Sample records for p3-1tissue microarray validation

  1. Overexpression of Plasminogen Activator Inhibitor-1 in Advanced Gastric Cancer with Aggressive Lymph Node Metastasis

    PubMed Central

    Suh, Yun-Suhk; Yu, Jieun; Kim, Byung Chul; Choi, Boram; Han, Tae-Su; Ahn, Hye Seong; Kong, Seong-Ho; Lee, Hyuk-Joon; Kim, Woo Ho; Yang, Han-Kwang

    2015-01-01

    Purpose The purpose of this study is to investigate differentially expressed genes using DNA microarray between advanced gastric cancer (AGC) with aggressive lymph node (LN) metastasis and that with a more advanced tumor stage but without LN metastasis. Materials and Methods Five sample pairs of gastric cancer tissue and normal gastric mucosa were taken from three patients with T3N3 stage (highN) and two with T4N0 stage (lowN). Data from triplicate DNA microarray experiments were analyzed, and candidate genes were identified using a volcano plot that showed ≥ 2-fold differential expression and were significant by Welch's t test (p < 0.05) between highN and lowN. Those selected genes were validated independently by reverse-transcriptase–polymerase chain reaction (RT-PCR) using five AGC patients, and tissue-microarray (TMA) comprising 47 AGC patients. Results CFTR, LAMC2, SERPINE2, F2R, MMP7, FN1, TIMP1, plasminogen activator inhibitor-1 (PAI-1), ITGB8, SDS, and TMPRSS4 were commonly up-regulated over 2-fold in highN. REG3A, CD24, ITLN1, and WBP5 were commonly down-regulated over 2-fold in lowN. Among these genes, overexpression of PAI-1 was validated by RT-PCR, and TMA showed 16.7% (7/42) PAI-1 expression in T3N3, but none (0/5) in T4N0 (p=0.393). Conclusion DNA microarray analysis and validation by RT-PCR and TMA showed that overexpression of PAI-1 is related to aggressive LN metastasis in AGC. PMID:25687870

  2. Quantitative multiplex quantum dot in-situ hybridisation based gene expression profiling in tissue microarrays identifies prognostic genes in acute myeloid leukaemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tholouli, Eleni; MacDermott, Sarah; Hoyland, Judith

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Development of a quantitative high throughput in situ expression profiling method. Black-Right-Pointing-Pointer Application to a tissue microarray of 242 AML bone marrow samples. Black-Right-Pointing-Pointer Identification of HOXA4, HOXA9, Meis1 and DNMT3A as prognostic markers in AML. -- Abstract: Measurement and validation of microarray gene signatures in routine clinical samples is problematic and a rate limiting step in translational research. In order to facilitate measurement of microarray identified gene signatures in routine clinical tissue a novel method combining quantum dot based oligonucleotide in situ hybridisation (QD-ISH) and post-hybridisation spectral image analysis was used for multiplex in-situ transcript detection inmore » archival bone marrow trephine samples from patients with acute myeloid leukaemia (AML). Tissue-microarrays were prepared into which white cell pellets were spiked as a standard. Tissue microarrays were made using routinely processed bone marrow trephines from 242 patients with AML. QD-ISH was performed for six candidate prognostic genes using triplex QD-ISH for DNMT1, DNMT3A, DNMT3B, and for HOXA4, HOXA9, Meis1. Scrambled oligonucleotides were used to correct for background staining followed by normalisation of expression against the expression values for the white cell pellet standard. Survival analysis demonstrated that low expression of HOXA4 was associated with poorer overall survival (p = 0.009), whilst high expression of HOXA9 (p < 0.0001), Meis1 (p = 0.005) and DNMT3A (p = 0.04) were associated with early treatment failure. These results demonstrate application of a standardised, quantitative multiplex QD-ISH method for identification of prognostic markers in formalin-fixed paraffin-embedded clinical samples, facilitating measurement of gene expression signatures in routine clinical samples.« less

  3. TIPMaP: a web server to establish transcript isoform profiles from reliable microarray probes.

    PubMed

    Chitturi, Neelima; Balagannavar, Govindkumar; Chandrashekar, Darshan S; Abinaya, Sadashivam; Srini, Vasan S; Acharya, Kshitish K

    2013-12-27

    Standard 3' Affymetrix gene expression arrays have contributed a significantly higher volume of existing gene expression data than other microarray platforms. These arrays were designed to identify differentially expressed genes, but not their alternatively spliced transcript forms. No resource can currently identify expression pattern of specific mRNA forms using these microarray data, even though it is possible to do this. We report a web server for expression profiling of alternatively spliced transcripts using microarray data sets from 31 standard 3' Affymetrix arrays for human, mouse and rat species. The tool has been experimentally validated for mRNAs transcribed or not-detected in a human disease condition (non-obstructive azoospermia, a male infertility condition). About 4000 gene expression datasets were downloaded from a public repository. 'Good probes' with complete coverage and identity to latest reference transcript sequences were first identified. Using them, 'Transcript specific probe-clusters' were derived for each platform and used to identify expression status of possible transcripts. The web server can lead the user to datasets corresponding to specific tissues, conditions via identifiers of the microarray studies or hybridizations, keywords, official gene symbols or reference transcript identifiers. It can identify, in the tissues and conditions of interest, about 40% of known transcripts as 'transcribed', 'not-detected' or 'differentially regulated'. Corresponding additional information for probes, genes, transcripts and proteins can be viewed too. We identified the expression of transcripts in a specific clinical condition and validated a few of these transcripts by experiments (using reverse transcription followed by polymerase chain reaction). The experimental observations indicated higher agreements with the web server results, than contradictions. The tool is accessible at http://resource.ibab.ac.in/TIPMaP. The newly developed online tool forms a reliable means for identification of alternatively spliced transcript-isoforms that may be differentially expressed in various tissues, cell types or physiological conditions. Thus, by making better use of existing data, TIPMaP avoids the dependence on precious tissue-samples, in experiments with a goal to establish expression profiles of alternative splice forms--at least in some cases.

  4. Reliable LC3 and p62 autophagy marker detection in formalin fixed paraffin embedded human tissue by immunohistochemistry.

    PubMed

    Schläfli, A M; Berezowska, S; Adams, O; Langer, R; Tschan, M P

    2015-05-05

    Autophagy assures cellular homeostasis, and gains increasing importance in cancer, where it impacts on carcinogenesis, propagation of the malignant phenotype and development of resistance. To date, its tissue-based analysis by immunohistochemistry remains poorly standardized. Here we show the feasibility of specifically and reliably assessing the autophagy markers LC3B and p62 (SQSTM1) in formalin fixed and paraffin embedded human tissue by immunohistochemistry. Preceding functional experiments consisted of depleting LC3B and p62 in H1299 lung cancer cells with subsequent induction of autophagy. Western blot and immunofluorescence validated antibody specificity, knockdown efficiency and autophagy induction prior to fixation in formalin and embedding in paraffin. LC3B and p62 antibodies were validated on formalin fixed and paraffin embedded cell pellets of treated and control cells and finally applied on a tissue microarray with 80 human malignant and non-neoplastic lung and stomach formalin fixed and paraffin embedded tissue samples. Dot-like staining of various degrees was observed in cell pellets and 18/40 (LC3B) and 22/40 (p62) tumors, respectively. Seventeen tumors were double positive for LC3B and p62. P62 displayed additional significant cytoplasmic and nuclear staining of unknown significance. Interobserver-agreement for grading of staining intensities and patterns was substantial to excellent (kappa values 0.60 - 0.83). In summary, we present a specific and reliable IHC staining of LC3B and p62 on formalin fixed and paraffin embedded human tissue. Our presented protocol is designed to aid reliable investigation of dysregulated autophagy in solid tumors and may be used on large tissue collectives.

  5. Identification of Differentially Expressed IGFBP5-Related Genes in Breast Cancer Tumor Tissues Using cDNA Microarray Experiments.

    PubMed

    Akkiprik, Mustafa; Peker, İrem; Özmen, Tolga; Amuran, Gökçe Güllü; Güllüoğlu, Bahadır M; Kaya, Handan; Özer, Ayşe

    2015-11-10

    IGFBP5 is an important regulatory protein in breast cancer progression. We tried to identify differentially expressed genes (DEGs) between breast tumor tissues with IGFBP5 overexpression and their adjacent normal tissues. In this study, thirty-eight breast cancer and adjacent normal breast tissue samples were used to determine IGFBP5 expression by qPCR. cDNA microarrays were applied to the highest IGFBP5 overexpressed tumor samples compared to their adjacent normal breast tissue. Microarray analysis revealed that a total of 186 genes were differentially expressed in breast cancer compared with normal breast tissues. Of the 186 genes, 169 genes were downregulated and 17 genes were upregulated in the tumor samples. KEGG pathway analyses showed that protein digestion and absorption, focal adhesion, salivary secretion, drug metabolism-cytochrome P450, and phenylalanine metabolism pathways are involved. Among these DEGs, the prominent top two genes (MMP11 and COL1A1) which potentially correlated with IGFBP5 were selected for validation using real time RT-qPCR. Only COL1A1 expression showed a consistent upregulation with IGFBP5 expression and COL1A1 and MMP11 were significantly positively correlated. We concluded that the discovery of coordinately expressed genes related with IGFBP5 might contribute to understanding of the molecular mechanism of the function of IGFBP5 in breast cancer. Further functional studies on DEGs and association with IGFBP5 may identify novel biomarkers for clinical applications in breast cancer.

  6. RankProd Combined with Genetic Algorithm Optimized Artificial Neural Network Establishes a Diagnostic and Prognostic Prediction Model that Revealed C1QTNF3 as a Biomarker for Prostate Cancer.

    PubMed

    Hou, Qi; Bing, Zhi-Tong; Hu, Cheng; Li, Mao-Yin; Yang, Ke-Hu; Mo, Zu; Xie, Xiang-Wei; Liao, Ji-Lin; Lu, Yan; Horie, Shigeo; Lou, Ming-Wu

    2018-06-01

    Prostate cancer (PCa) is the most commonly diagnosed cancer in males in the Western world. Although prostate-specific antigen (PSA) has been widely used as a biomarker for PCa diagnosis, its results can be controversial. Therefore, new biomarkers are needed to enhance the clinical management of PCa. From publicly available microarray data, differentially expressed genes (DEGs) were identified by meta-analysis with RankProd. Genetic algorithm optimized artificial neural network (GA-ANN) was introduced to establish a diagnostic prediction model and to filter candidate genes. The diagnostic and prognostic capability of the prediction model and candidate genes were investigated in both GEO and TCGA datasets. Candidate genes were further validated by qPCR, Western Blot and Tissue microarray. By RankProd meta-analyses, 2306 significantly up- and 1311 down-regulated probes were found in 133 cases and 30 controls microarray data. The overall accuracy rate of the PCa diagnostic prediction model, consisting of a 15-gene signature, reached up to 100% in both the training and test dataset. The prediction model also showed good results for the diagnosis (AUC = 0.953) and prognosis (AUC of 5 years overall survival time = 0.808) of PCa in the TCGA database. The expression levels of three genes, FABP5, C1QTNF3 and LPHN3, were validated by qPCR. C1QTNF3 high expression was further validated in PCa tissue by Western Blot and Tissue microarray. In the GEO datasets, C1QTNF3 was a good predictor for the diagnosis of PCa (GSE6956: AUC = 0.791; GSE8218: AUC = 0.868; GSE26910: AUC = 0.972). In the TCGA database, C1QTNF3 was significantly associated with PCa patient recurrence free survival (P < .001, AUC = 0.57). In this study, we have developed a diagnostic and prognostic prediction model for PCa. C1QTNF3 was revealed as a promising biomarker for PCa. This approach can be applied to other high-throughput data from different platforms for the discovery of oncogenes or biomarkers in different kinds of diseases. Copyright © 2018. Published by Elsevier B.V.

  7. PTEN loss and chromosome 8 alterations in Gleason grade 3 prostate cancer cores predicts the presence of un-sampled grade 4 tumor: implications for active surveillance.

    PubMed

    Trock, Bruce J; Fedor, Helen; Gurel, Bora; Jenkins, Robert B; Knudsen, B S; Fine, Samson W; Said, Jonathan W; Carter, H Ballentine; Lotan, Tamara L; De Marzo, Angelo M

    2016-07-01

    Men who enter active surveillance because their biopsy exhibits only Gleason grade 3 (G3) frequently have higher grade tumor missed by biopsy. Thus, biomarkers are needed that, when measured on G3 tissue, can predict the presence of higher grade tumor in the whole prostate. We evaluated whether PTEN loss, chromosome 8q gain (MYC) and/or 8p loss (LPL) measured only on G3 cores is associated with un-sampled G4 tumor. A tissue microarray was constructed of prostatectomy tissue from patients whose prostates exhibited only Gleason score 3+3, only 3+4 or only 4+3 tumor (n=50 per group). Cores sampled only from areas of G3 were evaluated for PTEN loss by immunohistochemistry, and PTEN deletion, LPL/8p loss and MYC/8q gain by fluorescence in situ hybridization. Biomarker results were compared between Gleason score 6 vs 7 tumors using conditional logistic regression. PTEN protein loss, odds ratio=4.99, P=0.033; MYC/8q gain, odds ratio=5.36, P=0.010; and LPL/8p loss, odds ratio=3.96, P=0.003 were significantly more common in G3 cores derived from Gleason 7 vs Gleason 6 tumors. PTEN gene deletion was not statistically significant. Associations were stronger comparing Gleason 4+3 vs 6 than for Gleason 3+4 vs 6. MYC/8q gain, LPL/8p loss and PTEN protein loss measured in G3 tissue microarray cores strongly differentiate whether the core comes from a Gleason 6 or Gleason 7 tumor. If validated to predict upgrading from G3 biopsy to prostatectomy these biomarkers could reduce the likelihood of enrolling high-risk men and facilitate safe patient selection for active surveillance.

  8. miRNAs in human subcutaneous adipose tissue: Effects of weight loss induced by hypocaloric diet and exercise.

    PubMed

    Kristensen, Malene M; Davidsen, Peter K; Vigelsø, Andreas; Hansen, Christina N; Jensen, Lars J; Jessen, Niels; Bruun, Jens M; Dela, Flemming; Helge, Jørn W

    2017-03-01

    Obesity is central in the development of insulin resistance. However, the underlying mechanisms still need elucidation. Dysregulated microRNAs (miRNAs; post-transcriptional regulators) in adipose tissue may present an important link. The miRNA expression in subcutaneous adipose tissue from 19 individuals with severe obesity (10 women and 9 men) before and after a 15-week weight loss intervention was studied using genome-wide microarray analysis. The microarray results were validated with RT-qPCR, and pathway enrichment analysis of in silico predicted targets was performed to elucidate the biological consequences of the miRNA dysregulation. Lastly, the messenger RNA (mRNA) and/or protein expression of multiple predicted targets as well as several proteins involved in lipolysis were investigated. The intervention led to upregulation of miR-29a-3p and miR-29a-5p and downregulation of miR-20b-5p. The mRNA and protein expression of predicted targets was not significantly affected by the intervention. However, negative correlations between miR-20b-5p and the protein levels of its predicted target, acyl-CoA synthetase long-chain family member 1, were observed. Several other miRNA-target relationships correlated negatively, indicating possible miRNA regulation, including miR-29a-3p and lipoprotein lipase mRNA levels. Proteins involved in lipolysis were not affected by the intervention. Weight loss influenced several miRNAs, some of which were negatively correlated with predicted targets. These dysregulated miRNAs may affect adipocytokine signaling and forkhead box protein O signaling. © 2017 The Obesity Society.

  9. HOXB9 Expression Correlates with Histological Grade and Prognosis in LSCC

    PubMed Central

    2017-01-01

    The purpose of this study was to investigate the HOX gene expression profile in laryngeal squamous cell carcinoma (LSCC) and assess whether some genes are associated with the clinicopathological features and prognosis in LSCC patients. The HOX gene levels were tested by microarray and validated by qRT-PCR in paired cancerous and adjacent noncancerous LSCC tissue samples. The microarray testing data of 39 HOX genes revealed 15 HOX genes that were at least 2-fold upregulated and 2 that were downregulated. After qRT-PCR evaluation, the three most upregulated genes (HOXB9, HOXB13, and HOXD13) were selected for tissue microarray (TMA) analysis. The correlations between the HOXB9, HOXB13, and HOXD13 expression levels and both clinicopathological features and prognosis were analyzed. Three HOX gene expression levels were markedly increased in LSCC tissues compared with adjacent noncancerous tissues (P < 0.001). HOXB9 was found to correlate with histological grade (P < 0.01) and prognosis (P < 0.01) in LSCC. In conclusion, this study revealed that HOXB9, HOXB13, and HOXD13 were upregulated and may play important roles in LSCC. Moreover, HOXB9 may serve as a novel marker of poor prognosis and a potential therapeutic target in LSCC patients. PMID:28808656

  10. Cysteine-rich secretory protein 3 plays a role in prostate cancer cell invasion and affects expression of PSA and ANXA1.

    PubMed

    Pathak, Bhakti R; Breed, Ananya A; Apte, Snehal; Acharya, Kshitish; Mahale, Smita D

    2016-01-01

    Cysteine-rich secretory protein 3 (CRISP-3) is upregulated in prostate cancer as compared to the normal prostate tissue. Higher expression of CRISP-3 has been linked to poor prognosis and hence it has been thought to act as a prognostic marker for prostate cancer. It is proposed to have a role in innate immunity but its role in prostate cancer is still unknown. In order to understand its function, its expression was stably knocked down in LNCaP cells. CRISP-3 knockdown did not affect cell viability but resulted in reduced invasiveness. Global gene expression changes upon CRISP-3 knockdown were identified by microarray analysis. Microarray data were quantitatively validated by evaluating the expression of seven candidate genes in three independent stable clones. Functional annotation of the differentially expressed genes identified cell adhesion, cell motility, and ion transport to be affected among other biological processes. Prostate-specific antigen (PSA, also known as Kallikrein 3) was the top most downregulated gene whose expression was also validated at protein level. Interestingly, expression of Annexin A1 (ANXA1), a known anti-inflammatory protein, was upregulated upon CRISP-3 knockdown. Re-introduction of CRISP-3 into the knockdown clone reversed the effect on invasiveness and also led to increased PSA expression. These results suggest that overexpression of CRISP-3 in prostate tumor may maintain higher PSA expression and lower ANXA1 expression. Our data also indicate that poor prognosis associated with higher CRISP-3 expression could be due to its role in cell invasion.

  11. Interlaboratory comparison of immunohistochemical testing for HER2: results of the 2004 and 2005 College of American Pathologists HER2 Immunohistochemistry Tissue Microarray Survey.

    PubMed

    Fitzgibbons, Patrick L; Murphy, Douglas A; Dorfman, David M; Roche, Patrick C; Tubbs, Raymond R

    2006-10-01

    Correct assessment of human epidermal growth factor receptor 2 (HER2) status is essential in managing patients with invasive breast carcinoma, but few data are available on the accuracy of laboratories performing HER2 testing by immunohistochemistry (IHC). To review the results of the 2004 and 2005 College of American Pathologists HER2 Immunohistochemistry Tissue Microarray Survey. The HER2 survey is designed for laboratories performing immunohistochemical staining and interpretation for HER2. The survey uses tissue microarrays, each consisting of ten 3-mm tissue cores obtained from different invasive breast carcinomas. All cases are also analyzed by fluorescence in situ hybridization. Participants receive 8 tissue microarrays (80 cases) with instructions to perform immunostaining for HER2 using the laboratory's standard procedures. The laboratory interprets the stained slides and returns results to the College of American Pathologists for analysis. In 2004 and 2005, a core was considered "graded" when at least 90% of laboratories agreed on the result--negative (0, 1+) versus positive (2+, 3+). This interlaboratory comparison survey included 102 laboratories in 2004 and 141 laboratories in 2005. Of the 160 cases in both surveys, 111 (69%) achieved 90% consensus (graded). All 43 graded cores scored as IHC-positive were fluorescence in situ hybridization-positive, whereas all but 3 of the 68 IHC-negative graded cores were fluorescence in situ hybridization-negative. Ninety-seven (95%) of 102 laboratories in 2004 and 129 (91%) of 141 laboratories in 2005 correctly scored at least 90% of the graded cores. Performance among laboratories performing HER2 IHC in this tissue microarray-based survey was excellent. Cores found to be IHC-positive or IHC-negative by participant consensus can be used as validated benchmarks for interlaboratory comparison, allowing laboratories to assess their performance and determine if improvements are needed.

  12. Protein profiles associated with survival in lung adenocarcinoma

    PubMed Central

    Chen, Guoan; Gharib, Tarek G; Wang, Hong; Huang, Chiang-Ching; Kuick, Rork; Thomas, Dafydd G.; Shedden, Kerby A.; Misek, David E.; Taylor, Jeremy M. G.; Giordano, Thomas J.; Kardia, Sharon L. R.; Iannettoni, Mark D.; Yee, John; Hogg, Philip J.; Orringer, Mark B.; Hanash, Samir M.; Beer, David G.

    2003-01-01

    Morphologic assessment of lung tumors is informative but insufficient to adequately predict patient outcome. We previously identified transcriptional profiles that predict patient survival, and here we identify proteins associated with patient survival in lung adenocarcinoma. A total of 682 individual protein spots were quantified in 90 lung adenocarcinomas by using quantitative two-dimensional polyacrylamide gel electrophoresis analysis. A leave-one-out cross-validation procedure using the top 20 survival-associated proteins identified by Cox modeling indicated that protein profiles as a whole can predict survival in stage I tumor patients (P = 0.01). Thirty-three of 46 survival-associated proteins were identified by using mass spectrometry. Expression of 12 candidate proteins was confirmed as tumor-derived with immunohistochemical analysis and tissue microarrays. Oligonucleotide microarray results from both the same tumors and from an independent study showed mRNAs associated with survival for 11 of 27 encoded genes. Combined analysis of protein and mRNA data revealed 11 components of the glycolysis pathway as associated with poor survival. Among these candidates, phosphoglycerate kinase 1 was associated with survival in the protein study, in both mRNA studies and in an independent validation set of 117 adenocarcinomas and squamous lung tumors using tissue microarrays. Elevated levels of phosphoglycerate kinase 1 in the serum were also significantly correlated with poor outcome in a validation set of 107 patients with lung adenocarcinomas using ELISA analysis. These studies identify new prognostic biomarkers and indicate that protein expression profiles can predict the outcome of patients with early-stage lung cancer. PMID:14573703

  13. PTEN Loss as Determined by Clinical-grade Immunohistochemistry Assay Is Associated with Worse Recurrence-free Survival in Prostate Cancer.

    PubMed

    Lotan, Tamara L; Wei, Wei; Morais, Carlos L; Hawley, Sarah T; Fazli, Ladan; Hurtado-Coll, Antonio; Troyer, Dean; McKenney, Jesse K; Simko, Jeffrey; Carroll, Peter R; Gleave, Martin; Lance, Raymond; Lin, Daniel W; Nelson, Peter S; Thompson, Ian M; True, Lawrence D; Feng, Ziding; Brooks, James D

    2016-06-01

    PTEN is the most commonly deleted tumor suppressor gene in primary prostate cancer (PCa) and its loss is associated with poor clinical outcomes and ERG gene rearrangement. We tested whether PTEN loss is associated with shorter recurrence-free survival (RFS) in surgically treated PCa patients with known ERG status. A genetically validated, automated PTEN immunohistochemistry (IHC) protocol was used for 1275 primary prostate tumors from the Canary Foundation retrospective PCa tissue microarray cohort to assess homogeneous (in all tumor tissue sampled) or heterogeneous (in a subset of tumor tissue sampled) PTEN loss. ERG status as determined by a genetically validated IHC assay was available for a subset of 938 tumors. Associations between PTEN and ERG status were assessed using Fisher's exact test. Kaplan-Meier and multivariate weighted Cox proportional models for RFS were constructed. When compared to intact PTEN, homogeneous (hazard ratio [HR] 1.66, p = 0.001) but not heterogeneous (HR 1.24, p = 0.14) PTEN loss was significantly associated with shorter RFS in multivariate models. Among ERG-positive tumors, homogeneous (HR 3.07, p < 0.0001) but not heterogeneous (HR 1.46, p = 0.10) PTEN loss was significantly associated with shorter RFS. Among ERG-negative tumors, PTEN did not reach significance for inclusion in the final multivariate models. The interaction term for PTEN and ERG status with respect to RFS did not reach statistical significance ( p = 0.11) for the current sample size. These data suggest that PTEN is a useful prognostic biomarker and that there is no statistically significant interaction between PTEN and ERG status for RFS. We found that loss of the PTEN tumor suppressor gene in prostate tumors as assessed by tissue staining is correlated with shorter time to prostate cancer recurrence after radical prostatectomy.

  14. A tissue microarray study of toll-like receptor 4, decoy receptor 3, and external signal regulated kinase 1/2 expressions in astrocytoma.

    PubMed

    Lin, Chih-Kung; Ting, Chun-Chieh; Tsai, Wen-Chiuan; Chen, Yuan-Wu; Hueng, Dueng-Yuan

    2016-01-01

    Decoy receptor 3 (DcR3) functions as a death decoy inhibiting apoptosis mediated by the tumor necrosis factor receptor family. It is highly expressed in many tumors and its expression can be regulated by the MAPK/ERK signaling pathway and ERK is a vital member of this pathway. Toll-like receptor 4 (TLR4) is expressed on immune cells. Increased TLR4 expression has been associated with various types of cancers. The study was conducted to investigate the expression of DcR3, ERK1/2, and TLR4 in astrocytomas and evaluate if they are validating markers for discriminating glioblastoma from anaplastic astrocytoma in limited surgical specimen. Expression of DcR3, ERK1/2, and TLR4 was determined by immunohistochemical staining of tissue microarray from 48 paraffin-embedded tissues. A binary logistic regression method was used to generate functions that discriminate between anaplastic astrocytomas and glioblastomas. The expression of TLR4 and DcR3 was significantly higher in glioblastomas than in anaplastic astrocytomas. DcR3 could discriminate anaplastic astrocytomas from glioblastomas with high sensitivity (93.8%), specificity (90%), and accuracy (92.3%). Our results suggest that DcR3 may be a useful marker for discriminating anaplastic astrocytomas from glioblastomas.

  15. Immunohistochemical localization of steroid receptor coactivators in chondrosarcoma: an in vivo tissue microarray study.

    PubMed

    Li, Wei; Fu, Jingshu; Bian, Chen; Zhang, Jiqiang; Xie, Zhao

    2014-12-01

    Chondrosarcoma is the second most common type of primary bone malignancy following up osteosarcoma, characterized by resistance to conventional chemotherapeutic agents and radiation regimens. The p160 family members steroid receptor coactivator-1 and -3 (SRC-1 and SRC-3) have been implied in the regulation of cancer growth, migration, invasion, metastasis and chemotherapeutic resistance; but we still lack detailed information about the levels of SRCs in chondrosarcoma. In this study, expression of SRC-1 and SRC-3 in chondrosarcoma was examined by immunohistochemistry with tissue microarrays; the four score system (0, 1, 2 and 3) was used to evaluate the staining. The results showed that there were no gender-, site- or age-differences regarding the expression of SRC-1 or SRC-3 (p>0.05); organ (bone or cartilage) -differences were only detected for SRC-1 but not SRC-3 (p<0.05). Significant higher levels of SRC-1 and SRC-3 were detected in MDC and PDC when compared to WDC. Our study clearly demonstrated differentiation-dependant expression of SRC-1 and SRC-3 in chondrosarcoma, may be novel targets for the prognosis and/or treatment of chondrosarcoma, would have opened a new avenue and established foundation for studying chondrosarcoma. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Constructing Tissue Microarrays: Protocols and Methods Considering Potential Advantages and Disadvantages for Downstream Use.

    PubMed

    Bingle, Lynne; Fonseca, Felipe P; Farthing, Paula M

    2017-01-01

    Tissue microarrays were first constructed in the 1980s but were used by only a limited number of researchers for a considerable period of time. In the last 10 years there has been a dramatic increase in the number of publications describing the successful use of tissue microarrays in studies aimed at discovering and validating biomarkers. This, along with the increased availability of both manual and automated microarray builders on the market, has encouraged even greater use of this novel and powerful tool. This chapter describes the basic techniques required to build a tissue microarray using a manual method in order that the theory behind the practical steps can be fully explained. Guidance is given to ensure potential disadvantages of the technique are fully considered.

  17. Population effect model identifies gene expression predictors of survival outcomes in lung adenocarcinoma for both Caucasian and Asian patients

    PubMed Central

    Cai, Guoshuai; Xiao, Feifei; Cheng, Chao; Li, Yafang; Amos, Christopher I.; Whitfield, Michael L.

    2017-01-01

    Background We analyzed and integrated transcriptome data from two large studies of lung adenocarcinomas on distinct populations. Our goal was to investigate the variable gene expression alterations between paired tumor-normal tissues and prospectively identify those alterations that can reliably predict lung disease related outcomes across populations. Methods We developed a mixed model that combined the paired tumor-normal RNA-seq from two populations. Alterations in gene expression common to both populations were detected and validated in two independent DNA microarray datasets. A 10-gene prognosis signature was developed through a l1 penalized regression approach and its prognostic value was evaluated in a third independent microarray cohort. Results Deregulation of apoptosis pathways and increased expression of cell cycle pathways were identified in tumors of both Caucasian and Asian lung adenocarcinoma patients. We demonstrate that a 10-gene biomarker panel can predict prognosis of lung adenocarcinoma in both Caucasians and Asians. Compared to low risk groups, high risk groups showed significantly shorter overall survival time (Caucasian patients data: HR = 3.63, p-value = 0.007; Asian patients data: HR = 3.25, p-value = 0.001). Conclusions This study uses a statistical framework to detect DEGs between paired tumor and normal tissues that considers variances among patients and ethnicities, which will aid in understanding the common genes and signalling pathways with the largest effect sizes in ethnically diverse cohorts. We propose multifunctional markers for distinguishing tumor from normal tissue and prognosis for both populations studied. PMID:28426704

  18. Microarray-based identification of differentially expressed genes in extramammary Paget’s disease

    PubMed Central

    Lin, Jin-Ran; Liang, Jun; Zhang, Qiao-An; Huang, Qiong; Wang, Shang-Shang; Qin, Hai-Hong; Chen, Lian-Jun; Xu, Jin-Hua

    2015-01-01

    Extramammary Paget’s disease (EMPD) is a rare cutaneous malignancy accounting for approximately 1-2% of vulvar cancers. The rarity of this disease has caused difficulties in characterization and the molecular mechanism underlying EMPD development remains largely unclear. Here we used microarray analysis to identify differentially expressed genes in EMPD of the scrotum comparing with normal epithelium from healthy donors. Agilent single-channel microarray was used to compare the gene expression between 6 EMPD specimens and 6 normal scrotum epithelium samples. A total of 799 up-regulated genes and 723 down-regulated genes were identified in EMPD tissues. Real-time PCR was conducted to verify the differential expression of some representative genes, including ERBB4, TCF3, PAPSS2, PIK3R3, PRLR, SULT1A1, TCF7L1, and CREB3L4. Generally, the real-time PCR results were consistent with microarray data, and the expression of ERBB4, PRLR, TCF3, PIK3R3, SULT1A1, and TCF7L1 was significantly overexpressed in EMPD (P<0.05). Moreover, the overexpression of PRLR in EMPD, a receptor for the anterior pituitary hormone prolactin (PRL), was confirmed by immunohistochemistry. These data demonstrate that the differentially expressed genes from the microarray-based identification are tightly associated with EMPD occurrence. PMID:26221264

  19. Long noncoding RNA OR3A4 promotes metastasis and tumorigenicity in gastric cancer

    PubMed Central

    Guo, Xiaobo; Yang, Ziguo; Zhi, Qiaoming; Wang, Dan; Guo, Lei; Li, Guimei; Miao, Ruizhen; Shi, Yulong; Kuang, Yuting

    2016-01-01

    The contribution of long noncoding RNAs (lncRNAs) to metastasis of gastric cancer remains largely unknown. We used microarray analysis to identify lncRNAs differentially expressed between normal gastric tissues and gastric cancer tissues and validated these differences in quantitative real-time (qRT)-PCR experiments. The expression levels of lncRNA olfactory receptor, family 3, subfamily A, member 4 (OR3A4) were significantly associated with lymphatic metastasis, the depth of cancer invasion, and distal metastasis in 130 paired gastric cancer tissues. The effects of OR3A4 were assessed by overexpressing and silencing OR3A4 in gastric cancer cells. OR3A4 promoted cancer cell growth, angiogenesis, metastasis, and tumorigenesis in vitro and in vivo. Global microarray analysis combined with RT-PCR, RNA immunoprecipitation, and RNA pull-down analyses after OR3A4 transfection demonstrated that OR3A4 influenced biologic functions in gastric cancer cells via regulating the activation of PDLIM2, MACC1, NTN4, and GNB2L1. Our results reveal OR3A4 as an oncogenic lncRNA that promotes tumor progression, Therefore, lncRNAs might function as key regulatory hubs in gastric cancer progression. PMID:26863570

  20. Profile of differentially expressed miRNAs in high-grade serous carcinoma and clear cell ovarian carcinoma, and the expression of miR-510 in ovarian carcinoma

    PubMed Central

    ZHANG, XINCHEN; GUO, GORDON; WANG, GUANG; ZHAO, JINYAO; WANG, BO; YU, XIAOTANG; DING, YANFANG

    2015-01-01

    Improved insight into the molecular and genetic profile of different types of epithelial ovarian cancer (EOC) is required for understanding the carcinogenesis of EOC and may potentially be exploited by future targeted therapies. The aim of the present study was to identify a unique microRNA (miRNA) patterns and key miRNAs, which may assist in predicting progression and prognosis in high-grade serous carcinoma (HGSC) and clear cell carcinoma (CCC). To identify unique miRNA patterns associated with HGSC and CCC, a miRNA microarray was performed using Chinese tumor bank specimens of patients with HGSC or CCC in a retrospective analysis. The expression levels of four deregulated miRNAs were further validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in an external cohort of 42 cases of HGSC and 36 cases of CCC. Kaplan-Meier analysis was performed to analyze the correlation between the expression levels of the four miRNAs and patient prognosis. Among these validated miRNAs, miR-510 was further examined in another cohort of normal ovarian tissues, as well as the HGSC, low-grade serous carcinoma (LGSC) and CCC specimens using RT-qPCR and in situ hybridization. The results revealed that, of the 768 miRNAs analyzed in the microarray, 33 and 50 miRNAs were significantly upregulated and downregulated, respectively, with at least a 2-fold difference in HGSC, compared with CCC. The quantitative analysis demonstrated that miR-510 and miR-129-3p were significantly downregulated, and that miR-483-5p and miR-miR-449a were significantly upregulated in CCC, compared with HGSC (P<0.05), which was consistent with the microarray results. Kaplan-Meier analysis revealed low expression levels of miR-510 and low expression levels of miR-129-3p, advanced International Federation of Gynecology and Obstetrics (FIGO) stage, lymphatic metastasis and that HGSC was significantly associated with the poorer overall survival rates (P<0.05). The expression of miR-510 was significantly higher in the LGSC and CCC tissues, compared with the HGSC and normal ovarian tissues. The results of the present study suggested that different subtypes of EOC have specific miRNA signatures, and that miR-510 may be involved differently in HGSC and CCC. Thus, miR-510 and miR-129-3p may be considered as potential novel candidate clinical biomarkers for predicting the outcome of EOC. PMID:26497752

  1. The Thoc1 Ribonucleoprotein as a Novel Biomarker for Prostate Cancer Treatment Assignment

    DTIC Science & Technology

    2016-10-01

    patients on active surveillance is ongoing (PI Mohler). Developing ELISA assays for measuring pThoc1 and pThoc1 autoantibodies is complete (PI...assessment of 1146 patient specimens for use in constructing tissue microarrays, developing and optimizing ELISA assays to detect anti-Thoc1 autoantibodies...700 patients available at RPCI has been immunostained for PMP22 (figure 3). ELISA assays for measuring pThoc1 and pThoc1 autoantibodies have been

  2. Placental S100 (S100P) and GATA3: markers for transitional epithelium and urothelial carcinoma discovered by complementary DNA microarray.

    PubMed

    Higgins, John P T; Kaygusuz, Gulsah; Wang, Lingli; Montgomery, Kelli; Mason, Veronica; Zhu, Shirley X; Marinelli, Robert J; Presti, Joseph C; van de Rijn, Matt; Brooks, James D

    2007-05-01

    The morphologic distinction between prostate and urothelial carcinoma can be difficult. To identify novel diagnostic markers that may aid in the differential diagnosis of prostate versus urothelial carcinoma, we analyzed expression patterns in prostate and bladder cancer tissues using complementary DNA microarrays. Together with our prior studies on renal neoplasms and normal kidney, these studies suggested that the gene for placental S100 (S100P) is specifically expressed in benign and malignant urothelial cells. Using tissue microarrays, a polyclonal antiserum against S100P protein stained 86% of 295 urothelial carcinomas while only 3% of 260 prostatic adenocarcinomas and 1% of 133 renal cell carcinomas stained. A commercially available monoclonal antibody against S100P stained 78% of 300 urothelial carcinomas while only 2% of 256 prostatic adenocarcinomas and none of 137 renal cell carcinomas stained. A second gene, GATA3, also showed high level expression in urothelial tumors by cDNA array. A commercially available monoclonal antibody against GATA3 stained 67% of 308 urothelial carcinomas, but none of the prostate or renal carcinomas. For comparison, staining was also performed for p63 and cytokeratin 5/6. p63 stained 87% of urothelial carcinomas whereas CK5/6 stained 54%. Importantly, when S100P and p63 were combined 95% of urothelial carcinomas were labeled by one or both markers. We conclude that the detection of S100P and GATA3 protein expression may help distinguish urothelial carcinomas from other genitourinary neoplasms that enter into the differential diagnosis.

  3. Revisiting the immune microenvironment of diffuse large B-cell lymphoma using a tissue microarray and immunohistochemistry: robust semi-automated analysis reveals CD3 and FoxP3 as potential predictors of response to R-CHOP

    PubMed Central

    Coutinho, Rita; Clear, Andrew J.; Mazzola, Emanuele; Owen, Andrew; Greaves, Paul; Wilson, Andrew; Matthews, Janet; Lee, Abigail; Alvarez, Rute; da Silva, Maria Gomes; Cabeçadas, José; Neuberg, Donna; Calaminici, Maria; Gribben, John G.

    2015-01-01

    Gene expression studies have identified the microenvironment as a prognostic player in diffuse large B-cell lymphoma. However, there is a lack of simple immune biomarkers that can be applied in the clinical setting and could be helpful in stratifying patients. Immunohistochemistry has been used for this purpose but the results are inconsistent. We decided to reinvestigate the immune microenvironment and its impact using immunohistochemistry, with two systems of image analysis, in a large set of patients with diffuse large B-cell lymphoma. Diagnostic tissue from 309 patients was arrayed onto tissue microarrays. Results from 161 chemoimmunotherapy-treated patients were used for outcome prediction. Positive cells, percentage stained area and numbers of pixels/area were quantified and results were compared with the purpose of inferring consistency between the two semi-automated systems. Measurement cutpoints were assessed using a recursive partitioning algorithm classifying results according to survival. Kaplan-Meier estimators and Fisher exact tests were evaluated to check for significant differences between measurement classes, and for dependence between pairs of measurements, respectively. Results were validated by multivariate analysis incorporating the International Prognostic Index. The concordance between the two systems of image analysis was surprisingly high, supporting their applicability for immunohistochemistry studies. Patients with a high density of CD3 and FoxP3 by both methods had a better outcome. Automated analysis should be the preferred method for immunohistochemistry studies. Following the use of two methods of semi-automated analysis we suggest that CD3 and FoxP3 play a role in predicting response to chemoimmunotherapy in diffuse large B-cell lymphoma. PMID:25425693

  4. Revisiting the immune microenvironment of diffuse large B-cell lymphoma using a tissue microarray and immunohistochemistry: robust semi-automated analysis reveals CD3 and FoxP3 as potential predictors of response to R-CHOP.

    PubMed

    Coutinho, Rita; Clear, Andrew J; Mazzola, Emanuele; Owen, Andrew; Greaves, Paul; Wilson, Andrew; Matthews, Janet; Lee, Abigail; Alvarez, Rute; da Silva, Maria Gomes; Cabeçadas, José; Neuberg, Donna; Calaminici, Maria; Gribben, John G

    2015-03-01

    Gene expression studies have identified the microenvironment as a prognostic player in diffuse large B-cell lymphoma. However, there is a lack of simple immune biomarkers that can be applied in the clinical setting and could be helpful in stratifying patients. Immunohistochemistry has been used for this purpose but the results are inconsistent. We decided to reinvestigate the immune microenvironment and its impact using immunohistochemistry, with two systems of image analysis, in a large set of patients with diffuse large B-cell lymphoma. Diagnostic tissue from 309 patients was arrayed onto tissue microarrays. Results from 161 chemoimmunotherapy-treated patients were used for outcome prediction. Positive cells, percentage stained area and numbers of pixels/area were quantified and results were compared with the purpose of inferring consistency between the two semi-automated systems. Measurement cutpoints were assessed using a recursive partitioning algorithm classifying results according to survival. Kaplan-Meier estimators and Fisher exact tests were evaluated to check for significant differences between measurement classes, and for dependence between pairs of measurements, respectively. Results were validated by multivariate analysis incorporating the International Prognostic Index. The concordance between the two systems of image analysis was surprisingly high, supporting their applicability for immunohistochemistry studies. Patients with a high density of CD3 and FoxP3 by both methods had a better outcome. Automated analysis should be the preferred method for immunohistochemistry studies. Following the use of two methods of semi-automated analysis we suggest that CD3 and FoxP3 play a role in predicting response to chemoimmunotherapy in diffuse large B-cell lymphoma. Copyright© Ferrata Storti Foundation.

  5. Iodine-131 dose-dependent gene expression: alterations in both normal and tumour thyroid tissues of post-Chernobyl thyroid cancers.

    PubMed

    Abend, M; Pfeiffer, R M; Ruf, C; Hatch, M; Bogdanova, T I; Tronko, M D; Hartmann, J; Meineke, V; Mabuchi, K; Brenner, A V

    2013-10-15

    A strong, consistent association between childhood irradiation and subsequent thyroid cancer provides an excellent model for studying radiation carcinogenesis. We evaluated gene expression in 63 paired RNA specimens from frozen normal and tumour thyroid tissues with individual iodine-131 (I-131) doses (0.008-8.6 Gy, no unirradiated controls) received from Chernobyl fallout during childhood (Ukrainian-American cohort). Approximately half of these randomly selected samples (32 tumour/normal tissue RNA specimens) were hybridised on 64 whole-genome microarrays (Agilent, 4 × 44 K). Associations between I-131 dose and gene expression were assessed separately in normal and tumour tissues using Kruskal-Wallis and linear trend tests. Of 155 genes significantly associated with I-131 after Bonferroni correction and with ≥2-fold increase per dose category, we selected 95 genes. On the remaining 31 RNA samples these genes were used for validation purposes using qRT-PCR. Expression of eight genes (ABCC3, C1orf9, C6orf62, FGFR1OP2, HEY2, NDOR1, STAT3, and UCP3) in normal tissue and six genes (ANKRD46, CD47, HNRNPH1, NDOR1, SCEL, and SERPINA1) in tumour tissue was significantly associated with I-131. PANTHER/DAVID pathway analyses demonstrated significant over-representation of genes coding for nucleic acid binding in normal and tumour tissues, and for p53, EGF, and FGF signalling pathways in tumour tissue. The multistep process of radiation carcinogenesis begins in histologically normal thyroid tissue and may involve dose-dependent gene expression changes.

  6. LncRNA MT1JP functions as a ceRNA in regulating FBXW7 through competitively binding to miR-92a-3p in gastric cancer.

    PubMed

    Zhang, Gang; Li, Shuwei; Lu, Jiafei; Ge, Yuqiu; Wang, Qiaoyan; Ma, Gaoxiang; Zhao, Qinghong; Wu, Dongdong; Gong, Weida; Du, Mulong; Chu, Haiyan; Wang, Meilin; Zhang, Aihua; Zhang, Zhengdong

    2018-05-02

    Emerging evidence has shown that dysregulation function of long non-coding RNAs (lncRNAs) implicated in gastric cancer (GC). However, the role of the differentially expressed lncRNAs in GC has not fully explained. LncRNA expression profiles were determined by lncRNA microarray in five pairs of normal and GC tissues, further validated in another 75 paired tissues by quantitative real-time PCR (qRT-PCR). Overexpression of lncRNA MT1JP was conducted to assess the effect of MT1JP in vitro and in vivo. The biological functions were demonstrated by luciferase reporter assay, western blotting and rescue experiments. LncRNA MT1JP was significantly lower in GC tissues than adjacent normal tissues, and higher MT1JP was remarkably related to lymph node metastasis and advance stage. Besides, GC patients with higher MT1JP expression had a well survival. Functionally, overexpression of lncRNA MT1JP inhibited cell proliferation, migration, invasion and promoted cell apoptosis in vitro, and inhibited tumor growth and metastasis in vivo. Functional analysis showed that lncRNA MT1JP regulated FBXW7 expression by competitively binding to miR-92a-3p. MiR-92a-3p and down-regulated FBXW7 reversed cell phenotypes caused by lncRNA MT1JP by rescue analysis. MT1JP, a down-regulated lncRNA in GC, was associated with malignant tumor phenotypes and survival of GC. MT1JP regulated the progression of GC by functioning as a competing endogenous RNA (ceRNA) to competitively bind to miR-92a-3p and regulate FBXW7 expression. Our study provided new insight into the post-transcriptional regulation mechanism of lncRNA MT1JP, and suggested that MT1JP may act as a potential therapeutic target and prognosis biomarker for GC.

  7. The long non-coding RNA PTTG3P promotes cell growth and metastasis via up-regulating PTTG1 and activating PI3K/AKT signaling in hepatocellular carcinoma.

    PubMed

    Huang, Jin-Lan; Cao, Shun-Wang; Ou, Qi-Shui; Yang, Bin; Zheng, Shi-Hao; Tang, Jing; Chen, Jing; Hu, Yan-Wei; Zheng, Lei; Wang, Qian

    2018-05-26

    Dysfunctions of long non-coding RNA (lncRNAs) have been associated with the initiation and progression of hepatocellular carcinoma (HCC), but the clinicopathologic significance and potential role of lncRNA PTTG3P (pituitary tumor-transforming 3, pseudogene) in HCC remains largely unknown. We compared the expression profiles of lncRNAs in 3 HCC tumor tissues and adjacent non-tumor tissues by microarrays. In situ hybridization (ISH) and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to assess the level of PTTG3P and prognostic values of PTTG3P were assayed in two HCC cohorts (n = 46 and 90). Artificial modulation of PTTG3P (down- and over-expression) was performed to explore the role of PTTG3P in tumor growth and metastasis in vitro and in vivo. Involvement of PTTG1 (pituitary tumor-transforming 1), PI3K/AKT signaling and its downstream signals were validated by qRT-PCR and western blot. We found that PTTG3P was frequently up-regulated in HCC and its level was positively correlated to tumor size, TNM stage and poor survival of patients with HCC. Enforced expression of PTTG3P significantly promoted cell proliferation, migration, and invasion in vitro, as well as tumorigenesis and metastasis in vivo. Conversely, PTTG3P knockdown had opposite effects. Mechanistically, over-expression of PTTG3P up-regulated PTTG1, activated PI3K/AKT signaling and its downstream signals including cell cycle progression, cell apoptosis and epithelial-mesenchymal transition (EMT)-associated genes. Our findings suggest that PTTG3P, a valuable marker of HCC prognosis, promotes tumor growth and metastasis via up-regulating PTTG1 and activating PI3K/AKT signaling in HCC and might represent a potential target for gene-based therapy.

  8. The prognostic implication of the expression of EGFR, p53, cyclin D1, Bcl-2 and p16 in primary locally advanced oral squamous cell carcinoma cases: a tissue microarray study.

    PubMed

    Solomon, Monica Charlotte; Vidyasagar, M S; Fernandes, Donald; Guddattu, Vasudev; Mathew, Mary; Shergill, Ankur Kaur; Carnelio, Sunitha; Chandrashekar, Chetana

    2016-12-01

    Oral squamous cell carcinomas comprise a heterogeneous tumor cell population with varied molecular characteristics, which makes prognostication of these tumors a complex and challenging issue. Thus, molecular profiling of these tumors is advantageous for an accurate prognostication and treatment planning. This is a retrospective study on a cohort of primary locally advanced oral squamous cell carcinomas (n = 178) of an Indian rural population. The expression of EGFR, p53, cyclin D1, Bcl-2 and p16 in a cohort of primary locally advanced oral squamous cell carcinomas was evaluated. A potential biomarker that can predict the tumor response to treatment was identified. Formalin-fixed paraffin-embedded tumor blocks of (n = 178) of histopathologically diagnosed cases of locally advanced oral squamous cell carcinomas were selected. Tissue microarray blocks were constructed with 2 cores of 2 mm diameter from each tumor block. Four-micron-thick sections were cut from these tissue microarray blocks. These tissue microarray sections were immunohistochemically stained for EGFR, p53, Bcl-2, cyclin D1 and p16. In this cohort, EGFR was the most frequently expressed 150/178 (84%) biomarker of the cases. Kaplan-Meier analysis showed a significant association (p = 0.038) between expression of p53 and a poor prognosis. A Poisson regression analysis showed that tumors that expressed p53 had a two times greater chance of recurrence (unadjusted IRR-95% CI 2.08 (1.03, 4.5), adjusted IRR-2.29 (1.08, 4.8) compared with the tumors that did not express this biomarker. Molecular profiling of oral squamous cell carcinomas will enable us to categorize our patients into more realistic risk groups. With biologically guided tumor characterization, personalized treatment protocols can be designed for individual patients, which will improve the quality of life of these patients.

  9. The clinicopathologic association of c-MET overexpression in Iranian gastric carcinomas; an immunohistochemical study of tissue microarrays.

    PubMed

    Sotoudeh, Kambiz; Hashemi, Forough; Madjd, Zahra; Sadeghipour, Alireza; Molanaei, Saadat; Kalantary, Elham

    2012-05-28

    c-MET is an oncogene protein that plays important role in gastric carcinogenesis and has been introduced as a prognostic marker and potential therapeutic target. The aim of this study was to evaluate the frequency of c-MET overexpression and its relationship with clinicopathological variables in gastric cancer of Iranian population using tissue microarray. In a cross sectional study, representative paraffin blocks of 130 patients with gastric carcinoma treated by curative gastrectomy during a 2 years period of 2008-2009 in two university hospitals in Tehran-Iran were collected in tissue microarray and c-MET expression was studied by immunohistochemical staining. Finally 124 cases were evaluated, constituted of 99 male and 25 female with the average age of 61.5 years. In 71% (88/124) of tumors, c-MET high expression was found. c-MET high expression was more associated with intestinal than diffuse tumor type (P = 0.04), deeper tumor invasion, pT3 and pT4 versus pT1 and pT2 (P = 0.014), neural invasion (P = 0.002) and advanced TNM staging, stage 3 and 4 versus stage 1 and2 (P = 0.044). The c-MET high expression was not associated with age, sex, tumor location, differentiation grade and distant metastasis, but relative associations with lymph node metastasis (P = 0.065) and vascular invasion (P = 0.078) were observed. c-MET oncogene protein was frequently overexpressed in Iranian gastric carcinomas and it was related to clinicopathological characteristics such as tumor type, depth of invasion, neural invasion and TNM staging. It can also support the idea that c-MET is a potential marker for target therapy in Iranian gastric cancer. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9744598757151429.

  10. Gene Expression Profiling of Gastric Cancer

    PubMed Central

    Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788

  11. PTEN Loss as Determined by Clinical-grade Immunohistochemistry Assay Is Associated with Worse Recurrence-free Survival in Prostate Cancer

    PubMed Central

    Lotan, Tamara L.; Wei, Wei; Morais, Carlos L.; Hawley, Sarah T.; Fazli, Ladan; Hurtado-Coll, Antonio; Troyer, Dean; McKenney, Jesse K.; Simko, Jeffrey; Carroll, Peter R.; Gleave, Martin; Lance, Raymond; Lin, Daniel W.; Nelson, Peter S.; Thompson, Ian M.; True, Lawrence D.; Feng, Ziding; Brooks, James D.

    2015-01-01

    Background PTEN is the most commonly deleted tumor suppressor gene in primary prostate cancer (PCa) and its loss is associated with poor clinical outcomes and ERG gene rearrangement. Objective We tested whether PTEN loss is associated with shorter recurrence-free survival (RFS) in surgically treated PCa patients with known ERG status. Design, setting, and participants A genetically validated, automated PTEN immunohistochemistry (IHC) protocol was used for 1275 primary prostate tumors from the Canary Foundation retrospective PCa tissue microarray cohort to assess homogeneous (in all tumor tissue sampled) or heterogeneous (in a subset of tumor tissue sampled) PTEN loss. ERG status as determined by a genetically validated IHC assay was available for a subset of 938 tumors. Outcome measurements and statistical analysis Associations between PTEN and ERG status were assessed using Fisher’s exact test. Kaplan-Meier and multivariate weighted Cox proportional models for RFS were constructed. Results and limitations When compared to intact PTEN, homogeneous (hazard ratio [HR] 1.66, p = 0.001) but not heterogeneous (HR 1.24, p = 0.14) PTEN loss was significantly associated with shorter RFS in multivariate models. Among ERG-positive tumors, homogeneous (HR 3.07, p < 0.0001) but not heterogeneous (HR 1.46, p = 0.10) PTEN loss was significantly associated with shorter RFS. Among ERG-negative tumors, PTEN did not reach significance for inclusion in the final multivariate models. The interaction term for PTEN and ERG status with respect to RFS did not reach statistical significance (p = 0.11) for the current sample size. Conclusions These data suggest that PTEN is a useful prognostic biomarker and that there is no statistically significant interaction between PTEN and ERG status for RFS. Patient summary We found that loss of the PTEN tumor suppressor gene in prostate tumors as assessed by tissue staining is correlated with shorter time to prostate cancer recurrence after radical prostatectomy. PMID:27617307

  12. Profile of differentially expressed miRNAs in high-grade serous carcinoma and clear cell ovarian carcinoma, and the expression of miR-510 in ovarian carcinoma.

    PubMed

    Zhang, Xinchen; Guo, Gordon; Wang, Guang; Zhao, Jinyao; Wang, Bo; Yu, Xiaotang; Ding, Yanfang

    2015-12-01

    Improved insight into the molecular and genetic profile of different types of epithelial ovarian cancer (EOC) is required for understanding the carcinogenesis of EOC and may potentially be exploited by future targeted therapies. The aim of the present study was to identify a unique microRNA (miRNA) patterns and key miRNAs, which may assist in predicting progression and prognosis in high‑grade serous carcinoma (HGSC) and clear cell carcinoma (CCC). To identify unique miRNA patterns associated with HGSC and CCC, a miRNA microarray was performed using Chinese tumor bank specimens of patients with HGSC or CCC in a retrospective analysis. The expression levels of four deregulated miRNAs were further validated using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) in an external cohort of 42 cases of HGSC and 36 cases of CCC. Kaplan‑Meier analysis was performed to analyze the correlation between the expression levels of the four miRNAs and patient prognosis. Among these validated miRNAs, miR‑510 was further examined in another cohort of normal ovarian tissues, as well as the HGSC, low‑grade serous carcinoma (LGSC) and CCC specimens using RT‑qPCR and in situ hybridization. The results revealed that, of the 768 miRNAs analyzed in the microarray, 33 and 50 miRNAs were significantly upregulated and downregulated, respectively, with at least a 2‑fold difference in HGSC, compared with CCC. The quantitative analysis demonstrated that miR‑510 and miR‑129‑3p were significantly downregulated, and that miR‑483‑5p and miR‑miR‑449a were significantly upregulated in CCC, compared with HGSC (P<0.05), which was consistent with the microarray results. Kaplan‑Meier analysis revealed low expression levels of miR‑510 and low expression levels of miR‑129‑3p, advanced International Federation of Gynecology and Obstetrics (FIGO) stage, lymphatic metastasis and that HGSC was significantly associated with the poorer overall survival rates (P<0.05). The expression of miR‑510 was significantly higher in the LGSC and CCC tissues, compared with the HGSC and normal ovarian tissues. The results of the present study suggested that different subtypes of EOC have specific miRNA signatures, and that miR‑510 may be involved differently in HGSC and CCC. Thus, miR‑510 and miR‑129‑3p may be considered as potential novel candidate clinical biomarkers for predicting the outcome of EOC.

  13. Expression of FOXP3, CD68, and CD20 at Diagnosis in the Microenvironment of Classical Hodgkin Lymphoma Is Predictive of Outcome

    PubMed Central

    Greaves, Paul; Clear, Andrew; Coutinho, Rita; Wilson, Andrew; Matthews, Janet; Owen, Andrew; Shanyinde, Milensu; Lister, T. Andrew; Calaminici, Maria; Gribben, John G.

    2013-01-01

    Purpose The immune microenvironment is key to the pathophysiology of classical Hodgkin lymphoma (CHL). Twenty percent of patients experience failure of their initial treatment, and others receive excessively toxic treatment. Prognostic scores and biomarkers have yet to influence outcomes significantly. Previous biomarker studies have been limited by the extent of tissue analyzed, statistical inconsistencies, and failure to validate findings. We aimed to overcome these limitations by validating recently identified microenvironment biomarkers (CD68, FOXP3, and CD20) in a new patient cohort with a greater extent of tissue and by using rigorous statistical methodology. Patients and Methods Diagnostic tissue from 122 patients with CHL was microarrayed and stained, and positive cells were counted across 10 to 20 high-powered fields per patient by using an automated system. Two statistical analyses were performed: a categorical analysis with test/validation set-defined cut points and Kaplan-Meier estimated outcome measures of 5-year overall survival (OS), disease-specific survival (DSS), and freedom from first-line treatment failure (FFTF) and an independent multivariate analysis of absolute uncategorized counts. Results Increased CD20 expression confers superior OS. Increased FOXP3 expression confers superior OS, and increased CD68 confers inferior FFTF and OS. FOXP3 varies independently of CD68 expression and retains significance when analyzed as a continuous variable in multivariate analysis. A simple score combining FOXP3 and CD68 discriminates three groups: FFTF 93%, 62%, and 47% (P < .001), DSS 93%, 82%, and 63% (P = .03), and OS 93%, 82%, and 59% (P = .002). Conclusion We have independently validated CD68, FOXP3, and CD20 as prognostic biomarkers in CHL, and we demonstrate, to the best of our knowledge for the first time, that combining FOXP3 and CD68 may further improve prognostic stratification. PMID:23045593

  14. MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4.

    PubMed

    Cheng, Dantong; Zhao, Senlin; Tang, Huamei; Zhang, Dongyuan; Sun, Hongcheng; Yu, Fudong; Jiang, Weiliang; Yue, Ben; Wang, Jingtao; Zhang, Meng; Yu, Yang; Liu, Xisheng; Sun, Xiaofeng; Zhou, Zongguang; Qin, Xuebin; Zhang, Xin; Yan, Dongwang; Wen, Yugang; Peng, Zhihai

    2016-07-19

    Tumor metastasis is one of the leading causes of poor prognosis for colorectal cancer (CRC) patients. Loss of Smad4 contributes to aggression process in many human cancers. However, the underlying precise mechanism of aberrant Smad4 expression in CRC development is still little known. miR-20a-5p negatively regulated Smad4 by directly targeting its 3'UTR in human colorectal cancer cells. miR-20a-5p not only promoted CRC cells aggression capacity in vitro and liver metastasis in vivo, but also promoted the epithelial-to-mesenchymal transition process by downregulating Smad4 expression. In addition, tissue microarray analysis obtained from 544 CRC patients' clinical characters showed that miR-20a-5p was upregulated in human CRC tissues, especially in the tissues with metastasis. High level of miR-20a-5p predicted poor prognosis in CRC patients. Five miRNA target prediction programs were applied to identify potential miRNA(s) that target(s) Smad4 in CRC. Luciferase reporter assay and transfection technique were used to validate the correlation between miR-20a-5p and Smad4 in CRC. Wound healing, transwell and tumorigenesis assays were used to explore the function of miR-20a-5p and Smad4 in CRC progression in vitro and in vivo. The association between miR-20a-5p expression and the prognosis of CRC patients was evaluated by Kaplan-Meier analysis and multivariate cox proportional hazard analyses based on tissue microarray data. miR-20a-5p, as an onco-miRNA, promoted the invasion and metastasis ability by suppressing Smad4 expression in CRC cells, and high miR-20a-5p predicted poor prognosis for CRC patients, providing a novel and promising therapeutic target in human colorectal cancer.

  15. MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4

    PubMed Central

    Zhang, Dongyuan; Sun, Hongcheng; Yu, Fudong; Yue, Ben; Wang, Jingtao; Zhang, Meng; Yu, Yang; Liu, Xisheng; Sun, Xiaofeng; Zhou, Zongguang; Qin, Xuebin; Zhang, Xin; Yan, Dongwang; Wen, Yugang; Peng, Zhihai

    2016-01-01

    Background Tumor metastasis is one of the leading causes of poor prognosis for colorectal cancer (CRC) patients. Loss of Smad4 contributes to aggression process in many human cancers. However, the underlying precise mechanism of aberrant Smad4 expression in CRC development is still little known. Results miR-20a-5p negatively regulated Smad4 by directly targeting its 3′UTR in human colorectal cancer cells. miR-20a-5p not only promoted CRC cells aggression capacity in vitro and liver metastasis in vivo, but also promoted the epithelial-to-mesenchymal transition process by downregulating Smad4 expression. In addition, tissue microarray analysis obtained from 544 CRC patients’ clinical characters showed that miR-20a-5p was upregulated in human CRC tissues, especially in the tissues with metastasis. High level of miR-20a-5p predicted poor prognosis in CRC patients. Methods Five miRNA target prediction programs were applied to identify potential miRNA(s) that target(s) Smad4 in CRC. Luciferase reporter assay and transfection technique were used to validate the correlation between miR-20a-5p and Smad4 in CRC. Wound healing, transwell and tumorigenesis assays were used to explore the function of miR-20a-5p and Smad4 in CRC progression in vitro and in vivo. The association between miR-20a-5p expression and the prognosis of CRC patients was evaluated by Kaplan–Meier analysis and multivariate cox proportional hazard analyses based on tissue microarray data. Conclusions miR-20a-5p, as an onco-miRNA, promoted the invasion and metastasis ability by suppressing Smad4 expression in CRC cells, and high miR-20a-5p predicted poor prognosis for CRC patients, providing a novel and promising therapeutic target in human colorectal cancer. PMID:27286257

  16. miR-16-5p Is a Stably-Expressed Housekeeping MicroRNA in Breast Cancer Tissues from Primary Tumors and from Metastatic Sites

    PubMed Central

    Rinnerthaler, Gabriel; Hackl, Hubert; Gampenrieder, Simon Peter; Hamacher, Frank; Hufnagl, Clemens; Hauser-Kronberger, Cornelia; Zehentmayr, Franz; Fastner, Gerd; Sedlmayer, Felix; Mlineritsch, Brigitte; Greil, Richard

    2016-01-01

    For quantitative microRNA analyses in formalin-fixed paraffin-embedded (FFPE) tissue, expression levels have to be normalized to endogenous controls. To investigate the most stably-expressed microRNAs in breast cancer and its surrounding tissue, we used tumor samples from primary tumors and from metastatic sites. MiRNA profiling using TaqMan® Array Human MicroRNA Cards, enabling quantification of 754 unique human miRNAs, was performed in FFPE specimens from 58 patients with metastatic breast cancer. Forty-two (72%) samples were collected from primary tumors and 16 (28%) from metastases. In a cross-platform analysis of a validation cohort of 32 FFPE samples from patients with early breast cancer genome-wide microRNA expression analysis using SurePrintG3 miRNA (8 × 60 K)® microarrays from Agilent® was performed. Eleven microRNAs could be detected in all samples analyzed. Based on NormFinder and geNorm stability values and the high correlation (rho ≥ 0.8) with the median of all measured microRNAs, miR-16-5p, miR-29a-3p, miR-126-3p, and miR-222-3p are suitable single gene housekeeper candidates. In the cross-platform validation, 29 human microRNAs were strongly expressed (mean log2-intensity > 10) and 21 of these microRNAs including miR-16-5p and miR-29a-3p were also stably expressed (CV < 5%). Thus, miR-16-5p and miR-29a-3p are both strong housekeeper candidates. Their Normfinder stability values calculated across the primary tumor and metastases subgroup indicate that miR-29a-3p can be considered as the strongest housekeeper in a cohort with mainly samples from primary tumors, whereas miR-16-5p might perform better in a metastatic sample enriched cohort. PMID:26821018

  17. miR-16-5p Is a Stably-Expressed Housekeeping MicroRNA in Breast Cancer Tissues from Primary Tumors and from Metastatic Sites.

    PubMed

    Rinnerthaler, Gabriel; Hackl, Hubert; Gampenrieder, Simon Peter; Hamacher, Frank; Hufnagl, Clemens; Hauser-Kronberger, Cornelia; Zehentmayr, Franz; Fastner, Gerd; Sedlmayer, Felix; Mlineritsch, Brigitte; Greil, Richard

    2016-01-26

    For quantitative microRNA analyses in formalin-fixed paraffin-embedded (FFPE) tissue, expression levels have to be normalized to endogenous controls. To investigate the most stably-expressed microRNAs in breast cancer and its surrounding tissue, we used tumor samples from primary tumors and from metastatic sites. MiRNA profiling using TaqMan(®) Array Human MicroRNA Cards, enabling quantification of 754 unique human miRNAs, was performed in FFPE specimens from 58 patients with metastatic breast cancer. Forty-two (72%) samples were collected from primary tumors and 16 (28%) from metastases. In a cross-platform analysis of a validation cohort of 32 FFPE samples from patients with early breast cancer genome-wide microRNA expression analysis using SurePrintG3 miRNA (8 × 60 K)(®) microarrays from Agilent(®) was performed. Eleven microRNAs could be detected in all samples analyzed. Based on NormFinder and geNorm stability values and the high correlation (rho ≥ 0.8) with the median of all measured microRNAs, miR-16-5p, miR-29a-3p, miR-126-3p, and miR-222-3p are suitable single gene housekeeper candidates. In the cross-platform validation, 29 human microRNAs were strongly expressed (mean log2-intensity > 10) and 21 of these microRNAs including miR-16-5p and miR-29a-3p were also stably expressed (CV < 5%). Thus, miR-16-5p and miR-29a-3p are both strong housekeeper candidates. Their Normfinder stability values calculated across the primary tumor and metastases subgroup indicate that miR-29a-3p can be considered as the strongest housekeeper in a cohort with mainly samples from primary tumors, whereas miR-16-5p might perform better in a metastatic sample enriched cohort.

  18. Gene expression signature of benign prostatic hyperplasia revealed by cDNA microarray analysis.

    PubMed

    Luo, Jun; Dunn, Thomas; Ewing, Charles; Sauvageot, Jurga; Chen, Yidong; Trent, Jeffrey; Isaacs, William

    2002-05-15

    Despite the high prevalence of benign prostatic hyperplasia (BPH) in the aging male, little is known regarding the etiology of this disease. A better understanding of the molecular etiology of BPH would be facilitated by a comprehensive analysis of gene expression patterns that are characteristic of benign growth in the prostate gland. Since genes differentially expressed between BPH and normal prostate tissues are likely to reflect underlying pathogenic mechanisms involved in the development of BPH, we performed comparative gene expression analysis using cDNA microarray technology to identify candidate genes associated with BPH. Total RNA was extracted from a set of 9 BPH specimens from men with extensive hyperplasia and a set of 12 histologically normal prostate tissues excised from radical prostatectomy specimens. Each of these 21 RNA samples was labeled with Cy3 in a reverse transcription reaction and cohybridized with a Cy5 labeled common reference sample to a cDNA microarray containing 6,500 human genes. Normalized fluorescent intensity ratios from each hybridization experiment were extracted to represent the relative mRNA abundance for each gene in each sample. Weighted gene and random permutation analyses were performed to generate a subset of genes with statistically significant differences in expression between BPH and normal prostate tissues. Semi-quantitative PCR analysis was performed to validate differential expression. A subset of 76 genes involved in a wide range of cellular functions was identified to be differentially expressed between BPH and normal prostate tissues. Semi-quantitative PCR was performed on 10 genes and 8 were validated. Genes consistently upregulated in BPH when compared to normal prostate tissues included: a restricted set of growth factors and their binding proteins (e.g. IGF-1 and -2, TGF-beta3, BMP5, latent TGF-beta binding protein 1 and -2); hydrolases, proteases, and protease inhibitors (e.g. neuropathy target esterase, MMP2, alpha-2-macroglobulin); stress response enzymes (e.g. COX2, GSTM5); and extracellular matrix molecules (e.g. laminin alpha 4 and beta 1, chondroitin sulfate proteoglycan 2, lumican). Genes consistently expressing less mRNA in BPH than in normal prostate tissues were less commonly observed and included the transcription factor KLF4, thrombospondin 4, nitric oxide synthase 2A, transglutaminase 3, and gastrin releasing peptide. We identified a diverse set of genes that are potentially related to benign prostatic hyperplasia, including genes both previously implicated in BPH pathogenesis as well as others not previously linked to this disease. Further targeted validation and investigations of these genes at the DNA, mRNA, and protein levels are warranted to determine the clinical relevance and possible therapeutic utility of these genes. Copyright 2002 Wiley-Liss, Inc.

  19. Validation of the Swine Protein-Annotated Oligonucleotide Microarray

    USDA-ARS?s Scientific Manuscript database

    The specificity and utility of the Swine Protein-Annotated Oligonucleotide Microarray, or Pigoligoarray (www.pigoligoarray.org), has been evaluated by profiling the expression of transcripts from four porcine tissues. Tools for comparative analyses of expression on the Pigoligoarray were developed i...

  20. Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray

    PubMed Central

    2010-01-01

    Background Flax (Linum usitatissimum L.) has been cultivated for around 9,000 years and is therefore one of the oldest cultivated species. Today, flax is still grown for its oil (oil-flax or linseed cultivars) and its cellulose-rich fibres (fibre-flax cultivars) used for high-value linen garments and composite materials. Despite the wide industrial use of flax-derived products, and our actual understanding of the regulation of both wood fibre production and oil biosynthesis more information must be acquired in both domains. Recent advances in genomics are now providing opportunities to improve our fundamental knowledge of these complex processes. In this paper we report the development and validation of a high-density oligo microarray platform dedicated to gene expression analyses in flax. Results Nine different RNA samples obtained from flax inner- and outer-stems, seeds, leaves and roots were used to generate a collection of 1,066,481 ESTs by massive parallel pyrosequencing. Sequences were assembled into 59,626 unigenes and 48,021 sequences were selected for oligo design and high-density microarray (Nimblegen 385K) fabrication with eight, non-overlapping 25-mers oligos per unigene. 18 independent experiments were used to evaluate the hybridization quality, precision, specificity and accuracy and all results confirmed the high technical quality of our microarray platform. Cross-validation of microarray data was carried out using quantitative qRT-PCR. Nine target genes were selected on the basis of microarray results and reflected the whole range of fold change (both up-regulated and down-regulated genes in different samples). A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates both in qRT-PCR and microarray results. Further experiments illustrated the capacity of our arrays to detect differential gene expression in a variety of flax tissues as well as between two contrasted flax varieties. Conclusion All results suggest that our high-density flax oligo-microarray platform can be used as a very sensitive tool for analyzing gene expression in a large variety of tissues as well as in different cultivars. Moreover, this highly reliable platform can also be used for the quantification of mRNA transcriptional profiling in different flax tissues. PMID:20964859

  1. Development and validation of a flax (Linum usitatissimum L.) gene expression oligo microarray.

    PubMed

    Fenart, Stéphane; Ndong, Yves-Placide Assoumou; Duarte, Jorge; Rivière, Nathalie; Wilmer, Jeroen; van Wuytswinkel, Olivier; Lucau, Anca; Cariou, Emmanuelle; Neutelings, Godfrey; Gutierrez, Laurent; Chabbert, Brigitte; Guillot, Xavier; Tavernier, Reynald; Hawkins, Simon; Thomasset, Brigitte

    2010-10-21

    Flax (Linum usitatissimum L.) has been cultivated for around 9,000 years and is therefore one of the oldest cultivated species. Today, flax is still grown for its oil (oil-flax or linseed cultivars) and its cellulose-rich fibres (fibre-flax cultivars) used for high-value linen garments and composite materials. Despite the wide industrial use of flax-derived products, and our actual understanding of the regulation of both wood fibre production and oil biosynthesis more information must be acquired in both domains. Recent advances in genomics are now providing opportunities to improve our fundamental knowledge of these complex processes. In this paper we report the development and validation of a high-density oligo microarray platform dedicated to gene expression analyses in flax. Nine different RNA samples obtained from flax inner- and outer-stems, seeds, leaves and roots were used to generate a collection of 1,066,481 ESTs by massive parallel pyrosequencing. Sequences were assembled into 59,626 unigenes and 48,021 sequences were selected for oligo design and high-density microarray (Nimblegen 385K) fabrication with eight, non-overlapping 25-mers oligos per unigene. 18 independent experiments were used to evaluate the hybridization quality, precision, specificity and accuracy and all results confirmed the high technical quality of our microarray platform. Cross-validation of microarray data was carried out using quantitative qRT-PCR. Nine target genes were selected on the basis of microarray results and reflected the whole range of fold change (both up-regulated and down-regulated genes in different samples). A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates both in qRT-PCR and microarray results. Further experiments illustrated the capacity of our arrays to detect differential gene expression in a variety of flax tissues as well as between two contrasted flax varieties. All results suggest that our high-density flax oligo-microarray platform can be used as a very sensitive tool for analyzing gene expression in a large variety of tissues as well as in different cultivars. Moreover, this highly reliable platform can also be used for the quantification of mRNA transcriptional profiling in different flax tissues.

  2. Chromosome 3p12.3-p14.2 and 3q26.2-q26.32 are genomic markers for prognosis of advanced nasopharyngeal carcinoma.

    PubMed

    Sheu, Jim Jinn-Chyuan; Lee, Chia-Huei; Ko, Jenq-Yuh; Tsao, George S W; Wu, Chung-Chun; Fang, Chih-Yeu; Tsai, Fuu-Jen; Hua, Chun-Hung; Chen, Chi-Long; Chen, Jen-Yang

    2009-10-01

    Nasopharyngeal carcinoma is an epithelial malignancy with a remarkable racial and geographic distribution. Previous cytogenetic studies have shown nasopharyngeal carcinoma to be characterized by gross genomic aberrations. However, identification of susceptible gene loci in advanced nasopharyngeal carcinoma has been poorly discussed. A genome-wide survey of gene copy number changes was initiated with two nasopharyngeal carcinoma cell lines by array-based comparative genomic hybridization analysis. These alterations were confirmed by a parallel analysis with the data from the gene expression microarray and were validated by quantitative PCR. Clinical association of the defined target genes was analyzed by fluorescence in situ hybridization on 48 metastatic tumors. A high percentage of genes were consistently altered in dosage and expression levels with gain on 3q26.2-q26.32 and losses on 3p12.3-p14.2 and 9p21.3-p23. Six candidate genes, GPR160 (3q26.2-q27), SKIL (3q26), ADAMTS9 (3p14.2-p14.3), LRIG1 (3p14), MPDZ (9p22-p24), and ADFP (9p22.1) were validated by quantitative PCR. Fluorescence in situ hybridization studies revealed amplification of GPR160 (in 25% of cases) and SKIL (33%); and deletion of ADAMTS9 (30%), LRIG1 (35%), MPDZ (15%), and ADFP (15%). Clinical association analyses indicated a poor survival rate with genetic alterations at the defined 3p deletion (P = 0.0012) and the 3q amplification regions (P = 0.0114). The combined microarray technologies suggested novel candidate oncogenes, amplification of GPR160 and SKIL at 3q26.2-q26.32, and deletion of tumor suppressor genes ADAMTS9 and LRIG1 at 3p12.3-p14.2. Altered expression of these genes may be responsible for malignant progression and could be used as potential markers for nasopharyngeal carcinoma.

  3. MicroRNA-301a-3p promotes pancreatic cancer progression via negative regulation of SMAD4

    PubMed Central

    Zhang, Kundong; Cen, Gang; Jiang, Tao; Cao, Jun; Huang, Kejian; Zhao, Qian; Qiu, Zhengjun

    2015-01-01

    Background Aim to determine the clinicopathological and prognostic role of miR-301a-3p in pancreatic ductal adenocarcinoma(PDAC), to investigate the biological mechanism of miR-301a-3p in vitro and in vivo. Methods By tissue microarray analysis, we studied miR-301a-3p expression in PDAC patients and its clinicopathological correlations as well as prognostic significance. qRT-PCR was used to test miR-301a-3p expression in PDAC tissues and cell lines. Functional experiments including in vitro and in vivo were performed. Results Significantly higher expression of miR-301a-3p were found in PDAC patients with lymph node metastasis and advanced pathological stages and identified as an independent prognostic factor for worse survival. In PDAC samples and cell lines, miR-301a-3p was significantly up-regulated compared with matched non-tumor tissues and normal pancreatic ductal cells, respectively. Overexpression of miR-301a-3p enhanced PDAC cells colony, invasion and migration abilities in vitro as well as tumorigenicity in vivo. Furthermore, SMAD4 was identified as a target gene of miR-301a-3p by cell as well as mice xenograft experiments. In PDAC tissue microarray, a significantly inverse correlation between miR-301a-3p ISH scores and SMAD4 IHC scores were observed in both tumor and corresponding non-tumor tissues. Conclusion MiR-301a-3p functions as a novel oncogene in PDAC and the oncogenic activity may involve its inhibition of the target gene SMAD4. PMID:26019136

  4. Validation of a TFE3 break-apart FISH assay for Xp11.2 translocation renal cell carcinomas.

    PubMed

    Mosquera, Juan-Miguel; Dal Cin, Paola; Mertz, Kirsten D; Perner, Sven; Davis, Ian J; Fisher, David E; Rubin, Mark A; Hirsch, Michelle S

    2011-09-01

    Renal cell carcinomas (RCCs) with an Xp11.2 translocation predominantly affect young patients, and can present at an advanced stage. However, more cases in older patients and incidentally detected cancers at earlier stages are also being identified. As the histology of Xp11.2 RCCs overlaps with clear cell and papillary RCCs, it is not infrequent that Xp11.2 RCCs are overlooked and misdiagnosed. The objective of this study was to validate the use of fluorescence in-situ hybridization (FISH) for identifying Xp11.2 RCCs. One hundred fifty-eight consecutive, unselected renal tumors were evaluated in tissue microarrays, including 109 clear cell RCCs, 20 papillary RCCs, 3 RCCs with mixed papillary and clear cell features, 1 Xp11.2 translocation RCC, 8 chromophobe RCCs, 10 oncocytomas, and 7 angiomyolipomas. FISH evaluation was performed blinded to karyotype data, available in about two-thirds of cases. Furthermore, conventional sections of 4 Xp11.2 RCCs, 4 RCCs with mixed papillary and clear cell features, and 4 cases of alveolar soft part sarcoma (the latter for control purposes) were also assessed by FISH. Break-apart signals were homogeneously identified throughout tumor cells in 2 cases from the tissue microarrays including 1 known Xp11.2 RCC and 1 misdiagnosed Xp11.2 RCC. All conventional sections from the Xp11.2 RCC and alveolar soft part sarcoma cases were positive for the TFE3 rearrangement by FISH. All remaining cases were negative. Our study shows the clinical application of FISH in formalin-fixed, paraffin-embedded tissue for detection of Xp11.2 translocation RCCs and other tumors with this genetic aberration.

  5. Rapid Spoligotyping of Mycobacterium tuberculosis Complex Bacteria by Use of a Microarray System with Automatic Data Processing and Assignment

    PubMed Central

    Ruettger, Anke; Nieter, Johanna; Skrypnyk, Artem; Engelmann, Ines; Ziegler, Albrecht; Moser, Irmgard; Monecke, Stefan; Ehricht, Ralf

    2012-01-01

    Membrane-based spoligotyping has been converted to DNA microarray format to qualify it for high-throughput testing. We have shown the assay's validity and suitability for direct typing from tissue and detecting new spoligotypes. Advantages of the microarray methodology include rapidity, ease of operation, automatic data processing, and affordability. PMID:22553239

  6. Rapid spoligotyping of Mycobacterium tuberculosis complex bacteria by use of a microarray system with automatic data processing and assignment.

    PubMed

    Ruettger, Anke; Nieter, Johanna; Skrypnyk, Artem; Engelmann, Ines; Ziegler, Albrecht; Moser, Irmgard; Monecke, Stefan; Ehricht, Ralf; Sachse, Konrad

    2012-07-01

    Membrane-based spoligotyping has been converted to DNA microarray format to qualify it for high-throughput testing. We have shown the assay's validity and suitability for direct typing from tissue and detecting new spoligotypes. Advantages of the microarray methodology include rapidity, ease of operation, automatic data processing, and affordability.

  7. Deregulation of energetic metabolism in the clear cell renal cell carcinoma: A multiple pathway analysis based on microarray profiling.

    PubMed

    Soltysova, Andrea; Breza, Jan; Takacova, Martina; Feruszova, Jana; Hudecova, Sona; Novotna, Barbora; Rozborilova, Eva; Pastorekova, Silvia; Kadasi, Ludevit; Krizanova, Olga

    2015-07-01

    Clear cell renal cell carcinoma (ccRCC) is the most frequent type of kidney cancer. In order to better understand the biology of ccRCC, we accomplished the gene profiling of fresh tissue specimens from 11 patients with the renal tumors (9 ccRCCs, 1 oncocytoma and 1 renal B-lymphoma), in which the tumor-related data were compared to the paired healthy kidney tissues from the same patients. All ccRCCs exhibited a considerably elevated transcription of the gene coding for carbonic anhydrase IX (CAIX). Moreover, the ccRCC tumors consistently displayed increased expression of genes encoding the glycolytic pathway enzymes, e.g. hexokinase II (HK2) and lactate dehydrogenase A (LDHA) and a decreased expression of genes for the mitochondrial electron transport chain components, indicating an overall reprogramming of the energetic metabolism in this tumor type. This appears to be accompanied by altered expression of the genes of the pH regulating machinery, including ion and lactate transporters. Immunohistochemical staining of tumor tissue sections confirmed the increased expression of CAIX, HK2 and LDHA in ccRCC, validating the microarray data and supporting their potential as the energetic metabolism-related biomarkers of the ccRCC.

  8. EFEMP1 as a novel DNA methylation marker for prostate cancer: array-based DNA methylation and expression profiling.

    PubMed

    Kim, Yong-June; Yoon, Hyung-Yoon; Kim, Seon-Kyu; Kim, Young-Won; Kim, Eun-Jung; Kim, Isaac Yi; Kim, Wun-Jae

    2011-07-01

    Abnormal DNA methylation is associated with many human cancers. The aim of the present study was to identify novel methylation markers in prostate cancer (PCa) by microarray analysis and to test whether these markers could discriminate normal and PCa cells. Microarray-based DNA methylation and gene expression profiling was carried out using a panel of PCa cell lines and a control normal prostate cell line. The methylation status of candidate genes in prostate cell lines was confirmed by real-time reverse transcriptase-PCR, bisulfite sequencing analysis, and treatment with a demethylation agent. DNA methylation and gene expression analysis in 203 human prostate specimens, including 106 PCa and 97 benign prostate hyperplasia (BPH), were carried out. Further validation using microarray gene expression data from the Gene Expression Omnibus (GEO) was carried out. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) was identified as a lead candidate methylation marker for PCa. The gene expression level of EFEMP1 was significantly higher in tissue samples from patients with BPH than in those with PCa (P < 0.001). The sensitivity and specificity of EFEMP1 methylation status in discriminating between PCa and BPH reached 95.3% (101 of 106) and 86.6% (84 of 97), respectively. From the GEO data set, we confirmed that the expression level of EFEMP1 was significantly different between PCa and BPH. Genome-wide characterization of DNA methylation profiles enabled the identification of EFEMP1 aberrant methylation patterns in PCa. EFEMP1 might be a useful indicator for the detection of PCa.

  9. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    PubMed Central

    Viti, Federica; Merelli, Ivan; Caprera, Andrea; Lazzari, Barbara; Stella, Alessandra; Milanesi, Luciano

    2008-01-01

    Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes. PMID:18460177

  10. Regulatory interactions between long noncoding RNA LINC00968 and miR-9-3p in non-small cell lung cancer: A bioinformatic analysis based on miRNA microarray, GEO and TCGA.

    PubMed

    Li, Dong-Yao; Chen, Wen-Jie; Shang, Jun; Chen, Gang; Li, Shi-Kang

    2018-06-01

    Long non-coding RNAs (lncRNAs) have been demonstrated to mediate carcinogenesis in various types of cancer. However, the regulatory role of lncRNA LINC00968 in lung adenocarcinoma remains unclear. The microRNA (miRNA) expression in LINC00968-overexpressing human lung adenocarcinoma A549 cells was detected using miRNA microarray analysis. miR-9-3p was selected for further analysis, and its expression was verified in the Gene Expression Omnibus (GEO) database. In addition, the regulatory axis of LINC00968 was validated using The Cancer Genome Atlas (TCGA) database. Results of the GEO database indicated miR-9-3p expression in lung adenocarcinoma was significantly higher compared with normal tissues. Functional enrichment analyses of the target genes of miR-9-3p indicated protein binding and the AMP-activated protein kinase pathway were the most enriched Gene Ontology and KEGG terms, respectively. Combining target genes with the correlated genes of LINC00968 and miR-9-3p, 120 objective genes were obtained, which were used to construct a protein-protein interaction (PPI) network. Cyclin A2 (CCNA2) was identified to have a vital role in the PPI network. Significant correlations were detected between LINC00968, miR-9-3p and CCNA2 in lung adenocarcinoma. The LINC00968/miR-9-3p/CCNA2 regulatory axis provides a new foundation for further evaluating the regulatory mechanisms of LINC00968 in lung adenocarcinoma.

  11. The Influence of Tumor-Host Interactions in the Stromal Cell-Derived Factor-1/CXCR4 Ligand/Receptor Axis in Determining Metastatic Risk in Breast Cancer

    PubMed Central

    Hassan, Saima; Ferrario, Cristiano; Saragovi, Uri; Quenneville, Louise; Gaboury, Louis; Baccarelli, Andrea; Salvucci, Ombretta; Basik, Mark

    2009-01-01

    The chemokine stromal cell-derived factor-1 (SDF-1) may function to attract CXCR4-expressing cancer cells to metastatic organs. We have previously demonstrated that low plasma SDF-1, a host-derived marker, increases distant metastatic risk in breast cancer. We therefore hypothesized that tumors overexpressing the SDF-1 receptor CXCR4 have an enhanced ability to metastasize in patients with low plasma SDF-1 levels. In this study, we determined the prognostic significance of activated CXCR4, or phosphorylated CXCR4 (p-CXCR4), and CXCR7, another receptor for SDF-1. Immunohistochemistry was performed on a tissue microarray built using 237 samples from the same cohort of patients for which we measured plasma SDF-1 levels. We found that the prognostic value of p-CXCR4 expression (hazard ratio or HR, 3.95; P = 0.004) was superior to total CXCR4 expression (HR, 3.20; P = 0.03). The rate of breast cancer-specific mortality was much higher in patients with both high p-CXCR4 expression and low plasma SDF-1 levels (HR, 5.96; P < 0.001) than either low plasma SDF-1 (HR, 3.59; P = 0.01) or high p-CXCR4 expression (HR, 3.83; P = 0.005) alone. The added prognostic value of low plasma SDF-1 was only effective in patients with high p-CXCR4 expression, and as such, provides clinical validation for modulation of the metastatic potential of tumor cells by an inherent host-derived metastatic risk factor. PMID:19497995

  12. The Use of P63 Immunohistochemistry for the Identification of Squamous Cell Carcinoma of the Lung

    PubMed Central

    Conde, Esther; Angulo, Bárbara; Redondo, Pilar; Toldos, Oscar; García-García, Elena; Suárez-Gauthier, Ana; Rubio-Viqueira, Belén; Marrón, Carmen; García-Luján, Ricardo; Sánchez-Céspedes, Montse; López-Encuentra, Angel; Paz-Ares, Luis; López-Ríos, Fernando

    2010-01-01

    Introduction While some targeted agents should not be used in squamous cell carcinomas (SCCs), other agents might preferably target SCCs. In a previous microarray study, one of the top differentially expressed genes between adenocarcinomas (ACs) and SCCs is P63. It is a well-known marker of squamous differentiation, but surprisingly, its expression is not widely used for this purpose. Our goals in this study were (1) to further confirm our microarray data, (2) to analize the value of P63 immunohistochemistry (IHC) in reducing the number of large cell carcinoma (LCC) diagnoses in surgical specimens, and (3) to investigate the potential of P63 IHC to minimize the proportion of “carcinoma NOS (not otherwise specified)” in a prospective series of small tumor samples. Methods With these goals in mind, we studied (1) a tissue-microarray comprising 33 ACs and 99 SCCs on which we performed P63 IHC, (2) a series of 20 surgically resected LCCs studied for P63 and TTF-1 IHC, and (3) a prospective cohort of 66 small thoracic samples, including 32 carcinoma NOS, that were further classified by the result of P63 and TTF-1 IHC. Results The results in the three independent cohorts were as follows: (1) P63 IHC was differentially expressed in SCCs when compared to ACs (p<0.0001); (2) half of the 20 (50%) LCCs were positive for P63 and were reclassified as SCCs; and (3) all P63 positive cases (34%) were diagnosed as SCCs. Conclusions P63 IHC is useful for the identification of lung SCCs. PMID:20808915

  13. TFF3 is a valuable predictive biomarker of endocrine response in metastatic breast cancer

    PubMed Central

    May, Felicity E B; Westley, Bruce R

    2015-01-01

    The stratification of breast cancer patients for endocrine therapies by oestrogen or progesterone receptor expression is effective but imperfect. The present study aims were to validate microarray studies that demonstrate TFF3 regulation by oestrogen and its association with oestrogen receptors in breast cancer, to evaluate TFF3 as a biomarker of endocrine response, and to investigate TFF3 function. Microarray data were validated by quantitative RT-PCR and northern and western transfer analyses. TFF3 was induced by oestrogen, and its induction was inhibited by antioestrogens, tamoxifen, 4-hydroxytamoxifen and fulvestrant in oestrogen-responsive breast cancer cells. The expression of TFF3 mRNA was associated with oestrogen receptor mRNA in breast tumours (Pearson's coefficient=0.762, P=0.000). Monoclonal antibodies raised against the TFF3 protein detected TFF3 by immunohistochemistry in oesophageal submucosal glands, intestinal goblet and neuroendocrine cells, Barrett's metaplasia and intestinal metaplasia. TFF3 protein expression was associated with oestrogen receptor, progesterone receptor and TFF1 expression in malignant breast cells. TFF3 is a specific and sensitive predictive biomarker of response to endocrine therapy, degree of response and duration of response in unstratified metastatic breast cancer patients (P=0.000, P=0.002 and P=0.002 respectively). Multivariate binary logistic regression analysis demonstrated that TFF3 is an independent biomarker of endocrine response and degree of response, and this was confirmed in a validation cohort. TFF3 stimulated migration and invasion of breast cancer cells. In conclusion, TFF3 expression is associated with response to endocrine therapy, and outperforms oestrogen receptor, progesterone receptor and TFF1 as an independent biomarker, possibly because it mediates the malign effects of oestrogen on invasion and metastasis. PMID:25900183

  14. Microarray analysis of gene expression patterns in the leaf during potato tuberization in the potato somatic hybrid Solanum tuberosum and Solanum etuberosum.

    PubMed

    Tiwari, Jagesh Kumar; Devi, Sapna; Sundaresha, S; Chandel, Poonam; Ali, Nilofer; Singh, Brajesh; Bhardwaj, Vinay; Singh, Bir Pal

    2015-06-01

    Genes involved in photoassimilate partitioning and changes in hormonal balance are important for potato tuberization. In the present study, we investigated gene expression patterns in the tuber-bearing potato somatic hybrid (E1-3) and control non-tuberous wild species Solanum etuberosum (Etb) by microarray. Plants were grown under controlled conditions and leaves were collected at eight tuber developmental stages for microarray analysis. A t-test analysis identified a total of 468 genes (94 up-regulated and 374 down-regulated) that were statistically significant (p ≤ 0.05) and differentially expressed in E1-3 and Etb. Gene Ontology (GO) characterization of the 468 genes revealed that 145 were annotated and 323 were of unknown function. Further, these 145 genes were grouped based on GO biological processes followed by molecular function and (or) PGSC description into 15 gene sets, namely (1) transport, (2) metabolic process, (3) biological process, (4) photosynthesis, (5) oxidation-reduction, (6) transcription, (7) translation, (8) binding, (9) protein phosphorylation, (10) protein folding, (11) ubiquitin-dependent protein catabolic process, (12) RNA processing, (13) negative regulation of protein, (14) methylation, and (15) mitosis. RT-PCR analysis of 10 selected highly significant genes (p ≤ 0.01) confirmed the microarray results. Overall, we show that candidate genes induced in leaves of E1-3 were implicated in tuberization processes such as transport, carbohydrate metabolism, phytohormones, and transcription/translation/binding functions. Hence, our results provide an insight into the candidate genes induced in leaf tissues during tuberization in E1-3.

  15. Cell-surface markers for colon adenoma and adenocarcinoma

    PubMed Central

    Sewda, Kamini; Coppola, Domenico; Enkemann, Steven; Yue, Binglin; Kim, Jongphil; Lopez, Alexis S.; Wojtkowiak, Jonathan W.; Stark, Valerie E.; Morse, Brian; Shibata, David; Vignesh, Shivakumar; Morse, David L.

    2016-01-01

    Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC. PMID:26894861

  16. Cell-surface markers for colon adenoma and adenocarcinoma.

    PubMed

    Sewda, Kamini; Coppola, Domenico; Enkemann, Steven; Yue, Binglin; Kim, Jongphil; Lopez, Alexis S; Wojtkowiak, Jonathan W; Stark, Valerie E; Morse, Brian; Shibata, David; Vignesh, Shivakumar; Morse, David L

    2016-04-05

    Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC.

  17. Identification of Temporal and Region-Specific Myocardial Gene Expression Patterns in Response to Infarction in Swine

    PubMed Central

    Nonell, Lara; Puigdecanet, Eulàlia; Astier, Laura; Solé, Francesc; Bayes-Genis, Antoni

    2013-01-01

    Molecular mechanisms associated with pathophysiological changes in ventricular remodelling due to myocardial infarction (MI) remain poorly understood. We analyzed changes in gene expression by microarray technology in porcine myocardial tissue at 1, 4, and 6 weeks post-MI. MI was induced by coronary artery ligation in 9 female pigs (30–40 kg). Animals were randomly sacrificed at 1, 4, or 6 weeks post-MI (n = 3 per group) and 3 healthy animals were also included as control group. Total RNA from myocardial samples was hybridized to GeneChip® Porcine Genome Arrays. Functional analysis was obtained with the Ingenuity Pathway Analysis (IPA) online tool. Validation of microarray data was performed by quantitative real-time PCR (qRT-PCR). More than 8,000 different probe sets showed altered expression in the remodelling myocardium at 1, 4, or 6 weeks post-MI. Ninety-seven percent of altered transcripts were detected in the infarct core and 255 probe sets were differentially expressed in the remote myocardium. Functional analysis revealed 28 genes de-regulated in the remote myocardial region in at least one of the three temporal analyzed stages, including genes associated with heart failure (HF), systemic sclerosis and coronary artery disease. In the infarct core tissue, eight major time-dependent gene expression patterns were recognized among 4,221 probe sets commonly altered over time. Altered gene expression of ACVR2B, BID, BMP2, BMPR1A, LMNA, NFKBIA, SMAD1, TGFB3, TNFRSF1A, and TP53 were further validated. The clustering of similar expression patterns for gene products with related function revealed molecular footprints, some of them described for the first time, which elucidate changes in biological processes at different stages after MI. PMID:23372767

  18. Expression profiling of cell cycle regulatory proteins in oropharyngeal carcinomas using tissue microarrays.

    PubMed

    Ribeiro, Daniel A; Nascimento, Fabio D; Fracalossi, Ana Carolina C; Gomes, Thiago S; Oshima, Celina T F; Franco, Marcello F

    2010-01-01

    The aim of this study was to investigate the expressions of cell cycle regulatory proteins such as p53, p16, p21, and Rb in squamous cell carcinoma of the oropharynx and their relation to histological differentiation, staging of disease, and prognosis. Paraffin blocks from 21 primary tumors were obtained from archives of the Department of Pathology, Paulista Medical School, Federal University of Sao Paulo, UNIFESP/EPM. Immunohistochemistry was used to detect the expression of p53, p16, p21, and Rb by means of tissue microarrays. Expression of p53, p21, p16 and Rb was not correlated with the stage of disease, histopathological grading or recurrence in squamous cell carcinoma of the oropharynx. Taken together, our results suggest that p53, p16, p21 and Rb are not reliable biomarkers for prognosis of the tumor severity or recurrence in squamous cell carcinoma of the oropharynx as depicted by tissue microarrays and immunohistochemistry.

  19. Informatic selection of a neural crest-melanocyte cDNA set for microarray analysis

    PubMed Central

    Loftus, S. K.; Chen, Y.; Gooden, G.; Ryan, J. F.; Birznieks, G.; Hilliard, M.; Baxevanis, A. D.; Bittner, M.; Meltzer, P.; Trent, J.; Pavan, W.

    1999-01-01

    With cDNA microarrays, it is now possible to compare the expression of many genes simultaneously. To maximize the likelihood of finding genes whose expression is altered under the experimental conditions, it would be advantageous to be able to select clones for tissue-appropriate cDNA sets. We have taken advantage of the extensive sequence information in the dbEST expressed sequence tag (EST) database to identify a neural crest-derived melanocyte cDNA set for microarray analysis. Analysis of characterized genes with dbEST identified one library that contained ESTs representing 21 neural crest-expressed genes (library 198). The distribution of the ESTs corresponding to these genes was biased toward being derived from library 198. This is in contrast to the EST distribution profile for a set of control genes, characterized to be more ubiquitously expressed in multiple tissues (P < 1 × 10−9). From library 198, a subset of 852 clustered ESTs were selected that have a library distribution profile similar to that of the 21 neural crest-expressed genes. Microarray analysis demonstrated the majority of the neural crest-selected 852 ESTs (Mel1 array) were differentially expressed in melanoma cell lines compared with a non-neural crest kidney epithelial cell line (P < 1 × 10−8). This was not observed with an array of 1,238 ESTs that was selected without library origin bias (P = 0.204). This study presents an approach for selecting tissue-appropriate cDNAs that can be used to examine the expression profiles of developmental processes and diseases. PMID:10430933

  20. Karyotype versus microarray testing for genetic abnormalities after stillbirth.

    PubMed

    Reddy, Uma M; Page, Grier P; Saade, George R; Silver, Robert M; Thorsten, Vanessa R; Parker, Corette B; Pinar, Halit; Willinger, Marian; Stoll, Barbara J; Heim-Hall, Josefine; Varner, Michael W; Goldenberg, Robert L; Bukowski, Radek; Wapner, Ronald J; Drews-Botsch, Carolyn D; O'Brien, Barbara M; Dudley, Donald J; Levy, Brynn

    2012-12-06

    Genetic abnormalities have been associated with 6 to 13% of stillbirths, but the true prevalence may be higher. Unlike karyotype analysis, microarray analysis does not require live cells, and it detects small deletions and duplications called copy-number variants. The Stillbirth Collaborative Research Network conducted a population-based study of stillbirth in five geographic catchment areas. Standardized postmortem examinations and karyotype analyses were performed. A single-nucleotide polymorphism array was used to detect copy-number variants of at least 500 kb in placental or fetal tissue. Variants that were not identified in any of three databases of apparently unaffected persons were then classified into three groups: probably benign, clinical significance unknown, or pathogenic. We compared the results of karyotype and microarray analyses of samples obtained after delivery. In our analysis of samples from 532 stillbirths, microarray analysis yielded results more often than did karyotype analysis (87.4% vs. 70.5%, P<0.001) and provided better detection of genetic abnormalities (aneuploidy or pathogenic copy-number variants, 8.3% vs. 5.8%; P=0.007). Microarray analysis also identified more genetic abnormalities among 443 antepartum stillbirths (8.8% vs. 6.5%, P=0.02) and 67 stillbirths with congenital anomalies (29.9% vs. 19.4%, P=0.008). As compared with karyotype analysis, microarray analysis provided a relative increase in the diagnosis of genetic abnormalities of 41.9% in all stillbirths, 34.5% in antepartum stillbirths, and 53.8% in stillbirths with anomalies. Microarray analysis is more likely than karyotype analysis to provide a genetic diagnosis, primarily because of its success with nonviable tissue, and is especially valuable in analyses of stillbirths with congenital anomalies or in cases in which karyotype results cannot be obtained. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.).

  1. STAT3, p-STAT3 and HIF-1α are associated with vasculogenic mimicry and impact on survival in gastric adenocarcinoma

    PubMed Central

    SONG, YAN-YAN; SUN, LI-DAN; LIU, MIN-LI; LIU, ZHONG-LIANG; CHEN, FEI; ZHANG, YING-ZHE; ZHENG, YAN; ZHANG, JIAN-PING

    2014-01-01

    Vasculogenic mimicry (VM) formation is important for invasion and metastasis of tumor cells in gastric adenocarcinoma (GAC). The present study aimed to investigate the association between signal transducer and activator of transcription-3 (STAT3), phosphor-STAT3 (p-STAT3), hypoxia-inducible factor-1α (HIF-1α) and VM formation in GAC, and discuss their clinical significance and correlation with the prognosis of patients with GAC. The expression levels of STAT3, p-STAT3, HIF-1α and VM were assessed in 60 cases of patients with GAC and 20 cases of patients with gastritis on tissue microarrays by immunohistochemical methods. The expression levels of STAT3, p-STAT3, HIF-1α and VM were higher in patients with GAC (particularly in poorly differentiated GAC) than in those with gastritis (P<0.05). The expression levels of STAT3, p-STAT3 and HIF-1α were higher in VM tissues compared with non-VM tissues (P<0.05). Positive correlations existed between STAT3, p-STAT3, HIF-1α and VM expression (P<0.05). The expression levels of STAT3, p-STAT3 and HIF-1α, VM, status of lymph node metastasis and tumor differentiation degree were associated with the overall survival time of patients with GAC (P<0.05). However, only p-STAT3 and VM expression were identified as the independent risk factors of GAC OS when analyzed with multivariate analysis. p-STAT3 and VM play a significant role in indicating the prognosis of patients with GAC. STAT3 activation may play a positive role in VM formation of GAC by the STAT3-p-STAT3-HIF-1α-VM effect axis. PMID:24959290

  2. The clinicopathologic association of c-MET overexpression in Iranian gastric carcinomas; an immunohistochemical study of tissue microarrays

    PubMed Central

    2012-01-01

    Background c-MET is an oncogene protein that plays important role in gastric carcinogenesis and has been introduced as a prognostic marker and potential therapeutic target. The aim of this study was to evaluate the frequency of c-MET overexpression and its relationship with clinicopathological variables in gastric cancer of Iranian population using tissue microarray. Methods In a cross sectional study, representative paraffin blocks of 130 patients with gastric carcinoma treated by curative gastrectomy during a 2 years period of 2008–2009 in two university hospitals in Tehran-Iran were collected in tissue microarray and c-MET expression was studied by immunohistochemical staining. Results Finally 124 cases were evaluated, constituted of 99 male and 25 female with the average age of 61.5 years. In 71% (88/124) of tumors, c-MET high expression was found. c-MET high expression was more associated with intestinal than diffuse tumor type (P = 0.04), deeper tumor invasion, pT3 and pT4 versus pT1 and pT2 (P = 0.014), neural invasion (P = 0.002) and advanced TNM staging, stage 3 and 4 versus stage 1 and2 (P = 0.044). The c-MET high expression was not associated with age, sex, tumor location, differentiation grade and distant metastasis, but relative associations with lymph node metastasis (P = 0.065) and vascular invasion (P = 0.078) were observed. Conclusions c-MET oncogene protein was frequently overexpressed in Iranian gastric carcinomas and it was related to clinicopathological characteristics such as tumor type, depth of invasion, neural invasion and TNM staging. It can also support the idea that c-MET is a potential marker for target therapy in Iranian gastric cancer. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9744598757151429 PMID:22640970

  3. Advantages of RNA-seq compared to RNA microarrays for transcriptome profiling of anterior cruciate ligament tears.

    PubMed

    Rai, Muhammad Farooq; Tycksen, Eric D; Sandell, Linda J; Brophy, Robert H

    2018-01-01

    Microarrays and RNA-seq are at the forefront of high throughput transcriptome analyses. Since these methodologies are based on different principles, there are concerns about the concordance of data between the two techniques. The concordance of RNA-seq and microarrays for genome-wide analysis of differential gene expression has not been rigorously assessed in clinically derived ligament tissues. To demonstrate the concordance between RNA-seq and microarrays and to assess potential benefits of RNA-seq over microarrays, we assessed differences in transcript expression in anterior cruciate ligament (ACL) tissues based on time-from-injury. ACL remnants were collected from patients with an ACL tear at the time of ACL reconstruction. RNA prepared from torn ACL remnants was subjected to Agilent microarrays (N = 24) and RNA-seq (N = 8). The correlation of biological replicates in RNA-seq and microarrays data was similar (0.98 vs. 0.97), demonstrating that each platform has high internal reproducibility. Correlations between the RNA-seq data and the individual microarrays were low, but correlations between the RNA-seq values and the geometric mean of the microarrays values were moderate. The cross-platform concordance for differentially expressed transcripts or enriched pathways was linearly correlated (r = 0.64). RNA-Seq was superior in detecting low abundance transcripts and differentiating biologically critical isoforms. Additional independent validation of transcript expression was undertaken using microfluidic PCR for selected genes. PCR data showed 100% concordance (in expression pattern) with RNA-seq and microarrays data. These findings demonstrate that RNA-seq has advantages over microarrays for transcriptome profiling of ligament tissues when available and affordable. Furthermore, these findings are likely transferable to other musculoskeletal tissues where tissue collection is challenging and cells are in low abundance. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:484-497, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Expression of ERCC1, RRM1, TUBB3 in correlation with apoptosis repressor ARC, DNA mismatch repair proteins and p53 in liver metastasis of colorectal cancer.

    PubMed

    Tóth, Csaba; Sükösd, Farkas; Valicsek, Erzsébet; Herpel, Esther; Schirmacher, Peter; Renner, Marcus; Mader, Christoph; Tiszlavicz, László; Kriegsmann, Jörg

    2017-11-01

    Liver metastasis in colorectal cancer is common and the primary treatment is chemotherapy. To date, there is no routinely used test in clinical practice to predict the effectiveness of conventional chemotherapy. Therefore, biomarkers with predictive value for conventional chemotherapy would be of considerable benefit in treatment planning. We analysed three proteins [excision repair cross-complementing 1 (ERCC1), ribonucleoside-diphosphate reductase 1 (RRM1) and class III β-tubulin (TUBB3)] in colorectal cancer liver metastasis. We used tissue microarray slides with 101 liver metastasis samples, stained for ERCC1, RRM1 and TUBB3 and established scoring systems (fitted for tissue microarray) for each protein. In statistical analysis, we compared the expression of ERCC1, RRM1 and TUBB3 to mismatch proteins (MLH1, MSH2, MSH6 and PMS2), p53 and to apoptosis repressor protein (ARC). Statistically significant correlations were found between ERCC1, TUBB3 and MLH1, MSH2 and RRM1 and MSH2, MSH6. Noteworthy, our analysis revealed a strong significant correlation between cytoplasmic ARC expression and RRM1, TUBB3 (p=0.000 and p=0.001, respectively), implying an additional role of TUBB3 and RRM1 not only in therapy resistance, but also in the apoptotic machinery. Our data strengthens the importance of ERCC1, TUBB3 and RRM1 in the prediction of chemotherapy effectiveness and suggest new functional connections in DNA repair, microtubule network and apoptotic signaling (i.e. ARC protein). In conclusion, we showed the importance and need of predictive biomarkers in metastasized colorectal cancer and pointed out the relevance not only of single predictive markers but also of their interactions with other known and newly explored relations between different signaling pathways.

  5. Identification of Novel Tissue-Specific Genes by Analysis of Microarray Databases: A Human and Mouse Model

    PubMed Central

    Suh, Yeunsu; Davis, Michael E.; Lee, Kichoon

    2013-01-01

    Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI′s Gene Expression Omnibus (GEO) public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved. PMID:23741331

  6. Deep learning for tissue microarray image-based outcome prediction in patients with colorectal cancer

    NASA Astrophysics Data System (ADS)

    Bychkov, Dmitrii; Turkki, Riku; Haglund, Caj; Linder, Nina; Lundin, Johan

    2016-03-01

    Recent advances in computer vision enable increasingly accurate automated pattern classification. In the current study we evaluate whether a convolutional neural network (CNN) can be trained to predict disease outcome in patients with colorectal cancer based on images of tumor tissue microarray samples. We compare the prognostic accuracy of CNN features extracted from the whole, unsegmented tissue microarray spot image, with that of CNN features extracted from the epithelial and non-epithelial compartments, respectively. The prognostic accuracy of visually assessed histologic grade is used as a reference. The image data set consists of digitized hematoxylin-eosin (H and E) stained tissue microarray samples obtained from 180 patients with colorectal cancer. The patient samples represent a variety of histological grades, have data available on a series of clinicopathological variables including long-term outcome and ground truth annotations performed by experts. The CNN features extracted from images of the epithelial tissue compartment significantly predicted outcome (hazard ratio (HR) 2.08; CI95% 1.04-4.16; area under the curve (AUC) 0.66) in a test set of 60 patients, as compared to the CNN features extracted from unsegmented images (HR 1.67; CI95% 0.84-3.31, AUC 0.57) and visually assessed histologic grade (HR 1.96; CI95% 0.99-3.88, AUC 0.61). As a conclusion, a deep-learning classifier can be trained to predict outcome of colorectal cancer based on images of H and E stained tissue microarray samples and the CNN features extracted from the epithelial compartment only resulted in a prognostic discrimination comparable to that of visually determined histologic grade.

  7. Testing an aflatoxin B1 gene signature in rat archival tissues.

    PubMed

    Merrick, B Alex; Auerbach, Scott S; Stockton, Patricia S; Foley, Julie F; Malarkey, David E; Sills, Robert C; Irwin, Richard D; Tice, Raymond R

    2012-05-21

    Archival tissues from laboratory studies represent a unique opportunity to explore the relationship between genomic changes and agent-induced disease. In this study, we evaluated the applicability of qPCR for detecting genomic changes in formalin-fixed, paraffin-embedded (FFPE) tissues by determining if a subset of 14 genes from a 90-gene signature derived from microarray data and associated with eventual tumor development could be detected in archival liver, kidney, and lung of rats exposed to aflatoxin B1 (AFB1) for 90 days in feed at 1 ppm. These tissues originated from the same rats used in the microarray study. The 14 genes evaluated were Adam8, Cdh13, Ddit4l, Mybl2, Akr7a3, Akr7a2, Fhit, Wwox, Abcb1b, Abcc3, Cxcl1, Gsta5, Grin2c, and the C8orf46 homologue. The qPCR FFPE liver results were compared to the original liver microarray data and to qPCR results using RNA from fresh frozen liver. Archival liver paraffin blocks yielded 30 to 50 μg of degraded RNA that ranged in size from 0.1 to 4 kB. qPCR results from FFPE and fresh frozen liver samples were positively correlated (p ≤ 0.05) by regression analysis and showed good agreement in direction and proportion of change with microarray data for 11 of 14 genes. All 14 transcripts could be amplified from FFPE kidney RNA except the glutamate receptor gene Grin2c; however, only Abcb1b was significantly upregulated from control. Abundant constitutive transcripts, S18 and β-actin, could be amplified from lung FFPE samples, but the narrow RNA size range (25-500 bp length) prevented consistent detection of target transcripts. Overall, a discrete gene signature derived from prior transcript profiling and representing cell cycle progression, DNA damage response, and xenosensor and detoxication pathways was successfully applied to archival liver and kidney by qPCR and indicated that gene expression changes in response to subchronic AFB1 exposure occurred predominantly in the liver, the primary target for AFB1-induced tumors. We conclude that an evaluation of gene signatures in archival tissues can be an important toxicological tool for evaluating critical molecular events associated with chemical exposures.

