes, including P2X7, have the unusual property of changing their ion selectivity during prolonged exposure to ATP, which results in a channel pore permeable to molecules as large as 900 daltons. The P2X7 receptor was originally described in cells of hematopoietic origin, and mediates the influx of Ca2+ and Na+ and Ca2+ and Na+ ions as well as the release of proinflammatory cytokines. P2X7 receptors may affect neuronal cell death through their ability to regulate the processing and release of interleukin-1β, a key mediator in neurodegeneration, chronic inflammation, and chronic pain. Activation of P2X7, a key mediator in neurodegeneration, chronic inflammation, and chronic pain. Activation of P2X7 receptors provides an inflammatory stimulus, and P2X7 receptor-deficient mice have substantially attenuated inflammatory responses, including models of neuropathic and chronic inflammatory pain. Moreover, P2X7 receptor activity, by regulating the release of proinflammatory cytokines, may be involved in the pathophysiology of depression. Apoptotic cell death occurs in a number of vascular diseases, including atherosclerosis, restenosis, and hypertension, and may be linked to the release of ATP from endothelial cells, P2X7 receptor activation, proinflammatory cytokine production, and endothelial cell apoptosis. In this context, the P2X7 receptor may be viewed as a gateway of communication between the nervous, immune, and cardiovascular systems. PMID:20029634

  6. Leukotriene B4 modulates P2X7 receptor-mediated Leishmania amazonensis elimination in murine macrophages.

    PubMed

    Chaves, Mariana M; Marques-da-Silva, Camila; Monteiro, Ana Paula T; Canetti, Cláudio; Coutinho-Silva, Robson

    2014-05-15

    ATP is an important signaling molecule in the immune system, and it is able to bind the P2X7 purinergic receptor. Recently, our group showed that ATP-treated macrophages eliminate Leishmania amazonensis. It has been reported that leukotriene B4 (LTB4) reduces the parasitic load of infected macrophages. Additionally, it has been demonstrated that the P2X7 receptor can induce PLA2 activation and arachidonic acid mobilization. Based on these findings, we investigated whether LTB4 is produced upon P2X7 receptor activation and examined whether LTB4 modulates parasite elimination. Using macrophages lacking the P2X7 receptor, we observed that ATP was not able to reduce L. amazonensis load. This result suggests a role of the P2X7 purinergic receptor in parasite elimination. In addition, ATP was sufficient to induce LTB4 release from infected control macrophages but not from macrophages lacking the P2X7 receptor. Moreover, we found that ATP failed to decrease the parasitic load in 5-lipoxygenase (LO)-deficient macrophages. Treatment with the 5-LO inhibitor AA861 also impairs the ATP effect on parasitic loads. Furthermore, macrophages from 5-LO knockout mice eliminated L. amazonensis in the presence of exogenous LTB4, and macrophages obtained from P2X7 receptor knockout mice eliminated L. amazonensis when incubated with ionomycin. Finally, we demonstrated that in the presence of CP105696, an antagonist for LTB4 high-affinity receptor, ATP was not able to reduce parasitic load. These results indicate that P2X7 receptor activation leads to LTB4 formation, which is required for L. amazonensis elimination.

  7. P2X7 receptor-mediated calcium dynamics in HEK293 cells: experimental characterization and modelling approach

    NASA Astrophysics Data System (ADS)

    Di Garbo, A.; Alloisio, S.; Nobile, M.

    2012-04-01

    The P2X7 receptor (P2X7R) induces ionotropic Ca2 + signalling in different cell types. It plays an important role in the immune response and in the nervous system. Here, the mechanisms underlying intracellular Ca2 + variations evoked by 3‧-O-(4-benzoyl)benzoyl-ATP (BzATP), a potent agonist of the P2X7R, in transfected HEK293 cells, are investigated both experimentally and theoretically. We propose a minimal model of P2X7R that is capable of reproducing, qualitatively and quantitatively, the experimental data. This approach was also adopted for the P2X7R variant, which lacks the entire C-terminus tail (trP2X7R). Then we introduce a biophysical model describing the Ca2 + dynamics in HEK293. Our model gives an account of the ionotropic Ca2 + influx evoked by BzATP on the basis of the kinetics model of P2X7R. To explain the complex Ca2 + responses evoked by BzATP, the model predicted that an impairment in Ca2 + extrusion flux through the plasma membrane is a key factor for Ca2 + homeostasis in HEK293 cells.

  8. P2X7 receptors in satellite glial cells mediate high functional expression of P2X3 receptors in immature dorsal root ganglion neurons.

    PubMed

    Chen, Yong; Li, Guangwen; Huang, Li-Yen Mae

    2012-02-07

    The purinergic P2X3 receptor (P2X3R) expressed in the dorsal root ganglion (DRG) sensory neuron and the P2X7 receptor (P2X7R) expressed in the surrounding satellite glial cell (SGC) are two major receptors participating in neuron-SGC communication in adult DRGs. Activation of P2X7Rs was found to tonically reduce the expression of P2X3Rs in DRGs, thus inhibiting the abnormal pain behaviors in adult rats. P2X receptors are also actively involved in sensory signaling in developing rodents. However, very little is known about the developmental change of P2X7Rs in DRGs and the interaction between P2X7Rs and P2X3Rs in those animals. We therefore examined the expression of P2X3Rs and P2X7Rs in postnatal rats and determined if P2X7R-P2X3R control exists in developing rats. We immunostained DRGs of immature rats and found that P2X3Rs were expressed only in neurons and P2X7Rs were expressed only in SGCs. Western blot analyses indicated that P2X3R expression decreased while P2X7R expression increased with the age of rats. Electrophysiological studies showed that the number of DRG neurons responding to the stimulation of the P2XR agonist, α,β-meATP, was higher and the amplitudes of α,β-meATP-induced depolarizations were larger in immature DRG neurons. As a result, P2X3R-mediated flinching responses were much more pronounced in immature rats than those found in adult rats. When we reduced P2X7R expression with P2X7R-siRNA in postnatal and adult rats, P2X3R-mediated flinch responses were greatly enhanced in both rat populations. These results show that the P2X7R expression increases as rats age. In addition, P2X7Rs in SGCs exert inhibitory control on the P2X3R expression and function in sensory neurons of immature rats, just as observed in adult rats. Regulation of P2X7R expression is likely an effective way to control P2X3R activity and manage pain relief in infants.

  9. P2X7 Receptor Mediates Spinal Microglia Activation of Visceral Hyperalgesia in a Rat Model of Chronic Pancreatitis.

    PubMed

    Liu, Pei-Yi; Lee, I-Hui; Tan, Ping-Heng; Wang, Yen-Po; Tsai, Chia-Fen; Lin, Han-Chieh; Lee, Fa-Yauh; Lu, Ching-Liang

    2015-11-01

    Molecular mechanisms underlying the activated spinal microglia in association with the pain in chronic pancreatitis (CP) remain unknown. We tested whether P2X7R on spinal microglia mediates the pathogenesis of visceral pain using a CP rat model. The CP model was induced via intraductal injection of 2% trinitrobenzene sulfonic acid into male Sprague-Dawley rats. Hyperalgesia was assessed based on the mechanical sensitivity to Von-Frey filaments (VFFs), and nocifensive behaviors were measured in response to electrical stimulation of the pancreas. Three weeks after CP induction, spinal cord samples were harvested for immunostaining, immunoblot, and real-time polymerase chain reaction analyses of the P2X7R. Changes in nocifensive behaviors and associated molecular effectors were assessed by blocking spinal cord P2X7R pharmacologically using the selective P2X7R antagonist brilliant blue G (BBG) or genetically using short interfering RNA (siRNA). CP induced a significant up-regulation of spinal P2X7R expression, which colocalized with a microglial marker (OX-42). Intrathecal administration of BBG significantly attenuated CP-related visceral hyperalgesia in response to VFF-mediated or electrical stimulation of the pancreas, which was associated with suppressed spinal expression of P2X7R and inhibited activation of spinal microglia. Intrathecal injection of siRNA to knock down P2X7R expression in the spinal cord would suppress the nociceptive behaviors in CP rats. Spinal microglia P2X7R mediates central sensitization of chronic visceral pain in CP. BBG may represent an effective drug for the treatment of chronic pain in CP patients.

  10. Anoctamin 6 mediates effects essential for innate immunity downstream of P2X7 receptors in macrophages

    NASA Astrophysics Data System (ADS)

    Ousingsawat, Jiraporn; Wanitchakool, Podchanart; Kmit, Arthur; Romao, Ana M.; Jantarajit, Walailak; Schreiber, Rainer; Kunzelmann, Karl

    2015-02-01

    Purinergic P2X7 receptors (P2X7R) are fundamental to innate immune response. In macrophages, transient stimulation of P2X7R activates several transport mechanisms and induces the scrambling of phospholipids with subsequent membrane blebbing and apoptosis. These processes support phagocytosis and subsequent killing of phagocytosed bacteria. Here we demonstrate that the stimulation of P2X7 receptors activates anoctamin 6 (ANO6, TMEM16F), a protein that functions as Ca2+ dependent phospholipid scramblase and Ca2+-activated Cl- channel. Inhibition or knockdown of ANO6 attenuates ATP-induced cell shrinkage, cell migration and phospholipid scrambling. In mouse macrophages, Ano6 produces large ion currents by stimulation of P2X7 receptors and contributes to ATP-induced membrane blebbing and apoptosis, which is largely reduced in macrophages from Ano6-/- mice. ANO6 supports bacterial phagocytosis and killing by mouse and human THP-1 macrophages. Our data demonstrate that anoctamin 6 is an essential component of the immune defense by macrophages.

  11. Extracellular ATP mediates necrotic cell swelling in SN4741 dopaminergic neurons through P2X7 receptors.

    PubMed

    Jun, Dong-Jae; Kim, Jaeyoon; Jung, Sang-Yong; Song, Ran; Noh, Ji-Hyun; Park, Yong-Soo; Ryu, Sung-Ho; Kim, Joung-Hun; Kong, Young-Yun; Chung, Jun-Mo; Kim, Kyong-Tai

    2007-12-28

    Extracellular ATP has recently been identified as an important regulator of cell death in response to pathological insults. When SN4741 cells, which are dopaminergic neurons derived from the substantia nigra of transgenic mouse embryos, are exposed to ATP, cell death occurs. This cell death is associated with prominent cell swelling, loss of ER integrity, the formation of many large cytoplasmic vacuoles, and subsequent cytolysis and DNA release. In addition, the cleavage of caspase-3, a hallmark of apoptosis, is induced by ATP treatment. However, caspase inhibitors do not overcome ATP-induced cell death, indicating that both necrosis and apoptosis are associated with ATP-induced cell death and suggesting that a necrotic event might override the apoptotic process. In this study we also found that P2X(7) receptors (P2X(7)Rs) are abundantly expressed in SN4741 cells, and both ATP-induced swelling and cell death are reversed by pretreatment with the P2X(7)Rs antagonist, KN62, or by knock-down of P2X(7)Rs with small interfering RNAs. Therefore, extracellular ATP release from injured tissues may act as an accelerating factor in necrotic SN4741 dopaminergic cell death via P2X(7)Rs.

  12. Activation of neuronal P2X7 receptor-Pannexin-1 mediates death of enteric neurons during colitis

    PubMed Central

    Gulbransen, Brian D.; Bashashati, Mohammad; Hirota, Simon A.; Gui, Xianyong; Roberts, Jane A.; MacDonald, Justin A.; Muruve, Daniel A.; McKay, Derek M.; Beck, Paul L.; Mawe, Gary M.; Thompson, Roger J.; Sharkey, Keith A.

    2012-01-01

    Inflammatory bowel diseases (IBD) are chronic relapsing and remitting conditions associated with long-term gut dysfunction resulting from alterations to the enteric nervous system and a loss of enteric neurons1,2. The mechanisms underlying inflammation-induced enteric neuron death are unknown. Here we report using in vivo models of experimental colitis that inflammation causes enteric neuron death by activating a neuronal signaling complex comprised of P2X7 receptors (P2X7Rs), pannexin–1 (Panx1) channels, Asc and caspases. Inhibiting P2X7Rs, Panx1, Asc or caspase activity prevents inflammation-induced neuron cell death. Preservation of enteric neurons by inhibiting Panx1 in vivo prevented the onset of inflammation-induced colonic motor dysfunction. Panx1 expression is reduced in Crohn’s disease but not ulcerative colitis. We conclude that activation of neuronal Panx1 underlies neuron death and subsequent development of the abnormal gut motility in IBD. Targeting Panx1 represents a novel neuroprotective strategy to ameliorate the progression of IBD–associated dysmotility. PMID:22426419

  13. Up-regulation of P2X7 receptor-mediated inhibition of GABA uptake by nerve terminals of the human epileptic neocortex.

    PubMed

    Barros-Barbosa, Aurora R; Fonseca, Ana L; Guerra-Gomes, Sónia; Ferreirinha, Fátima; Santos, Agostinho; Rangel, Rui; Lobo, M Graça; Correia-de-Sá, Paulo; Cordeiro, J Miguel

    2016-01-01

    Thirty percent of patients with epilepsy are refractory to medication. The majority of these patients have mesial temporal lobe epilepsy (MTLE). This prompts for new pharmacologic targets, like ATP-mediated signaling pathways, since the extracellular levels of the nucleotide dramatically increase during in vitro epileptic seizures. In this study, we investigated whether sodium-dependent high-affinity γ-aminobutyric acid (GABA) and glutamate uptake by isolated nerve terminals of the human neocortex could be modulated by ATP acting via slow-desensitizing P2X7 receptor (P2X7R). Modulation of [(3) H]GABA and [(14) C]glutamate uptake by ATP, through activation of P2X7R, was investigated in isolated nerve terminals of the neocortex of cadaveric controls and patients with drug-resistant epilepsy (non-MTLE or MTLE) submitted to surgery. Tissue density and distribution of P2X7R in the human neocortex was assessed by Western blot analysis and immunofluorescence confocal microscopy. The P2X7R agonist, 2'(3')-O-(4-benzoylbenzoyl)ATP (BzATP, 3-100 μm) decreased [(3) H]GABA and [(14) C]glutamate uptake by nerve terminals of the neocortex of controls and patients with epilepsy. The inhibitory effect of BzATP (100 μm) was prevented by the selective P2X7R antagonist, A-438079 (3 μm). Down-modulation of [(14) C]glutamate uptake by BzATP (100 μm) was roughly similar in controls and patients with epilepsy, but the P2X7R agonist inhibited more effectively [(3) H]GABA uptake in the epileptic tissue. Neocortical nerve terminals of patients with epilepsy express higher amounts of the P2X7R protein than control samples. High-frequency cortical activity during epileptic seizures releases huge amounts of ATP, which by acting on low-affinity slowly desensitizing ionotropic P2X7R, leads to down-modulation of neuronal GABA and glutamate uptake. Increased P2X7R expression in neocortical nerve terminals of patients with epilepsy may, under high-frequency firing, endure GABA signaling and

  14. Wnt3a mitigates acute lung injury by reducing P2X7 receptor-mediated alveolar epithelial type I cell death

    PubMed Central

    Guo, Y; Mishra, A; Weng, T; Chintagari, N R; Wang, Y; Zhao, C; Huang, C; Liu, L

    2014-01-01

    Acute lung injury (ALI) is characterized by pulmonary endothelial and epithelial cell damage, and loss of the alveolar–capillary barrier. We have previously shown that P2X7 receptor (P2X7R), a cell death receptor, is specifically expressed in alveolar epithelial type I cells (AEC I). In this study, we hypothesized that P2X7R-mediated purinergic signaling and its interaction with Wnt/β-catenin signaling contributes to AEC I death. We examined the effect of P2X7R agonist 2′-3′-O-(4-benzoylbenzoyl)-ATP (BzATP) and Wnt agonist Wnt3a on AEC I death in vitro and in vivo. We also assessed the therapeutic potential of Wnt3a in a clinically relevant ALI model of intratracheal lipopolysaccharide (LPS) exposure in ventilated mice. We found that the activation of P2X7R by BzATP caused the death of AEC I by suppressing Wnt/β-catenin signaling through stimulating glycogen synthase kinase-3β (GSK-3β) and proteasome. On the other hand, the activation of Wnt/β-catenin signaling by Wnt3a, GSK-3β inhibitor, or proteasome inhibitor blocked the P2X7R-mediated cell death. More importantly, Wnt3a attenuated the AEC I damage caused by intratracheal instillation of BzATP in rats or LPS in ventilated mice. Our results suggest that Wnt3a overrides the effect of P2X7R on the Wnt/β-catenin signaling to prevent the AEC I death and restrict the severity of ALI. PMID:24922070

  15. The protective effect of resveratrol in the transmission of neuropathic pain mediated by the P2X7 receptor in the dorsal root ganglia.

    PubMed

    Xie, Jinyan; Liu, Shuangmei; Wu, Bing; Li, Guilin; Rao, Shenqiang; Zou, Lifang; Yi, Zhihua; Zhang, Chunping; Jia, Tianyu; Zhao, Shanhong; Schmalzing, Günther; Hausmann, Ralf; Nie, Hong; Li, Guodong; Liang, Shangdong

    2017-02-01

    The P2X7 receptor mediates afferent nerve activation and is related to chronic neuropathic pain. Resveratrol (RES) has also been reported to exhibit anti-inflammatory effects. In this study, we investigated the neuroprotective effect of RES on the transmission of neuropathic pain mediated by the P2X7 receptor. The P2X7 mRNA and protein expression levels in L4-L5 dorsal root ganglia (DRG)s of the chronic constriction injury (CCI) group were significantly higher than those observed in the Ctrl + NS, Sham + RES and Sham groups. RES increased the threshold of thermal and mechanical hypersensitivity in rats with chronic neuropathic pain. The P2X7 mRNA and protein expression levels in the CCI + RES group were decreased compared with those in the CCI group. Our results showed that RES inhibited the upregulated co-expression of P2X7 and glial fibrillary acidic protein (GFAP, a marker of satellite glial cells) in satellite glial cells of DRG in the CCI group. The results demonstrated that the expression of GFAP was increased in the CCI group and that RES inhibited the upregulated expression of GFAP in the rats in the CCI group. In addition, the phosphorylation levels of p38 and extracellular regulated protein kinases (ERK)1/2 in the CCI group were markedly higher than those observed in the Ctrl + NS, Sham + RES and Sham groups, whereas the phosphorylation levels of p38 and ERK1/2 in CCI + RES group were markedly lower than those observed in the CCI group. RES inhibited BzATP-activated currents in DRG non-neurons in the CCI rats. Our data provide evidence that RES may suppress the transmission of neuropathic pain mediated by the P2X7 receptor in the satellite glial cells of dorsal root ganglia.

  16. P2X7 receptor antagonism: Implications in diabetic retinopathy.

    PubMed

    Platania, Chiara Bianca Maria; Giurdanella, Giovanni; Di Paola, Luisa; Leggio, Gian Marco; Drago, Filippo; Salomone, Salvatore; Bucolo, Claudio

    2017-08-15

    Diabetic retinopathy (DR) is the most frequent complication of diabetes and one of leading causes of blindness worldwide. Early phases of DR are characterized by retinal pericyte loss mainly related to concurrent inflammatory process. Recently, an important link between P2X7 receptor (P2X7R) and inflammation has been demonstrated indicating this receptor as potential pharmacological target in DR. Here we first carried out an in silico molecular modeling study in order to characterize the allosteric pocket in P2X7R, and identify a suitable P2X7R antagonist through molecular docking. JNJ47965567 was identified as the hit compound in docking calculations, as well as for its absorption, distribution, metabolism and excretion (ADME) profile. As an in vitro model of early diabetic retinopathy, human retinal pericytes were exposed to high glucose (25mM, 48h) that caused a significant (p<0.05) release of IL-1β and LDH. The block of P2X7R by JNJ47965567 significantly (p<0.05) reverted the damage elicited by high glucose, detected as IL-1β and LDH release. Overall, our findings suggest that the P2X7R represents an attractive pharmacological target to manage the early phase of diabetic retinopathy, and the compound JNJ47965567 is a good template to discover other P2X7R selective antagonists. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. P2X(7) receptor-mediated release of cathepsins from macrophages is a cytokine-independent mechanism potentially involved in joint diseases.

    PubMed

    Lopez-Castejon, Gloria; Theaker, Jill; Pelegrin, Pablo; Clifton, Andrew D; Braddock, Martin; Surprenant, Annmarie

    2010-08-15

    The ATP-gated P2X(7) receptor (P2X(7)R) is a promising therapeutic target in chronic inflammatory diseases with highly specific antagonists currently under clinical trials for rheumatoid arthritis. Anti-inflammatory actions of P2X(7)R antagonists are considered to result from inhibition of P2X(7)R-induced release of proinflammatory cytokines from activated macrophages. However, P2X(7)Rs are also expressed in resting macrophages, suggesting that P2X(7)R may also signal via cytokine-independent mechanisms involved in joint disease. In this study, we examined P2X(7)R function in resting human lung macrophages and mouse bone marrow-derived macrophages and found that ATP induced rapid release of the lysosomal cysteine proteases cathepsin B, K, L, and S and that was independent of the presence of the proinflammatory cytokines IL-1beta and IL-18. Cathepsins released into the medium were effective to degrade collagen extracellular matrix. ATP-induced cathepsin release was abolished by P2X(7)R antagonists, absent from P2X(7)R(-/-) mouse macrophages, and not associated with cell death. Our results suggest P2X(7)R activation may play a novel and direct role in tissue damage through release of cathepsins independently of its proinflammatory actions via IL-1 cytokines.

  18. PKC-dependent ERK phosphorylation is essential for P2X7 receptor-mediated neuronal differentiation of neural progenitor cells

    PubMed Central

    Tsao, H-K; Chiu, P-H; Sun, S H

    2013-01-01

    Purinergic receptors have been shown to be involved in neuronal development, but the functions of specific subtypes of P2 receptors during neuronal development remain elusive. In this study we investigate the distribution of P2X7 receptors (P2X7Rs) in the embryonic rat brain using in situ hybridization. At E15.5, P2X7R mRNA was observed in the ventricular zone and subventricular zone, and colocalized with nestin, indicating that P2X7R might be expressed in neural progenitor cells (NPCs). P2X7R mRNA was also detected in the subgranular zone and dentate gyrus of the E18.5 and P4 brain. To investigate the roles of P2X7R and elucidate its mechanism, we established NPC cultures from the E15.5 rat brain. Stimulation of P2X7Rs induced Ca2+ influx, inhibited proliferation, altered cell cycle progression and enhanced the expression of neuronal markers, such as TUJ1 and MAP2. Similarly, knockdown of P2X7R by shRNA nearly abolished the agonist-stimulated increases in intracellular Ca2+ concentration and the expression of TUJ1 and NeuN. Furthermore, stimulation of P2X7R induced activation of ERK1/2, which was inhibited by the removal of extracellular Ca2+ and treatment with blockers for P2X7R and PKC activity. Stimulation of P2X7R also induced translocation of PKCα and PKCγ, but not of PKCβ, whereas knockdown of either PKCα or PKCγ inhibited ERK1/2 activation. Inhibition of PKC or p-ERK1/2 also caused a decrease in the number of TUJ1-positive cells and a concomitant increase in the number of GFAP-positive cells. Taken together, the activation of P2X7R in NPCs induced neuronal differentiation through a PKC-ERK1/2 signaling pathway. PMID:23907465

  19. The P2X7 Receptor-Interleukin-1 Liaison.

    PubMed

    Giuliani, Anna Lisa; Sarti, Alba C; Falzoni, Simonetta; Di Virgilio, Francesco

    2017-01-01

    Interleukin-1β (IL-1β) plays a central role in stimulation of innate immune system and inflammation and in several chronic inflammatory diseases. These include rare hereditary conditions, e.g., auto-inflammatory syndromes, as well as common pathologies, such as type II diabetes, gout and atherosclerosis. A better understanding of IL-1β synthesis and release is particularly relevant for the design of novel anti-inflammatory drugs. One of the molecules mainly involved in IL-1β maturation is the P2X7 receptor (P2X7R), an ATP-gated ion channel that chiefly acts through the recruitment of the NLRP3 inflammasome-caspase-1 complex. In this review, we will summarize evidence supporting the key role of the P2X7R in IL-1β production, with special emphasis on the mechanism of release, a process that is still a matter of controversy. Four different models have been proposed: (i) exocytosis via secretory lysosomes, (ii) microvesicles shedding from plasma membrane, (iii) release of exosomes, and (iv) passive efflux across a leaky plasma membrane during pyroptotic cell death. All these models involve the P2X7R.

  20. The P2X7 Receptor-Interleukin-1 Liaison

    PubMed Central

    Giuliani, Anna Lisa; Sarti, Alba C.; Falzoni, Simonetta; Di Virgilio, Francesco

    2017-01-01

    Interleukin-1β (IL-1β) plays a central role in stimulation of innate immune system and inflammation and in several chronic inflammatory diseases. These include rare hereditary conditions, e.g., auto-inflammatory syndromes, as well as common pathologies, such as type II diabetes, gout and atherosclerosis. A better understanding of IL-1β synthesis and release is particularly relevant for the design of novel anti-inflammatory drugs. One of the molecules mainly involved in IL-1β maturation is the P2X7 receptor (P2X7R), an ATP-gated ion channel that chiefly acts through the recruitment of the NLRP3 inflammasome-caspase-1 complex. In this review, we will summarize evidence supporting the key role of the P2X7R in IL-1β production, with special emphasis on the mechanism of release, a process that is still a matter of controversy. Four different models have been proposed: (i) exocytosis via secretory lysosomes, (ii) microvesicles shedding from plasma membrane, (iii) release of exosomes, and (iv) passive efflux across a leaky plasma membrane during pyroptotic cell death. All these models involve the P2X7R. PMID:28360855

  1. P2X7 receptors stimulate AKT phosphorylation in astrocytes

    PubMed Central

    Jacques-Silva, Maria C; Rodnight, Richard; Lenz, Guido; Liao, Zhongji; Kong, Qiongman; Tran, Minh; Kang, Yuan; Gonzalez, Fernando A; Weisman, Gary A; Neary, Joseph T

    2004-01-01

    Emerging evidence indicates that nucleotide receptors are widely expressed in the nervous system. Here, we present evidence that P2Y and P2X receptors, particularly the P2X7 subtype, are coupled to the phosphoinositide 3-kinase (PI3K)/Akt pathway in astrocytes. P2Y and P2X receptor agonists ATP, uridine 5′-triphosphate (UTP) and 2′,3′-O-(4-benzoyl)-benzoyl ATP (BzATP) stimulated Akt phosphorylation in primary cultures of rat cortical astrocytes. BzATP induced Akt phosphorylation in a concentration- and time-dependent manner, similar to the effect of BzATP on Akt phosphorylation in 1321N1 astrocytoma cells stably transfected with the rat P2X7 receptor. Activation was maximal at 5 – 10 min and was sustained for 60 min; the EC50 for BzATP was approximately 50 μM. In rat cortical astrocytes, the positive effect of BzATP on Akt phosphorylation was independent of glutamate release. The effect of BzATP on Akt phosphorylation in rat cortical astrocytes was significantly reduced by the P2X7 receptor antagonist Brilliant Blue G and the P2X receptor antagonist iso-pyridoxal-5′-phosphate-6-azophenyl-2′,4′-disulfonic acid, but was unaffected by trinitrophenyl-ATP, oxidized ATP, suramin and reactive blue 2. Results with specific inhibitors of signal transduction pathways suggest that extracellular and intracellular calcium, PI3K and a Src family kinase are involved in the BzATP-induced Akt phosphorylation pathway. In conclusion, our data indicate that stimulation of astrocytic P2X7 receptors, as well as other P2 receptors, leads to Akt activation. Thus, signaling by nucleotide receptors in astrocytes may be important in several cellular downstream effects related to the Akt pathway, such as cell cycle and apoptosis regulation, protein synthesis, differentiation and glucose metabolism. PMID:15023862

  2. Clemastine Potentiates the Human P2X7 Receptor by Sensitizing It to Lower ATP Concentrations*

    PubMed Central

    Nörenberg, Wolfgang; Hempel, Christoph; Urban, Nicole; Sobottka, Helga; Illes, Peter; Schaefer, Michael

    2011-01-01

    P2X7 receptors have emerged as potential drug targets for the treatment of medical conditions such as e.g. rheumatoid arthritis and neuropathic pain. To assess the impact of pharmaceuticals on P2X7, we screened a compound library comprising approved or clinically tested drugs and identified several compounds that augment the ATP-triggered P2X7 activity in a stably transfected HEK293 cell line. Of these, clemastine markedly sensitized Ca2+ entry through P2X7 to lower ATP concentrations. Extracellularly but not intracellularly applied clemastine rapidly and reversibly augmented P2X7-mediated whole-cell currents evoked by non-saturating ATP concentrations. Clemastine also accelerated the ATP-induced pore formation and Yo-Pro-1 uptake, increased the fractional NMDG+ permeability, and stabilized the open channel conformation of P2X7. Thus, clemastine is an extracellularly binding allosteric modulator of P2X7 that sensitizes P2X7 to lower ATP concentrations and facilitates its pore dilation. The activity of clemastine on native P2X7 receptors, Ca2+ entry, and whole-cell currents was confirmed in human monocyte-derived macrophages. Similar effects were observed in murine bone marrow-derived macrophages. Consistent with the data on recombinant P2X7, clemastine augmented the ATP-induced cation entry and Yo-Pro-1 uptake. In accordance with the observation that P2X7 controls the cytokine release from LPS-primed macrophages, we found that clemastine augmented the IL-1β release from LPS-primed human macrophages. Collectively, these data point to a sensitization of the recombinantly or natively expressed human P2X7 receptor toward its physiological activator, ATP, possibly leading to a modulation of macrophage-dependent immune responses. PMID:21262970

  3. Large-conductance channel formation mediated by P2X7 receptor activation is regulated through distinct intracellular signaling pathways in peritoneal macrophages and 2BH4 cells.

    PubMed

    Faria, R X; Cascabulho, C M; Reis, R A M; Alves, Luiz Anastácio

    2010-07-01

    The P2X(7) receptor (P2X7R) is a ligand-gated ATP receptor that acts as a low- and large-conductance channel (pore) and is known to be coupled to several downstream effectors. Recently, we demonstrated that the formation of a large-conductance channel associated with the P2X(7) receptor is induced by increasing the intracellular Ca(2+) concentration (Faria et al., Am J Physiol Cell Physiol 297:C28-C42, 2005). Here, we investigated the intracellular signaling pathways associated with P2X(7) large-conductance channel formation using the patch clamp technique in conjunction with fluorescent imaging and flow cytometry assays in 2BH4 cells and peritoneal macrophages. Different antagonists were applied to investigate the following pathways: Ca(2+)-calmodulin, phospholipase A, phospholipase D, phospholipase C, protein kinase C (PKC), mitogen-activated protein kinase (MAPK), MAPK/extracellular signal-regulated kinase, phosphoinositide 3-kinase (PI3K), and cytoskeletal proteins. Macroscopic ionic currents induced by 1 mM ATP were reduced by 85% in the presence of PKC antagonists. The addition of antagonists for MAPK, PI3K, and the cytoskeleton (actin, intermediary filament, and microtubule) blocked 92%, 83%, and 95% of the ionic currents induced by 1 mM ATP, respectively. Our results show that PKC, MAPK, PI3K, and cytoskeletal components are involved in P2X(7) receptor large-channel formation in 2BH4 cells and peritoneal macrophages.

  4. Expression, assembly and function of novel C-terminal truncated variants of the mouse P2X7 receptor: re-evaluation of P2X7 knockouts

    PubMed Central

    Masin, Marianela; Young, Christopher; Lim, KoiNi; Barnes, Sara J; Xu, Xing Jian; Marschall, Viola; Brutkowski, Wojciech; Mooney, Elizabeth R; Gorecki, Dariusz C; Murrell-Lagnado, Ruth

    2012-01-01

    BACKGROUND AND PURPOSE Splice variants of P2X7 receptor transcripts contribute to the diversity of receptor-mediated responses. Here, we investigated expression and function of C-terminal truncated (ΔC) variants of the mP2X7 receptor, which are predicted to escape inactivation in one strain of P2X7−/− mice (Pfizer KO). EXPERIMENTAL APPROACH Expression in wild-type (WT) and Pfizer KO tissue was investigated by reverse transcription (RT)-PCR and Western blot analysis. ΔC variants were also cloned and expressed in HEK293 cells to investigate their assembly, trafficking and function. KEY RESULTS RT-PCR indicates expression of a ΔC splice variant in brain, salivary gland (SG) and spleen from WT and Pfizer KO mice. An additional ΔC hybrid transcript, containing sequences of P2X7 upstream of exon 12, part of exon 13 followed in-frame by the sequence of the vector used to disrupt the P2X7 gene, was also identified in the KO mice. By blue native (BN) PAGE analysis and the use of cross linking reagents followed by SDS-PAGE, P2X7 trimers, dimers and monomers were detected in the spleen and SG of Pfizer KO mice. The molecular mass was reduced compared with P2X7 in WT mice tissue, consistent with a ΔC variant. When expressed in HEK293 cells the ΔC variants were inefficiently trafficked to the cell surface and agonist-evoked whole cell currents were small. Co-expressed with P2X7A, the ΔC splice variant acted in a dominant negative fashion to inhibit function. CONCLUSIONS AND IMPLICATIONS Pfizer KO mice are not null for P2X7 receptor expression but express ΔC variants with reduced function. PMID:21838754

  5. P2X7 receptor knockout prevents streptozotocin-induced type 1 diabetes in mice.

    PubMed

    Vieira, Flávia Sarmento; Nanini, Hayandra Ferreira; Takiya, Christina Maeda; Coutinho-Silva, Robson

    2016-01-05

    Type 1 diabetes (T1D) is caused by autoimmune destruction of islet of Langerhans β-cells. P2X7 receptors (P2X7R) modulate proinflammatory immune responses by binding extracellular ATP, a classic 'danger signal'. Here, we evaluated whether the P2X7R has a role in T1D development. P2X7(-/-) mice are resistant to TD1 induction by streptozotocin (STZ) treatment, with no increase in blood glucose, decrease in insulin-positive cells, and pancreatic islet reduction, compared to WT (C57BL/6) mice. Also, the levels of proinflammatory mediators (IL-1β, IFN-γ and NO) did not increase after STZ treatment in P2X7(-/-) animals, with reduced infiltration of CD4(+), CD8(+), B220(+), CD11b(+) and CD11c(+) cells in the pancreatic lymph nodes. Treatment with a P2X7 antagonist mimicked the effect of P2X7 knockout, preventing STZ-induced diabetes. Our results show that the absence of the P2X7R provides resistance in the induction of diabetes in this model, and suggest that therapy targeting the P2X7R may be useful against clinical T1D.

  6. P2X7R suppression promotes glioma growth through epidermal growth factor receptor signal pathway.

    PubMed

    Fang, Jingqin; Chen, Xiao; Zhang, Letian; Chen, Jinhua; Liang, Yi; Li, Xue; Xiang, Jianbo; Wang, Lili; Guo, Guangkuo; Zhang, Bo; Zhang, Weiguo

    2013-06-01

    P2X7 receptor (P2X7R) has been shown to mediate an anticancer effect via apoptosis in different types of cancer. However, whether P2X7R exerts a promoting or suppressive effect on brain glioma is still a controversial issue and its underlying mechanism remains unknown. We showed here that P2X7R suppression exerted a pro-growth effect on glioma through directly promoting cells proliferation and pro-angiogenesis, which was associated with epidermal growth factor receptor (EGFR) signaling. The P2X7R was markedly downregulated by cells exposure to the P2X7R antagonist, brilliant blue G (BBG), moreover, the cells proliferation was enhanced in a dose-dependent manner and the expression of EGFR or p-EGFR protein was significantly upregulated. By constructing C6 cells with reduced expression of P2X7R using shRNA, we also demonstrated strong upregulation in cells proliferation and EGFR/p-EGFR expression. However, this effect of BBG was reversed in the presence of gefitinib or suramin. Magnetic resonance imaging and computed tomography perfusion showed that the BBG or P2X7R shRNA promoted the tumor growth by about 40% and 50%, respectively, and significantly increased angiogenesis. Nissl and Ki-67 staining also confirmed that BBG or P2X7R shRNA notably increased the tumor growth. More importantly, either BBG or P2X7R shRNA could markedly upregulated the expression of EGFR, p-EGFR, HIF-1α and VEGF in glioma cells. In conclusion, P2X7R suppression exerts a promoting effect on glioma growth, which is likely to be related to upregulated EGFR, HIF-1α and VEGF expression. These findings provide important clues to the molecular basis of anticancer effect of targeting purinergic receptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. P2X7 receptors trigger ATP exocytosis and modify secretory vesicle dynamics in neuroblastoma cells.

    PubMed

    Gutiérrez-Martín, Yolanda; Bustillo, Diego; Gómez-Villafuertes, Rosa; Sánchez-Nogueiro, Jesús; Torregrosa-Hetland, Cristina; Binz, Thomas; Gutiérrez, Luis Miguel; Miras-Portugal, María Teresa; Artalejo, Antonio R

    2011-04-01

    Previously, we reported that purinergic ionotropic P2X7 receptors negatively regulate neurite formation in Neuro-2a (N2a) mouse neuroblastoma cells through a Ca(2+)/calmodulin-dependent kinase II-related mechanism. In the present study we used this cell line to investigate a parallel though faster P2X7 receptor-mediated signaling pathway, namely Ca(2+)-regulated exocytosis. Selective activation of P2X7 receptors evoked exocytosis as assayed by high resolution membrane capacitance measurements. Using dual-wavelength total internal reflection microscopy, we have observed both the increase in near-membrane Ca(2+) concentration and the exocytosis of fluorescently labeled vesicles in response to P2X7 receptor stimulation. Moreover, activation of P2X7 receptors also affects vesicle motion in the vertical and horizontal directions, thus, involving this receptor type in the control of early steps (docking and priming) of the secretory pathway. Immunocytochemical and RT-PCR experiments evidenced that N2a cells express the three neuronal SNAREs as well as vesicular nucleotide and monoamine (VMAT-1 and VMAT-2) transporters. Biochemical measurements indicated that ionomycin induced a significant release of ATP from N2a cells. Finally, P2X7 receptor stimulation and ionomycin increased the incidence of small transient inward currents, reminiscent of postsynaptic quantal events observed at synapses. Small transient inward currents were dependent on extracellular Ca(2+) and were abolished by Brilliant Blue G, suggesting they were mediated by P2X7 receptors. Altogether, these results suggest the existence of a positive feedback mechanism mediated by P2X7 receptor-stimulated exocytotic release of ATP that would act on P2X7 receptors on the same or neighbor cells to further stimulate its own release and negatively control N2a cell differentiation.

  8. P2X7 Receptors Trigger ATP Exocytosis and Modify Secretory Vesicle Dynamics in Neuroblastoma Cells*

    PubMed Central

    Gutiérrez-Martín, Yolanda; Bustillo, Diego; Gómez-Villafuertes, Rosa; Sánchez-Nogueiro, Jesús; Torregrosa-Hetland, Cristina; Binz, Thomas; Gutiérrez, Luis Miguel; Miras-Portugal, María Teresa; Artalejo, Antonio R.

    2011-01-01

    Previously, we reported that purinergic ionotropic P2X7 receptors negatively regulate neurite formation in Neuro-2a (N2a) mouse neuroblastoma cells through a Ca2+/calmodulin-dependent kinase II-related mechanism. In the present study we used this cell line to investigate a parallel though faster P2X7 receptor-mediated signaling pathway, namely Ca2+-regulated exocytosis. Selective activation of P2X7 receptors evoked exocytosis as assayed by high resolution membrane capacitance measurements. Using dual-wavelength total internal reflection microscopy, we have observed both the increase in near-membrane Ca2+ concentration and the exocytosis of fluorescently labeled vesicles in response to P2X7 receptor stimulation. Moreover, activation of P2X7 receptors also affects vesicle motion in the vertical and horizontal directions, thus, involving this receptor type in the control of early steps (docking and priming) of the secretory pathway. Immunocytochemical and RT-PCR experiments evidenced that N2a cells express the three neuronal SNAREs as well as vesicular nucleotide and monoamine (VMAT-1 and VMAT-2) transporters. Biochemical measurements indicated that ionomycin induced a significant release of ATP from N2a cells. Finally, P2X7 receptor stimulation and ionomycin increased the incidence of small transient inward currents, reminiscent of postsynaptic quantal events observed at synapses. Small transient inward currents were dependent on extracellular Ca2+ and were abolished by Brilliant Blue G, suggesting they were mediated by P2X7 receptors. Altogether, these results suggest the existence of a positive feedback mechanism mediated by P2X7 receptor-stimulated exocytotic release of ATP that would act on P2X7 receptors on the same or neighbor cells to further stimulate its own release and negatively control N2a cell differentiation. PMID:21292765

  9. Involvement of P2X7 receptor in neuronal degeneration triggered by traumatic injury.

    PubMed

    Nadal-Nicolás, Francisco M; Galindo-Romero, Caridad; Valiente-Soriano, Francisco J; Barberà-Cremades, María; deTorre-Minguela, Carlos; Salinas-Navarro, Manuel; Pelegrín, Pablo; Agudo-Barriuso, Marta

    2016-12-08

    Axonal injury is a common feature of central nervous system insults that culminates with the death of the affected neurons, and an irreversible loss of function. Inflammation is an important component of the neurodegenerative process, where the microglia plays an important role by releasing proinflammatory factors as well as clearing the death neurons by phagocytosis. Here we have identified the purinergic signaling through the P2X7 receptor as an important component for the neuronal death in a model of optic nerve axotomy. We have found that in P2X7 receptor deficient mice there is a delayed loss of retinal ganglion cells and a decrease of phagocytic microglia at early times points after axotomy. In contralateral to the axotomy retinas, P2X7 receptor controlled the numbers of phagocytic microglia, suggesting that extracellular ATP could act as a danger signal activating the P2X7 receptor in mediating the loss of neurons in contralateral retinas. Finally, we show that intravitreal administration of the selective P2X7 receptor antagonist A438079 also delays axotomy-induced retinal ganglion cell death in retinas from wild type mice. Thus, our work demonstrates that P2X7 receptor signaling is involved in neuronal cell death after axonal injury, being P2X7 receptor antagonism a potential therapeutic strategy.

  10. Involvement of P2X7 receptor in neuronal degeneration triggered by traumatic injury

    PubMed Central

    Nadal-Nicolás, Francisco M.; Galindo-Romero, Caridad; Valiente-Soriano, Francisco J.; Barberà-Cremades, María; deTorre-Minguela, Carlos; Salinas-Navarro, Manuel; Pelegrín, Pablo; Agudo-Barriuso, Marta

    2016-01-01

    Axonal injury is a common feature of central nervous system insults that culminates with the death of the affected neurons, and an irreversible loss of function. Inflammation is an important component of the neurodegenerative process, where the microglia plays an important role by releasing proinflammatory factors as well as clearing the death neurons by phagocytosis. Here we have identified the purinergic signaling through the P2X7 receptor as an important component for the neuronal death in a model of optic nerve axotomy. We have found that in P2X7 receptor deficient mice there is a delayed loss of retinal ganglion cells and a decrease of phagocytic microglia at early times points after axotomy. In contralateral to the axotomy retinas, P2X7 receptor controlled the numbers of phagocytic microglia, suggesting that extracellular ATP could act as a danger signal activating the P2X7 receptor in mediating the loss of neurons in contralateral retinas. Finally, we show that intravitreal administration of the selective P2X7 receptor antagonist A438079 also delays axotomy-induced retinal ganglion cell death in retinas from wild type mice. Thus, our work demonstrates that P2X7 receptor signaling is involved in neuronal cell death after axonal injury, being P2X7 receptor antagonism a potential therapeutic strategy. PMID:27929040

  11. The effect of anions on the human P2X7 receptor.

    PubMed

    Kubick, Christoph; Schmalzing, Günther; Markwardt, Fritz

    2011-12-01

    P2X7 receptors (P2X7Rs) are nonselective cation channels that are opened by the binding of extracellular ATP and are involved in the modulation of epithelial secretion, inflammation and nociception. Here, we investigated the effect of extracellular anions on channel gating and permeation of human P2X7Rs (hP2X7Rs) expressed in Xenopus laevis oocytes. Two-microelectrode voltage-clamp recordings showed that ATP-induced hP2X7R-mediated currents increased when extracellular chloride was substituted by the organic anions glutamate or aspartate and decreased when chloride was replaced by the inorganic anions nitrate, sulfate or iodide. ATP concentration-response comparisons revealed that substitution of chloride by glutamate decreased agonist efficacy, while substitution by iodide increased agonist efficacy at high ATP concentrations. Meanwhile, the ATP potency remained unchanged. Activation of the hP2X7R at low ATP concentrations via the high-affinity ATP effector site was not affected by the replacement of chloride by glutamate or iodide. To analyze the anion effect on the hP2X7R at the single-molecule level, we performed single-channel current measurements using the patch-clamp technique in the outside-out configuration. Chloride substitution did not affect the single-channel conductance, but the probability that the P2X7R channel was open increased when chloride was replaced by glutamate and decreased when chloride was replaced by iodide. This effect was due to an influence of the anions on the mean closed times of the hP2X7R channel. We conclude that hP2X7R channels are not anion-permeable in physiological Na+-based media and that external anions allosterically affect ion channel opening in the fully ATP4-liganded P2X7R through an extracellular anion binding site.

  12. P2X7 receptor-Pannexin1 interaction mediates stress-induced interleukin-1 beta expression in human periodontal ligament cells.

    PubMed

    Kanjanamekanant, K; Luckprom, P; Pavasant, P

    2014-10-01

    Pannexin 1 (Panx1) has been found to form nonjunctional hemichannels. It is also proposed to combine with the P2X7 receptor, forming a complex involved in adenosine triphosphate (ATP)-induced interleukin-1beta (IL-1β) release in macrophages. Previously, we reported that mechanical stress induced IL-1β expression via the ATP/P2X7 receptor-dependent pathway in human periodontal ligament (HPDL) cells and that ATP was released through the connexin 43 (Cx43) hemichannel. In the present work, we examined the role of Panx1 in stress-induced IL-1β induction in HPDL cells. Cultured HPDL cells were treated with compressive loading or ATP to stimulate IL-1β expression. Inhibitors, antagonists and the small interfering RNA technique were used to investigate the involvement of Panx1 in IL-1β induction. Co-immunoprecipitation (Co-IP) and immunostaining were used to determine the association of Panx1 with the P2X7 receptor. The IL-1β release mechanism was analyzed using inhibitors. Blocking Panx1 significantly decreased ATP release, as well as IL-1β up-regulation, upon stimulation with stress or ATP. Co-IP revealed the association of Panx1 and the P2X7 receptor in HPDL cells, which was increased in response to mechanical loading. Pretreatment with vesicular trafficking inhibitors significantly reduced the amount of IL-1β released from stimulated cells, suggesting that IL-1β might be released through vesicles. We clearly illustrated the contribution of Panx1 in ATP release, as well as in IL-1β induction in HPDL cells. The association of Panx1 and the P2X7 receptor might be required for IL-1β induction, and their possible novel role in IL-1β vesicular release was indicated. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage

    PubMed Central

    Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Cavaliere, Fabio; Magnus, Tim; Koch-Nolte, Friederich; Scemes, Eliana; Pérez-Samartín, Alberto; Matute, Carlos

    2015-01-01

    The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise. PMID:25605289

  14. Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage.

    PubMed

    Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Cavaliere, Fabio; Magnus, Tim; Koch-Nolte, Friederich; Scemes, Eliana; Pérez-Samartín, Alberto; Matute, Carlos

    2015-05-01

    The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise.

  15. Purinergic P2X7 receptor regulates lung surfactant secretion in a paracrine manner

    PubMed Central

    Mishra, Amarjit; Chintagari, Narendranath Reddy; Guo, Yujie; Weng, Tingting; Su, Lijing; Liu, Lin

    2011-01-01

    Alveolar epithelium is composed of alveolar epithelial cells of type I (AEC I) and type II (AEC II). AEC II secrete lung surfactant by means of exocytosis. P2X7 receptor (P2X7R), a P2 purinergic receptor, has been implicated in the regulation of synaptic transmission and inflammation. Here, we report that P2X7R, which is expressed in AEC I but not AEC II, is a novel mediator for the paracrine regulation of surfactant secretion in AEC II. In primary co-cultures of AEC I and AEC II benzoyl ATP (BzATP; an agonist of P2X7R) increased surfactant secretion, which was blocked by the P2X7R antagonist Brilliant Blue G. This effect was observed in AEC II co-cultured with human embryonic kidney HEK-293 cells stably expressing rat P2X7R, but not when co-cultured with AEC I in which P2X7R was knocked down or in co-cultures of AEC I and AEC II isolated from P2X7R−/− mice. BzATP-mediated secretion involved P2Y2 receptor signaling because it was reduced by the addition of the ATP scavengers apyrase and adenosine deaminase and the P2Y2 receptor antagonist suramin. However, the stimulation with BzATP might also release other substances that potentially increase surfactant secretion as a greater stimulation of secretion was observed in AEC II incubated with BzATP when co-cultured with E10 or HEK-293-P2X7R cells than with ATP alone. P2X7R−/− mice failed to increase surfactant secretion in response to hyperventilation, pointing to the physiological relevance of P2X7R in maintaining surfactant homeostasis in the lung. These results suggest that the activation of P2X7R increases surfactant secretion by releasing ATP from AEC I and subsequently stimulating P2Y2 receptors in AEC II. PMID:21266468

  16. Altered expression of P2Y2 and P2X7 purinergic receptors in the isolated rat heart mediates ischemia-reperfusion injury.

    PubMed

    Granado, Miriam; Amor, Sara; Montoya, Juan José; Monge, Luis; Fernández, Nuria; García-Villalón, Ángel Luis

    2015-10-01

    The aim of this study is to analyze the expression of purinergic receptors in the heart after ischemia-reperfusion, and their possible role in ischemia-reperfusion injury. Rat hearts were perfused according to the Langendorff technique and subjected to 30 min ischemia followed by 15 min reperfusion. Ischemia-reperfusion reduced the gene expression and protein content of purinergic receptors of the P2Y2 subtype, and increased the gene expression and protein content of the P2X7 subtype. Treatment with the agonist of the P2Y2 subtype 2-thio-UTP and with the antagonist of the P2X7 subtype Brilliant Blue improved myocardial function parameters, reduced cell death and increased the myocardial expression of antiapoptotic markers after ischemia-reperfusion. These results suggest that the myocardial expression of the protective P2Y2 subtype of purinergic receptors is reduced, whereas that of the harmful subtype P2X7 subtype is increased during coronary ischemia-reperfusion. This may contribute to myocardial injury in this condition. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Radiosensitizing Effect of P2X7 Receptor Antagonist on Melanoma in vitro and in vivo.

    PubMed

    Tanamachi, Keisuke; Nishino, Keisuke; Mori, Natsuki; Suzuki, Toshihiro; Tanuma, Sei-Ichi; Abe, Ryo; Tsukimoto, Mitsutoshi

    2017-03-24

    Melanoma is highly malignant, and generally exhibits radioresistance, responding poorly to radiation therapy. We previously reported that activation of P2X7, P2Y6, and P2Y12 receptors is involved in the DNA damage response after γ-irradiation of human lung adenocarcinoma A549 cells. However, it is not clear whether these receptors are also involved in the case of melanoma cells, although P2X7 receptor is highly expressed in various cancers, including melanoma. Here, we show that P2X7 receptor antagonist enhances radiation-induced cytotoxicity in B16 melanoma cells in vitro and in vivo. We confirmed that these cells express P2X7 receptor mRNA and exhibit P2X7 receptor-mediated activities, such as ATP-induced pore formation and cytotoxicity. We further examined the radiosensitizing effect of P2X7 receptor antagonist Brilliant Blue G (BBG) in vitro by colony formation assay of B16 cells. γ-Irradiation dose-dependently reduced cell survival, and pretreatment with BBG enhanced the radiation-induced cytotoxicity. BBG pretreatment also decreased the number of DNA repair foci in nuclei, supporting involvement of P2X7 receptor in the DNA damage response. Finally, we investigated the radiosensitizing effect of BBG on B16 melanoma cells inoculated into the hind footpad of C57BL/6 mice. Neither 1 Gy γ-irradiation alone nor BBG alone suppressed the increase of tumor volume, but the combination of irradiation and BBG significantly suppressed tumor growth. Our results suggest that P2X7 receptor antagonist BBG has a radiosensitizing effect in melanoma in vitro and in vivo. BBG, which is used as a food coloring agent, appears to be a promising candidate as a radiosensitizer.

  18. Positive allosteric modulation by ivermectin of human but not murine P2X7 receptors

    PubMed Central

    Nörenberg, W; Sobottka, H; Hempel, C; Plötz, T; Fischer, W; Schmalzing, G; Schaefer, M

    2012-01-01

    BACKGROUND AND PURPOSE In mammalian cells, the anti-parasitic drug ivermectin is known as a positive allosteric modulator of the ATP-activated ion channel P2X4 and is used to discriminate between P2X4- and P2X7-mediated cellular responses. In this paper we provide evidence that the reported isoform selectivity of ivermectin is a species-specific phenomenon. EXPERIMENTAL APPROACH Complementary electrophysiological and fluorometric methods were applied to evaluate the effect of ivermectin on recombinantly expressed and on native P2X7 receptors. A biophysical characterization of ionic currents and of the pore dilation properties is provided. KEY RESULTS Unexpectedly, ivermectin potentiated currents in human monocyte-derived macrophages that endogenously express hP2X7 receptors. Likewise, currents and [Ca2+]i influx through recombinant human (hP2X7) receptors were potently enhanced by ivermectin at submaximal or saturating ATP concentrations. Since intracellular ivermectin did not mimic or prevent its activity when applied to the bath solution, the binding site of ivermectin on hP2X7 receptors appears to be accessible from the extracellular side. In contrast to currents through P2X4 receptors, ivermectin did not cause a delay in hP2X7 current decay upon ATP removal. Interestingly, NMDG+ permeability and Yo-Pro-1 uptake were not affected by ivermectin. On rat or mouse P2X7 receptors, ivermectin was only poorly effective, suggesting a species-specific mode of action. CONCLUSIONS AND IMPLICATIONS The data indicate a previously unrecognized species-specific modulation of human P2X7 receptors by ivermectin that should be considered when using this cell-biological tool in human cells and tissues. PMID:22506590

  19. Functional evidence of distinct ATP activation sites at the human P2X7 receptor

    PubMed Central

    Klapperstück, Manuela; Büttner, Cora; Schmalzing, Günther; Markwardt, Fritz

    2001-01-01

    The effect of the agonist ATP on whole cell currents of Xenopus oocytes expressing either the wild-type human P2X7 receptor (hP2X7), an N-terminally hexahistidyl-tagged hP2X7 receptor (His-hP2X7), or a truncated His-hP2X7 receptor (His-hP2X7ΔC) lacking the C-terminal 156 amino acids was investigated using the two-microelectrode voltage clamp technique. The activation time course of the wild-type hP2X7 receptor can be described as the sum of an exponentially growing and an additional almost linearly activating current component. The amplitude of the exponentially activating current component of the wild-type hP2X7 receptor displayed a biphasic dependence on the agonist concentration, which could be best approximated by a model of two equal high-sensitivity and two equal low-sensitivity non-cooperative activation sites with apparent dissociation constants of about 4 and 200 μm free ATP4-, respectively. The linearly activating current was monophasically dependent on the agonist concentration with an apparent dissociation constant of about 200 μm. The contribution of the low-sensitivity sites to current kinetics was reduced or almost abolished in oocytes expressing His-hP2X7 or His-hP2X7ΔC. Our data indicate that the hP2X7 receptor possesses at least two types of activation sites, which differ in ATP4- sensitivity by a factor of 50. The degree of occupation of these two sites influences both activation and deactivation kinetics. Both N- and C-terminal domains appear to be important determinants of the current elicited by activation of the sites with low ATP sensitivity, but not for that mediated by the highly ATP-sensitive sites. PMID:11432989

  20. Post-translational allosteric activation of the P2X7 receptor through glycosaminoglycan chains of CD44 proteoglycans

    PubMed Central

    Moura, GEDD; Lucena, SV; Lima, MA; Nascimento, FD; Gesteira, TF; Nader, HB; Paredes-Gamero, EJ; Tersariol, ILS

    2015-01-01

    Here, we present evidence for the positive allosteric modulation of the P2X7 receptor through glycosaminoglycans (GAGs) in CHO (cell line derived from the ovary of the Chinese hamster) cells. The marked potentiation of P2X7 activity through GAGs in the presence of non-saturating agonists concentrations was evident with the endogenous expression of the receptor in CHO cells. The presence of GAGs on the surface of CHO cells greatly increased the sensitivity to adenosine 5′-triphosphate and changed the main P2X7 receptor kinetic parameters EC50, Hill coefficient and Emax. GAGs decreased the allosteric inhibition of P2X7 receptor through Mg2+. GAGs activated P2X7 receptor-mediated cytoplasmic Ca2+ influx and pore formation. Consequently, wild-type CHO-K1 cells were 2.5-fold more sensitive to cell death induced through P2X7 agonists than mutant CHO-745 cells defective in GAGs biosynthesis. In the present study, we provide the first evidence that the P2X7 receptor interacts with CD44 on the CHO-K1 cell surface. Thus, these data demonstrated that GAGs positively modulate the P2X7 receptor, and sCD44 is a part of a regulatory positive feedback loop linking P2X7 receptor activation for the intracellular response mediated through P2X7 receptor stimulation. PMID:27551441

  1. P2X7 receptor activation regulates rapid unconventional export of transglutaminase-2

    PubMed Central

    Adamczyk, Magdalena; Griffiths, Rhiannon; Dewitt, Sharon; Knäuper, Vera; Aeschlimann, Daniel

    2015-01-01

    ABSTRACT Transglutaminases (denoted TG or TGM) are externalized from cells via an unknown unconventional secretory pathway. Here, we show for the first time that purinergic signaling regulates active secretion of TG2 (also known as TGM2), an enzyme with a pivotal role in stabilizing extracellular matrices and modulating cell–matrix interactions in tissue repair. Extracellular ATP promotes TG2 secretion by macrophages, and this can be blocked by a selective antagonist against the purinergic receptor P2X7 (P2X7R, also known as P2RX7). Introduction of functional P2X7R into HEK293 cells is sufficient to confer rapid, regulated TG2 export. By employing pharmacological agents, TG2 release could be separated from P2X7R-mediated microvesicle shedding. Neither Ca2+ signaling alone nor membrane depolarization triggered TG2 secretion, which occurred only upon receptor membrane pore formation and without pannexin channel involvement. A gain-of-function mutation in P2X7R associated with autoimmune disease caused enhanced TG2 externalization from cells, and this correlated with increased pore activity. These results provide a mechanistic explanation for a link between active TG2 secretion and inflammatory responses, and aberrant enhanced TG2 activity in certain autoimmune conditions. PMID:26542019

  2. ATP-P2X7 Receptor Modulates Axon Initial Segment Composition and Function in Physiological Conditions and Brain Injury.

    PubMed

    Del Puerto, Ana; Fronzaroli-Molinieres, Laure; Perez-Alvarez, María José; Giraud, Pierre; Carlier, Edmond; Wandosell, Francisco; Debanne, Dominique; Garrido, Juan José

    2015-08-01

    Axon properties, including action potential initiation and modulation, depend on both AIS integrity and the regulation of ion channel expression in the AIS. Alteration of the axon initial segment (AIS) has been implicated in neurodegenerative, psychiatric, and brain trauma diseases, thus identification of the physiological mechanisms that regulate the AIS is required to understand and circumvent AIS alterations in pathological conditions. Here, we show that the purinergic P2X7 receptor and its agonist, adenosine triphosphate (ATP), modulate both structural proteins and ion channel density at the AIS in cultured neurons and brain slices. In cultured hippocampal neurons, an increment of extracellular ATP concentration or P2X7-green fluorescent protein (GFP) expression reduced the density of ankyrin G and voltage-gated sodium channels at the AIS. This effect is mediated by P2X7-regulated calcium influx and calpain activation, and impaired by P2X7 inhibition with Brilliant Blue G (BBG), or P2X7 suppression. Electrophysiological studies in brain slices showed that P2X7-GFP transfection decreased both sodium current amplitude and intrinsic neuronal excitability, while P2X7 inhibition had the opposite effect. Finally, inhibition of P2X7 with BBG prevented AIS disruption after ischemia/reperfusion in rats. In conclusion, our study demonstrates an involvement of P2X7 receptors in the regulation of AIS mediated neuronal excitability in physiological and pathological conditions.

  3. Electrophysiological studies of upregulated P2X7 receptors in rat superior cervical ganglia after myocardial ischemic injury.

    PubMed

    Kong, Fanjun; Liu, Shuangmei; Xu, Changshui; Liu, Jun; Li, Guodong; Li, Guilin; Gao, Yun; Lin, Hong; Tu, Guihua; Peng, Haiying; Qiu, Shuyi; Fan, Bo; Zhu, Qicheng; Yu, Shicheng; Zheng, Chaoran; Liang, Shangdong

    2013-09-01

    Myocardial ischemic injury activates cardiac sympathetic afferent fibers and elicits a sympathoexcitatory reflex by exciting sympathetic efferent action, with resultant augmentation of myocardial oxygen consumption, leading to a vicious cycle of exaggerating myocardial ischemia. P2X7 receptor participates in the neuronal functions and the neurological disorders. This study examined the role of P2X7 receptor of superior cervical ganglia (SCG) in sympathoexcitatory reflex. Our results showed that the expression of P2X7 receptor at both mRNA and protein in SCG was increased after myocardial ischemic injury. P2X7 receptor agonists at the same concentration activated much larger amplitudes of the currents in the SCG neurons of myocardial ischemic rats than those in control rats. P2X7 receptor antagonist (brilliant blue G, BBG) significantly inhibited P2X7 receptor agonist-activated currents in the SCG neurons. Excessive phosphorylation of MAPK ERK1/2 upon the activation of P2X7 receptor might be a mechanism mediating the signal transduction after myocardial ischemic injury. Therefore, the sensitized P2X7 receptor in SCG was involved in the nociceptive transmission of sympathoexcitatory reflex induced by myocardial ischemic injury.

  4. Critical role of P2X7 receptors in the neuroinflammation and cognitive dysfunction after surgery.

    PubMed

    Zheng, Bin; Lai, Renchun; Li, Jun; Zuo, Zhiyi

    2017-03-01

    Postoperative cognitive dysfunction worsens patient outcome after surgery. Neuroinflammation is a critical neuropathological process for it. We determined the role of P2X7 receptors, proteins that participate in inflammatory response, in the neuroinflammation induction after surgery, and whether the choice of volatile anesthetics affects its occurrence. Eight-week old C57BL/6J or P2X7 receptor knockout male mice were subjected to right carotid arterial exposure under anesthesia with 1.8% isoflurane, 2.5% sevoflurane or 10% desflurane. They were tested by Barnes maze and fear conditioning from 2weeks after the surgery. Hippocampus was harvested 6h, 24h and 7days after the surgery for immunohistochemical staining and Western blotting. Mice with surgery under anesthesia with isoflurane, sevoflurane or desflurane took longer than control mice to identify the target box 1 or 8days after the training sessions in Barnes maze. Mice anesthetized by isoflurane or sevoflurane, but not by desflurane, had less freezing behavior than control mice in fear conditioning test. Mice with surgery and anesthesia had increased ionized calcium binding adapter molecule 1 and interleukin 1β in the hippocampus but this increase was smaller in mice anesthetized with desflurane than mice anesthetized with isoflurane. Mice with surgery had increased P2X7 receptors and its downstream molecule caspase 1. Inhibition or knockout of P2X7 receptors attenuated surgery and anesthesia-induced neuroinflammation and cognitive impairment. We conclude that surgery under desflurane anesthesia may have reduced neuroinflammation and cognitive impairment compared with surgery under isoflurane anesthesia. P2X7 receptors may mediate the neuroinflammation and cognitive impairment after surgery.

  5. P2X7 receptor-dependent intestinal afferent hypersensitivity in a mouse model of postinfectious irritable bowel syndrome.

    PubMed

    Keating, Christopher; Pelegrin, Pablo; Martínez, Carlos M; Grundy, David

    2011-08-01

    The ATP-gated P2X(7) receptor (P2X(7)R) was shown to be an important mediator of inflammation and inflammatory pain through its regulation of IL-1β processing and release. Trichinella spiralis-infected mice develop a postinflammatory visceral hypersensitivity that is reminiscent of the clinical features associated with postinfectious irritable bowel syndrome. In this study, we used P2X(7)R knockout mice (P2X(7)R(-/-)) to investigate the role of P2X(7)R activation in the in vivo production of IL-1β and the development of postinflammatory visceral hypersensitivity in the T. spiralis-infected mouse. During acute nematode infection, IL-1β-containing cells and P2X(7)R expression were increased in the jejunum of wild-type (WT) mice. Peritoneal and serum IL-1β levels were also increased, which was indicative of elevated IL-1β release. However, in the P2X(7)R(-/-) animals, we found that infection had no effect upon intracellular, plasma, or peritoneal IL-1β levels. Conversely, infection augmented peritoneal TNF-α levels in both WT and P2X(7)R(-/-) animals. Infection was also associated with a P2X(7)R-dependent increase in extracellular peritoneal lactate dehydrogenase, and it triggered immunological changes in both strains. Jejunal afferent fiber mechanosensitivity was assessed in uninfected and postinfected WT and P2X(7)R(-/-) animals. Postinfected WT animals developed an augmented afferent fiber response to mechanical stimuli; however, this did not develop in postinfected P2X(7)R(-/-) animals. Therefore, our results demonstrated that P2X(7)Rs play a pivotal role in intestinal inflammation and are a trigger for the development of visceral hypersensitivity.

  6. P2X7 receptors induce degranulation in human mast cells.

    PubMed

    Wareham, Kathryn J; Seward, Elizabeth P

    2016-06-01

    Mast cells play important roles in host defence against pathogens, as well as being a key effector cell in diseases with an allergic basis such as asthma and an increasing list of other chronic inflammatory conditions. Mast cells initiate immune responses through the release of newly synthesised eicosanoids and the secretion of pre-formed mediators such as histamine which they store in specialised granules. Calcium plays a key role in regulating both the synthesis and secretion of mast-cell-derived mediators, with influx across the membrane, in particular, being necessary for degranulation. This raises the possibility that calcium influx through P2X receptors may lead to antigen-independent secretion of histamine and other granule-derived mediators from human mast cells. Here we show that activation of P2X7 receptors with both ATP and BzATP induces robust calcium rises in human mast cells and triggers their degranulation; both effects are blocked by the P2X7 antagonist AZ11645373, or the removal of calcium from the extracellular medium. Activation of P2X1 receptors with αβmeATP also induces calcium influx in human mast cells, which is significantly reduced by both PPADS and NF 449. P2X1 receptor activation, however, does not trigger degranulation. The results indicate that P2X7 receptors may play a significant role in contributing to the unwanted activation of mast cells in chronic inflammatory conditions where extracellular ATP levels are elevated.

