Sample records for p38 mapk-mediated pathway

  1. Rosiglitazone attenuates NF-{kappa}B-dependent ICAM-1 and TNF-{alpha} production caused by homocysteine via inhibiting ERK{sub 1/2}/p38MAPK activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Yong-Ping; Liu, Yu-Hui; Chen, Jia

    2007-08-17

    Previous studies demonstrated an important interaction between nuclear factor-kappaB (NF-{kappa}B) activation and homocysteine (Hcy)-induced cytokines expression in endothelial cells and vascular smooth muscle cells. However, the underlying mechanism remains illusive. In this study, we investigated the effects of Hcy on NF-{kappa}B-mediated sICAM-1, TNF-{alpha} production and the possible involvement of ERK{sub 1/2}/p38MAPK pathway. The effects of rosiglitazone intervention were also examined. Our results show that Hcy increased the levels of sICAM-1 and TNF-{alpha} in cultured human umbilical vein endothelial cells (HUVECs) in a time- and concentration-dependent manner. This effect was significantly depressed by rosiglitazone and different inhibitors (PDTC, NF-{kappa}B inhibitor; PD98059,more » MEK inhibitor; SB203580, p38MAPK specific inhibitor; and staurosporine, PKC inhibitor). Next, we investigated the effect of Hcy on ERK{sub 1/2}/p38MAPK pathway and NF-{kappa}B activity in HUVECs. The results show that Hcy activated both ERK{sub 1/2}/p38MAPK pathway and NF-{kappa}B-DNA-binding activity. These effects were markedly inhibited by rosiglitazone as well as other inhibitors (SB203580, PD98059, and PDTC). Further, the pretreatment of staurosporine abrogated ERK{sub 1/2}/p38MAPK phosphorylation, suggesting that Hcy-induced ERK{sub 1/2}/p38MAPK activation is associated with PKC activity. Our results provide evidence that Hcy-induced NF-{kappa}B activation was mediated by activation of ERK{sub 1/2}/p38MAPK pathway involving PKC activity. Rosiglitazone reduces the NF-{kappa}B-mediated sICAM-1 and TNF-{alpha} production induced by Hcy via inhibition of ERK{sub 1/2}/p38MAPK pa0011thw.« less

  2. A role for protein phosphatase-2A in p38 mitogen-activated protein kinase-mediated regulation of the c-Jun NH(2)-terminal kinase pathway in human neutrophils.

    PubMed

    Avdi, Natalie J; Malcolm, Kenneth C; Nick, Jerry A; Worthen, G Scott

    2002-10-25

    Human neutrophil accumulation in inflammatory foci is essential for the effective control of microbial infections. Although exposure of neutrophils to cytokines such as tumor necrosis factor-alpha (TNFalpha), generated at sites of inflammation, leads to activation of MAPK pathways, mechanisms responsible for the fine regulation of specific MAPK modules remain unknown. We have previously demonstrated activation of a TNFalpha-mediated JNK pathway module, leading to apoptosis in adherent human neutrophils (Avdi, N. J., Nick, J. A., Whitlock, B. B., Billstrom, M. A., Henson, P. M., Johnson, G. L., and Worthen, G. S. (2001) J. Biol. Chem. 276, 2189-2199). Herein, evidence is presented linking regulation of the JNK pathway to p38 MAPK and the Ser/Thr protein phosphatase-2A (PP2A). Inhibition of p38 MAPK by SB 203580 and M 39 resulted in significant augmentation of TNFalpha-induced JNK and MKK4 (but not MKK7 or MEKK1) activation, whereas prior exposure to a p38-activating agent (platelet-activating factor) diminished the TNFalpha-induced JNK response. TNFalpha-induced apoptosis was also greatly enhanced upon p38 inhibition. Studies with a reconstituted cell-free system indicated the absence of a direct inhibitory effect of p38 MAPK on the JNK module. Neutrophil exposure to the Ser/Thr phosphatase inhibitors okadaic acid and calyculin A induced JNK activation. Increased phosphatase activity following TNFalpha stimulation was shown to be PP2A-associated and p38-dependent. Furthermore, PP2A-induced dephosphorylation of MKK4 resulted in its inactivation. Thus, in neutrophils, p38 MAPK, through a PP2A-mediated mechanism, regulates the JNK pathway, thus determining the extent and nature of subsequent responses such as apoptosis.

  3. PKCalpha-mediated ERK, JNK and p38 activation regulates the myogenic program in human rhabdomyosarcoma cells.

    PubMed

    Mauro, Annunziata; Ciccarelli, Carmela; De Cesaris, Paola; Scoglio, Arianna; Bouché, Marina; Molinaro, Mario; Aquino, Angelo; Zani, Bianca Maria

    2002-09-15

    We have previously suggested that PKCalpha has a role in 12-O-Tetradecanoylphorbol-13-acetate (TPA)-mediated growth arrest and myogenic differentiation in human embryonal rhabdomyosarcoma cells (RD). Here, by monitoring the signalling pathways triggered by TPA, we demonstrate that PKCalpha mediates these effects by inducing transient activation of c-Jun N-terminal protein kinases (JNKs) and sustained activation of both p38 kinase and extracellular signal-regulated kinases (ERKs) (all referred to as MAPKs). Activation of MAPKs following ectopic expression of constitutively active PKCalpha, but not its dominant-negative form, is also demonstrated. We investigated the selective contribution of MAPKs to growth arrest and myogenic differentiation by monitoring the activation of MAPK pathways, as well as by dissecting MAPK pathways using MEK1/2 inhibitor (UO126), p38 inhibitor (SB203580) and JNK and p38 agonist (anisomycin) treatments. Growth-arresting signals are triggered either by transient and sustained JNK activation (by TPA and anisomycin, respectively) or by preventing both ERK and JNK activation (UO126) and are maintained, rather than induced, by p38. We therefore suggest a key role for JNK in controlling ERK-mediated mitogenic activity. Notably, sarcomeric myosin expression is induced by both TPA and UO126 but is abrogated by the p38 inhibitor. This finding indicates a pivotal role for p38 in controlling the myogenic program. Anisomycin persistently activates p38 and JNKs but prevents myosin expression induced by TPA. In accordance with this negative role, reactivation of JNKs by anisomycin, in UO126-pre-treated cells, also prevents myosin expression. This indicates that, unlike the transient JNK activation that occurs in the TPA-mediated myogenic process, long-lasting JNK activation supports the growth-arrest state but antagonises p38-mediated myosin expression. Lastly, our results with the MEK inhibitor suggest a key role of the ERK pathway in regulating myogenic-related morphology in differentiated RD cells.

  4. Chk1 inhibition activates p53 through p38 MAPK in tetraploid cancer cells.

    PubMed

    Vitale, Ilio; Senovilla, Laura; Galluzzi, Lorenzo; Criollo, Alfredo; Vivet, Sonia; Castedo, Maria; Kroemer, Guido

    2008-07-01

    We have previously shown that tetraploid cancer cells succumb through a p53-dependent apoptotic pathway when checkpoint kinase 1 (Chk1) is depleted by small interfering RNAs (siRNAs) or inhibited with 7-hydroxystaurosporine (UCN-01). Here, we demonstrate that Chk1 inhibition results in the activating phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Depletion of p38 MAPK by transfection with a siRNA targeting the alpha isoform of p38 MAPK (p38alpha MAPK) abolishes the phosphorylation of p53 on serines 15 and 46 that is induced by Chk1 knockdown. The siRNA-mediated downregulation and pharmacological inhibition of p38alpha MAPK (with SB 203580) also reduces cell death induced by Chk1 knockdown or UCN-01. These results underscore the role of p38 MAPK as a pro-apoptotic kinase in the p53-dependant pathway for the therapeutic elimination of polyploidy cells.

  5. Mechanism of salutary effects of melatonin-mediated liver protection after trauma-hemorrhage: p38 MAPK-dependent iNOS/HIF-1α pathway.

    PubMed

    Hsu, Jun-Te; Le, Puo-Hsien; Lin, Chun-Jung; Chen, Tsung-Hsing; Kuo, Chia-Jung; Chiang, Kun-Chun; Yeh, Ta-Sen

    2017-05-01

    Although melatonin attenuates the increases in inflammatory mediators and reduces organ injury during trauma-hemorrhage, the mechanisms remain unclear. This study explored whether melatonin prevents liver injury after trauma-hemorrhage through the p38 mitogen-activated protein kinase (MAPK)-dependent, inducible nitrite oxide (iNOS)/hypoxia-inducible factor (HIF)-1α pathway. After a 5-cm midline laparotomy, male rats underwent hemorrhagic shock (mean blood pressure ~40 mmHg for 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, melatonin (2 mg/kg), melatonin plus p38 MAPK inhibitor SB203580 (2 mg/kg), or melatonin plus the melatonin receptor antagonist luzindole (2.5 mg/kg). At 2 h after trauma-hemorrhage, histopathology score of liver injury, liver tissue myeloperoxidase activity, malondialdehyde, adenosine triphosphate, serum alanine aminotransferase, and asparate aminotransferase levels were significantly increased compared with sham-operated control. Trauma-hemorrhage resulted in a significant decrease in the p38 MAPK activation compared with that in the sham-treated animals. Administration of melatonin after trauma-hemorrhage normalized liver p38 MAPK phosphorylation and iNOS and HIF-1α expression and attenuated cleaved caspase 3 and receptor interacting protein kinase-1 levels. Coadministration of SB203580 or luzindole abolished the melatonin-mediated attenuation of the trauma-hemorrhage-induced increase of iNOS/HIF-1α protein expression and liver injury markers. Taken together, our results suggest that melatonin prevents trauma-hemorrhage-induced liver injury in rats, at least in part, through melatonin receptor-related, p38 MAPK-dependent iNOS/HIF-1α pathway. NEW & NOTEWORTHY Trauma-hemorrhage resulted in a significant decrease in liver p38 MAPK activation and increase in nitrite oxide synthase (iNOS) and hypoxia-inducible factor (HIF)-1α expression. Administration of melatonin after trauma-hemorrhage normalized liver p38 MAPK phosphorylation and iNOS and HIF-1α expression, which was abolished by coadministration of SB203580 or luzindole. Melatonin prevents trauma-hemorrhage-induced liver injury in rats via the melatonin receptor-related, p38 MAPK-dependent iNOS/HIF-1α pathway. Copyright © 2017 the American Physiological Society.

  6. Activation of p38 MAPK-regulated Bcl-xL signaling increases survival against zoledronic acid-induced apoptosis in osteoclast precursors.

    PubMed

    Tai, Ta-Wei; Su, Fong-Chin; Chen, Ching-Yu; Jou, I-Ming; Lin, Chiou-Feng

    2014-10-01

    The nitrogen-containing bisphosphonate zoledronic acid (ZA) induces apoptosis in osteoclasts and inhibits osteoclast-mediated bone resorption. It is widely used to treat osteoporosis. However, some patients are less responsive to ZA treatment, and the mechanisms of resistance are still unclear. Here, we identified that murine osteoclast precursors may develop resistance to ZA-induced apoptosis. These resistant cells survived the apoptotic effect of ZA following an increase in anti-apoptotic Bcl-xL. Pharmacologically inhibiting Bcl-xL facilitated ZA-induced apoptosis. Treatment with ZA activated p38 MAPK, increasing Bcl-xL expression and cell survival. Nuclear import of β-catenin regulated by p38 MAPK determined Bcl-xL mRNA expression and cell survival in response to ZA. ZA also inactivated glycogen synthase kinase (GSK)-3β, a negative upstream regulator of β-catenin, in a p38 MAPK-mediated manner. Synergistic pharmacological inhibition of p38 MAPK with ZA attenuated receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation and facilitated ZA-induced apoptosis. These results demonstrate that elevated Bcl-xL expression mediated by p38 MAPK-regulated GSK-3β/β-catenin signaling is required for cell survival of ZA-induced apoptosis in both osteoclast precursors and osteoclasts. Finally, we demonstrated that inhibiting p38 MAPK-mediated pathway enhanced ZA effect on increasing the bone mineral density of ovariectomized mice. This result suggests that targeting these pathways may represent a potential therapeutic strategy. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Power Frequency Magnetic Fields Affect the p38 MAPK-Mediated Regulation of NB69 Cell Proliferation Implication of Free Radicals.

    PubMed

    Martínez, María Antonia; Úbeda, Alejandro; Moreno, Jorge; Trillo, María Ángeles

    2016-04-06

    The proliferative response of the neuroblastoma line NB69 to a 100 µT, 50 Hz magnetic field (MF) has been shown mediated by activation of the MAPK-ERK1/2 pathway. This work investigates the MF effect on the cell cycle of NB69, the participation of p38 and c-Jun N-terminal (JNK) kinases in the field-induced proliferative response and the potential involvement of reactive oxygen species (ROS) in the activation of the MAPK-ERK1/2 and -p38 signaling pathways. NB69 cultures were exposed to the 100 µT MF, either intermittently for 24, 42 or 63 h, or continuously for periods of 15 to 120 min, in the presence or absence of p38 or JNK inhibitors: SB203580 and SP600125, respectively. Antioxidant N-acetylcysteine (NAC) was used as ROS scavenger. Field exposure induced transient activation of p38, JNK and ERK1/2. The MF proliferative effect, which was mediated by changes in the cell cycle, was blocked by the p38 inhibitor, but not by the JNK inhibitor. NAC blocked the field effects on cell proliferation and p38 activation, but not those on ERK1/2 activation. The MF-induced proliferative effects are exerted through sequential upregulation of MAPK-p38 and -ERK1/2 activation, and they are likely mediated by a ROS-dependent activation of p38.

  8. Power Frequency Magnetic Fields Affect the p38 MAPK-Mediated Regulation of NB69 Cell Proliferation Implication of Free Radicals

    PubMed Central

    Martínez, María Antonia; Úbeda, Alejandro; Moreno, Jorge; Trillo, María Ángeles

    2016-01-01

    The proliferative response of the neuroblastoma line NB69 to a 100 µT, 50 Hz magnetic field (MF) has been shown mediated by activation of the MAPK-ERK1/2 pathway. This work investigates the MF effect on the cell cycle of NB69, the participation of p38 and c-Jun N-terminal (JNK) kinases in the field-induced proliferative response and the potential involvement of reactive oxygen species (ROS) in the activation of the MAPK-ERK1/2 and -p38 signaling pathways. NB69 cultures were exposed to the 100 µT MF, either intermittently for 24, 42 or 63 h, or continuously for periods of 15 to 120 min, in the presence or absence of p38 or JNK inhibitors: SB203580 and SP600125, respectively. Antioxidant N-acetylcysteine (NAC) was used as ROS scavenger. Field exposure induced transient activation of p38, JNK and ERK1/2. The MF proliferative effect, which was mediated by changes in the cell cycle, was blocked by the p38 inhibitor, but not by the JNK inhibitor. NAC blocked the field effects on cell proliferation and p38 activation, but not those on ERK1/2 activation. The MF-induced proliferative effects are exerted through sequential upregulation of MAPK-p38 and -ERK1/2 activation, and they are likely mediated by a ROS-dependent activation of p38. PMID:27058530

  9. p38 MAPK Signaling in Pemphigus: Implications for Skin Autoimmunity

    PubMed Central

    Mavropoulos, Athanasios; Orfanidou, Timoklia; Liaskos, Christos; Smyk, Daniel S.; Spyrou, Vassiliki; Sakkas, Lazaros I.; Rigopoulou, Eirini I.; Bogdanos, Dimitrios P.

    2013-01-01

    p38 mitogen activated protein kinase (p38 MAPK) signaling plays a major role in the modulation of immune-mediated inflammatory responses and therefore has been linked with several autoimmune diseases. The extent of the involvement of p38 MAPK in the pathogenesis of autoimmune blistering diseases has started to emerge, but whether it pays a critical role is a matter of debate. The activity of p38 MAPK has been studied in great detail during the loss of keratinocyte cell-cell adhesions and the development of pemphigus vulgaris (PV) and pemphigus foliaceus (PF). These diseases are characterised by autoantibodies targeting desmogleins (Dsg). Whether autoantibody-antigen interactions can trigger signaling pathways (such as p38 MAPK) that are tightly linked to the secretion of inflammatory mediators which may perpetuate inflammation and tissue damage in pemphigus remains unclear. Yet, the ability of p38 MAPK inhibitors to block activation of the proapoptotic proteinase caspase-3 suggests that the induction of apoptosis may be a consequence of p38 MAPK activation during acantholysis in PV. This review discusses the current evidence for the role of p38 MAPK in the pathogenesis of pemphigus. We will also present data relating to the targeting of these cascades as a means of therapeutic intervention. PMID:23936634

  10. Dual p38/JNK Mitogen Activated Protein Kinase Inhibitors Prevent Ozone-Induced Airway Hyperreactivity in Guinea Pigs

    PubMed Central

    Verhein, Kirsten C.; Salituro, Francesco G.; Ledeboer, Mark W.; Fryer, Allison D.; Jacoby, David B.