  8. MicroRNAs and cardiac sarcoplasmic reticulum calcium ATPase-2 in human myocardial infarction: expression and bioinformatic analysis.

    PubMed

    Boštjančič, Emanuela; Zidar, Nina; Glavač, Damjan

    2012-10-15

    Cardiac sarco(endo)plasmic reticulum calcium ATPase-2 (SERCA2) plays one of the central roles in myocardial contractility. Both, SERCA2 mRNA and protein are reduced in myocardial infarction (MI), but the correlation has not been always observed. MicroRNAs (miRNAs) act by targeting 3'-UTR mRNA, causing translational repression in physiological and pathological conditions, including cardiovascular diseases. One of the aims of our study was to identify miRNAs that could influence SERCA2 expression in human MI. The protein SERCA2 was decreased and 43 miRNAs were deregulated in infarcted myocardium compared to corresponding remote myocardium, analyzed by western blot and microRNA microarrays, respectively. All the samples were stored as FFPE tissue and in RNAlater. miRNAs binding prediction to SERCA2 including four prediction algorithms (TargetScan, PicTar, miRanda and mirTarget2) identified 213 putative miRNAs. TAM and miRNApath annotation of deregulated miRNAs identified 18 functional and 21 diseased states related to heart diseases, and association of the half of the deregulated miRNAs to SERCA2. Free-energy of binding and flanking regions (RNA22, RNAfold) was calculated for 10 up-regulated miRNAs from microarray analysis (miR-122, miR-320a/b/c/d, miR-574-3p/-5p, miR-199a, miR-140, and miR-483), and nine miRNAs deregulated from microarray analysis were used for validation with qPCR (miR-21, miR-122, miR-126, miR-1, miR-133, miR-125a/b, and miR-98). Based on qPCR results, the comparison between FFPE and RNAlater stored tissue samples, between Sybr Green and TaqMan approaches, as well as between different reference genes were also performed. Combing all the results, we identified certain miRNAs as potential regulators of SERCA2; however, further functional studies are needed for verification. Using qPCR, we confirmed deregulation of nine miRNAs in human MI, and show that qPCR normalization strategy is important for the outcome of miRNA expression analysis in human MI.

  9. MUC1 Expression by Immunohistochemistry Is Associated with Adverse Pathologic Features in Prostate Cancer: A Multi-Institutional Study.

    PubMed

    Eminaga, Okyaz; Wei, Wei; Hawley, Sarah J; Auman, Heidi; Newcomb, Lisa F; Simko, Jeff; Hurtado-Coll, Antonio; Troyer, Dean A; Carroll, Peter R; Gleave, Martin E; Lin, Daniel W; Nelson, Peter S; Thompson, Ian M; True, Lawrence D; McKenney, Jesse K; Feng, Ziding; Fazli, Ladan; Brooks, James D

    2016-01-01

    The uncertainties inherent in clinical measures of prostate cancer (CaP) aggressiveness endorse the investigation of clinically validated tissue biomarkers. MUC1 expression has been previously reported to independently predict aggressive localized prostate cancer. We used a large cohort to validate whether MUC1 protein levels measured by immunohistochemistry (IHC) predict aggressive cancer, recurrence and survival outcomes after radical prostatectomy independent of clinical and pathological parameters. MUC1 IHC was performed on a multi-institutional tissue microarray (TMA) resource including 1,326 men with a median follow-up of 5 years. Associations with clinical and pathological parameters were tested by the Chi-square test and the Wilcoxon rank sum test. Relationships with outcome were assessed with univariable and multivariable Cox proportional hazard models and the Log-rank test. The presence of MUC1 expression was significantly associated with extracapsular extension and higher Gleason score, but not with seminal vesicle invasion, age, positive surgical margins or pre-operative serum PSA levels. In univariable analyses, positive MUC1 staining was significantly associated with a worse recurrence free survival (RFS) (HR: 1.24, CI 1.03-1.49, P = 0.02), although not with disease specific survival (DSS, P>0.5). On multivariable analyses, the presence of positive surgical margins, extracapsular extension, seminal vesicle invasion, as well as higher pre-operative PSA and increasing Gleason score were independently associated with RFS, while MUC1 expression was not. Positive MUC1 expression was not independently associated with disease specific survival (DSS), but was weakly associated with overall survival (OS). In our large, rigorously designed validation cohort, MUC1 protein expression was associated with adverse pathological features, although it was not an independent predictor of outcome after radical prostatectomy.

  10. Risk of type 1 diabetes progression in islet autoantibody-positive children can be further stratified using expression patterns of multiple genes implicated in peripheral blood lymphocyte activation and function.

    PubMed

    Jin, Yulan; Sharma, Ashok; Bai, Shan; Davis, Colleen; Liu, Haitao; Hopkins, Diane; Barriga, Kathy; Rewers, Marian; She, Jin-Xiong

    2014-07-01

    There is tremendous scientific and clinical value to further improving the predictive power of autoantibodies because autoantibody-positive (AbP) children have heterogeneous rates of progression to clinical diabetes. This study explored the potential of gene expression profiles as biomarkers for risk stratification among 104 AbP subjects from the Diabetes Autoimmunity Study in the Young (DAISY) using a discovery data set based on microarray and a validation data set based on real-time RT-PCR. The microarray data identified 454 candidate genes with expression levels associated with various type 1 diabetes (T1D) progression rates. RT-PCR analyses of the top-27 candidate genes confirmed 5 genes (BACH2, IGLL3, EIF3A, CDC20, and TXNDC5) associated with differential progression and implicated in lymphocyte activation and function. Multivariate analyses of these five genes in the discovery and validation data sets identified and confirmed four multigene models (BI, ICE, BICE, and BITE, with each letter representing a gene) that consistently stratify high- and low-risk subsets of AbP subjects with hazard ratios >6 (P < 0.01). The results suggest that these genes may be involved in T1D pathogenesis and potentially serve as excellent gene expression biomarkers to predict the risk of progression to clinical diabetes for AbP subjects. © 2014 by the American Diabetes Association.

  11. Semantically enabled and statistically supported biological hypothesis testing with tissue microarray databases

    PubMed Central

    2011-01-01

    Background Although many biological databases are applying semantic web technologies, meaningful biological hypothesis testing cannot be easily achieved. Database-driven high throughput genomic hypothesis testing requires both of the capabilities of obtaining semantically relevant experimental data and of performing relevant statistical testing for the retrieved data. Tissue Microarray (TMA) data are semantically rich and contains many biologically important hypotheses waiting for high throughput conclusions. Methods An application-specific ontology was developed for managing TMA and DNA microarray databases by semantic web technologies. Data were represented as Resource Description Framework (RDF) according to the framework of the ontology. Applications for hypothesis testing (Xperanto-RDF) for TMA data were designed and implemented by (1) formulating the syntactic and semantic structures of the hypotheses derived from TMA experiments, (2) formulating SPARQLs to reflect the semantic structures of the hypotheses, and (3) performing statistical test with the result sets returned by the SPARQLs. Results When a user designs a hypothesis in Xperanto-RDF and submits it, the hypothesis can be tested against TMA experimental data stored in Xperanto-RDF. When we evaluated four previously validated hypotheses as an illustration, all the hypotheses were supported by Xperanto-RDF. Conclusions We demonstrated the utility of high throughput biological hypothesis testing. We believe that preliminary investigation before performing highly controlled experiment can be benefited. PMID:21342584

  12. Cell-cycle and suppressor proteins expression in uterine cervix in HIV/HPV co-infection: comparative study by tissue micro-array (TMA).

    PubMed

    Nicol, Alcina F; Pires, Andréa Rodrigues Cordovil; de Souza, Simone R; Nuovo, Gerard J; Grinsztejn, Beatriz; Tristão, Aparecida; Russomano, Fabio B; Velasque, Luciane; Lapa e Silva, José R; Pirmez, Claude

    2008-10-07

    The oncoproteins of human papillomavirus (HPVs) directly effect cell-cycle control. We hypothesize that regulatory and cell cycle protein expression might be additionally modified in the cervix of HIV/HPV co-infected women. We analyzed the expression of Rb, p27, VEGF and Elf-1 transcriptor factor by immunohistochemistry in 163 paraffin-embeded cervical samples using Tissue Micro-Array (TMA) and correlated this to HIV-1 and HPV infection. HIV/HPV co-infection was associated with a significant increase in expression (p < 0.001) of VEGF and p27 in both low and high grade CIN when compared to the cervices of women infected by HPV alone. Decreased Rb expression was evident with increased CIN grade in the cervices of women infected with HPV alone (p = 0.003 average of cells/mm2 in CIN I: 17.9, CIN II/III: 4.8, and tumor 3.9). Rb expression increased 3-fold for both low and high grade CIN with HPV/HIV-1 co-infection compared to HPV infection alone but did not reach statistical significance. There was a significant increase in Elf-1 expression in HPV+/HIV- women with CIN II/III and tumor (average of cells/mm2 in CIN I: 63.8; CIN II/III: 115.7 and tumor: 112.0, p = 0.005), in comparison to controls. Co-infection of HPV and HIV leads to significant increase in the VEGF and p27 expression when compared to HPV+/HIV-negative infection that could facilitate viral persistence and invasive tumor development.

  13. [Changes of expression of miR-155 in colitis-associated colonic carcinogenesis].

    PubMed

    Li, Weiwei; Han, Wenxiao; Zhao, Xinhua; Wang, Hongying

    2014-04-01

    To investigate the changes of miR-155 and its target genes in colitis-associated carcinogenesis. Colitis-associated colon cancer was induced by azoxymethane (AOM) and dextran sulfate sodium (DSS) in C57BL/6 mice. Mice of three different stages during the development of colon cancer were obtained, named AD1, AD2 and AD3, respectively. A control group of mice without any treatment and a DSS only group representing chronic inflammation without cancer were set up as well. Colon tissue was collected and expression of miR-155 in the colon tissues was measured by real-time fluorescent quantitative PCR. TargetScan and PicTar were used to predict potential target genes of miR-155, which were then preliminarily screened with our gene expression microarray database of AOM-DSS mouse model. Regular PCR was used to confirm the changes of the expression of these potential target genes in AOM-DSS mouse model. Colitis-associated colon cancer was effectively induced by azoxymethane and dextran sulfate sodium in C57BL/6 mice. Histological examination revealed that the evolution process was sequentially from normal, mild dysplasia, moderate dysplasia, and severe dysplasia to adenocarcinoma in the AOM-DSS mouse model. The level of miR-155 was gradually elevated with the formation of colitis-associated colon cancer. There was no significant difference between the levels of miR-155 expression in the DSS group (0.005 6 ± 0.003 7) and control group (0.012 0 ± 0.005 1) (P > 0.05), but the level of miR-155 in the AD3 group (0.054 4 ± 0.027 0) was significantly higher than that of the DSS group (0.005 6 ± 0.003 7)(P < 0.01). No significant change of miR-155 expression was found in the DSS only group. The relative expression levels of miR-155 in the control group, DSS only group and AD3 group were 0.012 0 ± 0.005 1, 0.005 6 ± 0.003 7, 0.054 4 ± 0.027 0, respectively. Data analysis with the gene expression microarray showed that Tle4, Kcna1, Itk, Bcorl1, Cacna1c, Rspo2 and Foxo3 were potential target genes of miR-155 in the AOM-DSS mouse model. Changes of Kcna1 and Cacna1c in the AOM-DSS mouse model were validated to be consistent with the changes obtained with the gene expression microarray. The up-regulation of miR-155 is related to colitis-associated carcinogenesis, but is irrelevant to chronic inflammation in the mouse model.

  14. Loss of Cytoplasmic CDK1 Predicts Poor Survival in Human Lung Cancer and Confers Chemotherapeutic Resistance

    PubMed Central

    Zhang, Chunyu; Elkahloun, Abdel G.; Robertson, Matthew; Gills, Joell J.; Tsurutani, Junji; Shih, Joanna H.; Fukuoka, Junya; Hollander, M. Christine; Harris, Curtis C.; Travis, William D.; Jen, Jin; Dennis, Phillip A.

    2011-01-01

    The dismal lethality of lung cancer is due to late stage at diagnosis and inherent therapeutic resistance. The incorporation of targeted therapies has modestly improved clinical outcomes, but the identification of new targets could further improve clinical outcomes by guiding stratification of poor-risk early stage patients and individualizing therapeutic choices. We hypothesized that a sequential, combined microarray approach would be valuable to identify and validate new targets in lung cancer. We profiled gene expression signatures during lung epithelial cell immortalization and transformation, and showed that genes involved in mitosis were progressively enhanced in carcinogenesis. 28 genes were validated by immunoblotting and 4 genes were further evaluated in non-small cell lung cancer tissue microarrays. Although CDK1 was highly expressed in tumor tissues, its loss from the cytoplasm unexpectedly predicted poor survival and conferred resistance to chemotherapy in multiple cell lines, especially microtubule-directed agents. An analysis of expression of CDK1 and CDK1-associated genes in the NCI60 cell line database confirmed the broad association of these genes with chemotherapeutic responsiveness. These results have implications for personalizing lung cancer therapy and highlight the potential of combined approaches for biomarker discovery. PMID:21887332

  15. Gene Discovery in Bladder Cancer Progression using cDNA Microarrays

    PubMed Central

    Sanchez-Carbayo, Marta; Socci, Nicholas D.; Lozano, Juan Jose; Li, Wentian; Charytonowicz, Elizabeth; Belbin, Thomas J.; Prystowsky, Michael B.; Ortiz, Angel R.; Childs, Geoffrey; Cordon-Cardo, Carlos

    2003-01-01

    To identify gene expression changes along progression of bladder cancer, we compared the expression profiles of early-stage and advanced bladder tumors using cDNA microarrays containing 17,842 known genes and expressed sequence tags. The application of bootstrapping techniques to hierarchical clustering segregated early-stage and invasive transitional carcinomas into two main clusters. Multidimensional analysis confirmed these clusters and more importantly, it separated carcinoma in situ from papillary superficial lesions and subgroups within early-stage and invasive tumors displaying different overall survival. Additionally, it recognized early-stage tumors showing gene profiles similar to invasive disease. Different techniques including standard t-test, single-gene logistic regression, and support vector machine algorithms were applied to identify relevant genes involved in bladder cancer progression. Cytokeratin 20, neuropilin-2, p21, and p33ING1 were selected among the top ranked molecular targets differentially expressed and validated by immunohistochemistry using tissue microarrays (n = 173). Their expression patterns were significantly associated with pathological stage, tumor grade, and altered retinoblastoma (RB) expression. Moreover, p33ING1 expression levels were significantly associated with overall survival. Analysis of the annotation of the most significant genes revealed the relevance of critical genes and pathways during bladder cancer progression, including the overexpression of oncogenic genes such as DEK in superficial tumors or immune response genes such as Cd86 antigen in invasive disease. Gene profiling successfully classified bladder tumors based on their progression and clinical outcome. The present study has identified molecular biomarkers of potential clinical significance and critical molecular targets associated with bladder cancer progression. PMID:12875971

  16. The application of artificial intelligence to microarray data: identification of a novel gene signature to identify bladder cancer progression.

    PubMed

    Catto, James W F; Abbod, Maysam F; Wild, Peter J; Linkens, Derek A; Pilarsky, Christian; Rehman, Ishtiaq; Rosario, Derek J; Denzinger, Stefan; Burger, Maximilian; Stoehr, Robert; Knuechel, Ruth; Hartmann, Arndt; Hamdy, Freddie C

    2010-03-01

    New methods for identifying bladder cancer (BCa) progression are required. Gene expression microarrays can reveal insights into disease biology and identify novel biomarkers. However, these experiments produce large datasets that are difficult to interpret. To develop a novel method of microarray analysis combining two forms of artificial intelligence (AI): neurofuzzy modelling (NFM) and artificial neural networks (ANN) and validate it in a BCa cohort. We used AI and statistical analyses to identify progression-related genes in a microarray dataset (n=66 tumours, n=2800 genes). The AI-selected genes were then investigated in a second cohort (n=262 tumours) using immunohistochemistry. We compared the accuracy of AI and statistical approaches to identify tumour progression. AI identified 11 progression-associated genes (odds ratio [OR]: 0.70; 95% confidence interval [CI], 0.56-0.87; p=0.0004), and these were more discriminate than genes chosen using statistical analyses (OR: 1.24; 95% CI, 0.96-1.60; p=0.09). The expression of six AI-selected genes (LIG3, FAS, KRT18, ICAM1, DSG2, and BRCA2) was determined using commercial antibodies and successfully identified tumour progression (concordance index: 0.66; log-rank test: p=0.01). AI-selected genes were more discriminate than pathologic criteria at determining progression (Cox multivariate analysis: p=0.01). Limitations include the use of statistical correlation to identify 200 genes for AI analysis and that we did not compare regression identified genes with immunohistochemistry. AI and statistical analyses use different techniques of inference to determine gene-phenotype associations and identify distinct prognostic gene signatures that are equally valid. We have identified a prognostic gene signature whose members reflect a variety of carcinogenic pathways that could identify progression in non-muscle-invasive BCa. 2009 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  17. Diffuse myogenin expression by immunohistochemistry is an independent marker of poor survival in pediatric rhabdomyosarcoma: a tissue microarray study of 71 primary tumors including correlation with molecular phenotype.

    PubMed

    Heerema-McKenney, Amy; Wijnaendts, Liliane C D; Pulliam, Joseph F; Lopez-Terrada, Dolores; McKenney, Jesse K; Zhu, Shirley; Montgomery, Kelli; Mitchell, Janet; Marinelli, Robert J; Hart, Augustinus A M; van de Rijn, Matt; Linn, Sabine C

    2008-10-01

    The pathologic classification of rhabdomyosarcoma (RMS) into embryonal or alveolar subtype is an important prognostic factor guiding the therapeutic protocol chosen for an individual patient. Unfortunately, this classification is not always straightforward, and the diagnostic criteria are controversial in a subset of cases. Ancillary studies are used to aid in the classification, but their potential use as independent prognostic factors is rarely studied. The aim of this study is to identify immunohistochemical markers of potential prognostic significance in pediatric RMS and to correlate their expression with PAX-3/FKHR and PAX-7/FKHR fusion status. A single tissue microarray containing 71 paraffin-embedded pediatric RMSs was immunostained with antibodies against p53, bcl-2, Ki-67, CD44, myogenin, and MyoD1. The tissue microarray and whole paraffin blocks were studied for PAX-3/FKHR and PAX-7/FKHR gene fusions by fluorescence in situ hybridization and reverse transcription-polymerase chain reaction. Clinical follow-up data were available for each patient. Immunohistochemical staining results and translocation status were correlated with recurrence-free interval (RFI) and overall survival (OS) using the Kaplan-Meier method, the log-rank test, and Cox proportional hazard regression. The minimum clinical follow-up interval was 24 months (median follow-up=57 mo). On univariable analysis, immunohistochemical expression of myogenin, bcl-2, and identification of a gene fusion were associated with decreased 5-year RFI and 10-year OS (myogenin RFI P=0.0028, OS P=0.0021; bcl-2 RFI P=0.037, OS P=0.032; gene fusion RFI P=0.0001, OS P=0.0058). After adjustment for Intergroup Rhabdomyosarcoma Study-TNM stage, tumor site, age, tumor histology, and translocation status by multivariable analysis, only myogenin retained an independent association with RFI (P=0.034) and OS (P=0.0069). In this retrospective analysis, diffuse immunohistochemical reactivity for myogenin in RMS correlates with decreased RFI and OS, independent of histologic subtype, translocation status, tumor site, or stage.

  18. Association of H3K9me3 and H3K27me3 repressive histone marks with breast cancer subtypes in the Nurses' Health Study.

    PubMed

    Healey, Megan A; Hu, Rong; Beck, Andrew H; Collins, Laura C; Schnitt, Stuart J; Tamimi, Rulla M; Hazra, Aditi

    2014-10-01

    Repressive histone tail modifications have been associated with molecular breast cancer subtypes. We investigated whether histone 3 lysine 9 trimethylation (H3K9me3) and histone 3 lysine 27 trimethylation (H3K27me3) were associated with tumor features and subtypes while adjusting for prospectively collected reproductive and lifestyle breast cancer risk factors. We have tissue microarray data with immunohistochemical marker information on 804 incident cases of invasive breast cancer diagnosed from 1976-2000 in the Nurses' Health Study. Tissue microarray sections were stained for global H3K9me3 and H3K27me3, and scored into four categories. Multivariate odds ratios (OR) and 95 % confidence intervals (CI) were calculated using logistic regression models for tumor features and subtypes, adjusting for breast cancer risk factors. While there were no significant associations between H3K9me3 and tumor features, H3K27me3 was significantly associated with lower grade tumors compared to high grade tumors in the multivariate model (OR = 1.95, 95 % CI 1.35-2.81, p = 0.0004). H3K27me3 was suggestively associated with estrogen receptor-positive (ER+) tumors (OR = 1.47, 95 % CI 0.97-2.23, p = 0.07). In subtype analyses, H3K27me3 was positively associated with the luminal A subtype compared to all other subtypes (OR = 1.42, 95 % CI 1.14-1.77, p = 0.002), and was inversely associated with HER2-type (OR = 0.58, 95 % CI 0.37-0.91, p = 0.02) and basal-like breast cancer (OR = 0.52, 95 % CI 0.36-0.76, p = 0.0006). In the largest immunohistochemical examination of H3K9me3 and H3K27me3 in breast cancer, we found that H3K27me3 positivity, but not H3K9me3, was associated with lower grade tumors and the luminal A subtype after adjusting for reproductive and lifestyle breast cancer risk factors.

  19. Selenium and Vitamin E: Cell Type– and Intervention-Specific Tissue Effects in Prostate Cancer

    PubMed Central

    Tsavachidou, Dimitra; McDonnell, Timothy J.; Wen, Sijin; Wang, Xuemei; Vakar-Lopez, Funda; Pisters, Louis L.; Pettaway, Curtis A.; Wood, Christopher G.; Do, Kim-Anh; Thall, Peter F.; Stephens, Clifton; Efstathiou, Eleni; Taylor, Robert; Menter, David G.; Troncoso, Patricia; Lippman, Scott M.; Logothetis, Christopher J.

    2009-01-01

    Background Secondary analyses of two randomized, controlled phase III trials demonstrated that selenium and vitamin E could reduce prostate cancer incidence. To characterize pharmacodynamic and gene expression effects associated with use of selenium and vitamin E, we undertook a randomized, placebo-controlled phase IIA study of prostate cancer patients before prostatectomy and created a preoperative model for prostatectomy tissue interrogation. Methods Thirty-nine men with prostate cancer were randomly assigned to treatment with 200 μg of selenium, 400 IU of vitamin E, both, or placebo. Laser capture microdissection of prostatectomy biopsy specimens was used to isolate normal, stromal, and tumor cells. Gene expression in each cell type was studied with microarray analysis and validated with a real-time polymerase chain reaction (PCR) and immunohistochemistry. An analysis of variance model was fit to identify genes differentially expressed between treatments and cell types. A beta-uniform mixture model was used to analyze differential expression of genes and to assess the false discovery rate. All statistical tests were two-sided. Results The highest numbers of differentially expressed genes by treatment were 1329 (63%) of 2109 genes in normal epithelial cells after selenium treatment, 1354 (66%) of 2051 genes in stromal cells after vitamin E treatment, and 329 (56%) of 587 genes in tumor cells after combination treatment (false discovery rate = 2%). Validation of 21 representative genes across all treatments and all cell types yielded Spearman correlation coefficients between the microarray analysis and the PCR validation ranging from 0.64 (95% confidence interval [CI] = 0.31 to 0.79) for the vitamin E group to 0.87 (95% CI = 0.53 to 0.99) for the selenium group. The increase in the mean percentage of p53-positive tumor cells in the selenium-treated group (26.3%), compared with that in the placebo-treated group (5%), showed borderline statistical significance (difference = 21.3%; 95% CI = 0.7 to 41.8; P = .051). Conclusions We have demonstrated the feasibility and efficiency of the preoperative model and its power as a hypothesis-generating engine. We have also identified cell type– and zone-specific tissue effects of interventions with selenium and vitamin E that may have clinical implications. PMID:19244175

  20. LncRNA-FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 signaling.

    PubMed

    Bian, Zehua; Zhang, Jiwei; Li, Min; Feng, Yuyang; Wang, Xue; Zhang, Jia; Yao, Surui; Jin, Guoying; Du, Jun; Han, Weifeng; Yin, Yuan; Huang, Shenglin; Fei, Bojian; Zou, Jian; Huang, Zhaohui

    2018-06-18

    Long non-coding RNAs (lncRNAs) play key roles in human cancers. Here, FEZF1-AS1, a highly overexpressed lncRNA in colorectal cancer (CRC), was identified by lncRNA microarrays. We aimed to explore the roles and possible molecular mechanisms of FEZF1-AS1 in CRC. LncRNA expression in CRC tissues was measured by lncRNA microarray and qRT-PCR. The functional roles of FEZF1-AS1 in CRC were demonstrated by a series of in vitro and in vivo experiments. RNA pull-down, RNA immunoprecipitation and luciferase analyses were used to demonstrate the potential mechanisms of FEZF1-AS1. We identified a series of differentially expressed lncRNAs in CRC using lncRNA microarrays, and revealed that FEZF1-AS1 is one of the most overexpressed. Further validation in two expanded CRC cohorts confirmed the upregulation of FEZF1-AS1 in CRC, and revealed that increased FEZF1-AS1 expression is associated with poor survival. Functional assays revealed that FEZF1-AS1 promotes CRC cell proliferation and metastasis. Mechanistically, FEZF1-AS1 could bind and increase the stability of the pyruvate kinase 2 (PKM2) protein, resulting in increased cytoplasmic and nuclear PKM2 levels. Increased cytoplasmic PKM2 promoted pyruvate kinase activity and lactate production (aerobic glycolysis), whereas FEZF1-AS1-induced nuclear PKM2 upregulation further activated STAT3 signaling. In addition, PKM2 was upregulated in CRC tissues and correlated with FEZF1-AS1 expression and patient survival. Together, these data provide mechanistic insights into the regulation of FEZF1-AS1 on both STAT3 signaling and glycolysis by binding PKM2 and increasing its stability. Copyright ©2018, American Association for Cancer Research.

  1. An 80-year experience with optic nerve glioma cases at the Armed Forces Institute of Pathology: evolution from museum to molecular evaluation suggests possibe interventions in the cellular senescence and microglial pathways (an American Ophthalmological Society thesis).

    PubMed

    Cameron, J Douglas; Rodriguez, Fausto J; Rushing, Elisabeth; Horkayne-Szakaly, Iren; Eberhart, Charles

    2014-01-01

    To determine whether p16, a molecular marker of cellular senescence, and CD68, a microglial marker, are detectible in optic nerve glioma tissue stored for decades, thus providing potential targets for pharmacologic intervention. Cases were retrieved from the Armed Forces Institute of Pathology Registry of Ophthalmic Pathology. Clinical information was tabulated. In specimens with sufficient tissue, a tissue microarray was constructed to conduct molecular studies. Ninety-two cases were included: gender distribution was in a ratio of one male to 1.6 females, and age range was 2 months to 50 years (average age, 10.8 years). Neurofibromatosis type 1 was identified in 10 cases (10.8%). The majority presented with decreased vision and exophthalmos. Forty-eight cases were studied by a tissue microarray construction. Glial fibrillary acidic protein, a control for immunoreactivity, was positive in 46 cases (96%). Immunoreactivity for p16 protein was seen in 36 cases (75%) and CD68-positive cells in 34 (71%). Limitations include referral bias, limited clinical information, limited amount of tissue, and extended period of tissue preservation. Optic nerve glioma is a tumor of the visual axis in young individuals, which is generally indolent but with a variable clinical course. Traditional histopathologic techniques have not been reliably predictive of clinical course. This microarray contains tumors with representative demographic, clinical, and histologic characteristics for optic nerve glioma. Immunoreactivity for p16 protein and CD68 is positive in the majority. These findings suggest a possible explanation for the variable clinical course and identify therapeutic targets in the cell senescence and microglial pathways.

  2. Gene Expression Analyses of Subchondral Bone in Early Experimental Osteoarthritis by Microarray

    PubMed Central

    Chen, YuXian; Shen, Jun; Lu, HuaDing; Zeng, Chun; Ren, JianHua; Zeng, Hua; Li, ZhiFu; Chen, ShaoMing; Cai, DaoZhang; Zhao, Qing

    2012-01-01

    Osteoarthritis (OA) is a degenerative joint disease that affects both cartilage and bone. A better understanding of the early molecular changes in subchondral bone may help elucidate the pathogenesis of OA. We used microarray technology to investigate the time course of molecular changes in the subchondral bone in the early stages of experimental osteoarthritis in a rat model. We identified 2,234 differentially expressed (DE) genes at 1 week, 1,944 at 2 weeks and 1,517 at 4 weeks post-surgery. Further analyses of the dysregulated genes indicated that the events underlying subchondral bone remodeling occurred sequentially and in a time-dependent manner at the gene expression level. Some of the identified dysregulated genes that were identified have suspected roles in bone development or remodeling; these genes include Alp, Igf1, Tgf β1, Postn, Mmp3, Tnfsf11, Acp5, Bmp5, Aspn and Ihh. The differences in the expression of these genes were confirmed by real-time PCR, and the results indicated that our microarray data accurately reflected gene expression patterns characteristic of early OA. To validate the results of our microarray analysis at the protein level, immunohistochemistry staining was used to investigate the expression of Mmp3 and Aspn protein in tissue sections. These analyses indicate that Mmp3 protein expression completely matched the results of both the microarray and real-time PCR analyses; however, Aspn protein expression was not observed to differ at any time. In summary, our study demonstrated a simple method of separation of subchondral bone sample from the knee joint of rat, which can effectively avoid bone RNA degradation. These findings also revealed the gene expression profiles of subchondral bone in the rat OA model at multiple time points post-surgery and identified important DE genes with known or suspected roles in bone development or remodeling. These genes may be novel diagnostic markers or therapeutic targets for OA. PMID:22384228

  3. Feasibility of using tissue microarray cores of paraffin-embedded breast cancer tissue for measurement of gene expression: a proof-of-concept study.

    PubMed

    Drury, Suzanne; Salter, Janine; Baehner, Frederick L; Shak, Steven; Dowsett, Mitch

    2010-06-01

    To determine whether 0.6 mm cores of formalin-fixed paraffin-embedded (FFPE) tissue, as commonly used to construct immunohistochemical tissue microarrays, may be a valid alternative to tissue sections as source material for quantitative real-time PCR-based transcriptional profiling of breast cancer. Four matched 0.6 mm cores of invasive breast tumour and two 10 microm whole sections were taken from eight FFPE blocks. RNA was extracted and reverse transcribed, and TaqMan assays were performed on the 21 genes of the Oncotype DX Breast Cancer assay. Expression of the 16 recurrence-related genes was normalised to the set of five reference genes, and the recurrence score (RS) was calculated. RNA yield was lower from 0.6 mm cores than from 10 microm whole sections, but was still more than sufficient to perform the assay. RS and single gene data from cores were highly comparable with those from whole sections (RS p=0.005). Greater variability was seen between cores than between sections. FFPE sections are preferable to 0.6 mm cores for RNA profiling in order to maximise RNA yield and to allow for standard histopathological assessment. However, 0.6 mm cores are sufficient and would be appropriate to use for large cohort studies.

  4. Stanniocalcin 2 is an estrogen-responsive gene coexpressed with the estrogen receptor in human breast cancer.

    PubMed

    Bouras, Toula; Southey, Melissa C; Chang, Andy C; Reddel, Roger R; Willhite, Dorian; Glynne, Richard; Henderson, Michael A; Armes, Jane E; Venter, Deon J

    2002-03-01

    Differences in gene expression are likely to explain the phenotypic variation between hormone-responsive and hormone-unresponsive breast cancers. In this study, DNA microarray analysis of approximately 10,000 known genes and 25,000 expressed sequence tag clusters was performed to identify genes induced by estrogen and repressed by the pure antiestrogen ICI 182 780 in vitro that correlated with estrogen receptor (ER) expression in primary breast carcinomas in vivo. Stanniocalcin (STC) 2 was identified as one of the genes that fulfilled these criteria. DNA microarray hybridization showed a 3-fold induction of STC2 mRNA expression in MCF-7 cells in < or = 3 h of estrogen exposure and a 3-fold repression in the presence of antiestrogen (one-way ANOVA, P < 0.0005). In 13 ER-positive and 12 ER-negative breast carcinomas, the microarray-derived mRNA levels observed for STC2 correlated with tumor ER mRNA (Pearson's correlation, r = 0.85; P < 0.0001) and ER protein status (Spearman's rank correlation, r = 0.73; P < 0.0001). The expression profile of STC2 was further confirmed by in situ hybridization and immunohistochemistry on a larger cohort of 236 unselected breast carcinomas using tissue microarrays. STC2 mRNA and protein expression were found to be associated with tumor ER status (Fisher's exact test, P < 0.005). The related gene, STC1, was also examined and shown to be associated with ER status in breast carcinomas (Fisher's exact test, P < 0.05). This study demonstrates the feasibility of using global gene expression data derived from an in vitro model to pinpoint novel estrogen-responsive genes of potential clinical relevance.

  5. Unique Chemokine Profiles of Lung Tissues Distinguish Post-chemotherapeutic Persistent and Chronic Tuberculosis in a Mouse Model.

    PubMed

    Park, Soomin; Baek, Seung-Hun; Cho, Sang-Nae; Jang, Young-Saeng; Kim, Ahreum; Choi, In-Hong

    2017-01-01

    There is a substantial need for biomarkers to distinguish latent stage from active Mycobacterium tuberculosis infections, for predicting disease progression. To induce the reactivation of tuberculosis, we present a new experimental animal model modified based on the previous model established by our group. In the new model, the reactivation of tuberculosis is induced without administration of immunosuppressive agents, which might disturb immune responses. To identify the immunological status of the persistent and chronic stages, we analyzed immunological genes in lung tissues from mice infected with M. tuberculosis . Gene expression was screened using cDNA microarray analysis and confirmed by quantitative RT-PCR. Based on the cDNA microarray results, 11 candidate cytokines genes, which were obviously up-regulated during the chronic stage compared with those during the persistent stage, were selected and clustered into three groups: (1) chemokine genes, except those of monocyte chemoattractant proteins (MCPs; CXCL9, CXCL10, CXCL11, CCL5, CCL19); (2) MCP genes (CCL2, CCL7, CCL8, CCL12); and (3) TNF and IFN-γ genes. Results from the cDNA microarray and quantitative RT-PCR analyses revealed that the mRNA expression of the selected cytokine genes was significantly higher in lung tissues of the chronic stage than of the persistent stage. Three chemokines (CCL5, CCL19, and CXCL9) and three MCPs (CCL7, CCL2, and CCL12) were noticeably increased in the chronic stage compared with the persistent stage by cDNA microarray ( p < 0.01, except CCL12) or RT-PCR ( p < 0.01). Therefore, these six significantly increased cytokines in lung tissue from the mouse tuberculosis model might be candidates for biomarkers to distinguish the two disease stages. This information can be combined with already reported potential biomarkers to construct a network of more efficient tuberculosis markers.

  6. DNA Microarray Analysis Identifies CKS2 and LEPR as Potential Markers of Meningioma Recurrence

    PubMed Central

    Menghi, Francesca; Orzan, Francesca N.; Eoli, Marica; Farinotti, Mariangela; Maderna, Emanuela; Pisati, Federica; Bianchessi, Donatella; Valletta, Lorella; Lodrini, Sandro; Galli, Giuseppe; Anghileri, Elena; Pellegatta, Serena; Pollo, Bianca

    2011-01-01

    Meningiomas are the most frequent intracranial tumors. Surgery can be curative, but recurrences are possible. We performed gene expression analyses and loss of heterozygosity (LOH) studies looking for new markers predicting the recurrence risk. We analyzed expression profiles of 23 meningiomas (10 grade I, 10 grade II, and 3 grade III) and validated the data using quantitative polymerase chain reaction (qPCR). We performed LOH analysis on 40 meningiomas, investigating chromosomal regions on 1p, 9p, 10q, 14q, and 22q. We found 233 and 268 probe sets to be significantly down- and upregulated, respectively, in grade II or III meningiomas. Genes downregulated in high-grade meningiomas were overrepresented on chromosomes 1, 6, 9, 10, and 14. Based on functional enrichment analysis, we selected LIM domain and actin binding 1 (LIMA1), tissue inhibitor of metalloproteinases 3 (TIMP3), cyclin-dependent kinases regulatory subunit 2 (CKS2), leptin receptor (LEPR), and baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) for validation using qPCR and confirmed their differential expression in the two groups of tumors. We calculated ΔCt values of CKS2 and LEPR and found that their differential expression (C-L index) was significantly higher in grade I than in grade II or III meningiomas (p < .0001). Interestingly, the C-L index of nine grade I meningiomas from patients who relapsed in <5 years was significantly lower than in grade I meningiomas from patients who did not relapse. These findings indicate that the C-L index may be relevant to define the progression risk in meningioma patients, helping guide their clinical management. A prospective analysis on a larger number of cases is warranted. PMID:21948653

  7. DNA microarray analysis identifies CKS2 and LEPR as potential markers of meningioma recurrence.

    PubMed

    Menghi, Francesca; Orzan, Francesca N; Eoli, Marica; Farinotti, Mariangela; Maderna, Emanuela; Pisati, Federica; Bianchessi, Donatella; Valletta, Lorella; Lodrini, Sandro; Galli, Giuseppe; Anghileri, Elena; Pellegatta, Serena; Pollo, Bianca; Finocchiaro, Gaetano

    2011-01-01

    Meningiomas are the most frequent intracranial tumors. Surgery can be curative, but recurrences are possible. We performed gene expression analyses and loss of heterozygosity (LOH) studies looking for new markers predicting the recurrence risk. We analyzed expression profiles of 23 meningiomas (10 grade I, 10 grade II, and 3 grade III) and validated the data using quantitative polymerase chain reaction (qPCR). We performed LOH analysis on 40 meningiomas, investigating chromosomal regions on 1p, 9p, 10q, 14q, and 22q. We found 233 and 268 probe sets to be significantly down- and upregulated, respectively, in grade II or III meningiomas. Genes downregulated in high-grade meningiomas were overrepresented on chromosomes 1, 6, 9, 10, and 14. Based on functional enrichment analysis, we selected LIM domain and actin binding 1 (LIMA1), tissue inhibitor of metalloproteinases 3 (TIMP3), cyclin-dependent kinases regulatory subunit 2 (CKS2), leptin receptor (LEPR), and baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) for validation using qPCR and confirmed their differential expression in the two groups of tumors. We calculated ΔCt values of CKS2 and LEPR and found that their differential expression (C-L index) was significantly higher in grade I than in grade II or III meningiomas (p < .0001). Interestingly, the C-L index of nine grade I meningiomas from patients who relapsed in <5 years was significantly lower than in grade I meningiomas from patients who did not relapse. These findings indicate that the C-L index may be relevant to define the progression risk in meningioma patients, helping guide their clinical management. A prospective analysis on a larger number of cases is warranted.

  8. Transcriptional response to hypoxic stress in melanoma and prognostic potential of GBE1 and BNIP3.

    PubMed

    Buart, Stéphanie; Terry, Stéphane; Noman, Muhammad Z; Lanoy, Emilie; Boutros, Céline; Fogel, Paul; Dessen, Philippe; Meurice, Guillaume; Gaston-Mathé, Yann; Vielh, Philippe; Roy, Séverine; Routier, Emilie; Marty, Virginie; Ferlicot, Sophie; Legrès, Luc; Bouchtaoui, Morad El; Kamsu-Kom, Nyam; Muret, Jane; Deutsch, Eric; Eggermont, Alexander; Soria, Jean-Charles; Robert, Caroline; Chouaib, Salem

    2017-12-12

    Gradients of hypoxia occur in most solid tumors and cells found in hypoxic regions are associated with the most aggressive and therapy-resistant fractions of the tumor. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia in melanoma. Using microarray technology, whole genome gene expression profiling was first performed on established melanoma cell lines. From gene set enrichment analyses, we derived a robust 35 probes signature (hypomel for HYPOxia MELanoma) associated with hypoxia-response pathways, including 26 genes up regulated, and 9 genes down regulated. The microarray data were validated by RT-qPCR for the 35 transcripts. We then validated the signature in hypoxic zones from 8 patient specimens using laser microdissection or macrodissection of Formalin fixed-paraffin-embedded (FFPE) material, followed with RT-qPCR. Moreover, a similar hypoxia-associated gene expression profile was observed using NanoString technology to analyze RNAs from FFPE melanoma tissues of a cohort of 19 patients treated with anti-PD1. Analysis of NanoString data from validation sets using Non-Negative Matrix Factorization (NMF) analysis (26 genes up regulated in hypoxia) and dual clustering (samples and genes) further revealed that the increased level of BNIP3 (Bcl-2 adenovirus E1B 19 kDa-interacting protein 3)/GBE1 (glycogen branching enzyme1) differential pair correlates with the lack of response of melanoma patients to anti-PD1 (pembrolizumab) immunotherapy. These studies suggest that through elevated glycogenic flux and induction of autophagy, hypoxia is a critical molecular program that could be considered as a prognostic factor for melanoma.

  9. Comparison of gene expression responses to hypoxia in viviparous (Xiphophorus) and oviparous (Oryzias) fishes using a medaka microarray.

    PubMed

    Boswell, Mikki G; Wells, Melissa C; Kirk, Lyndsey M; Ju, Zhenlin; Zhang, Ziping; Booth, Rachell E; Walter, Ronald B

    2009-03-01

    Gene expression profiling using DNA microarray technology is a useful tool for assessing gene transcript level responses after an organism is exposed to environmental stress. Herein, we detail results from studies using an 8 k medaka (Oryzias latipes) microarray to assess modulated gene expression patterns upon hypoxia exposure of the live-bearing aquaria fish, Xiphophorus maculatus. To assess the reproducibility and reliability of using the medaka array in cross-genus hybridization, a two-factor ANOVA analysis of gene expression was employed. The data show the tissue source of the RNA used for array hybridization contributed more to the observed response of modulated gene targets than did the species source of the RNA. In addition, hierarchical clustering via heat map analyses of groupings of tissues and species (Xiphophorus and medaka) suggests that hypoxia induced similar responses in the same tissues from these two diverse aquatic model organisms. Our Xiphophorus results indicate 206 brain, 37 liver, and 925 gill gene targets exhibit hypoxia induced expression changes. Analysis of the Xiphophorus data to determine those features exhibiting a significant (p<0.05)+/-3 fold change produced only two gene targets within brain tissue and 80 features within gill tissue. Of these 82 characterized features, 39 were identified via homology searching (cut-off E-value of 1 x 10(-5)) and placed into one or more biological process gene ontology groups. Among these 39 genes, metabolic energy changes and manipulation was the most affected biological pathway (13 genes).

  10. The Combination of Periostin Overexpression and Microvascular Invasion Is Related to a Poor Prognosis for Hepatocellular Carcinoma.

    PubMed

    Jang, Se Young; Park, Soo Young; Lee, Hye Won; Choi, Yeon-Kyung; Park, Keun-Gyu; Yoon, Ghil Suk; Tak, Won Young; Kweon, Young Oh; Hur, Keun; Lee, Won Kee

    2016-11-15

    Periostin is an extracellular matrix protein and is known to be related to the metastatic potential and prognosis of cancer. However, few studies have investigated the expression level of periostin and its association with prognoses in hepatocellular carcinoma. Therefore, we analyzed periostin overexpression in hepatocellular carcinoma and its implication for prognoses. We evaluated 149 patients who underwent surgical resection between 2006 and 2010. Tissue microarrays were constructed from hepatocellular carcinoma tissue and adjacent nontumor tissue, and immunohistochemistry was performed. A high periostin level was observed more frequently in cases of multiple tumors (odds ratio [OR], 2.826; 95% confidence interval [CI], 1.224 to 6.527; p=0.013), positive microvascular invasion (OR, 2.974; 95% CI, 1.431 to 6.181; p=0.003), and advanced stage disease (OR, 3.032; 95% CI, 1.424 to 6.452; p=0.003). Patients with high periostin expression had significantly (p=0.002) lower overall survival rates than those with low periostin expression (90.3%, 66.1%, and 56.2% vs 97.7%, 85.1%, and 77.5% at 1, 3, and 5 years). We found that a combination of periostin overexpression and microvascular invasion in hepatocellular carcinoma was correlated with a poor prognosis and can be a good prognostic marker for hepatocellular carcinoma.

  11. Temporal quantitation of mutant Kit tyrosine kinase signaling attenuated by a novel thiophene kinase inhibitor OSI-930.

    PubMed

    Petti, Filippo; Thelemann, April; Kahler, Jen; McCormack, Siobhan; Castaldo, Linda; Hunt, Tony; Nuwaysir, Lydia; Zeiske, Lynn; Haack, Herbert; Sullivan, Laura; Garton, Andrew; Haley, John D

    2005-08-01

    OSI-930, a potent thiophene inhibitor of the Kit, KDR, and platelet-derived growth factor receptor tyrosine kinases, was used to selectively inhibit tyrosine phosphorylation downstream of juxtamembrane mutant Kit in the mast cell leukemia line HMC-1. Inhibition of Kit kinase activity resulted in a rapid dephosphorylation of Kit and inhibition of the downstream signaling pathways. Attenuation of Ras-Raf-Erk (phospho-Erk, phospho-p38), phosphatidyl inositol-3' kinase (phospho-p85, phospho-Akt, phospho-S6), and signal transducers and activators of transcription signaling pathways (phospho-STAT3/5/6) were measured by affinity liquid chromatography tandem mass spectrometry, by immunoblot, and by tissue microarrays of fixed cell pellets. To more globally define additional components of Kit signaling temporally altered by kinase inhibition, a novel multiplex quantitative isobaric peptide labeling approach was used. This approach allowed clustering of proteins by temporal expression patterns. Kit kinase, which dephosphorylates rapidly upon kinase inhibition, was shown to regulate both Shp-1 and BDP-1 tyrosine phosphatases and the phosphatase-interacting protein PSTPIP2. Interactions with SH2 domain adapters [growth factor receptor binding protein 2 (Grb2), Cbl, Slp-76] and SH3 domain adapters (HS1, cortactin, CD2BP3) were attenuated by inhibition of Kit kinase activity. Functional crosstalk between Kit and the non-receptor tyrosine kinases Fes/Fps, Fer, Btk, and Syk was observed. Inhibition of Kit modulated phosphorylation-dependent interactions with pathways controlling focal adhesion (paxillin, leupaxin, p130CAS, FAK1, the Src family kinase Lyn, Wasp, Fhl-3, G25K, Ack-1, Nap1, SH3P12/ponsin) and septin-actin complexes (NEDD5, cdc11, actin). The combined use of isobaric protein quantitation and expression clustering, immunoblot, and tissue microarray strategies allowed temporal measurement signaling pathways modulated by mutant Kit inhibition in a model of mast cell leukemia.

  12. Microarray-based characterization of differential gene expression during vocal fold wound healing in rats

    PubMed Central

    Welham, Nathan V.; Ling, Changying; Dawson, John A.; Kendziorski, Christina; Thibeault, Susan L.; Yamashita, Masaru

    2015-01-01

    The vocal fold (VF) mucosa confers elegant biomechanical function for voice production but is susceptible to scar formation following injury. Current understanding of VF wound healing is hindered by a paucity of data and is therefore often generalized from research conducted in skin and other mucosal systems. Here, using a previously validated rat injury model, expression microarray technology and an empirical Bayes analysis approach, we generated a VF-specific transcriptome dataset to better capture the system-level complexity of wound healing in this specialized tissue. We measured differential gene expression at 3, 14 and 60 days post-injury compared to experimentally naïve controls, pursued functional enrichment analyses to refine and add greater biological definition to the previously proposed temporal phases of VF wound healing, and validated the expression and localization of a subset of previously unidentified repair- and regeneration-related genes at the protein level. Our microarray dataset is a resource for the wider research community and has the potential to stimulate new hypotheses and avenues of investigation, improve biological and mechanistic insight, and accelerate the identification of novel therapeutic targets. PMID:25592437

  13. Association of tumor-infiltrating T-cell density with molecular subtype, racial ancestry and clinical outcomes in prostate cancer.

    PubMed

    Kaur, Harsimar B; Guedes, Liana B; Lu, Jiayun; Maldonado, Laneisha; Reitz, Logan; Barber, John R; De Marzo, Angelo M; Tosoian, Jeffrey J; Tomlins, Scott A; Schaeffer, Edward M; Joshu, Corinne E; Sfanos, Karen S; Lotan, Tamara L

    2018-05-30

    The inflammatory microenvironment plays an important role in the pathogenesis and progression of tumors and may be associated with somatic genomic alterations. We examined the association of tumor-infiltrating T-cell density with clinical-pathologic variables, tumor molecular subtype, and oncologic outcomes in surgically treated primary prostate cancer occurring in patients of European-American or African-American ancestry. We evaluated 312 primary prostate tumors, enriched for patients with African-American ancestry and high grade disease. Tissue microarrays were immunostained for CD3, CD8, and FOXP3 and were previously immunostained for ERG and PTEN using genetically validated protocols. Image analysis for quantification of T-cell density in tissue microarray tumor spots was performed. Automated quantification of T-cell densities in tumor-containing regions of tissue microarray spots and standard histologic sections were correlated (r = 0.73, p < 0.00001) and there was good agreement between visual and automated T-cell density counts on tissue microarray spots (r = 0.93, p < 0.00001). There was a significant correlation between CD3+, CD8+, and FOXP3+ T-cell densities (p < 0.00001), but these were not associated with most clinical or pathologic variables. Increased T-cell density was significantly associated with ERG positivity (median 309 vs. 188 CD3+ T cells/mm 2 ; p = 0.0004) and also with PTEN loss (median 317 vs. 192 CD3+ T cells/mm 2 ; p = 0.001) in the combined cohort of matched European-American and African-American ancestry patients. The same association or a similar trend was present in patients of both ancestries when analyzed separately. When the African-American patients from the matched race set were combined with a separate high grade set of African-American cases, there was a weak association of increased FOXP3+ T-cell densities with increased risk of metastasis in multivariable analysis. Though high T-cell density is associated with specific molecular subclasses of prostate cancer, we did not find an association of T-cell density with racial ancestry.

  14. Form-Deprivation Myopia in Chick Induces Limited Changes in Retinal Gene Expression

    PubMed Central

    McGlinn, Alice M.; Baldwin, Donald A.; Tobias, John W.; Budak, Murat T.; Khurana, Tejvir S.; Stone, Richard A.

    2007-01-01

    Purpose Evidence has implicated the retina as a principal controller of refractive development. In the present study, the retinal transcriptome was analyzed to identify alterations in gene expression and potential signaling pathways involved in form-deprivation myopia of the chick. Methods One-week-old white Leghorn chicks wore a unilateral image-degrading goggle for 6 hours or 3 days (n = 6 at each time). Total RNA from the retina/(retinal pigment epithelium) was used for expression profiling with chicken gene microarrays (Chicken GeneChips; Affymetrix, Santa Clara, CA). To identify gene expression level differences between goggled and contralateral nongoggled eyes, normalized microarray signal intensities were analyzed by the significance analysis of microarrays (SAM) approach. Differentially expressed genes were validated by real-time quantitative reverse transcription–polymerase chain reaction (qPCR) in independent biological replicates. Results Small changes were detected in differentially expressed genes in form-deprived eyes. In chickens that had 6 hours of goggle wear, downregulation of bone morphogenetic protein 2 and connective tissue growth factor was validated. In those with 3 days of goggle wear, downregulation of bone morphogenetic protein 2, vasoactive intestinal peptide, preopro-urotensin II–related peptide and mitogen-activated protein kinase phosphatase 2 was validated, and upregulation of endothelin receptor type B and interleukin-18 was validated. Conclusions Form-deprivation myopia, in its early stages, is associated with only minimal changes in retinal gene expression at the level of the transcriptome. While the list of validated genes is short, each merits further study for potential involvement in the signaling cascade mediating myopia development. PMID:17652709

  15. Increased expression of hepatocyte nuclear factor 4 alpha transcribed by promoter 2 indicates a poor prognosis in hepatocellular carcinoma.

    PubMed

    Cai, Shao-Hang; Lu, Shi-Xun; Liu, Li-Li; Zhang, Chris Zhiyi; Yun, Jing-Ping

    2017-10-01

    Hepatocyte nuclear factor 4 alpha (HNF4α) plays an important role in tumourigenesis. There is growing evidence indicating that HNF4α transcribed by promoter 1 (P1-HNF4α) is expressed at relatively low levels in HCC and its presence predicts a favourable outcome for hepatocellular carcinoma (HCC) patients. However, the role of HNF4α transcribed by promoter 2 (P2-HNF4α) in HCC remains unclear. A total of 615 HCC specimens were obtained to construct tissue microarrays and perform immunohistochemistry. The relationship between P2-HNF4α and clinical features of HCC patients were analysed. Kaplan-Meier analysis was conducted to assess the prognostic value of P2-HNF4α. The results showed that the expression of P2-HNF4α in HCC was noticeably increased in HCC tissues compared with the nontumourous tissues. In addition, P1-HNF4α expression was negatively correlated with P2-HNF4α expression ( p  = 0.023). High P2-HNF4α expression was significantly associated with poor differentiation of HCC ( p = 0.002) and vascular invasion ( p = 0.017). Kaplan-Meier analysis showed that P2-HNF4α expression was closely correlated with overall survival in the training group ( p = 0.01), validation group ( p = 0.034), and overall group of patients with HCC ( p < 0.001). Our data show that the role of HNF4α in cancer development needs to be further refined. P2-HNF4α, different from P1-HNF4α, is markedly upregulated and serves as an oncogene-associated protein in HCC. Our study therefore provides a promising biomarker for prognostic prediction and a potential therapeutic target for HCC.

  16. Urinary MicroRNAs of Prostate Cancer: Virus-Encoded hsv1-miRH18 and hsv2-miR-H9-5p Could Be Valuable Diagnostic Markers.

    PubMed

    Yun, Seok Joong; Jeong, Pildu; Kang, Ho Won; Kim, Ye-Hwan; Kim, Eun-Ah; Yan, Chunri; Choi, Young-Ki; Kim, Dongho; Kim, Jung Min; Kim, Seon-Kyu; Kim, Seon-Young; Kim, Sang Tae; Kim, Won Tae; Lee, Ok-Jun; Koh, Gou-Young; Moon, Sung-Kwon; Kim, Isaac Yi; Kim, Jayoung; Choi, Yung-Hyun; Kim, Wun-Jae

    2015-06-01

    MicroRNAs (miRNAs) in biological fluids are potential biomarkers for the diagnosis and assessment of urological diseases such as benign prostatic hyperplasia (BPH) and prostate cancer (PCa). The aim of the study was to identify and validate urinary cell-free miRNAs that can segregate patients with PCa from those with BPH. In total, 1,052 urine, 150 serum, and 150 prostate tissue samples from patients with PCa or BPH were used in the study. A urine-based miRNA microarray analysis suggested the presence of differentially expressed urinary miRNAs in patients with PCa, and these were further validated in three independent PCa cohorts, using a quantitative reverse transcriptionpolymerase chain reaction analysis. The expression levels of hsa-miR-615-3p, hsv1-miR-H18, hsv2-miR-H9-5p, and hsa-miR-4316 were significantly higher in urine samples of patients with PCa than in those of BPH controls. In particular, herpes simplex virus (hsv)-derived hsv1-miR-H18 and hsv2-miR-H9-5p showed better diagnostic performance than did the serum prostate-specific antigen (PSA) test for patients in the PSA gray zone. Furthermore, a combination of urinary hsv2-miR-H9-5p with serum PSA showed high sensitivity and specificity, providing a potential clinical benefit by reducing unnecessary biopsies. Our findings showed that hsv-encoded hsv1-miR-H18 and hsv2-miR-H9-5p are significantly associated with PCa and can facilitate early diagnosis of PCa for patients within the serum PSA gray zone.

  17. Urinary MicroRNAs of Prostate Cancer: Virus-Encoded hsv1-miRH18 and hsv2-miR-H9-5p Could Be Valuable Diagnostic Markers

    PubMed Central

    Yun, Seok Joong; Jeong, Pildu; Kang, Ho Won; Kim, Ye-Hwan; Kim, Eun-Ah; Yan, Chunri; Choi, Young-Ki; Kim, Dongho; Kim, Jung Min; Kim, Seon-Kyu; Kim, Seon-Young; Kim, Sang Tae; Kim, Won Tae; Lee, Ok-Jun; Koh, Gou-Young; Moon, Sung-Kwon; Kim, Isaac Yi; Kim, Jayoung; Choi, Yung-Hyun; Kim, Wun-Jae

    2015-01-01

    Purpose: MicroRNAs (miRNAs) in biological fluids are potential biomarkers for the diagnosis and assessment of urological diseases such as benign prostatic hyperplasia (BPH) and prostate cancer (PCa). The aim of the study was to identify and validate urinary cell-free miRNAs that can segregate patients with PCa from those with BPH. Methods: In total, 1,052 urine, 150 serum, and 150 prostate tissue samples from patients with PCa or BPH were used in the study. A urine-based miRNA microarray analysis suggested the presence of differentially expressed urinary miRNAs in patients with PCa, and these were further validated in three independent PCa cohorts, using a quantitative reverse transcriptionpolymerase chain reaction analysis. Results: The expression levels of hsa-miR-615-3p, hsv1-miR-H18, hsv2-miR-H9-5p, and hsa-miR-4316 were significantly higher in urine samples of patients with PCa than in those of BPH controls. In particular, herpes simplex virus (hsv)-derived hsv1-miR-H18 and hsv2-miR-H9-5p showed better diagnostic performance than did the serum prostate-specific antigen (PSA) test for patients in the PSA gray zone. Furthermore, a combination of urinary hsv2-miR-H9-5p with serum PSA showed high sensitivity and specificity, providing a potential clinical benefit by reducing unnecessary biopsies. Conclusions: Our findings showed that hsv-encoded hsv1-miR-H18 and hsv2-miR-H9-5p are significantly associated with PCa and can facilitate early diagnosis of PCa for patients within the serum PSA gray zone. PMID:26126436

  18. Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larkin, Andrew; Department of Statistics, Oregon State University; Superfund Research Center, Oregon State University

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdanimore » logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions for combining PAH mixtures in agreement with microarrays ► Predictions highly dependent on aryl hydrocarbon receptor repressor expression.« less

  19. Epigenetics-related genes in prostate cancer: expression profile in prostate cancer tissues, androgen-sensitive and -insensitive cell lines.

    PubMed

    Shaikhibrahim, Zaki; Lindstrot, Andreas; Ochsenfahrt, Jacqueline; Fuchs, Kerstin; Wernert, Nicolas

    2013-01-01

    Epigenetic changes have been suggested to drive prostate cancer (PCa) development and progression. Therefore, in this study, we aimed to identify novel epigenetics-related genes in PCa tissues, and to examine their expression in metastatic PCa cell lines. We analyzed the expression of epigenetics-related genes via a clustering analysis based on gene function in moderately and poorly differentiated PCa glands compared to normal glands of the peripheral zone (prostate proper) from PCa patients using Whole Human Genome Oligo Microarrays. Our analysis identified 12 epigenetics-related genes with a more than 2-fold increase or decrease in expression and a p-value <0.01. In modera-tely differentiated tumors compared to normal glands of the peripheral zone, we found the genes, TDRD1, IGF2, DICER1, ADARB1, HILS1, GLMN and TRIM27, to be upregulated, whereas TNRC6A and DGCR8 were found to be downregulated. In poorly differentiated tumors, we found TDRD1, ADARB and RBM3 to be upregulated, whereas DGCR8, PIWIL2 and BC069781 were downregulated. Our analysis of the expression level for each gene in the metastatic androgen-sensitive VCaP and LNCaP, and -insensitive PC3 and DU-145 PCa cell lines revealed differences in expression among the cell lines which may reflect the different biological properties of each cell line, and the potential role of each gene at different metastatic sites. The novel epigenetics-related genes that we identified in primary PCa tissues may provide further insight into the role that epigenetic changes play in PCa. Moreover, some of the genes that we identified may play important roles in primary PCa and metastasis, in primary PCa only, or in metastasis only. Follow-up studies are required to investigate the functional role and the role that the expression of these genes play in the outcome and progression of PCa using tissue microarrays.

  20. Identification and validation of differentially expressed transcripts by RNA-sequencing of formalin-fixed, paraffin-embedded (FFPE) lung tissue from patients with Idiopathic Pulmonary Fibrosis.

    PubMed

    Vukmirovic, Milica; Herazo-Maya, Jose D; Blackmon, John; Skodric-Trifunovic, Vesna; Jovanovic, Dragana; Pavlovic, Sonja; Stojsic, Jelena; Zeljkovic, Vesna; Yan, Xiting; Homer, Robert; Stefanovic, Branko; Kaminski, Naftali

    2017-01-12

    Idiopathic Pulmonary Fibrosis (IPF) is a lethal lung disease of unknown etiology. A major limitation in transcriptomic profiling of lung tissue in IPF has been a dependence on snap-frozen fresh tissues (FF). In this project we sought to determine whether genome scale transcript profiling using RNA Sequencing (RNA-Seq) could be applied to archived Formalin-Fixed Paraffin-Embedded (FFPE) IPF tissues. We isolated total RNA from 7 IPF and 5 control FFPE lung tissues and performed 50 base pair paired-end sequencing on Illumina 2000 HiSeq. TopHat2 was used to map sequencing reads to the human genome. On average ~62 million reads (53.4% of ~116 million reads) were mapped per sample. 4,131 genes were differentially expressed between IPF and controls (1,920 increased and 2,211 decreased (FDR < 0.05). We compared our results to differentially expressed genes calculated from a previously published dataset generated from FF tissues analyzed on Agilent microarrays (GSE47460). The overlap of differentially expressed genes was very high (760 increased and 1,413 decreased, FDR < 0.05). Only 92 differentially expressed genes changed in opposite directions. Pathway enrichment analysis performed using MetaCore confirmed numerous IPF relevant genes and pathways including extracellular remodeling, TGF-beta, and WNT. Gene network analysis of MMP7, a highly differentially expressed gene in both datasets, revealed the same canonical pathways and gene network candidates in RNA-Seq and microarray data. For validation by NanoString nCounter® we selected 35 genes that had a fold change of 2 in at least one dataset (10 discordant, 10 significantly differentially expressed in one dataset only and 15 concordant genes). High concordance of fold change and FDR was observed for each type of the samples (FF vs FFPE) with both microarrays (r = 0.92) and RNA-Seq (r = 0.90) and the number of discordant genes was reduced to four. Our results demonstrate that RNA sequencing of RNA obtained from archived FFPE lung tissues is feasible. The results obtained from FFPE tissue are highly comparable to FF tissues. The ability to perform RNA-Seq on archived FFPE IPF tissues should greatly enhance the availability of tissue biopsies for research in IPF.

  1. Application of a Fuzzy Neural Network Model in Predicting Polycyclic Aromatic Hydrocarbon- Mediated Perturbations of the Cyp1b1 Transcriptional Regulatory Network in Mouse Skin

    PubMed Central

    Larkin, Andrew; Siddens, Lisbeth K.; Krueger, Sharon K.; Tilton, Susan C.; Waters, Katrina M.; Williams, David E.; Baird, William M.

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave one out cross-validation. Predictions were within 1 log2 fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. PMID:23274566

  2. Cancer testis antigen OY-TES-1: analysis of protein expression in ovarian cancer with tissue microarrays.

    PubMed

    Fan, R; Huang, W; Luo, B; Zhang, Q M; Xiao, S W; Xie, X X

    2015-01-01

    Revised manuscript accepted for publication March 5, Objectives: The purpose of this study was to determine the potential of cancer testis antigen OY-TES-1 as a vaccine for ovarian cancer (OC). A tissue microarray (TMA) containing 107 samples from OC tissues and 48 samples from OC adjacent tissues was analyzed by immunohistochemistry with the OY-TES-1 polyclonal antibody. The correlation between OY-TES-1 and clinic pathological traits of OC was statistically analyzed. The expression of OY-TES-1 protein was found in 81% (87/107) of OC tissues and 56% (27/48) of OC adjacent tissues. The immunostaining intensity of OY-TES-1 in OC tissues was significantly higher than that in OC adjacent tissues tested (p = 0.040). OC adjacent tissues only demonstrated lower immunostaining intensity, whereas some of OC tissues presented higher immunostaining intensity and majority showed the heterogeneity of protein distribution. There was no statistically significant correlation found between OY-TES-1 expression and any other clinicopathological traits such as age, FIGO stage, pathological grade, and histological type. OY-TES-1 was expressed in OC tissues with a high proportion, and some of OC tissues presented OY-TES-1 expression in high level vs OC adjacent tissues. OY-TES-1 could be an attractive target for immunotherapy for OC in the future.

  3. Role of Macrophage-Induced Inflammation in Mesothelioma

    DTIC Science & Technology

    2010-07-01

    in human mesothelioma tumors and correlate immune cell infiltration with histopathologic subtype (months 1-6). Using tumor tissue microarrays of... histopathologic subtype (months 1-6). • Acquired 71 fixed and paraffin-embedded mesothelioma tumor samples • Prepared mesothelioma tumor tissue...Biol., 2008. 84: p. 1-8. 5. Dave, S.S., et al., Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating

  4. Relevance of TNBS-Colitis in Rats: A Methodological Study with Endoscopic, Histologic and Transcriptomic Characterization and Correlation to IBD

    PubMed Central

    Brenna, Øystein; Furnes, Marianne W.; Drozdov, Ignat; van Beelen Granlund, Atle; Flatberg, Arnar; Sandvik, Arne K.; Zwiggelaar, Rosalie T. M.; Mårvik, Ronald; Nordrum, Ivar S.; Kidd, Mark; Gustafsson, Björn I.

    2013-01-01

    Background Rectal instillation of trinitrobenzene sulphonic acid (TNBS) in ethanol is an established model for inflammatory bowel disease (IBD). We aimed to 1) set up a TNBS-colitis protocol resulting in an endoscopic and histologic picture resembling IBD, 2) study the correlation between endoscopic, histologic and gene expression alterations at different time points after colitis induction, and 3) compare rat and human IBD mucosal transcriptomic data to evaluate whether TNBS-colitis is an appropriate model of IBD. Methodology/Principal Findings Five female Sprague Daley rats received TNBS diluted in 50% ethanol (18 mg/0.6 ml) rectally. The rats underwent colonoscopy with biopsy at different time points. RNA was extracted from rat biopsies and microarray was performed. PCR and in situ hybridization (ISH) were done for validation of microarray results. Rat microarray profiles were compared to human IBD expression profiles (25 ulcerative colitis Endoscopic score demonstrated mild to moderate colitis after three and seven days, but declined after twelve days. Histologic changes corresponded with the endoscopic appearance. Over-represented Gene Ontology Biological Processes included: Cell Adhesion, Immune Response, Lipid Metabolic Process, and Tissue Regeneration. IL-1α, IL-1β, TLR2, TLR4, PRNP were all significantly up-regulated, while PPARγ was significantly down-regulated. Among genes with highest fold change (FC) were SPINK4, LBP, ADA, RETNLB and IL-1α. The highest concordance in differential expression between TNBS and IBD transcriptomes was three days after colitis induction. ISH and PCR results corresponded with the microarray data. The most concordantly expressed biologically relevant pathways included TNF signaling, Cell junction organization, and Interleukin-1 processing. Conclusions/Significance Endoscopy with biopsies in TNBS-colitis is useful to follow temporal changes of inflammation visually and histologically, and to acquire tissue for gene expression analyses. TNBS-colitis is an appropriate model to study specific biological processes in IBD. PMID:23382912

  5. Expression profile of circular RNAs in human gastric cancer tissues

    PubMed Central

    Huang, You-Sheng; Jie, Na; Zou, Ke-Jian; Weng, Yang

    2017-01-01

    Circular RNAs (circRNAs) represent a newly identified class of non-coding RNA molecules, which interfere with gene transcription by adsorbing microRNAs (miRNAs). CircRNAs serve important roles in disease development and have the potential to serve as a novel class of biomarkers for clinical diagnosis. However, the role of circRNAs in the occurrence and development of gastric cancer (GC) remains unclear. In the present study, the expression profiles of circRNAs were compared between GC and adjacent normal tissues using a circRNA microarray, following which quantitative polymerase chain reaction (qPCR) was used to confirm the results of the circRNA microarray. Compared with the adjacent, normal mucosal tissues, 16 circRNAs were upregulated and 84 circRNAs were downregulated in GC. A total of 10 circRNAs were selected for validation in three pairs of GC and adjacent noncancerous tissues. The qPCR results were consistent with the findings of the microarray-based expression analysis. Of the circRNAs studied, only circRNA-0026 (hsa_circ_0000026) exhibited significantly different expression in GC (2.8-fold, P=0.001). Furthermore, online Database for Annotation, Visualization and Integrated Discovery annotation was used to predict circRNA-targeted miRNA-gene interactions. The analysis revealed that circRNA-0026 may regulate RNA transcription, RNA metabolism, gene expression, gene silencing and other biological functions in GC. In conclusion, differential expression of circRNAs may be associated with GC tumorigenesis, and circRNA-0026 is a promising biomarker for GC diagnosis and targeted therapy. PMID:28737829

  6. Prognostic value of purinergic P2X7 receptor expression in patients with hepatocellular carcinoma after curative resection.

    PubMed

    Liu, Haiou; Liu, Weisi; Liu, Zheng; Liu, Yidong; Zhang, Weijuan; Xu, Le; Xu, Jiejie

    2015-07-01

    The family of type 2 purinergic (P2) receptors, especially P2X7, is responsible for the direct tumor-killing functions of extracellular adenosine triphosphate (ATP), but the precise role of P2X7 in the progression of hepatocellular carcinoma (HCC) remains elusive. This study aims to evaluate prognostic value of P2X7 expression in HCC patients after surgical resection. Expression of P2X7 was assessed by immunohistochemistry in tissue microarrays containing paired tumor and peritumoral liver tissues from 273 patients with HCC who had undergone hepatectomy between 2006 and 2007. Prognostic value of P2X7 expression and clinical outcomes were evaluated. Peritumoral P2X7 expression was significantly higher than intratumoral P2X7 expression. No significant prognostic difference was observed for overall survival for intratumoral P2X7 density, whereas peritumoral P2X7 density indicates unfavorable overall survival in training set and BCLC stage 0-A subset. Besides, peritumoral P2X7 density, which correlated with tumor size, venous invasion, and BCLC stage, was identified as an independent poor prognosticator for overall survival and recurrence-free survival. The association was further validated in validation set. Peritumoral P2X7 is a potential unfavorable prognosticator for overall survival and recurrence free survival in HCC patients after surgical resection. Further external validation and functional analysis should be pursued to evaluate its potential prognostic value and therapeutic significance for HCC patients.

  7. Increased Expression of ALDH1A1 in Prostate Cancer is Correlated With Tumor Aggressiveness: A Tissue Microarray Study of Iranian Patients.

    PubMed

    Kalantari, Elham; Saadi, Faezeh H; Asgari, Mojgan; Shariftabrizi, Ahmad; Roudi, Raheleh; Madjd, Zahra

    2017-09-01

    Subpopulations of prostate cancer (PCa) cells expressing putative stem cell markers possess the ability to promote tumor growth, maintenance, and progression. This study aimed to evaluate the expression patterns and clinical significance of putative stem cell marker aldehyde dehydrogenase 1 A1 (ALDH1A1) in prostate tumor tissues. ALDH1A1 expression was examined in a well-defined series of prostate tissues, including 105 (68%) samples of PCa, 21 (13%) samples of high-grade prostatic intraepithelial neoplasia, and 31 (19%) samples of benign prostate hyperplasia, which were embedded in tissue microarray blocks. The correlation of ALDH1A1 expression with clinicopathologic parameters was also assessed. There was a significant difference between the expression level of ALDH1A1 in PCa compared with the high-grade prostatic intraepithelial neoplasia and benign prostate hyperplasia samples (P<0.001). PCa cells expressing ALDH1A1 were more often seen in samples with advanced Gleason score (P=0.05) and high serum prostate specific antigen level (P=0.02). In addition, a positive correlation was found between ALDH1A1 expression and primary tumor stage and regional lymph node involvement (P=0.04 and 0.03, respectively). The significant association between ALDH1A1 expressions with Gleason score indicates the potential role of this protein in PCa tumorigenesis and aggressive behavior; therefore, this cancer stem cell marker can be used as a promising candidate for targeted therapy of PCa, especially those with high Gleason score.

  8. MEG3, HCN3 and linc01105 influence the proliferation and apoptosis of neuroblastoma cells via the HIF-1α and p53 pathways.

    PubMed

    Tang, Weitao; Dong, Kuiran; Li, Kai; Dong, Rui; Zheng, Shan

    2016-11-08

    The purpose of this study was to investigate the differential expression and functional roles of long non-coding RNAs (lncRNAs) in neuroblastoma tissue. LncRNA microarrays were used to identify differentially expressed lncRNAs between tumor and para-tumor tissues. In total, in tumor tissues, 3,098 and 1,704 lncRNAs were upregulated and downregulated, respectively. HCN3 and linc01105 exhibited the higher expression (P < 0.05; P < 0.01, respectively) in neuroblastoma tissue, whereas MEG3 displayed the lower expression (P < 0.01). HIF-1α expression was negatively correlated with cell proliferation in the linc01105 KD group. In addition, Noxa and Bid expression was positively correlated with cell apoptosis. Moreover, linc01105 knockdown promoted cell proliferation, whereas MEG3 overexpression inhibited proliferation. Finally, linc01105 knockdown, MEG3 overexpression and HCN3 knockdown all increased apoptosis. The correlation coefficients between those three lncRNAs and the International Neuroblastoma Staging System (INSS) stage were -0.48, -0.58 and -0.55, respectively. In conclusion, we have identified lncRNAs that are differentially expressed in neuroblastoma tissues. The lncRNAs HCN3, linc01105, and MEG3 may be important in biological behaviors of neuroblastoma through mechanisms involving p53 pathway members such as HIF-1α, Noxa, and Bid. The expressions of MEG3, HCN3 and linc01105 are all negatively correlated with the INSS stage.

  9. Tissue microarray immunohistochemical detection of brachyury is not a prognostic indicator in chordoma.

    PubMed

    Zhang, Linlin; Guo, Shang; Schwab, Joseph H; Nielsen, G Petur; Choy, Edwin; Ye, Shunan; Zhang, Zhan; Mankin, Henry; Hornicek, Francis J; Duan, Zhenfeng

    2013-01-01

    Brachyury is a marker for notochord-derived tissues and neoplasms, such as chordoma. However, the prognostic relevance of brachyury expression in chordoma is still unknown. The improvement of tissue microarray technology has provided the opportunity to perform analyses of tumor tissues on a large scale in a uniform and consistent manner. This study was designed with the use of tissue microarray to determine the expression of brachyury. Brachyury expression in chordoma tissues from 78 chordoma patients was analyzed by immunohistochemical staining of tissue microarray. The clinicopathologic parameters, including gender, age, location of tumor and metastatic status were evaluated. Fifty-nine of 78 (75.64%) tumors showed nuclear staining for brachyury, and among them, 29 tumors (49.15%) showed 1+ (<30% positive cells) staining, 15 tumors (25.42%) had 2+ (31% to 60% positive cells) staining, and 15 tumors (25.42%) demonstrated 3+ (61% to 100% positive cells) staining. Brachyury nuclear staining was detected more frequently in sacral chordomas than in chordomas of the mobile spine. However, there was no significant relationship between brachyury expression and other clinical variables. By Kaplan-Meier analysis, brachyury expression failed to produce any significant relationship with the overall survival rate. In conclusion, brachyury expression is not a prognostic indicator in chordoma.

  10. Utility of miR‑133a‑3p as a diagnostic indicator for hepatocellular carcinoma: An investigation combined with GEO, TCGA, meta‑analysis and bioinformatics.

    PubMed

    Liang, Hai-Wei; Yang, Xia; Wen, Dong-Yue; Gao, Li; Zhang, Xiang-Yu; Ye, Zhi-Hua; Luo, Jie; Li, Zu-Yun; He, Yun; Pang, Yu-Yan; Chen, Gang

    2018-01-01

    Increasing evidence has demonstrated that microRNA (miR)‑133a‑3p is an important regulator of hepatocellular carcinoma (HCC). In the present study, the diagnostic role of miR‑133a‑3p in HCC, and the potential functional pathways, were both explored based on publicly available data. Eligible microarray datasets were collected from NCBI Gene Expression Omnibus (GEO) database and ArrayExpress database. The data related to HCC and matched adjacent normal tissues were also downloaded from The Cancer Genome Atlas (TCGA). Published studies reporting the association between miR‑133a‑3p expression and HCC were reviewed from multiple databases. By combining the data derived from three sources (GEO, TCGA and published studies), the authors analyzed the comprehensive relationship between miR‑133a‑3p expression and clinicopathological features of HCC. Eventually, putative targets of miR‑133a‑3p in HCC were selected for further bioinformatics prediction. A total of eight published microarray datasets were gathered, and the pooled results demonstrated that the expression of miR‑133a‑3p in the tumor group was lower than that in normal groups [standardized mean difference (SMD)=‑0.54; 95% confidence interval (CI), ‑0.74 to ‑0.35; P<0.001]. Consistently, the level of miR‑133a‑1 in HCC was reduced markedly compared to normal tissues (P<0.001) based on TCGA data, and the AUC value of low miR‑133a‑1 expression for HCC diagnosis was 0.670 (P<0.001). Furthermore, the combined SMD of all datasets (GEO, TCGA and literature) suggested that significant difference was observed between the HCC group and the normal control group, and lower miR‑133a‑3p expression in HCC group was noted (SMD=‑0.69; 95% CI, ‑1.10 to ‑0.29; P=0.001). In addition, the authors discovered five key genes of the calcium signaling pathway (NOS1, ADRA1A, ADRA1B, ADRA1D and TBXA2R) that may probably be targeted by miR‑133a‑3p in HCC. The study reveals that miR‑133a‑3p may function as a tumor suppressor in HCC. The prospective novel pathways and key genes of miR‑133a‑3p could offer potential biomarkers for HCC; however, the predictions require further confirmation.

  11. Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification.

    PubMed

    Oberthuer, André; Berthold, Frank; Warnat, Patrick; Hero, Barbara; Kahlert, Yvonne; Spitz, Rüdiger; Ernestus, Karen; König, Rainer; Haas, Stefan; Eils, Roland; Schwab, Manfred; Brors, Benedikt; Westermann, Frank; Fischer, Matthias

    2006-11-01

    To develop a gene expression-based classifier for neuroblastoma patients that reliably predicts courses of the disease. Two hundred fifty-one neuroblastoma specimens were analyzed using a customized oligonucleotide microarray comprising 10,163 probes for transcripts with differential expression in clinical subgroups of the disease. Subsequently, the prediction analysis for microarrays (PAM) was applied to a first set of patients with maximally divergent clinical courses (n = 77). The classification accuracy was estimated by a complete 10-times-repeated 10-fold cross validation, and a 144-gene predictor was constructed from this set. This classifier's predictive power was evaluated in an independent second set (n = 174) by comparing results of the gene expression-based classification with those of risk stratification systems of current trials from Germany, Japan, and the United States. The first set of patients was accurately predicted by PAM (cross-validated accuracy, 99%). Within the second set, the PAM classifier significantly separated cohorts with distinct courses (3-year event-free survival [EFS] 0.86 +/- 0.03 [favorable; n = 115] v 0.52 +/- 0.07 [unfavorable; n = 59] and 3-year overall survival 0.99 +/- 0.01 v 0.84 +/- 0.05; both P < .0001) and separated risk groups of current neuroblastoma trials into subgroups with divergent outcome (NB2004: low-risk 3-year EFS 0.86 +/- 0.04 v 0.25 +/- 0.15, P < .0001; intermediate-risk 1.00 v 0.57 +/- 0.19, P = .018; high-risk 0.81 +/- 0.10 v 0.56 +/- 0.08, P = .06). In a multivariate Cox regression model, the PAM predictor classified patients of the second set more accurately than risk stratification of current trials from Germany, Japan, and the United States (P < .001; hazard ratio, 4.756 [95% CI, 2.544 to 8.893]). Integration of gene expression-based class prediction of neuroblastoma patients may improve risk estimation of current neuroblastoma trials.

  12. Optimised laser microdissection of the human ocular surface epithelial regions for microarray studies

    PubMed Central

    2013-01-01

    Background The most important challenge of performing insitu transcriptional profiling of the human ocular surface epithelial regions is obtaining samples in sufficient amounts, without contamination from adjacent tissue, as the region of interest is microscopic and closely apposed to other tissues regions. We have effectively collected ocular surface (OS) epithelial tissue samples from the Limbal Epithelial Crypt (LEC), limbus, cornea and conjunctiva of post-mortem cadaver eyes with laser microdissection (LMD) technique for gene expression studies with spotted oligonucleotide microarrays and Gene 1.0 ST arrays. Methods Human donor eyes (4 pairs for spotted oligonucleotide microarrays, 3 pairs for Gene 1.0 ST arrays) consented for research were included in this study with due ethical approval of the Nottingham Research Ethics Committee. Eye retrieval was performed within 36 hours of post-mortem period. The dissected corneoscleral buttons were immersed in OCT media and frozen in liquid nitrogen and stored at −80°C till further use. Microscopic tissue sections of interest were taken on PALM slides and stained with Toluidine Blue for laser microdissection with PALM microbeam systems. Optimisation of the laser microdissection technique was crucial for efficient and cost effective sample collection. Results The starting concentration of RNA as stipulated by the protocol of microarray platforms was taken as the cut-off concentration of RNA samples in our studies. The area of LMD tissue processed for spotted oligonucleotide microarray study ranged from 86,253 μm2 in LEC to 392,887 μm2 in LEC stroma. The RNA concentration of the LMD samples ranged from 22 to 92 pg/μl. The recommended starting concentration of the RNA samples used for Gene 1.0 ST arrays was 6 ng/5 μl. To achieve the desired RNA concentration the area of ocular surface epithelial tissue sample processed for the Gene 1.0 ST array experiments was approximately 100,0000 μm2 to 130,0000 μm2. RNA concentration of these samples ranged from 10.88 ng/12 μl to 25.8 ng/12 μl, with the RNA integrity numbers (RIN) for these samples from 3.3 to 7.9. RNA samples with RIN values below 2, that had failed to amplify satisfactorily were discarded. Conclusions The optimised protocol for sample collection and laser microdissection improved the RNA yield of the insitu ocular surface epithelial regions for effective microarray studies on spotted oligonucleotide and affymetrix platforms. PMID:24160452

  13. Strong association of insulin-like growth factor 1 receptor expression with histologic grade, subtype, and HPV status in penile squamous cell carcinomas: a tissue microarray study of 112 cases.

    PubMed

    Faraj, Sheila F; Gonzalez-Roibon, Nilda; Munari, Enrico; Sharma, Rajni; Burnett, Arthur L; Cubilla, Antonio L; Netto, George J; Chaux, Alcides

    2017-06-01

    Insulin-like growth factor-1 receptor (IGF1R) plays a key role in cell growth and transformation. It is overexpressed in several solid tumors. This study evaluates IGF1R immunoexpression in penile squamous cell carcinoma (SCC). Four tissue microarrays were built from formalin-fixed, paraffin-embedded blocks of 112 penile SCC from Paraguay. Membranous IGF1R expression was evaluated by immunohistochemistry using two different approaches. An H-score was calculated in each spot (stain intensity by extent), and a median score per tumor was obtained. The second approach consisted of a score similar to the scoring system that was used for evaluating HER2 immunoexpression. For each case, the highest category obtained at any spot was used for statistical analyses. IGF1R expression was compared by histologic subtype, grade, and human papillomavirus (HPV) status. Median H-score was 22.5. The distribution of IGF1R expression by HER2 approach was as follows: 0 in 33.0% cases, 1+ in 46.4%, 2+ in 14.3%, and 3+ in 6.2%. IGF1R H-scores were associated with basaloid and warty/basaloid subtypes (p = 0.0026) and higher grade (p = 0.00052). Although weaker when using the HER2 approach, the association of IGF1R expression with subtype (p = 0.015) and grade (p = 0.015) remained significant. Furthermore, there was an association between IGF1R expression by HER2 approach and HPV status (p = 0.012). IGF1R was expressed in about two thirds of penile SCC cases, showing a strong positive association with histologic grade, subtype, and HPV status. Considering that grade is a predictor of outcome IGF1R expression may have prognostic relevance and could point to a potential role for IGF1R inhibitors in treating penile SCC.

  14. DEVELOPMENT AND VALIDATION OF A 2,000 GENE MICROARRAY FOR THE FATHEAD MINNOW, PIMEPHALES PROMELAS

    EPA Science Inventory

    The development of the gene microarray has provided the field of ecotoxicology a new tool to identify modes of action (MOA) of chemicals and chemical mixtures. Herein we describe the development and application of a 2,000 gene oligonucleotide microarray for the fathead minnow (P...

  15. Long-term dietary supplementation of organic selenium modulates gene expression profiles in leukocytes of adult pigs.

    PubMed

    Song, Ki-Duk; Dowd, Scott E; Lee, Hak-Kyo; Kim, Sung Woo

    2013-03-01

    Seventy-two pigs at 34.4 kg body weight (BW) were allotted to two treatments with six replicates/treatment and six pigs/pen: the CON (negative control, no added selenium (Se)) and the OS (0.36 mg/kg added selenium from selenium-enriched yeast). Pigs were fed until 130 kg BW. The CON diet contained 0.18 mg/kg indigenous Se whereas the OS diet contained 0.54 mg/kg Se. Blood samples were collected at 130 kg BW and further processed for microarray analysis, prepared with 885 genes related to immune function of pigs. Among those, 28 genes related to improved immune status and innate immunity were up-regulated (P < 0.05) in leukocytes from Se-fed pigs and those include major histocompatibility class I (> 1.66), arginase I (> 1.27), integrin beta-1-subunit (> 1.20), toll like receptor 2 (> 1.12) and double-stranded RNA-dependent protein kinase. However, 24 genes including tissue factor (< 4.70), serum amyloid A-2 protein (< 3.11) and p27Kip1 (< 1.42) were down-regulated (P < 0.05) in leukocytes from Se-fed pigs. Expression of four selected genes was validated using quantitative PCR (qPCR) showing significant correlation between mircroarray analysis and qPCR analysis. This study indicates that a long- term dietary supplementation (0.3%) of organic Se improves the expression of genes that are related to enhanced immunity of pigs. © 2012 Japanese Society of Animal Science.

  16. Src kinases in chondrosarcoma chemoresistance and migration: dasatinib sensitises to doxorubicin in TP53 mutant cells

    PubMed Central

    van Oosterwijk, J G; van Ruler, M A J H; Briaire-de Bruijn, I H; Herpers, B; Gelderblom, H; van de Water, B; Bovée, J V M G

    2013-01-01

    Background: Chondrosarcomas are malignant cartilage-forming tumours of bone. Because of their resistance to conventional chemotherapy and radiotherapy, currently no treatment strategies exist for unresectable and metastatic chondrosarcoma. Previously, PI3K/AKT/GSK3β and Src kinase pathways were shown to be activated in chondrosarcoma cell lines. Our aim was to investigate the role of these kinases in chemoresistance and migration in chondrosarcoma in relation to TP53 mutation status. Methods: We used five conventional and three dedifferentiated chondrosarcoma cell lines and investigated the effect of PI3K/AKT/GSK3β pathway inhibition (enzastaurin) and Src pathway inhibition (dasatinib) in chemoresistance using WST assay and live cell imaging with AnnexinV staining. Immunohistochemistry on tissue microarrays (TMAs) containing 157 cartilaginous tumours was performed for Src family members. Migration assays were performed with the RTCA xCelligence System. Results: Src inhibition was found to overcome chemoresistance, to induce apoptosis and to inhibit migration. Cell lines with TP53 mutations responded better to combination therapy than wild-type cell lines (P=0.002). Tissue microarray immunohistochemistry confirmed active Src (pSrc) signalling, with Fyn being most abundantly expressed (76.1%). Conclusion: These results strongly indicate Src family kinases, in particular Fyn, as a potential target for the treatment of inoperable and metastatic chondrosarcomas, and to sensitise for doxorubicin especially in the presence of TP53 mutations. PMID:23922104

  17. Assessment of gene expression profiles in peripheral occlusive arterial disease.

    PubMed

    Bubenek, Serban; Nastase, Anca; Niculescu, Ana Maria; Baila, Sorin; Herlea, Vlad; Lazar, Vadimir; Paslaru, Liliana; Botezatu, Anca; Tomescu, Dana; Popescu, Irinel; Dima, Simona

    2012-01-01

    Molecular events responsible for the onset and progression of peripheral occlusive arterial disease (POAD) are incompletely understood. Gene expression profiling may point out relevant features of the disease. Tissue samples were collected as operatory waste from a total of 36 patients with (n = 18) and without (n = 18) POAD. The tissues were histologically evaluated, and the patients with POAD were classified according to Leriche-Fontaine (LF) classification: 11% with stage IIB, 22% with stage III, and 67% with stage IV. Total RNA was isolated from all samples and hybridized onto Agilent 4×44K Oligo microarray slides. The bioinformatic analysis identified genes differentially expressed between control and pathologic tissues. Ten genes with a fold change ≥ 2 (1 with a fold change ≥ 1.8) were selected for quantitative polymerase chain reaction validation (GPC3, CFD, GDF10, ITLN1, TSPAN8, MMP28, NNMT, SERPINA5, LUM, and FDXR). C-reactive protein (CRP) was assessed with a specific assay, while nicotinamide N-methyltransferase (NNMT) was evaluated in the patient serum by enzyme-linked immunosorbent assay. A multiple regression analysis showed that the level of CRP in the serum is correlated with the POAD LF stages (r(2) = 0.22, P = 0.046) and that serum NNMT is higher in IV LF POAD patients (P = 0.005). The mRNA gene expression of LUM is correlated with the LF stage (r(2) = 0.45, P = 0.009), and the mRNA level of ITLN1 is correlated with the ankle-brachial index (r(2) = 0.42, P = 0.008). Our analysis shows that NNMT, ITLN1, LUM, CFD, and TSPAN8 in combination with other known markers, such as CRP, could be evaluated as a panel of biomarkers of POAD. Copyright © 2012 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  18. Analysis of Gene Expression Profiles of Soft Tissue Sarcoma Using a Combination of Knowledge-Based Filtering with Integration of Multiple Statistics

    PubMed Central

    Doi, Ayano; Ichinohe, Risa; Ikuyo, Yoriko; Takahashi, Teruyoshi; Marui, Shigetaka; Yasuhara, Koji; Nakamura, Tetsuro; Sugita, Shintaro; Sakamoto, Hiromi; Yoshida, Teruhiko; Hasegawa, Tadashi

    2014-01-01

    The diagnosis and treatment of soft tissue sarcomas (STS) have been difficult. Of the diverse histological subtypes, undifferentiated pleomorphic sarcoma (UPS) is particularly difficult to diagnose accurately, and its classification per se is still controversial. Recent advances in genomic technologies provide an excellent way to address such problems. However, it is often difficult, if not impossible, to identify definitive disease-associated genes using genome-wide analysis alone, primarily because of multiple testing problems. In the present study, we analyzed microarray data from 88 STS patients using a combination method that used knowledge-based filtering and a simulation based on the integration of multiple statistics to reduce multiple testing problems. We identified 25 genes, including hypoxia-related genes (e.g., MIF, SCD1, P4HA1, ENO1, and STAT1) and cell cycle- and DNA repair-related genes (e.g., TACC3, PRDX1, PRKDC, and H2AFY). These genes showed significant differential expression among histological subtypes, including UPS, and showed associations with overall survival. STAT1 showed a strong association with overall survival in UPS patients (logrank p = 1.84×10−6 and adjusted p value 2.99×10−3 after the permutation test). According to the literature, the 25 genes selected are useful not only as markers of differential diagnosis but also as prognostic/predictive markers and/or therapeutic targets for STS. Our combination method can identify genes that are potential prognostic/predictive factors and/or therapeutic targets in STS and possibly in other cancers. These disease-associated genes deserve further preclinical and clinical validation. PMID:25188299

  19. A prognostic classifier for patients with colorectal cancer liver metastasis, based on AURKA, PTGS2 and MMP9.

    PubMed

    Goos, Jeroen A C M; Coupé, Veerle M H; van de Wiel, Mark A; Diosdado, Begoña; Delis-Van Diemen, Pien M; Hiemstra, Annemieke C; de Cuba, Erienne M V; Beliën, Jeroen A M; Menke-van der Houven van Oordt, C Willemien; Geldof, Albert A; Meijer, Gerrit A; Hoekstra, Otto S; Fijneman, Remond J A

    2016-01-12

    Prognosis of patients with colorectal cancer liver metastasis (CRCLM) is estimated based on clinicopathological models. Stratifying patients based on tumor biology may have additional value. Tissue micro-arrays (TMAs), containing resected CRCLM and corresponding primary tumors from a multi-institutional cohort of 507 patients, were immunohistochemically stained for 18 candidate biomarkers. Cross-validated hazard rate ratios (HRRs) for overall survival (OS) and the proportion of HRRs with opposite effect (P(HRR < 1) or P(HRR > 1)) were calculated. A classifier was constructed by classification and regression tree (CART) analysis and its prognostic value determined by permutation analysis. Correlations between protein expression in primary tumor-CRCLM pairs were calculated. Based on their putative prognostic value, EGFR (P(HRR < 1) = .02), AURKA (P(HRR < 1) = .02), VEGFA (P(HRR < 1) = .02), PTGS2 (P(HRR < 1) = .01), SLC2A1 (P(HRR > 1) < 01), HIF1α (P(HRR > 1) = .06), KCNQ1 (P(HRR > 1) = .09), CEA (P (HRR > 1) = .05) and MMP9 (P(HRR < 1) = .07) were included in the CART analysis (n = 201). The resulting classifier was based on AURKA, PTGS2 and MMP9 expression and was associated with OS (HRR 2.79, p < .001), also after multivariate analysis (HRR 3.57, p < .001). The prognostic value of the biomarker-based classifier was superior to the clinicopathological model (p = .001). Prognostic value was highest for colon cancer patients (HRR 5.71, p < .001) and patients not treated with systemic therapy (HRR 3.48, p < .01). Classification based on protein expression in primary tumors could be based on AURKA expression only (HRR 2.59, p = .04). A classifier was generated for patients with CRCLM with improved prognostic value compared to the standard clinicopathological prognostic parameters, which may aid selection of patients who may benefit from adjuvant systemic therapy.

  20. Circular RNA profiles in mouse lung tissue induced by radon.

    PubMed

    Pei, Weiwei; Tao, Lijing; Zhang, Leshuai W; Zhang, Shuyu; Cao, Jianping; Jiao, Yang; Tong, Jian; Nie, Jihua

    2017-04-07

    Radon is a known human lung carcinogen, whose underlying carcinogenic mechanism remains unclear. Recently, circular RNA (circRNA), a class of endogenous non-protein coding RNAs that contain a circular loop, was found to exhibit multiple biological effects. In this study, circRNA profiles in mouse lung tissues between control and radon exposure were analyzed. Six mice were exposed to radon at concentration of 100,000 Bq/m 3 , 12 h/d, for up to cumulative doses of 60 working level months (WLM). H&E staining and immunohistochemistry of caspase-3 were used to detect the damages in lung tissue. The lung tissue of control and exposed group were selected for circRNA microarray study. The circRNA/microRNA interaction was analyzed by starBase prediction software. 5 highest expressing circRNAs were selected by real-time PCR to validate the consistency in mouse lung tissue exposed to radon. Inflammatory reaction was found in mouse lung tissue exposed to radon, and caspase-3 expression was significantly increased. Microarray screening revealed 107 up-regulated and 83 down-regulated circRNAs, among which top 30 circRNAs with the highest fold changes were chosen for further analysis, with 5 microRNAs binding sites listed for each circRNA. Consistency of the top 5 circRNAs with the highest expressions were confirmed in mice exposed with 60WLM of radon. Mouse lung tissue was severely injured when exposed to radon through pathological diagnosis and immunohistochemical analysis. A series of differentially expressed circRNAs demonstrated that they may play an important role in pulmonary toxicity induced by radon.

  1. Functional Analyses of NSF1 in Wine Yeast Using Interconnected Correlation Clustering and Molecular Analyses

    PubMed Central

    Bessonov, Kyrylo; Walkey, Christopher J.; Shelp, Barry J.; van Vuuren, Hennie J. J.; Chiu, David; van der Merwe, George

    2013-01-01

    Analyzing time-course expression data captured in microarray datasets is a complex undertaking as the vast and complex data space is represented by a relatively low number of samples as compared to thousands of available genes. Here, we developed the Interdependent Correlation Clustering (ICC) method to analyze relationships that exist among genes conditioned on the expression of a specific target gene in microarray data. Based on Correlation Clustering, the ICC method analyzes a large set of correlation values related to gene expression profiles extracted from given microarray datasets. ICC can be applied to any microarray dataset and any target gene. We applied this method to microarray data generated from wine fermentations and selected NSF1, which encodes a C2H2 zinc finger-type transcription factor, as the target gene. The validity of the method was verified by accurate identifications of the previously known functional roles of NSF1. In addition, we identified and verified potential new functions for this gene; specifically, NSF1 is a negative regulator for the expression of sulfur metabolism genes, the nuclear localization of Nsf1 protein (Nsf1p) is controlled in a sulfur-dependent manner, and the transcription of NSF1 is regulated by Met4p, an important transcriptional activator of sulfur metabolism genes. The inter-disciplinary approach adopted here highlighted the accuracy and relevancy of the ICC method in mining for novel gene functions using complex microarray datasets with a limited number of samples. PMID:24130853

  2. Genome‐Wide MicroRNA and Gene Analysis of Mesenchymal Stem Cell Chondrogenesis Identifies an Essential Role and Multiple Targets for miR‐140‐5p

    PubMed Central

    Tselepi, Maria; Gómez, Rodolfo; Woods, Steven; Hui, Wang; Smith, Graham R.; Shanley, Daryl P.; Clark, Ian M.; Young, David A.

    2015-01-01

    Abstract microRNAs (miRNAs) are abundantly expressed in development where they are critical determinants of cell differentiation and phenotype. Accordingly miRNAs are essential for normal skeletal development and chondrogenesis in particular. However, the question of which miRNAs are specific to the chondrocyte phenotype has not been fully addressed. Using microarray analysis of miRNA expression during mesenchymal stem cell chondrogenic differentiation and detailed examination of the role of essential differentiation factors, such as SOX9, TGF‐β, and the cell condensation phase, we characterize the repertoire of specific miRNAs involved in chondrocyte development, highlighting in particular miR‐140 and miR‐455. Further with the use of mRNA microarray data we integrate miRNA expression and mRNA expression during chondrogenesis to underline the particular importance of miR‐140, especially the ‐5p strand. We provide a detailed identification and validation of direct targets of miR‐140‐5p in both chondrogenesis and adult chondrocytes with the use of microarray and 3′UTR analysis. This emphasizes the diverse array of targets and pathways regulated by miR‐140‐5p. We are also able to confirm previous experimentally identified targets but, additionally, identify a novel positive regulation of the Wnt signaling pathway by miR‐140‐5p. Wnt signaling has a complex role in chondrogenesis and skeletal development and these findings illustrate a previously unidentified role for miR‐140‐5p in regulation of Wnt signaling in these processes. Together these developments further highlight the role of miRNAs during chondrogenesis to improve our understanding of chondrocyte development and guide cartilage tissue engineering. Stem Cells 2015;33:3266–3280 PMID:26175215

  3. Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma.

    PubMed

    Mendrzyk, Frank; Radlwimmer, Bernhard; Joos, Stefan; Kokocinski, Felix; Benner, Axel; Stange, Daniel E; Neben, Kai; Fiegler, Heike; Carter, Nigel P; Reifenberger, Guido; Korshunov, Andrey; Lichter, Peter

    2005-12-01

    Medulloblastoma is the most common malignant brain tumor in children. Despite multimodal aggressive treatment, nearly half of the patients die as a result of this tumor. Identification of molecular markers for prognosis and development of novel pathogenesis-based therapies depends crucially on a better understanding of medulloblastoma pathomechanisms. We performed genome-wide analysis of DNA copy number imbalances in 47 medulloblastomas using comparative genomic hybridization to large insert DNA microarrays (matrix-CGH). The expression of selected candidate genes identified by matrix-CGH was analyzed immunohistochemically on tissue microarrays representing medulloblastomas from 189 clinically well-documented patients. To identify novel prognostic markers, genomic findings and protein expression data were correlated to patient survival. Matrix-CGH analysis revealed frequent DNA copy number alterations of several novel candidate regions. Among these, gains at 17q23.2-qter (P < .01) and losses at 17p13.1 to 17p13.3 (P = .04) were significantly correlated to poor prognosis. Within 17q23.2-qter and 7q21.2, two of the most frequently gained chromosomal regions, confined amplicons were identified that contained the PPM1D and CDK6 genes, respectively. Immunohistochemistry revealed strong expression of PPM1D in 148 (88%) of 168 and CDK6 in 50 (30%) of 169 medulloblastomas. Overexpression of CDK6 correlated significantly with poor prognosis (P < .01) and represented an independent prognostic marker of overall survival on multivariate analysis (P = .02). We identified CDK6 as a novel molecular marker that can be determined by immunohistochemistry on routinely processed tissue specimens and may facilitate the prognostic assessment of medulloblastoma patients. Furthermore, increased protein-levels of PPM1D and CDK6 may link the TP53 and RB1 tumor suppressor pathways to medulloblastoma pathomechanisms.

  4. Gene expression profiling in gill tissues of White spot syndrome virus infected black tiger shrimp Penaeus monodon by DNA microarray.

    PubMed

    Shekhar, M S; Gomathi, A; Gopikrishna, G; Ponniah, A G

    2015-06-01

    White spot syndrome virus (WSSV) continues to be the most devastating viral pathogen infecting penaeid shrimp the world over. The genome of WSSV has been deciphered and characterized from three geographical isolates and significant progress has been made in developing various molecular diagnostic methods to detect the virus. However, the information on host immune gene response to WSSV pathogenesis is limited. Microarray analysis was carried out as an approach to analyse the gene expression in black tiger shrimp Penaeus monodon in response to WSSV infection. Gill tissues collected from the WSSV infected shrimp at 6, 24, 48 h and moribund stage were analysed for differential gene expression. Shrimp cDNAs of 40,059 unique sequences were considered for designing the microarray chip. The Cy3-labeled cRNA derived from healthy and WSSV-infected shrimp was subjected to hybridization with all the DNA spots in the microarray which revealed 8,633 and 11,147 as up- and down-regulated genes respectively at different time intervals post infection. The altered expression of these numerous genes represented diverse functions such as immune response, osmoregulation, apoptosis, nucleic acid binding, energy and metabolism, signal transduction, stress response and molting. The changes in gene expression profiles observed by microarray analysis provides molecular insights and framework of genes which are up- and down-regulated at different time intervals during WSSV infection in shrimp. The microarray data was validated by Real Time analysis of four differentially expressed genes involved in apoptosis (translationally controlled tumor protein, inhibitor of apoptosis protein, ubiquitin conjugated enzyme E2 and caspase) for gene expression levels. The role of apoptosis related genes in WSSV infected shrimp is discussed herein.

  5. Development and validation of a gene expression oligo microarray for the gilthead sea bream (Sparus aurata).

    PubMed

    Ferraresso, Serena; Vitulo, Nicola; Mininni, Alba N; Romualdi, Chiara; Cardazzo, Barbara; Negrisolo, Enrico; Reinhardt, Richard; Canario, Adelino V M; Patarnello, Tomaso; Bargelloni, Luca

    2008-12-03

    Aquaculture represents the most sustainable alternative of seafood supply to substitute for the declining marine fisheries, but severe production bottlenecks remain to be solved. The application of genomic technologies offers much promise to rapidly increase our knowledge on biological processes in farmed species and overcome such bottlenecks. Here we present an integrated platform for mRNA expression profiling in the gilthead sea bream (Sparus aurata), a marine teleost of great importance for aquaculture. A public data base was constructed, consisting of 19,734 unique clusters (3,563 contigs and 16,171 singletons). Functional annotation was obtained for 8,021 clusters. Over 4,000 sequences were also associated with a GO entry. Two 60mer probes were designed for each gene and in-situ synthesized on glass slides using Agilent SurePrint technology. Platform reproducibility and accuracy were assessed on two early stages of sea bream development (one-day and four days old larvae). Correlation between technical replicates was always > 0.99, with strong positive correlation between paired probes. A two class SAM test identified 1,050 differentially expressed genes between the two developmental stages. Functional analysis suggested that down-regulated transcripts (407) in older larvae are mostly essential/housekeeping genes, whereas tissue-specific genes are up-regulated in parallel with the formation of key organs (eye, digestive system). Cross-validation of microarray data was carried out using quantitative qRT-PCR on 11 target genes, selected to reflect the whole range of fold-change and both up-regulated and down-regulated genes. A statistically significant positive correlation was obtained comparing expression levels for each target gene across all biological replicates. Good concordance between qRT-PCR and microarray data was observed between 2- and 7-fold change, while fold-change compression in the microarray was present for differences greater than 10-fold in the qRT-PCR. A highly reliable oligo-microarray platform was developed and validated for the gilthead sea bream despite the presently limited knowledge of the species transcriptome. Because of the flexible design this array will be able to accommodate additional probes as soon as novel unique transcripts are available.

  6. Upregulation of the ESR1 Gene and ESR Ratio (ESR1/ESR2) is Associated with a Worse Prognosis in Papillary Thyroid Carcinoma: The Impact of the Estrogen Receptor α/β Expression on Clinical Outcomes in Papillary Thyroid Carcinoma Patients.

    PubMed

    Yi, Jin Wook; Kim, Su-Jin; Kim, Jong Kyu; Seong, Chan Yong; Yu, Hyeong Won; Chai, Young Jun; Choi, June Young; Lee, Kyu Eun

    2017-11-01

    A gender disparity exists with respect to the incidence of papillary thyroid cancer (PTC), suggesting that sex hormones such as estrogen play a role in PTC development and progression. In this study, we compared estrogen receptor gene expression patterns in PTCs to determine the clinical significance of estrogen gene expression in PTC. We analyzed ESR1 and ESR2 messenger RNA expression counts using data from The Cancer Genome Atlas (TCGA). To validate the results of TCGA analysis, we analyzed microarray data (GSE 54958) from the Gene Expression Omnibus. ESR1 gene expression and ESR ratio (ESR1/ESR2) were significantly higher in PTC tissues than in paired normal thyroid tissues (mean 659.427 vs. 264.045 for ESR1, 92.017 vs. 19.064 for ESR ratio). Among female patients, ESR1 expression and ESR ratio were negatively correlated with increased age. ESR1 expression and ESR ratio were higher in patients with classic PTC, lymphovascular invasion, BRAF V600E mutation, and radioiodine therapy. Classification analysis demonstrated that higher ESR1 expression and a higher ESR ratio faced a worse overall survival (hazard ratio 6.348 for ESR1, 4.031 for ESR ratio). Validation microarray analysis demonstrated that ESR1 expression and ESR ratio were higher in tumor tissues, classic PTC, and BRAF V600E . Higher ESR1 expression and a higher ESR ratio were associated with aggressive prognostic factors and worse overall survival in female PTC patients. Our results suggest that ESR1 and ESR ratio can be used as prognostic markers to predict female patient survival and have potential as a therapeutic target.

  7. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma.

    PubMed

    Mima, Kosuke; Sukawa, Yasutaka; Nishihara, Reiko; Qian, Zhi Rong; Yamauchi, Mai; Inamura, Kentaro; Kim, Sun A; Masuda, Atsuhiro; Nowak, Jonathan A; Nosho, Katsuhiko; Kostic, Aleksandar D; Giannakis, Marios; Watanabe, Hideo; Bullman, Susan; Milner, Danny A; Harris, Curtis C; Giovannucci, Edward; Garraway, Levi A; Freeman, Gordon J; Dranoff, Glenn; Chan, Andrew T; Garrett, Wendy S; Huttenhower, Curtis; Fuchs, Charles S; Ogino, Shuji

    2015-08-01

    Evidence indicates a complex link between gut microbiome, immunity, and intestinal tumorigenesis. To target the microbiota and immunity for colorectal cancer prevention and therapy, a better understanding of the relationship between microorganisms and immune cells in the tumor microenvironment is needed. Experimental evidence suggests that Fusobacterium nucleatum may promote colonic neoplasia development by downregulating antitumor T cell-mediated adaptive immunity. To test the hypothesis that a greater amount of F nucleatum in colorectal carcinoma tissue is associated with a lower density of T cells in tumor tissue. A cross-sectional analysis was conducted on 598 rectal and colon carcinoma cases in 2 US nationwide prospective cohort studies with follow-up through 2006, the Nurses' Health Study (participants enrolled in 1976) and the Health Professionals Follow-up Study (participants enrolled in 1986). Tissue collection and processing were performed from 2002 through 2008, and immunity assessment, 2008 through 2009. From 2013 through 2014, the amount of F nucleatum in colorectal carcinoma tissue was measured by quantitative polymerase chain reaction assay; we equally dichotomized positive cases (high vs low). Multivariable ordinal logistic regression analysis was conducted in 2014 to assess associations of the amount of F nucleatum with densities (quartiles) of T cells in tumor tissue, controlling for clinical and tumor molecular features, including microsatellite instability, CpG island methylator phenotype, long interspersed nucleotide element-1 (LINE-1) methylation, and KRAS, BRAF, and PIK3CA mutation status. We adjusted the 2-sided α level to .013 for multiple hypothesis testing. Densities of CD3+, CD8+, CD45RO (protein tyrosine phosphatase receptor type C [PTPRC])+, and FOXP3+ T cells in tumor tissue, determined by means of tissue microarray immunohistochemical analysis and computer-assisted image analysis. F nucleatum was detected in colorectal carcinoma tissue in 76 (13%) of 598 cases. Compared with F nucleatum-negative cases, F nucleatum-high cases were inversely associated with the density of CD3+ T cells (for a unit increase in quartile categories of CD3+ T cells as an outcome: multivariable odds ratio, 0.47 [95% CI, 0.26-0.87]; P for trend = .006). The amount of F nucleatum was not significantly associated with the density of CD8+, CD45RO+, or FOXP3+ T cells (P fortrend = .24, .88, and .014, respectively). The amount of tissue F nucleatum is inversely associated with CD3+ T-cell density in colorectal carcinoma tissue. On validation, our human population data may provide an impetus for further investigations on potential interactive roles of Fusobacterium and host immunity in colon carcinogenesis.

  8. DNA methylation regulated microRNAs in HPV-16-induced head and neck squamous cell carcinoma (HNSCC).

    PubMed

    Sannigrahi, M K; Sharma, Rajni; Singh, Varinder; Panda, Naresh K; Rattan, Vidya; Khullar, Madhu

    2018-02-17

    Epigenetic modifications have been reported to play an important role in regulating gene expression and these modifications become critical when they have a role in controlling another important layer of epigenetic regulation namely microRNAs. In the present study, we have identified the microRNAs that may be regulated by promoter DNA methylation and histone acetylation in Human papilloma virus-positive head and neck squamous cell carcinoma. HPV-negative cell line (UPCI:SCC-116) and HPV-16 +ve cell line (UPCI:SCC-090) were treated with methylation inhibitor (5-aza-2'-deoxycytidine, AZA) and acetylation inhibitor (Trichostatin-A, TSA), followed by micro-array analysis. The differentially expressed miRNAs were validated in control (n = 10), HPV-16 +ve (n = 30), and HPV -ve (n = 30) HNC, TCGA (n = 529) tissue samples, and two HPV -ve (SCC116 and Hacat) and two HPV +ve (SCC090 and SiHa) cell lines. Methylation-specific PCR (MSP) and chromatin immunoprecipitation assay (CHIP) were performed to validate their regulation. In silico and in vitro analyses of identified miRNAs were done to study putative pathways they target and their possible role in carcinogenesis. Among 10 miRNAs specifically up-regulated in microarray analysis of AZA-treated SCC090 cells, we observed significantly decreased expression of hsa-miR-181c-5p, hsa-miR-132-5p, hsa-miR-658 in HPV +ve HNC cohort, TCGA tissue samples, and cell lines as compared to their HPV -ve counterpart, and their promoter region also possesses CpG islands. MSP and analysis of TCGA data (MethHC) revealed increased frequency of methylation at the promoter of hsa-miR-132-5p that is negatively correlated with its expression. In TSA-treated SCC090 cells, out of 7 miRNAs, two namely Hsa-miR-129-2-3p and Hsa-miR-449a were found to be up-regulated as compared to HPV -ve cells. However, the levels of enrichment by anti-acetyl-H3 and anti-acetyl-H4 were significantly low in cell lines compared to respective controls and both were up-regulated in HPV +ve compared to HPV -ve TCGA tissue samples. In silico analysis revealed hsa-miR-132-5p targeted canonical β-catenin/wnt pathway and modulation of down-stream genes of the pathway was observed on over-expression/inhibition of hsa-miR-132-5p. This study suggests the role of epigenetic modifications in regulating expression of miRNAs in HPV +ve HNSCC.