  7. Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process

    PubMed Central

    de Torre-Minguela, Carlos; Barberà-Cremades, Maria; Gómez, Ana I.; Martín-Sánchez, Fátima; Pelegrín, Pablo

    2016-01-01

    The activation of P2X7 receptor (P2X7R) on M1 polarized macrophages induces the assembly of the NLRP3 inflammasome leading to the release of pro-inflammatory cytokines and the establishment of the inflammatory response. However, P2X7R signaling to the NLRP3 inflammasome is uncoupled on M2 macrophages without changes on receptor activation. In this study, we analyzed P2X7R secretome in wild-type and P2X7R-deficient macrophages polarized either to M1 or M2 and proved that proteins released after P2X7R stimulation goes beyond caspase-1 secretome. The characterization of P2X7R-secretome reveals a new function of this receptor through a fine-tuning of protein release. We found that P2X7R stimulation in macrophages is able to release potent anti-inflammatory proteins, such as Annexin A1, independently of their polarization state suggesting for first time a potential role for P2X7R during resolution of the inflammation and not linked to the release of pro-inflammatory cytokines. These results are of prime importance for the development of therapeutics targeting P2X7R. PMID:26935289

  8. P2X7 receptor-induced death of motor neurons by a peroxynitrite/FAS-dependent pathway

    PubMed Central

    Gandelman, Mandi; Levy, Mark; Cassina, Patricia; Barbeito, Luis; Beckman, Joseph S

    2013-01-01

    The P2X7 receptor/channel responds to extracellular ATP and is associated with neuronal death and neuroinflammation in spinal cord injury and amyotrophic lateral sclerosis (ALS). Whether activation of P2X7 directly causes motor neuron death is unknown. We found that cultured motor neurons isolated from embryonic rat spinal cord express P2X7 and underwent caspase-dependent apoptosis when exposed to exceptionally low concentrations of the P2X7 agonist 3′-O-(4-benzoyl)-ATP (BzATP). The P2X7 inhibitors BBG, oATP and KN-62 prevented BzATP-induced motor neuron death. The endogenous P2X7 agonist ATP induced motor neuron death at low concentrations (1-100 μM). High concentrations of ATP (1 mM) paradoxically became protective due to degradation in the culture media to produce adenosine and activate adenosine receptors. P2X7-induced motor neuron death was dependent on neuronal nitric oxide synthase-mediated production of peroxynitrite, p38 activation and autocrine FAS signaling. Taken together, our results indicate that motor neurons are highly sensitive to P2X7 activation, which triggers apoptosis by activation of the well-established peroxynitrite/FAS death pathway in motor neurons. PMID:23646980

  9. Lipopolysaccharide Inhibits the Channel Activity of the P2X7 Receptor

    PubMed Central

    Leiva-Salcedo, Elias; Coddou, Claudio; Rodríguez, Felipe E.; Penna, Antonello; Lopez, Ximena; Neira, Tanya; Fernández, Ricardo; Imarai, Mónica; Rios, Miguel; Escobar, Jorge; Montoya, Margarita; Huidobro-Toro, J. Pablo; Escobar, Alejandro; Acuña-Castillo, Claudio

    2011-01-01

    The purinergic P2X7 receptor (P2X7R) plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS) is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance. PMID:21941410

  10. Effect of the purinergic receptor P2X7 on Chlamydia infection in cervical epithelial cells and vaginally infected mice.

    PubMed

    Darville, Toni; Welter-Stahl, Lynn; Cruz, Cristiane; Sater, Ali Abdul; Andrews, Charles W; Ojcius, David M

    2007-09-15

    Ligation of the purinergic receptor, P2X7R, with its agonist ATP has been previously shown to inhibit intracellular infection by chlamydiae and mycobacteria in macrophages. The effect of P2X7R on chlamydial infection had never been investigated in the preferred target cells of chlamydiae, cervical epithelial cells, nor in vaginally infected mice. In this study, we show that treatment of epithelial cells with P2X7R agonists inhibits partially Chlamydia infection in epithelial cells. Chelation of ATP with magnesium or pretreatment with a P2X7R antagonist blocks the inhibitory effects of ATP. Similarly to previous results obtained with macrophages, ATP-mediated inhibition of infection in epithelial cells requires activation of host-cell phospholipase D. Vaginal infection was also more efficient in P2X7R-deficient mice, which also displayed a higher level of acute inflammation in the endocervix, oviduct, and mesosalpingeal tissues than in infected wild-type mice. However, secretion of IL-1beta, which requires P2X7R ligation during infection by other pathogens, was decreased mildly and only at short times of infection. Taken together, these results suggest that P2X7R affects Chlamydia infection by directly inhibiting infection in epithelial cells, rather than through the ability of P2X7R to modulate IL-1beta secretion.

  11. P2X7 receptor as predictor gene for glioma radiosensitivity and median survival.

    PubMed

    Gehring, Marina P; Kipper, Franciele; Nicoletti, Natália F; Sperotto, Nathalia D; Zanin, Rafael; Tamajusuku, Alessandra S K; Flores, Debora G; Meurer, Luise; Roesler, Rafael; Filho, Aroldo B; Lenz, Guido; Campos, Maria M; Morrone, Fernanda B

    2015-11-01

    Glioblastoma multiforme (GBM) is considered the most lethal intracranial tumor and the median survival time is approximately 14 months. Although some glioma cells present radioresistance, radiotherapy has been the mainstay of therapy for patients with malignant glioma. The activation of P2X7 receptor (P2X7R) is responsible for ATP-induced death in various cell types. In this study, we analyzed the importance of ATP-P2X7R pathway in the radiotherapy response P2X7R silenced cell lines, in vivo and human tumor samples. Both glioma cell lines used in this study present a functional P2X7R and the P2X7R silencing reduced P2X7R pore activity by ethidium bromide uptake. Gamma radiation (2Gy) treatment reduced cell number in a P2X7R-dependent way, since both P2X7R antagonist and P2X7R silencing blocked the cell cytotoxicity caused by irradiation after 24h. The activation of P2X7R is time-dependent, as EtBr uptake significantly increased after 24h of irradiation. The radiotherapy plus ATP incubation significantly increased annexin V incorporation, compared with radiotherapy alone, suggesting that ATP acts synergistically with radiotherapy. Of note, GL261 P2X7R silenced-bearing mice failed in respond to radiotherapy (8Gy) and GL261 WT-bearing mice, that constitutively express P2X7R, presented a significant reduction in tumor volume after radiotherapy, showing in vivo that functional P2X7R expression is essential for an efficient radiotherapy response in gliomas. We also showed that a high P2X7R expression is a good prognostic factor for glioma radiosensitivity and survival probability in humans. Our data revealed the relevance of P2X7R expression in glioma cells to a successful radiotherapy response, and shed new light on this receptor as a useful predictor of the sensitivity of cancer patients to radiotherapy and median survival. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Accelerated tumor progression in mice lacking the ATP receptor P2X7.

    PubMed

    Adinolfi, Elena; Capece, Marina; Franceschini, Alessia; Falzoni, Simonetta; Giuliani, Anna L; Rotondo, Alessandra; Sarti, Alba C; Bonora, Massimo; Syberg, Susanne; Corigliano, Domenica; Pinton, Paolo; Jorgensen, Niklas R; Abelli, Luigi; Emionite, Laura; Raffaghello, Lizzia; Pistoia, Vito; Di Virgilio, Francesco

    2015-02-15

    The ATP receptor P2X7 (P2X7R or P2RX7) has a key role in inflammation and immunity, but its possible roles in cancer are not firmly established. In the present study, we investigated the effect of host genetic deletion of P2X7R in the mouse on the growth of B16 melanoma or CT26 colon carcinoma cells. Tumor size and metastatic dissemination were assessed by in vivo calliper and luciferase luminescence emission measurements along with postmortem examination. In P2X7R-deficient mice, tumor growth and metastatic spreading were accelerated strongly, compared with wild-type (wt) mice. Intratumoral IL-1β and VEGF release were drastically reduced, and inflammatory cell infiltration was abrogated nearly completely. Similarly, tumor growth was also greatly accelerated in wt chimeric mice implanted with P2X7R-deficient bone marrow cells, defining hematopoietic cells as a sufficient site of P2X7R action. Finally, dendritic cells from P2X7R-deficient mice were unresponsive to stimulation with tumor cells, and chemotaxis of P2X7R-less cells was impaired. Overall, our results showed that host P2X7R expression was critical to support an antitumor immune response, and to restrict tumor growth and metastatic diffusion. ©2014 American Association for Cancer Research.

  13. P2X7 R-mediated Ca(2+) -independent d-serine release via pannexin-1 of the P2X7 R-pannexin-1 complex in astrocytes.

    PubMed

    Pan, Han-Chi; Chou, Yun-Chia; Sun, Synthia H

    2015-05-01

    D-serine is a coagonist of N-methyl-d-aspartate (NMDA) subtype of glutamate receptor and plays a role in regulating activity-dependent synaptic plasticity. In this study, we examined the mechanism by which extracellular ATP triggers the release of d-serine from astrocytes and discovered a novel Ca(2+) -independent release mechanism mediated by P2X7 receptors (P2X7 R). Using [(3) H] d-serine, which was loaded into astrocytes via the neutral amino acid transporter 2 (ASCT2), we observed that ATP and a potent P2X7 R agonist, 2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate (BzATP), stimulated [(3) H]D-serine release and that were abolished by P2X7 R selective antagonists and by shRNAs, whereas enhanced by removal of intracellular or extracellular Ca(2+) . The P2X7 R-mediated d-serine release was inhibited by pannexin-1 antagonists, such as carbenoxolone (CBX), probenecid (PBN), and (10) Panx-1 peptide, and shRNAs, and stimulation of P2X7 R induced P2X7 R-pannexin-1 complex formation. Simply incubating astrocytes in Ca(2+) /Mg(2+) -free buffer also induced the complex formation, and that enhanced basal d-serine release through pannexin-1. The P2X7 R-mediated d-serine release assayed in Ca(2+) /Mg(2+) -free buffer was enhanced as well, and that was inhibited by CBX. Treating astrocytes with general protein kinase C (PKC) inhibitors, such as chelerythrine, GF109203X, and staurosporine, but not Ca(2+) -dependent PKC inhibitor, Gö6976, inhibited the P2X7 R-mediated d-serine release. Thus, we conclude that in astrocytes, P2X7 R-pannexin-1 complex formation is crucial for P2X7 R-mediated d-serine release through pannexin-1 hemichannel. The release is Ca(2+) -independent and regulates by a Ca(2+) -independent PKC. The activated P2X7 R per se is also functioned as a permeation channel to release d-serine in part. This P2X7 R-mediated d-serine release represents an important mechanism for activity-dependent neuron-glia interaction. © 2015 Wiley Periodicals, Inc.

  14. The role of P2X7 receptors in a rodent PCP-induced schizophrenia model.

    PubMed

    Koványi, Bence; Csölle, Cecilia; Calovi, Stefano; Hanuska, Adrienn; Kató, Erzsébet; Köles, László; Bhattacharya, Anindya; Haller, József; Sperlágh, Beáta

    2016-11-08

    P2X7 receptors (P2X7Rs) are ligand-gated ion channels sensitive to extracellular ATP. Here we examined for the first time the role of P2X7R in an animal model of schizophrenia. Using the PCP induced schizophrenia model we show that both genetic deletion and pharmacological inhibition of P2X7Rs alleviate schizophrenia-like behavioral alterations. In P2rx7+/+ mice, PCP induced hyperlocomotion, stereotype behavior, ataxia and social withdrawal. In P2X7 receptor deficient mice (P2rx7-/-), the social interactions were increased, whereas the PCP induced hyperlocomotion and stereotype behavior were alleviated. The selective P2X7 receptor antagonist JNJ-47965567 partly replicated the effect of gene deficiency on PCP-induced behavioral changes and counteracted PCP-induced social withdrawal. We also show that PCP treatment upregulates and increases the functional responsiveness of P2X7Rs in the prefrontal cortex of young adult animals. The amplitude of NMDA evoked currents recorded from layer V pyramidal neurons of cortical slices were slightly decreased by both genetic deletion of P2rx7 and by JNJ-47965567. PCP induced alterations in mRNA expression encoding schizophrenia-related genes, such as NR2A, NR2B, neuregulin 1, NR1 and GABA α1 subunit were absent in the PFC of young adult P2rx7-/- animals. Our findings point to P2X7R as a potential therapeutic target in schizophrenia.

  15. Human neutrophils do not express purinergic P2X7 receptors

    PubMed Central

    Martel-Gallegos, Guadalupe; Rosales-Saavedra, María T.; Reyes, Juan P.; Casas-Pruneda, Griselda; Toro-Castillo, Carmen; Pérez-Cornejo, Patricia

    2010-01-01

    It has been reported that in human neutrophils, external ATP activates plasma membrane purinergic P2X7 receptors (P2X7R) to elicit Ca2+ entry, production of reactive oxygen species (ROS), processing and release of pro-inflammatory cytokines, shedding of adhesion molecules and uptake of large molecules. However, the expression of P2X7R at the plasma membrane of neutrophils has also been questioned since these putative responses are not always reproduced. In this work, we used electrophysiological recordings to measure functional responses associated with the activation of membrane receptors, spectrofluorometric measurements of ROS production and ethidium bromide uptake to asses coupling of P2X7R activation to downstream effectors, immune-labelling of P2X7R using a fluorescein isothiocyanate-conjugated antibody to detect the receptors at the plasma membrane, RT-PCR to determine mRNA expression of P2X7R and Western blot to determine protein expression in neutrophils and HL-60 cells. None of these assays reported the presence of P2X7R in the plasma membrane of neutrophils and non-differentiated or differentiated HL-60 cells—a model cell for human neutrophils. We concluded that P2X7R are not present at plasma membrane of human neutrophils and that the putative physiological responses triggered by external ATP should be reconsidered. PMID:21103213

  16. Long-Term Heart Transplant Survival by Targeting the Ionotropic Purinergic Receptor P2X7

    PubMed Central

    Vergani, Andrea; Tezza, Sara; D’Addio, Francesca; Fotino, Carmen; Liu, Kaifeng; Niewczas, Monika; Bassi, Roberto; Molano, R. Damaris; Kleffel, Sonja; Petrelli, Alessandra; Soleti, Antonio; Ammirati, Enrico; Frigerio, Maria; Visner, Gary; Grassi, Fabio; Ferrero, Maria E.; Corradi, Domenico; Abdi, Reza; Ricordi, Camillo; Sayegh, Mohamed H.; Pileggi, Antonello; Fiorina, Paolo

    2013-01-01

    Background Heart transplantation is a lifesaving procedure for patients with end-stage heart failure. Despite much effort and advances in the field, current immunosuppressive regimens are still associated with poor long-term cardiac allograft outcomes as well as with the development of complications including infections and malignancies. The development of a novel, short-term and effective immunomodulatory protocol will thus be an important achievement. The purine adenosine 5′-triphosphate (ATP), released during cell damage/activation, is sensed by the ionotropic purinergic receptor P2X7 (P2X7R) on lymphocytes and regulates T cell activation. Novel clinical-grade P2X7R inhibitors are available, rendering the targeting of P2X7R a potential therapy in cardiac transplantation. Methods and Results We analyzed P2X7R expression in patients and mice and P2X7R targeting in murine recipients in the context of cardiac transplantation. Our data demonstrate that P2X7R is specifically upregulated in graft-infiltrating lymphocytes in cardiac-transplanted humans and mice. Short-term P2X7R targeting with periodate-oxidized ATP (oATP) promotes long-term cardiac transplant survival in 80% of murine recipients of a fully mismatched allograft. Long-term survival of cardiac transplants was associated with reduced T cell activation, Th1/Th17 differentiation and inhibition of STAT3 phosphorylation in T cells, thus leading to a reduced transplant infiltrate and coronaropathy. In vitro genetic upregulation of the P2X7R pathway was also shown to stimulate Th1/Th17 cell generation. Finally, P2X7R targeting halted the progression of coronaropathy in a murine model of chronic rejection as well. Conclusions P2X7R targeting is a novel clinically relevant strategy to prolong cardiac transplant survival. PMID:23250993

  17. Caveolin-1 regulates P2X7 receptor signaling in osteoblasts.

    PubMed

    Gangadharan, Vimal; Nohe, Anja; Caplan, Jeffrey; Czymmek, Kirk; Duncan, Randall L

    2015-01-01

    The synthesis of new bone in response to a novel applied mechanical load requires a complex series of cellular signaling events in osteoblasts and osteocytes. The activation of the purinergic receptor P2X(7)R is central to this mechanotransduction signaling cascade. Recently, P2X(7)R have been found to be associated with caveolae, a subset of lipid microdomains found in several cell types. Deletion of caveolin-1 (CAV1), the primary protein constituent of caveolae in osteoblasts, results in increased bone mass, leading us to hypothesize that the P2X(7)R is scaffolded to caveolae in osteoblasts. Thus, upon activation of the P2X(7)R, we postulate that caveolae are endocytosed, thereby modulating the downstream signal. Sucrose gradient fractionation of MC3T3-E1 preosteoblasts showed that CAV1 was translocated to the denser cytosolic fractions upon stimulation with ATP. Both ATP and the more specific P2X(7)R agonist 2'(3')-O-(4-benzoylbenzoyl)ATP (BzATP) induced endocytosis of CAV1, which was inhibited when MC3T3-E1 cells were pretreated with the specific P2X7R antagonist A-839977. The P2X7R cofractionated with CAV1, but, using superresolution structured illumination microscopy, we found only a subpopulation of P2X(7)R in these lipid microdomains on the membrane of MC3T3-E1 cells. Suppression of CAV1 enhanced the intracellular Ca(2+) response to BzATP, suggesting that caveolae regulate P2X(7)R signaling. This proposed mechanism is supported by increased mineralization in CAV1 knockdown MC3T3-E1 cells treated with BzATP. These data suggest that caveolae regulate P2X(7)R signaling upon activation by undergoing endocytosis and potentially carrying with it other signaling proteins, hence controlling the spatiotemporal signaling of P2X(7)R in osteoblasts.

  18. Targeting of the P2X7 receptor in pancreatic cancer and stellate cells

    PubMed Central

    Giannuzzo, Andrea; Saccomano, Mara; Napp, Joanna; Ellegaard, Maria; Alves, Frauke

    2016-01-01

    The ATP‐gated receptor P2X7 (P2X7R) is involved in regulation of cell survival and has been of interest in cancer field. Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer and new markers and therapeutic targets are needed. PDAC is characterized by a complex tumour microenvironment, which includes cancer and pancreatic stellate cells (PSCs), and potentially high nucleotide/side turnover. Our aim was to determine P2X7R expression and function in human pancreatic cancer cells in vitro as well as to perform in vivo efficacy study applying P2X7R inhibitor in an orthotopic xenograft mouse model of PDAC. In the in vitro studies we show that human PDAC cells with luciferase gene (PancTu‐1 Luc cells) express high levels of P2X7R protein. Allosteric P2X7R antagonist AZ10606120 inhibited cell proliferation in basal conditions, indicating that P2X7R was tonically active. Extracellular ATP and BzATP, to which the P2X7R is more sensitive, further affected cell survival and confirmed complex functionality of P2X7R. PancTu‐1 Luc migration and invasion was reduced by AZ10606120, and it was stimulated by PSCs, but not by PSCs from P2X7‐/‐ animals. PancTu‐1 Luc cells were orthotopically transplanted into nude mice and tumour growth was followed noninvasively by bioluminescence imaging. AZ10606120‐treated mice showed reduced bioluminescence compared to saline‐treated mice. Immunohistochemical analysis confirmed P2X7R expression in cancer and PSC cells, and in metaplastic/neoplastic acinar and duct structures. PSCs number/activity and collagen deposition was reduced in AZ10606120‐treated tumours. PMID:27513892

  19. Caveolin-1 regulates P2X7 receptor signaling in osteoblasts

    PubMed Central

    Gangadharan, Vimal; Nohe, Anja; Caplan, Jeffrey; Czymmek, Kirk

    2014-01-01

    The synthesis of new bone in response to a novel applied mechanical load requires a complex series of cellular signaling events in osteoblasts and osteocytes. The activation of the purinergic receptor P2X7R is central to this mechanotransduction signaling cascade. Recently, P2X7R have been found to be associated with caveolae, a subset of lipid microdomains found in several cell types. Deletion of caveolin-1 (CAV1), the primary protein constituent of caveolae in osteoblasts, results in increased bone mass, leading us to hypothesize that the P2X7R is scaffolded to caveolae in osteoblasts. Thus, upon activation of the P2X7R, we postulate that caveolae are endocytosed, thereby modulating the downstream signal. Sucrose gradient fractionation of MC3T3-E1 preosteoblasts showed that CAV1 was translocated to the denser cytosolic fractions upon stimulation with ATP. Both ATP and the more specific P2X7R agonist 2′(3′)-O-(4-benzoylbenzoyl)ATP (BzATP) induced endocytosis of CAV1, which was inhibited when MC3T3-E1 cells were pretreated with the specific P2X7R antagonist A-839977. The P2X7R cofractionated with CAV1, but, using superresolution structured illumination microscopy, we found only a subpopulation of P2X7R in these lipid microdomains on the membrane of MC3T3-E1 cells. Suppression of CAV1 enhanced the intracellular Ca2+ response to BzATP, suggesting that caveolae regulate P2X7R signaling. This proposed mechanism is supported by increased mineralization in CAV1 knockdown MC3T3-E1 cells treated with BzATP. These data suggest that caveolae regulate P2X7R signaling upon activation by undergoing endocytosis and potentially carrying with it other signaling proteins, hence controlling the spatiotemporal signaling of P2X7R in osteoblasts. PMID:25318104

  20. P2X7 receptors on osteoblasts couple to production of lysophosphatidic acid: a signaling axis promoting osteogenesis

    PubMed Central

    Panupinthu, Nattapon; Rogers, Joseph T.; Zhao, Lin; Solano-Flores, Luis Pastor; Possmayer, Fred; Sims, Stephen M.; Dixon, S. Jeffrey

    2008-01-01

    Nucleotides are released from cells in response to mechanical stimuli and signal in an autocrine/paracrine manner through cell surface P2 receptors. P2rx7−/− mice exhibit diminished appositional growth of long bones and impaired responses to mechanical loading. We find that calvarial sutures are wider in P2rx7−/− mice. Functional P2X7 receptors are expressed on osteoblasts in situ and in vitro. Activation of P2X7 receptors by exogenous nucleotides stimulates expression of osteoblast markers and enhances mineralization in cultures of rat calvarial cells. Moreover, osteogenesis is suppressed in calvarial cell cultures from P2rx7−/− mice compared with the wild type. P2X7 receptors couple to production of the potent lipid mediators lysophosphatidic acid (LPA) and prostaglandin E2. Either an LPA receptor antagonist or cyclooxygenase (COX) inhibitors abolish the stimulatory effects of P2X7 receptor activation on osteogenesis. We conclude that P2X7 receptors enhance osteoblast function through a cell-autonomous mechanism. Furthermore, a novel signaling axis links P2X7 receptors to production of LPA and COX metabolites, which in turn stimulate osteogenesis. PMID:18519738

  1. Macrophage P2X7 Receptor Function Is Reduced during Schistosomiasis: Putative Role of TGF-β1

    PubMed Central

    Oliveira, Suellen D'arc Santos; Nanini, Hayandra Ferreira; Savio, Luiz Eduardo Baggio; Waghabi, Mariana Caldas; Silva, Claudia Lucia Martins

    2014-01-01

    Schistosomiasis is a chronic inflammatory disease whose macrophages are involved in immunopathology modulation. Although P2X7 receptor signaling plays an important role in inflammatory responses mediated by macrophages, no reports have examined the role of P2X7 receptors in macrophage function during schistosomiasis. Thus, we evaluated P2X7 receptor function in peritoneal macrophages during schistosomiasis using an ATP-induced permeabilization assay and measurements of the intracellular Ca2+ concentration. ATP treatment induced significantly less permeabilization in macrophages from S. mansoni-infected mice than in control cells from uninfected animals. Furthermore, P2X7-mediated increases in intracellular Ca2+ levels were also reduced in macrophages from infected mice. TGF-β1 levels were increased in the peritoneal cavity of infected animals, and pretreatment of control macrophages with TGF-β1 reduced ATP-induced permeabilization, mimicking the effect of S. mansoni infection. Western blot and qRT-PCR data showed no difference in P2X7 protein and mRNA between uninfected, infected, and TGF-β1-treated groups. However, immunofluorescence analysis revealed reduced cell surface localization of P2X7 receptors in macrophages from infected and TGF-β1-treated mice compared to controls. Therefore, our data suggest that schistosomiasis reduces peritoneal macrophage P2X7 receptor signaling. This effect is likely due to the fact that infected mice have increased levels of TGF-β1, which reduces P2X7 receptor cell surface expression. PMID:25276050

  2. Lack of the purinergic receptor P2X7 results in resistance to contact hypersensitivity

    PubMed Central

    Weber, Felix C.; Esser, Philipp R.; Müller, Tobias; Ganesan, Jayanthi; Pellegatti, Patrizia; Simon, Markus M.; Zeiser, Robert; Idzko, Marco; Jakob, Thilo

    2010-01-01

    Sensitization to contact allergens requires activation of the innate immune system by endogenous danger signals. However, the mechanisms through which contact allergens activate innate signaling pathways are incompletely understood. In this study, we demonstrate that mice lacking the adenosine triphosphate (ATP) receptor P2X7 are resistant to contact hypersensitivity (CHS). P2X7-deficient dendritic cells fail to induce sensitization to contact allergens and do not release IL-1β in response to lipopolysaccharide (LPS) and ATP. These defects are restored by pretreatment with LPS and alum in an NLRP3- and ASC-dependent manner. Whereas pretreatment of wild-type mice with P2X7 antagonists, the ATP-degrading enzyme apyrase or IL-1 receptor antagonist, prevents CHS, IL-1β injection restores CHS in P2X7-deficient mice. Thus, P2X7 is a crucial receptor for extracellular ATP released in skin in response to contact allergens. The lack of P2X7 triggering prevents IL-1β release, which is an essential step in the sensitization process. Interference with P2X7 signaling may be a promising strategy for the prevention of allergic contact dermatitis. PMID:21059855

  3. Ependymal cells along the lateral ventricle express functional P2X(7) receptors.

    PubMed

    Genzen, Jonathan R; Platel, Jean-Claude; Rubio, Maria E; Bordey, Angelique

    2009-09-01

    Ependymal cells line the cerebral ventricles and are located in an ideal position to detect central nervous system injury and inflammation. The signaling mechanisms of ependymal cells, however, are poorly understood. As extracellular adenosine 5'-triphosphate is elevated in the context of cellular damage, experiments were conducted to determine whether ependymal cells along the mouse subventricular zone (SVZ) express functional purinergic receptors. Using whole-cell patch clamp recording, widespread expression of P2X(7) receptors was detected on ependymal cells based on their antagonist sensitivity profile and absence of response in P2X(7) (-/-) mice. Immunocytochemistry confirmed the expression of P2X(7) receptors, and electron microscopy demonstrated that P2X(7) receptors are expressed on both cilia and microvilli. Ca(2+) imaging showed that P2X(7) receptors expressed on cilia are indeed functional. As ependymal cells are believed to function as partner cells in the SVZ neurogenic niche, P2X(7) receptors may play a role in neural progenitor response to injury and inflammation.

  4. Cathelicidin modulates the function of monocytes/macrophages via the P2X7 receptor in a teleost, Plecoglossus altivelis.

    PubMed

    Li, Chang-Hong; Lu, Xin-Jiang; Li, Ming-Yun; Chen, Jiong

    2015-12-01

    Cathelicidins (CATHs) are a family of endogenous antimicrobial peptides that are capable of both direct bacteria-killing and immunomodulatory effects. P2X7 receptor (P2X7R) is a mediator of CATH in mammalian immune cells. Here, we studied the function and regulation of CATH in head kidney-derived monocytes/macrophages (MO/MФ) from ayu, Plecoglossus altivelis. We investigated the chemotaxis of MO/MФ in response to ayu CATH (PaCATH), and found that PaCATH had a dose-dependent effect on MO/MФ chemotaxis with the optimal concentration of 10.0 μg/ml. The qPCR and Western blot analysis revealed that PaCATH inhibited the expression of ayu P2X7R (PaP2X7R) at both mRNA and protein levels. Knockdown of the PaP2X7R expression in ayu MO/MФ by RNA interference not only significantly inhibited the chemotactic effect of PaCATH on MO/MФ, but also obviously reduced the effect of PaCATH on the phagocytosis, bacteria-killing, respiratory burst, and cytokine expression of ayu MO/MФ. Our study revealed that the immunomodulatory effect of fish CATH is mediated by P2X7R.

  5. The role of P2X7 receptors in a rodent PCP-induced schizophrenia model

    PubMed Central

    Koványi, Bence; Csölle, Cecilia; Calovi, Stefano; Hanuska, Adrienn; Kató, Erzsébet; Köles, László; Bhattacharya, Anindya; Haller, József; Sperlágh, Beáta

    2016-01-01

    P2X7 receptors (P2X7Rs) are ligand-gated ion channels sensitive to extracellular ATP. Here we examined for the first time the role of P2X7R in an animal model of schizophrenia. Using the PCP induced schizophrenia model we show that both genetic deletion and pharmacological inhibition of P2X7Rs alleviate schizophrenia-like behavioral alterations. In P2rx7+/+ mice, PCP induced hyperlocomotion, stereotype behavior, ataxia and social withdrawal. In P2X7 receptor deficient mice (P2rx7−/−), the social interactions were increased, whereas the PCP induced hyperlocomotion and stereotype behavior were alleviated. The selective P2X7 receptor antagonist JNJ-47965567 partly replicated the effect of gene deficiency on PCP-induced behavioral changes and counteracted PCP-induced social withdrawal. We also show that PCP treatment upregulates and increases the functional responsiveness of P2X7Rs in the prefrontal cortex of young adult animals. The amplitude of NMDA evoked currents recorded from layer V pyramidal neurons of cortical slices were slightly decreased by both genetic deletion of P2rx7 and by JNJ-47965567. PCP induced alterations in mRNA expression encoding schizophrenia-related genes, such as NR2A, NR2B, neuregulin 1, NR1 and GABA α1 subunit were absent in the PFC of young adult P2rx7−/− animals. Our findings point to P2X7R as a potential therapeutic target in schizophrenia. PMID:27824163

  6. Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation.

    PubMed

    Lordén, Gema; Sanjuán-García, Itziar; de Pablo, Nagore; Meana, Clara; Alvarez-Miguel, Inés; Pérez-García, M Teresa; Pelegrín, Pablo; Balsinde, Jesús; Balboa, María A

    2017-02-01

    Mutations in human LPIN2 produce a disease known as Majeed syndrome, the clinical manifestations of which are ameliorated by strategies that block IL-1β or its receptor. However the role of lipin-2 during IL-1β production remains elusive. We show here that lipin-2 controls excessive IL-1β formation in primary human and mouse macrophages by several mechanisms, including activation of the inflammasome NLRP3. Lipin-2 regulates MAPK activation, which mediates synthesis of pro-IL-1β during inflammasome priming. Lipin-2 also inhibits the activation and sensitization of the purinergic receptor P2X7 and K(+) efflux, apoptosis-associated speck-like protein with a CARD domain oligomerization, and caspase-1 processing, key events during inflammasome activation. Reduced levels of lipin-2 in macrophages lead to a decrease in cellular cholesterol levels. In fact, restoration of cholesterol concentrations in cells lacking lipin-2 decreases ion currents through the P2X7 receptor, and downstream events that drive IL-1β production. Furthermore, lipin-2-deficient mice exhibit increased sensitivity to high lipopolysaccharide doses. Collectively, our results unveil lipin-2 as a critical player in the negative regulation of NLRP3 inflammasome.

  7. Human P2X7 receptor activation induces the rapid shedding of CXCL16.

    PubMed

    Pupovac, Aleta; Foster, Christopher M; Sluyter, Ronald

    2013-03-22

    Activation of the purinergic P2X7 receptor by extracellular ATP induces the shedding of cell-surface molecules including the low-affinity IgE receptor, CD23 from leukocytes. CD23 is a known substrate of a disintegrin and metalloprotease (ADAM)10. The aim of the current study was to determine if P2X7 activation induced the shedding of the chemokine CXCL16, an ADAM10 substrate. Using immunolabelling and flow cytometry we demonstrate that human RPMI 8226 multiple myeloma B cells, which have been previously shown to express P2X7, also express CXCL16. Flow cytometric and ELISA measurements of ATP-induced loss of cell-surface CXCL16 showed that ATP treatment of RPMI 8226 cells induced the rapid shedding of CXCL16. Treatment of RPMI 8226 cells with the specific P2X7 antagonists, AZ10606120 and KN-62 impaired ATP-induced CXCL16 shedding by ~86% and ~90% respectively. RT-PCR demonstrated that ADAM10 is expressed in these cells and treatment of cells with the ADAM10 inhibitor, GI254023X, impaired ATP-induced CXCL16 shedding by ~87%. GI254023X also impaired P2X7-induced CD23 shedding by ∼57%. This data indicates that human P2X7 activation induces the rapid shedding of CXCL16 and that this process involves ADAM10.

  8. Mechanism of action of species-selective P2X7 receptor antagonists

    PubMed Central

    Michel, Anton D; Ng, Sin-Wei; Roman, Shilina; Clay, William C; Dean, David K; Walter, Daryl S

    2009-01-01

    Background and purpose: AZ11645373 and N-{2-methyl-5-[(1R, 5S)-9-oxa-3,7-diazabicyclo[3.3.1]non-3-ylcarbonyl]phenyl}-2-tricyclo[3.3.1.13,7]dec-1-ylacetamide hydrochloride (compound-22) are recently described P2X7 receptor antagonists. In this study we have further characterized these compounds to determine their mechanism of action and interaction with other species orthologues. Experimental approach: Antagonist effects at recombinant and chimeric P2X7 receptors were assessed by ethidium accumulation and radioligand-binding studies. Key results: AZ11645373 and compound-22 were confirmed as selective non-competitive antagonists of human or rat P2X7 receptors respectively. Both compounds were weak antagonists of the mouse and guinea-pig P2X7 receptors and, for each compound, their potency estimates at human and dog P2X7 receptors were similar. The potency of compound-22 was moderately temperature-dependent while that of AZ11645373 was not. The antagonist effects of both compounds were slowly reversible and were not prevented by decavanadate, suggesting that they were allosteric antagonists. Indeed, the compounds competed for binding sites labelled by an allosteric radio-labelled P2X7 receptor antagonist. The species selectivity of AZ11645373, but not compound-22, was influenced by the nature of the amino acid at position 95 of the P2X7 receptor. N2-(3,4-difluorophenyl)-N1-[2-methyl-5-(1-piperazinylmethyl)phenyl]glycinamide dihydrochloride, a positive allosteric modulator of the rat receptor, reduced the potency of compound-22 at the rat receptor but had little effect on the actions of AZ11645373. Conclusions: AZ11645373 and compound-22 are allosteric antagonists of human and rat P2X7 receptors respectively. The differential interaction of the two compounds with the receptor suggests there may be more than one allosteric regulatory site on the P2X7 receptor at which antagonists can bind and affect receptor function. PMID:19309360

  9. Critical Evaluation of P2X7 Receptor Antagonists in Selected Seizure Models

    PubMed Central

    Fischer, Wolfgang; Franke, Heike; Krügel, Ute; Müller, Heiko; Dinkel, Klaus; Lord, Brian; Letavic, Michael A.; Henshall, David C.; Engel, Tobias

    2016-01-01

    The ATP-gated P2X7 receptor (P2X7R) is a non-selective cation channel which senses high extracellular ATP concentrations and has been suggested as a target for the treatment of neuroinflammation and neurodegenerative diseases. The use of P2X7R antagonists may therefore be a viable approach for treating CNS pathologies, including epileptic disorders. Recent studies showed anticonvulsant potential of P2X7R antagonists in certain animal models. To extend this work, we tested three CNS-permeable P2X7R blocker (Brilliant Blue G, AFC-5128, JNJ-47965567) and a natural compound derivative (tanshinone IIA sulfonate) in four well-characterized animal seizure models. In the maximal electroshock seizure threshold test and the pentylenetetrazol (PTZ) seizure threshold test in mice, none of the four compounds demonstrated anticonvulsant effects when given alone. Notably, in combination with carbamazepine, both AFC-5128 and JNJ-47965567 increased the threshold in the maximal electroshock seizure test. In the PTZ-kindling model in rats, useful for testing antiepileptogenic activities, Brilliant Blue G and tanshinone exhibited a moderate retarding effect, whereas the potent P2X7R blocker AFC-5128 and JNJ-47965567 showed a significant and long-lasting delay in kindling development. In fully kindled rats, the investigated compounds revealed modest effects to reduce the mean seizure stage. Furthermore, AFC-5128- and JNJ-47965567-treated animals displayed strongly reduced Iba 1 and GFAP immunoreactivity in the hippocampal CA3 region. In summary, our results show that P2X7R antagonists possess no remarkable anticonvulsant effects in the used acute screening tests, but can attenuate chemically-induced kindling. Further studies would be of interest to support the concept that P2X7R signalling plays a crucial role in the pathogenesis of epileptic disorders. PMID:27281030

  10. Lidocaine preferentially inhibits the function of purinergic P2X7 receptors expressed in Xenopus oocytes.

    PubMed

    Okura, Dan; Horishita, Takafumi; Ueno, Susumu; Yanagihara, Nobuyuki; Sudo, Yuka; Uezono, Yasuhito; Minami, Tomoko; Kawasaki, Takashi; Sata, Takeyoshi

    2015-03-01

    Lidocaine has been widely used to relieve acute pain and chronic refractory pain effectively by both systemic and local administration. Numerous studies reported that lidocaine affects several pain signaling pathways as well as voltage-gated sodium channels, suggesting the existence of multiple mechanisms underlying pain relief by lidocaine. Some extracellular adenosine triphosphate (ATP) receptor subunits are thought to play a role in chronic pain mechanisms, but there have been few studies on the effects of lidocaine on ATP receptors. We studied the effects of lidocaine on purinergic P2X3, P2X4, and P2X7 receptors to explore the mechanisms underlying pain-relieving effects of lidocaine. We investigated the effects of lidocaine on ATP-induced currents in ATP receptor subunits, P2X3, P2X4, and P2X7 expressed in Xenopus oocytes, by using whole-cell, two-electrode, voltage-clamp techniques. Lidocaine inhibited ATP-induced currents in P2X7, but not in P2X3 or P2X4 subunits, in a concentration-dependent manner. The half maximal inhibitory concentration for lidocaine inhibition was 282 ± 45 μmol/L. By contrast, mepivacaine, ropivacaine, and bupivacaine exerted only limited effects on the P2X7 receptor. Lidocaine inhibited the ATP concentration-response curve for the P2X7 receptor via noncompetitive inhibition. Intracellular and extracellular N-(2,6-dimethylphenylcarbamoylmethyl) triethylammonium bromide (QX-314) and benzocaine suppressed ATP-induced currents in the P2X7 receptor in a concentration-dependent manner. In addition, repetitive ATP treatments at 5-minute intervals in the continuous presence of lidocaine revealed that lidocaine inhibition was use-dependent. Finally, the selective P2X7 receptor antagonists Brilliant Blue G and AZ11645373 did not affect the inhibitory actions of lidocaine on the P2X7 receptor. Lidocaine selectively inhibited the function of the P2X7 receptor expressed in Xenopus oocytes. This effect may be caused by acting on sites in the ion

  11. Renal vasculature reactivity to agonist of P2X7 receptor is increased in streptozotocin-induced diabetes.

    PubMed

    Kreft, Ewelina; Kowalski, Robert; Jankowski, Maciej; Szczepańska-Konkel, Mirosława

    2016-02-01

    Diabetic nephropathy is characterized by the dysfunction of renal microvasculature. The involvement of the P2X7 receptor, being a part of the purinergic system, is presumable in this process. The aim of our study was to investigate the P2X7 receptor-mediated renal microvasculature response and renal metabolism of extracellular adenine nucleotides in diabetic rats. Study was performed on streptozotocin-induced diabetic Wistar rats. The vascular response to BzATP, an agonist of the P2X7 receptor, was monitored based on the changes of cortical blood flow (CBF), glomerular filtration rate (GFR) and glomerular inulin space (GIS). The renal interstitial fluid (RIF) was probed by microdialysis technique and concentrations of ATP and adenosine were measured. Activity on NTDPase and 5'-nucleotidases was measured on renal membranes. Diabetic kidneys were characterized by decreased ATP RIF and increased adenosine RIF concentrations with accompanied enhancement of NTDPase and 5'-nucleotidase activities. BzATP induced a more pronounced increase of CBF and decrease of GFR and GIS in diabetes rats. These effects were abolished by A438079, an antagonist of the P2X7 receptor. It is possible that increased P2X7 receptor reactivity may be involved in the pathogenesis of diabetic nephropathy. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. Activation of P2X7 receptors in the midbrain periaqueductal gray of rats facilitates morphine tolerance.

    PubMed

    Xiao, Zhi; Li, You-Yan; Sun, Meng-Jie

    2015-08-01

    Opiates such as morphine exhibit analgesic effect in various pain models, but repeated and chronic morphine administration may develop resistance to antinociception. The purinergic signaling system is involved in the mechanisms of pain modulation and morphine tolerance. This study aimed to determine whether the P2X7 receptor in the ventrolateral midbrain periaqueductal gray (vlPAG) is involved in morphine tolerance. Development of tolerance to the antinociceptive effect of morphine was induced in normal adult male Sprague-Dawley (SD) rats through subcutaneous injection of morphine (10mg/kg). The analgesic effect of morphine (5mg/kg, i.p.) was assessed by measuring mechanical withdrawal thresholds (MWTs) in rats with an electronic von Frey anesthesiometer. The expression levels and distribution of the P2X7 receptor in the vlPAG was evaluated through Western blot analysis and immunohistochemistry. The acute effects of intra-vlPAG injection of the selective P2X7 receptor agonist Bz-ATP, the selective P2X7 receptor antagonist A-740003, or antisense oligodeoxynucleotide (AS ODN) targeting the P2X7 receptor on morphine-treated rats were also observed. Results demonstrated that repeated morphine administration decreased the mechanical pain thresholds. By contrast, the expression of the P2X7 receptor protein was up-regulated in the vlPAG in morphine tolerant rats. The percent changes in MWT were markedly but only transiently attenuated by intra-vlPAG injection of Bz-ATP (9nmol/0.3μL) but elevated by A-740003 at doses of 10 and 100nmol/0.3μL. AS ODN (15nmol/0.3μL) against the P2X7 receptor reduced the development of chronic morphine tolerance in rats. These results suggest that the development of antinociceptive tolerance to morphine is partially mediated by activating the vlPAG P2X7 receptors. The present data also suggest that the P2X7 receptors may be a therapeutic target for improving the analgesic effect of morphine in treatments of pain when morphine tolerance

  13. The P2X7 Receptor Supports Both Life and Death in Fibrogenic Pancreatic Stellate Cells

    PubMed Central

    Haanes, Kristian A.; Schwab, Albrecht; Novak, Ivana

    2012-01-01

    The pancreatic stellate cells (PSCs) have complex roles in pancreas, including tissue repair and fibrosis. PSCs surround ATP releasing exocrine cells, but little is known about purinergic receptors and their function in PSCs. Our aim was to resolve whether PSCs express the multifunctional P2X7 receptor and elucidate how it regulates PSC viability. The number of PSCs isolated from wild type (WT) mice was 50% higher than those from the Pfizer P2X7 receptor knock out (KO) mice. The P2X7 receptor protein and mRNA of all known isoforms were expressed in WT PSCs, while KO PSCs only expressed truncated versions of the receptor. In culture, the proliferation rate of the KO PSCs was significantly lower. Inclusion of apyrase reduced the proliferation rate in both WT and KO PSCs, indicating importance of endogenous ATP. Exogenous ATP had a two-sided effect. Proliferation of both WT and KO cells was stimulated with ATP in a concentration-dependent manner with a maximum effect at 100 µM. At high ATP concentration (5 mM), WT PSCs, but not the KO PSCs died. The intracellular Ca2+ signals and proliferation rate induced by micromolar ATP concentrations were inhibited by the allosteric P2X7 receptor inhibitor az10606120. The P2X7 receptor-pore inhibitor A438079 partially prevented cell death induced by millimolar ATP concentrations. This study shows that ATP and P2X7 receptors are important regulators of PSC proliferation and death, and therefore might be potential targets for treatments of pancreatic fibrosis and cancer. PMID:23284663

  14. P2X7 from j774 murine macrophages acts as a scavenger receptor for bacteria but not yeast.

    PubMed

    Pérez-Flores, Gabriela; Hernández-Silva, Cesar; Gutiérrez-Escobedo, Guadalupe; De Las Peñas, Alejandro; Castaño, Irene; Arreola, Jorge; Pérez-Cornejo, Patricia

    2016-12-02

    We studied the effects of extracellular ATP and Ca(2+) on uptake of bacteria (Staphylococcus aureus or Escherichia coli) and live yeast (Candida glabrata) by J774 macrophages to determine the role of endogenous P2X7 receptors in phagocytosis. Our findings show that phagocytosis of bio-particles coated with S. aureus or E. coli was blocked by ATP and the P2X7 receptor agonist BzATP, while yeast phagocytosis was not. A438079, an antagonist of P2X7 receptors, partially reverted the effects of ATP on bacterial phagocytosis. To determine if P2X7-mediated Ca(2+) entry into macrophages was blocking the engulfment of bacteria, we measured phagocytic activity in the absence or presence of 2 mM extracellular Ca(2+) with or without ATP. Ca(2+), in the absence of ATP, was required for engulfment of E. coli and C. glabrata but not S. aureus. Adding ATP inhibited phagocytosis of S. aureus and E. coli regardless of Ca(2+), suggesting that Ca(2+) entry was not important for inhibiting phagocytosis. On the other hand, phagocytosis of normal or hyper-adherent C. glabrata mutants had an absolute requirement for extracellular Ca(2+) due to yeast adhesion to macrophages mediated by Ca(2+)-dependent adhesion proteins. We conclude that unstimulated P2X7 from J774 cells act as scavenger receptor for the uptake of S. aureus and E. coli but not of yeast; Ca(2+) entry via P2X7 receptors play no role in phagocytosis of S. aureus and E. coli; while the effect of Ca(2+) on C. glabrata phagocytosis was mediated by the adhesins Epa1, Epa6 and Epa7.

  15. P2X7 receptor activation induces inflammatory responses in salivary gland epithelium

    PubMed Central

    Woods, Lucas T.; Camden, Jean M.; Batek, Josef M.; Petris, Michael J.; Erb, Laurie

    2012-01-01

    Inflammation of the salivary gland is a well-documented aspect of salivary gland dysfunction that occurs in Sjogren's syndrome (SS), an autoimmune disease, and in γ-radiation-induced injury during treatment of head and neck cancers. Extracellular nucleotides have gained recognition as key modulators of inflammation through activation of cell surface ionotropic and metabotropic receptors, although the contribution of extracellular nucleotides to salivary gland inflammation is not well understood. In vitro studies using submandibular gland (SMG) cell aggregates isolated from wild-type C57BL/6 mice indicate that treatment with ATP or the high affinity P2X7R agonist 3′-O-(4-benzoyl)benzoyl-ATP (BzATP) induces membrane blebbing and enhances caspase activity, responses that were absent in SMG cell aggregates isolated from mice lacking the P2X7R (P2X7R−/−). Additional studies with SMG cell aggregates indicate that activation of the P2X7R with ATP or BzATP stimulates the cleavage and release of α-fodrin, a cytoskeletal protein thought to act as an autoantigen in the development of SS. In vivo administration of BzATP to ligated SMG excretory ducts enhances immune cell infiltration into the gland and initiates apoptosis of salivary epithelial cells in wild-type, but not P2X7R−/−, mice. These findings indicate that activation of the P2X7R contributes to salivary gland inflammation in vivo, suggesting that the P2X7R may represent a novel target for the treatment of salivary gland dysfunction. PMID:22875784

  16. P2X7 receptor inhibition protects against ischemic acute kidney injury in mice.

    PubMed

    Yan, Yanli; Bai, Jianwen; Zhou, Xiaoxu; Tang, Jinhua; Jiang, Chunming; Tolbert, Evelyn; Bayliss, George; Gong, Rujun; Zhao, Ting C; Zhuang, Shougang

    2015-03-15

    Activation of the purinergic P2X7 receptor (P2X7R) has been associated with the development of experimental nephritis and diabetic and hypertensive nephropathy. However, its role in acute kidney injury (AKI) remains unknown. In this study, we examined the effects of P2X7R inhibition in a murine model of ischemia-reperfusion (I/R)-induced AKI using A438079, a selective inhibitor of P2X7R. At 24 h after I/R, mice developed renal dysfunction and renal tubular damage, which was accompanied by elevated expression of P2X7R. Early administration of A438079 immediately or 6 h after the onset of reperfusion protected against renal dysfunction and attenuated kidney damage whereas delayed administration of A438079 at 24 h after restoration of perfusion had no protective effects. The protective actions of A438079 were associated with inhibition of renal tubule injury and cell death and suppression of renal expression of monocyte chemotactic protein-1 and regulated upon expression normal T cell expressed and secreted (RANTES). Moreover, I/R injury led to an increase in phosphorylation (activation) of extracellular signal-regulated kinases 1/2 in the kidney; treatment with A438079 diminished this response. Collectively, these results indicate that early P2X7R inhibition is effective against renal tubule injury and proinflammatory response after I/R injury and suggest that targeting P2X7R may be a promising therapeutic strategy for treatment of AKI.

  17. N-Alkyl-Substituted Isatins Enhance P2X7 Receptor-Induced Interleukin-1β Release from Murine Macrophages.

    PubMed

    Sluyter, Ronald; Vine, Kara L

    2016-01-01

    Extracellular adenosine 5'-triphosphate (ATP) activates the P2X7 receptor channel to induce the rapid release of the proinflammatory cytokine, interleukin- (IL-) 1β, from macrophages. Microtubule rearrangements are thought to be involved in this process. Some isatin derivatives alter microtubules and display anticancer activities. The current study investigated the effect of isatin and seven structurally diverse isatin derivatives on P2X7-mediated IL-1β release from murine J774 macrophages. ATP-induced IL-1β and lactate dehydrogenase (LDH) release were assessed by specific colorimetric assays. P2X7 activity was determined by flow cytometric measurements of ATP-induced cation dye uptake. Cytotoxicity of isatin derivatives was determined using a tetrazolium-based colorimetric assay. ATP caused rapid IL-1β release in a concentration-dependent manner, and this process was completely impaired by the P2X7 antagonist, AZ10606120. In contrast, 5,7-dibromo-N-(p-methoxybenzyl)isatin (NAI) and 3-{4-[5,7-dibromo-1-(4-methoxybenzyl)-2-oxoindolin-3-ylidenamino]phenyl}propanoic acid (NAI-imine) enhanced P2X7-induced IL-1β release by twofold compared to that of isatin and the parent molecule, 5,7-dibromoisatin. NAI and NAI-imine had minimal effect on P2X7-induced dye uptake and LDH release. In contrast, 24-hour incubation with NAI and NAI-imine (in the absence of exogenous ATP) induced macrophage death in a concentration-dependent manner. In conclusion, this study demonstrates that N-alkyl-substituted isatins enhance P2X7 receptor-induced IL-1β release from murine macrophages. Thus, in addition to direct anticancer effects, these compounds may also impact inflammatory and immune cells within the tumor microenvironment.

  18. P2X7 Receptor Regulates Internalization of Antimicrobial Peptide LL-37 by Human Macrophages That Promotes Intracellular Pathogen Clearance.

    PubMed

    Tang, Xiao; Basavarajappa, Devaraj; Haeggström, Jesper Z; Wan, Min

    2015-08-01

    Bioactive peptide LL-37/hCAP18, the only human member of the cathelicidin family, plays important roles in killing various pathogens, as well as in immune modulation. We demonstrate that LL-37 is internalized by human macrophages in a time-, dose-, temperature-, and peptide sequence-dependent endocytotic process. Both clathrin- and caveolae/lipid raft-mediated endocytosis pathways are involved in LL-37 internalization. We find that the P2X7 receptor (P2X7R) plays an important role in LL-37 internalization by human macrophages because significantly less internalized LL-37 was detected in macrophages pretreated with P2X7R antagonists or, more specifically, in differentiated THP-1 cells in which the P2X7R gene had been silenced. Furthermore, this P2X7R-mediated LL-37 internalization is primarily connected to the clathrin-mediated endocytosis pathway. In addition, our results demonstrate that internalized LL-37 traffics to endosomes and lysosomes and contributes to intracellular clearance of bacteria by human macrophages, coinciding with increased reactive oxygen species and lysosome formation. Finally, we show that human macrophages have the potential to import LL-37 released from activated human neutrophils. In conclusion, our study unveils a novel mechanism by which human macrophages internalize antimicrobial peptides to improve their intracellular pathogen clearance.

  19. P2X7 Receptor Modulates Inflammatory and Functional Pulmonary Changes Induced by Silica

    PubMed Central

    Santana, Patrícia T.; Vieira, Flávia S.; da Graça, Carolyne Lalucha A. L.; Marques-da-Silva, Camila; Machado, Mariana N.; Caruso-Neves, Celso; Zin, Walter A.; Borojevic, Radovan; Coutinho-Silva, Robson

    2014-01-01

    Silicosis is an occupational lung disease, characterized by irreversible and progressive fibrosis. Silica exposure leads to intense lung inflammation, reactive oxygen production, and extracellular ATP (eATP) release by macrophages. The P2X7 purinergic receptor is thought to be an important immunomodulator that responds to eATP in sites of inflammation and tissue damage. The present study investigates the role of P2X7 receptor in a murine model of silicosis. To that end wild-type (C57BL/6) and P2X7 receptor knockout mice received intratracheal injection of saline or silica particles. After 14 days, changes in lung mechanics were determined by the end-inflation occlusion method. Bronchoalveolar lavage and flow cytometry analyzes were performed. Lungs were harvested for histological and immunochemistry analysis of fibers content, inflammatory infiltration, apoptosis, as well as cytokine and oxidative stress expression. Silica particle effects on lung alveolar macrophages and fibroblasts were also evaluated in cell line cultures. Phagocytosis assay was performed in peritoneal macrophages. Silica exposure increased lung mechanical parameters in wild-type but not in P2X7 knockout mice. Inflammatory cell infiltration and collagen deposition in lung parenchyma, apoptosis, TGF-β and NF-κB activation, as well as nitric oxide, reactive oxygen species (ROS) and IL-1β secretion were higher in wild-type than knockout silica-exposed mice. In vitro studies suggested that P2X7 receptor participates in silica particle phagocytosis, IL-1β secretion, as well as reactive oxygen species and nitric oxide production. In conclusion, our data showed a significant role for P2X7 receptor in silica-induced lung changes, modulating lung inflammatory, fibrotic, and functional changes. PMID:25310682

  20. Neuronal Release of Cytokine IL-3 Triggered by Mechanosensitive Autostimulation of the P2X7 Receptor Is Neuroprotective

    PubMed Central

    Lim, Jason C.; Lu, Wennan; Beckel, Jonathan M.; Mitchell, Claire H.

    2016-01-01

    Mechanical strain due to increased pressure or swelling activates inflammatory responses in many neural systems. As cytokines and chemokine messengers lead to both pro-inflammatory and neuroprotective actions, understanding the signaling patterns triggered by mechanical stress may help improve overall outcomes. While cytokine signaling in neural systems is often associated with glial cells like astrocytes and microglia, the contribution of neurons themselves to the cytokine response is underappreciated and has bearing on any balanced response. Mechanical stretch of isolated neurons was previously shown to trigger ATP release through pannexin hemichannels and autostimulation of P2X7 receptors (P2X7Rs) on the neural membrane. Given that P2X7Rs are linked to cytokine activation in other cells, this study investigates the link between neuronal stretch and cytokine release through a P2X7-dependent pathway. Cytokine assays showed application of a 4% strain to isolated rat retinal ganglion cells (RGCs) released multiple cytokines. The P2X7R agonist BzATP also released multiple cytokines; Interleukin 3 (IL-3), TNF-α, CXCL9, VEGF, L-selectin, IL-4, GM-CSF, IL-10, IL-1Rα, MIP and CCL20 were released by both stimuli, with the release of IL-3 greatest with either stimuli. Stretch-dependent IL-3 release was confirmed with ELISA and blocked by P2X7R antagonists A438079 and Brilliant Blue G (BBG), implicating autostimulation of the P2X7R in stretch-dependent IL-3 release. Neuronal IL-3 release triggered by BzATP required extracellular calcium. The IL-3Rα receptor was expressed on RGCs but not astrocytes, and both IL-3Rα and IL-3 itself were predominantly expressed in the retinal ganglion cell layer of adult retinal sections, implying autostimulation of receptors by released IL-3. While the number of surviving ganglion cells decreased with time in culture, the addition of IL-3 protected against this loss of neurons. Expression of mRNA for IL-3 and IL-3Rα increased in rat

  1. Statins and ATP regulate nuclear pAkt via the P2X7 purinergic receptor in epithelial cells

    SciTech Connect

    Mistafa, Oras; Hoegberg, Johan; Stenius, Ulla

    2008-01-04

    Many studies have documented P2X7 receptor functions in cells of mesenchymal origin. P2X7 is also expressed in epithelial cells and its role in these cells remains largely unknown. Our data indicate that P2X7 regulate nuclear pAkt in epithelial cells. We show that low concentration of atorvastatin, a drug inhibiting HMG-CoA reductase and cholesterol metabolism, or the natural agonist extracellular ATP rapidly decreased the level of insulin-induced phosphorylated Akt in the nucleus. This effect was seen within minutes and was inhibited by P2X7 inhibitors. Experiments employing P2X7 siRNA and HEK293 cells heterologously expressing P2X7 and in vivo experiments further supported an involvement of P2X7. These data indicate that extracellular ATP and statins via the P2X7 receptor modulate insulin-induced Akt signaling in epithelial cells.

  2. Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity

    PubMed Central

    Sorge, Robert E; Trang, Tuan; Dorfman, Ruslan; Smith, Shad B; Beggs, Simon; Ritchie, Jennifer; Austin, Jean-Sebastien; Zaykin, Dmitri V; Meulen, Heather Vander; Costigan, Michael; Herbert, Teri A; Yarkoni-Abitbul, Merav; Tichauer, David; Livneh, Jessica; Gershon, Edith; Zheng, Ming; Tan, Keith; John, Sally L; Slade, Gary D; Jordan, Joanne; Woolf, Clifford J; Peltz, Gary; Maixner, William; Diatchenko, Luda; Seltzer, Ze'ev; Salter, Michael W; Mogil, Jeffrey S

    2012-01-01

    Chronic pain is highly variable between individuals, as is the response to analgesics. Although much of the variability in chronic pain and analgesic response is heritable, an understanding of the genetic determinants underlying this variability is rudimentary1. Here we show that variation within the coding sequence of the gene encoding the P2X7 receptor (P2X7R) affects chronic pain sensitivity in both mice and humans. P2X7Rs, which are members of the family of ionotropic ATP-gated receptors, have two distinct modes of function: they can function through their intrinsic cationic channel or by forming nonselective pores that are permeable to molecules with a mass of up to 900 Da2,3. Using genome-wide linkage analyses, we discovered an association between nerve-injury–induced pain behavior (mechanical allodynia) and the P451L mutation of the mouse P2rx7 gene, such that mice in which P2X7Rs have impaired pore formation as a result of this mutation showed less allodynia than mice with the pore-forming P2rx7 allele. Administration of a peptide corresponding to the P2X7R C-terminal domain, which blocked pore formation but not cation channel activity, selectively reduced nerve injury and inflammatory allodynia only in mice with the pore-forming P2rx7 allele. Moreover, in two independent human chronic pain cohorts, a cohort with pain after mastectomy and a cohort with osteoarthritis, we observed a genetic association between lower pain intensity and the hypofunctional His270 (rs7958311) allele of P2RX7. Our findings suggest that selectively targeting P2X7R pore formation may be a new strategy for individualizing the treatment of chronic pain. PMID:22447075

  3. P2X7 receptors at adult neural progenitor cells of the mouse subventricular zone.

    PubMed

    Messemer, Nanette; Kunert, Christin; Grohmann, Marcus; Sobottka, Helga; Nieber, Karen; Zimmermann, Herbert; Franke, Heike; Nörenberg, Wolfgang; Straub, Isabelle; Schaefer, Michael; Riedel, Thomas; Illes, Peter; Rubini, Patrizia

    2013-10-01

    Neurogenesis requires the balance between the proliferation of newly formed progenitor cells and subsequent death of surplus cells. RT-PCR and immunocytochemistry demonstrated the presence of P2X7 receptor mRNA and immunoreactivity in cultured neural progenitor cells (NPCs) prepared from the adult mouse subventricular zone (SVZ). Whole-cell patch-clamp recordings showed a marked potentiation of the inward current responses both to ATP and the prototypic P2X7 receptor agonist dibenzoyl-ATP (Bz-ATP) at low Ca(2+) and zero Mg(2+) concentrations in the bath medium. The Bz-ATP-induced currents reversed their polarity near 0 mV; in NPCs prepared from P2X7(-/-) mice, Bz-ATP failed to elicit membrane currents. The general P2X/P2Y receptor antagonist PPADS and the P2X7 selective antagonists Brilliant Blue G and A-438079 strongly depressed the effect of Bz-ATP. Long-lasting application of Bz-ATP induced an initial current, which slowly increased to a steady-state response. In combination with the determination of YO-PRO uptake, these experiments suggest the dilation of a receptor-channel and/or the recruitment of a dye-uptake pathway. Ca(2+)-imaging by means of Fura-2 revealed that in a Mg(2+)-deficient bath medium Bz-ATP causes [Ca(2+)](i) transients fully depending on the presence of external Ca(2+). The MTT test indicated a concentration-dependent decrease in cell viability by Bz-ATP treatment. Correspondingly, Bz-ATP led to an increase in active caspase 3 immunoreactivity, indicating a P2X7-controlled apoptosis. In acute SVZ brain slices of transgenic Tg(nestin/EGFP) mice, patch-clamp recordings identified P2X7 receptors at NPCs with pharmacological properties identical to those of their cultured counterparts. We suggest that the apoptotic/necrotic P2X7 receptors at NPCs may be of particular relevance during pathological conditions which lead to increased ATP release and thus could counterbalance the ensuing excessive cell proliferation.

  4. Structural basis for subtype-specific inhibition of the P2X7 receptor

    PubMed Central

    Karasawa, Akira; Kawate, Toshimitsu

    2016-01-01

    The P2X7 receptor is a non-selective cation channel activated by extracellular adenosine triphosphate (ATP). Chronic activation of P2X7 underlies many health problems such as pathologic pain, yet we lack effective antagonists due to poorly understood mechanisms of inhibition. Here we present crystal structures of a mammalian P2X7 receptor complexed with five structurally-unrelated antagonists. Unexpectedly, these drugs all bind to an allosteric site distinct from the ATP-binding pocket in a groove formed between two neighboring subunits. This novel drug-binding pocket accommodates a diversity of small molecules mainly through hydrophobic interactions. Functional assays propose that these compounds allosterically prevent narrowing of the drug-binding pocket and the turret-like architecture during channel opening, which is consistent with a site of action distal to the ATP-binding pocket. These novel mechanistic insights will facilitate the development of P2X7-specific drugs for treating human diseases. DOI: http://dx.doi.org/10.7554/eLife.22153.001 PMID:27935479

  5. Structural basis for subtype-specific inhibition of the P2X7 receptor

    SciTech Connect

    Karasawa, Akira; Kawate, Toshimitsu

    2016-12-09

    The P2X7 receptor is a non-selective cation channel activated by extracellular adenosine triphosphate (ATP). Chronic activation of P2X7 underlies many health problems such as pathologic pain, yet we lack effective antagonists due to poorly understood mechanisms of inhibition. Here we present crystal structures of a mammalian P2X7 receptor complexed with five structurally-unrelated antagonists. Unexpectedly, these drugs all bind to an allosteric site distinct from the ATP-binding pocket in a groove formed between two neighboring subunits. This novel drug-binding pocket accommodates a diversity of small molecules mainly through hydrophobic interactions. Functional assays propose that these compounds allosterically prevent narrowing of the drug-binding pocket and the turret-like architecture during channel opening, which is consistent with a site of action distal to the ATP-binding pocket. These novel mechanistic insights will facilitate the development of P2X7-specific drugs for treating human diseases.

  6. Association between P2X7 Receptor Polymorphisms and Bone Status in Mice

    PubMed Central

    Syberg, Susanne; Schwarz, Peter; Petersen, Solveig; Steinberg, Thomas H.; Jensen, Jens-Erik Beck; Teilmann, Jenni; Jørgensen, Niklas Rye

    2012-01-01

    Macrophages from mouse strains with the naturally occurring mutation P451L in the purinergic receptor P2X7 have impaired responses to agonists (1). Because P2X7 receptors are expressed in bone cells and are implicated in bone physiology, we asked whether strains with the P451L mutation have a different bone phenotype. By sequencing the most common strains of inbred mice, we found that only a few strains (BALB, NOD, NZW, and 129) were harboring the wild allelic version of the mutation (P451) in the gene for the purinergic receptor P2X7. The strains were compared by means of dual energy X-ray absorptiometry (DXA), bone markers, and three-point bending. Cultured osteoclasts were used in the ATP-induced pore formation assay. We found that strains with the P451 allele (BALB/cJ and 129X1/SvJ) had stronger femurs and higher levels of the bone resorption marker C-telopeptide collagen (CTX) compared to C57Bl/6 (B6) and DBA/2J mice. In strains with the 451L allele, pore-formation activity in osteoclasts in vitro was lower after application of ATP. In conclusion, two strains with the 451L allele of the naturally occurring mutation P451L, have weaker bones and lower levels of CTX, suggesting lower resorption levels in these animals, which could be related to the decreased ATP-induced pore formation observed in vitro. The importance of these findings for the interpretation of the earlier reported effects of P2X7 in mice is discussed, along with strategies in developing a murine model for testing the therapeutic effects of P2X7 agonists and antagonists upon postmenopausal osteoporosis. PMID:22919543

  7. Astrocyte-neuron interaction in the substantia gelatinosa of the spinal cord dorsal horn via P2X7 receptor-mediated release of glutamate and reactive oxygen species.

    PubMed

    Ficker, Christoph; Rozmer, Katalin; Kató, Erzsébet; Andó, Rómeó D; Schumann, Luisa; Krügel, Ute; Franke, Heike; Sperlágh, Beáta; Riedel, Thomas; Illes, Peter

    2014-10-01

    The substantia gelatinosa (SG) of the spinal cord processes incoming painful information to ascending projection neurons. Whole-cell patch clamp recordings from SG spinal cord slices documented that in a low Ca(2+) /no Mg(2+) (low X(2+) ) external medium adenosine triphosphate (ATP)/dibenzoyl-ATP, Bz-ATP) caused inward current responses, much larger in amplitude than those recorded in a normal X(2+) -containing bath medium. The effect of Bz-ATP was antagonized by the selective P2X7 receptor antagonist A-438079. Neuronal, but not astrocytic Bz-ATP currents were strongly inhibited by a combination of the ionotropic glutamate receptor antagonists AP-5 and CNQX. In fact, all neurons and some astrocytes responded to NMDA, AMPA, and muscimol with inward current, demonstrating the presence of the respective receptors. The reactive oxygen species H2 O2 potentiated the effect of Bz-ATP at neurons but not at astrocytes. Hippocampal CA1 neurons exhibited a behavior similar to, but not identical with SG neurons. Although a combination of AP-5 and CNQX almost abolished the effect of Bz-ATP, H2 O2 was inactive. A Bz-ATP-dependent and A-438079-antagonizable reactive oxygen species production in SG slices was proven by a microelectrode biosensor. Immunohistochemical investigations showed the colocalization of P2X7-immunoreactivity with microglial (Iba1), but not astrocytic (GFAP, S100β) or neuronal (MAP2) markers in the SG. It is concluded that SG astrocytes possess P2X7 receptors; their activation leads to the release of glutamate, which via NMDA- and AMPA receptor stimulation induces cationic current in the neighboring neurons. P2X7 receptors have a very low density under resting conditions but become functionally upregulated under pathological conditions.