    2013-01-01

    Ozone exposure causes airway hyperreactivity and increases hospitalizations resulting from pulmonary complications. Ozone reacts with the epithelial lining fluid and airway epithelium to produce reactive oxygen species and lipid peroxidation products, which then activate cell signaling pathways, including the mitogen activated protein kinase (MAPK) pathway. Both p38 and c-Jun NH2 terminal kinase (JNK) are MAPK family members that are activated by cellular stress and inflammation. To test the contribution of both p38 and JNK MAPK to ozone-induced airway hyperreactivity, guinea pigs were pretreated with dual p38 and JNK MAPK inhibitors (30 mg/kg, ip) 60 minutes before exposure to 2 ppm ozone or filtered air for 4 hours. One day later airway reactivity was measured in anesthetized animals. Ozone caused airway hyperreactivity one day post-exposure, and blocking p38 and JNK MAPK completely prevented ozone-induced airway hyperreactivity. Blocking p38 and JNK MAPK also suppressed parasympathetic nerve activity in air exposed animals, suggesting p38 and JNK MAPK contribute to acetylcholine release by airway parasympathetic nerves. Ozone inhibited neuronal M2 muscarinic receptors and blocking both p38 and JNK prevented M2 receptor dysfunction. Neutrophil influx into bronchoalveolar lavage was not affected by MAPK inhibitors. Thus p38 and JNK MAPK mediate ozone-induced airway hyperreactivity through multiple mechanisms including prevention of neuronal M2 receptor dysfunction. PMID:24058677

  11. Activation of the AMP-activated protein kinase-p38 MAP kinase pathway mediates apoptosis induced by conjugated linoleic acid in p53-mutant mouse mammary tumor cells.

    PubMed

    Hsu, Yung-Chung; Meng, Xiaojing; Ou, Lihui; Ip, Margot M

    2010-04-01

    Conjugated linoleic acid (CLA) inhibits tumorigenesis and tumor growth in most model systems, an effect mediated in part by its pro-apoptotic activity. We previously showed that trans-10,cis-12 CLA induced apoptosis of p53-mutant TM4t mouse mammary tumor cells through both mitochondrial and endoplasmic reticulum stress pathways. In the current study, we investigated the role of AMP-activated protein kinase (AMPK), a key player in fatty acid metabolism, in CLA-induced apoptosis in TM4t cells. We found that t10,c12-CLA increased phosphorylation of AMPK, and that CLA-induced apoptosis was enhanced by the AMPK agonist 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and inhibited by the AMPK inhibitor compound C. The increased AMPK activity was not due to nutrient/energy depletion since ATP levels did not change in CLA-treated cells, and knockdown of the upstream kinase LKB1 did not affect its activity. Furthermore, our data do not demonstrate a role for the AMPK-modulated mTOR pathway in CLA-induced apoptosis. Although CLA decreased mTOR levels, activity was only modestly decreased. Moreover, rapamycin, which completely blocked the activity of mTORC1 and mTORC2, did not induce apoptosis, and attenuated rather than enhanced CLA-induced apoptosis. Instead, the data suggest that CLA-induced apoptosis is mediated by the AMPK-p38 MAPK-Bim pathway: CLA-induced phosphorylation of AMPK and p38 MAPK, and increased expression of Bim, occurred with a similar time course as apoptosis; phosphorylation of p38 MAPK was blocked by compound C; the increased Bim expression was blocked by p38 MAPK siRNA; CLA-induced apoptosis was attenuated by the p38 inhibitor SB-203580 and by siRNAs directed against p38 MAPK or Bim. Copyright 2009 Elsevier Inc. All rights reserved.

  12. p38 Mitogen Activated Protein Kinase (MAPK): A New Therapeutic Target for Reducing the Risk of Adverse Pregnancy Outcomes

    PubMed Central

    Menon, Ramkumar; Papaconstantinou, John

    2016-01-01

    Introduction Spontaneous preterm birth (PTB) and preterm premature rupture of the membranes (pPROM) remain as a major clinical and therapeutic problem for intervention and management. Current strategies, based on our knowledge of pathways of preterm labor, have only been effective, in part, due to major gaps in our existing knowledge of risks and risk specific pathways. Areas covered Recent literature has identified physiologic aging of fetal tissues as a potential mechanistic feature of normal parturition. This process is affected by telomere dependent and p38 mitogen activated protein kinase (MAPK) induced senescence activation. Pregnancy associated risk factors can cause pathologic activation of this pathway that can cause oxidative stress induced p38 MAPK activation leading to senescence and premature aging of fetal tissues. Premature aging is associated with sterile inflammation capable of triggering preterm labor or preterm premature rupture of membranes. Preterm activation of p38MAPK can be considered as a key contributor to adverse pregnancies. Expert Opinion This review considers p38MAPK activation as a potential target for therapeutic interventions to prevent adverse pregnancy outcomes mediated by stress factors. In this review, we propose multiple strategies to prevent p38MAPK activation and its functional effects. PMID:27459026

  13. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jiamin

    Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 andmore » P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. - Highlights: • Arsenic trioxide exposure induced expression of IL-β in HAPI microglia. • Arsenic trioxide exposure induced activation of MAPK pathways in HAPI microglia. • Arsenic trioxide exposure induced activation of STAT3 pathways in HAPI microglia. • The expression of IL-β though P38/JNK MAPK/STAT3 pathways in HAPI microglia.« less

  14. The reversal of pulmonary vascular remodeling through inhibition of p38 MAPK-alpha: a potential novel anti-inflammatory strategy in pulmonary hypertension

    PubMed Central

    Martin, Damien H.; Wadsworth, Roger; Bryson, Gareth; Fisher, Andrew J.; Welsh, David J.; Peacock, Andrew J.

    2015-01-01

    The p38 mitogen-activated protein kinase (MAPK) system is increasingly recognized as an important inflammatory pathway in systemic vascular disease but its role in pulmonary vascular disease is unclear. Previous in vitro studies suggest p38 MAPKα is critical in the proliferation of pulmonary artery fibroblasts, an important step in the pathogenesis of pulmonary vascular remodeling (PVremod). In this study the role of the p38 MAPK pathway was investigated in both in vitro and in vivo models of pulmonary hypertension and human disease. Pharmacological inhibition of p38 MAPKα in both chronic hypoxic and monocrotaline rodent models of pulmonary hypertension prevented and reversed the pulmonary hypertensive phenotype. Furthermore, with the use of a novel and clinically available p38 MAPKα antagonist, reversal of pulmonary hypertension was obtained in both experimental models. Increased expression of phosphorylated p38 MAPK and p38 MAPKα was observed in the pulmonary vasculature from patients with idiopathic pulmonary arterial hypertension, suggesting a role for activation of this pathway in the PVremod A reduction of IL-6 levels in serum and lung tissue was found in the drug-treated animals, suggesting a potential mechanism for this reversal in PVremod. This study suggests that the p38 MAPK and the α-isoform plays a pathogenic role in both human disease and rodent models of pulmonary hypertension potentially mediated through IL-6. Selective inhibition of this pathway may provide a novel therapeutic approach that targets both remodeling and inflammatory pathways in pulmonary vascular disease. PMID:26024891

  15. The p38 mitogen activated protein kinase regulates β-amyloid protein internalization through the α7 nicotinic acetylcholine receptor in mouse brain.

    PubMed

    Ma, Kai-Ge; Lv, Jia; Yang, Wei-Na; Chang, Ke-Wei; Hu, Xiao-Dan; Shi, Li-Li; Zhai, Wan-Ying; Zong, Hang-Fan; Qian, Yi-Hua

    2018-03-01

    Alzheimer's disease (AD) is one of the most devastating neurodegenerative disorders. Intracellular β-amyloid protein (Aβ) is an early event in AD. It induces the formation of amyloid plaques and neuron damage. The α7 nicotinic acetylcholine receptor (α7nAChR) has been suggested to play an important role in Aβ caused cognition. It has high affinity with Aβ and could mediate Aβ internalization in vitro. However, whether in mouse brain the p38 MAPK signaling pathway is involved in the regulation of the α7nAChR mediated Aβ internalization and their role in mitochondria remains little known. Therefore, in this study, we revealed that Aβ is internalized by cholinergic and GABAergic neurons. The internalized Aβ were found deposits in lysosomes/endosomes and mitochondria. Aβ could form Aβ-α7nAChR complex with α7nAChR, activates the p38 mitogen activated protein kinase (MAPK). And the increasing of α7nAChR could in return mediate Aβ internalization in the cortex and hippocampus. In addition, by using the α7nAChR agonist PNU282987, the p38 phosphorylation level decreases, rescues the biochemical changes which are tightly associated with Aβ-induced apoptosis, such as Bcl2/Bax level, cytochrome c (Cyt c) release. Collectively, the p38 MAPK signaling pathway could regulate the α7nAChR-mediated internalization of Aβ. The activation of α7nAChR or the inhibition of p38 MAPK signaling pathway may be a beneficial therapy to AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Roles of mitogen-activated protein kinases and angiotensin II in renal development.

    PubMed

    Balbi, A P C; Francescato, H D C; Marin, E C S; Costa, R S; Coimbra, T M

    2009-01-01

    Experimental and clinical evidence suggests that angiotensin II (AII) participates in renal development. Renal AII content is several-fold higher in newborn rats and mice than in adult animals. AII receptors are also expressed in higher amounts in the kidneys of newborn rats. The kidneys of fetuses whose mother received a type 1 AII receptor (AT1) antagonist during gestation present several morphological alterations. Mutations in genes that encode components of the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Morphological changes were detected in the kidneys of 3-week-old angiotensin-deficient mice. Mitogen-activated protein kinases (MAPKs) are important mediators that transduce extracellular stimuli to intracellular responses. The MAPK family comprises three major subgroups, namely extracellular signal-regulated protein kinase (ERK), c-jun N-terminal kinases (JNK), and p38 MAPK (p38). Important events in renal growth during nephrogenesis such as cellular proliferation and differentiation accompanied by apoptosis on a large scale can be mediated by MAPK pathways. A decrease in glomerulus number was observed in embryos cultured for 48 and 120 h with ERK or p38 inhibitors. Many effects of AII are mediated by MAPK pathways. Treatment with losartan during lactation provoked changes in renal function and structure associated with alterations in AT1 and type 2 AII (AT2) receptors and p-JNK and p-p38 expression in the kidney. Several studies have shown that AII and MAPKs play an important role in renal development. However, the relationship between the effects of AII and MAPK activation on renal development is still unclear.

  17. Adenosine triphosphate as a molecular mediator of the vascular response to injury.

    PubMed

    Guth, Christy M; Luo, Weifung; Jolayemi, Olukemi; Chadalavada, Kalyan S; Komalavilas, Padmini; Cheung-Flynn, Joyce; Brophy, Colleen M

    2017-08-01

    Human saphenous veins used for arterial bypass undergo stretch injury at the time of harvest and preimplant preparation. Vascular injury promotes intimal hyperplasia, the leading cause of graft failure, but the molecular events leading to this response are largely unknown. This study investigated adenosine triphosphate (ATP) as a potential molecular mediator in the vascular response to stretch injury, and the downstream effects of the purinergic receptor, P2X7R, and p38 MAPK activation. A subfailure stretch rat aorta model was used to determine the effect of stretch injury on release of ATP and vasomotor responses. Stretch-injured tissues were treated with apyrase, the P2X7R antagonist, A438079, or the p38 MAPK inhibitor, SB203580, and subsequent contractile forces were measured using a muscle bath. An exogenous ATP (eATP) injury model was developed and the experiment repeated. Change in p38 MAPK phosphorylation after stretch and eATP tissue injury was determined using Western blotting. Noninjured tissue was incubated in the p38 MAPK activator, anisomycin, and subsequent contractile function and p38 MAPK phosphorylation were analyzed. Stretch injury was associated with release of ATP. Contractile function was decreased in tissue subjected to subfailure stretch, eATP, and anisomycin. Contractile function was restored by apyrase, P2X7R antagonism, and p38-MAPK inhibition. Stretch, eATP, and anisomycin-injured tissue demonstrated increased phosphorylation of p38 MAPK. Taken together, these data suggest that the vascular response to stretch injury is associated with release of ATP and activation of the P2X7R/P38 MAPK pathway, resulting in contractile dysfunction. Modulation of this pathway in vein grafts after harvest and before implantation may reduce the vascular response to injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. IL-17A causes depression-like symptoms via NFκB and p38MAPK signaling pathways in mice: Implications for psoriasis associated depression.

    PubMed

    Nadeem, Ahmed; Ahmad, Sheikh F; Al-Harbi, Naif O; Fardan, Ali S; El-Sherbeeny, Ahmed M; Ibrahim, Khalid E; Attia, Sabry M

    2017-09-01

    Psoriasis has been shown to be associated with an increased prevalence of comorbid major depression. IL-17A plays an important role in both depression and psoriasis. IL-17A has been shown to be elevated in systemic circulation of psoriatic patients. IL-17A released from different immune cells during psoriasis may be responsible for the development of neuropsychiatric symptoms associated with depression. Therefore, this study explored the association of systemic IL-17A with depression. The present study utilized imiquimod model of psoriatic inflammation as well as IL-17A administration in mice to investigate the effect of IL-17A on depression-like behavior. Psoriatic inflammation led to enhanced IL-17A expression in peripheral immune cells of both innate and adaptive origin. This was associated with increased NFκB/p38MAPK signaling and inflammatory mediators in different brain regions, and depression-like symptoms (as reflected by sucrose preference and tail suspension tests). The role of IL-17A was further confirmed by administering it alone for ten days, followed by assessment of the same parameters. IL-17A administration produced effects similar to psoriasis-like inflammation on neurobehavior and NFκB/p38MAPK pathways. Moreover, both NFκB and p38MAPK inhibitors led to attenuation in IL-17A associated with depression-like behavior via reduction in inflammatory mediators, such as MCP-1, iNOS, IL-6, and CXCL-2. Furthermore, anti-IL17A antibody also led to a reduction in imiquimod-induced depression-like symptoms, as well as NFκB/p38MAPK signaling. The present study shows that IL-17A plays an important role in comorbid depression associated with psoriatic inflammation, where both NFκB and p38MAPK pathways play significant roles via upregulation of inflammatory mediators in the brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Thrombin-induced p38 mitogen-activated protein kinase activation is mediated by epidermal growth factor receptor transactivation pathway

    PubMed Central

    Kanda, Yasunari; Mizuno, Katsushige; Kuroki, Yasutomi; Watanabe, Yasuhiro

    2001-01-01

    Thrombin is a potent mitogen for vascular smooth muscle cells (VSMC) and has been implicated its pathogenic role in vascular remodelling. However, the signalling pathways by which thrombin mediates its mitogenic response are not fully understood.We have previously reported that thrombin activates p38 mitogen-activated protein kinase (p38 MAPK) by a tyrosine kinase-dependent mechanism, and that p38 MAPK has a role in thrombin-induced mitogenic response in rat VSMC.In the present study, we examine the involvement of epidermal growth factor (EGF) receptor in thrombin-induced p38 MAPK activation. We found that thrombin induced EGF receptor tyrosine phosphorylation (transactivation) in A10 cells, a clonal VSMC cell line. A selective inhibitor of EGF receptor kinase (AG1478) inhibited the p38 MAPK activation in a dose-dependent manner, whereas it had no effect on the response to platelet-derived growth factor (PDGF). EGF receptor phosphorylation induced by thrombin was inhibited by BAPTA-AM and GF109203X, which suggest a requirement for intracellular Ca2+ increase and protein kinase C.We next examined the effect of AG1478 on thrombin-induced DNA synthesis. AG1478 inhibited thrombin-induced DNA synthesis in a dose-dependent manner. In contrast, PDGF-induced DNA synthesis was not affected by AG1478.In conclusion, these data suggest that the EGF receptor transactivation and subsequent p38 MAPK activation is required for thrombin-induced proliferation of VSMC. PMID:11309236

  20. OSU-DY7, a novel D-tyrosinol derivative, mediates cytotoxicity in chronic lymphocytic leukaemia and Burkitt lymphoma through p38 mitogen-activated protein kinase pathway

    PubMed Central

    Bai, Li-Yuan; Ma, Yihui; Kulp, Samuel K.; Wang, Shu-Huei; Chiu, Chang-Fang; Frissora, Frank; Mani, Rajeswaran; Mo, Xiaokui; Jarjoura, David; Byrd, John C.; Chen, Ching-Shih; Muthusamy, Natarajan

    2013-01-01

    Summary Drug resistance and associated immune deregulation limit use of current therapies in chronic lymphocytic leukaemia (CLL), thus warranting alternative therapy development. Herein we demonstrate that OSU-DY7, a novel D-tyrosinol derivative targeting p38 mitogen-activated protein kinase (MAPK), mediates cytotoxicity in lymphocytic cell lines representing CLL (MEC-1), acute lymphoblastic leukaemia (697 cells), Burkitt lymphoma (Raji and Ramos) and primary B cells from CLL patients in a dose- and time-dependent manner. The OSU-DY7-induced cytotoxicity is dependent on caspase activation, as evidenced by induction of caspase-3 activation and poly (ADP-ribose) polymerase (PARP) cleavage and rescue of cytotoxicity by Z-VAD-FMK. Interestingly, OSU-DY7-induced cytotoxicity is mediated through activation of p38 MAPK, as evidenced by increased phosphorylation of p38 MAPK and downstream target protein MAPKAPK2. Pretreatment of B-CLL cells with SB202190, a specific p38 MAPK inhibitor, results in decreased MAPKAPK2 protein level with concomitant rescue of the cells from OSU-DY7-mediated cytotoxicity. Furthermore, OSU-DY7-induced cytotoxicity is associated with down regulation of p38 MAPK target BIRC5, that is rescued at protein and mRNA levels by SB202190. This study provides evidence for a role of OSU-DY7 in p38 MAPK activation and BIRC5 down regulation associated with apoptosis in B lymphocytic cells, thus warranting development of this alternative therapy for lymphoid malignancies. PMID:21470196

  1. Involvement of histone H3 phosphorylation via the activation of p38 MAPK pathway and intracellular redox status in cytotoxicity of HL-60 cells induced by Vitex agnus-castus fruit extract.