  9. MEG3, HCN3 and linc01105 influence the proliferation and apoptosis of neuroblastoma cells via the HIF-1α and p53 pathways

    PubMed Central

    Tang, Weitao; Dong, Kuiran; Li, Kai; Dong, Rui; Zheng, Shan

    2016-01-01

    The purpose of this study was to investigate the differential expression and functional roles of long non-coding RNAs (lncRNAs) in neuroblastoma tissue. LncRNA microarrays were used to identify differentially expressed lncRNAs between tumor and para-tumor tissues. In total, in tumor tissues, 3,098 and 1,704 lncRNAs were upregulated and downregulated, respectively. HCN3 and linc01105 exhibited the higher expression (P < 0.05; P < 0.01, respectively) in neuroblastoma tissue, whereas MEG3 displayed the lower expression (P < 0.01). HIF-1α expression was negatively correlated with cell proliferation in the linc01105 KD group. In addition, Noxa and Bid expression was positively correlated with cell apoptosis. Moreover, linc01105 knockdown promoted cell proliferation, whereas MEG3 overexpression inhibited proliferation. Finally, linc01105 knockdown, MEG3 overexpression and HCN3 knockdown all increased apoptosis. The correlation coefficients between those three lncRNAs and the International Neuroblastoma Staging System (INSS) stage were −0.48, −0.58 and −0.55, respectively. In conclusion, we have identified lncRNAs that are differentially expressed in neuroblastoma tissues. The lncRNAs HCN3, linc01105, and MEG3 may be important in biological behaviors of neuroblastoma through mechanisms involving p53 pathway members such as HIF-1α, Noxa, and Bid. The expressions of MEG3, HCN3 and linc01105 are all negatively correlated with the INSS stage. PMID:27824082

  10. Prognostic value of periostin in early-stage breast cancer treated with conserving surgery and radiotherapy.

    PubMed

    Li, Changyou; Xu, Jing; Wang, Qi; Geng, Shaoqing; Yan, Zheng; You, Jin; Li, Zhenfeng; Zou, Xiao

    2018-05-01

    The present study was performed to explore the prognostic significance of periostin expression in a cohort of patients with early-stage breast cancer treated with breast conserving surgery following radiotherapy. A tissue microarray of tumor samples from 259 patients with early-stage breast cancer was assayed for periostin, estrogen receptor (ER), progesterone receptor (PR), ErbB2 receptor tyrosine kinase 2 and Ki-67 expression by immunohistochemistry. The association of periostin with other clinicopathological parameters and clinical outcomes, including local recurrence free survival (RFS), distant metastasis free survival (DFS) and overall survival (OS), were assessed through log-rank tests and univariate and multivariate analysis. Periostin expression was identified in 91 of the 259 tissue samples (35%). The periostin status was significantly associated with histological grade (P=0.001), nodal status (P=0.023), molecular subtype (P<0.01), ER status (P<0.01), PR status (P<0.01) and Ki-67 expression (P=0.011). Furthermore, periostin expression was associated with an increased risk of five-year local recurrence (95.8% vs. 89.0%; P=0.017) and distant metastasis (92.3% vs. 79.1%; P=0.001) in patients with early stage breast cancer. Multivariate analysis using Cox's proportional hazards model demonstrated that periostin expression was an independent predictor of all clinical outcomes in breast cancer (RFS, P=0.018; DFS, P=0.025; OS, P=0.047). Therefore, it was concluded that periostin is associated with an increased risk of local relapse and distant metastasis in early-stage breast cancer treated with conserving surgery and radiotherapy. This association should be further investigated in larger cohorts to validate the clinical significance of periostin expression.

  11. Evaluation by microarray of the potential safety of Sarracenia purpurea L. (Sarraceniaceae) a traditional medicine used by the Cree of Eeyou Istchee.

    PubMed

    Cieniak, Carolina; McDonald, Charlotte; Nash, John; Muhammad, Asim; Badawi, Alaa; Haddad, Pierre S; Cuerrier, Alain; Bennett, Steffany A L; Foster, Brian C; Arnason, John T

    2015-01-01

    The purpose of this study was to assess safety of the traditional antidiabetic extracts of either S. purpurea or its lead active principle, morroniside at the transcriptional level. The overarching objective was to profile and validate transcriptional changes in the cytochrome P450 family of genes, in response to treatment with S. purpurea ethanolic extract or its lead active, morroniside. Transcriptional activity was profiled using a 19K human cDNA microarray in C2BBe1 cells, clone of Caco-2 intestinal cells, which are a model of first-pass metabolism (1, 2). Cells were treated with S. purpurea extract for 4 and 24 hrs, as well as the pure compound morroniside for 4 hrs, to determine their effects. No evidence of cytochrome P450 transcriptome regulation or of transcriptional activation of other diabetes relevant mRNA was detected after rigorous quantitative-PCR validation of microarray results. Our data do not support a transcriptional mechanism of action for either S. purpurea extract or its lead active, morroniside. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  12. Status of epigenetic chromatin modification enzymes and esophageal squamous cell carcinoma risk in northeast Indian population.

    PubMed

    Singh, Virendra; Singh, Laishram C; Singh, Avninder P; Sharma, Jagannath; Borthakur, Bibhuti B; Debnath, Arundhati; Rai, Avdhesh K; Phukan, Rup K; Mahanta, Jagadish; Kataki, Amal C; Kapur, Sujala; Saxena, Sunita

    2015-01-01

    Esophageal cancer incidence is reported in high frequency in northeast India. The etiology is different from other population at India due to wide variations in dietary habits or nutritional factors, tobacco/betel quid chewing and alcohol habits. Since DNA methylation, histone modification and miRNA-mediated epigenetic processes alter the gene expression, the involvement of these processes might be useful to find out epigenetic markers of esophageal cancer risk in northeast Indian population. The present investigation was aimed to carryout differential expression profiling of chromatin modification enzymes in tumor and normal tissue collected from esophageal squamous cell carcinoma (ESCC) patients. Differential mRNA expression profiling and their validation was done by quantitative real time PCR and tissue microarray respectively. Univariate and multiple logistic regression analysis were used to analyze the epidemiological data. mRNA expression data was analyzed by Student t-test. Fisher exact test was used for tissue microarray data analysis. Higher expression of enzymes regulating methylation (DOT1L and PRMT1) and acetylation (KAT7, KAT8, KAT2A and KAT6A) of histone was found associated with ESCC risk. Tissue microarray done in independent cohort of 75 patients revealed higher nuclear protein expression of KAT8 and PRMT1 in tumor similar to mRNA expression. Expression status of PRMT1 and KAT8 was found declined as we move from low grade to high grade tumor. Betel nut chewing, alcohol drinking and dried fish intake were significantly associated with increased risk of esophageal cancer among the study subject. Study suggests the association of PRMT1 and KAT8 with esophageal cancer risk and its involvement in the transition process of low to high grade tumor formation. The study exposes the differential status of chromatin modification enzymes between tumor and normal tissue and points out that relaxed state of chromatin facilitates more transcriptionally active genome in esophageal carcinogenesis.

  13. Therapeutic potential of Dickkopf-1 in wild-type BRAF papillary thyroid cancer via regulation of β-catenin/E-cadherin signaling.

    PubMed

    Cho, Sun Wook; Kim, Young A; Sun, Hyun Jin; Ahn, Hwa Young; Lee, Eun Kyung; Yi, Ka Hee; Oh, Byung-Chul; Park, Do Joon; Cho, Bo Youn; Park, Young Joo

    2014-09-01

    Aberrant activation of the Wnt/β-catenin pathway is a common pathogenesis of various human cancers. We investigated the role of the Wnt inhibitor, Dkk-1, in papillary thyroid cancer (PTC). Immunohistochemical β-catenin staining was performed in tissue microarray containing 148 PTCs and five normal thyroid tissues. In vivo effects of Dkk-1 were explored using ectopic tumors with BHP10-3SC cells. In 27 PTC patients, 60% of patients showed β-catenin up-regulation and Dkk-1 down-regulation in tumor vs normal tissues. Tissue microarray analysis showed that 14 of 148 PTC samples exhibited cytoplasmic-dominant β-catenin expression compared to membranous-dominant expression in normal tissues. Aberrant β-catenin expression was significantly correlated with higher rates of the loss of membranous E-cadherin expression and poor disease-free survival than that in the normal membranous expression group over a median follow-up period of 14 years. Implantation of Dkk-1-overexpressing BHP10-3SC cells revealed delayed tumor growth, resulting from the rescue of membranous β-catenin and E-cadherin expressions. Furthermore, tissue microarray analysis demonstrated that BRAF(WT) patients had higher rates of aberrant expressions of β-catenin and E-cadherin than BRAF(V600E) patients. Indeed, the inhibitory effects of Dkk-1 on cell survival were more sensitive in BRAF(WT) (BHP10-3SC and TPC-1) than in BRAF(V600E) (SNU-790 and BCPAP) cells. Overexpression of BRAF(V600E) in normal thyroid epithelial (H tori) cells also reduced the effects of Dkk-1 on cell survival. A subset of PTC patients showed aberrant expression of β-catenin/E-cadherin signaling and poor disease-free survival. Dkk-1 might have a therapeutic role, particularly in BRAF(WT) patients.

  14. pSTAT3 Levels Have Divergent Expression Patterns and Associations with Survival in Squamous Cell Carcinoma and Adenocarcinoma of the Oesophagus.

    PubMed

    O' Sullivan, Katie E; Michielsen, Adriana J; O' Regan, Esther; Cathcart, Mary C; Moore, Gillian; Breen, Eamon; Segurado, Ricardo; Reynolds, John V; Lysaght, Joanne; O' Sullivan, Jacintha

    2018-06-10

    Signal transducers and activator of transcription (STAT)-3 is activated in cancers, where it promotes growth, inflammation, angiogenesis, and inhibits apoptosis. Tissue microarrays were generated using tissues from 154 patients, with oesophageal adenocarcinoma (OAC) ( n = 116) or squamous cell carcinoma (SCC) ( n = 38) tumours. The tissues were stained for pSTAT3 and IL-6R using immunohistochemistry. The OE33 (OAC) and OE21 (SCC) cell lines were treated with the STAT3 inhibitor, STATTIC. The Univariate cox regression analysis revealed that a positive pSTAT3 in SCC was adversely associated with survival (Hazard ratio (HR) 6.382, 95% CI 1.266⁻32.184), while a protective effect was demonstrated with the higher pSTAT3 levels in OAC epithelium (HR 0.74, 95% CI 0.574⁻0.953). The IL-6R intensity levels were higher in the SCC tumours compared with the OAC tumours for the core and leading edge tumour tissue. The pSTAT3 levels correlated positively with the IL-6R levels in both the OAC and SCC. The treatment of OE21 and OE33 cells with the STAT3 inhibitor STATTIC in vitro resulted in decreased survival, proliferation, migration, and increased apoptosis. The pSTAT3 expression was associated with adverse survival in SCC, but not in the OAC patients. The inhibition of STAT3 in both of the tumour subtypes resulted in alterations in the survival, proliferation, migration, and apoptosis, suggesting a potential role for therapeutically targeting STAT3.

  15. Overexpression of SERBP1 (Plasminogen activator inhibitor 1 RNA binding protein) in human breast cancer is correlated with favourable prognosis.

    PubMed

    Serce, Nuran Bektas; Boesl, Andreas; Klaman, Irina; von Serényi, Sonja; Noetzel, Erik; Press, Michael F; Dimmler, Arno; Hartmann, Arndt; Sehouli, Jalid; Knuechel, Ruth; Beckmann, Matthias W; Fasching, Peter A; Dahl, Edgar

    2012-12-13

    Plasminogen activator inhibitor 1 (PAI-1) overexpression is an important prognostic and predictive biomarker in human breast cancer. SERBP1, a protein that is supposed to regulate the stability of PAI-1 mRNA, may play a role in gynaecological cancers as well, since upregulation of SERBP1 was described in ovarian cancer recently. This is the first study to present a systematic characterisation of SERBP1 expression in human breast cancer and normal breast tissue at both the mRNA and the protein level. Using semiquantitative realtime PCR we analysed SERBP1 expression in different normal human tissues (n = 25), and in matched pairs of normal (n = 7) and cancerous breast tissues (n = 7). SERBP1 protein expression was analysed in two independent cohorts on tissue microarrays (TMAs), an initial evaluation set, consisting of 193 breast carcinomas and 48 normal breast tissues, and a second large validation set, consisting of 605 breast carcinomas. In addition, a collection of benign (n = 2) and malignant (n = 6) mammary cell lines as well as breast carcinoma lysates (n = 16) were investigated for SERBP1 expression by Western blot analysis. Furthermore, applying non-radioisotopic in situ hybridisation a subset of normal (n = 10) and cancerous (n = 10) breast tissue specimens from the initial TMA were analysed for SERBP1 mRNA expression. SERBP1 is not differentially expressed in breast carcinoma compared to normal breast tissue, both at the RNA and protein level. However, recurrence-free survival analysis showed a significant correlation (P = 0.008) between abundant SERBP1 expression in breast carcinoma and favourable prognosis. Interestingly, overall survival analysis also displayed a tendency (P = 0.09) towards favourable prognosis when SERBP1 was overexpressed in breast cancer. The RNA-binding protein SERBP1 is abundantly expressed in human breast cancer and may represent a novel breast tumour marker with prognostic significance. Its potential involvement in the plasminogen activator protease cascade warrants further investigation.

  16. Quantitative Assessment of the Heterogeneity of PD-L1 Expression in Non-Small-Cell Lung Cancer.

    PubMed

    McLaughlin, Joseph; Han, Gang; Schalper, Kurt A; Carvajal-Hausdorf, Daniel; Pelekanou, Vasiliki; Rehman, Jamaal; Velcheti, Vamsidhar; Herbst, Roy; LoRusso, Patricia; Rimm, David L

    2016-01-01

    Early-phase trials with monoclonal antibodies targeting PD-1 (programmed cell death protein 1) and PD-L1 (programmed cell death 1 ligand 1) have demonstrated durable clinical responses in patients with non-small-cell lung cancer (NSCLC). However, current assays for the prognostic and/or predictive role of tumor PD-L1 expression are not standardized with respect to either quantity or distribution of expression. To demonstrate PD-L1 protein distribution in NSCLC tumors using both conventional immunohistochemistry (IHC) and quantitative immunofluorescence (QIF) and compare results obtained using 2 different PD-L1 antibodies. PD-L1 was measured using E1L3N and SP142, 2 rabbit monoclonal antibodies, in 49 NSCLC whole-tissue sections and a corresponding tissue microarray with the same 49 cases. Non-small-cell lung cancer biopsy specimens from 2011 to 2012 were collected retrospectively from the Yale Thoracic Oncology Program Tissue Bank. Human melanoma Mel 624 cells stably transfected with PD-L1 as well as Mel 624 parental cells, and human term placenta whole tissue sections were used as controls and for antibody validation. PD-L1 protein expression in tumor and stroma was assessed using chromogenic IHC and the AQUA (Automated Quantitative Analysis) method of QIF. Tumor-infiltrating lymphocytes (TILs) were scored in hematoxylin-eosin slides using current consensus guidelines. The association between PD-L1 protein expression, TILs, and clinicopathological features were determined. PD-L1 expression discordance or heterogeneity using the diaminobenzidine chromogen and QIF was the main outcome measure selected prior to performing the study. Using chromogenic IHC, both antibodies showed fair to poor concordance. The PD-L1 antibodies showed poor concordance (Cohen κ range, 0.124-0.340) using conventional chromogenic IHC and showed intra-assay heterogeneity (E1L3N coefficient of variation [CV], 6.75%-75.24%; SP142 CV, 12.17%-109.61%) and significant interassay discordance using QIF (26.6%). Quantitative immunofluorescence showed that PD-L1 expression using both PD-L1 antibodies was heterogeneous. Using QIF, the scores obtained with E1L3N and SP142 for each tumor were significantly different according to nonparametric paired test (P < .001). Assessment of 588 serial section fields of view from whole tissue showed discordant expression at a frequency of 25%. Expression of PD-L1 was correlated with high TILs using both E1L3N (P = .007) and SP142 (P = .02). Objective determination of PD-L1 protein levels in NSCLC reveals heterogeneity within tumors and prominent interassay variability or discordance. This could be due to different antibody affinities, limited specificity, or distinct target epitopes. Efforts to determine the clinical value of these observations are under way.

  17. Alterations of protein glycosylation in embryonic stem cells during adipogenesis

    PubMed Central

    Liu, Wei; Wang, Yangyang; Rao, Yang; Yu, Hanjie; Cui, Jihong; Xie, Xin; Sun, Mei; Yin, Lu; Li, Hongmin; Chen, Fulin

    2018-01-01

    The understanding of adipose tissue development is crucial for the treatment of obesity-related diseases. Adipogenesis has been extensively investigated at the gene and protein levels in recent years. However, the alterations in protein glycosylation during this process remains unknown, particularly that of parthenogenetic embryonic stem cells (pESCs), a type of ESCs with low immunogenicity and no ethical concerns regarding their use. Protein glycosylation markedly affects cell growth and development, cell-to-cell communication, tumour growth and metastasis. In the present study, the adipogenic potentials of J1 ESCs and pESCs were first compared and the results demonstrated that pESCs had lower adipogenic potential compared with J1 ESCs. Lectin microarray was then used to screen the alteration of protein glycosylation during adipogenesis. The results revealed that protein modification of GlcNAc and α-1-2-fucosylation increased, whereas α-1-6-fucosylation, α-2-6-sialylation and α-1-6-mannosylation decreased in J1 ESCs and pESCs during this process. In addition, α-1-3-mannosylation decreased only in pESCs. Lectin histochemistry and quantitative polymerase chain reaction of glycosyltransferase confirmed the results obtained by lectin microarray. Therefore, protein glycosylation of ESCs was significantly altered during adipogenesis, indicating that protein glycosylation analysis is not only helpful for studying the mechanism of adipogenesis, but may also be used as a marker to monitor adipogenic development. PMID:29115405

  18. The genomic transcriptional response of female fathead minnows (Pimephales promelas) to an acute exposure to the androgen, 17β-trenbolone

    USGS Publications Warehouse

    Dorts, Jennifer; Richter, Catherine A.; Wright-Osment, Maureen K.; Ellersieck, Mark R.; Carter, Barbara J.; Tillitt, Donald E.

    2009-01-01

    We investigated the genomic transcriptional response of female fathead minnows (Pimephales promelas) to an acute (4 days) exposure to 0.1 or 1.0 ??g/L of 17??-trenbolone (TB), the active metabolite of an anabolic androgenic steroid used as a growth promoter in cattle and a contaminant of concern in aquatic systems. Our objectives were to investigate the gene expression profile induced by TB, define biomarkers of exposure to TB, and increase our understanding of the mechanisms of adverse effects of TB on fish reproduction. In female gonad tissue, microarray analysis using a 22 K oligonucleotide microarray (EcoArray Inc., Gainesville, FL) showed 99 significantly upregulated genes and 741 significantly downregulated genes in response to 1 ??g TB/L. In particular, hydroxysteroid (17??) dehydrogenase 12a (hsd17b12a), zona pellucida glycoprotein 2.2 (zp2.2), and protein inhibitor of activated STAT, 2 (pias2) were all downregulated in gonad. Q-PCR measurements in a larger sample set were consistent with the microarray results in the direction and magnitude of these changes in gene expression. However, several novel potential biomarkers were verified by Q-PCR in the same samples, but could not be validated in independent samples. In liver, Q-PCR measurements showed a significant decrease in vitellogenin 1 (vtg1) mRNA expression. In brain, cytochrome P450, family 19, subfamily A, polypeptide 1b (cyp19a1b, previously known as aromatase B) transcript levels were significantly reduced following TB exposure. Our study provides a candidate gene involved in mediating the action of TB, hsd17b12a, and two potential biomarkers sensitive to acute TB exposure, hepatic vtg1 and brain cyp19a1b.

  19. p-STAT3 in luminal breast cancer: Integrated RNA-protein pooled analysis and results from the BIG 2-98 phase III trial.

    PubMed

    Sonnenblick, Amir; Salgado, Roberto; Brohée, Sylvain; Zahavi, Tamar; Peretz, Tamar; Van den Eynden, Gert; Rouas, Ghizlane; Salmon, Asher; Francis, Prudence A; Di Leo, Angelo; Crown, John P A; Viale, Giuseppe; Daly, Laura; Javdan, Bahar; Fujisawa, Sho; De Azambuja, Evandro; Lieveke, Ameye; Piccart, Martine J; Bromberg, Jacqueline F; Sotiriou, Christos

    2018-02-01

    In the present study, in order to investigate the role of signal transducer and activator of transcription 3 (STAT3) in estrogen receptor (ER)-positive breast cancer prognosis, we evaluated the phosphorylated STAT3 (p-STAT3) status and investigated its effect on the outcome in a pooled analysis and in a large prospective adjuvant trial. By using the TCGA repository, we developed gene signatures that reflected the level of p-STAT3. Using pooled analysis of the expression data from luminal breast cancer patients, we assessed the effects of the p-STAT3 expression signature on prognosis. We further validated the p-STAT3 prognostic effect using immunohistochemistry (IHC) and immunofluorescence staining of p-STAT3 tissue microarrays from a large randomised prospective trial. Our analysis demonstrated that p-STAT3 expression was elevated in luminal A-type breast cancer (Kruskal-Wallis test, P<10e-10) and was significantly associated with a good prognosis (log-rank, P<10e-10). Notably, the p-STAT3 expression signature identified patients with a good prognosis irrespective of the luminal subtype (log-rank: luminal A, P=0.026; luminal B, P=0.006). p-STAT3 staining by IHC in the stroma or tumour was detected in 174 out of 610 ER-positive samples (28.5%) from the BIG 2-98 randomised trial. With a median follow-up of 10.1 years, p-STAT3 was associated with a reduced risk of recurrence in ER-positive/HER2-negative breast cancer (Cox univariate HR, 0.66; 95% CI, 0.44-0.98; P=0.04). On the whole, our data indicate that p-STAT3 is associated with an improved outcome in ER-positive breast cancer.

  20. Biologically relevant effects of mRNA amplification on gene expression profiles.

    PubMed

    van Haaften, Rachel I M; Schroen, Blanche; Janssen, Ben J A; van Erk, Arie; Debets, Jacques J M; Smeets, Hubert J M; Smits, Jos F M; van den Wijngaard, Arthur; Pinto, Yigal M; Evelo, Chris T A

    2006-04-11

    Gene expression microarray technology permits the analysis of global gene expression profiles. The amount of sample needed limits the use of small excision biopsies and/or needle biopsies from human or animal tissues. Linear amplification techniques have been developed to increase the amount of sample derived cDNA. These amplified samples can be hybridised on microarrays. However, little information is available whether microarrays based on amplified and unamplified material yield comparable results. In the present study we compared microarray data obtained from amplified mRNA derived from biopsies of rat cardiac left ventricle and non-amplified mRNA derived from the same organ. Biopsies were linearly amplified to acquire enough material for a microarray experiment. Both amplified and unamplified samples were hybridized to the Rat Expression Set 230 Array of Affymetrix. Analysis of the microarray data showed that unamplified material of two different left ventricles had 99.6% identical gene expression. Gene expression patterns of two biopsies obtained from the same parental organ were 96.3% identical. Similarly, gene expression pattern of two biopsies from dissimilar organs were 92.8% identical to each other.Twenty-one percent of reporters called present in parental left ventricular tissue disappeared after amplification in the biopsies. Those reporters were predominantly seen in the low intensity range. Sequence analysis showed that reporters that disappeared after amplification had a GC-content of 53.7+/-4.0%, while reporters called present in biopsy- and whole LV-samples had an average GC content of 47.8+/-5.5% (P <0.001). Those reporters were also predicted to form significantly more (0.76+/-0.07 versus 0.38+/-0.1) and longer (9.4+/-0.3 versus 8.4+/-0.4) hairpins as compared to representative control reporters present before and after amplification. This study establishes that the gene expression profile obtained after amplification of mRNA of left ventricular biopsies is representative for the whole left ventricle of the rat heart. However, specific gene transcripts present in parental tissues were undetectable in the minute left ventricular biopsies. Transcripts that were lost due to the amplification process were not randomly distributed, but had higher GC-content and hairpins in the sequence and were mainly found in the lower intensity range which includes many transcription factors from specific signalling pathways.

  1. Biologically relevant effects of mRNA amplification on gene expression profiles

    PubMed Central

    van Haaften, Rachel IM; Schroen, Blanche; Janssen, Ben JA; van Erk, Arie; Debets, Jacques JM; Smeets, Hubert JM; Smits, Jos FM; van den Wijngaard, Arthur; Pinto, Yigal M; Evelo, Chris TA

    2006-01-01

    Background Gene expression microarray technology permits the analysis of global gene expression profiles. The amount of sample needed limits the use of small excision biopsies and/or needle biopsies from human or animal tissues. Linear amplification techniques have been developed to increase the amount of sample derived cDNA. These amplified samples can be hybridised on microarrays. However, little information is available whether microarrays based on amplified and unamplified material yield comparable results. In the present study we compared microarray data obtained from amplified mRNA derived from biopsies of rat cardiac left ventricle and non-amplified mRNA derived from the same organ. Biopsies were linearly amplified to acquire enough material for a microarray experiment. Both amplified and unamplified samples were hybridized to the Rat Expression Set 230 Array of Affymetrix. Results Analysis of the microarray data showed that unamplified material of two different left ventricles had 99.6% identical gene expression. Gene expression patterns of two biopsies obtained from the same parental organ were 96.3% identical. Similarly, gene expression pattern of two biopsies from dissimilar organs were 92.8% identical to each other. Twenty-one percent of reporters called present in parental left ventricular tissue disappeared after amplification in the biopsies. Those reporters were predominantly seen in the low intensity range. Sequence analysis showed that reporters that disappeared after amplification had a GC-content of 53.7+/-4.0%, while reporters called present in biopsy- and whole LV-samples had an average GC content of 47.8+/-5.5% (P <0.001). Those reporters were also predicted to form significantly more (0.76+/-0.07 versus 0.38+/-0.1) and longer (9.4+/-0.3 versus 8.4+/-0.4) hairpins as compared to representative control reporters present before and after amplification. Conclusion This study establishes that the gene expression profile obtained after amplification of mRNA of left ventricular biopsies is representative for the whole left ventricle of the rat heart. However, specific gene transcripts present in parental tissues were undetectable in the minute left ventricular biopsies. Transcripts that were lost due to the amplification process were not randomly distributed, but had higher GC-content and hairpins in the sequence and were mainly found in the lower intensity range which includes many transcription factors from specific signalling pathways. PMID:16608515

  2. miR-3156-3p is downregulated in HPV-positive cervical cancer and performs as a tumor-suppressive miRNA.

    PubMed

    Xia, Yu-Fang; Pei, Gui-Hua; Wang, Ning; Che, Yan-Ci; Yu, Feng-Sheng; Yin, Fu-Fen; Liu, Hai-Xia; Luo, Bing; Wang, Yan-Kui

    2017-02-04

    Cervical cancer (CC) is the second most common cancer in females in developing countries. The two viral oncoproteins E6 and E7 mediate the oncogenic activities of high-risk human papillomavirus (HR-HPV), and HR-HPV, especially HPV16 or/and HPV18 (HPV16/18) play critical roles in CC through different pathways. microRNAs (miRNAs) may be associated with CC pathogenesis. Researches have indicated that human papillomavirus (HPV) may regulate cellular miRNA expression through viral E6 and E7. Herein, the purposes of this study were to identify the relationship between HPV infection and aberrantly expressed miRNAs and to investigate their pathogenic roles in CC. miRNA expression was assessed using a microRNAs microarray in HPV16 E6- and E7-integrated HPV-negative HT-3 cell lines and mock vector-transfected HT-3 cells. The microarray results were validated, and the expression of miR-3156-3p was identified in HPV-positive and -negative CC cell lines as well as primary CC and normal cervical epithelium tissues using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK8), flow cytometry, transwell analysis, tube formation, and Western blotting were used to identify the functional role of miR-3156-3p in CaSki, SiHa, and HeLa cell lines. Six underexpressed microRNAs (miR-3156-3p, 6779-3p, 4779-3p, 6841-3p, 454-5p and 656-5p) were consistently identified in HPV16 E6- and E7-integrated HT-3 cells. Further investigation confirmed a significant decrease of miR-3156-3p in HPV16/18 positive CC lesions. CCK8, flow cytometry, transwell analysis, tube formation assays, and Western blotting of the CC cell lines with miR-3156-3p over/under-expression in vitro showed that miR-3156-3p was involved in cell proliferation, apoptosis, migration, neovascularization, and SLC6A6 regulation. Our findings indicate that miR-3156-3p plays a suppressor-miRNA role in CC and that its expression is associated with HR-HPV infection.

  3. A novel 3p22.3 gene CMTM7 represses oncogenic EGFR signaling and inhibits cancer cell growth.

    PubMed

    Li, H; Li, J; Su, Y; Fan, Y; Guo, X; Li, L; Su, X; Rong, R; Ying, J; Mo, X; Liu, K; Zhang, Z; Yang, F; Jiang, G; Wang, J; Zhang, Y; Ma, D; Tao, Q; Han, W

    2014-06-12

    Deletion of 3p12-22 is frequent in multiple cancer types, indicating the presence of critical tumor-suppressor genes (TSGs) at this region. We studied a novel candidate TSG, CMTM7, located at the 3p22.3 CMTM-gene cluster, for its tumor-suppressive functions and related mechanisms. The three CMTM genes, CMTM6, 7 and 8, are broadly expressed in human normal adult tissues and normal epithelial cell lines. Only CMTM7 is frequently silenced or downregulated in esophageal and nasopharyngeal cell lines, but uncommon in other carcinoma cell lines. Immunostaining of tissue microarrays for CMTM7 protein showed its downregulation or absence in esophageal, gastric, pancreatic, liver, lung and cervix tumor tissues. Promoter CpG methylation and loss of heterozygosity were both found contributing to CMTM7 downregulation. Ectopic expression of CMTM7 in carcinoma cells inhibits cell proliferation, motility and tumor formation in nude mice, but not in immortalized normal cells, suggesting a tumor inhibitory role of CMTM7. The tumor-suppressive function of CMTM7 is associated with its role in G1/S cell cycle arrest, through upregulating p27 and downregulating cyclin-dependent kinase 2 (CDK2) and 6 (CDK6). Moreover, CMTM7 could promote epidermal growth factor receptor (EGFR) internalization, and further suppress AKT signaling pathway. Thus, our findings suggest that CMTM7 is a novel 3p22 tumor suppressor regulating G1/S transition and EGFR/AKT signaling during tumor pathogenesis.

  4. Increased expression of hepatocyte nuclear factor 4 alpha transcribed by promoter 2 indicates a poor prognosis in hepatocellular carcinoma

    PubMed Central

    Cai, Shao-hang; Lu, Shi-xun; Liu, Li-li; Zhang, Chris Zhiyi; Yun, Jing-ping

    2017-01-01

    Background: Hepatocyte nuclear factor 4 alpha (HNF4α) plays an important role in tumourigenesis. There is growing evidence indicating that HNF4α transcribed by promoter 1 (P1-HNF4α) is expressed at relatively low levels in HCC and its presence predicts a favourable outcome for hepatocellular carcinoma (HCC) patients. However, the role of HNF4α transcribed by promoter 2 (P2-HNF4α) in HCC remains unclear. Methods: A total of 615 HCC specimens were obtained to construct tissue microarrays and perform immunohistochemistry. The relationship between P2-HNF4α and clinical features of HCC patients were analysed. Kaplan–Meier analysis was conducted to assess the prognostic value of P2-HNF4α. Results: The results showed that the expression of P2-HNF4α in HCC was noticeably increased in HCC tissues compared with the nontumourous tissues. In addition, P1-HNF4α expression was negatively correlated with P2-HNF4α expression (p = 0.023). High P2-HNF4α expression was significantly associated with poor differentiation of HCC (p = 0.002) and vascular invasion (p = 0.017). Kaplan–Meier analysis showed that P2-HNF4α expression was closely correlated with overall survival in the training group (p = 0.01), validation group (p = 0.034), and overall group of patients with HCC (p < 0.001). Conclusions: Our data show that the role of HNF4α in cancer development needs to be further refined. P2-HNF4α, different from P1-HNF4α, is markedly upregulated and serves as an oncogene-associated protein in HCC. Our study therefore provides a promising biomarker for prognostic prediction and a potential therapeutic target for HCC. PMID:29051787

  5. Genome-wide identification of suitable zebrafish Danio rerio reference genes for normalization of gene expression data by RT-qPCR.

    PubMed

    Xu, H; Li, C; Zeng, Q; Agrawal, I; Zhu, X; Gong, Z

    2016-06-01

    In this study, to systematically identify the most stably expressed genes for internal reference in zebrafish Danio rerio investigations, 37 D. rerio transcriptomic datasets (both RNA sequencing and microarray data) were collected from gene expression omnibus (GEO) database and unpublished data, and gene expression variations were analysed under three experimental conditions: tissue types, developmental stages and chemical treatments. Forty-four putative candidate genes were identified with the c.v. <0·2 from all datasets. Following clustering into different functional groups, 21 genes, in addition to four conventional housekeeping genes (eef1a1l1, b2m, hrpt1l and actb1), were selected from different functional groups for further quantitative real-time (qrt-)PCR validation using 25 RNA samples from different adult tissues, developmental stages and chemical treatments. The qrt-PCR data were then analysed using the statistical algorithm refFinder for gene expression stability. Several new candidate genes showed better expression stability than the conventional housekeeping genes in all three categories. It was found that sep15 and metap1 were the top two stable genes for tissue types, ube2a and tmem50a the top two for different developmental stages, and rpl13a and rp1p0 the top two for chemical treatments. Thus, based on the extensive transcriptomic analyses and qrt-PCR validation, these new reference genes are recommended for normalization of D. rerio qrt-PCR data respectively for the three different experimental conditions. © 2016 The Fisheries Society of the British Isles.

  6. Methylomic Analysis Identifies Frequent DNA Methylation of Zinc Finger Protein 582 (ZNF582) in Cervical Neoplasms

    PubMed Central

    Su, Po-Hsuan; Chen, Yu-Chih; Liao, Yu-Ping; Wang, Hui-Chen; Yo, Yi-Te; Chao, Tai-Kuang; Huang, Hsuan-Cheng; Lin, Ching-Yu; Chu, Tang-Yuan; Lai, Hung-Cheng

    2012-01-01

    Background Despite of the trend that the application of DNA methylation as a biomarker for cancer detection is promising, clinically applicable genes are few. Therefore, we looked for novel hypermethylated genes for cervical cancer screening. Methods and Findings At the discovery phase, we analyzed the methylation profiles of human cervical carcinomas and normal cervixes by methylated DNA immunoprecipitation coupled to promoter tiling arrays (MeDIP-on-chip). Methylation-specific PCR (MSP), quantitative MSP and bisulfite sequencing were used to verify the methylation status in cancer tissues and cervical scrapings from patients with different severities. Immunohistochemical staining of a cervical tissue microarray was used to confirm protein expression. We narrowed to three candidate genes: DBC1, PDE8B, and ZNF582; their methylation frequencies in tumors were 93%, 29%, and 100%, respectively. At the pre-validation phase, the methylation frequency of DBC1 and ZNF582 in cervical scraping correlated significantly with disease severity in an independent cohort (n = 330, both P<0.001). For the detection of cervical intraepithelial neoplasia 3 (CIN3) and worse, the area under the receiver operating characteristic curve (AUC) of ZNF582 was 0.82 (95% confidence interval  = 0.76–0.87). Conclusions Our study shows ZNF582 is frequently methylated in CIN3 and worse lesions, and it is demonstrated as a potential biomarker for the molecular screening of cervical cancer. PMID:22815913

  7. Transcript copy number estimation using a mouse whole-genome oligonucleotide microarray

    PubMed Central

    Carter, Mark G; Sharov, Alexei A; VanBuren, Vincent; Dudekula, Dawood B; Carmack, Condie E; Nelson, Charlie; Ko, Minoru SH

    2005-01-01

    The ability to quantitatively measure the expression of all genes in a given tissue or cell with a single assay is an exciting promise of gene-expression profiling technology. An in situ-synthesized 60-mer oligonucleotide microarray designed to detect transcripts from all mouse genes was validated, as well as a set of exogenous RNA controls derived from the yeast genome (made freely available without restriction), which allow quantitative estimation of absolute endogenous transcript abundance. PMID:15998450

  8. Immunohistochemical and molecular imaging biomarker signature for the prediction of failure site after chemoradiation for head and neck squamous cell carcinoma.

    PubMed

    Rasmussen, Gregers Brünnich; Håkansson, Katrin E; Vogelius, Ivan R; Rasmussen, Jacob H; Friborg, Jeppe T; Fischer, Barbara M; Schumaker, Lisa; Cullen, Kevin; Therkildsen, Marianne H; Bentzen, Søren M; Specht, Lena

    2017-11-01

    To identify a failure site-specific prognostic model by combining immunohistochemistry (IHC) and molecular imaging information to predict long-term failure type in squamous cell carcinoma of the head and neck. Tissue microarray blocks of 196 head and neck squamous cell carcinoma cases were stained for a panel of biomarkers using IHC. Gross tumor volume (GTV) from the PET/CT radiation treatment planning CT scan, maximal Standard Uptake Value (SUVmax) of fludeoxyglucose (FDG) and clinical information were included in the model building using Cox proportional hazards models, stratified for p16 status in oropharyngeal carcinomas. Separate models were built for time to locoregional failure and time to distant metastasis. Higher than median p53 expression on IHC tended toward a risk factor for locoregional failure but was protective for distant metastasis, χ 2 for difference p = .003. The final model for locoregional failure included p53 (HR: 1.9; p: .055), concomitant cisplatin (HR: 0.41; p: .008), β-tubulin-1 (HR: 1.8; p: .08), β-tubulin-2 (HR: 0.49; p: .057) and SUVmax (HR: 2.1; p: .046). The final model for distant metastasis included p53 (HR: 0.23; p: .025), Bcl-2 (HR: 2.6; p: .08), SUVmax (HR: 3.5; p: .095) and GTV (HR: 1.7; p: .063). The models successfully distinguished between risk of locoregional failure and risk of distant metastasis, which is important information for clinical decision-making. High p53 expression has opposite prognostic effects for the two endpoints; increasing risk of locoregional failure, but decreasing the risk of metastatic failure, but external validation of this finding is needed.

  9. Down-regulation of miR-146a-5p and its potential targets in hepatocellular carcinoma validated by a TCGA- and GEO-based study.

    PubMed

    Zhang, Xin; Ye, Zhi-Hua; Liang, Hai-Wei; Ren, Fang-Hui; Li, Ping; Dang, Yi-Wu; Chen, Gang

    2017-04-01

    Our previous research has demonstrated that miR-146a-5p is down-regulated in hepatocellular carcinoma (HCC) and might play a tumor-suppressive role. In this study, we sought to validate the decreased expression with a larger cohort and to explore potential molecular mechanisms. GEO and TCGA databases were used to gather miR-146a-5p expression data in HCC, which included 762 HCC and 454 noncancerous liver tissues. A meta-analysis of the GEO-based microarrays, TCGA-based RNA-seq data, and additional qRT-PCR data validated the down-regulation of miR-146a-5p in HCC and no publication bias was observed. Integrated genes were generated by overlapping miR-146a-5p-related genes from predicted and formerly reported HCC-related genes using natural language processing. The overlaps were comprehensively analyzed to discover the potential gene signatures, regulatory pathways, and networks of miR-146a-5p in HCC. A total of 251 miR-146a-5p potential target genes were predicted by bioinformatics platforms and 104 genes were considered as both HCC- and miR-146a-5p-related overlaps. RAC1 was the most connected hub gene for miR-146a-5p and four pathways with high enrichment (VEGF signaling pathway, adherens junction, toll-like receptor signaling pathway, and neurotrophin signaling pathway) were denoted for the overlapped genes. The down-regulation of miR-146a-5p in HCC has been validated with the most complete data possible. The potential gene signatures, regulatory pathways, and networks identified for miR-146a-5p in HCC could prove useful for molecular-targeted diagnostics and therapeutics.

  10. Genes that characterize T3-predominant Graves' thyroid tissues.

    PubMed

    Matsumoto, Chisa; Ito, Mitsuru; Yamada, Hiroya; Yamakawa, Noriko; Yoshida, Hiroshi; Date, Arisa; Watanabe, Mikio; Hidaka, Yoh; Iwatani, Yoshinori; Miyauchi, Akira; Takano, Toru

    2013-02-01

    3,5,3'-Triiodothyronine (T(3))-predominant Graves' disease is characterized by the increasing volume of thyroid goiter resulting in poor prognosis. Although type 1 and type 2 iodothyronine deiodinases (DIO1 and DIO2 respectively) are known to be overexpressed in the thyroid tissues of T(3)-predominant Graves' disease, the pathogenesis of this disease is still unclear. The aim of our study is to identify genes that characterize T(3)-predominant Graves' disease tissue in order to clarify the molecular mechanism of this disease. mRNAs from two thyroid tissues of both typical T(3)-predominant and common-type Graves' disease were analyzed with DNA microarrays with probes for 28 869 genes. Genes identified to be differentially expressed between the two groups were further analyzed in the second and third screenings using 70 Graves' thyroid tissues by real-time quantitative RT-PCR. Twenty-three candidate genes were selected as being differentially expressed in the first screening with microarrays. Among these, seven genes, leucine-rich repeat neuronal 1 (LRRN1), bone morphogenetic protein 8a (BMP8A), N-cadherin (CDH2), phosphodiesterase 1A (PDE1A), creatine kinase mitochondrial 2 (CKMT2), integrin beta-3 (ITGB3), and protein tyrosine phosphatase non-receptor type 4 (PTPN4), were confirmed to be differentially expressed in DIO1 or DIO2 over- and underexpressing Graves' tissues. These genes are related to the characteristics of T(3)-predominant Graves' disease, such as high titer level of serum anti-TSH receptor antibody, high free T(3) to free thyroxine ratio, and a large goiter size. They might play a role in the pathogenesis of T(3)-predominant Graves' disease.

  11. STC1 promotes cell apoptosis via NF-κB phospho-P65 Ser536 in cervical cancer cells

    PubMed Central

    Pan, Xi; Jiang, Binyuan; Liu, Jianhao; Ding, Juan; Li, Yuehui; Sun, Ruili; Peng, Li; Qin, Changfei; Fang, Shujuan; Li, Guancheng

    2017-01-01

    Stanniocalin-1 (STC1) is a secreted glycoprotein hormone and involved in various types of human malignancies. Our previous studies revealed that STC1 inhibited cell proliferation and invasion of cervical cancer cells through NF-κB P65 activation, but the mechanism is poorly understood. In our studies, we found overexpression of STC1 promoted cell apoptosis while silencing of STC1 promoted cell growth of cervical cancer. Phospho-protein profiling and Western blotting results showed the expression of NF-κB related phosphorylation sites including NF-κB P65 (Ser536), IκBα, IKKβ, PI3K, and AKT was altered in STC1-overexpressed cervical cancer cells. Moreover, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA could decrease the protein content of phospho-P65 (Ser536), phospho-IκBα, phospho-AKT and phospho-IKKβ while increasing the level of P65 compared to STC1 overexpression groups in cervical cancer cells. Also, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA elevated the percentage of apoptosis and suppressed the G1/S transition in those cells. Additionally, STC1 level was decreased in cervical cancer, especial in stage II and III. The results of immunohistochemistry for the cervical cancer microarray showed that a lower level of STC1, phospho-PI3K and P65 protein expression in tumor tissues than that in normal tissues, and a higher level of phospho-P65 protein expression in tumor tissues, which is consistent with the results of the Western blotting. These data demonstrated that STC1 can promote cell apoptosis via NF-κB phospho-P65 (Ser536) by PI3K/AKT, IκBα and IKK signaling in cervical cancer cells. Our results offer the first mechanism that explains the link between STC1 and cell apoptosis in cervical cancer. PMID:28545028

  12. STC1 promotes cell apoptosis via NF-κB phospho-P65 Ser536 in cervical cancer cells.

    PubMed

    Pan, Xi; Jiang, Binyuan; Liu, Jianhao; Ding, Juan; Li, Yuehui; Sun, Ruili; Peng, Li; Qin, Changfei; Fang, Shujuan; Li, Guancheng

    2017-07-11

    Stanniocalin-1 (STC1) is a secreted glycoprotein hormone and involved in various types of human malignancies. Our previous studies revealed that STC1 inhibited cell proliferation and invasion of cervical cancer cells through NF-κB P65 activation, but the mechanism is poorly understood. In our studies, we found overexpression of STC1 promoted cell apoptosis while silencing of STC1 promoted cell growth of cervical cancer. Phospho-protein profiling and Western blotting results showed the expression of NF-κB related phosphorylation sites including NF-κB P65 (Ser536), IκBα, IKKβ, PI3K, and AKT was altered in STC1-overexpressed cervical cancer cells. Moreover, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA could decrease the protein content of phospho-P65 (Ser536), phospho-IκBα, phospho-AKT and phospho-IKKβ while increasing the level of P65 compared to STC1 overexpression groups in cervical cancer cells. Also, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA elevated the percentage of apoptosis and suppressed the G1/S transition in those cells. Additionally, STC1 level was decreased in cervical cancer, especial in stage II and III. The results of immunohistochemistry for the cervical cancer microarray showed that a lower level of STC1, phospho-PI3K and P65 protein expression in tumor tissues than that in normal tissues, and a higher level of phospho-P65 protein expression in tumor tissues, which is consistent with the results of the Western blotting. These data demonstrated that STC1 can promote cell apoptosis via NF-κB phospho-P65 (Ser536) by PI3K/AKT, IκBα and IKK signaling in cervical cancer cells. Our results offer the first mechanism that explains the link between STC1 and cell apoptosis in cervical cancer.

  13. Characterization of circulating microRNA expression in patients with a ventricular septal defect.

    PubMed

    Li, Dong; Ji, Long; Liu, Lianbo; Liu, Yizhi; Hou, Haifeng; Yu, Kunkun; Sun, Qiang; Zhao, Zhongtang

    2014-01-01

    Ventricular septal defect (VSD), one of the most common types of congenital heart disease (CHD), results from a combination of environmental and genetic factors. Recent studies demonstrated that microRNAs (miRNAs) are involved in development of CHD. This study was to characterize the expression of miRNAs that might be involved in the development or reflect the consequences of VSD. MiRNA microarray analysis and reverse transcription-polymerase chain reaction (RT-PCR) were employed to determine the miRNA expression profile from 3 patients with VSD and 3 VSD-free controls. 3 target gene databases were employed to predict the target genes of differentially expressed miRNAs. miRNAs that were generally consensus across the three databases were selected and then independently validated using real time PCR in plasma samples from 20 VSD patients and 15 VSD-free controls. Target genes of validated 8 miRNAs were predicted using bioinformatic methods. 36 differentially expressed miRNAs were found in the patients with VSD and the VSD-free controls. Compared with VSD-free controls, expression of 15 miRNAs were up-regulated and 21 miRNAs were downregulated in the VSD group. 15 miRNAs were selected based on database analysis results and expression levels of 8 miRNAs were validated. The results of the real time PCR were consistent with those of the microarray analysis. Gene ontology analysis indicated that the top target genes were mainly related to cardiac right ventricle morphogenesis. NOTCH1, HAND1, ZFPM2, and GATA3 were predicted as targets of hsa-let-7e-5p, hsa-miR-222-3p and hsa-miR-433. We report for the first time the circulating miRNA profile for patients with VSD and showed that 7 miRNAs were downregulated and 1 upregulated when matched to VSD-free controls. Analysis revealed target genes involved in cardiac development were probably regulated by these miRNAs.

  14. Identification of suitable reference gene and biomarkers of serum miRNAs for osteoporosis

    PubMed Central

    Chen, Jian; Li, Kai; Pang, Qianqian; Yang, Chao; Zhang, Hongyu; Wu, Feng; Cao, Hongqing; Liu, Hongju; Wan, Yumin; Xia, Weibo; Wang, Jinfu; Dai, Zhongquan; Li, Yinghui

    2016-01-01

    Our objective was to identify suitable reference genes in serum miRNA for normalization and screen potential new biomarkers for osteoporosis diagnosis by a systematic study. Two types of osteoporosis models were used like as mechanical unloading and estrogen deficiency. Through a large-scale screening using microarray, qPCR validation and statistical algorithms, we first identified miR-25-3p as a suitable reference gene for both type of osteoporosis, which also showed stability during the differentiation processes of osteoblast and osteoclast. Then 15 serum miRNAs with differential expression in OVX rats were identified by microarray and qPCR validation. We further detected these 15 miRNAs in postmenopausal women and bedrest rhesus monkeys and evaluated their diagnostic value by ROC analysis. Among these miRNAs, miR-30b-5p was significantly down-regulated in postmenopausal women with osteopenia or osteoporosis; miR-103-3p, miR-142-3p, miR-328-3p were only significantly decreased in osteoporosis. They all showed positive correlations with BMD. Except miR328-3p, the other three miRNAs were also declined in the rhesus monkeys after long-duration bedrest. Their AUC values (all >0.75) proved the diagnostic potential. Our results provided a reliable normalization reference gene and verified a group of circulating miRNAs as non-invasive biomarkers in the detection of postmenopausal- and mechanical unloading- osteoporosis. PMID:27821865

  15. ELISA microarray technology as a high-throughput system for cancer biomarker validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zangar, Richard C.; Daly, Don S.; White, Amanda M.

    A large gap currently exists between the ability to discover potential biomarkers and the ability to assess the real value of these proteins for cancer screening. One major challenge in biomarker validation is the inherent variability in biomarker levels. This variability stems from the diversity across the human population and the considerable molecular heterogeneity between individual tumors, even those that originate from a single tissue. Another major challenge with cancer screening is that most cancers are rare in the general population, meaning that the specificity of an assay must be very high if the number of false positive is notmore » going to be much greater than the number of true positives. Because of these challenges with biomarker validation, it is necessary to analysis of thousands of samples before a clear idea of the utility of a screening assay can be determined. Enzyme-linked immunosorbent assay (ELISA) microarray technology can simultaneously quantify levels of multiple proteins and has the potential to accelerate biomarker validation. In this review, we discuss current ELISA microarray technology and the enabling advances needed to achieve the reproducibility and throughput that are required to evaluate cancer biomarkers.« less

  16. The Thoc1 Ribonucleoprotein as a Novel Biomarker for Prostate Cancer Treatment Assignment

    DTIC Science & Technology

    2017-10-01

    PI Mohler). Immunostaining of prostate cancer biopsy specimen of patients who qualified for active surveillance is complete (PI Goodrich). ELISA assay...specimens for use in constructing tissue microarrays, developing and optimizing ELISA assays to detect Thoc1 protein and anti-Thoc1 autoantibodies...set of TMAs made from 700 patients available at RPCI has been immunostained for PMP22 (figure 5). ELISA assays for measuring pThoc1 and pThoc1

  17. Searching for the molecular benchmark of physiological intestinal anastomotic healing in rats: an experimental study.

    PubMed

    Seifert, Gabriel J; Seifert, Michael; Kulemann, Birte; Holzner, Philipp A; Glatz, Torben; Timme, Sylvia; Sick, Olivia; Höppner, Jens; Hopt, Ulrich T; Marjanovic, Goran

    2014-01-01

    This investigation focuses on the physiological characteristics of gene transcription of intestinal tissue following anastomosis formation. In eight rats, end-to-end ileo-ileal anastomoses were performed (n = 2/group). The healthy intestinal tissue resected for this operation was used as a control. On days 0, 2, 4 and 8, 10-mm perianastomotic segments were resected. Control and perianastomotic segments were examined with an Affymetrix microarray chip to assess changes in gene regulation. Microarray findings were validated using real-time PCR for selected genes. In addition to screening global gene expression, we identified genes intensely regulated during healing and also subjected our data sets to an overrepresentation analysis using the Gene Ontology (GO) and Kyoto Encyclopedia for Genes and Genomes (KEGG). Compared to the control group, we observed that the number of differentially regulated genes peaked on day 2 with a total of 2,238 genes, decreasing by day 4 to 1,687 genes and to 1,407 genes by day 8. PCR validation for matrix metalloproteinases-3 and -13 showed not only identical transcription patterns but also analogous regulation intensity. When setting the cutoff of upregulation at 10-fold to identify genes likely to be relevant, the total gene count was significantly lower with 55, 45 and 37 genes on days 2, 4 and 8, respectively. A total of 947 GO subcategories were significantly overrepresented during anastomotic healing. Furthermore, 23 overrepresented KEGG pathways were identified. This study is the first of its kind that focuses explicitly on gene transcription during intestinal anastomotic healing under standardized conditions. Our work sets a foundation for further studies toward a more profound understanding of the physiology of anastomotic healing.

  18. Prader-Willi region non-protein coding RNA 1 suppressed gastric cancer growth as a competing endogenous RNA of miR-425-5p.

    PubMed

    Chen, Zihao; Ju, Hongping; Yu, Shan; Zhao, Ting; Jing, Xiaojie; Li, Ping; Jia, Jing; Li, Nan; Tan, Bibo; Li, Yong

    2018-05-23

    Gastric cancer (GC) is one of the major global health problems, especially in Asia. Nowadays, long non-coding RNA (lncRNA) has gained significant attention in the current research climate such as carcinogenesis. This research desires to explore the mechanism of Prader-Willi region non-protein coding RNA 1 (PWRN1) on regulating GC process. Differentially expressed lncRNAs in GC tissues were screened out through microarray analysis. The RNA and protein expression level were detected by quantitative real-time PCR (qRT-PCR) and Western blot. Cell proliferation, apoptosis rate, metastasis abilities were respectively determined by cell counting kit 8 (CCK8), flow cytometry, wound healing, and transwell assay. The luciferase reporter system was used to verify the targetting relationships between PWRN1, miR-425-5p , and phosphatase and tensin homolog ( PTEN ). RNA-binding protein immunoprecipitation (RIP) assay was performed to prove whether PWRN1 acted as a competitive endogenous RNA (ceRNA) of miR-425-5p Tumor xenograft model and immunohistochemistry (IHC) were developed to study the influence of PWRN1 on tumor growth in vivo Microarray analysis determined that PWRN1 was differently expressed between GC tissues and adjacent tissues. qRT-PCR revealed PWRN1 low expression in GC tissues and cells. Up-regulated PWRN1 could reduce proliferation and metastasis and increase apoptosis in GC cells, while miR-425-5p had reverse effects. The RIP assay indicated that PWRN1 may target an oncogene, miR-425-5p The tumor xenograft assay found that up-regulated PWRN1 suppressed the tumor growth. The bioinformatics analysis, luciferase assay, and Western blot indicated that PWRN1 affected PTEN / Akt / MDM2 / p53 axis via suppressing miR-425-5p Our findings suggested that PWRN1 functioned as a ceRNA targetting miR-425-5p and suppressed GC development via p53 signaling pathway. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  19. Use of lectin microarray to differentiate gastric cancer from gastric ulcer

    PubMed Central

    Huang, Wei-Li; Li, Yang-Guang; Lv, Yong-Chen; Guan, Xiao-Hui; Ji, Hui-Fan; Chi, Bao-Rong

    2014-01-01

    AIM: To investigate the feasibility of lectin microarray for differentiating gastric cancer from gastric ulcer. METHODS: Twenty cases of human gastric cancer tissue and 20 cases of human gastric ulcer tissue were collected and processed. Protein was extracted from the frozen tissues and stored. The lectins were dissolved in buffer, and the sugar-binding specificities of lectins and the layout of the lectin microarray were summarized. The median of the effective data points for each lectin was globally normalized to the sum of medians of all effective data points for each lectin in one block. Formalin-fixed paraffin-embedded gastric cancer tissues and their corresponding gastric ulcer tissues were subjected to Ag retrieval. Biotinylated lectin was used as the primary antibody and HRP-streptavidin as the secondary antibody. The glycopatterns of glycoprotein in gastric cancer and gastric ulcer specimens were determined by lectin microarray, and then validated by lectin histochemistry. Data are presented as mean ± SD for the indicated number of independent experiments. RESULTS: The glycosylation level of gastric cancer was significantly higher than that in ulcer. In gastric cancer, most of the lectin binders showed positive signals and the intensity of the signals was stronger, whereas the opposite was the case for ulcers. Significant differences in the pathological score of the two lectins were apparent between ulcer and gastric cancer tissues using the same lectin. For MPL and VVA, all types of gastric cancer detected showed stronger staining and a higher positive rate in comparison with ulcer, especially in the case of signet ring cell carcinoma and intra-mucosal carcinoma. GalNAc bound to MPL showed a significant increase. A statistically significant association between MPL and gastric cancer was observed. As with MPL, there were significant differences in VVA staining between gastric cancer and ulcer. CONCLUSION: Lectin microarray can differentiate the different glycopatterns in gastric cancer and gastric ulcer, and the lectins MPL and VVA can be used as biomarkers. PMID:24833877

  20. MiR-141-3p is upregulated in esophageal squamous cell carcinoma and targets pleckstrin homology domain leucine-rich repeat protein phosphatase-2, a negative regulator of the PI3K/AKT pathway.

    PubMed

    Ishibashi, Osamu; Akagi, Ichiro; Ogawa, Yota; Inui, Takashi

    2018-05-11

    The phosphatidylinositol-3-kinase (PI3K)/AKT pathway is frequently activated in various human cancers and plays essential roles in their development and progression. Accumulating evidence suggests that dysregulated expression of microRNAs (miRNAs) is closely associated with cancer progression and metastasis. Here, we focused on miRNAs that could regulate genes related to the PI3K/AKT pathway in esophageal squamous cell carcinoma (ESCC). To identify upregulated miRNAs and their possible target genes in ESCC, we performed microarray-based integrative analyses of miRNA and mRNA expression levels in three human ESCC cell lines and a normal esophageal epithelial cell line. The miRNA microarray analysis revealed that miR-31-5p, miR-141-3p, miR-200b-3p, miR-200c-3p, and miR-205-5p were expressed at higher levels in the ESCC cell lines than the normal esophageal epithelial cell line. Bioinformatical analyses of mRNA microarray data identified several AKT/PI3K pathway-related genes as candidate targets of these miRNAs, which include tumor suppressors such as DNA-damage-inducible transcript 4 and pleckstrin homology domain leucine-rich repeat protein phosphatase-2 (PHLPP2). To validate the targets of relevant miRNAs experimentally, synthetic mimics of the miRNAs were transfected into the esophageal epithelial cell line. Here, we report that miR-141-3p suppress the expression of PHLPP2, a negative regulators of the AKT/PI3K pathway, as a target in ESCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma

    PubMed Central

    Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang

    2017-01-01

    Objective This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Methods Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Results Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification (P=0.009) or deletion (P=0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly (P=1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Conclusion Chromosomal CNVs may contribute to their transcript expression in cervical cancer. PMID:29312578

  2. Integrated analysis of chromosome copy number variation and gene expression in cervical carcinoma.

    PubMed

    Yan, Deng; Yi, Song; Chiu, Wang Chi; Qin, Liu Gui; Kin, Wong Hoi; Kwok Hung, Chung Tony; Linxiao, Han; Wai, Choy Kwong; Yi, Sui; Tao, Yang; Tao, Tang

    2017-12-12

    This study was conducted to explore chromosomal copy number variations (CNV) and transcript expression and to examine pathways in cervical pathogenesis using genome-wide high resolution microarrays. Genome-wide chromosomal CNVs were investigated in 6 cervical cancer cell lines by Human Genome CGH Microarray Kit (4x44K). Gene expression profiles in cervical cancer cell lines, primary cervical carcinoma and normal cervical epithelium tissues were also studied using the Whole Human Genome Microarray Kit (4x44K). Fifty common chromosomal CNVs were identified in the cervical cancer cell lines. Correlation analysis revealed that gene up-regulation or down-regulation is significantly correlated with genomic amplification ( P =0.009) or deletion ( P =0.006) events. Expression profiles were identified through cluster analysis. Gene annotation analysis pinpointed cell cycle pathways was significantly ( P =1.15E-08) affected in cervical cancer. Common CNVs were associated with cervical cancer. Chromosomal CNVs may contribute to their transcript expression in cervical cancer.

  3. Hematoxylin and Eosin Counterstaining Protocol for Immunohistochemistry Interpretation and Diagnosis.

    PubMed

    Grosset, Andrée-Anne; Loayza-Vega, Kevin; Adam-Granger, Éloïse; Birlea, Mirela; Gilks, Blake; Nguyen, Bich; Soucy, Geneviève; Tran-Thanh, Danh; Albadine, Roula; Trudel, Dominique

    2017-12-21

    Hematoxylin and eosin (H&E) staining is a well-established technique in histopathology. However, immunohistochemistry (IHC) interpretation is done exclusively with hematoxylin counterstaining. Our goal was to investigate the potential of H&E as counterstaining (H&E-IHC) to allow for visualization of a marker while confirming the diagnosis on the same slide. The quality of immunostaining and the fast-technical performance were the main criteria to select the final protocol. We stained multiple diagnostic tissues with class I IHC tests with different subcellular localization markers (anti-CK7, CK20, synaptophysin, CD20, HMB45, and Ki-67) and with double-staining on prostate tissues with anti-high molecular weight keratins/p63 (DAB detection) and p504s (alkaline phosphatase detection). To validate the efficacy of the counterstaining, we stained tissue microarrays from the Canadian Immunohistochemistry Quality Control (cIQc) with class II IHC tests (ER, PR, HER2, and p53 markers). Interobserver and intraobserver concordance was assessed by κ statistics. Excellent agreement of H&E-IHC interpretation was observed in comparison with standard IHC from our laboratory (κ, 0.87 to 1.00), and with the cIQc reference values (κ, 0.81 to 1.00). Interobserver and intraobserver agreement was excellent (κ, 0.89 to 1.00 and 0.87 to 1.00, respectively). We therefore show for the first time the potential of using H&E counterstaining for IHC interpretation. We recommend the H&E-IHC protocol to enhance diagnostic precision for the clinical workflow and research studies.

  4. Curcumin Suppresses In Vitro Proliferation and Invasion of Human Prostate Cancer Stem Cells by Modulating DLK1-DIO3 Imprinted Gene Cluster MicroRNAs.

    PubMed

    Zhang, Hu; Zheng, Jiajia; Shen, Hongliang; Huang, Yongyi; Liu, Te; Xi, Hao; Chen, Chuan

    2018-01-01

    Curcumin can suppress human prostate cancer (HuPCa) cell proliferation and invasion. However, it is not known whether curcumin can inhibit HuPCa stem cell (HuPCaSC) proliferation and invasion. We used methyl thiazolyl tetrazolium and Transwell assays to examine the proliferation and invasion of the HuPCaSC lines DU145 and 22Rv1 following curcumin or dimethyl sulfoxide (control) treatment. The microRNA (miRNA) expression levels in the DLK1-DIO3 imprinted genomic region in the cells and in tumor tissues from patients with PCa were examined using microarray and quantitative PCR. The median inhibitory concentration of curcumin for HuPCa cells significantly inhibited HuPCaSC proliferation and invasion in vitro. The miR-770-5p and miR-1247 expression levels in the DLK1-DIO3 imprinted gene cluster were significantly different between the curcumin-treated and control HuPCaSCs. Overexpression of these positive miRNAs significantly increased the inhibition rates of miR-770-5p- and miR-1247-transfected HuPCaSCs compared to the control miR-Mut-transfected HuPCaSCs. Lastly, low-tumor grade PCa tissues had higher miR-770-5p and miR-1247 expression levels than high-grade tumor tissues. Curcumin can suppress HuPCaSC proliferation and invasion in vitro by modulating specific miRNAs in the DLK1-DIO3 imprinted gene cluster.

  5. Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology.

    PubMed

    Sui, Weiguo; Shi, Zhoufang; Xue, Wen; Ou, Minglin; Zhu, Ying; Chen, Jiejing; Lin, Hua; Liu, Fuhua; Dai, Yong

    2017-03-01

    The aim of the present study was to screen gastric cancer (GC) tissue and adjacent tissue for differences in mRNA and circular (circRNA) expression, to analyze the differences in circRNA and mRNA expression, and to investigate the circRNA expression in gastric carcinoma and its mechanism. circRNA and mRNA differential expression profiles generated using Agilent microarray technology were analyzed in the GC tissues and adjacent tissues. qRT-PCR was used to verify the differential expression of circRNAs and mRNAs according to the interactions between circRNAs and miRNAs as well as the possible existence of miRNA and mRNA interactions. We found that: i) the circRNA expression profile revealed 1,285 significant differences in circRNA expression, with circRNA expression downregulated in 594 samples and upregulated in 691 samples via interactions with miRNAs. The qRT-PCR validation experiments showed that hsa_circRNA_400071, hsa_circRNA_000543 and hsa_circRNA_001959 expression was consistent with the microarray analysis results. ii) 29,112 genes were found in the GC tissues and adjacent tissues, including 5,460 differentially expressed genes. Among them, 2,390 differentially expressed genes were upregulated and 3,070 genes were downregulated. Gene Ontology (GO) analysis of the differentially expressed genes revealed these genes involved in biological process classification, cellular component classification and molecular function classification. Pathway analysis of the differentially expressed genes identified 83 significantly enriched genes, including 28 upregulated genes and 55 downregulated genes. iii) 69 differentially expressed circRNAs were found that might adsorb specific miRNAs to regulate the expression of their target gene mRNAs. The conclusions are: i) differentially expressed circRNAs had corresponding miRNA binding sites. These circRNAs regulated the expression of target genes through interactions with miRNAs and might become new molecular biomarkers for GC in the future. ii) Differentially expressed genes may be involved in the occurrence of GC via a variety of mechanisms. iii) CD44, CXXC5, MYH9, MALAT1 and other genes may have important implications for the occurrence and development of GC through the regulation, interaction, and mutual influence of circRNA-miRNA-mRNA via different mechanisms.

  6. Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array

    PubMed Central

    Wong, Yick Ching; Kwong, Qi Bin; Lee, Heng Leng; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R.; Kulaveerasingam, Harikrishna

    2014-01-01

    Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA) and triacylglycerol (TAG) assembly, along with the tricarboxylic acid cycle (TCA) and glycolysis pathway at 16 Weeks After Anthesis (WAA) exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01), and rice (p-value < 0.01) arrays. The oil palm microarray data also showed comparable correlation of expression (r2 = 0.569, p < 0.01) throughout mesocarp development to transcriptome (RNA sequencing) data, and improved correlation over quantitative real-time PCR (qPCR) (r2 = 0.721, p < 0.01) of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield. PMID:27600348

  7. Expression Comparison of Oil Biosynthesis Genes in Oil Palm Mesocarp Tissue Using Custom Array.

    PubMed

    Wong, Yick Ching; Kwong, Qi Bin; Lee, Heng Leng; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R; Kulaveerasingam, Harikrishna

    2014-11-13

    Gene expression changes that occur during mesocarp development are a major research focus in oil palm research due to the economic importance of this tissue and the relatively rapid increase in lipid content to very high levels at fruit ripeness. Here, we report the development of a transcriptome-based 105,000-probe oil palm mesocarp microarray. The expression of genes involved in fatty acid (FA) and triacylglycerol (TAG) assembly, along with the tricarboxylic acid cycle (TCA) and glycolysis pathway at 16 Weeks After Anthesis (WAA) exhibited significantly higher signals compared to those obtained from a cross-species hybridization to the Arabidopsis (p-value < 0.01), and rice (p-value < 0.01) arrays. The oil palm microarray data also showed comparable correlation of expression (r² = 0.569, p < 0.01) throughout mesocarp development to transcriptome (RNA sequencing) data, and improved correlation over quantitative real-time PCR (qPCR) (r² = 0.721, p < 0.01) of the same RNA samples. The results confirm the advantage of the custom microarray over commercially available arrays derived from model species. We demonstrate the utility of this custom microarray to gain a better understanding of gene expression patterns in the oil palm mesocarp that may lead to increasing future oil yield.

  8. CYANOBACTERIA AND CYANOTOXINS IN WATER SUPPLY RESERVOIRS – TO DEVELOP AND VALIDATE A MICROARRAY TO TEST FOR CYANOBACTERIA AND CYANOTOXIN GENES IN DRINKING WATER RESERVOIRS AS AN AID TO RISK ASSESSMENT AND MANAGEMENT OF WATER SUPPLIES

    EPA Science Inventory

    The objective of this study is to develop a microarray to test for cyanobacteria and cyanotoxin genes in drinking water reservoirs as an aid to risk assessment and manages of water supplies. The microarray will include probes recognizing important freshwater cyanobacterial tax...

  9. Detection of gastric cancer-associated microRNAs on microRNA microarray comparing pre- and post-operative plasma

    PubMed Central

    Konishi, H; Ichikawa, D; Komatsu, S; Shiozaki, A; Tsujiura, M; Takeshita, H; Morimura, R; Nagata, H; Arita, T; Kawaguchi, T; Hirashima, S; Fujiwara, H; Okamoto, K; Otsuji, E

    2012-01-01

    Background: Recently, it was reported that plasma microRNAs (miRNAs) are low-invasive useful biomarkers for cancer. We attempted to isolate gastric cancer (GC)-associated miRNAs comparing pre- and post-operative paired plasma, thereby excluding the possible effects of individual variability. Methods: This study was divided into four steps: (1) microarray analysis comparing pre- and post-operative plasma; (2) validation of candidate miRNAs by quantitative RT–PCR; (3) validation study of selected miRNAs using paired plasma; and (4) comparison of the levels of selected miRNAs in plasma between healthy controls and patients. Results: From the results of microarray analysis, nine candidate miRNAs the levels of which were markedly decreased in post-operative plasma were selected for further studies. After confirmation of their post-operative marked reduction, two candidate miRNAs, miR-451 and miR-486, were selected as plasma biomarkers, considering the abundance in plasma, and marked decrease in post-operative samples. In validation, the two miRNAs were found to decrease in post-operative plasma in 90 and 93% of patients (both P<0.01). In comparison with healthy controls, the levels of both miRNAs were found to be significantly higher in patients, and the area under the curve values were high at 0.96 and 0.92. Conclusion: Plasma miR-451 and miR-486 could be useful blood-based biomarkers for screening GC. PMID:22262318

  10. Identification of a single nucleotide polymorphism indicative of high risk in acute myocardial infarction

    PubMed Central

    Shalia, Kavita; Saranath, Dhananjaya; Rayar, Jaipreet; Shah, Vinod K.; Mashru, Manoj R.; Soneji, Surendra L.

    2017-01-01

    Background & objectives: Acute myocardial infarction (AMI) is a major health concern in India. The aim of the study was to identify single nucleotide polymorphisms (SNPs) associated with AMI in patients using dedicated chip and validating the identified SNPs on custom-designed chips using high-throughput microarray analysis. Methods: In pilot phase, 48 AMI patients and 48 healthy controls were screened for SNPs using human CVD55K BeadChip with 48,472 SNP probes on Illumina high-throughput microarray platform. The identified SNPs were validated by genotyping additional 160 patients and 179 controls using custom-made Illumina VeraCode GoldenGate Genotyping Assay. Analysis was carried out using PLINK software. Results: From the pilot phase, 98 SNPs present on 94 genes were identified with increased risk of AMI (odds ratio of 1.84-8.85, P=0.04861-0.003337). Five of these SNPs demonstrated association with AMI in the validation phase (P<0.05). Among these, one SNP rs9978223 on interferon gamma receptor 2 [IFNGR2, interferon (IFN)-gamma transducer 1] gene showed a significant association (P=0.00021) with AMI below Bonferroni corrected P value (P=0.00061). IFNGR2 is the second subunit of the receptor for IFN-gamma, an important cytokine in inflammatory reactions. Interpretation & conclusions: The study identified an SNP rs9978223 on IFNGR2 gene, associated with increased risk in AMI patient from India. PMID:29434065

  11. Molecular dysexpression in gastric cancer revealed by integrated analysis of transcriptome data.

    PubMed

    Li, Xiaomei; Dong, Weiwei; Qu, Xueling; Zhao, Huixia; Wang, Shuo; Hao, Yixin; Li, Qiuwen; Zhu, Jianhua; Ye, Min; Xiao, Wenhua

    2017-05-01

    Gastric cancer (GC) is often diagnosed in the advanced stages and is associated with a poor prognosis. Obtaining an in depth understanding of the molecular mechanisms of GC has lagged behind compared with other cancers. This study aimed to identify candidate biomarkers for GC. An integrated analysis of microarray datasets was performed to identify differentially expressed genes (DEGs) between GC and normal tissues. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were then performed to identify the functions of the DEGs. Furthermore, a protein-protein interaction (PPI) network of the DEGs was constructed. The expression levels of the DEGs were validated in human GC tissues using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A set of 689 DEGs were identified in GC tissues, as compared with normal tissues, including 202 upregulated DEGs and 487 downregulated DEGs. The KEGG pathway analysis suggested that various pathways may play important roles in the pathology of GC, including pathways related to protein digestion and absorption, extracellular matrix-receptor interaction, and the metabolism of xenobiotics by cytochrome P450. The PPI network analysis indicated that the significant hub proteins consisted of SPP1, TOP2A and ARPC1B. RT-qPCR validation indicated that the expression levels of the top 10 most significantly dysexpressed genes were consistent with the illustration of the integrated analysis. The present study yielded a reference list of reliable DEGs, which represents a robust pool of candidates for further evaluation of GC pathogenesis and treatment.

  12. Neurofibromin Deficiency-Associated Transcriptional Dysregulation Suggests a Novel Therapy for Tibial Pseudoarthrosis in NF1

    PubMed Central

    Paria, Nandina; Cho, Tae-Joon; Choi, In Ho; Kamiya, Nobuhiro; Kayembe, Kay; Mao, Rong; Margraf, Rebecca L.; Obermosser, Gerlinde; Oxendine, Ila; Sant, David W.; Song, Mi Hyun; Stevenson, David A.; Viskochil, David H.; Wise, Carol A.; Kim, Harry K.W.; Rios, Jonathan J

    2014-01-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant disease caused by mutations in NF1. Among the earliest manifestations is tibial pseudoarthrosis and persistent nonunion after fracture. To further understand the pathogenesis of pseudoarthrosis and the underlying bone remodeling defect, pseudoarthrosis tissue and cells cultured from surgically resected pseudoarthrosis tissue from NF1 individuals were analyzed using whole-exome and whole-transcriptome sequencing as well as genomewide microarray analysis. Genomewide analysis identified multiple genetic mechanisms resulting in somatic bi-allelic NF1 inactivation; no other genes with recurring somatic mutations were identified. Gene expression profiling identified dysregulated pathways associated with neurofibromin deficiency, including phosphoinosital-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways. Unlike aggressive NF1-associated malignancies, tibial pseudoarthrosis tissue does not harbor a high frequency of somatic mutations in oncogenes or other tumor-suppressor genes, such as p53. However, gene expression profiling indicates pseudoarthrosis tissue has a tumor-promoting transcriptional pattern, despite lacking tumorigenic somatic mutations. Significant over-expression of specific cancer-associated genes in pseudoarthrosis highlights a potential for receptor tyrosine kinase inhibitors to target neurofibromin-deficient pseudoarthrosis and promote proper bone remodeling and fracture healing. PMID:24932921

  13. The low-abundance transcriptome reveals novel biomarkers, specific intracellular pathways and targetable genes associated with advanced gastric cancer.

    PubMed

    Bizama, Carolina; Benavente, Felipe; Salvatierra, Edgardo; Gutiérrez-Moraga, Ana; Espinoza, Jaime A; Fernández, Elmer A; Roa, Iván; Mazzolini, Guillermo; Sagredo, Eduardo A; Gidekel, Manuel; Podhajcer, Osvaldo L

    2014-02-15

    Studies on the low-abundance transcriptome are of paramount importance for identifying the intimate mechanisms of tumor progression that can lead to novel therapies. The aim of the present study was to identify novel markers and targetable genes and pathways in advanced human gastric cancer through analyses of the low-abundance transcriptome. The procedure involved an initial subtractive hybridization step, followed by global gene expression analysis using microarrays. We observed profound differences, both at the single gene and gene ontology levels, between the low-abundance transcriptome and the whole transcriptome. Analysis of the low-abundance transcriptome led to the identification and validation by tissue microarrays of novel biomarkers, such as LAMA3 and TTN; moreover, we identified cancer type-specific intracellular pathways and targetable genes, such as IRS2, IL17, IFNγ, VEGF-C, WISP1, FZD5 and CTBP1 that were not detectable by whole transcriptome analyses. We also demonstrated that knocking down the expression of CTBP1 sensitized gastric cancer cells to mainstay chemotherapeutic drugs. We conclude that the analysis of the low-abundance transcriptome provides useful insights into the molecular basis and treatment of cancer. © 2013 UICC.

  14. Epigenetic regulation of EFEMP1 in prostate cancer: biological relevance and clinical potential

    PubMed Central

    Almeida, Mafalda; Costa, Vera L; Costa, Natália R; Ramalho-Carvalho, João; Baptista, Tiago; Ribeiro, Franclim R; Paulo, Paula; Teixeira, Manuel R; Oliveira, Jorge; Lothe, Ragnhild A; Lind, Guro E; Henrique, Rui; Jerónimo, Carmen

    2014-01-01

    Epigenetic alterations are common in prostate cancer (PCa) and seem to contribute decisively to its initiation and progression. Moreover, aberrant promoter methylation is a promising biomarker for non-invasive screening. Herein, we sought to characterize EFEMP1 as biomarker for PCa, unveiling its biological relevance in prostate carcinogenesis. Microarray analyses of treated PCa cell lines and primary tissues enabled the selection of differentially methylated genes, among which EFEMP1 was further validated by MSP and bisulfite sequencing. Assessment of biomarker performance was accomplished by qMSP. Expression analysis of EFEMP1 and characterization of histone marks were performed in tissue samples and cancer cell lines to determine the impact of epigenetic mechanisms on EFEMP1 transcriptional regulation. Phenotypic assays, using transfected cell lines, permitted the evaluation of EFEMP1’s role in PCa development. EFEMP1 methylation assay discriminated PCa from normal prostate tissue (NPT; P < 0.001, Kruskall–Wallis test) and renal and bladder cancers (96% sensitivity and 98% specificity). EFEMP1 transcription levels inversely correlated with promoter methylation and histone deacetylation, suggesting that both epigenetic mechanisms are involved in gene regulation. Phenotypic assays showed that EFEMP1 de novo expression reduces malignant phenotype of PCa cells. EFEMP1 promoter methylation is prevalent in PCa and accurately discriminates PCa from non-cancerous prostate tissues and other urological neoplasms. This epigenetic alteration occurs early in prostate carcinogenesis and, in association with histone deacetylation, progressively leads to gene down-regulation, fostering cell proliferation, invasion and evasion of apoptosis. PMID:25211630

  15. Microarray Meta-Analysis of RNA-Binding Protein Functions in Alternative Polyadenylation

    PubMed Central

    Hu, Wenchao; Liu, Yuting; Yan, Jun

    2014-01-01

    Alternative polyadenylation (APA) is a post-transcriptional mechanism to generate diverse mRNA transcripts with different 3′UTRs from the same gene. In this study, we systematically searched for the APA events with differential expression in public mouse microarray data. Hundreds of genes with over-represented differential APA events and the corresponding experiments were identified. We further revealed that global APA differential expression occurred prevalently in tissues such as brain comparing to peripheral tissues, and biological processes such as development, differentiation and immune responses. Interestingly, we also observed widespread differential APA events in RNA-binding protein (RBP) genes such as Rbm3, Eif4e2 and Elavl1. Given the fact that RBPs are considered as the main regulators of differential APA expression, we constructed a co-expression network between APAs and RBPs using the microarray data. Further incorporation of CLIP-seq data of selected RBPs showed that Nova2 represses and Mbnl1 promotes the polyadenylation of closest poly(A) sites respectively. Altogether, our study is the first microarray meta-analysis in a mammal on the regulation of APA by RBPs that integrated massive mRNA expression data under a wide-range of biological conditions. Finally, we present our results as a comprehensive resource in an online website for the research community. PMID:24622240

  16. Significance of estrogen receptor 1 (ESR-1) gene imbalances in colon and hepatocellular carcinomas based on tissue microarrays analysis.

    PubMed

    Tsiambas, Evangelos; Georgiannos, Stavros N; Salemis, Nikolaos; Alexopoulou, Despoina; Lambropoulou, Sofia; Dimo, Blerta; Ioannidis, Ioannis; Kravvaritis, Christos; Karameris, Andreas; Patsouris, Efstratios; Dourakis, Spyridon

    2011-12-01

    Estrogen receptor alpha-encoded by ESR1 gene-overexpression correlates with prognosis and response to specific chemotherapy in breast adenocarcinoma cases. Mechanisms of ESR-1 deregulation in carcinomas remain under investigation. To analyze ESR1 in carcinomas of different histogenesis. Using tissue microarray technology, 172 primary carcinomas including breast ductal adenocarcinomas (n=60), hepatocellular carcinomas (n=52), and colon adenocarcinomas (n=60) were cored and re-embedded in three paraffin blocks. Initial diagnosis was based on liquid based cytology (LiquiPrep/ThinPrep). Immunohistochemistry and fluorescence in situ hybridization were performed. Quantitative evaluation of ER-a protein levels was assessed by applying digital image analysis. ER-a overexpression was observed in 41/60 (68.3%), 23/52 (44.2%) and 4/60 (6.6%) cases, respectively. ESR1 gene multiple copies were confirmed in 13/60 (21.6%) breast adenocarcinomas, but high amplification only in 8/13 (62.8%). Allelic absence was identified in 3/52 (5.7%) hepatocellular carcinomas, whereas colon adenocarcinomas demonstrated gene gains in 5/60 (8.3%) cases referred to chr 6 aneuploidy and not to amplification. ER-a overall expression was associated strongly to ESR1 gene copies only in breast carcinoma (P=0.036). ESR-1 gene overexpression happens frequently in breast cancer, but only a subset of them are high amplified cases correlated to increased response rates in hormonal therapy (tamoxifen). Absence of this mechanism in hepatocellular and colon carcinomas maybe is a negative factor for applying this therapy. This is a pattern of histo-genetic depended targeted therapeutic strategy.

  17. Prognostic significance of MYC, BCL2, and BCL6 rearrangements in patients with diffuse large B-cell lymphoma treated with cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab.

    PubMed

    Akyurek, Nalan; Uner, Aysegul; Benekli, Mustafa; Barista, Ibrahim

    2012-09-01

    Diffuse large B-cell lymphomas (DLBCLs) are a biologically heterogeneous group in which various gene alterations have been reported. The aim of this study was to investigate the frequency and prognostic impact of BCL2, BCL6, and MYC rearrangements in cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab (R-CHOP)-treated DLBCL cases. Tissue microarrays were constructed from 239 cases of DLBCL, and the expressions of CD10, BCL6, MUM1/IRF4, and BCL2 were evaluated by immunohistochemistry. MYC, BCL2, and BCL6 rearrangements were investigated by interphase fluorescence in situ hybridization on tissue microarrays. Survival analysis was constructed from 145 R-CHOP-treated patients. MYC, BCL2, and BCL6 rearrangements were detected in 14 (6%), 36 (15%), and 69 (29%) of 239 DLBCL patients. Double or triple rearrangements were detected in 7 (3%) of 239 DLBCL cases. Of these, 4 had BCL2 and MYC, 2 had BCL6 and MYC, and 1 had BCL2, BCL6, and MYC rearrangements. The prognosis of these cases was extremely poor, with a median survival of 9 months. MYC rearrangement was associated with significantly worse overall survival (P = .01), especially for the cases with GC phenotype (P = .009). BCL6 rearrangement also predicted significantly shorter overall survival (P = .04), especially for the non-GC phenotype (P = .03). BCL2 rearrangement had no prognostic impact on outcome. International Prognostic Index (P = .004) and MYC rearrangement (P = .009) were independent poor prognostic factors. Analysis of MYC gene rearrangement along with BCL2 and BCL6 is critical in identifying high-risk patients with poor prognosis. Copyright © 2011 American Cancer Society.

  18. Identification of novel autoantibodies in type 1 diabetic patients using a high-density protein microarray.

    PubMed

    Koo, Bo Kyung; Chae, Sehyun; Kim, Kristine M; Kang, Min Jueng; Kim, Eunhee G; Kwak, Soo Heon; Jung, Hye Seung; Cho, Young Min; Choi, Sung Hee; Park, Young Joo; Shin, Choong Ho; Jang, Hak C; Shin, Chan Soo; Hwang, Daehee; Yi, Eugene C; Park, Kyong Soo

    2014-09-01

    Autoantibodies can facilitate diagnostic and therapeutic means for type 1 diabetes (T1DM). We profiled autoantibodies from serum samples of 16 T1DM patients, 16 type 2 diabetic (T2DM) patients, and 27 healthy control subjects with normal glucose tolerance (NGT) by using protein microarrays containing 9,480 proteins. Two novel autoantibodies, anti-EEF1A1 and anti-UBE2L3, were selected from microarrays followed by immunofluorescence staining of pancreas. We then tested the validity of the candidates by ELISA in two independent test cohorts: 1) 95 adults with T1DM, 49 with T2DM, 11 with latent autoimmune diabetes in adults (LADA), 20 with Graves disease, and 66 with NGT and 2) 33 children with T1DM and 34 healthy children. Concentrations of these autoantibodies were significantly higher in T1DM patients than in NGT and T2DM subjects (P < 0.01), which was also confirmed in the test cohort of children (P < 0.05). Prevalence of anti-EEF1A1 and anti-UBE2L3 antibodies was 29.5% and 35.8% in T1DM, respectively. Of note, 40.9% of T1DM patients who lack anti-GAD antibodies (GADA) had anti-EEF1A1 and/or anti-UBE2L3 antibodies. These were also detected in patients with fulminant T1DM but not LADA. Our approach identified autoantibodies that can provide a new dimension of information indicative of T1DM independent of GADA and new insights into diagnosis and classification of T1DM. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  19. Potential of DNA methylation in rectal cancer as diagnostic and prognostic biomarkers

    PubMed Central

    Exner, Ruth; Pulverer, Walter; Diem, Martina; Spaller, Lisa; Woltering, Laura; Schreiber, Martin; Wolf, Brigitte; Sonntagbauer, Markus; Schröder, Fabian; Stift, Judith; Wrba, Fritz; Bergmann, Michael; Weinhäusel, Andreas; Egger, Gerda

    2015-01-01

    Background: Aberrant DNA methylation is more prominent in proximal compared with distal colorectal cancers. Although a number of methylation markers were identified for colon cancer, yet few are available for rectal cancer. Methods: DNA methylation differences were assessed by a targeted DNA microarray for 360 marker candidates between 22 fresh frozen rectal tumour samples and 8 controls and validated by microfluidic high-throughput and methylation-sensitive qPCR in fresh frozen and formalin-fixed paraffin-embedded (FFPE) samples, respectively. The CpG island methylator phenotype (CIMP) was assessed by MethyLight in FFPE material from 78 patients with pT2 and pT3 rectal adenocarcinoma. Results: We identified and confirmed two novel three-gene signatures in fresh frozen samples that can distinguish tumours from adjacent tissue as well as from blood with a high sensitivity and specificity of up to 1 and an AUC of 1. In addition, methylation of individual CIMP markers was associated with specific clinical parameters such as tumour stage, therapy or patients' age. Methylation of CDKN2A was a negative prognostic factor for overall survival of patients. Conclusions: The newly defined methylation markers will be suitable for early disease detection and monitoring of rectal cancer. PMID:26335606

  20. Gene expression profiles in the bovine corpus luteum (CL) during the estrous cycle and pregnancy: Possible roles of chemokines in regulating CL function during pregnancy

    PubMed Central

    SAKUMOTO, Ryosuke; HAYASHI, Ken-Go; HOSOE, Misa; IGA, Kosuke; KIZAKI, Keiichiro; OKUDA, Kiyoshi

    2014-01-01

    To determine functional differences between the corpus luteum (CL) of the estrous cycle and pregnancy in cows, gene expression profiles were compared using a 15 K bovine oligo DNA microarray. In the pregnant CL at days 20–25, 40–45 and 150–160, the expressions of 138, 265 and 455 genes differed by a factor of > 2-fold (P < 0.05) from their expressions in the cyclic CL (days 10–12 of the estrous cycle). Messenger RNA expressions of chemokines (eotaxin, lymphotactin and ENA-78) and their receptors (CCR3, XCR1 and CXCR2) were validated by quantitative real-time PCR. Transcripts of eotaxin were more abundant in the CL at days 40–45 and 150–160 of pregnancy than in the cyclic CL (P < 0.01). In contrast, the mRNA expressions of lymphotactin, ENA-78 and XCR1 were lower in the CL of pregnancy (P < 0.05). Messenger RNAs of CCR3 and CXCR2 were similarly detected both in the cyclic and pregnant CL. Tissue protein levels of eotaxin were significantly higher in the CL at days 150–160 of pregnancy than in the CL at other stages, whereas the lymphotactin protein levels in the CL at days 20–25 of pregnancy were lower (P < 0.05). Immunohistochemical staining showed that CCR3 was expressed in the luteal cells and that XCR1 was expressed in both the luteal cells and endothelial cells. Collectively, the different gene expression profiles may contribute to functional differences between the cyclic and pregnant CL, and chemokines including eotaxin and lymphotactin may regulate CL function during pregnancy in cows. PMID:25382605

  1. Redefining the Ki-67 Index Stratification for Low-Grade Pancreatic Neuroendocrine Tumors: Improving Its Prognostic Value for Recurrence of Disease.

    PubMed

    Lopez-Aguiar, Alexandra G; Ethun, Cecilia G; Postlewait, Lauren M; Zhelnin, Kristen; Krasinskas, Alyssa; El-Rayes, Bassel F; Russell, Maria C; Sarmiento, Juan M; Kooby, David A; Staley, Charles A; Maithel, Shishir K; Cardona, Kenneth

    2018-01-01

    The Ki-67 index is an established prognostic marker for recurrence after resection of pancreatic neuroendocrine tumors (PanNETs) that groups tumors into three categories: low grade (< 3%), intermediate grade (3-20%), and high grade (> 20%). Given that the majority of resected PanNETs have a Ki-67 less than 3%, this study aimed to stratify this group further to predict disease recurrence more accurately. The Ki-67 index was pathologically re-reviewed and scored by a pathologist blinded to all other clinicopathologic variables using tissue microarray blocks made in triplicate. All patients who underwent curative-intent resection of non-metastatic PanNETs at a single institution from 2000 to 2013 were included in the study. The primary outcome was recurrence-free survival (RFS). Of 113 patients with well-differentiated PanNETs resected, 83 had tissue available for pathologic re-review. The Ki-67 index was lower than 3% for 72 tumors (87%) and between 3 and 20% for 11 tumors (13%). Considering only Ki-67 less than 3%, the tumors were further stratified by Ki-67 into three groups: group A (< 1%, n = 43), group B (1-1.99%, n = 23), and group C (2-2.99%, n = 6). Compared with group A, groups B and C more frequently had advanced T stage (T3: 44% and 67% vs 12%; p = 0.003) and lymphovascular invasion (50% and 83% vs 23%; p = 0.007). Groups B and C had similar 1- and 3-year RFS, both less than group A. After combining groups B and C, a Ki-67 of 1-2.99% was associated with decreased RFS compared with group A (< 1%). This persisted in the multivariable analysis (hazard ratio [HR] 8.6; 95% confidence interval [CI] 1.0-70.7; p = 0.045), with control used for tumor size, margin-positivity, lymph node involvement, and advanced T stage. PanNETs with a Ki-67 of 1-2.99% exhibit distinct biologic behavior and earlier disease recurrence than those with a Ki-67 lower than 1%. This new stratification scheme, if externally validated, should be incorporated into future grading systems to guide both surveillance protocols and treatment strategies.

  2. Autoantigen microarrays reveal autoantibodies associated with proliferative nephritis and active disease in pediatric systemic lupus erythematosus.

    PubMed

    Haddon, D James; Diep, Vivian K; Price, Jordan V; Limb, Cindy; Utz, Paul J; Balboni, Imelda

    2015-06-17

    Pediatric systemic lupus erythematosus (pSLE) patients often initially present with more active and severe disease than adults, including a higher frequency of lupus nephritis. Specific autoantibodies, including anti-C1q, anti-DNA and anti-alpha-actinin, have been associated with kidney involvement in SLE, and DNA antibodies are capable of initiating early-stage lupus nephritis in severe combined immunodeficiency (SCID) mice. Over 100 different autoantibodies have been described in SLE patients, highlighting the need for comprehensive autoantibody profiling. Knowledge of the antibodies associated with pSLE and proliferative nephritis will increase the understanding of SLE pathogenesis, and may aid in monitoring patients for renal flare. We used autoantigen microarrays composed of 140 recombinant or purified antigens to compare the serum autoantibody profiles of new-onset pSLE patients (n = 45) to healthy controls (n = 17). We also compared pSLE patients with biopsy-confirmed class III or IV proliferative nephritis (n = 23) and without significant renal involvement (n = 18). We performed ELISA with selected autoantigens to validate the microarray findings. We created a multiple logistic regression model, based on the ELISA and clinical information, to predict whether a patient had proliferative nephritis, and used a validation cohort (n = 23) and longitudinal samples (88 patient visits) to test its accuracy. Fifty autoantibodies were at significantly higher levels in the sera of pSLE patients compared to healthy controls, including anti-B cell-activating factor (BAFF). High levels of anti-BAFF were associated with active disease. Thirteen serum autoantibodies were present at significantly higher levels in pSLE patients with proliferative nephritis than those without, and we confirmed five autoantigens (dsDNA, C1q, collagens IV and X and aggrecan) by ELISA. Our model, based on ELISA measurements and clinical variables, correctly identified patients with proliferative nephritis with 91 % accuracy. Autoantigen microarrays are an ideal platform for identifying autoantibodies associated with both pSLE and specific clinical manifestations of pSLE. Using multiple regression analysis to integrate autoantibody and clinical data permits accurate prediction of clinical manifestations with complex etiologies in pSLE.

  3. Internal controls for quantitative polymerase chain reaction of swine mammary glands during pregnancy and lactation.

    PubMed

    Tramontana, S; Bionaz, M; Sharma, A; Graugnard, D E; Cutler, E A; Ajmone-Marsan, P; Hurley, W L; Loor, J J

    2008-08-01

    High-throughput microarray analysis is an efficient means of obtaining a genome-wide view of transcript profiles across physiological states. However, quantitative PCR (qPCR) remains the chosen method for high-precision mRNA abundance analysis. Essential for reliability of qPCR data is normalization using appropriate internal control genes (ICG), which is now, more than ever before, a fundamental step for accurate gene expression profiling. We mined mammary tissue microarray data on >13,000 genes at -34, -14, 0, 7, 14, 21, and 28 d relative to parturition in 27 crossbred primiparous gilts to identify suitable ICG. Initial analysis revealed TBK1, PCSK2, PTBP1, API5, VAPB, QTRT1, TRIM41, TMEM24, PPP2R5B, and AP1S1 as the most stable genes (sample/reference = 1 +/- 0.2). We also included 9 genes previously identified as ICG in bovine mammary tissue. Gene network analysis of the 19 genes identified AP1S1, API5, MTG1, VAPB, TRIM41, MRPL39, and RPS15A as having no known co-regulation. In addition, UXT and ACTB were added to this list, and mRNA abundance of these 9 genes was measured by qPCR. Expression of all 9 of these genes was decreased markedly during lactation. In a previous study with bovine mammary tissue, mRNA of stably expressed genes decreased during lactation due to a dilution effect brought about by large increases in expression of highly abundant genes. To verify this effect, highly abundant mammary genes such as CSN1S2, SCD, FABP3, and LTF were evaluated by qPCR. The tested ICG had a negative correlation with these genes, demonstrating a dilution effect in the porcine mammary tissue. Gene stability analysis identified API5, VABP, and MRPL39 as the most stable ICG in porcine mammary tissue and indicated that the use of those 3 genes was most appropriate for calculating a normalization factor. Overall, results underscore the importance of proper validation of internal controls for qPCR and highlight the limitations of using absence of time effects as the criteria for selection of appropriate ICG. Further, we showed that use of the same ICG from one organism might not be suitable for qPCR normalization in other species.

  4. Microarray analysis of laser capture microdissected-anulus cells from the human intervertebral disc.

    PubMed

    Gruber, Helen E; Mougeot, Jean-Luc; Hoelscher, Gretchen; Ingram, Jane A; Hanley, Edward N

    2007-05-15

    Five Thompson Grade I/II discs (Group 1), 7 Grade III discs (Group 2), and 3 Grade IV discs (Group IV) were studied here in a project approved by the authors' Human Subjects Institutional Review Board. Our objective was to use laser capture microdissection (LCM) to harvest cells from the human anulus and to derive gene expression profiles using microarray analysis. Appropriate gene expression is essential in the intervertebral disc for maintenance of extracellular matrix (ECM), ECM remodeling, and maintenance of a viable disc cell population. During disc degeneration, cell numbers drop, making gene expression studies challenging. LCM was used to harvest cells from paraffin-embedded sections of human anulus tissue. Gene profiling used Affymetrix GeneChip Human X3P arrays. ANOVA and SAM permutation analysis were applied to dCHIP normalized, filtered, and log-transformed gene expression data ( approximately 33,500 probes), and data analyzed to identify genes that were significantly differentially expressed between the 3 groups. We identified 47 genes that were significantly differentially expressed between the 3 groups (P < 0.001 and lowest q values). Compared with the healthiest discs (Grade I/II), 13 genes were up-regulated and 19 down-regulated in both the Grade III and the Grade IV discs. Genes with biologic significance regulated during degeneration involved cell senescence, low cell division rates, hypoxia-related genes, heat-shock protein 70 interacting protein, neuropilin 2, and interleukin-23p19 (interleukin-12 family). Results expand our understanding of disc aging and degeneration and show that LCM is a valuable technique that can be used to collect mRNA amounts adequate for microarray analysis from the sparse cell population of the human anulus.

  5. Identification of methylated genes in salivary gland adenoid cystic carcinoma xenografts using global demethylation and methylation microarray screening

    PubMed Central

    LING, SHIZHANG; RETTIG, ELENI M.; TAN, MARIETTA; CHANG, XIAOFEI; WANG, ZHIMING; BRAIT, MARIANA; BISHOP, JUSTIN A.; FERTIG, ELANA J.; CONSIDINE, MICHAEL; WICK, MICHAEL J.; HA, PATRICK K.

    2016-01-01

    Salivary gland adenoid cystic carcinoma (ACC) is a rare head and neck malignancy without molecular biomarkers that can be used to predict the chemotherapeutic response or prognosis of ACC. The regulation of gene expression of oncogenes and tumor suppressor genes (TSGs) through DNA promoter methylation may play a role in the carcinogenesis of ACC. To identify differentially methylated genes in ACC, a global demethylating agent, 5-aza-2′-deoxycytidine (5-AZA) was utilized to unmask putative TSG silencing in ACC xenograft models in mice. Fresh xenografts were passaged, implanted in triplicate in mice that were treated with 5-AZA daily for 28 days. These xenografts were then evaluated for genome-wide DNA methylation patterns using the Illumina Infinium HumanMethylation27 BeadChip array. Validation of the 32 candidate genes was performed by bisulfite sequencing (BS-seq) in a separate cohort of 6 ACC primary tumors and 6 normal control salivary gland tissues. Hypermethylation was identified in the HCN2 gene promoter in all 6 control tissues, but hypomethylation was found in all 6 ACC tumor tissues. Quantitative validation of HCN2 promoter methylation level in the region detected by BS-seq was performed in a larger cohort of primary tumors (n=32) confirming significant HCN2 hypomethylation in ACCs compared with normal samples (n=10; P=0.04). HCN2 immunohistochemical staining was performed on an ACC tissue microarray. HCN2 staining intensity and H-score, but not percentage of the positively stained cells, were significantly stronger in normal tissues than those of ACC tissues. With our novel screening and sequencing methods, we identified several gene candidates that were methylated. The most significant of these genes, HCN2, was actually hypomethylated in tumors. However, promoter methylation status does not appear to be a major determinant of HCN2 expression in normal and ACC tissues. HCN2 hypomethylation is a biomarker of ACC and may play an important role in the carcinogenesis of ACC. PMID:27212063

  6. In-vitro analysis of Quantum Molecular Resonance effects on human mesenchymal stromal cells

    PubMed Central

    Sella, Sabrina; Adami, Valentina; Amati, Eliana; Bernardi, Martina; Chieregato, Katia; Gatto, Pamela; Menarin, Martina; Pozzato, Alessandro; Pozzato, Gianantonio; Astori, Giuseppe

    2018-01-01

    Electromagnetic fields play an essential role in cellular functions interfering with cellular pathways and tissue physiology. In this context, Quantum Molecular Resonance (QMR) produces waves with a specific form at high-frequencies (4–64 MHz) and low intensity through electric fields. We evaluated the effects of QMR stimulation on bone marrow derived mesenchymal stromal cells (MSC). MSC were treated with QMR for 10 minutes for 4 consecutive days for 2 weeks at different nominal powers. Cell morphology, phenotype, multilineage differentiation, viability and proliferation were investigated. QMR effects were further investigated by cDNA microarray validated by real-time PCR. After 1 and 2 weeks of QMR treatment morphology, phenotype and multilineage differentiation were maintained and no alteration of cellular viability and proliferation were observed between treated MSC samples and controls. cDNA microarray analysis evidenced more transcriptional changes on cells treated at 40 nominal power than 80 ones. The main enrichment lists belonged to development processes, regulation of phosphorylation, regulation of cellular pathways including metabolism, kinase activity and cellular organization. Real-time PCR confirmed significant increased expression of MMP1, PLAT and ARHGAP22 genes while A2M gene showed decreased expression in treated cells compared to controls. Interestingly, differentially regulated MMP1, PLAT and A2M genes are involved in the extracellular matrix (ECM) remodelling through the fibrinolytic system that is also implicated in embryogenesis, wound healing and angiogenesis. In our model QMR-treated MSC maintained unaltered cell phenotype, viability, proliferation and the ability to differentiate into bone, cartilage and adipose tissue. Microarray analysis may suggest an involvement of QMR treatment in angiogenesis and in tissue regeneration probably through ECM remodelling. PMID:29293552

  7. Quantitative proteomic analysis of microdissected oral epithelium for cancer biomarker discovery.

    PubMed

    Xiao, Hua; Langerman, Alexander; Zhang, Yan; Khalid, Omar; Hu, Shen; Cao, Cheng-Xi; Lingen, Mark W; Wong, David T W

    2015-11-01

    Specific biomarkers are urgently needed for the detection and progression of oral cancer. The objective of this study was to discover cancer biomarkers from oral epithelium through utilizing high throughput quantitative proteomics approaches. Morphologically malignant, epithelial dysplasia, and adjacent normal epithelial tissues were laser capture microdissected (LCM) from 19 patients and used for proteomics analysis. Total proteins from each group were extracted, digested and then labelled with corresponding isobaric tags for relative and absolute quantitation (iTRAQ). Labelled peptides from each sample were combined and analyzed by liquid chromatography-mass spectrometry (LC-MS/MS) for protein identification and quantification. In total, 500 proteins were identified and 425 of them were quantified. When compared with adjacent normal oral epithelium, 17 and 15 proteins were consistently up-regulated or down-regulated in malignant and epithelial dysplasia, respectively. Half of these candidate biomarkers were discovered for oral cancer for the first time. Cornulin was initially confirmed in tissue protein extracts and was further validated in tissue microarray. Its presence in the saliva of oral cancer patients was also explored. Myoglobin and S100A8 were pre-validated by tissue microarray. These data demonstrated that the proteomic biomarkers discovered through this strategy are potential targets for oral cancer detection and salivary diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A curated collection of tissue microarray images and clinical outcome data of prostate cancer patients

    PubMed Central

    Zhong, Qing; Guo, Tiannan; Rechsteiner, Markus; Rüschoff, Jan H.; Rupp, Niels; Fankhauser, Christian; Saba, Karim; Mortezavi, Ashkan; Poyet, Cédric; Hermanns, Thomas; Zhu, Yi; Moch, Holger; Aebersold, Ruedi; Wild, Peter J.

    2017-01-01

    Microscopy image data of human cancers provide detailed phenotypes of spatially and morphologically intact tissues at single-cell resolution, thus complementing large-scale molecular analyses, e.g., next generation sequencing or proteomic profiling. Here we describe a high-resolution tissue microarray (TMA) image dataset from a cohort of 71 prostate tissue samples, which was hybridized with bright-field dual colour chromogenic and silver in situ hybridization probes for the tumour suppressor gene PTEN. These tissue samples were digitized and supplemented with expert annotations, clinical information, statistical models of PTEN genetic status, and computer source codes. For validation, we constructed an additional TMA dataset for 424 prostate tissues, hybridized with FISH probes for PTEN, and performed survival analysis on a subset of 339 radical prostatectomy specimens with overall, disease-specific and recurrence-free survival (maximum 167 months). For application, we further produced 6,036 image patches derived from two whole slides. Our curated collection of prostate cancer data sets provides reuse potential for both biomedical and computational studies. PMID:28291248

  9. EB1 protein alteration characterizes sporadic but not ulcerative colitis associated colorectal cancer.

    PubMed

    Gemoll, Timo; Kollbeck, Sophie L; Karstens, Karl F; Hò, Gia G; Hartwig, Sonja; Strohkamp, Sarah; Schillo, Katharina; Thorns, Christoph; Oberländer, Martina; Kalies, Kathrin; Lehr, Stefan; Habermann, Jens K

    2017-08-15

    While carcinogenesis in Sporadic Colorectal Cancer (SCC) has been thoroughly studied, less is known about Ulcerative Colitis associated Colorectal Cancer (UCC). This study aimed to identify and validate differentially expressed proteins between clinical samples of SCC and UCC to elucidate new insights of UCC/SCC carcinogenesis and progression. Multiplex-fluorescence two-dimensional gel electrophoresis (2-D DIGE) and mass spectrometry identified 67 proteoforms representing 43 distinct proteins. After analysis by Ingenuity Pathway Analysis ® (IPA), subsequent Western blot validation proofed the differential expression of Heat shock 27 kDA protein 1 (HSPB1) and Microtubule-associated protein R/EB family, member 1 (EB1) while the latter one showed also expression differences by immunohistochemistry. Fresh frozen tissue of UCC ( n = 10) matched with SCC ( n = 10) was investigated. Proteins of cancerous intestinal mucosal cells were obtained by Laser Capture Microdissection (LCM) and compared by 2-D DIGE. Significant spots were identified by mass spectrometry. After IPA, three proteins [EB1, HSPB1, and Annexin 5 (ANXA5)] were chosen for further validation by Western blotting and tissue microarray-based immunohistochemistry. This study identified significant differences in protein expression of colorectal carcinoma cells from UCC patients compared to patients with SCC. Particularly, EB1 was validated in an independent clinical cohort.

  10. Tissue microarrays and quantitative tissue-based image analysis as a tool for oncology biomarker and diagnostic development.

    PubMed

    Dolled-Filhart, Marisa P; Gustavson, Mark D

    2012-11-01

    Translational oncology has been improved by using tissue microarrays (TMAs), which facilitate biomarker analysis of large cohorts on a single slide. This has allowed for rapid analysis and validation of potential biomarkers for prognostic and predictive value, as well as for evaluation of biomarker prevalence. Coupled with quantitative analysis of immunohistochemical (IHC) staining, objective and standardized biomarker data from tumor samples can further advance companion diagnostic approaches for the identification of drug-responsive or resistant patient subpopulations. This review covers the advantages, disadvantages and applications of TMAs for biomarker research. Research literature and reviews of TMAs and quantitative image analysis methodology have been surveyed for this review (with an AQUA® analysis focus). Applications such as multi-marker diagnostic development and pathway-based biomarker subpopulation analyses are described. Tissue microarrays are a useful tool for biomarker analyses including prevalence surveys, disease progression assessment and addressing potential prognostic or predictive value. By combining quantitative image analysis with TMAs, analyses will be more objective and reproducible, allowing for more robust IHC-based diagnostic test development. Quantitative multi-biomarker IHC diagnostic tests that can predict drug response will allow for greater success of clinical trials for targeted therapies and provide more personalized clinical decision making.

  11. mTOR signaling pathway in penile squamous cell carcinoma: pmTOR and peIF4E over expression correlate with aggressive tumor behavior.

    PubMed

    Ferrandiz-Pulido, Carla; Masferrer, Emili; Toll, Agustin; Hernandez-Losa, Javier; Mojal, Sergio; Pujol, Ramon M; Ramon y Cajal, Santiago; de Torres, Ines; Garcia-Patos, Vicente

    2013-12-01

    Penile squamous cell carcinoma is a rare neoplasm associated with a high risk of metastasis and morbidity. There are limited data on the role of the mTOR signaling pathway in penile squamous cell carcinoma carcinogenesis and tumor maintenance. We assessed a possible role for mTOR signaling pathway activation as a potential predictive biomarker of outcome and a therapeutic target for penile cancer. A cohort of 67 patients diagnosed with invasive penile squamous cell carcinoma from 1987 to 2010 who had known HPV status were selected for study. Tissue microarrays were constructed with 67 primary penile squamous cell carcinomas, matched normal tissues and 8 lymph node metastases. Immunohistochemical staining was performed for p53, pmTOR, pERK, p4E-BP1, eIF4E and peIF4E. Expression was evaluated using a semiquantitative H-score on a scale of 0 to 300. Expression of pmTOR, p4E-BP1, eIF4E and peIF4E was increased in penile tumors compared with matched adjacent normal tissues, indicating activation of the mTOR signaling pathway in penile tumorigenesis. Over expression of pmTOR, peIF4E and p53 was significantly associated with lymph node disease. peIF4E and p53 also correlated with a poor outcome, including recurrence, metastasis or disease specific death. In contrast, pERK and p4E-BP1 were associated with lower pT stages. pmTOR and intense p53 expression was associated with HPV negative tumors. Activation of mTOR signaling may contribute to penile squamous cell carcinoma progression and aggressive behavior. Targeting mTOR or its downstream signaling targets, such as peIF4E, may be a valid therapeutic strategy. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Microarray profiling of human white adipose tissue after exogenous leptin injection.

    PubMed

    Taleb, S; Van Haaften, R; Henegar, C; Hukshorn, C; Cancello, R; Pelloux, V; Hanczar, B; Viguerie, N; Langin, D; Evelo, C; Zucker, J; Clément, K; Saris, W H M

    2006-03-01

    Leptin is a secreted adipocyte hormone that plays a key role in the regulation of body weight homeostasis. The leptin effect on human white adipose tissue (WAT) is still debated. The aim of this study was to assess whether the administration of polyethylene glycol-leptin (PEG-OB) in a single supraphysiological dose has transcriptional effects on genes of WAT and to identify its target genes and functional pathways in WAT. Blood samples and WAT biopsies were obtained from 10 healthy nonobese men before treatment and 72 h after the PEG-OB injection, leading to an approximate 809-fold increase in circulating leptin. The WAT gene expression profile before and after the PEG-OB injection was compared using pangenomic microarrays. Functional gene annotations based on the gene ontology of the PEG-OB regulated genes were performed using both an 'in house' automated procedure and GenMAPP (Gene Microarray Pathway Profiler), designed for viewing and analyzing gene expression data in the context of biological pathways. Statistical analysis of microarray data revealed that PEG-OB had a major down-regulated effect on WAT gene expression, as we obtained 1,822 and 100 down- and up-regulated genes, respectively. Microarray data were validated using reverse transcription quantitative PCR. Functional gene annotations of PEG-OB regulated genes revealed that the functional class related to immunity and inflammation was among the most mobilized PEG-OB pathway in WAT. These genes are mainly expressed in the cell of the stroma vascular fraction in comparison with adipocytes. Our observations support the hypothesis that leptin could act on WAT, particularly on genes related to inflammation and immunity, which may suggest a novel leptin target pathway in human WAT.