  8. A Dual Role for P2X7 Receptor during Porphyromonas gingivalis Infection

    PubMed Central

    Ramos-Junior, E.S.; Morandini, A.C.; Almeida-da-Silva, C.L.C.; Franco, E.J.; Potempa, J.; Nguyen, K.A.; Oliveira, A.C.; Zamboni, D.S.; Ojcius, D.M.; Scharfstein, J.

    2015-01-01

    Emerging evidence suggests a role for purinergic signaling in the activation of multiprotein intracellular complexes called inflammasomes, which control the release of potent inflammatory cytokines, such as interleukin (IL) -1β and -18. Porphyromonas gingivalis is intimately associated with periodontitis and is currently considered one of the pathogens that can subvert the immune system by limiting the activation of the NLRP3 inflammasome. We recently showed that P. gingivalis can dampen eATP-induced IL-1β secretion by means of its fimbriae in a purinergic P2X7 receptor–dependent manner. Here, we further explore the role of this purinergic receptor during eATP-induced IL-1β processing and secretion by P. gingivalis–infected macrophages. We found that NLRP3 was necessary for eATP-induced IL-1β secretion as well as for caspase 1 activation irrespective of P. gingivalis fimbriae. Additionally, although the secretion of IL-1β from P. gingivalis–infected macrophages was dependent on NLRP3, its adaptor protein ASC, or caspase 1, the cleavage of intracellular pro-IL-1β to the mature form was found to occur independently of NLRP3, its adaptor protein ASC, or caspase 1. Our in vitro findings revealed that P2X7 receptor has a dual role, being critical not only for eATP-induced IL-1β secretion but also for intracellular pro-IL-1β processing. These results were relevant in vivo since P2X7 receptor expression was upregulated in a P. gingivalis oral infection model, and reduced IFN-γ and IL-17 were detected in draining lymph node cells from P2rx7-/- mice. Furthermore, we demonstrated that P2X7 receptor and NLRP3 transcription were modulated in human chronic periodontitis. Overall, we conclude that the P2X7 receptor has a role in periodontal immunopathogenesis and suggest that targeting of the P2X7/NLRP3 pathway should be considered in future therapeutic interventions in periodontitis. PMID:26152185

  9. Chelerythrine and other benzophenanthridine alkaloids block the human P2X7 receptor

    PubMed Central

    Shemon, Anne N; Sluyter, Ronald; Conigrave, Arthur D; Wiley, James S

    2004-01-01

    Extracellular ATP can activate a cation-selective channel/pore on human B-lymphocytes, known as the P2X7 receptor. Activation of this receptor is linked to PLD stimulation. We have used ATP-induced 86Rb+ (K+) efflux to examine the effect of benzophenanthridine alkaloids on P2X7 channel/pore function in human B-lymphocytes. Both ATP and the nucleotide analogue 2′-3′-O-(4-benzoylbenzoyl)-ATP (BzATP) induced an 86Rb+ efflux, which was completely inhibited by the isoquinoline derivative 1-(N,O-bis[5-isoquinolinesulphonyl]-N-methyl-L-tyrosyl)-4-phenylpiperazine (KN-62), a potent P2X7 receptor antagonist. The benzophenanthridine alkaloid chelerythrine, a potent PKC inhibitor, inhibited the ATP-induced 86Rb+ efflux by 73.4±3.5% and with an IC50 of 5.6±2.3 μM. Similarly, other members of this family of compounds, sanguinarine and berberine, blocked the ATP-induced 86Rb+ efflux by 58.8±4.8 and 61.1±8.0%, respectively. Concentration–effect curves to ATP estimated an EC50 value of 78 μM and in the presence of 5 and 10 μM chelerythrine this increased slightly to 110 and 150 μM, respectively, which fits a noncompetitive inhibitor profile for chelerythrine. Chelerythrine at 10 μM was effective at inhibiting the ATP-induced PLD stimulation in B-lymphocytes by 94.2±21.9% and the phorbol 12-myristate 13-acetate-induced PLD stimulation by 68.2±7.4%. This study demonstrates that chelerythrine in addition to PKC inhibition has a noncompetitive inhibitory action on the P2X7 receptor itself. PMID:15210579

  10. Calcium-dependent block of P2X7 receptor channel function is allosteric.

    PubMed

    Yan, Zonghe; Khadra, Anmar; Sherman, Arthur; Stojilkovic, Stanko S

    2011-10-01

    Among purinergic P2X receptor (P2XR) channels, the P2X7R exhibits the most complex gating kinetics; the binding of orthosteric agonists at the ectodomain induces a conformational change in the receptor complex that favors a gating transition from closed to open and dilated states. Bath Ca(2+) affects P2X7R gating through a still uncharacterized mechanism: it could act by reducing the adenosine triphosphate(4-) (ATP(4-)) concentration (a form proposed to be the P2X7R orthosteric agonist), as an allosteric modulator, and/or by directly altering the selectivity of pore to cations. In this study, we combined biophysical and mathematical approaches to clarify the role of calcium in P2X7R gating. In naive receptors, bath calcium affected the activation permeability dynamics indirectly by decreasing the potency of orthosteric agonists in a concentration-dependent manner and independently of the concentrations of the free acid form of agonists and status of pannexin-1 (Panx1) channels. Bath calcium also facilitated the rates of receptor deactivation in a concentration-dependent manner but did not affect a progressive delay in receptor deactivation caused by repetitive agonist application. The effects of calcium on the kinetics of receptor deactivation were rapid and reversible. A438079, a potent orthosteric competitive antagonist, protected the rebinding effect of 2'(3')-O-4-benzoylbenzoyl)ATP on the kinetics of current decay during the washout period, but in the presence of A438079, calcium also increased the rate of receptor deactivation. The corresponding kinetic (Markov state) model indicated that the decrease in binding affinity leads to a decrease in current amplitudes and facilitation of receptor deactivation, both in an extracellular calcium concentration-dependent manner expressed as a Hill function. The results indicate that calcium in physiological concentrations acts as a negative allosteric modulator of P2X7R by decreasing the affinity of receptors for

  11. P2X7 receptor promotes intestinal inflammation in chemically induced colitis and triggers death of mucosal regulatory T cells.

    PubMed

    Figliuolo, Vanessa R; Savio, Luiz Eduardo Baggio; Safya, Hanaa; Nanini, Hayandra; Bernardazzi, Cláudio; Abalo, Alessandra; de Souza, Heitor S P; Kanellopoulos, Jean; Bobé, Pierre; Coutinho, Cláudia M L M; Coutinho-Silva, Robson

    2017-03-07

    P2X7 receptor activation contributes to inflammation development in different pathologies. We previously reported that the P2X7 receptor is over-expressed in the gut mucosa of patients with inflammatory bowel disease, and that P2X7 inhibition protects against chemically induced colitis. Here, we investigated in detail the role of the P2X7 receptor in inflammatory bowel disease development, by treating P2X7 knockout (KO) and WT mice with two different (and established) colitis inductors. P2X7 KO mice were protected against gut inflammation induced by 2,4,6-trinitrobenzenesulfonic acid or oxazolone, with no weight loss or gut histological alterations after treatment. P2X7 receptor knockout induced regulatory T cell accumulation in the colon, as evaluated by qRT-PCR for FoxP3 expression and immunostaining for CD90/CD45RB(low). Flow cytometry analysis of mesenteric lymph node cells showed that P2X7 activation (by ATP) triggered regulatory T cell death. In addition, such cells from P2X7 KO mice expressed more CD103, suggesting increased migration of regulatory T cells to the colon (relative to the WT). Our results show that the P2X7 has a key role during inflammation development in inflammatory bowel disease, by triggering the death and retention in the mesenteric lymph nodes of regulatory T cells that would otherwise promote immune system tolerance in the gut.

  12. Pannexin1 channels act downstream of P2X7 receptors in ATP-induced murine T-cell death

    PubMed Central

    Shoji, Kenji F; Sáez, Pablo J; Harcha, Paloma A; Aguila, Hector L; Sáez, Juan C

    2014-01-01

    Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1−/− mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1−/− mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP. PMID:24590064

  13. Functional polymorphisms in the P2X7 receptor gene are associated with stress fracture injury.

    PubMed

    Varley, Ian; Greeves, Julie P; Sale, Craig; Friedman, Eitan; Moran, Daniel S; Yanovich, Ran; Wilson, Peter J; Gartland, Alison; Hughes, David C; Stellingwerff, Trent; Ranson, Craig; Fraser, William D; Gallagher, James A

    2016-03-01

    Military recruits and elite athletes are susceptible to stress fracture injuries. Genetic predisposition has been postulated to have a role in their development. The P2X7 receptor (P2X7R) gene, a key regulator of bone remodelling, is a genetic candidate that may contribute to stress fracture predisposition. The aim of this study is to evaluate the putative contribution of P2X7R to stress fracture injury in two separate cohorts, military personnel and elite athletes. In 210 Israeli Defense Forces (IDF) military conscripts, stress fracture injury was diagnosed (n = 43) based on symptoms and a positive bone scan. In a separate cohort of 518 elite athletes, self-reported medical imaging scan-certified stress fracture injuries were recorded (n = 125). Non-stress fracture controls were identified from these cohorts who had a normal bone scan or no history or symptoms of stress fracture injury. Study participants were genotyped for functional SNPs within the P2X7R gene using proprietary fluorescence-based competitive allele-specific PCR assay. Pearson's chi-squared (χ (2)) tests, corrected for multiple comparisons, were used to assess associations in genotype frequencies. The variant allele of P2X7R SNP rs3751143 (Glu496Ala-loss of function) was associated with stress fracture injury, whilst the variant allele of rs1718119 (Ala348Thr-gain of function) was associated with a reduced occurrence of stress fracture injury in military conscripts (P < 0.05). The association of the variant allele of rs3751143 with stress fractures was replicated in elite athletes (P < 0.05), whereas the variant allele of rs1718119 was also associated with reduced multiple stress fracture cases in elite athletes (P < 0.05). The association between independent P2X7R polymorphisms with stress fracture prevalence supports the role of a genetic predisposition in the development of stress fracture injury.

  14. On the role of P2X(7) receptors in dopamine nerve cell degeneration in a rat model of Parkinson's disease: studies with the P2X(7) receptor antagonist A-438079.

    PubMed

    Marcellino, Daniel; Suárez-Boomgaard, Diana; Sánchez-Reina, María Dolores; Aguirre, José A; Yoshitake, Takashi; Yoshitake, Shimako; Hagman, Beth; Kehr, Jan; Agnati, Luigi F; Fuxe, Kjell; Rivera, Alicia

    2010-06-01

    The role of the ATP-gated receptor, P2X(7), has been evaluated in the unilateral 6-OHDA rat model of Parkinson's disease using the P2X(7) competitive antagonist A-438079. Nigral P2X(7) immunoreactivity was mainly located in microglia but also in astroglia. A-438079 partially but significantly prevented the 6-OHDA-induced depletion of striatal DA stores. However, this was not associated with a reduction of DA cell loss. Blockade of P2X(7) receptors may represent a novel protective strategy for striatal DA terminals in Parkinson's disease and warrants further future investigation.

  15. Role of P2X7 and P2Y2 receptors on α-secretase-dependent APP processing: Control of amyloid plaques formation "in vivo" by P2X7 receptor.

    PubMed

    Miras-Portugal, M Teresa; Diaz-Hernandez, Juan I; Gomez-Villafuertes, Rosa; Diaz-Hernandez, Miguel; Artalejo, Antonio R; Gualix, Javier

    2015-01-01

    Amyloid precursor protein (APP) is expressed in a large variety of neural and non-neural cells. The balance between non-pathogenic and pathologic forms of APP processing, mediated by α-secretase and β-secretase respectively, remains a crucial step to understand β-amyloid, Aβ42 peptide, formation and aggregation that are at the origin of the senile plaques in the brain, a characteristic hallmark of Alzheimer's disease (AD). In Neuro-2a, a neuroblastoma cell line that constitutively expresses APP, activation of the P2X7 receptor leads to reduction of α-secretase activity, the opposite effect being obtained by P2Y2 receptor activation. The in vivo approach was made possible by the use of J20 mice, a transgenic mouse model of familial Alzheimer's disease (FAD) expressing human APP mutant protein. This animal exhibits prominent amyloid plaques by six months of age. In vivo inhibition of the P2X7 receptor induced a significant decrease in the number and size of hippocampal amyloid plaques. This reduction is mediated by an increase in the proteolytic processing of APP through α-secretase activity, which correlates with an increase in the phosphorylated form of GSK-3, a less active form of this enzyme. The in vivo findings corroborate the therapeutic potential of P2X7 antagonists in the treatment of FAD.

  16. Role of P2X7 and P2Y2 receptors on α-secretase-dependent APP processing: Control of amyloid plaques formation “in vivo” by P2X7 receptor

    PubMed Central

    Miras-Portugal, M. Teresa; Diaz-Hernandez, Juan I.; Gomez-Villafuertes, Rosa; Diaz-Hernandez, Miguel; Artalejo, Antonio R.; Gualix, Javier

    2015-01-01

    Amyloid precursor protein (APP) is expressed in a large variety of neural and non-neural cells. The balance between non-pathogenic and pathologic forms of APP processing, mediated by α-secretase and β-secretase respectively, remains a crucial step to understand β-amyloid, Aβ42 peptide, formation and aggregation that are at the origin of the senile plaques in the brain, a characteristic hallmark of Alzheimer's disease (AD). In Neuro-2a, a neuroblastoma cell line that constitutively expresses APP, activation of the P2X7 receptor leads to reduction of α-secretase activity, the opposite effect being obtained by P2Y2 receptor activation. The in vivo approach was made possible by the use of J20 mice, a transgenic mouse model of familial Alzheimer's disease (FAD) expressing human APP mutant protein. This animal exhibits prominent amyloid plaques by six months of age. In vivo inhibition of the P2X7 receptor induced a significant decrease in the number and size of hippocampal amyloid plaques. This reduction is mediated by an increase in the proteolytic processing of APP through α-secretase activity, which correlates with an increase in the phosphorylated form of GSK-3, a less active form of this enzyme. The in vivo findings corroborate the therapeutic potential of P2X7 antagonists in the treatment of FAD. PMID:25848496

  17. Co-Expression of Wild-Type P2X7R with Gln460Arg Variant Alters Receptor Function

    PubMed Central

    Aprile-Garcia, Fernando; Metzger, Michael W.; Paez-Pereda, Marcelo; Stadler, Herbert; Acuña, Matías; Liberman, Ana C.; Senin, Sergio A.; Gerez, Juan; Hoijman, Esteban; Refojo, Damian; Mitkovski, Mišo; Panhuysen, Markus; Stühmer, Walter; Holsboer, Florian; Deussing, Jan M.; Arzt, Eduardo

    2016-01-01

    The P2X7 receptor is a member of the P2X family of ligand-gated ion channels. A single-nucleotide polymorphism leading to a glutamine (Gln) by arginine (Arg) substitution at codon 460 of the purinergic P2X7 receptor (P2X7R) has been associated with mood disorders. No change in function (loss or gain) has been described for this SNP so far. Here we show that although the P2X7R-Gln460Arg variant per se is not compromised in its function, co-expression of wild-type P2X7R with P2X7R-Gln460Arg impairs receptor function with respect to calcium influx, channel currents and intracellular signaling in vitro. Moreover, co-immunoprecipitation and FRET studies show that the P2X7R-Gln460Arg variant physically interacts with P2X7R-WT. Specific silencing of either the normal or polymorphic variant rescues the heterozygous loss of function phenotype and restores normal function. The described loss of function due to co-expression, unique for mutations in the P2RX7 gene so far, explains the mechanism by which the P2X7R-Gln460Arg variant affects the normal function of the channel and may represent a mechanism of action for other mutations. PMID:26986975

  18. Extracellular ATP induces cytokine expression and apoptosis through P2X7 receptor in murine mast cells.

    PubMed

    Bulanova, Elena; Budagian, Vadim; Orinska, Zane; Hein, Martina; Petersen, Frank; Thon, Lutz; Adam, Dieter; Bulfone-Paus, Silvia

    2005-04-01

    Extracellular ATP and other nucleotides act through specific cell surface receptors and regulate a wide variety of cellular responses in many cell types and tissues. In this study, we demonstrate that murine mast cells express several P2Y and P2X receptor subtypes including P2X(7), and describe functional responses of these cells to extracellular ATP. Stimulation of bone marrow-derived mast cells (BMMC), as well as MC/9 and P815 mast cell lines with millimolar concentrations of ATP, resulted in Ca(2+) influx across the cellular membrane and cell permeabilization. Moreover, brief exposures to ATP were sufficient to induce apoptosis in BMMCs, MC/9, and P815 cells which involved activation of caspase-3 and -8. However, in the time period between commitment to apoptosis and actual cell death, ATP triggered rapid but transient phosphorylation of multiple signaling molecules in BMMCs and MC/9 cells, including ERK, Jak2, and STAT6. In addition, ATP stimulation enhanced the expression of several proinflammatory cytokines, such as IL-4, IL-6, IL-13, and TNF-alpha. The effects of ATP were mimicked by submillimolar concentrations of 3-O-(4'-benzoyl)-benzoyl-benzoyl-ATP, and were inhibited by pretreatment of mast cells with a selective blocker of human and mouse P2X(7) receptor, 1[N,O-bis(5-isoquinolinesulphonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine, as well as oxidized ATP. The nucleotide selectivity and pharmacological profile data support the role for P2X(7) receptor as the mediator of the ATP-induced responses. Given the importance of mast cells in diverse pathological conditions, the ability of extracellular ATP to induce the P2X(7)-mediated apoptosis in these cells may facilitate the development of new strategies to modulate mast cell activities.

  19. Modulation of Mouse Embryonic Stem Cell Proliferation and Neural Differentiation by the P2X7 Receptor

    PubMed Central

    Glaser, Talita; de Oliveira, Sophia La Banca; Cheffer, Arquimedes; Beco, Renata; Martins, Patrícia; Fornazari, Maynara; Lameu, Claudiana; Junior, Helio Miranda Costa; Coutinho-Silva, Robson; Ulrich, Henning

    2014-01-01

    Background Novel developmental functions have been attributed to the P2X7 receptor (P2X7R) including proliferation stimulation and neural differentiation. Mouse embryonic stem cells (ESC), induced with retinoic acid to neural differentiation, closely assemble processes occurring during neuroectodermal development of the early embryo. Principal Findings P2X7R expression together with the pluripotency marker Oct-4 was highest in undifferentiated ESC. In undifferentiated cells, the P2X7R agonist Bz-ATP accelerated cell cycle entry, which was blocked by the specific P2X7R inhibitor KN-62. ESC induced to neural differentiation with retinoic acid, reduced Oct-4 and P2X7R expression. P2X7R receptor-promoted intracellular calcium fluxes were obtained at lower Bz-ATP ligand concentrations in undifferentiated and in neural-differentiated cells compared to other studies. The presence of KN-62 led to increased number of cells expressing SSEA-1, Dcx and β3-tubulin, as well as the number of SSEA-1 and β3-tubulin-double-positive cells confirming that onset of neuroectodermal differentiation and neuronal fate determination depends on suppression of P2X7R activity. Moreover, an increase in the number of Ki-67 positive cells in conditions of P2X7R inhibition indicates rescue of progenitors into the cell cycle, augmenting the number of neuroblasts and consequently neurogenesis. Conclusions In embryonic cells, P2X7R expression and activity is upregulated, maintaining proliferation, while upon induction to neural differentiation P2X7 receptor expression and activity needs to be suppressed. PMID:24798220

  20. Effect of P2X7 Receptor Knockout on AQP-5 Expression of Type I Alveolar Epithelial Cells

    PubMed Central

    Ebeling, Georg; Bläsche, Robert; Hofmann, Falk; Augstein, Antje; Kasper, Michael; Barth, Kathrin

    2014-01-01

    P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis. PMID:24941004

  1. P2X(7) receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness.

    PubMed

    Jelassi, B; Chantôme, A; Alcaraz-Pérez, F; Baroja-Mazo, A; Cayuela, M L; Pelegrin, P; Surprenant, A; Roger, S

    2011-05-05

    ATP-gated P2X(7) receptors (P2X(7)R) are unusual plasma membrane ion channels that have been extensively studied in immune cells. More recently, P2X(7)R have been described as potential cancer cell biomarkers. However, mechanistic links between P2X(7)R and cancer cell processes are unknown. Here, we show, in the highly aggressive human breast cancer cell line MDA-MB-435s, that P2X(7) receptor is highly expressed and fully functional. Its activation is responsible for the extension of neurite-like cellular prolongations, of the increase in cell migration by 35% and in cell invasion through extracellular matrix by 150%. The change in cancer cell morphology and the increased migration appeared to be due to the activation of Ca(2+)-activated SK3 potassium channels. The enhanced invasion through the extracellular matrix was related to the increase of mature forms of cysteine cathepsins in the extracellular medium, which was independent of SK3 channel activity and not associated with cell death. Pharmacological targeting of P2X(7)R in vivo was crucial for cell invasiveness in a zebrafish model of metastases. Our results demonstrate a novel mechanistic link between P2X(7)R functionality in cancer cells and invasiveness, a key parameter in tumour growth and in the development of metastases. They also suggest a potential therapeutic role for the newly developed P2X(7)R antagonists.

  2. Inflammatory early events associated to the role of P2X7 receptor in acute murine toxoplasmosis.

    PubMed

    Corrêa, Gladys; Almeida Lindenberg, Carolina de; Moreira-Souza, Aline Cristina de Abreu; Savio, Luiz Eduardo Baggio; Takiya, Christina Maeda; Marques-da-Silva, Camila; Vommaro, Rossiane Claudia; Coutinho-Silva, Robson

    2017-04-01

    Activation of the purinergic P2X7 receptor by extracellular ATP (eATP) potentiates proinflammatory responses during infections by intracellular pathogens. Extracellular ATP triggers an antimicrobial response in macrophages infected with Toxoplasma gondii in vitro, suggesting that purinergic signaling may stimulate host defense mechanisms against toxoplasmosis. Here, we provide in vivo evidence in support of this hypothesis, by showing that P2X7(-/-) mice are more susceptible than P2X7(+/+) mice to acute infection by the RH strain of T. gondii, and that this phenomenon is associated with a deficient proinflammatory response. Four days post-infection, peritoneal washes from infected P2X7(-/-) mice had no or little increase in the levels of the proinflammatory cytokines IL-12, IL-1β, IFN-γ, and TNF-α, whose levels increased markedly in samples from infected P2X7(+/+) mice. Infected P2X7(-/-) mice displayed an increase in organ weight and histological alterations in some of the 'shock organs' in toxoplasmosis - the liver, spleen and mesenteric lymph nodes. The liver of infected P2X7(-/-) mice had smaller granulomas, but increased parasite load/granuloma. Our results confirm that the P2X7 receptor is involved in containing T. gondii spread in vivo, by stimulating inflammation.

  3. Activation of the P2X7 receptor induces the rapid shedding of CD23 from human and murine B cells.

    PubMed

    Pupovac, Aleta; Geraghty, Nicholas J; Watson, Debbie; Sluyter, Ronald

    2015-01-01

    Activation of the P2X7 receptor by the extracellular damage-associated molecular pattern, adenosine 5'-triphosphate (ATP), induces the shedding of cell surface molecules including the low-affinity IgE receptor, CD23, from human leukocytes. A disintegrin and metalloprotease (ADAM) 10 mediates P2X7-induced shedding of CD23 from multiple myeloma RPMI 8226 B cells; however, whether this process occurs in primary B cells is unknown. The aim of the current study was to determine whether P2X7 activation induces the rapid shedding of CD23 from primary human and murine B cells. Flow cytometric and ELISA measurements showed that ATP treatment of human and murine B cells induced the rapid shedding of CD23. Treatment of cells with the specific P2X7 antagonist, AZ10606120, near-completely impaired ATP-induced CD23 shedding from both human and murine B cells. ATP-induced CD23 shedding was also impaired in B cells from P2X7 knockout mice. The absence of full-length, functional P2X7 in the P2X7 knockout mice was confirmed by immunoblotting of splenic cells, and by flow cytometric measurements of ATP-induced YO-PRO-1(2+) uptake into splenic B and T cells. The broad-spectrum metalloprotease antagonist, BB-94, and the ADAM10 antagonist, GI254023X, impaired P2X7-induced CD23 shedding from both human and murine B cells. These data indicate that P2X7 activation induces the rapid shedding of CD23 from primary human and murine B cells and that this process may be mediated by ADAM10.

  4. Involvement of P2X7 receptor signaling on regulating the differentiation of Th17 cells and type II collagen-induced arthritis in mice

    PubMed Central

    Fan, Zhi-Dan; Zhang, Ya-Yuan; Guo, Yi-Hong; Huang, Na; Ma, Hui-Hui; Huang, Hui; Yu, Hai-Guo

    2016-01-01

    Interleukin (IL)-17 producing T helper (Th17) cells are major effector cells in the pathogenesis of rheumatoid arthritis (RA). The P2X7 receptor (P2X7R) has emerged as a potential site in the regulation of inflammation in RA but little is known of its functional role on the differentiation of Th17 cells. This study investigates the in vitro and in vivo effects of P2X7R on Th17 cell differentiation during type II collagen (CII) induced experimental arthritis model. In CII-treated dendritic cells (DCs) and DC/CD4+ T coculture system, pretreatment with pharmacological antagonists of P2X7R (Suramin and A-438079) caused strong inhibition of production of Th17-promoting cytokines (IL-1β, TGF-β1, IL-23p19 and IL-6). Exposure to CII induced the elevation of mRNAs encoding retinoic acid receptor-related orphan receptor α and γt, which were abolished by pretreatment with P2X7R antagonists. Furthermore, blocking P2X7R signaling abolished the CII-mediated increase in IL-17A. Blockade of P2X7R remarkably inhibited hind paw swelling and ameliorated pathological changes in ankle joint of the collagen-induced arthritis mice. Thus, we demonstrated a novel function for P2X7R signaling in regulating CII-induced differentiation of Th17 cells. P2X7R signaling facilitates the development of the sophisticated network of DC-derived cytokines that favors a Th17 phenotype. PMID:27775097

  5. R270C polymorphism leads to loss of function of the canine P2X7 receptor.

    PubMed

    Spildrejorde, Mari; Bartlett, Rachael; Stokes, Leanne; Jalilian, Iman; Peranec, Michelle; Sluyter, Vanessa; Curtis, Belinda L; Skarratt, Kristen K; Skora, Amanda; Bakhsh, Tahani; Seavers, Aine; McArthur, Jason D; Dowton, Mark; Sluyter, Ronald

    2014-07-15

    The relative function of the P2X7 receptor, an ATP-gated ion channel, varies between humans due to polymorphisms in the P2RX7 gene. This study aimed to assess the functional impact of P2X7 variation in a random sample of the canine population. Blood and genomic DNA were obtained from 69 dogs selected as representatives of a cross section of different breeds. P2X7 function was determined by flow cytometric measurements of dye uptake and patch-clamp measurements of inward currents. P2X7 expression was determined by immunoblotting and immunocytochemistry. Sequencing was used to identify P2RX7 gene polymorphisms. P2X7 was cloned from an English springer spaniel, and point mutations were introduced into this receptor by site-directed mutagenesis. The relative function of P2X7 on monocytes varied between individual dogs. The canine P2RX7 gene encoded four missense polymorphisms: F103L and P452S, found in heterozygous and homozygous dosage, and R270C and R365Q, found only in heterozygous dosage. Moreover, R270C and R365Q were associated with the cocker spaniel and Labrador retriever, respectively. F103L, R270C, and R365Q but not P452S corresponded to decreased P2X7 function in monocytes but did not explain the majority of differences in P2X7 function between dogs, indicating that other factors contribute to this variability. Heterologous expression of site-directed mutants of P2X7 in human embryonic kidney-293 cells indicated that the R270C mutant was nonfunctional, the F103L and R365Q mutants had partly reduced function, and the P452S mutant functioned normally. Taken together, these data highlight that a R270C polymorphism has major functional impact on canine P2X7.

  6. The phenothiazine-class antipsychotic drugs prochlorperazine and trifluoperazine are potent allosteric modulators of the human P2X7 receptor.

    PubMed

    Hempel, Christoph; Nörenberg, Wolfgang; Sobottka, Helga; Urban, Nicole; Nicke, Annette; Fischer, Wolfgang; Schaefer, Michael

    2013-12-01

    P2X7, an ATP-gated cation channel, is involved in immune cell activation, hyperalgesia and neuropathic pain. By regulating cytokine release in the brain, P2X7 has been linked to the pathophysiology of mood disorders and schizophrenia. We here assess the impact of 123 drugs that act in the central nervous system on human P2X7. Most prominently, the tricyclic antipsychotics prochlorperazine (PCP) and trifluoperazine (TFP) potently inhibited P2X7-mediated Ca2+ entry, dye permeation and ionic currents. In divalent cation-containing bath solutions or after prolonged incubation, ATP-evoked P2X7 currents were inhibited by 10 μM PCP. This effect was not related to dopamine receptor antagonism. Surprisingly, PCP co-applied with ATP enhanced inward currents in bath solutions with low divalent cation concentrations. Intracellular perfusion with PCP did not substitute for the extracellularly applied drug, indicating that its binding sites are accessible from the extracellular space. Since P2X7 current potentiation by PCP was voltage-dependent, at least one site may be located within the electrical field of the membrane. While the channel opening and closure kinetic was altered by PCP, the apparent affinity of ATP remained unchanged (potentiation) or changed slightly (inhibition). Measurements in human monocyte-derived macrophages confirmed the PCP-induced inhibition of ATP-evoked Ca2+ influx, Yo-Pro-1 permeability, and whole cell currents. Interestingly, neither heterologously expressed rat or mouse P2X7 nor native P2X7 in rat astrocyte cultures or in mouse bone marrow-derived macrophages were inhibited by perazines with a similar potency. We conclude that perazine-type neuroleptics are potent, but species-selective allosteric modulators of human but not murine P2X7 receptors.

  7. Role of P2X7 Receptor in an Animal Model of Mania Induced by D-Amphetamine.

    PubMed

    Gubert, Carolina; Fries, Gabriel Rodrigo; Pfaffenseller, Bianca; Ferrari, Pâmela; Coutinho-Silva, Robson; Morrone, Fernanda Bueno; Kapczinski, Flávio; Battastini, Ana Maria Oliveira

    2016-01-01

    The objective of this study was to explore the association between the P2X7 purinergic receptor (P2X7R) and neuroinflammation using a preclinical model of acute bipolar mania. We analyzed the modulatory effects of P2X7R agonist (3'-O-(4-benzoyl)benzoyl-adenosine 5'-triphosphate, BzATP) and antagonists (brilliant blue, BBG and 3-[[5-(2,3 dichlorophenyl)-1H-tetrazol-1-yl]methyl]pyridine hydrochloride, A438079) on assessments related to behavior (locomotor activity), neuroinflammation (interleukin-1 beta, IL-1β; tumor necrosis factor alpha, TNF-α; and interleukin- 6, IL-6), oxidative stress (thiobarbituric acid reactive substances, TBARS) and neuroplasticity (brain-derived neurotrophic factor, BDNF) markers in a pharmacological model of mania induced by acute and chronic treatment with D-amphetamine (AMPH) (2 mg/kg) in mice. An apparent lack of responsiveness to AMPH was observed in terms of the locomotor activity in animals with blocked P2X7R or with genetic deletion of P2X7R in knockout (P2X7R(-/-)) mice. Likewise, P2X7R participated in the AMPH-induced increase of the proinflammatory and excitotoxic environment, as demonstrated by the reversal of IL-1β, TNF-α, and TBARS levels caused by P2X7R blocking. Our results support the hypothesis that P2X7R plays a role in the neuroinflammation induced by AMPH in a preclinical model of mania, which could explain the altered behavior. The present data suggest that P2X7R may be a therapeutic target related to the neuroinflammation reported in bipolar disorder.

  8. Involvement of RVM-expressed P2X7 receptor in bone cancer pain: mechanism of descending facilitation.

    PubMed

    Huang, Zhang Xiang; Lu, Zhi Jie; Ma, Wei Qing; Wu, Fei Xiang; Zhang, Yu Qiu; Yu, Wei-Feng; Zhao, Zhi Qi

    2014-04-01

    Patients with bone cancer commonly experience bone pain that is severe, intolerable, and difficult to manage. The rostral ventromedial medulla (RVM) plays an important role in the development of chronic pain via descending facilitation of spinal nociception. The compelling evidence shows that glial P2X7 receptor (P2X7R) is involved in the induction and maintenance of chronic pain syndromes. The present study explored the mechanism of glial activation and P2X7R expression underlying the induction of bone cancer pain. The results demonstrated that microglia and astrocytes in the RVM were markedly activated in bone cancer rats, and the expression of P2X7R was significantly upregulated. Injection of Brilliant Blue G (BBG), an inhibitor of P2X7R, into the RVM significantly alleviated pain behaviors of cancer rats, which was supported by intra-RVM injection of RNA interference targeting the P2X7R in the RVM. It is suggested that activation of microglia-expressed P2X7R in the RVM contributes to bone cancer pain. Given that 5-HT in the RVM is involved in modulating spinal nociception, changes in 5-HT and Fos expression were addressed in the spinal cord. Inhibition of P2X7R by BBG or small-interference RNA targeting P2X7 in the RVM markedly reduced 5-HT level and Fos expression in the spinal cord. The data clearly suggest that the activation of microglial P2X7R in the RVM contributes to the development of bone cancer pain via upregulation of spinal 5HT levels by the descending pain facilitatory system.

  9. Diadenosine Homodinucleotide Products of ADP-ribosyl Cyclases Behave as Modulators of the Purinergic Receptor P2X7*

    PubMed Central

    Bruzzone, Santina; Basile, Giovanna; Chothi, Madhu Parakkottil; Nobbio, Lucilla; Usai, Cesare; Jacchetti, Emanuela; Schenone, Angelo; Guse, Andreas H.; Di Virgilio, Francesco; De Flora, Antonio; Zocchi, Elena

    2010-01-01

    ADP-ribosyl cyclases from both vertebrates and invertebrates were previously shown to produce two isomers of P1,P2 diadenosine 5′,5′"-P1, P2-diphosphate, P18 and P24, from cyclic ADP-ribose (cADPR) and adenine. P18 and P24 are characterized by an unusual N-glycosidic linkage in one of the adenylic mononucleotides (Basile, G., Taglialatela-Scafati, O., Damonte, G., Armirotti, A., Bruzzone, S., Guida, L., Franco, L., Usai, C., Fattorusso, E., De Flora, A., and Zocchi, E. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 14509–14514). P24, but not P18, proved to increase the intracellular Ca2+ concentration ([Ca2+]i) in HeLa cells and to negatively affect mitochondrial function. Here we show that micromolar P24, but not P18, triggers a slow and sustained influx of extracellular Ca2+ through the opening of the purinergic receptor/channel P2X7. On the other hand, P18 inhibits the Ca2+ influx induced by 0.6 mm ATP in HEK293 cells stably transfected with P2X7, with an IC50 of ∼1 μm. Thus, P18 is devoid of intrinsic P2X7 stimulatory activity and behaves as an ATP antagonist. A P2X7-mediated increase of the basal [Ca2+]i has been demonstrated to negatively affect Schwann cell (SC) function in rats with the inherited, peripheral neuropathy Charcot-Marie-Tooth 1A (CMT1A) (Nobbio, L., Sturla, L., Fiorese, F., Usai, C., Basile, G., Moreschi, I., Benvenuto, F., Zocchi, E., De Flora, A., Schenone, A., and Bruzzone S. (2009) J. Biol. Chem. 284, 23146–23158). Preincubation of CMT1A SC with 200 nm P18 restored the basal [Ca2+]i to values similar to those recorded in wild-type SC. These results identify P18 as a new P2X7 antagonist, potentially useful in the treatment of CMT1A. PMID:20439466

  10. P2X7 Receptor Activation Impairs Exogenous MHC Class I Oligopeptides Presentation in Antigen Presenting Cells

    PubMed Central

    Baroja-Mazo, Alberto; Barberà-Cremades, Maria; Pelegrín, Pablo

    2013-01-01

    Major histocompatibility complex class I (MHC I) on antigen presenting cells (APCs) is a potent molecule to activate CD8+ T cells and initiate immunity. P2X7 receptors (P2X7Rs) are present on the plasma membrane of APCs to sense the extracellular danger signal adenosine-5′-triphosphate (ATP). P2X7R activates the inflammasome and the release of IL-1β in macrophages and other immune cells to initiate the inflammatory response. Here we show that P2X7R stimulation by ATP in APCs decreased the amount of MHC I at the plasma membrane. Specific antagonism or genetic ablation of P2X7R inhibited the effects of ATP on levels of cellular MHC I. Furthermore, P2X7R stimulation was able to inhibit activation of CD8+ T cells via specific MHC I-oligopeptide complexes. Our study suggests that P2X7R activation on APCs is a novel inhibitor of adaptive CD8+ T cell immunity. PMID:23940597

  11. P2X7 receptor antagonism improves renal blood flow and oxygenation in angiotensin-II infused rats

    PubMed Central

    Menzies, Robert I.; Howarth, Amelia R.; Unwin, Robert J.; Tam, Frederick W.K.; Mullins, John J.; Bailey, Matthew A.

    2015-01-01

    Chronic activation of the renin angiotensin system promotes hypertension, renal microvascular dysfunction, tissue hypoxia and inflammation. We found previously that the injurious response to excess angiotensin II (ANGII) is greater in F344 rats, whereas Lewis rats are renoprotected, despite similar hypertension. We further identified p2rx7, encoding the P2X7 receptor (P2X7R), as a candidate gene for differential susceptibility and here we have tested the hypothesis that activation of P2X7R promotes vascular dysfunction under high ANGII tone. 14-day infusion of ANGII at 30ng/min into F344 rats increased blood pressure by ~15mmHg without inducing fibrosis or albuminuria. In vivo pressure natriuresis was suppressed, medullary perfusion reduced by ~50% and the cortico-medullary oxygenation gradient disrupted. Selective P2X7R antagonism restored pressure natriuresis, promoting a significant leftward shift in the intercept and increasing the slope. Sodium excretion was increased 6 fold and blood pressure normalized. The specific P2X7R antagonist AZ11657312 increased renal medullary perfusion, but only in ANGII-treated rats. Tissue oxygenation was improved by P2X7R blockade, particularly in poorly oxygenated regions of the kidney. Activation of P2X7R induces microvascular dysfunction and regional hypoxia when ANGII is elevated. These pro-inflammatory effects may contribute to progression of renal injury induced by chronic ANGII. PMID:26108066

  12. The Purinergic Receptor P2X7 Triggers α-Secretase-dependent Processing of the Amyloid Precursor Protein*

    PubMed Central

    Delarasse, Cécile; Auger, Rodolphe; Gonnord, Pauline; Fontaine, Bertrand; Kanellopoulos, Jean M.

    2011-01-01

    The amyloid precursor protein (APP) is cleaved by β- and γ-secretases to generate the β-amyloid (Aβ) peptides, which are present in large amounts in the amyloid plaques of Alzheimer disease (AD) patient brains. Non-amyloidogenic processing of APP by α-secretases leads to proteolytic cleavage within the Aβ peptide sequence and shedding of the soluble APP ectodomain (sAPPα), which has been reported to be endowed with neuroprotective properties. In this work, we have shown that activation of the purinergic receptor P2X7 (P2X7R) stimulates sAPPα release from mouse neuroblastoma cells expressing human APP, from human neuroblastoma cells and from mouse primary astrocytes or neural progenitor cells. sAPPα shedding is inhibited by P2X7R antagonists or knockdown of P2X7R with specific small interfering RNA (siRNA) and is not observed in neural cells from P2X7R-deficient mice. P2X7R-dependent APP-cleavage is independent of extracellular calcium and strongly inhibited by hydroxamate-based metalloprotease inhibitors, TAPI-2 and GM6001. However, knockdown of a disintegrin and metalloproteinase-9 (ADAM9), ADAM10 and ADAM17 by specific siRNA, known to have α-secretase activity, does not block the P2X7R-dependent non-amyloidogenic pathway. Using several specific pharmacological inhibitors, we demonstrate that the mitogen-activated protein kinase modules Erk1/2 and JNK are involved in P2X7R-dependent α-secretase activity. Our study suggests that P2X7R, which is expressed in hippocampal neurons and glial cells, is a potential therapeutic target in AD. PMID:21081501

  13. P2X7 Receptor-mediated Scavenger Activity of Mononuclear Phagocytes toward Non-opsonized Particles and Apoptotic Cells Is Inhibited by Serum Glycoproteins but Remains Active in Cerebrospinal Fluid*

    PubMed Central

    Gu, Ben J.; Duce, James A.; Valova, Valentina A.; Wong, Bruce; Bush, Ashley I.; Petrou, Steven; Wiley, James S.

    2012-01-01

    Rapid phagocytosis of non-opsonized particles including apoptotic cells is an important process that involves direct recognition of the target by multiple scavenger receptors including P2X7 on the phagocyte surface. Using a real-time phagocytosis assay, we studied the effect of serum proteins on this phagocytic process. Inclusion of 1–5% serum completely abolished phagocytosis of non-opsonized YG beads by human monocytes. Inhibition was reversed by pretreatment of serum with 1–10 mm tetraethylenepentamine, a copper/zinc chelator. Inhibitory proteins from the serum were determined as negatively charged glycoproteins (pI < 6) with molecular masses between 100 and 300 kDa. A glycoprotein-rich inhibitory fraction of serum not only abolished YG bead uptake but also inhibited phagocytosis of apoptotic lymphocytes or neuronal cells by human monocyte-derived macrophages. Three copper- and/or zinc-containing serum glycoproteins, ceruloplasmin, serum amyloid P-component, and amyloid precursor protein, were identified, and the purified proteins were shown to inhibit the phagocytosis of beads by monocytes as well as phagocytosis of apoptotic neuronal cells by macrophages. Human adult cerebrospinal fluid, which contains very little glycoprotein, had no inhibitory effect on phagocytosis of either beads or apoptotic cells. These data suggest for the first time that metal-interacting glycoproteins present within serum are able to inhibit the scavenger activity of mononuclear phagocytes toward insoluble debris and apoptotic cells. PMID:22461619

  14. Decavanadate, a P2X receptor antagonist, and its use to study ligand interactions with P2X7 receptors.

    PubMed

    Michel, Anton D; Xing, Mengle; Thompson, Kyla M; Jones, Clare A; Humphrey, Patrick P A

    2006-03-18

    In this study we have studied decavanadate effects at P2X receptors. Decavanadate competitively blocked 2'- and 3'-O-(4benzoylbenzoyl) ATP (BzATP) stimulated ethidium accumulation in HEK293 cells expressing human recombinant P2X7 receptors (pK(B) 7.5). The effects of decavanadate were rapid (minutes) in both onset and offset and contrasted with the much slower kinetics of pyridoxal 5-phosphate (P5P), Coomassie brilliant blue (CBB) and 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN62). Decavanadate competitively blocked the slowly reversible, or irreversible, blockade of the P2X7 receptor produced by P5P and oxidised ATP suggesting competition for a common binding site. However, the interaction between decavanadate and KN62 was non-competitive. Decavanadate also blocked P2X2 and P2X4 receptors but with slightly lower potency. These data demonstrate that decavanadate is the first reversible and competitive antagonist of the P2X7 receptor and is a useful tool for studying the mechanism of interaction of ligands with the P2X7 receptor.

  15. Association of IFN-γ and P2X7 Receptor Gene Polymorphisms in Susceptibility to Tuberculosis Among Iranian Patients.

    PubMed

    Shamsi, Mahdi; Zolfaghari, Mohammad Reza; Farnia, Parissa

    2016-03-01

    Interferon-gamma (IFN-γ) and P2X7 receptor are crucial for host defence against mycobacterial infections. Recent studies have indicated that IFN-γ, IFN-γ receptor 1 (IFN-γR1) andP2X7 gene polymorphisms are associated with susceptibility to pulmonary tuberculosis (TB). However, the relationship between IFN-γ and P2X7 polymorphism and TB susceptibility remains inconclusive in Iranian population. For this reason, single nucleotide polymorphisms (SNPs) in IFN-γ (G+2109A), IFN-γR1 (G-611A) and P2X7 genes (at -762, 1513 position) in patients (n = 100) were assessed using PCR-RFLP. Data were analysed with SPSS version 18. For the 2109 loci of IFN-γ gene, the frequency of mutant alleles between patients and controls were not statistically significant. However, there was a significant difference between the TB patient and controls for -611 alleles of IFN-γR1 (P = 0.01). Additionally, the frequency of P2X7 gene polymorphisms (SNP-762 and 1513) between patients and controls was statistically significant. In conclusions, our study revealed a significant association of IFN-γR1 and P2X7 genes polymorphisms with risk of developing TB in Iranian population.

  16. P2X7 purinergic receptors participate in the expression and extinction processes of contextual fear conditioning memory in mice.

    PubMed

    Domingos, L B; Hott, S C; Terzian, A L B; Resstel, L B M

    2017-08-09

    The purinergic system consists of two large receptor families - P2X and P2Y. Both are activated by adenosine triphosphate (ATP), although presenting different functions. These receptors are present in several brain regions, including those involved in emotion and stress-related behaviors. Hence, they seem to participate in fear- and anxiety-related responses. However, few studies have investigated the purinergic system in threatening situations, as observed in contextual fear conditioning (CFC). Therefore, this study investigated the involvement of purinergic receptors in the expression and extinction of aversive memories. C57Bl/6 background mice were submitted to the CFC protocol. Wildtype (WT) mice received i.p. injection of either a nonselective P2 receptor (P2R) antagonist, P178 (10 or 30 mg/kg); a selective P2X7 receptor (P2X7R) antagonist, A438079 (10 mg/kg); a selective P2Y1 receptor (P2Y1R) antagonist, MRS2179 (10 mg/kg); or vehicle 10 min prior to or immediately after the extinction session. Additionally, P2X7R KO mice were tested in the CFC protocol. After P2R antagonist treatment, contextual fear recall increased, while acquisition of extinction was impaired. Similar results were observed with the selective P2X7R antagonist, but not with the selective P2Y1R antagonist. Interestingly, P2X7R KO mice showed increased contextual fear recall, associated with impaired acquisition of extinction, in accordance with pharmacologic P2X7R antagonism. Our results suggest that specific pharmacological or genetic blockade of P2X7R promotes anxiogenic-like effects, along with deficits in extinction learning. Thus, these receptors could present an alternative treatment of stress-related psychiatric disorders. Copyright © 2017. Published by Elsevier Ltd.

  17. Effects of toxic cellular stresses and divalent cations on the human P2X7 cell death receptor

    PubMed Central

    Liang, Hong; Pauloin, Thierry; Brignole-Baudouin, Françoise; Baudouin, Christophe; Warnet, Jean-Michel; Rat, Patrice

    2008-01-01

    Purpose The purpose of this study was to investigate responses to toxic cellular stresses in different human ocular epithelia. Methods Reactivity with a specific anti-P2X7 antibody was studied using confocal fluorescence microscopy on conjunctival, corneal, lens, and retinal cell lines as well as using impression cytology on human ocular cells. Activation of the P2X7 receptor by selective agonists (ATP and benzoylbenzoyl-ATP) and inhibition by antagonists (oATP, KN-62, and PPADS) were evaluated using the quinolinium,4-[(3-methyl-2-(3H)-benzoxazolylidene) methyl]-1-[3-(triethylammonio)propyl]di-iodide (YO-PRO-1) test in cytofluorometry. Different specific stresses were then induced by a chemical toxin (benzalkonium chloride) and a chemical oxidant (tert-butyl hydroperoxide) to assess the role of the P2X7 receptor. Modulation of P2X7 receptor activation was performed with several ionic solutions. Results Our data show that four cell lines express the P2X7 cell death purinergic receptor as judged by reactivity with a specific anti-P2X7 antibody, activation by the selective P2X7 agonist benzoylbenzoyl-ATP and to a lesser extent by ATP (YO-PRO-1 dye uptake), and inhibition by three antagonists (oATP, KN-62, and PPADS). Benzalkonium chloride, a widely used preservative, induced dramatic membrane permeabilization through P2X7 pore opening on conjunctival and corneal epithelia. Reactive oxygen species, induced by tert-butyl hydroperoxide, lead to P2X7 receptor activation on retinal pigment epithelium. Modulation of P2X7 receptor activation was obtained with extracellular Ca2+ and Mg2+ and with a controlled ionization marine solution rich in different divalent cations. This marine solution could be proposed as a new ophthalmic solution. Conclusions Our observations reveal a novel pathway for epithelial cells apoptosis/cytolysis by inducing different toxic stresses and their modulation by using ionic solutions. PMID:18490962

  18. Shockwaves induce osteogenic differentiation of human mesenchymal stem cells through ATP release and activation of P2X7 receptors.

    PubMed

    Sun, Dahui; Junger, Wolfgang G; Yuan, Changji; Zhang, Wenyan; Bao, Yi; Qin, Daming; Wang, Chengxue; Tan, Lei; Qi, Baochang; Zhu, Dong; Zhang, Xizheng; Yu, Tiecheng

    2013-06-01

    Shockwave treatment promotes bone healing of nonunion fractures. In this study, we investigated whether this effect could be due to adenosine 5'-triphosphate (ATP) release-induced differentiation of human mesenchymal stem cells (hMSCs) into osteoprogenitor cells. Cultured bone marrow-derived hMSCs were subjected to shockwave treatment and ATP release was assessed. Osteogenic differentiation and mineralization of hMSCs were evaluated by examining alkaline phosphatase activity, osteocalcin production, and calcium nodule formation. Expression of P2X7 receptors and c-fos and c-jun mRNA was determined with real-time reverse transcription polymerase chain reaction and Western blotting. P2X7-siRNA, apyrase, P2 receptor antagonists, and p38 MAPK inhibitors were used to evaluate the roles of ATP release, P2X7 receptors, and p38 MAPK signaling in shockwave-induced osteogenic hMSCs differentiation. Shockwave treatment released significant amounts (≈ 7 μM) of ATP from hMSCs. Shockwaves and exogenous ATP induced c-fos and c-jun mRNA transcription, p38 MAPK activation, and hMSC differentiation. Removal of ATP with apyrase, targeting of P2X7 receptors with P2X7-siRNA or selective antagonists, or blockade of p38 MAPK with SB203580 prevented osteogenic differentiation of hMSCs. Our findings indicate that shockwaves release cellular ATP that activates P2X7 receptors and downstream signaling events that caused osteogenic differentiation of hMSCs. We conclude that shockwave therapy promotes bone healing through P2X7 receptor signaling, which contributes to hMSC differentiation.

  19. Upregulated expression of purinergic P2X(7) receptor in Alzheimer disease and amyloid-beta peptide-treated microglia and in peptide-injected rat hippocampus.

    PubMed

    McLarnon, James G; Ryu, Jae K; Walker, Douglas G; Choi, Hyun B

    2006-11-01

    The expression of the purinergic receptor subtype P2X(7)R, a nonselective cationic channel activated by high levels of adenosine triphosphate (ATP), has been studied in adult microglia obtained from Alzheimer disease (AD) and nondemented (ND) brains, in fetal human microglia exposed to Abeta(1-42) peptide and in vivo in Abeta(1-42)-injected rat hippocampus. Semiquantitative reverse transcriptase-polymerase chain reaction showed enhanced expression (increase of 70%) of P2X(7)R in AD microglia compared with ND cells (analysis of 6 AD and 8 ND cases). Immunohistochemical analysis showed prominent P2X(7)R expression in association with Abeta plaques and localized to HLA-DR-immunoreactive microglia. In cultured fetal human microglia, cells exposed to Abeta(1-42) (5 microM for 18 hours) had significantly elevated levels of P2X(7)R (by 106%) compared with untreated cells. Amplitudes of Ca(2+) responses in these cells, induced by the selective P2X(7)R agonist BzATP, were increased by 145% with Abeta(1-42) pretreatment relative to control (no peptide pretreatment) and were largely blocked if the P2X(7)R inhibitor-oxidized ATP (oxATP) was added with peptide in pretreatment solution. In vivo, double immunostaining analysis showed considerable P2X(7)R colocalized with microglia after injection of Abeta(1-42) (1 nmol) into rat hippocampus. The overall results suggest roles of P2X(7)R in mediating microglial purinergic inflammatory responses in AD brain.

  20. P2X7 receptor-pannexin 1 hemichannel association: effect of extracellular calcium on membrane permeabilization.

    PubMed

    Poornima, V; Madhupriya, M; Kootar, S; Sujatha, G; Kumar, Arvind; Bera, Amal Kanti

    2012-03-01

    Activation of P2X(7) receptor (P2X(7)R) and pannexin have been implicated in membrane permeabilization associated with ischemic cell death and many other inflammatory processes. P2X(7)R has a unique property of forming large pore upon repeated or prolonged application of agonist like ATP or 2', 3'-(4-benzoyl) benzoyl ATP. It has been proposed that pannexin 1 (panx1) hemichannel associates with P2X(7)R to form large pore, though the actual mechanism is not yet understood. Calcium concentration in extracellular milieu drops in many patho-physiological conditions, e.g. ischemia, when P2X(7)R/pannexin is also known to be activated. Therefore, we hypothesize that extracellular calcium ([Ca(2+)](o)) plays an important role in the coupling of P2X(7)R-panx1 and subsequent membrane permeabilization. In this study we show that membrane permeability of the P2X(7)R and panx1 expressing N2A cell increases in ([Ca(2+)](o))-free solution. In [Ca(2+)](o)-free solution, fluorescent dye calcein trapped cells exhibited time-dependent dye leakage resulting in about 50% decrease of fluorescence intensity in 30 min. Control cells in 2 mM [Ca(2+)](o) did not show such leakage. Like N2A cells, mixed culture of neuron and glia, derived from hippocampal progenitor cells showed similar dye leakage. Dye leakage was blocked either by pannexin-specific blocker, carbenoxolone or P2X(7)R antagonists, Brilliant Blue G, and oxidized ATP. Furthermore P2X(7)R and panx1 were co-immunoprecipitated. The amount of P2X(7)R protein pulled-down with panx1, increased by twofold when cells were incubated 30 min in [Ca(2+)](o)-free buffer. Taken together, the results of this study demonstrate the activation and association of P2X(7)R-panx1, triggered by the removal of [Ca(2+)](o).

  1. Targeting P(2)X(7) receptor for the treatment of central post-stroke pain in a rodent model.

    PubMed

    Kuan, Yung-Hui; Shih, Hsi-Chien; Tang, Sung-Chun; Jeng, Jiann-Shing; Shyu, Bai-Chuang

    2015-06-01

    Stroke is a leading cause of death and disability in industrialized countries. Approximately 8-14% of stroke survivors suffer from central post-stroke pain (CPSP) when hemorrhagic stroke occurs in lateral thalamic regions, which severely affects their quality of life. Because the mechanisms of CPSP are not well understood, effective treatments have not been developed. In the present study, we tested the hypothesis that persistent CPSP is caused by P(2)X(7)receptor activation after brain tissue damage and subsequent elevations in inflammatory cytokines. A thalamic hemorrhagic rat model was used, characterized by thermal and mechanical allodynia that develops in the subacute to chronic phases upon CPSP onset. We found a significant increase in P(2)X(7) expression in reactive microglia/macrophages in thalamic peri-lesion tissues at 5 weeks post-hemorrhage. Thalamic P(2)X(7) receptors were directly involved in pain transmission and hypersensitivity. The systemic targeting of P(2)X(7) receptors during the acute stage of hemorrhage rescued abnormal pain behaviors and neuronal activity in the thalamocingulate pathway by reducing reactive microglia/macrophage aggregation and associated inflammatory cytokines. After CPSP onset, the targeting of interleukin-1β reversed abnormal pain sensitivity. The aberrant spontaneous thalamocortical oscillations in rats with CPSP were modulated by blocking P(2)X(7) receptors. Taken together, our results suggest that targeting P(2)X(7) may be bi-effective in the treatment of CPSP, as both a pain blocker and immunosuppressant that inhibits inflammatory damage to brain tissue. P(2)X(7)receptors may serve as a potential target to prevent the occurrence of CPSP and may be beneficial for the recovery of patients from stroke.

  2. Caspase-11 Requires the Pannexin-1 Channel and the Purinergic P2X7 Pore to Mediate Pyroptosis and Endotoxic Shock.

    PubMed

    Yang, Dahai; He, Yuan; Muñoz-Planillo, Raul; Liu, Qin; Núñez, Gabriel

    2015-11-17

    The noncanonical inflammasome induced by intracellular lipopolysaccharide (LPS) leads to caspase-11-dependent pyroptosis, which is critical for induction of endotoxic shock in mice. However, the signaling pathway downstream of caspase-11 is unknown. We found that cytosolic LPS stimulation induced caspase-11-dependent cleavage of the pannexin-1 channel followed up by ATP release, which in turn activated the purinergic P2X7 receptor to mediate cytotoxicity. In the absence of P2X7 or pannexin-1, pyroptosis induced by cytosolic LPS was abrogated. Cleavage of pannexin-1 required the catalytic activity of caspase-11 and was essential for ATP release and P2X7-mediated pyroptosis. Priming the caspase-11 pathway in vivo with LPS or Toll-like receptor-3 (TLR3) agonist resulted in high mortality in wild-type mice after secondary LPS challenge, but not in Casp11(-/-), Panx1(-/-), or P2x7(-/-) mice. These results reveal a critical role for pannexin-1 and P2X7 downstream of caspase-11 for pyroptosis and susceptibility to sepsis induced by the noncanonical inflammasome. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock

    PubMed Central

    Yang, Dahai; He, Yuan; Muñoz-Planillo, Raul; Liu, Qin; Núñez, Gabriel

    2016-01-01

    SUMMARY The noncanonical inflammasome induced by intracellular lipopolysaccharide (LPS) leads to caspase-11-dependent pyroptosis which is critical for induction of endotoxic shock in mice. However, the signaling pathway downstream of caspase-11 is unknown. We found that cytosolic LPS stimulation induced caspase-11-dependent cleavage of the pannexin-1 channel and ATP release, which in turn activated the purinergic P2X7 receptor to mediate cytotoxicity. In the absence of P2X7 or pannexin-1, pyroptosis induced by LPS transfection or treatment with cholera toxin B and LPS was abrogated. Cleavage of pannexin-1 required the catalytic activity of caspase-11 and was essential for ATP release and P2X7-mediated pyroptosis. Priming the caspase-11 pathway in vivo with LPS or toll-like receptor-3 (TLR3) agonist resulted in high mortality in wild-type mice after secondary LPS challenge, but not in Casp11−/−, Panx1−/− or P2x7−/− mice. These results reveal a critical role for pannexin-1 and P2X7 downstream of caspase-11 for pyroptosis and susceptibility to sepsis induced by the noncanonical inflammasome. PMID:26572062

  4. Expression level of P2X7 receptor is a determinant of ATP-induced death of mouse cultured neurons.

    PubMed

    Ohishi, A; Keno, Y; Marumiya, A; Sudo, Y; Uda, Y; Matsuda, K; Morita, Y; Furuta, T; Nishida, K; Nagasawa, K

    2016-04-05

    Activation of P2X7 receptor (P2X7R), a purinergic receptor, expressed by neurons is well-known to induce their death, but whether or not their sensitivity to ATP depends on its expression levels remains unclear. Here, we examined the effect of the expression level of P2X7Rs on cell viability using pure neuron cultures, co-cultures with astrocytes derived from SJL- and ddY-strain mice, and mouse P2X7R-expressing HEK293T cell systems. Treatment of pure neuron cultures with 5mM ATP for 2h, followed by 3-h incubation in fresh medium, resulted in death of both types of neurons, and their death was prevented by administration of P2X7R-specific antagonists. In both SJL- and ddY-neurons, ATP-induced neuronal death was inhibited by a mitochondrial permeability transition pore inhibitor cyclosporine A, mitochondrial dysfunction being involved in their death. The ATP-induced neuronal death was greater for SJL-neurons than for ddY-ones, this being correlated with the expression level of P2X7R in them, and the same results were obtained for the HEK293T cell systems. Co-culture of neurons with astrocytes increased the ATP-induced neuronal death compared to the case of pure neuron cultures. Overall, we reveal that neuronal vulnerability to ATP depends on the expression level of P2X7R, and co-existence of astrocytes exacerbates ATP-induced neuronal death.

  5. PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions.

    PubMed

    Gómez-Villafuertes, Rosa; García-Huerta, Paula; Díaz-Hernández, Juan Ignacio; Miras-Portugal, M Teresa

    2015-12-21

    The expression of purinergic P2X7 receptor (P2X7R) in neuroblastoma cells is associated to accelerated growth rate, angiogenesis, metastasis and poor prognosis. Noticeably, P2X7R allows the survival of neuroblastoma cells under restrictive conditions, including serum and glucose deprivation. Previously we identified specificity protein 1 (Sp1) as the main factor involved in the transcriptional regulation of P2rx7 gene, reporting that serum withdrawal triggers the expression of P2X7R in Neuro-2a (N2a) neuroblastoma cell line. Here we demonstrate that PI3K/Akt pathway is crucial for the upregulation of P2X7R expression in serum-deprived neuroblastoma cells, circumstance that facilitates cell proliferation in the absence of trophic support. The effect exerted by PI3K/Akt is independent of both mTOR and GSK3, but requires the activation of EGF receptor (EGFR). Nuclear levels of Sp1 are strongly reduced by inhibition of PI3K/Akt pathway, and blockade of Sp1-dependent transcription with mithramycin A prevents upregulation of P2rx7 gene expression following serum withdrawal. Furthermore, atypical PKCζ plays a key role in the regulation of P2X7R expression by preventing phosphorylation and, consequently, activation of Akt. Altogether, these data indicate that activation of EGFR enhanced the expression of P2X7R in neuroblastoma cells lacking trophic support, being PI3K/Akt/PKCζ signaling pathway and Sp1 mediating this pro-survival outcome.

  6. PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions

    PubMed Central

    Gómez-Villafuertes, Rosa; García-Huerta, Paula; Díaz-Hernández, Juan Ignacio; Miras-Portugal, Mª Teresa

    2015-01-01

    The expression of purinergic P2X7 receptor (P2X7R) in neuroblastoma cells is associated to accelerated growth rate, angiogenesis, metastasis and poor prognosis. Noticeably, P2X7R allows the survival of neuroblastoma cells under restrictive conditions, including serum and glucose deprivation. Previously we identified specificity protein 1 (Sp1) as the main factor involved in the transcriptional regulation of P2rx7 gene, reporting that serum withdrawal triggers the expression of P2X7R in Neuro-2a (N2a) neuroblastoma cell line. Here we demonstrate that PI3K/Akt pathway is crucial for the upregulation of P2X7R expression in serum-deprived neuroblastoma cells, circumstance that facilitates cell proliferation in the absence of trophic support. The effect exerted by PI3K/Akt is independent of both mTOR and GSK3, but requires the activation of EGF receptor (EGFR). Nuclear levels of Sp1 are strongly reduced by inhibition of PI3K/Akt pathway, and blockade of Sp1-dependent transcription with mithramycin A prevents upregulation of P2rx7 gene expression following serum withdrawal. Furthermore, atypical PKCζ plays a key role in the regulation of P2X7R expression by preventing phosphorylation and, consequently, activation of Akt. Altogether, these data indicate that activation of EGFR enhanced the expression of P2X7R in neuroblastoma cells lacking trophic support, being PI3K/Akt/PKCζ signaling pathway and Sp1 mediating this pro-survival outcome. PMID:26687764

  7. Recent Patents on Novel P2X7 Receptor Antagonists and Their Potential for Reducing Central Nervous System Inflammation

    PubMed Central

    Friedle, Scott A.; Curet, Marjorie A.; Watters, Jyoti J.

    2009-01-01

    Inflammation arises in the CNS from a number of neurodegenerative and oncogenic disorders, as well as from ischemic and traumatic brain injuries. These pathologies give rise to increased levels of extracellular adenine nucleotides which, via activation of a variety of cell surface P2 purinergic receptors, influence the inflammatory activities of responding immune cells. One P2 receptor subtype in particular, the P2X7 receptor, potentiates the release of pro-inflammatory cytokines, such as interleukin-1β (IL-1β) from macrophage-like cells. It is also thought to contribute to secondary brain injury by inducing neuronal cell death. Therefore, antagonism of this receptor could have significant therapeutic impact on all disorders, not just CNS, to which excessive inflammatory activities contribute. The use of currently available P2X7 receptor antagonists for the treatment of CNS inflammation has been limited to the generally non-selective antagonists PPADS, oxidized ATP, Brilliant Blue G, suramin, calmidizolium, and KN-62. However, the recent patents and development of novel P2X7 receptor antagonists, as discussed in this review, will provide new tools both for clinical and research purposes. Here we discuss compounds for which patents have been applied since 2006, from the following categories: benzamide inhibitors, bicycloheteroaryl compounds, acylhdranzine antagonists, biaromatic P2X7 antagonists, heterocyclic compounds and amide derivatives, and aromatic amine antagonists. PMID:19705995

  8. Potentiation of hepatic stellate cell activation by extracellular ATP is dependent on P2X7R-mediated NLRP3 inflammasome activation.

    PubMed

    Jiang, Shuang; Zhang, Yu; Zheng, Jin-Hua; Li, Xia; Yao, You-Li; Wu, Yan-Ling; Song, Shun-Zong; Sun, Peng; Nan, Ji-Xing; Lian, Li-Hua

    2017-03-01

    Purinergic receptor P2x7 (P2x7R) is a key modulator of liver inflammation and fibrosis. The present study aimed to investigate the role of P2x7R in hepatic stellate cells activation. Lipopolysaccharide (LPS) or the conditioned medium (CM) from LPS-stimulated RAW 264.7 mouse macrophages was supplemented to human hepatic stellate cells, LX-2 for 24h and P2x7R selective antagonist A438079 (10μM) was supplemented to LX-2 cells 1h before LPS or CM stimulation. In addition LX-2 cells were primed with LPS for 4h and subsequently stimulated for 30min with 3mM of adenosine 5'-triphosphate (ATP). A438079 was supplemented to LX-2 cells 10min prior to ATP. Directly treated with LPS on LX-2 cells, mRNA expressions of interleukin (IL)-1β, IL-18 and IL-6 were increased, as well as mRNA expressions of P2x7R, caspase-1, apoptosis-associated speck-like protein containing CARD (ASC) and NOD-like receptor family, pyrin domain containing 3 (NLRP3) mRNA. LPS also increased α-smooth muscle actin (α-SMA) and type I collagen mRNA expressions, as well as collagen deposition. Interestingly treatment of LX-2 cells with LPS-activated CM exhibited the greater increase of above factors than those in LX-2 cells directly treated with LPS. Pretreatment of A438079 on LX-2 cells stimulated by LPS or LPS-activated CM both suppressed IL-1β mRNA expression. LPS combined with ATP dramatically increased protein synthesis and cleavage of IL-1β and its mRNA level than those in HSC treated with LPS or ATP alone. Additionally LX-2 cells primed with LPS and subsequently stimulated for 30min with ATP greatly increased mRNA and protein expression of caspase-1, NLRP3 and P2x7R, as well as liver fibrosis markers, α-SMA and type I collagen. These events were remarkably suppressed by A438079 pretreatment. siRNA against P2x7R reduced protein expression of NLRP3 and α-SMA, and suppressed deposition and secretion of type I collagen. The involvement of P2X7R-mediated NLRP3 inflammasome activation in IL-1

  9. Subcellular distribution and early signalling events of P2X7 receptors from mouse cerebellar granule neurons.

    PubMed

    Sánchez-Nogueiro, Jesús; Marín-García, Patricia; Bustillo, Diego; Olivos-Oré, Luis Alcides; Miras-Portugal, María Teresa; Artalejo, Antonio R

    2014-12-05

    The subcellular distribution and early signalling events of P2X7 receptors were studied in mouse cerebellar granule neurons. Whole-cell patch-clamp recordings evidenced inwardly directed non-desensitizing currents following adenosine 5'-triphosphate (ATP; 600 µM) or 2'-3'-o-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP; 100 µM) administration to cells bathed in a medium with no-added divalent cations (Ca(2+) and Mg(2+)). Nucleotide-activated currents were inhibited by superfusion of 2.5 mM Ca(2+), 1.2 mM Mg(2+) or 100 nM Brilliant Blue G (BBG), hence indicating the expression of ionotropic P2X7 receptors. Fura-2 calcium imaging showed [Ca(2+)]i elevations in response to ATP or BzATP at the somas and at a small number of axodendritic regions of granule neurons. Differential sensitivity of these [Ca(2+)]i increases to three different P2X7 receptor antagonists (100 nM BBG, 10 μM 4-[(2S)-2-[(5-isoquinolinylsulfonyl)methylamino]-3-oxo-3-(4-phenyl-1-piperazinyl)propyl] phenyl isoquinolinesulfonic acid ester, KN-62, and 1 μM 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine hydrochloride hydrate, A-438079) revealed that P2X7 receptors are co-expressed with different P2Y receptors along the plasmalemma of granule neurons. Finally, experiments with the fluorescent dye YO-PRO-1 indicated that prolonged stimulation of P2X7 receptors does not lead to the opening of a membrane pore permeable to large cations. Altogether, our results emphasise the expression of functional P2X7 receptors at both the axodendritic and somatic levels in mouse cerebellar granule neurons, and favour the notion that P2X7 receptors might function in a subcellular localisation-specific manner: presynaptically, by controlling glutamate release, and on the cell somas, by supporting granule neuron survival against glutamate excytotoxicity.