    PubMed

    Kikuchi, Hidetomo; Yuan, Bo; Yuhara, Eisuke; Imai, Masahiko; Furutani, Ryota; Fukushima, Shin; Hazama, Shingo; Hirobe, Chieko; Ohyama, Kunio; Takagi, Norio; Toyoda, Hiroo

    2014-08-01

    We have demonstrated that an extract from the ripe fruit of Vitex angus-castus (Vitex), might be a promising anticancer candidate. In order to further provide a molecular rationale for clinical development in anticancer therapy, a detailed mechanism underlying the efficacy of Vitex against HL-60 cells was investigated. Vitex induced a dose- and time-dependent decrease in cell viability associated with induction of apoptosis and G(2)/M cell cycle arrest, both of which were suppressed by the addition of SB203580, an inhibitor for p38 MAPK. Furthermore, SB203580 significantly suppressed Vitex-induced phosphorylation of histone H3, a downstream molecule of p38 MAPK known to be involved in apoptosis induction in tumor cells. Notably, Vitex induced upregulation of intracellular ATP, known to bind its binding pocket inside activated p38 MAPK and to be required for the activation of p38 MAPK pathway. These results, thus, suggest that upregulation of intracellular ATP and phosphorylation of histone H3 are closely associated with the activation of p38 MAPK pathway, consequently contributing to Vitex-mediated cytotoxicity. Intriguingly, a significant decrease of intracellular ROS levels and downregulation of expression level of gp91(phox), an important component of NADPH oxidase, were observed in Vitex-treated cells. A greater decline in ROS levels along with enhanced apoptosis was observed after treatment with Vitex in combination with SnPP, an inhibitor specific for HO-1. Since NADPH oxidase and HO-1 are closely correlated to redox status associated with intracellular ROS levels, the two enzymes are suggested to be implicated in Vitex-mediated cytotoxicity in HL-60 cells by regulating ROS generation. We also suggest that activation of the p38 MAPK pathway may be dependent on the alterations of intracellular ATP levels, rather than that of intracellular ROS levels. These results may have important implications for appropriate clinical uses of Vitex and provide novel insights into the interaction between Vitex and other conventional drugs capable of affecting intracellular redox status.

  2. Distinctive effects of eicosapentaenoic and docosahexaenoic acids in regulating neural stem cell fate are mediated via endocannabinoid signalling pathways.

    PubMed

    Dyall, S C; Mandhair, H K; Fincham, R E A; Kerr, D M; Roche, M; Molina-Holgado, F

    2016-08-01

    Emerging evidence suggests a complex interplay between the endocannabinoid system, omega-3 fatty acids and the immune system in the promotion of brain self-repair. However, it is unknown if all omega-3 fatty acids elicit similar effects on adult neurogenesis and if such effects are mediated or regulated by interactions with the endocannabinoid system. This study investigated the effects of DHA and EPA on neural stem cell (NSC) fate and the role of the endocannabinoid signalling pathways in these effects. EPA, but not DHA, significantly increased proliferation of NSCs compared to controls, an effect associated with enhanced levels of the endocannabinoid 2-arachidonylglycerol (2-AG) and p-p38 MAPK, effects attenuated by pre-treatment with CB1 (AM251) or CB2 (AM630) receptor antagonists. Furthermore, in NSCs derived from IL-1β deficient mice, EPA significantly decreased proliferation and p-p38 MAPK levels compared to controls, suggesting a key role for IL-1β signalling in the effects observed. Although DHA similarly increased 2-AG levels in wild-type NSCs, there was no concomitant increase in proliferation or p-p38 MAPK activity. In addition, in NSCs from IL-1β deficient mice, DHA significantly increased proliferation without effects on p-P38 MAPK, suggesting effects of DHA are mediated via alternative signalling pathways. These results provide crucial new insights into the divergent effects of EPA and DHA in regulating NSC proliferation and the pathways involved, and highlight the therapeutic potential of their interplay with endocannabinoid signalling in brain repair. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. p38 MAP kinase is required for Wnt3a-mediated osterix expression independently of Wnt-LRP5/6-GSK3β signaling axis in dental follicle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakisaka, Yukihiko; Kanaya, Sousuke; Liason Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575

    Wnt3a is a secreted glycoprotein that activates the glycogen synthase kinase-3β (GSK3β)/β-catenin signaling pathway through low-density-lipoprotein receptor-related protein (LRP)5/6 co-receptors. Wnt3a has been implicated in periodontal development and homeostasis, as well as in cementum formation. Recently, we have reported that Wnt3a increases alkaline phosphatase expression through the induction of osterix (Osx) expression in dental follicle cells, a precursor of cementoblasts. However, the molecular mechanism by which Wnt3a induces Osx expression is still unknown. In this study, we show that Wnt3a-induced Osx expression was inhibited in the presence of p38 mitogen-activated protein kinase (MAPK) inhibitors (SB203580 and SB202190) at gene andmore » protein levels, as assessed by real-time PCR and immunocytohistochemistry, respectively. Pretreatment of cells with Dickkopf-1, a potent canonical Wnt antagonist binding to LRP5/6 co-receptors, did not influence Wnt3a-mediated p38 MAPK phosphorylation, suggesting that Wnt3a activates p38 MAPK through LRP5/6-independent signaling. On the other hand, pretreatment with p38 MAPK inhibitors had no effects on the phosphorylated status of GSK3β and β-catenin as well as β-catenin nuclear translocation, but inhibited Wnt3a-mediated β-catenin transcriptional activity. These findings suggest that p38 MAPK modulates canonical Wnt signaling at the β-catenin transcriptional level without any crosstalk with the Wnt3a-mediated LRP5/6-GSK3β signaling axis and subsequent β-catenin nuclear translocation. These findings expand our knowledge of the mechanisms controlling periodontal development and regeneration. - Highlights: • Wnt3a induces Osx expression via p38 MAPK signaling in dental follicle cells. • p38 MAPK has no crosstalk with Wnt3a-mediated LRP5/6 and GSK3β signaling. • p38 MAPK is required for Wnt signaling at the β-catenin transcriptional level.« less

  4. Schwann Cell Migration Induced by Earthworm Extract via Activation of PAs and MMP2/9 Mediated through ERK1/2 and p38

    PubMed Central

    Chang, Yung-Ming; Shih, Ying-Ting; Chen, Yueh-Sheng; Liu, Chien-Liang; Fang, Wen-Kuei; Tsai, Chang-Hai; Tsai, Fuu-Jen; Kuo, Wei-Wen; Lai, Tung-Yuan; Huang, Chih-Yang

    2011-01-01

    The earthworm, which has stasis removal and wound-healing functions, is a widely used Chinese herbal medicine in China. Schwann cell migration is critical for the regeneration of injured nerves. Schwann cells provide an essentially supportive activity for neuron regeneration. However, the molecular migration mechanisms induced by earthworms in Schwann cells remain unclear. Here, we investigate the roles of MAPK (ERK1/2, JNK and p38) pathways for earthworm-induced matrix-degrading proteolytic enzyme (PAs and MMP2/9) production in Schwann cells. Moreover, earthworm induced phosphorylation of ERK1/2 and p38, but not JNK, activate the downstream signaling expression of PAs and MMPs in a time-dependent manner. Earthworm-stimulated ERK1/2 and p38 phosphorylation was attenuated by pretreatment with U0126 and SB203580, resulting in migration and uPA-related signal pathway inhibition. The results were confirmed using small interfering ERK1/2 and p38 RNA. These results demonstrated that earthworms can stimulate Schwann cell migration and up-regulate PAs and MMP2/9 expression mediated through the MAPK pathways, ERK1/2 and p38. Taken together, our data suggests the MAPKs (ERK1/2, p38)-, PAs (uPA, tPA)-, MMP (MMP2, MMP9) signaling pathway of Schwann cells regulated by earthworms might play a major role in Schwann cell migration and nerve regeneration. PMID:19808845

  5. Helicobacter pylori neutrophil-activating protein induces release of histamine and interleukin-6 through G protein-mediated MAPKs and PI3K/Akt pathways in HMC-1 cells.

    PubMed

    Tsai, Chung-Che; Kuo, Ting-Yu; Hong, Zhi-Wei; Yeh, Ying-Chieh; Shih, Kuo-Shun; Du, Shin-Yi; Fu, Hua-Wen

    2015-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) activates several innate leukocytes including neutrophils, monocytes, and mast cells. It has been reported that HP-NAP induces degranulation and interleukin-6 (IL-6) secretion of rat peritoneal mast cells. However, the molecular mechanism is not very clear. Here, we show that HP-NAP activates human mast cell line-1 (HMC-1) cells to secrete histamine and IL-6. The secretion depends on pertussis toxin (PTX)-sensitive heterotrimeric G proteins but not on Toll-like receptor 2. Moreover, HP-NAP induces PTX-sensitive G protein-mediated activation of extracellular signal-regulated kinase 1/2 (ERK1/2), p38-mitogen-activated protein kinase (p38 MAPK), and Akt in HMC-1 cells. Inhibition of ERK1/2, p38 MAPK, or phosphatidylinositol 3-kinase (PI3K) suppresses HP-NAP-induced release of histamine and IL-6 from HMC-1 cells. Thus, the activation of HMC-1 cells by HP-NAP is through Gi-linked G protein-coupled receptor-mediated MAPKs and PI3K/Akt pathways.

  6. Heat stress prevents lipopolysaccharide-induced apoptosis in pulmonary microvascular endothelial cells by blocking calpain/p38 MAPK signalling.

    PubMed

    Liu, Zhi-Feng; Zheng, Dong; Fan, Guo-Chang; Peng, Tianqing; Su, Lei

    2016-08-01

    Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 μg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells.

  7. Heat stress prevents lipopolysaccharide-induced apoptosis in pulmonary microvascular endothelial cells by blocking calpain/p38 MAPK signalling

    PubMed Central

    Liu, Zhi-feng; Zheng, Dong; Fan, Guo-chang; Peng, Tianqing; Su, Lei

    2016-01-01

    Pulmonary microvascular endothelial cells (PMECs) injury including apoptosis plays an important role in the pathogenesis of acute lung injury during sepsis. Our recent study has demonstrated that calpain activation contributes to apoptosis in PMECs under septic conditions. This study investigated how calpain activation mediated apoptosis and whether heat stress regulated calpain activation in lipopolysaccharides (LPS)-stimulated PMECs. In cultured mouse primary PMECs, incubation with LPS (1 µg/ml, 24 h) increased active caspase-3 fragments and DNA fragmentation, indicative of apoptosis. These effects of LPS were abrogated by pre-treatment with heat stress (43 °C for 2 h). LPS also induced calpain activation and increased phosphorylation of p38 MAPK. Inhibition of calpain and p38 MAPK prevented apoptosis induced by LPS. Furthermore, inhibition of calpain blocked p38 MAPK phosphorylation in LPS-stimulated PMECs. Notably, heat stress decreased the protein levels of calpain-1/2 and calpain activities, and blocked p38 MAPK phosphorylation in response to LPS. Additionally, forced up-regulation of calpain-1 or calpain-2 sufficiently induced p38 MAPK phosphorylation and apoptosis in PMECs, both of which were inhibited by heat stress. In conclusion, heat stress prevents LPS-induced apoptosis in PMECs. This effect of heat stress is associated with down-regulation of calpain expression and activation, and subsequent blockage of p38 MAPK activation in response to LPS. Thus, blocking calpain/p38 MAPK pathway may be a novel mechanism underlying heat stress-mediated inhibition of apoptosis in LPS-stimulated endothelial cells. PMID:27325431

  8. HIV-1 Nef Induces CCL5 production in astrocytes through p38-MAPK and PI3K/Akt pathway and utilizes NF-kB, CEBP and AP-1 transcription factors

    NASA Astrophysics Data System (ADS)

    Liu, Xun; Shah, Ankit; Gangwani, Mohitkumar R.; Silverstein, Peter S.; Fu, Mingui; Kumar, Anil

    2014-03-01

    The prevalence of HIV-associated neurocognitive disorders (HAND) remains high in patients infected with HIV-1. The production of pro-inflammatory cytokines by astrocytes/microglia exposed to viral proteins is thought to be one of the mechanisms leading to HIV-1- mediated neurotoxicity. In the present study we examined the effects of Nef on CCL5 induction in astrocytes. The results demonstrate that CCL5 is significantly induced in Nef-transfected SVGA astrocytes. To determine the mechanisms responsible for the increased CCL5 caused by Nef, we employed siRNA and chemical antagonists. Antagonists of NF-κB, PI3K, and p38 significantly reduced the expression levels of CCL5 induced by Nef transfection. Furthermore, specific siRNAs demonstrated that the Akt, p38MAPK, NF-κB, CEBP, and AP-1 pathways play a role in Nef-mediated CCL5 expression. The results demonstrated that the PI3K/Akt and p38 MAPK pathways, along with the transcription factors NF-κB, CEBP, and AP-1, are involved in Nef-induced CCL5 production in astrocytes.

  9. Arctigenin, a dietary phytoestrogen, induces apoptosis of estrogen receptor-negative breast cancer cells through the ROS/p38 MAPK pathway and epigenetic regulation.

    PubMed

    Hsieh, Chia-Jung; Kuo, Po-Lin; Hsu, Ying-Chan; Huang, Ya-Fang; Tsai, Eing-Mei; Hsu, Ya-Ling

    2014-02-01

    This study investigates the anticancer effect of arctigenin (ATG), a natural lignan product of Arctium lappa L., in human breast cancer MDA-MB-231 cells. Results indicate that ATG inhibits MDA-MB-231 cell growth by inducing apoptosis in vitro and in vivo. ATG triggers the mitochondrial caspase-independent pathways, as indicated by changes in Bax/Bcl-2 ratio, resulting in AIF and EndoG nuclear translocation. ATG increased cellular reactive oxygen species (ROS) production by increasing p22(phox)/NADPH oxidase 1 interaction and decreasing glutathione level. ATG clearly increases the activation of p38 MAPK, but not JNK and ERK1/2. Antioxidant EUK-8, a synthetic catalytic superoxide and hydrogen peroxide scavenger, significantly decreases ATG-mediated p38 activation and apoptosis. Blocking p38 with a specific inhibitor suppresses ATG-mediated Bcl-2 downregulation and apoptosis. Moreover, ATG activates ATF-2, a transcription factor activated by p38, and then upregulates histone H3K9 trimethylation in the Bcl-2 gene promoter region, resulting in Bcl-2 downregulation. Taken together, the results demonstrate that ATG induces apoptosis of MDA-MB-231 cells via the ROS/p38 MAPK pathway and epigenetic regulation of Bcl-2 by upregulation of histone H3K9 trimethylation. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  10. Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-α-induced apoptosis

    PubMed Central

    Basuroy, Shyamali; Tcheranova, Dilyara; Bhattacharya, Sujoy; Leffler, Charles W.

    2011-01-01

    We investigated the role of reactive oxygen species (ROS) in promoting cell survival during oxidative stress induced by the inflammatory mediator tumor necrosis factor-α (TNF-α) in cerebral microvascular endothelial cells (CMVEC) from newborn piglets. Nox4 is the major isoform of NADPH oxidase responsible for TNF-α-induced oxidative stress and apoptosis in CMVEC. We present novel data that Nox4 NADPH oxidase-derived ROS also initiate a cell survival mechanism by increasing production of a gaseous antioxidant mediator carbon monoxide (CO) by constitutive heme oxygenase-2 (HO-2). TNF-α rapidly enhanced endogenous CO production in a superoxide- and NADPH oxidase-dependent manner in CMVEC with innate, but not with small interfering RNA (siRNA)-downregulated Nox4 activity. CORM-A1, a CO-releasing compound, inhibited Nox4-mediated ROS production and enhanced cell survival in TNF-α-challenged CMVEC. The ROS-induced CO-mediated survival mechanism requires functional interactions between the protein kinase B/Akt and extracellular signal-related kinase (ERK)/p38 MAPK signaling pathways activated by TNF-α. In Akt siRNA-transfected CMVEC and in cells with pharmacologically inhibited Akt, Erk1/2, and p38 mitogen-activated protein kinase (MAPK) activities, CORM-A1 was no longer capable of blocking Nox4 activation and apoptosis caused by TNF-α. Overall, Nox4 NADPH oxidase-derived ROS initiate both death and survival pathways in TNF-α-challenged CMVEC. The ROS-dependent cell survival pathway is mediated by an endogenous antioxidant CO, which inhibits Nox4 activation via a mechanism that includes Akt, ERK1/2, and p38 MAPK signaling pathways. The ability of CO to inhibit TNF-α-induced ERK1/2 and p38 MAPK activities in an Akt-dependent manner appears to be the key element in ROS-dependent survival of endothelial cells during TNF-α-mediated brain inflammatory disease. PMID:21123734

  11. Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats.