  13. Transcriptome profiling reveals miR-9-3p as a novel tumor suppressor in gastric cancer.

    PubMed

    Meng, Qingshun; Xiang, Longquan; Fu, Jingwei; Chu, Xianqun; Wang, Chunlin; Yan, Bingzheng

    2017-06-06

    It has been well established that microRNAs (miRNAs) play important roles in biological processes. To comprehensively measure the altered miRNA expression, we presented the miRNA expression profile of gastric cancer using microarray. We identified 33 miRNAs that were significantly differentially regulated in gastric specimens compared to adjacent normal tissues, among which miR-9-3p expression are significantly down-regulated in gastric cancers. Next, a cohort of 100 gastric cancer tissues and matched normal tissues were enrolled. Kaplan-Meier and multivariate Cox survival analyses were applied to evaluate the prognostic value of miR-9-3p expression, and the result showed that patients with lower miR-9-3p expression level have significantly poorer overall survival. The expression level of miR-9-3p has been proved to be an independent prognostic factor for 5-year overall survival. Furthermore, the result indicated that over-expression of miR-9-3p can inhibit gastric cancer cell invasion. Taken together, our results suggested that miR-9-3p plays important role in tumor invasion, and these findings implicated the potential effects of miR-9-3p on prognosis of gastric cancer.

  14. Protective effect of bicyclol against bile duct ligation-induced hepatic fibrosis in rats.

    PubMed

    Zhen, Yong-Zhan; Li, Na-Ren; He, Hong-Wei; Zhao, Shuang-Shuang; Zhang, Guang-Ling; Hao, Xiao-Fang; Shao, Rong-Guang

    2015-06-21

    To evaluate the protective effect of bicyclol against bile duct ligation (BDL)-induced hepatic fibrosis in rats. Sprague-Dawley male rats underwent BDL and sham-operated animals were used as healthy controls. The BDL rats were divided into two groups which received sterilized PBS or bicyclol (100 mg/kg per day) orally for two consecutive weeks. Serum, urine and bile were collected for biochemical determinations. Liver tissues were collected for histological analysis and a whole genome oligonucleotide microarray assay. Reverse transcription-polymerase chain reaction and Western blotting were used to verify the expression of liver fibrosis-related genes. Treatment with bicyclol significantly reduced liver fibrosis and bile duct proliferation after BDL. The levels of alanine aminotransferase (127.7 ± 72.3 vs 230.4 ± 69.6, P < 0.05) and aspartate aminotransferase (696.8 ± 232.6 vs 1032.6 ± 165.8, P < 0.05) were also decreased by treatment with bicyclol in comparison to PBS. The expression changes of 45 fibrogenic genes and several fibrogenesis-related pathways were reversed by bicyclol in the microarray assay. Bicyclol significantly reduced liver mRNA and/or protein expression levels of collagen 1a1, matrix metalloproteinase 2, tumor necrosis factor, tissue inhibitors of metalloproteinases 2, transforming growth factor-β1 and α-smooth muscle actin. Bicyclol significantly attenuates BDL-induced liver fibrosis by reversing fibrogenic gene expression. These findings suggest that bicyclol might be an effective anti-fibrotic drug for the treatment of cholestatic liver disease.

  15. Upregulated expression of La ribonucleoprotein domain family member 6 and collagen type I gene following water-filtered broad-spectrum near-infrared irradiation in a 3-dimensional human epidermal tissue culture model as revealed by microarray analysis.

    PubMed

    Tanaka, Yohei; Nakayama, Jun

    2018-05-01

    Water-filtered broad-spectrum near-infrared irradiation can induce various biological effects, as our previous clinical, histological, and biochemical investigations have shown. However, few studies that examined the changes thus induced in gene expression. The aim was to investigate the changes in gene expression in a 3-dimensional reconstructed epidermal tissue culture exposed to water-filtered broad-spectrum near-infrared irradiation. DNA microarray and quantitative real-time polymerase chain reaction (PCR) analysis was used to assess gene expression levels in a 3-dimensional reconstructed epidermal model composed of normal human epidermal cells exposed to water-filtered broad-spectrum near-infrared irradiation. The water filter allowed 1000-1800 nm wavelengths and excluded 1400-1500 nm wavelengths, and cells were exposed to 5 or 10 rounds of near-infrared irradiation at 10 J/cm 2 . A DNA microarray with over 50 000 different probes showed 18 genes that were upregulated or downregulated by at least twofold after irradiation. Quantitative real-time PCR revealed that, relative to control cells, the gene encoding La ribonucleoprotein domain family member 6 (LARP6), which regulates collagen expression, was significantly and dose-dependently upregulated (P < 0.05) by water-filtered broad-spectrum near-infrared exposure. Gene encoding transcripts of collagen type I were significantly upregulated compared with controls (P < 0.05). This study demonstrates the ability of water-filtered broad-spectrum near-infrared irradiation to stimulate the production of type I collagen. © 2017 The Australasian College of Dermatologists.

  16. The tissue microarray data exchange specification: A document type definition to validate and enhance XML data

    PubMed Central

    Nohle, David G; Ayers, Leona W

    2005-01-01

    Background The Association for Pathology Informatics (API) Extensible Mark-up Language (XML) TMA Data Exchange Specification (TMA DES) proposed in April 2003 provides a community-based, open source tool for sharing tissue microarray (TMA) data in a common format. Each tissue core within an array has separate data including digital images; therefore an organized, common approach to produce, navigate and publish such data facilitates viewing, sharing and merging TMA data from different laboratories. The AIDS and Cancer Specimen Resource (ACSR) is a HIV/AIDS tissue bank consortium sponsored by the National Cancer Institute (NCI) Division of Cancer Treatment and Diagnosis (DCTD). The ACSR offers HIV-related malignancies and uninfected control tissues in microarrays (TMA) accompanied by de-identified clinical data to approved researchers. Exporting our TMA data into the proposed API specified format offers an opportunity to evaluate the API specification in an applied setting and to explore its usefulness. Results A document type definition (DTD) that governs the allowed common data elements (CDE) in TMA DES export XML files was written, tested and evolved and is in routine use by the ACSR. This DTD defines TMA DES CDEs which are implemented in an external file that can be supplemented by internal DTD extensions for locally defined TMA data elements (LDE). Conclusion ACSR implementation of the TMA DES demonstrated the utility of the specification and allowed application of a DTD to validate the language of the API specified XML elements and to identify possible enhancements within our TMA data management application. Improvements to the specification have additionally been suggested by our experience in importing other institution's exported TMA data. Enhancements to TMA DES to remove ambiguous situations and clarify the data should be considered. Better specified identifiers and hierarchical relationships will make automatic use of the data possible. Our tool can be used to reorder data and add identifiers; upgrading data for changes in the specification can be automatically accomplished. Using a DTD (optionally reflecting our proposed enhancements) can provide stronger validation of exported TMA data. PMID:15871741

  17. Fish and chips: Various methodologies demonstrate utility of a 16,006-gene salmonid microarray

    PubMed Central

    von Schalburg, Kristian R; Rise, Matthew L; Cooper, Glenn A; Brown, Gordon D; Gibbs, A Ross; Nelson, Colleen C; Davidson, William S; Koop, Ben F

    2005-01-01

    Background We have developed and fabricated a salmonid microarray containing cDNAs representing 16,006 genes. The genes spotted on the array have been stringently selected from Atlantic salmon and rainbow trout expressed sequence tag (EST) databases. The EST databases presently contain over 300,000 sequences from over 175 salmonid cDNA libraries derived from a wide variety of tissues and different developmental stages. In order to evaluate the utility of the microarray, a number of hybridization techniques and screening methods have been developed and tested. Results We have analyzed and evaluated the utility of a microarray containing 16,006 (16K) salmonid cDNAs in a variety of potential experimental settings. We quantified the amount of transcriptome binding that occurred in cross-species, organ complexity and intraspecific variation hybridization studies. We also developed a methodology to rapidly identify and confirm the contents of a bacterial artificial chromosome (BAC) library containing Atlantic salmon genomic DNA. Conclusion We validate and demonstrate the usefulness of the 16K microarray over a wide range of teleosts, even for transcriptome targets from species distantly related to salmonids. We show the potential of the use of the microarray in a variety of experimental settings through hybridization studies that examine the binding of targets derived from different organs and tissues. Intraspecific variation in transcriptome expression is evaluated and discussed. Finally, BAC hybridizations are demonstrated as a rapid and accurate means to identify gene content. PMID:16164747

  18. The SNP rs6500843 in 16p13.3 is associated with survival specifically among chemotherapy-treated breast cancer patients.

    PubMed

    Fagerholm, Rainer; Schmidt, Marjanka K; Khan, Sofia; Rafiq, Sajjad; Tapper, William; Aittomäki, Kristiina; Greco, Dario; Heikkinen, Tuomas; Muranen, Taru A; Fasching, Peter A; Janni, Wolfgang; Weinshilboum, Richard; Loehberg, Christian R; Hopper, John L; Southey, Melissa C; Keeman, Renske; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Chenevix-Trench, Georgia; Lambrechts, Diether; Wildiers, Hans; Chang-Claude, Jenny; Seibold, Petra; Couch, Fergus J; Olson, Janet E; Andrulis, Irene L; Knight, Julia A; García-Closas, Montserrat; Figueroa, Jonine; Hooning, Maartje J; Jager, Agnes; Shah, Mitul; Perkins, Barbara J; Luben, Robert; Hamann, Ute; Kabisch, Maria; Czene, Kamila; Hall, Per; Easton, Douglas F; Pharoah, Paul D P; Liu, Jianjun; Eccles, Diana; Blomqvist, Carl; Nevanlinna, Heli

    2015-04-10

    We have utilized a two-stage study design to search for SNPs associated with the survival of breast cancer patients treated with adjuvant chemotherapy. Our initial GWS data set consisted of 805 Finnish breast cancer cases (360 treated with adjuvant chemotherapy). The top 39 SNPs from this stage were analyzed in three independent data sets: iCOGS (n=6720 chemotherapy-treated cases), SUCCESS-A (n=3596), and POSH (n=518). Two SNPs were successfully validated: rs6500843 (any chemotherapy; per-allele HR 1.16, 95% C.I. 1.08-1.26, p=0.0001, p(adjusted)=0.0091), and rs11155012 (anthracycline therapy; per-allele HR 1.21, 95% C.I. 1.08-1.35, p=0.0010, p(adjusted)=0.0270). The SNP rs6500843 was found to specifically interact with adjuvant chemotherapy, independently of standard prognostic markers (p(interaction)=0.0009), with the rs6500843-GG genotype corresponding to the highest hazard among chemotherapy-treated cases (HR 1.47, 95% C.I. 1.20-1.80). Upon trans-eQTL analysis of public microarray data, the rs6500843 locus was found to associate with the expression of a group of genes involved in cell cycle control, notably AURKA, the expression of which also exhibited differential prognostic value between chemotherapy-treated and untreated cases in our analysis of microarray data. Based on previously published information, we propose that the eQTL genes may be connected to the rs6500843 locus via a RBFOX1-FOXM1 -mediated regulatory pathway.

  19. Integrative analysis for identification of shared markers from various functional cells/tissues for rheumatoid arthritis.

    PubMed

    Xia, Wei; Wu, Jian; Deng, Fei-Yan; Wu, Long-Fei; Zhang, Yong-Hong; Guo, Yu-Fan; Lei, Shu-Feng

    2017-02-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease. So far, it is unclear whether there exist common RA-related genes shared in different tissues/cells. In this study, we conducted an integrative analysis on multiple datasets to identify potential shared genes that are significant in multiple tissues/cells for RA. Seven microarray gene expression datasets representing various RA-related tissues/cells were downloaded from the Gene Expression Omnibus (GEO). Statistical analyses, testing both marginal and joint effects, were conducted to identify significant genes shared in various samples. Followed-up analyses were conducted on functional annotation clustering analysis, protein-protein interaction (PPI) analysis, gene-based association analysis, and ELISA validation analysis in in-house samples. We identified 18 shared significant genes, which were mainly involved in the immune response and chemokine signaling pathway. Among the 18 genes, eight genes (PPBP, PF4, HLA-F, S100A8, RNASEH2A, P2RY6, JAG2, and PCBP1) interact with known RA genes. Two genes (HLA-F and PCBP1) are significant in gene-based association analysis (P = 1.03E-31, P = 1.30E-2, respectively). Additionally, PCBP1 also showed differential protein expression levels in in-house case-control plasma samples (P = 2.60E-2). This study represented the first effort to identify shared RA markers from different functional cells or tissues. The results suggested that one of the shared genes, i.e., PCBP1, is a promising biomarker for RA.

  20. The tissue microarray data exchange specification: A community-based, open source tool for sharing tissue microarray data

    PubMed Central

    Berman, Jules J; Edgerton, Mary E; Friedman, Bruce A

    2003-01-01

    Background Tissue Microarrays (TMAs) allow researchers to examine hundreds of small tissue samples on a single glass slide. The information held in a single TMA slide may easily involve Gigabytes of data. To benefit from TMA technology, the scientific community needs an open source TMA data exchange specification that will convey all of the data in a TMA experiment in a format that is understandable to both humans and computers. A data exchange specification for TMAs allows researchers to submit their data to journals and to public data repositories and to share or merge data from different laboratories. In May 2001, the Association of Pathology Informatics (API) hosted the first in a series of four workshops, co-sponsored by the National Cancer Institute, to develop an open, community-supported TMA data exchange specification. Methods A draft tissue microarray data exchange specification was developed through workshop meetings. The first workshop confirmed community support for the effort and urged the creation of an open XML-based specification. This was to evolve in steps with approval for each step coming from the stakeholders in the user community during open workshops. By the fourth workshop, held October, 2002, a set of Common Data Elements (CDEs) was established as well as a basic strategy for organizing TMA data in self-describing XML documents. Results The TMA data exchange specification is a well-formed XML document with four required sections: 1) Header, containing the specification Dublin Core identifiers, 2) Block, describing the paraffin-embedded array of tissues, 3)Slide, describing the glass slides produced from the Block, and 4) Core, containing all data related to the individual tissue samples contained in the array. Eighty CDEs, conforming to the ISO-11179 specification for data elements constitute XML tags used in the TMA data exchange specification. A set of six simple semantic rules describe the complete data exchange specification. Anyone using the data exchange specification can validate their TMA files using a software implementation written in Perl and distributed as a supplemental file with this publication. Conclusion The TMA data exchange specification is now available in a draft form with community-approved Common Data Elements and a community-approved general file format and data structure. The specification can be freely used by the scientific community. Efforts sponsored by the Association for Pathology Informatics to refine the draft TMA data exchange specification are expected to continue for at least two more years. The interested public is invited to participate in these open efforts. Information on future workshops will be posted at (API we site). PMID:12769826

  1. Validation of MIMGO: a method to identify differentially expressed GO terms in a microarray dataset

    PubMed Central

    2012-01-01

    Background We previously proposed an algorithm for the identification of GO terms that commonly annotate genes whose expression is upregulated or downregulated in some microarray data compared with in other microarray data. We call these “differentially expressed GO terms” and have named the algorithm “matrix-assisted identification method of differentially expressed GO terms” (MIMGO). MIMGO can also identify microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. However, MIMGO has not yet been validated on a real microarray dataset using all available GO terms. Findings We combined Gene Set Enrichment Analysis (GSEA) with MIMGO to identify differentially expressed GO terms in a yeast cell cycle microarray dataset. GSEA followed by MIMGO (GSEA + MIMGO) correctly identified (p < 0.05) microarray data in which genes annotated to differentially expressed GO terms are upregulated. We found that GSEA + MIMGO was slightly less effective than, or comparable to, GSEA (Pearson), a method that uses Pearson’s correlation as a metric, at detecting true differentially expressed GO terms. However, unlike other methods including GSEA (Pearson), GSEA + MIMGO can comprehensively identify the microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. Conclusions MIMGO is a reliable method to identify differentially expressed GO terms comprehensively. PMID:23232071

  2. GENE EXPRESSION IN THE TESTES OF NORMOSPERMIC VERSUS TERATOSPERMIC DOMESTIC CATS USING HUMAN CDNA MICROARRAY ANALYSES

    EPA Science Inventory

    GENE EXPRESSION IN THE TESTES OF NORMOSPERMIC VERSUS TERATOSPERMIC DOMESTIC CATS USING HUMAN cDNA MICROARRAY ANALYSES

    B.S. Pukazhenthi1, J. C. Rockett2, M. Ouyang3, D.J. Dix2, J.G. Howard1, P. Georgopoulos4, W.J. J. Welsh3 and D. E. Wildt1

    1Department of Reproductiv...

  3. Microarray profiling of progesterone-regulated endometrial genes during the rhesus monkey secretory phase

    PubMed Central

    Ace, Christopher I; Okulicz, William C

    2004-01-01

    Background In the endometrium the steroid hormone progesterone (P), acting through its nuclear receptors, regulates the expression of specific target genes and gene networks required for endometrial maturation. Proper endometrial maturation is considered a requirement for embryo implantation. Endometrial receptivity is a complex process that is spatially and temporally restricted and the identity of genes that regulate receptivity has been pursued by a number of investigators. Methods In this study we have used high density oligonucleotide microarrays to screen for changes in mRNA transcript levels between normal proliferative and adequate secretory phases in Rhesus monkey artificial menstrual cycles. Biotinylated cRNA was prepared from day 13 and days 21–23 of the reproductive cycle and transcript levels were compared by hybridization to Affymetrix HG-U95A arrays. Results Of ~12,000 genes profiled, we identified 108 genes that were significantly regulated during the shift from a proliferative to an adequate secretory endometrium. Of these genes, 39 were up-regulated at days 21–23 versus day 13, and 69 were down-regulated. Genes up-regulated in P-dominant tissue included: secretoglobin (uteroglobin), histone 2A, polo-like kinase (PLK), spermidine/spermine acetyltransferase 2 (SAT2), secretory leukocyte protease inhibitor (SLPI) and metallothionein 1G (MT1G), all of which have been previously documented as elevated in the Rhesus monkey or human endometrium during the secretory phase. Genes down-regulated included: transforming growth factor beta-induced (TGFBI or BIGH3), matrix metalloproteinase 11 (stromelysin 3), proenkephalin (PENK), cysteine/glycine-rich protein 2 (CSRP2), collagen type VII alpha 1 (COL7A1), secreted frizzled-related protein 4 (SFRP4), progesterone receptor membrane component 1 (PGRMC1), chemokine (C-X-C) ligand 12 (CXCL12) and biglycan (BGN). In addition, many novel/unknown genes were also identified. Validation of array data was performed by semi-quantitative RT-PCR of two selected up-regulated genes using temporal (cycle day specific) endometrial cDNA populations. This approach confirmed up-regulation of WAP four-disulfide core domain 2 (WFDC2) and SLPI during the expected window of receptivity. Conclusion The identification of P-regulated genes and gene pathways in the primate endometrium is expected to be an important first step in elucidating the cellular processes necessary for the development of a receptive environment for implantation. PMID:15239838

  4. A whole blood gene expression-based signature for smoking status

    PubMed Central

    2012-01-01

    Background Smoking is the leading cause of preventable death worldwide and has been shown to increase the risk of multiple diseases including coronary artery disease (CAD). We sought to identify genes whose levels of expression in whole blood correlate with self-reported smoking status. Methods Microarrays were used to identify gene expression changes in whole blood which correlated with self-reported smoking status; a set of significant genes from the microarray analysis were validated by qRT-PCR in an independent set of subjects. Stepwise forward logistic regression was performed using the qRT-PCR data to create a predictive model whose performance was validated in an independent set of subjects and compared to cotinine, a nicotine metabolite. Results Microarray analysis of whole blood RNA from 209 PREDICT subjects (41 current smokers, 4 quit ≤ 2 months, 64 quit > 2 months, 100 never smoked; NCT00500617) identified 4214 genes significantly correlated with self-reported smoking status. qRT-PCR was performed on 1,071 PREDICT subjects across 256 microarray genes significantly correlated with smoking or CAD. A five gene (CLDND1, LRRN3, MUC1, GOPC, LEF1) predictive model, derived from the qRT-PCR data using stepwise forward logistic regression, had a cross-validated mean AUC of 0.93 (sensitivity=0.78; specificity=0.95), and was validated using 180 independent PREDICT subjects (AUC=0.82, CI 0.69-0.94; sensitivity=0.63; specificity=0.94). Plasma from the 180 validation subjects was used to assess levels of cotinine; a model using a threshold of 10 ng/ml cotinine resulted in an AUC of 0.89 (CI 0.81-0.97; sensitivity=0.81; specificity=0.97; kappa with expression model = 0.53). Conclusion We have constructed and validated a whole blood gene expression score for the evaluation of smoking status, demonstrating that clinical and environmental factors contributing to cardiovascular disease risk can be assessed by gene expression. PMID:23210427

  5. [Expression of SLP-2 protein in esophageal squamous cell carcinoma is associated with cancer invasion].

    PubMed

    Cao, Wen-feng; Zhang, Li-yong; Zhang, Bin; Wang, Yue-qi; Liu, Zhi-hua; Sun, Bao-cun

    2010-11-01

    To study the expression of stomatin-like protein-2 (SLP-2) in esophageal squamous cell carcinoma (ESCC), and analyze the correlation between SLP-2 expression and clinicopathological features. The expression of SLP-2 protein in ESCC tissues (18 and 220 cases respectively) was detected by Western blot and IHC. The association between SLP-2 expression and clinicopathological features was analyzed. Compared with normal epithelium, 13 cases of ESCC tissues showed a higher expression of SLP-2 on the protein level (72.2%, 13/18). IHC analysis on tissue microarray revealed that the expression rate of SLP-2 protein in ESCC was 54.1% and in normal esophageal mucosa was 3.6%, showing a significant difference (P < 0.001). SLP-2 high-level expression correlates with the extent of ESCC invasion (P = 0.033), but not with other clinicopathologic characteristics (P > 0.05). SLP-2 as a novel cancer-related gene may play an important role in tumorigenesis of ESCC. The overexpression of SLP-2 may be closely associated with the invasion of esophageal cancer.

  6. Identification and Validation of Potential New Biomarkers for Prostate Cancer Diagnosis and Prognosis Using 2D-DIGE and MS

    PubMed Central

    Geisler, Cordelia; Gaisa, Nadine T.; Pfister, David; Fuessel, Susanne; Kristiansen, Glen; Braunschweig, Till; Gostek, Sonja; Beine, Birte; Diehl, Hanna C.; Jackson, Angela M.; Borchers, Christoph H.; Heidenreich, Axel; Meyer, Helmut E.; Knüchel, Ruth; Henkel, Corinna

    2015-01-01

    This study was designed to identify and validate potential new biomarkers for prostate cancer and to distinguish patients with and without biochemical relapse. Prostate tissue samples analyzed by 2D-DIGE (two-dimensional difference in gel electrophoresis) and mass spectrometry (MS) revealed downregulation of secernin-1 (P < 0.044) in prostate cancer, while vinculin showed significant upregulation (P < 0.001). Secernin-1 overexpression in prostate tissue was validated using Western blot and immunohistochemistry while vinculin expression was validated using immunohistochemistry. These findings indicate that secernin-1 and vinculin are potential new tissue biomarkers for prostate cancer diagnosis and prognosis, respectively. For validation, protein levels in urine were also examined by Western blot analysis. Urinary vinculin levels in prostate cancer patients were significantly higher than in urine from nontumor patients (P = 0.006). Using multiple reaction monitoring-MS (MRM-MS) analysis, prostatic acid phosphatase (PAP) showed significant higher levels in the urine of prostate cancer patients compared to controls (P = 0.012), while galectin-3 showed significant lower levels in the urine of prostate cancer patients with biochemical relapse, compared to those without relapse (P = 0.017). Three proteins were successfully differentiated between patients with and without prostate cancer and patients with and without relapse by using MRM. Thus, this technique shows promise for implementation as a noninvasive clinical diagnostic technique. PMID:25667921

  7. Differential Adipose Tissue Gene Expression Profiles in Abacavir Treated Patients That May Contribute to the Understanding of Cardiovascular Risk: A Microarray Study

    PubMed Central

    Shahmanesh, Mohsen; Phillips, Kenneth; Boothby, Meg; Tomlinson, Jeremy W.

    2015-01-01

    Objective To compare changes in gene expression by microarray from subcutaneous adipose tissue from HIV treatment naïve patients treated with efavirenz based regimens containing abacavir (ABC), tenofovir (TDF) or zidovidine (AZT). Design Subcutaneous fat biopsies were obtained before, at 6- and 18–24-months after treatment, and from HIV negative controls. Groups were age, ethnicity, weight, biochemical profile, and pre-treatment CD4 count matched. Microarray data was generated using the Agilent Whole Human Genome Microarray. Identification of differentially expressed genes and genomic response pathways was performed using limma and gene set enrichment analysis. Results There were significant divergences between ABC and the other two groups 6 months after treatment in genes controlling cell adhesion and environmental information processing, with some convergence at 18–24 months. Compared to controls the ABC group, but not AZT or TDF showed enrichment of genes controlling adherence junction, at 6 months and 18–24 months (adjusted p<0.05) and focal adhesions and tight junction at 6 months (p<0.5). Genes controlling leukocyte transendothelial migration (p<0.05) and ECM-receptor interactions (p = 0.04) were over-expressed in ABC compared to TDF and AZT at 6 months but not at 18–24 months. Enrichment of pathways and individual genes controlling cell adhesion and environmental information processing were specifically dysregulated in the ABC group in comparison with other treatments. There was little difference between AZT and TDF. Conclusion After initiating treatment, there is divergence in the expression of genes controlling cell adhesion and environmental information processing between ABC and both TDF and AZT in subcutaneous adipose tissue. If similar changes are also taking place in other tissues including the coronary vasculature they may contribute to the increased risk of cardiovascular events reported in patients recently started on abacavir-containing regimens. PMID:25617630

  8. Methods for quantifying adipose tissue insulin resistance in overweight/obese humans.

    PubMed

    Ter Horst, K W; van Galen, K A; Gilijamse, P W; Hartstra, A V; de Groot, P F; van der Valk, F M; Ackermans, M T; Nieuwdorp, M; Romijn, J A; Serlie, M J

    2017-08-01

    Insulin resistance of adipose tissue is an important feature of obesity-related metabolic disease. However, assessment of lipolysis in humans requires labor-intensive and expensive methods, and there is limited validation of simplified measurement methods. We aimed to validate simplified methods for the quantification of adipose tissue insulin resistance against the assessment of insulin sensitivity of lipolysis suppression during hyperinsulinemic-euglycemic clamp studies. We assessed the insulin-mediated suppression of lipolysis by tracer-dilution of [1,1,2,3,3- 2 H 5 ]glycerol during hyperinsulinemic-euglycemic clamp studies in 125 overweight or obese adults (85 men, 40 women; age 50±11 years; body mass index 38±7 kg m -2 ). Seven indices of adipose tissue insulin resistance were validated against the reference measurement method. Low-dose insulin infusion resulted in suppression of the glycerol rate of appearance ranging from 4% (most resistant) to 85% (most sensitive), indicating a good range of adipose tissue insulin sensitivity in the study population. The reference method correlated with (1) insulin-mediated suppression of plasma glycerol concentrations (r=0.960, P<0.001), (2) suppression of plasma non-esterified fatty acid (NEFA) concentrations (r=0.899, P<0.001), (3) the Adipose tissue Insulin Resistance (Adipo-IR) index (fasting plasma insulin-NEFA product; r=-0.526, P<0.001), (4) the fasting plasma insulin-glycerol product (r=-0.467, P<0.001), (5) the Adipose Tissue Insulin Resistance Index (fasting plasma insulin-basal lipolysis product; r=0.460, P<0.001), (6) the Quantitative Insulin Sensitivity Check Index (QUICKI)-NEFA index (r=0.621, P<0.001), and (7) the QUICKI-glycerol index (r=0.671, P<0.001). Bland-Altman plots showed no systematic errors for the suppression indices but proportional errors for all fasting indices. Receiver-operator characteristic curves confirmed that all indices were able to detect adipose tissue insulin resistance (area under the curve ⩾0.801, P<0.001). Adipose tissue insulin sensitivity (that is, the antilipolytic action of insulin) can be reliably quantified in overweight and obese humans by simplified index methods. The sensitivity and specificity of the Adipo-IR index and the fasting plasma insulin-glycerol product, combined with their simplicity and acceptable agreement, suggest that these may be most useful in clinical practice.

  9. Usability of Immunohistochemistry in Forensic Samples With Varying Decomposition.

    PubMed

    Lesnikova, Iana; Schreckenbach, Marc Niclas; Kristensen, Maria Pihlmann; Papanikolaou, Liv Lindegaard; Hamilton-Dutoit, Stephen

    2018-05-24

    Immunohistochemistry (IHC) is an important diagnostic tool in anatomic and surgical pathology but is used less frequently in forensic pathology. Degradation of tissue because of postmortem decomposition is believed to be a major limiting factor, although it is unclear what impact such degradation actually has on IHC staining validity. This study included 120 forensic autopsy samples of liver, lung, and brain tissues obtained for diagnostic purposes. The time from death to autopsy ranged between 1 and more than 14 days. Samples were prepared using the tissue microarray technique. The antibodies chosen for the study included KL1 (for staining bile duct epithelium), S100 (for staining glial cells and myelin), vimentin (for endothelial cells in cerebral blood vessels), and CD45 (for pulmonary lymphocytes). Slides were evaluated by light microscopy. Immunohistochemistry reactions were scored according to a system based on the extent and intensity of the positive stain. An overall correlation between the postmortem interval and the IHC score for all tissue samples was found. Samples from decedents with a postmortem interval of 1 to 3 days showed positive staining with all antibodies, whereas samples from decedents with a longer postmortem interval showed decreased staining rates. Our results suggest that IHC analysis can be successfully used for postmortem diagnosis in a range of autopsy samples showing lesser degrees of decomposition.

  10. DNA Microarray for Detection of Gastrointestinal Viruses

    PubMed Central

    Martínez, Miguel A.; Soto-del Río, María de los Dolores; Gutiérrez, Rosa María; Chiu, Charles Y.; Greninger, Alexander L.; Contreras, Juan Francisco; López, Susana; Arias, Carlos F.

    2014-01-01

    Gastroenteritis is a clinical illness of humans and other animals that is characterized by vomiting and diarrhea and caused by a variety of pathogens, including viruses. An increasing number of viral species have been associated with gastroenteritis or have been found in stool samples as new molecular tools have been developed. In this work, a DNA microarray capable in theory of parallel detection of more than 100 viral species was developed and tested. Initial validation was done with 10 different virus species, and an additional 5 species were validated using clinical samples. Detection limits of 1 × 103 virus particles of Human adenovirus C (HAdV), Human astrovirus (HAstV), and group A Rotavirus (RV-A) were established. Furthermore, when exogenous RNA was added, the limit for RV-A detection decreased by one log. In a small group of clinical samples from children with gastroenteritis (n = 76), the microarray detected at least one viral species in 92% of the samples. Single infection was identified in 63 samples (83%), and coinfection with more than one virus was identified in 7 samples (9%). The most abundant virus species were RV-A (58%), followed by Anellovirus (15.8%), HAstV (6.6%), HAdV (5.3%), Norwalk virus (6.6%), Human enterovirus (HEV) (9.2%), Human parechovirus (1.3%), Sapporo virus (1.3%), and Human bocavirus (1.3%). To further test the specificity and sensitivity of the microarray, the results were verified by reverse transcription-PCR (RT-PCR) detection of 5 gastrointestinal viruses. The RT-PCR assay detected a virus in 59 samples (78%). The microarray showed good performance for detection of RV-A, HAstV, and calicivirus, while the sensitivity for HAdV and HEV was low. Furthermore, some discrepancies in detection of mixed infections were observed and were addressed by reverse transcription-quantitative PCR (RT-qPCR) of the viruses involved. It was observed that differences in the amount of genetic material favored the detection of the most abundant virus. The microarray described in this work should help in understanding the etiology of gastroenteritis in humans and animals. PMID:25355758

  11. Multiplex biomarker approach for determining risk of prostate-specific antigen-defined recurrence of prostate cancer.

    PubMed

    Rhodes, Daniel R; Sanda, Martin G; Otte, Arie P; Chinnaiyan, Arul M; Rubin, Mark A

    2003-05-07

    Molecular signatures in cancer tissue may be useful for diagnosis and are associated with survival. We used results from high-density tissue microarrays (TMAs) to define combinations of candidate biomarkers associated with the rate of prostate cancer progression after radical prostatectomy that could identify patients at high risk for recurrence. Fourteen candidate biomarkers for prostate cancer for which antibodies are available included hepsin, pim-1 kinase, E-cadherin (ECAD; cell adhesion molecule), alpha-methylacyl-coenzyme A racemase, and EZH2 (enhancer of zeste homolog 2, a transcriptional repressor). TMAs containing more than 2000 tumor samples from 259 patients who underwent radical prostatectomy for localized prostate cancer were studied with these antibodies. Immunohistochemistry results were evaluated in conjunction with clinical parameters associated with prostate cancer progression, including tumor stage, Gleason score, and prostate-specific antigen (PSA) level. Recurrence was defined as a postsurgery PSA level of more than 0.2 ng/mL. All statistical tests were two-sided. Moderate or strong expression of EZH2 coupled with at most moderate expression of ECAD (i.e., a positive EZH2:ECAD status) was the biomarker combination that was most strongly associated with the recurrence of prostate cancer. EZH2:ECAD status was statistically significantly associated with prostate cancer recurrence in a training set of 103 patients (relative risk [RR] = 2.52, 95% confidence interval [CI] = 1.09 to 5.81; P =.021), in a validation set of 80 patients (RR = 3.72, 95% CI = 1.27 to 10.91; P =.009), and in the combined set of 183 patients (RR = 2.96, 95% CI = 1.56 to 5.61; P<.001). EZH2:ECAD status was statistically significantly associated with disease recurrence even after adjusting for clinical parameters, such as tumor stage, Gleason score, and PSA level (hazard ratio = 3.19, 95% CI = 1.50 to 6.77; P =.003). EZH2:ECAD status was statistically significantly associated with prostate cancer recurrence after radical prostatectomy and may be useful in defining a cohort of high-risk patients.

  12. Delayed inflammatory mRNA and protein expression after spinal cord injury

    PubMed Central

    2011-01-01

    Background Spinal cord injury (SCI) induces secondary tissue damage that is associated with inflammation. We have previously demonstrated that inflammation-related gene expression after SCI occurs in two waves - an initial cluster that is acutely and transiently up-regulated within 24 hours, and a more delayed cluster that peaks between 72 hours and 7 days. Here we extend the microarray analysis of these gene clusters up to 6 months post-SCI. Methods Adult male rats were subjected to mild, moderate or severe spinal cord contusion injury at T9 using a well-characterized weight-drop model. Tissue from the lesion epicenter was obtained 4 hours, 24 hours, 7 days, 28 days, 3 months or 6 months post-injury and processed for microarray analysis and protein expression. Results Anchor gene analysis using C1qB revealed a cluster of genes that showed elevated expression through 6 months post-injury, including galectin-3, p22PHOX, gp91PHOX, CD53 and progranulin. The expression of these genes occurred primarily in microglia/macrophage cells and was confirmed at the protein level using both immunohistochemistry and western blotting. As p22PHOX and gp91PHOX are components of the NADPH oxidase enzyme, enzymatic activity and its role in SCI were assessed and NADPH oxidase activity was found to be significantly up-regulated through 6 months post-injury. Further, treating rats with the nonspecific, irreversible NADPH oxidase inhibitor diphenylene iodinium (DPI) reduced both lesion volume and expression of chronic gene cluster proteins one month after trauma. Conclusions These data demonstrate that inflammation-related genes are chronically up-regulated after SCI and may contribute to further tissue loss. PMID:21975064

  13. Recrudescence Mechanisms and Gene Expression Profile of the Reproductive Tracts from Chickens during the Molting Period

    PubMed Central

    Ahn, Suzie E.; Lim, Chul-Hong; Lee, Jin-Young; Bae, Seung-Min; Kim, Jinyoung; Bazer, Fuller W.; Song, Gwonhwa

    2013-01-01

    The reproductive system of chickens undergoes dynamic morphological and functional tissue remodeling during the molting period. The present study identified global gene expression profiles following oviductal tissue regression and regeneration in laying hens in which molting was induced by feeding high levels of zinc in the diet. During the molting and recrudescence processes, progressive morphological and physiological changes included regression and re-growth of reproductive organs and fluctuations in concentrations of testosterone, progesterone, estradiol and corticosterone in blood. The cDNA microarray analysis of oviductal tissues revealed the biological significance of gene expression-based modulation in oviductal tissue during its remodeling. Based on the gene expression profiles, expression patterns of selected genes such as, TF, ANGPTL3, p20K, PTN, AvBD11 and SERPINB3 exhibited similar patterns in expression with gradual decreases during regression of the oviduct and sequential increases during resurrection of the functional oviduct. Also, miR-1689* inhibited expression of Sp1, while miR-17-3p, miR-22* and miR-1764 inhibited expression of STAT1. Similarly, chicken miR-1562 and miR-138 reduced the expression of ANGPTL3 and p20K, respectively. These results suggest that these differentially regulated genes are closely correlated with the molecular mechanism(s) for development and tissue remodeling of the avian female reproductive tract, and that miRNA-mediated regulation of key genes likely contributes to remodeling of the avian reproductive tract by controlling expression of those genes post-transcriptionally. The discovered global gene profiles provide new molecular candidates responsible for regulating morphological and functional recrudescence of the avian reproductive tract, and provide novel insights into understanding the remodeling process at the genomic and epigenomic levels. PMID:24098561

  14. Chaperonin Containing-TCP-1 Protein Level in Breast Cancer Cells Predicts Therapeutic Application of a Cytotoxic Peptide

    PubMed Central

    Bassiouni, Rania; Nemec, Kathleen; Iketani, Ashley; Flores, Orielyz; Showalter, Anne; Khaled, Amr S.; Vishnubhotla, Priya; Sprung, Robert W.; Kaittanis, Charalambos; Perez, Jesus M.; Khaled, Annette R.

    2016-01-01

    Purpose Metastatic disease is a leading cause of death for patients with breast cancer, driving the need for new therapies. CT20p is a peptide previously discovered by our group that displays cancer-specific cytotoxicity. To design the optimal therapeutic use of the peptide, we identified the intracellular target of CT20p in breast cancer cells, correlating expression patterns of the target with susceptibility to CT20p. Experimental Design Using polymeric nanoparticles to deliver CT20p, we assessed cytoskeletal changes, cell migration, adhesion, and viability in cells treated with the peptide. Protein pull-down experiments, coupled to mass spectrometry, enabled identification of the peptide’s intracellular target. Biochemical and histological techniques validated target identity in human cell lines and breast cancer tissue microarrays and revealed susceptibility patterns to CT20p. Results Chaperonin Containing TCP-1 (CCT) was identified as the intracellular target of CT20p. Cancer cells susceptible to CT20p had increased CCT, and overexpression of CCTβ, a subunit of the CCT complex, enhanced susceptibility to CT20p. Susceptible cells displayed reduced tubulin, a substrate of CCT, and inhibition of migration upon CT20p treatment. CCTβ levels were higher in invasive ductal carcinomas than in cancer adjacent tissues and increased with breast cancer stage. Decreased breast cancer patient survival correlated with genomic alternations in CCTβ and higher levels of the chaperone. Conclusion Increased CCT protein in breast cancer cells underlies the cytotoxicity of CT20p. CCT is thus a potential target for therapeutic intervention and serves as a companion diagnostic to personalize the therapeutic use of CT20p for breast cancer treatment. PMID:27012814

  15. Oncogene GAEC1 regulates CAPN10 expression which predicts survival in esophageal squamous cell carcinoma

    PubMed Central

    Chan, Dessy; Tsoi, Miriam Yuen-Tung; Liu, Christina Di; Chan, Sau-Hing; Law, Simon Ying-Kit; Chan, Kwok-Wah; Chan, Yuen-Piu; Gopalan, Vinod; Lam, Alfred King-Yin; Tang, Johnny Cheuk-On

    2013-01-01

    AIM: To identify the downstream regulated genes of GAEC1 oncogene in esophageal squamous cell carcinoma and their clinicopathological significance. METHODS: The anti-proliferative effect of knocking down the expression of GAEC1 oncogene was studied by using the RNA interference (RNAi) approach through transfecting the GAEC1-overexpressed esophageal carcinoma cell line KYSE150 with the pSilencer vector cloned with a GAEC1-targeted sequence, followed by MTS cell proliferation assay and cell cycle analysis using flow cytometry. RNA was then extracted from the parental, pSilencer-GAEC1-targeted sequence transfected and pSilencer negative control vector transfected KYSE150 cells for further analysis of different patterns in gene expression. Genes differentially expressed with suppressed GAEC1 expression were then determined using Human Genome U133 Plus 2.0 cDNA microarray analysis by comparing with the parental cells and normalized with the pSilencer negative control vector transfected cells. The most prominently regulated genes were then studied by immunohistochemical staining using tissue microarrays to determine their clinicopathological correlations in esophageal squamous cell carcinoma by statistical analyses. RESULTS: The RNAi approach of knocking down gene expression showed the effective suppression of GAEC1 expression in esophageal squamous cell carcinoma cell line KYSE150 that resulted in the inhibition of cell proliferation and increase of apoptotic population. cDNA microarray analysis for identifying differentially expressed genes detected the greatest levels of downregulation of calpain 10 (CAPN10) and upregulation of trinucleotide repeat containing 6C (TNRC6C) transcripts when GAEC1 expression was suppressed. At the tissue level, the high level expression of calpain 10 protein was significantly associated with longer patient survival (month) of esophageal squamous cell carcinoma compared to the patients with low level of calpain 10 expression (37.73 ± 16.33 vs 12.62 ± 12.44, P = 0.032). No significant correction was observed among the TNRC6C protein expression level and the clinocopathologcial features of esophageal squamous cell carcinoma. CONCLUSION: GAEC1 regulates the expression of CAPN10 and TNRC6C downstream. Calpain 10 expression is a potential prognostic marker in patients with esophageal squamous cell carcinoma. PMID:23687414

  16. Quantification of the heterogeneity of prognostic cellular biomarkers in ewing sarcoma using automated image and random survival forest analysis.

    PubMed

    Bühnemann, Claudia; Li, Simon; Yu, Haiyue; Branford White, Harriet; Schäfer, Karl L; Llombart-Bosch, Antonio; Machado, Isidro; Picci, Piero; Hogendoorn, Pancras C W; Athanasou, Nicholas A; Noble, J Alison; Hassan, A Bassim

    2014-01-01

    Driven by genomic somatic variation, tumour tissues are typically heterogeneous, yet unbiased quantitative methods are rarely used to analyse heterogeneity at the protein level. Motivated by this problem, we developed automated image segmentation of images of multiple biomarkers in Ewing sarcoma to generate distributions of biomarkers between and within tumour cells. We further integrate high dimensional data with patient clinical outcomes utilising random survival forest (RSF) machine learning. Using material from cohorts of genetically diagnosed Ewing sarcoma with EWSR1 chromosomal translocations, confocal images of tissue microarrays were segmented with level sets and watershed algorithms. Each cell nucleus and cytoplasm were identified in relation to DAPI and CD99, respectively, and protein biomarkers (e.g. Ki67, pS6, Foxo3a, EGR1, MAPK) localised relative to nuclear and cytoplasmic regions of each cell in order to generate image feature distributions. The image distribution features were analysed with RSF in relation to known overall patient survival from three separate cohorts (185 informative cases). Variation in pre-analytical processing resulted in elimination of a high number of non-informative images that had poor DAPI localisation or biomarker preservation (67 cases, 36%). The distribution of image features for biomarkers in the remaining high quality material (118 cases, 104 features per case) were analysed by RSF with feature selection, and performance assessed using internal cross-validation, rather than a separate validation cohort. A prognostic classifier for Ewing sarcoma with low cross-validation error rates (0.36) was comprised of multiple features, including the Ki67 proliferative marker and a sub-population of cells with low cytoplasmic/nuclear ratio of CD99. Through elimination of bias, the evaluation of high-dimensionality biomarker distribution within cell populations of a tumour using random forest analysis in quality controlled tumour material could be achieved. Such an automated and integrated methodology has potential application in the identification of prognostic classifiers based on tumour cell heterogeneity.

  17. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis

    PubMed Central

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids released via lipolysis of white adipose tissue. PMID:27187182

  18. Genomic DNA Hypomethylation Is Associated with Neural Tube Defects Induced by Methotrexate Inhibition of Folate Metabolism

    PubMed Central

    Wang, Xiuwei; Guan, Zhen; Chen, Yan; Dong, Yanting; Niu, Yuhu; Wang, Jianhua; Zhang, Ting; Niu, Bo

    2015-01-01

    DNA methylation is thought to be involved in the etiology of neural tube defects (NTDs). However, the exact mechanism between DNA methylation and NTDs remains unclear. Herein, we investigated the change of methylation in mouse model of NTDs associated with folate dysmetabolism by use of ultraperformance liquid chromatography tandem mass spectrometry (UPLC/MS/MS), liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS), microarray, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and Real time quantitative PCR. Results showed that NTD neural tube tissues had lower concentrations of 5-methyltetrahydrofolate (5-MeTHF, P = 0.005), 5-formyltetrahydrofolate (5-FoTHF, P = 0.040), S-adenosylmethionine (SAM, P = 0.004) and higher concentrations of folic acid (P = 0.041), homocysteine (Hcy, P = 0.006) and S-adenosylhomocysteine (SAH, P = 0.045) compared to control. Methylation levels of genomic DNA decreased significantly in the embryonic neural tube tissue of NTD samples. 132 differentially methylated regions (35 low methylated regions and 97 high methylated regions) were selected by microarray. Two genes (Siah1b, Prkx) in Wnt signal pathway demonstrated lower methylated regions (peak) and higher expression in NTDs (P<0.05; P<0.05). Results suggest that DNA hypomethylation was one of the possible epigenetic variations correlated with the occurrence of NTDs induced by folate dysmetabolism and that Siah1b, Prkx in Wnt pathway may be candidate genes for NTDs. PMID:25822193

  19. Identification and functional analysis of microRNA in myometrium tissue from spontaneous preterm labor

    PubMed Central

    Tang, Yao; Ji, Hongjing; Liu, Haiyan; Gu, Weirong; Li, Xiaotian; Peng, Ting

    2015-01-01

    Spontaneous preterm labor is an important complication in perinatology characterized by early onset myometrium contractions leading to labor at preterm. However, the exact mechanism that maintain uterine quiescence and promote increased uterine contractility during labor were incompletely defined. MicroRNAs is a class of short non-coding RNAs that regulate gene expression at the post-transcriptional level by binding the 3’ untranslated region of target mRNAs and play an important role in biological process and cellular functions. We hypothesized we could find differentially expressed microRNAs in the myometrium of women in spontaneous preterm labor. Thus, a microarray analysis of miRNAs of preterm myometrium was performed. 18 out of the 2006 detected microRNAs were found to be significantly dysregulated in myometrium in labor verse not in labor at preterm. Biological validation by quantitative real-time polymerase chain reaction confirms us a consistence rate of 83.3% (5 out of 6) with microarray analysis. The target genes for validated microRNAs were predicted by three algorithms (PicTar, TargetScan, and miRanda). Most of the potential targets of the miRNAs were relevant to positive regulation of cardiac muscle hypertrophy, reduction of cytosolic calcium ion concentration and relaxation of cardiac muscle as well as prostate cancer, adherents junction, regulation of actin cytoskeleton and regulation and other factor-regulated calcium reabsorption. Our result illustrates a characteristic microRNA profile in myometrium tissues and provides a new understanding of the process involved in spontaneous preterm labor. PMID:26722471

  20. Expression of Vascular Notch Ligand Delta-Like 4 and Inflammatory Markers in Breast Cancer

    PubMed Central

    Jubb, Adrian M.; Soilleux, Elizabeth J.; Turley, Helen; Steers, Graham; Parker, Andrew; Low, Irene; Blades, Jennifer; Li, Ji-Liang; Allen, Paul; Leek, Russell; Noguera-Troise, Irene; Gatter, Kevin C.; Thurston, Gavin; Harris, Adrian L.

    2010-01-01

    Delta-like ligand 4 (Dll4) is a Notch ligand that is predominantly expressed in the endothelium. Evidence from xenografts suggests that inhibiting Dll4 may overcome resistance to antivascular endothelial growth factor therapy. The aims of this study were to characterize the expression of Dll4 in breast cancer and assess whether it is associated with inflammatory markers and prognosis. We examined 296 breast adenocarcinomas and 38 ductal carcinoma in situ tissues that were represented in tissue microarrays. Additional whole sections representing 10 breast adenocarcinomas, 10 normal breast tissues, and 16 angiosarcomas were included. Immunohistochemistry was then performed by using validated antibodies against Dll4, CD68, CD14, Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN), CD123, neutrophil elastase, CD31, and carbonic anhydrase 9. Dll4 was selectively expressed by intratumoral endothelial cells in 73% to 100% of breast adenocarcinomas, 18% of in situ ductal carcinomas, and all lactating breast cases, but not normal nonlactating breast. High intensity of endothelial Dll4 expression was a statistically significant adverse prognostic factor in univariate (P = 0.002 and P = 0.01) and multivariate analyses (P = 0.03 and P = 0.04) of overall survival and relapse-free survival, respectively. Among the inflammatory markers, only CD68 and DC-SIGN were significant prognostic factors in univariate (but not multivariate) analyses of overall survival (P = 0.01 and 0.002, respectively). In summary, Dll4 was expressed by endothelium associated with breast cancer cells. In these retrospective subset analyses, endothelial Dll4 expression was a statistically significant multivariate prognostic factor. PMID:20167860

  1. Hypoxia-Inducible Factor-1α (HIF-1α) Expression on Endothelial Cells in Juvenile Nasopharyngeal Angiofibroma: A Review of 70 cases and Tissue Microarray Analysis.

    PubMed

    Song, Xiaole; Yang, Chenhe; Zhang, Huankang; Wang, Jingjing; Sun, Xicai; Hu, Li; Liu, Zhuofu; Wang, Dehui

    2018-06-01

    To examine the expression of hypoxia-inducible factor-1α (HIF-1α) and its related molecules (cellular repressor of E1A-stimulated genes [CREG], osteopontin [OPN], proto-oncogene tyrosine-protein kinase Src [c-Src], and vascular endothelial growth factor [VEGF]) in juvenile nasopharyngeal angiofibroma (JNA) and explore the correlation between clinical prognosis and HIF-1α expression. The study performed a retrospective review of the clinical records of patients with JNA treated between 2003 and 2007. Specimens were analyzed by immunohistochemistry for HIF-1α, CREG, OPN, c-Src, and VEGF expression, and microvessel density (MVD) was assessed by tissue microarray. The correlation between expression levels and clinicopathological features including age, tumor stage, intraoperative blood loss, and recurrence was analyzed. HIF-1α, CREG, OPN, c-Src, and VEGF were upregulated in endothelial cells (ECs) of patients with JNA, and strong correlations in the expression of these molecules were observed. HIF-1α expression was higher in young patients ( P = .032) and in recurrent cases ( P = .01). Survival analysis showed that low HIF-1α levels in ECs predicted longer time to recurrence (log rank test P = .006). Receiver operating characteristic curve analysis showed that HIF-1α was a prognostic factor for recurrence (area under the curve = 0.690, P = .019). No correlation was found between the expression of molecules and Radkowski stage or intraoperative blood loss. In cases of JNA treated surgically, HIF-1α expression in ECs is a useful prognostic factor for tumor recurrence.

  2. Prognostic value of the autophagy markers LC3 and p62/SQSTM1 in early-stage non-small cell lung cancer.

    PubMed

    Schläfli, Anna M; Adams, Olivia; Galván, José A; Gugger, Mathias; Savic, Spasenija; Bubendorf, Lukas; Schmid, Ralph A; Becker, Karl-Friedrich; Tschan, Mario P; Langer, Rupert; Berezowska, Sabina

    2016-06-28

    Autophagy is a cellular degrading process that promotes tumor cell survival or cell death in cancer, depending on the progress of oncogenesis. Protein light chain 3 (LC3) and p62/SQSTM1 (p62) are associated with autophagosomal membranes that engulf cytoplasmic content for subsequent degradation. We studied LC3 and p62 expression using immunohistochemistry in a large cohort of 466 stage I/II non-small cell lung cancer (NSCLC) using a tissue microarray. We evaluated dot-like cytoplasmic expression of LC3 and dot-like, cytoplasmic and nuclear staining for p62 in relation to clinico-pathological parameters.LC3 expression correlated with all p62 patterns, as those correlated among each other (p < 0.001 each). There was no correlation with stage, age or gender. A combination of high LC3/high p62 dot-like staining (suggesting impaired autophagy) showed a trend for better outcome (p = 0.11). Interestingly, a combined low cytoplasmic/low nuclear p62 expression regardless of dot-like staining was an independent prognostic factor for longer survival (p = 0.006; HR=1.96), in addition to tumor stage (p = 0.004; HR=1.4).The autophagy markers LC3 and p62 are differentially expressed in NSCLC, pointing towards a biologically significant role. High LC3 levels seem to be linked to lower tumor aggressiveness, while high general p62 expression was significantly associated with aggressive tumor behavior.

  3. Prognostic value of the autophagy markers LC3 and p62/SQSTM1 in early-stage non-small cell lung cancer

    PubMed Central

    Schläfli, Anna M.; Adams, Olivia; Galván, José A.; Gugger, Mathias; Savic, Spasenija; Bubendorf, Lukas; Schmid, Ralph A.; Becker, Karl-Friedrich; Tschan, Mario P.; Langer, Rupert; Berezowska, Sabina

    2016-01-01

    Autophagy is a cellular degrading process that promotes tumor cell survival or cell death in cancer, depending on the progress of oncogenesis. Protein light chain 3 (LC3) and p62/SQSTM1 (p62) are associated with autophagosomal membranes that engulf cytoplasmic content for subsequent degradation. We studied LC3 and p62 expression using immunohistochemistry in a large cohort of 466 stage I/II non-small cell lung cancer (NSCLC) using a tissue microarray. We evaluated dot-like cytoplasmic expression of LC3 and dot-like, cytoplasmic and nuclear staining for p62 in relation to clinico-pathological parameters. LC3 expression correlated with all p62 patterns, as those correlated among each other (p < 0.001 each). There was no correlation with stage, age or gender. A combination of high LC3/high p62 dot-like staining (suggesting impaired autophagy) showed a trend for better outcome (p = 0.11). Interestingly, a combined low cytoplasmic/low nuclear p62 expression regardless of dot-like staining was an independent prognostic factor for longer survival (p = 0.006; HR=1.96), in addition to tumor stage (p = 0.004; HR=1.4). The autophagy markers LC3 and p62 are differentially expressed in NSCLC, pointing towards a biologically significant role. High LC3 levels seem to be linked to lower tumor aggressiveness, while high general p62 expression was significantly associated with aggressive tumor behavior. PMID:27250032

  4. Protein-protein interactions: an application of Tus-Ter mediated protein microarray system.

    PubMed

    Sitaraman, Kalavathy; Chatterjee, Deb K

    2011-01-01

    In this chapter, we present a novel, cost-effective microarray strategy that utilizes expression-ready plasmid DNAs to generate protein arrays on-demand and its use to validate protein-protein interactions. These expression plasmids were constructed in such a way so as to serve a dual purpose of synthesizing the protein of interest as well as capturing the synthesized protein. The microarray system is based on the high affinity binding of Escherichia coli "Tus" protein to "Ter," a 20 bp DNA sequence involved in the regulation of DNA replication. The protein expression is carried out in a cell-free protein synthesis system, with rabbit reticulocyte lysates, and the target proteins are detected either by labeled incorporated tag specific or by gene-specific antibodies. This microarray system has been successfully used for the detection of protein-protein interaction because both the target protein and the query protein can be transcribed and translated simultaneously in the microarray slides. The utility of this system for detecting protein-protein interaction is demonstrated by a few well-known examples: Jun/Fos, FRB/FKBP12, p53/MDM2, and CDK4/p16. In all these cases, the presence of protein complexes resulted in the localization of fluorophores at the specific sites of the immobilized target plasmids. Interestingly, during our interactions studies we also detected a previously unknown interaction between CDK2 and p16. Thus, this Tus-Ter based system of protein microarray can be used for the validation of known protein interactions as well as for identifying new protein-protein interactions. In addition, it can be used to examine and identify targets of nucleic acid-protein, ligand-receptor, enzyme-substrate, and drug-protein interactions.

  5. Comparison of gene expression profiles between dental pulp and periodontal ligament tissues in humans

    PubMed Central

    Gong, Ai-Xiu; Zhang, Jing-Han; Li, Jing; Wu, Jun; Wang, Lin; Miao, Deng-Shun

    2017-01-01

    There are anatomical and functional differences between human dental pulp (DP) and periodontal ligament (PDL). However, the molecular biological differences and function of these tissues are poorly understood. In the present study, we employed a cDNA microarray array to screen for differentially expressed genes (DEGs) between human DP and PDL tissues, and used the online software WebGestalt to perform the functional analysis of the DEGs. In addition, the STRING database and KEGG pathway analysis were applied for interaction network and pathway analysis of the DEGs. DP and PDL samples were obtained from permanent premolars (n=16) extracted for orthodontic purposes. The results of the microarray assay were confirmed by RT-qPCR. The DEGs were found to be significantly associated with the extracellular matrix and focal adhesion. A total of 10 genes were selected to confirm the results. The mRNA levels of integrin alpha 4 (ITGA4), integrin alpha 8 (ITGA8), neurexin 1 (NRXN1) and contactin 1 (CNTN1) were significantly higher in the DP than in the PDL tissues. However, the levels of collagen type XI alpha 1 (COL11A1), aggrecan (ACAN), collagen type VI alpha 1 (COL6A1), chondroadherin (CHAD), laminin gamma 2 (LAMC2) and laminin alpha 3 (LAMA3) were higher in the PDL than in the DP samples. The gene expression profiles provide novel insight into the characterization of DP and PDL tissues, and contribute to our understanding of the potential molecular mechanisms of dental tissue mineralization and regeneration. PMID:28713908

  6. Transcriptome Pathway Analysis of Pathological and Physiological Aldosterone-Producing Human Tissues.

    PubMed

    Zhou, Junhua; Lam, Brian; Neogi, Sudeshna G; Yeo, Giles S H; Azizan, Elena A B; Brown, Morris J

    2016-12-01

    Primary aldosteronism is present in ≈10% of hypertensives. We previously performed a microarray assay on aldosterone-producing adenomas and their paired zona glomerulosa and fasciculata. Confirmation of top genes validated the study design and functional experiments of zona glomerulosa selective genes established the role of the encoded proteins in aldosterone regulation. In this study, we further analyzed our microarray data using AmiGO 2 for gene ontology enrichment and Ingenuity Pathway Analysis to identify potential biological processes and canonical pathways involved in pathological and physiological aldosterone regulation. Genes differentially regulated in aldosterone-producing adenoma and zona glomerulosa were associated with steroid metabolic processes gene ontology terms. Terms related to the Wnt signaling pathway were enriched in zona glomerulosa only. Ingenuity Pathway Analysis showed "NRF2-mediated oxidative stress response pathway" and "LPS (lipopolysaccharide)/IL-1 (interleukin-1)-mediated inhibition of RXR (retinoid X receptor) function" were affected in both aldosterone-producing adenoma and zona glomerulosa with associated genes having up to 21- and 8-fold differences, respectively. Comparing KCNJ5-mutant aldosterone-producing adenoma, zona glomerulosa, and zona fasciculata samples with wild-type samples, 138, 56, and 59 genes were differentially expressed, respectively (fold-change >2; P<0.05). ACSS3, encoding the enzyme that synthesizes acetyl-CoA, was the top gene upregulated in KCNJ5-mutant aldosterone-producing adenoma compared with wild-type. NEFM, a gene highly upregulated in zona glomerulosa, was upregulated in KCNJ5 wild-type aldosterone-producing adenomas. NR4A2, the transcription factor for aldosterone synthase, was highly expressed in zona fasciculata adjacent to a KCNJ5-mutant aldosterone-producing adenoma. Further interrogation of these genes and pathways could potentially provide further insights into the pathology of primary aldosteronism. © 2016 The Authors.

  7. Protective effect of bicyclol against bile duct ligation-induced hepatic fibrosis in rats

    PubMed Central

    Zhen, Yong-Zhan; Li, Na-Ren; He, Hong-Wei; Zhao, Shuang-Shuang; Zhang, Guang-Ling; Hao, Xiao-Fang; Shao, Rong-Guang

    2015-01-01

    AIM: To evaluate the protective effect of bicyclol against bile duct ligation (BDL)-induced hepatic fibrosis in rats. METHODS: Sprague-Dawley male rats underwent BDL and sham-operated animals were used as healthy controls. The BDL rats were divided into two groups which received sterilized PBS or bicyclol (100 mg/kg per day) orally for two consecutive weeks. Serum, urine and bile were collected for biochemical determinations. Liver tissues were collected for histological analysis and a whole genome oligonucleotide microarray assay. Reverse transcription-polymerase chain reaction and Western blotting were used to verify the expression of liver fibrosis-related genes. RESULTS: Treatment with bicyclol significantly reduced liver fibrosis and bile duct proliferation after BDL. The levels of alanine aminotransferase (127.7 ± 72.3 vs 230.4 ± 69.6, P < 0.05) and aspartate aminotransferase (696.8 ± 232.6 vs 1032.6 ± 165.8, P < 0.05) were also decreased by treatment with bicyclol in comparison to PBS. The expression changes of 45 fibrogenic genes and several fibrogenesis-related pathways were reversed by bicyclol in the microarray assay. Bicyclol significantly reduced liver mRNA and/or protein expression levels of collagen 1a1, matrix metalloproteinase 2, tumor necrosis factor, tissue inhibitors of metalloproteinases 2, transforming growth factor-β1 and α-smooth muscle actin. CONCLUSION: Bicyclol significantly attenuates BDL-induced liver fibrosis by reversing fibrogenic gene expression. These findings suggest that bicyclol might be an effective anti-fibrotic drug for the treatment of cholestatic liver disease. PMID:26109801

  8. Adiposity Alters Genes Important in Inflammation and Cell Cycle Division in Human Cumulus Granulosa Cell.

    PubMed

    Merhi, Zaher; Polotsky, Alex J; Bradford, Andrew P; Buyuk, Erkan; Chosich, Justin; Phang, Tzu; Jindal, Sangita; Santoro, Nanette

    2015-10-01

    To determine whether obesity alters genes important in cellular growth and inflammation in human cumulus granulosa cells (GCs). Eight reproductive-aged women who underwent controlled ovarian hyperstimulation followed by oocyte retrieval for in vitro fertilization were enrolled. Cumulus GC RNA was extracted and processed for microarray analysis on Affymetrix Human Genome U133 Plus 2.0 chips. Gene expression data were validated on GCs from additional biologically similar samples using quantitative real-time polymerase chain reaction (RT-PCR). Comparison in gene expression was made between women with body mass index (BMI) <25 kg/m(2) (group 1; n = 4) and those with BMI ≥25 kg/m(2) (group 2; n = 4). Groups 1 and 2 had significantly different BMI (21.4 ± 1.4 vs 30.4 ± 2.7 kg/m(2), respectively; P = .02) but did not differ in age (30.5 ± 1.7 vs 32.7 ± 0.3 years, respectively; P = .3). Comparative analysis of gene expression profiles by supervised clustering between group 1 versus group 2 resulted in the selection of 7 differentially expressed genes: fibroblast growth factor 12 (FGF-12), protein phosphatase 1-like (PPM1L), zinc finger protein multitype 2 (ZFPM2), forkhead box M1 (FOXM1), cell division cycle 20 (CDC20), interleukin 1 receptor-like 1 (IL1RL1), and growth arrest-specific protein 7 (GAS7). FOXM1, CDC20, and GAS7 were downregulated while FGF-12 and PPM1L were upregulated in group 2 when compared to group 1. Validation with RT-PCR confirmed the microarray data except for ZFPM2 and IL1RL. As BMI increased, expression of FOXM1 significantly decreased (r = -.60, P = .048). Adiposity is associated with changes in the expression of genes important in cellular growth, cell cycle progression, and inflammation. The upregulation of the metabolic regulator gene PPM1L suggests that adiposity induces an abnormal metabolic follicular environment, potentially altering folliculogenesis and oocyte quality. © The Author(s) 2015.

  9. Adiposity Alters Genes Important in Inflammation and Cell Cycle Division in Human Cumulus Granulosa Cell

    PubMed Central

    Merhi, Zaher; Polotsky, Alex J.; Bradford, Andrew P.; Buyuk, Erkan; Chosich, Justin; Phang, Tzu; Jindal, Sangita; Santoro, Nanette

    2015-01-01

    Objective: To determine whether obesity alters genes important in cellular growth and inflammation in human cumulus granulosa cells (GCs). Methods: Eight reproductive-aged women who underwent controlled ovarian hyperstimulation followed by oocyte retrieval for in vitro fertilization were enrolled. Cumulus GC RNA was extracted and processed for microarray analysis on Affymetrix Human Genome U133 Plus 2.0 chips. Gene expression data were validated on GCs from additional biologically similar samples using quantitative real-time polymerase chain reaction (RT-PCR). Comparison in gene expression was made between women with body mass index (BMI) <25 kg/m2 (group 1; n = 4) and those with BMI ≥25 kg/m2 (group 2; n = 4). Results: Groups 1 and 2 had significantly different BMI (21.4 ± 1.4 vs 30.4 ± 2.7 kg/m2, respectively; P = .02) but did not differ in age (30.5 ± 1.7 vs 32.7 ± 0.3 years, respectively; P = .3). Comparative analysis of gene expression profiles by supervised clustering between group 1 versus group 2 resulted in the selection of 7 differentially expressed genes: fibroblast growth factor 12 (FGF-12), protein phosphatase 1-like (PPM1L), zinc finger protein multitype 2 (ZFPM2), forkhead box M1 (FOXM1), cell division cycle 20 (CDC20), interleukin 1 receptor-like 1 (IL1RL1), and growth arrest-specific protein 7 (GAS7). FOXM1, CDC20, and GAS7 were downregulated while FGF-12 and PPM1L were upregulated in group 2 when compared to group 1. Validation with RT-PCR confirmed the microarray data except for ZFPM2 and IL1RL. As BMI increased, expression of FOXM1 significantly decreased (r = −.60, P = .048). Conclusions: Adiposity is associated with changes in the expression of genes important in cellular growth, cell cycle progression, and inflammation. The upregulation of the metabolic regulator gene PPM1L suggests that adiposity induces an abnormal metabolic follicular environment, potentially altering folliculogenesis and oocyte quality. PMID:25676576

  10. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency.

    PubMed

    Yeh, Hsiang-Yuan; Cheng, Shih-Wu; Lin, Yu-Chun; Yeh, Cheng-Yu; Lin, Shih-Fang; Soo, Von-Wun

    2009-12-21

    Prostate cancer is a world wide leading cancer and it is characterized by its aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different stages and grades related to the aggressive metastasis disease. Although numerous studies used microarray analysis and traditional clustering method to identify the individual genes during the disease processes, the important gene regulations remain unclear. We present a computational method for inferring genetic regulatory networks from micorarray data automatically with transcription factor analysis and conditional independence testing to explore the potential significant gene regulatory networks that are correlated with cancer, tumor grade and stage in the prostate cancer. To deal with missing values in microarray data, we used a K-nearest-neighbors (KNN) algorithm to determine the precise expression values. We applied web services technology to wrap the bioinformatics toolkits and databases to automatically extract the promoter regions of DNA sequences and predicted the transcription factors that regulate the gene expressions. We adopt the microarray datasets consists of 62 primary tumors, 41 normal prostate tissues from Stanford Microarray Database (SMD) as a target dataset to evaluate our method. The predicted results showed that the possible biomarker genes related to cancer and denoted the androgen functions and processes may be in the development of the prostate cancer and promote the cell death in cell cycle. Our predicted results showed that sub-networks of genes SREBF1, STAT6 and PBX1 are strongly related to a high extent while ETS transcription factors ELK1, JUN and EGR2 are related to a low extent. Gene SLC22A3 may explain clinically the differentiation associated with the high grade cancer compared with low grade cancer. Enhancer of Zeste Homolg 2 (EZH2) regulated by RUNX1 and STAT3 is correlated to the pathological stage. We provide a computational framework to reconstruct the genetic regulatory network from the microarray data using biological knowledge and constraint-based inferences. Our method is helpful in verifying possible interaction relations in gene regulatory networks and filtering out incorrect relations inferred by imperfect methods. We predicted not only individual gene related to cancer but also discovered significant gene regulation networks. Our method is also validated in several enriched published papers and databases and the significant gene regulatory networks perform critical biological functions and processes including cell adhesion molecules, androgen and estrogen metabolism, smooth muscle contraction, and GO-annotated processes. Those significant gene regulations and the critical concept of tumor progression are useful to understand cancer biology and disease treatment.

  11. Upregulation of long non-coding RNA M26317 correlates with tumor progression and poor prognosis in gastric cancer.

    PubMed

    Li, Li; Wang, Yuan-Yu; Mou, Xiao Zhou; Ye, Zai-Yuan; Zhao, Zhong-Sheng

    2018-04-23

    To investigate the expression and clinical significance of long non-coding RNA (lnc RNA) in gastric cancer, we applied microarray analysis to obtain expression profiles of protein coding genes and lncRNAs in tumor and paired adjacent non-tumor tissues. We found that 41 lncRNAs were upregulated and 31 lncRNAs were downregulated more than 2-fold in gastric cancer versus noncancerous tissues (ratio>2.0, P<.01). We established a co-expression network of the differentially expressed lncRNAs and targeted coding genes that included 17 lncRNAs and 16 coding genes. As the results of microarray analysis showed that lncRNA M26317 was upregulated in gastric cancer tissues we examined the expression level of M26317 in 103 gastric cancer tissues by RT-PCR and 436 gastric cancer tissues by in situ hybridization. Our data confirmed that M26317 was upregulated in gastric cancer tissues. Moreover, expression of M26317 correlated with patient age, size of tumor, Lauren's classification, depth of invasion, lymph node and distant metastasis, TNM stage and poor prognosis (P<.05), but was not associated with gender, location of tumor, and differentiation (P>.05). M26317 may have an important role in malignant transformation and metastasis of gastric cancer. Copyright © 2018. Published by Elsevier Inc.

  12. Diagnostic value of TROP-2 expression in papillary thyroid carcinoma and comparison with HBME-1, galectin-3 and cytokeratin 19.

    PubMed

    Murtezaoglu, Afsin Rahman; Gucer, Hasan

    In this study, we compared the diagnostic value of TROP-2 expression in distinguishing between benign and malignant thyroid lesions to those of HBME-1, CK19 and galectin-3. We selected 102 cases from our archive including 20 normal thyroid tissues, 23 follicular nodular diseases, 17 follicular adenomas, 20 follicular variant papillary carcinomas and 22 classical variant papillary carcinomas. Tissue microarrays constructed from these cases were immunohistochemically analyzed with HBME-1, CK19, galectin-3 and TROP-2. Respectively 73.8%, 83.3%, 69% and 50% of all papillary carcinomas were positive with HBME-1, CK19, galectin-3 and TROP-2. CK19 was positive respectively by 100%, 43.5% and 35.3% in cases of normal thyroid, follicular nodular diseases and follicular adenoma, while the other markers were negative. In distinguishing benign and malignant lesions, which constitutes this study, HBME-1, CK19, galectin-3 and TROP-2 were statistically significant (p < 0.001). In distinguishing cases of follicular variant papillary carcinoma from follicular nodular diseases and follicular adenoma, HBME-1 and galectin-3 were statistically significant (p < 0.001). Consequently, in this study, we found that all immunohistochemical markers were effective in distinguishing benign and malignant thyroid lesions. In determining malignancy, HBME-1 had the highest diagnostic accuracy, while CK19 was the most sensitive marker. The sensitivity increased when the markers were used together.

  13. Prognostic value of matrix metalloproteinase 9 expression in patients with juvenile nasopharyngeal angiofibroma: tissue microarray analysis.

    PubMed

    Sun, Xicai; Guo, Limin; Wang, Jingjing; Wang, Huan; Liu, Zhuofu; Liu, Juan; Yu, Huapeng; Hu, Li; Li, Han; Wang, Dehui

    2014-08-01

    Although JNA is a benign neoplasm histopathologically, it has a propensity for locally destructive growth and remains a higher postoperative recurrence rate. The aim of this study was to analyze the expression and localization of MMP-9 in JNA using tissue microarray to elucidate its correlation with clinicopathological features and recurrence. The expression of MMP-9 was assessed by immunohistochemistry in a tissue microarray from 70 patients with JNA and 10 control subjects. Correlation between the levels of MMP-9 expression and clinicopathologic variables, as well as tumor recurrence, were analyzed. MMP-9 was detected in perivascular and extravascular less differentiated cells and stromal cells of patients with JNA but not in the matured vascular endothelial cells of these patients. The presence of MMP-9 expression in JNA was correlated with patient's age (p=0.001). Spearman correlation analysis suggested that high expression of MMP-9 in JNA had negative correlation with patient's age (r=-0.412, p<0.001). The recurrence rate in JNA patients with high MMP-9 expression was significantly higher than those with low MMP-9 expression (p=0.002). In multivariate and ROC curve analysis, MMP-9 was a good prognostic factor for tumor recurrence of JNA. Higher MMP-9 expression is a poor prognostic factor for patients with JNA who have been surgically treated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. CircDOCK1 suppresses cell apoptosis via inhibition of miR-196a-5p by targeting BIRC3 in OSCC

    PubMed Central

    Wang, Liping; Wei, Yongxiang; Yan, Yongyong; Wang, Haiyan; Yang, Jiantin; Zheng, Zhichao; Zha, Jun; Bo, Peng; Tang, Yinghua; Guo, Xueqi; Chen, Weihong; Zhu, Xinxin; Ge, Linhu

    2018-01-01

    Oral squamous cell carcinoma (OSCC) is the most frequent oral cancer in the world, accounting for more than 90% of all oral cancer diagnosis. Circular RNAs (circRNAs) are large types of non-coding RNAs, demonstrating a great capacity of regulating the expression of genes. However, most of the functions of circRNAs are still unknown. Recent research revealed that circRNAs could serve as a miRNA-sponge, consequently regulating the expression of target genes indirectly, including oncogenes. In this study, we built an apoptotic model with TNF-α, and then we confirmed a circRNA associated with the apoptosis of OSCC cells, circDOCK1 by comparing the expression profile of circRNAs in an apoptotic model with that in untreated OSCC cells. We ascertained the presence of circDOCK1 with qRT-PCR and circRNA sequencing. The knockdown of the expression of circDOCK1 led to the increase of apoptosis. Utilizing multiple bioinformatics methods, we predicted the interactions among circRNAs, miRNAs and genes, and built the circDOCK1/miR-196a-5p/BIRC3 axis. Both the silencing of circDOCK1 with small interfering RNA and the upregulation of the expression of miR-196a-5p with mimics led OSCC cells to increase apoptosis and decrease BIRC3 formation. We further confirmed this outcome by comparing the expression of circDOCK1, miR-196a-5p and BIRC3 in oral squamous carcinoma tissue with those in para-carcinoma tissue, and examining the expression profile of circRNAs in oral squamous carcinoma tissue and para-carcinoma tissue with microarray. Our results demonstrated that circDOCK1 regulated BIRC3 expression by functioning as a competing endogenous RNA (ceRNA) and participated in the process of OSCC apoptosis. Thus, we propose that circDOCK1 could represent a novel potential biomarker and therapeutic target of OSCC. PMID:29286141

  15. Expression of p27 and its ubiquitin ligase subunit Skp2 in upper urinary tract transitional cell carcinoma.

    PubMed

    Langner, Cord; von Wasielewski, Reinhard; Ratschek, Manfred; Rehak, Peter; Zigeuner, Richard

    2004-09-01

    To analyze p27 and S-phase kinase-associated protein 2 (Skp2) expression in upper urinary tract transitional cell carcinoma (TCC) with respect to biologic significance. p27 (p27/kip1) is involved in cell cycle control, and loss of p27 protein expression may result in tumor development and/or progression. The association of p27 with the ubiquitin ligase subunit Skp2 targets p27 for degradation. A total of 53 upper urinary tract TCC specimens were investigated immunohistochemically using a tissue microarray technique. The immunoreactivity of p27 and Skp2 was analyzed with respect to associations with pT stage, grade, and prognosis. Non-neoplastic renal tissue showed p27 immunoreactivity in tubule epithelium and pelvic urothelium, but lacked immunoreactivity for Skp2. In the TCC specimens, p27 immunoreactivity was noted in 47 (89%) of 53 cases. High p27 expression (50% or greater of tumor cell nuclei) tended to decrease with rising tumor stage (14 [45%] of 31 with pT1-pT2 versus 4 [18%] of 22 with pT3; P = 0.076), but was independent of tumor grade (11 [39%] of 28 grade 2 versus 7 [28%] of 25 grade 3-4; P = 0.56). Skp2 immunoreactivity was noted in 32 (60%) of 53 tumors. Skp2 expression increased with rising tumor stage (9 [41%] of 22 pT1 versus 23 [74%] of 31 pT2-pT3; P = 0.023) and tumor grade (12 [43%] of 28 grade 2 versus 20 [80%] of 25 grade 3; P = 0.043) and was associated with angioinvasion (P = 0.017). In multivariate analysis, tumor stage proved to be the only independent prognostic factor regarding disease-free survival. p27 and Skp2 are additional biomarkers in urogenital pathologic findings. The statistically significant association of Skp2 expression with high-grade TCC, as well as the lack of expression in non-neoplastic tissue, suggests that Skp2 could be a promising target for future cancer therapy strategies.

  16. Prostate cancer in native Japanese and Japanese-American men: effects of dietary differences on prostatic tissue.

    PubMed

    Marks, Leonard S; Kojima, Munekado; Demarzo, Angelo; Heber, David; Bostwick, David G; Qian, Junqi; Dorey, Frederick J; Veltri, Robert W; Mohler, James L; Partin, Alan W

    2004-10-01

    To investigate the relationship between diet and prostate cancer (CaP) among native Japanese (NJ) and second-generation or third-generation Japanese-American (J-A) men--focusing on the effects of animal fat and soy on prostatic tissues. The subjects were 50 Japanese men undergoing radical prostatectomy, 25 NJ living in Nagoya, Japan and 25 U.S.-born J-A men, living in Los Angeles, California. A priori, the NJ men were believed to be a low-fat, high-soy group and the J-A men, a high-fat, low-soy group. The studies included postoperative measurements of diet (Block questionnaire), body fat (bioimpedance), blood, urine, and prostatic biomarkers in malignant and adjacent normal tissue, using a tissue microarray made from the original paraffin blocks. The NJ and J-A men were similar in age (65 to 70 years old; P <0.05), prostate-specific antigen level (7.1 to 8.6 ng/mL), prostate volume (35 to 38 cm3), and Gleason score (5.6 to 6.6), but their body composition differed. J-A men had more body fat (24% versus 19%), higher serum triglyceride levels (245 versus 106 mg/dL), lower estradiol levels (27 versus 31 ng/mL), and much lower urinary soy-metabolite levels (1:3) than NJ men (P <0.02). In both NJ and J-A groups, expression of numerous tissue biomarkers separated normal from CaP tissue, including markers for apoptosis (Bcl-2, caspase-3), growth factor receptors (epidermal growth factor receptor), racemase, 5-lipoxygenase, kinase inhibition (p27), and cell proliferation (Ki-67; all P <0.02). Furthermore, within both normal and CaP tissues, caspase-3 and 5-lipoxygenase were expressed more in NJ than in J-A men (P <0.01). Nuclear morphometry showed that the chromatin in each of the four groups (normal versus CaP, NJ versus J-A) was different (area under the curve 85% to 94%, P <0.01), despite fundamental genetic homogeneity. NJ and J-A men, products of similar genetics but differing environments, were shown to have differences in body composition that could influence CaP evolution. The CaP specimens from the NJ and J-A men were histologically similar, but tissue biomarker expression, especially of lipoxygenase and the caspase family, suggested differing mechanisms of carcinogenesis. Differences in nuclear morphometry suggested the additional possibility of gene-nutrient interactions.

  17. MiR-590-3p suppresses hepatocellular carcinoma growth by targeting TEAD1.

    PubMed

    Ge, Xin; Gong, Liansheng

    2017-03-01

    MicroRNA signature is altered in different disease states including cancer, and some microRNAs act as oncogenes or tumor suppressors. MiR-590-3p has been shown to be involved in human cancer progression. However, its role in hepatocellular carcinoma remains unknown. In this study, miR-590-3p level was measured, and clinicopathological features were determined in hepatocellular carcinoma tissues. The function of miR-590-3p was examined in vitro and in vivo. Real-time reverse transcription polymerase chain reaction analysis demonstrated downregulation of miR-590-3p in hepatocellular carcinoma tissues, and its downregulation was associated with a poor overall survival of hepatocellular carcinoma patients. Ectopic expression of miR-590-3p promoted growth of hepatocellular carcinoma cells, whereas its depletion inhibited cell growth. Transcriptional enhancer activator domain 1 was identified as a validated miR-590-3p target. Upregulation of transcriptional enhancer activator domain 1 was found in hepatocellular carcinoma tissues and inversely correlated with miR-590-3p. Our results indicate a tumor suppressor role of miR-590-3p in hepatocellular carcinoma through targeting transcriptional enhancer activator domain 1 and suggest its use in the diagnosis and prognosis of liver cancer.

  18. Data-adaptive test statistics for microarray data.

    PubMed

    Mukherjee, Sach; Roberts, Stephen J; van der Laan, Mark J

    2005-09-01

    An important task in microarray data analysis is the selection of genes that are differentially expressed between different tissue samples, such as healthy and diseased. However, microarray data contain an enormous number of dimensions (genes) and very few samples (arrays), a mismatch which poses fundamental statistical problems for the selection process that have defied easy resolution. In this paper, we present a novel approach to the selection of differentially expressed genes in which test statistics are learned from data using a simple notion of reproducibility in selection results as the learning criterion. Reproducibility, as we define it, can be computed without any knowledge of the 'ground-truth', but takes advantage of certain properties of microarray data to provide an asymptotically valid guide to expected loss under the true data-generating distribution. We are therefore able to indirectly minimize expected loss, and obtain results substantially more robust than conventional methods. We apply our method to simulated and oligonucleotide array data. By request to the corresponding author.

  19. PBOV1 as a potential biomarker for more advanced prostate cancer based on protein and digital histomorphometric analysis.

    PubMed

    Carleton, Neil M; Zhu, Guangjing; Gorbounov, Mikhail; Miller, M Craig; Pienta, Kenneth J; Resar, Linda M S; Veltri, Robert W

    2018-05-01

    There are few tissue-based biomarkers that can accurately predict prostate cancer (PCa) progression and aggressiveness. We sought to evaluate the clinical utility of prostate and breast overexpressed 1 (PBOV1) as a potential PCa biomarker. Patient tumor samples were designated by Grade Groups using the 2014 Gleason grading system. Primary radical prostatectomy tumors were obtained from 48 patients and evaluated for PBOV1 levels using Western blot analysis in matched cancer and benign cancer-adjacent regions. Immunohistochemical evaluation of PBOV1 was subsequently performed in 80 cancer and 80 benign cancer-adjacent patient samples across two tissue microarrays (TMAs) to verify protein levels in epithelial tissue and to assess correlation between PBOV1 proteins and nuclear architectural changes in PCa cells. Digital histomorphometric analysis was used to track 22 parameters that characterized nuclear changes in PBOV1-stained cells. Using a training and test set for validation, multivariate logistic regression (MLR) models were used to identify significant nuclear parameters that distinguish Grade Group 3 and above PCa from Grade Group 1 and 2 PCa regions. PBOV1 protein levels were increased in tumors from Grade Group 3 and above (GS 4 + 3 and ≥ 8) regions versus Grade Groups 1 and 2 (GS 3 + 3 and 3 + 4) regions (P = 0.005) as assessed by densitometry of immunoblots. Additionally, by immunoblotting, PBOV1 protein levels differed significantly between Grade Group 2 (GS 3 + 4) and Grade Group 3 (GS 4 + 3) PCa samples (P = 0.028). In the immunohistochemical analysis, measures of PBOV1 staining intensity strongly correlated with nuclear alterations in cancer cells. An MLR model retaining eight parameters describing PBOV1 staining intensity and nuclear architecture discriminated Grade Group 3 and above PCa from Grade Group 1 and 2 PCa and benign cancer-adjacent regions with a ROC-AUC of 0.90 and 0.80, respectively, in training and test sets. Our study demonstrates that the PBOV1 protein could be used to discriminate Grade Group 3 and above PCa. Additionally, the PBOV1 protein could be involved in modulating changes to the nuclear architecture of PCa cells. Confirmatory studies are warranted in an independent population for further validation. © 2018 Wiley Periodicals, Inc.

  20. Genetic and Epigenetic Biomarkers for Recurrent Prostate Cancer After Radiotherapy

    DTIC Science & Technology

    2015-07-01

    several distinct advantages over surgical treatment, such as no complications from surgery, and a low risk of urinary incontinence , RT treatment takes...Khorana, Tissue factor and VEGF expression in prostate carcinoma: a tissue microarray study. Cancer Invest, 2009. 27(4): p. 430-4. 7. Crawford, E.D

  1. Cyclin D1 is significantly associated with stage of tumor and predicts poor survival in endometrial carcinoma patients.

    PubMed

    Khabaz, Mohamad Nidal; Abdelrahman, Amer Shafie; Butt, Nadeem Shafique; Al-Maghrabi, Basim; Al-Maghrabi, Jaudah

    2017-10-01

    Cyclin D1 overexpression has been described to have oncogenic role and association with diagnosis, prognosis and survival in various tumors. This study will describe the immunohistochemical phenotype of cyclin D1, and investigate the correlation between these patterns of expression and clinicopathological parameters of endometrial carcinomas, to conclude the clinical relevance of cyclin D1 expression in the evolution of endometrial neoplasms. This study employed 101 endometrial tissue samples which include 71 endometrial carcinomas and thirty normal and benign endometrium cases. All these tissue samples were used in the assembly of tissue microarrays which have been utilized afterward in immunohistochemistry staining to detect cyclin D1 expression. Forty (56.3%) cases of endometrial carcinomas showed brown nuclear expression of cyclin D1 including 36 (61%) cases of endometrioid carcinomas, and 3 (33.3%) cases of serous carcinomas. Twenty three (76.6%) cases of control group demonstrated nuclear expression. High score cyclin D1 immunohistochemical staining has been significantly linked with patient age (P=0.0001). Large proportion of high score cyclin D1 immunohistochemical staining was observed in females who are <40years of age while high proportions of negative staining were observed in older age groups. Histologic type of tissue was also significantly related to cyclin D1 immunohistochemical staining (P-value=0.0001), high staining is more common in normal proliferative and secretory endometrium while serous carcinoma is more prevalent with negative staining. Stage of tumor was significantly associated with cyclin D1 immunohistochemical staining (P-value=0.029), proportion of stage III and IV are higher in negative cyclin D1 immunostaining. Significantly higher proportion of high score cyclin D1 immunostaining is observed in controls while higher proportion of negative cyclin D1 immunostaining is observed among carcinoma cases (P-value=0.0001). No significant associations between cyclin D1 immunohistochemical staining and grade, recurrence and alive status were observed. Significant different survival distributions were observed (P-value=0.011) and poor survival behavior was correlated with negative cyclin D1 immunohistochemical staining. In conclusion, greater frequency of cyclin D1 expression was revealed in normal endometrial tissues in comparison with carcinomas. The distribution pattern of cyclin D1 immunoexpression suggests poor prognoses in endometrial carcinoma patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Gene expression profiling in patients with polymyalgia rheumatica before and after symptom-abolishing glucocorticoid treatment.

    PubMed

    Kreiner, Frederik Flindt; Borup, Rehannah; Nielsen, Finn Cilius; Schjerling, Peter; Galbo, Henrik

    2017-08-07

    The pathophysiology, including the impact of gene expression, of polymyalgia rheumatica (PMR) remains elusive. We profiled the gene expression in muscle tissue in PMR patients before and after glucocorticoid treatment. Gene expression was measured using Affymetrix Human Genome U133 Plus 2.0 arrays in muscle biopsies from 8 glucocorticoid-naive patients with PMR and 10 controls before and after prednisolone-treatment for 14 days. For 14 genes, quantitative real-time PCR (qRT-PCR, n = 9 in both groups) was used to validate the microarray findings and to further investigate the expression of genes of particular interest. Prednisolone normalized erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) in PMR patients. A total of 165 putatively clinically relevant, differentially expressed genes were identified (cut-off: fold difference > ±1.2, difference of mean > 30, and p < 0.05); of these, 78 genes differed between patients and controls before treatment, 131 genes responded to treatment in a given direction only in patients, and 44 fulfilled both these criteria. In 43 of the 44 genes, treatment counteracted the initial difference. Functional clustering identified themes of biological function, including regulation of protein biosynthesis, and regulation of transcription and of extracellular matrix processes. Overall, qRT-PCR confirmed the microarray findings: Microarray-detected group differences were confirmed for 9 genes in 17 of 18 comparisons (same magnitude and direction of change); lack of group differences in microarray testing was confirmed for 5 genes in 8 of 10 comparisons. Before treatment, using qRT-PCR, expression of interleukin 6 (IL-6) was found to be 4-fold higher in patients (p < 0.05). This study identifies genes in muscle, the expression of which may impact the pathophysiology of PMR. Moreover, the study adds further evidence of the importance of IL-6 in the disease. Follow-up studies are needed to establish the exact pathophysiological relevance of the identified genes. The study was retrospectively listed on the ISRCTN registry with study ID ISRCTN69503018 and date of registration the 26th of July 2017.

  3. The Porphyromonas gingivalis/Host Interactome Shows Enrichment in GWASdb Genes Related to Alzheimer's Disease, Diabetes and Cardiovascular Diseases

    PubMed Central

    Carter, Chris J.; France, James; Crean, StJohn; Singhrao, Sim K.

    2017-01-01

    Periodontal disease is of established etiology in which polymicrobial synergistic ecology has become dysbiotic under the influence of Porphyromonas gingivalis. Following breakdown of the host's protective oral tissue barriers, P. gingivalis migrates to developing inflammatory pathologies that associate with Alzheimer's disease (AD). Periodontal disease is a risk factor for cardiovascular disorders (CVD), type II diabetes mellitus (T2DM), AD and other chronic diseases, whilst T2DM exacerbates periodontitis. This study analyzed the relationship between the P. gingivalis/host interactome and the genes identified in genome-wide association studies (GWAS) for the aforementioned conditions using data from GWASdb (P < 1E-03) and, in some cases, from the NCBI/EBI GWAS database (P < 1E-05). Gene expression data from periodontitis or P. gingivalis microarray was compared to microarray datasets from the AD hippocampus and/or from carotid artery plaques. The results demonstrated that the host genes of the P. gingivalis interactome were significantly enriched in genes deposited in GWASdb genes related to cognitive disorders, AD and dementia, and its co-morbid conditions T2DM, obesity, and CVD. The P. gingivalis/host interactome was also enriched in GWAS genes from the more stringent NCBI-EBI database for AD, atherosclerosis and T2DM. The misregulated genes in periodontitis tissue or P. gingivalis infected macrophages also matched those in the AD hippocampus or atherosclerotic plaques. Together, these data suggest important gene/environment interactions between P. gingivalis and susceptibility genes or gene expression changes in conditions where periodontal disease is a contributory factor. PMID:29311898

  4. The Porphyromonas gingivalis/Host Interactome Shows Enrichment in GWASdb Genes Related to Alzheimer's Disease, Diabetes and Cardiovascular Diseases.

    PubMed

    Carter, Chris J; France, James; Crean, StJohn; Singhrao, Sim K

    2017-01-01

    Periodontal disease is of established etiology in which polymicrobial synergistic ecology has become dysbiotic under the influence of Porphyromonas gingivalis . Following breakdown of the host's protective oral tissue barriers, P. gingivalis migrates to developing inflammatory pathologies that associate with Alzheimer's disease (AD). Periodontal disease is a risk factor for cardiovascular disorders (CVD), type II diabetes mellitus (T2DM), AD and other chronic diseases, whilst T2DM exacerbates periodontitis. This study analyzed the relationship between the P. gingivalis /host interactome and the genes identified in genome-wide association studies (GWAS) for the aforementioned conditions using data from GWASdb ( P < 1E-03) and, in some cases, from the NCBI/EBI GWAS database ( P < 1E-05). Gene expression data from periodontitis or P. gingivalis microarray was compared to microarray datasets from the AD hippocampus and/or from carotid artery plaques. The results demonstrated that the host genes of the P. gingivalis interactome were significantly enriched in genes deposited in GWASdb genes related to cognitive disorders, AD and dementia, and its co-morbid conditions T2DM, obesity, and CVD. The P. gingivalis /host interactome was also enriched in GWAS genes from the more stringent NCBI-EBI database for AD, atherosclerosis and T2DM. The misregulated genes in periodontitis tissue or P. gingivalis infected macrophages also matched those in the AD hippocampus or atherosclerotic plaques. Together, these data suggest important gene/environment interactions between P. gingivalis and susceptibility genes or gene expression changes in conditions where periodontal disease is a contributory factor.

  5. Activation of Stat3 in renal tumors.

    PubMed

    Guo, Charles; Yang, Guanyu; Khun, Kyle; Kong, Xiantian; Levy, David; Lee, Peng; Melamed, Jonathan

    2009-02-28

    Signal transducer and activator of transcription 3 (Stat3) plays a vital role in signal transduction pathways that mediate transformation and inhibit apoptosis. Oncogenic Stat3 is persistently activated in several human cancers and transformed cell lines. Previous studies indicate activation of Stat3 in renal cell carcinoma (RCC). However, the detailed characterization of the Stat3 expression pattern in different histologic types of RCC is lacking. We have analyzed the immunoprofile of activated or phosphorylated Stat3 (pStat3) in a tissue microarray of renal tumors of different histologic types, including 42 cases of conventional clear cell type, 24 chromophobe, and 7 papillary, 15 oncocytoma, 7 urothelial carcinoma and 21 normal kidney tissues using an anti-pStat3 antibody (recognizes only activated STAT3). pStat3 nuclear staining was observed in 25 of 42 conventional clear cell RCC (59.5 %), 8 of 24 chromophobe RCC (33.3%), 4 of 7 papillary RCC (57.1%). In the other tumor groups, 4 of 15 oncocytomas (26.7%) and 6 of 7 urothelial carcinomas (85.7%) showed positive nuclear staining. Weak nuclear immunoreactivity for pStat3 was seen in 4 of 21 cases of non-neoplastic kidney tissue (19.0%). The extent of Stat3 activation as determined by nuclear expression of its phosphorylated form is increased in histologic types of renal tumors with greater malignant potential, specifically conventional clear cell RCC, papillary RCC and urothelial carcinoma, only slightly increased in chromophobe RCC, and not increased in oncocytoma. These results suggest a role of Stat3 activation in different types of renal neoplasia, possibly serving as a prognostic marker or therapeutic target.

  6. Activation of Stat3 in renal tumors

    PubMed Central

    Guo, Charles; Yang, Guanyu; Khun, Kyle; Kong, Xiantian; Levy, David; Lee, Peng; Melamed, Jonathan

    2009-01-01

    Signal transducer and activator of transcription 3 (Stat3) plays a vital role in signal transduction pathways that mediate transformation and inhibit apoptosis. Oncogenic Stat3 is persistently activated in several human cancers and transformed cell lines. Previous studies indicate activation of Stat3 in renal cell carcinoma (RCC). However, the detailed characterization of the Stat3 expression pattern in different histologic types of RCC is lacking. We have analyzed the immunoprofile of activated or phosphorylated Stat3 (pStat3) in a tissue microarray of renal tumors of different histologic types, including 42 cases of conventional clear cell type, 24 chromophobe, and 7 papillary, 15 oncocytoma, 7 urothelial carcinoma and 21 normal kidney tissues using an anti-pStat3 antibody (recognizes only activated STAT3). pStat3 nuclear staining was observed in 25 of 42 conventional clear cell RCC (59.5 %), 8 of 24 chromophobe RCC (33.3%), 4 of 7 papillary RCC (57.1%). In the other tumor groups, 4 of 15 oncocytomas (26.7%) and 6 of 7 urothelial carcinomas (85.7%) showed positive nuclear staining. Weak nuclear immunoreactivity for pStat3 was seen in 4 of 21 cases of non-neoplastic kidney tissue (19.0%). The extent of Stat3 activation as determined by nuclear expression of its phosphorylated form is increased in histologic types of renal tumors with greater malignant potential, specifically conventional clear cell RCC, papillary RCC and urothelial carcinoma, only slightly increased in chromophobe RCC, and not increased in oncocytoma. These results suggest a role of Stat3 activation in different types of renal neoplasia, possibly serving as a prognostic marker or therapeutic target. PMID:19956438

  7. A Next-generation Tissue Microarray (ngTMA) Protocol for Biomarker Studies

    PubMed Central

    Zlobec, Inti; Suter, Guido; Perren, Aurel; Lugli, Alessandro

    2014-01-01

    Biomarker research relies on tissue microarrays (TMA). TMAs are produced by repeated transfer of small tissue cores from a ‘donor’ block into a ‘recipient’ block and then used for a variety of biomarker applications. The construction of conventional TMAs is labor intensive, imprecise, and time-consuming. Here, a protocol using next-generation Tissue Microarrays (ngTMA) is outlined. ngTMA is based on TMA planning and design, digital pathology, and automated tissue microarraying. The protocol is illustrated using an example of 134 metastatic colorectal cancer patients. Histological, statistical and logistical aspects are considered, such as the tissue type, specific histological regions, and cell types for inclusion in the TMA, the number of tissue spots, sample size, statistical analysis, and number of TMA copies. Histological slides for each patient are scanned and uploaded onto a web-based digital platform. There, they are viewed and annotated (marked) using a 0.6-2.0 mm diameter tool, multiple times using various colors to distinguish tissue areas. Donor blocks and 12 ‘recipient’ blocks are loaded into the instrument. Digital slides are retrieved and matched to donor block images. Repeated arraying of annotated regions is automatically performed resulting in an ngTMA. In this example, six ngTMAs are planned containing six different tissue types/histological zones. Two copies of the ngTMAs are desired. Three to four slides for each patient are scanned; 3 scan runs are necessary and performed overnight. All slides are annotated; different colors are used to represent the different tissues/zones, namely tumor center, invasion front, tumor/stroma, lymph node metastases, liver metastases, and normal tissue. 17 annotations/case are made; time for annotation is 2-3 min/case. 12 ngTMAs are produced containing 4,556 spots. Arraying time is 15-20 hr. Due to its precision, flexibility and speed, ngTMA is a powerful tool to further improve the quality of TMAs used in clinical and translational research. PMID:25285857

  8. Cell-surface marker discovery for lung cancer

    PubMed Central

    Cohen, Allison S.; Khalil, Farah K.; Welsh, Eric A.; Schabath, Matthew B.; Enkemann, Steven A.; Davis, Andrea; Zhou, Jun-Min; Boulware, David C.; Kim, Jongphil; Haura, Eric B.; Morse, David L.

    2017-01-01

    Lung cancer is the leading cause of cancer deaths in the United States. Novel lung cancer targeted therapeutic and molecular imaging agents are needed to improve outcomes and enable personalized care. Since these agents typically cannot cross the plasma membrane while carrying cytotoxic payload or imaging contrast, discovery of cell-surface targets is a necessary initial step. Herein, we report the discovery and characterization of lung cancer cell-surface markers for use in development of targeted agents. To identify putative cell-surface markers, existing microarray gene expression data from patient specimens were analyzed to select markers with differential expression in lung cancer compared to normal lung. Greater than 200 putative cell-surface markers were identified as being overexpressed in lung cancers. Ten cell-surface markers (CA9, CA12, CXorf61, DSG3, FAT2, GPR87, KISS1R, LYPD3, SLC7A11 and TMPRSS4) were selected based on differential mRNA expression in lung tumors vs. non-neoplastic lung samples and other normal tissues, and other considerations involving known biology and targeting moieties. Protein expression was confirmed by immunohistochemistry (IHC) staining and scoring of patient tumor and normal tissue samples. As further validation, marker expression was determined in lung cancer cell lines using microarray data and Kaplan–Meier survival analyses were performed for each of the markers using patient clinical data. High expression for six of the markers (CA9, CA12, CXorf61, GPR87, LYPD3, and SLC7A11) was significantly associated with worse survival. These markers should be useful for the development of novel targeted imaging probes or therapeutics for use in personalized care of lung cancer patients. PMID:29371917

  9. A highly oriented hybrid microarray modified electrode fabricated by a template-free method for ultrasensitive electrochemical DNA recognition

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Chu, Zhenyu; Dong, Xueliang; Jin, Wanqin; Dempsey, Eithne

    2013-10-01

    Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and influence the morphologies of hybrid films. A highly oriented hybrid microarray was formed on the highly aligned and vertical SAMs of 1,4-benzenedithiol molecules with rigid backbones, which afforded an intense structure-directing power for the oriented growth of hybrid crystals. Additionally, the density of the microarray could be adjusted by controlling the surface coverage of assembled molecules. Based on the hybrid microarray modified electrode with a large specific area (ca. 10 times its geometrical area), a label-free electrochemical DNA biosensor was constructed for the detection of an oligonucleotide fragment of the avian flu virus H5N1. The DNA biosensor displayed a significantly low detection limit of 5 pM (S/N = 3), a wide linear response from 10 pM to 10 nM, as well as excellent selectivity, good regeneration and high stability. We expect that the proposed template-free method can provide a new reference for the fabrication of a highly oriented hybrid array and the as-prepared microarray modified electrode will be a promising paradigm in constructing highly sensitive and selective biosensors.Highly oriented growth of a hybrid microarray was realized by a facile template-free method on gold substrates for the first time. The proposed formation mechanism involves an interfacial structure-directing force arising from self-assembled monolayers (SAMs) between gold substrates and hybrid crystals. Different SAMs and variable surface coverage of the assembled molecules play a critical role in the interfacial directing forces and influence the morphologies of hybrid films. A highly oriented hybrid microarray was formed on the highly aligned and vertical SAMs of 1,4-benzenedithiol molecules with rigid backbones, which afforded an intense structure-directing power for the oriented growth of hybrid crystals. Additionally, the density of the microarray could be adjusted by controlling the surface coverage of assembled molecules. Based on the hybrid microarray modified electrode with a large specific area (ca. 10 times its geometrical area), a label-free electrochemical DNA biosensor was constructed for the detection of an oligonucleotide fragment of the avian flu virus H5N1. The DNA biosensor displayed a significantly low detection limit of 5 pM (S/N = 3), a wide linear response from 10 pM to 10 nM, as well as excellent selectivity, good regeneration and high stability. We expect that the proposed template-free method can provide a new reference for the fabrication of a highly oriented hybrid array and the as-prepared microarray modified electrode will be a promising paradigm in constructing highly sensitive and selective biosensors. Electronic supplementary information (ESI) available: Four-probe method for determining the conductivity of the hybrid crystal (Fig. S1); stability comparisons of the hybrid films (Fig. S2); FESEM images of the hybrid microarray (Fig. S3); electrochemical characterizations of the hybrid films (Fig. S4); DFT simulations (Fig. S5); cross-sectional FESEM image of the hybrid microarray (Fig. S6); regeneration and stability tests of the DNA biosensor (Fig. S7). See DOI: 10.1039/c3nr03097k

  10. The CD117 immunohistochemistry tissue microarray survey for quality assurance and interlaboratory comparison: a College of American Pathologists Cell Markers Committee Study.

    PubMed

    Dorfman, David M; Bui, Marilyn M; Tubbs, Raymond R; Hsi, Eric D; Fitzgibbons, Patrick L; Linden, Michael D; Rickert, Robert R; Roche, Patrick C

    2006-06-01

    We have developed tissue microarray-based surveys to allow laboratories to compare their performance in staining predictive immunohistochemical markers, including proto-oncogene CD117 (c-kit), which is characteristically expressed in gastrointestinal stromal tumors (GISTs). GISTs exhibit activating mutations in the c-kit proto-oncogene, which render them amenable to treatment with imatinib mesylate. Consequently, correct identification of c-Kit expression is important for the diagnosis and treatment of GISTs. To analyze CD117 immunohistochemical staining performance by a large number of clinical laboratories. A mechanical device was used to construct tissue microarrays consisting of 3 x 1-mm cores of 10 tumor samples, which can be used to generate hundreds of tissue sections from the arrayed cases, suitable for large-scale interlaboratory comparison of immunohistochemical staining. An initial survey of 63 laboratories and a second survey of 90 laboratories, performed in 2004 and 2005, exhibited >81% concordance for 7 of 10 cores, including all 4 GIST cases, which were immunoreactive for CD117 with >95% staining concordance. Three of the cores achieved less than 81% concordance of results, possibly due to the presence of foci of necrosis in one core and CD117-positive mast cells in 2 cores of CD117-negative neoplasms. There was good performance among a large number of laboratories performing CD117 immunohistochemical staining, with consistently higher concordance of results for CD117-positive GIST cases than for nonimmunoreactive cases. Tissue microarrays for CD117 and other predictive markers should be useful for interlaboratory comparisons, quality assurance, and education of participants regarding staining nuances such as the expression of CKIT by nonneoplastic mast cells.

  11. The 'PUCE CAFE' Project: the First 15K Coffee Microarray, a New Tool for Discovering Candidate Genes correlated to Agronomic and Quality Traits

    PubMed Central

    2011-01-01

    Background Understanding the genetic elements that contribute to key aspects of coffee biology will have an impact on future agronomical improvements for this economically important tree. During the past years, EST collections were generated in Coffee, opening the possibility to create new tools for functional genomics. Results The "PUCE CAFE" Project, organized by the scientific consortium NESTLE/IRD/CIRAD, has developed an oligo-based microarray using 15,721 unigenes derived from published coffee EST sequences mostly obtained from different stages of fruit development and leaves in Coffea Canephora (Robusta). Hybridizations for two independent experiments served to compare global gene expression profiles in three types of tissue matter (mature beans, leaves and flowers) in C. canephora as well as in the leaves of three different coffee species (C. canephora, C. eugenoides and C. arabica). Microarray construction, statistical analyses and validation by Q-PCR analysis are presented in this study. Conclusion We have generated the first 15 K coffee array during this PUCE CAFE project, granted by Génoplante (the French consortium for plant genomics). This new tool will help study functional genomics in a wide range of experiments on various plant tissues, such as analyzing bean maturation or resistance to pathogens or drought. Furthermore, the use of this array has proven to be valid in different coffee species (diploid or tetraploid), drastically enlarging its impact for high-throughput gene expression in the community of coffee research. PMID:21208403

  12. The 'PUCE CAFE' Project: the first 15K coffee microarray, a new tool for discovering candidate genes correlated to agronomic and quality traits.

    PubMed

    Privat, Isabelle; Bardil, Amélie; Gomez, Aureliano Bombarely; Severac, Dany; Dantec, Christelle; Fuentes, Ivanna; Mueller, Lukas; Joët, Thierry; Pot, David; Foucrier, Séverine; Dussert, Stéphane; Leroy, Thierry; Journot, Laurent; de Kochko, Alexandre; Campa, Claudine; Combes, Marie-Christine; Lashermes, Philippe; Bertrand, Benoit

    2011-01-05

    Understanding the genetic elements that contribute to key aspects of coffee biology will have an impact on future agronomical improvements for this economically important tree. During the past years, EST collections were generated in Coffee, opening the possibility to create new tools for functional genomics. The "PUCE CAFE" Project, organized by the scientific consortium NESTLE/IRD/CIRAD, has developed an oligo-based microarray using 15,721 unigenes derived from published coffee EST sequences mostly obtained from different stages of fruit development and leaves in Coffea Canephora (Robusta). Hybridizations for two independent experiments served to compare global gene expression profiles in three types of tissue matter (mature beans, leaves and flowers) in C. canephora as well as in the leaves of three different coffee species (C. canephora, C. eugenoides and C. arabica). Microarray construction, statistical analyses and validation by Q-PCR analysis are presented in this study. We have generated the first 15 K coffee array during this PUCE CAFE project, granted by Génoplante (the French consortium for plant genomics). This new tool will help study functional genomics in a wide range of experiments on various plant tissues, such as analyzing bean maturation or resistance to pathogens or drought. Furthermore, the use of this array has proven to be valid in different coffee species (diploid or tetraploid), drastically enlarging its impact for high-throughput gene expression in the community of coffee research.

  13. Clinical value of miR-182-5p in lung squamous cell carcinoma: a study combining data from TCGA, GEO, and RT-qPCR validation.

    PubMed

    Luo, Jie; Shi, Ke; Yin, Shu-Ya; Tang, Rui-Xue; Chen, Wen-Jie; Huang, Lin-Zhen; Gan, Ting-Qing; Cai, Zheng-Wen; Chen, Gang

    2018-04-10

    MiR-182-5p, as a member of miRNA family, can be detected in lung cancer and plays an important role in lung cancer. To explore the clinical value of miR-182-5p in lung squamous cell carcinoma (LUSC) and to unveil the molecular mechanism of LUSC. The clinical value of miR-182-5p in LUSC was investigated by collecting and calculating data from The Cancer Genome Atlas (TCGA) database, the Gene Expression Omnibus (GEO) database, and real-time quantitative polymerase chain reaction (RT-qPCR). Twelve prediction platforms were used to predict the target genes of miR-182-5p. Protein-protein interaction (PPI) networks and gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to explore the molecular mechanism of LUSC. The expression of miR-182-5p was significantly over-expressed in LUSC than in non-cancerous tissues, as evidenced by various approaches, including the TCGA database, GEO microarrays, RT-qPCR, and a comprehensive meta-analysis of 501 LUSC cases and 148 non-cancerous cases. Furthermore, a total of 81 potential target genes were chosen from the union of predicted genes and the TCGA database. GO and KEGG analyses demonstrated that the target genes are involved in pathways related to biological processes. PPIs revealed the relationships between these genes, with EPAS1, PRKCE, NR3C1, and RHOB being located in the center of the PPI network. MiR-182-5p upregulation greatly contributes to LUSC and may serve as a biomarker in LUSC.

  14. Whole blood miRNA expression analysis reveals miR-3613-3p as a potential biomarker for dedifferentiated liposarcoma.

    PubMed

    Fricke, A; Cimniak, A F V; Ullrich, P V; Becherer, C; Bickert, C; Pfeifer, D; Heinz, J; Stark, G B; Bannasch, H; Braig, D; Eisenhardt, S U

    2018-04-09

    Liposarcoma constitute about 13% of all soft tissue sarcoma and are associated with a high risk of metastases. As the preoperative differentiation between benign and malign lipomatous tumors is restricted to magnetic resonance imaging, computed tomography and biopsy, we performed a miRNA array to distinguish dedifferentiated liposarcoma patients from healthy controls and lipoma patients. Blood samples of patients with dedifferentiated liposarcoma, healthy controls and lipoma patients were collected. Whole blood RNA was extracted and samples of patients with dedifferentiated liposarcoma (n= 6) and of healthy donors (n= 4) were analyzed using an Affymetrix GeneChip miRNA Array v. 4.0. qRT-PCR was carried out to confirm the most differentially expressed miRNA; being further analyzed in an independent cohort of healthy controls as well as in lipoma patients. As shown by the microarray, two miRNAs (miR-3613-3p, miR-4668-5p) were shown to be significantly upregulated (fold change: > 2.5; p< 0.05) in patients with dedifferentiated liposarcoma (n= 6) as compared to healthy controls (n= 4). miR-3613-3p was further validated by qRT-PCR to be significantly upregulated in dedifferentiated liposarcoma patients compared to an independent cohort of healthy controls (n= 3) and lipoma patients (n= 5). We identified a specific whole blood miRNA (miR-3613-3p) that may serve to distinguish between dedifferentiated liposarcoma patients and healthy controls, thus potentially serving as a specific biomarker for dedifferentiated liposarcoma.