  10. Structure-activity relationship studies of pyrimidine-2,4-dione derivatives as potent P2X7 receptor antagonists.

    PubMed

    Park, Jin-Hee; Lee, Ga-Eun; Lee, So-Deok; Ko, Hyojin; Kim, Yong-Chul

    2015-12-01

    As an optimization strategy, the flexible structure of KN-62, a known P2X7 receptor antagonist, was converted into conformationally constrained derivatives using pyrimidine-2,4-dione as the core skeleton. Various modifications at the 4-position of the piperazine moiety of the new lead compound were performed to improve P2X7 receptor antagonistic activities, which were evaluated in HEK293 cells stably expressing the human P2X7 receptor (EtBr uptake assay) and in THP-1 cells (IL-1β ELISA assay). According to the results, polycycloalkyl acyl or di-halogenated benzoyl substituents were much more favorable than the original phenyl group of KN-62. Among these compounds, the trifluoromethyl-chloro benzoyl derivative 18 m and adamantyl carbonyl derivatives 19 g-19 i and 19k showed potent antagonistic effects, with IC50 values ranging from 10 to 30 nM. In addition, the in vitro adsorption, distribution, metabolism, excretion, and toxicity (ADMET) profile of 18 m was determined to be in acceptable ranges in terms of metabolic stability and cytotoxicity. These results suggest that pyrimidine-2,4-dione derivatives may be promising novel P2X7 receptor antagonists for the development of anti-inflammatory drugs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. ATP release due to Thy-1–integrin binding induces P2X7-mediated calcium entry required for focal adhesion formation

    PubMed Central

    Henríquez, Mauricio; Herrera-Molina, Rodrigo; Valdivia, Alejandra; Alvarez, Alvaro; Kong, Milene; Muñoz, Nicolás; Eisner, Verónica; Jaimovich, Enrique; Schneider, Pascal; Quest, Andrew F. G.; Leyton, Lisette

    2011-01-01

    Thy-1, an abundant mammalian glycoprotein, interacts with αvβ3 integrin and syndecan-4 in astrocytes and thus triggers signaling events that involve RhoA and its effector p160ROCK, thereby increasing astrocyte adhesion to the extracellular matrix. The signaling cascade includes calcium-dependent activation of protein kinase Cα upstream of Rho; however, what causes the intracellular calcium transients required to promote adhesion remains unclear. Purinergic P2X7 receptors are important for astrocyte function and form large non-selective cation pores upon binding to their ligand, ATP. Thus, we evaluated whether the intracellular calcium required for Thy-1-induced cell adhesion stems from influx mediated by ATP-activated P2X7 receptors. Results show that adhesion induced by the fusion protein Thy-1-Fc was preceded by both ATP release and sustained intracellular calcium elevation. Elimination of extracellular ATP with Apyrase, chelation of extracellular calcium with EGTA, or inhibition of P2X7 with oxidized ATP, all individually blocked intracellular calcium increase and Thy-1-stimulated adhesion. Moreover, Thy-1 mutated in the integrin-binding site did not trigger ATP release, and silencing of P2X7 with specific siRNA blocked Thy-1-induced adhesion. This study is the first to demonstrate a functional link between αvβ3 integrin and P2X7 receptors, and to reveal an important, hitherto unanticipated, role for P2X7 in calcium-dependent signaling required for Thy-1-stimulated astrocyte adhesion. PMID:21502139

  12. Characterization of (11)C-GSK1482160 for Targeting the P2X7 Receptor as a Biomarker for Neuroinflammation.

    PubMed

    Territo, Paul R; Meyer, Jill A; Peters, Jonathan S; Riley, Amanda A; McCarthy, Brian P; Gao, Mingzhang; Wang, Min; Green, Mark A; Zheng, Qi-Huang; Hutchins, Gary D

    2017-03-01

    The purinergic receptor subtype 7 (P2X7R) represents a novel molecular target for imaging neuroinflammation via PET. GSK1482160, a potent P2X7R antagonist, has high receptor affinity, high blood-brain barrier penetration, and the ability to be radiolabeled with (11)C. We report the initial physical and biologic characterization of this novel ligand. Methods:(11)C-GSK1482160 was synthesized according to published methods. Cell density studies were performed on human embryonic kidney cell lines expressing human P2X7R (HEK293-hP2X7R) and underwent Western blotting, an immunofluorescence assay, and radioimmunohistochemistry analysis using P2X7R polyclonal antibodies. Receptor density and binding potential were determined by saturation and association-disassociation kinetics, respectively. Peak immune response to lipopolysaccharide treatment in mice was determined in time course studies and analyzed via Iba1 and P2X7R Western blotting and Iba1 immunohistochemistry. Whole-animal biodistribution studies were performed on saline- or lipopolysaccharide-treated mice at 15, 30, and 60 min after radiotracer administration. Dynamic in vivo PET/CT was performed on the mice at 72 h after administration of saline, lipopolysaccharide, or lipopolysaccharide + blocking, and 2-compartment, 5-parameter tracer kinetic modeling of brain regions was performed. Results: P2X7R changed linearly with concentrations or cell numbers. For high-specific-activity (11)C-GSK1482160, receptor density and Kd were 1.15 ± 0.12 nM and 3.03 ± 0.10 pmol/mg, respectively, in HEK293-hP2X7R membranes. Association constant kon, dissociation constant koff, and binding potential (kon/koff) in HEK293-hP2X7R cells were 0.2312 ± 0.01542 min(-1)⋅nM(-1), 0.2547 ± 0.0155 min(-1), and 1.0277 ± 0.207, respectively. Whole-brain Iba1 expression in lipopolysaccharide-treated mice peaked by 72 h on immunohistochemistry, and Western blot analysis of P2X7R for saline- and lipopolysaccharide-treated brain sections

  13. Assessment of mercury chloride-induced toxicity and the relevance of P2X7 receptor activation in zebrafish larvae.

    PubMed

    Cruz, Fernanda Fernandes; Leite, Carlos Eduardo; Pereira, Talita Carneiro Brandão; Bogo, Maurício Reis; Bonan, Carla Denise; Battastini, Ana Maria Oliveira; Campos, Maria Martha; Morrone, Fernanda Bueno

    2013-09-01

    Zebrafish (Danio rerio) has been adopted as a model for behavioral, immunological and toxicological studies. Mercury is a toxic heavy metal released into the environment. There is evidence indicating that heavy metals can modulate ionotropic receptors, including the purinergic receptor P2X7. Therefore, this study evaluated the in vivo effects of acute exposure to mercury chloride (HgCl2) in zebrafish larvae and to investigate the involvement of P2X7R in mercury-related toxicity. Larvae survival was evaluated for 24 h after exposure to HgCl2, ATP or A740003. The combination of ATP (1 mM) and HgCl2 (20 μg/L) decreased survival when compared to ATP 1 mM. The antagonist A740003 (300 and 500 nM) increased the survival time, and reversed the mortality caused by ATP and HgCl2 in association. Quantitative real time PCR showed a decrease of P2X7R expression in the larvae treated with HgCl2 (20 μg/L). Evaluating the oxidative stress our results showed decreased CAT (catalase) activity and increased MDA (malondialdehyde) levels. Of note, the combination of ATP with HgCl2 showed an additive effect. This study provides novel evidence on the possible mechanisms underlying the toxicity induced by mercury, indicating that it is able to modulate P2X7R in zebrafish larvae.

  14. Pharmacological evidence for the stimulation of NADPH oxidase by P2X7 receptors in mouse submandibular glands

    PubMed Central

    Seil, Michèle; Fontanils, Unai; Etxebarria, Irantzu Gorrono; Pochet, Stéphanie; Garcia-Marcos, Mikel; Marino, Aida

    2008-01-01

    ATP in the 100 μM-1 mM concentration range provoked a calcium-independent increase of the oxidation of dichlorodihydrofluorescein (DCFH) to dichlorofluorescein (DCF) by mouse submandibular cells. 3′-O-(4-benzoyl)benzoyl adenosine 5′-triphosphate (BzATP), a P2X7 agonist, but not a muscarinic or an adrenergic agonist, reproduced the effect of ATP. The inhibition of phospholipase C by U73122 or the potentiation of P2X4 receptor activation with ivermectin did not modify the response to ATP. ATP did not increase the oxidation of DCFH in cells isolated from submandibular glands of P2X7 knockout mice or in cells pretreated with a P2X7 antagonist. The inhibition of protein kinase C or of mitogen-activated protein kinase (MAP kinase) or of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase blocked the oxidation of DCFH without affecting the increase of the intracellular concentration of calcium or the uptake of ethidium bromide in response to extracellular ATP. From these results it is concluded that the activation of the P2X7 receptors from submandibular glands triggers an intracellular signalling cascade involving protein kinase C and MAP kinase leading to the stimulation of NADPH oxidase and the subsequent generation of reactive oxygen species. PMID:18581262

  15. Purinergic P2X7 receptor functional genetic polymorphisms are associated with the susceptibility to osteoporosis in Chinese postmenopausal women.

    PubMed

    Xu, Hong; Gong, Chengxin; He, Luling; Rao, Shenqiang; Liu, Xingzi; Nie, Yijun; Liu, Changle; Li, Tao; Ding, Lu; Tu, Yunming; Yang, Yuping; Hu, Fangfang; Fan, Yongfang; Wang, Hui; Wang, Shuo; Xiong, Chaopeng; Zhong, Peipei; Tang, Lan; Liang, Shangdong

    2017-05-11

    Osteoporosis (OP) is a major public health problem worldwide. Genetic factors are considered to be major contributors to the pathogenesis of OP. The purinergic P2X7 receptor (P2X7R) has been shown to play a role in the regulation of osteoblast and osteoclast activity and has been considered as an important candidate gene for OP. A case-control study was performed to investigate the associations of functional single nucleotide polymorphisms (SNPs) in the P2X7R gene (rs2393799, rs7958311, rs1718119, rs2230911, and rs3751143) with susceptibility to OP in 400 Chinese OP patients and 400 controls. Results showed that rs3751143 was associated with OP; in particular, carriers of the C allele and CC/(AC + CC) genotypes were at a higher risk of OP, but no significant association of rs2230911, rs7958311, rs1718119, and rs2393799 with OP risk was observed. Analysis of the haplotypes revealed one haplotype (rs1718119G-rs2230911G-rs3751143C) that appeared to be a significant "risk" haplotype with OP. The rs3751143 polymorphism was associated with osteoclast apoptosis; ATP-induced caspase-1 activity of osteoclasts with AC and CC genotypes is lower than that of osteoclasts with AA genotype in vitro. The findings suggest that the P2X7R rs3751143 functional polymorphism might contribute to OP susceptibility in Chinese postmenopausal women.

  16. The ATP-Gated P2X7 Receptor As a Target for the Treatment of Drug-Resistant Epilepsy

    PubMed Central

    Beamer, Edward; Fischer, Wolfgang; Engel, Tobias

    2017-01-01

    Despite the progress made in the development of new antiepileptic drugs (AEDs), the biggest challenges that epilepsy presents to drug development have remained unchanged for the last 80 years: finding a treatment with potential for modifying disease progression and reducing the percentage of patients resistant to all pharmacological interventions. The mechanism of action of the majority of AEDs is based on blocking Na+ and/or Ca2+ channels, promotion of GABA or inhibition of glutamate signaling. In order for further progress to be made, however, a fuller picture of epilepsy will need to be considered, including changes to blood–brain barrier permeability, synaptic plasticity, network reorganization, and gliosis. In particular, brain inflammation has attracted much attention over recent years. Emerging evidence demonstrates a causal role for brain inflammation in lowering seizure thresholds and driving epileptogenesis. Consistent with this, intervening in pro-inflammatory cascades has shown promise in animal models of epilepsy, with clinical trials of anti-inflammatory agents already underway. The ATP-gated purinergic P2X7 receptor (P2X7) has been proposed as a novel drug target for a host of neurological conditions, including epilepsy. Constitutive expression of P2X7 in the CNS is mainly on microglia, but neuronal and astroglial expression has also been suggested. Its function as a gatekeeper of inflammation is most clearly understood, however, it also plays a number of other important roles pertinent to icto- and epileptogenesis: depolarization of the cell membrane, release of macromolecules, induction of apoptosis and synaptic reorganization. Changes in P2X7 expression have been reported following prolonged seizures (status epilepticus) and during chronic epilepsy in both experimental models and patients. While much of the early work focused on the study of P2X7 during status epilepticus, there is now mounting data showing involvement of this receptor during

  17. 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier integrity through a mechanism involving P2X7 receptors.

    PubMed

    Rubio-Araiz, Ana; Perez-Hernandez, Mercedes; Urrutia, Andrés; Porcu, Francesca; Borcel, Erika; Gutierrez-Lopez, Maria Dolores; O'Shea, Esther; Colado, Maria Isabel

    2014-08-01

    The recreational drug 3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy') produces a neuro-inflammatory response in rats characterized by an increase in microglial activation and IL-1β levels. The integrity of the blood-brain barrier (BBB) is important in preserving the homeostasis of the brain and has been shown to be affected by neuro-inflammatory processes. We aimed to study the effect of a single dose of MDMA on the activity of metalloproteinases (MMPs), expression of extracellular matrix proteins, BBB leakage and the role of the ionotropic purinergic receptor P2X7 (P2X7R) in the changes induced by the drug. Adult male Dark Agouti rats were treated with MDMA (10 mg/kg, i.p.) and killed at several time-points in order to evaluate MMP-9 and MMP-3 activity in the hippocampus and laminin and collagen-IV expression and IgG extravasation in the dentate gyrus. Microglial activation, P2X7R expression and localization were also determined in the dentate gyrus. Separate groups were treated with MDMA and the P2X7R antagonists Brilliant Blue G (BBG; 50 mg/kg, i.p.) or A-438079 (30 mg/kg, i.p.). MDMA increased MMP-3 and MMP-9 activity, reduced laminin and collagen-IV expression and increased IgG immunoreactivity. In addition, MDMA increased microglial activation and P2X7R immunoreactivity in these cells. BBG suppressed the increase in MMP-9 and MMP-3 activity, prevented basal lamina degradation and IgG extravasation into the brain parenchyma. A-438079 also prevented the MDMA-induced reduction in laminin and collagen-IV immunoreactivity. These results indicate that MDMA alters BBB permeability through an early P2X7R-mediated event, which in turn leads to enhancement of MMP-9 and MMP-3 activity and degradation of extracellular matrix.

  18. ATP induces P2X7 receptor-independent cytokine and chemokine expression through P2X1 and P2X3 receptors in murine mast cells.

    PubMed

    Bulanova, Elena; Budagian, Vadim; Orinska, Zane; Koch-Nolte, Friedrich; Haag, Friedrich; Bulfone-Paus, Silvia

    2009-04-01

    Extracellular ATP mediates a diverse array of biological responses in many cell types and tissues, including immune cells. We have demonstrated that ATP induces purinergic receptor P2X(7) mediated membrane permeabilization, apoptosis, and cytokine expression in murine mast cells (MCs). Here, we report that MCs deficient in the expression of the P2X(7) receptor are resistant to the ATP-induced membrane permeabilization and apoptosis. However, ATP affects the tyrosine phosphorylation pattern of P2X(7)knockout cells, leading to the activation of ERK1/2. Furthermore, ATP induces expression of several cytokines and chemokines in these cells, including IL-4, IL-6, IFN-gamma, TNF-alpha, RANTES, and MIP-2, at the mRNA level. In addition, the release of IL-6 and IL-13 to cell-conditioned medium was confirmed by ELISA. The ligand selectivity and pharmacological profile indicate the involvement of two P2X family receptors, P2X(1) and P2X(3). Thus, depending on genetic background, particular tissue microenvironment, and ATP concentration, MCs can presumably engage different P2X receptor subtypes, which may result in functionally distinct biological responses to extracellular nucleotides. This finding highlights a novel level of complexity in the sophisticated biology of MCs and may facilitate the development of new therapeutic approaches to modulate MC activities.

  19. Evaluation of P2X7 receptor expression in peripheral lymphocytes and immune profile from patients with indeterminate form of Chagas disease.

    PubMed

    Souza, Viviane do Carmo Gonçalves; Dos Santos, Joabel Tonellotto; Cabral, Fernanda Licker; Barbisan, Fernanda; Azevedo, Maria Isabel; Dias Carli, Luiz Felipe; de Avila Botton, Sonia; Dos Santos Jaques, Jeandre Augusto; Rosa Leal, Daniela Bitencourt

    2017-03-01

    Chagas disease (CD) is caused by Trypanosoma cruzi, an intracellular protozoan which is a potent stimulator of cell-mediated immunity. In the indeterminate form of CD (IFCD) a modulation between pro- and anti-inflammatory responses establishes a host-parasite adaptation. It was previously demonstrated that purinergic ecto-enzymes regulates extracellular ATP and adenosine levels, influencing immune and inflammatory processes during IFCD. In inflammatory sites ATP, as well as its degradation product, adenosine, function as signaling molecules and immunoregulators through the activation of purinergic receptors. In this work, it was analyzed the gene and protein expression of P2X7 purinergic receptor in peripheral lymphocytes and serum immunoregulatory cytokines from IFCD patients. Gene and protein expression of P2X7 receptor (P2X7R), and serum cytokines (IL-2, IL-10, IL-17 and IFN-γ) were unaltered. However, IFCD group showed significantly higher IL-4 and IL-6 levels while TNF-α was significantly decreased. These results indicate that imune profile of IFCD patients displays anti-inflammatory characteristics, consistent with the establishment of an immunomodulatory response. Further study about the molecular knowledge of P2X7R in IFCD is useful to clarify the participation of purinergic system in the regulatory mechanism which avoid the progression of CD.

  20. Contribution of the Purinergic Receptor P2X7 to Development of Lung Immunopathology during Influenza Virus Infection

    PubMed Central

    Ermler, Megan E.; Schotsaert, Michael; Gonzalez, Ma G.; Gillespie, Virginia; Lim, Jean K.; García-Sastre, Adolfo

    2017-01-01

    ABSTRACT An exacerbated immune response is one of the main causes of influenza-induced lung damage during infection. The molecular mechanisms regulating the fate of the initial immune response to infection, either as a protective response or as detrimental immunopathology, are not well understood. The purinergic receptor P2X7 is an ionotropic nucleotide-gated ion channel receptor expressed on immune cells that has been implicated in induction and maintenance of excessive inflammation. Here, we analyze the role of this receptor in a mouse model of influenza virus infection using a receptor knockout (KO) mouse strain. Our results demonstrate that the absence of the P2X7 receptor results in a better outcome to influenza virus infection characterized by reduced weight loss and increased survival upon experimental influenza challenge compared to wild-type mice. This effect was not virus strain specific. Overall lung pathology and apoptosis were reduced in virus-infected KO mice. Production of proinflammatory cytokines and chemokines such as interleukin-10 (IL-10), gamma interferon (IFN-γ), and CC chemokine ligand 2 (CCL2) was also reduced in the lungs of the infected KO mice. Infiltration of neutrophils and depletion of CD11b+ macrophages, characteristic of severe influenza virus infection in mice, were lower in the KO animals. Together, these results demonstrate that activation of the P2X7 receptor is involved in the exacerbated immune response observed during influenza virus infection. PMID:28351919

  1. FasL-triggered death of Jurkat cells requires caspase 8-induced, ATP-dependent cross-talk between Fas and the purinergic receptor P2X(7).

    PubMed

    Aguirre, Adam; Shoji, Kenji F; Sáez, Juan C; Henríquez, Mauricio; Quest, Andrew F G

    2013-02-01

    Fas ligation via the ligand FasL activates the caspase-8/caspase-3-dependent extrinsic death pathway. In so-called type II cells, an additional mechanism involving tBid-mediated caspase-9 activation is required to efficiently trigger cell death. Other pathways linking FasL-Fas interaction to activation of the intrinsic cell death pathway remain unknown. However, ATP release and subsequent activation of purinergic P2X(7) receptors (P2X(7)Rs) favors cell death in some cells. Here, we evaluated the possibility that ATP release downstream of caspase-8 via pannexin1 hemichannels (Panx1 HCs) and subsequent activation of P2X(7)Rs participate in FasL-stimulated cell death. Indeed, upon FasL stimulation, ATP was released from Jurkat cells in a time- and caspase-8-dependent manner. Fas and Panx1 HCs colocalized and inhibition of the latter, but not connexin hemichannels, reduced FasL-induced ATP release. Extracellular apyrase, which hydrolyzes ATP, reduced FasL-induced death. Also, oxidized-ATP or Brilliant Blue G, two P2X(7)R blockers, reduced FasL-induced caspase-9 activation and cell death. These results represent the first evidence indicating that the two death receptors, Fas and P2X(7)R connect functionally via caspase-8 and Panx1 HC-mediated ATP release to promote caspase-9/caspase-3-dependent cell death in lymphoid cells. Thus, a hitherto unsuspected route was uncovered connecting the extrinsic to the intrinsic pathway to amplify death signals emanating from the Fas receptor in type II cells. Copyright © 2012 Wiley Periodicals, Inc.

  2. Tanshinone II A sulfonate, but not tanshinone II A, acts as potent negative allosteric modulator of the human purinergic receptor P2X7.

    PubMed

    Kaiser, M; Sobottka, H; Fischer, W; Schaefer, M; Nörenberg, W

    2014-09-01

    Tanshinone II A sulfonate (TIIAS) was identified as a potent, selective blocker of purinergic receptor P2X7 in a compound library screen. In this study, a detailed characterization of the pharmacologic effects of TIIAS on P2X7 is provided. Because TIIAS is a derivative of tanshinone II A (TIIA) and both compounds have been used interchangeably, TIIA was included in some assays. Fluorometric and electrophysiologic assays were used to characterize effects of TIIAS and TIIA on recombinantly expressed human, rat, and mouse P2X7. Results were confirmed in human monocyte-derived macrophages expressing native P2X7. In all experiments, involvement of P2X7 was verified using established P2X7 antagonists. TIIAS, but not TIIA, reduces Ca(2+) influx via human P2X7 (hP2X7) with an IC50 of 4.3 µM. TIIAS was less potent at mouse P2X7 and poorly inhibited rat P2X7. Monitoring of YO-PRO-1 uptake confirmed these findings, indicating that formation of the hP2X7 pore is also suppressed by TIIAS. Electrophysiologic experiments revealed a noncompetitive mode of action. TIIAS time-dependently inhibits hP2X7 gating, possibly by binding to the intracellular domain of the receptor. Inhibition of native P2X7 in macrophages by TIIAS was confirmed by monitoring Ca(2+) influx, YO-PRO-1 uptake, and release of the proinflammatory cytokine interleukin-1β. Fluorometric experiments involving recombinantly expressed rat P2X2 and human P2X4 were conducted and verified the compound's selectivity. Our data suggest that hP2X7 is a molecular target of TIIAS, but not of TIIA, a compound with different pharmacologic properties.

  3. P2 Receptors for Extracellular Nucleotides in the Central Nervous System: Role of P2X7 and P2Y2 Receptor Interactions in Neuroinflammation

    PubMed Central

    Weisman, Gary A.; Camden, Jean M.; Peterson, Troy S.; Ajit, Deepa V.; Woods, Lucas T.; Erb, Laurie

    2012-01-01

    Extracellular nucleotides induce cellular responses in the central nervous system (CNS) through the activation of ionotropic P2X and metabotropic P2Y nucleotide receptors. Activation of these receptors regulates a wide range of physiological and pathological processes. In this review, we present an overview of the current literature regarding P2X and P2Y receptors in the CNS with a focus on the contribution of P2X7 and P2Y2 receptor-mediated responses to neuroinflammatory and neuroprotective mechanisms. PMID:22467178

  4. Effect of P2X4 and P2X7 receptor antagonism on the pressure diuresis relationship in rats

    PubMed Central

    Menzies, Robert I.; Unwin, Robert J.; Dash, Ranjan K.; Beard, Daniel A.; Cowley Jr., Allen W.; Carlson, Brian E.; Mullins, John J.; Bailey, Matthew A.

    2013-01-01

    Reduced glomerular filtration, hypertension and renal microvascular injury are hallmarks of chronic kidney disease, which has a global prevalence of ~10%. We have shown previously that the Fischer (F344) rat has lower GFR than the Lewis rat, and is more susceptible to renal injury induced by hypertension. In the early stages this injury is limited to the pre-glomerular vasculature. We hypothesized that poor renal hemodynamic function and vulnerability to vascular injury are causally linked and genetically determined. In the present study, normotensive F344 rats had a blunted pressure diuresis relationship, compared with Lewis rats. A kidney microarray was then interrogated using the Endeavour enrichment tool to rank candidate genes for impaired blood pressure control. Two novel candidate genes, P2rx7 and P2rx4, were identified, having a 7− and 3− fold increased expression in F344 rats. Immunohistochemistry localized P2X4 and P2X7 receptor expression to the endothelium of the pre-glomerular vasculature. Expression of both receptors was also found in the renal tubule; however there was no difference in expression profile between strains. Brilliant Blue G (BBG), a relatively selective P2X7 antagonist suitable for use in vivo, was administered to both rat strains. In Lewis rats, BBG had no effect on blood pressure, but increased renal vascular resistance, consistent with inhibition of some basal vasodilatory tone. In F344 rats BBG caused a significant reduction in blood pressure and a decrease in renal vascular resistance, suggesting that P2X7 receptor activation may enhance vasoconstrictor tone in this rat strain. BBG also reduced the pressure diuresis threshold in F344 rats, but did not alter its slope. These preliminary findings suggest a physiological and potential pathophysiological role for P2X7 in controlling renal and/or systemic vascular function, which could in turn affect susceptibility to hypertension-related kidney damage. PMID:24187541

  5. A reassessment of P2X7 receptor inhibition as a neuroprotective strategy in rat models of contusion injury.

    PubMed

    Marcillo, Alexander; Frydel, Beata; Bramlett, Helen M; Dietrich, W Dalton

    2012-02-01

    These experiments were completed as part of an NIH "Facilities of Research Excellence in Spinal Cord Injury" contract to support independent replication of published studies that could be considered for eventual clinical testing. Recent studies have reported that selective inhibition of the P2X7 receptor improves both the functional and histopathological consequences of a contusive spinal cord injury (SCI) in rats. We repeated two published studies reporting the beneficial effects of pyridoxal-5'-phosphate-6-azophenyl-2'-4'-disulphonic acid (PPADS) or Brilliant blue G (BBG) treatment after SCI (Wang et al., 2004 and Peng et al., 2009). Mild thoracic SCI was first produced in Experiment 1 by means of the MASCIS impactor at T10 (height 6.25 mm, weight 10 g) followed by intraspinal administration of a P2X7 antagonist (2 μl/10 mM) after injury. Treatment with PPADS or another highly selective P2X7R antagonist Brilliant Blue G (BBG) (2 μl/02 mM) did not improve locomotive (BBB rating scale) over a 7 week period compared to vehicle treated rats. Also, secondary histopathological changes in terms of overall lesion and cavity volume were not significantly different between the PPADS, BBG, and vehicle treated animals. In the second experiment, the systemic administration of BBG (10 or 50 mg/kg, iv) 15 min, 24 and 72 h after moderate (12.5 mm) SCI failed to significantly improve motor recovery or histopathological outcome over the 6 week observational period. Although we cannot conclude that there will be no long-term beneficial effects in other spinal cord injury models using selective P2X7 receptor antagonists at different doses or treatment durations, we caution researchers that this potentially exciting therapy requires further preclinical investigations before the implementation of clinical trials targeting severe SCI patients.

  6. A Reassessment of P2X7 Receptor Inhibition as a Neuroprotective Strategy in Rat Models of Contusion Injury

    PubMed Central

    Marcillo, Alexander; Frydel, Beata; Bramlett, Helen M.; Dietrich, W. Dalton

    2011-01-01

    These experiments were completed as part of an NIH “Facilities of Research Excellence in Spinal Cord Injury” contract to support independent replication of published studies that could be considered for eventual clinical testing. Recent studies have reported that selective inhibition of the P2X7 receptor improves both the functional and histopathological consequences of a contusive spinal cord injury (SCI) in rats. We repeated two published studies reporting the beneficial effects of pyridoxal-5′-phosphate-6-azophenyl-2′-4′-disulphonic acid (PPADS) or Brilliant blue G (BBG) treatment after SCI (Wang et al., 2004 and Peng et al., 2009). Mild thoracic SCI was first produced in Experiment 1 by means of the MASCIS impactor at T10 (height 6.25 mm, weight 10 gm) followed by intraspinal administration of a P2X7 antagonist (2 μl/10mM) after injury. Treatment with PPADS or another highly selective P2X7R antagonist Brilliant Blue G (BBG) (2 μl/02mM) did not improve locomotive (BBB rating scale) over a 7 week period compared to vehicle treated rats. Also, secondary histopathological changes in terms of overall lesion and cavity volume were not significantly different between the PPADS, BBG, and vehicle treated animals. In the second experiment, the systemic administration of BBG (10 or 50 mg/kg, iv) 15 min, 24 and 72 hours after moderate (12.5 mm) SCI failed to significantly improve motor recovery or histopathological outcome over the 6 week observational period. Although we cannot conclude that there will be no long-term beneficial effects in other spinal cord injury models using selective P2X7 receptor antagonists at different doses or treatment durations, we caution researchers that this potentially exciting therapy requires further preclinical investigations before the implementation of clinical trials targeting severe SCI patients. PMID:22078760

  7. Resilience and reduced c-Fos expression in P2X7 receptor knockout mice exposed to repeated forced swim test.

    PubMed

    Boucher, A A; Arnold, J C; Hunt, G E; Spiro, A; Spencer, J; Brown, C; McGregor, I S; Bennett, M R; Kassiou, M

    2011-08-25

    There is considerable evidence suggesting genetic factors play an important role in the pathophysiology of depression, possibly by increasing susceptibility to repeated environmental stressors. Recent linkage studies have associated a polymorphism of the gene coding for the P2X7 receptor (P2X7R) with both major depressive disorder and bipolar disorder. Here we assessed whether P2X7 deletion affected the behavioural and neural response to repeated stress. P2X7R knockout (P2X7-/-) mice were subjected to the forced swim test for three consecutive days and neuronal activation in response to the third exposure was assessed using c-Fos immunohistochemistry. In addition, anxiety was evaluated in another group of P2X7-/- mice using the elevated plus maze (EPM) and light dark emergence (LDE) tests. Equivalent levels of immobility were observed in P2X7-/- mice and wild-type (WT) mice on the first exposure to forced swim, but much greater immobility was seen in WT mice on second and third exposures. This suggests that P2X7-/- mice exhibit an impaired adaptive coping response to repeated stress. Reinforcing this view, c-Fos expression in the dentate gyrus of the hippocampus and in the basolateral amygdala was seen in WT mice but not P2X7-/- mice following repeated forced swim. In addition, decreased locomotor activity was detected in P2X7-/- mice without any specific effects on anxiety in the LDE test. However, P2X7-/- mice showed greater anxiety-like behaviour in the EPM. These data suggest that the P2X7R may be involved in the adaptive mechanisms elicited by exposure to repeated environmental stressors that leads to the development of depression-like behaviours. This suggests that P2X7R antagonists may be useful therapeutics for the treatment of major depression, possibly by increasing resilience in the face of repeated stress.

  8. Identification of a P2X7 receptor in GH(4)C(1) rat pituitary cells: a potential target for a bioactive substance produced by Pfiesteria piscicida.

    PubMed

    Kimm-Brinson, K L; Moeller, P D; Barbier, M; Glasgow, H; Burkholder, J M; Ramsdell, J S

    2001-05-01

    We examined the pharmacologic activity of a putative toxin (pPfTx) produced by Pfiesteria piscicida by characterizing the signaling pathways that induce the c-fos luciferase construct in GH(4)C(1) rat pituitary cells. Adenosine-5'-triphosphate (ATP) was determined to increase and, at higher concentrations, decrease luciferase activity in GH(4)C(1) rat pituitary cells that stably express c-fos luciferase. The inhibition of luciferase results from cytotoxicity, characteristic of the putative P. piscicida toxin (pPfTx). The actions of both pPfTx and ATP to induce c-fos luciferase were inhibited by the purinogenic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Further characterization of a P2X receptor on the GH(4)C(1) cell was determined by the analog selectivity of P2X agonists. The P2X1/P2X3 agonist alpha,beta-methylene ATP (alpha,beta-MeATP) failed to increase or decrease c-fos luciferase. However, the P2X7 agonist 2',3'-(4-benzoyl)benzoyl ATP (BzATP), which had a predominant cytotoxic effect, was more potent than ATP. Immunoblot analysis of GH(4)C(1) cell membranes confirmed the presence of a 70-kDa protein that was immunoreactive to an antibody directed against the carboxy-terminal domain unique to the P2X7 receptor. The P2X7 irreversible antagonist oxidized-ATP (oxATP) inhibited the action of ATP, BzATP, and pPfTx. These findings indicate that GH(4)C(1) cells express purinogenic receptors with selectivity consistent with the P2X7 subtype and that this receptor pathway mediates the induction of the c-fos luciferase reporter gene by ATP and the putative Pfiesteria toxin

  9. Identification of a P2X7 receptor in GH(4)C(1) rat pituitary cells: a potential target for a bioactive substance produced by Pfiesteria piscicida.

    PubMed Central

    Kimm-Brinson, K L; Moeller, P D; Barbier, M; Glasgow, H; Burkholder, J M; Ramsdell, J S

    2001-01-01

    We examined the pharmacologic activity of a putative toxin (pPfTx) produced by Pfiesteria piscicida by characterizing the signaling pathways that induce the c-fos luciferase construct in GH(4)C(1) rat pituitary cells. Adenosine-5'-triphosphate (ATP) was determined to increase and, at higher concentrations, decrease luciferase activity in GH(4)C(1) rat pituitary cells that stably express c-fos luciferase. The inhibition of luciferase results from cytotoxicity, characteristic of the putative P. piscicida toxin (pPfTx). The actions of both pPfTx and ATP to induce c-fos luciferase were inhibited by the purinogenic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). Further characterization of a P2X receptor on the GH(4)C(1) cell was determined by the analog selectivity of P2X agonists. The P2X1/P2X3 agonist alpha,beta-methylene ATP (alpha,beta-MeATP) failed to increase or decrease c-fos luciferase. However, the P2X7 agonist 2',3'-(4-benzoyl)benzoyl ATP (BzATP), which had a predominant cytotoxic effect, was more potent than ATP. Immunoblot analysis of GH(4)C(1) cell membranes confirmed the presence of a 70-kDa protein that was immunoreactive to an antibody directed against the carboxy-terminal domain unique to the P2X7 receptor. The P2X7 irreversible antagonist oxidized-ATP (oxATP) inhibited the action of ATP, BzATP, and pPfTx. These findings indicate that GH(4)C(1) cells express purinogenic receptors with selectivity consistent with the P2X7 subtype and that this receptor pathway mediates the induction of the c-fos luciferase reporter gene by ATP and the putative Pfiesteria toxin PMID:11401756

  10. Shockwaves increase T-cell proliferation and IL-2 expression through ATP release, P2X7 receptors, and FAK activation.

    PubMed

    Yu, Tiecheng; Junger, Wolfgang G; Yuan, Changji; Jin, An; Zhao, Yi; Zheng, Xueqing; Zeng, Yanjun; Liu, Jianguo

    2010-03-01

    Shockwaves elicited by transient pressure disturbances are used to treat musculoskeletal disorders. Previous research has shown that shockwave treatment affects T-cell function, enhancing T-cell proliferation and IL-2 expression by activating p38 mitogen-activated protein kinase (MAPK) signaling. Here we investigated the signaling pathway by which shockwaves mediate p38 MAPK phosphorylation. We found that shockwaves at an intensity of 0.18 mJ/mm(2) induce the release of extracellular ATP from human Jurkat T-cells at least in part by affecting cell viability. ATP released into the extracellular space stimulates P2X7-type purinergic receptors that induce the activation of p38 MAPK and of focal adhesion kinase (FAK) by phosphorylation on residues Tyr397 and Tyr576/577. Elimination of released ATP with apyrase or inhibition of P2X7 receptors with the antagonists KN-62 or suramin significantly weakens FAK phosphorylation, p38 MAPK activation, IL-2 expression, and T-cell proliferation. Conversely, addition of exogenous ATP causes phosphorylation of FAK and p38 MAPK. Silencing of FAK expression also reduces these cell responses to shockwave treatment. We conclude that shockwaves enhance p38 MAPK activation, IL-2 expression, and T-cell proliferation via the release of cellular ATP and feedback mechanisms that involve P2X7 receptor activation and FAK phosphorylation.

  11. P2X7 receptor activates multiple selective dye-permeation pathways in RAW 264.7 and human embryonic kidney 293 cells.

    PubMed

    Cankurtaran-Sayar, Serife; Sayar, Kemal; Ugur, Mehmet

    2009-12-01

    P2X7 receptor has gained an increasing importance as a drug target. One important response to P2X7 receptor stimulation is the uptake of large molecular weight tracers into cells. However, mechanism for this response is not understood clearly, but it is generally believed that a nonselective large pore protein forms this P2X7 receptor-activated permeability pathway. We examined human embryonic kidney (HEK) 293 cells transfected with rat P2X7 receptors (HEK-rP2X7) and a macrophage derived cell line, RAW 264.7, that expresses an endogenous P2X7 receptor. We used confocal microscopy to investigate uptake of different types of dyes into these cells after ATP application. Stimulation of P2X7 receptors in HEK-rP2X7 cells activated two different dye uptake pathways. The first was permeable to the cationic fluorescent dyes YO-PRO-1 and TO-TO-1 but not to the anionic dyes lucifer yellow and calcein and did not require intracellular Ca2+ concentration ([Ca2+](i)) increase to be activated. The second pathway permeated only lucifer yellow and was completely dependent on [Ca2+](i) for activation. In RAW 264.7 cells, P2X7 receptor stimulation activated uptake of ethidium, YO-PRO-1, TO-TO-1, lucifer yellow, and calcein. Again, two different permeation pathways were discerned in RAW 264.7 cells: one permeated only ethidium and the other one, only lucifer yellow. We did observed no clear [Ca2+](i) dependence for these permeation pathways. Our results demonstrate that instead of a single nonselective pore, P2X7 receptor seems to activate at least two permeation pathways, one for cationic and one for anionic dyes with different activation properties.

  12. Subfailure Overstretch Injury Leads to Reversible Functional Impairment and Purinergic P2X7 Receptor Activation in Intact Vascular Tissue

    PubMed Central

    Luo, Weifeng; Guth, Christy M.; Jolayemi, Olukemi; Duvall, Craig L.; Brophy, Colleen Marie; Cheung-Flynn, Joyce

    2016-01-01

    Vascular stretch injury is associated with blunt trauma, vascular surgical procedures, and harvest of human saphenous vein for use in vascular bypass grafting. A model of subfailure overstretch in rat abdominal aorta was developed to characterize surgical vascular stretch injury. Longitudinal stretch of rat aorta was characterized ex vivo. Stretch to the haptic endpoint, where the tissues would no longer lengthen, occurred at twice the resting length. The stress produced at this length was greater than physiologic mechanical forces but well below the level of mechanical disruption. Functional responses were determined in a muscle bath, and this subfailure overstretch injury led to impaired smooth muscle function that was partially reversed by treatment with purinergic receptor (P2X7R) antagonists. These data suggest that vasomotor dysfunction caused by subfailure overstretch injury may be due to the activation of P2X7R. These studies have implications for our understanding of mechanical stretch injury of blood vessels and offer novel therapeutic opportunities. PMID:27747211

  13. Lipopolysaccharide induces alveolar macrophage necrosis via CD14 and the P2x7 receptor leading to Interleukin-1α release

    PubMed Central

    Dagvadorj, Jargalsaikhan; Shimada, Kenichi; Chen, Shuang; Jones, Heather D.; Tumurkhuu, Gantsetseg; Zhang, Wenxuan; Wawrowsky, Kolja A.; Crother, Timothy R.; Arditi, Moshe

    2015-01-01

    SUMMARY Acute lung injury (ALI) remains a serious health issue with little improvement in our understanding of the pathophysiology and therapeutic approaches. We investigated the mechanism that lipopolysaccharide (LPS) induces early neutrophil recruitment to lungs and increases pulmonary vascular permeability during ALI. Intratracheal LPS induced release of pro-interleukin-1α (IL-1α) from necrotic alveolar macrophages (AM), which activated endothelial cells (EC) to induce vascular leakage via loss of vascular endothelial (VE)-cadherin. LPS triggered the AM purinergic receptor P2X7(R) to induce Ca2+ influx and ATP depletion, which led to necrosis. P2X7R deficiency significantly reduced necrotic death of AM and release of pro-IL-1α into the lung. CD14 was required for LPS binding to P2X7R, as CD14 neutralization significantly diminished LPS induced necrotic death of AM and pro-IL-1α release. These results demonstrate a key role for pro-IL-1α from necrotic alveolar macrophages in LPS-mediated ALI, as a critical initiator of increased vascular permeability and early neutrophil infiltration. PMID:25862090

  14. Lipopolysaccharide Induces Alveolar Macrophage Necrosis via CD14 and the P2X7 Receptor Leading to Interleukin-1α Release.

    PubMed

    Dagvadorj, Jargalsaikhan; Shimada, Kenichi; Chen, Shuang; Jones, Heather D; Tumurkhuu, Gantsetseg; Zhang, Wenxuan; Wawrowsky, Kolja A; Crother, Timothy R; Arditi, Moshe

    2015-04-21

    Acute lung injury (ALI) remains a serious health issue with little improvement in our understanding of the pathophysiology and therapeutic approaches. We investigated the mechanism that lipopolysaccharide (LPS) induces early neutrophil recruitment to lungs and increases pulmonary vascular permeability during ALI. Intratracheal LPS induced release of pro-interleukin-1α (IL-1α) from necrotic alveolar macrophages (AM), which activated endothelial cells (EC) to induce vascular leakage via loss of vascular endothelial (VE)-cadherin. LPS triggered the AM purinergic receptor P2X7(R) to induce Ca(2+) influx and ATP depletion, which led to necrosis. P2X7R deficiency significantly reduced necrotic death of AM and release of pro-IL-1α into the lung. CD14 was required for LPS binding to P2X7R, as CD14 neutralization significantly diminished LPS induced necrotic death of AM and pro-IL-1α release. These results demonstrate a key role for pro-IL-1α from necrotic alveolar macrophages in LPS-mediated ALI, as a critical initiator of increased vascular permeability and early neutrophil infiltration.

  15. P2X7 Receptor Suppression Preserves Blood-Brain Barrier through Inhibiting RhoA Activation after Experimental Intracerebral Hemorrhage in Rats.

    PubMed

    Zhao, Hengli; Zhang, Xuan; Dai, Zhiqiang; Feng, Yang; Li, Qiang; Zhang, John H; Liu, Xin; Chen, Yujie; Feng, Hua

    2016-03-16

    Blockading P2X7 receptor(P2X7R) provides neuroprotection toward various neurological disorders, including stroke, traumatic brain injury, and subarachnoid hemorrhage. However, whether and how P2X7 receptor suppression protects blood-brain barrier(BBB) after intracerebral hemorrhage(ICH) remains unexplored. In present study, intrastriatal autologous-blood injection was used to mimic ICH in rats. Selective P2X7R inhibitor A438079, P2X7R agonist BzATP, and P2X7R siRNA were administrated to evaluate the effects of P2X7R suppression. Selective RhoA inhibitor C3 transferase was administered to clarify the involvement of RhoA. Post-assessments, including neurological deficits, Fluoro-Jade C staining, brain edema, Evans blue extravasation and fluorescence, western blot, RhoA activity assay and immunohistochemistry were performed. Then the key results were verified in collagenase induced ICH model. We found that endogenous P2X7R increased at 3 hrs after ICH with peak at 24 hrs, then returned to normal at 72 hrs after ICH. Enhanced immunoreactivity was observed on the neurovascular structure around hematoma at 24 hrs after ICH, along with perivascular astrocytes and endothelial cells. Both A438079 and P2X7R siRNA alleviated neurological deficits, brain edema, and BBB disruption after ICH, in association with RhoA activation and down-regulated endothelial junction proteins. However, BzATP abolished those effects. In addition, C3 transferase reduced brain injury and increased endothelial junction proteins' expression after ICH. These data indicated P2X7R suppression could preserve BBB integrity after ICH through inhibiting RhoA activation.

  16. Activation of macrophages by P2X7-induced microvesicles from myeloid cells is mediated by phospholipids and is partially dependent on TLR4

    PubMed Central

    Thomas, L. Michael; Salter, Russell D.

    2010-01-01

    ATP-mediated activation of the purinergic receptor P2X7 elicits morphological changes and pro-inflammatory responses in macrophages. These changes include rapid shedding of microvesicles (MV), and the non-conventional secretion of cytokines, such as IL-1β and IL-18 following priming. Here we demonstrate the activation potential of P2X7-induced MV isolated from non-primed murine macrophages. Co-treatment of non-primed macrophages with ATP and calcium ionophore induced a rapid release of MV that were predominantly 0.5–1 μm in size. Exposure of primary murine bone marrow-derived macrophages to these MV resulted in co-stimulatory receptor upregulation and TNF-α secretion. Cell homogenates or supernatants cleared of MV did not activate macrophages. MV-mediated activation was p38 MAPK and NF-κB-dependent, and partially dependent on TLR4 activity, but was HMGB1 independent. Biochemical fractionation of the MV demonstrated that the phospholipid fraction, not the protein fraction, mediated macrophage activation through a TLR4 dependent process. P2X7 activation is known to induce calcium independent phospholipase A2 (iPLA2), calcium dependent phospholipase A2 (cPLA2), and phospholipase D (PLD) activities, but inhibition of these enzymes did not inhibit MV generation or shedding. However, blocking PLD activity resulted in release of MV incapable of activating recipient macrophages. These data demonstrate a novel mechanism of macrophage activation resulting from exposure to MV from non-primed macrophages, and identifies phospholipids in these MV as the biologically active component. We suggest that phospholipids delivered by MV may be mediators of sterile inflammation in a number of diseases. PMID:20709956

  17. Evidence for associations between the purinergic receptor P2X7 (P2RX7) and toxoplasmosis

    PubMed Central

    Jamieson, Sarra E.; Peixoto-Rangel, Alba L.; Hargrave, Aubrey C.; de Roubaix, Lee-Anne; Mui, Ernest J.; Boulter, Nicola R.; Miller, E. Nancy; Fuller, Stephen J.; Wiley, James S.; Castellucci, Léa; Boyer, Kenneth; Peixe, Ricardo Guerra; Kirisits, Michael J.; de Souza Elias, Liliani; Coyne, Jessica J.; Correa-Oliveira, Rodrigo; Sautter, Mari; Smith, Nicholas C.; Lees, Michael P.; Swisher, Charles N.; Heydemann, Peter; Noble, A. Gwendolyn; Patel, Dushyant; Bardo, Dianna; Burrowes, Delilah; McLone, David; Roizen, Nancy; Withers, Shawn; Bahia-Oliveira, Lílian M. G.; McLeod, Rima; Blackwell, Jenefer M.

    2010-01-01

    Congenital Toxoplasma gondii infection can result in intracranial calcification, hydrocephalus, and retinochoroiditis. Acquired infection is commonly associated with ocular disease. Pathology is characterized by strong pro-inflammatory responses. Ligation of ATP by purinergic receptor P2X7, encoded by P2RX7, stimulates pro-inflammatory cytokines and can lead directly to killing of intracellular pathogens. To determine whether P2X7 plays a role in susceptibility to congenital toxoplasmosis, we examined polymorphisms at P2RX7 in 149 child/parent trios from North America. We found association (FBAT Z scores ±2.429; P= 0.015) between the derived C(+)G(−) allele (f= 0.68; OR= 2.06; 95% CI: 1.14–3.75) at SNP rs1718119 (1068T>C; Thr-348-Ala), and a second synonymous variant rs1621388 in linkage disequilibrium with it, and clinical signs of disease per se. Analysis of clinical sub-groups showed no association with hydrocephalus, with effect sizes for associations with retinal disease and brain calcifications enhanced (OR=3.0 to 4.25; 0.004

  18. P2X7 Receptors as a Transducer in the Co-Occurrence of Neurological/Psychiatric and Cardiovascular Disorders: A Hypothesis

    PubMed Central

    Skaper, Stephen D.; Giusti, Pietro

    2009-01-01

    Background. Over-stimulation of the purinergic P2X7 receptor may bring about cellular dysfunction and injury in settings of neurodegeneration, chronic inflammation, as well as in psychiatric and cardiovascular diseases. Here we speculate how P2X7 receptor over-activation may lead to the co-occurrence of neurological and psychiatric disorders with cardiovascular disorders. Presentation. We hypothesize that proinflammatory cytokines, in particular interleukin-1β, are key players in the pathophysiology of neurological, psychiatric, and cardiovascular diseases. Critically, this premise is based on a role for the P2X7 receptor in triggering a rise in these cytokines. Given the broad distribution of P2X7 receptors in nervous, immune, and vascular tissue cells, this receptor is proposed as central in linking the nervous, immune, and cardiovascular systems. Testing. Investigate, retrospectively, whether a bidirectional link can be established between illnesses with a proinflammatory component (e.g., inflammatory and chronic neuropathic pain) and cardiovascular disease, for example, hypertension, and whether patients treated with anti-inflammatory drugs have a lower incidence of disease complications. Positive outcome would indicate a prospective study to evaluate therapeutic efficacy of P2X7 receptor antagonists. Implications. It should be stressed that sufficient direct evidence does not exist at present supporting our hypothesis. However, a positive outcome would encourage the further development of P2X7 receptor antagonists and their application to limit the co-occurrence of neurological, psychiatric, and cardiovascular disorders. PMID:20029625

  19. P2X7 receptor drives Th1 cell differentiation and controls the follicular helper T cell population to protect against Plasmodium chabaudi malaria.

    PubMed

    Salles, Érika Machado de; Menezes, Maria Nogueira de; Siqueira, Renan; Borges da Silva, Henrique; Amaral, Eduardo Pinheiro; Castillo-Méndez, Sheyla Inés; Cunha, Isabela; Cassado, Alexandra Dos Anjos; Vieira, Flávia Sarmento; Olivieri, David Nicholas; Tadokoro, Carlos Eduardo; Alvarez, José Maria; Coutinho-Silva, Robson; D'Império-Lima, Maria Regina

    2017-08-01

    A complete understanding of the mechanisms underlying the acquisition of protective immunity is crucial to improve vaccine strategies to eradicate malaria. However, it is still unclear whether recognition of damage signals influences the immune response to Plasmodium infection. Adenosine triphosphate (ATP) accumulates in infected erythrocytes and is released into the extracellular milieu through ion channels in the erythrocyte membrane or upon erythrocyte rupture. The P2X7 receptor senses extracellular ATP and induces CD4 T cell activation and death. Here we show that P2X7 receptor promotes T helper 1 (Th1) cell differentiation to the detriment of follicular T helper (Tfh) cells during blood-stage Plasmodium chabaudi malaria. The P2X7 receptor was activated in CD4 T cells following the rupture of infected erythrocytes and these cells became highly responsive to ATP during acute infection. Moreover, mice lacking the P2X7 receptor had increased susceptibility to infection, which correlated with impaired Th1 cell differentiation. Accordingly, IL-2 and IFNγ secretion, as well as T-bet expression, critically depended on P2X7 signaling in CD4 T cells. Additionally, P2X7 receptor controlled the splenic Tfh cell population in infected mice by promoting apoptotic-like cell death. Finally, the P2X7 receptor was required to generate a balanced Th1/Tfh cell population with an improved ability to transfer parasite protection to CD4-deficient mice. This study provides a new insight into malaria immunology by showing the importance of P2X7 receptor in controlling the fine-tuning between Th1 and Tfh cell differentiation during P. chabaudi infection and thus in disease outcome.

  20. The impact of P2X7 receptor antagonist, brilliant blue G on graft-versus-host disease in mice after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Zhong, Xiaomin; Zhu, Feng; Qiao, Jianlin; Zhao, Kai; Zhu, Shengyun; Zeng, Lingyu; Chen, Xiaofei; Xu, Kailin

    2016-12-01

    The purpose of this study was to investigate the role of P2X7 on liver inflammation in mice after HSCT. Hematopoietic stem cells obtained from C57BL/6 mice were administrated into BALB/c mice to establish GVHD model. On day 7, 14, 21 and 28 after HSCT, mice received P2X7R antagonist brilliant blue G (BBG) or not were sacrificed for analysis of weight loss, liver inflammation, cytokine secretion, P2X7, NLRP3 expression as well as caspase-1 activation. Liver inflammation with neutrophils and macrophases infiltration as well as weight loss increase was present after HSCT, but improved after administration with high dose of BBG compared with lower dose. High dose of P2X7R inhibitor administration after HSCT previously reduced levels of IL-1β, IL-18, caspase-1, NLRP3 as well as P2X7, and the level of alanine transaminase (ALT) and the ratio of aspartate amino transferase (AST)/ALT compared with that receiving low dose of BBG. Meanwhile, P2X7R blockage also reduced infiltration of macrophages and neutrophils and levels of CXCL8 and CCL2 in peripheral blood as well as improved liver function. In conclusion, blockage of P2X7R by BBG exerts a protective effect on GVHD post HSCT and improves liver function suggesting that this receptor could be considered as an attractive target for treatment of GVHD. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Lack of neuroprotection in the absence of P2X7 receptors in toxin-induced animal models of Parkinson's disease

    PubMed Central

    2011-01-01

    Background Previous studies indicate a role of P2X7 receptors in processes that lead to neuronal death. The main objective of our study was to examine whether genetic deletion or pharmacological blockade of P2X7 receptors influenced dopaminergic cell death in various models of Parkinson's disease (PD). Results mRNA encoding P2X7 and P2X4 receptors was up-regulated after treatment of PC12 cells with 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP). P2X7 antagonists protected against MPTP and rotenone induced toxicity in the LDH assay, but failed to protect after rotenone treatment in the MTT assay in PC12 cells and in primary midbrain culture. In vivo MPTP and in vitro rotenone pretreatments increased the mRNA expression of P2X7 receptors in the striatum and substantia nigra of wild-type mice. Basal mRNA expression of P2X4 receptors was higher in P2X7 knockout mice and was further up-regulated by MPTP treatment. Genetic deletion or pharmacological inhibition of P2X7 receptors did not change survival rate or depletion of striatal endogenous dopamine (DA) content after in vivo MPTP or in vitro rotenone treatment. However, depletion of norepinephrine was significant after MPTP treatment only in P2X7 knockout mice. The basal ATP content was higher in the substantia nigra of wild-type mice, but the ADP level was lower. Rotenone treatment elicited a similar reduction in ATP content in the substantia nigra of both genotypes, whereas reduction of ATP was more pronounced after rotenone treatment in striatal slices of P2X7 deficient mice. Although the endogenous amino acid content remained unchanged, the level of the endocannabinoid, 2-AG, was elevated by rotenone in the striatum of wild-type mice, an effect that was absent in mice deficient in P2X7 receptors. Conclusions We conclude that P2X7 receptor deficiency or inhibition does not support the survival of dopaminergic neurons in an in vivo or in vitro models of PD. PMID:21542899

  2. miR-9 Mediates CALHM1-Activated ATP-P2X7R Signal in Painful Diabetic Neuropathy Rats.

    PubMed

    Liu, Wenjie; Ao, Qinying; Guo, Qulian; He, Wanyou; Peng, Liangyu; Jiang, Jun; Hu, Xiaoling

    2017-03-01

    In this study, we planned to illuminate the mechanisms of the expression and function of CALHM1 in painful diabetic neuropathy (PDN). PDN rat model was constructed. The expression of CALHM1 and miR-9 in rat spinal dorsal horn neurons was detected. The correlation between the level of CALHM1 mRNA and 50 % PWT and the relationship between the expression of CALHM1 and miR-9 in rat spinal dorsal horn neurons were statistically analyzed. The effect of miR-9 and CALHM1 on each other's expression in PDN rat spinal dorsal horn neurons were tested by qRT-PCR or Western blot. The co-culture system of neurons and glias from PDN rat spinal dorsal horn was constructed. The concentration of calcium and ATP as well as the expression of P2X7 receptor regulated by CALHM1 and miR-9 in PDN rat spinal dorsal horn neurons was measured. The results showed that the expression of CALHM1 was increased in PDN rat compared with controls, while its mRNA level was negatively correlated with 50 % PWT. miR-9, which was also upregulated in the spinal dorsal horn neurons of PDN rats, was positively correlated with the expression of CALHM1. The concentration of calcium and ATP as well as the expression of P2X7 receptor in glias was also increased in PDN rats. These increases could be reverted by inhibiting CALHM1 and/or miR-9. CALHM1 is involved in miR-9-mediated ATP-P2X7 pathway between neurons and glias in PDN rat.

  3. Functional decreases in P2X7 receptors are associated with retinoic acid-induced neuronal differentiation of Neuro-2a neuroblastoma cells.

    PubMed

    Wu, Pei-Yu; Lin, Yu-Chia; Chang, Chia-Ling; Lu, Hsing-Tsen; Chin, Chia-Hsuan; Hsu, Tsan-Ting; Chu, Dachen; Sun, Synthia H

    2009-06-01

    Neuro-2a (N2a) cells are derived from spontaneous neuroblastoma of mouse and capable to differentiate into neuronal-like cells. Recently, P2X7 receptor has been shown to sustain growth of human neuroblastoma cells but its role during neuronal differentiation remains unexamined.We characterized the role of P2X7 receptors in the retinoic acid (RA)-differentiated N2a cells. RA induced N2a cells differentiation into neurite bearing and neuronal specific proteins, microtubule-associated protein 2 (MAP2) and neuronal specific nuclear protein (NeuN), expressing neuronal-like cells. Interestingly, the RA-induced neuronal differentiation was associated with decreases in the expression and function of P2X7 receptors. Functional inhibition of P2X7 receptors by P2X7 receptor selective antagonists, 5'-triphosphate, periodate-oxidized 2',3'-dialdehyde ATP (oATP), brilliant blue G (BBG) or A438079 induced neurite outgrowth. In addition, RA and oATP treatment stimulated the expression of neuron-specific class III beta-tubulin (TuJ1), and knockdown of P2X7 receptor expression by siRNA induced neurite outgrowth. To elucidate the possible mechanism, we found the levels of basal intracellular Ca2+ concentrations ([Ca2+]i) were decreased in either RA- or oATP-differentiated or P2X7receptor knockdown N2a cells. Simply cultured N2a cells in low Ca2+ medium induced a 2-fold increase in neurite length. Treatment of N2a cells with ATP hydrolase apyrase and the P2X7 receptors selective antagonist oATP or BBG decreased cell viability and cell number. Nevertheless, oATP but not BBG decreased cell proliferation and cell cycle progression. These results suggest for the first time that decreases in expression/function of P2X7 receptors are involved in neuronal differentiation.We provide additional evidence shown that the ATP release-activated P2X7 receptor is important in maintaining cell survival of N2a neuroblastoma cells.

  4. Inhibiting purinergic P2X7 receptors with the antagonist brilliant blue G is neuroprotective in an intranigral lipopolysaccharide animal model of Parkinson's disease.

    PubMed

    Wang, Xin-Hong; Xie, Xin; Luo, Xiao-Guang; Shang, Hong; He, Zhi-Yi

    2017-02-01

    Parkinson's disease (PD) is a common neurodegenerative disorder, which is characterized by the selective and progressive death of dopaminergic (DA) neurons in the substantia nigra. Increasing evidence suggests that inflammation is important in the degeneration of DA neurons. The purinergic receptor subtype P2X7 receptor (P2X7R) is key in the activation and proliferation of microglia. The present study aimed to examine whether inhibiting purinergic P2X7 receptors is neuroprotective in a rat model of PD, specifically via inhibiting p38 mitogen‑activated protein kinase (MAPK). In an intranigral lipopolysaccharide (LPS) rat model of PD, immunohistochemical analysis revealed enhanced expression of P2X7R was observed in microglia. The administration of the P2X7R antagonist, brilliant blue G (BBG), reduced activation of the microglia and the loss of nigral DA neurons. In addition, immunohistochemistry and western blot analysis revealed the phosphorylation level of p38 MAPK increased in the microglia of the LPS‑injected rats, which was inhibited by BBG treatment. The p38 MAPK inhibitor, SB203580, reduced microglial activation and the loss of DA neurons. Thus, these findings suggested that inhibition of P2X7R by BBG attenuated microglial activation and the loss of substantia nigra DA neurons via p38 MAPK in the rat LPS model of PD.

  5. Silencing P2X7 receptor downregulates the expression of TCP-1 involved in lymphoma lymphatic metastasis.

    PubMed

    Jiang, Xudong; Mao, Wenjuan; Yang, Ziyi; Zeng, Jia; Zhang, Yi; Song, Yang; Kong, Ying; Ren, Shuangyi; Zuo, Yunfei

    2015-12-08

    P2X7R is an ATP-gated cation channel that participates in cell proliferation and apoptosis. TCP-1 assists with the protein folding. According to our previous research, the P2X7R has a potential role in P388D1 lymphoid neoplasm cells dissemination to peripheral lymph nodes. In order to make a further exploration about the probable mechanism, the lymph nodes which metastasized by P2X7R-silenced P388D1 cells or non-silenced cells were analyzed by 2DE and a MALDI-TOF-based proteomics approach. In the 64 proteins which were differentially expressed between two groups, TCP-1 was found to be significantly decreased in P2X7R shRNA group compared to controls. This correlation was also found in subsequent experiments in vivo and in vitro. The positive correlation between P2X7R and TCP-1 was also proved in both lymphoma and benign lymphadenopathy tissues from patients. It indicates that TCP-1 may be a crucial downstream molecular of P2X7R and plays a novel role in lymphoid neoplasm metastasis.

  6. Silencing P2X7 receptor downregulates the expression of TCP-1 involved in lymphoma lymphatic metastasis

    PubMed Central

    Yang, Ziyi; Zeng, Jia; Zhang, Yi; Song, Yang; Kong, Ying; Ren, Shuangyi; Zuo, Yunfei

    2015-01-01

    P2X7R is an ATP-gated cation channel that participates in cell proliferation and apoptosis. TCP-1 assists with the protein folding. According to our previous research, the P2X7R has a potential role in P388D1 lymphoid neoplasm cells dissemination to peripheral lymph nodes. In order to make a further exploration about the probable mechanism, the lymph nodes which metastasized by P2X7R-silenced P388D1 cells or non-silenced cells were analyzed by 2DE and a MALDI-TOF-based proteomics approach. In the 64 proteins which were differentially expressed between two groups, TCP-1 was found to be significantly decreased in P2X7R shRNA group compared to controls. This correlation was also found in subsequent experiments in vivo and in vitro. The positive correlation between P2X7R and TCP-1 was also proved in both lymphoma and benign lymphadenopathy tissues from patients. It indicates that TCP-1 may be a crucial downstream molecular of P2X7R and plays a novel role in lymphoid neoplasm metastasis. PMID:26556873

  7. ATP induces NO production in hippocampal neurons by P2X(7) receptor activation independent of glutamate signaling.

    PubMed

    Codocedo, Juan Francisco; Godoy, Juan Alejandro; Poblete, Maria Ines; Inestrosa, Nibaldo C; Huidobro-Toro, Juan Pablo

    2013-01-01

    To assess the putative role of adenosine triphosphate (ATP) upon nitric oxide (NO) production in the hippocampus, we used as a model both rat hippocampal slices and isolated hippocampal neurons in culture, lacking glial cells. In hippocampal slices, additions of exogenous ATP or 2'(3')-O-(4-Benzoylbenzoyl) ATP (Bz-ATP) elicited concentration-dependent NO production, which increased linearly within the first 15 min and plateaued thereafter; agonist EC50 values were 50 and 15 µM, respectively. The NO increase evoked by ATP was antagonized in a concentration-dependent manner by Coomassie brilliant blue G (BBG) or by N(ω)-propyl-L-arginine, suggesting the involvement of P2X7Rs and neuronal NOS, respectively. The ATP induced NO production was independent of N-methyl-D-aspartic acid (NMDA) receptor activity as effects were not alleviated by DL-2-Amino-5-phosphonopentanoic acid (APV), but antagonized by BBG. In sum, exogenous ATP elicited NO production in hippocampal neurons independently of NMDA receptor activity.

  8. ATP Induces NO Production in Hippocampal Neurons by P2X7 Receptor Activation Independent of Glutamate Signaling

    PubMed Central

    Codocedo, Juan Francisco; Godoy, Juan Alejandro; Poblete, Maria Ines; Inestrosa, Nibaldo C.; Huidobro-Toro, Juan Pablo

    2013-01-01

    To assess the putative role of adenosine triphosphate (ATP) upon nitric oxide (NO) production in the hippocampus, we used as a model both rat hippocampal slices and isolated hippocampal neurons in culture, lacking glial cells. In hippocampal slices, additions of exogenous ATP or 2′(3′)-O-(4-Benzoylbenzoyl) ATP (Bz-ATP) elicited concentration-dependent NO production, which increased linearly within the first 15 min and plateaued thereafter; agonist EC50 values were 50 and 15 µM, respectively. The NO increase evoked by ATP was antagonized in a concentration-dependent manner by Coomassie brilliant blue G (BBG) or by Nω-propyl-L-arginine, suggesting the involvement of P2X7Rs and neuronal NOS, respectively. The ATP induced NO production was independent of N-methyl-D-aspartic acid (NMDA) receptor activity as effects were not alleviated by DL-2-Amino-5-phosphonopentanoic acid (APV), but antagonized by BBG. In sum, exogenous ATP elicited NO production in hippocampal neurons independently of NMDA receptor activity. PMID:23472093

  9. Intra-Articular Blockade of P2X7 Receptor Reduces the Articular Hyperalgesia and Inflammation in the Knee Joint Synovitis Especially in Female Rats.