    PubMed

    Fang, Jian-Qiao; Du, Jun-Ying; Liang, Yi; Fang, Jun-Fan

    2013-03-22

    Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat's paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats.

  12. Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats

    PubMed Central

    2013-01-01

    Background Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. Results EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat’s paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. Conclusions The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats. PMID:23517865

  13. EphA2 modulates radiosensitive of hepatocellular carcinoma cells via p38/mitogen-activated protein kinase-mediated signal pathways.

    PubMed

    Jin, Qiao; Li, Xiangjun; Cao, Peiguo

    2015-10-01

    This experiment was conducted to investigate the role of EPH receptor A2 (EphA2) in the modulation of radiosensitivity of hepatic cellular cancer (HCC) cells and to determine whether p38/mitogen-activated protein kinase (p38MAPK) signaling mediated EphA2 function in this respect. The protein expressions of EphA2 and phosphorylated p38MAPK were tested in HCC and normal hepatic tissues. In HCC 97H cells, EphA2 was overexpressed and knocked out by transfection with EphA2 expression vector and EphA2-ShRNA, respectively, prior to cell exposure to low-dose irradiation. Significantly upregulated EphA2 and phosphorylated p38MAPK were observed in HCC tissues, compared with those in normal hepatic tissues. Low-dose irradiation (1 Gy) only caused minor damage to HCC 97H cells, as assessed by alterations in cell viability, apoptosis rate, and cell healing capacity (p = 0.072, p = 0.078, and p = 0.069 respectively). However, EphA2 knock-out in HCC 97H cells induced significant reduction in cell viability and cell healing capacity after these cells were subjected to low-dose irradiation. Apoptosis rate underwent dramatic increase (p < 0.01). By contrast, EphA2 overexpression in HCC 97H cells reversed these effects and enhanced cell colony formation rate, thus displaying remarkable attenuation of radiosensitivity of HCC 97H cells. Further, SB203580, a specific inhibitor of p38MAPK, was added to HCC 97H cells over-expressing EphA2. The effect of EphA2 overexpression on the radiosensitivity of HCC 97H cells was abrogated. Thus, the present study indicates that EphA2 have the ability to negatively regulate the radiosensitivity of HCC 97H cells, which mainly depends on 38MAPK-mediated signal pathways. Copyright © 2015. Published by Elsevier Taiwan.

  14. p38 МАРK is Involved in Regulation of Epigenetic Mechanisms of Food Aversion Learning.

    PubMed

    Grinkevich, L N

    2017-08-01

    Consolidation of the conditioned food aversion response in Helix lucorum was associated with induction of histone H3 acetylation and methylation. We hypothesized that not only activatory, but also inhibitory p38 MARK-mediated pathways are involved in these processes. To assess the contribution of p38 MAPK to epigenetic processes, we studied the effect p38 MAPK inhibitor SB203580 on acetylation of histone H3 during training of Helix lucorum. Administration of SB203580 decreased learning-induced enhancement of histone H3 acetylation in the CNS of Helix lucorum, which was accompanied by long-term memory impairment. Thus, p38 MAPK is involved in the regulation of epigenetic mechanisms of long-term memory.

  15. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons.

    PubMed

    Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui

    2015-07-01

    Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Neuroprotective Role of a Brain-Enriched Tyrosine Phosphatase, STEP, in Focal Cerebral Ischemia

    PubMed Central

    Deb, Ishani; Manhas, Namratta; Poddar, Ranjana; Rajagopal, Sathyanarayanan; Allan, Andrea M.; Lombroso, Paul J.; Rosenberg, Gary A.; Candelario-Jalil, Eduardo

    2013-01-01

    The striatal-enriched phosphatase (STEP) is a component of the NMDA-receptor-mediated excitotoxic signaling pathway, which plays a key role in ischemic brain injury. Using neuronal cultures and a rat model of ischemic stroke, we show that STEP plays an initial role in neuroprotection, during the insult, by disrupting the p38 MAPK pathway. Degradation of active STEP during reperfusion precedes ischemic brain damage and is associated with secondary activation of p38 MAPK. Application of a cell-permeable STEP-derived peptide that is resistant to degradation and binds to p38 MAPK protects cultured neurons from hypoxia-reoxygenation injury and reduces ischemic brain damage when injected up to 6 h after the insult. Conversely, genetic deletion of STEP in mice leads to sustained p38 MAPK activation and exacerbates brain injury and neurological deficits after ischemia. Administration of the STEP-derived peptide at the onset of reperfusion not only prevents the sustained p38 MAPK activation but also reduces ischemic brain damage in STEP KO mice. The findings indicate a neuroprotective role of STEP and suggest a potential role of the STEP-derived peptide in stroke therapy. PMID:24198371

  17. Ferulic Acid Administered at Various Time Points Protects against Cerebral Infarction by Activating p38 MAPK/p90RSK/CREB/Bcl-2 Anti-Apoptotic Signaling in the Subacute Phase of Cerebral Ischemia-Reperfusion Injury in Rats.

    PubMed

    Cheng, Chin-Yi; Tang, Nou-Ying; Kao, Shung-Te; Hsieh, Ching-Liang

    2016-01-01

    This study aimed to evaluate the effects of ferulic acid (FA) administered at various time points before or after 30 min of middle cerebral artery occlusion (MCAo) followed by 7 d of reperfusion and to examine the involvement of mitogen-activated protein kinase (MAPK) signaling pathways in the cortical penumbra. FA was intravenously administered to rats at a dose of 100 mg/kg 24 h before ischemia (B-FA), 2 h before ischemia (P-FA), immediately after ischemic insult (I-FA), 2 h after reperfusion (R-FA), or 24 h after reperfusion (D-FA). Our study results indicated that P-FA, I-FA, and R-FA effectively reduced cerebral infarct areas and neurological deficits. P-FA, I-FA, and R-FA significantly downregulated glial fibrillary acidic protein (GFAP), mitochondrial Bax, cytochrome c, and cleaved caspase-3 expression, and effectively restored the phospho-p38 MAPK (p-p38 MAPK)/p38 MAPK ratio, phospho-90 kDa ribosomal S6 kinase (p-p90RSK) expression, phospho-Bad (p-Bad) expression, the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio, the cytosolic and mitochondrial Bcl-2/Bax ratios, and the cytosolic Bcl-xL/Bax ratio in the cortical penumbra 7 d after reperfusion. SB203580, a specific inhibitor of p38 MAPK, administered 30 min prior to ischemia abrogated the downregulating effects of I-FA on cerebral infarction, and mitochondrial Bax and cleaved caspase-3 expression, and the upregulating effects of I-FA on the p-p38 MAPK/p38 MAPK ratio, p-p90RSK expression, p-Bad expression, and the p-CREB/CREB, and cytosolic and mitochondrial Bcl-2/Bax ratios. Our study results thus indicate that P-FA, I-FA, and R-FA effectively suppress reactive astrocytosis and exert neuroprotective effects against cerebral infarction by activating p38 MAPK signaling. The regulating effects of P-FA, I-FA, and R-FA on Bax-induced apoptosis result from activation of the p38 MAPK/p90RSK/CREB/Bcl-2 signaling pathway, and eventually contribute to inhibition of the cytochrome c-mediated caspase-3-dependent apoptotic pathway in the cortical penumbra 7 d after reperfusion.

  18. Ferulic Acid Administered at Various Time Points Protects against Cerebral Infarction by Activating p38 MAPK/p90RSK/CREB/Bcl-2 Anti-Apoptotic Signaling in the Subacute Phase of Cerebral Ischemia-Reperfusion Injury in Rats

    PubMed Central

    Cheng, Chin-Yi; Tang, Nou-Ying; Kao, Shung-Te; Hsieh, Ching-Liang

    2016-01-01

    Objectives This study aimed to evaluate the effects of ferulic acid (FA) administered at various time points before or after 30 min of middle cerebral artery occlusion (MCAo) followed by 7 d of reperfusion and to examine the involvement of mitogen-activated protein kinase (MAPK) signaling pathways in the cortical penumbra. Methods FA was intravenously administered to rats at a dose of 100 mg/kg 24 h before ischemia (B-FA), 2 h before ischemia (P-FA), immediately after ischemic insult (I-FA), 2 h after reperfusion (R-FA), or 24 h after reperfusion (D-FA). Results Our study results indicated that P-FA, I-FA, and R-FA effectively reduced cerebral infarct areas and neurological deficits. P-FA, I-FA, and R-FA significantly downregulated glial fibrillary acidic protein (GFAP), mitochondrial Bax, cytochrome c, and cleaved caspase-3 expression, and effectively restored the phospho-p38 MAPK (p-p38 MAPK)/p38 MAPK ratio, phospho-90 kDa ribosomal S6 kinase (p-p90RSK) expression, phospho-Bad (p-Bad) expression, the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio, the cytosolic and mitochondrial Bcl-2/Bax ratios, and the cytosolic Bcl-xL/Bax ratio in the cortical penumbra 7 d after reperfusion. SB203580, a specific inhibitor of p38 MAPK, administered 30 min prior to ischemia abrogated the downregulating effects of I-FA on cerebral infarction, and mitochondrial Bax and cleaved caspase-3 expression, and the upregulating effects of I-FA on the p-p38 MAPK/p38 MAPK ratio, p-p90RSK expression, p-Bad expression, and the p-CREB/CREB, and cytosolic and mitochondrial Bcl-2/Bax ratios. Conclusions Our study results thus indicate that P-FA, I-FA, and R-FA effectively suppress reactive astrocytosis and exert neuroprotective effects against cerebral infarction by activating p38 MAPK signaling. The regulating effects of P-FA, I-FA, and R-FA on Bax-induced apoptosis result from activation of the p38 MAPK/p90RSK/CREB/Bcl-2 signaling pathway, and eventually contribute to inhibition of the cytochrome c-mediated caspase-3-dependent apoptotic pathway in the cortical penumbra 7 d after reperfusion. PMID:27187745

  19. Ghrelin accelerates wound healing through GHS-R1a-mediated MAPK-NF-κB/GR signaling pathways in combined radiation and burn injury in rats.

    PubMed

    Liu, Cong; Huang, Jiawei; Li, Hong; Yang, Zhangyou; Zeng, Yiping; Liu, Jing; Hao, Yuhui; Li, Rong

    2016-06-07

    The therapeutic effect of ghrelin on wound healing was assessed using a rat model of combined radiation and burn injury (CRBI). Rat ghrelin, anti-rat tumor necrosis factor (TNF) α polyclonal antibody (PcAb), or selective antagonists of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and growth hormone secretagogue receptor (GHS-R) 1a (SB203580, SP600125, and [D-Lys3]-GHRP-6, respectively), were administered for seven consecutive days. Levels of various signaling molecules were assessed in isolated rat peritoneal macrophages. The results showed that serum ghrelin levels and levels of macrophage glucocorticoid receptor (GR) decreased, while phosphorylation of p38MAPK, JNK, and p65 nuclear factor (NF) κB increased. Ghrelin inhibited the serum induction of proinflammatory mediators, especially TNF-α, and promoted wound healing in a dose-dependent manner. Ghrelin treatment decreased phosphorylation of p38MAPK, JNK, and p65NF-κB, and increased GR levels in the presence of GHS-R1a. SB203580 or co-administration of SB203580 and SP600125 decreased TNF-α level, which may have contributed to the inactivation of p65NF-κB and increase in GR expression, as confirmed by western blotting. In conclusion, ghrelin enhances wound recovery in CRBI rats, possibly by decreasing the induction of TNF-α or other proinflammatory mediators that are involved in the regulation of GHS-R1a-mediated MAPK-NF-κB/GR signaling pathways.

  20. Rac3 Regulates Cell Invasion, Migration and EMT in Lung Adenocarcinoma through p38 MAPK Pathway

    PubMed Central

    Zhang, Chenlei; Liu, Tieqin; Wang, Gebang; Wang, Huan; Che, Xiaofang; Gao, Xinghua; Liu, Hongxu

    2017-01-01

    Background: The role of Rac3 in cell proliferation in lung adenocarcinoma has been tackled in our previous study. However, the role of Rac3 in cell invasion and migration of lung adenocarcinoma is still not clear. Methods: The expression of Rac3 in lung adenocarcinoma specimens and paired noncancerous normal tissues were evaluated by immunohistochemistry. Lentivirus-mediated RNA interference (RNAi) was employed to silence Rac3 in lung adenocarcinoma cell lines A549 and H1299. A p38 MAPK inhibitor (LY2228820) was employed to inhibit activity of p38 MAPK pathway. Cell invasion and migration in vitro were examined by invasion and migration assays, respectively. PathScan® intracellular signaling array kit and western blot were employed in mechanism investigation. Results: Rac3 expression was frequently higher in lung adenocarcinoma than paired noncancerous normal tissues. Rac3 expression was an independent risk factor for lymphonode metastasis, and was associated with worse survival outcome. Silencing of Rac3 inhibited cell invasion and cell migration in lung adenocarcinoma cell lines. Knockdown of Rac3 decreased activity of p38 MAPK pathway. LY2228820, which was an important p38 MAPK inhibitor, inhibited Rac3-induced cell invasion and migration of lung adenocarcinoma. E-cadherin expression was increased and vimentin expression was decreased after silencing of Rac3 or following the treatment of LY2228820. Conclusions: Our findings suggest that Rac3 regulates cell invasion, migration and EMT via p38 MAPK pathway. Rac3 may be a potential biomarker of invasion and metastasis for lung adenocarcinoma, and knockdown of Rac3 may potentially serve as a promising therapeutic target for lung adenocarcinoma. PMID:28900489

  1. Hyperglycemia regulates TXNIP/TRX/ROS axis via p38 MAPK and ERK pathways in pancreatic cancer.

    PubMed

    Li, Wei; Wu, Zheng; Ma, Qingyong; Liu, Jiangbo; Xu, Qinhong; Han, Liang; Duan, Wanxing; Lv, Yunfu; Wang, Fengfei; Reindl, Katie M; Wu, Erxi

    2014-01-01

    Approximately 85% of pancreatic cancer patients suffer from glucose intolerance or even diabetes because high glucose levels can contribute to oxidative stress which promotes tumor development. As one of the reactive oxygen species (ROS)-regulating factors, thioredoxin-interacting protein (TXNIP), is involved in the maintenance of thioredoxin (TRX)-mediated redox regulation. In this study, we demonstrated that high glucose levels increased the expression of TXNIP in time- and concentration-dependent manners and modulated the activity of TRX and ROS production in pancreatic cancer cells, BxPC-3 and Panc-1. We also found that glucose activated both p38 MAPK and ERK pathways and inhibitors of these pathways impaired the TXNIP/TRX/ROS axis. Knockdown of TXNIP restored TRX activity and decreased ROS production under high glucose conditions. Moreover, we observed that the integrated optical density (IOD) of TXNIP staining as well as the protein and mRNA expression levels of TXNIP were higher in the tumor tissues of pancreatic cancer patients with diabetes. Taken together, these results indicate that hyperglycemia-induced TXNIP expression is involved in diabetes-mediated oxidative stress in pancreatic cancer via p38 MAPK and ERK pathways.

  2. Vitamin K2 Induces Mitochondria-Related Apoptosis in Human Bladder Cancer Cells via ROS and JNK/p38 MAPK Signal Pathways

    PubMed Central

    Duan, Fengsen; Yu, Yuejin; Guan, Rijian; Xu, Zhiliang; Liang, Huageng; Hong, Ling

    2016-01-01

    The effects of vitamin K2 on apoptosis in a variety of cancer cells have been well established in previous studies. However, the apoptotic effect of vitamin K2 on bladder cancer cells has not been evaluated. The aim of this study is to examine the apoptotic activity of Vitamin K2 in bladder cancer cells and investigate the underlying mechanism. In this study, Vitamin K2 induced apoptosis in bladder cancer cells through mitochondria pathway including loss of mitochondria membrane potential, cytochrome C release and caspase-3 cascade. Furthermore, the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK was detected in Vitamin K2-treated cells and both SP600125 (an inhibitor of JNK) and SB203580 (an inhibitor of p38 MAPK) completely abolished the Vitamin K2-induced apoptosis and loss of mitochondria membrane potential. Moreover, the generation of reactive oxygen species (ROS) was detected in bladder cancer cells, upon treatment of vitamin K2 and the anti-oxidant N-acetyl cysteine (NAC) almost blocked the Vitamin K2-triggered apoptosis, loss of mitochondria membrane potential and activation of JNK and p38 MAPK. Taken together, these findings revealed that Vitamin K2 induces apoptosis in bladder cancer cells via ROS-mediated JNK/p38 MAPK and Mitochondrial pathways. PMID:27570977

  3. Vitamin K2 Induces Mitochondria-Related Apoptosis in Human Bladder Cancer Cells via ROS and JNK/p38 MAPK Signal Pathways.