  15. Identification of Prostate Cancer Prognostic Markers

    DTIC Science & Technology

    2016-10-01

    Technologies). For this, the oxygen consumption rate (OCR) in the PC-3 control and ECI1-overexpressing clones was measured following their maintenance...carnitine Carnitine β-oxydation Etomoxir Page 25 of 31 Figure 10: Mitochondrial Respiration in ECI1-overexpressing PC-3 Clones. Oxygen Consumption rate... FISH ), prognostic markers, biomarkers, tissue microarrays, autophagy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES

  16. Double immunohistochemical staining with MUC4/p53 is useful in the distinction of pancreatic adenocarcinoma from chronic pancreatitis: a tissue microarray-based study.

    PubMed

    Bhardwaj, Atul; Marsh, William L; Nash, Jason W; Barbacioru, Catalin C; Jones, Susie; Frankel, Wendy L

    2007-04-01

    Immunohistochemical stains have been used for the distinction of pancreatic adenocarcinoma from chronic pancreatitis. To determine if a double stain for MUC/p53 improved specificity and sensitivity for distinction of pancreatic adenocarcinoma from chronic pancreatitis by comparing maspin, mucin 4 (MUC4), p53, Smad4, and the double stain MUC4/p53. Seventy-four pancreatic adenocarcinomas and 19 chronic pancreatitis cases were retrieved from archival files. Tissue cores were arrayed to create a tissue microarray of 2-mm cores. Sections were stained with antibodies against maspin, MUC4, p53, and Smad4. Additionally, a 2-color, double stain for MUC4 and p53 was developed and evaluated. Five percent or greater staining in either of the cores was considered positive. Intensity (0, 1, 2) and extent (%) of tumor cells staining was also determined. The sensitivity for distinction of pancreatic adenocarcinoma from chronic pancreatitis with maspin, MUC4, p53, and Smad4 was 90%, 77%, 60%, and 63%, respectively; the specificity was 67%, 78%, 88%, and 88%, respectively. When MUC4 and p53 were combined in a double stain, and positive staining for either considered a positive result, the sensitivity increased to 96% but specificity was 73%. When immunoreactivity for both antibodies was necessary for a positive result, sensitivity fell to 39% but specificity was 100%. No correlation was found between intensity or extent of staining with any of the individual stains and tumor differentiation. The double immunohistochemical stain for MUC4/p53 can be a useful diagnostic tool in conjunction with the hematoxylin-eosin-stained section for pancreatic adenocarcinoma, particularly when limited tumor is available for multiple stains.

  17. Identification of a MicroRNA Signature for the Diagnosis of Fibromyalgia

    PubMed Central

    Monsalve, Vicente; Oltra, Elisa

    2015-01-01

    Background Diagnosis of fibromyalgia (FM), a chronic musculoskeletal pain syndrome characterized by generalized body pain, hyperalgesia and other functional and emotional comorbidities, is a challenging process hindered by symptom heterogeneity and clinical overlap with other disorders. No objective diagnostic method exists at present. The aim of this study was to identify changes in miRNA expression profiles (miRNome) of these patients for the development of a quantitative diagnostic method of FM. In addition, knowledge of FM patient miRNomes should lead to a deeper understanding of the etiology and/or symptom severity of this complex disease. Methods Genome-wide expression profiling of miRNAs was assessed in Peripheral Blood Mononuclear Cells (PBMCs) of FM patients (N=11) and population-age-matched controls (N=10) using human v16-miRbase 3D-Gene microarrays (Toray Industries, Japan). Selected miRNAs from the screen were further validated by RT-qPCR. Participating patients were long term sufferers (over 10 years) diagnosed by more than one specialist under 1990 American College of Rheumatology criteria. Results Microarray analysis of FM patient PBMCs evidenced a marked downregulation of hsa-miR223-3p, hsa-miR451a, hsa-miR338-3p, hsa-miR143-3p, hsa-miR145-5p and hsa-miR-21-5p (4-fold or more). All but the mildest inhibited miRNA, hsa-miR-21-5p, were validated by RT-qPCR. Globally, 20% of the miRNAs analyzed (233/1212) showed downregulation of at least 2-fold in patients. This might indicate a general de-regulation of the miRNA synthetic pathway in FM. No significant correlations between miRNA inhibition and FM cardinal symptoms could be identified. However, the patient with the lowest score for mental fatigue coincided with the mildest inhibition in four of the five miRNAs associated with the FM-group. Conclusions We propose a signature of five strikingly downregulated miRNAs (hsa-miR223-3p, hsa-miR451a, hsa-miR338-3p, hsa-miR143-3p and hsa-miR145-5p) to be used as biomarkers of FM. Validation in larger study groups is required before the results can be transferred to the clinic. PMID:25803872

  18. Identification of a microRNA signature for the diagnosis of fibromyalgia.

    PubMed

    Cerdá-Olmedo, Germán; Mena-Durán, Armando Vicente; Monsalve, Vicente; Oltra, Elisa

    2015-01-01

    Diagnosis of fibromyalgia (FM), a chronic musculoskeletal pain syndrome characterized by generalized body pain, hyperalgesia and other functional and emotional comorbidities, is a challenging process hindered by symptom heterogeneity and clinical overlap with other disorders. No objective diagnostic method exists at present. The aim of this study was to identify changes in miRNA expression profiles (miRNome) of these patients for the development of a quantitative diagnostic method of FM. In addition, knowledge of FM patient miRNomes should lead to a deeper understanding of the etiology and/or symptom severity of this complex disease. Genome-wide expression profiling of miRNAs was assessed in Peripheral Blood Mononuclear Cells (PBMCs) of FM patients (N=11) and population-age-matched controls (N=10) using human v16-miRbase 3D-Gene microarrays (Toray Industries, Japan). Selected miRNAs from the screen were further validated by RT-qPCR. Participating patients were long term sufferers (over 10 years) diagnosed by more than one specialist under 1990 American College of Rheumatology criteria. Microarray analysis of FM patient PBMCs evidenced a marked downregulation of hsa-miR223-3p, hsa-miR451a, hsa-miR338-3p, hsa-miR143-3p, hsa-miR145-5p and hsa-miR-21-5p (4-fold or more). All but the mildest inhibited miRNA, hsa-miR-21-5p, were validated by RT-qPCR. Globally, 20% of the miRNAs analyzed (233/1212) showed downregulation of at least 2-fold in patients. This might indicate a general de-regulation of the miRNA synthetic pathway in FM. No significant correlations between miRNA inhibition and FM cardinal symptoms could be identified. However, the patient with the lowest score for mental fatigue coincided with the mildest inhibition in four of the five miRNAs associated with the FM-group. We propose a signature of five strikingly downregulated miRNAs (hsa-miR223-3p, hsa-miR451a, hsa-miR338-3p, hsa-miR143-3p and hsa-miR145-5p) to be used as biomarkers of FM. Validation in larger study groups is required before the results can be transferred to the clinic.

  19. Comparison of hepatocellular carcinoma in American and Asian patients by tissue array analysis.

    PubMed

    Song, Tae-Jin; Fong, Yuman; Cho, Sung-Jin; Gönen, Mithat; Hezel, Michael; Tuorto, Scott; Choi, Sang-Yong; Kim, Young-Chul; Suh, Sung-Ock; Koo, Bum-Hwan; Chae, Yang-Seok; Jarnagin, William R; Klimstra, David S

    2012-07-01

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Although some epidemiologic and etiologic differences between Asian and Western HCC are known, detailed comparative studies with pathologic correlations have not been performed. Paraffin sections of resected HCC specimens from Memorial Sloan-Kettering Cancer Center and Korea University Medical Center were used to construct tissue microarrays. Immunohistochemical staining of microarray sections was performed using antibodies against markers of proliferation and regulators of cell cycle. Patient data were correlated with staining results. When comparing both cohorts, significant differences were found in expression of p53 and MDM2. In the Asian group, more frequent positive staining for p53 (24%) was observed compared with the American group (9%; P = 0.037). For MDM2, 26% of American cases stained positive compared with 2% of Asian cases (P = 0.0003). No significant differences were found in expression of Ki67, p21, p27, cyclin D1, or bcl2. Female gender, vascular invasion, and lack of viral hepatitis infection correlated with positive MDM2 staining. These data likely correlate with differences in molecular pathogenesis of HCC based on racial and regional differences. These findings may have implications in choice of molecular targeted therapies based on patient ethnicity. Copyright © 2012 Wiley Periodicals, Inc.

  20. Six stroma-based RNA markers diagnostic for prostate cancer in European-Americans validated at the RNA and protein levels in patients in China

    PubMed Central

    Zhu, Jianguo; Pan, Cong; Jiang, Jun; Deng, Mingsen; Gao, Hengjun; Men, Bozhao; McClelland, Michael; Mercola, Dan; Zhong, Wei-De; Jia, Zhenyu

    2015-01-01

    We previously analyzed human prostate tissue containing stroma near to tumor and from cancer-negative tissues of volunteers. Over 100 candidate gene expression differences were identified and used to develop a classifier that could detect nearby tumor with an accuracy of 97% (sensitivity = 98% and specificity = 88%) based on 364 independent test cases from primarily European American cases. These stroma-based gene signatures have the potential to identify cancer patients among those with negative biopsies. In this study, we used prostate tissues from Chinese cases to validate six of these markers (CAV1, COL4A2, HSPB1, ITGB3, MAP1A and MCAM). In validation by real-time PCR, four genes (COL4A2, HSPB1, ITGB3, and MAP1A) demonstrated significantly lower expression in tumor-adjacent stroma compared to normal stroma (p value ≤ 0.05). Next, we tested whether these expression differences could be extended to the protein level. In IHC assays, all six selected proteins showed lower expression in tumor-adjacent stroma compared to the normal stroma, of which COL4A2, HSPB1 and ITGB3 showed significant differences (p value ≤ 0.05). These results suggest that biomarkers for diagnosing prostate cancer based on tumor microenvironment may be applicable across multiple racial groups. PMID:26158290

  1. Significance of genomic instability in breast cancer in atomic bomb survivors: analysis of microarray-comparative genomic hybridization.

    PubMed

    Oikawa, Masahiro; Yoshiura, Koh-ichiro; Kondo, Hisayoshi; Miura, Shiro; Nagayasu, Takeshi; Nakashima, Masahiro

    2011-12-07

    It has been postulated that ionizing radiation induces breast cancers among atomic bomb (A-bomb) survivors. We have reported a higher incidence of HER2 and C-MYC oncogene amplification in breast cancers from A-bomb survivors. The purpose of this study was to clarify the effect of A-bomb radiation exposure on genomic instability (GIN), which is an important hallmark of carcinogenesis, in archival formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer by using microarray-comparative genomic hybridization (aCGH). Tumor DNA was extracted from FFPE tissues of invasive ductal cancers from 15 survivors who were exposed at 1.5 km or less from the hypocenter and 13 calendar year-matched non-exposed patients followed by aCGH analysis using a high-density oligonucleotide microarray. The total length of copy number aberrations (CNA) was used as an indicator of GIN, and correlation with clinicopathological factors were statistically tested. The mean of the derivative log ratio spread (DLRSpread), which estimates the noise by calculating the spread of log ratio differences between consecutive probes for all chromosomes, was 0.54 (range, 0.26 to 1.05). The concordance of results between aCGH and fluorescence in situ hybridization (FISH) for HER2 gene amplification was 88%. The incidence of HER2 amplification and histological grade was significantly higher in the A-bomb survivors than control group (P = 0.04, respectively). The total length of CNA tended to be larger in the A-bomb survivors (P = 0.15). Correlation analysis of CNA and clinicopathological factors revealed that DLRSpread was negatively correlated with that significantly (P = 0.034, r = -0.40). Multivariate analysis with covariance revealed that the exposure to A-bomb was a significant (P = 0.005) independent factor which was associated with larger total length of CNA of breast cancers. Thus, archival FFPE tissues from A-bomb survivors are useful for genome-wide aCGH analysis. Our results suggested that A-bomb radiation may affect the increased amount of CNA as a hallmark of GIN and, subsequently, be associated with a higher histologic grade in breast cancer found in A-bomb survivors.

  2. Significance of genomic instability in breast cancer in atomic bomb survivors: analysis of microarray-comparative genomic hybridization

    PubMed Central

    2011-01-01

    Background It has been postulated that ionizing radiation induces breast cancers among atomic bomb (A-bomb) survivors. We have reported a higher incidence of HER2 and C-MYC oncogene amplification in breast cancers from A-bomb survivors. The purpose of this study was to clarify the effect of A-bomb radiation exposure on genomic instability (GIN), which is an important hallmark of carcinogenesis, in archival formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer by using microarray-comparative genomic hybridization (aCGH). Methods Tumor DNA was extracted from FFPE tissues of invasive ductal cancers from 15 survivors who were exposed at 1.5 km or less from the hypocenter and 13 calendar year-matched non-exposed patients followed by aCGH analysis using a high-density oligonucleotide microarray. The total length of copy number aberrations (CNA) was used as an indicator of GIN, and correlation with clinicopathological factors were statistically tested. Results The mean of the derivative log ratio spread (DLRSpread), which estimates the noise by calculating the spread of log ratio differences between consecutive probes for all chromosomes, was 0.54 (range, 0.26 to 1.05). The concordance of results between aCGH and fluorescence in situ hybridization (FISH) for HER2 gene amplification was 88%. The incidence of HER2 amplification and histological grade was significantly higher in the A-bomb survivors than control group (P = 0.04, respectively). The total length of CNA tended to be larger in the A-bomb survivors (P = 0.15). Correlation analysis of CNA and clinicopathological factors revealed that DLRSpread was negatively correlated with that significantly (P = 0.034, r = -0.40). Multivariate analysis with covariance revealed that the exposure to A-bomb was a significant (P = 0.005) independent factor which was associated with larger total length of CNA of breast cancers. Conclusions Thus, archival FFPE tissues from A-bomb survivors are useful for genome-wide aCGH analysis. Our results suggested that A-bomb radiation may affect the increased amount of CNA as a hallmark of GIN and, subsequently, be associated with a higher histologic grade in breast cancer found in A-bomb survivors. PMID:22152285

  3. NCOA3-mediated upregulation of mucin expression via transcriptional and post-translational changes during the development of pancreatic cancer

    PubMed Central

    Kumar, S; Das, S; Rachagani, S; Kaur, S; Joshi, S; Johansson, SL; Ponnusamy, MP; Jain, M; Batra, SK

    2015-01-01

    Pancreatic cancer (PC) is characterized by aberrant overexpression of mucins that contribute to its pathogenesis. Although the inflammatory cytokines contribute to mucin overexpression, the mucin profile of PC is markedly distinct from that of normal or inflamed pancreas. We postulated that de novo expression of various mucins in PC involves chromatin modifications. Analysis of chromatin modifying enzymes by PCR array identified differential expression of NCOA3 in MUC4-expressing PC cell lines. Immunohistochemistry analysis in tumor tissues from patients and spontaneous mouse models, and microarray analysis following the knockdown of NCOA3 were performed to elucidate its role in mucin regulation and overall impact on PC. Silencing of NCOA3 in PC cell lines resulted in significant downregulation of two most differentially expressed mucins in PC, MUC4 and MUC1 (P<0.01). Immunohistochemistry analysis in PC tissues and metastatic lesions established an association between NCOA3 and mucin (MUC1 and MUC4) expression. Spontaneous mouse model of PC (K-rasG12D; Pdx-1cre) showed early expression of Ncoa3 during preneoplastic lesions. Mechanistically, NCOA3 knockdown abrogated retinoic acid-mediated MUC4 upregulation by restricting MUC4 promoter accessibility as demonstrated by micrococcus nuclease digestion (P<0.05) and chromatin immuno-precipitation analysis. NCOA3 also created pro-inflammatory conditions by upregulating chemokines like CXCL1, 2, 5 and CCL20 (P<0.001). AKT, ubiquitin C, ERK1/2 and NF-κB occupied dominant nodes in the networks significantly modulated after NCOA3 silencing. In addition, NCOA3 stabilized mucins post translationally through fucosylation by FUT8, as the knockdown of FUT8 resulted in the downregulation of MUC4 and MUC1 at protein levels. PMID:25531332

  4. Development and experimental validation of a 20K Atlantic cod (Gadus morhua) oligonucleotide microarray based on a collection of over 150,000 ESTs.

    PubMed

    Booman, Marije; Borza, Tudor; Feng, Charles Y; Hori, Tiago S; Higgins, Brent; Culf, Adrian; Léger, Daniel; Chute, Ian C; Belkaid, Anissa; Rise, Marlies; Gamperl, A Kurt; Hubert, Sophie; Kimball, Jennifer; Ouellette, Rodney J; Johnson, Stewart C; Bowman, Sharen; Rise, Matthew L

    2011-08-01

    The collapse of Atlantic cod (Gadus morhua) wild populations strongly impacted the Atlantic cod fishery and led to the development of cod aquaculture. In order to improve aquaculture and broodstock quality, we need to gain knowledge of genes and pathways involved in Atlantic cod responses to pathogens and other stressors. The Atlantic Cod Genomics and Broodstock Development Project has generated over 150,000 expressed sequence tags from 42 cDNA libraries representing various tissues, developmental stages, and stimuli. We used this resource to develop an Atlantic cod oligonucleotide microarray containing 20,000 unique probes. Selection of sequences from the full range of cDNA libraries enables application of the microarray for a broad spectrum of Atlantic cod functional genomics studies. We included sequences that were highly abundant in suppression subtractive hybridization (SSH) libraries, which were enriched for transcripts responsive to pathogens or other stressors. These sequences represent genes that potentially play an important role in stress and/or immune responses, making the microarray particularly useful for studies of Atlantic cod gene expression responses to immune stimuli and other stressors. To demonstrate its value, we used the microarray to analyze the Atlantic cod spleen response to stimulation with formalin-killed, atypical Aeromonas salmonicida, resulting in a gene expression profile that indicates a strong innate immune response. These results were further validated by quantitative PCR analysis and comparison to results from previous analysis of an SSH library. This study shows that the Atlantic cod 20K oligonucleotide microarray is a valuable new tool for Atlantic cod functional genomics research.

  5. Toxicity of Doxorubicin on Pig Liver After Chemoembolization with Doxorubicin-loaded Microspheres: A Pilot DNA-microarrays and Histology Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verret, Valentin, E-mail: valentin.verret@archimmed.com; Namur, Julien; Ghegediban, Saieda Homayra

    The potential mechanisms accounting for the hepatotoxicity of doxorubicin-loaded microspheres in chemoembolization were examined by combining histology and DNA-microarray techniques.The left hepatic arteries of two pigs were embolized with 1 mL of doxorubicin-loaded (25 mg; (DoxMS)) or non-loaded (BlandMS) microspheres. The histopathological effects of the embolization were analyzed at 1 week. RNAs extracted from both the embolized and control liver areas were hybridized onto Agilent porcine microarrays. Genes showing significantly different expression (p < 0.01; fold-change > 2) between two groups were classified by biological process. At 1 week after embolization, DoxMS caused arterial and parenchymal necrosis in 51 andmore » 38 % of embolized vessels, respectively. By contrast, BlandMS did not cause any tissue damage. Up-regulated genes following embolization with DoxMS (vs. BlandMS, n = 353) were mainly involved in cell death, apoptosis, and metabolism of doxorubicin. Down-regulated genes (n = 120) were mainly related to hepatic functions, including enzymes of lipid and carbohydrate metabolisms. Up-regulated genes included genes related to cell proliferation (growth factors and transcription factors), tissue remodeling (MMPs and several collagen types), inflammatory reaction (interleukins and chemokines), and angiogenesis (angiogenic factors and HIF1a pathway), all of which play an important role in liver healing and regeneration. DoxMS caused lesions to the liver, provoked cell death, and disturbed liver metabolism. An inflammatory repair process with cell proliferation, tissue remodeling, and angiogenesis was rapidly initiated during the first week after chemoembolization. This pilot study provides a comprehensive method to compare different types of DoxMS in healthy animals or tumor models.« less

  6. Adipose tissue transcriptome changes during obesity development in female dogs.

    PubMed

    Grant, Ryan W; Vester Boler, Brittany M; Ridge, Tonya K; Graves, Thomas K; Swanson, Kelly S

    2011-03-29

    During the development of obesity, adipose tissue undergoes major expansion and remodeling, but the biological processes involved in this transition are not well understood. The objective of this study was to analyze global gene expression profiles of adipose tissue in dogs, fed a high-fat diet, during the transition from a lean to obese phenotype. Nine female beagles (4.09 ± 0.64 yr; 8.48 ± 0.35 kg) were randomized to ad libitum feeding or body weight maintenance. Subcutaneous adipose tissue biopsy, blood, and dual x-ray absorptiometry measurements were collected at 0, 4, 8, 12, and 24 wk of feeding. Serum was analyzed for glucose, insulin, fructosamine, triglycerides, free fatty acids, adiponectin, and leptin. Formalin-fixed adipose tissue was used for determination of adipocyte size. Adipose RNA samples were hybridized to Affymetrix Canine 2.0 microarrays. Statistical analysis, using repeated-measures ANOVA, showed ad libitum feeding increased (P < 0.05) body weight (0 wk, 8.36 ± 0.34 kg; 24 wk, 14.64 ± 0.34 kg), body fat mass (0 wk, 1.36 ± 0.24 kg; 24 wk, 6.52 ± 0.24 kg), adipocyte size (0 wk, 114.66 ± 17.38 μm(2); 24 wk, 320.97 ± 0.18.17 μm(2)), and leptin (0 wk, 0.8 ± 1.0 ng/ml; 24 wk, 12.9 ± 1.0 ng/ml). Microarrays displayed 1,665 differentially expressed genes in adipose tissue as weight increased. Alterations were seen in adipose tissue homeostatic processes including metabolism, oxidative stress, mitochondrial homeostasis, and extracellular matrix. Adipose transcriptome changes highlight the dynamic and adaptive response to ad libitum feeding and obesity development.

  7. Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise.

    PubMed

    Koga, Shunsaku; Barstow, Thomas J; Okushima, Dai; Rossiter, Harry B; Kondo, Narihiko; Ohmae, Etsuko; Poole, David C

    2015-06-01

    Near-infrared assessment of skeletal muscle is restricted to superficial tissues due to power limitations of spectroscopic systems. We reasoned that understanding of muscle deoxygenation may be improved by simultaneously interrogating deeper tissues. To achieve this, we modified a high-power (∼8 mW), time-resolved, near-infrared spectroscopy system to increase depth penetration. Precision was first validated using a homogenous optical phantom over a range of inter-optode spacings (OS). Coefficients of variation from 10 measurements were minimal (0.5-1.9%) for absorption (μa), reduced scattering, simulated total hemoglobin, and simulated O2 saturation. Second, a dual-layer phantom was constructed to assess depth sensitivity, and the thickness of the superficial layer was varied. With a superficial layer thickness of 1, 2, 3, and 4 cm (μa = 0.149 cm(-1)), the proportional contribution of the deep layer (μa = 0.250 cm(-1)) to total μa was 80.1, 26.9, 3.7, and 0.0%, respectively (at 6-cm OS), validating penetration to ∼3 cm. Implementation of an additional superficial phantom to simulate adipose tissue further reduced depth sensitivity. Finally, superficial and deep muscle spectroscopy was performed in six participants during heavy-intensity cycle exercise. Compared with the superficial rectus femoris, peak deoxygenation of the deep rectus femoris (including the superficial intermedius in some) was not significantly different (deoxyhemoglobin and deoxymyoglobin concentration: 81.3 ± 20.8 vs. 78.3 ± 13.6 μM, P > 0.05), but deoxygenation kinetics were significantly slower (mean response time: 37 ± 10 vs. 65 ± 9 s, P ≤ 0.05). These data validate a high-power, time-resolved, near-infrared spectroscopy system with large OS for measuring the deoxygenation of deep tissues and reveal temporal and spatial disparities in muscle deoxygenation responses to exercise. Copyright © 2015 the American Physiological Society.

  8. Immunohistochemistry is a reliable screening tool for identification of ALK rearrangement in non-small-cell lung carcinoma and is antibody dependent.

    PubMed

    Conklin, Chris M J; Craddock, Kenneth J; Have, Cherry; Laskin, Janessa; Couture, Christian; Ionescu, Diana N

    2013-01-01

    Fluorescence in situ hybridization (FISH) is the standard procedure for the detection of anaplastic lymphoma receptor tyrosine kinase (ALK) rearrangement in non-small-cell lung carcinoma (NSCLC) but is expensive and time consuming. We tested three antibodies to ALK, using various detection systems, and hypothesized that ALK immunohistochemistry (IHC) may represent a cost-effective and efficient means of screening for ALK rearrangement in NSCLC. We screened 377 stage I or II NSCLC cases in a tissue microarray by FISH and IHC (5A4 [Leica Biosystems Newcastle Ltd, Newcastle upon Tyne, UYnited Kingdom] by Nichirei's N-Histofine ALK detection kit [Nichirei Biosciences inc., Tokyo, Japan], 5A4 by Novocastra with ADVANCE [Dako Canada inc., Burlington, Ontario, Canada], D5F3 by Cell Signaling Technology with ADVANCE [Cell Signalling Technologies inc., Danvers, MA], and DAKO clone ALK1 with FLEX [Dako Canada inc., Burlington, Ontario, Canada] and ADVANCE). IHC was scored as 0, 1+, 2+, or 3+. Possibly positive or positive cases were further analyzed by IHC and FISH on whole section. Tissue microarray results were available on 377 cases by IHC and 273 cases by FISH. Eleven cases were positive or possibly positive by either IHC or FISH, and three cases were positive or possibly positive by both methods. Three cases were ALK-positive by FISH on whole section validation. There was no correlation between semiquantitative IHC score (1+, 2+, 3+) and ALK rearrangement by FISH. D5F3 (Cell Signaling by ADVANCE) and 5A4 (Novocastra by ADVANCE) showed the greatest combination of sensitivity (100%) and specificity (87.5% for 5A4 by Novocastra and 75% for D5F3 by Cell Signaling), and produced no false-negative results. IHC is a reliable screening tool for identification of ALK rearrangement in NSCLC and is antibody dependent. D5F3 (Cell Signaling) and 5A4 (Novocastra) can be used with FISH for identification of IHC-positive cases to reduce screening costs.

  9. A molecular analysis by gene expression profiling reveals Bik/NBK overexpression in sporadic breast tumor samples of Mexican females

    PubMed Central

    García, Normand; Salamanca, Fabio; Astudillo-de la Vega, Horacio; Curiel-Quesada, Everardo; Alvarado, Isabel; Peñaloza, Rosenda; Arenas, Diego

    2005-01-01

    Background Breast cancer is one of the most frequent causes of death in Mexican women over 35 years of age. At molecular level, changes in many genetic networks have been reported as associated with this neoplasia. To analyze these changes, we determined gene expression profiles of tumors from Mexican women with breast cancer at different stages and compared these with those of normal breast tissue samples. Methods 32P-radiolabeled cDNA was synthesized by reverse transcription of mRNA from fresh sporadic breast tumor biopsies, as well as normal breast tissue. cDNA probes were hybridized to microarrays and expression levels registered using a phosphorimager. Expression levels of some genes were validated by real time RT-PCR and immunohistochemical assays. Results We identified two subgroups of tumors according to their expression profiles, probably related with cancer progression. Ten genes, unexpressed in normal tissue, were turned on in some tumors. We found consistent high expression of Bik gene in 14/15 tumors with predominant cytoplasmic distribution. Conclusion Recently, the product of the Bik gene has been associated with tumoral reversion in different neoplasic cell lines, and was proposed as therapy to induce apoptosis in cancers, including breast tumors. Even though a relationship among genes, for example those from a particular pathway, can be observed through microarrays, this relationship might not be sufficient to assign a definitive role to Bik in development and progression of the neoplasia. The findings herein reported deserve further investigation. PMID:16060964

  10. Analysis of Altered Micro RNA Expression Profiles in Focal Cortical Dysplasia IIB.

    PubMed

    Li, Lin; Liu, Chang-Qing; Li, Tian-Fu; Guan, Yu-Guang; Zhou, Jian; Qi, Xue-Ling; Yang, Yu-Tao; Deng, Jia-Hui; Xu, Zhi-Qing David; Luan, Guo-Ming

    2016-04-01

    Focal cortical dysplasia type IIB is a commonly encountered subtype of developmental malformation of the cerebral cortex and is often associated with pharmacoresistant epilepsy. In this study, to investigate the molecular etiology of focal cortical dysplasia type IIB, the authors performed micro ribonucleic acid (RNA) microarray on surgical specimens from 5 children (2 female and 3 male, mean age was 73.4 months, range 50-112 months) diagnosed of focal cortical dysplasia type IIB and matched normal tissue adjacent to the lesion. In all, 24 micro RNAs were differentially expressed in focal cortical dysplasia type IIB, and the microarray results were validated using quantitative real-time polymerase chain reaction (PCR). Then the putative target genes of the differentially expressed micro RNAs were identified by bioinformatics analysis. Moreover, biological significance of the target genes was evaluated by investigating the pathways in which the genes were enriched, and the Hippo signaling pathway was proposed to be highly related with the pathogenesis of focal cortical dysplasia type IIB. © The Author(s) 2015.

  11. Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression.

    PubMed

    Zu, Xuyu; Ma, Jun; Liu, Hongxia; Liu, Feng; Tan, Chunyan; Yu, Lingling; Wang, Jue; Xie, Zhenhua; Cao, Deliang; Jiang, Yuyang

    2011-03-10

    Pokemon is an oncogenic transcription factor involved in cell growth, differentiation and oncogenesis, but little is known about its role in human breast cancer. In this study, we aimed to reveal the role of Pokemon in breast cancer progression and patient survival and to understand its underlying mechanisms. Tissue microarray analysis of breast cancer tissues from patients with complete clinicopathological data and more than 20 years of follow-up were used to evaluate Pokemon expression and its correlation with the progression and prognosis of the disease. DNA microarray analysis of MCF-7 cells that overexpress Pokemon was used to identify Pokemon target genes. Chromatin immunoprecipitation (ChIP) and site-directed mutagenesis were utilized to determine how Pokemon regulates survivin expression, a target gene. Pokemon was found to be overexpressed in 158 (86.8%) of 182 breast cancer tissues, and its expression was correlated with tumor size (P = 0.0148) and lymph node metastasis (P = 0.0014). Pokemon expression led to worse overall (n = 175, P = 0.01) and disease-related (n = 79, P = 0.0134) patient survival. DNA microarray analyses revealed that in MCF-7 breast cancer cells, Pokemon regulates the expression of at least 121 genes involved in several signaling and metabolic pathways, including anti-apoptotic survivin. In clinical specimens, Pokemon and survivin expression were highly correlated (n = 49, r = 0.6799, P < 0.0001). ChIP and site-directed mutagenesis indicated that Pokemon induces survivin expression by binding to the GT boxes in its promoter. Pokemon promotes breast cancer progression by upregulating survivin expression and thus may be a potential target for the treatment of this malignancy.

  12. Pro-oncogene Pokemon promotes breast cancer progression by upregulating survivin expression

    PubMed Central

    2011-01-01

    Introduction Pokemon is an oncogenic transcription factor involved in cell growth, differentiation and oncogenesis, but little is known about its role in human breast cancer. In this study, we aimed to reveal the role of Pokemon in breast cancer progression and patient survival and to understand its underlying mechanisms. Methods Tissue microarray analysis of breast cancer tissues from patients with complete clinicopathological data and more than 20 years of follow-up were used to evaluate Pokemon expression and its correlation with the progression and prognosis of the disease. DNA microarray analysis of MCF-7 cells that overexpress Pokemon was used to identify Pokemon target genes. Chromatin immunoprecipitation (ChIP) and site-directed mutagenesis were utilized to determine how Pokemon regulates survivin expression, a target gene. Results Pokemon was found to be overexpressed in 158 (86.8%) of 182 breast cancer tissues, and its expression was correlated with tumor size (P = 0.0148) and lymph node metastasis (P = 0.0014). Pokemon expression led to worse overall (n = 175, P = 0.01) and disease-related (n = 79, P = 0.0134) patient survival. DNA microarray analyses revealed that in MCF-7 breast cancer cells, Pokemon regulates the expression of at least 121 genes involved in several signaling and metabolic pathways, including anti-apoptotic survivin. In clinical specimens, Pokemon and survivin expression were highly correlated (n = 49, r = 0.6799, P < 0.0001). ChIP and site-directed mutagenesis indicated that Pokemon induces survivin expression by binding to the GT boxes in its promoter. Conclusions Pokemon promotes breast cancer progression by upregulating survivin expression and thus may be a potential target for the treatment of this malignancy. PMID:21392388

  13. Clinical value of miR-198-5p in lung squamous cell carcinoma assessed using microarray and RT-qPCR.

    PubMed

    Liang, Yue-Ya; Huang, Jia-Cheng; Tang, Rui-Xue; Chen, Wen-Jie; Chen, Peng; Cen, Wei-Luan; Shi, Ke; Gao, Li; Gao, Xiang; Liu, An-Gui; Peng, Xiao-Tong; Chen, Gang; Huang, Su-Ning; Fang, Ye-Ying; Gu, Yong-Yao

    2018-02-02

    To examine the clinical value of miR-198-5p in lung squamous cell carcinoma (LUSC). Gene Expression Omnibus (GEO) microarray datasets were used to explore the miR-198-5p expression and its diagnostic value in LUSC. Real-time reverse transcription quantitative polymerase chain reaction was used to evaluate the expression of miR-198-5p in 23 formalin-fixed, paraffin-embedded (FFPE) LUSC tissues and corresponding non-cancerous tissues. The correlation between miR-198-5p expression and clinic pathological features was assessed. Meanwhile, putative target messenger RNAs of miR-198-5p were identified based on the analysis of differentially expressed genes in the Cancer Genome Atlas (TCGA) and 12 miRNA prediction tools. Subsequently, the putative target genes were sent to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. MiR-198-5p was low expressed in LUSC tissues. The combined standard mean difference (SMD) values of miR-198-5p expression based on GEO datasets were - 0.30 (95% confidence interval (CI) - 0.54, - 0.06) and - 0.39 (95% CI - 0.83, 0.05) using fixed effect model and random effect model, respectively. The sensitivity and specificity were not sufficiently high, as the area under the curve (AUC) was 0.7749 (Q* = 0.7143) based on summarized receiver operating characteristic (SROC) curves constructed using GEO datasets. Based on the in-house RT-qPCR, miR-198-5p expression was 4.3826 ± 1.7660 in LUSC tissues and 4.4522 ± 1.8263 in adjacent normal tissues (P = 0.885). The expression of miR-198-5p was significantly higher in patients with early TNM stages (I-II) than that in cases with advanced TNM stages (III-IV) (5.4400 ± 1.5277 vs 3.5690 ± 1.5228, P = 0.008). Continuous variable-based meta-analysis of GEO and PCR data displayed the SMD values of - 0.26 (95% CI - 0.48, - 0.04) and - 0.34 (95% CI - 0.71, 0.04) based on fixed and random effect models, respectively. As for the diagnostic value of miR-198-5p, the AUC based on the SROC curve using GEO and PCR data was 0.7351 (Q* = 0.6812). In total, 542 genes were identified as the targets of miR-198-5p. The most enriched Gene Ontology terms were epidermis development among biological processes, cell junction among cellular components, and protein dimerization activity among molecule functions. The pathway of non-small cell lung cancer was the most significant pathway identified using Kyoto Encyclopedia of Genes and Genomes analysis. The expression of miR-198-5p is related to the TNM stage. Thus, miR-198-5p might play an important role via its target genes in LUSC.

  14. Development of a Sensitive Microarray Platform for the Ranking of Galectin Inhibitors: Identification of a Selective Galectin-3 Inhibitor.

    PubMed

    Dion, Johann; Advedissian, Tamara; Storozhylova, Nataliya; Dahbi, Samir; Lambert, Annie; Deshayes, Frédérique; Viguier, Mireille; Tellier, Charles; Poirier, Françoise; Téletchéa, Stéphane; Dussouy, Christophe; Tateno, Hiroaki; Hirabayashi, Jun; Grandjean, Cyrille

    2017-12-14

    Glycan microarrays are useful tools for lectin glycan profiling. The use of a glycan microarray based on evanescent-field fluorescence detection was herein further extended to the screening of lectin inhibitors in competitive experiments. The efficacy of this approach was tested with 2/3'-mono- and 2,3'-diaromatic type II lactosamine derivatives and galectins as targets and was validated by comparison with fluorescence anisotropy proposed as an orthogonal protein interaction measurement technique. We showed that subtle differences in the architecture of the inhibitor could be sensed that pointed out the preference of galectin-3 for 2'-arylamido derivatives over ureas, thioureas, and amines and that of galectin-7 for derivatives bearing an α substituent at the anomeric position of glucosamine. We eventually identified a diaromatic oxazoline as a highly specific inhibitor of galectin-3 versus galectin-1 and galectin-7. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Circulating microRNA-22-3p Predicts the Malignant Progression of Precancerous Gastric Lesions from Intestinal Metaplasia to Early Adenocarcinoma.

    PubMed

    Chen, Tsung-Hsing; Chiu, Cheng-Tang; Lee, Chieh; Chu, Yin-Yi; Cheng, Hao-Tsai; Hsu, Jun-Te; Wu, Ren-Chin; Yeh, Ta-Sen; Lin, Kwang-Huei

    2018-05-07

    Gastric cancer has a poor outcome and identifying useful biomarkers from peripheral blood or tissue could allow its early detection, or potentially precancerous changes, thus improving the curative rates. MicroRNAs (miRNAs) have been shown to offer great potential in cancer diagnosis and prediction. Here, we investigated the role of plasma miRNAs in the natural course of gastric cancer, from intestinal metaplasia to early cancer. The findings were used to understand whether patients at a high risk of malignancy could be given appropriate interventions in the early disease process, such as using endoscopic submucosal dissection to treat gastric dysplasia or early gastric cancer. Participants were divided into healthy control, intestinal metaplasia (IM), and dysplasia/early cancer (pT1a/b) groups. Microarray was used to select potential markers in tissue. Quantitative real-time polymerase chain reaction data showed circulating miRNA-22-3p had significantly different expression in patients with precancerous lesions or gastric adenocarcinoma. The areas under the curve of incomplete IM versus healthy control, low-grade/high-grade dysplasia, early gastric cancer, and GED were 0.8080, 0.8040, 0.8494, and 0.8095, respectively (all P values < 0.05). Circulating miRNA-22-3p could be a potential biomarker for gastric precancerous dysplasia and early cancer detection.

  16. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models

    EPA Science Inventory

    The second phase of the MicroArray Quality Control (MAQC-II) project evaluated common practices for developing and validating microarray-based models aimed at predicting toxicological and clinical endpoints. Thirty-six teams developed classifiers for 13 endpoints - some easy, som...

  17. Identifying circRNA-associated-ceRNA networks in the hippocampus of Aβ1-42-induced Alzheimer's disease-like rats using microarray analysis

    PubMed Central

    Wang, Zhe; Xu, Panpan; Chen, Biyue; Zhang, Zheyu; Zhang, Chunhu; Zhan, Qiong; Huang, Siqi; Xia, Zi-an

    2018-01-01

    Alzheimer’s disease (AD) is the most common form of dementia worldwide. Accumulating evidence indicates that non-coding RNAs are strongly implicated in AD-associated pathophysiology. However, the role of these ncRNAs remains largely unknown. In the present study, we used microarray analysis technology to characterize the expression patterns of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in hippocampal tissue from Aβ1-42-induced AD model rats, to integrate interaction data and thus provide novel insights into the mechanisms underlying AD. A total of 555 circRNAs, 183 miRNAs and 319 mRNAs were identified to be significantly dysregulated (fold-change ≥ 2.0 and p-value < 0.05) in the hippocampus of AD rats. Quantitative real-time polymerase chain reaction (qRT-PCR) was then used to validate the expression of randomly-selected circRNAs, miRNAs and mRNAs. Next, GO and KEGG pathway analyses were performed to further investigate ncRNAs biological functions and potential mechanisms. In addition, we constructed circRNA-miRNA and competitive endogenous RNA (ceRNA) regulatory networks to determine functional interactions between ncRNAs and mRNAs. Our results suggest the involvement of different ncRNA expression patterns in the pathogenesis of AD. Our findings provide a novel perspective for further research into AD pathogenesis and might facilitate the development of novel therapeutics targeting ncRNAs. PMID:29706607

  18. Identifying circRNA-associated-ceRNA networks in the hippocampus of Aβ1-42-induced Alzheimer's disease-like rats using microarray analysis.

    PubMed

    Wang, Zhe; Xu, Panpan; Chen, Biyue; Zhang, Zheyu; Zhang, Chunhu; Zhan, Qiong; Huang, Siqi; Xia, Zi-An; Peng, Weijun

    2018-04-27

    Alzheimer's disease (AD) is the most common form of dementia worldwide. Accumulating evidence indicates that non-coding RNAs are strongly implicated in AD-associated pathophysiology. However, the role of these ncRNAs remains largely unknown. In the present study, we used microarray analysis technology to characterize the expression patterns of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in hippocampal tissue from Aβ 1-42 -induced AD model rats, to integrate interaction data and thus provide novel insights into the mechanisms underlying AD. A total of 555 circRNAs, 183 miRNAs and 319 mRNAs were identified to be significantly dysregulated (fold-change ≥ 2.0 and p -value < 0.05) in the hippocampus of AD rats. Quantitative real-time polymerase chain reaction (qRT-PCR) was then used to validate the expression of randomly-selected circRNAs, miRNAs and mRNAs. Next, GO and KEGG pathway analyses were performed to further investigate ncRNAs biological functions and potential mechanisms. In addition, we constructed circRNA-miRNA and competitive endogenous RNA (ceRNA) regulatory networks to determine functional interactions between ncRNAs and mRNAs. Our results suggest the involvement of different ncRNA expression patterns in the pathogenesis of AD. Our findings provide a novel perspective for further research into AD pathogenesis and might facilitate the development of novel therapeutics targeting ncRNAs.

  19. RHEB expression in fibroadenomas of the breast.

    PubMed

    Eom, Minseob; Han, Airi; Yi, Sang Yeop; Shin, John Junghun; Cui, Ying; Park, Kwang Hwa

    2008-04-01

    Although fibroadenoma is one of the most common types of benign breast tumor, genes specific to the tumor have not been identified. Microarrays were used to identify differentially expressed genes between fibroadenoma and infiltrating ductal carcinoma. The comparative expression of one of the identified genes, RAS homolog enriched in the brain (RHEB), was further explored using reverse transcriptase-polymerase chain reaction (RT-PCR). Microarray analysis was performed on tissue samples from five patients with fibroadenoma. In the fibroadenoma samples, the genes HDAC1, ROS1, TNFRSF10A, WASP2, TYRP1, WEE1, and RHEB were expressed at levels more than twofold higher than in the normal tissues. RT-PCR for RHEB indicated increased expression of RHEB in fibroadenoma compared to breast cancer. When studied with real-time PCR, the average RHEB/beta-actin ratio in fibroadenoma samples was 1.99, 2.46-fold greater than the average RHEB/beta-actin ratio in breast carcinoma of 0.81 (P < 0.01). Immunohistochemistry and PCR followed by microdissection shows increased expression of RHEB in epithelial cells compared to the stromal cells of fibroadenoma. Therefore, RHEB could be used cytopathologically to distinguish fibroadenoma from malignant breast carcinomas as a secondary diagnostic tool.

  20. Reliable Entity Subtyping in Non-small Cell Lung Cancer by Matrix-assisted Laser Desorption/Ionization Imaging Mass Spectrometry on Formalin-fixed Paraffin-embedded Tissue Specimens*

    PubMed Central

    Kriegsmann, Mark; Casadonte, Rita; Kriegsmann, Jörg; Dienemann, Hendrik; Schirmacher, Peter; Hendrik Kobarg, Jan; Schwamborn, Kristina; Stenzinger, Albrecht; Warth, Arne; Weichert, Wilko

    2016-01-01

    Histopathological subtyping of non-small cell lung cancer (NSCLC) into adenocarcinoma (ADC), and squamous cell carcinoma (SqCC) is of utmost relevance for treatment stratification. However, current immunohistochemistry (IHC) based typing approaches on biopsies are imperfect, therefore novel analytical methods for reliable subtyping are needed. We analyzed formalin-fixed paraffin-embedded tissue cores of NSCLC by Matrix-assisted laser desorption/ionization (MALDI) imaging on tissue microarrays to identify and validate discriminating MALDI imaging profiles for NSCLC subtyping. 110 ADC and 98 SqCC were used to train a Linear Discriminant Analysis (LDA) model. Results were validated on a separate set of 58 ADC and 60 SqCC. Selected differentially expressed proteins were identified by tandem mass spectrometry and validated by IHC. The LDA classification model incorporated 339 m/z values. In the validation cohort, in 117 cases (99.1%) MALDI classification on tissue cores was in accordance with the pathological diagnosis made on resection specimen. Overall, three cases in the combined cohorts were discordant, after reevaluation two were initially misclassified by pathology whereas one was classified incorrectly by MALDI. Identification of differentially expressed peptides detected well-known IHC discriminators (CK5, CK7), but also less well known differentially expressed proteins (CK15, HSP27). In conclusion, MALDI imaging on NSCLC tissue cores as small biopsy equivalents is capable to discriminate lung ADC and SqCC with a very high accuracy. In addition, replacing multislide IHC by an one-slide MALDI approach may also save tissue for subsequent predictive molecular testing. We therefore advocate to pursue routine diagnostic implementation strategies for MALDI imaging in solid tumor typing. PMID:27473201

  1. Reliable Entity Subtyping in Non-small Cell Lung Cancer by Matrix-assisted Laser Desorption/Ionization Imaging Mass Spectrometry on Formalin-fixed Paraffin-embedded Tissue Specimens.

    PubMed

    Kriegsmann, Mark; Casadonte, Rita; Kriegsmann, Jörg; Dienemann, Hendrik; Schirmacher, Peter; Hendrik Kobarg, Jan; Schwamborn, Kristina; Stenzinger, Albrecht; Warth, Arne; Weichert, Wilko

    2016-10-01

    Histopathological subtyping of non-small cell lung cancer (NSCLC) into adenocarcinoma (ADC), and squamous cell carcinoma (SqCC) is of utmost relevance for treatment stratification. However, current immunohistochemistry (IHC) based typing approaches on biopsies are imperfect, therefore novel analytical methods for reliable subtyping are needed. We analyzed formalin-fixed paraffin-embedded tissue cores of NSCLC by Matrix-assisted laser desorption/ionization (MALDI) imaging on tissue microarrays to identify and validate discriminating MALDI imaging profiles for NSCLC subtyping. 110 ADC and 98 SqCC were used to train a Linear Discriminant Analysis (LDA) model. Results were validated on a separate set of 58 ADC and 60 SqCC. Selected differentially expressed proteins were identified by tandem mass spectrometry and validated by IHC. The LDA classification model incorporated 339 m/z values. In the validation cohort, in 117 cases (99.1%) MALDI classification on tissue cores was in accordance with the pathological diagnosis made on resection specimen. Overall, three cases in the combined cohorts were discordant, after reevaluation two were initially misclassified by pathology whereas one was classified incorrectly by MALDI. Identification of differentially expressed peptides detected well-known IHC discriminators (CK5, CK7), but also less well known differentially expressed proteins (CK15, HSP27). In conclusion, MALDI imaging on NSCLC tissue cores as small biopsy equivalents is capable to discriminate lung ADC and SqCC with a very high accuracy. In addition, replacing multislide IHC by an one-slide MALDI approach may also save tissue for subsequent predictive molecular testing. We therefore advocate to pursue routine diagnostic implementation strategies for MALDI imaging in solid tumor typing. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Comparing surgical experience with performance on a sinus surgery simulator.

    PubMed

    Diment, Laura E; Ruthenbeck, Greg S; Dharmawardana, Nuwan; Carney, A Simon; Woods, Charmaine M; Ooi, Eng H; Reynolds, Karen J

    2016-12-01

    This study evaluates whether surgical experience influences technical competence using the Flinders sinus surgery simulator, a virtual environment designed to teach nasal endoscopic surgical skills. Ten experienced sinus surgeons (five consultants and five registrars) and 14 novices (seven resident medical officers and seven interns/medical students) completed three simulation tasks using haptic controllers. Task 1 required navigation of the sinuses and identification of six anatomical landmarks, Task 2 required removal of unhealthy tissue while preserving healthy tissue and Task 3 entailed backbiting within pre-set lines on the uncinate process and microdebriding tissue between the cuts. Novices were compared with experts on a range of measures, using Mann-Whitney U -tests. Novices took longer on all tasks (Task 1: 278%, P < 0.005; Task 2: 112%, P < 0.005; Task 3: 72%, P < 0.005). In Task 1, novices' instruments travelled further than experts' (379%, P < 0.005), and provided greater maximum force (12%, P < 0.05). In Tasks 2 and 3 novices performed more cutting movements to remove the tissue (Task 2: 1500%, P < 0.005; Task 3: 72%, P < 0.005). Experts also completed more of Task 3 (66%, P < 0.05). The study demonstrated the Flinders sinus simulator's construct validity, differentiating between experts and novices with respect to procedure time, instrument distance travelled and number of cutting motions to complete the task. © 2015 Royal Australasian College of Surgeons.

  3. Assessing the impact of Benzo[a]pyrene on Marine Mussels: Application of a novel targeted low density microarray complementing classical biomarker responses

    PubMed Central

    Sforzini, Susanna; Arlt, Volker M.; Barranger, Audrey; Dallas, Lorna J.; Oliveri, Caterina; Aminot, Yann; Pacchioni, Beniamina; Millino, Caterina; Lanfranchi, Gerolamo; Readman, James W.; Moore, Michael N.; Viarengo, Aldo; Jha, Awadhesh N.

    2017-01-01

    Despite the increasing use of mussels in environmental monitoring and ecotoxicological studies, their genomes and gene functions have not been thoroughly explored. Several cDNA microarrays were recently proposed for Mytilus spp., but putatively identified partial transcripts have rendered the generation of robust transcriptional responses difficult in terms of pathway identification. We developed a new low density oligonucleotide microarray with 465 probes covering the same number of genes. Target genes were selected to cover most of the well-known biological processes in the stress response documented over the last decade in bivalve species at the cellular and tissue levels. Our new ‘STressREsponse Microarray’ (STREM) platform consists of eight sub-arrays with three replicates for each target in each sub-array. To assess the potential use of the new array, we tested the effect of the ubiquitous environmental pollutant benzo[a]pyrene (B[a]P) at 5, 50, and 100 μg/L on two target tissues, the gills and digestive gland, of Mytilus galloprovincialis exposed invivo for three days. Bioaccumulation of B[a]P was also determined demonstrating exposure in both tissues. In addition to the well-known effects of B[a]P on DNA metabolism and oxidative stress, the new array data provided clues about the implication of other biological processes, such as cytoskeleton, immune response, adhesion to substrate, and mitochondrial activities. Transcriptional data were confirmed using qRT-PCR. We further investigated cellular functions and possible alterations related to biological processes highlighted by the microarray data using oxidative stress biomarkers (Lipofuscin content) and the assessment of genotoxicity. DNA damage, as measured by the alkaline comet assay, increased as a function of dose.DNA adducts measurements using 32P-postlabeling method also showed the presence of bulky DNA adducts (i.e. dG-N2-BPDE). Lipofiscin content increased significantly in B[a]P exposed mussels. Immunohistochemical analysis of tubulin and actin showed changes in cytoskeleton organisation. Our results adopting an integrated approach confirmed that the combination of newly developed transcriptomic approcah, classical biomarkers along with chemical analysis of water and tissue samples should be considered for environmental bioimonitoring and ecotoxicological studies to obtain holistic information to assess the impact of contaminants on the biota. PMID:28651000

  4. Microarray expression profiling in adhesion and normal peritoneal tissues.

    PubMed

    Ambler, Dana R; Golden, Alicia M; Gell, Jennifer S; Saed, Ghassan M; Carey, David J; Diamond, Michael P

    2012-05-01

    To identify molecular markers associated with adhesion and normal peritoneal tissue using microarray expression profiling. Comparative study. University hospital. Five premenopausal women. Adhesion and normal peritoneal tissue samples were obtained from premenopausal women. Ribonucleic acid was extracted using standard protocols and processed for hybridization to Affymetrix Whole Transcript Human Gene Expression Chips. Microarray data were obtained from five different patients, each with adhesion tissue and normal peritoneal samples. Real-time polymerase chain reaction was performed for confirmation using standard protocols. Gene expression in postoperative adhesion and normal peritoneal tissues. A total of 1,263 genes were differentially expressed between adhesion and normal tissues. One hundred seventy-three genes were found to be up-regulated and 56 genes were down-regulated in the adhesion tissues compared with normal peritoneal tissues. The genes were sorted into functional categories according to Gene Ontology annotations. Twenty-six up-regulated genes and 11 down-regulated genes were identified with functions potentially relevant to the pathophysiology of postoperative adhesions. We evaluated and confirmed expression of 12 of these specific genes via polymerase chain reaction. The pathogenesis, natural history, and optimal treatment of postoperative adhesive disease remains unanswered. Microarray analysis of adhesions identified specific genes with increased and decreased expression when compared with normal peritoneum. Knowledge of these genes and ontologic pathways with altered expression provide targets for new therapies to treat patients who have or are at risk for postoperative adhesions. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Immunohistochemical Detection of the Autophagy Markers LC3 and p62/SQSTM1 in Formalin-Fixed and Paraffin-Embedded Tissue.

    PubMed

    Berezowska, Sabina; Galván, José A

    2017-01-01

    Autophagy is a highly conserved cellular mechanism of "self digestion," ensuring cellular homeostasis, and playing a role in many diseases including cancer. As a stress response mechanism, it may also be involved in cellular response to therapy.LC3 and Sequestosome 1 (p62/SQSTM1) are among the most widely used markers to monitor autophagy, and can be visualized in formalin-fixed and paraffin-embedded tissue by immunohistochemistry. Here we describe a validated staining protocol using an automated staining system available in many routine pathology laboratories, enabling high-throughput staining under standardized conditions.

  6. Identification of novel and known oocyte-specific genes using complementary DNA subtraction and microarray analysis in three different species.

    PubMed

    Vallée, Maud; Gravel, Catherine; Palin, Marie-France; Reghenas, Hélène; Stothard, Paul; Wishart, David S; Sirard, Marc-André

    2005-07-01

    The main objective of the present study was to identify novel oocyte-specific genes in three different species: bovine, mouse, and Xenopus laevis. To achieve this goal, two powerful technologies were combined: a polymerase chain reaction (PCR)-based cDNA subtraction, and cDNA microarrays. Three subtractive libraries consisting of 3456 clones were established and enriched for oocyte-specific transcripts. Sequencing analysis of the positive insert-containing clones resulted in the following classification: 53% of the clones corresponded to known cDNAs, 26% were classified as uncharacterized cDNAs, and a final 9% were classified as novel sequences. All these clones were used for cDNA microarray preparation. Results from these microarray analyses revealed that in addition to already known oocyte-specific genes, such as GDF9, BMP15, and ZP, known genes with unknown function in the oocyte were identified, such as a MLF1-interacting protein (MLF1IP), B-cell translocation gene 4 (BTG4), and phosphotyrosine-binding protein (xPTB). Furthermore, 15 novel oocyte-specific genes were validated by reverse transcription-PCR to confirm their preferential expression in the oocyte compared to somatic tissues. The results obtained in the present study confirmed that microarray analysis is a robust technique to identify true positives from the suppressive subtractive hybridization experiment. Furthermore, obtaining oocyte-specific genes from three species simultaneously allowed us to look at important genes that are conserved across species. Further characterization of these novel oocyte-specific genes will lead to a better understanding of the molecular mechanisms related to the unique functions found in the oocyte.

  7. Identifying cell and molecular stress after radiation in a three-dimensional (3-D) model of oral mucositis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambros, Maria Polikandritou, E-mail: mlambros@westernu.edu; Parsa, Cyrus; Mulamalla, HariChandana

    2011-02-04

    Research highlights: {yields} We irradiated a 3-D human oral cell culture of keratinocytes and fibroblasts with 12 and 2 Gy. {yields} 6 h after irradiation the histopathology and apoptosis of the 3-D culture were evaluated. Microarrays were used to assess the gene expression in the irradiated 3-D tissue. {yields} 12 Gy induced significant histopathologic changes and cellular apoptosis. {yields} 12 Gy significantly affected genes of the NF-kB pathway, inflammatory cytokines and DAMPs. -- Abstract: Mucositis is a debilitating adverse effect of chemotherapy and radiation treatment. It is important to develop a simple and reliable in vitro model, which can routinelymore » be used to screen new drugs for prevention and treatment of mucositis. Furthermore, identifying cell and molecular stresses especially in the initiation phase of mucositis in this model will help towards this end. We evaluated a three-dimensional (3-D) human oral cell culture that consisted of oral keratinocytes and fibroblasts as a model of oral mucositis. The 3-D cell culture model was irradiated with 12 or 2 Gy. Six hours after the irradiation we evaluated microscopic sections of the cell culture for evidence of morphologic changes including apoptosis. We used microarrays to compare the expression of several genes from the irradiated tissue with identical genes from tissue that was not irradiated. We found that irradiation with 12 Gy induced significant histopathologic effects including cellular apoptosis. Irradiation significantly affected the expression of several genes of the NF-kB pathway and several inflammatory cytokines, such as IL-1B, 1L-8, NF-kB1, and FOS compared to tissue that was not irradiated. We identified significant upregulation of several genes that belong to damage-associated molecular patterns (DAMPs) such as HMB1, S100A13, SA10014, and SA10016 in the 3-D tissues that received 12 Gy but not in tissues that received 2 Gy. In conclusion, this model quantifies radiation damage and this is an important first step towards the development 3-D tissue as a screening tool.« less

  8. Comprehensive analysis of differentially expressed profiles of lncRNAs and construction of miR-133b mediated ceRNA network in colorectal cancer.

    PubMed

    Wu, Hao; Wu, Runliu; Chen, Miao; Li, Daojiang; Dai, Jing; Zhang, Yi; Gao, Kai; Yu, Jun; Hu, Gui; Guo, Yihang; Lin, Changwei; Li, Xiaorong

    2017-03-28

    Growing evidence suggests that long non-coding RNAs (lncRNAs) play a key role in tumorigenesis. However, the mechanism remains largely unknown. Thousands of significantly dysregulated lncRNAs and mRNAs were identified by microarray. Furthermore, a miR-133b-meditated lncRNA-mRNA ceRNA network was revealed, a subset of which was validated in 14 paired CRC patient tumor/non-tumor samples. Gene set enrichment analysis (GSEA) results demonstrated that lncRNAs ENST00000520055 and ENST00000535511 shared KEGG pathways with miR-133b target genes. We used microarrays to survey the lncRNA and mRNA expression profiles of colorectal cancer and para-cancer tissues. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed to explore the functions of the significantly dysregulated genes. An innovate method was employed that combined analyses of two microarray data sets to construct a miR-133b-mediated lncRNA-mRNA competing endogenous RNAs (ceRNA) network. Quantitative RT-PCR analysis was used to validate part of this network. GSEA was used to predict the potential functions of these lncRNAs. This study identifies and validates a new method to investigate the miR-133b-mediated lncRNA-mRNA ceRNA network and lays the foundation for future investigation into the role of lncRNAs in colorectal cancer.

  9. Stromal mast cells in invasive breast cancer are a marker of favourable prognosis: a study of 4,444 cases.

    PubMed

    Rajput, Ashish B; Turbin, Dmitry A; Cheang, Maggie Cu; Voduc, David K; Leung, Sam; Gelmon, Karen A; Gilks, C Blake; Huntsman, David G

    2008-01-01

    We have previously demonstrated in a pilot study of 348 invasive breast cancers that mast cell (MC) infiltrates within primary breast cancers are associated with a good prognosis. Our aim was to verify this finding in a larger cohort of invasive breast cancer patients and examine the relationship between the presence of MCs and other clinical and pathological features. Clinically annotated tissue microarrays (TMAs) containing 4,444 cases were constructed and stained with c-Kit (CD-117) using standard immunoperoxidase techniques to identify and quantify MCs. For statistical analysis, we applied a split-sample validation technique. Breast cancer specific survival was analyzed by Kaplan-Meier [KM] method and log rank test was used to compare survival curves. Survival analysis by KM method showed that the presence of stromal MCs was a favourable prognostic factor in the training set (P = 0.001), and the validation set group (P = 0.006). X-tile plot generated to define the optimal number of MCs showed that the presence of any number of stromal MCs predicted good prognosis. Multivariate analysis showed that the MC effect in the training set (Hazard ratio [HR] = 0.804, 95% Confidence interval [CI], 0.653-0.991, P = 0.041) and validation set analysis (HR = 0.846, 95% CI, 0.683-1.049, P = 0.128) was independent of age, tumor grade, tumor size, lymph node, ER and Her2 status. This study concludes that stromal MC infiltration in invasive breast cancer is an independent good prognostic marker and reiterates the critical role of local inflammatory responses in breast cancer progression.

  10. Development and validation of a mixed-tissue oligonucleotide DNA microarray for Atlantic bluefin tuna, Thunnus thynnus (Linnaeus, 1758).

    PubMed

    Trumbić, Željka; Bekaert, Michaël; Taggart, John B; Bron, James E; Gharbi, Karim; Mladineo, Ivona

    2015-11-25

    The largest of the tuna species, Atlantic bluefin tuna (Thunnus thynnus), inhabits the North Atlantic Ocean and the Mediterranean Sea and is considered to be an endangered species, largely a consequence of overfishing. T. thynnus aquaculture, referred to as fattening or farming, is a capture based activity dependent on yearly renewal from the wild. Thus, the development of aquaculture practices independent of wild resources can provide an important contribution towards ensuring security and sustainability of this species in the longer-term. The development of such practices is today greatly assisted by large scale transcriptomic studies. We have used pyrosequencing technology to sequence a mixed-tissue normalised cDNA library, derived from adult T. thynnus. A total of 976,904 raw sequence reads were assembled into 33,105 unique transcripts having a mean length of 893 bases and an N50 of 870. Of these, 33.4% showed similarity to known proteins or gene transcripts and 86.6% of them were matched to the congeneric Pacific bluefin tuna (Thunnus orientalis) genome, compared to 70.3% for the more distantly related Nile tilapia (Oreochromis niloticus) genome. Transcript sequences were used to develop a novel 15 K Agilent oligonucleotide DNA microarray for T. thynnus and comparative tissue gene expression profiles were inferred for gill, heart, liver, ovaries and testes. Functional contrasts were strongest between gills and ovaries. Gills were particularly associated with immune system, signal transduction and cell communication, while ovaries displayed signatures of glycan biosynthesis, nucleotide metabolism, transcription, translation, replication and repair. Sequence data generated from a novel mixed-tissue T. thynnus cDNA library provide an important transcriptomic resource that can be further employed for study of various aspects of T. thynnus ecology and genomics, with strong applications in aquaculture. Tissue-specific gene expression profiles inferred through the use of novel oligo-microarray can serve in the design of new and more focused transcriptomic studies for future research of tuna physiology and assessment of the welfare in a production environment.

  11. Expression and activation of STAT3 in ischemia-induced retinopathy.

    PubMed

    Mechoulam, Hadas; Pierce, Eric A

    2005-12-01

    Signal transducer and activator of transcription protein-3 (STAT3) is a transcription factor that participates in many biological processes, including tumor angiogenesis. The expression and activation of Stat3 in the mouse model of ischemia-induced retinal neovascularization was investigated to evaluate the possible role of STAT3 in retinal vascular disease. Retinal neovascularization was induced in mice pups by exposure to hyperoxia. Gene microarrays were used to identify genes whose expression in the retina is altered at postnatal day (P)12 and P18. The relative levels of Stat3 mRNA were determined by semiquantitative RT-PCR. Stat3 protein levels and the levels of the activated form of Stat3 (pStat3) at P12, P15, P18, and P22 were determined by immunoblot analysis. Stat3 and pStat3 were demonstrated by immunofluorescence in retinal sections at P12, P15, and P18. In a series of microarray experiments, increased Stat3 mRNA levels in the retina were detected at P18. This result was validated by RT-PCR and demonstrated that Stat3 and pStat3 protein levels also increase during the development of neovascularization. Stat3 partially colocalized with blood vessels at the peak of neovascularization. pStat3 colocalized completely with blood vessels in both experimental samples and age-matched controls. pStat3 staining increased notably in the neovascular vessels at P15 and P18 and was more strongly associated with the epiretinal vessels than with inner retinal vessels. It was not detected in larger blood vessels, such as those of the optic nerve. The level of Stat3 expression increased, and pStat3 was observed in association with retinal neovascularization. Activated Stat3 was preferentially localized to neovascular retinal vessels. These data suggest that STAT3 may have a role in proliferative retinopathy.

  12. DNA Mismatch Repair Deficiency Promotes Genomic Instability in a Subset of Papillary Thyroid Cancers.

    PubMed

    Javid, Mahsa; Sasanakietkul, Thanyawat; Nicolson, Norman G; Gibson, Courtney E; Callender, Glenda G; Korah, Reju; Carling, Tobias

    2018-02-01

    Efficient DNA damage repair by MutL-homolog DNA mismatch repair (MMR) enzymes, MLH1, MLH3, PMS1 and PMS2, are required to maintain thyrocyte genomic integrity. We hypothesized that persistent oxidative stress and consequent transcriptional dysregulation observed in thyroid follicles will lead to MMR deficiency and potentiate papillary thyroid tumorigenesis. MMR gene expression was analyzed by targeted microarray in 18 papillary thyroid cancer (PTC), 9 paracarcinoma normal thyroid (PCNT) and 10 normal thyroid (NT) samples. The findings were validated by qRT-PCR, and in follicular thyroid cancers (FTC) and follicular thyroid adenomas (FTA) for comparison. FOXO transcription factor expression was also analyzed. Protein expression was assessed by immunohistochemistry. Genomic integrity was evaluated by whole-exome sequencing-derived read-depth analysis and Mann-Whitney U test. Clinical correlations were assessed using Fisher's exact and t tests. Microarray and qRT-PCR revealed reduced expression of all four MMR genes in PTC compared with PCNT and of PMS2 compared with NT. FTC and FTA showed upregulation in MLH1, MLH3 and PMS2. PMS2 protein expression correlated with the mRNA expression pattern. FOXO1 showed lower expression in PMS2-deficient PTCs (log2-fold change -1.72 vs. -0.55, U = 11, p < 0.05 two-tailed). Rate of LOH, a measure of genomic instability, was higher in PMS2-deficient PTCs (median 3 and 1, respectively; U = 26, p < 0.05 two-tailed). No correlation was noted between MMR deficiency and clinical characteristics. MMR deficiency, potentially promoted by FOXO1 suppression, may explain the etiology for PTC development in some patients. FTC and FTA retain MMR activity and are likely caused by a different tumorigenic pathway.

  13. Persistent Exposure to Porphyromonas gingivalis Promotes Proliferative and Invasion Capabilities, and Tumorigenic Properties of Human Immortalized Oral Epithelial Cells

    PubMed Central

    Geng, Fengxue; Liu, Junchao; Guo, Yan; Li, Chen; Wang, Hongyang; Wang, Hongyan; Zhao, Haijiao; Pan, Yaping

    2017-01-01

    Recent epidemiological studies revealed a significant association between oral squamous cell carcinoma (OSCC) and Porphyromonas gingivalis, a major pathogen of periodontal disease. As a keystone pathogen of periodontitis, P. gingivalis is known not only to damage local periodontal tissues, but also to evade the host immune system and eventually affect systemic health. However, its role in OSCC has yet to be defined. To explore the underlying effect of chronic P. gingivalis infection on OSCC and to identify relevant biomarkers as promising targets for therapy and prevention, we established a novel model by exposing human immortalized oral epithelial cells (HIOECs) to P. gingivalis at a low multiplicity of infection (MOI) for 5–23 weeks. The P. gingivalis infected HIOECs were monitored for tumor biological alteration by proliferation, wound healing, transwell invasion, and gelatin zymography assays. Microarray and proteomic analyses were performed on HIOECs infected with P. gingivalis for 15 weeks, and some selected data were validated by quantitative real-time PCR and (or) western blot on cells infected for 15 and 23 weeks. Persistent exposure to P. gingivalis caused cell morphological changes, increased proliferation ability with higher S phase fraction in the cell cycle, and promoted cell migratory and invasive properties. In combining results of bioinformatics analyses and validation assays, tumor-related genes such as NNMT, FLI1, GAS6, lncRNA CCAT1, PDCD1LG2, and CD274 may be considered as the key regulators in tumor-like transformation in response to long-time exposure of P. gingivalis. In addition, some useful clinical biomarkers and novel proteins were also presented. In conclusion, P. gingivalis could promote tumorigenic properties of HIOECs, indicating that chronic P. gingivalis infection may be considered as a potential risk factor for oral cancer. The key regulators detected from the present model might be used in monitoring the development of OSCC with chronic periodontal infection. PMID:28286742

  14. Impact of Sonic Hedgehog Pathway Expression on Outcome in HPV Negative Head and Neck Carcinoma Patients after Surgery and Adjuvant Radiotherapy

    PubMed Central

    Enzenhofer, Elisabeth; Parzefall, Thomas; Haymerle, Georg; Schneider, Sven; Kadletz, Lorenz; Heiduschka, Gregor; Pammer, Johannes; Oberndorfer, Felicitas; Wrba, Fritz; Loader, Benjamin; Grasl, Matthäus Christoph; Perisanidis, Christos; Erovic, Boban M.

    2016-01-01

    Introduction HPV positive patients suffering from head and neck cancer benefit from intensified radiotherapy when applied as a primary as well as an adjuvant treatment strategy. However, HPV negative patients treated with surgery and adjuvant radiotherapy lack validated prognostic biomarkers. It is therefore important to define prognostic biomarkers in this particular patient population. Especially, ´high-risk groups´ need to be defined in order to adapt treatment protocols. Since dysregulation of the sonic hedgehog pathway plays an important role in carcinogenesis, we aimed to assess whether members of the sonic hedgehog-signaling pathway may act as prognostic factors in patients with HPV negative head and neck squamous cell carcinoma. Materials and Methods In this prospective study, pretreatment tumor biopsies of patients with head and neck squamous cell carcinoma were taken during panendoscopy (2005 to 2008). All patients were treated with surgery and postoperative radiotherapy. After assessment of HPV and p16 status, protein expression profiles of the Sonic hedgehog-signaling pathway were determined by immunohistochemistry and tissue microarray analyses in 36 HPV negative tumor biopsies. Expression profiles of Sonic hedgehog, Indian hedgehog, Patched, Smoothened, Gli-1, Gli-2 and Gli-3 were correlated with patients´ clinical data, local-control rate, disease-free as well as overall survival. Data from The Cancer Genome Atlas databank were used for external validation of our results. Results Gli-1 (p = 0.04) and Gli-2 (p = 0.02) overexpression was significantly linked to improved overall survival of HPV negative patients. Gli-2 (p = 0.04) overexpression correlated significantly with prolonged disease-free survival. Cox-multivariate analysis showed that overexpression of Gli-2 correlated independently (HR 0.40, 95% CI 0.16–0.95, p = 0.03) with increased overall survival. Discussion Gli-1 and Gli-2 overexpression represents a substantial prognostic factor for overall and disease-free survival in patients with locally advanced HPV negative head and neck cancer undergoing surgery and postoperative radiotherapy. PMID:27918595

  15. Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis.

    PubMed

    Khan, Meraj A; Sengupta, Jayasree; Mittal, Suneeta; Ghosh, Debabrata

    2012-09-24

    In order to obtain a lead of the pathophysiology of endometriosis, genome-wide expressional analyses of eutopic and ectopic endometrium have earlier been reported, however, the effects of stages of severity and phases of menstrual cycle on expressional profiles have not been examined. The effect of genetic heterogeneity and fertility history on transcriptional activity was also not considered. In the present study, a genome-wide expression analysis of autologous, paired eutopic and ectopic endometrial samples obtained from fertile women (n=18) suffering from moderate (stage 3; n=8) or severe (stage 4; n=10) ovarian endometriosis during proliferative (n=13) and secretory (n=5) phases of menstrual cycle was performed. Individual pure RNA samples were subjected to Agilent's Whole Human Genome 44K microarray experiments. Microarray data were validated (P<0.01) by estimating transcript copy numbers by performing real time RT-PCR of seven (7) arbitrarily selected genes in all samples. The data obtained were subjected to differential expression (DE) and differential co-expression (DC) analyses followed by networks and enrichment analysis, and gene set enrichment analysis (GSEA). The reproducibility of prediction based on GSEA implementation of DC results was assessed by examining the relative expressions of twenty eight (28) selected genes in RNA samples obtained from fresh pool of eutopic and ectopic samples from confirmed ovarian endometriosis patients with stages 3 and 4 (n=4/each) during proliferative and secretory (n=4/each) phases. Higher clustering effect of pairing (cluster distance, cd=0.1) in samples from same individuals on expressional arrays among eutopic and ectopic samples was observed as compared to that of clinical stages of severity (cd=0.5) and phases of menstrual cycle (cd=0.6). Post hoc analysis revealed anomaly in the expressional profiles of several genes associated with immunological, neuracrine and endocrine functions and gynecological cancers however with no overt oncogenic potential in endometriotic tissue. Dys-regulation of three (CLOCK, ESR1, and MYC) major transcription factors appeared to be significant causative factors in the pathogenesis of ovarian endometriosis. A novel cohort of twenty-eight (28) genes representing potential marker for ovarian endometriosis in fertile women was discovered. Dysfunctional expression of immuno-neuro-endocrine behaviour in endometrium appeared critical to endometriosis. Although no overt oncogenic potential was evident, several genes associated with gynecological cancers were observed to be high in the expressional profiles in endometriotic tissue.

  16. Met Nuclear Localization and Signaling in Breast Cancer

    DTIC Science & Technology

    2006-05-01

    and in germinal regions of many tissues using 4 unique antibodies . Cell fractionation reveals a 60kDa band recognized by C-terminal Met antibodies ...cascades such as Gab1 , Grb2 and PI3K, leading to proliferation, scattering, increased motility, invasion and branching morphogenesis (reviewed in (2...Identification of Met antibodies for use on tissue microarray of normal and cancerous cells, Months 12-24 Task 2. Definition of the domain

  17. Secretory Leukocyte Protease Inhibitor Expression and High-Risk HPV Infection in Anal Lesions of HIV-Positive Patients.

    PubMed

    Nicol, Alcina F; Brunette, Laurie L; Nuovo, Gerard J; Grinsztejn, Beatriz; Friedman, Ruth K; Veloso, Valdiléa G; Cunha, Cynthia B; Coutinho, José R; Vianna-Andrade, Cecilia; Oliveira, Nathalia S; Woodham, Andrew W; DA Silva, Diane M; Kast, W Martin

    2016-09-01

    The aim of this study was to evaluate secretory leukocyte protease inhibitor (SLPI) expression in anal biopsies from HIV-positive (HIV+) individuals, and compare that to anal intraepithelial neoplasia (AIN) diagnoses and human papillomavirus (HPV) status. This is a cross-sectional study of a cohort of 54 HIV+ (31 males and 23 females) from an AIDS clinic in Rio de Janeiro, Brazil. The study material consisted of anorectal tissue biopsies obtained from HIV+ subjects, which were used to construct tissue microarray paraffin blocks for immunohistochemical analysis of SLPI expression. Biopsies were evaluated by an expert pathologist and classified as low-grade AIN1, high-grade AIN2/3, or normal squamous epithelium. In addition, DNA from the biopsies was extracted and analyzed for the presence of low- or high-risk HPV DNA. Histologically, normal squamous epithelium from the anorectal region showed strong positive SLPI staining in 17/20 (85%) samples. In comparison, 9/17 (53%) dysplastic squamous epithelial samples from AIN1 patients showed strong SLPI staining, and only 5/17 (29%) samples from AIN2/3 patients exhibited strong SPLI staining, which both were significantly fewer than those from normal tissue (P = 0.005). Furthermore, there was a significantly higher proportion of samples in which oncogenic high-risk HPV genotypes were detected in low SLPI-expressing tissues than that in tissues with high SLPI expression (P = 0.040). Taken together these results suggest that low SLPI expression is associated with high-risk HPV infections in the development of AIN.

  18. Cytoplasmic mislocalization of overexpressed FOXF1 is associated with the malignancy and metastasis of colorectal adenocarcinomas

    PubMed Central

    Lo, Pang-Kuo; Lee, Ji Shin; Chen, Hexin; Reisman, David.; Berger, Franklin G.; Sukumar, Saraswati

    2012-01-01

    Our previous studies have revealed that the human FOXF1 gene, encoding a transcription factor member of the forkhead box (FOX) family, functions as a tumor suppressor and its expression is frequently silenced in breast cancer via DNA hypermethylation. Moreover, we recently reported that FOXF1 expression is preferentially silenced in colorectal cancer cell lines with inactive p53 and knockdown of FOXF1 caused genomic instability in FOXF1-expressing colorectal cancer cells with a defect in the p53-p21WAF1 checkpoint, suggesting that FOXF1 plays a key role in colorectal tumorigenesis. Given that the in vivo role of FOXF1 in colorectal cancer remains unknown, the study here was aimed at delineating the clinical relevance of FOXF1 in colorectal adenocarcinomas. To characterize FOXF1 protein expression in colorectal cancer, designed tissue microarrays, comprising 50 cases of primary colorectal adenocarcinoma paired with matched adjacent normal tissue, were utilized in the immunohistochemistry (IHC) study. The IHC results showed that for adjacent normal colorectal tissue, the FOXF1 protein was only detected in stroma, not in epithelium, with either cytoplasmic staining (70% of total cases) or a mix of cytoplasmic and nuclear staining (6%). In contrast, for colorectal adenocarcinomas, FOXF1 staining was predominately identified in the cytoplasm of tumor epithelial cells (40% of total cases) and tumor-associated stromal cells of some cases (10%) also exhibited FOXF1 positivity in their cytoplasm. Cytoplasmic FOXF1 protein expression in tumor epithelial cells positively correlated with the histologic grade, depth of invasion, stage and lymphatic metastasis of colorectal adenocarcinomas (p < 0.05). Moreover, in silico meta-analysis of Oncomine’s cancer microarray database indicates that FOXF1 mRNA is overexpressed in a significant subset of colorectal adenocarcinoma tumors compared with normal colorectal tissue and other types of cancers. Our findings for the first time have revealed that the FOXF1 protein is overexpressed as well as mislocalized in cancerous epithelial cells and underexpressed/lost in tumor-associated stromal fibroblasts of colorectal adenocarcinomas, and suggest that FOXF1 is a potential prognostic marker due to its association with the malignancy and metastasis of colorectal cancer. PMID:23103611

  19. Intratumoral immune cells expressing PD-1/PD-L1 and their prognostic implications in cancer: a meta-analysis.

    PubMed

    Kim, Younghoon; Wen, Xianyu; Cho, Nam Yun; Kang, Gyeong Hoon

    2018-05-01

    The prognostic value of immune cells expressing programmed cell death 1 (PD-1) and PD-1 ligand 1 (PD-L1) in cancer are controversial, and the potential differential impact of using tissue microarrays and whole tissue sections to assess the positivity of immune cells has not been addressed. The current study included 30 eligible studies with 7251 patients that evaluated the relationship between tumor-infiltrating lymphocytes expressing PD-1/PD-L1 and overall survival and disease-free survival, or progression-free survival. Subgroup analysis was based on the tissue type of cancer and the type of tissue sampling (tissue microarray or whole tissue section). In the meta-analysis, PD-1-positive and PD-L1-positive tumor-infiltrating lymphocytes had a positive effect on disease-free survival or progression-free survival (hazard ratio [HR] 0.732; 95% confidence interval [CI] 0.565, 0.947; and HR 0.727; 95% CI 0.584, 0.905, respectively). PD-L1-positive tumor-infiltrating lymphocytes had a positive impact on overall survival in studies using tissue microarray (HR 0.586; 95% CI 0.476, 0.721), but had a poor impact when only whole tissue sections were considered (HR 1.558; 95% CI 1.232, 1.969). Lung cancer was associated with good overall survival and disease-free survival (HR 0.639; 95% CI 0.491, 0.831; and HR 0.693; 95% CI 0.538, 0.891, respectively) for PD-1-positive tumor-infiltrating lymphocytes, and colorectal cancer showed favorable disease-free survival (HR 0.471; 95% CI 0.308, 0.722) for PD-L1-positive tumor-infiltrating lymphocytes. Immune cells expressing PD-1 and PD-L1 within tumors are associated with the prognosis. However, the correlation may vary among different tumor types and by the type of tissue sampling used for the assessment.

  20. Decreased expression of serine protease inhibitor family G1 (SERPING1) in prostate cancer can help distinguish high-risk prostate cancer and predicts malignant progression.

    PubMed

    Peng, Shengmeng; Du, Tao; Wu, Wanhua; Chen, Xianju; Lai, Yiming; Zhu, Dingjun; Wang, Qiong; Ma, Xiaoming; Lin, Chunhao; Li, Zean; Guo, Zhenghui; Huang, Hai

    2018-06-11

    The aim of this study was to investigate the associations of serine proteinase inhibitor family G1 (SERPING1) down-regulation with poor prognosis in patients with prostate cancer (PCa). Furthermore, we aim to find more novel and effective PCa molecular markers to provide an early screening of PCa, distinguish patients with aggressive PCa, predict the prognosis, or reduce the economic burden of PCa. SERPING1 protein expression in both human PCa and normal prostate tissues was detected by immunohistochemical staining, which intensity was analyzed in association with clinical pathological parameters such Gleason score, pathological grade, clinical stage, tumor stage, lymph node metastasis, and distant metastasis. Moreover, we used The Cancer Genome Atlas (TCGA) Database, Taylor Database, and Oncomine dataset to validate our immunohistochemical results and investigated the value of SERPING1 in PCa at mRNA level. Kaplan-Meier analysis and Cox regression analysis were performed to evaluate the relationship between SERPING1 and prognosis of patients with PCa. The outcome showed that SERPING1 was expressed mainly in cytoplasm of grand cells of prostate tissue and was significantly expressed less in PCa (P<0.001). Furthermore, in the tissue microarray of our samples, decreasing expression of SERPING1 was correlated with the higher Gleason score (P = 0.004), the higher pathological grade (P = 0.01) and the advanced tumor stage (P = 0.005) at protein level. In TCGA dataset and Taylor Dataset, low-expressed SERPING1 was correlated with the younger patient (P = 0.02 in TCGA, P = 0.044 in Taylor) and the higher Gleason score (P = 0.019 in TCGA, P<0.001 in Taylor) at mRNA level. Kaplan-Meier analysis revealed that the lower mRNA of SERPING1 predicted lower overall survivals (P = 0.027 in TCGA), lower disease-free survival (P = 0.029) and lower biochemical recurrence-free survival (P = 0.011 in Taylor). Data from Oncomine database shown that SERPING1 low expression implying higher malignancy of prostate lesions. Using multivariate analysis, we also found that SERPING1 expression was independent prognostic marker of poor disease-free survival and biochemical recurrence-free survival. SERPING1 may play an important role in PCa and can be serve as a novel marker in diagnosis and prognostic prediction in PCa. In addition, levels of SERPING1 can help identify low-risk prostate to provide reference for patients with PCa to accept active surveillance and reduce overtreatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency

    PubMed Central

    2009-01-01

    Background Prostate cancer is a world wide leading cancer and it is characterized by its aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different stages and grades related to the aggressive metastasis disease. Although numerous studies used microarray analysis and traditional clustering method to identify the individual genes during the disease processes, the important gene regulations remain unclear. We present a computational method for inferring genetic regulatory networks from micorarray data automatically with transcription factor analysis and conditional independence testing to explore the potential significant gene regulatory networks that are correlated with cancer, tumor grade and stage in the prostate cancer. Results To deal with missing values in microarray data, we used a K-nearest-neighbors (KNN) algorithm to determine the precise expression values. We applied web services technology to wrap the bioinformatics toolkits and databases to automatically extract the promoter regions of DNA sequences and predicted the transcription factors that regulate the gene expressions. We adopt the microarray datasets consists of 62 primary tumors, 41 normal prostate tissues from Stanford Microarray Database (SMD) as a target dataset to evaluate our method. The predicted results showed that the possible biomarker genes related to cancer and denoted the androgen functions and processes may be in the development of the prostate cancer and promote the cell death in cell cycle. Our predicted results showed that sub-networks of genes SREBF1, STAT6 and PBX1 are strongly related to a high extent while ETS transcription factors ELK1, JUN and EGR2 are related to a low extent. Gene SLC22A3 may explain clinically the differentiation associated with the high grade cancer compared with low grade cancer. Enhancer of Zeste Homolg 2 (EZH2) regulated by RUNX1 and STAT3 is correlated to the pathological stage. Conclusions We provide a computational framework to reconstruct the genetic regulatory network from the microarray data using biological knowledge and constraint-based inferences. Our method is helpful in verifying possible interaction relations in gene regulatory networks and filtering out incorrect relations inferred by imperfect methods. We predicted not only individual gene related to cancer but also discovered significant gene regulation networks. Our method is also validated in several enriched published papers and databases and the significant gene regulatory networks perform critical biological functions and processes including cell adhesion molecules, androgen and estrogen metabolism, smooth muscle contraction, and GO-annotated processes. Those significant gene regulations and the critical concept of tumor progression are useful to understand cancer biology and disease treatment. PMID:20025723

  2. Decoy receptor 3 is a prognostic factor in renal cell cancer.

    PubMed

    Macher-Goeppinger, Stephan; Aulmann, Sebastian; Wagener, Nina; Funke, Benjamin; Tagscherer, Katrin E; Haferkamp, Axel; Hohenfellner, Markus; Kim, Sunghee; Autschbach, Frank; Schirmacher, Peter; Roth, Wilfried

    2008-10-01

    Decoy receptor 3 (DcR3) is a soluble protein that binds to and inactivates the death ligand CD95L. Here, we studied a possible association between DcR3 expression and prognosis in patients with renal cell carcinomas (RCCs). A tissue microarray containing RCC tumor tissue samples and corresponding normal tissue samples was generated. Decoy receptor 3 expression in tumors of 560 patients was examined by immunohistochemistry. The effect of DcR3 expression on disease-specific survival and progression-free survival was assessed using univariate analysis and multivariate Cox regression analysis. Decoy receptor 3 serum levels were determined by ELISA. High DcR3 expression was associated with high-grade (P = .005) and high-stage (P = .048) RCCs. The incidence of distant metastasis (P = .03) and lymph node metastasis (P = .002) was significantly higher in the group with high DcR3 expression. Decoy receptor 3 expression correlated negatively with disease-specific survival (P < .001) and progression-free survival (P < .001) in univariate analyses. A multivariate Cox regression analysis retained DcR3 expression as an independent prognostic factor that outperformed the Karnofsky performance status. In patients with high-stage RCCs expressing DcR3, the 2-year survival probability was 25%, whereas in patients with DcR3-negative tumors, the survival probability was 65% (P < .001). Moreover, DcR3 serum levels were significantly higher in patients with high-stage localized disease (P = .007) and metastatic disease (P = .001). DcR3 expression is an independent prognostic factor of RCC progression and mortality. Therefore, the assessment of DcR3 expression levels offers valuable prognostic information that could be used to select patients for adjuvant therapy studies.

  3. Image-guided genomic analysis of tissue response to laser-induced thermal stress

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Helms, Mike; Kalish, Flora; Contag, Christopher H.

    2011-05-01

    The cytoprotective response to thermal injury is characterized by transcriptional activation of ``heat shock proteins'' (hsp) and proinflammatory proteins. Expression of these proteins may predict cellular survival. Microarray analyses were performed to identify spatially distinct gene expression patterns responding to thermal injury. Laser injury zones were identified by expression of a transgene reporter comprised of the 70 kD hsp gene and the firefly luciferase coding sequence. Zones included the laser spot, the surrounding region where hsp70-luc expression was increased, and a region adjacent to the surrounding region. A total of 145 genes were up-regulated in the laser irradiated region, while 69 were up-regulated in the adjacent region. At 7 hours the chemokine Cxcl3 was the highest expressed gene in the laser spot (24 fold) and adjacent region (32 fold). Chemokines were the most common up-regulated genes identified. Microarray gene expression was successfully validated using qRT- polymerase chain reaction for selected genes of interest. The early response genes are likely involved in cytoprotection and initiation of the healing response. Their regulatory elements will benefit creating the next generation reporter mice and controlling expression of therapeutic proteins. The identified genes serve as drug development targets that may prevent acute tissue damage and accelerate healing.

  4. MCT4 surpasses the prognostic relevance of the ancillary protein CD147 in clear cell renal cell carcinoma.

    PubMed

    Fisel, Pascale; Stühler, Viktoria; Bedke, Jens; Winter, Stefan; Rausch, Steffen; Hennenlotter, Jörg; Nies, Anne T; Stenzl, Arnulf; Scharpf, Marcus; Fend, Falko; Kruck, Stephan; Schwab, Matthias; Schaeffeler, Elke

    2015-10-13

    Cluster of differentiation 147 (CD147/BSG) is a transmembrane glycoprotein mediating oncogenic processes partly through its role as binding partner for monocarboxylate transporter MCT4/SLC16A3. As demonstrated for MCT4, CD147 is proposed to be associated with progression in clear cell renal cell carcinoma (ccRCC). In this study, we evaluated the prognostic relevance of CD147 in comparison to MCT4/SLC16A3 expression and DNA methylation. CD147 protein expression was assessed in two independent ccRCC-cohorts (n = 186, n = 59) by immunohistochemical staining of tissue microarrays and subsequent manual as well as automated software-supported scoring (Tissue Studio, Definien sAG). Epigenetic regulation of CD147 was investigated using RNAseq and DNA methylation data of The Cancer Genome Atlas. These results were validated in our cohort. Relevance of prognostic models for cancer-specific survival, comprising CD147 and MCT4 expression or SLC16A3 DNA methylation, was compared using chi-square statistics. CD147 protein expression generated with Tissue Studio correlated significantly with those from manual scoring (P < 0.0001, rS = 0.85), indicating feasibility of software-based evaluation exemplarily for the membrane protein CD147 in ccRCC. Association of CD147 expression with patient outcome differed between cohorts. DNA methylation in the CD147/BSG promoter was not associated with expression. Comparison of prognostic relevance of CD147/BSG and MCT4/SLC16A3, showed higher significance for MCT4 expression and superior prognostic power for DNA methylation at specific CpG-sites in the SLC16A3 promoter (e.g. CD147 protein: P = 0.7780,Harrell's c-index = 53.7% vs. DNA methylation: P = 0.0076, Harrell's c-index = 80.0%). Prognostic significance of CD147 protein expression could not surpass that of MCT4, especially of SLC16A3 DNA methylation, corroborating the role of MCT4 as prognostic biomarker for ccRCC.

  5. MCT4 surpasses the prognostic relevance of the ancillary protein CD147 in clear cell renal cell carcinoma

    PubMed Central

    Winter, Stefan; Rausch, Steffen; Hennenlotter, Jörg; Nies, Anne T.; Stenzl, Arnulf; Scharpf, Marcus; Fend, Falko; Kruck, Stephan; Schwab, Matthias; Schaeffeler, Elke

    2015-01-01

    Cluster of differentiation 147 (CD147/BSG) is a transmembrane glycoprotein mediating oncogenic processes partly through its role as binding partner for monocarboxylate transporter MCT4/SLC16A3. As demonstrated for MCT4, CD147 is proposed to be associated with progression in clear cell renal cell carcinoma (ccRCC). In this study, we evaluated the prognostic relevance of CD147 in comparison to MCT4/SLC16A3 expression and DNA methylation. Methods CD147 protein expression was assessed in two independent ccRCC-cohorts (n = 186, n = 59) by immunohistochemical staining of tissue microarrays and subsequent manual as well as automated software-supported scoring (Tissue Studio, Definien sAG). Epigenetic regulation of CD147 was investigated using RNAseq and DNA methylation data of The Cancer Genome Atlas. These results were validated in our cohort. Relevance of prognostic models for cancer-specific survival, comprising CD147 and MCT4 expression or SLC16A3 DNA methylation, was compared using chi-square statistics. Results CD147 protein expression generated with Tissue Studio correlated significantly with those from manual scoring (P < 0.0001, rS = 0.85), indicating feasibility of software-based evaluation exemplarily for the membrane protein CD147 in ccRCC. Association of CD147 expression with patient outcome differed between cohorts. DNA methylation in the CD147/BSG promoter was not associated with expression. Comparison of prognostic relevance of CD147/BSG and MCT4/SLC16A3, showed higher significance for MCT4 expression and superior prognostic power for DNA methylation at specific CpG-sites in the SLC16A3 promoter (e.g. CD147 protein: P = 0.7780, Harrell's c-index = 53.7% vs. DNA methylation: P = 0.0076, Harrell's c-index = 80.0%). Conclusions Prognostic significance of CD147 protein expression could not surpass that of MCT4, especially of SLC16A3 DNA methylation, corroborating the role of MCT4 as prognostic biomarker for ccRCC. PMID:26384346

  6. MUC1, MUC2, MUC4, MUC5AC and MUC6 expression in the progression of prostate cancer.

    PubMed

    Cozzi, Paul J; Wang, Jian; Delprado, Warick; Perkins, Alan C; Allen, Barry J; Russell, Pamela J; Li, Yong

    2005-01-01

    Molecular changes are vital for the development of prognostic markers and therapeutic modalities of prostate cancer (CaP). There is growing interest in mucins as treatment targets in human malignancies, including CaP. The role of their expression in the progression of CaP is however unclear. We examined the expressions MUC1, MUC2, MUC4, MUC5AC and MUC6 in CaP tissues using tissue microarrays (TMAs) to look for tumor-associated antigens (TAAs) for targeted therapy. In this study, 120 paraffin-embedded specimens were selected from patients who underwent radical retro-pubic prostatectomy (RRP) or trans-urethral-resection of the prostate (TURP) for primary, untreated CaP and 10 matched lymph node metastases. A series of MUC monoclonal antibodies (mAbs) was used on TMAs by standard immunohistochemistry. Our results indicate that the over-expression of MUC1 was detected in 58% of primary CaP tissues and 90% of lymph node metastases but not in normal prostate or benign tissues, while the expression of MUC2, MUC4, MUC5AC and MUC6 was found to be negative in both normal and cancer tissues. Of the MUC1 positive tumors 86% were Gleason grade 7 or higher. Over-expression of MUC1 was found in late stage CaP while MUC2, 4, 5AC and 6 were negative in CaP. MUC1 is a TAA that is highly related to tumor progression in CaP patients. This antigen is ideal for targeted therapy to control micrometastases and hormone refractory disease but additional studies are necessary to assess its usefulness in patient biopsies and CaP bone metastases before clinical trial.

  7. Lumen-based detection of prostate cancer via convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Kwak, Jin Tae; Hewitt, Stephen M.

    2017-03-01

    We present a deep learning approach for detecting prostate cancers. The approach consists of two steps. In the first step, we perform tissue segmentation that identifies lumens within digitized prostate tissue specimen images. Intensity- and texture-based image features are computed at five different scales, and a multiview boosting method is adopted to cooperatively combine the image features from differing scales and to identify lumens. In the second step, we utilize convolutional neural networks (CNN) to automatically extract high-level image features of lumens and to predict cancers. The segmented lumens are rescaled to reduce computational complexity and data augmentation by scaling, rotating, and flipping the rescaled image is applied to avoid overfitting. We evaluate the proposed method using two tissue microarrays (TMA) - TMA1 includes 162 tissue specimens (73 Benign and 89 Cancer) and TMA2 comprises 185 tissue specimens (70 Benign and 115 Cancer). In cross-validation on TMA1, the proposed method achieved an AUC of 0.95 (CI: 0.93-0.98). Trained on TMA1 and tested on TMA2, CNN obtained an AUC of 0.95 (CI: 0.92-0.98). This demonstrates that the proposed method can potentially improve prostate cancer pathology.

  8. Isolation of RNA From Peripheral Blood Cells: A Validation Study for Molecular Diagnostics by Microarray and Kinetic RT-PCR Assays - Application in Aerospace Medicine

    DTIC Science & Technology

    2004-01-01

    of RNA From Peripheral Blood Cells: A Validation Study for Molecular Diagnostics by Microarray and Kinetic RT-PCR Assays  Application in...VALIDATION STUDY FOR MOLECULAR DIAGNOSTICS BY MICROARRAY AND KINETIC RT-PCR ASSAYS  APPLICATION IN AEROSPACE MEDICINE INTRODUCTION Extraction of cellular

  9. Epigenetic Signatures at AQP3 and SOCS3 Engage in Low-Grade Inflammation across Different Tissues

    PubMed Central

    Marzi, Carola; Holdt, Lesca M; Fiorito, Giovanni; Tsai, Pei-Chien; Kretschmer, Anja; Wahl, Simone; Guarrera, Simonetta; Teupser, Daniel; Spector, Tim D.; Iacoviello, Licia; Sacerdote, Carlotta; Strauch, Konstantin; Lee, Serene; Thasler, Wolfgang E.; Peters, Annette; Thorand, Barbara; Wolf, Petra; Prokisch, Holger; Tumino, Rosario; Gieger, Christian; Krogh, Vittorio; Panico, Salvatore; Bell, Jordana T.; Matullo, Giuseppe

    2016-01-01

    Background Elevated levels of C-reactive protein (CRP, determined by a high-sensitivity assay) indicate low-grade inflammation which is implicated in many age-related disorders. Epigenetic studies on CRP might discover molecular mechanisms underlying CRP regulation. We aimed to identify DNA methylation sites related to CRP concentrations in cells and tissues regulating low-grade inflammation. Results Genome-wide DNA methylation was measured in peripheral blood in 1,741 participants of the KORA F4 study using Illumina HumanMethylation450 BeadChip arrays. Four CpG sites (located at BCL3, AQP3, SOCS3, and cg19821297 intergenic at chromosome 19p13.2, P ≤ 1.01E-07) were significantly hypomethylated at high CRP concentrations independent of various confounders including age, sex, BMI, smoking, and white blood cell composition. Findings were not sex-specific. CRP-related top genes were enriched in JAK/STAT pathways (Benjamini-Hochberg corrected P < 0.05). Results were followed-up in three studies using DNA from peripheral blood (EPICOR, n = 503) and adipose tissue (TwinsUK, n = 368) measured as described above and from liver tissue (LMU liver cohort, n = 286) measured by MALDI-TOF mass spectrometry using EpiTYPER. CpG sites at the AQP3 locus (significant p-values in peripheral blood = 1.72E-03 and liver tissue = 1.51E-03) and the SOCS3 locus (p-values in liver < 2.82E-05) were associated with CRP in the validation panels. Conclusions Epigenetic modifications seem to engage in low-grade inflammation, possibly via JAK/STAT mediated pathways. Results suggest a shared relevance across different tissues at the AQP3 locus and highlight a role of DNA methylation for CRP regulation at the SOCS3 locus. PMID:27824951

  10. CAPN3, DCT, MLANA and TYRP1 are overexpressed in skin of vitiligo vulgaris Mexican patients.

    PubMed

    Salinas-Santander, Mauricio; Trevino, Víctor; De la Rosa-Moreno, Eduardo; Verduzco-Garza, Bárbara; Sánchez-Domínguez, Celia N; Cantú-Salinas, Cristina; Ocampo-Garza, Jorge; Lagos-Rodríguez, Armando; Ocampo-Candiani, Jorge; Ortiz-López, Rocio

    2018-03-01

    Vitiligo is a disorder causing skin depigmentation, in which several factors have been proposed for its pathogenesis: Environmental, genetic and biological aspects of melanocytes, even those of the surrounding keratinocytes. However, the lack of understanding of the mechanisms has complicated the task of predicting the development and progression. The present study used microarray analysis to characterize the transcriptional profile of skin from Vitiligo Vulgaris (VV) patients and the identified transcripts were validated using targeted high-throughput RNA sequencing in a broader set of patients. For microarrays, mRNA was taken from 20 skin biopsies of 10 patients with VV (pigmented and depigmented skin biopsy of each), and 5 biopsies of healthy subjects matched for age and sex were used as a control. A signature was identified that contains the expression pattern of 722 genes between depigmented vitiligo skin vs. healthy control, 1,108 between the pigmented skin of vitiligo vs. healthy controls and 1,927 between pigmented skin, depigmented vitiligo and healthy controls (P<0.05; false discovery rate, <0.1). When comparing the pigmented and depigmented skin of patients with vitiligo, which reflects the real difference between both skin types, 5 differentially expressed genes were identified and further validated in 45 additional VV patients by RNA sequencing. This analysis showed significantly higher RNA levels of calpain-3, dopachrome tautomerase, melan-A and tyrosinase-related protein-1 genes. The data revealed that the pigmented skin of vitiligo is already affected at the level of gene expression and that the main differences between pigmented and non-pigmented skin are explained by the expression of genes associated with pigment metabolism.

  11. The expression of REG 1A and REG 1B is increased during acute amebic colitis.

    PubMed

    Peterson, Kristine M; Guo, Xiaoti; Elkahloun, Abdel G; Mondal, Dinesh; Bardhan, Pradip K; Sugawara, Akira; Duggal, Priya; Haque, Rashidul; Petri, William A

    2011-09-01

    Entamoeba histolytica, a protozoan parasite, is an important cause of diarrhea and colitis in the developing world. Amebic colitis is characterized by ulceration of the intestinal mucosa. We performed microarray analysis of intestinal biopsies during acute and convalescent amebiasis in order to identify genes potentially involved in tissue injury or repair. Colonic biopsy samples were obtained from 8 patients during acute E. histolytica colitis and again 60 days after recovery. Gene expression in the biopsies was evaluated using microarray, and confirmed by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). REG 1A and REG 1B were the most up-regulated of all genes in the human intestine in acute versus convalescent E. histolytica disease: as determined by microarray, the levels of induction were 7.4-fold and 10.7 fold for REG 1A and B; p=0.003 and p=0.006 respectively. Increased expression of REG 1A and REG 1B protein in the colonic crypt epithelial cells during acute amebiasis was similarly observed by immunohistochemistry. Because REG 1 protein is anti-apoptotic and pro-proliferative, and since E. histolytica induces apoptosis of the intestinal epithelium as part of its disease process, we next tested if REG 1 might be protective during amebiasis by preventing parasite-induced apoptosis. Intestinal epithelial cells from REG 1-/- mice were found to be more susceptible to spontaneous, and parasite-induced, apoptosis in vitro (p=0.03). We concluded that REG 1A and REG 1B were upregulated during amebiasis and may function to protect the intestinal epithelium from parasite-induced apoptosis. Published by Elsevier Ireland Ltd.

  12. Systematic evaluation of RNA quality, microarray data reliability and pathway analysis in fresh, fresh frozen and formalin-fixed paraffin-embedded tissue samples.

    PubMed

    Wimmer, Isabella; Tröscher, Anna R; Brunner, Florian; Rubino, Stephen J; Bien, Christian G; Weiner, Howard L; Lassmann, Hans; Bauer, Jan

    2018-04-20

    Formalin-fixed paraffin-embedded (FFPE) tissues are valuable resources commonly used in pathology. However, formalin fixation modifies nucleic acids challenging the isolation of high-quality RNA for genetic profiling. Here, we assessed feasibility and reliability of microarray studies analysing transcriptome data from fresh, fresh-frozen (FF) and FFPE tissues. We show that reproducible microarray data can be generated from only 2 ng FFPE-derived RNA. For RNA quality assessment, fragment size distribution (DV200) and qPCR proved most suitable. During RNA isolation, extending tissue lysis time to 10 hours reduced high-molecular-weight species, while additional incubation at 70 °C markedly increased RNA yields. Since FF- and FFPE-derived microarrays constitute different data entities, we used indirect measures to investigate gene signal variation and relative gene expression. Whole-genome analyses revealed high concordance rates, while reviewing on single-genes basis showed higher data variation in FFPE than FF arrays. Using an experimental model, gene set enrichment analysis (GSEA) of FFPE-derived microarrays and fresh tissue-derived RNA-Seq datasets yielded similarly affected pathways confirming the applicability of FFPE tissue in global gene expression analysis. Our study provides a workflow comprising RNA isolation, quality assessment and microarray profiling using minimal RNA input, thus enabling hypothesis-generating pathway analyses from limited amounts of precious, pathologically significant FFPE tissues.

  13. Expression of p53, p21 and cyclin D1 in penile cancer: p53 predicts poor prognosis.

    PubMed

    Gunia, Sven; Kakies, Christoph; Erbersdobler, Andreas; Hakenberg, Oliver W; Koch, Stefan; May, Matthias

    2012-03-01

    To evaluate the role of p53, p21 and cyclin D1 expression in patients with penile cancer (PC). Paraffin-embedded tissues from PC specimens from six pathology departments were subjected to a central histopathological review performed by one pathologist. The tissue microarray technique was used for immunostaining which was evaluated by two independent pathologists and correlated with cancer-specific survival (CSS). κ-statistics were used to assess interobserver variability. Uni- and multivariable Cox proportional hazards analysis was applied to assess the independent effects of several prognostic factors on CSS over a median of 32 months (IQR 6-66 months). Specimens and clinical data from 110 men treated surgically for primary PC were collected. p53 staining was positive in 30 and negative in 62 specimens. κ-statistics showed substantial interobserver reproducibility of p53 staining evaluation (κ=0.73; p<0.001). The 5-year CSS rate for the entire study cohort was 74%. Five-year CSS was 84% in p53-negative and 51% in p53-positive PC patients (p=0.003). Multivariable analysis showed p53 (HR=3.20; p=0.041) and pT-stage (HR=4.29; p<0.001) as independent significant prognostic factors for CSS. Cyclin D1 and p21 expression were not correlated with survival. However, incorporating p21 into a multivariable Cox model did contribute to improved model quality for predicting CSS. In patients with PC, the expression of p53 in the primary tumour specimen can be reproducibly assessed and is negatively associated with cancer specific survival.

  14. EST resources and establishment and validation of a 16k cDNA microarray from Atlantic cod (Gadus morhua).

    PubMed

    Edvardsen, Rolf B; Malde, Ketil; Mittelholzer, Christian; Taranger, Geir Lasse; Nilsen, Frank

    2011-03-01

    The Atlantic cod, Gadus morhua, is an important species both for traditional fishery and increasingly also in fish farming. The Atlantic cod is also under potential threat from various environmental changes such as pollution and climate change, but the biological impact of such changes are not well known, in particular when it comes to sublethal effects that can be difficult to assert. Modern molecular and genomic approaches have revolutionized biological research during the last decade, and offer new avenues to study biological functions and e.g. the impact of anthropogenic activities at different life-stages for a given organism. In order to develop genomic data and genomic tools for Atlantic cod we conducted a program were we constructed 20 cDNA libraries, and produced and analyzed 44006 expressed sequence tags (ESTs) from these. Several tissues are represented in the multiple cDNA libraries, that differ in either sexual maturation or immulogical stimulation. This approach allowed us to identify genes that are expressed in particular tissues, life-stages or in response to specific stimuli, and also gives us information about potential functions of the transcripts. The ESTs were used to construct a 16k cDNA microarray to further investigate the cod transcriptome. Microarray analyses were preformed on pylorus, pituitary gland, spleen and testis of sexually maturing male cod. The four different tissues displayed tissue specific transcriptomes demonstrating that the cDNA array is working as expected and will prove to be a powerful tool in further experiments. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. The tissue microarray data exchange specification: Extending TMA DES to provide flexible scoring and incorporate virtual slides

    PubMed Central

    Wright, Alexander; Lyttleton, Oliver; Lewis, Paul; Quirke, Philip; Treanor, Darren

    2011-01-01

    Background: Tissue MicroArrays (TMAs) are a high throughput technology for rapid analysis of protein expression across hundreds of patient samples. Often, data relating to TMAs is specific to the clinical trial or experiment it is being used for, and not interoperable. The Tissue Microarray Data Exchange Specification (TMA DES) is a set of eXtensible Markup Language (XML)-based protocols for storing and sharing digitized Tissue Microarray data. XML data are enclosed by named tags which serve as identifiers. These tag names can be Common Data Elements (CDEs), which have a predefined meaning or semantics. By using this specification in a laboratory setting with increasing demands for digital pathology integration, we found that the data structure lacked the ability to cope with digital slide imaging in respect to web-enabled digital pathology systems and advanced scoring techniques. Materials and Methods: By employing user centric design, and observing behavior in relation to TMA scoring and associated data, the TMA DES format was extended to accommodate the current limitations. This was done with specific focus on developing a generic tool for handling any given scoring system, and utilizing data for multiple observations and observers. Results: DTDs were created to validate the extensions of the TMA DES protocol, and a test set of data containing scores for 6,708 TMA core images was generated. The XML was then read into an image processing algorithm to utilize the digital pathology data extensions, and scoring results were easily stored alongside the existing multiple pathologist scores. Conclusions: By extending the TMA DES format to include digital pathology data and customizable scoring systems for TMAs, the new system facilitates the collaboration between pathologists and organizations, and can be used in automatic or manual data analysis. This allows complying systems to effectively communicate complex and varied scoring data. PMID:21572508

  16. Serum Autoantibodies in Chronic Prostate Inflammation in Prostate Cancer Patients.

    PubMed

    Schlick, Bettina; Massoner, Petra; Lueking, Angelika; Charoentong, Pornpimol; Blattner, Mirjam; Schaefer, Georg; Marquart, Klaus; Theek, Carmen; Amersdorfer, Peter; Zielinski, Dirk; Kirchner, Matthias; Trajanoski, Zlatko; Rubin, Mark A; Müllner, Stefan; Schulz-Knappe, Peter; Klocker, Helmut

    2016-01-01

    Chronic inflammation is frequently observed on histological analysis of malignant and non-malignant prostate specimens. It is a suspected supporting factor for prostate diseases and their progression and a main cause of false positive PSA tests in cancer screening. We hypothesized that inflammation induces autoantibodies, which may be useful biomarkers. We aimed to identify and validate prostate inflammation associated serum autoantibodies in prostate cancer patients and evaluate the expression of corresponding autoantigens. Radical prostatectomy specimens of prostate cancer patients (N = 70) were classified into high and low inflammation groups according to the amount of tissue infiltrating lymphocytes. The corresponding pre-surgery blood serum samples were scrutinized for autoantibodies using a low-density protein array. Selected autoantigens were identified in prostate tissue and their expression pattern analyzed by immunohistochemistry and qPCR. The identified autoantibody profile was cross-checked in an independent sample set (N = 63) using the Luminex-bead protein array technology. Protein array screening identified 165 autoantibodies differentially abundant in the serum of high compared to low inflammation patients. The expression pattern of three corresponding antigens were established in benign and cancer tissue by immunohistochemistry and qPCR: SPAST (Spastin), STX18 (Syntaxin 18) and SPOP (speckle-type POZ protein). Of these, SPAST was significantly increased in prostate tissue with high inflammation. All three autoantigens were differentially expressed in primary and/or castration resistant prostate tumors when analyzed in an inflammation-independent tissue microarray. Cross-validation of the inflammation autoantibody profile on an independent sample set using a Luminex-bead protein array, retrieved 51 of the significantly discriminating autoantibodies. Three autoantibodies were significantly upregulated in both screens, MUT, RAB11B and CSRP2 (p>0.05), two, SPOP and ZNF671, close to statistical significance (p = 0.051 and 0.076). We provide evidence of an inflammation-specific autoantibody profile and confirm the expression of corresponding autoantigens in prostate tissue. This supports evaluation of autoantibodies as non-invasive markers for prostate inflammation.