    PubMed

    Teixeira, Juliana Maia; Dias, Elayne Vieira; Parada, Carlos Amílcar; Tambeli, Cláudia Herrera

    2017-02-01

    Synovitis is a key factor in joint disease pathophysiology, which affects a greater proportion of women than men. P2X7 receptor activation contributes to arthritis, but whether it plays a role in articular inflammatory pain in a sex-dependent manner is unknown. We investigated whether the P2X7 receptor blockade in the knee joint of male and female rats reduces the articular hyperalgesia and inflammation induced by a carrageenan knee joint synovitis model. Articular hyperalgesia was quantified using the rat knee joint incapacitation test and the knee joint inflammation, characterized by the concentration of cytokines tumor necrosis factor-α, interleukin-1β, interleukin-6, and cytokine-induced neutrophil chemoattractant-1, and by neutrophil migration, was quantified using enzyme-linked immunosorbent assay and by myeloperoxidase enzyme activity measurement, respectively. P2X7 receptor blockade by the articular coadministration of selective P2X7 receptor antagonist A740003 with carrageenan significantly reduced articular hyperalgesia, pro-inflammatory cytokine concentrations, and myeloperoxidase activity induced by carrageenan injection into the knee joint of male and estrus female rats. However, a lower dose of P2X7 receptor antagonist was sufficient to significantly induce the antihyperalgesic and anti-inflammatory effects in estrus female but not in male rats. These results suggest that P2X7 receptor activation by endogenous adenosine 5'-triphosphate is essential to articular hyperalgesia and inflammation development in the knee joint of male and female rats. However, female rats are more responsive than male rats to the antihyperalgesic and anti-inflammatory effects induced by P2X7 receptor blockade.

  10. P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3

    SciTech Connect

    Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao; Zhai, Zhifang; Gang Huang; Du, Xiang; Wang, Yiqin; Zhang, Jingbo; Huang, Yunjian; Zhao, Jinghong; Hou, Weiping

    2014-11-15

    Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components, oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease. - Highlights: • The P2X7R expression was markedly upregulated in cisplatin-induced nephrotoxicity. • P2X7R blockade significantly attenuated the cisplatin-induced renal injury. • P2X7R blockade reduced activities of NLRP3 inflammasome components in renal tissue. • P2X7R blockade

  11. Activation of P2X7 and P2Y11 purinergic receptors inhibits migration and normalizes tumor-derived endothelial cells via cAMP signaling

    PubMed Central

    Avanzato, D.; Genova, T.; Fiorio Pla, A.; Bernardini, M.; Bianco, S.; Bussolati, B.; Mancardi, D.; Giraudo, E.; Maione, F.; Cassoni, P.; Castellano, I.; Munaron, L.

    2016-01-01

    Purinergic signaling is involved in inflammation and cancer. Extracellular ATP accumulates in tumor interstitium, reaching hundreds micromolar concentrations, but its functional role on tumor vasculature and endothelium is unknown. Here we show that high ATP doses (>20 μM) strongly inhibit migration of endothelial cells from human breast carcinoma (BTEC), but not of normal human microvascular EC. Lower doses (1–10 mm result ineffective. The anti-migratory activity is associated with cytoskeleton remodeling and is significantly prevented by hypoxia. Pharmacological and molecular evidences suggest a major role for P2X7R and P2Y11R in ATP-mediated inhibition of TEC migration: selective activation of these purinergic receptors by BzATP mimics the anti-migratory effect of ATP, which is in turn impaired by their pharmacological or molecular silencing. Downstream pathway includes calcium-dependent Adenilyl Cyclase 10 (AC10) recruitment, cAMP release and EPAC-1 activation. Notably, high ATP enhances TEC-mediated attraction of human pericytes, leading to a decrease of endothelial permeability, a hallmark of vessel normalization. Finally, we provide the first evidence of in vivo P2X7R expression in blood vessels of murine and human breast carcinoma. In conclusion, we have identified a purinergic pathway selectively acting as an antiangiogenic and normalizing signal for human tumor-derived vascular endothelium. PMID:27586846

  12. 1-Aryl-1H- and 2-aryl-2H-1,2,3-triazole derivatives blockade P2X7 receptor in vitro and inflammatory response in vivo.

    PubMed

    Gonzaga, Daniel Tadeu Gomes; Ferreira, Leonardo Braga Gomes; Moreira Maramaldo Costa, Thadeu Estevam; von Ranke, Natalia Lidmar; Anastácio Furtado Pacheco, Paulo; Sposito Simões, Ana Paula; Arruda, Juliana Carvalho; Dantas, Luiza Pereira; de Freitas, Hércules Rezende; de Melo Reis, Ricardo Augusto; Penido, Carmen; Bello, Murilo Lamim; Castro, Helena Carla; Rodrigues, Carlos Rangel; Ferreira, Vitor Francisco; Faria, Robson Xavier; da Silva, Fernando de Carvalho

    2017-10-20

    Fifty-one 1,2,3-triazole derivatives were synthesized and evaluated with respect to P2X7 receptor (P2X7R) activity and its associated pore. These triazoles were screened in vitro for dye uptake assay and its cytotoxicity against mammalian cell types. Seven 1,2,3-triazole derivatives (5e, 6e, 8h, 9d, 9i, 11, and 12) potently blocked P2X7 receptor pore formation in vitro (J774.G8 cells and peritoneal macrophages). All blockers displayed IC50 value inferior to 500 nM, and they have low toxicity in either cell types. These seven selected triazoles inhibited P2X7R mediated interleukin-1 (IL-1β) release. In particular, compound 9d was the most potent P2X7R blocker. Additionally, in mouse acute models of inflammatory responses induced by ATP or carrageenan administration in the paw, compound 9d promoted a potent blocking response. Similarly, 9d also reduced mouse LPS-induced pleurisy cellularity. In silico predictions indicate this molecule appropriate to develop an anti-inflammatory agent when it was compared to commercial analogs. Electrophysiological studies suggest a competitive mechanism of action of 9d to block P2X7 receptor. Molecular docking was performed on the ATP binding site in order to observe the preferential interaction pose, indicating that binding mode of the 9d is by interacting its 1,2,3-triazole and ether moiety with positively charged residues and with its chlorobenzene moiety orientated toward the apolar end of the ATP binding site which are mainly composed by the Ile170, Trp167 and Leu309 residues from α subunit. These results highlight 9d derivative as a drug candidate with potential therapeutic application based on P2X7 receptor blockade. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation.

    PubMed

    Davis, Christopher J; Taishi, Ping; Honn, Kimberly A; Koberstein, John N; Krueger, James M

    2016-12-01

    The ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and brain cytokine release. Many endogenous rhythms covary with sleep, including locomotor activity and core body temperature. Furthermore, brain-hypothalamic cytokines and purines play a role in the regulation of these physiological parameters as well as sleep. We hypothesized that these parameters are also affected by the absence of the P2X7 receptor. Herein, we determine spontaneous expression of body temperature and locomotor activity in wild-type (WT) and P2X7R knockout (KO) mice and how they are affected by sleep deprivation (SD). We also compare hypothalamic, hippocampal, and cortical cytokine- and purine-related receptor and enzyme mRNA expressions before and after SD in WT and P2X7RKO mice. Next, in a hypothesis-generating survey of hypothalamic long noncoding (lnc) RNAs, we compare lncRNA expression levels between strains and after SD. During baseline conditions, P2X7RKO mice had attenuated temperature rhythms compared with WT mice, although locomotor activity patterns were similar in both strains. After 6 h of SD, body temperature and locomotion were enhanced to a greater extent in P2X7RKO mice than in WT mice during the initial 2-3 h after SD. Baseline mRNA levels of cortical TNF-α and P2X4R were higher in the KO mice than WT mice. In response to SD, the KO mice failed to increase hypothalamic adenosine deaminase and P2X4R mRNAs. Further, hypothalamic lncRNA expressions varied by strain, and with SD. Current data are consistent with a role for the P2X7R in thermoregulation and lncRNA involvement in purinergic signaling.

  14. Potentiation of the glutamatergic synaptic input to rat locus coeruleus neurons by P2X7 receptors

    PubMed Central

    Khakpay, Roghayeh; Polster, Daniel; Köles, Laszlo; Skorinkin, Andrey; Szabo, Bela; Wirkner, Kerstin

    2010-01-01

    Locus coeruleus (LC) neurons in a rat brain slice preparation were superfused with a Mg2+-free and bicuculline-containing external medium. Under these conditions, glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs) were recorded by means of the whole-cell patch-clamp method. ATP, as well as its structural analogue 2-methylthio ATP (2-MeSATP), both caused transient inward currents, which were outlasted by an increase in the frequency but not the amplitude of the sEPSCs. PPADS, but not suramin or reactive blue 2 counteracted both effects of 2-MeSATP. By contrast, α,β-methylene ATP (α,β-meATP), UTP and BzATP did not cause an inward current response. Of these latter agonists, only BzATP slightly facilitated the sEPSC amplitude and strongly potentiated its frequency. PPADS and Brilliant Blue G, as well as fluorocitric acid and aminoadipic acid prevented the activity of BzATP. Furthermore, BzATP caused a similar facilitation of the miniature (m)EPSC (recorded in the presence of tetrodotoxin) and sEPSC frequencies (recorded in its absence). Eventually, capsaicin augmented the frequency of the sEPSCs in a capsazepine-, but not PPADS-antagonizable, manner. In conclusion, the stimulation of astrocytic P2X7 receptors appears to lead to the outflow of a signalling molecule, which presynaptically increases the spontaneous release of glutamate onto LC neurons from their afferent fibre tracts. It is suggested, that the two algogenic compounds ATP and capsaicin utilise separate receptor systems to potentiate the release of glutamate and in consequence to increase the excitability of LC neurons. PMID:21103218

  15. Blockade of ATP P2X7 receptor enhances ischiatic nerve regeneration in mice following a crush injury.

    PubMed

    Ribeiro, Tatianne; Oliveira, Júlia Teixeira; Almeida, Fernanda Martins; Tomaz, Marcelo Amorim; Melo, Paulo A; Marques, Suelen Adriani; de Andrade, Geanne Matos; Martinez, Ana Maria Blanco

    2017-08-15

    Preventing damage caused by nerve degeneration is a great challenge. There is a growing body of evidence implicating extracellular nucleotides and their P2 receptors in many pathophysiological mechanisms. In this work we aimed to investigate the effects of the administration of Brilliant Blue G (BBG) and Pyridoxalphosphate-6-azophenyl-2', 4'- disulphonic acid (PPADS), P2X7 and P2 non-selective receptor antagonists, respectively, on sciatic nerve regeneration. Four groups of mice that underwent nerve crush lesion were used: two control groups treated with vehicle (saline), a group treated with BBG and a group treated with PPADS during 28days. Gastrocnemius muscle weight was evaluated. For functional evaluation we used the Sciatic Functional Index (SFI) and the horizontal ladder walking test. Nerves, dorsal root ganglia and spinal cords were processed for light and electron microscopy. Antinoceptive effects of BBG and PPADS were evaluated through von Frey E, and the levels of IL-1β and TNF-α were analyzed by ELISA. BBG promoted an increase in the number of myelinated fibers and on axon, fiber and myelin areas. BBG and PPADS led to an increase of TNF-α and IL-1β in the nerve on day 1 and PPADS caused a decrease of IL-1β on day 7. Mechanical allodynia was reversed on day 7 in the groups treated with BBG and PPADS. We concluded that BBG promoted a better morphological regeneration after ischiatic crush injury, but this was not followed by anticipation of functional improvement. In addition, both PPADS and BBG presented anti-inflammatory as well as antinociceptive effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Pilocarpine-Induced Status Epilepticus Increases the Sensitivity of P2X7 and P2Y1 Receptors to Nucleotides at Neural Progenitor Cells of the Juvenile Rodent Hippocampus.

    PubMed

    Rozmer, Katalin; Gao, Po; Araújo, Michelle G L; Khan, Muhammad Tahir; Liu, Juan; Rong, Weifang; Tang, Yong; Franke, Heike; Krügel, Ute; Fernandes, Maria José S; Illes, Peter

    2017-07-01

    Patch-clamp recordings indicated the presence of P2X7 receptors at neural progenitor cells (NPCs) in the subgranular zone of the dentate gyrus in hippocampal brain slices prepared from transgenic nestin reporter mice. The activation of these receptors caused inward current near the resting membrane potential of the NPCs, while P2Y1 receptor activation initiated outward current near the reversal potential of the P2X7 receptor current. Both receptors were identified by biophysical/pharmacological methods. When the brain slices were prepared from mice which underwent a pilocarpine-induced status epilepticus or when brain slices were incubated in pilocarpine-containing external medium, the sensitivity of P2X7 and P2Y1 receptors was invariably increased. Confocal microscopy confirmed the localization of P2X7 and P2Y1 receptor-immunopositivity at nestin-positive NPCs. A one-time status epilepticus in rats caused after a latency of about 5 days recurrent epileptic fits. The blockade of central P2X7 receptors increased the number of seizures and their severity. It is hypothesized that P2Y1 receptors after a status epilepticus may increase the ATP-induced proliferation/ectopic migration of NPCs; the P2X7 receptor-mediated necrosis/apoptosis might counteract these effects, which would otherwise lead to a chronic manifestation of recurrent epileptic fits. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. P2X7 receptor antagonists protect against N-methyl-D-aspartic acid-induced neuronal injury in the rat retina.

    PubMed

    Sakamoto, Kenji; Endo, Kanako; Suzuki, Taishi; Fujimura, Kyosuke; Kurauchi, Yuki; Mori, Asami; Nakahara, Tsutomu; Ishii, Kunio

    2015-06-05

    Activation of N-methyl-d-aspartic acid (NMDA) receptors followed by a large Ca(2+) influx is thought to be a mechanism of glaucoma-induced neuronal cell death. It is possible that damage-associated molecular patterns leak from injured cells, such as adenosine triphosphate, causing retinal ganglion cell death in glaucoma. In the present study, we histologically investigated whether antagonists of the P2X7 receptor protected against NMDA-induced retinal injury in the rat in vivo. Under ketamine/xylazine anesthesia, male Sprague-Dawley rats were subjected to intravitreal injection of NMDA. We used A438079 (3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine) and brilliant blue G as P2X7 receptor antagonists. Upon morphometric evaluation 7 days after an intravitreal injection (200 nmol/eye), NMDA-induced cell loss was apparent in the ganglion cell layer. Intravitreal A438079 (50 pmol/eye) simultaneously injected with NMDA and intraperitoneal brilliant blue G (50 mg/kg) administered just before the NMDA injection as well as 24 and 48h after significantly reduced cell loss. In addition, A438079 decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells 12h after NMDA injection. P2X7 receptors were immunolocalized in the ganglion cell layer and the inner and outer plexiform layers, whereas the immunopositive P2X7 receptor signal was not detected on the Iba1-positive microglial cells that infiltrated the retina 12h after NMDA injection. The present study shows that stimulation of the P2X7 receptor is involved in NMDA-induced histological damage in the rat retina in vivo. P2X7 receptor antagonists may be effective in preventing retinal diseases caused by glutamate excitotoxicity, such as glaucoma and retinal artery occlusion.

  18. Pulmonary infection with hypervirulent Mycobacteria reveals a crucial role for the P2X7 receptor in aggressive forms of tuberculosis.

    PubMed

    Amaral, Eduardo P; Ribeiro, Simone C M; Lanes, Verônica R; Almeida, Fabrício M; de Andrade, Marcelle R M; Bomfim, Caio Cesar Barbosa; Salles, Erika M; Bortoluci, Karina R; Coutinho-Silva, Robson; Hirata, Mario H; Alvarez, José M; Lasunskaia, Elena B; D'Império-Lima, Maria Regina

    2014-07-01

    The purinergic P2X7 receptor (P2X7R) is a sensor of extracellular ATP, a damage-associated molecule that is released from necrotic cells and that induces pro-inflammatory cytokine production and cell death. To investigate whether the innate immune response to damage signals could contribute to the development of pulmonary necrotic lesions in severe forms of tuberculosis, disease progression was examined in C57BL/6 and P2X7R-/- mice that were intratracheally infected with highly virulent mycobacterial strains (Mycobacterium tuberculosis strain 1471 of the Beijing genotype family and Mycobacterium bovis strain MP287/03). The low-dose infection of C57BL/6 mice with bacteria of these strains caused the rapid development of extensive granulomatous pneumonia with necrotic areas, intense bacillus dissemination and anticipated animal death. In contrast, in P2X7R-/- mice, the lung pathology presented with moderate infiltrates of mononuclear leukocytes without visible signs of necrosis; the disease attenuation was accompanied by a delay in mortality. In vitro, the hypervirulent mycobacteria grew rapidly inside macrophages and induced death by a P2X7R-dependent mechanism that facilitated the release of bacilli. Furthermore, these bacteria were resistant to the protective mechanisms elicited in macrophages following extracellular ATP stimulation. Based on this study, we propose that the rapid intracellular growth of hypervirulent mycobacteria results in massive macrophage damage. The ATP released by damaged cells engages P2X7R and accelerates the necrotic death of infected macrophages and the release of bacilli. This vicious cycle exacerbates pneumonia and lung necrosis by promoting widespread cell destruction and bacillus dissemination. These findings suggest the use of drugs that have been designed to inhibit the P2X7R as a new therapeutic approach to treat the aggressive forms of tuberculosis.

  19. Lack of the P2X7 receptor protects against AMD-like defects and microparticle accumulation in a chronic oxidative stress-induced mouse model of AMD.

    PubMed

    Carver, Kyle A; Lin, C M; Bowes Rickman, Catherine; Yang, Dongli

    2017-01-01

    The P2X7 receptor (P2X7R) is an ATP-gated ion channel that is a key player in oxidative stress under pathological conditions. The P2X7R is expressed in the retinal pigmented epithelium (RPE) and neural retina. Chronic oxidative stress contributes to the pathogenesis of age-related macular degeneration (AMD). Mice lacking Cu, Zn superoxide dismutase (Sod1) developed chronic oxidative stress as well as AMD-like features, but whether the P2X7R plays a causative role in oxidative stress-induced AMD is unknown. Thus, the main purpose of this study was to test if concurrent knockout (KO) of P2X7R could block AMD-like defects seen in Sod1 KO mice. Using multiple approaches, we demonstrate that Sod1 KO causes AMD-like defects, including positive staining for oxidative stress markers, 3-nitrotyrosine and carboxymethyl lysine, thinning of the RPE and retina, thickening of Bruch's membrane, presence of basal laminar and linear deposits, RPE barrier disruption and accumulation of microglia/macrophages. Moreover, we find that Sod1 KO mice accumulate more microparticles (MPs) within RPE/choroid tissues. Concurrent KO of the P2X7R protects against AMD-like defects and MP accumulation in Sod1 KO mice. Together, we show for the first time, that deficiency of P2X7R prevents in vivo oxidative stress-induced accumulation of MPs and AMD-like defects. This work could potentially lead to novel therapies for AMD and other oxidative stress-driven diseases.

  20. Single-nucleotide polymorphisms in the P2X7 receptor gene are associated with post-menopausal bone loss and vertebral fractures

    PubMed Central

    Jørgensen, Niklas R; Husted, Lise B; Skarratt, Kristen K; Stokes, Leanne; Tofteng, Charlotte L; Kvist, Torben; Jensen, Jens-Erik B; Eiken, Pia; Brixen, Kim; Fuller, Stephen; Clifton-Bligh, Rory; Gartland, Alison; Schwarz, Peter; Langdahl, Bente L; Wiley, James S

    2012-01-01

    The purinergic P2X7 receptor has a major role in the regulation of osteoblast and osteoclast activity and changes in receptor function may therefore affect bone mass in vivo. The aim of this study was to determine the association of non-synonymous single-nucleotide polymorphisms in the P2RX7 gene to bone mass and fracture incidence in post-menopausal women. A total of 1694 women (aged 45–58) participating in the Danish Osteoporosis Prevention Study were genotyped for 12 functional P2X7 receptor variants. Bone mineral density was determined at baseline and after 10 years. In addition, vertebral fracture incidence was documented at 10 years. We found that the rate of bone loss was clearly associated with the Arg307Gln amino acid substitution such that individuals heterozygous for this polymorphism had a 40% increased rate of bone loss. Furthermore, individuals carrying the Ile568Asn variant allele had increased bone loss. In contrast, the Gln460Arg polymorphism was associated with protection against bone loss. The Ala348Thr polymorphism was associated with a lower vertebral fracture incidence 10 years after menopause. Finally, we developed a risk model, which integrated P2RX7 genotypes. Using this model, we found a clear association between the low-risk (high-P2X7 function) alleles and low rate of bone loss. Conversely, high-risk (reduced P2X7 function) alleles were associated with a high rate of bone loss. In conclusion, an association was demonstrated between variants that reduce P2X7 receptor function and increased rate of bone loss. These data support that the P2X7 receptor is important in regulation of bone mass. PMID:22274585

  1. Single-nucleotide polymorphisms in the P2X7 receptor gene are associated with post-menopausal bone loss and vertebral fractures.

    PubMed

    Jørgensen, Niklas R; Husted, Lise B; Skarratt, Kristen K; Stokes, Leanne; Tofteng, Charlotte L; Kvist, Torben; Jensen, Jens-Erik B; Eiken, Pia; Brixen, Kim; Fuller, Stephen; Clifton-Bligh, Rory; Gartland, Alison; Schwarz, Peter; Langdahl, Bente L; Wiley, James S

    2012-06-01

    The purinergic P2X7 receptor has a major role in the regulation of osteoblast and osteoclast activity and changes in receptor function may therefore affect bone mass in vivo. The aim of this study was to determine the association of non-synonymous single-nucleotide polymorphisms in the P2RX7 gene to bone mass and fracture incidence in post-menopausal women. A total of 1694 women (aged 45-58) participating in the Danish Osteoporosis Prevention Study were genotyped for 12 functional P2X7 receptor variants. Bone mineral density was determined at baseline and after 10 years. In addition, vertebral fracture incidence was documented at 10 years. We found that the rate of bone loss was clearly associated with the Arg307Gln amino acid substitution such that individuals heterozygous for this polymorphism had a 40% increased rate of bone loss. Furthermore, individuals carrying the Ile568Asn variant allele had increased bone loss. In contrast, the Gln460Arg polymorphism was associated with protection against bone loss. The Ala348Thr polymorphism was associated with a lower vertebral fracture incidence 10 years after menopause. Finally, we developed a risk model, which integrated P2RX7 genotypes. Using this model, we found a clear association between the low-risk (high-P2X7 function) alleles and low rate of bone loss. Conversely, high-risk (reduced P2X7 function) alleles were associated with a high rate of bone loss. In conclusion, an association was demonstrated between variants that reduce P2X7 receptor function and increased rate of bone loss. These data support that the P2X7 receptor is important in regulation of bone mass.

  2. The P2X7 receptor antagonist Brilliant Blue G reduces serum human interferon-γ in a humanized mouse model of graft-versus-host disease.

    PubMed

    Geraghty, N J; Belfiore, L; Ly, D; Adhikary, S R; Fuller, S J; Varikatt, W; Sanderson-Smith, M L; Sluyter, V; Alexander, S I; Sluyter, R; Watson, D

    2017-10-01

    Graft-versus-host disease (GVHD) remains a major problem after allogeneic haematopoietic stem cell transplantation, a curative therapy for haematological malignancies. Previous studies have demonstrated a role for the adenosine triphosphate (ATP)-gated P2X7 receptor channel in allogeneic mouse models of GVHD. In this study, injection of human peripheral blood mononuclear cells (PBMCs) into immunodeficient non-obese diabetic-severe combined immunodeficiency-interleukin (NOD-SCID-IL)-2Rγ(null) (NSG) mice established a humanized mouse model of GVHD. This model was used to study the effect of P2X7 blockade in this disease. From five weeks post-PBMC injection, humanized mice exhibited clinical signs and histopathology characteristic of GVHD. The P2X7 antagonist, Brilliant Blue G (BBG), blocked ATP-induced cation uptake into both murine and human cells in vitro. Injection of BBG (50 mg/kg) into NSG mice did not affect engraftment of human leucocytes (predominantly T cells), or the clinical score and survival of mice. In contrast, BBG injection reduced circulating human interferon (IFN)-γ significantly, which was produced by human CD4(+) and CD8(+) T cells. BBG also reduced human T cell infiltration and apoptosis in target organs of GVHD. In conclusion, the P2X7 antagonist BBG reduced circulating IFN-γ in a humanized mouse model of GVHD supporting a potential role for P2X7 to alter the pathology of this disease in humans. © 2017 British Society for Immunology.

  3. Evaluation of the expression and function of the P2X7 receptor and ART1 in human regulatory T-cell subsets.

    PubMed

    Cortés-Garcia, Juan D; López-López, Cintya; Cortez-Espinosa, Nancy; García-Hernández, Mariana H; Guzmán-Flores, Juan M; Layseca-Espinosa, Esther; Portales-Cervantes, Liliana; Portales-Pérez, Diana P

    2016-01-01

    Regulatory T cells that express CD39 (CD39+ Treg) exhibit specific immunomodulatory properties. Ectonucleotidase CD39 hydrolyses ATP and ADP. ATP is a ligand of the P2X7 receptor and induces the shedding of CD62L and apoptosis. However, the role of ATP in CD39+ Treg cells has not been defined. Furthermore, NAD can activate the P2X7 receptor via ADP-ribosyltransferase (ART) enzymes and cause cell depletion in murine models. We evaluated the expression and function of P2X7 and ART1 in CD39+ Treg and CD39- Treg cells in the presence or absence of ATP and NAD. We isolated peripheral blood mononuclear cells from healthy subjects and purified CD4+ T cells, CD4+ CD25+ T cells and CD4+ CD25+ CD39+ T cells. P2X7 and ART1 expression was assessed by flow cytometry and real-time PCR. Our results showed low P2X7 expression on CD39+ Treg cells and higher levels of ART1 expression in CD4+ CD39+ T cells than the other subtypes studied. Neither shedding of CD62L nor cell death of CD39+ Treg or CD39- Treg cells was observed by 1mM ATP or 60μM NAD. In contrast, P2Xs receptor-dependent proliferation with 300μM ATP, was inhibited by NAD in the different cell types analysed. The NAD proliferation-inhibition was increased with P2Xs and A2a agonist and was reversed with P2Xs and A2a antagonist, therefore NAD inhibits P2Xs-dependent proliferation and A2a activation. In conclusion, our results suggest that the altered function and expression of P2X7 and ART1 in the human CD39+ Treg or CD39- Treg cells could participate in the resistance against cell death induced by ATP or NAD.

  4. P2X7 receptor as a novel drug delivery system to increase the entrance of hydrophilic drugs into cells during photodynamic therapy.

    PubMed

    Pacheco, Paulo Anastácio Furtado; Ferreira, Leonardo Braga Gomes; Mendonça, Leonardo; Ferreira, Dinarte Neto M; Salles, Juliana Pimenta; Faria, Robson Xavier; Teixeira, Pedro Celso Nogueira; Alves, Luiz Anastacio

    2016-08-01

    The second-generation photosensitizer methylene blue (MB) exhibits photochemical and photophysical properties suitable for photodynamic therapy (PDT)-based cancer treatment. However, the clinical application of MB is limited because of its high hydrophilicity, which hinders its penetration into tumor tissues. Therefore, new methods to improve the entry of MB into the cytoplasm of target cells are necessary. Because MB has a mass of 319 Da, transient pores on the plasma membrane, such as the pore induced by the P2X7 receptor (P2X7R) that allows the passage of molecules up to 900 Da, could be used. Using MTT viability assays, flow cytometry experiments, and fluorescence microscopy, we evaluated the toxicity and phototoxicity of MB and potentiation effects of ATP and MB on cell death processes in the J774 cell line (via a P2X7-associated pore). We observed that treatment with 5 μM MB for 15 min promoted the rate of entry of MB into the cytoplasm to 4.7 %. However, treatment with 5 μM MB and 1 mM ATP for the same amount of time increased this rate to 90.2 %. However, this effect was inhibited by pretreatment with a P2X7 antagonist. We used peritoneal macrophages and a cell line that does not express P2X7R as controls. These cells were more resistant to PDT with MB under the same experimental conditions. Taken together, these results suggest the use of the pore associated with P2X7R as a drug delivery system to increase the passage of hydrophilic drugs into cells that express this receptor, thus facilitating PDT.

  5. P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3.

    PubMed

    Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao; Zhai, Zhifang; GangHuang; Du, Xiang; Wang, Yiqin; Zhang, Jingbo; Huang, Yunjian; Zhao, Jinghong; Hou, Weiping

    2014-11-15

    Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components, oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease.

  6. Association of P2X7 receptor polymorphisms with bone mineral density and osteoporosis risk in a cohort of Dutch fracture patients.

    PubMed

    Wesselius, A; Bours, M J L; Henriksen, Z; Syberg, S; Petersen, S; Schwarz, P; Jørgensen, N R; van Helden, S; Dagnelie, P C

    2013-04-01

    The P2X7 receptor is thought to be involved in bone physiology in a pro-osteogenic manner. Therefore, we examined associations between genetic variations in the P2X7 receptor gene and bone mineral density (BMD). We found an association between four non-synonymous polymorphism of the human P2X7 receptor and the risk of osteoporosis. The purpose of this study was to determine whether genetic variation in the P2X7 receptor gene (P2RX7) is associated with decreased BMD and risk of osteoporosis in fracture patients. Six hundred ninety women and 231 men aged≥50 years were genotyped for 15 non-synonymous P2RX7 SNPs. BMD was measured at the total hip, lumbar spine and femoral neck. Four non-synonymous SNPs were associated with BMD. The Ala348Thr gain-of-function polymorphism was associated with increased BMD values at the lumbar spine (p=0.012). Decreased hip BMD values were associated with two loss-of-function SNPs in the P2RX7, i.e., in subjects homozygous for the Glu496Ala polymorphism as well as in subjects carrying at least one variant allele of the Gly150Arg polymorphism (p=0.018 and p=0.011; respectively). In men, we showed that subjects either heterozygous or homozygous for the Gln460Arg gain-of-function polymorphism in the P2RX7 had a significantly 40% decrease in risk of a lower T-score value (OR=0.58 [95%CI, 0.33-1.00]). Thus, genetic aberrations of P2X7R function are associated with lower BMD and increased osteoporosis risk. Therefore, detection of non-synonymous SNPs within the P2RX7 might be useful for osteoporosis risk estimation at an early stage, potentially enabling better osteoporosis prevention and treatment.

  7. Interactions of pannexin 1 with NMDA and P2X7 receptors in central nervous system pathologies: Possible role on chronic pain.

    PubMed

    Bravo, D; Maturana, C J; Pelissier, T; Hernández, A; Constandil, L

    2015-11-01

    Pannexin 1 (Panx1) is a glycoprotein that acts as a membrane channel in a wide variety of tissues in mammals. In the central nervous system (CNS) Panx1 is expressed in neurons, astrocytes and microglia, participating in the pathophysiology of some CNS diseases, such as epilepsy, anoxic depolarization after stroke and neuroinflammation. In these conditions Panx1 acts as an important modulator of the neuroinflammatory response, by secreting ATP, by interacting with the P2X7 receptor (P2X7R), and as an amplifier of NMDA receptor (NMDAR) currents, particularly in conditions of pathological neuronal hyperexcitability. Here, we briefly reviewed the current evidences that support the interaction of Panx1 with NMDAR and P2X7R in pathological contexts of the CNS, with special focus in recent data supporting that Panx1 is involved in chronic pain signaling by interacting with NMDAR in neurons and with P2X7R in glia. The participation of Panx1 in chronic pain constitutes a novel topic for research in the field of clinical neurosciences and a potential target for pharmacological interventions in chronic pain.

  8. The effect of P2X7 receptor activation on nuclear factor-κB phosphorylation induced by status epilepticus in the rat hippocampus.

    PubMed

    Kim, Ji-Eun; Kim, Duk-Soo; Jin Ryu, Hea; Il Kim, Won; Kim, Min-Ju; Won Kim, Dae; Young Choi, Soo; Kang, Tea-Cheon

    2013-06-01

    Nuclear factor-kappa B (NFκB) signal is essential for neuronal survival and its activation may protect neuron against various stimuli. Since purinergic signals activate NFκB through the P2X7 receptor, we investigated the distinct pattern of NF-κB phosphorylation in neurons by P2X7 receptor activation following status epilepticus (SE) in an effort to understand the role of P2X7 receptor in epileptogenic insult. In non-SE animals, 2'(3')-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (BzATP, a P2X7R agonist) treatment increased only p52-Ser869 NF-κB phosphorylation in neuron. Following SE, p52-Ser865, p52-Ser869, p65-Ser276, p65-Ser311, p65-Ser468, and p65-Ser529 NF-κB phosphorylation was significantly decreased in CA1 and CA3 neurons. However, BzATP treatment prevented reductions in p65-Ser276, p65-Ser311, p65-Ser529, and p52-Ser869 NF-κB phosphorylations in CA1 and/or CA3 neurons induced by SE. Furthermore, BzATP treatment reduced SE-induced p65-Ser311, p65-Ser468, p65-Ser536, and p52-Ser869 NF-κB phosphorylations in astrocytes. These findings indicate that P2X7 functions may be involved in the regulation of SE-induced reactive astrocytes and neuronal degeneration via NF-κB phosphorylations in response to pilocarpine-induced SE in the rat hippocampus. Copyright © 2013 Wiley Periodicals, Inc.

  9. Genetic interaction of purinergic P2X7 receptor and ER-α polymorphisms in susceptibility to osteoporosis in Chinese postmenopausal women.

    PubMed

    Wang, Hui; Gong, Chengxin; Liu, Xingzi; Rao, Shenqiang; Li, Tao; He, Luling; Nie, Yijun; Wang, Shuo; Zhong, Peipei; Xue, Yansong; Wang, Jihong; Zhao, Jiani; Zhou, Yuru; Ding, Lu; Tu, Yunming; Yang, Yuping; Xiong, Chaopeng; Liang, Shangdong; Xu, Hong

    2017-09-07

    Osteoporosis (OP) is an increasing public health problem worldwide. Genetic factors are considered to be major contributors to the pathogenesis of OP. The aim of this study was to investigate the association of the purinergic P2X7 receptor (P2X7R) and estrogen receptor-α (ER-α) genes with OP risk, and the effect of the possible interaction between the two genes on predisposition to OP in Chinese postmenopausal women. A total of 596 subjects, including 350 OP patients and 246 controls, were recruited in this case-control study. Five functional single-nucleotide polymorphisms (SNPs) in the P2X7R gene (rs2393799, rs7958311, rs1718119, rs2230911, rs3751143) and two ER-α PvuII and XbaI polymorphisms were genotyped and analyzed. Single-gene variant analysis showed that the carriers of the CC genotype of P2X7R rs3751143 revealed an increased OP risk. Haplotype rs1718119G-rs2230911G-rs3751143C also appeared to be a significant 'risk' haplotype with OP. For the ER-α gene, no evidence of significant association of PvuII or XbaI polymorphism with OP risk was found. Moreover, there was a significant gene-gene interaction between P2X7R rs3751143 and ER-α PvuII; the cross-validation consistency was 10/10 and the testing accuracy was 0.5818 (P = 0.0107). A 1.67-fold-increased risk for OP was detected in individuals carrying the genotypes of AC or CC of rs3751143 and Pp or PP of PvuII compared to subjects with AA of rs3751143 and pp of PvuII. Our findings suggest an important association of the P2X7R rs3751143CC genotype and the rs1718119G-rs2230911G-rs3751143C haplotype with an increased OP risk. Also, the P2X7R rs3751143 and ER-α PvuII two-locus interaction confers a significantly high susceptibility to OP in Chinese postmenopausal women.

  10. Stimulation of Ca(2+) influx through ATP receptors on rat brain synaptosomes: identification of functional P2X(7) receptor subtypes.

    PubMed

    Lundy, Paul M; Hamilton, Murray G; Mi, Lei; Gong, Wenrong; Vair, Cory; Sawyer, Thomas W; Frew, Robert

    2002-04-01

    1. ATP receptors of the P2X class have previously been identified on autonomic nerve endings and on a limited population of CNS neurons. 2. In the present study P2X receptors on mammalian cortical synaptosomes have been identified by a variety of functional and biochemical studies. In choline buffer ATP analogues caused concentration/time dependent Ca(2+) influx. Relative to the effects caused by ATP, benzoylbenzoyl ATP (BzATP) was about seven times more active than ATP while 2-me-S-ATP and ATPgammaS were much less active. alpha,beta-me- ATP and beta,gamma-me-ATP were virtually inactive. In sucrose buffer, relative to choline buffer, the activity of BzATP was more than doubled while activity in sodium buffer was reduced. Moreover, the P2X antagonists PPADS or Brilliant Blue G both significantly attenuated influx. These observations suggest the presence of P2X receptors on synaptosomes which subserve Ca(2+) influx. This activity profile of the ATP analogues and the response to blocking agents are characteristic of responses of P2X(7) receptors. 3. Influx was unaffected by the VSCC inhibitors omega-CTx-MVIIC and (-) 202 - 791, indicating that ATP induced Ca(2+) influx occurred primarily through P2X receptors. 4. P2X(7) receptor protein was identified by Western blotting and immunohistochemical staining. Purified preparations were devoid of significant concentrations of GFAP or the microglial marker OX-42 but contained greatly enriched amounts of syntaxin and SNAP 25. 5. The various pharmacological and biochemical studies were all consistent with the presence of functional P2X(7) receptors.

  11. P2X(7) receptor in the kidneys of diabetic rats submitted to aerobic training or to N-acetylcysteine supplementation [corrected].

    PubMed

    Rodrigues, Adelson M; Bergamaschi, Cassia T; Fernandes, Maria Jose S; Paredes-Gamero, Edgar J; Buri, Marcus V; Curi, Marcus V; Ferreira, Alice T; Araujo, Sergio R R; Punaro, Giovana R; Maciel, Fabiane R; Nogueira, Guilherme B; Higa, Elisa M S

    2014-01-01

    Previous studies in our laboratory showed that N-acetylcysteine supplementation or aerobic training reduced oxidative stress and the progression of diabetic nephropathy in rats. The P2X(7 receptor is up-regulated in pathological conditions, such as diabetes mellitus. This up-regulation is related to oxidative stress and induces tissue apoptosis or necrosis. The aim of the present study is to assess the role of P2X(7) receptor in the kidneys of diabetic rats submitted to aerobic training or N-acetylcysteine supplementation. Diabetes was induced in male Wistar rats by streptozotocin (60 mg/kg, i.v.) and the training was done on a treadmill; N-acetylcysteine was given in the drinking water (600 mg/L). By confocal microscopy, as compared to control, the kidneys of diabetic rats showed increased P2 × 7 receptor expression and a higher activation in response to 2'(3')-O-(4-benzoylbenzoyl) adenosine5'-triphosphate (specific agonist) and adenosine triphosphate (nonspecific agonist) (all p<0.05). All these alterations were reduced in diabetic rats treated with N-acetylcysteine, exercise or both. We also observed measured proteinuria and albuminuria (early marker of diabetic nephropathy) in DM groups. Lipoperoxidation was strongly correlated with P2X(7) receptor expression, which was also correlated to NO•, thus associating this receptor to oxidative stress and kidney lesion. We suggest that P2X(7) receptor inhibition associated with the maintenance of redox homeostasis could be useful as coadjuvant treatment to delay the progression of diabetic nephropathy.

  12. Adipose-Derived Stem Cells Suppress Inflammation Induced by IL-1β through Down-Regulation of P2X7R Mediated by miR-373 in Chondrocytes of Osteoarthritis

    PubMed Central

    Jin, Rilong; Shen, Miaoda; Yu, Liedao; Wang, Xuanwei; Lin, Xiangjin

    2017-01-01

    Adipose-derived stem cells (ADSCs) were previously considered to have an anti-inflammatory effect, and Interleukin-1β (IL-1β) was found to be a pro-inflammatory factor in chondrocytes, but the mechanism underlying ADSCs and IL-1β is unclear. In this study, we investigate whether P2X7 receptor (P2X7R) signalling, regulated by microRNA 373 (miR-373), was involved in the ADSCs and IL-1β mediated inflammation in osteoarthritis (OA). Chondrocytes were collected from 20 OA patients and 20 control participants, and ADSCs were collected from patients who had undergone abdominal surgery. The typical surface molecules of ASDCs were detected by flow cytometry. The level of nitric oxide (NO) was determined by Griess reagent. Concentrations of prostaglandin E2 (PGE2), interleukin 6 (IL-6), matrix metallopeptidase 3 (MMP-3) were detected by enzyme-linked immunosorbent assay (ELISA). The expressions of IL-6, MMP-3, miR-373 and P2X7R were determined by real-time polymerase chain reaction (PCR), and Western blot was used to detect the protein expression of P2X7R. The typical potential characters of ADSCs were verified. In chondrocytes or OA tissues, the miR-373 expression level was decreased, but the P2X7R expression was increased. IL-1β stimulation increased the level of inflammatory factors in OA chondrocytes, and ADSCs co-cultured with IL-1β-stimulated chondrocytes decreased the inflammation. OA chondrocytes transfected with the miR-373 inhibitor increased the inflammation level. The miR-373 mimic suppressed the inflammation by targeting P2X7R and regulated its expression, while its effect was reversed by overexpression of P2X7R. IL-1β induced inflammation in OA chondrocytes, while ADSCs seemed to inhibit the expression of P2X7R that was regulated by miR-373 and involved in the anti-inflammatory process in OA. PMID:28343378

  13. P2X7 receptor activation downmodulates Na(+)-dependent high-affinity GABA and glutamate transport into rat brain cortex synaptosomes.

    PubMed

    Barros-Barbosa, A R; Lobo, M G; Ferreirinha, F; Correia-de-Sá, P; Cordeiro, J M

    2015-10-15

    Sodium-dependent high-affinity amino-acid transporters play crucial roles in terminating synaptic transmission in the central nervous system (CNS). However, there is lack of information about the mechanisms underlying the regulation of amino-acid transport by fast-acting neuromodulators, like ATP. Here, we investigated whether activation of the ATP-sensitive P2X7 receptor modulates Na(+)-dependent high-affinity γ-aminobutyric acid (GABA) and glutamate uptake into nerve terminals (synaptosomes) of the rat cerebral cortex. Radiolabeled neurotransmitter accumulation was evaluated by liquid scintillation spectrometry. The cell-permeant sodium-selective fluorescent indicator, SBFI-AM, was used to estimate Na(+) influx across plasma membrane. 2'(3')-O-(4-benzoylbenzoyl)ATP (BzATP, 3-300 μM), a prototypic P2X7 receptor agonist, concentration-dependently decreased [(3)H]GABA (14%) and [(14)C]glutamate (24%) uptake; BzATP decreased transport maximum velocity (Vmax) without affecting the Michaelis constant (Km) values. The selective P2X7 receptor antagonist, A-438079 (3 μM), prevented inhibition of [(3)H]GABA and [(14)C]glutamate uptake by BzATP (100 μM). The inhibitory effect of BzATP coincided with its ability to increase intracellular Na(+) and was mimicked by Na(+) ionophores, like gramicidin and monensin. Increases in intracellular Na(+) (with veratridine or ouabain) or substitution of extracellular Na(+) by N-methyl-D-glucamine (NMDG)(+) all decreased [(3)H]GABA and [(14)C]glutamate uptake and attenuated BzATP effects. Uptake inhibition by BzATP (100 μM) was also attenuated by calmidazolium, which selectively inhibits Na(+) currents through the P2X7 receptor pore. In conclusion, disruption of the Na(+) gradient by P2X7 receptor activation downmodulates high-affinity GABA and glutamate uptake into rat cortical synaptosomes. Interference with amino-acid transport efficacy may constitute a novel target for therapeutic management of cortical excitability.

  14. P2X7 receptor inhibition increases CNTF in the subventricular zone, but not neurogenesis or neuroprotection after stroke in adult mice.

    PubMed

    Kang, Seong Su; Keasey, Matthew Phillip; Hagg, Theo

    2013-10-01

    Increasing endogenous ciliary neurotrophic factor (CNTF) expression with a pharmacological agent might be beneficial after stroke as CNTF both promotes neurogenesis and, separately, is neuroprotective. P2X7 purinergic receptor inhibition is neuroprotective in rats and increases CNTF release in rat CMT1A Schwann cells. We, first, investigated the role of P2X7 in regulating CNTF and neurogenesis in adult mouse subventricular zone (SVZ). CNTF expression was increased by daily intravenous injections of the P2X7 antagonist Brilliant Blue G (BBG) in naïve C57BL/6 or Balb/c mice over 3 days. Despite the ∼40-60 % increase or decrease in CNTF with BBG or the agonist BzATP, respectively, the number of proliferated BrdU+SVZ nuclei did not change. BBG failed to increase FGF2, which is involved in CNTF-regulated neurogenesis, but induced IL-6, LIF, and EGF, which are known to reduce SVZ proliferation. Injections of IL-6 next to the SVZ induced CNTF and FGF2, but not proliferation, suggesting that IL-6 counteracts their neurogenesis-inducing effects. Following ischemic injury of the striatum by middle cerebral artery occlusion (MCAO), a 3-day BBG treatment increased CNTF in the medial penumbra containing the SVZ. BBG also induced CNTF and LIF, which are known to be protective following stroke, in the whole striatum after MCAO, but not GDNF or BDNF. However, BBG treatment did not reduce the lesion area or apoptosis in the penumbra. Even so, this study shows that P2X7 can be targeted with systemic drug treatments to differentially regulate neurotrophic factors in the brain following stroke.

  15. P2X7 Receptor Inhibition Increases CNTF in the Subventricular Zone, But Not Neurogenesis or Neuroprotection After Stroke in Adult Mice

    PubMed Central

    Kang, Seong Su; Keasey, Matthew Phillip

    2013-01-01

    Increasing endogenous ciliary neurotrophic factor (CNTF) expression with a pharmacological agent might be beneficial after stroke as CNTF both promotes neurogenesis and, separately, is neuroprotective. P2X7 purinergic receptor inhibition is neuroprotective in rats and increases CNTF release in rat CMT1A Schwann cells. We, first, investigated the role of P2X7 in regulating CNTF and neurogenesis in adult mouse subventricular zone (SVZ). CNTF expression was increased by daily intravenous injections of the P2X7 antagonist Brilliant Blue G (BBG) in naïve C57BL/6 or Balb/c mice over 3 days. Despite the ∼40–60 % increase or decrease in CNTF with BBG or the agonist BzATP, respectively, the number of proliferated BrdU+SVZ nuclei did not change. BBG failed to increase FGF2, which is involved in CNTF-regulated neurogenesis, but induced IL-6, LIF, and EGF, which are known to reduce SVZ proliferation. Injections of IL-6 next to the SVZ induced CNTF and FGF2, but not proliferation, suggesting that IL-6 counteracts their neurogenesis-inducing effects. Following ischemic injury of the striatum by middle cerebral artery occlusion (MCAO), a 3-day BBG treatment increased CNTF in the medial penumbra containing the SVZ. BBG also induced CNTF and LIF, which are known to be protective following stroke, in the whole striatum after MCAO, but not GDNF or BDNF. However, BBG treatment did not reduce the lesion area or apoptosis in the penumbra. Even so, this study shows that P2X7 can be targeted with systemic drug treatments to differentially regulate neurotrophic factors in the brain following stroke. PMID:24312160

  16. Quantitative structure-activity relationship study of P2X7 receptor inhibitors using combination of principal component analysis and artificial intelligence methods.

    PubMed

    Ahmadi, Mehdi; Shahlaei, Mohsen

    2015-01-01

    P2X7 antagonist activity for a set of 49 molecules of the P2X7 receptor antagonists, derivatives of purine, was modeled with the aid of chemometric and artificial intelligence techniques. The activity of these compounds was estimated by means of combination of principal component analysis (PCA), as a well-known data reduction method, genetic algorithm (GA), as a variable selection technique, and artificial neural network (ANN), as a non-linear modeling method. First, a linear regression, combined with PCA, (principal component regression) was operated to model the structure-activity relationships, and afterwards a combination of PCA and ANN algorithm was employed to accurately predict the biological activity of the P2X7 antagonist. PCA preserves as much of the information as possible contained in the original data set. Seven most important PC's to the studied activity were selected as the inputs of ANN box by an efficient variable selection method, GA. The best computational neural network model was a fully-connected, feed-forward model with 7-7-1 architecture. The developed ANN model was fully evaluated by different validation techniques, including internal and external validation, and chemical applicability domain. All validations showed that the constructed quantitative structure-activity relationship model suggested is robust and satisfactory.

  17. Quantitative structure–activity relationship study of P2X7 receptor inhibitors using combination of principal component analysis and artificial intelligence methods

    PubMed Central

    Ahmadi, Mehdi; Shahlaei, Mohsen

    2015-01-01

    P2X7 antagonist activity for a set of 49 molecules of the P2X7 receptor antagonists, derivatives of purine, was modeled with the aid of chemometric and artificial intelligence techniques. The activity of these compounds was estimated by means of combination of principal component analysis (PCA), as a well-known data reduction method, genetic algorithm (GA), as a variable selection technique, and artificial neural network (ANN), as a non-linear modeling method. First, a linear regression, combined with PCA, (principal component regression) was operated to model the structure–activity relationships, and afterwards a combination of PCA and ANN algorithm was employed to accurately predict the biological activity of the P2X7 antagonist. PCA preserves as much of the information as possible contained in the original data set. Seven most important PC's to the studied activity were selected as the inputs of ANN box by an efficient variable selection method, GA. The best computational neural network model was a fully-connected, feed-forward model with 7−7−1 architecture. The developed ANN model was fully evaluated by different validation techniques, including internal and external validation, and chemical applicability domain. All validations showed that the constructed quantitative structure–activity relationship model suggested is robust and satisfactory. PMID:26600858

  18. Epistasis with HLA DR3 implicates the P2X7 receptor in the pathogenesis of primary Sjögren's syndrome.

    PubMed

    Lester, Susan; Stokes, Leanne; Skarratt, Kristen K; Gu, Ben J; Sivils, Kathy L; Lessard, Christopher J; Wiley, James S; Rischmueller, Maureen

    2013-06-02

    The aim of this study was to examine the association between functional polymorphisms in the pro-inflammatory P2X7 receptor and the Ro/La autoantibody response in primary Sjögren's syndrome (pSS). Twelve functional P2RX7 polymorphisms were genotyped in 114 pSS patients fulfilling the Revised American-European Consensus Criteria for pSS, and 136 controls. Genotyping of the A1405G (rs2230912) polymorphism was performed on a replication cohort consisting of 281 pSS patients and 534 controls. P2X7 receptor function in lymphocytes and monocytes was assessed by measurement of ATP-induced ethidium+ uptake. Serum IL-18 levels were determined by ELISA. The minor allele of P2RX7 A1405G is a tag for a common haplotype associated with gain in receptor function, as assessed by ATP-induced ethidium+ uptake. A positive association between 1405G and anti-Ro±La seropositive pSS patients was observed in Cohort 1. Although not replicated in Cohort 2, there was a consistent, significant, negative epistatic interaction effect with HLA-DR3 in seropositive pSS patients from both cohorts, thereby implicating this gain of function variant in the pathogenesis of pSS. Serum IL-18 was elevated in seropositive pSS patients, but was not influenced by P2RX7 A1405G. The P2RX7 1405G gain-of-function haplotype may be a risk factor for seropositive pSS in a subset of subjects who do not carry HLA risk alleles, but has no effect in subjects who do (epistasis). Potential mechanisms relate to autoantigen exposure and inflammatory cytokine expression. The observed elevation of IL-18 levels is consistent with P2X7 receptor activation in seropositive pSS patients. Collectively these findings implicate P2X7 receptor function in the pathogenesis of pSS.

  19. Microfluorimetric analysis of a purinergic receptor (P2X7) in GH4C1 rat pituitary cells: effects of a bioactive substance produced by Pfiesteria piscicida.

    PubMed

    Melo, A C; Moeller, P D; Glasgow, H; Burkholder, J M; Ramsdell, J S

    2001-10-01

    Pfiesteria piscicida Steidinger & Burkholder is a toxic dinoflagellate that leads to fish and human toxicity. It produces a bioactive substance that leads to cytotoxicity of GH4C1 rat pituitary cells. Extracellular adenosine 5'-triphosphate (ATP) acting on P2X7 purinergic receptors induces the formation of a nonselective cation channel, causing elevation of the cytosolic free calcium followed by a characteristic permeabilization of the cell to progressively larger ions and subsequent cell lysis. We investigated whether GH4C1 rat pituitary cells express functional P2X7 receptors, and if so, are they activated by a bioactive substance isolated from toxic P. piscicida cultures. We tested the selective agonist 2'-3'-O-(benzoyl-4-benzoyl)-ATP (BzATP) and antagonists piridoxalphosphate-6-azophenyl-2'-4'-disulfonic acid (PPADS) and oxidized-ATP (oxATP) using elevated cytosolic free calcium in Fura-2 loaded cells, and induced permeability of these cells to the fluorescent dye YO-PRO-1 as end points. We demonstrated that in GH4C1 cells, BzATP induces both the elevation of cytosolic free calcium and the permeabilization of the cell membrane. ATP-induced membrane permeabilization was inhibited by PPADS reversibly and by oxATP irreversibly. The putative Pfiesteria toxin (pPfTx) also elevated cytosolic free calcium in Fura-2 in GH4C1 cells and increased the permeability to YO-PRO-1 in a manner inhibited fully by oxATP. This study indicates that GH4C1 cells express a purinoceptor with characteristics consistent with the P2X7 subtype, and that pPfTx mimics the kinetics of cell permeabilization by ATP.

  20. Microfluorimetric analysis of a purinergic receptor (P2X7) in GH4C1 rat pituitary cells: effects of a bioactive substance produced by Pfiesteria piscicida.

    PubMed Central

    Melo, A C; Moeller, P D; Glasgow, H; Burkholder, J M; Ramsdell, J S

    2001-01-01

    Pfiesteria piscicida Steidinger & Burkholder is a toxic dinoflagellate that leads to fish and human toxicity. It produces a bioactive substance that leads to cytotoxicity of GH4C1 rat pituitary cells. Extracellular adenosine 5'-triphosphate (ATP) acting on P2X7 purinergic receptors induces the formation of a nonselective cation channel, causing elevation of the cytosolic free calcium followed by a characteristic permeabilization of the cell to progressively larger ions and subsequent cell lysis. We investigated whether GH4C1 rat pituitary cells express functional P2X7 receptors, and if so, are they activated by a bioactive substance isolated from toxic P. piscicida cultures. We tested the selective agonist 2'-3'-O-(benzoyl-4-benzoyl)-ATP (BzATP) and antagonists piridoxalphosphate-6-azophenyl-2'-4'-disulfonic acid (PPADS) and oxidized-ATP (oxATP) using elevated cytosolic free calcium in Fura-2 loaded cells, and induced permeability of these cells to the fluorescent dye YO-PRO-1 as end points. We demonstrated that in GH4C1 cells, BzATP induces both the elevation of cytosolic free calcium and the permeabilization of the cell membrane. ATP-induced membrane permeabilization was inhibited by PPADS reversibly and by oxATP irreversibly. The putative Pfiesteria toxin (pPfTx) also elevated cytosolic free calcium in Fura-2 in GH4C1 cells and increased the permeability to YO-PRO-1 in a manner inhibited fully by oxATP. This study indicates that GH4C1 cells express a purinoceptor with characteristics consistent with the P2X7 subtype, and that pPfTx mimics the kinetics of cell permeabilization by ATP. PMID:11677182

  1. Signaling through P2X7 receptor in human T cells involves p56lck, MAP kinases, and transcription factors AP-1 and NF-kappa B.

    PubMed

    Budagian, Vadim; Bulanova, Elena; Brovko, Luba; Orinska, Zane; Fayad, Raja; Paus, Ralf; Bulfone-Paus, Silvia

    2003-01-17

    ATP-gated ion channel P2X receptors are expressed on the surface of most immune cells and can trigger multiple cellular responses, such as membrane permeabilization, cytokine production, and cell proliferation or apoptosis. Despite broad distribution and pleiotropic activities, signaling pathways downstream of these ionotropic receptors are still poorly understood. Here, we describe intracellular signaling events in Jurkat cells treated with millimolar concentrations of extracellular ATP. Within minutes, ATP treatment resulted in the phosphorylation and activation of p56(lck) kinase, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase but not p38 kinase. These effects were wholly dependent upon the presence of extracellular Ca(2+) ions in the culture medium. Nevertheless, calmodulin antagonist calmidazolium and CaM kinase inhibitor KN-93 both had no effect on the activation of p56(lck) and ERK, whereas a pretreatment of Jurkat cells with MAP kinase kinase inhibitor P098059 was able to abrogate phosphorylation of ERK. Further, expression of c-Jun and c-Fos proteins and activator protein (AP-1) DNA binding activity were enhanced in a time-dependent manner. In contrast, DNA binding activity of NF-kappa B was reduced. ATP failed to stimulate the phosphorylation of ERK and c-Jun N-terminal kinase and activation of AP-1 in the p56(lck)-deficient isogenic T cell line JCaM1, suggesting a critical role for p56(lck) kinase in downstream signaling. Regarding the biological significance of the ATP-induced signaling events we show that although extracellular ATP was able to stimulate proliferation of both Jurkat and JCaM1 cells, an increase in interleukin-2 transcription was observed only in Jurkat cells. The nucleotide selectivity and pharmacological profile data supported the evidence that the ATP-induced effects in Jurkat cells were mediated through the P2X7 receptor. Taken together, these results demonstrate the ability of extracellular ATP to activate

  2. Chronic ethanol exposure combined with high fat diet up-regulates P2X7 receptors that parallels neuroinflammation and neuronal loss in C57BL/6J mice

    PubMed Central

    Asatryan, Liana; Khoja, Sheraz; Rodgers, Kathleen E; Alkana, Ronald L; Tsukamoto, Hidekatsu; Davies, Daryl L.

    2015-01-01

    The present investigation tested the role of ATP-activated P2X7 receptors (P2X7Rs) in alcohol-induced brain damage using a model that combines intragastric (iG) ethanol feeding and high fat diet in C57BL/6J mice (Hybrid). The Hybrid paradigm caused increased levels of pro-inflammatory markers, changes in microglia and astrocytes, reduced levels of neuronal marker NeuN and increased P2X7R expression in ethanol-sensitive brain regions. Observed changes in P2X7R and NeuN expression were more pronounced in Hybrid paradigm with inclusion of additional weekly binges. In addition, high fat diet during Hybrid exposure aggravated the increase in P2X7R expression and activation of glial cells. PMID:26198936

  3. Chronic ethanol exposure combined with high fat diet up-regulates P2X7 receptors that parallels neuroinflammation and neuronal loss in C57BL/6J mice.

    PubMed

    Asatryan, Liana; Khoja, Sheraz; Rodgers, Kathleen E; Alkana, Ronald L; Tsukamoto, Hidekazu; Davies, Daryl L

    2015-08-15

    The present investigation tested the role of ATP-activated P2X7 receptors (P2X7Rs) in alcohol-induced brain damage using a model that combines intragastric (iG) ethanol feeding and high fat diet in C57BL/6J mice (Hybrid). The Hybrid paradigm caused increased levels of pro-inflammatory markers, changes in microglia and astrocytes, reduced levels of neuronal marker NeuN and increased P2X7R expression in ethanol-sensitive brain regions. Observed changes in P2X7R and NeuN expression were more pronounced in Hybrid paradigm with inclusion of additional weekly binges. In addition, high fat diet during Hybrid exposure aggravated the increase in P2X7R expression and activation of glial cells.

  4. P2X7 Cell Death Receptor Activation and Mitochondrial Impairment in Oxaliplatin-Induced Apoptosis and Neuronal Injury: Cellular Mechanisms and In Vivo Approach

    PubMed Central

    Massicot, France; Hache, Guillaume; David, Ludivine; Chen, Dominique; Leuxe, Charlotte; Garnier-Legrand, Laure; Rat, Patrice; Laprévote, Olivier; Coudoré, François

    2013-01-01

    Limited information is available regarding the cellular mechanisms of oxaliplatin-induced painful neuropathy during exposure of patients to this drug. We therefore determined oxidative stress in cultured cells and evaluated its occurrence in C57BL/6 mice. Using both cultured neuroblastoma (SH-SY5Y) and macrophage (RAW 264.7) cell lines and also brain tissues of oxaliplatin-treated mice, we investigated whether oxaliplatin (OXA) induces oxidative stress and apoptosis. Cultured cells were treated with 2–200 µM OXA for 24 h. The effects of pharmacological inhibitors of oxidative stress or inflammation (N-acetyl cysteine, ibuprofen, acetaminophen) were also tested. Inhibitors were added 30 min before OXA treatment and then in combination with OXA for 24 h. In SH-SY5Y cells, OXA caused a significant dose-dependent decrease in viability, a large increase in ROS and NO production, lipid peroxidation and mitochondrial impairment as assessed by a drop in mitochondrial membrane potential, which are deleterious for the cell. An increase in levels of negatively charged phospholipids such as cardiolipin but also phosphatidylserine and phosphatidylinositol, was also observed. Additionally, OXA caused concentration-dependent P2X7 receptor activation, increased chromatin condensation and caspase-3 activation associated with TNF-α and IL-6 release. The majority of these toxic effects were equally observed in Raw 264.7 which also presented high levels of PGE2. Pretreatment of SH-SY5Y cells with pharmacological inhibitors significantly reduced or blocked all the neurotoxic OXA effects. In OXA-treated mice (28 mg/kg cumulated dose) significant cold hyperalgesia and oxidative stress in the tested brain areas were shown. Our study suggests that targeting P2X7 receptor activation and mitochondrial impairment might be a potential therapeutic strategy against OXA-induced neuropathic pain. PMID:23826152

  5. P2X7 Cell Death Receptor Activation and Mitochondrial Impairment in Oxaliplatin-Induced Apoptosis and Neuronal Injury: Cellular Mechanisms and In Vivo Approach.

    PubMed

    Massicot, France; Hache, Guillaume; David, Ludivine; Chen, Dominique; Leuxe, Charlotte; Garnier-Legrand, Laure; Rat, Patrice; Laprévote, Olivier; Coudoré, François

    2013-01-01

    Limited information is available regarding the cellular mechanisms of oxaliplatin-induced painful neuropathy during exposure of patients to this drug. We therefore determined oxidative stress in cultured cells and evaluated its occurrence in C57BL/6 mice. Using both cultured neuroblastoma (SH-SY5Y) and macrophage (RAW 264.7) cell lines and also brain tissues of oxaliplatin-treated mice, we investigated whether oxaliplatin (OXA) induces oxidative stress and apoptosis. Cultured cells were treated with 2-200 µM OXA for 24 h. The effects of pharmacological inhibitors of oxidative stress or inflammation (N-acetyl cysteine, ibuprofen, acetaminophen) were also tested. Inhibitors were added 30 min before OXA treatment and then in combination with OXA for 24 h. In SH-SY5Y cells, OXA caused a significant dose-dependent decrease in viability, a large increase in ROS and NO production, lipid peroxidation and mitochondrial impairment as assessed by a drop in mitochondrial membrane potential, which are deleterious for the cell. An increase in levels of negatively charged phospholipids such as cardiolipin but also phosphatidylserine and phosphatidylinositol, was also observed. Additionally, OXA caused concentration-dependent P2X7 receptor activation, increased chromatin condensation and caspase-3 activation associated with TNF-α and IL-6 release. The majority of these toxic effects were equally observed in Raw 264.7 which also presented high levels of PGE2. Pretreatment of SH-SY5Y cells with pharmacological inhibitors significantly reduced or blocked all the neurotoxic OXA effects. In OXA-treated mice (28 mg/kg cumulated dose) significant cold hyperalgesia and oxidative stress in the tested brain areas were shown. Our study suggests that targeting P2X7 receptor activation and mitochondrial impairment might be a potential therapeutic strategy against OXA-induced neuropathic pain.

  6. Delayed activation of spinal microglia contributes to the maintenance of bone cancer pain in female Wistar rats via P2X7 receptor and IL-18.

    PubMed

    Yang, Yan; Li, Hui; Li, Ting-Ting; Luo, Hao; Gu, Xi-Yao; Lü, Ning; Ji, Ru-Rong; Zhang, Yu-Qiu

    2015-05-20

    Accumulating evidence suggests that activation of spinal microglia contributes to the development of inflammatory and neuropathic pain. However, the role of spinal microglia in the maintenance of chronic pain remains controversial. Bone cancer pain shares features of inflammatory and neuropathic pain, but the temporal activation of microglia and astrocytes in this model is not well defined. Here, we report an unconventional role of spinal microglia in the maintenance of advanced-phase bone cancer pain in a female rat model. Bone cancer elicited delayed and persistent microglial activation in the spinal dorsal horn on days 14 and 21, but not on day 7. In contrast, bone cancer induced rapid and persistent astrocytic activation on days 7-21. Spinal inhibition of microglia by minocycline at 14 d effectively reduced bone cancer-induced allodynia and hyperalgesia. However, pretreatment of minocycline in the first week did not affect the development of cancer pain. Bone cancer increased ATP levels in CSF, and upregulated P2X7 receptor, phosphorylated p38, and IL-18 in spinal microglia. Spinal inhibition of P2X7/p-38/IL-18 pathway reduced advanced-phase bone cancer pain and suppressed hyperactivity of spinal wide dynamic range (WDR) neurons. IL-18 induced allodynia and hyperalgesia after intrathecal injection, elicited mechanical hyperactivity of WDR neurons in vivo, and increased the frequency of mEPSCs in spinal lamina IIo nociceptive synapses in spinal cord slices. Together, our findings demonstrate a novel role of microglia in maintaining advanced phase cancer pain in females via producing the proinflammatory cytokine IL-18 to enhance synaptic transmission of spinal cord nociceptive neurons.

  7. Constructing an atomic-resolution model of human P2X7 receptor followed by pharmacophore modeling to identify potential inhibitors.

    PubMed

    Ahmadi, Mehdi; Nowroozi, Amin; Shahlaei, Mohsen

    2015-09-01

    The P2X purinoceptor 7 (P2X7R) is a trimeric ATP-activated ion channel gated by extracellular ATP. P2X7R has important role in numerous diseases including pain, neurodegeneration, and inflammatory diseases such as rheumatoid arthritis and osteoarthritis. In this prospective, the discovery of small-molecule inhibitors for P2X7R as a novel therapeutic target has received considerable attention in recent years. At first, 3D structure of P2X7R was built by using homology modeling (HM) and a 50ns molecular dynamics simulation (MDS). Ligand-based quantitative pharmacophore modeling methodology of P2X7R antagonists were developed based on training set of 49 compounds. The best four-feature pharmacophore model, includes two hydrophobic aromatic, one hydrophobic and one aromatic ring features, has the highest correlation coefficient (0.874), cost difference (368.677), low RMSD (2.876), as well as it shows a high goodness of fit and enrichment factor. Consequently, some hit compounds were introduced as final candidates by employing virtual screening and molecular docking procedure simultaneously. Among these compounds, six potential molecule were identified as potential virtual leads which, as such or upon further optimization, can be used to design novel P2X7R inhibitors.

  8. P2X7 Receptor Expression in Peripheral Blood Monocytes Is Correlated With Plasma C-Reactive Protein and Cytokine Levels in Patients With Type 2 Diabetes Mellitus: a Preliminary Report.