    PubMed

    Duan, Fengsen; Yu, Yuejin; Guan, Rijian; Xu, Zhiliang; Liang, Huageng; Hong, Ling

    2016-01-01

    The effects of vitamin K2 on apoptosis in a variety of cancer cells have been well established in previous studies. However, the apoptotic effect of vitamin K2 on bladder cancer cells has not been evaluated. The aim of this study is to examine the apoptotic activity of Vitamin K2 in bladder cancer cells and investigate the underlying mechanism. In this study, Vitamin K2 induced apoptosis in bladder cancer cells through mitochondria pathway including loss of mitochondria membrane potential, cytochrome C release and caspase-3 cascade. Furthermore, the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK was detected in Vitamin K2-treated cells and both SP600125 (an inhibitor of JNK) and SB203580 (an inhibitor of p38 MAPK) completely abolished the Vitamin K2-induced apoptosis and loss of mitochondria membrane potential. Moreover, the generation of reactive oxygen species (ROS) was detected in bladder cancer cells, upon treatment of vitamin K2 and the anti-oxidant N-acetyl cysteine (NAC) almost blocked the Vitamin K2-triggered apoptosis, loss of mitochondria membrane potential and activation of JNK and p38 MAPK. Taken together, these findings revealed that Vitamin K2 induces apoptosis in bladder cancer cells via ROS-mediated JNK/p38 MAPK and Mitochondrial pathways.

  4. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates promyogenic signaling pathways, thereby promoting myoblast differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Jin; Go, Ga-Yeon; Yoo, Miran

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARβ/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARβ/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARβ/δmore » enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARβ/δ enhances myoblast differentiation through activation of promyogenic signaling pathways. - Highlights: • A PPARβ/δ agonist, GW0742 promotes myoblast differentiation. • GW0742 activates both p38MAPK and Akt activation in myogenic differentiation. • GW0742 enhances MyoD activity for myogenic differentiation. • Overexpression of PPARβ/δ enhances myoblast differentiation via activating promyogenic signaling pathways. • This is the first finding for agonistic mechanism of PPARβ/δ in myogenesis.« less

  5. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts.

    PubMed

    Furukawa, Fukiko; Matsuzaki, Koichi; Mori, Shigeo; Tahashi, Yoshiya; Yoshida, Katsunori; Sugano, Yasushi; Yamagata, Hideo; Matsushita, Masanori; Seki, Toshihito; Inagaki, Yutaka; Nishizawa, Mikio; Fujisawa, Junichi; Inoue, Kyoichi

    2003-10-01

    Hepatic stellate cells (HSCs) spontaneously transdifferentiate into myofibroblast (MFB)-phenotype on plastic dishes. This response recapitulates the features of activation in vivo. Transforming growth factor beta (TGF-beta) plays a prominent role in stimulating liver fibrogenesis by MFBs. In quiescent HSCs, TGF-beta signaling involves TGF-beta type I receptor (TbetaRI)-mediated phosphorylation of serine residues within the conserved SSXS motif at the C-terminus of Smad2 and Smad3. The middle linker regions of Smad2 and Smad3 also are phosphorylated by mitogen-activated protein kinase (MAPK). This study elucidates the change of Smad3-mediated signals during the transdifferentiation process. By using antibodies highly specific to the phosphorylated C-terminal region and the phosphorylated linker region of Smad3, we found that TGF-beta-dependent Smad3 phosphorylation at the C-terminal region decreased, but that the phosphorylation at the linker region increased in the process of transdifferentiation. TGF-beta activated the p38 MAPK pathway, further leading to Smad3 phosphorylation at the linker region in the cultured MFBs, irrespective of Smad2. The phosphorylation promoted hetero-complex formation and nuclear translocation of Smad3 and Smad4. Once combined with TbetaRI-phosphorylated Smad2, the Smad3 and Smad4 complex bound to plasminogen activator inhibitor-type I promoter could enhance the transcription. In addition, Smad3 phosphorylation mediated by the activated TbetaRI was impaired severely in MFBs during chronic liver injury, whereas Smad3 phosphorylation at the linker region was remarkably induced by p38 MAPK pathway. In conclusion, p38 MAPK-dependent Smad3 phosphorylation promoted extracellular matrix production in MFBs both in vitro and in vivo.

  6. Activated Rho Kinase Mediates Diabetes-Induced Elevation of Vascular Arginase Activation and Contributes to Impaired Corpora Cavernosa Relaxation: Possible Involvement of p38 MAPK Activation

    PubMed Central

    Nunes, Kenia P.; Yao, Lin; Liao, James K.; Webb, R. Clinton; Caldwell, Ruth B.; Caldwell, R. William

    2013-01-01

    Introduction Activated RhoA/Rho kinase (ROCK) has been implicated in diabetes-induced erectile dysfunction. Earlier studies have demonstrated involvement of ROCK pathway in the activation of arginase in endothelial cells. However, signaling pathways activated by ROCK in the penis remain unclear. Aim We tested whether ROCK and p38 MAPK are involved in the elevation of arginase activity and subsequent impairment of corpora cavernosal (CC) relaxation in diabetes. Methods Eight weeks after streptozotocin-induced diabetes, vascular functional studies, arginase activity assay, and protein expression of RhoA, ROCK, phospho-p38 MAPK, p38 MAPK, phospho-MYPT-1Thr850, MYPT-1 and arginase levels were assessed in CC tissues from nondiabetic wild type (WT), diabetic (D) WT (WT + D), partial ROCK 2+/− knockout (KO), and ROCK 2+/− KO + D mice. Main Outcome Measures The expression of RhoA, ROCK 1 and 2, phosphorylation of MYPT-1Thr850 and p38 MAPK, arginase activity/expression, endothelial- and nitrergic-dependent relaxation of CC was assayed. Results Diabetes significantly reduced maximum relaxation (Emax) to both endothelium-dependent acetylcholine (WT + D: Emax; 61 ± 4% vs. WT: Emax; 75 ± 2%) and nitrergic nerve stimulation. These effects were associated with increased expression of active RhoA, ROCK 2, phospho-MYPT-1Thr850, phospho-p38 MAPK, arginase II, and activity of corporal arginase (1.6-fold) in WT diabetic CC. However, this impairment in CC of WT + D mice was absent in heterozygous ROCK 2+/− KO + D mice for acetylcholine (Emax: 80 ± 5%) and attenuated for nitrergic nerve-induced relaxation. CC of ROCK 2+/− KO + D mice showed much less ROCK activity, did not exhibit p38 MAPK activation, and had reduced arginase activity and arginase II expression. These findings indicate that ROCK 2 mediates diabetes-induced elevation of arginase activity. Additionally, pretreatment of WT diabetic CC with inhibitors of arginase (ABH) or p38 MAPK (SB203580) partially prevented impairment of ACh- and nitrergic nerve-induced relaxation and elevation of arginase activity. Conclusion ROCK 2, p38 MAPK and arginase play key roles in diabetes-induced impairment of CC relaxation. PMID:23566117

  7. Zinc rescues obesity-induced cardiac hypertrophy via stimulating metallothionein to suppress oxidative stress-activated BCL10/CARD9/p38 MAPK pathway.

    PubMed

    Wang, Shudong; Gu, Junlian; Xu, Zheng; Zhang, Zhiguo; Bai, Tao; Xu, Jianxiang; Cai, Jun; Barnes, Gregory; Liu, Qiu-Ju; Freedman, Jonathan H; Wang, Yonggang; Liu, Quan; Zheng, Yang; Cai, Lu

    2017-06-01

    Obesity often leads to obesity-related cardiac hypertrophy (ORCH), which is suppressed by zinc-induced inactivation of p38 mitogen-activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4-week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B-cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate-treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate-induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate-induced up-regulation of BCL10 and phospho-p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress-mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress-activated BCL10 expression and p38 MAPK activation. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. COMP-angiopoietin 1 increases proliferation, differentiation, and migration of stem-like cells through Tie-2-mediated activation of p38 MAPK and PI3K/Akt signal transduction pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kook, Sung-Ho; Lim, Shin-Saeng; Cho, Eui-Sic

    2014-12-12

    Highlights: • COMP-Ang1 induces Tie-2 activation in BMMSCs, but not in primary osteoblasts. • Tie-2 knockdown inhibits COMP-Ang1-stimulated proliferation and osteoblastogenesis. • Tie-2 knockdown prevents COMP-Ang1-induced activation of PI3K/Akt and p38 MAPK. • COMP-Ang1 induces migration of cells via activation of PI3K/Akt and CXCR4 pathways. • COMP-Ang1 stimulates in vivo migration of PDLSCs into a calvarial defect site of rats. - Abstract: Recombinant COMP-Ang1, a chimera of angiopoietin-1 (Ang1) and a short coiled-coil domain of cartilage oligomeric matrix protein (COMP), is under consideration as a therapeutic agent capable of inducing the homing of cells with increased angiogenesis. However, the potentialsmore » of COMP-Ang1 to stimulate migration of mesenchymal stem cells (MSCs) and the associated mechanisms are not completely understood. We examined the potential of COMP-Ang1 on bone marrow (BM)-MSCs, human periodontal ligament stem cells (PDLSCs), and calvarial osteoblasts. COMP-Ang1 augmented Tie-2 induction at protein and mRNA levels and increased proliferation and expression of runt-related transcription factor 2 (Runx2), osterix, and CXCR4 in BMMSCs, but not in osteoblasts. The COMP-Ang1-mediated increases were inhibited by Tie-2 knockdown and by treating inhibitors of phosphoinositide 3-kinase (PI3K), LY294002, or p38 mitogen-activated protein kinase (MAPK), SB203580. Phosphorylation of p38 MAPK and Akt was prevented by siRNA-mediated silencing of Tie-2. COMP-Ang1 also induced in vitro migration of BMMSCs and PDLSCs. The induced migration was suppressed by Tie-2 knockdown and by CXCR4-specific peptide antagonist or LY294002, but not by SB203580. Furthermore, COMP-Ang1 stimulated the migration of PDLSCs into calvarial defect site of rats. Collectively, our results demonstrate that COMP-Ang1-stimulated proliferation, differentiation, and migration of progenitor cells may involve the Tie-2-mediated activation of p38 MAPK and PI3K/Akt pathways.« less

  9. Protocatechuic Acid from Alpinia oxyphylla Induces Schwann Cell Migration via ERK1/2, JNK and p38 Activation.

    PubMed

    Ju, Da-Tong; Kuo, Wei-Wen; Ho, Tsung-Jung; Paul, Catherine Reena; Kuo, Chia-Hua; Viswanadha, Vijaya Padma; Lin, Chien-Chung; Chen, Yueh-Sheng; Chang, Yung-Ming; Huang, Chih-Yang

    2015-01-01

    Alpinia oxyphylla MIQ (Alpinate Oxyphyllae Fructus, AOF) is an important traditional Chinese medicinal herb whose fruits is widely used to prepare tonics and is used as an aphrodisiac, anti salivary, anti diuretic and nerve-protective agent. Protocatechuic acid (PCA), a simple phenolic compound was isolated from the kernels of AOF. This study investigated the role of PCA in promoting neural regeneration and the underlying molecular mechanisms. Nerve regeneration is a complex physiological response that takes place after injury. Schwann cells play a crucial role in the endogenous repair of peripheral nerves due to their ability to proliferate and migrate. The role of PCA in Schwann cell migration was determined by assessing the induced migration potential of RSC96 Schwann cells. PCA induced changes in the expression of proteins of three MAPK pathways, as determined using Western blot analysis. In order to determine the roles of MAPK (ERK1/2, JNK, and p38) pathways in PCA-induced matrix-degrading proteolytic enzyme (PAs and MMP2/9) production, the expression of several MAPK-associated proteins was analyzed after siRNA-mediated inhibition assays. Treatment with PCA-induced ERK1/2, JNK, and p38 phosphorylation that activated the downstream expression of PAs and MMPs. PCA-stimulated ERK1/2, JNK and p38 phosphorylation was attenuated by individual pretreatment with siRNAs or MAPK inhibitors (U0126, SP600125, and SB203580), resulting in the inhibition of migration and the uPA-related signal pathway. Taken together, our data suggest that PCA extract regulate the MAPK (ERK1/2, JNK, and p38)/PA (uPA, tPA)/MMP (MMP2, MMP9) mediated regeneration and migration signaling pathways in Schwann cells. Therefore, PCA plays a major role in Schwann cell migration and the regeneration of damaged peripheral nerve.

  10. Crosstalk between Signaling Pathways in Pemphigus: A Role for Endoplasmic Reticulum Stress in p38 Mitogen-Activated Protein Kinase Activation?

    PubMed

    Cipolla, Gabriel A; Park, Jong Kook; Lavker, Robert M; Petzl-Erler, Maria Luiza

    2017-01-01

    Pemphigus consists of a group of chronic blistering skin diseases mediated by autoantibodies (autoAbs). The dogma that pemphigus is caused by keratinocyte dissociation (acantholysis) as a distinctive and direct consequence of the presence of autoAb targeting two main proteins of the desmosome-desmoglein (DSG) 1 and/or DSG3-has been put to the test. Several outside-in signaling events elicited by pemphigus autoAb in keratinocytes have been described, among which stands out p38 mitogen-activated protein kinase (p38 MAPK) engagement and its apoptotic effect on keratinocytes. The role of apoptosis in the disease is, however, debatable, to an extent that it may not be a determinant event for the occurrence of acantholysis. Also, it has been verified that compromised DSG trans-interaction does not lead to keratinocyte dissociation when p38 MAPK is inhibited. These examples of conflicting results have been followed by recent work revealing an important role for endoplasmic reticulum (ER) stress in pemphigus' pathogenesis. ER stress is known to activate the p38 MAPK pathway, and vice versa . However, this relationship has not yet been studied in the context of activated signaling pathways in pemphigus. Therefore, by reviewing and hypothetically connecting the role(s) of ER stress and p38 MAPK pathway in pemphigus, we highlight the importance of elucidating the crosstalk between all activated signaling pathways, which may in turn contribute for a better understanding of the role of apoptosis in the disease and a better management of this life-threatening condition.

  11. Caffeine Inhibits the Activation of Hepatic Stellate Cells Induced by Acetaldehyde via Adenosine A2A Receptor Mediated by the cAMP/PKA/SRC/ERK1/2/P38 MAPK Signal Pathway

    PubMed Central

    Yang, Wanzhi; Wang, Qi; Zhao, Han; Yang, Feng; Lv, Xiongwen; Li, Jun

    2014-01-01

    Hepatic stellate cell (HSC) activation is an essential event during alcoholic liver fibrosis. Evidence suggests that adenosine aggravates liver fibrosis via the adenosine A2A receptor (A2AR). Caffeine, which is being widely consumed during daily life, inhibits the action of adenosine. In this study, we attempted to validate the hypothesis that caffeine influences acetaldehyde-induced HSC activation by acting on A2AR. Acetaldehyde at 50, 100, 200, and 400 μM significantly increased HSC-T6 cells proliferation, and cell proliferation reached a maximum at 48 h after exposure to 200 μM acetaldehyde. Caffeine and the A2AR antagonist ZM241385 decreased the cell viability and inhibited the expression of procollagen type I and type III in acetaldehyde-induced HSC-T6 cells. In addition, the inhibitory effect of caffeine on the expression of procollagen type I was regulated by A2AR-mediated signal pathway involving cAMP, PKA, SRC, and ERK1/2. Interestingly, caffeine’s inhibitory effect on the expression of procollagen type III may depend upon the A2AR-mediated P38 MAPK-dependent pathway. Conclusions: Caffeine significantly inhibited acetaldehyde-induced HSC-T6 cells activation by distinct A2AR mediated signal pathway via inhibition of cAMP-PKA-SRC-ERK1/2 for procollagen type I and via P38 MAPK for procollagen type III. PMID:24682220

  12. Dioscin alleviates BDL- and DMN-induced hepatic fibrosis via Sirt1/Nrf2-mediated inhibition of p38 MAPK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Lina; Tao, Xufeng; Xu, Youwei

    Oxidative stress is involved in hepatic stellate cells (HSCs) activation and extracellular matrix overproduction. We previously reported the promising effects of dioscin against CCl{sub 4}-induced liver fibrosis, but its effects and mechanisms on BDL- and DMN-induced liver fibrosis remain unknown. The results in the present study indicated that dioscin significantly inhibited HSCs activation and attenuated hepatic fibrosis in rats. Furthermore, dioscin markedly up-regulated the levels of sirtuin 1 (Sirt1), HO-1, GST, GCLC and GCLM via increasing the nuclear translocation of nuclear erythroid factor 2-related factor 2 (Nrf2), which in turn inhibited mitogen-activated protein kinase 14 (p38 MAPK) phosphorylation and reducedmore » the levels of COL1A1, COL3A1, α-SMA and fibronectin. These results were further validated by knockdown of Sirt1 and Nrf2 using siRNAs silencing, and abrogation of p38 MAPK using SB-203580 (a p38 MAPK inhibitor) in HSC-T6 and LX-2 cells. Collectively, our findings confirmed the potent effects of dioscin against liver fibrosis and also provided novel insights into the mechanisms of this compound as a candidate for the prevention of liver fibrosis in the future. - Highlights: • Dioscin showed potent effects against BDL- and DMN-induced liver fibrosis in rats. • Dioscin significantly suppressed oxidative stress. • Dioscin triggered Sirt1/Nrf2-mediated inhibition of p38 MAPK pathway. • Dioscin should be developed as a novel candidate to treat liver fibrosis.« less

  13. PP2A regulates SCF-induced cardiac stem cell migration through interaction with p38 MAPK.

    PubMed

    Wang, Ying; Xia, Yanli; Kuang, Dong; Duan, Yaqi; Wang, Guoping

    2017-12-15

    Previous studies have shown that stem cell factor (SCF) induces the migration of cardiac stem cells (CSCs) and helps to repair myocardial infarctions. Earlier studies on the migration mechanism only focused on the activation of kinases; here, we aimed to explore the functional role of protein phosphatase 2A (PP2A) in SCF-induced CSC migration. CSCs were treated with SCF, PP2A enzymatic activity was measured, the phosphorylation levels of PP2A, p38 MAPK and cofilin were evaluated using western blot. Transwell assay was used to determine the migratory ability of CSCs. In vitro, SCF induced the phosphorylation of p38 MAPK and cofilin, leading to the migration of CSCs. Cofilin acted as a downstream signal of p38 MAPK. PP2A was involved in this process. Further studies revealed that PP2A was inactivated via phosphorylation at Tyr307 by SCF and the inactivation/phosphorylation was mediated by activated p38 MAPK, as p38 MAPK inhibitor SB203580 or siRNA prevented SCF-induced inactivation and phosphorylation of PP2A. When CSCs were pretreated with PP2A inhibitor (okadaic acid, OA), SCF-induced CSC migration and the downstream signals were enhanced, and the enhancement was reversed when p38 MAPK was blocked. Additionally, co-immunoprecipitation showed a direct interaction of PP2A with p38 MAPK. Our results indicated that PP2A regulated the SCF-induced activation of p38 MAPK/cofilin signaling pathway and subsequent migration of CSCs by interaction with p38 MAPK. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Puerarin reduces apoptosis in rat hippocampal neurons culturea in high glucose medium by modulating the p38 mitogen activated protein kinase and c-Jun N-terminal kinase signaling pathways.