  17. Serum Autoantibodies in Chronic Prostate Inflammation in Prostate Cancer Patients

    PubMed Central

    Schlick, Bettina; Massoner, Petra; Lueking, Angelika; Charoentong, Pornpimol; Blattner, Mirjam; Schaefer, Georg; Marquart, Klaus; Theek, Carmen; Amersdorfer, Peter; Zielinski, Dirk; Kirchner, Matthias; Trajanoski, Zlatko; Rubin, Mark A.; Müllner, Stefan; Schulz-Knappe, Peter; Klocker, Helmut

    2016-01-01

    Background Chronic inflammation is frequently observed on histological analysis of malignant and non-malignant prostate specimens. It is a suspected supporting factor for prostate diseases and their progression and a main cause of false positive PSA tests in cancer screening. We hypothesized that inflammation induces autoantibodies, which may be useful biomarkers. We aimed to identify and validate prostate inflammation associated serum autoantibodies in prostate cancer patients and evaluate the expression of corresponding autoantigens. Methods Radical prostatectomy specimens of prostate cancer patients (N = 70) were classified into high and low inflammation groups according to the amount of tissue infiltrating lymphocytes. The corresponding pre-surgery blood serum samples were scrutinized for autoantibodies using a low-density protein array. Selected autoantigens were identified in prostate tissue and their expression pattern analyzed by immunohistochemistry and qPCR. The identified autoantibody profile was cross-checked in an independent sample set (N = 63) using the Luminex-bead protein array technology. Results Protein array screening identified 165 autoantibodies differentially abundant in the serum of high compared to low inflammation patients. The expression pattern of three corresponding antigens were established in benign and cancer tissue by immunohistochemistry and qPCR: SPAST (Spastin), STX18 (Syntaxin 18) and SPOP (speckle-type POZ protein). Of these, SPAST was significantly increased in prostate tissue with high inflammation. All three autoantigens were differentially expressed in primary and/or castration resistant prostate tumors when analyzed in an inflammation-independent tissue microarray. Cross-validation of the inflammation autoantibody profile on an independent sample set using a Luminex-bead protein array, retrieved 51 of the significantly discriminating autoantibodies. Three autoantibodies were significantly upregulated in both screens, MUT, RAB11B and CSRP2 (p>0.05), two, SPOP and ZNF671, close to statistical significance (p = 0.051 and 0.076). Conclusions We provide evidence of an inflammation-specific autoantibody profile and confirm the expression of corresponding autoantigens in prostate tissue. This supports evaluation of autoantibodies as non-invasive markers for prostate inflammation. PMID:26863016

  18. Validation and utilization of a TFE3 break-apart FISH assay for Xp11.2 translocation renal cell carcinoma and alveolar soft part sarcoma.

    PubMed

    Pradhan, Dinesh; Roy, Somak; Quiroga-Garza, Gabriela; Cieply, Kathleen; Mahaffey, Alyssa L; Bastacky, Sheldon; Dhir, Rajiv; Parwani, Anil V

    2015-09-29

    Xp11.2 or TFE3 translocation renal cell carcinomas (RCC) and alveolar soft part sarcoma (ASPS) are characterized by chromosome translocations involving the Xp11.2 breakpoint resulting in transcription factor TFE3 gene fusions. The most common translocations documented in TFE3 RCCs are t(X;1) (p11.2;q21) and t(X;17) (p11.2;q25) which leads to fusion of TFE3 gene on Xp11.2 with PRCC or ASPL respectively. TFE3 immunohistochemistry (IHC) has been inconsistent over time due to background staining problems in part related to fixation issues. Karyotyping to detect TFE3 gene rearrangement requires typically unavailable fresh tissue. Reverse transcriptase-polymerase chain reaction (RT-PCR) is generally very challenging due to degradation of RNA in archival material. The study objective was to develop and validate a TFE3 break-apart fluorescence in situ hybridization (FISH) assay to confirm Xp11 translocation RCCs and ASPS. Representative sections of formalin-fixed paraffin-embedded tissue blocks were selected in 40 possible cases. Approximately 60 tumor cells were analyzed in the targeted region. The validation of TFE3 FISH was done with 11 negative and two positive cases. Cut off for a positive result was validated as >7.15 % positive nuclei with any pattern of break-apart signals. FISH evaluation was done blinded of the immunohistochemical or karyotype data. Three out of forty cases were positive for the TFE3 break-apart signals by FISH. The negative cases were reported as clear cell RCC with papillary features (10), clear cell RCC with sarcomatoid areas (2), Papillary RCC with clear cell areas (9), Chromophobe RCC (2), RCC, unclassified type (3) and renal medullary carcinoma (1). 3 of the negative cases were consultation cases for renal tumor with unknown histology. Seven negative cases were soft tissue tumor suspicious for ASPS. Our study validates the utility of TFE3 break-apart FISH on formalin-fixed paraffin-embedded tissue sections for diagnosis and confirmation of Xp11.2 translocation RCCs and ASPS.

  19. Primary cilia are increased in number and demonstrate structural abnormalities in human cancer.

    PubMed

    Yasar, Binnaz; Linton, Kim; Slater, Christian; Byers, Richard

    2017-07-01

    Primary cilia play an important role in the regulation of cell signalling pathways and are thought to have a role in cancer but have seldom been studied in human cancer samples. Primary cilia were visualised by dual immunofluorescence for anti-CROCC (ciliary rootlet coiled-coil) and anti-tubulin in a range of human cancers (including carcinomas of stomach, pancreas, prostate, lung and colon, lobular and ductal breast cancers and follicular lymphoma) and in matched normal tissue (stomach, pancreas, lung, large and small intestines, breast and reactive lymph nodes) samples using a tissue microarray; their frequency, association with proliferation, was measured by Ki-67 staining and their structure was analysed. Compared with normal tissues, primary cilia frequency was significantly elevated in adenocarcinoma of the lung (2.75% vs 1.85%, p=0.016), adenocarcinoma of the colon (3.80% vs 2.43%, respectively, p=0.017), follicular lymphoma (1.18% vs 0.83%, p=0.003) and pancreatic adenocarcinoma (7.00% vs 5.26%, p=0.002); there was no statistically significant difference compared with normal control tissue for gastric and prostatic adenocarcinomas or for lobular and ductal breast cancers. Additionally, structural abnormalities of primary cilia were identified in cancer tissues, including elongation of the axoneme, multiple basal bodies and branching of the axoneme. Ki-67 scores ranged from 0.7% to 78.4% and showed no statistically significant correlation with primary cilia frequency across all tissues (p=0.1501). The results show upregulation of primary cilia and the presence of structural defects in a wide range of human cancer tissue samples demonstrating association of dysregulation of primary cilia with human cancer. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Is the omega-3 index a valid marker of intestinal membrane phospholipid EPA+DHA content?

    PubMed

    Gurzell, Eric A; Wiesinger, Jason A; Morkam, Christina; Hemmrich, Sophia; Harris, William S; Fenton, Jenifer I

    2014-09-01

    Despite numerous studies investigating n-3 long chain polyunsaturated fatty acid (LCPUFA) supplementation and inflammatory bowel diseases (IBD), the extent to which dietary n-3 LCPUFAs incorporate in gastrointestinal (GI) tissues and correlate with red blood cell (RBC) n-3 LCPUFA content is unknown. In this study, mice were fed three diets with increasing percent of energy (%en) derived from eicosapentaenoic acid (EPA)+docosahexaenoic acid (DHA). Dietary levels reflected recommended intakes of fish/fish oil by the American Heart Association. We analyzed the FA composition of phospholipids extracted from RBCs, plasma, and GI tissues. We observed that the 0.1%en EPA+DHA diet was sufficient to significantly increase the omega-3 index (RBC EPA+DHA) after 5 week feeding. The baseline EPA levels were 0.2-0.6% across all tissues increasing to 1.6-4.3% in the highest EPA+DHA diet; these changes resulted in absolute increases of 1.4-3.9% EPA across tissues. The baseline DHA levels were 2.2-5.9% across all tissues increasing to 5.8-10.5% in the highest EPA+DHA diet; these changes resulted in absolute increases of 3.2-5.7% DHA across tissues. These increases in EPA and DHA across all tissues resulted in strong (r>0.91) and significant (P<0.001) linear correlations between the omega-3 index and plasma/GI tissue EPA+DHA content, suggesting that the omega-3 index reflects the relative amounts of EPA+DHA in GI tissues. These data demonstrate that the GI tissues are highly responsive to dietary LCPUFA supplementation and that the omega-3 index can serve as a valid biomarker for assessing dietary EPA+DHA incorporation into GI tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Is the omega-3 index a valid marker of intestinal membrane phospholipid EPA+DHA content?

    PubMed Central

    Gurzell, Eric A.; Wiesinger, Jason; Morkam, Christina; Hemmrich, Sophia; Harris, William S.; Fenton, Jenifer I.

    2014-01-01

    Despite numerous studies investigating n-3 long chain polyunsaturated fatty acid (LCPUFA) supplementation and inflammatory bowel diseases (IBD), the extent to which dietary n-3 LCPUFAs incorporate in gastrointestinal (GI) tissues and correlate to the omega-3 index is unknown. In this study, mice were fed three diets with increasing percent of energy (%en) derived from eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA). Dietary levels reflected recommended intakes of fish/fish oil by the American Heart Association. We analyzed the FA composition of phospholipids extracted from red blood cells (RBCs), plasma, and GI tissues. We observed that the 0.1%en EPA+DHA diet was sufficient to significantly increase the omega-3 index (RBC EPA+DHA) after 5 week feeding. The baseline EPA levels were 0.2 – 0.6% across all tissues increasing to 1.6 – 4.3% in the highest EPA+DHA diet; these changes resulted in absolute increases of 1.4 – 3.9% EPA across tissues. The baseline DHA levels were 2.2 – 5.9% across all tissues increasing to 5.8 – 10.5% in the highest EPA+DHA diet; these changes resulted in absolute increases of 3.2 – 5.7% DHA across tissues. These increases in EPA and DHA across all tissues resulted in strong (r > 0.91) and significant (p < 0.001) linear correlations between the omega-3 index and plasma/GI tissue EPA+DHA content, suggesting that the omega-3 index reflects the relative amounts of EPA+DHA in GI tissues. These data demonstrate that the GI tissues are highly responsive to dietary LCPUFA supplementation and that the omega-3 index can serve as a valid biomarker for assessing dietary EPA+DHA incorporation into GI tissues. PMID:24913088

  2. Microfluidic extraction and microarray detection of biomarkers from cancer tissue slides

    NASA Astrophysics Data System (ADS)

    Nguyen, H. T.; Dupont, L. N.; Jean, A. M.; Géhin, T.; Chevolot, Y.; Laurenceau, E.; Gijs, M. A. M.

    2018-03-01

    We report here a new microfluidic method allowing for the quantification of human epidermal growth factor receptor 2 (HER2) expression levels from formalin-fixed breast cancer tissues. After partial extraction of proteins from the tissue slide, the extract is routed to an antibody (Ab) microarray for HER2 titration by fluorescence. Then the HER2-expressing cell area is evaluated by immunofluorescence (IF) staining of the tissue slide and used to normalize the fluorescent HER2 signal measured from the Ab microarray. The number of HER2 gene copies measured by fluorescence in situ hybridization (FISH) on an adjacent tissue slide is concordant with the normalized HER2 expression signal. This work is the first study implementing biomarker extraction and detection from cancer tissue slides using microfluidics in combination with a microarray system, paving the way for further developments towards multiplex and precise quantification of cancer biomarkers.

  3. Sensitive immunoassay detection of multiple environmental chemicals on protein microarrays using DNA/dye conjugate as a fluorescent label.

    PubMed

    Fan, Ziyan; Keum, Young Soo; Li, Qing X; Shelver, Weilin L; Guo, Liang-Hong

    2012-05-01

    Indirect competitive immunoassays were developed on protein microarrays for the sensitive and simultaneous detection of multiple environmental chemicals in one sample. In this assay, a DNA/SYTOX Orange conjugate was employed as an antibody label to increase the fluorescence signal and sensitivity of the immunoassays. Epoxy-modified glass slides were selected as the substrate for the production of 4 × 4 coating antigen microarrays. With this signal-enhancing system, competition curves for 17β-estradiol (E2), benzo[a]pyrene (BaP) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) were obtained individually on the protein microarray. The IC(50) and calculated limit of detection (LOD) are 0.32 μg L(-1) and 0.022 μg L(-1) for E2, 37.2 μg L(-1) and 24.5 μg L(-1) for BaP, and 31.6 μg L(-1) and 2.8 μg L(-1) for BDE-47, respectively. LOD of E2 is 14-fold lower than the value reported in a previous study using Cy3 labeled antibody (Du et al., Clin. Chem, 2005, 51, 368-375). The results of the microarray immunoassay were within 15% of chromatographic analysis for all three pollutants in spiked river water samples, thus verifying the immunoassay. Simultaneous detection of E2, BaP and BDE-47 in one sample was demonstrated. There was no cross-reaction in the immunoassay between these three environmental chemicals. These results suggest that microarray-based immunoassays with DNA/dye conjugate labels are useful tools for the rapid, sensitive, and high throughput screening of multiple environmental contaminants.

  4. FGFR2 alterations in endometrial carcinoma.

    PubMed

    Gatius, Sonia; Velasco, Ana; Azueta, Ainara; Santacana, Maria; Pallares, Judit; Valls, Joan; Dolcet, Xavier; Prat, Jaime; Matias-Guiu, Xavier

    2011-11-01

    Fibroblast growth factor receptor 2 (FGFR2) is a tyrosine kinase receptor involved in many biological processes such as embryogenesis, adult tissue homeostasis and cell proliferation. Mutations in FGFR2 have been reported in up to 10-12% of endometrial carcinomas identical to those found in congenital craniofacial disorders. Inhibition of FGFR2 could be a new therapeutic target in endometrial carcinoma. FGFR2 immunostaining was assessed in three tissue microarrays: one constructed from paraffin-embedded blocks of 60 samples of normal endometrium in different phases of menstrual cycle, and two tissue microarrays containing endometrial carcinoma samples (95 and 62 cases). FGFR2 expression was correlated with stage, histological type and grade as well as with immunostaining of PTEN, RASSF1A, estrogen and progesterone receptors, KI67, Cyclin D1, STAT-3 and SPRY2. FGFR2 mutations were assessed by PCR and direct sequencing, with DNA obtained from 31 paraffin-embedded endometrial carcinoma samples. In normal endometrium, FGFR2 expression was higher in the secretory than in the proliferative phase (P=0.001), with an inverse correlation with Ki67 (P=0.00032), suggesting a tumor-suppressor role for FGFR2 in normal endometrium. Cytoplasmic expression of FGFR2 was higher in endometrial carcinoma when compared with the atrophic endometrium from the same patients (P=0.0283), but was lower in comparison with normal endometrium from women in the menstrual cycle. Interestingly, nuclear staining was observed in some cases, and it was less frequent in endometrial carcinoma when compared with the adjacent atrophic endometrium (P=0.0465). There were no statistical differences when comparing superficial and myoinvasive endometrial carcinoma samples. Endometrioid endometrial carcinomas showed higher expression of FGFR2 than nonendometrioid endometrial carcinomas (fold change 2.56; P=0.0015). Grade III endometrioid endometrial carcinomas showed decreased FGFR2 expression when compared with grade II endometrioid endometrial carcinomas (P=0.0055). No differences were found regarding pathological stage. Two missense mutations of FGFR2 gene were detected in exons 6 and 11 (S252W and N549K, respectively; 6.45%). Results support the hypothesis that FGFR2 has a dual role in the endometrium, by inhibiting cell proliferation in normal endometrium during the menstrual cycle, but acting as an oncogene in endometrial carcinoma.

  5. Characterization of 1577 primary prostate cancers reveals novel biological and clinicopathologic insights into molecular subtypes.

    PubMed

    Tomlins, Scott A; Alshalalfa, Mohammed; Davicioni, Elai; Erho, Nicholas; Yousefi, Kasra; Zhao, Shuang; Haddad, Zaid; Den, Robert B; Dicker, Adam P; Trock, Bruce J; DeMarzo, Angelo M; Ross, Ashley E; Schaeffer, Edward M; Klein, Eric A; Magi-Galluzzi, Cristina; Karnes, R Jeffrey; Jenkins, Robert B; Feng, Felix Y

    2015-10-01

    Prostate cancer (PCa) molecular subtypes have been defined by essentially mutually exclusive events, including ETS gene fusions (most commonly involving ERG) and SPINK1 overexpression. Clinical assessment may aid in disease stratification, complementing available prognostic tests. To determine the analytical validity and clinicopatholgic associations of microarray-based molecular subtyping. We analyzed Affymetrix GeneChip expression profiles for 1577 patients from eight radical prostatectomy cohorts, including 1351 cases assessed using the Decipher prognostic assay (GenomeDx Biosciences, San Diego, CA, USA) performed in a laboratory with Clinical Laboratory Improvements Amendment certification. A microarray-based (m-) random forest ERG classification model was trained and validated. Outlier expression analysis was used to predict other mutually exclusive non-ERG ETS gene rearrangements (ETS(+)) or SPINK1 overexpression (SPINK1(+)). Associations with clinical features and outcomes by multivariate logistic regression analysis and receiver operating curves. The m-ERG classifier showed 95% accuracy in an independent validation subset (155 samples). Across cohorts, 45% of PCas were classified as m-ERG(+), 9% as m-ETS(+), 8% as m-SPINK1(+), and 38% as triple negative (m-ERG(-)/m-ETS(-)/m-SPINK1(-)). Gene expression profiling supports three underlying molecularly defined groups: m-ERG(+), m-ETS(+), and m-SPINK1(+)/triple negative. On multivariate analysis, m-ERG(+) tumors were associated with lower preoperative serum prostate-specific antigen and Gleason scores, but greater extraprostatic extension (p<0.001). m-ETS(+) tumors were associated with seminal vesicle invasion (p=0.01), while m-SPINK1(+)/triple negative tumors had higher Gleason scores and were more frequent in Black/African American patients (p<0.001). Clinical outcomes were not significantly different among subtypes. A clinically available prognostic test (Decipher) can also assess PCa molecular subtypes, obviating the need for additional testing. Clinicopathologic differences were found among subtypes based on global expression patterns. Molecular subtyping of prostate cancer can be achieved using extra data generated from a clinical-grade, genome-wide expression-profiling prognostic assay (Decipher). Transcriptomic and clinical analysis support three distinct molecular subtypes: (1) m-ERG(+), (2) m-ETS(+), and (3) m-SPINK1(+)/triple negative (m-ERG(-)/m-ETS(-)/m-SPINK1(-)). Incorporation of subtyping into a clinically available assay may facilitate additional applications beyond routine prognosis. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  6. Storage stability study of porcine hepatic and intestinal cytochrome P450 isoenzymes by use of a newly developed and fully validated highly sensitive HPLC-MS/MS method.

    PubMed

    Schelstraete, Wim; Devreese, Mathias; Croubels, Siska

    2018-02-01

    Microsomes are an ideal medium to investigate cytochrome P450 (CYP450) enzyme-mediated drug metabolism. However, before microsomes are prepared, tissues can be stored for a long time. Studies about the stability of these enzymes in porcine hepatic and intestinal tissues upon storage are lacking. To be able to investigate CYP450 stability in microsomes prepared from these tissues, a highly sensitive and rapid HPLC-MS/MS method for the simultaneous determination of six CYP450 metabolites in incubation medium was developed and validated. The metabolites, paracetamol (CYP1A), 7-hydroxy-coumarin (CYP2A), 1-hydroxy-midazolam (CYP3A), 4-hydroxy-tolbutamide (CYP2C), dextrorphan (CYP2D), and 6-hydroxy-chlorzoxazone (CYP2E) were extracted with ethyl acetate at pH 1.0, followed by evaporation and separation on an Agilent Zorbax Eclipse Plus C18 column. The method was fully validated in a GLP-compliant laboratory according to European guidelines and was highly sensitive (LOQ = 0.25-2.5 ng/mL), selective, had good precision (RSD-within, 1.0-9.1%; RSD-between, 1.0-18.4%) and accuracy (within-run, 83.3-102%; between-run, 78.5-102%), and showed no relative signal suppression and enhancement. Consequently, this method was applied to study the stability of porcine hepatic and intestinal CYP450 isoenzymes when tissues were stored at - 80 °C. The results indicate that porcine CYP450 isoenzymes are stable in tissues at least up to 4 months when snap frozen and stored at - 80 °C. Moreover, the results indicate differences in porcine CYP450 stability compared to rat, rabbit, and fish CYP450, as observed by other research groups, hence stressing the importance to investigate the CYP450 stability of a specific species.

  7. EVALUATION OF P53, E-CADHERIN, COX-2, AND EGFR PROTEIN IMUNNOEXPRESSION ON PROGNOSTIC OF RESECTED GALLBLADDER CARCINOMA

    PubMed Central

    PAIS-COSTA, Sergio Renato; FARAH, José Francisco de Matos; ARTIGIANI-NETO, Ricardo; MARTINS, Sandro José; GOLDENBERG, Alberto

    2014-01-01

    Background Gallbladder carcinoma presents a dismal prognosis. Choice treatment is surgical resection that is associated a high levels of both morbidity and mortality. Best knowledgement of prognostic factors may result a better selection of patients either for surgical or multimodal treatment. Aim To evaluate tecidual immunoexpression of P53, E-cadherin, Cox-2, and EGFR proteins and to correlate these findings with resected gallbladder adenocarcinoma survival. Methods Clinical, laboratorial, surgical, and anatomopathological reports of a series of gallbladder adenocarcinoma patients were collected by individualized questionary. Total sample was 42 patients. Median of age was 72 years (35-87). There were seven men and 35 women. Lesion distribuition in according TNM state was the following: T1 (n=2), T2 (n=5), T3 (n=31), T4 (n=4). Twenty-three patients underwent radical resection (R0), while 19 palliative surgery (R1-R2). A block of tissue microarray with neoplasic tissue of each patient was confected. It was performed evaluation of P53, E-Caderine, COX-2, and EGFR proteins imunoexpression. These findings were correlated with overall survival. Results Five-year survival was 28%. The median of global survival was eight months. Only immunoexpression of EGFR protein was considered independent variable at multivariated analysis. Conclusion Final prognosis was influenced by over-expression of EGFR protein in tumoral tissue. PMID:25004291

  8. Rapid Characterization of Candidate Biomarkers for Pancreatic Cancer Using Cell Microarrays (CMAs)

    PubMed Central

    Kim, Min-Sik; Kuppireddy, Sarada V.; Sakamuri, Sruthi; Singal, Mukul; Getnet, Derese; Harsha, H. C.; Goel, Renu; Balakrishnan, Lavanya; Jacob, Harrys K. C.; Kashyap, Manoj K.; Tankala, Shantal G.; Maitra, Anirban; Iacobuzio-Donahue, Christine A.; Jaffee, Elizabeth; Goggins, Michael G.; Velculescu, Victor E.; Hruban, Ralph H.; Pandey, Akhilesh

    2013-01-01

    Tissue microarrays have become a valuable tool for high-throughput analysis using immunohistochemical labeling. However, the large majority of biochemical studies are carried out in cell lines to further characterize candidate biomarkers or therapeutic targets with subsequent studies in animals or using primary tissues. Thus, cell line-based microarrays could be a useful screening tool in some situations. Here, we constructed a cell microarray (CMA) containing a panel of 40 pancreatic cancer cell lines available from American Type Culture Collection in addition to those locally available at Johns Hopkins. As proof of principle, we performed immunocytochemical labeling of an epithelial cell adhesion molecule (Ep-CAM), a molecule generally expressed in the epithelium, on this pancreatic cancer CMA. In addition, selected molecules that have been previously shown to be differentially expressed in pancreatic cancer in the literature were validated. For example, we observed strong labeling of CA19-9 antigen, a prognostic and predictive marker for pancreatic cancer. We also carried out a bioinformatics analysis of a literature curated catalog of pancreatic cancer biomarkers developed previously by our group and identified two candidate biomarkers, HLA class I and transmembrane protease, serine 4 (TMPRSS4), and examined their expression in the cell lines represented on the pancreatic cancer CMAs. Our results demonstrate the utility of CMAs as a useful resource for rapid screening of molecules of interest and suggest that CMAs can become a universal standard platform in cancer research. PMID:22985314

  9. PITX3 DNA methylation is an independent predictor of overall survival in patients with head and neck squamous cell carcinoma.

    PubMed

    Sailer, Verena; Holmes, Emily Eva; Gevensleben, Heidrun; Goltz, Diane; Dröge, Freya; Franzen, Alina; Dietrich, Jörn; Kristiansen, Glen; Bootz, Friedrich; Schröck, Andreas; Dietrich, Dimo

    2017-01-01

    Molecular biomarkers assisting risk-group assignment and subsequent treatment stratification are urgently needed for patients with squamous cell cancer of the head and neck region (HNSCC). Aberrant methylation is a frequent event in cancer and, therefore, a promising source for potential biomarkers. Here, the methylation status of the paired-like homeodomain transcription factor 3 ( PITX3 ) was evaluated in HNSCC. Using a quantitative real-time PCR, PITX3 methylation was assessed in a cohort of 326 HNSCC patients treated for localized or locally advanced disease (training cohort). The results were validated with Infinium HumanMethylation450 BeadChip data from a 528 HNSCC patient cohort (validation cohort) generated by The Cancer Genome Atlas (TCGA) Research Network. PITX3 methylation was significantly higher methylated in tumor compared to normal adjacent tissue (NAT; training cohort: median methylation NAT 32.3%, tumor 71.8%, p  < 0.001; validation cohort: median methylation NAT 16.9%, tumor 35.9%, p  < 0.001). PITX3 methylation was also significantly correlated with lymph node status both in the training ( p  = 0.006) and validation ( p  < 0.001) cohort. PITX3 methylation was significantly higher in HPV-associated (p16-positive) tumors compared to p16-negative tumors (training cohort: 73.7 vs. 66.2%, p  = 0.013; validation cohort: 40.0 vs. 33.1%, p  = 0.015). Hypermethylation was significantly associated with the risk of death (training cohort: hazard ratio (HR) = 1.80, [95% confidence interval (CI) 1.20-2.69], p  = 0.005; validation cohort: HR = 1.43, [95% CI 1.05-1.95], p  = 0.022). In multivariate Cox analyses, PITX3 added independent prognostic information. Messenger RNA (mRNA) expression analysis revealed an inverse correlation with PITX3 methylation in the TCGA cohort. PITX3 DNA methylation is an independent prognostic biomarker for overall survival in patients with HNSCC and might aid in the process of risk stratification for individualized treatment.

  10. Identification of the Key Genes and Pathways in Esophageal Carcinoma.

    PubMed

    Su, Peng; Wen, Shiwang; Zhang, Yuefeng; Li, Yong; Xu, Yanzhao; Zhu, Yonggang; Lv, Huilai; Zhang, Fan; Wang, Mingbo; Tian, Ziqiang

    2016-01-01

    Objective . Esophageal carcinoma (EC) is a frequently common malignancy of gastrointestinal cancer in the world. This study aims to screen key genes and pathways in EC and elucidate the mechanism of it. Methods . 5 microarray datasets of EC were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) were screened by bioinformatics analysis. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network construction were performed to obtain the biological roles of DEGs in EC. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression level of DEGs in EC. Results . A total of 1955 genes were filtered as DEGs in EC. The upregulated genes were significantly enriched in cell cycle and the downregulated genes significantly enriched in Endocytosis. PPI network displayed CDK4 and CCT3 were hub proteins in the network. The expression level of 8 dysregulated DEGs including CDK4, CCT3, THSD4, SIM2, MYBL2, CENPF, CDCA3, and CDKN3 was validated in EC compared to adjacent nontumor tissues and the results were matched with the microarray analysis. Conclusion . The significantly DEGs including CDK4, CCT3, THSD4, and SIM2 may play key roles in tumorigenesis and development of EC involved in cell cycle and Endocytosis.

  11. Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis.

    PubMed

    DePianto, Daryle J; Chandriani, Sanjay; Abbas, Alexander R; Jia, Guiquan; N'Diaye, Elsa N; Caplazi, Patrick; Kauder, Steven E; Biswas, Sabyasachi; Karnik, Satyajit K; Ha, Connie; Modrusan, Zora; Matthay, Michael A; Kukreja, Jasleen; Collard, Harold R; Egen, Jackson G; Wolters, Paul J; Arron, Joseph R

    2015-01-01

    There is microscopic spatial and temporal heterogeneity of pathological changes in idiopathic pulmonary fibrosis (IPF) lung tissue, which may relate to heterogeneity in pathophysiological mediators of disease and clinical progression. We assessed relationships between gene expression patterns, pathological features, and systemic biomarkers to identify biomarkers that reflect the aggregate disease burden in patients with IPF. Gene expression microarrays (N=40 IPF; 8 controls) and immunohistochemical analyses (N=22 IPF; 8 controls) of lung biopsies. Clinical characterisation and blood biomarker levels of MMP3 and CXCL13 in a separate cohort of patients with IPF (N=80). 2940 genes were significantly differentially expressed between IPF and control samples (|fold change| >1.5, p<0.05). Two clusters of co-regulated genes related to bronchiolar epithelium or lymphoid aggregates exhibited substantial heterogeneity within the IPF population. Gene expression in bronchiolar and lymphoid clusters corresponded to the extent of bronchiolisation and lymphoid aggregates determined by immunohistochemistry in adjacent tissue sections. Elevated serum levels of MMP3, encoded in the bronchiolar cluster, and CXCL13, encoded in the lymphoid cluster, corresponded to disease severity and shortened survival time (p<10(-7) for MMP3 and p<10(-5) for CXCL13; Cox proportional hazards model). Microscopic pathological heterogeneity in IPF lung tissue corresponds to specific gene expression patterns related to bronchiolisation and lymphoid aggregates. MMP3 and CXCL13 are systemic biomarkers that reflect the aggregate burden of these pathological features across total lung tissue. These biomarkers may have clinical utility as prognostic and/or surrogate biomarkers of disease activity in interventional studies in IPF. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. SPIN1, negatively regulated by miR-148/152, enhances Adriamycin resistance via upregulating drug metabolizing enzymes and transporter in breast cancer.

    PubMed

    Chen, Xu; Wang, Ya-Wen; Gao, Peng

    2018-05-09

    Spindlin1 (SPIN1), a protein highly expressed in several human cancers, has been correlated with tumorigenesis and development. Alterations of drug metabolizing enzymes and drug transporters are major determinants of chemoresistance in tumor cells. However, whether the metabolizing enzymes and transporters are under the control of SPIN1 in breast cancer chemoresistance has not yet been defined. SPIN1 expression in breast cancer cells and tissues was detected by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. Chemosensitivity assays in vitro and in vivo were performed to determine the effect of SPIN1 on Adriamycin resistance. Downstream effectors of SPIN1 were screened by microarray and confirmed by qRT-PCR and Western blot. Luciferase assay and Western blot were used to identify miRNAs regulating SPIN1. We showed that SPIN1 was significantly elevated in drug-resistant breast cancer cell lines and tissues, compared with the chemosensitive ones. SPIN1 enhanced Adriamycin resistance of breast cancer cells in vitro, and downregulation of SPIN1 by miRNA could decrease Adriamycin resistance in vivo. Mechanistically, drug metabolizing enzymes and transporter CYP2C8, UGT2B4, UGT2B17 and ABCB4 were proven to be downstream effectors of SPIN1. Notably, SPIN1 was identified as a direct target of the miR-148/152 family (miR-148a-3p, miR-148b-3p and miR-152-3p). As expected, miR-148a-3p, miR-148b-3p or miR-152-3p could increase Adriamycin sensitivity in breast cancer cells in vitro. Moreover, high expression of SPIN1 or low expression of the miR-148/152 family predicted poorer survival in breast cancer patients. Our results establish that SPIN1, negatively regulated by the miR-148/152 family, enhances Adriamycin resistance in breast cancer via upregulating the expression of drug metabolizing enzymes and drug transporter.

  13. Multi-Tissue Computational Modeling Analyzes Pathophysiology of Type 2 Diabetes in MKR Mice

    PubMed Central

    Kumar, Amit; Harrelson, Thomas; Lewis, Nathan E.; Gallagher, Emily J.; LeRoith, Derek; Shiloach, Joseph; Betenbaugh, Michael J.

    2014-01-01

    Computational models using metabolic reconstructions for in silico simulation of metabolic disorders such as type 2 diabetes mellitus (T2DM) can provide a better understanding of disease pathophysiology and avoid high experimentation costs. There is a limited amount of computational work, using metabolic reconstructions, performed in this field for the better understanding of T2DM. In this study, a new algorithm for generating tissue-specific metabolic models is presented, along with the resulting multi-confidence level (MCL) multi-tissue model. The effect of T2DM on liver, muscle, and fat in MKR mice was first studied by microarray analysis and subsequently the changes in gene expression of frank T2DM MKR mice versus healthy mice were applied to the multi-tissue model to test the effect. Using the first multi-tissue genome-scale model of all metabolic pathways in T2DM, we found out that branched-chain amino acids' degradation and fatty acids oxidation pathway is downregulated in T2DM MKR mice. Microarray data showed low expression of genes in MKR mice versus healthy mice in the degradation of branched-chain amino acids and fatty-acid oxidation pathways. In addition, the flux balance analysis using the MCL multi-tissue model showed that the degradation pathways of branched-chain amino acid and fatty acid oxidation were significantly downregulated in MKR mice versus healthy mice. Validation of the model was performed using data derived from the literature regarding T2DM. Microarray data was used in conjunction with the model to predict fluxes of various other metabolic pathways in the T2DM mouse model and alterations in a number of pathways were detected. The Type 2 Diabetes MCL multi-tissue model may explain the high level of branched-chain amino acids and free fatty acids in plasma of Type 2 Diabetic subjects from a metabolic fluxes perspective. PMID:25029527

  14. Larger core size has superior technical and analytical accuracy in bladder tissue microarray.

    PubMed

    Eskaros, Adel Rh; Egloff, Shanna A Arnold; Boyd, Kelli L; Richardson, Joyce E; Hyndman, M Eric; Zijlstra, Andries

    2017-03-01

    The construction of tissue microarrays (TMAs) with cores from a large number of paraffin-embedded tissues (donors) into a single paraffin block (recipient) is an effective method of analyzing samples from many patient specimens simultaneously. For the TMA to be successful, the cores within it must capture the correct histologic areas from the donor blocks (technical accuracy) and maintain concordance with the tissue of origin (analytical accuracy). This can be particularly challenging for tissues with small histological features such as small islands of carcinoma in situ (CIS), thin layers of normal urothelial lining of the bladder, or cancers that exhibit intratumor heterogeneity. In an effort to create a comprehensive TMA of a bladder cancer patient cohort that accurately represents the tumor heterogeneity and captures the small features of normal and CIS, we determined how core size (0.6 vs 1.0 mm) impacted the technical and analytical accuracy of the TMA. The larger 1.0 mm core exhibited better technical accuracy for all tissue types at 80.9% (normal), 94.2% (tumor), and 71.4% (CIS) compared with 58.6%, 85.9%, and 63.8% for 0.6 mm cores. Although the 1.0 mm core provided better tissue capture, increasing the number of replicates from two to three allowed with the 0.6 mm core compensated for this reduced technical accuracy. However, quantitative image analysis of proliferation using both Ki67+ immunofluorescence counts and manual mitotic counts demonstrated that the 1.0 mm core size also exhibited significantly greater analytical accuracy (P=0.004 and 0.035, respectively, r 2 =0.979 and 0.669, respectively). Ultimately, our findings demonstrate that capturing two or more 1.0 mm cores for TMA construction provides superior technical and analytical accuracy over the smaller 0.6 mm cores, especially for tissues harboring small histological features or substantial heterogeneity.

  15. Hepatic gene expression patterns following trauma-hemorrhage: effect of posttreatment with estrogen.

    PubMed

    Yu, Huang-Ping; Pang, See-Tong; Chaudry, Irshad H

    2013-01-01

    The aim of this study was to examine the role of estrogen on hepatic gene expression profiles at an early time point following trauma-hemorrhage in rats. Groups of injured and sham controls receiving estrogen or vehicle were killed 2 h after injury and resuscitation, and liver tissue was harvested. Complementary RNA was synthesized from each RNA sample and hybridized to microarrays. A large number of genes were differentially expressed at the 2-h time point in injured animals with or without estrogen treatment. The upregulation or downregulation of a cohort of 14 of these genes was validated by reverse transcription-polymerase chain reaction. This large-scale microarray analysis shows that at the 2-h time point, there is marked alteration in hepatic gene expression following trauma-hemorrhage. However, estrogen treatment attenuated these changes in injured animals. Pathway analysis demonstrated predominant changes in the expression of genes involved in metabolism, immunity, and apoptosis. Upregulation of low-density lipoprotein receptor, protein phosphatase 1, regulatory subunit 3C, ring-finger protein 11, pyroglutamyl-peptidase I, bactericidal/permeability-increasing protein, integrin, αD, BCL2-like 11, leukemia inhibitory factor receptor, ATPase, Cu transporting, α polypeptide, and Mk1 protein was found in estrogen-treated trauma-hemorrhaged animals. Thus, estrogen produces hepatoprotection following trauma-hemorrhage likely via antiapoptosis and improving/restoring metabolism and immunity pathways.

  16. Use of diagnostic accuracy as a metric for evaluating laboratory proficiency with microarray assays using mixed-tissue RNA reference samples.

    PubMed

    Pine, P S; Boedigheimer, M; Rosenzweig, B A; Turpaz, Y; He, Y D; Delenstarr, G; Ganter, B; Jarnagin, K; Jones, W D; Reid, L H; Thompson, K L

    2008-11-01

    Effective use of microarray technology in clinical and regulatory settings is contingent on the adoption of standard methods for assessing performance. The MicroArray Quality Control project evaluated the repeatability and comparability of microarray data on the major commercial platforms and laid the groundwork for the application of microarray technology to regulatory assessments. However, methods for assessing performance that are commonly applied to diagnostic assays used in laboratory medicine remain to be developed for microarray assays. A reference system for microarray performance evaluation and process improvement was developed that includes reference samples, metrics and reference datasets. The reference material is composed of two mixes of four different rat tissue RNAs that allow defined target ratios to be assayed using a set of tissue-selective analytes that are distributed along the dynamic range of measurement. The diagnostic accuracy of detected changes in expression ratios, measured as the area under the curve from receiver operating characteristic plots, provides a single commutable value for comparing assay specificity and sensitivity. The utility of this system for assessing overall performance was evaluated for relevant applications like multi-laboratory proficiency testing programs and single-laboratory process drift monitoring. The diagnostic accuracy of detection of a 1.5-fold change in signal level was found to be a sensitive metric for comparing overall performance. This test approaches the technical limit for reliable discrimination of differences between two samples using this technology. We describe a reference system that provides a mechanism for internal and external assessment of laboratory proficiency with microarray technology and is translatable to performance assessments on other whole-genome expression arrays used for basic and clinical research.

  17. Characterization of 1,577 Primary Prostate Cancers Reveals Novel Biological and Clinicopathological Insights into Molecular Subtypes

    PubMed Central

    Tomlins, Scott A.; Alshalalfa, Mohammed; Davicioni, Elai; Erho, Nicholas; Yousefi, Kasra; Zhao, Shuang; Haddad, Zaid; Den, Robert B.; Dicker, Adam P.; Trock, Bruce; DeMarzo, Angelo; Ross, Ashley; Schaeffer, Edward M.; Klein, Eric A.; Magi-Galluzzi, Cristina; Karnes, Jeffery R.; Jenkins, Robert B.; Feng, Felix Y.

    2015-01-01

    Background Prostate cancer (PCa) molecular subtypes have been defined by essentially mutually exclusive events, including ETS gene fusions (most commonly involving ERG) and SPINK1 over-expression. Clinical assessment may aid in disease stratification, complementing available prognostic tests. Objective To determine the analytical validity and clinicopatholgical associations of microarray-based molecular subtyping. Design, Setting and Participants We analyzed Affymetrix GeneChip expression profiles for 1,577 patients from eight radical prostatectomy (RP) cohorts, including 1,351 cases assessed using the Decipher prognostic assay (performed in a CLIA-certified laboratory). A microarray-based (m-) random forest ERG classification model was trained and validated. Outlier expression analysis was used to predict other mutually exclusive non-ERG ETS gene rearrangements (ETS+) or SPINK1 over-expression (SPINK1+). Outcome Measurements Associations with clinical features and outcomes by multivariable logistic regression analysis and receiver operating curves. Results and Limitations The m-ERG classifier showed 95% accuracy in an independent validation subset (n=155 samples). Across cohorts, 45%, 9%, 8% and 38% of PCa were classified as m-ERG+, m-ETS+, m-SPINK1+, and triple negative (m-ERG−/m-ETS−/m-SPINK1−), respectively. Gene expression profiling supports three underlying molecularly defined groups (m-ERG+, m-ETS+ and m-SPINK1+/triple negative). On multivariable analysis, m-ERG+ tumors were associated with lower preoperative serum PSA and Gleason scores, but enriched for extraprostatic extension (p<0.001). m-ETS+ tumors were associated with seminal vesicle invasion (p=0.01), while m-SPINK1+/triple negative tumors had higher Gleason scores and were more frequent in Black/African American patients (p<0.001). Clinical outcomes were not significantly different between subtypes. Conclusions A clinically available prognostic test (Decipher) can also assess PCa molecular subtypes, obviating the need for additional testing. Clinicopathological differences were found among subtypes based on global expression patterns. PMID:25964175

  18. Laser capture microdissection of embryonic cells and preparation of RNA for microarray assays.

    PubMed

    Redmond, Latasha C; Pang, Christopher J; Dumur, Catherine; Haar, Jack L; Lloyd, Joyce A

    2014-01-01

    In order to compare the global gene expression profiles of different embryonic cell types, it is first necessary to isolate the specific cells of interest. The purpose of this chapter is to provide a step-by-step protocol to perform laser capture microdissection (LCM) on embryo samples and obtain sufficient amounts of high-quality RNA for microarray hybridizations. Using the LCM/microarray strategy on mouse embryo samples has some challenges, because the cells of interest are available in limited quantities. The first step in the protocol is to obtain embryonic tissue, and immediately cryoprotect and freeze it in a cryomold containing Optimal Cutting Temperature freezing media (Sakura Finetek), using a dry ice-isopentane bath. The tissue is then cryosectioned, and the microscope slides are processed to fix, stain, and dehydrate the cells. LCM is employed to isolate specific cell types from the slides, identified under the microscope by virtue of their morphology. Detailed protocols are provided for using the currently available ArcturusXT LCM instrument and CapSure(®) LCM Caps, to which the selected cells adhere upon laser capture. To maintain RNA integrity, upon removing a slide from the final processing step, or attaching the first cells on the LCM cap, LCM is completed within 20 min. The cells are then immediately recovered from the LCM cap using a denaturing solution that stabilizes RNA integrity. RNA is prepared using standard methods, modified for working with small samples. To ensure the validity of the microarray data, the quality of the RNA is assessed using the Agilent bioanalyzer. Only RNA that is of sufficient integrity and quantity is used to perform microarray assays. This chapter provides guidance regarding troubleshooting and optimization to obtain high-quality RNA from cells of limited availability, obtained from embryo samples by LCM.

  19. Laser Capture Microdissection of Embryonic Cells and Preparation of RNA for Microarray Assays

    PubMed Central

    Redmond, Latasha C.; Pang, Christopher J.; Dumur, Catherine; Haar, Jack L.; Lloyd, Joyce A.

    2014-01-01

    In order to compare the global gene expression profiles of different embryonic cell types, it is first necessary to isolate the specific cells of interest. The purpose of this chapter is to provide a step-by-step protocol to perform laser capture microdissection (LCM) on embryo samples and obtain sufficient amounts of high-quality RNA for microarray hybridizations. Using the LCM/microarray strategy on mouse embryo samples has some challenges, because the cells of interest are available in limited quantities. The first step in the protocol is to obtain embryonic tissue, and immediately cryoprotect and freeze it in a cryomold containing Optimal Cutting Temperature freezing media (Sakura Finetek), using a dry ice–isopentane bath. The tissue is then cryosectioned, and the microscope slides are processed to fix, stain, and dehydrate the cells. LCM is employed to isolate specific cell types from the slides, identified under the microscope by virtue of their morphology. Detailed protocols are provided for using the currently available ArcturusXT LCM instrument and CapSure® LCM Caps, to which the selected cells adhere upon laser capture. To maintain RNA integrity, upon removing a slide from the final processing step, or attaching the first cells on the LCM cap, LCM is completed within 20 min. The cells are then immediately recovered from the LCM cap using a denaturing solution that stabilizes RNA integrity. RNA is prepared using standard methods, modified for working with small samples. To ensure the validity of the microarray data, the quality of the RNA is assessed using the Agilent bioanalyzer. Only RNA that is of sufficient integrity and quantity is used to perform microarray assays. This chapter provides guidance regarding troubleshooting and optimization to obtain high-quality RNA from cells of limited availability, obtained from embryo samples by LCM. PMID:24318813

  20. CD44 is a direct target of miR-199a-3p and contributes to aggressive progression in osteosarcoma

    PubMed Central

    Gao, Yan; Feng, Yong; Shen, Jacson K.; Lin, Min; Choy, Edwin; Cote, Gregory M.; Harmon, David C.; Mankin, Henry J.; Hornicek, Francis J.; Duan, Zhenfeng

    2015-01-01

    Osteosarcoma is the most common primary bone malignancy in children and adolescents. Herein, we investigated the role of cluster of differentiation 44 (CD44), a cell-surface glycoprotein involved in cell-cell interactions, cell adhesion, and migration in osteosarcoma. We constructed a human osteosarcoma tissue microarray with 114 patient tumor specimens, including tumor tissues from primary, metastatic, and recurrent stages, and determined the expression of CD44 by immunohistochemistry. Results showed that CD44 was overexpressed in metastatic and recurrent osteosarcoma as compared with primary tumors. Higher expression of CD44 was found in both patients with shorter survival and patients who exhibited unfavorable response to chemotherapy before surgical resection. Additionally, the 3′-untranslated region of CD44 mRNA was the direct target of microRNA-199a-3p (miR-199a-3p). Overexpression of miR-199a-3p significantly inhibited CD44 expression in osteosarcoma cells. miR-199a-3p is one of the most dramatically decreased miRs in osteosarcoma cells and tumor tissues as compared with normal osteoblast cells. Transfection of miR-199a-3p significantly increased the drug sensitivity through down-regulation of CD44 in osteosarcoma cells. Taken together, these results suggest that the CD44-miR-199a-3p axis plays an important role in the development of metastasis, recurrence, and drug resistance of osteosarcoma. Developing strategies to target CD44 may improve the clinical outcome of osteosarcoma. PMID:26079799

  1. Development of a rapid microarray-based DNA subtyping assay for the alleles of Shiga toxins 1 and 2 of Escherichia coli.

    PubMed

    Geue, Lutz; Stieber, Bettina; Monecke, Stefan; Engelmann, Ines; Gunzer, Florian; Slickers, Peter; Braun, Sascha D; Ehricht, Ralf

    2014-08-01

    In this study, we developed a new rapid, economic, and automated microarray-based genotyping test for the standardized subtyping of Shiga toxins 1 and 2 of Escherichia coli. The microarrays from Alere Technologies can be used in two different formats, the ArrayTube and the ArrayStrip (which enables high-throughput testing in a 96-well format). One microarray chip harbors all the gene sequences necessary to distinguish between all Stx subtypes, facilitating the identification of single and multiple subtypes within a single isolate in one experiment. Specific software was developed to automatically analyze all data obtained from the microarray. The assay was validated with 21 Shiga toxin-producing E. coli (STEC) reference strains that were previously tested by the complete set of conventional subtyping PCRs. The microarray results showed 100% concordance with the PCR results. Essentially identical results were detected when the standard DNA extraction method was replaced by a time-saving heat lysis protocol. For further validation of the microarray, we identified the Stx subtypes or combinations of the subtypes in 446 STEC field isolates of human and animal origin. In summary, this oligonucleotide array represents an excellent diagnostic tool that provides some advantages over standard PCR-based subtyping. The number of the spotted probes on the microarrays can be increased by additional probes, such as for novel alleles, species markers, or resistance genes, should the need arise. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Microarray RNA expression analysis of cerebral white matter lesions reveals changes in multiple functional pathways.

    PubMed

    Simpson, Julie E; Hosny, Ola; Wharton, Stephen B; Heath, Paul R; Holden, Hazel; Fernando, Malee S; Matthews, Fiona; Forster, Gill; O'Brien, John T; Barber, Robert; Kalaria, Raj N; Brayne, Carol; Shaw, Pamela J; Lewis, Claire E; Ince, Paul G

    2009-02-01

    White matter lesions (WML) in brain aging are linked to dementia and depression. Ischemia contributes to their pathogenesis but other mechanisms may contribute. We used RNA microarray analysis with functional pathway grouping as an unbiased approach to investigate evidence for additional pathogenetic mechanisms. WML were identified by MRI and pathology in brains donated to the Medical Research Council Cognitive Function and Ageing Study Cognitive Function and Aging Study. RNA was extracted to compare WML with nonlesional white matter samples from cases with lesions (WM[L]), and from cases with no lesions (WM[C]) using RNA microarray and pathway analysis. Functional pathways were validated for selected genes by quantitative real-time polymerase chain reaction and immunocytochemistry. We identified 8 major pathways in which multiple genes showed altered RNA transcription (immune regulation, cell cycle, apoptosis, proteolysis, ion transport, cell structure, electron transport, metabolism) among 502 genes that were differentially expressed in WML compared to WM[C]. In WM[L], 409 genes were altered involving the same pathways. Genes selected to validate this microarray data all showed the expected changes in RNA levels and immunohistochemical expression of protein. WML represent areas with a complex molecular phenotype. From this and previous evidence, WML may arise through tissue ischemia but may also reflect the contribution of additional factors like blood-brain barrier dysfunction. Differential expression of genes in WM[L] compared to WM[C] indicate a "field effect" in the seemingly normal surrounding white matter.

  3. Doxycycline affects gene expression profiles in aortic tissues in a rat model of vascular calcification.

    PubMed

    Lu, Hailin; Jiang, Wenhong; Yang, Han; Qin, Zhong; Guo, Si-En; Hu, Ming; Qin, Xiao

    2017-11-01

    Vitamin D 3 -induced vascular calcification (VC) in rats shares many phenotypical similarities with calcification occurring in human atherosclerosis, diabetes mellitus and chronic kidney disease, thereby it is a reliable model for identifying chemopreventive agents. Doxycycline has been shown to effectively attenuated VC. This study aimed to explore the effects of doxycycline on gene expression profiles in VC rats. The model of VC in rats was established by subcutaneous injection of vitamin D3 for 3days. Doxycycline at 120mgkg -1 day -1 was given via subcutaneous injection for 14days. Rat pathological changes, calcium deposition and calcium content in aortic tissues were measured by Hematoxylin-eosin, von Kossa staining and colorimetry, respectively. The gene change profile of aortic tissues after doxycycline treatment was assessed by Gene Microarray analysis using the Agilent Whole Rat Genome Oligo Microarray. The results showed that doxycycline significantly decreased the deposition of calcium, reduced the relative calcification area and alleviated pathological injury in aortic tissues. In addition, doxycycline treatment altered 88 gene expressions compared with untreated VD group. Of these, 61 genes were down-regulated and 27 genes were up-regulated. The functions of differentially expressed (DE) genes were involved in neutrophil chemotaxis, chronic inflammatory response, negative regulation of apoptotic process, cellular response to mechanical stimulus and immune response, etc. In conclusions, this study might provide the potential novel insights into the molecular mechanisms of doxycycline on VC. Copyright © 2017. Published by Elsevier Inc.

  4. Skin physiology in microgravity: a 3-month stay aboard ISS induces dermal atrophy and affects cutaneous muscle and hair follicles cycling in mice.

    PubMed

    Neutelings, Thibaut; Nusgens, Betty V; Liu, Yi; Tavella, Sara; Ruggiu, Alessandra; Cancedda, Ranieri; Gabriel, Maude; Colige, Alain; Lambert, Charles

    2015-01-01

    The Mice Drawer System (MDS) Tissue Sharing program was the longest rodent space mission ever performed. It provided 20 research teams with organs and tissues collected from mice having spent 3 months on the International Space Station (ISS). Our participation to this experiment aimed at investigating the impact of such prolonged exposure to extreme space conditions on mouse skin physiology. Mice were maintained in the MDS for 91 days aboard ISS (space group (S)). Skin specimens were collected shortly after landing for morphometric, biochemical, and transcriptomic analyses. An exact replicate of the experiment in the MDS was performed on ground (ground group (G)). A significant reduction of dermal thickness (-15%, P =0.05) was observed in S mice accompanied by an increased newly synthetized procollagen (+42%, P =0.03), likely reflecting an increased collagen turnover. Transcriptomic data suggested that the dermal atrophy might be related to an early degradation of defective newly formed procollagen molecules. Interestingly, numerous hair follicles in growing anagen phase were observed in the three S mice, validated by a high expression of specific hair follicles genes, while only one mouse in the G controls showed growing hairs. By microarray analysis of whole thickness skin, we observed a significant modulation of 434 genes in S versus G mice. A large proportion of the upregulated transcripts encoded proteins related to striated muscle homeostasis. These data suggest that a prolonged exposure to space conditions may induce skin atrophy, deregulate hair follicle cycle, and markedly affect the transcriptomic repertoire of the cutaneous striated muscle panniculus carnosus.

  5. Differential expression of steroid 5alpha-reductase isozymes and association with disease severity and angiogenic genes predict their biological role in prostate cancer.

    PubMed

    Das, Kakoli; Lorena, Pia D N; Ng, Lai Kuan; Lim, Diana; Shen, Liang; Siow, Woei Yun; Teh, Ming; Reichardt, Juergen K V; Salto-Tellez, Manuel

    2010-09-01

    The biological role of steroid 5alpha-reductase isozymes (encoded by the SRD5A1 and SRD5A2 genes) and angiogenic factors that play important roles in the pathogenesis and vascularization of prostate cancer (PC) is poorly understood. The sub-cellular expression of these isozymes and vascular endothelial growth factor (VEGF) in PC tissue microarrays (n=62) was examined using immunohistochemistry. The effect of SRD5A inhibition on the angiogenesis pathway genes in PC was also examined in prostate cell lines, LNCaP, PC3, and RWPE-1, by treating them with the SRD5A inhibitors finasteride and dutasteride, followed by western blot, quantitative PCR, and ELISA chip array techniques. In PC tissues, nuclear SRD5A1 expression was strongly associated with higher cancer Gleason scores (P=0.02), higher cancer stage (P=0.01), and higher serum prostate specific antigen (PSA) levels (P=0.01), whereas nuclear SRD5A2 expression was correlated with VEGF expression (P=0.01). Prostate tumor cell viability was significantly reduced in dutasteride-treated PC3 and RWPE-1 cells compared with finasteride-treated groups. Expression of the angiogenesis pathway genes transforming growth factor beta 1 (TGFB1), endothelin (EDN1), TGFalpha (TGFA), and VEGFR1 was upregulated in LNCaP cells, and at least 7 out of 21 genes were upregulated in PC3 cells treated with finasteride (25 muM). Our findings suggest that SRD5A1 expression predominates in advanced PC, and that inhibition of SRD5A1 and SRD5A2 together was more effective in reducing cell numbers than inhibition of SRD5A2 alone. However, these inhibitors did not show any significant difference in prostate cell angiogenic response. Interestingly, some angiogenic genes remained activated after treatment, possibly due to the duration of treatment and tumor resistance to inhibitors.

  6. Meta-review of protein network regulating obesity between validated obesity candidate genes in the white adipose tissue of high-fat diet-induced obese C57BL/6J mice.

    PubMed

    Kim, Eunjung; Kim, Eun Jung; Seo, Seung-Won; Hur, Cheol-Goo; McGregor, Robin A; Choi, Myung-Sook

    2014-01-01

    Worldwide obesity and related comorbidities are increasing, but identifying new therapeutic targets remains a challenge. A plethora of microarray studies in diet-induced obesity models has provided large datasets of obesity associated genes. In this review, we describe an approach to examine the underlying molecular network regulating obesity, and we discuss interactions between obesity candidate genes. We conducted network analysis on functional protein-protein interactions associated with 25 obesity candidate genes identified in a literature-driven approach based on published microarray studies of diet-induced obesity. The obesity candidate genes were closely associated with lipid metabolism and inflammation. Peroxisome proliferator activated receptor gamma (Pparg) appeared to be a core obesity gene, and obesity candidate genes were highly interconnected, suggesting a coordinately regulated molecular network in adipose tissue. In conclusion, the current network analysis approach may help elucidate the underlying molecular network regulating obesity and identify anti-obesity targets for therapeutic intervention.

  7. Fibroblast extracellular matrix gene expression in response to keratinocyte-releasable stratifin.

    PubMed

    Ghaffari, Abdi; Li, Yunyaun; Karami, Ali; Ghaffari, Mazyar; Tredget, Edward E; Ghahary, Aziz

    2006-05-15

    Termination of wound-healing process requires a fine balance between connective tissue deposition and its hydrolysis. Previously, we have demonstrated that keratinocyte-releasable stratifin, also known as 14-3-3 sigma protein, stimulates collagenase (MMP-1) expression in dermal fibroblasts. However, role of extracellular stratifin in regulation of extracellular matrix (ECM) factors and other matrix metalloproteinases (MMPs) in dermal fibroblast remains unexplored. To address this question, large-scale ECM gene expression profile were analyzed in human dermal fibroblasts co-cultured with keratinocytes or treated with recombinant stratifin. Superarray pathway-specific microarrays were utilized to identify upregulation or downregulation of 96 human ECM and adhesion molecule genes. RT-PCR and Western blot were used to validate microarray expression profiles of selected genes. Comparison of gene profiles with the appropriate controls showed a significant (more than twofold) increase in expression of collagenase-1, stromelysin-1 and -2, neutrophil collagenase, and membrane type 5 MMP in dermal fibroblasts treated with stratifin or co-cultured with keratinocytes. Expression of type I collagen and fibronectin genes decreased in the same fibroblasts. The results of a dose-response experiment showed that stratifin stimulates the expression of stromelysin-1 (MMP-3) mRNA by dermal fibroblasts in a concentration-dependent fashion. Furthermore, Western blot analysis of fibroblast-conditioned medium showed a peak in MMP-3 protein levels 48 h following treatment with recombinant stratifin. In a lasting-effect study, MMP-3 protein was detected in fibroblast-condition medium for up to 72 h post removal of stratifin. In conclusion, our results suggest that keratinocyte-releasable stratifin plays a major role in induction of ECM degradation by dermal fibroblasts through stimulation of key MMPs, such as MMP-1 and MMP-3. Therefore, stratifin protein may prove to be a useful target for clinical intervention in controlling excessive wound healing in fibrotic conditions. Copyright 2006 Wiley-Liss, Inc.

  8. The Long Noncoding RNA Landscape of the Mouse Eye.

    PubMed

    Chen, Weiwei; Yang, Shuai; Zhou, Zhonglou; Zhao, Xiaoting; Zhong, Jiayun; Reinach, Peter S; Yan, Dongsheng

    2017-12-01

    Long noncoding RNAs (lncRNAs) are important regulators of diverse biological functions. However, an extensive in-depth analysis of their expression profile and function in mammalian eyes is still lacking. Here we describe comprehensive landscapes of stage-dependent and tissue-specific lncRNA expression in the mouse eye. Affymetrix transcriptome array profiled lncRNA signatures from six different ocular tissue subsets (i.e., cornea, lens, retina, RPE, choroid, and sclera) in newborn and 8-week-old mice. Quantitative RT-PCR analysis validated array findings. Cis analyses and Gene Ontology (GO) annotation of protein-coding genes adjacent to signature lncRNA loci clarified potential lncRNA roles in maintaining tissue identity and regulating eye maturation during the aforementioned phase. In newborn and 8-week-old mice, we identified 47,332 protein-coding and noncoding gene transcripts. LncRNAs comprise 19,313 of these transcripts annotated in public data banks. During this maturation phase of these six different tissue subsets, more than 1000 lncRNAs expression levels underwent ≥2-fold changes. qRT-PCR analysis confirmed part of the gene microarray analysis results. K-means clustering identified 910 lncRNAs in the P0 groups and 686 lncRNAs in the postnatal 8-week-old groups, suggesting distinct tissue-specific lncRNA clusters. GO analysis of protein-coding genes proximal to lncRNA signatures resolved close correlations with their tissue-specific functional maturation between P0 and 8 weeks of age in the 6 tissue subsets. Characterizating maturational changes in lncRNA expression patterns as well as tissue-specific lncRNA signatures in six ocular tissues suggest important contributions made by lncRNA to the control of developmental processes in the mouse eye.

  9. Cytotoxic tumour-infiltrating T lymphocytes influence outcome in resected pancreatic ductal adenocarcinoma.

    PubMed

    Lohneis, Philipp; Sinn, Marianne; Bischoff, Sven; Jühling, Anja; Pelzer, Uwe; Wislocka, Lilianna; Bahra, Marcus; Sinn, Bruno V; Denkert, Carsten; Oettle, Helmut; Bläker, Hendrik; Riess, Hanno; Jöhrens, Korinna; Striefler, Jana K

    2017-09-01

    We studied the prognostic effect of CD3-, CD8- and CD103-positive T lymphocytes in a cohort of 165 patients with resected pancreatic ductal adenocarcinomas (PDACs) of the treatment group (adjuvant gemcitabine) and the untreated control group of the CONKO-001 study. Immunohistochemical stainings on tissue microarrays (TMAs) against CD3, CD8 and CD103 were performed according to standard procedures. A high number of CD8-positive lymphocytes were significantly and independently associated with longer disease-free survival (DFS) and overall survival (OS) in the overall study population. Median DFS/OS were 7.4/18.1 months for patients with a low number of CD8-positive intratumoural lymphocytes (≤42 per 1 mm tissue core) and 12.7/25.2 months for patients with high numbers (>42 per 1-mm tissue core; p = 0.008/0.020; HR 0.62/0.65). The ratio of intraepithelial to total CD103-positive lymphocytes, but not total numbers of CD103-positive lymphocytes or CD103-positive intraepithelial lymphocytes, was associated with significantly improved DFS and OS in the overall study population (p = 0.022/0.009). Median DFS/OS was 5.9/15.7 for patients with a ratio of intraepithelial to total CD103-positive intratumoural lymphocytes higher than 0.3 and 11.6/24.7 for patients with a lower ratio. T-lymphocyte subpopulations might be prognostic in resectable PDAC but need standardization and verification by further studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Differential gene expression in human abdominal aortic aneurysm and aortic occlusive disease

    PubMed Central

    Moran, Corey S.; Schreurs, Charlotte; Lindeman, Jan H. N.; Walker, Philip J.; Nataatmadja, Maria; West, Malcolm; Holdt, Lesca M.; Hinterseher, Irene; Pilarsky, Christian; Golledge, Jonathan

    2015-01-01

    Abdominal aortic aneurysm (AAA) and aortic occlusive disease (AOD) represent common causes of morbidity and mortality in elderly populations which were previously believed to have common aetiologies. The aim of this study was to assess the gene expression in human AAA and AOD. We performed microarrays using aortic specimen obtained from 20 patients with small AAAs (≤ 55mm), 29 patients with large AAAs (> 55mm), 9 AOD patients, and 10 control aortic specimens obtained from organ donors. Some differentially expressed genes were validated by quantitative-PCR (qRT-PCR)/immunohistochemistry. We identified 840 and 1,014 differentially expressed genes in small and large AAAs, respectively. Immune-related pathways including cytokine-cytokine receptor interaction and T-cell-receptor signalling were upregulated in both small and large AAAs. Examples of validated genes included CTLA4 (2.01-fold upregulated in small AAA, P = 0.002), NKTR (2.37-and 2.66-fold upregulated in small and large AAA with P = 0.041 and P = 0.015, respectively), and CD8A (2.57-fold upregulated in large AAA, P = 0.004). 1,765 differentially expressed genes were identified in AOD. Pathways upregulated in AOD included metabolic and oxidative phosphorylation categories. The UCP2 gene was downregulated in AOD (3.73-fold downregulated, validated P = 0.017). In conclusion, the AAA and AOD transcriptomes were very different suggesting that AAA and AOD have distinct pathogenic mechanisms. PMID:25944698

  11. Detection of Distinct Changes in Gene-expression Profiles in Specimens of Tumors and Transition Zones of Tenascin-positive/-negative Head and Neck Squamous Cell Carcinoma.

    PubMed

    Zivicova, Veronika; Gal, Peter; Mifkova, Alzbeta; Novak, Stepan; Kaltner, Herbert; Kolar, Michal; Strnad, Hynek; Sachova, Jana; Hradilova, Miluse; Chovanec, Martin; Gabius, Hans-Joachim; Smetana, Karel; Fik, Zdenek

    2018-03-01

    Having previously initiated genome-wide expression profiling in head and neck squamous cell carcinoma (HNSCC) for regions of the tumor, the margin of surgical resecate (MSR) and normal mucosa (NM), we here proceed with respective analysis of cases after stratification according to the expression status of tenascin (Ten). Tissue specimens of each anatomical site were analyzed by immunofluorescent detection of Ten, fibronectin (Fn) and galectin-1 (Gal-1) as well as by microarrays. Histopathological examination demonstrated that Ten + Fn + Gal-1 + co-expression occurs more frequently in samples of HNSCC (55%) than in NM (9%; p<0.01). Contrary, the Ten - Fn + Gal-1 - (45%) and Ten - Fn - Gal-1 - (39%) status occurred with significantly (p<0.01) higher frequency than in HNSCC (3% and 4%, respectively). In MSRs, different immunophenotypes were distributed rather equally (Ten + Fn + Gal-1 + =24%; Ten - Fn + Gal-1 - =36%; Ten - Fn - Gal-1 - =33%), differing to the results in tumors (p<0.05). Absence/presence of Ten was used for stratification of patients into cohorts without a difference in prognosis, to comparatively examine gene-activity signatures. Microarray analysis revealed i) expression of several tumor progression-associated genes in Ten + HNSCC tumors and ii) a strong up-regulation of gene expression assigned to lipid metabolism in MSRs of Ten - tumors, while NM profiles remained similar. The presented data reveal marked and specific changes in tumors and MSR specimens of HNSCC without a separation based on prognosis. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. MicroRNA expression in melanocytic nevi: the usefulness of formalin-fixed, paraffin-embedded material for miRNA microarray profiling.

    PubMed

    Glud, Martin; Klausen, Mikkel; Gniadecki, Robert; Rossing, Maria; Hastrup, Nina; Nielsen, Finn C; Drzewiecki, Krzysztof T

    2009-05-01

    MicroRNAs (miRNAs) are small, noncoding RNA molecules that regulate cellular differentiation, proliferation, and apoptosis. MiRNAs are expressed in a developmentally regulated and tissue-specific manner. Aberrant expression may contribute to pathological processes such as cancer, and miRNA may therefore serve as biomarkers that may be useful in a clinical environment for diagnosis of various diseases. Most miRNA profiling studies have used fresh tissue samples. However, in some types of cancer, including malignant melanoma, fresh material is difficult to obtain from primary tumors, and most surgical specimens are formalin fixed and paraffin embedded (FFPE). To explore whether FFPE material would be suitable for miRNA profiling in melanocytic lesions, we compared miRNA expression patterns in FFPE versus fresh frozen samples, obtained from 15 human melanocytic nevi. Out of microarray data, we identified 84 miRNAs that were expressed in both types of samples and represented an miRNA profile of melanocytic nevi. Our results showed a high correlation in miRNA expression (Spearman r-value of 0.80) between paired FFPE and fresh frozen material. The data were further validated by quantitative RT-PCR. In conclusion, FFPE specimens of melanocytic lesions are suitable as a source for miRNA microarray profiling.

  13. A microarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice

    PubMed Central

    Grove, KL; Fried, SK; Greenberg, AS; Xiao, XQ; Clegg, DJ

    2013-01-01

    Objective A sexual dimorphism exists in body fat distribution; females deposit relatively more fat in subcutaneous/inguinal depots whereas males deposit more fat in the intra-abdominal/gonadal depot. Our objective was to systematically document depot- and sex-related differences in the accumulation of adipose tissue and gene expression, comparing differentially expressed genes in diet-induced obese mice with mice maintained on a chow diet. Research Design and Methods We used a microarray approach to determine whether there are sexual dimorphisms in gene expression in age-matched male, female or ovariectomized female (OVX) C57/BL6 mice maintained on a high-fat (HF) diet. We then compared expression of validated genes between the sexes on a chow diet. Results After exposure to a high fat diet for 12 weeks, females gained less weight than males. The microarray analyses indicate in intra-abdominal/gonadal adipose tissue in females 1642 genes differ by at least twofold between the depots, whereas 706 genes differ in subcutaneous/inguinal adipose tissue when compared with males. Only 138 genes are commonly regulated in both sexes and adipose tissue depots. Inflammatory genes (cytokine–cytokine receptor interactions and acute-phase protein synthesis) are upregulated in males when compared with females, and there is a partial reversal after OVX, where OVX adipose tissue gene expression is more ′male-like′. This pattern is not observed in mice maintained on chow. Histology of male gonadal white adipose tissue (GWAT) shows more crown-like structures than females, indicative of inflammation and adipose tissue remodeling. In addition, genes related to insulin signaling and lipid synthesis are higher in females than males, regardless of dietary exposure. Conclusions These data suggest that male and female adipose tissue differ between the sexes regardless of diet. Moreover, HF diet exposure elicits a much greater inflammatory response in males when compared with females. This data set underscores the importance of analyzing depot-, sex- and steroid-dependent regulation of adipose tissue distribution and function. PMID:20157318

  14. Discovery of Colorectal Cancer Biomarker Candidates by Membrane Proteomic Analysis and Subsequent Verification using Selected Reaction Monitoring (SRM) and Tissue Microarray (TMA) Analysis*

    PubMed Central

    Kume, Hideaki; Muraoka, Satoshi; Kuga, Takahisa; Adachi, Jun; Narumi, Ryohei; Watanabe, Shio; Kuwano, Masayoshi; Kodera, Yoshio; Matsushita, Kazuyuki; Fukuoka, Junya; Masuda, Takeshi; Ishihama, Yasushi; Matsubara, Hisahiro; Nomura, Fumio; Tomonaga, Takeshi

    2014-01-01

    Recent advances in quantitative proteomic technology have enabled the large-scale validation of biomarkers. We here performed a quantitative proteomic analysis of membrane fractions from colorectal cancer tissue to discover biomarker candidates, and then extensively validated the candidate proteins identified. A total of 5566 proteins were identified in six tissue samples, each of which was obtained from polyps and cancer with and without metastasis. GO cellular component analysis predicted that 3087 of these proteins were membrane proteins, whereas TMHMM algorithm predicted that 1567 proteins had a transmembrane domain. Differences were observed in the expression of 159 membrane proteins and 55 extracellular proteins between polyps and cancer without metastasis, while the expression of 32 membrane proteins and 17 extracellular proteins differed between cancer with and without metastasis. A total of 105 of these biomarker candidates were quantitated using selected (or multiple) reaction monitoring (SRM/MRM) with stable synthetic isotope-labeled peptides as an internal control. The results obtained revealed differences in the expression of 69 of these proteins, and this was subsequently verified in an independent set of patient samples (polyps (n = 10), cancer without metastasis (n = 10), cancer with metastasis (n = 10)). Significant differences were observed in the expression of 44 of these proteins, including ITGA5, GPRC5A, PDGFRB, and TFRC, which have already been shown to be overexpressed in colorectal cancer, as well as proteins with unknown function, such as C8orf55. The expression of C8orf55 was also shown to be high not only in colorectal cancer, but also in several cancer tissues using a multicancer tissue microarray, which included 1150 cores from 14 cancer tissues. This is the largest verification study of biomarker candidate membrane proteins to date; our methods for biomarker discovery and subsequent validation using SRM/MRM will contribute to the identification of useful biomarker candidates for various cancers. Data are available via ProteomeXchange with identifier PXD000851. PMID:24687888

  15. Discovery of colorectal cancer biomarker candidates by membrane proteomic analysis and subsequent verification using selected reaction monitoring (SRM) and tissue microarray (TMA) analysis.

    PubMed

    Kume, Hideaki; Muraoka, Satoshi; Kuga, Takahisa; Adachi, Jun; Narumi, Ryohei; Watanabe, Shio; Kuwano, Masayoshi; Kodera, Yoshio; Matsushita, Kazuyuki; Fukuoka, Junya; Masuda, Takeshi; Ishihama, Yasushi; Matsubara, Hisahiro; Nomura, Fumio; Tomonaga, Takeshi

    2014-06-01

    Recent advances in quantitative proteomic technology have enabled the large-scale validation of biomarkers. We here performed a quantitative proteomic analysis of membrane fractions from colorectal cancer tissue to discover biomarker candidates, and then extensively validated the candidate proteins identified. A total of 5566 proteins were identified in six tissue samples, each of which was obtained from polyps and cancer with and without metastasis. GO cellular component analysis predicted that 3087 of these proteins were membrane proteins, whereas TMHMM algorithm predicted that 1567 proteins had a transmembrane domain. Differences were observed in the expression of 159 membrane proteins and 55 extracellular proteins between polyps and cancer without metastasis, while the expression of 32 membrane proteins and 17 extracellular proteins differed between cancer with and without metastasis. A total of 105 of these biomarker candidates were quantitated using selected (or multiple) reaction monitoring (SRM/MRM) with stable synthetic isotope-labeled peptides as an internal control. The results obtained revealed differences in the expression of 69 of these proteins, and this was subsequently verified in an independent set of patient samples (polyps (n = 10), cancer without metastasis (n = 10), cancer with metastasis (n = 10)). Significant differences were observed in the expression of 44 of these proteins, including ITGA5, GPRC5A, PDGFRB, and TFRC, which have already been shown to be overexpressed in colorectal cancer, as well as proteins with unknown function, such as C8orf55. The expression of C8orf55 was also shown to be high not only in colorectal cancer, but also in several cancer tissues using a multicancer tissue microarray, which included 1150 cores from 14 cancer tissues. This is the largest verification study of biomarker candidate membrane proteins to date; our methods for biomarker discovery and subsequent validation using SRM/MRM will contribute to the identification of useful biomarker candidates for various cancers. Data are available via ProteomeXchange with identifier PXD000851. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells.

    PubMed

    Moreb, Jan S; Baker, Henry V; Chang, Lung-Ji; Amaya, Maria; Lopez, M Cecilia; Ostmark, Blanca; Chou, Wayne

    2008-11-24

    Aldehyde dehydrogenase isozymes ALDH1A1 and ALDH3A1 are highly expressed in non small cell lung cancer. Neither the mechanisms nor the biologic significance for such over expression have been studied. We have employed oligonucleotide microarrays to analyze changes in gene profiles in A549 lung cancer cell line in which ALDH activity was reduced by up to 95% using lentiviral mediated expression of siRNA against both isozymes (Lenti 1+3). Stringent analysis methods were used to identify gene expression patterns that are specific to the knock down of ALDH activity and significantly different in comparison to wild type A549 cells (WT) or cells similarly transduced with green fluorescent protein (GFP) siRNA. We confirmed significant and specific down regulation of ALDH1A1 and ALDH3A1 in Lenti 1+3 cells and in comparison to 12 other ALDH genes detected. The results of the microarray analysis were validated by real time RT-PCR on RNA obtained from Lenti 1+3 or WT cells treated with ALDH activity inhibitors. Detailed functional analysis was performed on 101 genes that were significantly different (P < 0.001) and their expression changed by > or = 2 folds in the Lenti 1+3 group versus the control groups. There were 75 down regulated and 26 up regulated genes. Protein binding, organ development, signal transduction, transcription, lipid metabolism, and cell migration and adhesion were among the most affected pathways. These molecular effects of the ALDH knock-down are associated with in vitro functional changes in the proliferation and motility of these cells and demonstrate the significance of ALDH enzymes in cell homeostasis with a potentially significant impact on the treatment of lung cancer.

  17. Biomarkers of acute respiratory allergen exposure: Screening for sensitization potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pucheu-Haston, Cherie M., E-mail: Pucheu-Haston.Cherie@epa.go; Copeland, Lisa B.; Vallanat, Beena

    2010-04-15

    Effective hazard screening will require the development of high-throughput or in vitro assays for the identification of potential sensitizers. The goal of this preliminary study was to identify potential biomarkers that differentiate the response to allergens vs non-allergens following an acute exposure in naive individuals. Female BALB/c mice received a single intratracheal aspiration exposure to Metarhizium anisopliae crude antigen (MACA) or bovine serum albumin (BSA) in Hank's Balanced Salt Solution (HBSS) or HBSS alone. Mice were terminated after 1, 3, 6, 12, 18 and 24 h. Bronchoalveolar lavage fluid (BALF) was evaluated to determine total and differential cellularity, total proteinmore » concentration and LDH activity. RNA was isolated from lung tissue for microarray analysis and qRT-PCR. MACA administration induced a rapid increase in BALF neutrophils, lymphocytes, eosinophils and total protein compared to BSA or HBSS. Microarray analysis demonstrated differential expression of genes involved in cytokine production, signaling, inflammatory cell recruitment, adhesion and activation in 3 and 12 h MACA-treated samples compared to BSA or HBSS. Further analyses allowed identification of approx 100 candidate biomarker genes. Eleven genes were selected for further assessment by qRT-PCR. Of these, 6 demonstrated persistently increased expression (Ccl17, Ccl22, Ccl7, Cxcl10, Cxcl2, Saa1), while C3ar1 increased from 6-24 h. In conclusion, a single respiratory exposure of mice to an allergenic mold extract induces an inflammatory response which is distinct in phenotype and gene transcription from the response to a control protein. Further validation of these biomarkers with additional allergens and irritants is needed. These biomarkers may facilitate improvements in screening methods.« less

  18. Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients

    PubMed Central

    Flanagan, James M.; Munoz-Alegre, Marta; Henderson, Stephen; Tang, Thomas; Sun, Ping; Johnson, Nichola; Fletcher, Olivia; dos Santos Silva, Isabel; Peto, Julian; Boshoff, Chris; Narod, Steven; Petronis, Arturas

    2009-01-01

    Bilaterality of breast cancer is an indicator of constitutional cancer susceptibility; however, the molecular causes underlying this predisposition in the majority of cases is not known. We hypothesize that epigenetic misregulation of cancer-related genes could partially account for this predisposition. We have performed methylation microarray analysis of peripheral blood DNA from 14 women with bilateral breast cancer compared with 14 unaffected matched controls throughout 17 candidate breast cancer susceptibility genes including BRCA1, BRCA2, CHEK2, ATM, ESR1, SFN, CDKN2A, TP53, GSTP1, CDH1, CDH13, HIC1, PGR, SFRP1, MLH1, RARB and HSD17B4. We show that the majority of methylation variability is associated with intragenic repetitive elements. Detailed validation of the tiled region around ATM was performed by bisulphite modification and pyrosequencing of the same samples and in a second set of peripheral blood DNA from 190 bilateral breast cancer patients compared with 190 controls. We show significant hypermethylation of one intragenic repetitive element in breast cancer cases compared with controls (P = 0.0017), with the highest quartile of methylation associated with a 3-fold increased risk of breast cancer (OR 3.20, 95% CI 1.78–5.86, P = 0.000083). Increased methylation of this locus is associated with lower steady-state ATM mRNA level and correlates with age of cancer patients but not controls, suggesting a combined age–phenotype-related association. This research demonstrates the potential for gene-body epigenetic misregulation of ATM and other cancer-related genes in peripheral blood DNA that may be useful as a novel marker to estimate breast cancer risk. Accession numbers: The microarray data and associated .BED and .WIG files can be accessed through Gene Expression Omnibus accession number: GSE14603. PMID:19153073

  19. SCCA, TSGF, and the Long Non-Coding RNA AC007271.3 are Effective Biomarkers for Diagnosing Oral Squamous Cell Carcinoma.

    PubMed

    Shao, Tingru; Huang, Jiaxin; Zheng, Zenan; Wu, Qingqing; Liu, Tiancai; Lv, Xiaozhi

    2018-05-09

    Oral squamous cell carcinoma (OSCC) is one of the most lethal malignancies worldwide and the most common type of oral cancer, characterized by invasive growth, frequent regional metastases, high recurrence, and poor prognosis. In the current study, we investigated the use of long non-coding RNAs (lncRNAs), tumor-specific growth factor (TSGF), and squamous cell carcinoma antigen (SCCA) as potential biomarkers for OSCC screening. LncRNA expression was measured by microarray analysis in three sets of OSCC and paired normal mucosal tissues. The potential lncRNAs involved in OSCC development were investigated by bioinformatics and verification experiments. We also determined the expression of these potential biomarkers in tissue and serum samples in a case-control study of 80 OSCC cases and 70 controls. Receiver operating characteristics, decision curve analysis, and the combined detection of lncRNA AC007271.3, TSGF, and SCCA were carried out to screen for OSCC biomarkers. A total of 691 lncRNAs (433 upregulated and 258 downregulated) were differentially expressed in OSCC tissues compared with normal controls (p< 0.05). Based on Gene Ontology and pathway analysis, we selected four differentially expressed lncRNAs (AC007271.3, AC007182.6, LOC283481, and RP11-893F2.9), and showed that aberrant AC007271.3 levels in OSCC patients were significantly associated with clinical stage, especially in early-stage disease, in an expanded case-control study. The combination of AC007271.3 and SCCA (AUC=0.902, p< 0.001) showed significantly better ability to discriminate between OSCC and controls compared with SCCA or AC007271.3 alone. Serum AC007271.3, SCCA, and TSGF levels could also discriminate between OSCC and normal controls with sensitivities of 77.6%, 55.0%, and 63.3%, and specificities of 84.5%, 93.3%, and 66.7%, respectively. These results suggest that AC007271.3, SCCA, and TSGF could be novel circulating biomarkers for the determination of OSCC. However, further validation in large-scale prospective studies is necessary. © 2018 The Author(s). Published by S. Karger AG, Basel.

  20. Integrative Genome Comparison of Primary and Metastatic Melanomas

    PubMed Central

    Feng, Bin; Nazarian, Rosalynn M.; Bosenberg, Marcus; Wu, Min; Scott, Kenneth L.; Kwong, Lawrence N.; Xiao, Yonghong; Cordon-Cardo, Carlos; Granter, Scott R.; Ramaswamy, Sridhar; Golub, Todd; Duncan, Lyn M.; Wagner, Stephan N.; Brennan, Cameron; Chin, Lynda

    2010-01-01

    A cardinal feature of malignant melanoma is its metastatic propensity. An incomplete view of the genetic events driving metastatic progression has been a major barrier to rational development of effective therapeutics and prognostic diagnostics for melanoma patients. In this study, we conducted global genomic characterization of primary and metastatic melanomas to examine the genomic landscape associated with metastatic progression. In addition to uncovering three genomic subclasses of metastastic melanomas, we delineated 39 focal and recurrent regions of amplification and deletions, many of which encompassed resident genes that have not been implicated in cancer or metastasis. To identify progression-associated metastasis gene candidates, we applied a statistical approach, Integrative Genome Comparison (IGC), to define 32 genomic regions of interest that were significantly altered in metastatic relative to primary melanomas, encompassing 30 resident genes with statistically significant expression deregulation. Functional assays on a subset of these candidates, including MET, ASPM, AKAP9, IMP3, PRKCA, RPA3, and SCAP2, validated their pro-invasion activities in human melanoma cells. Validity of the IGC approach was further reinforced by tissue microarray analysis of Survivin showing significant increased protein expression in thick versus thin primary cutaneous melanomas, and a progression correlation with lymph node metastases. Together, these functional validation results and correlative analysis of human tissues support the thesis that integrated genomic and pathological analyses of staged melanomas provide a productive entry point for discovery of melanoma metastases genes. PMID:20520718

  1. Bmi-1 expression modulates non-small cell lung cancer progression

    PubMed Central

    Xiong, Dan; Ye, Yunlin; Fu, Yujie; Wang, Jinglong; Kuang, Bohua; Wang, Hongbo; Wang, Xiumin; Zu, Lidong; Xiao, Gang; Hao, Mingang; Wang, Jianhua

    2015-01-01

    Previous studies indicate that the role of B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1) is responsible for multiple cancer progression. However, Bmi-1 in controlling gene expression in non-small cell lung cancer (NSCLC) development is not well explored. Here we report that the Bmi-1 level is highly increased in primary NSCLC tissues compared to matched adjacent non-cancerous tissues and required for lung tumor growth in xenograft model. Furthermore, we also demonstrate that Bmi-1 level is lower in matched involved lymph node cancerous tissues than the respective primary NSCLC tissues. We find that Bmi-1 does not affect cell cycle and apoptosis in lung cancer cell lines as it does not affect the expression of p16/p19, Pten, AKT and P-AKT. Mechanistic analyses note that reduction of Bmi-1 expression inversely regulates invasion and metastasis of NSCLC cells in vitro and in vivo, followed by induction of epithelial-mesenchymal transition (EMT). Using genome microarray assays, we find that RNAi-mediated silence of Bmi-1 modulates some important molecular genetics or signaling pathways, potentially associated with NSCLC development. Taken together, our findings disclose for the first time that Bmi-1 level accumulates strongly in early stage and then declines in late stage, which is potentially important for NSCLC cell invasion and metastasis during progression. PMID:25880371

  2. MiR-4653-3p and its target gene FRS2 are prognostic biomarkers for hormone receptor positive breast cancer patients receiving tamoxifen as adjuvant endocrine therapy

    PubMed Central

    Wang, Zhu; Wang, Yu; Wang, YanPing; Qiu, Yan; Li, Li; Bu, Hong; Li, JiaYuan; Zheng, Hong

    2016-01-01

    Long-term tamoxifen treatment significantly improves the survival of hormone receptor-positive (HR+) breast cancer (BC) patients. However, tamoxifen resistance remains a challenge. We aimed to identify prognostic biomarkers for tamoxifen resistance and reveal the underlying mechanism. From March 2001 to September 2013, 400 HR+ BC women (stage I~III) were treated with adjuvant tamoxifen for 5 years or until relapse in West China Hospital. We included a discovery set of 6 patients who were refractory to tamoxifen, and a validation cohort of 88 patients including 35 cases with relapse. In the discovery set, microRNA microarray showed that miR-4653-3p decreased in recurrent/metastatic lesions compared to the matched primary lesions. In the validation cohort, real-time RT-PCR demonstrated that, following tamoxifen treatment, miR-4653-3p overexpression in the primary tumors decreased the risk of relapse (adjusted hazard ratio [HR] = 0.17, 95% confidence interval [CI] = 0.05~0.57, P = 0.004). Conversely, high expression of FRS2, the key adaptor protein required by FGFR signaling, predicted poor disease-free survival (DFS) (adjusted HR = 2.70, 95% CI = 1.11~6.56, P = 0.03). MiR-4653-3p down regulated FRS2 by binding to its 3′ untranslated region. Either overexpressing miR-4653-3p or attenuating FRS2 expression could restore TAM sensitivity in two tamoxifen-resistant BC cell lines. In conclusion, high miR-4653-3p level was the potential predictor for favorable DFS, while FRS2 overexpression was potential high-risk factor for relapse in HR+ BC patients receiving TAM adjuvant therapy. FGFR/FRS2 signaling might be a promising target for reversing tamoxifen resistance. PMID:27533459

  3. Epithelial–mesenchymal transition biomarkers and support vector machine guided model in preoperatively predicting regional lymph node metastasis for rectal cancer

    PubMed Central

    Fan, X-J; Wan, X-B; Huang, Y; Cai, H-M; Fu, X-H; Yang, Z-L; Chen, D-K; Song, S-X; Wu, P-H; Liu, Q; Wang, L; Wang, J-P

    2012-01-01

    Background: Current imaging modalities are inadequate in preoperatively predicting regional lymph node metastasis (RLNM) status in rectal cancer (RC). Here, we designed support vector machine (SVM) model to address this issue by integrating epithelial–mesenchymal-transition (EMT)-related biomarkers along with clinicopathological variables. Methods: Using tissue microarrays and immunohistochemistry, the EMT-related biomarkers expression was measured in 193 RC patients. Of which, 74 patients were assigned to the training set to select the robust variables for designing SVM model. The SVM model predictive value was validated in the testing set (119 patients). Results: In training set, eight variables, including six EMT-related biomarkers and two clinicopathological variables, were selected to devise SVM model. In testing set, we identified 63 patients with high risk to RLNM and 56 patients with low risk. The sensitivity, specificity and overall accuracy of SVM in predicting RLNM were 68.3%, 81.1% and 72.3%, respectively. Importantly, multivariate logistic regression analysis showed that SVM model was indeed an independent predictor of RLNM status (odds ratio, 11.536; 95% confidence interval, 4.113–32.361; P<0.0001). Conclusion: Our SVM-based model displayed moderately strong predictive power in defining the RLNM status in RC patients, providing an important approach to select RLNM high-risk subgroup for neoadjuvant chemoradiotherapy. PMID:22538975

  4. Validation of Biomarker Proteins Using Reverse Capture Protein Microarrays.

    PubMed

    Jozwik, Catherine; Eidelman, Ofer; Starr, Joshua; Pollard, Harvey B; Srivastava, Meera

    2017-01-01

    Genomics has revolutionized large-scale and high-throughput sequencing and has led to the discovery of thousands of new proteins. Protein chip technology is emerging as a miniaturized and highly parallel platform that is suited to rapid, simultaneous screening of large numbers of proteins and the analysis of various protein-binding activities, enzyme substrate relationships, and posttranslational modifications. Specifically, reverse capture protein microarrays provide the most appropriate platform for identifying low-abundance, disease-specific biomarker proteins in a sea of high-abundance proteins from biological fluids such as blood, serum, plasma, saliva, urine, and cerebrospinal fluid as well as tissues and cells obtained by biopsy. Samples from hundreds of patients can be spotted in serial dilutions on many replicate glass slides. Each slide can then be probed with one specific antibody to the biomarker of interest. That antibody's titer can then be determined quantitatively for each patient, allowing for the statistical assessment and validation of the diagnostic or prognostic utility of that particular antigen. As the technology matures and the availability of validated, platform-compatible antibodies increases, the platform will move further into the desirable realm of discovery science for detecting and quantitating low-abundance signaling proteins. In this chapter, we describe methods for the successful application of the reverse capture protein microarray platform for which we have made substantial contributions to the development and application of this method, particularly in the use of body fluids other than serum/plasma.

  5. Alterations of choline phospholipid metabolism in endometrial cancer are caused by choline kinase alpha overexpression and a hyperactivated deacylation pathway.

    PubMed

    Trousil, Sebastian; Lee, Patrizia; Pinato, David J; Ellis, James K; Dina, Roberto; Aboagye, Eric O; Keun, Hector C; Sharma, Rohini

    2014-12-01

    Metabolic rearrangements subsequent to malignant transformation are not well characterized in endometrial cancer. Identification of altered metabolites could facilitate imaging-guided diagnosis, treatment surveillance, and help to identify new therapeutic options. Here, we used high-resolution magic angle spinning magnetic resonance mass spectroscopy on endometrial cancer surgical specimens and normal endometrial tissue to investigate the key modulators that might explain metabolic changes, incorporating additional investigations using qRT-PCR, Western blotting, tissue microarrays (TMA), and uptake assays of [(3)H]-labeled choline. Lipid metabolism was severely dysregulated in endometrial cancer with various amino acids, inositols, nucleobases, and glutathione also altered. Among the most important lipid-related alterations were increased phosphocholine levels (increased 70% in endometrial cancer). Mechanistic investigations revealed that changes were not due to altered choline transporter expression, but rather due to increased expression of choline kinase α (CHKA) and an activated deacylation pathway, as indicated by upregulated expression of the catabolic enzymes LYPLA1, LYPLA2, and GPCPD1. We confirmed the significance of CHKA overexpression on a TMA, including a large series of endometrial hyperplasia, atypical hyperplasia, and adenocarcinoma tissues, supporting a role for CHKA in malignant transformation. Finally, we documented several-fold increases in the uptake of [(3)H]choline in endometrial cancer cell lines compared with normal endometrial stromal cells. Our results validate deregulated choline biochemistry as an important source of noninvasive imaging biomarkers for endometrial cancer. ©2014 American Association for Cancer Research.

  6. Low p53 Binding Protein 1 (53BP1) Expression Is Associated With Increased Local Recurrence in Breast Cancer Patients Treated With Breast-Conserving Surgery and Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neboori, Hanmanth J.R.; Haffty, Bruce G., E-mail: hafftybg@umdnj.edu; Wu Hao

    2012-08-01

    Purpose: To investigate whether the expression of p53 binding protein 1 (53BP1) has prognostic significance in a cohort of early-stage breast cancer patients treated with breast-conserving surgery and radiotherapy (BCS+RT). Methods and Materials: A tissue microarray of early-stage breast cancer treated with BCS+RT from a cohort of 514 women was assayed for 53BP1, estrogen receptor, progesterone receptor, and HER2 expression by immunohistochemistry. Through log-rank tests and univariate and multivariate models, the staining profile of each tumor was correlated with clinical endpoints, including ipsilateral breast recurrence-free survival (IBRFS), distant metastasis-free survival (DMFS), cause-specific survival (CSS), recurrence-free survival (RFS), and overall survivalmore » (OS). Results: Of the 477 (93%) evaluable tumors, 63 (13%) were scored as low. Low expression of 53BP1 was associated with worse outcomes for all endpoints studied, including 10-year IBRFS (76.8% vs. 90.5%; P=.01), OS (66.4% vs. 81.7%; P=.02), CSS (66.0% vs. 87.4%; P<.01), DMFS (55.9% vs. 87.0%; P<.01), and RFS (45.2% vs. 80.6%; P<.01). Multivariate analysis incorporating various clinico-pathologic markers and 53BP1 expression found that 53BP1 expression was again an independent predictor of all endpoints (IBRFS: P=.0254; OS: P=.0094; CSS: P=.0033; DMFS: P=.0006; RFS: P=.0002). Low 53BP1 expression was also found to correlate with triple-negative (TN) phenotype (P<.01). Furthermore, in subset analysis of all TN breast cancer, negative 53BP1 expression trended for lower IBRFS (72.3% vs. 93.9%; P=.0361) and was significant for worse DMFS (48.2% vs. 86.8%; P=.0035) and RFS (37.8% vs. 83.7%; P=.0014). Conclusion: Our data indicate that low 53BP1 expression is an independent prognostic indicator for local relapse among other endpoints in early-stage breast cancer and TN breast cancer patients treated with BCS+RT. These results should be verified in larger cohorts of patients to validate their clinical significance.« less

  7. l-Type Amino Acid Transporter-1 Overexpression and Melphalan Sensitivity in Barrett's Adenocarcinoma1

    PubMed Central

    Lin, Jules; Raoof, Duna A; Thomas, Dafydd G; Greenson, Joel K; Giordano, Thomas J; Robinson, Gregory S; Bourner, Maureen J; Bauer, Christopher T; Orringer, Mark B; Beer, David G

    2004-01-01

    Abstract The L-type amino acid transporter-1 (LAT-1) has been associated with tumor growth. Using cDNA microarrays, overexpression of LAT-1 was found in 87.5% (7/8) of esophageal adenocarcinomas relative to 12 Barrett's samples (33% metaplasia and 66% dysplasia) and was confirmed in 100% (28/28) of Barrett's adenocarcinomas by quantitative reverse transcription polymerase chain reaction. Immunohistochemistry revealed LAT-1 staining in 37.5% (24/64) of esophageal adenocarcinomas on tissue microarray. LAT-1 also transports the amino acid-related chemotherapeutic agent, melphalan. Two esophageal adenocarcinoma and one esophageal squamous cell line, expressing LAT-1 on Western blot analysis, were sensitive to therapeutic doses of melphalan (P < .001). Simultaneous treatment with the competitive inhibitor, BCH [2-aminobicyclo-(2,1,1)-heptane-2-carboxylic acid], decreased sensitivity to melphalan (P < .05). In addition, confluent esophageal squamous cultures were less sensitive to melphalan (P < .001) and had a decrease in LAT-1 protein expression. Tumors from two esophageal adenocarcinoma cell lines grown in nude mice retained LAT-1 mRNA expression. These results demonstrate that LAT-1 is highly expressed in a subset of esophageal adenocarcinomas and that Barrett's adenocarcinoma cell lines expressing LAT-1 are sensitive to melphalan. LAT-1 expression is also retained in cell lines grown in nude mice providing a model to evaluate melphalan as a chemotherapeutic agent against esophageal adenocarcinomas expressing LAT-1. PMID:15068672

  8. FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster

    PubMed Central

    Robinson, Scott W.; Herzyk, Pawel; Dow, Julian A. T.; Leader, David P.

    2013-01-01

    The FlyAtlas resource contains data on the expression of the genes of Drosophila melanogaster in different tissues (currently 25—17 adult and 8 larval) obtained by hybridization of messenger RNA to Affymetrix Drosophila Genome 2 microarrays. The microarray probe sets cover 13 250 Drosophila genes, detecting 12 533 in an unambiguous manner. The data underlying the original web application (http://flyatlas.org) have been restructured into a relational database and a Java servlet written to provide a new web interface, FlyAtlas 2 (http://flyatlas.gla.ac.uk/), which allows several additional queries. Users can retrieve data for individual genes or for groups of genes belonging to the same or related ontological categories. Assistance in selecting valid search terms is provided by an Ajax ‘autosuggest’ facility that polls the database as the user types. Searches can also focus on particular tissues, and data can be retrieved for the most highly expressed genes, for genes of a particular category with above-average expression or for genes with the greatest difference in expression between the larval and adult stages. A novel facility allows the database to be queried with a specific gene to find other genes with a similar pattern of expression across the different tissues. PMID:23203866

  9. FlyAtlas: database of gene expression in the tissues of Drosophila melanogaster.

    PubMed

    Robinson, Scott W; Herzyk, Pawel; Dow, Julian A T; Leader, David P

    2013-01-01

    The FlyAtlas resource contains data on the expression of the genes of Drosophila melanogaster in different tissues (currently 25-17 adult and 8 larval) obtained by hybridization of messenger RNA to Affymetrix Drosophila Genome 2 microarrays. The microarray probe sets cover 13,250 Drosophila genes, detecting 12,533 in an unambiguous manner. The data underlying the original web application (http://flyatlas.org) have been restructured into a relational database and a Java servlet written to provide a new web interface, FlyAtlas 2 (http://flyatlas.gla.ac.uk/), which allows several additional queries. Users can retrieve data for individual genes or for groups of genes belonging to the same or related ontological categories. Assistance in selecting valid search terms is provided by an Ajax 'autosuggest' facility that polls the database as the user types. Searches can also focus on particular tissues, and data can be retrieved for the most highly expressed genes, for genes of a particular category with above-average expression or for genes with the greatest difference in expression between the larval and adult stages. A novel facility allows the database to be queried with a specific gene to find other genes with a similar pattern of expression across the different tissues.

  10. Identification of regulatory targets of tissue-specific transcription factors: application to retina-specific gene regulation

    PubMed Central

    Qian, Jiang; Esumi, Noriko; Chen, Yangjian; Wang, Qingliang; Chowers, Itay; Zack, Donald J.

    2005-01-01

    Identification of tissue-specific gene regulatory networks can yield insights into the molecular basis of a tissue's development, function and pathology. Here, we present a computational approach designed to identify potential regulatory target genes of photoreceptor cell-specific transcription factors (TFs). The approach is based on the hypothesis that genes related to the retina in terms of expression, disease and/or function are more likely to be the targets of retina-specific TFs than other genes. A list of genes that are preferentially expressed in retina was obtained by integrating expressed sequence tag, SAGE and microarray datasets. The regulatory targets of retina-specific TFs are enriched in this set of retina-related genes. A Bayesian approach was employed to integrate information about binding site location relative to a gene's transcription start site. Our method was applied to three retina-specific TFs, CRX, NRL and NR2E3, and a number of potential targets were predicted. To experimentally assess the validity of the bioinformatic predictions, mobility shift, transient transfection and chromatin immunoprecipitation assays were performed with five predicted CRX targets, and the results were suggestive of CRX regulation in 5/5, 3/5 and 4/5 cases, respectively. Together, these experiments strongly suggest that RP1, GUCY2D, ABCA4 are novel targets of CRX. PMID:15967807

  11. [Transciptome among Mexicans: a large scale methodology to analyze the genetics expression profile of simultaneous samples in muscle, adipose tissue and lymphocytes obtained from the same individual].

    PubMed

    Bastarrachea, Raúl A; López-Alvarenga, Juan Carlos; Kent, Jack W; Laviada-Molina, Hugo A; Cerda-Flores, Ricardo M; Calderón-Garcidueñas, Ana Laura; Torres-Salazar, Amada; Torres-Salazar, Amanda; Nava-González, Edna J; Solis-Pérez, Elizabeth; Gallegos-Cabrales, Esther C; Cole, Shelley A; Comuzzie, Anthony G

    2008-01-01

    We describe the methodology used to analyze multiple transcripts using microarray techniques in simultaneous biopsies of muscle, adipose tissue and lymphocytes obtained from the same individual as part of the standard protocol of the Genetics of Metabolic Diseases in Mexico: GEMM Family Study. We recruited 4 healthy male subjects with BM1 20-41, who signed an informed consent letter. Subjects participated in a clinical examination that included anthropometric and body composition measurements, muscle biopsies (vastus lateralis) subcutaneous fat biopsies anda blood draw. All samples provided sufficient amplified RNA for microarray analysis. Total RNA was extracted from the biopsy samples and amplified for analysis. Of the 48,687 transcript targets queried, 39.4% were detectable in a least one of the studied tissues. Leptin was not detectable in lymphocytes, weakly expressed in muscle, but overexpressed and highly correlated with BMI in subcutaneous fat. Another example was GLUT4, which was detectable only in muscle and not correlated with BMI. Expression level concordance was 0.7 (p< 0.001) for the three tissues studied. We demonstrated the feasibility of carrying out simultaneous analysis of gene expression in multiple tissues, concordance of genetic expression in different tissues, and obtained confidence that this method corroborates the expected biological relationships among LEPand GLUT4. TheGEMM study will provide a broad and valuable overview on metabolic diseases, including obesity and type 2 diabetes.

  12. [Dectection and analysis of miRNA expression in breast cancer-associated fibroblasts].

    PubMed

    Zeng, Zongyue; Hu, Ping; Tang, Xi; Zhang, Hailong; Du, Yane; Wen, Siyang; Liu, Manran

    2014-10-01

    To investigate the difference of miRNA expression levels of cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs) in human breast cancer microenvironment and its effect on the biological features of CAFs. Collagenase-1 was used to digest the cancer and adjacent tissues to isolate CAFs and NFs. The isolated cells were cultured and characterized in purity and biological features. The expression of fibroblast secretory protein (FSP) in CAFs and NFs was detected by immunofluorescence staining and Western blotting. Transwell(TM) assay was adopted to compare the invasion ability of CAFs and NFs. The different expressions of miRNAs in CAFs versus NFs were detected by miRNA microarray and analyzed by Significance Analysis of Microarrays (SAM). The differences in miR-205 and miR-221 expressions were verified by real-time quantitative PCR (qRT-PCR). The common target genes of the miRNAs were predicted using multi-bioinformatics tools. The pathway analysis was conducted through the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7. The secreting products of TGF-β or IL-6 signaling pathway, matrix metalloproteinase (MMP)-1, MMP-2 and MMP-9 were analyzed by ELISA. The primary CAFs and NFs were isolated from breast cancer patients with a purity of over 95%. Compared with NFs, the expression of FSP was obviously elevated in CAFs, and the invasion ability of CAFs was enhanced. The miRNA microarray results showed that there were 10 miRNA genes dysregulated in CAFs, including 3 up-regulated (miR-221-5p, miR-31-3p, miR-221-3p) and 7 down-regulated genes (miR-205, miR-200b , miR-200c, miR-141, miR-101, miR-342-3p, let-7g). The common targets genes of the dysregulated miRNAs were mainly focused on HGF, chemokine signaling, insulin signaling, MAPK signaling, tight junction signaling, adherence junction signaling, EGF1 signaling, androgen-receptor signaling, Wnt and IL-7 signaling. In addition, dysregulated miR-200b/c and miR-141 et al. affect TGF-β and IL-6 signaling through inhibiting their target genes in CAFs, thus promoting invasion and migration of CAFs. The miRNA expression profile was markedly dysregulated in CAFs. Those dysregulated miRNAs may take part in the transformation from NFs to CAFs, and also have a close relationship with adhesion, migration, proliferation, secretion and cell-cell interaction of CAFs.

  13. Paracrine interactions between LNCaP prostate cancer cells and bioengineered bone in 3D in vitro culture reflect molecular changes during bone metastasis.

    PubMed

    Sieh, Shirly; Taubenberger, Anna V; Lehman, Melanie L; Clements, Judith A; Nelson, Colleen C; Hutmacher, Dietmar W

    2014-06-01

    As microenvironmental factors such as three-dimensionality and cell-matrix interactions are increasingly being acknowledged by cancer biologists, more complex 3D in vitro models are being developed to study tumorigenesis and cancer progression. To better understand the pathophysiology of bone metastasis, we have established and validated a 3D indirect co-culture model to investigate the paracrine interactions between prostate cancer (PCa) cells and human osteoblasts. Co-culture of the human PCa, LNCaP cells embedded within polyethylene glycol hydrogels with human osteoblasts in the form of a tissue engineered bone construct (TEB), resulted in reduced proliferation of LNCaP cells. LNCaP cells in both monoculture and co-culture were responsive to the androgen analog, R1881, as indicated by an increase in the expression (mRNA and/or protein induction) of androgen-regulated genes including prostate specific antigen and fatty acid synthase. Microarray gene expression analysis further revealed an up-regulation of bone markers and other genes associated with skeletal and vasculature development and a significant activation of transforming growth factor β1 downstream genes in LNCaP cells after co-culture with TEB. LNCaP cells co-cultured with TEB also unexpectedly showed similar changes in classical androgen-responsive genes under androgen-deprived conditions not seen in LNCaP monocultures. The molecular changes of LNCaP cells after co-culturing with TEBs suggest that osteoblasts exert a paracrine effect that may promote osteomimicry and modulate the expression of androgen-responsive genes in LNCaP cells. Taken together, we have presented a novel 3D in vitro model that allows the study of cellular and molecular changes occurring in PCa cells and osteoblasts that are relevant to metastatic colonization of bone. This unique in vitro model could also facilitate cancer biologists to dissect specific biological hypotheses via extensive genomic or proteomic assessments to further our understanding of the PCa-bone crosstalk. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  14. Expression analysis of URI/RMP gene in endometrioid adenocarcinoma by tissue microarray immunohistochemistry.

    PubMed

    Gu, Junxia; Liang, Yuting; Qiao, Longwei; Li, Xiaoyun; Li, Xingang; Lu, Yaojuan; Zheng, Qiping

    2013-01-01

    Multiple studies have recently demonstrated the oncogenic property of URI (or RMP, a member of the prefoldin family of molecular chaperones) during progression of hepatocellular carcinoma, ovarian cancer, and possibly prostate cancer. Most recently, we have shown that URI/RMP is up-regulated in cervical cancer, another reproductive system tumor beside ovarian and prostate cancers. To investigate if URI/RMP also plays a role in other reproductive system tumors, especially in endometrioid adenocarcinoma, we analyzed URI/RMP expression in a TMA (tissue microarray) containing tissues from 30 cases of endometrioid adenocarcinoma (which covers tumor tissues from Grade I through Grade III) and adjacent endometrium by immunohistochemistry (IHC) and densitometry analysis using image-pro plus 6.0 software. Our results showed that the mean density of URI/RMP expression in cancerous tissue is slightly higher than that of the adjacent endometrial tissue, though not statistically significant (p>0.05). There is no significant difference either between the mean density of Grade III cancerous tissue and that of Grade I and II cancers. Notably, we detected significantly higher signal intensity in cancerous tissue of all 7 Grade III cases than that of their adjacent endometrial tissue (p<0.05), suggesting a correlation of URI/RMP expression with the differentiation and pathological classification of endometrioid adenocarcinoma. Together, our results demonstrate the heterogeneous expression of URI/RMP in endometrioid adenocarcinoma. The higher level of URI/RMP expression in high-grade endometrioid adenocarcinomas compared to tissues of adjacent endometrium or gland suggests a diagnostic and possibly, a prognostic value of URI/RMP in endometrioid adenocarcinoma.

  15. Expression analysis of URI/RMP gene in endometrioid adenocarcinoma by tissue microarray immunohistochemistry

    PubMed Central

    Gu, Junxia; Liang, Yuting; Qiao, Longwei; Li, Xiaoyun; Li, Xingang; Lu, Yaojuan; Zheng, Qiping

    2013-01-01

    Multiple studies have recently demonstrated the oncogenic property of URI (or RMP, a member of the prefoldin family of molecular chaperones) during progression of hepatocellular carcinoma, ovarian cancer, and possibly prostate cancer. Most recently, we have shown that URI/RMP is up-regulated in cervical cancer, another reproductive system tumor beside ovarian and prostate cancers. To investigate if URI/RMP also plays a role in other reproductive system tumors, especially in endometrioid adenocarcinoma, we analyzed URI/RMP expression in a TMA (tissue microarray) containing tissues from 30 cases of endometrioid adenocarcinoma (which covers tumor tissues from Grade I through Grade III) and adjacent endometrium by immunohistochemistry (IHC) and densitometry analysis using image-pro plus 6.0 software. Our results showed that the mean density of URI/RMP expression in cancerous tissue is slightly higher than that of the adjacent endometrial tissue, though not statistically significant (p>0.05). There is no significant difference either between the mean density of Grade III cancerous tissue and that of Grade I and II cancers. Notably, we detected significantly higher signal intensity in cancerous tissue of all 7 Grade III cases than that of their adjacent endometrial tissue (p<0.05), suggesting a correlation of URI/RMP expression with the differentiation and pathological classification of endometrioid adenocarcinoma. Together, our results demonstrate the heterogeneous expression of URI/RMP in endometrioid adenocarcinoma. The higher level of URI/RMP expression in high-grade endometrioid adenocarcinomas compared to tissues of adjacent endometrium or gland suggests a diagnostic and possibly, a prognostic value of URI/RMP in endometrioid adenocarcinoma. PMID:24228101

  16. Secretory leukocyte protease inhibitor expression and high-risk HPV infection in anal lesions of HIV positive patients

    PubMed Central

    NUOVO, Gerard J.; GRINSZTEJN, Beatriz; FRIEDMAN, Ruth K.; VELOSO, Valdiléa G.; CUNHA, Cynthia B.; COUTINHO, José R.; VIANNA-ANDRADE, Cecilia; OLIVEIRA, Nathalia S.; WOODHAM, Andrew W.; DA SILVA, Diane M.; KAST, W. Martin

    2016-01-01

    Objective The aim of the current study was to evaluate secretory leukocyte protease inhibitor (SLPI) expression in anal biopsies from HIV-positive (HIV+) individuals, and compare that to anal intraepithelial neoplasia (AIN) diagnoses and human papillomavirus (HPV) status. Design This is a cross-sectional study of a cohort of 54 HIV+ (31 males and 23 females) from an AIDS clinic in Rio de Janeiro, Brazil. Methods The study material consisted of anorectal tissue biopsies obtained from HIV+ subjects, which were used to construct tissue microarray paraffin blocks for immunohistochemical analysis of SLPI expression. Biopsies were evaluated by an expert pathologist and classified as low-grade anal intraepithelial neoplasia (AIN1), high-grade anal intraepithelial neoplasia (AIN2/3), or normal squamous epithelium. Additionally, DNA from the biopsies was extracted and analyzed for the presence of low- or high-risk HPV DNA. Results Histologically normal squamous epithelium from the anorectal region showed strong positive SLPI staining in 17/20 (85%) samples. In comparison, 9/17 (53%) dysplastic squamous epithelial samples from AIN1 patients showed strong SLPI staining, and only 5/17 (29%) samples from AIN2-3 patients exhibited strong SPLI staining, which both were significantly fewer than those from normal tissue (p=0.005). Furthermore, there was a significantly higher proportion of samples in which oncogenic high-risk HPV genotypes were detected in low SLPI expressing tissues than that in tissues with high SLPI expression (p=0.040). Conclusion Taken together these results suggest that low SLPI expression is associated with high-risk HPV infections in the development of AIN. PMID:27149102

  17. Epigenomics of Development in Populus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, Steve; Freitag, Michael; Mockler, Todd

    2013-01-10

    We conducted research to determine the role of epigenetic modifications during tree development using poplar (Populus trichocarpa), a model woody feedstock species. Using methylated DNA immunoprecipitation (MeDIP) or chromatin immunoprecipitation (ChIP), followed by high-throughput sequencing, we are analyzed DNA and histone methylation patterns in the P. trichocarpa genome in relation to four biological processes: bud dormancy and release, mature organ maintenance, in vitro organogenesis, and methylation suppression. Our project is now completed. We have 1) produced 22 transgenic events for a gene involved in DNA methylation suppression and studied its phenotypic consequences; 2) completed sequencing of methylated DNA from elevenmore » target tissues in wildtype P. trichocarpa; 3) updated our customized poplar genome browser using the open-source software tools (2.13) and (V2.2) of the P. trichocarpa genome; 4) produced summary data for genome methylation in P. trichocarpa, including distribution of methylation across chromosomes and in and around genes; 5) employed bioinformatic and statistical methods to analyze differences in methylation patterns among tissue types; and 6) used bisulfite sequencing of selected target genes to confirm bioinformatics and sequencing results, and gain a higher-resolution view of methylation at selected genes 7) compared methylation patterns to expression using available microarray data. Our main findings of biological significance are the identification of extensive regions of the genome that display developmental variation in DNA methylation; highly distinctive gene-associated methylation profiles in reproductive tissues, particularly male catkins; a strong whole genome/all tissue inverse association of methylation at gene bodies and promoters with gene expression; a lack of evidence that tissue specificity of gene expression is associated with gene methylation; and evidence that genome methylation is a significant impediment to tissue dedifferentiation and redifferentiation in vitro.« less

  18. Development and Validation of a qRT-PCR Classifier for Lung Cancer Prognosis

    PubMed Central

    Chen, Guoan; Kim, Sinae; Taylor, Jeremy MG; Wang, Zhuwen; Lee, Oliver; Ramnath, Nithya; Reddy, Rishindra M; Lin, Jules; Chang, Andrew C; Orringer, Mark B; Beer, David G

    2011-01-01

    Purpose This prospective study aimed to develop a robust and clinically-applicable method to identify high-risk early stage lung cancer patients and then to validate this method for use in future translational studies. Patients and Methods Three published Affymetrix microarray data sets representing 680 primary tumors were used in the survival-related gene selection procedure using clustering, Cox model and random survival forest (RSF) analysis. A final set of 91 genes was selected and tested as a predictor of survival using a qRT-PCR-based assay utilizing an independent cohort of 101 lung adenocarcinomas. Results The RSF model built from 91 genes in the training set predicted patient survival in an independent cohort of 101 lung adenocarcinomas, with a prediction error rate of 26.6%. The mortality risk index (MRI) was significantly related to survival (Cox model p < 0.00001) and separated all patients into low, medium, and high-risk groups (HR = 1.00, 2.82, 4.42). The MRI was also related to survival in stage 1 patients (Cox model p = 0.001), separating patients into low, medium, and high-risk groups (HR = 1.00, 3.29, 3.77). Conclusions The development and validation of this robust qRT-PCR platform allows prediction of patient survival with early stage lung cancer. Utilization will now allow investigators to evaluate it prospectively by incorporation into new clinical trials with the goal of personalized treatment of lung cancer patients and improving patient survival. PMID:21792073

  19. Combining suppressive subtractive hybridization and cDNA microarrays to identify dietary phosphorus-responsive genes of the rainbow trout (Oncorhynchus mykiss) kidney.