    PubMed

    Wu, Hong; Nie, Yijun; Xiong, Huangui; Liu, Shuangmei; Li, Guilin; Huang, An; Guo, Lili; Wang, Shouyu; Xue, Yun; Wu, Bing; Peng, Lichao; Song, Miaomiao; Li, Guodong; Liang, Shangdong

    2015-12-01

    Chronic inflammation plays a major role in development of type 2 diabetes mellitus (T2DM). C-reactive protein (CRP) and inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β) are directly involved in the occurrence of insulin resistance. Increased extracellular ATP levels can amplify the inflammatory response in vivo via the P2X7 receptor. The present study aimed to assess the relationship between P2X7 receptor expression in human peripheral blood monocytes and plasma levels of TNF-α, IL-1β, and CRP in T2DM patients. The results showed the association of increased P2X7 receptor expression of monocytes with high serum CRP, TNF-α, and IL-1β levels. TNF-α and IL-1β levels were lowest in healthy subjects; in T2DM patients, these inflammatory markers were less abundant in individuals with normal CRP levels compared to those with high CRP contents. In contrast, IL-10 levels in T2DM patients with high CRP levels were dramatically decreased. P2X7 receptor expression in monocytes from T2DM patients with high CRP levels was significantly increased in comparison with healthy individuals and T2DM patients with normal CRP levels. These findings indicated that P2X7 receptor in peripheral blood monocytes may be involved in the pathological changes of T2DM, particularly affecting patients with high CRP levels.

  9. P2X7-mediated Increased Intracellular Calcium Causes Functional Derangement in Schwann Cells from Rats with CMT1A Neuropathy*

    PubMed Central

    Nobbio, Lucilla; Sturla, Laura; Fiorese, Fulvia; Usai, Cesare; Basile, Giovanna; Moreschi, Iliana; Benvenuto, Federica; Zocchi, Elena; De Flora, Antonio; Schenone, Angelo; Bruzzone, Santina

    2009-01-01

    Charcot-Marie-Tooth (CMT) is the most frequent inherited neuromuscular disorder, affecting 1 person in 2500. CMT1A, the most common form of CMT, is usually caused by a duplication of chromosome 17p11.2, containing the PMP22 (peripheral myelin protein-22) gene; overexpression of PMP22 in Schwann cells (SC) is believed to cause demyelination, although the underlying pathogenetic mechanisms remain unclear. Here we report an abnormally high basal concentration of intracellular calcium ([Ca2+]i) in SC from CMT1A rats. By the use of specific pharmacological inhibitors and through down-regulation of expression by small interfering RNA, we demonstrate that the high [Ca2+]i is caused by a PMP22-related overexpression of the P2X7 purinoceptor/channel leading to influx of extracellular Ca2+ into CMT1A SC. Correction of the altered [Ca2+]i in CMT1A SC by small interfering RNA or with pharmacological inhibitors of P2X7 restores functional parameters of SC (migration and release of ciliary neurotrophic factor), which are typically defective in CMT1A SC. More significantly, stable down-regulation of the expression of P2X7 restores myelination in co-cultures of CMT1A SC with dorsal root ganglion sensory neurons. These results establish a pathogenetic link between high [Ca2+]i and impaired SC function in CMT1A and identify overexpression of P2X7 as the molecular mechanism underlying both abnormalities. The development of P2X7 inhibitors is expected to provide a new therapeutic strategy for treatment of CMT1A neuropathy. PMID:19546221

  10. Molecular Characterization and Expression Analysis of ATP-Gated P2X7 Receptor Involved in Japanese Flounder (Paralichthys olivaceus) Innate Immune Response

    PubMed Central

    Li, Shuo; Li, Xuejing; Coddou, Claudio; Geng, Xuyun; Wei, Junli; Sun, Jinsheng

    2014-01-01

    ATP-gated P2X7 receptor (P2RX7) channel is a key component for purinergic signaling and plays important roles in the innate immune response in mammals. However, the expression, molecular properties and immune significances of P2RX7 in lower vertebrates are still very limited. Here we identified and characterized a novel bony fish P2RX7 homologue cDNA, termed poP2RX7, in Japanese flounder (Paralichthys olivaceus). PoP2RX7 protein shares about 60–88% sequence similarity and 45–78% sequence identity with known vertebrate P2RX7 proteins. Phylogenetic analysis placed poP2RX7 and other P2RX7 proteins within their own cluster apart from other P2RX members. While the functional poP2RX7 channel shares structural features in common with known P2RX7 homologs, electrophysiological studies revealed that BzATP, the more potent agonist for known mammalian and fish P2RX7s, shows similar potency to ATP in poP2RX7 activation. poP2RX7 mRNA constitutively expressed in all examined tissues from unstimulated healthy Japanese flounder with dominant expression in hepatopancreas and the lowest expression in head kidney, trunk kidney, spleen and gill. poP2RX7 mRNA expression, however, was significantly induced in Japanese flounder head kidney primary cells by Poly(I:C) and bacterial endotoxin LPS stimulations. In vivo experiments further revealed that poP2RX7 gene expression was substantially up-regulated by immune challenge with infectious bacteria Edwardsiella tarda and Vibrio anguillarum. Moreover, activation of poP2RX7 results in an increased gene expression of multifunctional cytokines IL-1β and IL-6 in the head kidney primary cells. Collectively, we identified and characterized a novel fish P2RX7 homolog which is engaged in Japanese flounder innate immune response probably through modulation of pro-inflammatory cytokines expression. PMID:24796752

  11. Purinoreceptor P2X7 Regulation of Ca2+ Mobilization and Cytoskeletal Rearrangement Is Required for Corneal Reepithelialization after Injury

    PubMed Central

    Minns, Martin S.; Teicher, Gregory; Rich, Celeste B.; Trinkaus-Randall, Vickery

    2017-01-01

    The process of wound healing involves a complex network of signaling pathways working to promote rapid cell migration and wound closure. Activation of purinergic receptors by secreted nucleotides plays a major role in calcium mobilization and the subsequent calcium-dependent signaling that is essential for proper healing. The role of the purinergic receptor P2X7 in wound healing is still relatively unknown. We demonstrate that P2X7 expression increases at the leading edge of corneal epithelium after injury in an organ culture model, and that this change occurs despite an overall decrease in P2X7 expression throughout the epithelium. Inhibition of P2X7 prevents this change in localization after injury and impairs wound healing. In cell culture, P2X7 inhibition attenuates the amplitude and duration of injury-induced calcium mobilization in cells at the leading edge. Immunofluorescence analysis of scratch-wounded cells reveals that P2X7 inhibition results in an overall decrease in the number of focal adhesions along with a concentration of focal adhesions at the wound margin. Live cell imaging of green fluorescent protein–labeled actin and talin shows that P2X7 inhibition alters actin cytoskeletal rearrangements and focal adhesion dynamics after injury. Together, these data demonstrate that P2X7 plays a critical role in mediating calcium signaling and coordinating cytoskeletal rearrangement at the leading edge, both of which processes are early signaling events necessary for proper epithelial wound healing. PMID:26683661

  12. The Selective Antagonism of P2X7 and P2Y1 Receptors Prevents Synaptic Failure and Affects Cell Proliferation Induced by Oxygen and Glucose Deprivation in Rat Dentate Gyrus

    PubMed Central

    Maraula, Giovanna; Lana, Daniele; Coppi, Elisabetta; Gentile, Francesca; Mello, Tommaso; Melani, Alessia; Galli, Andrea; Giovannini, Maria Grazia; Pedata, Felicita; Pugliese, Anna Maria

    2014-01-01

    Purinergic P2X and P2Y receptors are broadly expressed on both neurons and glial cells in the central nervous system (CNS), including dentate gyrus (DG). The aim of this research was to determine the synaptic and proliferative response of the DG to severe oxygen and glucose deprivation (OGD) in acute rat hippocampal slices and to investigate the contribution of P2X7 and P2Y1 receptor antagonism to recovery of synaptic activity after OGD. Extracellular field excitatory post-synaptic potentials (fEPSPs) in granule cells of the DG were recorded from rat hippocampal slices. Nine-min OGD elicited an irreversible loss of fEPSP and was invariably followed by the appearance of anoxic depolarization (AD). Application of MRS2179 (selective antagonist of P2Y1 receptor) and BBG (selective antagonist of P2X7 receptor), before and during OGD, prevented AD appearance and allowed a significant recovery of neurotransmission after 9-min OGD. The effects of 9-min OGD on proliferation and maturation of cells localized in the subgranular zone (SGZ) of slices prepared from rats treated with 5-Bromo-2′-deoxyuridine (BrdU) were investigated. Slices were further incubated with an immature neuron marker, doublecortin (DCX). The number of BrdU+ cells in the SGZ was significantly decreased 6 hours after OGD. This effect was antagonized by BBG, but not by MRS2179. Twenty-four hours after 9-min OGD, the number of BrdU+ cells returned to control values and a significant increase of DCX immunofluorescence was observed. This phenomenon was still evident when BBG, but not MRS2179, was applied during OGD. Furthermore, the P2Y1 antagonist reduced the number of BrdU+ cells at this time. The data demonstrate that P2X7 and P2Y1 activation contributes to early damage induced by OGD in the DG. At later stages after the insult, P2Y1 receptors might play an additional and different role in promoting cell proliferation and maturation in the DG. PMID:25526634

  13. P2X7R is involved in the progression of atherosclerosis by promoting NLRP3 inflammasome activation

    PubMed Central

    PENG, KUANG; LIU, LUSHAN; WEI, DANGHENG; LV, YUNCHENG; WANG, GANG; XIONG, WENHAO; WANG, XIAOQING; ALTAF, AFRASYAB; WANG, LILI; HE, DAN; WANG, HONGYAN; QU, PENG

    2015-01-01

    Purinergic 2X7 receptor (P2X7R) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) are expressed in macrophages in atherosclerotic lesions. However, the mechanisms through which P2X7R participates in the inflammatory response in atherosclerosis remain largely unknown. The aim of the present study was to investigate the role of P2X7R in atherosclerosis and the mechanisms of action of the NLRP3 inflammasome following stimulation with oxidized low-density lipoprotein (oxLDL). We observed the expression and distribution of P2X7R in the atherosclerotic plaque in the coronary arteries from an autopsy specimen and in that of the aortic sinuses of apoE−/− mice by immunohistochemistry and immunofluorescence staining. The specificity of short interfering RNA (siRNA) was used to suppress P2X7R and NLRP3 mRNA expression. RT-qPCR and western blot analysis were used to analyze mRNA and protein expression, respectively. Co-immunoprecipitation was used to examine the interaction between protein kinase R (PKR) phosphorylation and NLRP3. P2X7R and NLRP3 were expressed at high levels in the atherosclerotic plaque in the coronary arteries. Stimulation with oxLDL upregulated P2X7R, NLRP3 and interleukin (IL)-1β expression. P2X7R knockdown by siRNA suppressed NLRP3 inflammasome activation by inhibiting the PKR phosphorylation mediated by oxLDL. In the atherosclerotic lesions in the aortic sinuses of apoE−/− mice, P2X7R expression was found at high levels. Moreover, P2X7R siRNA attenuated the development of atherosclerosis in the apoE−/− mice. In conclusion, our results demonstrate that P2X7R plays a significant role in the development of atherosclerosis and regulates NLRP3 inflammasome activation by promoting PKR phosphorylation. PMID:25761252

  14. Uncaria tomentosa extract alters the catabolism of adenine nucleotides and expression of ecto-5'-nucleotidase/CD73 and P2X7 and A1 receptors in the MDA-MB-231 cell line.

    PubMed

    Santos, Karen Freitas; Gutierres, Jessié Martins; Pillat, Micheli Mainardi; Rissi, Vitor Braga; Santos Araújo, Maria do Carmo Dos; Bertol, Gustavo; Gonçalves, Paulo Bayard Dias; Schetinger, Maria Rosa Chitolina; Morsch, Vera Maria

    2016-12-24

    Uncaria tomentosa (Willd.) DC. (Rubiaceae) (Ut), also known as cat's claw, is a woody liana widely spread throughout the Amazon rainforest of Central and South America, containing many chemical constituents such as oxindole alkaloids, which are responsible for various biological activities. Since ancient times, the indigenous people of Peru have used it as a bark infusion for the treatment of a wide range of health problems gastric ulcers, arthritis and rheumatism. Recently, Ut is distributed worldwide and used as an immunomodulatory and anti-inflammatory herbal remedy. Additionally, U. tomentosa also has antitumural activity. However, little is known about the action of U. tomentosa on the purinergic system mechanisms, which is involved in tumor progression. Considering the pharmacological properties of U. tomentosa, we sought to evaluate the hydroalcoholic extract U tomentosa is able to influence the purinergic system in breast cancer cells, MDA-MB-231. Through the activity and expression of ectonucleotidases (NTPDase - CD39; Ecto-5'-nucleotidase - CD73) and purinergic repceptores (P2X7 and A1). A hydroalcoholic extract was prepared in two concentrations, 250 and 500μg/mL. (Ut250; Ut500). The effect of these concentrations on the activity and expression of ectonucleotidases, as well as on the density of purinergic receptors were investigated in MDA-MB-231 breast cancer cells. Cells were treated with the hydroalcoholic extract of Uncaria tomentosa and/or doxorubicin (Doxo 1μM; Ut250+Doxo; Ut500+Doxo) for 24h. Although the results were not significant for the hydrolysis of the ATP, they presented an increase in the ADP hydrolysis in the Ut500+Doxo group when compared to the control group. Additionally, the activity of 5'-nucleotidase was inhibited in all groups when compared with the untreated group of cells. Inhibition of the enzyme was more evident in groups with U. tomentosa per se. The expression of CD39 was increased in the Ut250 and Ut250+Doxo groups when

  15. P2X7 deficiency attenuates hypertension and renal injury in deoxycorticosterone acetate-salt hypertension.

    PubMed

    Ji, Xu; Naito, Yukiko; Weng, Huachun; Endo, Kosuke; Ma, Xiao; Iwai, Naoharu

    2012-10-15

    The P2X(7) receptor is a ligand-gated ion channel, and genetic variations in the P2X(7) gene significantly affect blood pressure. P2X(7) receptor expression is associated with renal injury and inflammatory diseases. Uninephrectomized wild-type (WT) and P2X(7)-deficient (P2X(7) KO) mice were subcutaneously implanted with deoxycorticosterone acetate (DOCA) pellets and fed an 8% salt diet for 18 days. Their blood pressure was assessed by a telemetry system. The mice were placed in metabolic cages, and urine was collected for 24 h to assess renal function. After 18 days of DOCA-salt treatment, P2X(7) mRNA and protein expression increased in WT mice. Blood pressure in P2X(7) KO mice was less than that of WT mice (mean systolic blood pressure 133 ± 3 vs. 150 ± 2 mmHg). On day 18, urinary albumin excretion was lower in P2X(7) KO mice than in WT mice (0.11 ± 0.07 vs. 0.28 ± 0.07 mg/day). Creatinine clearance was higher in P2X(7) KO mice than in WT mice (551.53 ± 65.23 vs. 390.85 ± 32.81 μl·min(-1)·g renal weight(-1)). Moreover, renal interstitial fibrosis and infiltration of immune cells (macrophages, T cells, B cells, and leukocytes) were markedly attenuated in P2X(7) KO mice compared with WT mice. The levels of IL-1β, released by macrophages, in P2X(7) KO mice had decreased dramatically compared with that in WT mice. These results strongly suggest that the P2X(7) receptor plays a key role in the development of hypertension and renal disease via increased inflammation, indicating its potential as a novel therapeutic target.

  16. Involvement of the P2X7-NLRP3 axis in leukemic cell proliferation and death

    PubMed Central

    Salaro, Erica; Rambaldi, Alessia; Falzoni, Simonetta; Amoroso, Francesca Saveria; Franceschini, Alessia; Sarti, Alba Clara; Bonora, Massimo; Cavazzini, Francesco; Rigolin, Gian Matteo; Ciccone, Maria; Audrito, Valentina; Deaglio, Silvia; Pelegrin, Pablo; Pinton, Paolo; Cuneo, Antonio; Di Virgilio, Francesco

    2016-01-01

    Lymphocyte growth and differentiation are modulated by extracellular nucleotides and P2 receptors. We previously showed that the P2X7 receptor (P2X7R or P2RX7) is overexpressed in circulating lymphocytes from chronic lymphocytic leukemia (CLL) patients. In the present study we investigated the P2X7R/NLRP3 inflammasome axis in lymphocytes from a cohort of 23 CLL patients. P2X7R, ASC and NLRP3 were investigated by Western blot, PCR and transfection techniques. P2X7R was overexpressed and correlated with chromosome 12 trisomy in CLL patients. ASC mRNA and protein were also overexpressed. On the contrary, NLRP3 was dramatically down-modulated in CLL lymphocytes relative to lymphocytes from healthy donors. To further investigate the correlation between P2X7R, NLRP3 and cell growth, NLRP3 was silenced in THP-1 cells, a leukemic cell line that natively expresses both NLRP3 and P2X7R. NLRP3 silencing enhanced P2X7R expression and promoted growth. On the contrary, NLRP3 overexpression caused accelerated apoptosis. The P2X7R was also up-modulated in hematopoietic cells from NLRP3-KO mice. In conclusion, we show that NLRP3 down-modulation stimulates P2X7R expression and promotes growth, while NLRP3 overexpression inhibits cell proliferation and stimulates apoptosis. These findings suggest that NLRP3 is a negative regulator of growth and point to a role of the P2X7R/NLRP3 axis in CLL. PMID:27221966

  17. P2X7 on Mouse T Cells: One Channel, Many Functions

    PubMed Central

    Rissiek, Björn; Haag, Friedrich; Boyer, Olivier; Koch-Nolte, Friedrich; Adriouch, Sahil

    2015-01-01

    The P2X7 receptor is an adenosine triphosphate (ATP)-gated cation channel that is expressed by several cells of the immune system. P2X7 is best known for its proinflammatory role in promoting inflammasome formation and release of mature interleukin (IL)-1β by innate immune cells. Mounting evidence indicates that P2X7 is also an important regulatory receptor of murine and human T cell functions. Murine T cells express a sensitive splice variant of P2X7 that can be activated either by non-covalent binding of ATP or, in the presence of nicotinamide adenine dinucleotide, by its covalent ADP-ribosylation catalyzed by the ecto-ADP-ribosyltransferase ARTC2.2. Prolonged activation of P2X7 by either one of these pathways triggers the induction of T cell death. Conversely, lower concentrations of ATP can activate P2X7 to enhance T cell proliferation and production of IL-2. In this review, we will highlight the molecular and cellular consequences of P2X7 activation on mouse T cells and its versatile role in T cell homeostasis and activation. Further, we will discuss important differences in the function of P2X7 on human and murine T cells. PMID:26042119

  18. The absence of P2X7 receptors (P2rx7) on non-haematopoietic cells leads to selective alteration in mood-related behaviour with dysregulated gene expression and stress reactivity in mice.

    PubMed

    Csölle, Cecilia; Andó, Rómeó D; Kittel, Ágnes; Gölöncsér, Flóra; Baranyi, Mária; Soproni, Krisztina; Zelena, Dóra; Haller, József; Németh, Tamás; Mócsai, Attila; Sperlágh, Beáta

    2013-02-01

    The purpose of this study was to explore how genetic deletion and pharmacological antagonism of the P2X7 receptor (P2rx7) alter mood-related behaviour, gene expression and stress reactivity in the brain. The forced swim test (FST), tail suspension test (TST) and amphetamine-induced hyperlocomotion (AH) tests were used in wild-type (P2rx7(+/+)) and P2rx7-deficient (P2rx7(-/-)) mice. Biogenic amine levels were analysed in the amygdala and striatum, adrenocorticotropic hormone (ACTH) and corticosterone levels were measured in the plasma and pituitary after restraint stress. Chimeric mice were generated by bone marrow transplantation. A whole genome microarray analysis with real-time polymerase chain reaction validation was performed on the amygdala. In the absence of P2rx7s decreased behavioural despair in the FST, reduced immobility in the TST and attenuated amphetamine-induced hyperactivity were detected. Basal norepinephrine levels were elevated in the amygdala, whereas stress-induced ACTH and corticosterone responses were alleviated in P2rx7(-/-) mice. Sub-acute treatment with the selective P2rx7 antagonist, Brilliant Blue G, reproduced the effect of genetic deletion in the TST and AH test in P2rx7(+/+) but not P2rx7(-/-) mice. No change in behavioural phenotype was observed in chimeras lacking the P2rx7 in their haematopoietic compartment. Whole genome microarray analysis indicated a widespread up- and down-regulation of genes crucial for synaptic function and neuroplasticity by genetic deletion. Here, we present evidence that the absence of P2rx7s on non-haematopoietic cells leads to a mood-stabilizing phenotype in several behavioural models and suggest a therapeutic potential of P2rx7 antagonists for the treatment of mood disorders.

  19. Silencing of P2X7R by RNA interference in the hippocampus can attenuate morphological and behavioral impact of pilocarpine-induced epilepsy.

    PubMed

    Amorim, Rebeca Padrão; Araújo, Michelle Gasparetti Leão; Valero, Jorge; Lopes-Cendes, Iscia; Pascoal, Vinicius Davila Bitencourt; Malva, João Oliveira; da Silva Fernandes, Maria José

    2017-07-13

    Cell signaling mediated by P2X7 receptors (P2X7R) has been suggested to be involved in epileptogenesis, via modulation of intracellular calcium levels, excitotoxicity, activation of inflammatory cascades, and cell death, among other mechanisms. These processes have been described to be involved in pilocarpine-induced status epilepticus (SE) and contribute to hyperexcitability, resulting in spontaneous and recurrent seizures. Here, we aimed to investigate the role of P2X7R in epileptogenesis in vivo using RNA interference (RNAi) to inhibit the expression of this receptor. Small interfering RNA (siRNA) targeting P2X7R mRNA was injected into the lateral ventricles (icv) 6 h after SE. Four groups were studied: Saline-Vehicle, Saline-siRNA, Pilo-Vehicle, and Pilo-siRNA. P2X7R was quantified by western blotting and neuronal death assessed by Fluoro-Jade B histochemistry. The hippocampal volume (edema) was determined 48 h following RNAi. Behavioral parameters as latency to the appearance of spontaneous seizures and the number of seizures were determined until 60 days after the SE onset. The Saline-siRNA and Pilo-siRNA groups showed a 43 and 37% reduction, respectively, in P2X7R protein levels compared to respective vehicle groups. Neuroprotection was observed in CA1 and CA3 of the Pilo-siRNA group compared to Pilo-Vehicle. P2X7R silencing in pilocarpine group reversed the increase in the edema detected in the hilus, suprapyramidal dentate gyrus, CA1, and CA3; reduced mortality rate following SE; increased the time to onset of spontaneous seizure; and reduced the number of seizures, when compared to the Pilo-Vehicle group. Therefore, our data highlights the potential of P2X7R as a therapeutic target for the adjunct treatment of epilepsy.

  20. P2X7 purinoceptor alterations in dystrophic mdx mouse muscles: relationship to pathology and potential target for treatment.

    PubMed

    Young, Christopher N J; Brutkowski, Wojciech; Lien, Chun-Fu; Arkle, Stephen; Lochmüller, Hanns; Zabłocki, Krzysztof; Górecki, Dariusz C

    2012-05-01

    Duchenne muscular dystrophy (DMD) is a lethal inherited muscle disorder. Pathological characteristics of DMD skeletal muscles include, among others, abnormal Ca(2+) homeostasis and cell signalling. Here, in the mdx mouse model of DMD, we demonstrate significant P2X7 receptor abnormalities in isolated primary muscle cells and cell lines and in dystrophic muscles in vivo. P2X7 mRNA expression in dystrophic muscles was significantly up-regulated but without alterations of specific splice variant patterns. P2X7 protein was also up-regulated and this was associated with altered function of P2X7 receptors producing increased responsiveness of cytoplasmic Ca(2+) and extracellular signal-regulated kinase (ERK) phosphorylation to purinergic stimulation and altered sensitivity to NAD. Ca(2+) influx and ERK signalling were stimulated by ATP and BzATP, inhibited by specific P2X7 antagonists and insensitive to ivermectin, confirming P2X7 receptor involvement. Despite the presence of pannexin-1, prolonged P2X7 activation did not trigger cell permeabilization to propidium iodide or Lucifer yellow. In dystrophic mice, in vivo treatment with the P2X7 antagonist Coomassie Brilliant Blue reduced the number of degeneration-regeneration cycles in mdx skeletal muscles. Altered P2X7 expression and function is thus an important feature in dystrophic mdx muscle and treatments aiming to inhibit P2X7 receptor might slow the progression of this disease.

  1. P2X7-pannexin-1 and amyloid β-induced oxysterol input in human retinal cell: Role in age-related macular degeneration?

    PubMed

    Olivier, Elodie; Dutot, Mélody; Regazzetti, Anne; Leguillier, Teddy; Dargère, Delphine; Auzeil, Nicolas; Laprévote, Olivier; Rat, Patrice

    2016-08-01

    Age-related macular degeneration (AMD) is the most common cause of severe vision loss worldwide. Amyloid β involvement in degenerative diseases such as AMD is well known and its toxicity has been related to P2X7 receptor-pannexin-1. Recently, oxysterols (oxidized derivatives of cholesterol) have been implicated in AMD pathogenesis. The aim of our study was to highlight amyloid β/oxysterols relationship and to describe P2X7 receptor-pannexin-1 role in oxysterols toxicity. Using retinal epithelial cells, we first quantified sterols levels after amyloid β incubation and second we investigated the cytotoxic effects induced by oxysterols. For the first time, our results showed that amyloid β induced oxysterols formation in human retinal pigmented epithelial cells. We showed that oxysterol toxicity is mediated by P2X7 receptor activation. This activation was dependent on pannexin-1 with 25-hydroxycholesterol whereas P2X7 receptor signaling pathway was pannexin-1-independent for 7-ketocholesterol. Taken together our data suggest a pivotal role of P2X7 receptor-pannexin-1 in oxysterols toxicity in retinal cells which could be an important target to develop new treatments for AMD.

  2. Porphyromonas gingivalis fimbriae dampen P2X7-dependent IL-1β secretion

    PubMed Central

    Morandini, Ana Carolina; Ramos-Junior, Erivan S.; Potempa, Jan; Nguyen, Ky-Anh; Oliveira, Ana Carolina; Bellio, Maria; Ojcius, David M.; Scharfstein, Julio; Coutinho-Silva, Robson

    2014-01-01

    Porphyromonas gingivalis is a major contributor to the pathogenesis of periodontitis, an infection-driven inflammatory disease that leads to bone destruction. This pathogen stimulates pro-IL-1β synthesis but not mature IL-1β secretion, unless the P2X7 receptor is activated by extracellular ATP. Here, we investigated the role of Pg fimbriae in eATP-induced IL-1β release. Bone marrow derived macrophages (BMDMs) from wild type (WT) or P2X7-deficient mice were infected with Pg (strain 381) or isogenic fimbriae deficient (strain DPG3) with or without subsequent eATP stimulation. DPG3 induced higher IL-1β secretion after eATP stimulation compared to 381 in WT BMDMs, but not in P2X7-deficient cells. This mechanism was dependent of K+ efflux and Ca2+-iPLA2 activity. Accordingly, non-fimbriated Pg failed to inhibit apoptosis via eATP/P2X7-pathway. Furthermore, Pg-driven stimulation of IL-1β was TLR2- and MyD88-dependent, and irrespective of fimbriae expression. Fimbriae-dependent down-modulation of IL-1β was selective, as levels of other cytokines remained unaffected by P2X7 deficiency. Confocal microscopy demonstrated the presence of discrete P2X7 expression in the absence of Pg stimulation which was enhanced by 381-stimulated cells. Notably, DPG3-infected macrophages revealed a distinct pattern of P2X7 receptor expression with a markedly foci formation. Collectively, these data demonstrate that eATP-induced IL-1β secretion is impaired by Pg fimbriae in a P2X7-dependent manner. PMID:24925032

  3. The hyposensitive N187D P2X7 mutant promotes malignant progression in nude mice.

    PubMed

    Chong, Jing-Hui; Zheng, Guo-Guang; Ma, Yuan-Yuan; Zhang, Hai-Yan; Nie, Kun; Lin, Yong-Min; Wu, Ke-Fu

    2010-11-12

    Nucleotides are new players in the intercellular communication network. P2X7 is a member of the P2X family of receptors, which are ATP-gated plasma membrane ion channels with diverse biological functions. Abnormal expression and dysfunction of P2X7 have been reported in leukemias. Here, we report a new P2X7 mutant (an A(559)-to-G substitution causing N187D P2X7) cloned from J6-1 leukemia cells. The characteristics of N187D P2X7 were studied by establishing stably transfected K562 cell lines. Our results show that N187D P2X7 required a higher concentration of agonist for its activation, leading to Ca(2+) influx (EC(50) = 293.3 ± 6.6 μm for the mutant and 93.6 ± 2.2 μm for wild-type P2X7) and ERK phosphorylation, which were not caused by differential cell-surface expression or related to high ATPase activity on the cell surface and in the extracellular space. K562 cells expressing this N187D mutant showed a proliferative advantage and reduced pro-apoptosis effects in vitro and in vivo. Furthermore, elevated angiogenesis and CD206-positive macrophage infiltration were found in tumor tissues formed by K562-M cells. In addition, higher expression of VEGF and MCP1 could be detected in tumor tissues formed by K562-M cells. Our results suggest that N187D P2X7, representing mutants hyposensitive to agonist, might be a positive regulator in the progression of hematopoietic malignancies.

  4. An Improved Method for P2X7R Antagonist Screening

    PubMed Central

    Soares-Bezerra, Rômulo José; Ferreira, Natiele Carla da Silva; Alberto, Anael Viana Pinto; Bonavita, André Gustavo; Fidalgo-Neto, Antônio Augusto; Calheiros, Andrea Surrage; Frutuoso, Valber da Silva; Alves, Luiz Anastacio

    2015-01-01

    ATP physiologically activates the P2X7 receptor (P2X7R), a member of the P2X ionotropic receptor family. When activated by high concentrations of ATP (i.e., at inflammation sites), this receptor is capable of forming a pore that allows molecules of up to 900 Da to pass through. This receptor is upregulated in several diseases, particularly leukemia, rheumatoid arthritis and Alzheimer's disease. A selective antagonist of this receptor could be useful in the treatment of P2X7R activation-related diseases. In the present study, we have evaluated several parameters using in vitro protocols to validate a high-throughput screening (HTS) method to identify P2X7R antagonists. We generated dose-response curves to determine the EC50 value of the known agonist ATP and the ICs50 values for the known antagonists Brilliant Blue G (BBG) and oxidized ATP (OATP). The values obtained were consistent with those found in the literature (0.7 ± 0.07 mM, 1.3-2.6 mM and 173-285 μM for ATP, BBG and OATP, respectively). The Z-factor, an important statistical tool that can be used to validate the robustness and suitability of an HTS assay, was 0.635 for PI uptake and 0.867 for LY uptake. No inter-operator variation was observed, and the results obtained using our improved method were reproducible. Our data indicate that our assay is suitable for the selective and reliable evaluation of P2X7 activity in multiwell plates using spectrophotometry-based methodology. This method might improve the high-throughput screening of conventional chemical or natural product libraries for possible candidate P2X7R antagonist or agonist PMID:25993132

  5. Inhibition of chlamydial infectious activity due to P2X7R-dependent phospholipase D activation.

    PubMed

    Coutinho-Silva, Robson; Stahl, Lynn; Raymond, Marie-Noëlle; Jungas, Thomas; Verbeke, Philippe; Burnstock, Geoffrey; Darville, Toni; Ojcius, David M

    2003-09-01

    Chlamydia trachomatis survives within host cells by inhibiting fusion between Chlamydia vacuoles and lysosomes. We show here that treatment of infected macrophages with ATP leads to killing of chlamydiae through ligation of the purinergic receptor, P2X(7)R. Chlamydial killing required phospholipase D (PLD) activation, as PLD inhibition led to rescue of chlamydiae in ATP-treated macrophages. However, there was no PLD activation nor chlamydial killing in ATP-treated P2X(7)R-deficient macrophages. P2X(7)R ligation exerts its effects by promoting fusion between Chlamydia vacuoles and lysosomes. P2X(7)R stimulation also resulted in macrophage death, but fusion with lysosomes preceded macrophage death and PLD inhibition did not prevent macrophage death. These results suggest that P2X(7)R ligation leads to PLD activation, which is directly responsible for inhibition of infection.

  6. Purinergic signalling in autoimmunity: A role for the P2X7R in systemic lupus erythematosus?

    PubMed

    Di Virgilio, Francesco; Giuliani, Anna Lisa

    2016-10-01

    Purinergic signalling plays a crucial role in immunity and autoimmunity. Among purinergic receptors, the P2X7 receptor (P2X7R) has an undisputed role as it is expressed to high level by immune cells, triggers cytokine release and modulates immune cell differentiation. In this review, we focus on evidence supporting a possible role of the P2X7R in the pathogenesis of systemic lupus erythematosus (SLE). Copyright © 2016 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  7. microRNA targeting of the P2X7 purinoceptor opposes a contralateral epileptogenic focus in the hippocampus

    PubMed Central

    Jimenez-Mateos, Eva M.; Arribas-Blazquez, Marina; Sanz-Rodriguez, Amaya; Concannon, Caoimhin; Olivos-Ore, Luis A.; Reschke, Cristina R.; Mooney, Claire M.; Mooney, Catherine; Lugara, Eleonora; Morgan, James; Langa, Elena; Jimenez-Pacheco, Alba; Silva, Luiz Fernando Almeida; Mesuret, Guillaume; Boison, Detlev; Miras-Portugal, M. Teresa; Letavic, Michael; Artalejo, Antonio R.; Bhattacharya, Anindya; Diaz-Hernandez, Miguel; Henshall, David C.; Engel, Tobias

    2015-01-01

    The ATP-gated ionotropic P2X7 receptor (P2X7R) modulates glial activation, cytokine production and neurotransmitter release following brain injury. Levels of the P2X7R are increased in experimental and human epilepsy but the mechanisms controlling P2X7R expression remain poorly understood. Here we investigated P2X7R responses after focal-onset status epilepticus in mice, comparing changes in the damaged, ipsilateral hippocampus to the spared, contralateral hippocampus. P2X7R-gated inward currents were suppressed in the contralateral hippocampus and P2rx7 mRNA was selectively uploaded into the RNA-induced silencing complex (RISC), suggesting microRNA targeting. Analysis of RISC-loaded microRNAs using a high-throughput platform, as well as functional assays, suggested the P2X7R is a target of microRNA-22. Inhibition of microRNA-22 increased P2X7R expression and cytokine levels in the contralateral hippocampus after status epilepticus and resulted in more frequent spontaneous seizures in mice. The major pro-inflammatory and hyperexcitability effects of microRNA-22 silencing were prevented in P2rx7−/− mice or by treatment with a specific P2X7R antagonist. Finally, in vivo injection of microRNA-22 mimics transiently suppressed spontaneous seizures in mice. The present study supports a role for post-transcriptional regulation of the P2X7R and suggests therapeutic targeting of microRNA-22 may prevent inflammation and development of a secondary epileptogenic focus in the brain. PMID:26631939

  8. Ligation of CD40 in Human Müller Cells Induces P2X7 Receptor–Dependent Death of Retinal Endothelial Cells

    PubMed Central

    Portillo, Jose-Andres C.; Lopez Corcino, Yalitza; Dubyak, George R.; Kern, Timothy S.; Matsuyama, Shigemi; Subauste, Carlos S.

    2016-01-01

    Purpose Cluster of differentiation 40 (CD40) is required for retinal capillary degeneration in diabetic mice, a process mediated by the retinal endothelial cells (REC) death. However, CD40 activates prosurvival signals in endothelial cells. The purpose of this study was to identify a mechanism by which CD40 triggers programmed cell death (PCD) of RECs and address this paradox. Methods Human RECs and Müller cells were incubated with CD154 and L-N6-(1-Iminoethyl)lysine (L-Nil, nitric oxide synthase 2 inhibitor), α-lipoic acid (inhibitor of oxidative stress), anti-Fas ligand antibody, or A-438079 (P2X7 adenosine triphosphate [ATP] receptor inhibitor). Programmed cell death was analyzed by fluorescence-activated cell sorting (FACS) or Hoechst/propidium iodide staining. Release of ATP was measured using a luciferase-based assay. Mice were made diabetic with streptozotocin. Expression of P2X7 was assessed by FACS, quantitative PCR, or immunohistochemistry. Results Ligation of CD40 in primary RECs did not induce PCD. In contrast, in the presence of primary CD40+ Müller cells, CD40 stimulation caused PCD of RECs that was not impaired by L-Nil, α-lipoic acid, or anti-Fas ligand antibody. We found CD40 did not trigger TNF-α or IL-1β secretion. Primary Müller cells released extracellular ATP in response to CD40 ligation. Inhibition of P2X7 (A-438079) impaired PCD of RECs; CD40 upregulated P2X7 in RECs, making them susceptible to ATP/P2X7mediated PCD. Diabetic mice upregulated P2X7 in the retina and RECs in a CD40-dependent manner. Conclusions Cluster of differentiation 40 induces PCD of RECs through a dual mechanism: ATP release by Müller cells and P2X7 upregulation in RECs. These findings are likely of in vivo relevance since CD40 upregulates P2X7 in RECs in diabetic mice and CD40 is known to be required for retinal capillary degeneration. PMID:27893093

  9. Expression of the apoptotic calcium channel P2X7 in the glandular epithelium.

    PubMed

    Slater, Michael; Danieletto, Suzanne; Barden, Julian A

    2005-03-01

    In the current study, expression of the apoptotic calcium channel receptor P2X(7) and prostate-specific antigen (PSA) levels were studied in biopsy cores from 174 patients as well as 20 radical prostatectomy cases. In clinical biopsies, we have previously demonstrated that P2X(1 )and P2X(2) calcium channel receptors are absent from normal prostate epithelium that does not progress to prostate cancer within 5 years. In cases that did progress to prostate cancer however, P2X(1 )and P2X(2) labeling was observed in a stage-specific manner first in the nucleus, then the cytoplasm and finally on the apical epithelium, as prostate cancer developed. These markers were present up to 5 years before cancer was detectable by the usual morphological criteria (Gleason grading) as determined by H and E staining. In the current study, the apoptotic calcium channel receptor P2X(7) yielded similar results to that of P2X(1) and P2X(2). Using radical prostatectomy tissue sections as well as biopsies, these changes in calcium channel metabolism were noted throughout the prostate, indicating a field effect. This finding suggests that the presence of a prostate tumor could be detected without the need for direct sampling of tumor tissue, leading to detection of false negative cases missed by H or E stain. The reliability of PSA levels as a prognostic indicator has been questioned in recent years. In the current study, PSA levels were correlated with the P2X(7) labeling results. All patients who exhibited no P2X(7) labeling had a prostatic serum antigen (PSA) level of <2. Patients who exhibited stage-specific P2X(7) expression, and who later developed obvious prostate cancer as diagnosed by H and E stain, all had a PSA > 2. This finding suggests that increasing PSA may be an accurate indicator of cancer development.

  10. Pharmacological identification of P2X1, P2X4 and P2X7 nucleotide receptors in the smooth muscles of human umbilical cord and chorionic blood vessels.

    PubMed

    Valdecantos, P; Briones, R; Moya, P; Germain, A; Huidobro-Toro, J P

    2003-01-01

    To ascertain the role of extracellular adenosine 5'-triphosphate (ATP) receptors in human placenta circulation, we identified and pharmacologically characterized the P2X receptor population in its superficial vessels. Total RNA was extracted from segments of chorionic and umbilical arteries and veins of terminal placentae delivered by vaginal or Caesarian births. Polymerase chain reaction (PCR), followed by sequencing of the products, identified the presence of P2X 1, 4, 5, 6, and 7mRNAs in smooth muscle from chorionic and umbilical arteries and veins. Umbilical vessels proximal to the fetus expressed the same population of P2X subtypes, except for the P2X(5), but additionally expressed the P2X(2). Rings of chorionic vessels contracted upon addition of nucleotides and analogs with the following relative rank order of potencies in arteries and veins: alpha,beta-methyleneATP>beta,gamma-methyleneATP>PNP>ATP=diBzATP>2-MeSATP>ADP>AMP; in umbilical vessels alpha,beta-methyleneATP was at least 100-fold more potent than ATP. Nucleotide potency was less than that of PGF(2alpha) or endothelin-2, but had the same magnitude as serotonin. ATP-desensitized receptors evidenced cross desensitization to alpha,beta-methyleneATP, 2-MeSATP and diBzATP, effect not observed when desensitization was elicited by alpha,beta-methyleneATP, confirming the presence of various P2X receptor subtypes in the smooth muscles of these vessels. The vasocontractile efficacy of alpha,beta-methyleneATP was unaltered by endothelium removal, while that of ATP was significantly attenuated and those elicited by 2-MeSATP were blunted, indicating the presence of additional endothelial nucleotide receptors. These results suggest that P2X receptors participate in the humoral regulation of placental blood flow.

  11. Development of a Small Molecule P2X7R Antagonist as a Treatment for Acute SCI

    DTIC Science & Technology

    2011-10-01

    impact of deletion of connexins (Cx30/Cx43) in astrocytes on post-traumatic ATP release. In vivo bioluminescence imaging showed a significant reduction...the observation that ATP release and activation of P2X7 receptors drives the innate inflammatory response initiated by spinal cord injury. P2X7R...swelling. Prior studies have shown that excessive ATP release from peri-traumatic regions contributes to the inflammatory response to SCI by

  12. Attenuated P2X7 Pore Function as a Risk Factor for Virus-induced Loss of Asthma Control

    PubMed Central

    Denlinger, Loren C.; Shi, Lei; Guadarrama, Arturo; Schell, Kathy; Green, Dawn; Morrin, Alison; Hogan, Kirk; Sorkness, Ronald L.; Busse, William W.; Gern, James E.

    2009-01-01

    Rationale: Upper respiratory tract infection is a guideline accepted risk domain for the loss of asthma control. The ionotrophic nucleotide receptor P2X7 regulates compartmentalized acute inflammation and the immune response to airway pathogens. Objectives: We hypothesized that variability in P2X7 function contributes to neutrophilic airway inflammation during a cold and thereby is linked to acute asthma. Methods: Research volunteers with asthma were enrolled at the onset of a naturally occurring cold and monitored through convalescence, assessing symptoms, lung function, and airway inflammation. P2X7 pore activity in whole blood samples was measured using a genomically validated flow cytometric assay. Measurements and Main Results: Thirty-five participants with mild to moderate allergic asthma were enrolled and 31 completed all visits. P2X7 pore function correlated with the change in nasal lavage neutrophil counts during the cold (Rs = 0.514, P = 0.004) and was inversely related to the change in asthma symptoms (Rs = −0.486, P = 0.009). The change in peak expiratory flow recordings, precold use of inhaled corticosteroids, and P2X7 pore function were multivariate predictors of asthma symptoms (P = 0.001, < 0.001 and = 0.003 respectively). Attenuated P2X7 activity was associated with the risk of losing asthma control (crude odds ratio, 11.0; 95% confidence interval, 1.1–106.4) even after adjustment for inhaled corticosteroids and rhinovirus (odds ratio, 15.0). Conclusions: A whole blood P2X7 pore assay robustly identifies participants with loss-of-function genotypes. Using this assay as an epidemiologic tool, attenuated P2X7 pore activity may be a novel biomarker of virus-induced loss of asthma control. PMID:19201928

  13. P2X4 assembles with P2X7 and pannexin-1 in gingival epithelial cells and modulates ATP-induced reactive oxygen species production and inflammasome activation.

    PubMed

    Hung, Shu-Chen; Choi, Chul Hee; Said-Sadier, Najwane; Johnson, Larry; Atanasova, Kalina Rosenova; Sellami, Hanen; Yilmaz, Özlem; Ojcius, David M

    2013-01-01

    We have previously reported that Porphyromonas gingivalis infection of gingival epithelial cells (GEC) requires an exogenous danger signal such as ATP to activate an inflammasome and caspase-1, thereby inducing secretion of interleukin (IL)-1β. Stimulation with extracellular ATP also stimulates production of reactive oxygen species (ROS) in GEC. However, the mechanism by which ROS is generated in response to ATP, and the role that different purinergic receptors may play in inflammasome activation, is still unclear. In this study, we revealed that the purinergic receptor P2X(4) is assembled with the receptor P2X(7) and its associated pore, pannexin-1. ATP induces ROS production through a complex consisting of the P2X(4), P2X(7), and pannexin-1. P2X(7)-mediated ROS production can activate the NLRP3 inflammasome and caspase-1. Furthermore, separate depletion or inhibition of P2X(4), P2X(7), or pannexin-1 complex blocks IL-1β secretion in P. gingivalis-infected GEC following ATP treatment. However, activation via P2X(4) alone induces ROS generation but not inflammasome activation. These results suggest that ROS is generated through stimulation of a P2X(4)/P2X(7)/pannexin-1 complex, and reveal an unexpected role for P2X(4), which acts as a positive regulator of inflammasome activation during microbial infection.

  14. The P2X7/P2X4 interaction shapes the purinergic response in murine macrophages.

    PubMed

    Pérez-Flores, Gabriela; Lévesque, Sébastien A; Pacheco, Jonathan; Vaca, Luis; Lacroix, Steve; Pérez-Cornejo, Patricia; Arreola, Jorge

    2015-11-20

    The ATP-gated P2X4 and P2X7 receptors are cation channels, co-expressed in excitable and non-excitable cells and play important roles in pain, bone development, cytokine release and cell death. Although these receptors interact the interacting domains are unknown and the functional consequences of this interaction remain unclear. Here we show by co-immunoprecipitation that P2X4 interacts with the C-terminus of P2X7 and by fluorescence resonance energy transfer experiments that this receptor-receptor interaction is driven by ATP. Furthermore, disrupting the ATP-driven interaction by knocking-out P2X4R provoked an attenuation of P2X7-induced cell death, dye uptake and IL-1β release in macrophages. Thus, P2X7 interacts with P2X4 via its C-terminus and disrupting the P2X7/P2X4 interaction hinders physiological responses in immune cells.

  15. TRPM7 is a molecular substrate of ATP-evoked P2X7-like currents in tumor cells

    PubMed Central

    Nörenberg, Wolfgang; Plötz, Tanja; Sobottka, Helga; Chubanov, Vladimir; Mittermeier, Lorenz; Kalwa, Hermann; Aigner, Achim

    2016-01-01

    Within the ion channel–coupled purine receptor (P2X) family, P2X7 has gained particular interest because of its role in immune responses and in the growth control of several malignancies. Typical hallmarks of P2X7 are nonselective and noninactivating cation currents that are elicited by high concentrations (0.1–10 mM) of extracellular ATP. Here, we observe spurious ATP-induced currents in HEK293 cells that neither express P2X7 nor display ATP-induced Ca2+ influx or Yo-Pro-1 uptake. Although the biophysical properties of these ionic currents resemble those of P2X7 in terms of their reversal potential close to 0 mV, nonrectifying current-voltage relationship, current run-up during repeated ATP application, and augmentation in bath solutions containing low divalent cation (DIC) concentrations, they are poorly inhibited by established P2X7 antagonists. Because high ATP concentrations reduce the availability of DICs, these findings prompted us to ask whether other channel entities may become activated by our experimental regimen. Indeed, a bath solution with no added DICs yields similar currents and also a rapidly inactivating Na+-selective conductance. We provide evidence that TRPM7 and ASIC1a (acid-sensing ion channel type Ia)-like channels account for these noninactivating and phasic current components, respectively. Furthermore, we find ATP-induced currents in rat C6 glioma cells, which lack functional P2X receptors but express TRPM7. Thus, the observation of an atypical P2X7-like conductance may be caused by the activation of TRPM7 by ATP, which scavenges free DICs and thereby releases TRPM7 from permeation block. Because TRPM7 has a critical role in controlling the intracellular Mg2+ homeostasis and regulating tumor growth, these data imply that the proposed role of P2X7 in C6 glioma cell proliferation deserves reevaluation. PMID:27185858

  16. Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice.

    PubMed

    Kimbler, Donald E; Shields, Jessica; Yanasak, Nathan; Vender, John R; Dhandapani, Krishnan M

    2012-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Cerebral edema, the abnormal accumulation of fluid within the brain parenchyma, contributes to elevated intracranial pressure (ICP) and is a common life-threatening neurological complication following TBI. Unfortunately, neurosurgical approaches to alleviate increased ICP remain controversial and medical therapies are lacking due in part to the absence of viable drug targets. In the present study, genetic inhibition (P2X7-/- mice) of the purinergic P2x7 receptor attenuated the expression of the pro-inflammatory cytokine, interleukin-1β (IL-1β) and reduced cerebral edema following controlled cortical impact, as compared to wild-type mice. Similarly, brilliant blue G (BBG), a clinically non-toxic P2X7 inhibitor, inhibited IL-1β expression, limited edemic development, and improved neurobehavioral outcomes after TBI. The beneficial effects of BBG followed either prophylactic administration via the drinking water for one week prior to injury or via an intravenous bolus administration up to four hours after TBI, suggesting a clinically-implementable therapeutic window. Notably, P2X7 localized within astrocytic end feet and administration of BBG decreased the expression of glial fibrillary acidic protein (GFAP), a reactive astrocyte marker, and attenuated the expression of aquaporin-4 (AQP4), an astrocytic water channel that promotes cellular edema. Together, these data implicate P2X7 as a novel therapeutic target to prevent secondary neurological injury after TBI, a finding that warrants further investigation.

  17. Differential role of pannexin-1/ATP/P2X7 axis in IL-1β release by human monocytes.

    PubMed

    Parzych, Katarzyna; Zetterqvist, Anna V; Wright, William R; Kirkby, Nicholas S; Mitchell, Jane A; Paul-Clark, Mark J

    2017-02-28

    IL-1β release is integral to the innate immune system. The release of mature IL-1β depends on 2 regulated events: the de novo induction of pro-IL-1β, generally via NF-κB-dependent transduction pathways; and the assembly and activation of the NLRP3 inflammasome. This latter step is reliant on active caspase-1, pannexin-1, and P2X7 receptor activation. Pathogen-associated molecular patterns in gram-positive and gram-negative bacteria activate IL-1β release from immune cells via TLR2 and TLR4 receptors, respectively. We found that pro-IL-1β and mature IL-1β release from human monocytes is stimulated by the TLR2 agonists Pam3CSK4 or FSL-1 as well as the TLR4 agonist LPS in the absence of additional ATP. TLR2 agonists required pannexin-1 and P2X7 receptor activation to stimulate IL-1β release. In contrast, IL-1β release stimulated by the TLR4 agonist LPS is independent of both pannexin-1 and P2X7 activation. In the absence of exogenous ATP, P2X7 activation requires endogenous ATP release, which occurs in some cells via pannexin-1. In line with this, we found that LPS-stimulated human monocytes released relatively low levels of ATP, whereas cells stimulated with TLR2 agonists released high levels of ATP. These findings suggest that in human monocytes, both TLR2 and TLR4 signaling induce pro-IL-1β expression, but the mechanism by which they activate caspase-1 diverges at the level of the pannexin-1/ATP/P2X7 axis.-Parzych, K., Zetterqvist, A. V., Wright, W. R., Kirkby, N. S., Mitchell, J. A., Paul-Clark, M. J. Differential role of pannexin-1/ATP/P2X7 axis in IL-1β release by human monocytes.

  18. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death

    PubMed Central

    Draganov, Dobrin; Gopalakrishna-Pillai, Sailesh; Chen, Yun-Ru; Zuckerman, Neta; Moeller, Sara; Wang, Carrie; Ann, David; Lee, Peter P.

    2015-01-01

    Overexpression of P2X7 receptors correlates with tumor growth and metastasis. Yet, release of ATP is associated with immunogenic cancer cell death as well as inflammatory responses caused by necrotic cell death at sites of trauma or ischemia-reperfusion injury. Using an FDA-approved anti-parasitic agent Ivermectin as a prototype agent to allosterically modulate P2X4 receptors, we can switch the balance between the dual pro-survival and cytotoxic functions of purinergic signaling in breast cancer cells. This is mediated through augmented opening of the P2X4/P2X7-gated Pannexin-1 channels that drives a mixed apoptotic and necrotic mode of cell death associated with activation of caspase-1 and is consistent with pyroptosis. We show that cancer cell death is dependent on ATP release and death signals downstream of P2X7 receptors that can be reversed by inhibition of NADPH oxidases-generated ROS, Ca2+/Calmodulin-dependent protein kinase II (CaMKII) or mitochondrial permeability transition pore (MPTP). Ivermectin induces autophagy and release of ATP and HMGB1, key mediators of inflammation. Potentiated P2X4/P2X7 signaling can be further linked to the ATP rich tumor microenvironment providing a mechanistic explanation for the tumor selectivity of purinergic receptors modulation and its potential to be used as a platform for integrated cancer immunotherapy. PMID:26552848

  19. Bromoenol lactone enhances the permeabilization of rat submandibular acinar cells by P2X7 agonists

    PubMed Central

    Chaïb, N; Kabré, E; Alzola, E; Pochet, S; Dehaye, J P

    2000-01-01

    The permeabilizing effect of P2X7 agonists was tested in rat submandibular acinar cells using the uptake of ethidium bromide as an index. The uptake of ethidium bromide by acini incubated at 37°C in the presence of 1 mM ATP increased with time and reached after 5 min about 10% of maximal uptake measured in the presence of digitonin. The response to ATP was dose-dependent (half-maximal concentration around 40 μM) and it was decreased when the temperature was lowered to 25°C. Benzoyl-ATP reproduced the response to ATP (half-maximal concentration around 10 μM). UTP or 2-methylthioATP had no effect. The permeabilization in response to ATP was blocked by oxidized ATP and by magnesium and inhibited by Coomassie blue. ATP increased the activity of a calcium-insensitive phospholipase A2 (iPLA2). Bromoenol lactone (BEL) inhibited the iPLA2 stimulated by ATP but potentiated the uptake of ethidium bromide in response to the purinergic agonist. From these results it is concluded that the activation of P2X7 receptors permeabilizes rat submandibular acinar cells. The pore-forming activity of the receptor might be negatively regulated by the concomitant activation of the iPLA2 by the receptor. PMID:10683195

  20. Amplification loop of the inflammatory process is induced by P2X7R activation in intestinal epithelial cells in response to neutrophil transepithelial migration.

    PubMed

    Cesaro, Annabelle; Brest, Patrick; Hofman, Véronique; Hébuterne, Xavier; Wildman, Scott; Ferrua, Bernard; Marchetti, Sandrine; Doglio, Alain; Vouret-Craviari, Valérie; Galland, Franck; Naquet, Philippe; Mograbi, Baharia; Unwin, Robert; Hofman, Paul

    2010-07-01

    Inflammatory bowel diseases (IBD) are characterized during their active phase by polymorphonuclear leukocyte (PMNL) transepithelial migration. The efflux of PMNL into the mucosa is associated with the production of proinflammatory cytokines and the release of ATP from damaged and necrotic cells. The expression and function of purinergic P2X(7) receptor (P2X(7)R) in intestinal epithelial cells (IEC) and its potential role in the "cross talk" between IEC and PMNL have not been explored. The aims of the present study were 1) to examine P2X(7)R expression in IEC (T84 cells) and in human intestinal biopsies; 2) to detect any changes in P2X(7)R expression in T84 cells during PMNL transepithelial migration, and during the active and quiescent phases of IBD; and 3) to test whether P2X(7)R stimulation in T84 monolayers can induce caspase-1 activation and IL-1beta release by IEC. We found that a functional ATP-sensitive P2X(7)R is constitutively expressed at the apical surface of IEC T84 cells. PMNL transmigration regulates dynamically P2X(7)R expression and alters its distribution from the apical to basolateral surface of IEC during the early phase of PMNL transepithelial migration in vitro. P2X(7)R expression was weak in intestinal biopsies obtained during the active phase of IBD. We show that activation of epithelial P2X(7)R is mandatory for PMNL-induced caspase-1 activation and IL-1beta release by IEC. Overall, these changes in P2X(7)R function may serve to tailor the intensity of the inflammatory response and to prevent IL-1beta overproduction and inflammatory disease.

  1. Rhinovirus-Induced IL-1β Release from Bronchial Epithelial Cells Is Independent of Functional P2X7

    PubMed Central

    Shi, Lei; Manthei, David M.; Guadarrama, Arturo G.; Lenertz, Lisa Y.

    2012-01-01

    Airway epithelial cell defenses to viral infections are often compromised in disease or injury. Danger molecules, including ATP, are released during infection and contribute to nucleotide receptor–dependent inflammatory responses, largely through P2X7. Although respiratory epithelium has been shown to express a variety of nucleotide receptors, the functional contribution of P2X7 to the epithelial cell inflammatory response is unclear. We used human donor bronchial epithelial cells (BECs) and primary brushed epithelium to explore responses upon nucleotide and Toll-like receptor stimulation. P2X7 messenger RNA and protein were observed in unprimed BECs, whereas inflammatory cytokine stimulation increased both messenger RNA and protein. Functional pore activity characteristic of P2X7 was observed in BECs, and IL-1β was rapidly released by BECs after Toll-like receptor 3 agonist, polyinosine-polycytidylic acid, priming followed by ATP administration, although no change was observed in IL-18 release. BECs produced more IL-1β after stimulation with polyinosine-polycytidylic acid than LPS, showing a different preferential response than monocytes. In addition, blockade of nucleotide receptors with oxidized ATP significantly increased human rhinovirus (HRV) recovered 24 hours after infection in BECs, whereas 2′-3′-O-(4-benzoylbenzoyl) ATP treatment of brushed epithelial cells and respiratory cell lines nonsignificantly decreased HRV recovery. IL-1β release was detected after HRV infection in both BECs and brushed cells, but BzATP did not significantly increase IL-1β release further. BEC processing of pro–IL-1β to the mature, cleaved, 17-kD form was confirmed by Western blotting. These results support the expression of functional P2X7 in human lung epithelium, although its role in epithelial pathogen defense is likely independent of IL-1 family cytokine processing. PMID:22493010

  2. Involvement of sodium in early phosphatidylserine exposure and phospholipid scrambling induced by P2X7 purinoceptor activation in thymocytes.

    PubMed

    Courageot, Marie-Pierre; Lépine, Sandrine; Hours, Michel; Giraud, Françoise; Sulpice, Jean-Claude

    2004-05-21

    Extracellular ATP (ATP(ec)), a possible effector in thymocyte selection, induces thymocyte death via purinoceptor activation. We show that ATP(ec) induced cell death by apoptosis, rather than lysis, and early phosphatidylserine (PS) exposure and phospholipid scrambling in a limited thymocyte population (35-40%). PS externalization resulted from the activation of the cationic channel P2X7 (formerly P2Z) receptor and was triggered in all thymocyte subsets although to different proportions in each one. Phospholipid movement was dependent on ATP(ec)-induced Ca(2+) and/or Na(+) influx. At physiological external Na(+) concentration, without external Ca(2+), PS was exposed in all ATP(ec)-responsive cells. In contrast, without external Na(+), physiological external Ca(2+) concentration promoted a submaximal response. Altogether these data show that Na(+) influx plays a major role in the rapid PS exposure induced by P2X7 receptor activation in thymocytes.

  3. Development of a Small Molecule P2X7R Antagonist as a Treatment for Acute SCI

    DTIC Science & Technology

    2013-10-01

    microglia in response to SCI, and of the role of P2X7 receptor activation in that process . Indeed, in parallel work using uninjured human brain tissue...distinct glial fates are instructed, and how that process may be manipulated for therapeutic purposes. Thus, on the basis of the injury-associated...autocrine loop for the self -maintenance of glial progenitors, the perturbation of which might dictate progenitor recruitment as either reactive glia or

  4. Development of a Small Molecule P2X7R Antagonist as a Treatment for Acute SCI

    DTIC Science & Technology

    2011-10-01

    evaluated the impact of deletion of connexins (Cx30/Cx43) in astrocytes on post-traumatic ATP release. In vivo bioluminescence imaging showed a...Introduction The proposed studies were based on the observati on that ATP release and activation of P2X7 receptors drives the innate inf lammatory...tissue swelling. Prior studies have shown that excess ive ATP release from peri-traumatic regions contributes to the inflammatory response to SCI by

  5. Glutathione induces GABA release through P2X7R activation on Müller glia.

    PubMed

    Freitas, Hércules Rezende; Reis, Ricardo A de Melo

    2017-01-01

    The retinal tissue of warm-blooded vertebrates performs surprisingly complex and accurate transduction of visual information. To achieve precision, a multilayered neuroglia structure is established throughout the embryonic development, and the presence of radial Müller (glial) cells ensure differentiation, growth and survival for the neuronal elements within retinal environment. It is assumed that Müller cells serve as a dynamic reservoir of progenitors, capable of expressing transcription factors, differentiating and proliferating as either neuronal or glial cells depending on extrinsic cues. In the postnatal period, Müller glia may re-enter cell cycle and produce new retinal neurons in response to acute damage. In this context, glutathione (GSH), a virtually ubiquitous tripeptide antioxidant, which is found at milimolar concentrations in central glial cells, plays a vital role as a reducing agent, buffering radical oxygen species (ROS) and preventing cell death in severely injured retinal tissues. Despite its antioxidant role, data also point to GSH as a signaling agent, suggesting that GABA release and P2X7R-mediated calcium inwards occur in Müller cells in a GSH-enriched environment. These phenomena indicate a novel mechanistic response to damage in the vertebrate retinal tissue, particularly in neuron-glia networks.

  6. Spinal cord pathology is ameliorated by P2X7 antagonism in a SOD1-mutant mouse model of amyotrophic lateral sclerosis.

    PubMed

    Apolloni, Savina; Amadio, Susanna; Parisi, Chiara; Matteucci, Alessandra; Potenza, Rosa L; Armida, Monica; Popoli, Patrizia; D'Ambrosi, Nadia; Volonté, Cinzia

    2014-09-01

    In recent years there has been an increasing awareness of the role of P2X7, a receptor for extracellular ATP, in modulating physiopathological mechanisms in the central nervous system. In particular, P2X7 has been shown to be implicated in neuropsychiatry, chronic pain, neurodegeneration and neuroinflammation. Remarkably, P2X7 has also been shown to be a 'gene modifier' in amyotrophic lateral sclerosis (ALS): the receptor is upregulated in spinal cord microglia in human and rat at advanced stages of the disease; in vitro, activation of P2X7 exacerbates pro-inflammatory responses in microglia that have an ALS phenotype, as well as toxicity towards neuronal cells. Despite this detrimental in vitro role of P2X7, in SOD1-G93A mice lacking P2X7, the clinical onset of ALS was significantly accelerated and disease progression worsened, thus indicating that the receptor might have some beneficial effects, at least at certain stages of disease. In order to clarify this dual action of P2X7 in ALS pathogenesis, in the present work we used the antagonist Brilliant Blue G (BBG), a blood-brain barrier permeable and safe drug that has already been proven to reduce neuroinflammation in traumatic brain injury, cerebral ischemia-reperfusion, neuropathic pain and experimental autoimmune encephalitis. We tested BBG in the SOD1-G93A ALS mouse model at asymptomatic, pre-symptomatic and late pre-symptomatic phases of disease. BBG at late pre-onset significantly enhanced motor neuron survival and reduced microgliosis in lumbar spinal cord, modulating inflammatory markers such as NF-κB, NADPH oxidase 2, interleukin-1β, interleukin-10 and brain-derived neurotrophic factor. This was accompanied by delayed onset and improved general conditions and motor performance, in both male and female mice, although survival appeared unaffected. Our results prove the twofold role of P2X7 in the course of ALS and establish that P2X7 modulation might represent a promising therapeutic strategy by

  7. Spinal cord pathology is ameliorated by P2X7 antagonism in a SOD1-mutant mouse model of amyotrophic lateral sclerosis

    PubMed Central

    Apolloni, Savina; Amadio, Susanna; Parisi, Chiara; Matteucci, Alessandra; Potenza, Rosa L.; Armida, Monica; Popoli, Patrizia; D’Ambrosi, Nadia; Volonté, Cinzia

    2014-01-01

    In recent years there has been an increasing awareness of the role of P2X7, a receptor for extracellular ATP, in modulating physiopathological mechanisms in the central nervous system. In particular, P2X7 has been shown to be implicated in neuropsychiatry, chronic pain, neurodegeneration and neuroinflammation. Remarkably, P2X7 has also been shown to be a ‘gene modifier’ in amyotrophic lateral sclerosis (ALS): the receptor is upregulated in spinal cord microglia in human and rat at advanced stages of the disease; in vitro, activation of P2X7 exacerbates pro-inflammatory responses in microglia that have an ALS phenotype, as well as toxicity towards neuronal cells. Despite this detrimental in vitro role of P2X7, in SOD1-G93A mice lacking P2X7, the clinical onset of ALS was significantly accelerated and disease progression worsened, thus indicating that the receptor might have some beneficial effects, at least at certain stages of disease. In order to clarify this dual action of P2X7 in ALS pathogenesis, in the present work we used the antagonist Brilliant Blue G (BBG), a blood-brain barrier permeable and safe drug that has already been proven to reduce neuroinflammation in traumatic brain injury, cerebral ischemia-reperfusion, neuropathic pain and experimental autoimmune encephalitis. We tested BBG in the SOD1-G93A ALS mouse model at asymptomatic, pre-symptomatic and late pre-symptomatic phases of disease. BBG at late pre-onset significantly enhanced motor neuron survival and reduced microgliosis in lumbar spinal cord, modulating inflammatory markers such as NF-κB, NADPH oxidase 2, interleukin-1β, interleukin-10 and brain-derived neurotrophic factor. This was accompanied by delayed onset and improved general conditions and motor performance, in both male and female mice, although survival appeared unaffected. Our results prove the twofold role of P2X7 in the course of ALS and establish that P2X7 modulation might represent a promising therapeutic strategy by

  8. Targeted P2X7 R shRNA delivery attenuates sympathetic nerve sprouting and ameliorates cardiac dysfunction in rats with myocardial infarction.

    PubMed

    Gao, Hongmei; Yin, Jie; Shi, Yugen; Hu, Hesheng; Li, Xiaolu; Xue, Mei; Cheng, Wenjuan; Wang, Ye; Li, Xinran; Li, Yongkang; Wang, Yu; Yan, Suhua

    2017-04-01

    Inflammation-dominated sympathetic sprouting adjacent to the necrotic region following myocardial infarction (MI) has been implicated in the etiology of arrhythmias resulting in sudden cardiac death; however, the mechanisms responsible remain to be elucidated. Although P2X7 R is a key immune mediator, its role has yet to be explored. We investigated whether P2X7 R regulates NF-κB and affects cardiac sympathetic reinnervation in rats undergoing MI. An adenoviral vector with a short hairpin RNA (shRNA) sequence inserted was adopted for the inhibition of P2X7 R in vivo. Myocardial infarction was induced by left coronary artery ligation, and immediately after that, recombinant P2X7 R-shRNA adenovirus, negative adenovirus (control), or normal saline solution (vehicle) was injected intramyocardially around the MI region and border areas. A high level of P2X7 R was activated in the infarcted tissue at an early stage. The administration of P2X7 R RNAi resulted in the inhibition of Akt and Erk1/2 phosphorylation and decreased the activation of NF-κB and macrophage infiltration, as well as attenuated the expression of nerve growth factor (NGF). Eventually, the NGF-induced sympathetic hyperinnervation was blunted, as assessed by the immunofluorescence of tyrosine hydroxylase (TH) and growth-associated protein 43 (GAP 43). At 7 days post-MI, the arrhythmia score of programmed electrical stimulation in the vehicle-treated infarcted rats was higher than the MI-shRNA group. Further amelioration of cardiac dysfunction was also detected. The administration of P2X7 R RNAi during the acute inflammatory response phase prevented the process of sympathetic hyperinnervation after MI, which was associated in part with inhibiting the Akt and ERK1/2 pathways and NF-κB activation. © 2016 John Wiley & Sons Ltd.