    PubMed

    Xu, Xiaohan; Wang, Jingbo; Zhang, Hong; Tian, Guoqing; Liu, Yuqin

    2016-02-01

    To investigate the neuroprotective etfect of puerarin on rat hippocampal neurons cultured in high glucose medium, and to examine the role of the p38 mitogen activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) signaling pathways in this effect. Primary cultures of hippocampal neurons were prepared from newborn Sprague Dawley rats. Neuron-specific enolase immunocytochemistry was used to identify neurons. The neurons were cultured with normal medium (control group) or with high-glucose medium (high-glucose group), and puerarin (puerarin group), a p38 MAPK inhibitor (SB239063; p38 MAPK inhibitor group) or a JNK inhibitor (SP600125; JNK inhibitor group) were added. After 72 h of treatment, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay was performed to detect apoptosis, and western blotting was used to assess protein levels of p-p38, p38, p-JNK and JNK. In the high-glucose group, the neuronal apoptosis rate and the p-p38/p38 and p-JNK/JNK ratios were higher than in the control group. The p38 MAPK and JNK inhibitors prevented this increase in the apoptosis rate. The apoptosis rates in the puerarin group, the p38 MAPK inhibitor group and the JNK inhibitor group were significantly decreased compared with the high-glucose group. Moreover, protein levels of p-p38 and p-JNK were significantly reduced, and the p-p38/p38 and p-JNK/JNK ratios were decreased in the puerarin group compared with the high-glucose group. In addition, compared with the high-glucose group, p-p38 levels and the p-p38/p38 ratio were reduced in the p38 MAPK inhibitor group, and p-JNK levels and the p-JNK/JNK ratio were decreased in the JNK inhibitor group. Puerarin attenuates neuronal apoptosis induced by high glucose by reducing the phosphorylation of p38 and JNK.

  15. Involvement of PI3K/Akt and p38 MAPK in the induction of COX-2 expression by bacterial lipopolysaccharide in murine adrenocortical cells.

    PubMed

    Mercau, M E; Astort, F; Giordanino, E F; Martinez Calejman, C; Sanchez, R; Caldareri, L; Repetto, E M; Coso, O A; Cymeryng, C B

    2014-03-25

    Previous studies from our laboratory demonstrated the involvement of COX-2 in the stimulation of steroid production by LPS in murine adrenocortical Y1 cells, as well as in the adrenal cortex of male Wistar rats. In this paper we analyzed signaling pathways involved in the induction of this key regulatory enzyme in adrenocortical cells and demonstrated that LPS triggers an increase in COX-2 mRNA levels by mechanisms involving the stimulation of reactive oxygen species (ROS) generation and the activation of p38 MAPK and Akt, in addition to the previously demonstrated increase in NFκB activity. In this sense we showed that: (1) inhibition of p38 MAPK or PI3K/Akt (pharmacological or molecular) prevented the increase in COX-2 protein levels by LPS, (2) LPS induced p38 MAPK and Akt phosphorylation, (3) antioxidant treatment blocked the effect of LPS on p38 MAPK phosphorylation and in COX-2 protein levels, (4) PI3K inhibition with LY294002 prevented p38 MAPK phosphorylation and, (5) the activity of an NFκB reporter was decreased by p38 MAPK or PI3K inhibition. These results suggest that activation of both p38 MAPK and PI3K/Akt pathways promote the stimulation of NFκB activity and that PI3K/Akt activity might regulate both p38 MAPK and NFκB signaling pathways. In summary, in this study we showed that in adrenal cells, LPS induces COX-2 expression by activating p38 MAPK and PI3K/Akt signaling pathways and that both pathways converge in the modulation of NFκB transcriptional activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Sulforaphane attenuates microglia-mediated neuronal necroptosis through down-regulation of MAPK/NF-κB signaling pathways in LPS-activated BV-2 microglia.

    PubMed

    Qin, Sisi; Yang, Canhong; Huang, Weihua; Du, Shuhua; Mai, Hantao; Xiao, Jijie; Lü, Tianming

    2018-01-31

    Sulforaphane (SFN), a natural dietary isothiocyanate in cruciferous vegetables such as broccoli and cabbage, has very strong anti-inflammatory activity. Activation of microglia leads to overexpression of a series of pro-inflammatory mediators, which play a vital role in neuronal damage. SFN may have neuroprotective effects in different neurodegenerative diseases related to inflammation. However, the mechanisms underlying SFN's protection of neurons against microglia-mediated neuronal damage are not fully understood. Here, we investigated how SFN attenuated microglia-mediated neuronal damage. Our results showed that SFN could not directly protect the viability of neurons following pro-inflammatory mediators, but increased the viability of BV-2 microglia and down-regulated the mRNA and protein levels of pro-inflammatory mediators including TNF-α, IL-1β, IL-6 and iNOS in a concentration-dependent manner in BV-2 cells. SFN also significantly blocked the phosphorylation of MAPKs (p38, JNK, and ERK1/2) and NF-κB p65, both by itself and with MAPK inhibitors (SB203580, SP 600125, and U0126) or an NF-κB inhibitor (PDTC). The expression of pro-inflammatory proteins was also blocked by SFN with or without inhibitors. Further, SFN indirectly increased the viability and maintained the morphology of neurons, and the protein expression of RIPK3 and MLKL was significantly suppressed by SFN in neuronal necroptosis through p38, JNK, and NF-κB p65 but not ERK1/2 signaling pathways. Together, our results demonstrate that SFN attenuates LPS-induced pro-inflammatory responses through down-regulation of MAPK/NF-κB signaling pathway in BV-2 microglia and thus indirectly suppresses microglia-mediated neuronal damage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Aclacinomycin A Sensitizes K562 Chronic Myeloid Leukemia Cells to Imatinib through p38MAPK-Mediated Erythroid Differentiation

    PubMed Central

    Liu, Fu-Hwa; Huang, Yu-Wen; Huang, Huei-Mei

    2013-01-01

    Expression of oncogenic Bcr-Abl inhibits cell differentiation of hematopoietic stem/progenitor cells in chronic myeloid leukemia (CML). Differentiation therapy is considered to be a new strategy for treating this type of leukemia. Aclacinomycin A (ACM) is an antitumor antibiotic. Previous studies have shown that ACM induced erythroid differentiation of CML cells. In this study, we investigate the effect of ACM on the sensitivity of human CML cell line K562 to Bcr-Abl specific inhibitor imatinib (STI571, Gleevec). We first determined the optimal concentration of ACM for erythroid differentiation but not growth inhibition and apoptosis in K562 cells. Then, pretreatment with this optimal concentration of ACM followed by a minimally toxic concentration of imatinib strongly induced growth inhibition and apoptosis compared to that with simultaneous co-treatment, indicating that ACM-induced erythroid differentiation sensitizes K562 cells to imatinib. Sequential treatment with ACM and imatinib induced Bcr-Abl down-regulation, cytochrome c release into the cytosol, and caspase-3 activation, as well as decreased Mcl-1 and Bcl-xL expressions, but did not affect Fas ligand/Fas death receptor and procaspase-8 expressions. ACM/imatinib sequential treatment-induced apoptosis was suppressed by a caspase-9 inhibitor and a caspase-3 inhibitor, indicating that the caspase cascade is involved in this apoptosis. Furthermore, we demonstrated that ACM induced erythroid differentiation through the p38 mitogen-activated protein kinase (MAPK) pathway. The inhibition of erythroid differentiation by p38MAPK inhibitor SB202190, p38MAPK dominant negative mutant or p38MAPK shRNA knockdown, reduced the ACM/imatinib sequential treatment-mediated growth inhibition and apoptosis. These results suggest that differentiated K562 cells induced by ACM-mediated p38MAPK pathway become more sensitive to imatinib and result in down-regulations of Bcr-Abl and anti-apoptotic proteins, growth inhibition and apoptosis. These results provided a potential management by which ACM might have a crucial impact on increasing sensitivity of CML cells to imatinib in the differentiation therapeutic approaches. PMID:23613979

  18. Aclacinomycin A sensitizes K562 chronic myeloid leukemia cells to imatinib through p38MAPK-mediated erythroid differentiation.

    PubMed

    Lee, Yueh-Lun; Chen, Chih-Wei; Liu, Fu-Hwa; Huang, Yu-Wen; Huang, Huei-Mei

    2013-01-01

    Expression of oncogenic Bcr-Abl inhibits cell differentiation of hematopoietic stem/progenitor cells in chronic myeloid leukemia (CML). Differentiation therapy is considered to be a new strategy for treating this type of leukemia. Aclacinomycin A (ACM) is an antitumor antibiotic. Previous studies have shown that ACM induced erythroid differentiation of CML cells. In this study, we investigate the effect of ACM on the sensitivity of human CML cell line K562 to Bcr-Abl specific inhibitor imatinib (STI571, Gleevec). We first determined the optimal concentration of ACM for erythroid differentiation but not growth inhibition and apoptosis in K562 cells. Then, pretreatment with this optimal concentration of ACM followed by a minimally toxic concentration of imatinib strongly induced growth inhibition and apoptosis compared to that with simultaneous co-treatment, indicating that ACM-induced erythroid differentiation sensitizes K562 cells to imatinib. Sequential treatment with ACM and imatinib induced Bcr-Abl down-regulation, cytochrome c release into the cytosol, and caspase-3 activation, as well as decreased Mcl-1 and Bcl-xL expressions, but did not affect Fas ligand/Fas death receptor and procaspase-8 expressions. ACM/imatinib sequential treatment-induced apoptosis was suppressed by a caspase-9 inhibitor and a caspase-3 inhibitor, indicating that the caspase cascade is involved in this apoptosis. Furthermore, we demonstrated that ACM induced erythroid differentiation through the p38 mitogen-activated protein kinase (MAPK) pathway. The inhibition of erythroid differentiation by p38MAPK inhibitor SB202190, p38MAPK dominant negative mutant or p38MAPK shRNA knockdown, reduced the ACM/imatinib sequential treatment-mediated growth inhibition and apoptosis. These results suggest that differentiated K562 cells induced by ACM-mediated p38MAPK pathway become more sensitive to imatinib and result in down-regulations of Bcr-Abl and anti-apoptotic proteins, growth inhibition and apoptosis. These results provided a potential management by which ACM might have a crucial impact on increasing sensitivity of CML cells to imatinib in the differentiation therapeutic approaches.

  19. Continuous Blood Purification Ameliorates Multiple Organ Failure Through Inhibiting the Activation of the P38 MAPK Signaling Pathway in a Rat Model.

    PubMed

    Ling, Lan; Wen, Qian-Kuan; Zhang, Shan-Hong; Zhi, Li-Da; Li, Hong; Li, Gang; Zhang, Wen-Jia

    2018-06-07

    Multiple organ failure (MOF) is a primary threat to the survival of patients with systemic inflammation. Blood purification is employed in the treatment of MOF, as an artificial kidney or artificial liver. This study focuses on the effects of continuous blood purification (CBP) on ameliorating MOF through regulating the p38 mitogen-activated protein kinase (MAPK) signaling pathway in a rat model. A rat model of MOF was successfully established by endotoxin injection after hemorrhagic shock resuscitation. The mRNA expressions of inducible nitric oxide synthase (iNOS) and p38 MAPK of liver, kidney, and lung tissues in each group were measured by RT-qPCR at each measuring time point. To evaluate the activation of p38 MAPK signaling pathway, protein levels of phosphorylated p38 (p-p38) MAPK and p38 MAPK was measured by western blot analysis. The serum levels of nitric oxide and TNF-α were determined. After CBP treatment, the levels of SGPT, SGOT, Cr, and BUN were significantly declined, while the PaO2 value was increased. Expressions of p38 MAPK mRNA, iNOS mRNA, p-p38 MAPK protein and p38 MAPK protein, and nitric oxide and TNF-α levels were markedly elevated in MOF, an effect blunted by CPB. Meanwhile, pathological sections of liver, kidney, and lung tissues after CPB treatment ameliorated swelling and inflammation. Our study proved that CBP could downregulate the p38 MAPK signaling pathway, suppress iNOS expression, reduced the serum levels of nitric oxide and TNF-α, thus ameliorate symptom of MOF. © 2018 The Author(s). Published by S. Karger AG, Basel.

  20. Inhibition of the protein kinase MK-2 protects podocytes from nephrotic syndrome-related injury

    PubMed Central

    Pengal, Ruma; Guess, Adam J.; Agrawal, Shipra; Manley, Joshua; Ransom, Richard F.; Mourey, Robert J.; Smoyer, William E.

    2011-01-01

    While mitogen-activated protein kinase (MAPK) activation has been implicated in the pathogenesis of various glomerular diseases, including nephrotic syndrome (NS), its specific role in podocyte injury is not known. We hypothesized that MK-2, a downstream substrate of p38 MAPK, mediates the adverse effects of this pathway and that inhibition of MK-2 would protect podocytes from NS-related injury. Using cultured podocytes, we analyzed 1) the roles of MK-2 and p38 MAPK in puromycin aminonucleoside (PAN)-induced podocyte injury; 2) the ability of specific MK-2 and p38 MAPK inhibitors to protect podocytes against injury; 3) the role of serum albumin, known to induce podocyte injury, in activating p38 MAPK/MK-2 signaling; and 4) the role of p38 MAPK/MK-2 signaling in the expression of Cox-2, an enzyme associated with podocyte injury. Treatment with protein kinase inhibitors specific for both MK-2 (C23, a pyrrolopyridine-type compound) or p38 MAPK (SB203580) reduced PAN-induced podocyte injury and actin cytoskeletal disruption. Both inhibitors reduced baseline podocyte p38 MAPK/MK-2 signaling, as measured by the degree of phosphorylation of HSPB1, a downstream substrate of MK-2, but exhibited disparate effects on upstream signaling. Serum albumin activated p38 MAPK/MK-2 signaling and induced Cox-2 expression, and these responses were blocked by both inhibitors. Given the critical importance of podocyte injury to both NS and other progressive glomerular diseases, these data suggest an important role for p38 MAPK/MK-2 signaling in podocyte injury and identify MK-2 inhibition as a promising potential therapeutic strategy to protect podocytes in various glomerular diseases. PMID:21613416

  1. Infiltrating macrophages in diabetic nephropathy promote podocytes apoptosis via TNF-α-ROS-p38MAPK pathway

    PubMed Central

    Guo, Yinfeng; Song, Zhixia; Zhou, Min; Yang, Ying; Zhao, Yu; Liu, Bicheng; Zhang, Xiaoliang

    2017-01-01

    Macrophage infiltration has been linked to the pathogenesis of diabetic nephropathy (DN). However, how infiltrating macrophages affect the progression of DN is unknown. Although infiltrating macrophages produce pro-inflammatory mediators and induce apoptosis in a variety of target cells, there are no studies in podocytes. Therefore, we tested the contribution of macrophages to podocytes apoptosis in DN. in vivo experiments showed that apoptosis in podocytes was increased in streptozocin (STZ)-induced diabetic rats compared with control rats and that this apoptosis was accompanied by increased macrophages infiltration in the kidney. Then, we established a co-culture system to study the interaction between macrophages and podocytes in the absence or presence of high glucose. Macrophages did not trigger podocytes apoptosis when they were co-cultured in the absence of high glucose in a transwell co-culture system. Additionally, although podocyte apoptosis was increased after high glucose stimulation, there was a further enhancement of podocyte apoptosis when podocytes were co-cultured with macrophages in the presence of high glucose compared with podocytes cultured alone in high glucose. Mechanistically, we found that macrophages were activated when they were exposed to high glucose, displaying pro-inflammatory M1 polarization. Furthermore, conditioned media (CM) from such high glucose-activated M1 macrophages (HG-CM) trigged podocytes apoptosis in a reactive oxygen species (ROS)-p38mitogen-activated protein kinases (p38MAPK) dependent manner, which was abolished by either a ROS inhibitor (Tempo) or a p38MAPK inhibitor (SB203580). Finally, we identified tumor necrosis factor (TNF-α) as a key mediator of high glucose-activated macrophages to induce podocytes apoptosis because an anti-TNF-α neutralizing antibody blunted the apoptotic response, excess ROS generation and p38MPAK activation in podocytes induced by HG-CM. Moreover, addition of recombinant TNF-α similarly resulted in podocytes apoptosis. In summary, the TNF-α that was released by high glucose-activated macrophages promoted podocytes apoptosis via ROS-p38MAPK pathway. Blockade of TNF-α secretion from high glucose activated macrophages and ROS-p38MAPK pathway might be effective therapeutic options to limit podocytes apoptosis and delay the progression of diabetic nephropathy. PMID:28881810

  2. Inhibition of p38 mitogen-activated protein kinase signaling reduces multidrug transporter activity and anti-epileptic drug resistance in refractory epileptic rats.