    PubMed

    Lake, Jennifer; Gravel, Catherine; Koko, Gabriel Koffi D; Robert, Claude; Vandenberg, Grant W

    2010-03-01

    Phosphorus (P)-responsive genes and how they regulate renal adaptation to phosphorous-deficient diets in animals, including fish, are not well understood. RNA abundance profiling using cDNA microarrays is an efficient approach to study nutrient-gene interactions and identify these dietary P-responsive genes. To test the hypothesis that dietary P-responsive genes are differentially expressed in fish fed varying P levels, rainbow trout were fed a practical high-P diet (R20: 0.96% P) or a low-P diet (R0: 0.38% P) for 7 weeks. The differentially-expressed genes between dietary groups were identified and compared from the kidney by combining suppressive subtractive hybridization (SSH) with cDNA microarray analysis. A number of genes were confirmed by real-time PCR, and correlated with plasma and bone P concentrations. Approximately 54 genes were identified as potential dietary P-responsive after 7 weeks on a diet deficient in P according to cDNA microarray analysis. Of 18 selected genes, 13 genes were confirmed to be P-responsive at 7 weeks by real-time PCR analysis, including: iNOS, cytochrome b, cytochrome c oxidase subunit II , alpha-globin I, beta-globin, ATP synthase, hyperosmotic protein 21, COL1A3, Nkef, NDPK, glucose phosphate isomerase 1, Na+/H+ exchange protein and GDP dissociation inhibitor 2. Many of these dietary P-responsive genes responded in a moderate way (R0/R20 ratio: <2-3 or >0.5) and in a transient manner to dietary P limitation. In summary, renal adaptation to dietary P deficiency in trout involves changes in the expression of several genes, suggesting a profile of metabolic stress, since many of these differentially-expressed candidates are associated with the cellular adaptative responses. Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.

  20. Potential upstream regulators of cannabinoid receptor 1 signaling in prostate cancer: a Bayesian network analysis of data from a tissue microarray.

    PubMed

    Häggström, Jenny; Cipriano, Mariateresa; Forshell, Linus Plym; Persson, Emma; Hammarsten, Peter; Stella, Nephi; Fowler, Christopher J

    2014-08-01

    The endocannabinoid system regulates cancer cell proliferation, and in prostate cancer a high cannabinoid CB1 receptor expression is associated with a poor prognosis. Down-stream mediators of CB1 receptor signaling in prostate cancer are known, but information on potential upstream regulators is lacking. Data from a well-characterized tumor tissue microarray were used for a Bayesian network analysis using the max-min hill-climbing method. In non-malignant tissue samples, a directionality of pEGFR (the phosphorylated form of the epidermal growth factor receptor) → CB1 receptors were found regardless as to whether the endocannabinoid metabolizing enzyme fatty acid amide hydrolase (FAAH) was included as a parameter. A similar result was found in the tumor tissue, but only when FAAH was included in the analysis. A second regulatory pathway, from the growth factor receptor ErbB2 → FAAH was also identified in the tumor samples. Transfection of AT1 prostate cancer cells with CB1 receptors induced a sensitivity to the growth-inhibiting effects of the CB receptor agonist CP55,940. The sensitivity was not dependent upon the level of receptor expression. Thus a high CB1 receptor expression alone does not drive the cells towards a survival phenotype in the presence of a CB receptor agonist. The data identify two potential regulators of the endocannabinoid system in prostate cancer and allow the construction of a model of a dysregulated endocannabinoid signaling network in this tumor. Further studies should be designed to test the veracity of the predictions of the network analysis in prostate cancer and other solid tumors. © 2014 The Authors. The Prostate published by Wiley Periodicals, Inc.

  1. [Expression of high mobility group box-1 in the lung tissue and serum of patients with pulmonary tuberculosis].

    PubMed

    Yang, Xiao-min; Yang, Hua

    2013-07-01

    To explore the expression of high mobility group box-1 (HMGB1) in the lung tissue and serum of patients with pulmonary tuberculosis and to explore its relationship with tumor necrosis factor (TNF)-α and interleukin(IL)-1β. Sixty samples of lung tissues were obtained from patients with pulmonary tuberculosis who had underwent pneumonectomy in Department of Chest Surgery, First Affiliated Hospital of Zunyi Medical College from June 2010 to December 2011. At the same period, 40 normal lung samples were also obtained from patients with pulmonary contusion and lung cancer by surgical resections as the control group. The mRNA expressions of HMGB1 was detected by reverse transcription-polymerase chain reaction (RT-PCR), and the protein level of HMGB1 was measured by immunohistochemical staining of tissue microarrays in lung tissue. Blood samples were taken from 89 patients with active pulmonary tuberculosis (pulmonary tuberculosis group), including hematogenous disseminated pulmonary tuberculosis (type II) in 35 cases and secondary pulmonary tuberculosis (type III) in 54 cases, and 50 healthy volunteers (control group). Furthermore, the 54 patients with secondary pulmonary tuberculosis were divided into different subgroups according to cavity formation and the lung fields involved: patients without lung cavity (35 cases) vs those with lung cavity (19 cases), patients with involvement of <2 lung fields (31 cases) vs ≥ 2 lung fields (23 cases). Serum concentration of HMGB1, TNF-α and IL-1β were detected by ELISA. Two sample t-test was used to compare date among groups, liner correlation analysis was established for correlation analysis. The average optical density of HMGB1 in pulmonary tuberculosis (69 ± 29) was significantly higher than that in normal lung tissue (22 ± 12) (t = 2.389, P < 0.05). The mRNA relative transcript levels of HMGB1 in pulmonary tuberculosis (786 ± 86) was significantly higher than that in normal lung tissue (202 ± 60) (t = 3.872, P < 0.01). The serum concentration of HMGB1, TNF-α and IL-1β in the pulmonary tuberculosis group were (5.0 ± 3.2) µg/L, (118 ± 77) ng/L and (33 ± 20) ng/L, respectively, which were significantly higher than those in the control group [(1.7 ± 1.0) µg/L, (40 ± 11) ng/L and (18 ± 12) ng/L, respectively], the respective t values being -0.928, 4.268 and 11.064, all P < 0.01. In the subgroup of patients with hematogenous disseminated pulmonary tuberculosis, the serum concentration of HMGB1 and TNF-α[ (6.4 ± 3.3) µg/L, (147 ± 89) ng/L] were significantly higher than those in patients with secondary pulmonary tuberculosis [(4.1 ± 2.7) µg/L, (85 ± 37) ng/L] (t = 3.643 and t = 3.111, both P < 0.01). HMGB1 were correlated positively with TNF-α and IL-1β (r = 0.722 and r = 0.620, P < 0.01, respectively, n = 89) in the pulmonary tuberculosis group. Overexpression of HMGB1 in the lung tissue and serum of patients with pulmonary tuberculosis may play an important role in the inflammatory response of pulmonary tuberculosis. The measurement of serum HMGB1 is useful to evaluate the severity of disease.

  2. ValWorkBench: an open source Java library for cluster validation, with applications to microarray data analysis.

    PubMed

    Giancarlo, R; Scaturro, D; Utro, F

    2015-02-01

    The prediction of the number of clusters in a dataset, in particular microarrays, is a fundamental task in biological data analysis, usually performed via validation measures. Unfortunately, it has received very little attention and in fact there is a growing need for software tools/libraries dedicated to it. Here we present ValWorkBench, a software library consisting of eleven well known validation measures, together with novel heuristic approximations for some of them. The main objective of this paper is to provide the interested researcher with the full software documentation of an open source cluster validation platform having the main features of being easily extendible in a homogeneous way and of offering software components that can be readily re-used. Consequently, the focus of the presentation is on the architecture of the library, since it provides an essential map that can be used to access the full software documentation, which is available at the supplementary material website [1]. The mentioned main features of ValWorkBench are also discussed and exemplified, with emphasis on software abstraction design and re-usability. A comparison with existing cluster validation software libraries, mainly in terms of the mentioned features, is also offered. It suggests that ValWorkBench is a much needed contribution to the microarray software development/algorithm engineering community. For completeness, it is important to mention that previous accurate algorithmic experimental analysis of the relative merits of each of the implemented measures [19,23,25], carried out specifically on microarray data, gives useful insights on the effectiveness of ValWorkBench for cluster validation to researchers in the microarray community interested in its use for the mentioned task. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression.

    PubMed

    Rose, Amy E; Poliseno, Laura; Wang, Jinhua; Clark, Michael; Pearlman, Alexander; Wang, Guimin; Vega Y Saenz de Miera, Eleazar C; Medicherla, Ratna; Christos, Paul J; Shapiro, Richard; Pavlick, Anna; Darvishian, Farbod; Zavadil, Jiri; Polsky, David; Hernando, Eva; Ostrer, Harry; Osman, Iman

    2011-04-01

    Superficial spreading melanoma (SSM) and nodular melanoma (NM) are believed to represent sequential phases of linear progression from radial to vertical growth. Several lines of clinical, pathologic, and epidemiologic evidence suggest, however, that SSM and NM might be the result of independent pathways of tumor development. We utilized an integrative genomic approach that combines single nucleotide polymorphism array (6.0; Affymetrix) with gene expression array (U133A 2.0; Affymetrix) to examine molecular differences between SSM and NM. Pathway analysis of the most differentially expressed genes between SSM and NM (N = 114) revealed significant differences related to metabolic processes. We identified 8 genes (DIS3, FGFR1OP, G3BP2, GALNT7, MTAP, SEC23IP, USO1, and ZNF668) in which NM/SSM-specific copy number alterations correlated with differential gene expression (P < 0.05; Spearman's rank). SSM-specific genomic deletions in G3BP2, MTAP, and SEC23IP were independently verified in two external data sets. Forced overexpression of metabolism-related gene MTAP (methylthioadenosine phosphorylase) in SSM resulted in reduced cell growth. The differential expression of another metabolic-related gene, aldehyde dehydrogenase 7A1 (ALDH7A1), was validated at the protein level by using tissue microarrays of human melanoma. In addition, we show that the decreased ALDH7A1 expression in SSM may be the result of epigenetic modifications. Our data reveal recurrent genomic deletions in SSM not present in NM, which challenge the linear model of melanoma progression. Furthermore, our data suggest a role for altered regulation of metabolism-related genes as a possible cause of the different clinical behavior of SSM and NM.

  4. Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression

    PubMed Central

    Rose, Amy E.; Poliseno, Laura; Wang, Jinhua; Clark, Michael; Pearlman, Alexander; Wang, Guimin; Vega y Saenz de Miera, Eleazar C.; Medicherla, Ratna; Christos, Paul J.; Shapiro, Richard; Pavlick, Anna; Darvishian, Farbod; Zavadil, Jiri; Polsky, David; Hernando, Eva; Ostrer, Harry; Osman, Iman

    2011-01-01

    Superficial spreading melanoma (SSM) and nodular melanoma (NM) are believed to represent sequential phases of linear progression from radial to vertical growth. Several lines of clinical, pathological and epidemiologic evidence suggest, however, that SSM and NM might be the result of independent pathways of tumor development. We utilized an integrative genomic approach that combines single nucleotide polymorphism array (SNP 6.0, Affymetrix) with gene expression array (U133A 2.0, Affymetrix) to examine molecular differences between SSM and NM. Pathway analysis of the most differentially expressed genes between SSM and NM (N=114) revealed significant differences related to metabolic processes. We identified 8 genes (DIS3, FGFR1OP, G3BP2, GALNT7, MTAP, SEC23IP, USO1, ZNF668) in which NM/SSM-specific copy number alterations correlated with differential gene expression (P<0.05, Spearman’s rank). SSM-specific genomic deletions in G3BP2, MTAP, and SEC23IP were independently verified in two external data sets. Forced overexpression of metabolism-related gene methylthioadenosine phosphorylase (MTAP) in SSM resulted in reduced cell growth. The differential expression of another metabolic related gene, aldehyde dehydrogenase 7A1 (ALDH7A1), was validated at the protein level using tissue microarrays of human melanoma. In addition, we show that the decreased ALDH7A1 expression in SSM may be the result of epigenetic modifications. Our data reveal recurrent genomic deletions in SSM not present in NM, which challenge the linear model of melanoma progression. Furthermore, our data suggest a role for altered regulation of metabolism-related genes as a possible cause of the different clinical behavior of SSM and NM. PMID:21343389

  5. Targeted Deposition of Antibodies on a Multiplex CMOS Microarray and Optimization of a Sensitive Immunoassay Using Electrochemical Detection

    DTIC Science & Technology

    2010-03-19

    multiplex array. The array had capture Abs against ricin, Bacillus globigii spores, M13 phage , a1 acid glycoprotein, and fluorescein. Initially, antigen (Ag...comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE JAN 2010 2. REPORT TYPE 3

  6. A new biologic prognostic model based on immunohistochemistry predicts survival in patients with diffuse large B-cell lymphoma.

    PubMed

    Perry, Anamarija M; Cardesa-Salzmann, Teresa M; Meyer, Paul N; Colomo, Luis; Smith, Lynette M; Fu, Kai; Greiner, Timothy C; Delabie, Jan; Gascoyne, Randy D; Rimsza, Lisa; Jaffe, Elaine S; Ott, German; Rosenwald, Andreas; Braziel, Rita M; Tubbs, Raymond; Cook, James R; Staudt, Louis M; Connors, Joseph M; Sehn, Laurie H; Vose, Julie M; López-Guillermo, Armando; Campo, Elias; Chan, Wing C; Weisenburger, Dennis D

    2012-09-13

    Biologic factors that predict the survival of patients with a diffuse large B-cell lymphoma, such as cell of origin and stromal signatures, have been discovered by gene expression profiling. We attempted to simulate these gene expression profiling findings and create a new biologic prognostic model based on immunohistochemistry. We studied 199 patients (125 in the training set, 74 in the validation set) with de novo diffuse large B-cell lymphoma treated with rituximab and CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) or CHOP-like therapies, and immunohistochemical stains were performed on paraffin-embedded tissue microarrays. In the model, 1 point was awarded for each adverse prognostic factor: nongerminal center B cell-like subtype, SPARC (secreted protein, acidic, and rich in cysteine) < 5%, and microvascular density quartile 4. The model using these 3 biologic markers was highly predictive of overall survival and event-free survival in multivariate analysis after adjusting for the International Prognostic Index in both the training and validation sets. This new model delineates 2 groups of patients, 1 with a low biologic score (0-1) and good survival and the other with a high score (2-3) and poor survival. This new biologic prognostic model could be used with the International Prognostic Index to stratify patients for novel or risk-adapted therapies.

  7. A decision tree-based combination of ezrin-interacting proteins to estimate the prognostic risk of patients with esophageal squamous cell carcinoma.

    PubMed

    He, Jian-Zhong; Wu, Zhi-Yong; Wang, Shao-Hong; Ji, Xia; Yang, Cui-Xia; Xu, Xiu-E; Liao, Lian-Di; Wu, Jian-Yi; Li, En-Min; Zhang, Kai; Xu, Li-Yan

    2017-08-01

    Our previous studies have highlighted the importance of ezrin in esophageal squamous cell carcinoma (ESCC). Here our objective was to explore the clinical significance of ezrin-interacting proteins, which would provide a theoretical basis for understanding the function of ezrin and potential therapeutic targets for ESCC. We used affinity purification and mass spectrometry to identify PDIA3, CNPY2, and STMN1 as potential ezrin-interacting proteins. Confocal microscopy and coimmunoprecipitation analysis further confirmed the colocalization and interaction of ezrin with PDIA3, CNPY2, and STMN1. Tissue microarray data of ESCC samples (n=263) showed that the 5-year overall survival (OS) and disease-free survival (DFS) were significantly lower for the CNPY2 (OS, P=.003; DFS, P=.011) and STMN1 (OS, P=.010; DFS, P=.002) high-expression groups compared with the low-expression groups. By contrast, overexpression of PDIA3 was significantly correlated with favorable survival (OS, P<.001; DFS, P=.001). Cox regression demonstrated the prognostic value of PDIA3, CNPY2, and STMN1 in ESCC. Furthermore, decision tree analysis revealed that the resulting classifier of both ezrin and its interacting proteins could be used to better predict OS and DFS of patients with ESCC. In conclusion, a signature of ezrin-interacting proteins accurately predicts ESCC patient survival or tumor recurrence. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Downregulation of P-cadherin expression in hepatocellular carcinoma induces tumorigenicity

    PubMed Central

    Bauer, Richard; Valletta, Daniela; Bauer, Karin; Thasler, Wolfgang E; Hartmann, Arndt; Müller, Martina; Reichert, Torsten E; Hellerbrand, Claus

    2014-01-01

    P-cadherin is a major contributor to cell-cell adhesion in epithelial tissues, playing pivotal roles in important morphogenetic and differentiation processes and in maintaining tissue integrity and homeostasis. Alterations of P-cadherin expression have been observed during the progression of several carcinomas where it appears to act as tumor suppressive or oncogenic in a context-dependent manner. Here, we found a significant downregulation of P-cadherin in hepatocellular carcinoma (HCC) cell lines and tissues compared to primary human hepatocytes and non-malignant liver tissues. Combined immunohistochemical analysis of a tissue microarray containing matched pairs of HCC tissue and corresponding non-tumorous liver tissue of 69 patients confirmed reduced P-cadherin expression in more than half of the cases. In 35 human HCC tissues, the P-cadherin immunosignal was completely lost which correlated with tumor staging and proliferation. Also in vitro, P-cadherin suppression in HCC cells via siRNA induced proliferation compared to cells transfected with control-siRNA. In summary, downregulation of P-cadherin expression appears to induce tumorigenicity in HCC. Therefore, P-cadherin expression may serve as a prognostic marker and therapeutic target of this highly aggressive tumor. PMID:25337260

  9. Downregulation of P-cadherin expression in hepatocellular carcinoma induces tumorigenicity.

    PubMed

    Bauer, Richard; Valletta, Daniela; Bauer, Karin; Thasler, Wolfgang E; Hartmann, Arndt; Müller, Martina; Reichert, Torsten E; Hellerbrand, Claus

    2014-01-01

    P-cadherin is a major contributor to cell-cell adhesion in epithelial tissues, playing pivotal roles in important morphogenetic and differentiation processes and in maintaining tissue integrity and homeostasis. Alterations of P-cadherin expression have been observed during the progression of several carcinomas where it appears to act as tumor suppressive or oncogenic in a context-dependent manner. Here, we found a significant downregulation of P-cadherin in hepatocellular carcinoma (HCC) cell lines and tissues compared to primary human hepatocytes and non-malignant liver tissues. Combined immunohistochemical analysis of a tissue microarray containing matched pairs of HCC tissue and corresponding non-tumorous liver tissue of 69 patients confirmed reduced P-cadherin expression in more than half of the cases. In 35 human HCC tissues, the P-cadherin immunosignal was completely lost which correlated with tumor staging and proliferation. Also in vitro, P-cadherin suppression in HCC cells via siRNA induced proliferation compared to cells transfected with control-siRNA. In summary, downregulation of P-cadherin expression appears to induce tumorigenicity in HCC. Therefore, P-cadherin expression may serve as a prognostic marker and therapeutic target of this highly aggressive tumor.

  10. Improved porous silicon (P-Si) microarray based PSA (prostate specific antigen) immunoassay by optimized surface density of the capture antibody

    PubMed Central

    Lee, SangWook; Kim, Soyoun; Malm, Johan; Jeong, Ok Chan; Lilja, Hans; Laurell, Thomas

    2014-01-01

    Enriching the surface density of immobilized capture antibodies enhances the detection signal of antibody sandwich microarrays. In this study, we improved the detection sensitivity of our previously developed P-Si (porous silicon) antibody microarray by optimizing concentrations of the capturing antibody. We investigated immunoassays using a P-Si microarray at three different capture antibody (PSA - prostate specific antigen) concentrations, analyzing the influence of the antibody density on the assay detection sensitivity. The LOD (limit of detection) for PSA was 2.5ngmL−1, 80pgmL−1, and 800fgmL−1 when arraying the PSA antibody, H117 at the concentration 15µgmL−1, 35µgmL−1 and 154µgmL−1, respectively. We further investigated PSA spiked into human female serum in the range of 800fgmL−1 to 500ngmL−1. The microarray showed a LOD of 800fgmL−1 and a dynamic range of 800 fgmL−1 to 80ngmL−1 in serum spiked samples. PMID:24016590

  11. Aryl hydrocarbon receptor (AHR) is a potential tumour suppressor in pituitary adenomas.

    PubMed

    Formosa, R; Borg, J; Vassallo, J

    2017-08-01

    Pituitary adenomas (PA) represent the largest group of intracranial neoplasms and yet the molecular mechanisms driving this disease remain largely unknown. The aim of this study was to use a high-throughput screening method to identify molecular pathways that may be playing a significant and consistent role in PA. RNA profiling using microarrays on eight local PAs identified the aryl hydrocarbon receptor (AHR) signalling pathway as a key canonical pathway downregulated in all PA types. This was confirmed by real-time PCR in 31 tumours. The AHR has been shown to regulate cell cycle progression in various cell types; however, its role in pituitary tissue has never been investigated. In order to validate the role of AHR in PA behaviour, further functional studies were undertaken. Over-expression of AHR in GH3 cells revealed a tumour suppressor potential independent of exogenous ligand activation by benzo α-pyrene (BαP). Cell cycle analysis and quantitative PCR of cell cycle regulator genes revealed that both unstimulated and BαP-stimulated AHR reduced E2F-driven transcription and altered expression of cell cycle regulator genes, thus increasing the percentage of cells in G 0 /G 1 phase and slowing the proliferation rate of GH3 cells. Co-immunoprecipitation confirmed the interaction between AHR and retinoblastoma (Rb1) protein supporting this as a functional mechanism for the observed reduction. Endogenous Ahr reduction using silencing RNA confirmed the tumour suppressive function of the Ahr. These data support a mechanistic pathway for the putative tumour suppressive role of AHR specifically in PA, possibly through its role as a cell cycle co-regulator, even in the absence of exogenous ligands. © 2017 The authors.

  12. Aryl hydrocarbon receptor (AHR) is a potential tumour suppressor in pituitary adenomas

    PubMed Central

    Formosa, R; Borg, J

    2017-01-01

    Pituitary adenomas (PA) represent the largest group of intracranial neoplasms and yet the molecular mechanisms driving this disease remain largely unknown. The aim of this study was to use a high-throughput screening method to identify molecular pathways that may be playing a significant and consistent role in PA. RNA profiling using microarrays on eight local PAs identified the aryl hydrocarbon receptor (AHR) signalling pathway as a key canonical pathway downregulated in all PA types. This was confirmed by real-time PCR in 31 tumours. The AHR has been shown to regulate cell cycle progression in various cell types; however, its role in pituitary tissue has never been investigated. In order to validate the role of AHR in PA behaviour, further functional studies were undertaken. Over-expression of AHR in GH3 cells revealed a tumour suppressor potential independent of exogenous ligand activation by benzo α-pyrene (BαP). Cell cycle analysis and quantitative PCR of cell cycle regulator genes revealed that both unstimulated and BαP-stimulated AHR reduced E2F-driven transcription and altered expression of cell cycle regulator genes, thus increasing the percentage of cells in G0/G1 phase and slowing the proliferation rate of GH3 cells. Co-immunoprecipitation confirmed the interaction between AHR and retinoblastoma (Rb1) protein supporting this as a functional mechanism for the observed reduction. Endogenous Ahr reduction using silencing RNA confirmed the tumour suppressive function of the Ahr. These data support a mechanistic pathway for the putative tumour suppressive role of AHR specifically in PA, possibly through its role as a cell cycle co-regulator, even in the absence of exogenous ligands. PMID:28649092

  13. Comparison of 5 Ki-67 antibodies regarding reproducibility and capacity to predict prognosis in breast cancer: does the antibody matter?

    PubMed

    Ács, Balázs; Kulka, Janina; Kovács, Kristóf Attila; Teleki, Ivett; Tőkés, Anna-Mária; Meczker, Ágnes; Győrffy, Balázs; Madaras, Lilla; Krenács, Tibor; Szász, Attila Marcell

    2017-07-01

    Although several antibodies are available for immunohistochemical detection of Ki-67, even the most commonly used MIB-1 has not been validated yet. Our aim was to compare 5 commercially available antibodies for detection of Ki-67 in terms of agreement and their ability in predicting prognosis of breast cancer. Tissue microarrays were constructed from 378 breast cancer patients' representative formalin-fixed, paraffin-embedded tumor blocks. Five antibodies were used to detect Ki-67 expression: MIB-1 using chromogenic detection and immunofluorescent-labeled MIB-1, SP-6, 30-9, poly, and B56. Semiquantitative assessment was performed by 2 pathologists independently on digitized slides. To compare the 5 antibodies, intraclass correlation and concordance correlation coefficient were used. All the antibodies but immunofluorescent-labeled MIB-1 (at 20% and 30% thresholds, P=.993 and P=.342, respectively) and B56 (at 30% threshold, P=.288) separated high- and low-risk patient groups. However, there were a significant difference (P values for all comparisons≤.005) and a moderate concordance (intraclass correlation, 0.645) between their Ki-67 labeling index scores. The highest concordance was found between MIB-1 and poly (concordance correlation coefficient=0.785) antibodies. None of the antibodies except Ki-67 labeling index as detected by poly (P=.031) at 20% threshold and lymph node status (P<.001) were significantly linked to disease-free survival in multivariate analysis. At 30% threshold, this was reduced to lymph node status (P<.001) alone. Our results showed that there are considerable differences between the different Ki-67 antibodies in their capacity to detect proliferating tumor cells and to separate low- and high-risk breast cancer patient groups. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. An integrated approach for identifying wrongly labelled samples when performing classification in microarray data.

    PubMed

    Leung, Yuk Yee; Chang, Chun Qi; Hung, Yeung Sam

    2012-01-01

    Using hybrid approach for gene selection and classification is common as results obtained are generally better than performing the two tasks independently. Yet, for some microarray datasets, both classification accuracy and stability of gene sets obtained still have rooms for improvement. This may be due to the presence of samples with wrong class labels (i.e. outliers). Outlier detection algorithms proposed so far are either not suitable for microarray data, or only solve the outlier detection problem on their own. We tackle the outlier detection problem based on a previously proposed Multiple-Filter-Multiple-Wrapper (MFMW) model, which was demonstrated to yield promising results when compared to other hybrid approaches (Leung and Hung, 2010). To incorporate outlier detection and overcome limitations of the existing MFMW model, three new features are introduced in our proposed MFMW-outlier approach: 1) an unbiased external Leave-One-Out Cross-Validation framework is developed to replace internal cross-validation in the previous MFMW model; 2) wrongly labeled samples are identified within the MFMW-outlier model; and 3) a stable set of genes is selected using an L1-norm SVM that removes any redundant genes present. Six binary-class microarray datasets were tested. Comparing with outlier detection studies on the same datasets, MFMW-outlier could detect all the outliers found in the original paper (for which the data was provided for analysis), and the genes selected after outlier removal were proven to have biological relevance. We also compared MFMW-outlier with PRAPIV (Zhang et al., 2006) based on same synthetic datasets. MFMW-outlier gave better average precision and recall values on three different settings. Lastly, artificially flipped microarray datasets were created by removing our detected outliers and flipping some of the remaining samples' labels. Almost all the 'wrong' (artificially flipped) samples were detected, suggesting that MFMW-outlier was sufficiently powerful to detect outliers in high-dimensional microarray datasets.

  15. A novel surface modification approach for protein and cell microarrays

    NASA Astrophysics Data System (ADS)

    Kurkuri, Mahaveer D.; Driever, Chantelle; Thissen, Helmut W.; Voelcker, Nicholas H.

    2007-01-01

    Tissue engineering and stem cell technologies have led to a rapidly increasing interest in the control of the behavior of mammalian cells growing on tissue culture substrates. Multifunctional polymer coatings can assist research in this area in many ways, for example, by providing low non-specific protein adsorption properties and reactive functional groups at the surface. The latter can be used for immobilization of specific biological factors that influence cell behavior. In this study, glass slides were coated with copolymers of glycidyl methacrylate (GMA) and poly(ethylene glycol) methacrylate (PEGMA). The coatings were prepared by three different methods based on dip and spin coating as well as polymer grafting procedures. Coatings were characterized by X-ray photoelectron spectroscopy, surface sensitive infrared spectroscopy, ellipsometry and contact angle measurements. A fluorescently labelled protein was deposited onto reactive coatings using a contact microarrayer. Printing of a model protein (fluorescein labeled bovine serum albumin) was performed at different protein concentrations, pH, temperature, humidity and using different micropins. The arraying of proteins was studied with a microarray scanner. Arrays printed at a protein concentration above 50 μg/mL prepared in pH 5 phosphate buffer at 10°C and 65% relative humidity gave the most favourable results in terms of the homogeneity of the printed spots and the fluorescence intensity.

  16. Immune and inflammatory gene signature in rat cerebrum in subarachnoid hemorrhage with microarray analysis.

    PubMed

    Lee, Chu-I; Chou, An-Kuo; Lin, Ching-Chih; Chou, Chia-Hua; Loh, Joon-Khim; Lieu, Ann-Shung; Wang, Chih-Jen; Huang, Chi-Ying F; Howng, Shen-Long; Hong, Yi-Ren

    2012-01-01

    Cerebral vasospasm following subarachnoid hemorrhage (SAH) has been studied in terms of a contraction of the major cerebral arteries, but the effect of cerebrum tissue in SAH is not yet well understood. To gain insight into the biology of SAH-expressing cerebrum, we employed oligonucleotide microarrays to characterize the gene expression profiles of cerebrum tissue at the early stage of SAH. Functional gene expression in the cerebrum was analyzed 2 h following stage 1-hemorrhage in Sprague-Dawley rats. mRNA was investigated by performing microarray and quantitative real-time PCR analyses, and protein expression was determined by Western blot analysis. In this study, 18 upregulated and 18 downregulated genes displayed at least a 1.5-fold change. Five genes were verified by real-time PCR, including three upregulated genes [prostaglandin E synthase (PGES), CD14 antigen, and tissue inhibitor of metalloproteinase 1 (TIMP1)] as well as two downregulated genes [KRAB-zinc finger protein-2 (KZF-2) and γ-aminobutyric acid B receptor 1 (GABA B receptor)]. Notably, there were functional implications for the three upregulated genes involved in the inflammatory SAH process. However, the mechanisms leading to decreased KZF-2 and GABA B receptor expression in SAH have never been characterized. We conclude that oligonucleotide microarrays have the potential for use as a method to identify candidate genes associated with SAH and to provide novel investigational targets, including genes involved in the immune and inflammatory response. Furthermore, understanding the regulation of MMP9/TIMP1 during the early stages of SAH may elucidate the pathophysiological mechanisms in SAH rats.

  17. Expression of truncated Int6/eIF3e in mammary alveolar epithelium leads to persistent hyperplasia and tumorigenesis

    PubMed Central

    Mack, David L; Boulanger, Corinne A; Callahan, Robert; Smith, Gilbert H

    2007-01-01

    Introduction Int6 has been shown to be an interactive participant with the protein translation initiation complex eIF3, the COP9 signalosome and the regulatory lid of the 26S proteasome. Insertion of mouse mammary tumor virus into the Int6 locus creates a C-terminally truncated form of the protein. Expression of the truncated form of Int6 (Int6sh) in stably transfected human and mouse mammary epithelial cell lines leads to cellular transformation. In addition, decreased expression of Int6/eIF3e is observed in approximately one third of all human breast carcinomas. Methods To validate that Int6sh has transforming activity in vivo, a transgenic mouse model was designed using the whey acidic protein (Wap) promoter to target expression of truncated Int6 to differentiating alveolar epithelial cells in the mammary gland. Microarray analyses were performed on normal, premalignant and malignant WapInt6sh expressing tissues. Results Mammary tumors developed in 42% of WapInt6sh heterozygous parous females at an average age of 18 months. In WapInt6sh mice, the contralateral mammary glands from both tumorous and non-tumorous tissues contained widespread focal alveolar hyperplasia. Only 4% of WapInt6sh non-breeding females developed tumors by 2 years of age. The Wap promoter is active only during estrus in the mammary tissue of cycling non-pregnant mice. Microarray analyses of mammary tissues demonstrated that Int6sh expression in the alveolar tissue altered the mammary transcriptome in a specific manner that was detectable even in the first pregnancy. This Int6sh-specific transcriptome pattern subsequently persisted in both the Int6sh-expressing alveolar hyperplasia and mammary tumors. These observations are consistent with the conclusion that WapInt6sh-expressing alveolar cells survive involution following the cessation of lactation, and subsequently give rise to the mammary tumors that arise in aging multiparous females. Conclusion These observations provide direct in vivo evidence that mammary-specific expression of the Int6sh truncation leads to persistence of alveolar hyperplasia with the accompanying increased predisposition to mammary tumorigenesis. PMID:17626637

  18. Study of stem cell homing & self-renewal marker gene profile of ex vivo expanded human CD34+ cells manipulated with a mixture of cytokines & stromal cell-derived factor 1

    PubMed Central

    Kode, Jyoti; Khattry, Navin; Bakshi, Ashish; Amrutkar, Vasanti; Bagal, Bhausaheb; Karandikar, Rohini; Rane, Pallavi; Fujii, Nobutaka; Chiplunkar, Shubhada

    2017-01-01

    Background & objectives: Next generation transplantation medicine aims to develop stimulating cocktail for increased ex vivo expansion of primitive hematopoietic stem and progenitor cells (HSPC). The present study was done to evaluate the cocktail GF (Thrombopoietin + Stem Cell factor + Flt3-ligand) and homing-defining molecule Stromal cell-derived factor 1 (SDF1) for HSPC ex vivo expansion. Methods: Peripheral blood stem cell (n=74) harvests were analysed for CD34hi CD45lo HSPC. Immunomagnetically enriched HSPC were cultured for eight days and assessed for increase in HSPC, colony forming potential in vitro and in vivo engrafting potential by analyzing human CD45+ cells. Expression profile of genes for homing and stemness were studied using microarray analysis. Expression of adhesion/homing markers were validated by flow cytometry/ confocal microscopy. Results: CD34hi CD45lo HSPC expansion cultures with GF+SDF1 demonstrated increased nucleated cells (n=28, P< 0.001), absolute CD34+ cells (n=8, P=0.021) and increased colony forming units (cfu) compared to unstimulated and GF-stimulated HSPC. NOD-SCID mice transplanted with GF+SDF1-HSPC exhibited successful homing/engraftment (n=24, P< 0.001). Microarray analysis of expanded HSPC demonstrated increased telomerase activity and many homing-associated genes (35/49) and transcription factors for stemness/self-renewal (49/56) were significantly upregulated in GF+SDF1 stimulated HSPC when compared to GF-stimulated HSPC. Expression of CD44, CXCR4, CD26, CD14, CD45 and soluble IL-6 in expanded cultures were validated by flow cytometry and confocal microscopy. Interpretation & conclusions: Cocktail of cytokines and SDF1 showed good potential to successfully expand HSPC which exhibited enhanced ability to generate multilineage cells in short-term and long-term repopulation assay. This cocktail-mediated stem cell expansion has potential to obviate the need for longer and large volume apheresis procedure making it convenient for donors. PMID:29168461

  19. OECD validation of the Hershberger assay in Japan: phase 2 dose response of methyltestosterone, vinclozolin, and p,p'-DDE.

    PubMed

    Yamasaki, Kanji; Sawaki, Masakuni; Ohta, Ryo; Okuda, Hirokazu; Katayama, Seiichi; Yamada, Tomoya; Ohta, Takafumi; Kosaka, Tadashi; Owens, William

    2003-12-01

    The Organisation for Economic Co-operation and Development has initiated the development of new guidelines for the screening and testing of potential endocrine disruptors. The Hershberger assay is one of the assays selected for validation based on the need for in vivo screening to detect androgen agonists or antagonists by measuring the response of five sex accessory organs and tissues of castrated juvenile male rats: the ventral prostate, the seminal vesicles with coagulating glands, the levator ani and bulbocavernosus muscle complex, the Cowper's glands, and the glans penis. The phase 1 feasibility demonstration stage of the Hershberger validation program has been successfully completed with a single androgen agonist and a single antagonist as reference substances. The phase 2 validation program employs a range of additional androgen agonists and antagonists as well as 5alpha-reductase inhibitors. Seven Japanese laboratories have contributed phase 2 validation studies of the Hershberger assay using methyltestosterone, vinclozolin, and 2,2-bis (4-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE). The methyltestosterone doses were 0, 0.05, 0.5, 5, and 50 mg/kg/day, and the vinclozolin and p,p'-DDE doses were 0, 3, 10, 30, and 100 mg/kg/day. All chemicals were orally administered by gavage for 10 consecutive days. In the antagonist version of the assay using vinclozolin and p,p'-DDE, 0.2 mg/kg/day of testosterone propionate was coadministered by subcutaneous injection. All five accessory sex preproductive organs and tissues consistently responded with statistically significant changes in weight within a narrow window. Therefore, the Japanese studies support the Hershberger assay as a reliable and reproducible screening assay for the detection of androgen agonistic and antagonistic effects.

  20. OECD validation of the Hershberger assay in Japan: phase 2 dose response of methyltestosterone, vinclozolin, and p,p'-DDE.

    PubMed Central

    Yamasaki, Kanji; Sawaki, Masakuni; Ohta, Ryo; Okuda, Hirokazu; Katayama, Seiichi; Yamada, Tomoya; Ohta, Takafumi; Kosaka, Tadashi; Owens, William

    2003-01-01

    The Organisation for Economic Co-operation and Development has initiated the development of new guidelines for the screening and testing of potential endocrine disruptors. The Hershberger assay is one of the assays selected for validation based on the need for in vivo screening to detect androgen agonists or antagonists by measuring the response of five sex accessory organs and tissues of castrated juvenile male rats: the ventral prostate, the seminal vesicles with coagulating glands, the levator ani and bulbocavernosus muscle complex, the Cowper's glands, and the glans penis. The phase 1 feasibility demonstration stage of the Hershberger validation program has been successfully completed with a single androgen agonist and a single antagonist as reference substances. The phase 2 validation program employs a range of additional androgen agonists and antagonists as well as 5alpha-reductase inhibitors. Seven Japanese laboratories have contributed phase 2 validation studies of the Hershberger assay using methyltestosterone, vinclozolin, and 2,2-bis (4-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE). The methyltestosterone doses were 0, 0.05, 0.5, 5, and 50 mg/kg/day, and the vinclozolin and p,p'-DDE doses were 0, 3, 10, 30, and 100 mg/kg/day. All chemicals were orally administered by gavage for 10 consecutive days. In the antagonist version of the assay using vinclozolin and p,p'-DDE, 0.2 mg/kg/day of testosterone propionate was coadministered by subcutaneous injection. All five accessory sex preproductive organs and tissues consistently responded with statistically significant changes in weight within a narrow window. Therefore, the Japanese studies support the Hershberger assay as a reliable and reproducible screening assay for the detection of androgen agonistic and antagonistic effects. PMID:14644666

  1. Sequential DNA methylation changes are associated with DNMT3B overexpression in colorectal neoplastic progression.

    PubMed

    Ibrahim, Ashraf E K; Arends, Mark J; Silva, Ana-Luisa; Wyllie, Andrew H; Greger, Liliana; Ito, Yoko; Vowler, Sarah L; Huang, Tim H-M; Tavaré, Simon; Murrell, Adele; Brenton, James D

    2011-04-01

    Although aberrant methylation of key genes in the progression of colorectal neoplasia has been reported, no model-based analysis of the incremental changes through the intermediate adenoma stage has been described. In addition, the biological drivers for these methylation changes have yet to be defined. Linear mixed-effects modelling was used in this study to understand the onset and patterns of the methylation changes of SFRP2, IGF2 DMR0, H19, LINE-1 and a CpG island methylator phenotype (CIMP) marker panel, and they were correlated with DNA methyltransferase 3B (DNMT3B) levels of expression in a sample set representative of colorectal neoplastic progression. Methylation of the above CpG islands was measured using quantitative pyrosequencing assays in 261 tissue samples. This included a prospective collection of 44 colectomy specimens with concurrent normal mucosa, adenoma and invasive cancer tissues. Tissue microarrays from a subset of 64 cases were used for immunohistochemical analysis of DNMT3B expression. It is shown that the onset and pattern of methylation changes during colorectal neoplastic progression are locus dependent. The CIMP marker RUNX3 was the earliest CpG island showing significant change, followed by the CIMP markers NEUROG1 and CACNA1G at the hyperplastic polyp stage. SFRP2 and IGF2 DMR0 showed significant methylation changes at the adenomatous polyp stage, followed by the CIMP markers CDKN2A and hMLH1 at the adenocarcinoma stage. DNMT3B levels of immunohistochemical expression increased significantly (p < 0.001) from normal to hyperplastic and from adenomatous polyps to carcinoma samples. DNMT3B expression correlated positively with SFRP2 methylation (r = 0.42, p < 0.001, 95% CI 0.25 to 0.56), but correlated negatively with IGF2 DMR0 methylation (r = 0.26, p = 0.01, 95% CI -0.45 to -0.05). A subset of the CIMP panel (NEUROG1, CACNA1G and CDKN2A) positively correlated with DNMT3B levels of expression (p < 0.05). Hierarchical epigenetic alterations occur at transition points during colorectal neoplastic progression. These cumulative changes are closely correlated with a gain of DNMT3B expression, suggesting a causal relationship.

  2. A comparative study of cell cycle mediator protein expression patterns in anaplastic and papillary thyroid carcinoma.

    PubMed

    Evans, Juanita J; Crist, Henry S; Durvesh, Saima; Bruggeman, Richard D; Goldenberg, David

    2012-07-01

    Anaplastic thyroid carcinoma (ATC) is an extremely aggressive and rapidly fatal neoplasm. The aim of this study was to identify a limited cell cycle associated protein expression pattern unique to ATC and to correlate that pattern with clinical outcome. This represents one of the largest tissue micro-array projects comparing the cell cycle protein expression data of ATC to other well-differentiated tumors in the literature. Tissue microarrays were created from 21 patients with ATC and an age and gender matched cohort of patients with papillary thyroid carcinoma (PTC). Expression of epidermal growth factor receptor, cyclin D1, cyclin E, p53, p21, p16, aurora kinase A, opioid growth factor (OGF), OGF-receptor, thyroglobulin and Ki-67 was evaluated in a semi-quantitative fashion. Differences in protein expression between the cohorts were evaluated using chi-square tests with Bonferroni adjustments. Survival time and presence of metastasis at presentation were collected. The ATC cohort showed a statistically significant decrease (p < 0.05) in thyroglobulin expression and statistically significant increases (p < 0.05) in Ki-67 and p53 expression as compared with the PTC cohort. A trend toward loss of p16 and p21 expression was noted in the ATC cohort. A trend toward decreased survival was noted with p21 expression. These data indicate disruption of the normal cell cycle with aberrant expression of multiple protein markers suggesting increased proliferative activity and loss of control of cell cycle progression to G₁ phase. These findings support the assertion that ATC may represent the furthest end of a continuum of thyroid carcinoma dedifferentiation.

  3. Estrogen and Cytochrome P450 1B1 Contribute to Both Early- and Late-Stage Head and Neck Carcinogenesis

    PubMed Central

    Shatalova, Ekaterina G.; Klein-Szanto, Andres J.P.; Devarajan, Karthik; Cukierman, Edna; Clapper, Margie L.

    2010-01-01

    Squamous cell carcinoma of the head and neck (HNSCC) is the sixth most common type of cancer in the U.S. The goal of this study was to evaluate the contribution of estrogens to the development of HNSCCs. Various cell lines derived from early- and late-stage head and neck lesions were used to: characterize the expression of estrogen synthesis and metabolism genes, including cytochrome P450 (CYP)1B1, examine the effect of estrogen on gene expression and evaluate the role of CYP1B1 and/or estrogen in cell motility, proliferation and apoptosis. Estrogen metabolism genes (CYP1B1, CYP1A1, catechol-o-methyltransferase, UDP-glucuronosyltransferase 1A1, and glutathione-S-transferase P1) and estrogen receptor (ER)β were expressed in cell lines derived from both premalignant (MSK-Leuk1) and malignant (HNSCC) lesions. Exposure to estrogen induced CYP1B1 2.3 to 3.6 fold relative to vehicle-treated controls (P=0.0004) in MSK-Leuk1 cells but not in HNSCC cells. CYP1B1 knockdown by shRNA reduced the migration and proliferation of MSK-Leuk1 cells by 57% and 45%, respectively. Exposure of MSK-Leuk1 cells to estrogen inhibited apoptosis by 26%, while supplementation with the antiestrogen fulvestrant restored estrogen-dependent apoptosis. Representation of the estrogen pathway in human head and neck tissues from 128 patients was examined using tissue microarrays. The majority of the samples exhibited immunohistochemical staining for ERβ (91.9%), CYP1B1 (99.4%) and 17β-estradiol (88.4%). CYP1B1 and ERβ were elevated in HNSCCs relative to normal epithelium (P=0.024 and 0.008, respectively). These data provide novel insight into the mechanisms underlying head and neck carcinogenesis and facilitate the identification new targets for chemopreventive intervention. PMID:21205741

  4. Differential Gene Expression in Primary Human Skin Keratinocytes and Fibroblasts in Response to Ionizing Radiation

    PubMed Central

    Warters, Raymond L.; Packard, Ann T.; Kramer, Gwen F.; Gaffney, David K.; Moos, Philip J.

    2009-01-01

    Although skin is usually exposed during human exposures to ionizing radiation, there have been no thorough examinations of the transcriptional response of skin fibroblasts and keratinocytes to radiation. The transcriptional response of quiescent primary fibroblasts and keratinocytes exposed to from 10 cGy to 5 Gy and collected 4 h after treatment was examined. RNA was isolated and examined by microarray analysis for changes in the levels of gene expression. Exposure to ionizing radiation altered the expression of 279 genes across both cell types. Changes in RNA expression could be arranged into three main categories: (1) changes in keratinocytes but not in fibroblasts, (2) changes in fibroblasts but not in keratinocytes, and (3) changes in both. All of these changes were primarily of p53 target genes. Similar radiation-induced changes were induced in immortalized fibroblasts or keratinocytes. In separate experiments, protein was collected and analyzed by Western blotting for expression of proteins observed in microarray experiments to be overexpressed at the mRNA level. Both Q-PCR and Western blot analysis experiments validated these transcription changes. Our results are consistent with changes in the expression of p53 target genes as indicating the magnitude of cell responses to ionizing radiation. PMID:19580510

  5. Endoglin (CD105) expression on microvessel endothelial cells in juvenile nasopharyngeal angiofibroma: tissue microarray analysis and association with prognostic significance.

    PubMed

    Wang, Jing-Jing; Sun, Xi-Cai; Hu, Li; Liu, Zhuo-Fu; Yu, Hua-Peng; Li, Han; Wang, Shu-Yi; Wang, De-Hui

    2013-12-01

    The purpose of this study was to examine endoglin (CD105) expression on microvessel endothelial cells (ECs) in juvenile nasopharyngeal angiofibroma (JNA) and its relationship with recurrence. Immunohistochemistry was performed to detect CD105 expression in a tissue microarray from 70 patients with JNA. Correlation between CD105 expression on microvessel ECs and clinicopathological features, as well as tumor recurrence, were analyzed. Immunohistochemistry revealed CD105 expression on ECs but not in stroma of patients with JNA. Chi-square analysis indicated CD105-based microvessel density (MVD) was correlated with JNA recurrence (p = .013). Univariate and multivariate analyses determined that MVD was a significant predictor of time to recurrence (p = .009). The CD105-based MVD was better for predicting disease recurrence (AUROC: 0.673; p = .036) than other clinicopathological features. MVD is a useful predictor for poor prognosis of patients with JNA after curative resection. Angiogenesis, which may play an important role in the occurrence and development of JNA, is therefore a potential therapeutic target for JNA. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.

  6. Thrombus organization and healing in an experimental aneurysm model. Part II. The effect of various types of bioactive bioabsorbable polymeric coils.

    PubMed

    Yuki, Ichiro; Lee, Daniel; Murayama, Yuichi; Chiang, Alexander; Vinters, Harry V; Nismmura, Ichiro; Wang, Chiachien J; Ishii, Akira; Wu, Benjamin M; Viñuela, Fernando

    2007-07-01

    Bioabsorbable polymeric material coils are being used in the endovascular treatment of aneurysms to achieve better thrombus organization than is possible using bare platinum coils. We used immunohistochemical and molecular biological analysis techniques in experimental aneurysms implanted with three different bioabsorbable polymer coils and platinum coils. The degradation kinetics of nine polymer candidates for further analysis were first analyzed in vitro, and three materials with different degradation rates were selected. Seventy-four aneurysms were created in 37 swine using the venous pouch technique. The aneurysms were surgically implanted with one of the materials as follows (time points = 3, 7, and 14 days): Group 1, Guglielmi detachable coils (platinum); Group 2, Polysorb (90:10 polyglycolic acid [PGA]/polylactic acid); Group 3, Maxon (PGA/trimethylene carbonate); and Group 4, poly-l-lactic acid. Histological, immunohistochemical, and cDNA microarray analyses were performed on tissue specimens. Groups 1 and 4 showed minimal inflammatory response adjacent to the coil mass. In Group 2, Polysorb elicited a unique, firm granulation tissue that accelerated intraaneurysmal thrombus organization. In Group 3 intermediate inflammatory reactions were seen. Microarray analysis with Expression Analysis Sytematic Explorer software showed functional-cluster-gene activation to be increased at Day 7, preceding the histologic manifestation of polymer-induced granulation tissue at Day 14. A profile of expression changes in cytokine-related and extracellular membrane-related genes was compiled. Degradation speed was not the only factor determining the strength of the biological response. Polysorb induced an early, unique granulation tissue that conferred greater mechanical strength to the intraaneurysmal coilthrombus complex. Enhancing the formation of this polymer-induced granulation tissue may provide a new direction for improving long-term anatomical outcomes in cases involving aneurysms embolized with detachable coils.

  7. Impact of Tumour Epithelial Subtype on Circulating microRNAs in Breast Cancer Patients

    PubMed Central

    Brougham, Cathy; Glynn, Claire L.; Wall, Deirdre; Hyland, Peter; Duignan, Maria; McLoughlin, Mark; Newell, John; Kerin, Michael J.

    2014-01-01

    While a range of miRNAs have been shown to be dysregulated in the circulation of patients with breast cancer, little is known about the relationship between circulating levels and tumour characteristics. The aim of this study was to analyse alterations in circulating miRNA expression during tumour progression in a murine model of breast cancer, and to detemine the clinical relevance of identified miRNAs at both tissue and circulating level in patient samples. Athymic nude mice received a subcutaneous or mammary fat pad injection of MDA-MB-231 cells. Blood sampling was performed at weeks 1, 3 and 6 following tumour induction, and microRNA extracted. MicroRNA microArray analysis was performed comparing samples harvested at week 1 to those collected at week 6 from the same animals. Significantly altered miRNAs were validated across all murine samples by RQ-PCR (n = 45). Three miRNAs of interest were then quantified in the circulation(n = 166) and tissue (n = 100) of breast cancer patients and healthy control individuals. MicroArray-based analysis of murine blood samples revealed levels of 77 circulating microRNAs to be changed during disease progression, with 44 demonstrating changes >2-fold. Validation across all samples revealed miR-138 to be significantly elevated in the circulation of animals during disease development, with miR-191 and miR-106a levels significantly decreased. Analysis of patient tissue and blood samples revealed miR-138 to be significantly up-regulated in the circulation of patients with breast cancer, with no change observed in the tissue setting. While not significantly changed overall in breast cancer patients compared to controls, circulating miR-106a and miR-191 were significantly decreased in patients with basal breast cancer. In tissue, both miRNAs were significantly elevated in breast cancer compared to normal breast tissue. The data demonstrates an impact of tumour epithelial subtype on circulating levels of miRNAs, and highlights divergent miRNA profiles between tissue and blood samples from breast cancer patients. PMID:24626163

  8. Comprehensive Analysis of ETS Family Members in Melanoma by Fluorescence In Situ Hybridization Reveals Recurrent ETV1 Amplification

    PubMed Central

    Mehra, Rohit; Dhanasekaran, Saravana M; Palanisamy, Nallasivam; Vats, Pankaj; Cao, Xuhong; Kim, Jung H; Kim, David SL; Johnson, Timothy; Fullen, Douglas R; Chinnaiyan, Arul M

    2013-01-01

    E26 transformation-specific (ETS) transcription factors are known to be involved in gene aberrations in various malignancies including prostate cancer; however, their role in melanoma oncogenesis has yet to be fully explored. We have completed a comprehensive fluorescence in situ hybridization (FISH)-based screen for all 27 members of the ETS transcription factor family on two melanoma tissue microarrays, representing 223 melanomas, 10 nevi, and 5 normal skin tissues. None of the melanoma cases demonstrated ETS fusions; however, 6 of 114 (5.3%) melanomas were amplified for ETV1 using a break-apart FISH probe. For the six positive cases, locus-controlled FISH probes revealed that two of six cases were amplified for the ETV1 region, whereas four cases showed copy gains of the entire chromosome 7. The remaining 26 ETS family members showed no chromosomal aberrations by FISH. Quantitative polymerase chain reaction showed an average 3.4-fold (P value = .00218) increased expression of ETV1 in melanomas, including the FISH ETV1-amplified cases, when compared to other malignancies (prostate, breast, and bladder carcinomas). These data suggest that a subset of melanomas overexpresses ETV1 and amplification of ETV1 may be one mechanism for achieving high gene expression. PMID:23908683

  9. Screening of lymph nodes metastasis associated lncRNAs in colorectal cancer patients

    PubMed Central

    Han, Jun; Rong, Long-Fei; Shi, Chuan-Bin; Dong, Xiao-Gang; Wang, Jie; Wang, Bao-Lin; Wen, Hao; He, Zhen-Yu

    2014-01-01

    AIM: To screen lymph nodes metastasis associated long noncoding RNAs (lncRNAs) in colorectal cancer through microarray analysis. METHODS: Metastatic lymph node (MLN), normal lymph node (NLN) and tumor tissues of 3 colorectal cancer (CRC) patients were collected during the operation and validated by pathological examinations. RNAs were extracted from MLN, NLN, and cancer tissues separately. RNA quantity and quality were measured with a NanoDrop ND-1000 spectrophotometer and RNA integrity was assessed by standard denaturing agarose electrophoresis. Agilent Feature Extraction Software (Version 11.0.1.1) was used to analyze acquired array images. Four differently expressed lncRNAs were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) in 26 subsets of MLN, NLN, and tumor tissues. RESULTS: Of 33045 lncRNAs, 1133 were differentially expressed in MLN compared with NLN, of which 260 were up-regulated and 873 down-regulated (≥ 2 fold-change). Five hundred and forty-five lncRNAs were differentially expressed in MLN compared with tumor tissues, of which 460 were up-regulated and 85 down-regulated (≥ 2 fold-change). Compared with NLN and cancer tissues, 14 lncRNAs were specifically up-regulated and 5 specifically down-regulated in MLN. AK307796, ENST00000425785, and AK021444 were confirmed to be specifically up-regulated in MLN and ENST00000465846 specifically down-regulated in MLN by qRT-PCR in 26 CRC patients. CONCLUSION: The specifically expressed lncRNAs in MLN may exert a partial or key role in the progress of lymph nodes metastasis of CRC. PMID:25009386

  10. Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood.

    PubMed

    Zhang, Fan; Kaufman, Howard L; Deng, Youping; Drabier, Renee

    2013-01-01

    Breast cancer is worldwide the second most common type of cancer after lung cancer. Traditional mammography and Tissue Microarray has been studied for early cancer detection and cancer prediction. However, there is a need for more reliable diagnostic tools for early detection of breast cancer. This can be a challenge due to a number of factors and logistics. First, obtaining tissue biopsies can be difficult. Second, mammography may not detect small tumors, and is often unsatisfactory for younger women who typically have dense breast tissue. Lastly, breast cancer is not a single homogeneous disease but consists of multiple disease states, each arising from a distinct molecular mechanism and having a distinct clinical progression path which makes the disease difficult to detect and predict in early stages. In the paper, we present a Support Vector Machine based on Recursive Feature Elimination and Cross Validation (SVM-RFE-CV) algorithm for early detection of breast cancer in peripheral blood and show how to use SVM-RFE-CV to model the classification and prediction problem of early detection of breast cancer in peripheral blood.The training set which consists of 32 health and 33 cancer samples and the testing set consisting of 31 health and 34 cancer samples were randomly separated from a dataset of peripheral blood of breast cancer that is downloaded from Gene Express Omnibus. First, we identified the 42 differentially expressed biomarkers between "normal" and "cancer". Then, with the SVM-RFE-CV we extracted 15 biomarkers that yield zero cross validation score. Lastly, we compared the classification and prediction performance of SVM-RFE-CV with that of SVM and SVM Recursive Feature Elimination (SVM-RFE). We found that 1) the SVM-RFE-CV is suitable for analyzing noisy high-throughput microarray data, 2) it outperforms SVM-RFE in the robustness to noise and in the ability to recover informative features, and 3) it can improve the prediction performance (Area Under Curve) in the testing data set from 0.5826 to 0.7879. Further pathway analysis showed that the biomarkers are associated with Signaling, Hemostasis, Hormones, and Immune System, which are consistent with previous findings. Our prediction model can serve as a general model for biomarker discovery in early detection of other cancers. In the future, Polymerase Chain Reaction (PCR) is planned for validation of the ability of these potential biomarkers for early detection of breast cancer.

  11. Microarray analysis of retinal gene expression in chicks during imposed myopic defocus.

    PubMed

    Schippert, Ruth; Schaeffel, Frank; Feldkaemper, Marita Pauline

    2008-08-31

    The retina plays an important regulatory role in ocular growth. To screen for new retinal candidate genes that could be involved in the inhibition of ocular growth, we used chick microarrays to analyze the changes in retinal mRNA expression after myopic defocus was imposed by positive lens wear. Four male white leghorn chicks, aged nine days, wore +6.9D spectacle lenses over both eyes for 24 h. Four untreated age-matched male chicks from the same batch served as controls. The chicks were euthanized, and retinas from both eyes of each chick were pooled. RNA was isolated and labeled cRNA was prepared. These samples were hybridized to Affymetrix GeneChip Chicken Genome arrays with more than 28,000 characterized genes. After comparison of multiple normalization methods, GC-RMA and a false-discovery rate of 6% was chosen for normalization of the data. The expression of 16 candidate genes was further studied, using semiquantitative real-time RT-PCR. In addition, the expression of the mRNA of some of these candidate genes was assessed in chicks that wore either +6.9D lenses for 4 h or -7D lenses for 24 h. 123 transcripts were found to be differentially expressed (p<0.05; at least 1.5-fold change in expression level), with an absolute mean fold-change of 1.97+/-1.16 (mean+/-standard deviation). Nine of the sixteen genes that were examined by real-time RT-PCR were validated. Regardless of whether positive or negative lenses were worn, six of these nine genes were regulated in the same direction after 24 h: arginyltransferase 1 (ATE1), E74-like factor 1 (ELF1), growth factor receptor-bound protein 2 (GRB2), SHQ1 homolog (S. cerevisiae) (SHQ1), spectrin, beta, non-erythrocytic 1 (SPTBN1), prepro-urotensin II-related peptide (pp-URP). Three genes responded differently to positive and negative lens treatment after 24 h: ATP-binding cassette, sub-family C, member 10 (ABCC10), CD226 molecule (CD226) and oxysterol binding protein 2 (OSBP2). The validated genes that were regulated only by myopic defocus may represent elements in a pathway generating a "stop-signal" for eye growth. Some of the genes identified in this study have so far not been described in the retina. Further investigation of their function may improve the understanding of the signaling cascades in emmetropization. More general, published microarray data are variable among different animal models (mouse, chick, monkeys), tissues (retina, retina/retinal pigment epithelium), treatments (diffusers, lenses, lid-suture), as well as different treatment durations (hours, days), and comparisons remain difficult. That only a small number of common genes were found emphasizes the need for careful normalization of the experimental parameters.

  12. Activation of an IL-6:STAT3-dependent Transcriptome in Pediatric-onset Inflammatory Bowel Disease

    PubMed Central

    Carey, Rebecca; Jurickova, Ingrid; Ballard, Edgar; Bonkowski, Erin; Han, Xiaonan; Xu, Huan; Denson, Lee A.

    2008-01-01

    Background: While activation of the IL-6-dependent transcription factor signal transducer and activator of transcription 3 (STAT3) has been implicated in the pathogenesis of inflammatory bowel disease (IBD), a direct effect on mucosal gene expression and inflammation has not been shown. We hypothesized that a proinflammatory IL-6:STAT3-dependent biological network would be up regulated in pediatric-onset IBD patients, and would be associated with the severity of mucosal inflammation. Methods: Patients with pediatric-onset IBD were enrolled at diagnosis and during therapy. Serum cytokine analysis was performed using Bioplex. STAT3 phosphorylation (pSTAT3) in peripheral blood leukocytes (PBLs) was assessed by flow cytometry. Immunohistochemistry of colonic mucosa was used to localize pSTAT3 and STAT3 target genes. Microarray analysis was used to determine RNA expression profiles from colon biopsies. Results: Circulating IL-6 was upregulated in active IBD patients at diagnosis and during therapy. STAT3 activation was increased in PB granulocytes, IL-6-stimulated CD3+/CD4+ lymphocytes, and affected colon biopsies of IBD patients. The frequency of pSTAT3+PB granulocytes and colon epithelial and lamina propria cells was highly correlated with the degree of mucosal inflammation. Microarray and Ingenuity Systems bioinformatics analysis identified IL-6:STAT3-dependent biological networks upregulated in IBD patients which control leukocyte recruitment, HLA expression, angiogenesis, and tissue remodeling. Conclusions: A proinflammatory IL6:STAT3 biologic network is upregulated in active pediatric IBD patients at diagnosis and during therapy. Specific targeting of this network may be effective in reducing mucosal inflammation. PMID:18069684

  13. Microarray analysis of gene expression in West Nile virus–infected human retinal pigment epithelium

    PubMed Central

    Munoz-Erazo, Luis; Natoli, Ricardo; Provis, Jan Marie; Madigan, Michelle Catherine

    2012-01-01

    Purpose To identify key genes differentially expressed in the human retinal pigment epithelium (hRPE) following low-level West Nile virus (WNV) infection. Methods Primary hRPE and retinal pigment epithelium cell line (ARPE-19) cells were infected with WNV (multiplicity of infection 1). RNA extracted from mock-infected and WNV-infected cells was assessed for differential expression of genes using Affymetrix microarray. Quantitative real-time PCR analysis of 23 genes was used to validate the microarray results. Results Functional annotation clustering of the microarray data showed that gene clusters involved in immune and antiviral responses ranked highly, involving genes such as chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 5 (CCL5), chemokine (C-X-C motif) ligand 10 (CXCL10), and toll like receptor 3 (TLR3). In conjunction with the quantitative real-time PCR analysis, other novel genes regulated by WNV infection included indoleamine 2,3-dioxygenase (IDO1), genes involved in the transforming growth factor–β pathway (bone morphogenetic protein and activin membrane-bound inhibitor homolog [BAMBI] and activating transcription factor 3 [ATF3]), and genes involved in apoptosis (tumor necrosis factor receptor superfamily, member 10d [TNFRSF10D]). WNV-infected RPE did not produce any interferon-γ, suggesting that IDO1 is induced by other soluble factors, by the virus alone, or both. Conclusions Low-level WNV infection of hRPE cells induced expression of genes that are typically associated with the host cell response to virus infection. We also identified other genes, including IDO1 and BAMBI, that may influence the RPE and therefore outer blood-retinal barrier integrity during ocular infection and inflammation, or are associated with degeneration, as seen for example in aging. PMID:22509103

  14. Molecular Signature for Lymphatic Invasion Associated with Survival of Epithelial Ovarian Cancer.

    PubMed

    Paik, E Sun; Choi, Hyun Jin; Kim, Tae-Joong; Lee, Jeong-Won; Kim, Byoung-Gie; Bae, Duk-Soo; Choi, Chel Hun

    2018-04-01

    We aimed to develop molecular classifier that can predict lymphatic invasion and their clinical significance in epithelial ovarian cancer (EOC) patients. We analyzed gene expression (mRNA, methylated DNA) in data from The Cancer Genome Atlas. To identify molecular signatures for lymphatic invasion, we found differentially expressed genes. The performance of classifier was validated by receiver operating characteristics analysis, logistic regression, linear discriminant analysis (LDA), and support vector machine (SVM). We assessed prognostic role of classifier using random survival forest (RSF) model and pathway deregulation score (PDS). For external validation,we analyzed microarray data from 26 EOC samples of Samsung Medical Center and curatedOvarianData database. We identified 21 mRNAs, and seven methylated DNAs from primary EOC tissues that predicted lymphatic invasion and created prognostic models. The classifier predicted lymphatic invasion well, which was validated by logistic regression, LDA, and SVM algorithm (C-index of 0.90, 0.71, and 0.74 for mRNA and C-index of 0.64, 0.68, and 0.69 for DNA methylation). Using RSF model, incorporating molecular data with clinical variables improved prediction of progression-free survival compared with using only clinical variables (p < 0.001 and p=0.008). Similarly, PDS enabled us to classify patients into high-risk and low-risk group, which resulted in survival difference in mRNA profiles (log-rank p-value=0.011). In external validation, gene signature was well correlated with prediction of lymphatic invasion and patients' survival. Molecular signature model predicting lymphatic invasion was well performed and also associated with survival of EOC patients.

  15. Expression analysis of LC3B and p62 indicates intact activated autophagy is associated with an unfavorable prognosis in colon cancer.

    PubMed

    Niklaus, Monique; Adams, Olivia; Berezowska, Sabina; Zlobec, Inti; Graber, Franziska; Slotta-Huspenina, Julia; Nitsche, Ulrich; Rosenberg, Robert; Tschan, Mario P; Langer, Rupert

    2017-08-15

    Autophagy is a lysosomal degradation and recycling process implicated in cancer progression and therapy resistance. We assessed the impact of basal autophagy in colon cancer (CC) in vitro and ex vivo . Functional autophagy was demonstrated in CC cell lines (LoVo; HT-29) showing a dose-dependent increase of the autophagy markers LC3B, p62 and autophagic vesciles upon increasing concentrations of the autophagy inhibitor chloroquine, which was demonstrated by immunoblotting, immunofluorescence and electron microscopy. Next, tissue microarrays with 292 primary resected CC, with cores from different tumor regions, and normal mucosa were analyzed by immunohistochemistry for LC3B and p62. CC tissue showed LC3B dot-like, p62 dot-like, cytoplasmic and nuclear staining in various levels without significant intratumoral heterogeneity. Tumoral LC3B and p62 expression was significantly higher than in normal tissue (p<0.001). No associations between staining patterns and pathological features (e.g. TNM categories; grading) were observed. Both low LC3B dot-like and low p62 dot-like-cytoplasmic staining were associated with worse overall survival (p=0.005 and p=0.002). The best prognostic discrimination, however, was seen for a combination of LC3B dot-like/p62 dot-like-cytoplasmic staining: high expression of both markers, indicative of impaired activated autophagy, was associated with the best overall survival. In contrast, high LC3B dot-like/low p62 dot-like-cytoplasmic expression, indicative of intact activated autophagy, was associated with the worst outcome (p<0.001 in univariate and HR=0.751; CI=0.607-0.928; p=0.008 in multivariate analysis). These specific expression patterns of LC3B and p62 pointing to different states of autophagy associated with diverging clinical outcomes highlighte the potential significance of basal autophagy in CC biology.

  16. Alteration of gene expression and DNA methylation in drug-resistant gastric cancer.

    PubMed

    Maeda, Osamu; Ando, Takafumi; Ohmiya, Naoki; Ishiguro, Kazuhiro; Watanabe, Osamu; Miyahara, Ryoji; Hibi, Yoko; Nagai, Taku; Yamada, Kiyofumi; Goto, Hidemi

    2014-04-01

    The mechanisms of drug resistance in cancer are not fully elucidated. To study the drug resistance of gastric cancer, we analyzed gene expression and DNA methylation profiles of 5-fluorouracil (5-FU)- and cisplatin (CDDP)-resistant gastric cancer cells and biopsy specimens. Drug-resistant gastric cancer cells were established with culture for >10 months in a medium containing 5-FU or CDDP. Endoscopic biopsy specimens were obtained from gastric cancer patients who underwent chemotherapy with oral fluoropyrimidine S-1 and CDDP. Gene expression and DNA methylation analyses were performed using microarray, and validated using real-time PCR and pyrosequencing, respectively. Out of 17,933 genes, 541 genes commonly increased and 569 genes decreased in both 5-FU- and CDDP-resistant AGS cells. Genes with expression changed by drugs were related to GO term 'extracellular region' and 'p53 signaling pathway' in both 5-FU- and CDDP-treated cells. Expression of 15 genes including KLK13 increased and 12 genes including ETV7 decreased, in both drug-resistant cells and biopsy specimens of two patients after chemotherapy. Out of 10,365 genes evaluated with both expression microarray and methylation microarray, 74 genes were hypermethylated and downregulated, or hypomethylated and upregulated in either 5-FU-resistant or CDDP-resistant cells. Of these genes, expression of 21 genes including FSCN1, CPT1C and NOTCH3, increased from treatment with a demethylating agent. There are alterations of gene expression and DNA methylation in drug-resistant gastric cancer; they may be related to mechanisms of drug resistance and may be useful as biomarkers of gastric cancer drug sensitivity.

  17. Performance of automated scoring of ER, PR, HER2, CK5/6 and EGFR in breast cancer tissue microarrays in the Breast Cancer Association Consortium

    PubMed Central

    Howat, William J; Blows, Fiona M; Provenzano, Elena; Brook, Mark N; Morris, Lorna; Gazinska, Patrycja; Johnson, Nicola; McDuffus, Leigh‐Anne; Miller, Jodi; Sawyer, Elinor J; Pinder, Sarah; van Deurzen, Carolien H M; Jones, Louise; Sironen, Reijo; Visscher, Daniel; Caldas, Carlos; Daley, Frances; Coulson, Penny; Broeks, Annegien; Sanders, Joyce; Wesseling, Jelle; Nevanlinna, Heli; Fagerholm, Rainer; Blomqvist, Carl; Heikkilä, Päivi; Ali, H Raza; Dawson, Sarah‐Jane; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli‐Matti; Cox, Angela; Brock, Ian W; Cross, Simon S; Reed, Malcolm W; Couch, Fergus J; Olson, Janet E; Devillee, Peter; Mesker, Wilma E; Seyaneve, Caroline M; Hollestelle, Antoinette; Benitez, Javier; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Bolla, Manjeet K; Easton, Douglas F; Schmidt, Marjanka K; Pharoah, Paul D; Sherman, Mark E

    2014-01-01

    Abstract Breast cancer risk factors and clinical outcomes vary by tumour marker expression. However, individual studies often lack the power required to assess these relationships, and large‐scale analyses are limited by the need for high throughput, standardized scoring methods. To address these limitations, we assessed whether automated image analysis of immunohistochemically stained tissue microarrays can permit rapid, standardized scoring of tumour markers from multiple studies. Tissue microarray sections prepared in nine studies containing 20 263 cores from 8267 breast cancers stained for two nuclear (oestrogen receptor, progesterone receptor), two membranous (human epidermal growth factor receptor 2 and epidermal growth factor receptor) and one cytoplasmic (cytokeratin 5/6) marker were scanned as digital images. Automated algorithms were used to score markers in tumour cells using the Ariol system. We compared automated scores against visual reads, and their associations with breast cancer survival. Approximately 65–70% of tissue microarray cores were satisfactory for scoring. Among satisfactory cores, agreement between dichotomous automated and visual scores was highest for oestrogen receptor (Kappa = 0.76), followed by human epidermal growth factor receptor 2 (Kappa = 0.69) and progesterone receptor (Kappa = 0.67). Automated quantitative scores for these markers were associated with hazard ratios for breast cancer mortality in a dose‐response manner. Considering visual scores of epidermal growth factor receptor or cytokeratin 5/6 as the reference, automated scoring achieved excellent negative predictive value (96–98%), but yielded many false positives (positive predictive value = 30–32%). For all markers, we observed substantial heterogeneity in automated scoring performance across tissue microarrays. Automated analysis is a potentially useful tool for large‐scale, quantitative scoring of immunohistochemically stained tissue microarrays available in consortia. However, continued optimization, rigorous marker‐specific quality control measures and standardization of tissue microarray designs, staining and scoring protocols is needed to enhance results. PMID:27499890

  18. Loss of PTEN expression is associated with aggressive behavior and poor prognosis in Middle Eastern triple-negative breast cancer.

    PubMed

    Beg, Shaham; Siraj, Abdul K; Prabhakaran, Sarita; Jehan, Zeenath; Ajarim, Dahish; Al-Dayel, Fouad; Tulbah, Asma; Al-Kuraya, Khawla S

    2015-06-01

    PTEN is a tumor suppressor that negatively regulates the PI3 K-AKT signaling pathway which is involved in the pathogenesis of many different tumor types and serves as a prognostic marker in breast cancer. However, the significance of the role of PTEN in Middle Eastern ethnic breast cancer has not been explored especially with the fact that breast cancer originating from this ethnic population tend to behave more aggressively than breast cancer in the west. In this study, we analyzed PTEN alteration in a tissue microarray format containing more than 1000 primary breast cancers with clinical follow-up data. Tissue Microarray sections were analyzed for protein expression and copy number change using immunohistochemistry and fluorescence in situ hybridization. Loss of PTEN immunostaining was observed in 77 % of the cases. PTEN loss was significantly associated with large tumor size (p = 0.0030), high grade (p = 0.0281), tumor recurrence (p = 0.0333), and triple-negative breast cancers (p = 0.0086). PTEN loss in triple-negative breast cancers was significantly associated with rapid tumor cell proliferation (p = 0.0396) and poor prognosis (p = 0.0408). PTEN deletion was found only in 60 cases (6.4 %). Loss of PTEN protein expression occurs at high frequency in Middle Eastern breast cancer. PTEN inactivation may potentially lead to an aggressive behavior of tumor cells through stimulation of tumor cell proliferation. Furthermore, PTEN signaling pathway might be used as potential therapeutic target in triple-negative breast cancers since loss of its expression is shown to be significantly associated with this aggressive subtype of breast cancer.

  19. Immunohistochemical differentiation of high-grade prostate carcinoma from urothelial carcinoma.

    PubMed

    Chuang, Ai-Ying; DeMarzo, Angelo M; Veltri, Robert W; Sharma, Rajni B; Bieberich, Charles J; Epstein, Jonathan I

    2007-08-01

    The histologic distinction between high-grade prostate cancer and infiltrating high-grade urothelial cancer may be difficult, and has significant implications because each disease may be treated very differently (ie, hormone therapy for prostate cancer and chemotherapy for urothelial cancer). Immunohistochemistry of novel and established prostatic and urothelial markers using tissue microarrays (TMAs) were studied. Prostatic markers studied included: prostate-specific antigen (PSA), prostein (P501s), prostate-specific membrane antigen (PSMA), NKX3.1 (an androgen-related tumor suppressor gene), and proPSA (pPSA) (precursor form of PSA). "Urothelial markers" included high molecular weight cytokeratin (HMWCK), p63, thrombomodulin, and S100P (placental S100). TMAs contained 38 poorly differentiated prostate cancers [Gleason score 8 (n=2), Gleason score 9 (n=18), Gleason score 10 (n=18)] and 35 high-grade invasive urothelial carcinomas from radical prostatectomy and cystectomy specimens, respectively. Each case had 2 to 8 tissue spots (0.6-mm diameter). If all spots for a case showed negative staining, the case was called negative. The sensitivities for labeling prostate cancers were PSA (97.4%), P501S (100%), PSMA (92.1%), NKX3.1 (94.7%), and pPSA (94.7%). Because of PSA's high sensitivity on the TMA, we chose 41 additional poorly differentiated primary (N=36) and metastatic (N=5) prostate carcinomas which showed variable PSA staining at the time of diagnosis and performed immunohistochemistry on routine tissue sections. Compared to PSA, which on average showed 18.8% of cells with moderate to strong positivity, cases stained for P501S, PSMA, and NKX3.1 had on average 42.5%, 53.7%, 52.9% immunoreactivity, respectively. All prostatic markers showed excellent specificity. HMWCK, p63, thrombomodulin, and S100P showed lower sensitivities in labeling high-grade invasive urothelial cancer in the TMAs with 91.4%, 82.9%, 68.6%, and 71.4% staining, respectively. These urothelial markers were relatively specific with only a few prostate cancers showing scattered (

  20. Cytoplasmic Estrogen Receptor in breast cancer

    PubMed Central

    Welsh, Allison W.; Lannin, Donald R.; Young, Gregory S.; Sherman, Mark E.; Figueroa, Jonine D.; Henry, N. Lynn; Ryden, Lisa; Kim, Chungyeul; Love, Richard R.; Schiff, Rachel; Rimm, David L.

    2011-01-01

    Purpose In addition to genomic signaling, it is accepted that ERα has non-nuclear signaling functions, which correlate with tamoxifen resistance in preclinical models. However, evidence for cytoplasmic ER localization in human breast tumors is less established. We sought to determine the presence and implications of non-nuclear ER in clinical specimens. Experimental Design A panel of ERα-specific antibodies (SP1, MC20, F10, 60c, 1D5) were validated by western blot and quantitative immunofluorescent (QIF) analysis of cell lines and patient controls. Then eight retrospective cohorts collected on tissue microarrays were assessed for cytoplasmic ER. Four cohorts were from Yale (YTMA 49, 107, 130, 128) and four others (NCI YTMA 99, South Swedish Breast Cancer Group SBII, NSABP B14, and a Vietnamese Cohort) from other sites around the world. Results Four of the antibodies specifically recognized ER by western and QIF, showed linear increases in amounts of ER in cell line series with progressively increasing ER, and the antibodies were reproducible on YTMA 49 with pearson’s correlations (r2 values)ranging from 0.87-0.94. One antibody with striking cytoplasmic staining (MC20) failed validation. We found evidence for specific cytoplasmic staining with the other 4 antibodies across eight cohorts. The average incidence was 1.5%, ranging from 0 to 3.2%. Conclusions Our data shows ERα present in the cytoplasm in a number of cases using multiple antibodies, while reinforcing the importance of antibody validation. In nearly 3,200 cases, cytoplasmic ER is present at very low incidence, suggesting its measurement is unlikely to be of routine clinical value. PMID:21980134

  1. Differential Expression of MicroRNA and Predicted Targets in Pulmonary Sarcoidosis

    PubMed Central

    Crouser, Elliott D.; Julian, Mark W.; Crawford, Melissa; Shao, Guohong; Yu, Lianbo; Planck, Stephen R.; Rosenbaum, James T.; Nana-Sinkam, S. Patrick

    2014-01-01

    Background Recent studies show that various inflammatory diseases are regulated at the level of RNA translation by small non-coding RNAs, termed microRNAs (miRNAs). We sought to determine whether sarcoidosis tissues harbor a distinct pattern of miRNA expression and then considered their potential molecular targets. Methods and Results Genome-wide microarray analysis of miRNA expression in lung tissue and peripheral blood mononuclear cells (PBMCs) was performed and differentially expressed (DE)-miRNAs were then validated by real-time PCR. A distinct pattern of DE-miRNA expression was identified in both lung tissue and PBMCs of sarcoidosis patients. A subgroup of DE-miRNAs common to lung and lymph node tissues were predicted to target transforming growth factor (TGFβ)-regulated pathways. Likewise, the DE-miRNAs identified in PBMCs of sarcoidosis patients were predicted to target the TGFβ-regulated “wingless and integrase-1” (WNT) pathway. Conclusions This study is the first to profile miRNAs in sarcoidosis tissues and to consider their possible roles in disease pathogenesis. Our results suggest that miRNA regulate TGFβ and related WNT pathways in sarcoidosis tissues, pathways previously incriminated in the pathogenesis of sarcoidosis. PMID:22209793

  2. Integrated expression analysis identifies transcription networks in mouse and human gastric neoplasia.

    PubMed

    Chen, Zheng; Soutto, Mohammed; Rahman, Bushra; Fazili, Muhammad W; Peng, DunFa; Blanca Piazuelo, Maria; Chen, Heidi; Kay Washington, M; Shyr, Yu; El-Rifai, Wael

    2017-07-01

    Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide. The Tff1 knockout (KO) mouse model develops gastric lesions that include low-grade dysplasia (LGD), high-grade dysplasia (HGD), and adenocarcinomas. In this study, we used Affymetrix microarrays gene expression platforms for analysis of molecular signatures in the mouse stomach [Tff1-KO (LGD) and Tff1 wild-type (normal)] and human gastric cancer tissues and their adjacent normal tissue samples. Combined integrated bioinformatics analysis of mouse and human datasets indicated that 172 genes were consistently deregulated in both human gastric cancer samples and Tff1-KO LGD lesions (P < .05). Using Ingenuity pathway analysis, these genes mapped to important transcription networks that include MYC, STAT3, β-catenin, RELA, NFATC2, HIF1A, and ETS1 in both human and mouse. Further analysis demonstrated activation of FOXM1 and inhibition of TP53 transcription networks in human gastric cancers but not in Tff1-KO LGD lesions. Using real-time RT-PCR, we validated the deregulated expression of several genes (VCAM1, BGN, CLDN2, COL1A1, COL1A2, COL3A1, EpCAM, IFITM1, MMP9, MMP12, MMP14, PDGFRB, PLAU, and TIMP1) that map to altered transcription networks in both mouse and human gastric neoplasia. Our study demonstrates significant similarities in deregulated transcription networks in human gastric cancer and gastric tumorigenesis in the Tff1-KO mouse model. The data also suggest that activation of MYC, STAT3, RELA, and β-catenin transcription networks could be an early molecular step in gastric carcinogenesis. © 2017 Wiley Periodicals, Inc.

  3. Clinical significance of miRNA host gene promoter methylation in prostate cancer.

    PubMed

    Daniunaite, Kristina; Dubikaityte, Monika; Gibas, Povilas; Bakavicius, Arnas; Rimantas Lazutka, Juozas; Ulys, Albertas; Jankevicius, Feliksas; Jarmalaite, Sonata

    2017-07-01

    Only a part of prostate cancer (PCa) patients has aggressive malignancy requiring adjuvant treatment after radical prostatectomy (RP). Biomarkers capable to predict biochemical PCa recurrence (BCR) after RP would significantly improve preoperative risk stratification and treatment decisions. MicroRNA (miRNA) deregulation has recently emerged as an important phenomenon in tumor development and progression, however, the mechanisms remain largely unstudied. In the present study, based on microarray profiling of DNA methylation in 9 pairs of PCa and noncancerous prostate tissues (NPT), host genes of miR-155-5p, miR-152-3p, miR-137, miR-31-5p, and miR-642a, -b were analyzed for promoter methylation in 129 PCa, 35 NPT, and 17 benign prostatic hyperplasia samples (BPH) and compared to the expression of mature miRNAs and their selected targets (DNMT1, KDM1A, and KDM5B). The Cancer Genome Atlas dataset was utilized for validation. Methylation of mir-155, mir-152, and mir-137 host genes was PCa-specific, and downregulation of miR-155-5p significantly correlated with promoter methylation. Higher KDM5B expression was observed in samples with methylated mir-155 or mir-137 promoters, whereas upregulation of KDM1A and DNMT1 was associated with mir-155 and mir-152 methylation status, respectively. Promoter methylation of mir-155, mir-152, and mir-31 was predictive of BCR-free survival in various Cox models and increased the prognostic value of clinicopathologic factors. In conclusion, methylated mir-155, mir-152, mir-137, and mir-31 host genes are promising diagnostic and/or prognostic biomarkers of PCa. Methylation status of particular miRNA host genes as independent variables or in combinations might assist physicians in identifying poor prognosis PCa patients preoperatively. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. [Expression of molecular markers detected by immunohistochemistry and risk of lymph node metastasis in stage T1 and T2 colorecrectal cancers].

    PubMed

    Wang, Fu-long; Wan, De-sen; Lu, Zhen-hai; Fang, Yu-jing; Li, Li-ren; Chen, Gong; Wu, Xiao-jun; Ding, Pei-rong; Kong, Ling-heng; Lin, Jun-zhong; Pan, Zhi-zhong

    2013-04-01

    To study the molecular risk factors of lymph node metastasis in stage T1 and T2 colorectal cancers by tissue microarray and immunohistochemistry techniques. Two hundred and three patients with stage T1 and T2 colorectal carcinoma who underwent radical surgery from 1999 to 2010 in our department were included in this study. Their clinicopathological data were retrospectively analyzed. Expression of the following 14 molecular markers were selected and assayed by tissue microarray and immunohistochemistry: VEGFR-3, HER2, CD44v6, CXCR4, TIMP-1, EGFR, IGF-1R, IGF-2, IGFBP-1, ECAD, MMP-9, RKIP, CD133, MSI. Chi-squared test and logistic regression were used to evaluate the variables as potential risk factors for lymph node metastasis. The positive expression rates of biomarkers were as following: VEGFR-3 (44.3%), EGFR (30.5%), HER-2 (28.1%), IGF-1R (63.5%), IGF-2 (44.8%), IGFBP-1 (70.9%), ECAD (45.8%), CD44v6 (51.2%), MMP-9 (44.3%), TIMP-1 (41.4%), RKIP (45.3%), CXCR4 (40.9%), and CD133 (49.8%). The positive rate of MSI expression was 22.2%. Both univariate and multivariate analyses showed that VEGFR-3, HER-2, and TIMP-1 were significant predictors of lymph node metastasis. Univariate analysis showed that CD44v6 and CXCR4 were significant significant predictors of lymph node metastasis. VEGFR-3, HER2 and TIMP-1 are independent factors for lymph node metastasis in stage T1 and T2 colorectal cancers.

  5. Comparisons of serum miRNA expression profiles in patients with diabetic retinopathy and type 2 diabetes mellitus.

    PubMed

    Ma, Jianping; Wang, Jufang; Liu, Yanfen; Wang, Changyi; Duan, Donghui; Lu, Nanjia; Wang, Kaiyue; Zhang, Lu; Gu, Kaibo; Chen, Sihan; Zhang, Tao; You, Dingyun; Han, Liyuan

    2017-02-01

    The aim of this study was to compare the expression levels of serum miRNAs in diabetic retinopathy and type 2 diabetes mellitus. Serum miRNA expression profiles from diabetic retinopathy cases (type 2 diabetes mellitus patients with diabetic retinopathy) and type 2 diabetes mellitus controls (type 2 diabetes mellitus patients without diabetic retinopathy) were examined by miRNA-specific microarray analysis. Quantitative real-time polymerase chain reaction was used to validate the significantly differentially expressed serum miRNAs from the microarray analysis of 45 diabetic retinopathy cases and 45 age-, sex-, body mass index- and duration-of-diabetes-matched type 2 diabetes mellitus controls. The relative changes in serum miRNA expression levels were analyzed using the 2-ΔΔCt method. A total of 5 diabetic retinopathy cases and 5 type 2 diabetes mellitus controls were included in the miRNA-specific microarray analysis. The serum levels of miR-3939 and miR-1910-3p differed significantly between the two groups in the screening stage; however, quantitative real-time polymerase chain reaction did not reveal significant differences in miRNA expression for 45 diabetic retinopathy cases and their matched type 2 diabetes mellitus controls. Our findings indicate that miR-3939 and miR-1910-3p may not play important roles in the development of diabetic retinopathy; however, studies with a larger sample size are needed to confirm our findings.

  6. Non-Small-Cell Lung Cancer Molecular Signatures Recapitulate Lung Developmental Pathways

    PubMed Central

    Borczuk, Alain C.; Gorenstein, Lyall; Walter, Kristin L.; Assaad, Adel A.; Wang, Liqun; Powell, Charles A.

    2003-01-01

    Current paradigms hold that lung carcinomas arise from pleuripotent stem cells capable of differentiation into one or several histological types. These paradigms suggest lung tumor cell ontogeny is determined by consequences of gene expression that recapitulate events important in embryonic lung development. Using oligonucleotide microarrays, we acquired gene profiles from 32 microdissected non-small-cell lung tumors. We determined the 100 top-ranked marker genes for adenocarcinoma, squamous cell, large cell, and carcinoid using nearest neighbor analysis. Results were validated by immunostaining for 11 selected proteins using a tissue microarray representing 80 tumors. Gene expression data of lung development were accessed from a publicly available dataset generated with the murine Mu11k genome microarray. Self-organized mapping identified two temporally distinct clusters of murine orthologues. Supervised clustering of lung development data showed large-cell carcinoma gene orthologues were in a cluster expressed in pseudoglandular and canalicular stages whereas adenocarcinoma homologues were predominantly in a cluster expressed later in the terminal sac and alveolar stages of murine lung development. Representative large-cell genes (E2F3, MYBL2, HDAC2, CDK4, PCNA) are expressed in the nucleus and are associated with cell cycle and proliferation. In contrast, adenocarcinoma genes are associated with lung-specific transcription pathways (SFTPB, TTF-1), cell adhesion, and signal transduction. In sum, non-small-cell lung tumors histology gene profiles suggest mechanisms relevant to ontogeny and clinical course. Adenocarcinoma genes are associated with differentiation and glandular formation whereas large-cell genes are associated with proliferation and differentiation arrest. The identification of developmentally regulated pathways active in tumorigenesis provides insights into lung carcinogenesis and suggests early steps may differ according to the eventual tumor morphology. PMID:14578194

  7. Repair of oxidative DNA damage, cell-cycle regulation and neuronal death may influence the clinical manifestation of Alzheimer's disease.

    PubMed

    Silva, Aderbal R T; Santos, Ana Cecília Feio; Farfel, Jose M; Grinberg, Lea T; Ferretti, Renata E L; Campos, Antonio Hugo Jose Froes Marques; Cunha, Isabela Werneck; Begnami, Maria Dirlei; Rocha, Rafael M; Carraro, Dirce M; de Bragança Pereira, Carlos Alberto; Jacob-Filho, Wilson; Brentani, Helena

    2014-01-01

    Alzheimer's disease (AD) is characterized by progressive cognitive decline associated with a featured neuropathology (neuritic plaques and neurofibrillary tangles). Several studies have implicated oxidative damage to DNA, DNA repair, and altered cell-cycle regulation in addition to cell death in AD post-mitotic neurons. However, there is a lack of studies that systematically assess those biological processes in patients with AD neuropathology but with no evidence of cognitive impairment. We evaluated markers of oxidative DNA damage (8-OHdG, H2AX), DNA repair (p53, BRCA1, PTEN), and cell-cycle (Cdk1, Cdk4, Cdk5, Cyclin B1, Cyclin D1, p27Kip1, phospho-Rb and E2F1) through immunohistochemistry and cell death through TUNEL in autopsy hippocampal tissue samples arrayed in a tissue microarray (TMA) composed of three groups: I) "clinical-pathological AD" (CP-AD)--subjects with neuropathological AD (Braak ≥ IV and CERAD = B or C) and clinical dementia (CDR ≥ 2, IQCODE>3.8); II) "pathological AD" (P-AD)--subjects with neuropathological AD (Braak ≥ IV and CERAD = B or C) and without cognitive impairment (CDR 0, IQCODE<3.2); and III) "normal aging" (N)--subjects without neuropathological AD (Braak ≤ II and CERAD 0 or A) and with normal cognitive function (CDR 0, IQCODE<3.2). Our results show that high levels of oxidative DNA damage are present in all groups. However, significant reductions in DNA repair and cell-cycle inhibition markers and increases in cell-cycle progression and cell death markers in subjects with CP-AD were detected when compared to both P-AD and N groups, whereas there were no significant differences in the studied markers between P-AD individuals and N subjects. This study indicates that, even in the setting of pathological AD, healthy cognition may be associated with a preserved repair to DNA damage, cell-cycle regulation, and cell death in post-mitotic neurons.

  8. An evaluation of tyramide signal amplification and archived fixed and frozen tissue in microarray gene expression analysis

    PubMed Central

    Karsten, Stanislav L.; Van Deerlin, Vivianna M. D.; Sabatti, Chiara; Gill, Lisa H.; Geschwind, Daniel H.

    2002-01-01

    Archival formalin-fixed, paraffin-embedded and ethanol-fixed tissues represent a potentially invaluable resource for gene expression analysis, as they are the most widely available material for studies of human disease. Little data are available evaluating whether RNA obtained from fixed (archival) tissues could produce reliable and reproducible microarray expression data. Here we compare the use of RNA isolated from human archival tissues fixed in ethanol and formalin to frozen tissue in cDNA microarray experiments. Since an additional factor that can limit the utility of archival tissue is the often small quantities available, we also evaluate the use of the tyramide signal amplification method (TSA), which allows the use of small amounts of RNA. Detailed analysis indicates that TSA provides a consistent and reproducible signal amplification method for cDNA microarray analysis, across both arrays and the genes tested. Analysis of this method also highlights the importance of performing non-linear channel normalization and dye switching. Furthermore, archived, fixed specimens can perform well, but not surprisingly, produce more variable results than frozen tissues. Consistent results are more easily obtainable using ethanol-fixed tissues, whereas formalin-fixed tissue does not typically provide a useful substrate for cDNA synthesis and labeling. PMID:11788730

  9. Translational analysis of mouse and human placental protein and mRNA reveals distinct molecular pathologies in human preeclampsia.

    PubMed

    Cox, Brian; Sharma, Parveen; Evangelou, Andreas I; Whiteley, Kathie; Ignatchenko, Vladimir; Ignatchenko, Alex; Baczyk, Dora; Czikk, Marie; Kingdom, John; Rossant, Janet; Gramolini, Anthony O; Adamson, S Lee; Kislinger, Thomas

    2011-12-01

    Preeclampsia (PE) adversely impacts ~5% of pregnancies. Despite extensive research, no consistent biomarkers or cures have emerged, suggesting that different molecular mechanisms may cause clinically similar disease. To address this, we undertook a proteomics study with three main goals: (1) to identify a panel of cell surface markers that distinguish the trophoblast and endothelial cells of the placenta in the mouse; (2) to translate this marker set to human via the Human Protein Atlas database; and (3) to utilize the validated human trophoblast markers to identify subgroups of human preeclampsia. To achieve these goals, plasma membrane proteins at the blood tissue interfaces were extracted from placentas using intravascular silica-bead perfusion, and then identified using shotgun proteomics. We identified 1181 plasma membrane proteins, of which 171 were enriched at the maternal blood-trophoblast interface and 192 at the fetal endothelial interface with a 70% conservation of expression in humans. Three distinct molecular subgroups of human preeclampsia were identified in existing human microarray data by using expression patterns of trophoblast-enriched proteins. Analysis of all misexpressed genes revealed divergent dysfunctions including angiogenesis (subgroup 1), MAPK signaling (subgroup 2), and hormone biosynthesis and metabolism (subgroup 3). Subgroup 2 lacked expected changes in known preeclampsia markers (sFLT1, sENG) and uniquely overexpressed GNA12. In an independent set of 40 banked placental specimens, GNA12 was overexpressed during preeclampsia when co-incident with chronic hypertension. In the current study we used a novel translational analysis to integrate mouse and human trophoblast protein expression with human microarray data. This strategy identified distinct molecular pathologies in human preeclampsia. We conclude that clinically similar preeclampsia patients exhibit divergent placental gene expression profiles thus implicating divergent molecular mechanisms in the origins of this disease.

  10. Association of Sphingosine-1-phosphate (S1P)/S1P Receptor-1 Pathway with Cell Proliferation and Survival in Canine Hemangiosarcoma.

    PubMed

    Rodriguez, A M; Graef, A J; LeVine, D N; Cohen, I R; Modiano, J F; Kim, J-H

    2015-01-01

    Sphingosine-1-phosphate (S1P) is a key biolipid signaling molecule that regulates cell growth and survival, but it has not been studied in tumors from dogs. S1P/S1P1 signaling will contribute to the progression of hemangiosarcoma (HSA). Thirteen spontaneous HSA tissues, 9 HSA cell lines, 8 nonmalignant tissues, including 6 splenic hematomas and 2 livers with vacuolar degeneration, and 1 endothelial cell line derived from a dog with splenic hematoma were used. This was a retrospective case series and in vitro study. Samples were obtained as part of medically necessary diagnostic procedures. Microarray, qRT-PCR, immunohistochemistry, and immunoblotting were performed to examine S1P1 expression. S1P concentrations were measured by high-performance liquid chromatography/mass spectrometry. S1P signaling was evaluated by intracellular Ca(2+) mobilization; proliferation and survival were evaluated using the MTS assay and Annexin V staining. Canine HSA cells expressed higher levels of S1P1 mRNA than nonmalignant endothelial cells. S1P1 protein was present in HSA tissues and cell lines. HSA cells appeared to produce low levels of S1P, but they selectively consumed S1P from the culture media. Exogenous S1P induced an increase in intracellular calcium as well as increased proliferation and viability of HSA cells. Prolonged treatment with FTY720, an inhibitor of S1P1 , decreased S1P1 protein expression and induced apoptosis of HSA cells. S1P/S1P1 signaling pathway functions to maintain HSA cell viability and proliferation. The data suggest that S1P1 or the S1P pathway in general could be targets for therapeutic intervention for dogs with HSA. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  11. Hsa-miR-146a-5p modulates androgen-independent prostate cancer cells apoptosis by targeting ROCK1.

    PubMed

    Xu, Bin; Huang, Yeqing; Niu, Xiaobing; Tao, Tao; Jiang, Liang; Tong, Na; Chen, Shuqiu; Liu, Ning; Zhu, Weidong; Chen, Ming

    2015-12-01

    MicroRNAs (miRNAs) have been demonstrated playing important roles in the procession of prostate cancer cells transformation from androgen-dependence to androgen-independence. We conducted the miRNA microarray and realtime PCR analyses in both androgen-dependent (ADPC) and androgen-independent prostate cancer (AIPC) tissues. We also explored the role of hsa-miR-146a-5p (miR-146a) in MSKCC prostate cancer clinical database. Moreover, the impact of miR-146a on prostate cancer cells apoptosis were detected by Hoechst staining and fluorescence-activated cell sorter (FACS). Its target is predicted by DIANA LAB online database and the result was assumed by western blotting and luciferase assay. We demonstrated that miR-146a was down-regulated in AIPC tissues and cell lines compared to that in the ADPC tissues. In MSKCC data re-analyses, we found that miR-146a was underexpressed in metastatic prostate cancer tissues and those with Gleason score >8, moreover, low level of miR-146a represented a high biochemical relapse rate after radical prostatectomy. In the functional analyses, we transfected miR-146a mimics into CPRC cell lines and found miR-146a induced cells apoptosis. In mechanic analyses, we found that miR-146a inhibited the basal level of Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) expression by targeting its 3'UTR and an inverse correlation of expression between miR-146a and ROCK1 was observed. Moreover, caspase 3 activity was stimulated by miR-146a overexpression. miR-146a has a critical role in the process of AIPC prostate cancer cells apoptosis through regulation of ROCK/Caspase 3 pathway. Targeting this pathway may be a promising therapeutic strategy for future personalized anti-cancer treatment. © 2015 Wiley Periodicals, Inc.

  12. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients.

    PubMed

    Popescu, F; Jaslow, C R; Kutteh, W H

    2018-04-01

    Will the addition of 24-chromosome microarray analysis on miscarriage tissue combined with the standard American Society for Reproductive Medicine (ASRM) evaluation for recurrent miscarriage explain most losses? Over 90% of patients with recurrent pregnancy loss (RPL) will have a probable or definitive cause identified when combining genetic testing on miscarriage tissue with the standard ASRM evaluation for recurrent miscarriage. RPL is estimated to occur in 2-4% of reproductive age couples. A probable cause can be identified in approximately 50% of patients after an ASRM recommended workup including an evaluation for parental chromosomal abnormalities, congenital and acquired uterine anomalies, endocrine imbalances and autoimmune factors including antiphospholipid syndrome. Single-center, prospective cohort study that included 100 patients seen in a private RPL clinic from 2014 to 2017. All 100 women had two or more pregnancy losses, a complete evaluation for RPL as defined by the ASRM, and miscarriage tissue evaluated by 24-chromosome microarray analysis after their second or subsequent miscarriage. Frequencies of abnormal results for evidence-based diagnostic tests considered definite or probable causes of RPL (karyotyping for parental chromosomal abnormalities, and 24-chromosome microarray evaluation for products of conception (POC); pelvic sonohysterography, hysterosalpingogram, or hysteroscopy for uterine anomalies; immunological tests for lupus anticoagulant and anticardiolipin antibodies; and blood tests for thyroid stimulating hormone (TSH), prolactin and hemoglobin A1c) were evaluated. We excluded cases where there was maternal cell contamination of the miscarriage tissue or if the ASRM evaluation was incomplete. A cost analysis for the evaluation of RPL was conducted to determine whether a proposed procedure of 24-chromome microarray evaluation followed by an ASRM RPL workup (for those RPL patients who had a normal 24-chromosome microarray evaluation) was more cost-efficient than conducting ASRM RPL workups on RPL patients followed by 24-chromosome microarray analysis (for those RPL patients who had a normal RPL workup). A definite or probable cause of pregnancy loss was identified in the vast majority (95/100; 95%) of RPL patients when a 24-chromosome pair microarray evaluation of POC testing is combined with the standard ASRM RPL workup evaluation at the time of the second or subsequent loss. The ASRM RPL workup identified an abnormality and a probable explanation for pregnancy loss in only 45/100 or 45% of all patients. A definite abnormality was identified in 67/100 patients or 67% when initial testing was performed using 24-chromosome microarray analyses on the miscarriage tissue. Only 5/100 (5%) patients, who had a euploid loss and a normal ASRM RPL workup, had a pregnancy loss without a probable or definitive cause identified. All other losses were explained by an abnormal 24-chromosome microarray analysis of the miscarriage tissue, an abnormal finding of the RPL workup, or a combination of both. Results from the cost analysis indicated that an initial approach of using a 24-chromosome microarray analysis on miscarriage tissue resulted in a 50% savings in cost to the health care system and to the patient. This is a single-center study on a small group of well-characterized women with RPL. There was an incomplete follow-up on subsequent pregnancy outcomes after evaluation, however this should not affect our principal results. The maternal age of patients varied from 26 to 45 years old. More aneuploid pregnancy losses would be expected in older women, particularly over the age of 35 years old. Evaluation of POC using 24-chromosome microarray analysis adds significantly to the ASRM recommended evaluation of RPL. Genetic evaluation on miscarriage tissue obtained at the time of the second and subsequent pregnancy losses should be offered to all couples with two or more consecutive pregnancy losses. The combination of a genetic evaluation on miscarriage tissue with an evidence-based evaluation for RPL will identify a probable or definitive cause in over 90% of miscarriages. No funding was received for this study and there are no conflicts of interest to declare. Not applicable.

  13. cluML: A markup language for clustering and cluster validity assessment of microarray data.

    PubMed

    Bolshakova, Nadia; Cunningham, Pádraig

    2005-01-01

    cluML is a new markup language for microarray data clustering and cluster validity assessment. The XML-based format has been designed to address some of the limitations observed in traditional formats, such as inability to store multiple clustering (including biclustering) and validation results within a dataset. cluML is an effective tool to support biomedical knowledge representation in gene expression data analysis. Although cluML was developed for DNA microarray analysis applications, it can be effectively used for the representation of clustering and for the validation of other biomedical and physical data that has no limitations.

  14. Cytokine-related genes and oxidation-related genes detected in preeclamptic placentas.

    PubMed

    Lee, Gui Se Ra; Joe, Yoon Seong; Kim, Sa Jin; Shin, Jong Chul

    2010-10-01

    To investigate cytokine- and oxidation-related genes for preeclampsia using DNA microarray analysis. Placentas were collected from 13 normal pregnancies and 13 patients with preeclampsia. Gene expression was studied using DNA microarray. Among significantly expressed genes, we focused on genes associated with cytokines and oxidation, and the results were confirmed using quantitative real time-polymerase chain reaction (QRT-PCR). 415 genes out of 30,940 genes were altered by > or =2-fold in the microarray analysis. 121 up-regulated genes and 294 down-regulated genes were found to be in preeclamptic placenta. Six cytokine-related genes and 5 oxidation-related genes were found from among the 121 up-regulated genes. The cytokine-related genes studied included oncostatin M (OSM), fms-related tyrosine kinase (FLT1) and vascular endothelial growth factor A (VEGFA), and the oxidation-related genes studied included spermine oxidase (SMOX), l cytochrome P450, family 26, subfamily A, polypeptide 1 (CYP26A1), acetate dehydrogenase A (LDHA). These six genes were also significantly higher in placentas from patients with preeclampsia than in those from women with normal pregnancies. The placental tissue of patients with preeclampsia showed significantly higher mRNA expression of these six genes than the normal group, using QRT-PCR. DNA microarray analysis is one of the great methods for simultaneously detecting the functionally associated genes of preeclampsia. The cytokine-related genes such as OSM, FLT1 and VEGFA, and the oxidation-related genes such as LDHA, CYP26A1 and SMOX might prove to be the starting point in the elucidation of the pathogenesis of preeclampsia.

  15. Loss of Nuclear Localized and Tyrosine Phosphorylated Stat5 in Breast Cancer Predicts Poor Clinical Outcome and Increased Risk of Antiestrogen Therapy Failure

    PubMed Central

    Peck, Amy R.; Witkiewicz, Agnieszka K.; Liu, Chengbao; Stringer, Ginger A.; Klimowicz, Alexander C.; Pequignot, Edward; Freydin, Boris; Tran, Thai H.; Yang, Ning; Rosenberg, Anne L.; Hooke, Jeffrey A.; Kovatich, Albert J.; Nevalainen, Marja T.; Shriver, Craig D.; Hyslop, Terry; Sauter, Guido; Rimm, David L.; Magliocco, Anthony M.; Rui, Hallgeir

    2011-01-01

    Purpose To investigate nuclear localized and tyrosine phosphorylated Stat5 (Nuc-pYStat5) as a marker of prognosis in node-negative breast cancer and as a predictor of response to antiestrogen therapy. Patients and Methods Levels of Nuc-pYStat5 were analyzed in five archival cohorts of breast cancer by traditional diaminobenzidine-chromogen immunostaining and pathologist scoring of whole tissue sections or by immunofluorescence and automated quantitative analysis (AQUA) of tissue microarrays. Results Nuc-pYStat5 was an independent prognostic marker as measured by cancer-specific survival (CSS) in patients with node-negative breast cancer who did not receive systemic adjuvant therapy, when adjusted for common pathology parameters in multivariate analyses both by standard chromogen detection with pathologist scoring of whole tissue sections (cohort I; n = 233) and quantitative immunofluorescence of a tissue microarray (cohort II; n = 291). Two distinct monoclonal antibodies gave concordant results. A progression array (cohort III; n = 180) revealed frequent loss of Nuc-pYStat5 in invasive carcinoma compared to normal breast epithelia or ductal carcinoma in situ, and general loss of Nuc-pYStat5 in lymph node metastases. In cohort IV (n = 221), loss of Nuc-pYStat5 was associated with increased risk of antiestrogen therapy failure as measured by univariate CSS and time to recurrence (TTR). More sensitive AQUA quantification of Nuc-pYStat5 in antiestrogen-treated patients (cohort V; n = 97) identified by multivariate analysis patients with low Nuc-pYStat5 at elevated risk for therapy failure (CSS hazard ratio [HR], 21.55; 95% CI, 5.61 to 82.77; P < .001; TTR HR, 7.30; 95% CI, 2.34 to 22.78; P = .001). Conclusion Nuc-pYStat5 is an independent prognostic marker in node-negative breast cancer. If confirmed in prospective studies, Nuc-pYStat5 may become a useful predictive marker of response to adjuvant hormone therapy. PMID:21576635

  16. Evaluation of reference genes for quantitative real-time PCR in oil palm elite planting materials propagated by tissue culture.

    PubMed

    Chan, Pek-Lan; Rose, Ray J; Abdul Murad, Abdul Munir; Zainal, Zamri; Low, Eng-Ti Leslie; Ooi, Leslie Cheng-Li; Ooi, Siew-Eng; Yahya, Suzaini; Singh, Rajinder

    2014-01-01

    The somatic embryogenesis tissue culture process has been utilized to propagate high yielding oil palm. Due to the low callogenesis and embryogenesis rates, molecular studies were initiated to identify genes regulating the process, and their expression levels are usually quantified using reverse transcription quantitative real-time PCR (RT-qPCR). With the recent release of oil palm genome sequences, it is crucial to establish a proper strategy for gene analysis using RT-qPCR. Selection of the most suitable reference genes should be performed for accurate quantification of gene expression levels. In this study, eight candidate reference genes selected from cDNA microarray study and literature review were evaluated comprehensively across 26 tissue culture samples using RT-qPCR. These samples were collected from two tissue culture lines and media treatments, which consisted of leaf explants cultures, callus and embryoids from consecutive developmental stages. Three statistical algorithms (geNorm, NormFinder and BestKeeper) confirmed that the expression stability of novel reference genes (pOP-EA01332, PD00380 and PD00569) outperformed classical housekeeping genes (GAPDH, NAD5, TUBULIN, UBIQUITIN and ACTIN). PD00380 and PD00569 were identified as the most stably expressed genes in total samples, MA2 and MA8 tissue culture lines. Their applicability to validate the expression profiles of a putative ethylene-responsive transcription factor 3-like gene demonstrated the importance of using the geometric mean of two genes for normalization. Systematic selection of the most stably expressed reference genes for RT-qPCR was established in oil palm tissue culture samples. PD00380 and PD00569 were selected for accurate and reliable normalization of gene expression data from RT-qPCR. These data will be valuable to the research associated with the tissue culture process. Also, the method described here will facilitate the selection of appropriate reference genes in other oil palm tissues and in the expression profiling of genes relating to yield, biotic and abiotic stresses.