  9. Differential Modulation of ATP-Induced P2X7-Associated Permeabilities to Cations and Anions of Macrophages by Infection with Leishmania amazonensis

    PubMed Central

    Marques-da-Silva, Camila; Chaves, Mariana Martins; Rodrigues, Juliany Cola; Corte-Real, Suzana; Coutinho-Silva, Robson; Persechini, Pedro Muanis

    2011-01-01

    Leishmania and other parasites display several mechanisms to subvert host immune cell function in order to achieve successful infection. The ATP receptor P2X7, an agonist-gated cation channel widely expressed in macrophages and other cells of the immune system, is also coupled to inflammasome activation, IL-1 beta secretion, production of reactive oxygen species, cell death and the induction of the permeabilization of the plasma membrane to molecules of up to 900 Da. P2X7 receptors can function as an effective microbicidal triggering receptor in macrophages infected with several microorganisms including Mycobacteria tuberculosis, Chlamydia and Leishmania. We have previously shown that its expression is up-regulated in macrophages infected with L.amazonensis and that infected cells also display an increase in P2X7-induced apoptosis and membrane permeabilization to some anionic fluorescent dyes. In an independent study we recently showed that the phenomenon of macrophage membrane permeabilization can involve at least two distinct pathways for cations and anions respectively. Here, we re-addressed the effects of ATP-induced P2X7-associated phenomena in macrophages infected with L.amazonensis and demonstrated that the P2X7-associated dye uptake mechanisms are differentially modulated. While the membrane permeabilization for anionic dyes is up-modulated, as previously described, the uptake of cationic dyes is strongly down-modulated. These results unveil new characteristics of two distinct permeabilization mechanisms associated with P2X7 receptors in macrophages and provide the first evidence indicating that these pathways can be differentially modulated in an immunologically relevant situation. The possible importance of these results to the L.amazonensis escape mechanism is discussed. PMID:21966508

  10. NLRP3 inflammasome as a target of berberine in experimental murine liver injury: interference with P2X7 signalling.

    PubMed

    Vivoli, Elisa; Cappon, Andrea; Milani, Stefano; Piombanti, Benedetta; Provenzano, Angela; Novo, Erica; Masi, Alessio; Navari, Nadia; Narducci, Roberto; Mannaioni, Guido; Moneti, Gloriano; Oliveira, Claudia P; Parola, Maurizio; Marra, Fabio

    2016-10-01

    Berberine (BRB) is commonly used in herbal medicine, but its mechanisms of action are poorly understood. In the present study, we tested BRB in steatohepatitis induced by a methionine- and choline-deficient (MCD) diet, in acute acetaminophen intoxication and in cultured murine macrophages. BRB markedly improved parameters of liver injury and necroinflammation induced by the MCD diet, although increased mortality was observed by mechanisms independent of bacterial infections or plasma levels of BRB. The MCD diet induced up-regulation of all components of the NLRP3 (NACHT, LRR and PYD domain-containing protein 3) inflammasome, and increased hepatic levels of mature IL-1β (interleukin 1β). All of these parameters were significantly reduced in mice treated with BRB. In mice administered an acetaminophen overdose, a model dependent on inflammasome activation, BRB reduced mortality and ALT (alanine aminotransferase) elevation, and limited the expression of inflammasome components. In vitro, LPS (lipopolysaccharide)-induced activation of NLRP3 inflammasome in RAW264.7 murine macrophages was markedly decreased by pre-incubation with BRB. BRB significantly limited the activation of the purinergic receptor P2X7, involved in the late phases of inflammasome activation. Upon P2X7 knockdown, the ability of BRB to block LPS-induced secretion of IL-1β was lost. These data indicate that administration of BRB ameliorates inflammation and injury in two unrelated murine models of liver damage. We demonstrate for the first time that BRB interferes with activation of the NLRP3 inflammasome pathway in vivo and in vitro, through a mechanism based on interference with activation of P2X7, a purinergic receptor involved in inflammasome activation.

  11. Design, synthesis and evaluation in an LPS rodent model of neuroinflammation of a novel (18)F-labelled PET tracer targeting P2X7.

    PubMed

    Fantoni, Enrico Raffaele; Dal Ben, Diego; Falzoni, Simonetta; Di Virgilio, Francesco; Lovestone, Simon; Gee, Antony

    2017-12-01

    The P2X7 receptor has been shown to play a fundamental role in the initiation and sustenance of the inflammatory cascade. The development of a novel fluorine-18 PET tracer superior and with a longer half-life to those currently available is a promising step towards harnessing the therapeutic and diagnostic potential offered by this target. Inspired by the known antagonist A-804598, the present study outlines the design via molecular docking, synthesis and biological evaluation of the novel P2X7 tracer [(18)F]EFB. The tracer was radiolabelled via a three-step procedure, in vitro binding assessed in P2X7-transfected HEK293 and in B16 cells by calcium influx assays and an initial preclinical evaluation was performed in a lipopolysaccharide (LPS)-injected rat model of neuroinflammation. The novel tracer [(18)F]EFB was synthesised in 210 min in 3-5% decay-corrected radiochemical yield (DC RCY), >99% radiochemical purity (RCP) and >300 GBq/μmol and fully characterised. Functional assays showed that the compound binds with nM K i to human, rat and mouse P2X7 receptors. In vivo, [(18)F]EFB displayed a desirable distribution profile, and while it showed low blood-brain barrier penetration, brain uptake was quantifiable and displayed significantly higher mean longitudinal uptake in inflamed versus control rat CNS regions. [(18)F]EFB demonstrates strong in vitro affinity to human and rodent P2X7 and limited yet quantifiable BBB penetration. Considering the initial promising in vivo data in an LPS rat model with elevated P2X7 expression, this work constitutes an important step in the development of a radiotracer useful for the diagnosis and monitoring of clinical disorders with associated neuroinflammatory processes.

  12. P2X7 antagonism using Brilliant Blue G reduces body weight loss and prolongs survival in female SOD1G93A amyotrophic lateral sclerosis mice

    PubMed Central

    Bartlett, Rachael; Sluyter, Vanessa; Watson, Debbie

    2017-01-01

    Background Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease characterised by the accumulation of aggregated proteins, microglia activation and motor neuron loss. The mechanisms underlying neurodegeneration and disease progression in ALS are unknown, but the ATP-gated P2X7 receptor channel is implicated in this disease. Therefore, the current study aimed to examine P2X7 in the context of neurodegeneration, and investigate whether the P2X7 antagonist, Brilliant Blue G (BBG), could alter disease progression in a murine model of ALS. Methods Human SOD1G93A transgenic mice, which normally develop ALS, were injected with BBG or saline, three times per week, from pre-onset of clinical disease (62–64 days of age) until end-stage. During the course of treatment mice were assessed for weight, clinical score and survival, and motor coordination, which was assessed by rotarod performance. Various parameters from end-stage mice were assessed as follows. Motor neuron loss and microgliosis were assessed by immunohistochemistry. Relative amounts of lumbar spinal cord SOD1 and P2X7 were quantified by immunoblotting. Serum monocyte chemoattractant protein-1 was measured by ELISA. Splenic leukocyte populations were assessed by flow cytometry. Relative expression of splenic and hepatic P2X7 mRNA was measured by quantitative real-time PCR. Lumbar spinal cord SOD1 and P2X7 were also quantified by immunoblotting in untreated female SOD1G93A mice during the course of disease. Results BBG treatment reduced body weight loss in SOD1G93A mice of combined sex, but had no effect on clinical score, survival or motor coordination. BBG treatment reduced body weight loss in female, but not male, SOD1G93A mice. BBG treatment also prolonged survival in female, but not male, SOD1G93A mice, extending the mean survival time by 4.3% in female mice compared to female mice treated with saline. BBG treatment had no effect on clinical score or motor coordination in

  13. Contribution of the P2X7 1513A/C loss-of-function polymorphism to extrapulmonary tuberculosis susceptibility in Tunisian populations.

    PubMed

    Ben-Selma, Walid; Ben-Kahla, Imen; Boukadida, Jalel; Harizi, Hedi

    2011-10-01

    The P2X7 receptor has been found to be linked to an increased risk for tuberculosis in some populations. In this study, we investigate whether the P2X7 receptor plays a role in increasing susceptibility to tuberculosis in Tunisia. We examined two 1513A/C and -762T/C polymorphisms at the P2X7 receptor in 168 patients with pulmonary TB (pTB), 55 patients with extrapulmonary TB (epTB) and 150 blood donors from Tunisia. Genotyping of 1513A/C and -762T/C polymorphisms was performed in purified genomic DNA using PCR-restriction fragment length polymorphism and allele-specific PCR, respectively. The 1513C, CC and AC loss-of-function allele and genotypes were overrepresented in the epTB group compared with the control group (45% vs. 17%, P=10(-8) ; 24% vs. 4%, P=3 × 10(-7) ; 42% vs. 27%, P=10(-3) , respectively). Additionally, they were associated with 3.83-, 11.86- and 3.15-fold risks of developing this clinical tuberculosis form, respectively. No associations between the -762T/C polymorphism and tuberculosis disease, as well as disease anatomic location were observed. Collectively, our results suggest that the P2X7 1513A/C loss-of-function polymorphism may contribute to susceptibility to epTB in Tunisian populations.

  14. Purinergic receptor X7 mediates leptin induced GLUT4 function in stellate cells in nonalcoholic steatohepatitis.

    PubMed

    Chandrashekaran, Varun; Das, Suvarthi; Seth, Ratanesh Kumar; Dattaroy, Diptadip; Alhasson, Firas; Michelotti, Gregory; Nagarkatti, Mitzi; Nagarkatti, Prakash; Diehl, Anna Mae; Chatterjee, Saurabh

    2016-01-01

    Metabolic oxidative stress via CYP2E1 can act as a second hit in NASH progression. Our previous studies have shown that oxidative stress in NASH causes higher leptin levels and induces purinergic receptor X7 (P2X7r). We tested the hypothesis that higher circulating leptin due to CYP2E1-mediated oxidative stress induces P2X7r. P2X7r in turn activates stellate cells and causes increased proliferation via modulating Glut4, the glucose transporter, and increased intracellular glucose. Using a high fat diet-fed NAFLD model where bromodichloromethane (BDCM) was administered to induce CYP2E1-mediated oxidative stress, we show that P2X7r expression and protein levels were leptin and CYP2E1 dependent. P2X7r KO mice had significantly decreased stellate cell proliferation. Human NASH livers showed marked increase in P2X7r, and Glut4 in α-SMA positive cells. NASH livers had significant increase in Glut4 protein and phosphorylated AKT, needed for Glut4 translocation while leptin KO and P2X7r KO mice showed marked decrease in Glut4 levels primarily in stellate cells. Mechanistically stellate cells showed increase in phosphorylated AKT, Glut4 protein and localization in the membrane following administration of P2X7r agonist or leptin+P2X7r agonist, while use of P2X7r antagonist or AKT inhibitor attenuated the response suggesting that leptin-P2X7r axis in concert but not leptin alone is responsible for the Glut4 induction and translocation. Finally P2X7r-agonist and leptin caused an increase in intracellular glucose and consumption by increasing the activity of hexokinase. In conclusion, the study shows a novel role of leptin-induced P2X7r in modulating Glut4 induction and translocation in hepatic stellate cells, that are key to NASH progression.

  15. Suppression of CD36 attenuates adipogenesis with a reduction of P2X7 expression in 3T3-L1 cells.

    PubMed

    Gao, Huanqing; Li, Danyang; Yang, Ping; Zhao, Lei; Wei, Li; Chen, Yaxi; Ruan, Xiong Z

    2017-09-09

    Adipogenesis is a process of differentiation from preadipocyte into adipocyte, and is regulated by several transcription factors, including the peroxisome proliferator-activated receptor gamma (PPARγ) and the CCAAT-enhancer-binding protein alpha (C/EBPα). CD36 is a membrane protein which contributes to the metabolic disorders such as obesity. Although the previous study demonstrated CD36 participated in the progression of adipogenesis, the mechanism is still unclear. We report here that knockdown of CD36 expression by CD36 small interfering RNA (siRNA) resulted in a reduction of adipocyte differentiation and adipogenic protein expression. In addition, purinergic receptor P2X, ligand-gated ion channel 7 (P2X7) was downregulated in CD36-knockdown 3T3-L1 cells, suggesting that the suppression of CD36 attenuates adipogenesis via the P2X7 pathway in 3T3-L1 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Regulation of the P2X7R by microRNA-216b in human breast cancer

    SciTech Connect

    Zheng, Luming; Zhang, Xukui; Yang, Feng; Zhu, Jian; Zhou, Peng; Yu, Fang; Hou, Lei; Xiao, Lei; He, Qingqing; Wang, Baocheng

    2014-09-12

    Highlights: • We suggest the expression level of miR-216b and P2X7R in breast cancer tissues and cell lines. • We demonstrated that miR-216b directly targets and inhibits P2X7R. • We suggested miR-216b can attenuate ATP/P2X7R signaling pathways and induced Bcl-2/caspase-3 pathway. - Abstract: Breast cancer is the most common cancer in women around the world. However, the molecular mechanisms underlying breast cancer pathogenesis are only partially understood. Here, in this study, we found that P2X7R was up-regulated and miR-216b was down-regulated in breast cancer cell lines and tissues. Using bioinformatic analysis and 3′UTR luciferase reporter assay, we determined P2X7R can be directly targeted by miR-216b, which can down-regulate endogenous P2X7R mRNA and protein levels. Ectopic expression of miR-216b mimics leads to inhibited cell growth and apoptosis, while blocking expression of the miR-216b results in increased cell proliferation. Furthermore, our findings demonstrate that knockdown of P2X7R promotes apoptosis in breast cancer cells through down-regulating Bcl-2 and increasing the cleavage caspase-3 protein level. Finally, we confirmed that down-regulation of miR-216b in breast cancer is inversely associated with P2X7R expression level. Together, these findings establish miR-216b as a novel regulator of P2X7R and a potential therapeutic target for breast cancer.

  17. Involvement of the chemokine CCL3 and the purinoceptor P2X7 in the spinal cord in paclitaxel-induced mechanical allodynia

    PubMed Central

    2014-01-01

    Background Paclitaxel is an effective chemotherapeutic agent widely used for the treatment of solid tumors. The major dose-limiting toxicity of paclitaxel is peripheral neuropathy. The mechanisms underlying the development and maintenance of paclitaxel-induced peripheral neuropathy are still unclear, and there are no currently established effective treatments. Accumulating evidence in models of neuropathic pain in which peripheral nerves are lesioned has implicated spinal microglia and chemokines in pain hypersensitivity, but little is know about their roles in chemotherapy-induced peripheral neuropathy. In the present study, we investigated the role of CC-chemokine ligand 3 (CCL3) in the spinal cord in the development and maintenance of mechanical allodynia using a rat model of paclitaxel-induced neuropathy. Findings Repeated intravenous administration of paclitaxel induced a marked decrease in paw withdrawal threshold in response to mechanical stimulation (mechanical allodynia). In these rats, the number of microglia in the spinal dorsal horn (SDH) was significantly increased. Paclitaxel-treated rats showed a significant increase in the expression of mRNAs for CCL3 and its receptor CCR5 in the SDH. Intrathecal administration of a CCL3-neutralizing antibody not only attenuated the development of paclitaxel-induced mechanical allodynia but also reversed its maintenance. Paclitaxel also upregulated expression of purinoceptor P2X7 receptors (P2X7Rs), which have been implicated in the release of CCL3 from microglia, in the SDH. The selective P2X7R antagonist A438079 had preventive and reversal effects on paclitaxel-induced allodynia. Conclusions Our findings suggest a contribution of CCL3 and P2X7Rs in the SDH to paclitaxel-induced allodynia and may provide new therapeutic targets for paclitaxel-induced painful neuropathy. PMID:25127716

  18. P2X7 and NRAMP1/SLC11 A1 gene polymorphisms in Mexican mestizo patients with pulmonary tuberculosis

    PubMed Central

    Niño-Moreno, P; Portales-Pérez, D; Hernández-Castro, B; Portales-Cervantes, L; Flores-Meraz, V; Baranda, L; Gómez-Gómez, A; Acuña-Alonzo, V; Granados, J; González-Amaro, R

    2007-01-01

    Tuberculosis remains one of the most important infectious diseases worldwide. Several studies have suggested that genetic factors may affect susceptibility to tuberculosis, but the specific genes involved have not yet been fully characterized. NRAMP1/SLC11 A1 and P2X7 genes have been linked to increased risk for tuberculosis in some African and Asiatic populations. To explore the potential role of these genes in the susceptibility to pulmonary tuberculosis in a Mexican mestizo population, we evaluated the association of D543N and 3′-UTR polymorphisms in NRAMP1/SLC11 A1 and − 762 and A1513C polymorphisms in P2X7 genes with the risk for tuberculosis. Polymerase chain reaction (PCR) amplification of genomic DNA followed by restriction fragment length polymorphism analysis, and allelic-specific PCR was employed. We found no significant differences in allelic frequency in NRAMP1/SLC11 A1 gene polymorphisms in 94 patients with tuberculosis compared to 100 healthy contacts. Similarly, no significant association of the P2X7−762 gene polymorphism with tuberculosis was detected. In contrast, the P2X7 A1513C polymorphism was associated significantly with tuberculosis (P= 0·02, odds ratio = 5·28, 95% CI, 0·99–37·69), an association that had not been reported previously. However, when the function of P2X7 was assessed by an l-selectin loss assay, we did not find significant differences in patients compared to healthy contacts or between PPD+ and PPD– control individuals. This study further supports the complex role of P2X7 gene in host regulation of Mycobacterium tuberculosis infection, and demonstrates that different associations of gene polymorphisms and tuberculosis are found in distinct racial populations. PMID:17493019

  19. Modulation by propranolol of the uptake of ethidium bromide by rat submandibular acinar cells exposed to a P2X(7) agonist or to maitotoxin.

    PubMed

    Alzola, E; Chaïb, N; Pochet, S; Kabré, E; Marino, A; Dehaye, J P

    2001-07-01

    We have compared the formation of pores in rat submandibular acinar cells in response to 2',3'-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (Bz-ATP) and maitotoxin. Bz-ATP (100 microM) permeabilized the cells to ethidium bromide. The uptake of ethidium increased to 29+/-1% of maximal uptake in 10 min. DL-Propranolol (300 microM) inhibited the Bz-ATP-induced uptake of ethidium bromide by 40% without affecting the P2X(7)-gated cation channel. The inhibitory effect of DL-propranolol on the formation of pores by Bz-ATP was reproduced by D-propranolol, an optical isomer with very poor beta-blocking activity. Tenidap, an antiinflammatory drug, enhanced the permeabilization in response to Bz-ATP. Propanolol inhibited the response to tenidap plus Bz-ATP. The effect of propranolol was reproduced by labetolol, a beta-adrenergic antagonist with membrane-stabilizing properties, but not by atenolol, which blocks beta-adrenergic receptors but has no effect on the stability of the membrane. In the presence of extracellular calcium, maitotoxin also increased the uptake of ethidium bromide. Tenidap had no effect on this response, which was delayed by propranolol. In conclusion, we have shown that propranolol, in a range of 10-300 microM, inhibits the pore-forming activity of the P2X(7) receptor without affecting the opening of the cation channel coupled to this receptor. This inhibition is not related to its beta-adrenergic blocking activity but rather to its membrane-stabilizing properties. Propranolol also delays the uptake of ethidium bromide in response to maitotoxin. This is in agreement with the current view that P2X(7) agonists and maitotoxin share a common pore.

  20. A rare P2X7 variant Arg307Gln with absent pore formation function protects against neuroinflammation in multiple sclerosis.

    PubMed

    Gu, Ben J; Field, Judith; Dutertre, Sébastien; Ou, Amber; Kilpatrick, Trevor J; Lechner-Scott, Jeannette; Scott, Rodney; Lea, Rodney; Taylor, Bruce V; Stankovich, Jim; Butzkueven, Helmut; Gresle, Melissa; Laws, Simon M; Petrou, Steven; Hoffjan, Sabine; Akkad, Denis A; Graham, Colin A; Hawkins, Stanley; Glaser, Anna; Bedri, Sahl Khalid; Hillert, Jan; Matute, Carlos; Antiguedad, Alfredo; Wiley, James S

    2015-10-01

    Multiple sclerosis (MS) is a chronic relapsing-remitting inflammatory disease of the central nervous system characterized by oligodendrocyte damage, demyelination and neuronal death. Genetic association studies have shown a 2-fold or greater prevalence of the HLA-DRB1*1501 allele in the MS population compared with normal Caucasians. In discovery cohorts of Australasian patients with MS (total 2941 patients and 3008 controls), we examined the associations of 12 functional polymorphisms of P2X7, a microglial/macrophage receptor with proinflammatory effects when activated by extracellular adenosine triphosphate (ATP). In discovery cohorts, rs28360457, coding for Arg307Gln was associated with MS and combined analysis showed a 2-fold lower minor allele frequency compared with controls (1.11% for MS and 2.15% for controls, P = 0.0000071). Replication analysis of four independent European MS case-control cohorts (total 2140 cases and 2634 controls) confirmed this association [odds ratio (OR) = 0.69, P = 0.026]. A meta-analysis of all Australasian and European cohorts indicated that Arg307Gln confers a 1.8-fold protective effect on MS risk (OR = 0.57, P = 0.0000024). Fresh human monocytes heterozygous for Arg307Gln have >85% loss of 'pore' function of the P2X7 receptor measured by ATP-induced ethidium uptake. Analysis shows Arg307Gln always occurred with 270His suggesting a single 307Gln-270His haplotype that confers dominant negative effects on P2X7 function and protection against MS. Modeling based on the homologous zP2X4 receptor showed Arg307 is located in a region rich in basic residues located only 12 Å from the ligand binding site. Our data show the protective effect against MS of a rare genetic variant of P2RX7 with heterozygotes showing near absent proinflammatory 'pore' function.

  1. M1 and M2 Functional Imprinting of Primary Microglia: Role of P2X7 Activation and miR-125b

    PubMed Central

    Parisi, Chiara; Napoli, Giulia

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a most frequently occurring and severe form of motor neuron disease, causing death within 3–5 years from diagnosis and with a worldwide incidence of about 2 per 100,000 person-years. Mutations in over twenty genes associated with familial forms of ALS have provided insights into the mechanisms leading to motor neuron death. Moreover, mutations in two RNA binding proteins, TAR DNA binding protein 43 and fused in sarcoma, have raised the intriguing possibility that perturbations of RNA metabolism, including that of the small endogenous RNA molecules that repress target genes at the posttranscriptional level, that is, microRNAs, may contribute to disease pathogenesis. At present, the mechanisms by which microglia actively participate to both toxic and neuroprotective actions in ALS constitute an important matter of research. Among the pathways involved in ALS-altered microglia responses, in previous works we have uncovered the hyperactivation of P2X7 receptor by extracellular ATP and the overexpression of miR-125b, both leading to uncontrolled toxic M1 reactions. In order to shed further light on the complexity of these processes, in this short review we will describe the M1/M2 functional imprinting of primary microglia and a role played by P2X7 and miR-125b in ALS microglia activation. PMID:28090150

  2. MBL, P2X7, and SLC11A1 gene polymorphisms in patients with oropharyngeal tularemia.

    PubMed

    Somuk, Battal Tahsin; Koc, Sema; Ates, Omer; Göktas, Göksel; Soyalic, Harun; Uysal, Ismail Onder; Gurbuzler, Levent; Sapmaz, Emrah; Sezer, Saime; Eyibilen, Ahmet

    2016-11-01

    A significant association was found of oropharyngeal tularemia with SLC11A1 allele polymorphism (INT4 G/C) and MBL2 C + 4T (P/Q). These results indicate C allele and Q allele might be a risk factor for the development of oropharyngeal tularemia. This study aimed to investigate the relationship of SLC11A1, MBL, and P2X7 gene polymorphism with oropharyngeal tularemia. The study included totally 120 patients who were diagnosed with oropharyngeal tularemia. Frequencies of polymorphisms in the following genes were analyzed both in the patient and control groups in the study: SLC11A1 (5'(GT)n Allele 2/3, Int4 G/C, 3' UTR, D543N G/A), MBL (MBL2 C + 4T (P/Q), and P2X7 (-762 C/T and 1513 A/C). Among all polymorphisms that were investigated in this study, SLC11A1 gene showed a significance in the distriburtion of polymorphism allelle frequency at the INT4 region. Frequency of C allele was 54 (28%) in patients with oropharyngeal tularemia, and 31 (13%) in the control group (p = 0.006 and OR = 1.96 (1.21-3.20)). An association was detected between MBL2 C + 4T (P/Q) gene polymorphism and oropharyngeal tularemia (p < 0.005 and OR = 0.30 (0.19-0.48)). No significant relation was found between P2X7 (-762 C/T and 1513 A/C) gene polymorphism and oropharyngeal tularemia in this study (p > 0.05).

  3. P2X7R-Panx1 Complex Impairs Bone Mechanosignaling under High Glucose Levels Associated with Type-1 Diabetes.

    PubMed

    Seref-Ferlengez, Zeynep; Maung, Stephanie; Schaffler, Mitchell B; Spray, David C; Suadicani, Sylvia O; Thi, Mia M

    2016-01-01

    Type 1 diabetes (T1D) causes a range of skeletal problems, including reduced bone density and increased risk for bone fractures. However, mechanisms underlying skeletal complications in diabetes are still not well understood. We hypothesize that high glucose levels in T1D alters expression and function of purinergic receptors (P2Rs) and pannexin 1 (Panx1) channels, and thereby impairs ATP signaling that is essential for proper bone response to mechanical loading and maintenance of skeletal integrity. We first established a key role for P2X7 receptor-Panx1 in osteocyte mechanosignaling by showing that these proteins are co-expressed to provide a major pathway for flow-induced ATP release. To simulate in vitro the glucose levels to which bone cells are exposed in healthy vs. diabetic bones, we cultured osteoblast and osteocyte cell lines for 10 days in medium containing 5.5 or 25 mM glucose. High glucose effects on expression and function of P2Rs and Panx1 channels were determined by Western Blot analysis, quantification of Ca2+ responses to P2R agonists and oscillatory fluid shear stress (± 10 dyne/cm2), and measurement of flow-induced ATP release. Diabetic C57BL/6J-Ins2Akita mice were used to evaluate in vivo effects of high glucose on P2R and Panx1. Western blotting indicated altered P2X7R, P2Y2R and P2Y4R expression in high glucose exposed bone cells, and in diabetic bone tissue. Moreover, high glucose blunted normal P2R- and flow-induced Ca2+ signaling and ATP release from osteocytes. These findings indicate that T1D impairs load-induced ATP signaling in osteocytes and affects osteoblast function, which are essential for maintaining bone health.

  4. P2X7R-Panx1 Complex Impairs Bone Mechanosignaling under High Glucose Levels Associated with Type-1 Diabetes

    PubMed Central

    Maung, Stephanie; Schaffler, Mitchell B.; Spray, David C.; Suadicani, Sylvia O.; Thi, Mia M.

    2016-01-01

    Type 1 diabetes (T1D) causes a range of skeletal problems, including reduced bone density and increased risk for bone fractures. However, mechanisms underlying skeletal complications in diabetes are still not well understood. We hypothesize that high glucose levels in T1D alters expression and function of purinergic receptors (P2Rs) and pannexin 1 (Panx1) channels, and thereby impairs ATP signaling that is essential for proper bone response to mechanical loading and maintenance of skeletal integrity. We first established a key role for P2X7 receptor-Panx1 in osteocyte mechanosignaling by showing that these proteins are co-expressed to provide a major pathway for flow-induced ATP release. To simulate in vitro the glucose levels to which bone cells are exposed in healthy vs. diabetic bones, we cultured osteoblast and osteocyte cell lines for 10 days in medium containing 5.5 or 25 mM glucose. High glucose effects on expression and function of P2Rs and Panx1 channels were determined by Western Blot analysis, quantification of Ca2+ responses to P2R agonists and oscillatory fluid shear stress (± 10 dyne/cm2), and measurement of flow-induced ATP release. Diabetic C57BL/6J-Ins2Akita mice were used to evaluate in vivo effects of high glucose on P2R and Panx1. Western blotting indicated altered P2X7R, P2Y2R and P2Y4R expression in high glucose exposed bone cells, and in diabetic bone tissue. Moreover, high glucose blunted normal P2R- and flow-induced Ca2+ signaling and ATP release from osteocytes. These findings indicate that T1D impairs load-induced ATP signaling in osteocytes and affects osteoblast function, which are essential for maintaining bone health. PMID:27159053

  5. Curcumin Represses NLRP3 Inflammasome Activation via TLR4/MyD88/NF-κB and P2X7R Signaling in PMA-Induced Macrophages

    PubMed Central

    Kong, Fanqi; Ye, Bozhi; Cao, Jiatian; Cai, Xueli; Lin, Lu; Huang, Shanjun; Huang, Weijian; Huang, Zhouqing

    2016-01-01

    Aims: In the NOD-like receptor (NLR) family, the pyrin domain containing 3 (NLRP3) inflammasome is closely related to the progression of atherosclerosis. This study aimed to assess the effects of curcumin on NLRP3 inflammasome in phorbol 12-myristate 13-acetate (PMA)-induced macrophages and explore its underlying mechanism. Methods: Human monocytic THP-1 cells were pretreated with curcumin for 1 h and subsequently induced with PMA for 48 h. Total protein was collected for Western blot analysis. Cytokine interleukin (IL)-1β release and nuclear factor kappa B (NF-κB) p65 translocation were detected by ELISA assay and cellular NF-κB translocation kit, respectively. Results: Curcumin significantly reduced the expression of NLRP3 and cleavage of caspase-1 and IL-1β secretion in PMA-induced macrophages. Moreover, Bay (a NF-κB inhibitor) treatment considerably suppressed the expression of NLRP3 inflammasome in PMA-induced THP-1 cells. Curcumin also markedly inhibited the upregulation of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphorylation level of IκB-α, and activation of NF-κB in PMA-induced macrophages. In addition, purinergic 2X7 receptor (P2X7R) siRNA was administered, and it significantly decreased NLRP3 inflammasome expression in PMA-induced macrophages. Furthermore, curcumin reversed PMA-stimulated P2X7R activation, which further reduced the expression of NLRP3 and cleavage of caspase-1 and IL-1β secretion. Silencing of P2X7R using siRNA also suppressed the activation of NF-κB pathway in PMA-induced macrophages, but P2X7R-silenced cells did not significantly decrease the expression of TLR4 and MyD88. Conclusion: Curcumin inhibited NLRP3 inflammasome through suppressing TLR4/MyD88/NF-κB and P2X7R pathways in PMA-induced macrophages. PMID:27777559

  6. Genetic Association for P2X7R rs3751142 and CARD8 rs2043211 Polymorphisms for Susceptibility of Gout in Korean Men: Multi-Center Study

    PubMed Central

    2016-01-01

    The aim of this study was to determine the association between P2X7R rs3751142 and CARD8 rs2043211 polymorphisms and gout susceptibility in male Korean subjects. This study enrolled a total of 242 male patients with gout and 280 healthy controls. The polymorphisms of two individual genes including rs3751142(C>A) in the P2X7R gene and rs2043211(A>T) in the CARD8 gene were assessed using Taq-Man analysis. Statistical analyses were performed using the Chi-square test, Kruskal-Wallis test, and logistic regression analyses. A difference in genotypic frequency of the P2X7R rs3751142 and CARD8 rs2043211 genes was not detected between gout and control patients. Clinical parameters including age, onset age, disease duration, body mass index, and serum uric acid levels were not different among the three genotypes for either P2X7R or CARD8 (P > 0.05 for all). A pair-wise comparison of P2X7R rs3751142 and CARD8 rs2043211 genotype combinations revealed that subjects with the CA P2X7R rs3751142 genotype and the TT CARD8 rs2043211 genotype had a trend toward a higher risk of gout compared to the CC/AA combination (P = 0.056, OR = 2.618, 95% CI 0.975 - 7.031). In conclusion, this study revealed that genetic variability of the P2X7R rs3751142 and CARD8 rs2043211 genes might, in part, be associated with susceptibility for gout. PMID:27550484

  7. Genetic Association for P2X7R rs3751142 and CARD8 rs2043211 Polymorphisms for Susceptibility of Gout in Korean Men: Multi-Center Study.

    PubMed

    Lee, Sung Won; Lee, Shin Seok; Oh, Dong Ho; Park, Dong Jin; Kim, Hyun Sook; Choi, Jung Ran; Chae, Soo Cheon; Yun, Ki Jung; Chung, Won Tae; Choe, Jung Yoon; Kim, Seong Kyu

    2016-10-01

    The aim of this study was to determine the association between P2X7R rs3751142 and CARD8 rs2043211 polymorphisms and gout susceptibility in male Korean subjects. This study enrolled a total of 242 male patients with gout and 280 healthy controls. The polymorphisms of two individual genes including rs3751142(C>A) in the P2X7R gene and rs2043211(A>T) in the CARD8 gene were assessed using Taq-Man analysis. Statistical analyses were performed using the Chi-square test, Kruskal-Wallis test, and logistic regression analyses. A difference in genotypic frequency of the P2X7R rs3751142 and CARD8 rs2043211 genes was not detected between gout and control patients. Clinical parameters including age, onset age, disease duration, body mass index, and serum uric acid levels were not different among the three genotypes for either P2X7R or CARD8 (P > 0.05 for all). A pair-wise comparison of P2X7R rs3751142 and CARD8 rs2043211 genotype combinations revealed that subjects with the CA P2X7R rs3751142 genotype and the TT CARD8 rs2043211 genotype had a trend toward a higher risk of gout compared to the CC/AA combination (P = 0.056, OR = 2.618, 95% CI 0.975 - 7.031). In conclusion, this study revealed that genetic variability of the P2X7R rs3751142 and CARD8 rs2043211 genes might, in part, be associated with susceptibility for gout.

  8. Conductance simulation of the purinergic P2X2, P2X4, and P2X7 ionic channels using a combined Brownian dynamics and molecular dynamics approach.

    PubMed

    Turchenkov, Dmitry A; Bystrov, Vladimir S

    2014-08-07

    This paper investigates the application of an original combined approach of molecular and Brownian dynamic methods with quantum chemistry calculations for modeling the process of conductance of ion channels using purinergic P2X family receptors P2X2, P2X4, and P2X7 as a case study. A simplified model of the ionic channel in the lipid bilayer has been developed. A high level of conductance (30 pS) of P2X2 ionic channel together with the key role of Asp349 in forming the selectivity filter of P2X2 has been shown by using this approach. Calculated P2X2 permeability to monovalent cations Li(+), Na(+), and K(+) conforms to the free diffusion coefficient of these ions, which shows the low selectivity of P2X2 ionic channel.

  9. Pathological concentrations of homocysteine increases IL-1β production in macrophages in a P2X7, NF-ĸB, and erk-dependent manner.

    PubMed

    Zanin, Rafael Fernandes; Bergamin, Letícia Scussel; Morrone, Fernanda Bueno; Coutinho-Silva, Robson; de Souza Wyse, Angela Terezinha; Battastini, Ana Maria Oliveira

    2015-12-01

    Elevated plasma levels of homocysteine (Hcy) are associated with the development of coronary artery disease (CAD), peripheral vascular disease, and atherosclerosis. Hyperhomocysteinemia is likely related to the enhanced production of pro-inflammatory cytokines including IL-1β. However, the mechanisms underlying the effects of Hcy in immune cells are not completely understood. Recent studies have established a link between macrophage accumulation, cytokine IL-1β, and the advance of vascular diseases. The purpose of the present study is to investigate the effects of Hcy on IL-1β secretion by murine macrophages. Hcy (100 μM) increases IL-1β synthesis via enhancement of P2X7 expression and NF-ĸB and ERK activation in murine macrophages. In addition, the antioxidant agent N-acetylcysteine (NAC) reduces NF-κB activation, ERK phosphorylation, and IL-1β production in Hcy-exposed macrophages, indicating the importance of ROS in this pro-inflammatory process. In summary, our results show that Hcy may be involved in the synthesis and secretion of IL-1β via NF-ĸB, ERK, and P2X7 stimulation in murine macrophages.

  10. Nucleotide Receptor Signaling in Murine Macrophages Is Linked to Reactive Oxygen Species Generation1

    PubMed Central

    Pfeiffer, Zachary A.; Guerra, Alma N.; Hill, Lindsay M.; Gavala, Monica L.; Prabhu, Usha; Aga, Mini; Hall, David J.; Bertics, Paul J.

    2007-01-01

    Macrophage activation is critical in the innate immune response and can be regulated by the nucleotide receptor P2X7. In this regard, P2X7 signaling is not well understood but has been implicated in controlling reactive oxygen species (ROS) generation by various leukocytes. Although ROS can contribute to microbial killing, the role of ROS in nucleotide-mediated cell signaling is unclear. In this study, we report that the P2X7 agonists ATP and 3′-O-(4-benzoyl) benzoic ATP (BzATP) stimulate ROS production by RAW 264.7 murine macrophages. These effects are potentiated in lipopolysaccharide-primed cells, demonstrating an important interaction between extracellular nucleotides and microbial products in ROS generation. In terms of nucleotide receptor specificity, RAW 264.7 macrophages that are deficient in P2X7 are greatly reduced in their capacity to generate ROS in response to BzATP treatment (both with and without LPS priming), thus supporting a role for P2X7 in this process. Because MAP kinase activation is key for nucleotide regulation of macrophage function, we also tested the hypothesis that P2X7-mediated MAP kinase activation is dependent on ROS production. We observed that BzATP stimulates MAP kinase (ERK1/ERK2, p38, and JNK1/JNK2) phosphorylation, and that the antioxidants N-acetyl-cysteine and ascorbic acid strongly attenuate BzATP-mediated JNK1/JNK2 and p38 phosphorylation but only slightly reduce BzATP-induced ERK1/ERK2 phosphorylation. These studies reveal that P2X7 can contribute to macrophage ROS production, that this effect is potentiated upon lipopolysaccharide exposure, and that ROS are important participants in the extracellular nucleotide-mediated activation of several MAP kinase systems. PMID:17448897

  11. The enzyme Cyp26b1 mediates inhibition of mast cell activation by fibroblasts to maintain skin-barrier homeostasis.

    PubMed

    Kurashima, Yosuke; Amiya, Takeaki; Fujisawa, Kumiko; Shibata, Naoko; Suzuki, Yuji; Kogure, Yuta; Hashimoto, Eri; Otsuka, Atsushi; Kabashima, Kenji; Sato, Shintaro; Sato, Takeshi; Kubo, Masato; Akira, Shizuo; Miyake, Kensuke; Kunisawa, Jun; Kiyono, Hiroshi

    2014-04-17

    Mast cells (MCs) mature locally, thus possessing tissue-dependent phenotypes for their critical roles in both protective immunity against pathogens and the development of allergy or inflammation. We previously reported that MCs highly express P2X7, a receptor for extracellular ATP, in the colon but not in the skin. The ATP-P2X7 pathway induces MC activation and consequently exacerbates the inflammation. Here, we identified the mechanisms by which P2X7 expression on MCs is reduced by fibroblasts in the skin, but not in the other tissues. The retinoic-acid-degrading enzyme Cyp26b1 is highly expressed in skin fibroblasts, and its inhibition resulted in the upregulation of P2X7 on MCs. We also noted the increased expression of P2X7 on skin MCs and consequent P2X7- and MC-dependent dermatitis (so-called retinoid dermatitis) in the presence of excessive amounts of retinoic acid. These results demonstrate a unique skin-barrier homeostatic network operating through Cyp26b1-mediated inhibition of ATP-dependent MC activation by fibroblasts. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Extracellular ATP induces apoptosis through P2X7R activation in acute myeloid leukemia cells but not in normal hematopoietic stem cells

    PubMed Central

    Salvestrini, Valentina; Orecchioni, Stefania; Talarico, Giovanna; Reggiani, Francesca; Mazzetti, Cristina; Bertolini, Francesco; Orioli, Elisa; Adinolfi, Elena; Virgilio, Francesco Di; Pezzi, Annalisa; Cavo, Michele

    2017-01-01

    Recent studies have shown that high ATP levels exhibit direct cytotoxic effects on several cancer cells types. Among the receptors engaged by ATP, P2×7R is the most consistently expressed by tumors. P2×7R is an ATP-gated ion channel that could drive the opening of a non-selective pore, triggering cell-death signal. We previously demonstrated that acute myeloid leukemia (AML) cells express high level of P2×7R. Here, we show that P2×7R activation with high dose ATP induces AML blast cells apoptosis. Moreover, P2×7R is also expressed on leukemic stem/progenitor cells (LSCs) which are sensitive to ATP-mediated cytotoxicity. Conversely, this cytotoxic effect was not observed on normal hematopoietic stem/progenitor cells (HSCs). Notably, the antileukemic activity of ATP was also observed in presence of bone marrow stromal cells and its addition to the culture medium enhanced cytosine arabinoside cytotoxicity despite stroma-induced chemoresistance. Xenotransplant experiments confirmed ATP antineoplastic activity in vivo. Overall, our results demonstrate that P2×7R stimulation by ATP induced a therapeutic response in AML at the LSC level while the normal stem cell compartment was not affected. These results provide evidence that ATP would be promising for developing innovative therapy for AML. PMID:27980223

  13. Ionotropic P2X ATP Receptor Channels Mediate Purinergic Signaling in Mouse Odontoblasts

    PubMed Central

    Shiozaki, Yuta; Sato, Masaki; Kimura, Maki; Sato, Toru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2017-01-01

    ATP modulates various functions in the dental pulp cells, such as intercellular communication and neurotransmission between odontoblasts and neurons, proliferation of dental pulp cells, and odontoblast differentiation. However, functional expression patterns and their biophysical properties of ionotropic ATP (P2X) receptors (P2X1–P2X7) in odontoblasts were still unclear. We examined these properties of P2X receptors in mouse odontoblasts by patch-clamp recordings. K+-ATP, nonselective P2X receptor agonist, induced inward currents in odontoblasts in a concentration-dependent manner. K+-ATP-induced currents were inhibited by P2X4 and P2X7 selective inhibitors (5-BDBD and KN62, respectively), while P2X1 and P2X3 inhibitors had no effects. P2X7 selective agonist (BzATP) induced inward currents dose-dependently. We could not observe P2X1, 2/3, 3 selective agonist (αβ-MeATP) induced currents. Amplitudes of K+-ATP-induced current were increased in solution without extracellular Ca2+, but decreased in Na+-free extracellular solution. In the absence of both of extracellular Na+ and Ca2+, K+-ATP-induced currents were completely abolished. K+-ATP-induced Na+ currents were inhibited by P2X7 inhibitor, while the Ca2+ currents were sensitive to P2X4 inhibitor. These results indicated that odontoblasts functionally expressed P2X4 and P2X7 receptors, which might play an important role in detecting extracellular ATP following local dental pulp injury. PMID:28163685

  14. Functional expression of ionotropic purinergic receptors on mouse taste bud cells

    PubMed Central

    Hayato, Ryotaro; Ohtubo, Yoshitaka; Yoshii, Kiyonori

    2007-01-01

    Neurotransmitter receptors on taste bud cells (TBCs) and taste nerve fibres are likely to contribute to taste transduction by mediating the interaction among TBCs and that between TBCs and taste nerve fibres. We investigated the functional expression of P2 receptor subtypes on TBCs of mouse fungiform papillae. Electrophysiological studies showed that 100 μm ATP applied to their basolateral membranes either depolarized or hyperpolarized a few cells per taste bud. Ca2+ imaging showed that similarly applied 1 μm ATP, 30 μm BzATP (a P2X7 agonist), or 1 μm 2MeSATP (a P2Y1 and P2Y11 agonist) increased intracellular Ca2+ concentration, but 100 μm UTP (a P2Y2 and P2Y4 agonist) and α,β-meATP (a P2X agonist except for P2X2, P2X4 and P2X7) did not. RT-PCR suggested the expression of P2X2, P2X4, P2X7, P2Y1, P2Y13 and P2Y14 among the seven P2X subtypes and seven P2Y subtypes examined. Immunohistostaining confirmed the expression of P2X2. The exposure of the basolateral membranes to 3 mm ATP for 30 min caused the uptake of Lucifer Yellow CH in a few TBCs per taste bud. This was antagonized by 100 μm PPADS (a non-selective P2 blocker) and 1 μm KN-62 (a P2X7 blocker). These results showed for the first time the functional expression of P2X2 and P2X7 on TBCs. The roles of P2 receptor subtypes in the taste transduction, and the renewal of TBCs, are discussed. PMID:17702819

  15. Toll-Like Receptors 2, -3 and -4 Prime Microglia but not Astrocytes Across Central Nervous System Regions for ATP-Dependent Interleukin-1β Release

    PubMed Central

    Facci, Laura; Barbierato, Massimo; Marinelli, Carla; Argentini, Carla; Skaper, Stephen D.; Giusti, Pietro

    2014-01-01

    Interleukin-1β (IL-1β) is a crucial mediator in the pathogenesis of inflammatory diseases at the periphery and in the central nervous system (CNS). Produced as an unprocessed and inactive pro-form which accumulates intracellularly, release of the processed cytokine is strongly promoted by ATP acting at the purinergic P2X7 receptor (P2X7R) in cells primed with lipopolysaccharide (LPS), a Toll-like receptor (TLR) 4 ligand. Microglia are central to the inflammatory process and a major source of IL-1β when activated. Here we show that purified (>99%) microglia cultured from rat cortex, spinal cord and cerebellum respond robustly to ATP-dependent IL-1β release, upon priming with a number of TLR isoform ligands (zymosan and Pam3CSK4 for TLR2, poly(I:C) for TLR3). Cytokine release was prevented by a P2X7R antagonist and inhibitors of stress-activated protein kinases. Enriched astrocytes (≤5% microglia) from these CNS regions displayed responses qualitatively similar to microglia but became unresponsive upon eradication of residual microglia with the lysosomotropic agent Leu-Leu-OMe. Activation of multiple TLR isoforms in nervous system pathology, coupled with elevated extracellular ATP levels and subsequent P2X7R activation may represent an important route for microglia-derived IL-1β. This phenomenon may have important consequences for neuroinflammation and its position to the common pathology of CNS diseases. PMID:25351234

  16. Store-Operated Ca2+ Entry (SOCE) and Purinergic Receptor-Mediated Ca2+ Homeostasis in Murine bv2 Microglia Cells: Early Cellular Responses to ATP-Mediated Microglia Activation

    PubMed Central

    Gilbert, Daniel F.; Stebbing, Martin J.; Kuenzel, Katharina; Murphy, Robyn M.; Zacharewicz, Evelyn; Buttgereit, Andreas; Stokes, Leanne; Adams, David J.; Friedrich, Oliver

    2016-01-01

    Microglia activation is a neuroinflammatory response to parenchymal damage with release of intracellular metabolites, e.g., purines, and signaling molecules from damaged cells. Extracellular purines can elicit Ca2+-mediated microglia activation involving P2X/P2Y receptors with metabotropic (P2Y) and ionotropic (P2X) cell signaling in target cells. Such microglia activation results in increased phagocytic activity, activation of their inflammasome and release of cytokines to sustain neuroinflammatory (so-called M1/M2 polarization). ATP-induced activation of ionotropic P2X4 and P2X7 receptors differentially induces receptor-operated Ca2+ entry (ROCE). Although store-operated Ca2+ entry (SOCE) was identified to modulate ROCE in primary microglia, its existence and role in one of the most common murine microglia cell line, BV2, is unknown. To dissect SOCE from ROCE in BV2 cells, we applied high-resolution multiphoton Ca2+ imaging. After depleting internal Ca2+ stores, SOCE was clearly detectable. High ATP concentrations (1 mM) elicited sustained increases in intracellular [Ca2+]i whereas lower concentrations (≤100 μM) also induced Ca2+ oscillations. These differential responses were assigned to P2X7 and P2X4 activation, respectively. Pharmacologically inhibiting P2Y and P2X responses did not affect SOCE, and in fact, P2Y-responses were barely detectable in BV2 cells. STIM1S content was significantly upregulated by 1 mM ATP. As P2X-mediated Ca2+ oscillations were rare events in single cells, we implemented a high-content screening approach that allows to record Ca2+ signal patterns from a large number of individual cells at lower optical resolution. Using automated classifier analysis, several drugs (minocycline, U73122, U73343, wortmannin, LY294002, AZ10606120) were tested on their profile to act on Ca2+ oscillations (P2X4) and sustained [Ca2+]i increases. We demonstrate specific drug effects on purinergic Ca2+ pathways and provide new pharmacological insights into

  17. Functional expression of P2X family receptors in macrophages is affected by microenvironment in mouse T cell acute lymphoblastic leukemia

    SciTech Connect

    Chen, Shayan; Feng, Wenli; Yang, Xiao; Yang, Wanzhu; Ru, Yongxin; Liao, Jinfeng; Wang, Lina; Lin, Yongmin; Ren, Qian; Zheng, Guoguang

    2014-04-18

    Highlights: • We study the impact of leukemic microenvironment on P2X family receptors in Mφs. • Bone marrow and spleen Mφs are studied in Notch1-induced mouse leukemia model. • Increased expression of P2X7R is found in Mφs during the development of leukemia. • Elevated P2X7R-mediated calcium response is found in Mφs at late stage of leukemia. • More apoptotic Mφs are found in bone marrow and spleen at late stage of leukemia. - Abstract: Nucleotides are important players in intercellular signaling communication network. P2X family receptors (P2XRs) are ATP-gated plasma membrane ion channels with diverse biological functions. Macrophages are important components in the microenvironment of hematopoiesis participating in both physiological and pathological processes. However, the role of P2XRs in macrophages in leukemia has not been established. Here we investigated expression pattern and functions of P2XRs in macrophages from bone marrow (BM) and spleen of Notch1-induced T-ALL mice. Real-time PCR showed that P2XRs except P2X5R were expressed in BM and spleen macrophages. Furthermore, with the development of leukemia, the expression of P2X7R increased in both BM and spleen macrophages whereas expression of P2X1R increased in spleen macrophages. Live cell imaging recoding the Ca{sup 2+} response demonstrated that P2X7R expressed in macrophages was functional. TUNEL and electron microscopy analysis found that apoptotic macrophages were frequently observed in BM and spleen at late stage of leukemia, which was partly contributed by the activation of overexpressed P2X7R. Our results suggested that the intercellular communication mediated by nucleotides might orchestrate in the pathological process of leukemia and could be a potential target for the treatment of leukemia.

  18. Receptor-Mediated Tobacco Toxicity

    PubMed Central

    Arredondo, Juan; Chernyavsky, Alexander I.; Marubio, Lisa M.; Beaudet, Arthur L.; Jolkovsky, David L.; Pinkerton, Kent E.; Grando, Sergei A.

    2005-01-01

    Tobacco is a known cause of oral disease but the mechanism remains elusive. Nicotine (Nic) is a likely culprit of pathobiological effects because it displaces the local cytotransmitter acetylcholine from the nicotinic receptors (nAChRs) expressed by oral keratinocytes (KCs). To gain a mechanistic insight into tobacco-induced morbidity in the oral cavity, we studied effects of exposures to environmental tobacco smoke (ETS) versus equivalent concentration of pure Nic on human and murine KCs. Both ETS and Nic up-regulated expression of cell cycle and apoptosis regulators, differentiation marker filaggrin, and signal transduction factors at both the mRNA and protein levels. These changes could be abolished in cultured human oral KCs transfected with anti-α3 small interfering RNA or treated with the α3β2-preferring antagonist α-conotoxin MII. Functional inactivation of α3-mediated signaling in α3−/− mutant KCs prevented most of the ETS/Nic-dependent changes in gene expression. To determine relevance of the in vitro findings to the in vivo situation, we studied gene expression in oral mucosa of neonatal α3+/+ and α3−/− littermates delivered by heterozygous mice soon after their exposures to ETS or equivalent concentration of pure Nic in drinking water. In addition to reverse transcriptase-polymerase chain reaction and Western blot, the ETS/Nic-dependent alterations in gene expression were also detected by semiquantitative immunofluorescence assay directly in KCs comprising murine oral mucosa. Only wild-type mice consistently developed significant (P < 0.05) changes in the gene expression. These results identified α3β2 nAChR as a major receptor mediating effects of tobacco products on KC gene expression. Real-time polymerase chain reaction demonstrated that in all three model systems the common genes targeted by α3β2-mediated ETS/Nic toxicity were p21, Bcl-2, NF-κB, and STAT-1. The expression of the nAChR subunits α5 and β2 and the muscarinic

  19. Therapeutic Targeting of P2X7 after TBI

    DTIC Science & Technology

    2012-11-16

    Alleyne, C. H., & Dhandapani, K. M. (2011). Attenuation of hematoma size and neurological injury with curcumin following intracerebral hemorrhage in mice...28(4-5), 336-341. Laird, M. D., Sukumari-Ramesh, S., Swift, A. E., Meiler, S. E., Vender, J. R., & Dhandapani, K. M. Curcumin attenuates cerebral...Swift, A. E., Meiler, S. E., Vender, J. R., & Dhandapani, K. M. (2010). Curcumin attenuates cerebral edema following traumatic brain injury in mice: a

  20. Toll-like receptor 7 mediates pruritus.

    PubMed

    Liu, Tong; Xu, Zhen-Zhong; Park, Chul-Kyu; Berta, Temugin; Ji, Ru-Rong

    2010-12-01

    Toll-like receptors are typically expressed in immune cells to regulate innate immunity. We found that functional Toll-like receptor 7 (TLR7) was expressed in C-fiber primary sensory neurons and was important for inducing itch (pruritus), but was not necessary for eliciting mechanical, thermal, inflammatory and neuropathic pain in mice. Our results indicate that TLR7 mediates itching and is a potential therapeutic target for anti-itch treatment in skin disease conditions.

  1. Receptor-mediated DNA-targeted photoimmunotherapy.

    PubMed

    Karagiannis, Tom C; Lobachevsky, Pavel N; Leung, Brenda K Y; White, Jonathan M; Martin, Roger F

    2006-11-01

    We show the efficacy of a therapeutic strategy that combines the potency of a DNA-binding photosensitizer, UV(A)Sens, with the tumor-targeting potential of receptor-mediated endocytosis. The photosensitizer is an iodinated bibenzimidazole, which, when bound in the minor groove of DNA and excited by UV(A) irradiation, induces cytotoxic lesions attributed to a radical species resulting from photodehalogenation. Although reminiscent of photochemotherapy using psoralens and UV(A) irradiation, an established treatment modality in dermatology particularly for the treatment of psoriasis and cutaneous T-cell lymphoma, a critical difference is the extreme photopotency of the iodinated bibenzimidazole, approximately 1,000-fold that of psoralens. This feature prompted consideration of combination with the specificity of receptor-mediated targeting. Using two in vitro model systems, we show the UV(A) cytotoxicity of iodo ligand/protein conjugates, implying binding of the conjugate to cell receptors, internalization, and degradation of the conjugate-receptor complex, with release and translocation of the ligand to nuclear DNA. For ligand-transferrin conjugates, phototoxicity was inhibited by coincubation with excess native transferrin. Receptor-mediated UV(A)-induced cytotoxicity was also shown with the iodo ligand conjugate of an anti-human epidermal growth factor receptor monoclonal antibody, exemplifying the potential application of the strategy to other cancer-specific targets to thus improve the specificity of phototherapy of superficial lesions and for extracorporeal treatments.

  2. Receptor-mediated signaling in Aspergillus fumigatus

    PubMed Central

    Grice, C. M.; Bertuzzi, M.; Bignell, E. M.

    2013-01-01

    Aspergillus fumigatus is the most pathogenic species among the Aspergilli, and the major fungal agent of human pulmonary infection. To prosper in diverse ecological niches, Aspergilli have evolved numerous mechanisms for adaptive gene regulation, some of which are also crucial for mammalian infection. Among the molecules which govern such responses, integral membrane receptors are thought to be the most amenable to therapeutic modulation. This is due to the localization of these molecular sensors at the periphery of the fungal cell, and to the prevalence of small molecules and licensed drugs which target receptor-mediated signaling in higher eukaryotic cells. In this review we highlight the progress made in characterizing receptor-mediated environmental adaptation in A. fumigatus and its relevance for pathogenicity in mammals. By presenting a first genomic survey of integral membrane proteins in this organism, we highlight an abundance of putative seven transmembrane domain (7TMD) receptors, the majority of which remain uncharacterized. Given the dependency of A. fumigatus upon stress adaptation for colonization and infection of mammalian hosts, and the merits of targeting receptor-mediated signaling as an antifungal strategy, a closer scrutiny of sensory perception and signal transduction in this organism is warranted. PMID:23430083

  3. Tachykinin receptors mediating airway marcomolecular secretion

    SciTech Connect

    Gentry, S.E. )

    1991-01-01

    Three tachykinin receptor types, termed NK1, NK2, and NK3, can be distinguished by the relative potency of various peptides in eliciting tissue responses. Airway macromolecular secretion is stimulated by the tachykinin substance P (SP). The purposes of this study were to determine the tachykinin receptor subtype responsible for this stimulation, and to examine the possible involvement of other neurotransmitters in mediating this effect. Ferret tracheal explants maintained in organ culture were labeled with {sup 3}H-glucosamine, a precursor of high molecular weight glycoconjugates (HMWG) which are released by airway secretory cells. Secretion of labeled HMWG then was determined in the absence and presence of the tachykinins SP, neurokinin A (NKA), neurokinin B (NKB), physalaemin (PHY), and eledoisin (ELE). To evaluate the possible contribution of other mediators, tachykinin stimulation was examined in the presence of several receptor blockers.

  4. Receptor-mediated signaling at plasmodesmata.

    PubMed

    Faulkner, Christine

    2013-01-01

    Plasmodesmata (PD) generate continuity between plant cells via the cytoplasm, endoplasmic reticulum (ER) and plasma membrane (PM), allowing movement of different classes of molecules between cells. Proteomic data indicates that the PD PM hosts many receptors and receptor kinases, as well as lipid raft and tetraspanin enriched microdomain associated proteins, suggesting the hypothesis that the PD PM is specialized with respect to both composition and function. PD-located receptor proteins and receptor kinases are responsible for perception of microbe associated molecular patterns at PD and initiate signaling that mediates changes to PD flux. In addition, developmentally relevant receptor kinases have different interactions dependent upon whether located at the PD PM or the cellular PM. The implications of these findings are that receptor-mediated signaling in PD membranes differs from that in the cellular PM and, in light the identification of PD-located proteins associated with membrane microdomains and the role of membrane microdomains in analogous signaling processes in animals, suggests that the PD PM contains specialized signaling platforms.

  5. Synaptic NMDA Receptors Mediate Hypoxic Excitotoxic Death

    PubMed Central

    Wroge, Christine M.; Hogins, Joshua; Eisenman, Larry; Mennerick, Steven

    2012-01-01

    Excessive NMDA receptor activation and excitotoxicity underlies pathology in many neuropsychiatric and neurological disorders, including hypoxia/ischemia. Thus, the development of effective therapeutics for these disorders demands a complete understanding of NMDA receptor (NMDAR) activation during excitotoxic insults. The extrasynaptic NMDAR hypothesis posits that synaptic NMDARs are neurotrophic/neuroprotective and extrasynaptic NMDARs are neurotoxic. In part, the extrasynaptic hypothesis is built on observed selectivity for extrasynaptic receptors of a neuroprotective use-dependent NMDAR channel blocker, memantine. In rat hippocampal neurons we found that a neuroprotective concentration of memantine shows little selectivity for extrasynaptic NMDARs when all receptors are tonically activated by exogenous glutamate. This led us to test the extrasynaptic NMDAR hypothesis using metabolic challenge, where the source of excitotoxic glutamate buildup may be largely synaptic. Three independent approaches suggest strongly that synaptic receptors participate prominently in hypoxic excitotoxicity. First, block of glutamate transporters with a non-substrate antagonist exacerbated rather than prevented damage, consistent with a primarily synaptic source of glutamate. Second, selective, preblock of synaptic NMDARs with a slowly reversible, use-dependent antagonist protected nearly fully against prolonged hypoxic insult. Third, glutamate pyruvate transaminase (GPT), which degrades ambient but not synaptic glutamate, did not protect against hypoxia but protected against exogenous glutamate damage. Together, these results suggest that synaptic NMDARs can mediate excitotoxicity, particularly when the glutamate source is synaptic and when synaptic receptor contributions are rigorously defined. Moreover, the results suggest that in some situations therapeutically targeting extrasynaptic receptors may be inappropriate. PMID:22573696

  6. Toll-like Receptor-7 Mediates Pruritus

    PubMed Central

    Liu, Tong; Xu, Zhen-Zhong; Park, Chul-Kyu; Berta, Temugin; Ji, Ru-Rong

    2010-01-01

    Toll-like receptors (TLRs) are typically expressed in immune cells to regulate innate immunity. Here we report that functional TLR7 is expressed in C-fiber primary sensory neurons and important for inducing itch (pruritis) but not necessary for eliciting mechanical, thermal, inflammatory and neuropathic pain in mice. Thus, we have uncovered TLR7 as a novel itch mediator and a potential therapeutic target for anti-itch treatment in skin disease conditions. PMID:21037581

  7. Mechanics of receptor-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Gao, Huajian; Shi, Wendong; Freund, Lambert B.

    2005-07-01

    Most viruses and bioparticles endocytosed by cells have characteristic sizes in the range of tens to hundreds of nanometers. The process of viruses entering and leaving animal cells is mediated by the binding interaction between ligand molecules on the viral capid and their receptor molecules on the cell membrane. How does the size of a bioparticle affect receptor-mediated endocytosis? Here, we study how a cell membrane containing diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle. It is shown that particles in the size range of tens to hundreds of nanometers can enter or exit cells via wrapping even in the absence of clathrin or caveolin coats, and an optimal particles size exists for the smallest wrapping time. This model can also be extended to include the effect of clathrin coat. The results seem to show broad agreement with experimental observations. Author contributions: H.G. and L.B.F. designed research; H.G., W.S., and L.B.F. performed research; and H.G., W.S., and L.B.F. wrote the paper.Abbreviations: CNT, carbon nanotube; SWNT, single-walled nanotube.

  8. The neural-glial purinergic receptor ensemble in chronic pain states.

    PubMed

    Jarvis, Michael F

    2010-01-01

    Chronic pain is characterized by enhanced sensory neurotransmission that underlies increased sensitivity to noxious stimuli and the perception of non-noxious stimuli as painful. Evidence from neurophysiological and pharmacological studies demonstrates that ATP produces pain by directly enhancing neuronal excitability via the activation of specific ligand-gated ion channels, the P2X3 and P2X2/3 receptors. In addition, ATP activates CNS glial cells (e.g. microglia) in response to persistent nociceptive stimulation. This latter effect involves several distinct receptor-mediated signaling pathways linked to the P2X4, P2X7 and P2Y(12) receptors. This review summarizes new data that places these purinergic signaling events in a mechanistic context that illustrates the ability of ATP to initiate and maintain states of heightened sensory neuron excitability associated with persistent pain.

  9. Receptors mediating toxicity and their involvement in endocrine disruption.

    PubMed

    Rüegg, Joëlle; Penttinen-Damdimopoulou, Pauliina; Mäkelä, Sari; Pongratz, Ingemar; Gustafsson, Jan-Ake

    2009-01-01

    Many toxic compounds exert their harmful effects by activating of certain receptors, which in turn leads to dysregulation of transcription. Some of these receptors are so called xenosensors. They are activated by external chemicals and evoke a cascade of events that lead to the elimination of the chemical from the system. Other receptors that are modulated by toxic substances are hormone receptors, particularly the ones of the nuclear receptor family. Some environmental chemicals resemble endogenous hormones and can falsely activate these receptors, leading to undesired activity in the cell. Furthermore, excessive activation of the xenosensors can lead to disturbances of the integrity of the system as well. In this chapter, the concepts of receptor-mediated toxicity and hormone disruption are introduced. We start by describing environmental chemicals that can bind to xenosensors and nuclear hormone receptors. We then describe the receptors most commonly targeted by environmental chemicals. Finally, the mechanisms by which receptor-mediated events can disrupt the system are depicted.

  10. Ligand-gated purinergic receptors regulate HIV-1 Tat and morphine related neurotoxicity in primary mouse striatal neuron-glia co-cultures.

    PubMed

    Sorrell, Mary E; Hauser, Kurt F

    2014-03-01

    Emerging evidence suggests that opioid drugs, such as morphine and heroin, can exacerbate neuroAIDS. Microglia are the principal neuroimmune effectors thought to be responsible for neuron damage in HIV-infected individuals, and evidence suggests that opioid drugs acting via μ opioid receptors in microglia aggravate the neuropathophysiological effects of HIV. Key aspects of microglial function are regulated by the P2X family of ATP activated ligand-gated ion channels. In addition, opioid-dependent microglial activation has been reported to be mediated through P2X4 signaling, which prompted us to investigate whether the cation-permeable P2X receptors contribute to the neurotoxic effects of HIV and morphine. To address this question, neuron survival, as well as other endpoints including changes in dendritic length, extracellular ATP levels, and intracellular calcium levels, were assayed in primary neuron-glia co-cultures from mouse striatum. Treatment with TNP-ATP, a non-selective P2X antagonist, prevented the neurotoxic effects of exposure to morphine and/or HIV Tat, or ATP alone, suggesting P2X receptors mediate the neurotoxic effects of these insults in striatal neurons. Although P2X7, and perhaps P2X1, receptor activation decreases neuron survival, neither P2X1, P2X3, nor P2X7 selective receptor antagonists prevented Tat and/or morphine-induced neurotoxicity. These and other experiments indicate the P2X receptor family contributes to Tat- and morphine- related neuronal injury, and provide circumstantial evidence implicating P2X4 receptors in particular. Our findings reveal that members of the P2X receptor family, especially P2X4, may be novel therapeutic targets for restricting the synaptodendritic injury and neurodegeneration that accompanies neuroAIDS and opiate abuse.

  11. Comparative analyses of lysophosphatidic acid receptor-mediated signaling.

    PubMed

    Fukushima, Nobuyuki; Ishii, Shoichi; Tsujiuchi, Toshifumi; Kagawa, Nao; Katoh, Kazutaka

    2015-06-01

    Lysophosphatidic acid (LPA) is a bioactive lipid mediator that activates G protein-coupled LPA receptors to exert fundamental cellular functions. Six LPA receptor genes have been identified in vertebrates and are classified into two subfamilies, the endothelial differentiation genes (edg) and the non-edg family. Studies using genetically engineered mice, frogs, and zebrafish have demonstrated that LPA receptor-mediated signaling has biological, developmental, and pathophysiological functions. Computational analyses have also identified several amino acids (aa) critical for LPA recognition by human LPA receptors. This review focuses on the evolutionary aspects of LPA receptor-mediated signaling by comparing the aa sequences of vertebrate LPA receptors and LPA-producing enzymes; it also summarizes the LPA receptor-dependent effects commonly observed in mouse, frog, and fish.

  12. SPHINGOSINE-1-PHOSPHATE RECEPTORS MEDIATE NEUROMODULATORY FUNCTIONS IN THE CNS

    PubMed Central

    Sim-Selley, Laura J.; Goforth, Paulette B.; Mba, Mba U.; Macdonald, Timothy L.; Lynch, Kevin R.; Milstien, Sheldon; Spiegel, Sarah; Satin, Leslie S.; Welch, Sandra P.; Selley, Dana E.