    PubMed

    Shao, Yiye; Wang, Cuicui; Hong, Zhen; Chen, Yinghui

    2016-03-01

    It is widely recognized that P-glycoprotein (P-gp) mediates drug resistance in refractory epilepsy. However, the molecular mechanism underlying the up-regulation of P-gp expression remains unclear. Our previous studies have demonstrated that p38 mitogen-activated protein kinase (MAPK) regulates P-gp expression in cultured K562 cells. However, a lack of in vivo research leaves unanswered questions regarding whether p38MAPK regulates P-gp expression or drug resistance in refractory epilepsy. This in vivo study examined the effects of p38MAPK on the expression of P-gp and mdr1 in the rat brain and quantified antiepileptic drug (AED) concentrations in the hippocampal extracellular fluid. In addition, the role of p38MAPK in electrical and behavioral activity in a rat epilepsy model was studied. The results indicated that p38MAPK inhibition by SB202190 reduced P-gp expression, while increasing AED concentration in the hippocampal extracellular fluid in refractory epileptic rats. SB202190 also reduced the resistance to AEDs in drug-resistant rats and significantly reduced the severity of seizure activity. These results suggest that p38MAPK could participate in drug resistance in refractory epilepsy through the regulation of P-gp. We show that the specific inhibitor of p38MAPK could down-regulate the expression of multidrug transporter (P-glycoprotein) in blood-brain barrier, increase the concentration of antiepileptic drugs in the hippocampal extracellular fluid and reduce anti-epileptic drug resistance in refractory epileptic rats. We propose that the p38MAPK signaling pathway participates in drug resistance in refractory epilepsy through the regulation of P-glycoprotein expression. © 2015 International Society for Neurochemistry.

  3. p38 mitogen-activated protein kinase is involved in arginase-II-mediated eNOS-Uncoupling in Obesity

    PubMed Central

    2014-01-01

    Background Endothelial nitric oxide synthase (eNOS)-uncoupling links obesity-associated insulin resistance and type-II diabetes to the increased incidence of cardiovascular disease. Studies have indicated that increased arginase is involved in eNOS-uncoupling through competing with the substrate L-arginine. Given that arginase-II (Arg-II) exerts some of its biological functions through crosstalk with signal transduction pathways, and that p38 mitogen-activated protein kinase (p38mapk) is involved in eNOS-uncoupling, we investigated here whether p38mapk is involved in Arg-II-mediated eNOS-uncoupling in a high fat diet (HFD)-induced obesity mouse model. Methods Obesity was induced in wild type (WT) and Arg-II-deficient (Arg-II-/-) mice on C57BL/6 J background by high-fat diet (HFD, 55% fat) for 14 weeks starting from age of 7 weeks. The entire aortas were isolated and subjected to 1) immunoblotting analysis of the protein level of eNOS, Arg-II and p38mapk activation; 2) arginase activity assay; 3) endothelium-dependent and independent vasomotor responses; 4) en face staining of superoxide anion and NO production with Dihydroethidium and 4,5-Diaminofluorescein Diacetate, respectively, to assess eNOS-uncoupling. To evaluate the role of p38mapk, isolated aortas were treated with p38mapk inhibitor SB203580 (10 μmol/L, 1 h) prior to the analysis. In addition, the role of p38mapk in Arg-II-induced eNOS-uncoupling was investigated in cultured human endothelial cells overexpressing Arg-II in the absence or presence of shRNA against p38mapk. Results HFD enhanced Arg-II expression/activity and p38mapk activity, which was associated with eNOS-uncoupling as revealed by decreased NO and enhanced L-NAME-inhibitable superoxide in aortas of WT obese mice. In accordance, WT obese mice revealed decreased endothelium-dependent relaxations to acetylcholine despite of higher eNOS protein level, whereas Arg-II-/- obese mice were protected from HFD-induced eNOS-uncoupling and endothelial dysfunction, which was associated with reduced p38mapk activation in aortas of the Arg-II-/- obese mice. Moreover, overexpression of Arg-II in human endothelial cells caused eNOS-uncoupling and augmented p38mapk activation. The Arg-II-induced eNOS-uncoupling was prevented by silencing p38mapk. Furthermore, pharmacological inhibition of p38mapk recouples eNOS in isolated aortas from WT obese mice. Conclusions Taking together, we demonstrate here for the first time that Arg-II causes eNOS-uncoupling through activation of p38 mapk in HFD-induced obesity. PMID:25034973

  4. Carbon monoxide protects rat lung transplants from ischemia-reperfusion injury via a mechanism involving p38 MAPK pathway.

    PubMed

    Kohmoto, J; Nakao, A; Stolz, D B; Kaizu, T; Tsung, A; Ikeda, A; Shimizu, H; Takahashi, T; Tomiyama, K; Sugimoto, R; Choi, A M K; Billiar, T R; Murase, N; McCurry, K R

    2007-10-01

    Carbon monoxide (CO) provides protection against oxidative stress via anti-inflammatory and cytoprotective actions. In this study, we tested the hypothesis that a low concentration of exogenous (inhaled) CO would protect transplanted lung grafts from cold ischemia-reperfusion injury via a mechanism involving the mitogen-activated protein kinase (MAPK) signaling pathway. Lewis rats underwent orthotopic syngeneic or allogeneic left lung transplantation with 6 h of cold static preservation. Exposure of donors and recipients (1 h before and then continuously post-transplant) to 250 ppm CO resulted in significant improvement in gas exchange, reduced leukocyte sequestration, preservation of parenchymal and endothelial cell ultrastructure and reduced inflammation compared to animals exposed to air. The beneficial effects of CO were associated with p38 MAPK phosphorylation and were significantly prevented by treatment with a p38 MAPK inhibitor, suggesting that CO's efficacy is at least partially mediated by activation of p38 MAPK. Furthermore, CO markedly suppressed inflammatory events in the contralateral naïve lung. This study demonstrates that perioperative exposure of donors and recipients to CO at a low concentration can impart potent anti-inflammatory and cytoprotective effects in a clinically relevant model of lung transplantation and support further evaluation for potential clinical use.

  5. Osthole attenuates hepatic injury in a rodent model of trauma-hemorrhage.

    PubMed

    Yu, Huang-Ping; Liu, Fu-Chao; Tsai, Yung-Fong; Hwang, Tsong-Long

    2013-01-01

    Recent evidences show that osthole possesses anti-inflammatory properties and protective effects following shock-like states, but the mechanism of these effects remains unknown. The p38 mitogen-activated protein kinase (p38 MAPK) pathway exerts anti-inflammatory effects in injury. The aim of this study was to investigate whether p38 MAPK plays any role in the osthole-mediated attenuation of hepatic injury after trauma-hemorrhage. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35-40 mmHg for 90 minutes), followed by fluid resuscitation. During resuscitation, a single dose of osthole (3 mg/kg, intravenously) with and without a p38 MAPK inhibitor SB-203580 (2 mg/kg, intravenously), SB-203580 or vehicle was administered. Plasma alanine aminotransferase (ALT) with aspartate aminotransferase (AST) concentrations and various hepatic parameters were measured (n = 8 rats/group) at 24 hours after resuscitation. The results showed that trauma-hemorrhage increased hepatic myeloperoxidase activity, intercellular adhesion molecule-1 and interleukin-6 levels, and plasma ALT and AST concentrations. These parameters were significantly improved in the osthole-treated rats subjected to trauma-hemorrhage. Osthole treatment also increased hepatic phospho-p38 MAPK expression compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of SB-203580 with osthole abolished the osthole-induced beneficial effects on the above parameters and hepatic injury. These results suggest that the protective effect of osthole administration on alleviation of hepatic injury after trauma-hemorrhage, which is, at least in part, through p38 MAPK-dependent pathway.

  6. Mitogen-activated protein kinase pathway mediates DBP-maf-induced apoptosis in RAW 264.7 macrophages.

    PubMed

    Gumireddy, Kiranmai; Reddy, C Damodar; Swamy, Narasimha

    2003-09-01

    Vitamin D-binding protein-macrophage-activating factor (DBP-maf) is derived from serum vitamin D binding protein (DBP) by selective deglycosylation during inflammation. In the present study, we investigated the effect of DBP-maf on RAW 264.7 macrophages and the underlying intracellular signal transduction pathways. DBP-maf increased proapoptotic caspase-3, -8, and -9 activities and induced apoptosis in RAW 264.7 cells. However, DBP, the precursor to DBP-maf did not induce apoptosis in these cells. Cell cycle analysis of DBP-maf-treated RAW 264.7 cells revealed growth arrest with accumulation of cells in sub-G(0)/G(1) phase. We also investigated the role of mitogen-activated protein kinase (MAPK) pathways in the DBP-maf-induced apoptosis of RAW264.7 cells. DBP-maf increased the phosphorylation of p38 and JNK1/2, while it decreased the ERK1/2 phosphorylation. Treatment with the p38 MAPK inhibitor, SB202190, attenuated DBP-maf-induced apoptosis. PD98059, a MEK specific inhibitor, did not show a significant inhibition of apoptosis induced by DBP-maf. Taken together, these results suggest that the p38 MAPK pathway plays a crucial role in DBP-maf-mediated apoptosis of macrophages. Our studies indicate that, during inflammation DBP-maf may function positively by causing death of the macrophages when activated macrophages are no longer needed at the site of inflammation. In summary, we report for the first time that DBP-maf induces apoptosis in macrophages via p38 and JNK1/2 pathway. Copyright 2003 Wiley-Liss, Inc.

  7. IL-1β-induced and p38MAPK-dependent activation of the mitogen-activated protein kinase-activated protein kinase 2 (MK2) in hepatocytes: Signal transduction with robust and concentration-independent signal amplification

    PubMed Central

    Kulawik, Andreas; Engesser, Raphael; Ehlting, Christian; Raue, Andreas; Albrecht, Ute; Hahn, Bettina; Lehmann, Wolf-Dieter; Gaestel, Matthias; Klingmüller, Ursula; Häussinger, Dieter; Timmer, Jens; Bode, Johannes G.

    2017-01-01

    The IL-1β induced activation of the p38MAPK/MAPK-activated protein kinase 2 (MK2) pathway in hepatocytes is important for control of the acute phase response and regulation of liver regeneration. Many aspects of the regulatory relevance of this pathway have been investigated in immune cells in the context of inflammation. However, very little is known about concentration-dependent activation kinetics and signal propagation in hepatocytes and the role of MK2. We established a mathematical model for IL-1β-induced activation of the p38MAPK/MK2 pathway in hepatocytes that was calibrated to quantitative data on time- and IL-1β concentration-dependent phosphorylation of p38MAPK and MK2 in primary mouse hepatocytes. This analysis showed that, in hepatocytes, signal transduction from IL-1β via p38MAPK to MK2 is characterized by strong signal amplification. Quantification of p38MAPK and MK2 revealed that, in hepatocytes, at maximum, 11.3% of p38MAPK molecules and 36.5% of MK2 molecules are activated in response to IL-1β. The mathematical model was experimentally validated by employing phosphatase inhibitors and the p38MAPK inhibitor SB203580. Model simulations predicted an IC50 of 1–1.2 μm for SB203580 in hepatocytes. In silico analyses and experimental validation demonstrated that the kinase activity of p38MAPK determines signal amplitude, whereas phosphatase activity affects both signal amplitude and duration. p38MAPK and MK2 concentrations and responsiveness toward IL-1β were quantitatively compared between hepatocytes and macrophages. In macrophages, the absolute p38MAPK and MK2 concentration was significantly higher. Finally, in line with experimental observations, the mathematical model predicted a significantly higher half-maximal effective concentration for IL-1β-induced pathway activation in macrophages compared with hepatocytes, underscoring the importance of cell type-specific differences in pathway regulation. PMID:28223354

  8. Regulation of Hippo signalling by p38 signalling

    PubMed Central

    Huang, Dashun; Li, Xiaojiao; Sun, Li; Huang, Ping; Ying, Hao; Wang, Hui; Wu, Jiarui; Song, Haiyun

    2016-01-01

    The Hippo signalling pathway has a crucial role in growth control during development, and its dysregulation contributes to tumorigenesis. Recent studies uncover multiple upstream regulatory inputs into Hippo signalling, which affects phosphorylation of the transcriptional coactivator Yki/YAP/TAZ by Wts/Lats. Here we identify the p38 mitogen-activated protein kinase (MAPK) pathway as a new upstream branch of the Hippo pathway. In Drosophila, overexpression of MAPKK gene licorne (lic), or MAPKKK gene Mekk1, promotes Yki activity and induces Hippo target gene expression. Loss-of-function studies show that lic regulates Hippo signalling in ovary follicle cells and in the wing disc. Epistasis analysis indicates that Mekk1 and lic affect Hippo signalling via p38b and wts. We further demonstrate that the Mekk1-Lic-p38b cascade inhibits Hippo signalling by promoting F-actin accumulation and Jub phosphorylation. In addition, p38 signalling modulates actin filaments and Hippo signalling in parallel to small GTPases Ras, Rac1, and Rho1. Lastly, we show that p38 signalling regulates Hippo signalling in mammalian cell lines. The Lic homologue MKK3 promotes nuclear localization of YAP via the actin cytoskeleton. Upregulation or downregulation of the p38 pathway regulates YAP-mediated transcription. Our work thus reveals a conserved crosstalk between the p38 MAPK pathway and the Hippo pathway in growth regulation. PMID:27402810

  9. The p38 pathway, a major pleiotropic cascade that transduces stress and metastatic signals in endothelial cells

    PubMed Central

    Corre, Isabelle; Paris, François; Huot, Jacques

    2017-01-01

    By gating the traffic of molecules and cells across the vessel wall, endothelial cells play a central role in regulating cardiovascular functions and systemic homeostasis and in modulating pathophysiological processes such as inflammation and immunity. Accordingly, the loss of endothelial cell integrity is associated with pathological disorders that include atherosclerosis and cancer. The p38 mitogen-activated protein kinase (MAPK) cascades are major signaling pathways that regulate several functions of endothelial cells in response to exogenous and endogenous stimuli including growth factors, stress and cytokines. The p38 MAPK family contains four isoforms p38α, p38β, p38γ and p38δ that are encoded by four different genes. They are all widely expressed although to different levels in almost all human tissues. p38α/MAPK14, that is ubiquitously expressed is the prototype member of the family and is referred here as p38. It regulates the production of inflammatory mediators, and controls cell proliferation, differentiation, migration and survival. Its activation in endothelial cells leads to actin remodeling, angiogenesis, DNA damage response and thereby has major impact on cardiovascular homeostasis, and on cancer progression. In this manuscript, we review the biology of p38 in regulating endothelial functions especially in response to oxidative stress and during the metastatic process. PMID:28903453

  10. Vitamin D protects endothelial cells from irradiation-induced senescence and apoptosis by modulating MAPK/SirT1 axis.