  17. Chemoprevention of Cigarette Smoke–Induced Alterations of MicroRNA Expression in Rat Lungs

    PubMed Central

    Izzotti, Alberto; Calin, George A.; Steele, Vernon E.; Cartiglia, Cristina; Longobardi, Mariagrazia; Croce, Carlo M.; De Flora, Silvio

    2015-01-01

    We previously showed that exposure to environmental cigarette smoke (ECS) for 28 days causes extensive downregulation of microRNA expression in the lungs of rats, resulting in the overexpression of multiple genes and proteins. In the present study, we evaluated by microarray the expression of 484 microRNAs in the lungs of either ECS-free or ECS-exposed rats treated with the orally administered chemopreventive agents N-acetylcysteine, oltipraz, indole-3-carbinol, 5,6-benzoflavone, and phenethyl isothiocyanate (as single agents or in combinations). This is the first study of microRNA modulation by chemopreventive agents in nonmalignant tissues. Scatterplot, hierarchical cluster, and principal component analyses of microarray and quantitative PCR data showed that none of the above chemopreventive regimens appreciably affected the baseline microRNA expression, indicating potential safety. On the other hand, all of them attenuated ECS-induced alterations but to a variable extent and with different patterns, indicating potential preventive efficacy. The main ECS-altered functions that were modulated by chemopreventive agents included cell proliferation, apoptosis, differentiation, Ras activation, P53 functions, NF-κB pathway, transforming growth factor–related stress response, and angiogenesis. Some micro-RNAs known to be polymorphic in humans were downregulated by ECS and were protected by chemopreventive agents. This study provides proof-of-concept and validation of technology that we are further refining to screen and prioritize potential agents for continued development and to help elucidate their biological effects and mechanisms. Therefore, microRNA analysis may provide a new tool for predicting at early carcinogenesis stages both the potential safety and efficacy of cancer chemopreventive agents. PMID:20051373

  18. Circular RNA hsa_circ_0001564 regulates osteosarcoma proliferation and apoptosis by acting miRNA sponge.

    PubMed

    Song, Yu-Ze; Li, Ji-Feng

    2018-01-15

    Circular RNAs (circRNAs) is a novel type of non-coding RNAs generated from back splicing, which has been verified to mediate multiple tumorigenesis. However, the role of circRNA in osteosarcoma is still unclear. In the present study, we preliminarily screened the circRNAs expression profiles in osteosarcoma and investigated the potential regulation mechanism. The circRNAs expression profiles in osteosarcoma were screened using circRNA microarray analysis, and results showed that there were 1152 circRNAs up-regulated and 915 circRNAs down-regulated in tumor tissue compared to adjacent tissue. Hsa_circ_0001564, located at 5q35.3 and its associated-gene symbol is CANX, was one of the significantly overexpressed circRNAs in osteosarcoma tissue, as well as in osteosarcoma cell lines. In functional experiments, hsa_circ_001564 knockdown significantly suppressed the proliferation activity, induced cell cycle arrest in G0/G1 phase, and promoted apoptosis in HOS and MG-63 cells. Subsequently, we explored the probable mechanism of hsa_circ_001564, and fortunately, bioinformatics analysis revealed that miR-29c-3p contained the complementary binding region with hsa_circ_0001564, which was confirmed by dual-luciferase reporter assay. Moreover, rescue experiments illustrated that miR-29c-3p could reverse the oncogenesis effect of hsa_circ_001564. Our study discovers that hsa_circ_0001564 acts as miR-29c-3p sponge to mediate the tumorigenicity, which could act as a potential biomarker for the osteosarcoma and provide a novel insight for competing endogenous RNAs (ceRNAs) mechanism in osteosarcoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Transcriptome Analysis of Early Responsive Genes in Rice during Magnaporthe oryzae Infection.

    PubMed

    Wang, Yiming; Kwon, Soon Jae; Wu, Jingni; Choi, Jaeyoung; Lee, Yong-Hwan; Agrawal, Ganesh Kumar; Tamogami, Shigeru; Rakwal, Randeep; Park, Sang-Ryeol; Kim, Beom-Gi; Jung, Ki-Hong; Kang, Kyu Young; Kim, Sang Gon; Kim, Sun Tae

    2014-12-01

    Rice blast disease caused by Magnaporthe oryzae is one of the most serious diseases of cultivated rice (Oryza sativa L.) in most rice-growing regions of the world. In order to investigate early response genes in rice, we utilized the transcriptome analysis approach using a 300 K tilling microarray to rice leaves infected with compatible and incompatible M. oryzae strains. Prior to the microarray experiment, total RNA was validated by measuring the differential expression of rice defense-related marker genes (chitinase 2, barwin, PBZ1, and PR-10) by RT-PCR, and phytoalexins (sakuranetin and momilactone A) with HPLC. Microarray analysis revealed that 231 genes were up-regulated (>2 fold change, p < 0.05) in the incompatible interaction compared to the compatible one. Highly expressed genes were functionally characterized into metabolic processes and oxidation-reduction categories. The oxidative stress response was induced in both early and later infection stages. Biotic stress overview from MapMan analysis revealed that the phytohormone ethylene as well as signaling molecules jasmonic acid and salicylic acid is important for defense gene regulation. WRKY and Myb transcription factors were also involved in signal transduction processes. Additionally, receptor-like kinases were more likely associated with the defense response, and their expression patterns were validated by RT-PCR. Our results suggest that candidate genes, including receptor-like protein kinases, may play a key role in disease resistance against M. oryzae attack.

  20. Clinical role and biological function of CDK5 in hepatocellular carcinoma: A study based on immunohistochemistry, RNA-seq and in vitro investigation.

    PubMed

    Zhang, Rui; Lin, Peng; Yang, Hong; He, Yun; Dang, Yi-Wu; Feng, Zhen-Bo; Chen, Gang

    2017-12-12

    To investigate the clinical role and biological function of cyclin-dependent kinase 5 (CDK5) in hepatocellular carcinoma (HCC), 412 surgically resected tissue samples (HCC, n=171; non-HCC=241) were obtained and analyzed with immunohistochemistry. The diagnostic and prognostic values of CDK5 expression levels in HCC were clarified. Moreover, RNA-seq data or microarray datasets from The Cancer Genome Atlas (TCGA) (HCC, n=374; normal, n=50) or other public databases (HCC, n=1864; non-tumor=1995) regarding CDK5 in HCC were extracted and examined. Several bioinformatic methods were performed to identify CDK5-regulated pathways. In vitro experiments were adopted to measure proliferation and apoptosis in HCC cells after CDK5 mRNA was inhibited in the HCC cell lines HepG2 and HepB3. Based on immunohistochemistry, CDK5 expression levels were notably increased in HCC tissues (n=171) compared with normal (n=33, P <0.001), cirrhosis (n=37, P <0.001), and adjacent non-cancerous liver (n=171, P <0.001) tissues. The up-regulation of CDK5 was associated with higher differentiation ( P <0.001), metastasis ( P <0.001), advanced clinical TNM stages ( P <0.001), portal vein tumor embolus ( P =0.003) and vascular invasion ( P =0.004). Additionally, TCGA data analysis also revealed significantly increased CDK5 expression in HCC compared with non-cancerous hepatic tissues ( P <0.001). The pooled standard mean deviation (SMD) based on 36 included datasets (HCC, n=2238; non-cancerous, n=2045) indicated that CDK5 was up-regulated in HCC (SMD=1.23, 95% CI: 1.00-1.45, P <0.001). The area under the curve (AUC) of the summary receiver operating characteristic (SROC) curve was 0.88. Furthermore, CDK5 knock-down inhibited proliferation and promoted apoptosis. In conclusion, CDK5 plays an essential role in the initiation and progression of HCC, most likely via accelerating proliferation and suppressing apoptosis in HCC cells by regulating the cell cycle and DNA replication pathways.

  1. Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy.

    PubMed

    Haram, Kerstyn M; Peltier, Heidi J; Lu, Bin; Bhasin, Manoj; Otu, Hasan H; Choy, Bob; Regan, Meredith; Libermann, Towia A; Latham, Gary J; Sanda, Martin G; Arredouani, Mohamed S

    2008-10-01

    Translation of preclinical studies into effective human cancer therapy is hampered by the lack of defined molecular expression patterns in mouse models that correspond to the human counterpart. We sought to generate an open source TRAMP mouse microarray dataset and to use this array to identify differentially expressed genes from human prostate cancer (PCa) that have concordant expression in TRAMP tumors, and thereby represent lead targets for preclinical therapy development. We performed microarrays on total RNA extracted and amplified from eight TRAMP tumors and nine normal prostates. A subset of differentially expressed genes was validated by QRT-PCR. Differentially expressed TRAMP genes were analyzed for concordant expression in publicly available human prostate array datasets and a subset of resulting genes was analyzed by QRT-PCR. Cross-referencing differentially expressed TRAMP genes to public human prostate array datasets revealed 66 genes with concordant expression in mouse and human PCa; 56 between metastases and normal and 10 between primary tumor and normal tissues. Of these 10 genes, two, Sox4 and Tubb2a, were validated by QRT-PCR. Our analysis also revealed various dysregulations in major biologic pathways in the TRAMP prostates. We report a TRAMP microarray dataset of which a gene subset was validated by QRT-PCR with expression patterns consistent with previous gene-specific TRAMP studies. Concordance analysis between TRAMP and human PCa associated genes supports the utility of the model and suggests several novel molecular targets for preclinical therapy.

  2. Human microRNA expression in sporadic and FAP-associated desmoid tumors and correlation with beta-catenin mutations.

    PubMed

    Cavallini, Aldo; Rotelli, Maria Teresa; Lippolis, Catia; Piscitelli, Domenico; Digennaro, Rosa; Covelli, Claudia; Carella, Nicola; Accetturo, Matteo; Altomare, Donato Francesco

    2017-06-27

    Desmoid tumors (DT) are rare, benign, fibroblastic neoplasm with challenging histological diagnosis. DTs can occur sporadically or associated with the familial adenomatous polyposis coli (FAP). Most sporadic DTs are associated with β-catenin gene (CTNNB1) mutations, while mutated APC gene causes FAP disease. microRNAs (miRNAs) are involved in many human carcinogenesis.The miRNA profile was analyzed by microarray in formalin-fixed, paraffin-embedded (FFPE) specimens of 12 patients (8 sporadic, 4 FAP-associated) and 4 healthy controls. One hundred and one mRNAs resulted dysregulated, of which 98 in sporadic DTs and 8 in FAP-associated DTs, 5 were shared by both tumors. Twenty-six miRNAs were then validated by RT-qPCR in 23 sporadic and 7 FAP-associated DT samples matched with healthy controls. The qPCR method was also used to evaluate the CTNNB1 mutational status in sporadic DTs. The correlation between sporadic DTs and miRNA expression showed that miR-21-3p increased in mutated versus wild-type DTs, while miR-197-3p was decreased. The mRNA expression of Tetraspanin3 and Serpin family A member 3, as miR-21-3p targets, and L1 Cell Adhesion Molecule, as miR-197-3p target, was also evaluate. CTNNB1 mutations associated to miRNA dysregulation could affect the genesis and the progression of this disease and help histological diagnosis of sporadic DTs.

  3. Identification of new autoantigens for primary biliary cirrhosis using human proteome microarrays.

    PubMed

    Hu, Chao-Jun; Song, Guang; Huang, Wei; Liu, Guo-Zhen; Deng, Chui-Wen; Zeng, Hai-Pan; Wang, Li; Zhang, Feng-Chun; Zhang, Xuan; Jeong, Jun Seop; Blackshaw, Seth; Jiang, Li-Zhi; Zhu, Heng; Wu, Lin; Li, Yong-Zhe

    2012-09-01

    Primary biliary cirrhosis (PBC) is a chronic cholestatic liver disease of unknown etiology and is considered to be an autoimmune disease. Autoantibodies are important tools for accurate diagnosis of PBC. Here, we employed serum profiling analysis using a human proteome microarray composed of about 17,000 full-length unique proteins and identified 23 proteins that correlated with PBC. To validate these results, we fabricated a PBC-focused microarray with 21 of these newly identified candidates and nine additional known PBC antigens. By screening the PBC microarrays with additional cohorts of 191 PBC patients and 321 controls (43 autoimmune hepatitis, 55 hepatitis B virus, 31 hepatitis C virus, 48 rheumatoid arthritis, 45 systematic lupus erythematosus, 49 systemic sclerosis, and 50 healthy), six proteins were confirmed as novel PBC autoantigens with high sensitivities and specificities, including hexokinase-1 (isoforms I and II), Kelch-like protein 7, Kelch-like protein 12, zinc finger and BTB domain-containing protein 2, and eukaryotic translation initiation factor 2C, subunit 1. To facilitate clinical diagnosis, we developed ELISA for Kelch-like protein 12 and zinc finger and BTB domain-containing protein 2 and tested large cohorts (297 PBC and 637 control sera) to confirm the sensitivities and specificities observed in the microarray-based assays. In conclusion, our research showed that a strategy using high content protein microarray combined with a smaller but more focused protein microarray can effectively identify and validate novel PBC-specific autoantigens and has the capacity to be translated to clinical diagnosis by means of an ELISA-based method.

  4. Identification of intracellular proteins and signaling pathways in human endothelial cells regulated by angiotensin-(1-7).

    PubMed

    Meinert, Christian; Gembardt, Florian; Böhme, Ilka; Tetzner, Anja; Wieland, Thomas; Greenberg, Barry; Walther, Thomas

    2016-01-01

    The study aimed to identify proteins regulated by the cardiovascular protective peptide angiotensin-(1-7) and to determine potential intracellular signaling cascades. Human endothelial cells were stimulated with Ang-(1-7) for 1 h, 3 h, 6 h, and 9 h. Peptide effects on intracellular signaling were assessed via antibody microarray, containing antibodies against 725 proteins. Bioinformatics software was used to identify affected intracellular signaling pathways. Microarray data was verified exemplarily by Western blot, Real-Time RT-PCR, and immunohistochemical studies. The microarray identified 110 regulated proteins after 1 h, 119 after 3 h, 31 after 6 h, and 86 after 9 h Ang-(1-7) stimulation. Regulated proteins were associated with high significance to several metabolic pathways like “Molecular Mechanism of Cancer” and “p53 signaling” in a time dependent manner. Exemplarily, Western blots for the E3-type small ubiquitin-like modifier ligase PIAS2 confirmed the microarray data and displayed a decrease by more than 50% after Ang-(1-7) stimulation at 1 h and 3 h without affecting its mRNA. Immunohistochemical studies with PIAS2 in human endothelial cells showed a decrease in cytoplasmic PIAS2 after Ang-(1-7) treatment. The Ang-(1-7) mediated decrease of PIAS2 was reproduced in other endothelial cell types. The results suggest that angiotensin-(1-7) plays a role in metabolic pathways related to cell death and cell survival in human endothelial cells.

  5. Copy number aberrations landscape of a breast tumor, connection with the efficiency of neoadjuvant chemotherapy

    NASA Astrophysics Data System (ADS)

    Ibragimova, M. K.; Tsyganov, M. M.; Slonimskaya, E. M.; Litviakov, N. V.

    2017-09-01

    The research involved 80 patients diagnosed with breast cancer (BC). Each patient had their tumor biopsy material sampled before their treatment. We studied the tumor tissue using the CytoScan HD Array (Affymetrix, USA) microarray to evaluate the CNA landscape. We studied the frequency of segmental and numerical CNA occurrence, their association with the efficiency of neoadjuvant chemotherapy (NAC). We found that the biggest number of amplifications (with frequency over 60%) were found on in the following locuses; 1q32.1 1q32.3, 1q42.13, 1q42.2, 1q43. The biggest frequency of deletions (more than in 58% of the patients) was found in these locuses: 16q21, 16q23.2, 16q23.3, 17p12, 17p13.1. However, we found the locuses with full absence of segmental chromosome anomalies. We observed trisomy most frequently in the 7, 8, 12, and 17 chromosomes, and monosomy in the 3, 4, 9, 11, 18, and X-chromosomes. We demonstrated the connection between the high frequency of cytobands with CNA in the patients' tumors and the efficiency of NAC. We also identified the cytobands, whose CNA are linked to the response to NAC.

  6. Loss of Sh3gl2/Endophilin A1 Is a Common Event in Urothelial Carcinoma that Promotes Malignant Behavior12

    PubMed Central

    Majumdar, Shyama; Gong, Edward M; Di Vizio, Dolores; Dreyfuss, Jonathan; DeGraff, David J; Hager, Martin H; Park, Peter J; Bellmunt, Joaquim; Matusik, Robert J; Rosenberg, Jonathan E; Adam, Rosalyn M

    2013-01-01

    Urothelial carcinoma (UC) causes substantial morbidity and mortality worldwide. However, the molecular mechanisms underlying urothelial cancer development and tumor progression are still largely unknown. Using informatics analysis, we identified Sh3gl2 (endophilin A1) as a bladder urothelium-enriched transcript. The gene encoding Sh3gl2 is located on chromosome 9p, a region frequently altered in UC. Sh3gl2 is known to regulate endocytosis of receptor tyrosine kinases implicated in oncogenesis, such as the epidermal growth factor receptor (EGFR) and c-Met. However, its role in UC pathogenesis is unknown. Informatics analysis of expression profiles as well as immunohistochemical staining of tissue microarrays revealed Sh3gl2 expression to be decreased in UC specimens compared to nontumor tissues. Loss of Sh3gl2 was associated with increasing tumor grade and with muscle invasion, which is a reliable predictor of metastatic disease and cancer-derived mortality. Sh3gl2 expression was undetectable in 19 of 20 human UC cell lines but preserved in the low-grade cell line RT4. Stable silencing of Sh3gl2 in RT4 cells by RNA interference 1) enhanced proliferation and colony formation in vitro, 2) inhibited EGF-induced EGFR internalization and increased EGFR activation, 3) stimulated phosphorylation of Src family kinases and STAT3, and 4) promoted growth of RT4 xenografts in subrenal capsule tissue recombination experiments. Conversely, forced re-expression of Sh3gl2 in T24 cells and silenced RT4 clones attenuated oncogenic behaviors, including growth and migration. Together, these findings identify loss of Sh3gl2 as a frequent event in UC development that promotes disease progression. PMID:23814487

  7. Robust diagnosis of non-Hodgkin lymphoma phenotypes validated on gene expression data from different laboratories.

    PubMed

    Bhanot, Gyan; Alexe, Gabriela; Levine, Arnold J; Stolovitzky, Gustavo

    2005-01-01

    A major challenge in cancer diagnosis from microarray data is the need for robust, accurate, classification models which are independent of the analysis techniques used and can combine data from different laboratories. We propose such a classification scheme originally developed for phenotype identification from mass spectrometry data. The method uses a robust multivariate gene selection procedure and combines the results of several machine learning tools trained on raw and pattern data to produce an accurate meta-classifier. We illustrate and validate our method by applying it to gene expression datasets: the oligonucleotide HuGeneFL microarray dataset of Shipp et al. (www.genome.wi.mit.du/MPR/lymphoma) and the Hu95Av2 Affymetrix dataset (DallaFavera's laboratory, Columbia University). Our pattern-based meta-classification technique achieves higher predictive accuracies than each of the individual classifiers , is robust against data perturbations and provides subsets of related predictive genes. Our techniques predict that combinations of some genes in the p53 pathway are highly predictive of phenotype. In particular, we find that in 80% of DLBCL cases the mRNA level of at least one of the three genes p53, PLK1 and CDK2 is elevated, while in 80% of FL cases, the mRNA level of at most one of them is elevated.

  8. Using computer assisted image analysis to determine the optimal Ki67 threshold for predicting outcome of invasive breast cancer

    PubMed Central

    Tay, Timothy Kwang Yong; Thike, Aye Aye; Pathmanathan, Nirmala; Jara-Lazaro, Ana Richelia; Iqbal, Jabed; Sng, Adeline Shi Hui; Ye, Heng Seow; Lim, Jeffrey Chun Tatt; Koh, Valerie Cui Yun; Tan, Jane Sie Yong; Yeong, Joe Poh Sheng; Chow, Zi Long; Li, Hui Hua; Cheng, Chee Leong; Tan, Puay Hoon

    2018-01-01

    Background Ki67 positivity in invasive breast cancers has an inverse correlation with survival outcomes and serves as an immunohistochemical surrogate for molecular subtyping of breast cancer, particularly ER positive breast cancer. The optimal threshold of Ki67 in both settings, however, remains elusive. We use computer assisted image analysis (CAIA) to determine the optimal threshold for Ki67 in predicting survival outcomes and differentiating luminal B from luminal A breast cancers. Methods Quantitative scoring of Ki67 on tissue microarray (TMA) sections of 440 invasive breast cancers was performed using Aperio ePathology ImmunoHistochemistry Nuclear Image Analysis algorithm, with TMA slides digitally scanned via Aperio ScanScope XT System. Results On multivariate analysis, tumours with Ki67 ≥14% had an increased likelihood of recurrence (HR 1.941, p=0.021) and shorter overall survival (HR 2.201, p=0.016). Similar findings were observed in the subset of 343 ER positive breast cancers (HR 2.409, p=0.012 and HR 2.787, p=0.012 respectively). The value of Ki67 associated with ER+HER2-PR<20% tumours (Luminal B subtype) was found to be <17%. Conclusion Using CAIA, we found optimal thresholds for Ki67 that predict a poorer prognosis and an association with the Luminal B subtype of breast cancer. Further investigation and validation of these thresholds are recommended. PMID:29545924

  9. Radiosensitization by inhibiting STAT1 in renal cell carcinoma.

    PubMed

    Hui, Zhouguang; Tretiakova, Maria; Zhang, Zhongfa; Li, Yan; Wang, Xiaozhen; Zhu, Julie Xiaohong; Gao, Yuanhong; Mai, Weiyuan; Furge, Kyle; Qian, Chao-Nan; Amato, Robert; Butler, E Brian; Teh, Bin Tean; Teh, Bin S

    2009-01-01

    Renal cell carcinoma (RCC) has been historically regarded as a radioresistant malignancy, but the molecular mechanism underlying its radioresistance is not understood. This study investigated the role of signal transducer and activator of transcription 1 (STAT1), a transcription factor downstream of the interferon-signaling pathway, in radioresistant RCC. The expressions of STAT1 and STAT3 in 164 human clear cell RCC samples, 47 papillary RCC samples, and 15 normal kidney tissue samples were examined by microarray expression profiling and immunohistochemistry. Western blotting was performed to evaluate the total and phosphorylated STAT1 expression in CRL-1932 (786-O) (human clear cell RCC), SKRC-39 (human papillary RCC), CCL-116 (human fibroblast), and CRL-1441 (G-401) (human Wilms tumor). STAT1 was reduced or inhibited by fludarabine and siRNA, respectively, and the effects on radiation-induced cell death were investigated using clonogenic assays. STAT1 expression, but not STAT3 expression, was significantly greater in human RCC samples (p = 1.5 x 10(-8) for clear cell; and p = 3.6 x 10(-4) for papillary). Similarly, the expression of STAT1 was relatively greater in the two RCC cell lines. STAT1 expression was reduced by both fludarabine and siRNA, significantly increasing the radiosensitivity in both RCC cell lines. This is the first study reporting the overexpression of STAT1 in human clear cell and papillary RCC tissues. Radiosensitization in RCC cell lines was observed by a reduction or inhibition of STAT1 signaling, using fludarabine or siRNA. Our data suggest that STAT1 may play a key role in RCC radioresistance and manipulation of this pathway may enhance the efficacy of radiotherapy.

  10. Identification of genes modulated in rheumatoid arthritis using complementary DNA microarray analysis of lymphoblastoid B cell lines from disease-discordant monozygotic twins.

    PubMed

    Haas, Christian S; Creighton, Chad J; Pi, Xiujun; Maine, Ira; Koch, Alisa E; Haines, G Kenneth; Ling, Song; Chinnaiyan, Arul M; Holoshitz, Joseph

    2006-07-01

    To identify disease-specific gene expression profiles in patients with rheumatoid arthritis (RA), using complementary DNA (cDNA) microarray analyses on lymphoblastoid B cell lines (LCLs) derived from RA-discordant monozygotic (MZ) twins. The cDNA was prepared from LCLs derived from the peripheral blood of 11 pairs of RA-discordant MZ twins. The RA twin cDNA was labeled with cy5 fluorescent dye, and the cDNA of the healthy co-twin was labeled with cy3. To determine relative expression profiles, cDNA from each twin pair was combined and hybridized on 20,000-element microarray chips. Immunohistochemistry and real-time polymerase chain reaction were used to detect the expression of selected gene products in synovial tissue from patients with RA compared with patients with osteoarthritis and normal healthy controls. In RA twin LCLs compared with healthy co-twin LCLs, 1,163 transcripts were significantly differentially expressed. Of these, 747 were overexpressed and 416 were underexpressed. Gene ontology analysis revealed many genes known to play a role in apoptosis, angiogenesis, proteolysis, and signaling. The 3 most significantly overexpressed genes were laeverin (a novel enzyme with sequence homology to CD13), 11beta-hydroxysteroid dehydrogenase type 2 (a steroid pathway enzyme), and cysteine-rich, angiogenic inducer 61 (a known angiogenic factor). The products of these genes, heretofore uncharacterized in RA, were all abundantly expressed in RA synovial tissues. Microarray cDNA analysis of peripheral blood-derived LCLs from well-controlled patient populations is a useful tool to detect RA-relevant genes and could help in identifying novel therapeutic targets.

  11. Emodin modulates epigenetic modifications and suppresses bladder carcinoma cell growth.

    PubMed

    Cha, Tai-Lung; Chuang, Mei-Jen; Tang, Shou-Hung; Wu, Sheng-Tang; Sun, Kuang-Hui; Chen, Tzu-Ting; Sun, Guang-Huan; Chang, Sun-Yran; Yu, Cheng-Ping; Ho, Jar-Yi; Liu, Shu-Yu; Huang, Shih-Ming; Yu, Dah-Shyong

    2015-03-01

    The deregulation of epigenetics was involved in early and subsequent carcinogenic events. Reversing cancer epigenetics to restore a normal epigenetic condition could be a rational approach for cancer treatment and specialized prevention. In the present study, we found that the expression levels of two epigenetic markers, histone H3K27 trimethylation (H3K27me3), was low but histone H3S10 phosphorylation (pH3Ser10) was high in human bladder cancer tissues, which showed opposite expression patterns in their normal counterparts. Thus, we investigated whether a natural product, emodin, has the ability to reverse these two epigenetic modifications and inhibit bladder cancer cell growth. Emodin significantly inhibited the cell growth of four bladder cancer cell lines in a dose- and time-dependent manner. Emodin treatment did not induce specific cell cycle arrest, but it altered epigenetic modifications. Emodin treatment resulted in the suppression of pH3Ser10 and increased H3K27me3, contributing to gene silencing in bladder cancer cells. Microarray analysis demonstrated that oncogenic genes including fatty acid binding protein 4 (FABP4) and fibroblast growth factor binding protein 1 (HBP17), RGS4, tissue inhibitor of metalloproteinase 3 (TIMP3), WNT5b, URB, and collagen, type VIII, alpha 1 (COL8A1) responsible for proliferation, survival, inflammation, and carcinogenesis were significantly repressed by emodin. The ChIP assays also showed that emodin increased H3K27me3 but decreased pH3Ser10 modifications on the promoters of repressed genes, which indicate that emodin reverses the cancer epigenetics towards normal epigenetic situations. In conclusion, our work demonstrates the significant anti-neoplastic activity of emodin on bladder cancer cells and elucidates the novel mechanisms of emodin-mediated epigenetic modulation of target genes. Our study warrants further investigation of emodin as an effective therapeutic or preventive agent for bladder cancer. © 2013 Wiley Periodicals, Inc.

  12. GATA3 expression in clinically useful groups of breast carcinoma: a comparison with GCDFP15 and mammaglobin for identifying paired primary and metastatic tumors.

    PubMed

    Yang, Yuqiong; Lu, Shanming; Zeng, Wenqin; Xie, Shoucheng; Xiao, Shengjun

    2017-02-01

    GATA3 has been recognized as the novel marker for identifying primary and metastatic breast carcinomas, consistently showing that GATA3 was significantly more sensitive than traditional markers gross cystic disease fluid protein 15 (GCDFP15) and mammaglobin (MGB). However, clinically useful groups of breast carcinomas status were not identified, which were determining appropriate treatment strategy, affecting the prognosis. In this study, we undertook a comparative study of the marker GATA3 and GCDFP15 and MGB in clinically useful groups of paired primary and metastatic breast cancer. We retrieved 64 cases of matched primary and metastatic breast cancer from the surgical pathology archive at our institution. According to the emerging 2015 St. Gallen Consensus, the clinically useful groups were divided into ER and/or PR (+), HER2 (-), abbreviated as A; ER and/or PR (+), HER2 (+), abbreviated as B; ER and PR (-), HER2 (+), abbreviated as C; ER, PR and HER2 (-), abbreviated as D; each group contained 16 cases (n=16). Tissue microarrays were created, with three 1-mm punch specimens from each case. The tissue microarrays were cut at 4-μm thickness and stained with monoclonal antibodies to GATA3, GCDFP15, and MGB. Staining intensity (0-3+) and extent (0%-100%) were scored with an H-score calculated (range, 0-300). Sensitivities by varying H-score cutoffs (any; ≥50; ≥150) for a positive result in the clinically useful groups of matched primary or metastatic breast cancer among GATA3, GCDFP15, and MGB. GATA3 was significantly more sensitive than GCDFP15 and MGB A and B groups (P<.05) rather than C and D groups (P>.05). However, GATA3 in conjunction with GCDFP15 and MGB detection could improve the sensitivity of C group (P<.05) rather than D group (P>.05). Significantly, good coincidence was observed between primary and metastatic tumor GATA3 expression (κ value = 0.826 >0.75) as compared with the coincidence of GCDFP15 (κ value =0.492 <0.75) and MGB (κ value =0.593 <0.75) (both P<.05). In conclusion, GATA3 expression did not show the same sensitivity for the clinically useful groups of breast cancer. GATA3 expression is positively correlated with ER-positive, PR-positive, and HER2-positive carcinomas. In addition, the matched primary and metastatic tumor expression of GATA3 shows good coincidence. We propose the careful selection of GATA3 for identifying hormone receptor negativity of breast cancer, especially in the case of triple-negative breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Whole-exome analysis of foetal autopsy tissue reveals a frameshift mutation in OBSL1, consistent with a diagnosis of 3-M Syndrome.

    PubMed

    Marshall, Christian R; Farrell, Sandra A; Cushing, Donna; Paton, Tara; Stockley, Tracy L; Stavropoulos, Dimitri J; Ray, Peter N; Szego, Michael; Lau, Lynette; Pereira, Sergio L; Cohn, Ronald D; Wintle, Richard F; Abuzenadah, Adel M; Abu-Elmagd, Muhammad; Scherer, Stephen W

    2015-01-01

    We report a consanguineous couple that has experienced three consecutive pregnancy losses following the foetal ultrasound finding of short limbs. Post-termination examination revealed no skeletal dysplasia, but some subtle proximal limb shortening in two foetuses, and a spectrum of mildly dysmorphic features. Karyotype was normal in all three foetuses (46, XX) and comparative genomic hybridization microarray analysis detected no pathogenic copy number variants. Whole-exome sequencing and genome-wide homozygosity mapping revealed a previously reported frameshift mutation in the OBSL1 gene (c.1273insA p.T425nfsX40), consistent with a diagnosis of 3-M Syndrome 2 (OMIM #612921), which had not been anticipated from the clinical findings. Our study provides novel insight into the early clinical manifestations of this form of 3-M syndrome, and demonstrates the utility of whole exome sequencing as a tool for prenatal diagnosis in particular when there is a family history suggestive of a recurrent set of clinical symptoms.

  14. Fidelity and enhanced sensitivity of differential transcription profiles following linear amplification of nanogram amounts of endothelial mRNA

    NASA Technical Reports Server (NTRS)

    Polacek, Denise C.; Passerini, Anthony G.; Shi, Congzhu; Francesco, Nadeene M.; Manduchi, Elisabetta; Grant, Gregory R.; Powell, Steven; Bischof, Helen; Winkler, Hans; Stoeckert, Christian J Jr; hide

    2003-01-01

    Although mRNA amplification is necessary for microarray analyses from limited amounts of cells and tissues, the accuracy of transcription profiles following amplification has not been well characterized. We tested the fidelity of differential gene expression following linear amplification by T7-mediated transcription in a well-established in vitro model of cytokine [tumor necrosis factor alpha (TNFalpha)]-stimulated human endothelial cells using filter arrays of 13,824 human cDNAs. Transcriptional profiles generated from amplified antisense RNA (aRNA) (from 100 ng total RNA, approximately 1 ng mRNA) were compared with profiles generated from unamplified RNA originating from the same homogeneous pool. Amplification accurately identified TNFalpha-induced differential expression in 94% of the genes detected using unamplified samples. Furthermore, an additional 1,150 genes were identified as putatively differentially expressed using amplified RNA which remained undetected using unamplified RNA. Of genes sampled from this set, 67% were validated by quantitative real-time PCR as truly differentially expressed. Thus, in addition to demonstrating fidelity in gene expression relative to unamplified samples, linear amplification results in improved sensitivity of detection and enhances the discovery potential of high-throughput screening by microarrays.

  15. Sustained conditional knockdown reveals intracellular bone sialoprotein as essential for breast cancer skeletal metastasis.

    PubMed

    Kovacheva, Marineta; Zepp, Michael; Berger, Stefan M; Berger, Martin R

    2014-07-30

    Increased bone sialoprotein (BSP) serum levels are related to breast cancer skeletal metastasis, but their relevance is unknown. We elucidated novel intracellular BSP functions by a conditional knockdown of BSP. Conditional MDA-MB-231 subclones were equipped with a novel gene expression cassette containing a tet-reg-ulated miRNA providing knockdown of BSP production. These clones were used to assess the effect of BSP on morphology, proliferation, migration, colony formation and gene expression in vitro, and on soft tissue and osteolytic le-sions in a xenograft model by three imaging methods. BSP knockdown caused significant anti-proliferative, anti-migratory and anti-clonogenic effects in vitro (p<0.001). In vivo, significant de-creases of soft tissue and osteolytic lesions (p<0.03) were recorded after 3 weeks of miRNA treatment, leading to complete remission within 6 weeks. Microarray data revealed that 0.3% of genes were modulated in response to BSP knockdown. Upregulated genes included the endoplasmic reticulum stress genes ATF3 and DDIT3, the tumor suppressor gene EGR1, ID2 (related to breast epithelial differentiation), c-FOS and SERPINB2, whereas the metastasis associated genes CD44 and IL11 were downregulated. Also, activation of apoptotic pathways was demonstrated. These results implicate that intracellular BSP is essential for breast cancer skeletal metastasis and a target for treating these lesions.

  16. Sustained conditional knockdown reveals intracellular bone sialoprotein as essential for breast cancer skeletal metastasis

    PubMed Central

    Kovacheva, Marineta; Zepp, Michael; Berger, Stefan M.; Berger, Martin R.

    2014-01-01

    Increased bone sialoprotein (BSP) serum levels are related to breast cancer skeletal metastasis, but their relevance is unknown. We elucidated novel intracellular BSP functions by a conditional knockdown of BSP. Conditional MDA-MB-231 subclones were equipped with a novel gene expression cassette containing a tet-regulated miRNA providing knockdown of BSP production. These clones were used to assess the effect of BSP on morphology, proliferation, migration, colony formation and gene expression in vitro, and on soft tissue and osteolytic lesions in a xenograft model by three imaging methods. BSP knockdown caused significant anti-proliferative, anti-migratory and anti-clonogenic effects in vitro (p<0.001). In vivo, significant decreases of soft tissue and osteolytic lesions (p<0.03) were recorded after 3 weeks of miRNA treatment, leading to complete remission within 6 weeks. Microarray data revealed that 0.3% of genes were modulated in response to BSP knockdown. Upregulated genes included the endoplasmic reticulum stress genes ATF3 and DDIT3, the tumor suppressor gene EGR1, ID2 (related to breast epithelial differentiation), c-FOS and SERPINB2, whereas the metastasis associated genes CD44 and IL11 were downregulated. Also, activation of apoptotic pathways was demonstrated. These results implicate that intracellular BSP is essential for breast cancer skeletal metastasis and a target for treating these lesions. PMID:24980816

  17. Methylation-associated silencing of microRNA-129-3p promotes epithelial-mesenchymal transition, invasion and metastasis of hepatocelluar cancer by targeting Aurora-A.

    PubMed

    Cui, Shiyun; Zhang, Kai; Li, Chen; Chen, Jing; Pan, Yan; Feng, Bing; Lu, Lei; Zhu, Ziman; Wang, Rui; Chen, Longbang

    2016-11-22

    Metastasis and recurrence has become one major obstacle for further improving the survival of hepatocelluar cancer (HCC) patients. Therefore, it is critical to elucidate the mechanisms involved in HCC metastasis. This study aimed to investigate the roles of microRNA (miR)-129-3p in HCC metastasis and its possible molecular mechanisms. By using microarray analysis to compare levels of different miRNAs in HCC tissues with or without lymph node metastasis (LNM), we showed that HCC tissues with LNM had reduced levels of miR-129-3p, which was related to its promoter hypermethylation and correlated with tumor metastasis, recurrence and poor prognosis. Gain - and loss - of - function assays indicated that re-expression of miR-129-3p could reverse epithelial-mesenchymal transition (EMT), and reduce in vitro invasion and in vivo metastasis of HCC cells. Aurora-A, a serine/threonine protein kinase, was identified as a direct target of miR-129-3p. Knockdown of Aurora-A phenocopied the effect of miR-129-3p overexpression on HCC metastasis. In addition, Aurora-A upregulation could partially rescue the effect of miR-129-3p. We further demonstrated that activation of PI3K/Akt and p38-MAPK signalings were involved in miR-129-3p-mediated HCC metastasis. These findings suggest that methylation-mediated miR-129-3p downregulation promotes EMT, in vitro invasion and in vivo metastasis of HCC cells via activation of PI3K/Akt and p38-MAPK signalings partially by targeting Aurora-A. Therefore, miR-129-3p may be a novel prognostic biomarker and potential therapeutic target for HCC.

  18. Identification of miR-194-5p as a potential biomarker for postmenopausal osteoporosis

    PubMed Central

    Pan, Nanan; Sun, Ning; Wang, Qiujun; Fan, Jingxue; Zhou, Ping

    2015-01-01

    The incidence of osteoporosis is high in postmenopausal women due to altered estrogen levels and continuous calcium loss that occurs with aging. Recent studies have shown that microRNAs (miRNAs) are involved in the development of osteoporosis. These miRNAs may be used as potential biomarkers to identify women at a high risk for developing the disease. In this study, whole blood samples were collected from 48 postmenopausal Chinese women with osteopenia or osteoporosis and pooled into six groups according to individual T-scores. A miRNA microarray analysis was performed on pooled blood samples to identify potential miRNA biomarkers for postmenopausal osteoporosis. Five miRNAs (miR-130b-3p, -151a-3p, -151b, -194-5p, and -590-5p) were identified in the microarray analysis. These dysregulated miRNAs were subjected to a pathway analysis investigating whether they were involved in regulating osteoporosis-related pathways. Among them, only miR-194-5p was enriched in multiple osteoporosis-related pathways. Enhanced miR-194-5p expression in women with osteoporosis was confirmed by quantitative reverse transcription–polymerase chain reaction analysis. For external validation, a significant correlation between the expression of miR-194-5p and T-scores was found in an independent patient collection comprised of 24 postmenopausal women with normal bone mineral density, 30 postmenopausal women with osteopenia, and 32 postmenopausal women with osteoporosis (p < 0.05). Taken together, the present findings suggest that miR-194-5p may be a viable miRNA biomarker for postmenopausal osteoporosis. PMID:26038726

  19. Identification of miR-194-5p as a potential biomarker for postmenopausal osteoporosis.

    PubMed

    Meng, Jia; Zhang, Dapeng; Pan, Nanan; Sun, Ning; Wang, Qiujun; Fan, Jingxue; Zhou, Ping; Zhu, Wenliang; Jiang, Lihong

    2015-01-01

    The incidence of osteoporosis is high in postmenopausal women due to altered estrogen levels and continuous calcium loss that occurs with aging. Recent studies have shown that microRNAs (miRNAs) are involved in the development of osteoporosis. These miRNAs may be used as potential biomarkers to identify women at a high risk for developing the disease. In this study, whole blood samples were collected from 48 postmenopausal Chinese women with osteopenia or osteoporosis and pooled into six groups according to individual T-scores. A miRNA microarray analysis was performed on pooled blood samples to identify potential miRNA biomarkers for postmenopausal osteoporosis. Five miRNAs (miR-130b-3p, -151a-3p, -151b, -194-5p, and -590-5p) were identified in the microarray analysis. These dysregulated miRNAs were subjected to a pathway analysis investigating whether they were involved in regulating osteoporosis-related pathways. Among them, only miR-194-5p was enriched in multiple osteoporosis-related pathways. Enhanced miR-194-5p expression in women with osteoporosis was confirmed by quantitative reverse transcription-polymerase chain reaction analysis. For external validation, a significant correlation between the expression of miR-194-5p and T-scores was found in an independent patient collection comprised of 24 postmenopausal women with normal bone mineral density, 30 postmenopausal women with osteopenia, and 32 postmenopausal women with osteoporosis (p < 0.05). Taken together, the present findings suggest that miR-194-5p may be a viable miRNA biomarker for postmenopausal osteoporosis.

  20. Novel statistical framework to identify differentially expressed genes allowing transcriptomic background differences.

    PubMed

    Ling, Zhi-Qiang; Wang, Yi; Mukaisho, Kenichi; Hattori, Takanori; Tatsuta, Takeshi; Ge, Ming-Hua; Jin, Li; Mao, Wei-Min; Sugihara, Hiroyuki

    2010-06-01

    Tests of differentially expressed genes (DEGs) from microarray experiments are based on the null hypothesis that genes that are irrelevant to the phenotype/stimulus are expressed equally in the target and control samples. However, this strict hypothesis is not always true, as there can be several transcriptomic background differences between target and control samples, including different cell/tissue types, different cell cycle stages and different biological donors. These differences lead to increased false positives, which have little biological/medical significance. In this article, we propose a statistical framework to identify DEGs between target and control samples from expression microarray data allowing transcriptomic background differences between these samples by introducing a modified null hypothesis that the gene expression background difference is normally distributed. We use an iterative procedure to perform robust estimation of the null hypothesis and identify DEGs as outliers. We evaluated our method using our own triplicate microarray experiment, followed by validations with reverse transcription-polymerase chain reaction (RT-PCR) and on the MicroArray Quality Control dataset. The evaluations suggest that our technique (i) results in less false positive and false negative results, as measured by the degree of agreement with RT-PCR of the same samples, (ii) can be applied to different microarray platforms and results in better reproducibility as measured by the degree of DEG identification concordance both intra- and inter-platforms and (iii) can be applied efficiently with only a few microarray replicates. Based on these evaluations, we propose that this method not only identifies more reliable and biologically/medically significant DEG, but also reduces the power-cost tradeoff problem in the microarray field. Source code and binaries freely available for download at http://comonca.org.cn/fdca/resources/softwares/deg.zip.

  1. Bone Morphogenetic Protein 3 Controls Insulin Gene Expression and Is Down-regulated in INS-1 Cells Inducibly Expressing a Hepatocyte Nuclear Factor 1A–Maturity-onset Diabetes of the Young Mutation*

    PubMed Central

    Bonner, Caroline; Farrelly, Angela M.; Concannon, Caoimhín G.; Dussmann, Heiko; Baquié, Mathurin; Virard, Isabelle; Wobser, Hella; Kögel, Donat; Wollheim, Claes B.; Rupnik, Marjan; Byrne, Maria M.; König, Hans-Georg; Prehn, Jochen H. M.

    2011-01-01

    Inactivating mutations in the transcription factor hepatocyte nuclear factor (HNF) 1A cause HNF1A–maturity-onset diabetes of the young (HNF1A-MODY), the most common monogenic form of diabetes. To examine HNF1A-MODY-induced defects in gene expression, we performed a microarray analysis of the transcriptome of rat INS-1 cells inducibly expressing the common hot spot HNF1A frameshift mutation, Pro291fsinsC-HNF1A. Real-time quantitative PCR (qPCR), Western blotting, immunohistochemistry, reporter assays, and chromatin immunoprecipitation (ChIP) were used to validate alterations in gene expression and to explore biological activities of target genes. Twenty-four hours after induction of the mutant HNF1A protein, we identified a prominent down-regulation of the bone morphogenetic protein 3 gene (Bmp-3) mRNA expression. Reporter assays, qPCR, and Western blot analysis validated these results. In contrast, inducible expression of wild-type HNF1A led to a time-dependent increase in Bmp-3 mRNA and protein levels. Moreover, reduced protein levels of BMP-3 and insulin were detected in islets of transgenic HNF1A-MODY mice. Interestingly, treatment of naïve INS-1 cells or murine organotypic islet cultures with recombinant human BMP-3 potently increased their insulin levels and restored the decrease in SMAD2 phosphorylation and insulin gene expression induced by the HNF1A frameshift mutation. Our study suggests a critical link between HNF1A-MODY-induced alterations in Bmp-3 expression and insulin gene levels in INS-1 cells and indicates that the reduced expression of growth factors involved in tissue differentiation may play an important role in the pathophysiology of HNF1A-MODY. PMID:21628466

  2. Gene expression profiling of two distinct neuronal populations in the rodent spinal cord.

    PubMed

    Ryge, Jesper; Westerdahl, Ann-Charlotte; Alstrøm, Preben; Kiehn, Ole

    2008-01-01

    In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50-250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional differences between these two cell populations in generating and transmitting the motor output in the rodent spinal cord.

  3. Gene Expression Profiling of Two Distinct Neuronal Populations in the Rodent Spinal Cord

    PubMed Central

    Alstrøm, Preben; Kiehn, Ole

    2008-01-01

    Background In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. Methodology/Principal Findings We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50–250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. Conclusions/Significance We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional differences between these two cell populations in generating and transmitting the motor output in the rodent spinal cord. PMID:18923679

  4. Differential gene expression related to Nora virus infection of Drosophila melanogaster

    PubMed Central

    Cordes, Ethan J.; Licking-Murray, Kellie D; Carlson, Kimberly A.

    2013-01-01

    Nora virus is a recently discovered RNA picorna-like virus that produces a persistent infection in Drosophila melanogaster, but the antiviral pathway or change in gene expression is unknown. We performed cDNA microarray analysis comparing the gene expression profiles of Nora virus infected and uninfected wild-type D. melanogaster. This analysis yielded 58 genes exhibiting a 1.5-fold change or greater and p-value less than 0.01. Of these genes, 46 were up-regulated and 12 down-regulated in response to infection. To validate the microarray results, qRT-PCR was performed with probes for Chorion protein 16 and Troponin C isoform 4, which show good correspondence with cDNA microarray results. Differential regulation of genes associated with Toll and immune-deficient pathways, cytoskeletal development, Janus Kinase-Signal Transducer and Activator of Transcription interactions, and a potential gut-specific innate immune response were found. This genome-wide expression profile of Nora virus infection of D. melanogaster can pinpoint genes of interest for further investigation of antiviral pathways employed, genetic mechanisms, sites of replication, viral persistence, and developmental effects. PMID:23603562

  5. A sensitive NanoString-based assay to score STK11 (LKB1) pathway disruption in lung adenocarcinoma

    PubMed Central

    Chen, Lu; Engel, Brienne E.; Welsh, Eric A.; Yoder, Sean J.; Brantley, Stephen G.; Chen, Dung-Tsa; Beg, Amer A.; Cao, Chunxia; Kaye, Frederic J.; Haura, Eric B.; Schabath, Matthew B.; Cress, W. Douglas

    2016-01-01

    Introduction Serine/threonine kinase 11 (STK11), better known as LKB1, is a tumor-suppressor commonly mutated in lung adenocarcinoma (LUAD). Previous work has shown that mutational inactivation of the STK11 pathway may serve as a predictive biomarker for cancer treatments including phenformin and COX-2 inhibition. Although immunohistochemistry and diagnostic sequencing are employed to measure STK11 pathway disruption, there are serious limitations to these methods emphasizing the importance to validate a clinically useful assay. Methods An initial STK11 mutation mRNA signature was generated using cell line data and refined using three large, independent patient databases. The signature was validated as a classifier using The Cancer Genome Anatomy Project (TCGA) LUAD cohort as well as a 442-patient LUAD cohort developed at Moffitt. Finally, the signature was adapted into a NanoString -based format and validated using RNA samples isolated from FFPE tissue blocks corresponding to a cohort of 150 LUAD patients. For comparison, STK11 immunochemistry was also performed. Results The STK11 signature was found to correlate with null mutations identified by exon sequencing in multiple cohorts using both microarray and NanoString formats. While there was a statistically significant correlation between reduced STK11 protein expression by IHC and mutation status, the NanoString-based assay showed superior overall performance with a −0.1588 improvement in area under the curve in receiver-operator characteristic curve analysis (p<0.012). Conclusion The described NanoString-based STK11 assay is a sensitive biomarker to study emerging therapeutic modalities in clinical trials. PMID:26917230

  6. Adipose Genes Down-Regulated During Experimental Endotoxemia Are Also Suppressed in Obesity

    PubMed Central

    Hinkle, Christine C.; Haris, Lalarukh; Shah, Rhia; Mehta, Nehal N.; Putt, Mary E.; Reilly, Muredach P.

    2012-01-01

    Context: Adipose inflammation is a crucial link between obesity and its metabolic complications. Human experimental endotoxemia is a controlled model for the study of inflammatory cardiometabolic responses in vivo. Objective: We hypothesized that adipose genes down-regulated during endotoxemia would approximate changes observed with obesity-related inflammation and reveal novel candidates in cardiometabolic disease. Design, Subjects, and Intervention: Healthy volunteers (n = 14) underwent a 3 ng/kg endotoxin challenge; adipose biopsies were taken at 0, 4, 12, and 24 h for mRNA microarray. A priority list of highly down-regulated and biologically relevant genes was validated by RT-PCR in an independent sample of adipose from healthy subjects (n = 7) undergoing a subclinical 0.6 ng/kg endotoxemia protocol. Expression of validated genes was screened in adipose of lean and severely obese individuals (n = 11 per group), and cellular source was probed in cultured adipocytes and macrophages. Results: Endotoxemia (3 ng/kg) suppressed expression of 353 genes (to <67% of baseline; P < 1 × 10−5) of which 68 candidates were prioritized for validation. In low-dose (0.6 ng/kg) endotoxin validation, 22 (32%) of these 68 genes were confirmed. Functional classification revealed that many of these genes are involved in cell development and differentiation. Of validated genes, 59% (13 of 22) were down-regulated more than 1.5-fold in primary human adipocytes after treatment with endotoxin. In human macrophages, 59% (13 of 22) were up-regulated during differentiation to inflammatory M1 macrophages whereas 64% (14 of 22) were down-regulated during transition to homeostatic M2 macrophages. Finally, in obese vs. lean adipose, 91% (20 of 22) tended to have reduced expression (χ2 = 10.72, P < 0.01) with 50% (11 of 22) reaching P < 0.05 (χ2 = 9.28, P < 0.01). Conclusions: Exploration of down-regulated mRNA in adipose during human endotoxemia revealed suppression of genes involved in cell development and differentiation. A majority of candidates were also suppressed in endogenous human obesity, suggesting a potential pathophysiological role in human obesity-related adipose inflammation. PMID:22893715

  7. Adipose genes down-regulated during experimental endotoxemia are also suppressed in obesity.

    PubMed

    Shah, Rachana; Hinkle, Christine C; Haris, Lalarukh; Shah, Rhia; Mehta, Nehal N; Putt, Mary E; Reilly, Muredach P

    2012-11-01

    Adipose inflammation is a crucial link between obesity and its metabolic complications. Human experimental endotoxemia is a controlled model for the study of inflammatory cardiometabolic responses in vivo. We hypothesized that adipose genes down-regulated during endotoxemia would approximate changes observed with obesity-related inflammation and reveal novel candidates in cardiometabolic disease. Healthy volunteers (n = 14) underwent a 3 ng/kg endotoxin challenge; adipose biopsies were taken at 0, 4, 12, and 24 h for mRNA microarray. A priority list of highly down-regulated and biologically relevant genes was validated by RT-PCR in an independent sample of adipose from healthy subjects (n = 7) undergoing a subclinical 0.6 ng/kg endotoxemia protocol. Expression of validated genes was screened in adipose of lean and severely obese individuals (n = 11 per group), and cellular source was probed in cultured adipocytes and macrophages. Endotoxemia (3 ng/kg) suppressed expression of 353 genes (to <67% of baseline; P < 1 × 10(-5)) of which 68 candidates were prioritized for validation. In low-dose (0.6 ng/kg) endotoxin validation, 22 (32%) of these 68 genes were confirmed. Functional classification revealed that many of these genes are involved in cell development and differentiation. Of validated genes, 59% (13 of 22) were down-regulated more than 1.5-fold in primary human adipocytes after treatment with endotoxin. In human macrophages, 59% (13 of 22) were up-regulated during differentiation to inflammatory M1 macrophages whereas 64% (14 of 22) were down-regulated during transition to homeostatic M2 macrophages. Finally, in obese vs. lean adipose, 91% (20 of 22) tended to have reduced expression (χ(2) = 10.72, P < 0.01) with 50% (11 of 22) reaching P < 0.05 (χ(2) = 9.28, P < 0.01). Exploration of down-regulated mRNA in adipose during human endotoxemia revealed suppression of genes involved in cell development and differentiation. A majority of candidates were also suppressed in endogenous human obesity, suggesting a potential pathophysiological role in human obesity-related adipose inflammation.

  8. Differential Gene Expression in Gonadotropin-Releasing Hormone Neurons of Male and Metestrous Female Mice.

    PubMed

    Vastagh, Csaba; Rodolosse, Annie; Solymosi, Norbert; Farkas, Imre; Auer, Herbert; Sárvári, Miklós; Liposits, Zsolt

    2015-01-01

    Gonadotropin-releasing hormone (GnRH) neurons play a pivotal role in the regulation of the hypothalamic-pituitary gonadal axis in a sex-specific manner. We hypothesized that the differences seen in reproductive functions of males and females are associated with a sexually dimorphic gene expression profile of GnRH neurons. We compared the transcriptome of GnRH neurons obtained from intact metestrous female and male GnRH-green fluorescent protein transgenic mice. About 1,500 individual GnRH neurons from each sex were sampled with laser capture microdissection followed by whole-transcriptome amplification for gene expression profiling. Under stringent selection criteria (fold change >1.6, adjusted p value 0.01), Affymetrix Mouse Genome 430 PM array analysis identified 543 differentially expressed genes. Sexual dimorphism was most apparent in gene clusters associated with synaptic communication, signal transduction, cell adhesion, vesicular transport and cell metabolism. To validate microarray results, 57 genes were selected, and 91% of their differential expression was confirmed by real-time PCR. Similarly, 88% of microarray results were confirmed with PCR from independent samples obtained by patch pipette harvesting and pooling of 30 GnRH neurons from each sex. We found significant differences in the expression of genes involved in vesicle priming and docking (Syt1, Cplx1), GABAergic (Gabra3, Gabrb3, Gabrg2) and glutamatergic (Gria1, Grin1, Slc17a6) neurotransmission, peptide signaling (Sstr3, Npr2, Cxcr4) and the regulation of intracellular ion homeostasis (Cacna1, Cacnb1, Cacng5, Kcnq2, Kcnc1). The striking sexual dimorphism of the GnRH neuron transcriptome we report here contributes to a better understanding of the differences in cellular mechanisms of GnRH neurons in the two sexes. © 2015 S. Karger AG, Basel.

  9. Global gene expression profiles of Phytophthora ramorum strain pr102 in response to plant host and tissue differentiation

    Treesearch

    Caroline M. Press; Niklaus J. Grunwald

    2008-01-01

    The release of the draft genome sequence of P. ramorum strain Pr102, enabled the construction of an oligonucleotide microarray of the entire genome of Pr102. The array contains 344,680 features (oligos) that represent the transcriptome of Pr102. P. ramorum RNA was extracted from mycelium and sporangia and used to compare gene...

  10. A role for repressive complexes and H3K9 di-methylation in PRDM5-associated brittle cornea syndrome.

    PubMed

    Porter, Louise F; Galli, Giorgio G; Williamson, Sally; Selley, Julian; Knight, David; Elcioglu, Nursel; Aydin, Ali; Elcioglu, Mustafa; Venselaar, Hanka; Lund, Anders H; Bonshek, Richard; Black, Graeme C; Manson, Forbes D

    2015-12-01

    Type 2 brittle cornea syndrome (BCS2) is an inherited connective tissue disease with a devastating ocular phenotype caused by mutations in the transcription factor PR domain containing 5 (PRDM5) hypothesized to exert epigenetic effects through histone and DNA methylation. Here we investigate clinical samples, including skin fibroblasts and retinal tissue from BCS2 patients, to elucidate the epigenetic role of PRDM5 and mechanisms of its dysregulation in disease. First we report abnormal retinal vascular morphology in the eyes of two cousins with BCS2 (PRDM5 Δ exons 9-14) using immunohistochemistry, and mine data from skin fibroblast expression microarrays from patients with PRDM5 mutations p.Arg590* and Δ exons 9-14, as well as from a PRDM5 ChIP-sequencing experiment. Gene ontology analysis of dysregulated PRDM5-target genes reveals enrichment for extracellular matrix (ECM) genes supporting vascular integrity and development. Q-PCR and ChIP-qPCR confirm upregulation of critical mediators of ECM stability in vascular structures (COL13A1, COL15A1, NTN1, CDH5) in patient fibroblasts. We identify H3K9 di-methylation (H3K9me2) at these PRDM5-target genes in fibroblasts, and demonstrate that the BCS2 mutation p.Arg83Cys diminishes interaction of PRDM5 with repressive complexes, including NuRD complex protein CHD4, and the repressive chromatin interactor HP1BP3, by co-immunoprecipitation combined with mass spectrometry. We observe reduced heterochromatin protein 1 binding protein 3 (HP1BP3) staining in the retinas of two cousins lacking exons 9-14 by immunohistochemistry, and dysregulated H3K9me2 in skin fibroblasts of three patients (p.Arg590*, p.Glu134* and Δ exons 9-14) by western blotting. These findings suggest that defective interaction of PRDM5 with repressive complexes, and dysregulation of H3K9me2, play a role in PRDM5-associated disease. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Gene Copy-Number Variations (CNVs) of Complement C4 and C4A Deficiency in Genetic Risk and Pathogenesis of Juvenile Dermatomyositis

    PubMed Central

    Lintner, Katherine E.; Patwardhan, Anjali; Rider, Lisa G.; Abdul-Aziz, Rabheh; Wu, Yee Ling; Lundström, Emeli; Padyukov, Leonid; Zhou, Bi; Alhomosh, Alaaedin; Newsom, David; White, Peter; Jones, Karla B.; O’Hanlon, Terrance P.; Miller, Frederick W.; Spencer, Charles H.; Yu, C. Yung

    2017-01-01

    Objective Complement-mediated vasculopathy of muscle and skin are clinical features of juvenile dermatomyositis (JDM). We assess gene copy-number variations (CNVs) for complement C4 and its isotypes, C4A and C4B, in genetic risks and pathogenesis of JDM. Methods The study population included 105 JDM patients and 500 healthy European Americans. Gene copy-numbers (GCNs) for total C4, C4A, C4B and HLA-DRB1 genotypes were determined by Southern blots and PCRs. Processed activation product C4d bound to erythrocytes (E-C4d) was measured by flow cytometry. Global gene-expression microarrays were performed in 19 JDM and 7 controls using PAXgene-blood RNA. Differential expression levels for selected genes were validated by qPCR. Results Significantly lower GCNs and differences in distribution of GCN groups for total C4 and C4A were observed between JDM and controls. Lower GCN of C4A in JDM remained among HLA DR3-positive subjects (p=0.015). Homozygous or heterozygous C4A-deficiency was present in 40.0% of JDM compared to 18.2% of controls [odds ratio (OR)=3.00 (1.87–4.79), p=8.2x10−6]. JDM had higher levels of E-C4d than controls (p=0.004). In JDM, C4A-deficient subjects had higher levels of E-C4d (p=0.0003) and higher frequency of elevated levels of multiple serum muscle enzymes at diagnosis (p=0.004). Microarray profiling of blood RNA revealed upregulation of type I Interferon-stimulated genes and lower abundance of transcripts for T-cell and chemokine function genes in JDM, but this was less prominent among C4A-deficient or DR3-positive patients. Conclusions Complement C4A-deficiency appears to be an important factor for the genetic risk and pathogenesis of JDM, particularly in patients with a DR3-positive background. PMID:26493816

  12. Circular RNA In Invasive and Recurrent Clinical Nonfunctioning Pituitary Adenomas: Expression Profiles and Bioinformatic Analysis.

    PubMed

    Wang, Jianpeng; Wang, Dong; Wan, Dehong; Ma, Qingxia; Liu, Qian; Li, Jiye; Li, Zhaojian; Gao, Yang; Jiang, Guohui; Ma, Leina; Liu, Jia; Li, Chuzhong

    2018-06-14

    The invasion and recurrence of clinical nonfunctioning pituitary adenomas (NFA) often lead to surgical treatment failure. Circular RNAs (circRNAs) are a novel class of RNAs whose 3' and 5' ends are joined together and have been shown to play important roles in cancer development. Up to now, the roles of circRNAs remain unclear in invasive and recurrent NFA. We detected and summarized the circRNA expression pattern in 75 NFA tissues from 10 non-invasive cases and 65 invasive cases and 9 pairs NFA tumor tissues from 9 recurrent cases by circRNA microarrays. Accordingly, functional enrichment analysis and pathway analysis were performed and circRNA-microRNA(miRNA) network were generated by bioinformatic analysis tools. 5 new invasive NFA samples and 5 non-invasive NFA samples were collected to measure the microarray results. 570 dysregulated circRNAs (Invasive Tumor vs. Non-invasive Tumor) and 10 up-regulated circRNAs (Recurrent tumor Tissue vs. First surgery tumor Tissue) were identified based on the situation (FC>2, P<0.05). The parental genes of the dysregulated circRNAs in the comparison between invasion tumor and non-invasion tumor were found to be enriched in some cell adhesion signaling pathways such as Focal adhesion, Hippo signaling pathway, PI3K-Akt signaling pathway, and Adherens junction. The circRNA-miRNA network showed that the dysregulated circRNA may function as miRNA sponges. This is the first study to conduct and comprehensively analyze the circRNA expression profile in invasive and recurrent NFA. Our finding will provide evidence for the significance of circRNAs in NFA diagnosis, prognosis and clinical treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. DNA methyltransferase3a expression is an independent poor prognostic indicator in gastric cancer

    PubMed Central

    Cao, Xue-Yuan; Ma, Hong-Xi; Shang, Yan-Hong; Jin, Mei-Shan; Kong, Fei; Jia, Zhi-Fang; Cao, Dong-Hui; Wang, Yin-Ping; Suo, Jian; Jiang, Jing

    2014-01-01

    AIM: To explore the alteration of DNA methyltransferase expression in gastric cancer and to assess its prognostic value. METHODS: From April 2000 to December 2010, 227 men and 73 women with gastric cancer were enrolled in the study. The expression of DNA methyltransferases (DNMTs), including DNMT1, DNMT3a and DNMT3b, in the 300 cases of gastric carcinoma, of which 85 had paired adjacent normal gastric mucus samples, was evaluated by immunohistochemistry using a tissue microarray. Serum anti-Helicobacter pylori (H. pylori) IgG was detected by enzyme-linked immunosorbent assay (ELISA). The relationships between the above results and the clinicopathological characteristics were analyzed. Their prognostic value was evaluated using the Cox proportional hazards model. RESULTS: In gastric cancer, expression of DNMTs was mainly seen in the nucleus. Weak staining was also observed in the cytoplasm. Expression of DNMT1, DNMT3a and DNMT3b in gastric cancer was significantly higher compared to that in the paired control samples (60.0% vs 37.6%, 61.2% vs 4.7%, and 94.1% vs 71.8%, P < 0.01). The overall survival rate was significantly higher in the DNMT3a negative group than in the DNMT3a positive group in gastric cancer patients (Log-rank test, P = 0.032). No significant correlation was observed between DNMT1 and DNMT3b expression and the overall survival time (Log-rank test, P = 0.289, P = 0.347). Multivariate regression analysis indicated that DNMT3a expression (P = 0.025) and TNM stage (P < 0.001), but not DNMT1 (P = 0.54) or DNMT3b (P = 0.62), were independent prognostic factors in gastric cancer. H. pylori infection did not induce protein expression of DNMTs. CONCLUSION: The results suggest that expression of DNMT3a is an independent poor prognostic indicator in gastric cancer. DNMT3a might play an important role in gastric carcinogenesis. PMID:25009393

  14. Ischemic and Nephrotoxic Acute Renal Failure are Distinguished by their Broad Transcriptomic Responses (102/160 char)

    PubMed Central

    Yuen, Peter S.T.; Jo, Sang-Kyung; Holly, Mikaela K.; Hu, Xuzhen; Star, Robert A.

    2006-01-01

    Acute renal failure (ARF) has a high morbidity and mortality. In animal ARF models, effective treatments must be administered before or shortly after the insult, limiting their clinical potential. We used microarrays to identify early biomarkers that distinguish ischemic from nephrotoxic ARF, or biomarkers that detect both injury types. We compared rat kidney transcriptomes 2 and 8 hours after ischemia/reperfusion and after mercuric chloride. Quality control and statistical analyses were necessary to normalize microarrays from different lots, eliminate outliers, and exclude unaltered genes. Principal component analysis revealed distinct ischemic and nephrotoxic trajectories, and clear array groupings. Therefore, we used supervised analysis, t-tests and fold changes, to compile gene lists for each group, exclusive or non-exclusive, alone or in combination. There was little network connectivity, even in the largest group. Some microarray-identified genes were validated by TaqMan assay, ruling out artifacts. Western blotting confirmed that HO-1 and ATF3 proteins were upregulated; however, unexpectedly, their localization changed within the kidney. HO-1 staining shifted from cortical (early) to outer stripe of the outer medulla (late), primarily in detaching cells, after mercuric chloride, but not ischemia/reperfusion. ATF3 staining was similar, but with additional early transient expression in the outer stripe after ischemia/reperfusion. We conclude that microarray-identified genes must be evaluated not only for protein levels, but also for anatomical distribution among different zones, nephron segments, or cell types. Although protein detection reagents are limited, microarray data lay a rich foundation to explore biomarkers, therapeutics, and pathophysiology of ARF. PMID:16507785

  15. The Transcriptional Coactivator TAZ Is a Potent Mediator of Alveolar Rhabdomyosarcoma Tumorigenesis.

    PubMed

    Deel, Michael D; Slemmons, Katherine K; Hinson, Ashley R; Genadry, Katia C; Burgess, Breanne A; Crose, Lisa E S; Kuprasertkul, Nina; Oristian, Kristianne M; Bentley, Rex C; Linardic, Corinne M

    2018-03-07

    Purpose: Alveolar rhabdomyosarcoma (aRMS) is a childhood soft tissue sarcoma driven by the signature PAX3-FOXO1 (P3F) fusion gene. Five-year survival for aRMS is <50%, with no improvement in over 4 decades. Although the transcriptional coactivator TAZ is oncogenic in carcinomas, the role of TAZ in sarcomas is poorly understood. The aim of this study was to investigate the role of TAZ in P3F-aRMS tumorigenesis. Experimental Design: After determining from publicly available datasets that TAZ is upregulated in human aRMS transcriptomes, we evaluated whether TAZ is also upregulated in our myoblast-based model of P3F-initiated tumorigenesis, and performed IHC staining of 63 human aRMS samples from tissue microarrays. Using constitutive and inducible RNAi, we examined the impact of TAZ loss of function on aRMS oncogenic phenotypes in vitro and tumorigenesis in vivo Finally, we performed pharmacologic studies in aRMS cell lines using porphyrin compounds, which interfere with TAZ-TEAD transcriptional activity. Results: TAZ is upregulated in our P3F-initiated aRMS model, and aRMS cells and tumors have high nuclear TAZ expression. In vitro , TAZ suppression inhibits aRMS cell proliferation, induces apoptosis, supports myogenic differentiation, and reduces aRMS cell stemness. TAZ-deficient aRMS cells are enriched in G 2 -M phase of the cell cycle. In vivo , TAZ suppression attenuates aRMS xenograft tumor growth. Preclinical studies show decreased aRMS xenograft tumor growth with porphyrin compounds alone and in combination with vincristine. Conclusions: TAZ is oncogenic in aRMS sarcomagenesis. While P3F is currently not therapeutically tractable, targeting TAZ could be a promising novel approach in aRMS. Clin Cancer Res; 1-15. ©2018 AACR. ©2018 American Association for Cancer Research.

  16. Investigating Steroid Receptor Coactivator 3 (SRC3) as a Potential Therapeutic Target for Treating Advanced Prostate Cancer

    DTIC Science & Technology

    2013-04-01

    to be a target of CHIP and knockdown of SRC-3 reduces Smad and Twist expression [81]. In human hepatocellular carcinoma , Hepatitis B virus X protein...stabilizes AIB1 protein and cooperates with it to promote human hepatocellular carcinoma cell invasiveness. Hepatology 2012. [Epub ahead of print] 83...amplification in hepatocellular carcinoma . A broad survey using high-throughput tissue microarray. Cancer 2002;95(11):2346-52 104. Xu Y, Chen Q, Li W, et al

  17. Myogenin, AP2β, NOS-1, and HMGA2 are surrogate markers of fusion status in rhabdomyosarcoma: a report from the soft tissue sarcoma committee of the children's oncology group.

    PubMed

    Rudzinski, Erin R; Anderson, James R; Lyden, Elizabeth R; Bridge, Julia A; Barr, Frederic G; Gastier-Foster, Julie M; Bachmeyer, Karen; Skapek, Stephen X; Hawkins, Douglas S; Teot, Lisa A; Parham, David M

    2014-05-01

    Pediatric rhabdomyosarcoma (RMS) is traditionally classified on the basis of the histologic appearance into alveolar (ARMS) and embryonal (ERMS) subtypes. The majority of ARMS contain a PAX3-FOXO1 or PAX7-FOXO1 gene fusion, but about 20% do not. Intergroup Rhabdomyosarcoma Study stage-matched and group-matched ARMS typically behaves more aggressively than ERMS, but recent studies have shown that it is, in fact, the fusion status that drives the outcome for RMS. Gene expression microarray data indicate that several genes discriminate between fusion-positive and fusion-negative RMS with high specificity. Using tissue microarrays containing a series of both ARMS and ERMS, we identified a panel of 4 immunohistochemical markers-myogenin, AP2β, NOS-1, and HMGA2-which can be used as surrogate markers of fusion status in RMS. These antibodies provide an alternative to molecular methods for identification of fusion-positive RMS, particularly in cases in which there is scant or poor-quality material. In addition, these antibodies may be useful in fusion-negative ARMS as an indicator that a variant gene fusion may be present.

  18. Evaluation of P16 expression in canine appendicular osteosarcoma.

    PubMed

    Murphy, B G; Mok, M Y; York, D; Rebhun, R; Woolard, K D; Hillman, C; Dickinson, P; Skorupski, K

    2017-06-20

    Osteosarcoma (OSA) is a common malignant bone tumor of large breed dogs that occurs at predictable anatomic sites. At the time of initial diagnosis, most affected dogs have occult pulmonary metastases. Even with aggressive surgical treatment combined with chemotherapy, the majority of dogs diagnosed with OSA live less than 1 year from the time of diagnosis. The ability to identify canine OSA cases most responsive to treatment is needed. In humans, OSA is also an aggressive tumor that is histologically and molecularly similar to canine OSA. The expression of the tumor suppressor gene product P16 by human OSA tissue has been linked to a favorable response to chemotherapy. We identified an antibody that binds canine P16 and developed a canine OSA tissue microarray in order to test the hypothesis that P16 expression by canine OSA tissue is predictive of clinical outcome following amputation and chemotherapy. Although statistical significance was not reached, a trend was identified between the lack of canine OSA P16 expression and a shorter disease free interval. The identification of a molecular marker for canine OSA is an important goal and the results reported here justify a larger study.

  19. Deep learning based tissue analysis predicts outcome in colorectal cancer.

    PubMed

    Bychkov, Dmitrii; Linder, Nina; Turkki, Riku; Nordling, Stig; Kovanen, Panu E; Verrill, Clare; Walliander, Margarita; Lundin, Mikael; Haglund, Caj; Lundin, Johan

    2018-02-21

    Image-based machine learning and deep learning in particular has recently shown expert-level accuracy in medical image classification. In this study, we combine convolutional and recurrent architectures to train a deep network to predict colorectal cancer outcome based on images of tumour tissue samples. The novelty of our approach is that we directly predict patient outcome, without any intermediate tissue classification. We evaluate a set of digitized haematoxylin-eosin-stained tumour tissue microarray (TMA) samples from 420 colorectal cancer patients with clinicopathological and outcome data available. The results show that deep learning-based outcome prediction with only small tissue areas as input outperforms (hazard ratio 2.3; CI 95% 1.79-3.03; AUC 0.69) visual histological assessment performed by human experts on both TMA spot (HR 1.67; CI 95% 1.28-2.19; AUC 0.58) and whole-slide level (HR 1.65; CI 95% 1.30-2.15; AUC 0.57) in the stratification into low- and high-risk patients. Our results suggest that state-of-the-art deep learning techniques can extract more prognostic information from the tissue morphology of colorectal cancer than an experienced human observer.

  20. The antagonistic effect between STAT1 and Survivin and its clinical significance in gastric cancer.

    PubMed

    Deng, Hao; Zhen, Hongyan; Fu, Zhengqi; Huang, Xuan; Zhou, Hongyan; Liu, Lijiang

    2012-01-01

    In previous studies, we observed that STAT1 and Survivin correlated negatively with gastric cancer tissues, and that the functions of the IFN-γ-STAT1 pathway and Survivin in gastric cancer are the same as those reported for other types of cancer. In this study, the SGC7901 gastric cancer cell line and 83 gastric cancer specimens were used to confirm the relationship between STAT1 and Survivin, as well as the clinical significance of this relationship in gastric cancer. IFN-γ and STAT1 and Survivin antisense oligonucleotides (ASONs) were used to knock down the expression in SGC7901 cells. The protein expression of STAT1 and Survivin was tested by immunocytochemical and image analysis methods. A gastric cancer tissue microarray was prepared and tested by immunohistochemical methods. Data were analyzed by the Spearman's rank correlation analysis, the χ(2) test and Cox's multivariate regression analysis. Upon knockdown of IFN-γ, STAT1 and Survivin expression by ASON in the SGC7901 cell line, an antagonistic effect was observed between STAT1 and Survivin. In gastric cancer tissues, STAT1 showed a negative correlation with depth of invasion (p<0.05) in gastric cancer tissues exhibiting a negative Survivin protein expression. Furthermore, in tissues exhibiting a negative STAT1 protein expression, Survivin correlated negatively with N stage (p<0.05). Pathological and molecular markers were used to conduct Cox's multivariate regression analysis, and depth of invasion and N stage were found to be prognostic factors (p<0.05). On the other hand, in tissues exhibiting a negative Survivin protein expression, Cox's multivariate regression analysis revealed that the differentiation type and STAT1 protein expression were prognostic factors (p<0.05). There is an antagonistic effect between STAT1 and Survivin in gastric cancer, and this antagonistic effect is of clinical significance in gastric cancer.

  1. Tissue advanced glycation end products (AGEs), measured by skin autofluorescence, predict mortality in peritoneal dialysis.

    PubMed

    Siriopol, Dimitrie; Hogas, Simona; Veisa, Gabriel; Mititiuc, Irina; Volovat, Carmen; Apetrii, Mugurel; Onofriescu, Mihai; Busila, Irina; Oleniuc, Mihaela; Covic, Adrian

    2015-03-01

    The relation between tissue AGEs and mortality in end-stage renal disease (ESRD) is documented, but only in hemodialysis (HD) patients. This study aimed to measure and compare tissue AGEs levels in patients receiving either HD or peritoneal dialysis (PD) and to study the effect of these products on all-cause, cardiovascular or sepsis-related mortality. Tissue AGEs were noninvasively assessed in 304 dialysis patients (202 on chronic HD and 102 on continuous ambulatory PD) by measuring skin autofluorescence using a validated Autofluorescence Reader (AGE Reader, DiagnOptics b.v., Groningen, The Netherlands). There was no difference in regard to AGEs levels between the HD (3.6 ± 0.8 AU)- and PD (3.5 ± 0.7 AU, p = 0.2)-treated patients. Diabetic patients had higher AGEs values in the HD group (3.97 ± 0.81 vs. 3.52 ± 0.77, p = 0.002), but not in the PD group (3.68 ± 0.6 vs. 3.45 ± 0.70, p = 0.26). In PD patients, increasing AGEs levels were associated with an elevated risk of all-cause mortality (a 2.09-fold increase for each increment of 1 AU in AGEs values) and sepsis (a 3.44-fold increase for each increment of 1 AU in AGEs values)-related mortality. Performing a similar analysis in diabetic patients, AGEs was associated only with sepsis-related mortality (a 3.08-fold increase for each increment of 1 AU in AGEs values). This is the first study that demonstrates a relationship between tissue AGEs levels and sepsis-related mortality in PD-treated or diabetic ESRD patients. Future studies are necessary to evaluate the non-cardiovascular effects of tissue AGEs in ESRD patients.

  2. Cyclin-dependent kinase 11p110 (CDK11p110) is crucial for human breast cancer cell proliferation and growth

    PubMed Central

    Zhou, Yubing; Han, Chao; Li, Duolu; Yu, Zujiang; Li, Fengmei; Li, Feng; An, Qi; Bai, Huili; Zhang, Xiaojian; Duan, Zhenfeng; Kan, Quancheng

    2015-01-01

    Cyclin-dependent kinases (CDKs) play important roles in the development of many types of cancers by binding with their paired cyclins. However, the function of CDK11 larger protein isomer, CDK11p110, in the tumorigenesis of human breast cancer remains unclear. In the present study, we explored the effects and molecular mechanisms of CDK11p110 in the proliferation and growth of breast cancer cells by determining the expression of CDK11p110 in breast tumor tissues and examining the phenotypic changes of breast cancer cells after CDK11p110 knockdown. We found that CDK11p110 was highly expressed in breast tumor tissues and cell lines. Tissue microarray analysis showed that elevated CDK11p110 expression in breast cancer tissues significantly correlated with poor differentiation, and was also associated with advanced TNM stage and poor clinical prognosis for breast cancer patients. In vitro knockdown of CDK11p110 by siRNA significantly inhibited cell growth and migration, and dramatically induced apoptosis in breast cancer cells. Flow cytometry demonstrated that cells were markedly arrested in G1 phase of the cell cycle after CDK11p110 downregulation. These findings suggest that CDK11p110 is critical for the proliferation and growth of breast cancer cells, which highlights CDK11p110 may be a promising therapeutic target for the treatment of breast cancer. PMID:25990212

  3. PUFA diets alter the microRNA expression profiles in an inflammation rat model

    PubMed Central

    ZHENG, ZHENG; GE, YINLIN; ZHANG, JINYU; XUE, MEILAN; LI, QUAN; LIN, DONGLIANG; MA, WENHUI

    2015-01-01

    Omega-3 and -6 polyunsaturated fatty acids (PUFAs) can directly or indirectly regulate immune homeostasis via inflammatory pathways, and components of these pathways are crucial targets of microRNAs (miRNAs). However, no study has examined the changes in the miRNA transcriptome during PUFA-regulated inflammatory processes. Here, we established PUFA diet-induced autoimmune-prone (AP) and autoimmune-averse (AA) rat models, and studied their physical characteristics and immune status. Additionally, miRNA expression patterns in the rat models were compared using microarray assays and bioinformatic methods. A total of 54 miRNAs were differentially expressed in common between the AP and the AA rats, and the changes in rno-miR-19b-3p, -146b-5p and -183-5p expression were validated using stem-loop reverse transcription-quantitative polymerase chain reaction. To better understand the mechanisms underlying PUFA-regulated miRNA changes during inflammation, computational algorithms and biological databases were used to identify the target genes of the three validated miRNAs. Furthermore, Gene Ontology (GO) term annotation and KEGG pathway analyses of the miRNA targets further allowed to explore the potential implication of the miRNAs in inflammatory pathways. The predicted PUFA-regulated inflammatory pathways included the Toll-like receptor (TLR), T cell receptor (TCR), NOD-like receptor (NLR), RIG-I-like receptor (RLR), mitogen-activated protein kinase (MAPK) and the transforming growth factor-β (TGF-β) pathway. This study is the first report, to the best of our knowledge, on in vivo comparative profiling of miRNA transcriptomes in PUFA diet-induced inflammatory rat models using a microarray approach. The results provide a useful resource for future investigation of the role of PUFA-regulated miRNAs in immune homeostasis. PMID:25672643

  4. Rapid modulation of gene expression profiles in the telencephalon of male goldfish following exposure to waterborne sex pheromones.

    PubMed

    Lado, Wudu E; Zhang, Dapeng; Mennigen, Jan A; Zamora, Jacob M; Popesku, Jason T; Trudeau, Vance L

    2013-10-01

    Sex pheromones rapidly affect endocrine physiology and behaviour, but little is known about their effects on gene expression in the neural tissues that mediate olfactory processing. In this study, we exposed male goldfish for 6h to waterborne 17,20βP (4.3 nM) and PGF2α (3 nM), the main pre-ovulatory and post-ovulatory pheromones, respectively. Both treatments elevated milt volume (P=0.001). Microarray analysis of male telencephalon following PGF2α treatment identified 71 unique transcripts that were differentially expressed (q<5%; 67 up, 4 down). Functional annotation of these regulated genes indicates that PGF2α pheromone exposure affects diverse biological processes including nervous system functions, energy metabolism, cholesterol/lipoprotein transport, translational regulation, transcription and chromatin remodelling, protein processing, cytoskeletal organization, and signalling. By using real-time RT-PCR, we further validated three candidate genes, ependymin-II, calmodulin-A and aldolase C, which exhibited 3-5-fold increase in expression following PGF2α exposure. Expression levels of some other genes that are thought to be important for reproduction were also determined using real-time RT-PCR. Expression of sGnRH was increased by PGF2α, but not 17,20βP, whereas cGnRH expression was increased by 17,20βP but not PGF2α. In contrast, both pheromones increase the expression of glutamate (GluR2a, NR2A) and γ-aminobutyric acid (GABAA γ2) receptor subunit mRNAs. Milt release and rapid modulation of neuronal transcription are part of the response of males to female sex pheromones. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Aqueous extracts and polysaccharides from Marshmallow roots (Althea officinalis L.): cellular internalisation and stimulation of cell physiology of human epithelial cells in vitro.

    PubMed

    Deters, Alexandra; Zippel, Janina; Hellenbrand, Nils; Pappai, Dirk; Possemeyer, Cathleen; Hensel, Andreas

    2010-01-08

    Aqueous extracts from the roots of Althea officinalis L. (Malvaceae) are widely used for treatment of irritated mucosa. The clinical proven effects are related to the presence of bioadhesive and mucilaginous polysaccharides from the rhamnogalacturonan type, leading to the physical formation of mucin-like on top of the irritated tissues. No data are available if the extracts or the polysaccharides from these extract exert an active influence on mucosal or connective tissue cells, in order to initiated changes in cell physiology, useful for better tissue regeneration. In vitro investigations of aqueous A. officinalis extract AE and raw polysaccharides (RPS) on epithelial KB cells and primary dermal human fibroblasts (pNHF) using WST1 vitality test and BrdU proliferation ELISA. Gene expression analysis by microarray from KB cells. Internalisation studies of polysaccharides were performed by laser scanning microscopy. AE (1, 10 microg/mL) had stimulating effect on cell viability and proliferation of epithelial KB cells. RPS (1, 10 microg/mL) stimulated cell vitality of epithelial cells significantly without triggering the cells into higher proliferation status. Neither AE nor RPS had any effect on fibroblasts. FITC-labeled RPS was shown to be internalised into epithelial cells, but not into fibroblasts. FITC-RPS was shown to form bioadhesive layers on the cell surface of dermal fibroblasts. Microarray analysis indicated an up-regulation of genes related to cell adhesion proteins, growth regulators, extracellular matrix, cytokine release and apoptosis. Aqueous extracts and polysaccharides from the roots of A. officinalis are effective stimulators of cell physiology of epithelial cells which can prove the traditional use of Marshmallow preparations for treatment of irritated mucous membranes within tissue regeneration. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  6. Comparative biomarker expression and RNA integrity in biospecimens derived from radical retropubic and robot-assisted laparoscopic prostatectomies.

    PubMed

    Ricciardelli, Carmela; Bianco-Miotto, Tina; Jindal, Shalini; Dodd, Thomas J; Cohen, Penelope A; Marshall, Villis R; Sutherland, Peter D; Samaratunga, Hemamali; Kench, James G; Dong, Ying; Wang, Hong; Clements, Judith A; Risbridger, Gail P; Sutherland, Robert L; Tilley, Wayne D; Horsfall, David J

    2010-07-01

    Knowledge of preanalytic conditions that biospecimens are subjected to is critically important because novel surgical procedures, tissue sampling, handling, and storage might affect biomarker expression or invalidate tissue samples as analytes for some technologies. We investigated differences in RNA quality, gene expression by quantitative real-time PCR, and immunoreactive protein expression of selected prostate cancer biomarkers between tissues from retropubic radical prostatectomy (RRP) and robot-assisted laparoscopic prostatectomy (RALP). Sections of tissue microarray of 23 RALP and 22 RRP samples were stained with antibodies to androgen receptor (AR) and prostate-specific antigen (PSA) as intersite controls, and 14 other candidate biomarkers of research interest to three laboratories within the Australian Prostate Cancer BioResource tissue banking network. Quantitative real-time PCR was done for AR, PSA (KLK3), KLK2, KLK4, and HIF1A on RNA extracted from five RALP and five RRP frozen tissue cores. No histologic differences were observed between RALP and RRP tissue. Biomarker staining grouped these samples into those with increased (PSA, CK8/18, CKHMW, KLK4), decreased (KLK2, KLK14), or no change in expression (AR, ghrelin, Ki67, PCNA, VEGF-C, PAR2, YB1, p63, versican, and chondroitin 0-sulfate) in RALP compared with RRP tissue. No difference in RNA quality or gene expression was detected between RALP and RRP tissue. Changes in biomarker expression between RALP and RRP tissue exist at the immunoreactive protein level, but the etiology is unclear. Future studies should account for changes in biomarker expression when using RALP tissues, and mixed cohorts of RALP and RRP tissue should be avoided.

  7. Elevated expression of CXC chemokines in pediatric osteosarcoma patients.

    PubMed

    Li, Yiting; Flores, Ricardo; Yu, Alexander; Okcu, M Fatih; Murray, Jeffrey; Chintagumpala, Murali; Hicks, John; Lau, Ching C; Man, Tsz-Kwong

    2011-01-01

    Osteosarcoma is the most common malignant bone tumor in children. Despite the advent of chemotherapy, the survival of osteosarcoma patients has not been significantly improved recently. Chemokines are a group of signaling molecules that have been implicated in tumorigenesis and metastasis. The authors used an antibody microarray to identify chemokines that were elevated in the plasma samples of osteosarcoma patients. The results were validated using enzyme-linked immunosorbent assays on an independent set of samples. The tumor expressions of 3 chemokines were examined in 2 sets of osteosarcoma tissue arrays. The authors also evaluated the proliferative effect of the chemokines in 4 osteosarcoma cell lines. The authors found that the plasma levels of CXCL4, CXCL6, and CXCL12 in the osteosarcoma patients were significantly higher than those in the controls, and the results were validated by an independent osteosarcoma cohort (P < .05). However, CXCL4 (100%) and CXCL6 (91%) were frequently expressed in osteosarcoma, whereas CXCL12 was only expressed in 4%. Survival analysis further showed that higher circulating levels of CXCL4 and CXCL6, but not CXCL12, were associated with a poorer outcome of osteosarcoma patients. Addition of exogenous chemokines significantly promoted the growth of different osteosarcoma cells (P < .05). The results demonstrate that CXCL4 and CXCL6 are frequently expressed in osteosarcoma, and that the plasma levels of these 2 chemokines are associated with patient outcomes. Further study of these circulating chemokines may provide a promising approach for prognostication of osteosarcoma. Targeting these chemokines or their receptors may also lead to a novel therapeutic invention. © 2010 American Cancer Society.

  8. High expression of fructose-bisphosphate aldolase A induces progression of renal cell carcinoma.

    PubMed

    Huang, Zhengkai; Hua, Yibo; Tian, Ye; Qin, Chao; Qian, Jian; Bao, Meiling; Liu, Yiyang; Wang, Shangqian; Cao, Qiang; Ju, Xiaobing; Wang, Zengjun; Gu, Min

    2018-06-01

    Aldolase A (fructose-bisphosphate aldolase A, ALDOA) is a glycolytic enzyme that catalyzes reversible conversion of fructose‑1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. ALDOA has been revealed to be related with many carcinomas, but its expression and function in renal cell carcinoma (RCC) remain unknown. This study aimed to detect expression of ALDOA in human RCC tissue samples and to explore its function in RCC cell lines. Reverse transcription-polymerase chain reaction was used to quantify ALDOA in human RCC samples. A total of 139 RCC tissue samples obtained after surgery were analyzed in tissue microarray for ALDOA immunohistochemistry-based protein expression. Assays for cell cycle, viability, migration, and invasion were performed to assess phenotypic changes in RCC cells after ALDOA knockdown by small interfering RNA-mediated gene silencing approach and ALDOA upregulation by overexpression plasmids. Western blot analysis was used to identify alterations in markers for epithelial-mesenchymal transition (EMT), which affects metastasis and the Wnt/β‑catenin signaling pathway that influences RCC cell growth. ALDOA was upregulated in RCC samples and RCC cell lines (P<0.01). Expression of ALDOA was significantly associated with metastasis (P=0.020) and survival (P=0.0341). Downregulation of ALDOA suppressed proliferation (P<0.05) by triggering G0/G1 cell cycle arrest (P<0.05) and also inhibited migration (P<0.05) and invasion (P<0.01). Upregulation of ALDOA promoted proliferation (P<0.05) and enhanced migration (P<0.001) and invasion (P<0.001). Low expression of ALDOA could reverse EMT and inactivate the Wnt/β‑catenin signaling pathway. Our data revealed that ALDOA functions as a tumor promoter, plays a prominent role in proliferation, migration, and invasion of RCC cells with high expression, and may promote EMT and activate the Wnt/β‑catenin signaling pathway.

  9. P110β Inhibition Reduces Histone H3K4 Di-Methylation in Prostate Cancer.

    PubMed

    Pang, Jun; Yang, Yue-Wu; Huang, Yiling; Yang, Jun; Zhang, Hao; Chen, Ruibao; Dong, Liang; Huang, Yan; Wang, Dongying; Liu, Jihong; Li, Benyi

    2017-02-01

    Epigenetic alteration plays a major role in the development and progression of human cancers, including prostate cancer. Histones are the key factors in modulating gene accessibility to transcription factors and post-translational modification of the histone N-terminal tail including methylation is associated with either transcriptional activation (H3K4me2) or repression (H3K9me3). Furthermore, phosphoinositide 3-kinase (PI3 K) signaling and the androgen receptor (AR) are the key determinants in prostate cancer development and progression. We recently showed that prostate-targeted nano-micelles loaded with PI3 K/p110beta specific inhibitor TGX221 blocked prostate cancer growth in vitro and in vivo. Our objective of this study was to determine the role of PI3 K signaling in histone methylation in prostate cancer, with emphasis on histone H3K4 methylation. PI3 K non-specific inhibitor LY294002 and p110beta-specific inhibitor TGX221 were used to block PI3 K/p110beta signaling. The global levels of H3K4 and H3K9 methylation in prostate cancer cells and tissue specimens were evaluated by Western blot assay and immunohistochemical staining. A synthetic androgen R1881 was used to stimulate AR activity in prostate cancer cells. A castration-resistant prostate cancer (CRPC) specific human tissue microarray (TMA) was used to assess the global levels of H3K4me2 methylation by immunostaining approach. Our data revealed that H3K4me2 levels were significantly elevated after androgen stimulation. With RNA silencing and pharmacology approaches, we further defined that inhibition of PI3 K/p110beta activity through gene-specific knocking down and small chemical inhibitor TGX221 abolished androgen-stimulated H3K4me2 methylation. Consistently, prostate cancer-targeted delivery of TGX221 in vivo dramatically reduced the global levels of H3K4me2 as assessed by immunohistochemical staining on tissue section of mouse xenografts from CRPC cell lines 22RV1 and C4-2. Finally, immunostaining data revealed a strong H3K4me2 immunosignal in CRPC tissues compared to primary tumors and benign prostate tissues. Taken together, our results suggest that PI3 K/p110beta-dependent signaling is involved in androgen-stimulated H3K4me2 methylation in prostate cancer, which might be used as a novel biomarker for disease prognosis and targeted therapy. Prostate 77:299-308, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Spatial analysis of biomineralization associated gene expression from the mantle organ of the pearl oyster Pinctada maxima

    PubMed Central

    2011-01-01

    Background Biomineralization is a process encompassing all mineral containing tissues produced within an organism. One of the most dynamic examples of this process is the formation of the mollusk shell, comprising a variety of crystal phases and microstructures. The organic component incorporated within the shell is said to dictate this architecture. However general understanding of how this process is achieved remains ambiguous. The mantle is a conserved organ involved in shell formation throughout molluscs. Specifically the mantle is thought to be responsible for secreting the protein component of the shell. This study employs molecular approaches to determine the spatial expression of genes within the mantle tissue to further the elucidation of the shell biomineralization. Results A microarray platform was custom generated (PmaxArray 1.0) from the pearl oyster Pinctada maxima. PmaxArray 1.0 consists of 4992 expressed sequence tags (ESTs) originating from mantle tissue. This microarray was used to analyze the spatial expression of ESTs throughout the mantle organ. The mantle was dissected into five discrete regions and analyzed for differential gene expression with PmaxArray 1.0. Over 2000 ESTs were determined to be differentially expressed among the tissue sections, identifying five major expression regions. In situ hybridization validated and further localized the expression for a subset of these ESTs. Comparative sequence similarity analysis of these ESTs revealed a number of the transcripts were novel while others showed significant sequence similarities to previously characterized shell related genes. Conclusions This investigation has mapped the spatial distribution for over 2000 ESTs present on PmaxArray 1.0 with reference to specific locations of the mantle. Expression profile clusters have indicated at least five unique functioning zones in the mantle. Three of these zones are likely involved in shell related activities including formation of nacre, periostracum and calcitic prismatic microstructure. A number of novel and known transcripts have been identified from these clusters. The development of PmaxArray 1.0, and the spatial map of its ESTs expression in the mantle has begun characterizing the molecular mechanisms linking the organics and inorganics of the molluscan shell. PMID:21936921

  11. Microarray Analysis Reveals Increased Expression of Matrix Metalloproteases and Cytokines of Interleukin-20 Subfamily in the Kidneys of Neonate Rats Underwent Unilateral Ureteral Obstruction: A Potential Role of IL-24 in the Regulation of Inflammation and Tissue Remodeling.

    PubMed

    Pap, Domonkos; Sziksz, Erna; Kiss, Zoltán; Rokonay, Réka; Veres-Székely, Apor; Lippai, Rita; Takács, István Márton; Kis, Éva; Fekete, Andrea; Reusz, György; Szabó, Attila J; Vannay, Adam

    2017-01-01

    Congenital obstructive nephropathy (CON) is the main cause of pediatric chronic kidney diseases leading to renal fibrosis. High morbidity and limited treatment opportunities of CON urge the better understanding of the underlying molecular mechanisms. To identify the differentially expressed genes, microarray analysis was performed on the kidney samples of neonatal rats underwent unilateral ureteral obstruction (UUO). Microarray results were then validated by real-time RT-PCR and bioinformatics analysis was carried out to identify the relevant genes, functional groups and pathways involved in the pathomechanism of CON. Renal expression of matrix metalloproteinase (MMP)-12 and interleukin (IL)-24 were evaluated by real-time RT-PCR, flow cytometry and immunohistochemical analysis. Effect of the main profibrotic factors on the expression of MMP-12 and IL-24 was investigated on HK-2 and HEK-293 cell lines. Finally, the effect of IL-24 treatment on the expression of pro-inflammatory cytokines and MMPs were tested in vitro. Microarray analysis revealed 880 transcripts showing >2.0-fold change following UUO, enriched mainly in immune response related processes. The most up-regulated genes were MMPs and members of IL-20 cytokine subfamily, including MMP-3, MMP-7, MMP-12, IL-19 and IL-24. We found that while TGF-β treatment inhibits the expression of MMP-12 and IL-24, H2O2 or PDGF-B treatment induce the epithelial expression of MMP-12. We demonstrated that IL-24 treatment decreases the expression of IL-6 and MMP-3 in the renal epithelial cells. This study provides an extensive view of UUO induced changes in the gene expression profile of the developing kidney and describes novel molecules, which may play significant role in the pathomechanism of CON. © 2017 The Author(s)Published by S. Karger AG, Basel.

  12. Developmentally Programmed 3′ CpG Island Methylation Confers Tissue- and Cell-Type-Specific Transcriptional Activation

    PubMed Central

    Yu, Da-Hai; Ware, Carol; Waterland, Robert A.; Zhang, Jiexin; Chen, Miao-Hsueh; Gadkari, Manasi; Kunde-Ramamoorthy, Govindarajan; Nosavanh, Lagina M.

    2013-01-01

    During development, a small but significant number of CpG islands (CGIs) become methylated. The timing of developmentally programmed CGI methylation and associated mechanisms of transcriptional regulation during cellular differentiation, however, remain poorly characterized. Here, we used genome-wide DNA methylation microarrays to identify epigenetic changes during human embryonic stem cell (hESC) differentiation. We discovered a group of CGIs associated with developmental genes that gain methylation after hESCs differentiate. Conversely, erasure of methylation was observed at the identified CGIs during subsequent reprogramming to induced pluripotent stem cells (iPSCs), further supporting a functional role for the CGI methylation. Both global gene expression profiling and quantitative reverse transcription-PCR (RT-PCR) validation indicated opposing effects of CGI methylation in transcriptional regulation during differentiation, with promoter CGI methylation repressing and 3′ CGI methylation activating transcription. By studying diverse human tissues and mouse models, we further confirmed that developmentally programmed 3′ CGI methylation confers tissue- and cell-type-specific gene activation in vivo. Importantly, luciferase reporter assays provided evidence that 3′ CGI methylation regulates transcriptional activation via a CTCF-dependent enhancer-blocking mechanism. These findings expand the classic view of mammalian CGI methylation as a mechanism for transcriptional silencing and indicate a functional role for 3′ CGI methylation in developmental gene regulation. PMID:23459939

  13. The Retinoblastoma Tumor Suppressor Regulates a Xenobiotic Detoxification Pathway

    PubMed Central

    Sáenz Robles, Maria Teresa; Case, Ashley; Chong, Jean-Leon; Leone, Gustavo; Pipas, James M.

    2011-01-01

    The retinoblastoma tumor suppressor (pRb) regulates cell cycle entry, progression and exit by controlling the activity of the E2F-family of transcription factors. During cell cycle exit pRb acts as a transcriptional repressor by associating with E2F proteins and thereby inhibiting their ability to stimulate the expression of genes required for S phase. Indeed, many tumors harbor mutations in the RB gene and the pRb-E2F pathway is compromised in nearly all types of cancers. In this report we show that both pRb and its interacting partners, the transcriptional factors E2F1-2-3, act as positive modulators of detoxification pathways important for metabolizing and clearing xenobiotics—such as toxins and drugs—from the body. Using a combination of conventional molecular biology techniques and microarray analysis of specific cell populations, we have analyzed the detoxification pathway in murine samples in the presence or absence of pRb and/or E2F1-2-3. In this report, we show that both pRb and E2F1-2-3 act as positive modulators of detoxification pathways in mice, challenging the conventional view of E2F1-2-3 as transcriptional repressors negatively regulated by pRb. These results suggest that mutations altering the pRb-E2F axis may have consequences beyond loss of cell cycle control by altering the ability of tissues to remove toxins and to properly metabolize anticancer drugs, and might help to understand the formation and progression rates of different types of cancer, as well as to better design appropriate therapies based on the particular genetic composition of the tumors. PMID:22022495

  14. Activity of the Monocarboxylate Transporter 1 inhibitor AZD3965 in Small Cell Lung Cancer

    PubMed Central

    Polański, Radosław; Hodgkinson, Cassandra L.; Fusi, Alberto; Nonaka, Daisuke; Priest, Lynsey; Kelly, Paul; Trapani, Francesca; Bishop, Paul W.; White, Anne; Critchlow, Susan E.; Smith, Paul D.; Blackhall, Fiona

    2013-01-01

    Purpose The monocarboxylate transporter 1 (MCT1) inhibitor AZD3965 is undergoing Phase I evaluation in the UK. AZD3965 is proposed, via lactate transport modulation, to kill tumor cells reliant on glycolysis. We investigated the therapeutic potential of AZD3965 in small cell lung cancer (SCLC) seeking rationale for clinical testing in this disease and putative predictive biomarkers for trial use. Experimental Design AZD3965 sensitivity was determined for 7 SCLC cell lines, in normoxia and hypoxia, and for a tumor xenograft model. Proof of mechanism was sought via changes in intracellular/tumor lactate. Expression of MCT1 and related transporter MCT4 were assessed by western blot. Drug resistance was investigated via MCT4 siRNAi and overexpression. The expression and clinical significance of MCT1 and MCT4 were explored in a tissue microarray from 78 SCLC patients. Results AZD3965 sensitivity varied in vitro and was highest in hypoxia. Resistance in hypoxia was associated with increased MCT4 expression. In vivo, AZD3965 reduced tumor growth and increased intra-tumor lactate. In the tissue microarray, high MCT1 expression was associated with worse prognosis (p=0.014). MCT1 and hypoxia marker CA IX expression in the absence of MCT4 was observed in 21% of SCLC tumors. Conclusions This study provides a rationale to test AZD3965 in SCLC patients. Our results suggest that patients with tumors expressing MCT1 and lacking in MCT4 are most likely to respond. PMID:24277449

  15. The concentration and distribution of 2,3,7,8-dibenzo-p-dioxins/-furans in chickens

    NASA Technical Reports Server (NTRS)

    Ferrario, J.; Byrne, C.

    2000-01-01

    The concentrations of the 2,3,7,8-Cl substituted dibenzo-p-dioxins/-furans (PCDDs/PCDFs) were determined in the edible tissues of whole chicken fryers and compared with the values found in their abdominal fat. The values are presented both on a whole weight basis and on a lipid adjusted basis for each tissue. While there is a marked difference in the concentration of the 2,3,7,8-dibenzo-p-dioxins in the edible tissues expressed on a whole weight basis, the lipid-adjusted concentrations of the individual dioxins were not statistically different in the various tissues. This validates the use of lipid adjusted concentrations of 2,3,7,8-PCDDs/PCDFs in abdominal fat for the determination of the presence of these compounds in different tissues.

  16. Identification of diagnostic markers in colorectal cancer via integrative epigenomics and genomics data

    PubMed Central

    KOK-SIN, TEOW; MOKHTAR, NORFILZA MOHD; HASSAN, NUR ZARINA ALI; SAGAP, ISMAIL; ROSE, ISA MOHAMED; HARUN, ROSLAN; JAMAL, RAHMAN

    2015-01-01

    Apart from genetic mutations, epigenetic alteration is a common phenomenon that contributes to neoplastic transformation in colorectal cancer. Transcriptional silencing of tumor-suppressor genes without changes in the DNA sequence is explained by the existence of promoter hypermethylation. To test this hypothesis, we integrated the epigenome and transcriptome data from a similar set of colorectal tissue samples. Methylation profiling was performed using the Illumina InfiniumHumanMethylation27 BeadChip on 55 paired cancer and adjacent normal epithelial cells. Fifteen of the 55 paired tissues were used for gene expression profiling using the Affymetrix GeneChip Human Gene 1.0 ST array. Validation was carried out on 150 colorectal tissues using the methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) technique. PCA and supervised hierarchical clustering in the two microarray datasets showed good separation between cancer and normal samples. Significant genes from the two analyses were obtained based on a ≥2-fold change and a false discovery rate (FDR) P-value of <0.05. We identified 1,081 differentially hypermethylated CpG sites and 36 hypomethylated CpG sites. We also found 709 upregulated and 699 downregulated genes from the gene expression profiling. A comparison of the two datasets revealed 32 overlapping genes with 27 being hypermethylated with downregulated expression and 4 hypermethylated with upregulated expression. One gene was found to be hypomethylated and downregulated. The most enriched molecular pathway identified was cell adhesion molecules that involved 4 overlapped genes, JAM2, NCAM1, ITGA8 and CNTN1. In the present study, we successfully identified a group of genes that showed methylation and gene expression changes in well-defined colorectal cancer tissues with high purity. The integrated analysis gives additional insight regarding the regulation of colorectal cancer-associated genes and their underlying mechanisms that contribute to colorectal carcinogenesis. PMID:25997610

  17. FC-99 ameliorates sepsis-induced liver dysfunction by modulating monocyte/macrophage differentiation via Let-7a related monocytes apoptosis.

    PubMed

    Zhao, Yarong; Zhu, Haiyan; Wang, Haining; Ding, Liang; Xu, Lizhi; Chen, Dai; Shen, Sunan; Hou, Yayi; Dou, Huan

    2018-03-13

    The liver is a vital target for sepsis-related injury, leading to inflammatory pathogenesis, multiple organ dysfunction and high mortality rates. Monocyte-derived macrophage transformations are key events in hepatic inflammation. N 1 -[(4-methoxy)methyl]-4-methyl-1,2-benzenediamine (FC-99) previously displayed therapeutic potential on experimental sepsis. However, the underlying mechanism of this protective effect is still not clear. FC-99 treatment attenuated the liver dysfunction in septic mice that was accompanied with reduced numbers of pro-inflammatory Ly6C hi monocytes in the peripheral blood and CD11b + F4/80 lo monocyte-derived macrophages in the liver. These effects were attributed to the FC-99-induced apoptosis of CD11b + cells. In PMA-differentiated THP-1 cells, FC-99 repressed the expression of CD11b, CD14 and caspase3 and resulted in a high proportion of Annexin V + cells. Moreover, let-7a-5p expression was abrogated upon CLP stimulation in vivo , whereas it was restored by FC-99 treatment. TargetScan analysis and luciferase assays indicated that the anti-apoptotic protein BCL-XL was targeted by let-7a-5p. BCL-XL was inhibited by FC-99 in order to induce monocyte apoptosis, leading to the impaired monocyte-to-macrophage differentiation. Murine acute liver failure was generated by caecal ligation puncture surgery after FC-99 administration; Blood samples and liver tissues were collected to determine the monocyte/macrophage subsets and the induction of apoptosis. Human acute monocytic leukemia cell line (THP-1) cells were pretreated with FC-99 followed by phorbol-12-myristate-13-acetate (PMA) stimulation, in order to induce monocyte-to-macrophage differentiation. The target of FC-99 and the mechanistic analyses were conducted by microarrays, qRT-PCR validation, TargetScan algorithms and a luciferase report assay. FC-99 exhibits potential therapeutic effects on CLP-induced liver dysfunction by restoring let-7a-5p levels.

  18. Determination of Minimum Training Sample Size for Microarray-Based Cancer Outcome Prediction–An Empirical Assessment

    PubMed Central

    Cheng, Ningtao; Wu, Leihong; Cheng, Yiyu

    2013-01-01

    The promise of microarray technology in providing prediction classifiers for cancer outcome estimation has been confirmed by a number of demonstrable successes. However, the reliability of prediction results relies heavily on the accuracy of statistical parameters involved in classifiers. It cannot be reliably estimated with only a small number of training samples. Therefore, it is of vital importance to determine the minimum number of training samples and to ensure the clinical value of microarrays in cancer outcome prediction. We evaluated the impact of training sample size on model performance extensively based on 3 large-scale cancer microarray datasets provided by the second phase of MicroArray Quality Control project (MAQC-II). An SSNR-based (scale of signal-to-noise ratio) protocol was proposed in this study for minimum training sample size determination. External validation results based on another 3 cancer datasets confirmed that the SSNR-based approach could not only determine the minimum number of training samples efficiently, but also provide a valuable strategy for estimating the underlying performance of classifiers in advance. Once translated into clinical routine applications, the SSNR-based protocol would provide great convenience in microarray-based cancer outcome prediction in improving classifier reliability. PMID:23861920

  19. The Development of Translational Biomarkers as a Tool for Improving the Understanding, Diagnosis and Treatment of Chronic Neuropathic Pain.

    PubMed

    Buckley, David A; Jennings, Elaine M; Burke, Nikita N; Roche, Michelle; McInerney, Veronica; Wren, Jonathan D; Finn, David P; McHugh, Patrick C

    2018-03-01

    Chronic neuropathic pain (CNP) is one of the most significant unmet clinical needs in modern medicine. Alongside the lack of effective treatments, there is a great deficit in the availability of objective diagnostic methods to reliably facilitate an accurate diagnosis. We therefore aimed to determine the feasibility of a simple diagnostic test by analysing differentially expressed genes in the blood of patients diagnosed with CNP of the lower back and compared to healthy human controls. Refinement of microarray expression data was performed using correlation analysis with 3900 human 2-colour microarray experiments. Selected genes were analysed in the dorsal horn of Sprague-Dawley rats after L5 spinal nerve ligation (SNL), using qRT-PCR and ddPCR, to determine possible associations with pathophysiological mechanisms underpinning CNP and whether they represent translational biomarkers of CNP. We found that of the 15 potential biomarkers identified, tissue inhibitor of matrix metalloproteinase-1 (TIMP1) gene expression was upregulated in chronic neuropathic lower back pain (CNBP) (p = 0.0049) which positively correlated (R = 0.68, p = ≤0.05) with increased plasma TIMP1 levels in this group (p = 0.0433). Moreover, plasma TIMP1 was also significantly upregulated in CNBP than chronic inflammatory lower back pain (p = 0.0272). In the SNL model, upregulation of the Timp1 gene was also observed (p = 0.0058) alongside a strong trend for the upregulation of melanocortin 1 receptor (p = 0.0847). Our data therefore highlights several genes that warrant further investigation, and of these, TIMP1 shows the greatest potential as an accessible and translational CNP biomarker.

  20. Development of a 3D bone marrow adipose tissue model.

    PubMed

    Fairfield, Heather; Falank, Carolyne; Farrell, Mariah; Vary, Calvin; Boucher, Joshua M; Driscoll, Heather; Liaw, Lucy; Rosen, Clifford J; Reagan, Michaela R

    2018-01-26

    Over the past twenty years, evidence has accumulated that biochemically and spatially defined networks of extracellular matrix, cellular components, and interactions dictate cellular differentiation, proliferation, and function in a variety of tissue and diseases. Modeling in vivo systems in vitro has been undeniably necessary, but when simplified 2D conditions rather than 3D in vitro models are used, the reliability and usefulness of the data derived from these models decreases. Thus, there is a pressing need to develop and validate reliable in vitro models to reproduce specific tissue-like structures and mimic functions and responses of cells in a more realistic manner for both drug screening/disease modeling and tissue regeneration applications. In adipose biology and cancer research, these models serve as physiologically relevant 3D platforms to bridge the divide between 2D cultures and in vivo models, bringing about more reliable and translationally useful data to accelerate benchtop to bedside research. Currently, no model has been developed for bone marrow adipose tissue (BMAT), a novel adipose depot that has previously been overlooked as "filler tissue" but has more recently been recognized as endocrine-signaling and systemically relevant. Herein we describe the development of the first 3D, BMAT model derived from either human or mouse bone marrow (BM) mesenchymal stromal cells (MSCs). We found that BMAT models can be stably cultured for at least 3 months in vitro, and that myeloma cells (5TGM1, OPM2 and MM1S cells) can be cultured on these for at least 2 weeks. Upon tumor cell co-culture, delipidation occurred in BMAT adipocytes, suggesting a bidirectional relationship between these two important cell types in the malignant BM niche. Overall, our studies suggest that 3D BMAT represents a "healthier," more realistic tissue model that may be useful for elucidating the effects of MAT on tumor cells, and tumor cells on MAT, to identify novel therapeutic targets. In addition, proteomic characterization as well as microarray data (expression of >22,000 genes) coupled with KEGG pathway analysis and gene set expression analysis (GSEA) supported our development of less-inflammatory 3D BMAT compared to 2D culture. In sum, we developed the first 3D, tissue-engineered bone marrow adipose tissue model, which is a versatile, novel model that can be used to study numerous diseases and biological processes involved with the bone marrow. Copyright © 2018. Published by Elsevier Inc.

Top