    2009-01-01

    Sphingosine-1-phosphate is a ubiquitous, lipophilic cellular mediator that acts in part by activation of G-protein-coupled receptors. Modulation of S1P signaling is an emerging pharmacotherapeutic target for immunomodulatory drugs. Although multiple S1P receptor types exist in the CNS, little is known about their function. Here we report that S1P stimulated G- protein activity in the CNS, and results from [35S]GTPγS autoradiography using the S1P1-selective agonist SEW2871 and the S1P1/3-selective antagonist VPC44116 show that in several regions a majority of this activity is mediated by S1P1 receptors. S1P receptor activation inhibited glutamatergic neurotransmission as determined by electrophysiological recordings in cortical neurons in vitro, and this effect was mimicked by SEW2871 and inhibited by VPC44116. Moreover, central administration of S1P produced in vivo effects resembling the actions of cannabinoids, including thermal antinociception, hypothermia, catalepsy and hypolocomotion, but these actions were independent of CB1 receptors. At least one of the central effects of S1P, thermal antinociception, is also at least partly S1P1 receptor mediated because it was produced by SEW2871 and attenuated by VPC44116. These results indicate that CNS S1P receptors are part of a physiologically relevant and widespread neuromodulatory system, and that the S1P1 receptor contributes to S1P-mediated antinociception. PMID:19493165

  13. Receptor-Mediated Drug Delivery Systems Targeting to Glioma

    PubMed Central

    Wang, Shanshan; Meng, Ying; Li, Chengyi; Qian, Min; Huang, Rongqin

    2015-01-01

    Glioma has been considered to be the most frequent primary tumor within the central nervous system (CNS). The complexity of glioma, especially the existence of the blood-brain barrier (BBB), makes the survival and prognosis of glioma remain poor even after a standard treatment based on surgery, radiotherapy, and chemotherapy. This provides a rationale for the development of some novel therapeutic strategies. Among them, receptor-mediated drug delivery is a specific pattern taking advantage of differential expression of receptors between tumors and normal tissues. The strategy can actively transport drugs, such as small molecular drugs, gene medicines, and therapeutic proteins to glioma while minimizing adverse reactions. This review will summarize recent progress on receptor-mediated drug delivery systems targeting to glioma, and conclude the challenges and prospects of receptor-mediated glioma-targeted therapy for future applications.

  14. Receptor-mediated Endocytosis in the Caenorhabditis elegans Oocyte

    PubMed Central

    Grant, Barth; Hirsh, David

    1999-01-01

    The Caenorhabditis elegans oocyte is a highly amenable system for forward and reverse genetic analysis of receptor-mediated endocytosis. We describe the use of transgenic strains expressing a vitellogenin::green fluorescent protein (YP170::GFP) fusion to monitor yolk endocytosis by the C. elegans oocyte in vivo. This YP170::GFP reporter was used to assay the functions of C. elegans predicted proteins homologous to vertebrate endocytosis factors using RNA-mediated interference. We show that the basic components and pathways of endocytic trafficking are conserved between C. elegans and vertebrates, and that this system can be used to test the endocytic functions of any new gene. We also used the YP170::GFP assay to identify rme (receptor-mediated endocytosis) mutants. We describe a new member of the low-density lipoprotein receptor superfamily, RME-2, identified in our screens for endocytosis defective mutants. We show that RME-2 is the C. elegans yolk receptor. PMID:10588660

  15. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    PubMed

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  16. Postsynaptic synaptotagmins mediate AMPA receptor exocytosis during LTP.

    PubMed

    Wu, Dick; Bacaj, Taulant; Morishita, Wade; Goswami, Debanjan; Arendt, Kristin L; Xu, Wei; Chen, Lu; Malenka, Robert C; Südhof, Thomas C

    2017-04-20

    Strengthening of synaptic connections by NMDA (N-methyl-d-aspartate) receptor-dependent long-term potentiation (LTP) shapes neural circuits and mediates learning and memory. During the induction of NMDA-receptor-dependent LTP, Ca(2+) influx stimulates recruitment of synaptic AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors, thereby strengthening synapses. How Ca(2+) induces the recruitment of AMPA receptors remains unclear. Here we show that, in the pyramidal neurons of the hippocampal CA1 region in mice, blocking postsynaptic expression of both synaptotagmin-1 (Syt1) and synaptotagmin-7 (Syt7), but not of either alone, abolished LTP. LTP was restored by expression of wild-type Syt7 but not of a Ca(2+)-binding-deficient mutant Syt7. Blocking postsynaptic expression of Syt1 and Syt7 did not impair basal synaptic transmission, reduce levels of synaptic or extrasynaptic AMPA receptors, or alter other AMPA receptor trafficking events. Moreover, expression of dominant-negative mutant Syt1 which inhibits Ca(2+)-dependent presynaptic vesicle exocytosis, also blocked Ca(2+)-dependent postsynaptic AMPA receptor exocytosis, thereby abolishing LTP. Our results suggest that postsynaptic Syt1 and Syt7 act as redundant Ca(2+)-sensors for Ca(2+)-dependent exocytosis of AMPA receptors during LTP, and thereby delineate a simple mechanism for the recruitment of AMPA receptors that mediates LTP.

  17. Receptor Complex Mediated Regulation of Symplastic Traffic.

    PubMed

    Stahl, Yvonne; Faulkner, Christine

    2016-05-01

    Plant receptor kinases (RKs) and receptor proteins (RPs) are involved in a plethora of cellular processes, including developmental decisions and immune responses. There is increasing evidence that plasmodesmata (PD)-localized RKs and RPs act as nexuses that perceive extracellular signals and convey them into intra- and intercellular responses by regulating the exchange of molecules through PD. How RK/RP complexes regulate the specific and nonspecific traffic of molecules through PD, and how these receptors are specifically targeted to PD, have been elusive but underpin comprehensive understanding of the function and regulation of the symplast. In this review we gather the current knowledge of RK/RP complex function at PD and how they might regulate intercellular traffic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. NMDA Receptors Mediate Synaptic Competition in Culture

    PubMed Central

    She, Kevin; Craig, Ann Marie

    2011-01-01

    Background Activity through NMDA type glutamate receptors sculpts connectivity in the developing nervous system. This topic is typically studied in the visual system in vivo, where activity of inputs can be differentially regulated, but in which individual synapses are difficult to visualize and mechanisms governing synaptic competition can be difficult to ascertain. Here, we develop a model of NMDA-receptor dependent synaptic competition in dissociated cultured hippocampal neurons. Methodology/Principal Findings GluN1 -/- (KO) mouse hippocampal neurons lacking the essential NMDA receptor subunit were cultured alone or cultured in defined ratios with wild type (WT) neurons. The absence of functional NMDA receptors did not alter neuron survival. Synapse development was assessed by immunofluorescence for postsynaptic PSD-95 family scaffold and apposed presynaptic vesicular glutamate transporter VGlut1. Synapse density was specifically enhanced onto minority wild type neurons co-cultured with a majority of GluN1 -/- neighbour neurons, both relative to the GluN1 -/- neighbours and relative to sister pure wild type cultures. This form of synaptic competition was dependent on NMDA receptor activity and not conferred by the mere physical presence of GluN1. In contrast to these results in 10% WT and 90% KO co-cultures, synapse density did not differ by genotype in 50% WT and 50% KO co-cultures or in 90% WT and 10% KO co-cultures. Conclusions/Significance The enhanced synaptic density onto NMDA receptor-competent neurons in minority coculture with GluN1 -/- neurons represents a cell culture paradigm for studying synaptic competition. Mechanisms involved may include a retrograde ‘reward’ signal generated by WT neurons, although in this paradigm there was no ‘punishment’ signal against GluN1 -/- neurons. Cell culture assays involving such defined circuits may help uncover the rules and mechanisms of activity-dependent synaptic competition in the developing nervous

  19. Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications.

    PubMed

    D'Souza, Anisha A; Devarajan, Padma V

    2015-04-10

    Hepatocyte resident afflictions continue to affect the human population unabated. The asialoglycoprotein receptor (ASGPR) is primarily expressed on hepatocytes and minimally on extra-hepatic cells. This makes it specifically attractive for receptor-mediated drug delivery with minimum concerns of toxicity. ASGPR facilitates internalization by clathrin-mediated endocytosis and exhibits high affinity for carbohydrates specifically galactose, N-acetylgalactosamine and glucose. Isomeric forms of sugar, galactose density and branching, spatial geometry and galactose linkages are key factors influencing ligand-receptor binding. Popular ligands for ASGPR mediated targeting are carbohydrate polymers, arabinogalactan and pullulan. Other ligands include galactose-bearing glycoproteins, glycopeptides and galactose modified polymers and lipids. Drug-ligand conjugates provide a viable strategy; nevertheless ligand-anchored nanocarriers provide an attractive option for ASGPR targeted delivery and are widely explored. The present review details various ligands and nanocarriers exploited for ASGPR mediated delivery of drugs to hepatocytes. Nanocarrier properties affecting ASGPR mediated uptake are discussed at length. The review also highlights the clinical relevance of ASGPR mediated targeting and applications in diagnostics. ASGPR mediated hepatocyte targeting provides great promise for improved therapy of hepatic afflictions.

  20. Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons.

    PubMed

    Paternain, A V; Morales, M; Lerma, J

    1995-01-01

    Although both protein and mRNAs for kainate receptor subunits are abundant in several brain regions, the responsiveness of AMPA receptors to kainate has made it difficult to demonstrate the presence of functional kainate-type receptors in native cells. Recently, however, we have shown that many hippocampal neurons in culture express glutamate receptors of the kainate type. The large nondesensitizing response that kainate induces at AMPA receptors precludes detection and analysis of smaller, rapidly desensitizing currents induced by kainate at kainate receptors. Consequently, the functional significance of these strongly desensitizing glutamate receptors remains enigmatic. We report here that the family of new noncompetitive antagonists of AMPA receptors (GYKI 52466 and 53655) minimally affects kainate-induced responses at kainate receptors while completely blocking AMPA receptor-mediated currents, making it possible to separate the responses mediated by each receptor. These compounds will allow determination of the role played by kainate receptors in synaptic transmission and plasticity in the mammalian brain, as well as evaluation of their involvement in neurotoxicity.

  1. Potential Involvement of P2 Receptors in the Pathological Processes of Hyperthyroidism: A Pilot Study.

    PubMed

    Hong, Wu; Li, Guodong; Nie, Yijun; Zou, Lifang; Zhang, Xi; Liu, Shuangmei; Li, Guilin; Xu, Hong; Zhang, Chun-Ping; Liang, Shangdong

    2016-05-01

    Symptoms of hyperthyroidism manifest mainly as changes in the nervous and metabolic systems. Whether P2X receptors (ionotropic ATP purinergic receptors, including P2X3 receptor and P2X7 receptor) are involved in the alterations of these disorders still remains unclear. Thus, this study aimed to assess the association of hyperthyroidism with the expression of P2X3 and P2X7 receptors and the concentrations of ATP in blood leukocytes and catecholamine. Twelve healthy subjects and twelve patients diagnosed with hyperthyroidism were recruited. Serum free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone (TSH) levels had been detected by chemiluminescence method. Meanwhile, the catecholamine levels (including adrenaline, noradrenaline, and dopamine) in plasma, ATP level and P2X receptors (including P2X3 receptor and P2X7 receptor) in peripheral blood had been detected by high performance liquid chromatography, bioluminescence method, and reverse transcription polymerase chain reaction, respectively. Levels of epinephrine and norepinephrine were significantly higher in the hyperthyroidism group compared with the control group. The concentration of ATP in the hyperthyroidism group was significantly higher than its in the control group. The expression of P2X3 mRNA and P2X7 mRNA in hyperthyroidism group were significantly increased compared with those in control group. In a conclusion, there is a relationship between the elevated expression of P2X3 receptor and P2X7 receptor in peripheral blood leukocytes and high serum epinephrine and norepinephrine levels in hyperthyroidism patients. © 2016 by the Association of Clinical Scientists, Inc.

  2. Multiscale Modeling of Virus Entry via Receptor-Mediated Endocytosis

    NASA Astrophysics Data System (ADS)

    Liu, Jin

    2012-11-01

    Virus infections are ubiquitous and remain major threats to human health worldwide. Viruses are intracellular parasites and must enter host cells to initiate infection. Receptor-mediated endocytosis is the most common entry pathway taken by viruses, the whole process is highly complex and dictated by various events, such as virus motions, membrane deformations, receptor diffusion and ligand-receptor reactions, occurring at multiple length and time scales. We develop a multiscale model for virus entry through receptor-mediated endocytosis. The binding of virus to cell surface is based on a mesoscale three dimensional stochastic adhesion model, the internalization (endocytosis) of virus and cellular membrane deformation is based on the discretization of Helfrich Hamiltonian in a curvilinear space using Monte Carlo method. The multiscale model is based on the combination of these two models. We will implement this model to study the herpes simplex virus entry into B78 cells and compare the model predictions with experimental measurements.

  3. Regulation and ontogeny of subtypes of muscarinic receptors and muscarinic receptor-mediated

    SciTech Connect

    Lee, W.

    1989-01-01

    The densities of total and M1 muscarinic receptors were measured using the muscarinic receptor antagonists {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine, respectively. Thus, the difference between the density of {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine binding sites represents the density of M2 sites. In addition, there is no observable change in either acetylcholine-stimulated phosphoinositide breakdown (suggested to be an M1 receptor-mediated response) or in carbachol-mediated inhibition of cyclic AMP accumulation (suggested to be an M2 receptor-mediated response) in slices of cortex+dorsal hippocampus following chronic atropine administration. In other experiments, it has been shown that the M1 and M2 receptors in rat cortex have different ontogenetic profiles. The M2 receptor is present at adult levels at birth, while the M1 receptor develops slowly from low levels at postnatal week 1 to adult levels at postnatal week 3. The expression of acetylcholine-stimulated phosphoinositide breakdown parallels the development of M1 receptors, while the development of carbachol-mediated inhibition of cyclic AMP accumulation occurs abruptly between weeks 2 and 3 postnatally.

  4. Extracellular purines, purinergic receptors and tumor growth

    PubMed Central

    Di Virgilio, F; Adinolfi, E

    2017-01-01

    Virtually, all tumor cells as well as all immune cells express plasma membrane receptors for extracellular nucleosides (adenosine) and nucleotides (ATP, ADP, UTP, UDP and sugar UDP). The tumor microenvironment is characterized by an unusually high concentration of ATP and adenosine. Adenosine is a major determinant of the immunosuppressive tumor milieu. Sequential hydrolysis of extracellular ATP catalyzed by CD39 and CD73 is the main pathway for the generation of adenosine in the tumor interstitium. Extracellular ATP and adenosine mold both host and tumor responses. Depending on the specific receptor activated, extracellular purines mediate immunosuppression or immunostimulation on the host side, and growth stimulation or cytotoxicity on the tumor side. Recent progress in this field is providing the key to decode this complex scenario and to lay the basis to harness the potential benefits for therapy. Preclinical data show that targeting the adenosine-generating pathway (that is, CD73) or adenosinergic receptors (that is, A2A) relieves immunosuppresion and potently inhibits tumor growth. On the other hand, growth of experimental tumors is strongly inhibited by targeting the P2X7 ATP-selective receptor of cancer and immune cells. This review summarizes the recent data on the role played by extracellular purines (purinergic signaling) in host–tumor interaction and highlights novel therapeutic options stemming from recent advances in this field. PMID:27321181

  5. Involvement of purinergic receptors and NOD-like receptor-family protein 3-inflammasome pathway in the adenosine triphosphate-induced cytokine release from macrophages.

    PubMed

    Gicquel, Thomas; Victoni, Tatiana; Fautrel, Alain; Robert, Sacha; Gleonnec, Florence; Guezingar, Marie; Couillin, Isabelle; Catros, Véronique; Boichot, Elisabeth; Lagente, Vincent

    2014-04-01

    Adenosine triphosphate (ATP) has been described as a danger signal activating the NOD-like receptor-family protein 3 (NLRP3)-inflammasome leading to the pro-inflammatory cytokine, interleukin (IL)-1β, release in the lung. The NLRP3-inflammasome pathway has been previously described to be involved in experimental collagen deposition and the development of pulmonary fibrosis. The aim of the present study was to investigate the role of the NLRP3 inflammasome pathway and P2X7 purinergic receptor in the activation of human macrophages in vitro by ATP. We showed that adenosine 5'-[γ-thio]triphosphate tetralithium salt (ATPγS) and 2',3'-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP), two stable analogs of ATP, are able to potentiate the release of IL-1β from human monocyte-derived macrophages induced by low concentration of lipopolysaccharide (LPS). However, in the same conditions no increase in IL-1α and IL-6 was observed. Immunochemistry has shown that human macrophages natively express NLRP3 and purinergic P2X7 receptors (P2X7 R). NLRP3 and IL-1β mRNA expression were induced from LPS-primed macrophages, but also after 5-h treatment of BzATP as analysed by reverse transcription quantitative polymerase chain reaction. However, other inflammasome pathways (NLRP1, NLRP2, NLRC4, NLRP6 and AIM2) and P2X7 R were not induced by BzATP. We observed that P2X7 R antagonists, A-438079 and A-740003, were able to reduce the release of IL-1β, but not of IL-1α and IL-6 from macrophages stimulated by ATPγS or BzATP. The present results showed the involvement of the P2X7 R-NLRP3 inflammasome pathway in the secretion of IL-1β from ATP-stimulated human macrophages, and suggest that P2X7 R were not involved in IL-1α and IL-6 release. This study also points out that repression of the P2X7 R represents a novel potential therapeutic approach to control fibrosis in lung injury.

  6. Modulation of Toll-interleukin 1 receptor mediated signaling.

    PubMed

    Li, Xiaoxia; Qin, Jinzhong

    2005-04-01

    Toll-like receptors (TLRs) belong to the Toll-interleukin 1 receptor superfamily, which is defined by a common intracellular Toll-IL-1 receptor (TIR) domain. A group of TIR domain containing adaptors (MyD88, TIRAP, TRIF and TRAM), are differentially recruited to the Toll-IL-1 receptors, contributing to the specificity of signaling. The IL-1 mediated signaling pathway serves as a "prototype" for other family members. Genetic and biochemical studies reveal that IL-1R uses adaptor molecule MyD88 to mediate a very complex pathway, involving a cascade of kinases organized by multiple adapter molecules into signaling complexes, leading to activation of the transcription factor NFkappaB. Several Toll-like receptors utilize variations of the "prototype" pathway by employing different adaptor molecules. Double-stranded RNA triggered, TLR3-mediated signaling is independent of MyD88, IRAK4, and IRAK. The adapter molecule TRIF is utilized by TLR3 to mediate the activation of NFkappaB and IRF3. LPS-induced, TLR4-mediated signaling employs multiple TIR-domain containing adaptors, MyD88/TIRAP to mediate NFkappaB activation, TRIF/TRAM for IRF3 activation. Recent studies have also begun to unravel how these pathways are negatively regulated. SIGIRR (also known as TIR8), a member of TIR superfamily that does not activate the transcription factors NFkappaB and IRF3, instead negatively modulates responses. Cells from SIGIRR-null mice show enhanced activation in response to either IL-1 or certain Toll ligands. In addition to SIGIRR, several other negative regulators have been shown to inhibit the TIR signaling, including ST2, IRAKM, MyD88s, SOCS1, and Triad3A. The coordinated positive and negative regulation of the TIR signaling ensures the appropriate modulation of the innate and inflammatory responses.

  7. Cell receptors: definition, mechanisms and regulation of receptor-mediated endocytosis.

    PubMed

    Féger, J; Gil-Falgon, S; Lamaze, C

    1994-12-01

    Receptors allow the cells to recognize specific ligands and to receive extracellular messages. They can be classified into five families: 1) receptors for lipidic or lipophilic ligands; 2) the seven transmembrane receptors which mediate their messages by transduction through the activation of G-proteins, effectors and second messengers to amplify the response; 3) receptors which present an enzymatic activity on their transmembrane domains; 4) channel-receptors, transmembrane oligomeric molecules which let ions flow into the cell and 5) receptors which role is to internalize ligands, whatever their various functions. In parallel a concept of membrane plasticity was developed: vesicles are constantly formed from the plasma membrane, addressing complexes of ligand-receptors to specific intracellular compartments. This receptor-mediated endocytosis of ligand plays a critical role in regulating the number of a given receptor at the plasma membrane and in the cellular uptake of nutrients, growth factors and hormones. Many pathways exist for these transports but little is known about the signals which select the ligands or the receptors and direct them to their appropriate intracellular destination.

  8. Dose-response approaches for nuclear receptor-mediated ...

    EPA Pesticide Factsheets

    A public workshop, organized by a Steering Committee of scientists from government, industry, universities, and research organizations, was held at the National Institute of Environmental Health Sciences (NIEHS) in September, 2010. The workshop explored the dose-response implications of toxicant modes of action (MOA) mediated by nuclear receptors. The dominant paradigm in human health risk assessment has been linear extrapolation without a threshold for cancer, and estimation of sub-threshold doses for non-cancer and (in appropriate cases) cancer endpoints. However, recent publications question the application of dose-response modeling approaches with a threshold. The growing body of molecular toxicology information and computational toxicology tools has allowed for exploration of the presence or absence of subthreshold doses for a number of receptor-mediated MOPs. The workshop explored the development of dose-response approaches for nuclear receptor-mediated liver cancer, within a MOA Human Relevance framework (HRF). Case studies addressed activation of the AHR; the CAR/PXR, and the PPARa. This paper describes the workshop process, key issues discussed, and conclusions. The value of an interactive workshop approach to apply current MOA/HRF frameworks was demonstrated. The results may help direct research on the MOA and dose-response of receptor-based toxicity, since there are commonalities for many receptors in the basic pathways involved for late steps in the

  9. Dose-response approaches for nuclear receptor-mediated ...

    EPA Pesticide Factsheets

    A public workshop, organized by a Steering Committee of scientists from government, industry, universities, and research organizations, was held at the National Institute of Environmental Health Sciences (NIEHS) in September, 2010. The workshop explored the dose-response implications of toxicant modes of action (MOA) mediated by nuclear receptors. The dominant paradigm in human health risk assessment has been linear extrapolation without a threshold for cancer, and estimation of sub-threshold doses for non-cancer and (in appropriate cases) cancer endpoints. However, recent publications question the application of dose-response modeling approaches with a threshold. The growing body of molecular toxicology information and computational toxicology tools has allowed for exploration of the presence or absence of subthreshold doses for a number of receptor-mediated MOPs. The workshop explored the development of dose-response approaches for nuclear receptor-mediated liver cancer, within a MOA Human Relevance framework (HRF). Case studies addressed activation of the AHR; the CAR/PXR, and the PPARa. This paper describes the workshop process, key issues discussed, and conclusions. The value of an interactive workshop approach to apply current MOA/HRF frameworks was demonstrated. The results may help direct research on the MOA and dose-response of receptor-based toxicity, since there are commonalities for many receptors in the basic pathways involved for late steps in the

  10. Analgesic Effects Mediated by Muscarinic Receptors: Mechanisms and Pharmacological Approaches.

    PubMed

    De Angelis, Federica; Tata, Ada Maria

    2016-01-01

    Chronic pain represents a research field on great clinical relevance and social impactful. It is associated to a variety of pathological events causing un altered excitability of peripheral nerves derived by tissue damage depending on physical, biological and chemical injury. In the last years much attention has been paid in the identification of novel molecules involved in mediating pain sensation useful as therapeutic tools for the development of new analgesic drugs. Muscarinic receptors are widely distributed both in the central and peripheral nervous system. It is known that muscarinic agonists cause analgesic effects via spinal and supraspinal mechanisms. Considering that the analgesia induced by cholinergic agonists is comparable to that observed with morphine, the identification of receptor subtypes involved and the identification of the muscarinic ligands capable of selectively activate these receptors, is of considerable interest for potential therapeutic application. In the present review we describe the role of muscarinic receptors in mediating central and peripheral pain and the mechanisms downstream these receptors responsible of the modulation of nociceptive stimuli. Moreover the therapeutic perspectives and the identification of potential drugs binding muscarinic receptors involved in pain modulation will also be discussed.

  11. Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes

    PubMed Central

    Matute, Carlos; Sánchez-Gómez, M. Victoria; Martínez-Millán, Luis; Miledi, Ricardo

    1997-01-01

    In cultured oligodendrocytes isolated from perinatal rat optic nerves, we have analyzed the expression of ionotropic glutamate receptor subunits as well as the effect of the activation of these receptors on oligodendrocyte viability. Reverse transcription–PCR, in combination with immunocytochemistry, demonstrated that most oligodendrocytes differentiated in vitro express the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR3 and GluR4 and the kainate receptor subunits GluR6, GluR7, KA1 and KA2. Acute and chronic exposure to kainate caused extensive oligodendrocyte death in culture. This effect was partially prevented by the AMPA receptor antagonist GYKI 52466 and was completely abolished by the non-N-methyl-d-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), suggesting that both AMPA and kainate receptors mediate the observed kainate toxicity. Furthermore, chronic application of kainate to optic nerves in vivo resulted in massive oligodendrocyte death which, as in vitro, could be prevented by coinfusion of the toxin with CNQX. These findings suggest that excessive activation of the ionotropic glutamate receptors expressed by oligodendrocytes may act as a negative regulator of the size of this cell population. PMID:9238063

  12. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role. PMID:27635169

  13. Low and high affinity receptors mediate cellular uptake of heparanase

    PubMed Central

    Ben-Zaken, Olga; Shafat, Itay; Gingis-Velitski, Svetlana; Bangio, Haim; Kelson, Idil Kasuto; Alergand, Tal; Amor, Yehudit; Maya, Ruth Ben-Yakar; Vlodavsky, Israel; Ilan, Neta

    2008-01-01

    Heparanase is an endoglycosidase which cleaves heparan sulfate and hence participates in degradation and remodeling of the extracellular matrix. Importantly, heparanase activity correlated with the metastatic potential of tumor-derived cells, attributed to enhanced cell dissemination as a consequence of heparan sulfate cleavage and remodeling of the extracellular matrix barrier. Heparanase has been characterized as a glycoprotein, yet glycan biochemical analysis was not performed to date. Here, we applied the Qproteome™ GlycoArray kit to perform glycan analysis of heparanase, and compared the kit results with the more commonly used biochemical analyses. We employed fibroblasts isolated from patients with I-cell disease (mucolipidosis II), fibroblasts deficient of low density lipoprotein receptor-related protein and fibroblasts lacking mannose 6-phosphate receptor, to explore the role of mannose 6-phosphate in heparanase uptake. Iodinated heparanase has been utilized to calculate binding affinity. We provide evidence for hierarchy of binding to cellular receptors as a function of heparanase concentration. We report the existence of a high affinity, low abundant (i.e., low density lipoprotein receptor-related protein, mannose 6-phosphate receptor), as well as a low affinity, high abundant (i.e., heparan sulfate proteoglycan) receptors that mediate heparanase binding, and suggest that these receptors cooperate to establish high affinity binding sites for heparanase, thus maintaining extracellular retention of the enzyme tightly regulated. PMID:17981072

  14. Receptor-mediated regulation of neuropeptide gene expression in astrocytes.

    PubMed

    Schwartz, J P; Nishiyama, N; Wilson, D; Taniwaki, T

    1994-06-01

    One of the functions of glial receptors is to regulate synthesis and release of a variety of neuropeptides and growth factor peptides, which in turn act on neurons or other glia. Because of the potential importance of these interactions in injured brain, we have examined the role of two different receptors in the regulation of astrocyte neuropeptide synthesis. Stimulation of beta-adrenergic receptors on type 1 astrocytes resulted in increased mRNA and protein for the proenkephalin (PE) and somatostatin genes. This receptor also increased expression of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). The potential role of opiate receptors was examined in several ways. Treatment of newborn rats for 7 days with the opiate antagonist naltrexone, prior to preparation of astrocytes, had no effect on PE mRNA or met-enkephalin content but resulted in a significant increase in NGF content. However, treatment of astrocytes in culture with met-enkephalin, morphine, or naltrexone had no effect on any of these parameters. No opiate binding could be detected, using either etorphine or bremazocine, to membranes of astrocytes prepared from cortex, cerebellum, striatum, or hippocampus of 1-day, 7-day, or 14-day postnatal rats. Thus we conclude that type 1 astrocytes do not express opiate receptors and that the in vivo effects of naltrexone are mediated indirectly via some other cell type/receptor.

  15. Metabotropic glutamate receptor-mediated signaling in neuroglia

    PubMed Central

    Loane, David J.; Stoica, Bogdan A.; Faden, Alan I.

    2011-01-01

    Metabotropic glutamate (mGlu) receptors are G-protein-coupled receptors, which include eight subtypes that have been classified into three groups (I–III) based upon sequence homology, signal transduction mechanism and pharmacological profile. Although most studied with regard to neuronal function and modulation, mGlu receptors are also expressed by neuroglia-including astrocytes, microglia and oligodendrocytes. Activation of mGlu receptors on neuroglia under both physiologic and pathophysiologic conditions mediates numerous actions that are essential for intrinsic glial cell function, as well as for glial–neuronal interactions. Astrocyte mGlu receptors play important physiological roles in regulating neurotransmission and maintaining neuronal homeostasis. However, mGlu receptors on astrocytes and microglia also serve to modulate cell death and neurological function in a variety of pathophysiological conditions such as acute and chronic neurodegenerative disorders. The latter effects are complex and bi-directional, depending on which mGlu receptor sub-types are activated. PMID:22662309

  16. Evidence that somatostatin sst2 receptors mediate striatal dopamine release

    PubMed Central

    Hathway, G J; Humphrey, P P A; Kendrick, K M

    1999-01-01

    Somatostatin (SRIF) is a cyclic tetradecapeptide present in medium-sized aspiny interneurones in the rat striatum. We have previously shown that exogenous SRIF potently stimulates striatal dopamine (DA) release via a glutamate-dependent mechanism. We now report the ability of the selective sst2 receptor agonist, BIM-23027, to mimic this effect of SRIF.In vivo microdialysis studies were performed in anaesthetized male Wistar rats. In most experiments, compounds were administered by retrodialysis into the striatum for 15 min periods, 90 min and 225 min after sampling commenced, with levels of neurotransmitters being measured by HPLC with electrochemical and fluorescence detection.BIM-23027 (50 and 100 nM) stimulated DA release with extracellular levels increasing by up to 18 fold.Prior retrodialysis of BIM-23027 (50 nM) abolished the effects of subsequent administration of SRIF (100 nM).The agonist effects of both BIM-23027 and SRIF were abolished by the selective sst2 receptor antagonist, L-Tyr8-CYN-154806 (100 nM).The AMPA/kainate receptor antagonist, DNQX (100 μM), abolished the agonist effects of BIM-23027 as previously shown for SRIF.This study provides evidence that the sst2 receptor mediates the potent dopamine-releasing actions observed with SRIF in the rat striatum. Dopamine release evoked by both peptides appears to be mediated indirectly via a glutamatergic pathway. Other subtype-specific somatostatin receptor ligands were unable to elicit any effects and therefore we conclude that no other somatostatin receptor types are involved in mediating the dopamine-releasing actions of SRIF in the striatum. PMID:10578151

  17. The receptors that mediate the direct lethality of anthrax toxin.

    PubMed

    Liu, Shihui; Zhang, Yi; Hoover, Benjamin; Leppla, Stephen H

    2012-12-27

    Tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein-2 (CMG2) are the two well-characterized anthrax toxin receptors, each containing a von Willebrand factor A (vWA) domain responsible for anthrax protective antigen (PA) binding. Recently, a cell-based analysis was used to implicate another vWA domain-containing protein, integrin β1 as a third anthrax toxin receptor. To explore whether proteins other than TEM8 and CMG2 function as anthrax toxin receptors in vivo, we challenged mice lacking TEM8 and/or CMG2. Specifically, we used as an effector protein the fusion protein FP59, a fusion between the PA-binding domain of anthrax lethal factor (LF) and the catalytic domain of Pseudomonas aeruginosa exotoxin A. FP59 is at least 50-fold more potent than LF in the presence of PA, with 2 μg PA + 2 μg FP59 being sufficient to kill a mouse. While TEM8(-/-) and wild type control mice succumbed to a 5 μg PA + 5 μg FP59 challenge, CMG2(-/-) mice were completely resistant to this dose, confirming that CMG2 is the major anthrax toxin receptor in vivo. To detect whether any toxic effects are mediated by TEM8 or other putative receptors such as integrin β1, CMG2(-/-)/TEM8(-/-) mice were challenged with as many as five doses of 50 μg PA + 50 μg FP59. Strikingly, the CMG2(-/-)/TEM8(-/-) mice were completely resistant to the 5-dose challenge. These results strongly suggest that TEM8 is the only minor anthrax toxin receptor mediating direct lethality in vivo and that other proteins implicated as receptors do not play this role.

  18. Pharmacology of inflammatory pain: local alteration in receptors and mediators.

    PubMed

    Holzer, Peter; Holzer-Petsche, Ulrike

    2009-01-01

    Inflammation is commonly associated with hyperalgesia. Ideally, this change should abate once inflammation is resolved, but this is not necessarily the case because phenotypic changes in the tissue can persist, as appears to be the case in post-infectious irritable bowel syndrome. Basically, all primary afferent neurons supplying the gut can be sensitized in response to pro-inflammatory mediators, and the mechanisms whereby hypersensitivity is initiated and maintained are, thus, of prime therapeutic interest. There is a multitude of molecular nocisensors that can be responsible for the hypersensitivity of afferent neurons. These entities include: (i) receptors and sensors at the peripheral terminals of afferent neurons that are relevant to stimulus transduction, (ii) ion channels that govern the excitability and conduction properties of afferent neurons, and (iii) transmitters and transmitter receptors that mediate communication between primary afferents and second-order neurons in the spinal cord and brainstem. Persistent increases in the sensory gain may result from changes in the expression of transmitters, receptors or ion channels; changes in the subunit composition and biophysical properties of receptors and ion channels; or changes in the structure, connectivity and survival of afferent neurons. Particular therapeutic potential is attributed to targets that are selectively expressed by afferent neurons and whose number and function are altered in abdominal hypersensitivity. Emerging targets of therapeutic relevance include distinct members of the transient receptor potential (TRP) channel family (TRPV1, TRPV4, TRPA1), acid-sensing ion channels, protease-activated receptors, corticotropin-releasing factor receptors and sensory neuron-specific sodium channels. Copyright 2010 S. Karger AG, Basel.

  19. Toll Like Receptor-9 Mediated Invasion in Breast Cancer

    DTIC Science & Technology

    2012-07-01

    breast cancers. A likely mechanism of this clinical finding involves dif- ferential responses to hypoxia. Our pre-clinical studies indicate that while...outcome of TLR activation is an innate immune reaction characterized by increased production of inflammatory mediators [2]. Recent studies indicate that...A 14. ABSTRACT TLR9 is a cellular DNA-receptor that is widely expressed in breast cancers. The aim of this work was to study whether DNA

  20. Nicotinic and opioid receptor regulation of striatal dopamine D2-receptor mediated transmission

    PubMed Central

    Mamaligas, Aphroditi A.; Cai, Yuan; Ford, Christopher P.

    2016-01-01

    In addition to dopamine neuron firing, cholinergic interneurons (ChIs) regulate dopamine release in the striatum via presynaptic nicotinic receptors (nAChRs) on dopamine axon terminals. Synchronous activity of ChIs is necessary to evoke dopamine release through this pathway. The frequency-dependence of disynaptic nicotinic modulation has led to the hypothesis that nAChRs act as a high-pass filter in the dopaminergic microcircuit. Here, we used optogenetics to selectively stimulate either ChIs or dopamine terminals directly in the striatum. To measure the functional consequence of dopamine release, D2-receptor synaptic activity was assessed via virally overexpressed potassium channels (GIRK2) in medium spiny neurons (MSNs). We found that nicotinic-mediated dopamine release was blunted at higher frequencies because nAChRs exhibit prolonged desensitization after a single pulse of synchronous ChI activity. However, when dopamine neurons alone were stimulated, nAChRs had no effect at any frequency. We further assessed how opioid receptors modulate these two mechanisms of release. Bath application of the κ opioid receptor agonist U69593 decreased D2-receptor activation through both pathways, whereas the μ opioid receptor agonist DAMGO decreased D2-receptor activity only as a result of cholinergic-mediated dopamine release. Thus the release of dopamine can be independently modulated when driven by either dopamine neurons or cholinergic interneurons. PMID:27886263

  1. Receptor-Mediated Transport of Insulin across Endothelial Cells

    NASA Astrophysics Data System (ADS)

    King, George L.; Johnson, Sandra M.

    1985-03-01

    Hormones such as insulin are transported from the interior to the exterior of blood vessels. Whether endothelial cells, which line the inner walls of blood vessels have a role in this transport of hormones is not clear, but it is known that endothelial cells can internalize and release insulin rapidly with little degradation. The transport of iodine-125-labeled insulin was measured directly through the use of dual chambers separated by a horizontal monolayer of cultured bovine aortic endothelial cells. In this setting, endothelial cells took up and released the labeled insulin, thereby transporting it across the cells. The transport of insulin across the endothelial cells was temperature sensitive and was inhibited by unlabeled insulin and by antibody to insulin receptor in proportion to the ability of these substances to inhibit insulin binding to its receptor. More than 80 percent of the transported insulin was intact. These data suggest that insulin is rapidly transported across endothelial cells by a receptor-mediated process.

  2. A classification of opiate receptors that mediate antinociception in animals.

    PubMed Central

    Tyers, M. B.

    1980-01-01

    1 To investigate the opiate receptors that mediate antinociception, the activity profiles of opioid analgesic drugs have been determined against different nociceptive stimuli in the mouse and rat. 2 In tests that employ heat as the nociceptive stimulus, mu-opiate receptor agonists, such as morphine, pethidine and dextropropoxyphene, had steep and parallel dose-response curves and were capable of achieving maximum effects. In addition, the antinociceptive potency ratios of these drugs in heat tests were similar to those for analgesia in man. 3 The kappa-agonists, such as ethylketazocine, nalorphine, Mr2034 and pentazocine, were essentially inactive against heat nociception except at doses that caused sedation and motor incapacitation. 4 In the writhing and paw pressure tests both mu- and kappa-agonists produced steep and parallel dose-response curves. 5 It is concluded that both mu- and kappa-opiate receptors mediate antinociception in animals and that the interactions of analgesic drugs with these receptors may be classified in terms of their antinociceptive activities against qualitatively different nociceptive stimuli. PMID:6249436

  3. Receptor-mediated choreography of life and death.

    PubMed

    Bhardwaj, Anjana; Aggarwal, Bharat B

    2003-09-01

    The cytokine tumor necrosis factor was originally identified as a protein that kills tumor cells. So far, 18 distinct members of this family have been identified. All of them regulate cell survival, proliferation, differentiation, and cell death, also called apoptosis. The apoptosis induced by TNF, and other members of the family, for example, FasL, VEGI, and TRAIL is mediated through death receptors. The apoptotic signals by these cytokines are transduced by eight different death domain- (DD) containing receptors (TNFR1, also called DR1; Fas, also called DR2; DR3, DR4, DR5, DR6, NGFR, and EDAR). The intracellular portion of all these receptors contains a region approximately 80 amino acids long referred to as the "death domain." Upon activation by its ligand, the DD recruits various proteins that mediate both death and proliferation of the cells. These proteins in turn recruit other proteins via their DDs or death effector domains. The actual destruction of the cell, however, is accomplished by serial activation of a family of proteases referred to as caspases. Cell death is negatively regulated by a family of proteins that includes decoy receptors, silencer of DD, sentrin, cellular FLICE inhibitory protein, cellular inhibitors of apoptosis, and survivin. This review is an attempt to describe how these negative and positive players of cell death perform a harmonious dance with each other.

  4. Of pheromones and kairomones: what receptors mediate innate emotional responses?

    PubMed

    Fortes-Marco, Lluis; Lanuza, Enrique; Martinez-Garcia, Fernando

    2013-09-01

    Some chemicals elicit innate emotionally laden behavioral responses. Pheromones mediate sexual attraction, parental care or agonistic confrontation, whereas predators' kairomones elicit defensive behaviors in their preys. This essay explores the hypothesis that the detection of these semiochemicals relies on highly specific olfactory and/or vomeronasal receptors. The V1R, V2R, and formyl-peptide vomeronasal receptors bind their ligands in highly specific and sensitive way, thus being good candidates for pheromone- or kairomone-detectors (e.g., secreted and excreted proteins, peptides and lipophilic volatiles). The olfactory epithelium also expresses specific receptors, for example trace amine-associated receptors (TAAR) and guanylyl cyclase receptors (GC-D and other types), some of which bind kairomones and putative pheromones. However, most of the olfactory neurons express canonical olfactory receptors (ORs) that bind many ligands with different affinity, being not suitable for mediating responses to pheromones and kairomones. In this respect, trimethylthiazoline (TMT) is considered a fox-derived kairomone for mice and rats, but it seems to be detected by canonical ORs. Therefore, we have reassessed the kairomonal nature of TMT by analyzing the behavioral responses of outbred (CD1) and inbred mice (C57BL/J6) to TMT. Our results confirm that both mouse strains avoid TMT, which increases immobility in C57BL/J6, but not CD1 mice. However, mice of both strains sniff at TMT throughout the test and show no trace of TMT-induced contextual conditioning (immobility or avoidance). This suggests that TMT is not a kairomone but, similar to a loud noise, in high concentrations it induces aversion and stress as unspecific responses to a strong olfactory stimulation. Copyright © 2013 Wiley Periodicals, Inc.

  5. Cell-Surface Receptors Transactivation Mediated by G Protein-Coupled Receptors

    PubMed Central

    Cattaneo, Fabio; Guerra, Germano; Parisi, Melania; De Marinis, Marta; Tafuri, Domenico; Cinelli, Mariapia; Ammendola, Rosario

    2014-01-01

    G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we

  6. Induction of aryl hydrocarbon receptor-mediated and estrogen receptor-mediated activities, and modulation of cell proliferation by dinaphthofurans.

    PubMed

    Vondrácek, Jan; Chramostová, Katerina; Plísková, Martina; Bláha, Ludek; Brack, Werner; Kozubík, Alois; Machala, Miroslav

    2004-09-01

    A group of heterocyclic aromatic compounds, dinaphthofurans (DNFs), recently have been identified as potentially significant contaminants in freshwater sediments. In the present study, a battery of in vitro assays was used for detection of toxic effects of DNFs that are potentially associated with endocrine disruption and tumor promotion. Dinaphthofurans were found to act as relatively potent inducers of aryl hydrocarbon receptor (AhR)-mediated activity in the chemical-activated luciferase reporter gene expression DR-CALUX assay. The relative AhR-inducing potencies of DNFs were similar or even higher than relative potencies of unsubstituted polycyclic aromatic hydrocarbons (PAHs), with dinaphtho[1,2-b;2'3'-d]furan being the most potent AhR agonist. Two compounds, dinaphtho[2,1-b;2'3'-d]furan and dinaphtho[1,2-b;1'2'-d]furan, induced estrogen receptor (ER)-mediated activity in the estrogen receptor-mediated CALUX (the ER-CALUX) assay. Two types of potential tumor-promoting effects of DNFs were investigated, using in vitro bioassays for detection of inhibition of gap-junctional intercellular communication and detection of a release from contact inhibition. Although the acute inhibition of gap-junctional intercellular communication was not observed, all six tested DNFs were able to release rat liver epithelial WB-F344 cells from contact inhibition at concentrations as low as 100 nM. In summary, the present study indicated that DNFs can exert multiple biological effects in vitro, including induction of the AhR-mediated activity, release of cells from contact inhibition, and induction of ER-mediated activity.

  7. Purine receptor mediated actin cytoskeleton remodeling of human fibroblasts

    PubMed Central

    Goldman, Nanna; Chandler-Militello, Devin; Langevin, Helene; Nedergaard, Maiken; Takano, Takahiro

    2013-01-01

    Earlier studies have shown that activation of adenosine A1 receptors on peripheral pain fibers contributes to acupuncture-induced suppression of painful input. In addition to adenosine, acupuncture triggers the release of other purines, including ATP and ADP that may bind to purine receptors on nearby fibroblasts. We here show that purine agonists trigger increase in cytosolic Ca 2+ signaling in a cultured human fibroblasts cell line. The profile of agonist-induced Ca2+ increases indicates that the cells express functional P2yR2 and P2yR4 receptors, as well as P2yR1 and P2xR7 receptors. Unexpectedly, purine-induced Ca2+ signaling was associated with a remodeling of the actin cytoskeleton. ATP induced a transient loss in F-actin stress fiber. The changes of actin cytoskeleton occurred slowly and peaked at 10 min after agonist exposure. Inhibition of ATP-induced increases in Ca2+ by cyclopiazonic acid blocked receptor-mediated cytoskeleton remodeling. The Ca2+ ionophore failed to induce cytoskeletal remodeling despite triggering robust increases in cytosolic Ca2+. These observations indicate that purine signaling induces transient changes in fibroblast cytoarchitecture that could be related to the beneficial effects of acupuncture. PMID:23462235

  8. TRPA1 receptors mediate environmental irritant-induced meningeal vasodilatation

    PubMed Central

    Kunkler, Phillip Edward; Ballard, Carrie Jo; Oxford, Gerry Stephen; Hurley, Joyce Harts

    2010-01-01

    The TRPA1 receptor is a member of the transient receptor potential (TRP) family of ion channels expressed in nociceptive neurons. TRPA1 receptors are targeted by pungent compounds from mustard and garlic and environmental irritants such as formaldehyde and acrolein. Ingestion or inhalation of these chemical agents causes irritation and burning in the nasal and oral mucosa and respiratory lining. Headaches have been widely reported to be induced by inhalation of environmental irritants, but it is unclear how these agents produce headache. Stimulation of trigeminal neurons releases CGRP and substance P and induces neurogenic inflammation associated with the pain of migraine. Here we test the hypothesis that activation of TRPA1 receptors are the mechanistic link between environmental irritants and peptide mediated neurogenic inflammation. Known TRPA1 agonists and environmental irritants stimulate CGRP release from dissociated rat trigeminal ganglia neurons and this release is blocked by a selective TRPA1 antagonist, HC-030031. Further, TRPA1 agonists and environmental irritants increase meningeal blood flow following intranasal administration. Prior dural application of the CGRP antagonist, CGRP8–37, or intranasal or dural administration of HC-030031, blocks the increases in blood flow elicited by environmental irritants. Together these results demonstrate that TRPA1 receptor activation by environmental irritants stimulates CGRP release and increases cerebral blood flow. We suggest that these events contribute to headache associated with environmental irritants. PMID:21075522

  9. Receptor- and reactive intermediate-mediated mechanisms of teratogenesis.

    PubMed

    Wells, Peter G; Lee, Crystal J J; McCallum, Gordon P; Perstin, Julia; Harper, Patricia A

    2010-01-01

    Drugs and environmental chemicals can adversely alter the development of the fetus at critical periods during pregnancy, resulting in death, or in structural and functional birth defects in the surviving offspring. This process of teratogenesis may not be evident until a decade or more after birth. Postnatal functional abnormalities include deficits in brain function, a variety of metabolic diseases, and cancer. Due to the high degree of fetal cellular division and differentiation, and to differences from the adult in many biochemical pathways, the fetus is highly susceptible to teratogens, typically at low exposure levels that do not harm the mother. Insights into the mechanisms of teratogenesis come primarily from animal models and in vitro systems, and involve either receptor-mediated or reactive intermediate-mediated processes. Receptor-mediated mechanisms involving the reversible binding of xenobiotic substrates to a specific receptor are exemplified herein by the interaction of the environmental chemical 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or "dioxin") with the cytosolic aryl hydrocarbon receptor (AHR), which translocates to the nucleus and, in association with other proteins, binds to AH-responsive elements (AHREs) in numerous genes, initiating changes in gene transcription that can perturb development. Alternatively, many xenobiotics are bioactivated by fetal enzymes like the cytochromes P450 (CYPs) and prostaglandin H synthases (PHSs) to highly unstable electrophilic or free radical reactive intermediates. Electrophilic reactive intermediates can covalently (irreversibly) bind to and alter the function of essential cellular macromolecules (proteins, DNA), causing developmental anomalies. Free radical reactive intermediates can enhance the formation of reactive oxygen species (ROS), resulting in oxidative damage to cellular macromolecules and/or altered signal transduction. The teratogenicity of reactive intermediates is determined to a large extent

  10. Control of bone development by P2X and P2Y receptors expressed in mesenchymal and hematopoietic cells

    PubMed Central

    Lenertz, Lisa Y.; Baughman, Cory J.; Waldschmidt, Noelle V.; Thaler, Roman; van Wijnen, Andre J.

    2015-01-01

    Bone development and homeostasis require the interplay between several cell types, including mesenchymal osteoblasts and osteocytes, as well as hematopoietic osteoclasts. Recent evidence suggests that cell proliferation, differentiation and apoptosis of both mesenchymal and hematopoietic stem cells, which are fundamental for tissue regeneration and treatment of degenerative diseases, is controlled by P2 receptors (i.e., P2X and P2Y receptors). Both types of P2 receptors are versatile transducers of diverse signals activated by extracellular nucleotides like ATP that are released in response to tissue injury, infection or shear stress. The P2X family of receptors has been shown to mediate multiple signaling events including the influx of calcium, activation of mitogen activated protein kinases (MAPKs) and induction of AP-1 family members known to regulate bone development. Support for the significance of P2X7 in regulating bone development and homeostasis has been provided by several studies focusing on animal models and single nucleotide polymorphisms. P2 receptors are functionally expressed in both bone forming osteoblasts and bone resorbing osteoclasts, while recent findings also suggest that these receptors translate mechanical stimuli in osteocytes. Their ability to respond to external nucleotide analogs renders these cell surface proteins excellent targets for skeletal regenerative therapies. This overview summarizes mechanisms by which nucleotide receptors control skeletal cells and contribute to bone tissue development remodeling and repair. PMID:26079571

  11. Opioid receptor internalization contributes to dermorphin-mediated antinociception

    PubMed Central

    Macey, Tara A.; Ingram, Susan L.; Bobeck, Erin N.; Hegarty, Deborah M.; Aicher, Sue A.; Arttamangkul, Seksiri; Morgan, Michael M.

    2010-01-01

    Microinjection of opioids into the ventrolateral periaqueductal gray (vlPAG) produces antinociception in part by binding to mu-opioid receptors (MOPrs). Although both high and low efficacy agonists produce antinociception, low efficacy agonists such as morphine produce limited MOPr internalization suggesting that MOPr internalization and signaling leading to antinociception are independent. This hypothesis was tested in awake, behaving rats using DERM-A594, a fluorescently labeled dermorphin analog, and internalization blockers. Microinjection of DERM-A594 into the vlPAG produced both antinociception and internalization of DERM-A594. Administration of the irreversible opioid receptor antagonist beta-CNA prior to DERM-A594 microinjection reduced both the antinociceptive effect and the number of DERM-A594 labeled cells demonstrating that both effects are opioid receptor-mediated. Pretreatment with the internalization blockers dynamin dominant-negative inhibitory peptide (dynamin-DN) and concanavalinA (ConA) attenuated both DERM-A594 internalization and antinociception. Microinjection of dynamin-DN and ConA also decreased the antinociceptive potency of the unlabeled opioid agonist dermorphin when microinjected into the vlPAG as demonstrated by rightward shifts in the dose-response curves. In contrast, administration of dynamin-DN had no effect on the antinociceptive effect of microinjecting the GABAA antagonist bicuculline into the vlPAG. The finding that dermorphin-induced antinociception is attenuated by blocking receptor internalization indicates that key parts of opioid receptor-mediated signaling depend on internalization. PMID:20394808

  12. Menthol inhibits 5-HT3 receptor-mediated currents.

    PubMed

    Ashoor, Abrar; Nordman, Jacob C; Veltri, Daniel; Yang, Keun-Hang Susan; Shuba, Yaroslav; Al Kury, Lina; Sadek, Bassem; Howarth, Frank C; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-11-01

    The effects of alcohol monoterpene menthol, a major active ingredient of the peppermint plant, were tested on the function of human 5-hydroxytryptamine type 3 (5-HT3) receptors expressed in Xenopus laevis oocytes. 5-HT (1 μM)-evoked currents recorded by two-electrode voltage-clamp technique were reversibly inhibited by menthol in a concentration-dependent (IC50 = 163 μM) manner. The effects of menthol developed gradually, reaching a steady-state level within 10-15 minutes and did not involve G-proteins, since GTPγS activity remained unaltered and the effect of menthol was not sensitive to pertussis toxin pretreatment. The actions of menthol were not stereoselective as (-), (+), and racemic menthol inhibited 5-HT3 receptor-mediated currents to the same extent. Menthol inhibition was not altered by intracellular 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid injections and transmembrane potential changes. The maximum inhibition observed for menthol was not reversed by increasing concentrations of 5-HT. Furthermore, specific binding of the 5-HT3 antagonist [(3)H]GR65630 was not altered in the presence of menthol (up to 1 mM), indicating that menthol acts as a noncompetitive antagonist of the 5-HT3 receptor. Finally, 5-HT3 receptor-mediated currents in acutely dissociated nodose ganglion neurons were also inhibited by menthol (100 μM). These data demonstrate that menthol, at pharmacologically relevant concentrations, is an allosteric inhibitor of 5-HT3 receptors.

  13. Adenosine triphosphate induced P2Y2 receptor activation induces proinflammatory cytokine release in uroepithelial cells.

    PubMed

    Kruse, Robert; Säve, Susanne; Persson, Katarina

    2012-12-01

    We characterized and identified the uroepithelial P2 receptor responsible for adenosine triphosphate mediated release of the cytokines interleukin-8 and 6. The human renal epithelial cell line A498 (ATCC™) was cultured and stimulated with different purinergic agonists with or without prior inhibition with different antagonists or signaling pathway inhibitors. Supernatant was analyzed for interleukin-8 and 6 by enzyme-linked immunosorbent assay. P2 receptor mRNA expression was assessed by real-time reverse transcriptase-polymerase chain reaction. The candidate receptor was knocked down with siRNA technology. Interleukin-8 and 6 responses were measured after purinergic stimulation of knocked down cells. ATP and ATP-γ-S (Roche Diagnostics, Mannheim, Germany) were equipotent as inducers of interleukin-8 and 6 release. Agonist profile experiments using different P2 receptor agonists indicated that P2Y(2) was the main contributor to this release, although P2Y(11) and P2X(7) activation could not be excluded. Signaling pathway experiments showed that interleukin-8 release involved phospholipase C and inositol trisphosphate mediated signaling, indicating a P2Y receptor subtype. Antagonist experiments indicated P2Y(2) as the responsible receptor. Gene expression analysis of P2 receptors showed that strong expression of P2Y(2) receptor and subsequent knockdown of P2Y(2) receptor mRNA for 72 and 96 hours abrogated interleukin-8 and 6 release after purinergic stimulation with adenosine triphosphate-γ-S. Interleukin-8 and 6 release after purinergic stimulation in uroepithelial A498 cells is mediated through P2Y(2) receptor activation. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Commensal-Epithelial Signaling Mediated via Formyl Peptide Receptors

    PubMed Central

    Wentworth, Christy C.; Jones, Rheinallt M.; Kwon, Young Man; Nusrat, Asma; Neish, Andrew S.

    2010-01-01

    Commensal bacteria and/or their products engender beneficial effects to the mammalian gut, including stimulating physiological cellular turnover and enhancing wound healing, without activating overt inflammation. In the present study, we observed commensal bacteria-mediated activation of the noninflammatory extracellular signal-regulated kinase[ERK]/mitogen-activated protein kinase and Akt signaling pathways in gut epithelial cells and delineated a mechanism for this bacterially activated signaling. All tested strains of commensal bacteria induced ERK phosphorylation without stimulating pro-inflammatory phospho-IκB or pro-apoptotic phospho-c-Jun NH2-terminal kinase, with Lactobacillus species being most potent. This pattern of signaling activation was recapitulated using the peptide N-formyl-Met-Leu-Phe, a bacterial product known to stimulate signaling events in mammalian phagocytes. Sensing of N-formyl-Met-Leu-Phe by gut epithelial cells occurs via recently characterized formyl peptide receptors located in the plasma membrane. Both commensal bacteria and N-formyl-Met-Leu-Phe application to the apical surface of polarized gut epithelial cells resulted in specific formyl peptide receptor activation. In addition, pretreatment of model epithelia and murine colon with Boc2 (a specific peptide antagonist) or pertussis toxin (a Gi-protein inhibitor) abolished commensal-mediated ERK phosphorylation. Taken together, these data show that commensal bacteria specifically activate the ERK/mitogen-activated protein kinase pathway in an formyl peptide receptor-dependent manner, delineating a mechanism by which commensal bacteria contribute to cellular signaling in gut epithelia. PMID:21037077

  15. Commensal-epithelial signaling mediated via formyl peptide receptors.

    PubMed

    Wentworth, Christy C; Jones, Rheinallt M; Kwon, Young Man; Nusrat, Asma; Neish, Andrew S

    2010-12-01

    Commensal bacteria and/or their products engender beneficial effects to the mammalian gut, including stimulating physiological cellular turnover and enhancing wound healing, without activating overt inflammation. In the present study, we observed commensal bacteria-mediated activation of the noninflammatory extracellular signal-regulated kinase[ERK]/mitogen-activated protein kinase and Akt signaling pathways in gut epithelial cells and delineated a mechanism for this bacterially activated signaling. All tested strains of commensal bacteria induced ERK phosphorylation without stimulating pro-inflammatory phospho-IκB or pro-apoptotic phospho-c-Jun NH(2)-terminal kinase, with Lactobacillus species being most potent. This pattern of signaling activation was recapitulated using the peptide N-formyl-Met-Leu-Phe, a bacterial product known to stimulate signaling events in mammalian phagocytes. Sensing of N-formyl-Met-Leu-Phe by gut epithelial cells occurs via recently characterized formyl peptide receptors located in the plasma membrane. Both commensal bacteria and N-formyl-Met-Leu-Phe application to the apical surface of polarized gut epithelial cells resulted in specific formyl peptide receptor activation. In addition, pretreatment of model epithelia and murine colon with Boc2 (a specific peptide antagonist) or pertussis toxin (a G(i)-protein inhibitor) abolished commensal-mediated ERK phosphorylation. Taken together, these data show that commensal bacteria specifically activate the ERK/mitogen-activated protein kinase pathway in an formyl peptide receptor-dependent manner, delineating a mechanism by which commensal bacteria contribute to cellular signaling in gut epithelia.

  16. NACHO Mediates Nicotinic Acetylcholine Receptor Function throughout the Brain.

    PubMed

    Matta, Jose A; Gu, Shenyan; Davini, Weston B; Lord, Brian; Siuda, Edward R; Harrington, Anthony W; Bredt, David S

    2017-04-25

    Neuronal nicotinic acetylcholine receptors (nAChRs) participate in diverse aspects of brain function and mediate behavioral and addictive properties of nicotine. Neuronal nAChRs derive from combinations of α and β subunits, whose assembly is tightly regulated. NACHO was recently identified as a chaperone for α7-type nAChRs. Here, we find NACHO mediates assembly of all major classes of presynaptic and postsynaptic nAChR tested. NACHO acts at early intracellular stages of nAChR subunit assembly and then synergizes with RIC-3 for receptor surface expression. NACHO knockout mice show profound deficits in binding sites for α-bungarotoxin, epibatidine, and conotoxin MII, illustrating essential roles for NACHO in proper assembly of α7-, α4β2-, and α6-containing nAChRs, respectively. By contrast, GABAA receptors are unaffected consistent with NACHO specifically modulating nAChRs. NACHO knockout mice show abnormalities in locomotor and cognitive behaviors compatible with nAChR deficiency and underscore the importance of this chaperone for physiology and disease associated with nAChRs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Hemoglobin Uptake by Paracoccidioides spp. Is Receptor-Mediated

    PubMed Central

    Bailão, Elisa Flávia Luiz Cardoso; Parente, Juliana Alves; Pigosso, Laurine Lacerda; de Castro, Kelly Pacheco; Fonseca, Fernanda Lopes; Silva-Bailão, Mirelle Garcia; Báo, Sônia Nair; Bailão, Alexandre Melo; Rodrigues, Marcio L.; Hernandez, Orville; McEwen, Juan G.; Soares, Célia Maria de Almeida

    2014-01-01

    Iron is essential for the proliferation of fungal pathogens during infection. The availability of iron is limited due to its association with host proteins. Fungal pathogens have evolved different mechanisms to acquire iron from host; however, little is known regarding how Paracoccidioides species incorporate and metabolize this ion. In this work, host iron sources that are used by Paracoccidioides spp. were investigated. Robust fungal growth in the presence of the iron-containing molecules hemin and hemoglobin was observed. Paracoccidioides spp. present hemolytic activity and have the ability to internalize a protoporphyrin ring. Using real-time PCR and nanoUPLC-MSE proteomic approaches, fungal growth in the presence of hemoglobin was shown to result in the positive regulation of transcripts that encode putative hemoglobin receptors, in addition to the induction of proteins that are required for amino acid metabolism and vacuolar protein degradation. In fact, one hemoglobin receptor ortholog, Rbt5, was identified as a surface GPI-anchored protein that recognized hemin, protoporphyrin and hemoglobin in vitro. Antisense RNA technology and Agrobacterium tumefaciens-mediated transformation were used to generate mitotically stable Pbrbt5 mutants. The knockdown strain had a lower survival inside macrophages and in mouse spleen when compared with the parental strain, which suggested that Rbt5 could act as a virulence factor. In summary, our data indicate that Paracoccidioides spp. can use hemoglobin as an iron source most likely through receptor-mediated pathways that might be relevant for pathogenic mechanisms. PMID:24831516

  18. Hemoglobin uptake by Paracoccidioides spp. is receptor-mediated.

    PubMed

    Bailão, Elisa Flávia Luiz Cardoso; Parente, Juliana Alves; Pigosso, Laurine Lacerda; de Castro, Kelly Pacheco; Fonseca, Fernanda Lopes; Silva-Bailão, Mirelle Garcia; Báo, Sônia Nair; Bailão, Alexandre Melo; Rodrigues, Marcio L; Hernandez, Orville; McEwen, Juan G; Soares, Célia Maria de Almeida

    2014-05-01

    Iron is essential for the proliferation of fungal pathogens during infection. The availability of iron is limited due to its association with host proteins. Fungal pathogens have evolved different mechanisms to acquire iron from host; however, little is known regarding how Paracoccidioides species incorporate and metabolize this ion. In this work, host iron sources that are used by Paracoccidioides spp. were investigated. Robust fungal growth in the presence of the iron-containing molecules hemin and hemoglobin was observed. Paracoccidioides spp. present hemolytic activity and have the ability to internalize a protoporphyrin ring. Using real-time PCR and nanoUPLC-MSE proteomic approaches, fungal growth in the presence of hemoglobin was shown to result in the positive regulation of transcripts that encode putative hemoglobin receptors, in addition to the induction of proteins that are required for amino acid metabolism and vacuolar protein degradation. In fact, one hemoglobin receptor ortholog, Rbt5, was identified as a surface GPI-anchored protein that recognized hemin, protoporphyrin and hemoglobin in vitro. Antisense RNA technology and Agrobacterium tumefaciens-mediated transformation were used to generate mitotically stable Pbrbt5 mutants. The knockdown strain had a lower survival inside macrophages and in mouse spleen when compared with the parental strain, which suggested that Rbt5 could act as a virulence factor. In summary, our data indicate that Paracoccidioides spp. can use hemoglobin as an iron source most likely through receptor-mediated pathways that might be relevant for pathogenic mechanisms.

  19. Memory retrieval requires ongoing protein synthesis and NMDA receptor activity-mediated AMPA receptor trafficking.

    PubMed

    Lopez, Joëlle; Gamache, Karine; Schneider, Rilla; Nader, Karim

    2015-02-11

    Whereas consolidation and reconsolidation are considered dynamic processes requiring protein synthesis, memory retrieval has long been considered a passive readout of previously established plasticity. However, previous findings suggest that memory retrieval may be more dynamic than previously thought. This study therefore aimed at investigating the molecular mechanisms underlying memory retrieval in the rat. Infusion of protein synthesis inhibitors (rapamycin or anisomycin) in the amygdala 10 min before memory retrieval transiently impaired auditory fear memory expression, suggesting ongoing protein synthesis is required to enable memory retrieval. We then investigated the role of protein synthesis in NMDA receptor activity-mediated AMPA receptor trafficking. Coinfusion of an NMDA receptor antagonist (ifenprodil) or infusion of an AMPA receptor endocytosis inhibitor (GluA23Y) before rapamycin prevented this memory impairment. Furthermore, rapamycin transiently decreased GluA1 levels at the postsynaptic density (PSD), but did not affect extrasynaptic sites. This effect at the PSD was prevented by an infusion of GluA23Y before rapamycin. Together, these data show that ongoing protein synthesis is required before memory retrieval is engaged, and suggest that this protein synthesis may be involved in the NMDAR activity-mediated trafficking of AMPA receptors that takes place during memory retrieval.

  20. Cannabinoid CB1 receptors mediate the effects of dipyrone.

    PubMed

    Crunfli, Fernanda; Vilela, Fabiana C; Giusti-Paiva, Alexandre

    2015-03-01

    Dipyrone is a non-steroidal anti-inflammatory drug used primarily as an analgesic and antipyretic. Some hypothesize that dipyrone activity can modulate other pathways, including endocannabinoid signalling. Thus, the aim of the present study was to evaluate the possible role of endocannabinoids in mediating dipyrone activity. This study is based on the tetrad effects of cannabinoids, namely an antinociceptive and cataleptic state, hypolocomotion and hypothermia. Dipyrone (500 mg/kg, i.p.) treatment decreased locomotor activity, increased the latency to a thermal analgesic response and induced a cataleptic and hypothermic state. These reactions are similar to the tetrad effects caused by the cannabinoid agonist WIN 55,212-2 (3 mg/kg, i.p.). The cannabinoid CB1 receptor antagonist AM251 (10 mg/kg, i.p.) reversed the effects of dipyrone on locomotor activity, the cataleptic response and thermal analgesia. Both AM251 (10 mg/kg, i.p.) and the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine (10 mg/kg, i.p.) accentuated the reduction in body temperature caused by dipyrone. However, the CB2 receptor antagonist AM630 did not alter the hypothermic response to dipyrone. These results indicate involvement of the endocannabinoid system, especially CB1 receptors, in the analgesic and cataleptic effects of dipyrone, as well as hypolocomotion. However, cannabinoid receptors and TRPV1 were not involved in the hypothermic effects of dipyrone. We hypothesize that the mechanism of action of dipyrone may involve inhibition of cyclo-oxygenase and fatty acid amide hydrolase, which together provide additional arachidonic acid as substrate for endocannabinoid synthesis or other related molecules. This increase in endocannabinoid availability enhances CB1 receptor stimulation, contributing to the observed effects. © 2014 Wiley Publishing Asia Pty Ltd.

  1. Bombesin receptor-mediated imaging and cytotoxicity: review and current status

    PubMed Central

    Sancho, Veronica; Di Florio, Alessia; Moody, Terry W.; Jensen, Robert T.

    2010-01-01

    The three mammalian bombesin (Bn) receptors (gastrin-releasing peptide [GRP] receptor, neuromedin B [NMB] receptor, BRS-3) are one of the classes of G protein-coupled receptors that are most frequently over-express/ectopically expressed by common, important malignancies. Because of the clinical success of somatostatin receptor-mediated imaging and cytotoxicity with neuroendocrine tumors, there is now increasing interest in pursuing a similar approach with Bn receptors. In the last few years then have been more than 200 studies in this area. In the present paper, the in vitro and in vivo results, as well as results of human studies from many of these studies are reviewed and the current state of Bn receptor-mediated imaging or cytotoxicity is discussed. Both Bn receptor-mediated imaging studies as well as Bn receptor-mediated tumoral cytotoxic studies using radioactive and non-radioactive Bn-based ligands are covered. PMID:21034419