    PubMed

    Marampon, F; Gravina, G L; Festuccia, C; Popov, V M; Colapietro, E A; Sanità, P; Musio, D; De Felice, F; Lenzi, A; Jannini, E A; Di Cesare, E; Tombolini, V

    2016-04-01

    Radiotherapy toxicity is related to oxidative stress-mediated endothelial dysfunction. Here, we investigated on radioprotective properties of Vitamin D (Vit.D) on human endothelial cells (HUVEC). HUVEC, pre-treated with Vit.D, were exposed to ionizing radiation (IR): ROS production, cellular viability, apoptosis, senescence and western blot for protein detection were performed. The role of MAPKs pathway was investigated by using U0126 (10 μM) MEKs/ERKs-, SB203580 (2.5 μM) p38-inhibitor or by over/expressing MKK6 p38-upstream activator. Vit.D reduced IR-induced ROS production protecting proliferating and quiescent HUVEC from cellular apoptosis or senescence, respectively, by regulating MAPKs pathways. In proliferating HUVEC, Vit.D prevented IR-induced apoptosis by activating ERKs while in quiescent HUVEC counteracted IR-induced senescence by inhibiting the p38-IR-induced activation. MEKs&ERKs inhibition in proliferating or MKK6/mediated p38 activation in quiescent HUVEC, respectively, reverted anti-apoptotic or anti-senescent Vit.D properties. SirT1 protein expression levels were up-regulated by Vit.D. ERKs inhibition blocked Vit.D-induced SirT1 protein up-regulation in proliferating cells. In quiescent HUVEC cells, p38 inhibition counteracted the IR-induced SirT1 protein down-regulation, while MKK6 transfection abrogated the Vit.D positive effects on SirT1 protein levels after irradiation. SirT1 inhibition by sirtinol blocked the Vit.D radioprotective effects. Vit.D protects HUVEC from IR induced/oxidative stress by positively regulating the MAPKs/SirT1 axis.

  11. Krüppel-like factor 17 inhibits urokinase plasminogen activator gene expression to suppress cell invasion through the Src/p38/MAPK signaling pathway in human lung adenocarcinoma

    PubMed Central

    Huang, Shuai; Li, Jiong; Liu, Xiao-Yan; Pan, Xing-Fei; Wang, Qin-Qin; Chen, Li; Lin, Ming-Juan; Huang, Zhi-Hong; Ma, Hong-Ming; Wu, Yi; Liu, Sheng-Ming; Zhou, Yan-Bin

    2017-01-01

    Krüppel-like factor 17 (KLF17) has been reported to be involved in invasion and metastasis suppression in lung cancer, but the molecular mechanisms underlying the anti-invasion and anti-metastasis roles of KLF17 in lung cancer are not fully illustrated. Here, we showed that KLF17 inhibited the invasion of A549 and H322 cells; the anti-invasion effect of KLF17 was associated with the suppression of urokinase plasminogen activator (uPA/PLAU) expression. KLF17 can bind with the promoter of uPA and inhibit its expression. Enforced expression of uPA abrogated the anti-invasion effect of KLF17 in A549 and H322 cells. In addition, immunohistochemistry staining showed that the protein expression of KLF17 was negatively correlated with that of uPA in archived samples from patients with lymph node metastasis of lung adenocarcinoma (rho = −0.62, P = 0.01). The mutually exclusive expression of KLF17 with uPA could predict lymph node metastasis for lung adenocarcinoma (AUC = 0.758, P = 0.005). Enforced expression of KLF17 inhibited the expression of phosphorylated Src and phosphorylated p38/MAPK in A549 and H322 cells. The invasiveness of the cells were suppressed by treating with sb203580 (p38/MAPK inhibitor) or HY-13805 (PP2, Src inhibitor). furthermore, p38/MAPK inhibition could block the KLF17-induced reduction of p-p38/MAPK and uPA, and Src inhibition enhanced the KLF17-induced suppression of p-Src and uPA in A549 and H322 cells. In conclusion, our study indicated that KLF17 suppressed the uPA-mediated invasion of lung adenocarcinoma. The Src and p38/MAPK signaling pathways were suggested as mediators of KLF17-induced uPA inhibition, thus providing evidence that KLF17 might be a potential anti-invasion candidate for lung adenocarcinoma. PMID:28454121

  12. A Drosophila model of myeloproliferative neoplasm reveals a feed-forward loop in the JAK pathway mediated by p38 MAPK signalling

    PubMed Central

    Pérez, Lidia; Bray, Sarah J.

    2017-01-01

    ABSTRACT Myeloproliferative neoplasms (MPNs) of the Philadelphia-negative class comprise polycythaemia vera, essential thrombocythaemia and primary myelofibrosis (PMF). They are associated with aberrant numbers of myeloid lineage cells in the blood, and in the case of overt PMF, with development of myelofibrosis in the bone marrow and failure to produce normal blood cells. These diseases are usually caused by gain-of-function mutations in the kinase JAK2. Here, we use Drosophila to investigate the consequences of activation of the JAK2 orthologue in haematopoiesis. We have identified maturing haemocytes in the lymph gland, the major haematopoietic organ in the fly, as the cell population susceptible to induce hypertrophy upon targeted overexpression of JAK. We show that JAK activates a feed-forward loop, including the cytokine-like ligand Upd3 and its receptor, Domeless, which are required to induce lymph gland hypertrophy. Moreover, we present evidence that p38 MAPK signalling plays a key role in this process by inducing expression of the ligand Upd3. Interestingly, we also show that forced activation of the p38 MAPK pathway in maturing haemocytes suffices to generate hypertrophic organs and the appearance of melanotic tumours. Our results illustrate a novel pro-tumourigenic crosstalk between the p38 MAPK pathway and JAK signalling in a Drosophila model of MPNs. Based on the shared molecular mechanisms underlying MPNs in flies and humans, the interplay between Drosophila JAK and p38 signalling pathways unravelled in this work might have translational relevance for human MPNs. PMID:28237966

  13. Human Th17 Migration in Three-Dimensional Collagen Involves p38 MAPK.

    PubMed

    Kadiri, Maleck; El Azreq, Mohammed-Amine; Berrazouane, Sofiane; Boisvert, Marc; Aoudjit, Fawzi

    2017-09-01

    T cell migration across extracellular matrix (ECM) is an important step of the adaptive immune response but is also involved in the development of inflammatory autoimmune diseases. Currently, the molecular mechanisms regulating the motility of effector T cells in ECM are not fully understood. Activation of p38 MAPK has been implicated in T cell activation and is critical to the development of immune and inflammatory responses. In this study, we examined the implication of p38 MAPK in regulating the migration of human Th17 cells through collagen. Using specific inhibitor and siRNA, we found that p38 is necessary for human Th17 migration in three-dimensional (3D) collagen and that 3D collagen increases p38 phosphorylation. We also provide evidence that the collagen receptor, discoidin domain receptor 1 (DDR1), which promotes Th17 migration in 3D collagen, is involved in p38 activation. Together, our findings suggest that targeting DDR1/p38 MAPK pathway could be beneficial for the treatment of Th17-mediated inflammatory diseases. J. Cell. Biochem. 118: 2819-2827, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Stimulation of the p38 Mitogen-activated Protein Kinase Pathway in Neonatal Rat Ventricular Myocytes by the G Protein–coupled Receptor Agonists, Endothelin-1 and Phenylephrine: A Role in Cardiac Myocyte Hypertrophy?

    PubMed Central

    Clerk, Angela; Michael, Ashour; Sugden, Peter H.

    1998-01-01

    We examined the activation of the p38 mitogen-activated protein kinase (p38-MAPK) pathway by the G protein–coupled receptor agonists, endothelin-1 and phenylephrine in primary cultures of cardiac myocytes from neonatal rat hearts. Both agonists increased the phosphorylation (activation) of p38-MAPK by ∼12-fold. A p38-MAPK substrate, MAPK-activated protein kinase 2 (MAPKAPK2), was activated approximately fourfold and 10 μM SB203580, a p38-MAPK inhibitor, abolished this activation. Phosphorylation of the MAPKAPK2 substrate, heat shock protein 25/27, was also increased. Using selective inhibitors, activation of the p38-MAPK pathway by endothelin-1 was shown to involve protein kinase C but not Gi/Go nor the extracellularly responsive kinase (ERK) pathway. SB203580 failed to inhibit the morphological changes associated with cardiac myocyte hypertrophy induced by endothelin-1 or phenylephrine between 4 and 24 h. However, it decreased the myofibrillar organization and cell profile at 48 h. In contrast, inhibition of the ERK cascade with PD98059 prevented the increase in myofibrillar organization but not cell profile. These data are not consistent with a role for the p38-MAPK pathway in the immediate induction of the morphological changes of hypertrophy but suggest that it may be necessary over a longer period to maintain the response. PMID:9679149

  15. (+)-Nootkatone inhibits tumor necrosis factor α/interferon γ-induced production of chemokines in HaCaT cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hyeon-Jae; Lee, Jin-Hwee; Jung, Yi-Sook, E-mail: yisjung@ajou.ac.kr

    Highlights: • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced TARC and MDC expression in HaCaT cells. • PKCζ, p38 MAPK, or NF-κB mediate TNF-α/IFN-γ-induced TARC and MDC expression. • (+)-Nootkatone inhibits TNF-α/IFN-γ-induced activation of PKCζ, p38 MAPK, or NF-κB. • (+)-Nootkatone suppresses chemokine expression by inhibiting of PKCζ and p38 pathways. - Abstract: Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate themore » effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.« less

  16. The p38 mitogen-activated protein kinase signaling pathway is involved in regulating low-density lipoprotein receptor-related protein 1-mediated β-amyloid protein internalization in mouse brain.

    PubMed

    Ma, Kai-Ge; Lv, Jia; Hu, Xiao-Dan; Shi, Li-Li; Chang, Ke-Wei; Chen, Xin-Lin; Qian, Yi-Hua; Yang, Wei-Na; Qu, Qiu-Min

    2016-07-01

    Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Recently, increasing evidence suggests that intracellular β-amyloid protein (Aβ) alone plays a pivotal role in the progression of AD. Therefore, understanding the signaling pathway and proteins that control Aβ internalization may provide new insight for regulating Aβ levels. In the present study, the regulation of Aβ internalization by p38 mitogen-activated protein kinases (MAPK) through low-density lipoprotein receptor-related protein 1 (LRP1) was analyzed in vivo. The data derived from this investigation revealed that Aβ1-42 were internalized by neurons and astrocytes in mouse brain, and were largely deposited in mitochondria and lysosomes, with some also being found in the endoplasmic reticulum. Aβ1-42-LRP1 complex was formed during Aβ1-42 internalization, and the p38 MAPK signaling pathway was activated by Aβ1-42 via LRP1. Aβ1-42 and LRP1 were co- localized in the cells of parietal cortex and hippocampus. Furthermore, the level of LRP1-mRNA and LRP1 protein involved in Aβ1-42 internalization in mouse brain. The results of this investigation demonstrated that Aβ1-42 induced an LRP1-dependent pathway that related to the activation of p38 MAPK resulting in internalization of Aβ1-42. These results provide evidence supporting a key role for the p38 MAPK signaling pathway which is involved in the regulation of Aβ1-42 internalization in the parietal cortex and hippocampus of mouse through LRP1 in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Porcine circovirus type 2 activates PI3K/Akt and p38 MAPK pathways to promote interleukin-10 production in macrophages via Cap interaction of gC1qR

    PubMed Central

    Wang, Tongtong; Zhang, Xiujuan; Chen, Yu; Cui, Beibei; Li, Delong; Zhao, Xiaomin; Zhang, Wenlong; Chang, Lingling; Tong, Dewen

    2016-01-01

    Porcine circovirus type 2 (PCV2) infection caused PCV2-associated diseases (PCVAD) is one of the major emerging immunosuppression diseases in pig industry. In this study, we investigated how PCV2 inoculation increases interleukin (IL)-10 expression in porcine alveolar macrophages (PAMs). PCV2 inoculation significantly upregulated IL-10 expression compared with PCV1. Upon initial PCV2 inoculation, PI3K/Akt cooperated with NF-κB pathways to promote IL-10 transcription via p50, CREB and Ap1 transcription factors, whereas inhibition of PI3K/Akt activation blocked Ap1 and CREB binding to the il10 promoter, and decreased the binding level of NF-κB1 p50 with il10 promoter, leading to great reduction in early IL-10 transcription. In the later phase of inoculation, PCV2 further activated p38 MAPK and ERK pathways to enhance IL-10 production by promoting Sp1 binding to the il10 promoter. For PCV2-induced IL-10 production in macrophages, PCV2 capsid protein Cap, but not the replicase Rep or ORF3, was the critical component. Cap activated PI3K/Akt, p38 MAPK, and ERK signaling pathways to enhance IL-10 expression. In the whole process, gC1qR mediated PCV2-induced PI3K/Akt and p38 MAPK activation to enhance IL-10 induction by interaction with Cap. Depletion of gC1qR blocked PI3K/Akt and p38 MAPK activation, resulting in significant decrease in IL-10 production in PCV2-inoculated cells. Thus, gC1qR might be a critical functional receptor for PCV2-induced IL-10 production. Taken together, these data demonstrated that Cap protein binding with host gC1qR induction of PI3K/Akt and p38 MAPK signalings activation is a critical process in enhancing PCV2-induced IL-10 production in porcine alveolar macrophages. PMID:26883107

  18. Alpinia oxyphylla Miquel fruit extract activates MAPK-mediated signaling of PAs and MMP2/9 to induce Schwann cell migration and nerve regeneration.

    PubMed

    Chang, Yung-Ming; Ye, Chi-Xin; Ho, Tsung-Jung; Tsai, Te-Neng; Chiu, Ping-Ling; Tsai, Chin-Chuan; Lin, Yueh-Min; Kuo, Chia-Hua; Tsai, Fuu-Jen; Tsai, Chang-Hai; Huang, Chih-Yang

    2014-05-01

    This study investigates the molecular mechanisms by which Alpiniae oxyphyllae fructus (AOF) promotes neuron regeneration. A piece of silicone rubber was guided across a 15 mm gap in the sciatic nerve of a rat. This nerve gap was then filled with different concentrations of AOF extract (0-200 mg/ml). We investigated the role of MAPK (ERK1/2, JNK and p38) pathways for AOF-induced matrix-degrading proteolytic enzyme (PAs and MMP2/9) production in RSC96 Schwann cells. The results showed that AOF increased the expressions of uPA, tPA, MMP-9, and MAPKs in vivo. In vitro, our results show that treatment with AOF extract induces ERK1/2, JNK, and p38 phosphorylation to activate the downstream PAs and MMPs signaling expression. AOF-stimulated ERK1/2, JNK, and p38 phosphorylation attenuated by individual pretreatment with siRNAs or inhibitors (U0126, SP600125 and SB203580), resulting in migration and uPA-related signal pathway inhibition. Taken together our data suggests the MAPKs (ERK1/2, JNK and p38), PAs (uPA, tPA), MMP (MMP2, MMP9) regenerative and migration signaling pathway of Schwann cells regulated by AOF extract might play a major role in Schwann cell migration and damaged peripheral nerve regeneration.

  19. Estrogen suppresses breast cancer proliferation through GPER / p38 MAPK axis during hypoxia.

    PubMed

    Sathya, S; Sudhagar, S; Lakshmi, B S

    2015-12-05

    Breast cancer cells frequently experience hypoxia which is associated with resistance to hormonal therapy and poor clinical prognosis, making it important to understand the function of estrogen under hypoxic condition. Here, we demonstrate that estrogen suppresses breast cancer cell growth under hypoxia, through inhibition at G1/S phase of cell cycle, by elevation of p21 expression. The involvement of GPER in estrogen mediated growth arrest was elucidated using specific ligands and siRNA. Although, estrogen was observed to activate both p44/42 and p38 MAPK signaling, pharmacological inhibition and silencing of p38 MAPK abrogated the induction of p21 expression and growth arrest, during hypoxia. The involvement of estrogen induced ROS in the p38 MAPK mediated p21 expression and cell growth arrest was established by observing that scavenging of ROS by NAC abrogated p38 MAPK activation and p21 expression during hypoxia. In conclusion, Estrogen suppresses breast cancer growth by inhibiting G1/S phase transition through GPER/ROS/p38 MAPK/p21 mediated signaling during hypoxic condition. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Metabolic oxidative stress elicited by the copper(II) complex [Cu(isaepy)2] triggers apoptosis in SH-SY5Y cells through the induction of the AMP-activated protein kinase/p38MAPK/p53 signalling axis: evidence for a combined use with 3-bromopyruvate in neuroblastoma treatment.

    PubMed

    Filomeni, Giuseppe; Cardaci, Simone; Da Costa Ferreira, Ana Maria; Rotilio, Giuseppe; Ciriolo, Maria Rosa

    2011-08-01

    We have demonstrated previously that the complex bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl)pyridine-N,N']copper(II), named [Cu(isaepy)(2)], induces AMPK (AMP-activated protein kinase)-dependent/p53-mediated apoptosis in tumour cells by targeting mitochondria. In the present study, we found that p38(MAPK) (p38 mitogen-activated protein kinase) is the molecular link in the phosphorylation cascade connecting AMPK to p53. Transfection of SH-SY5Y cells with a dominant-negative mutant of AMPK resulted in a decrease in apoptosis and a significant reduction in phospho-active p38(MAPK) and p53. Similarly, reverse genetics of p38(MAPK) yielded a reduction in p53 and a decrease in the extent of apoptosis, confirming an exclusive hierarchy of activation that proceeds via AMPK/p38(MAPK)/p53. Fuel supplies counteracted [Cu(isaepy)(2)]-induced apoptosis and AMPK/p38(MAPK)/p53 activation, with glucose being the most effective, suggesting a role for energetic imbalance in [Cu(isaepy)(2)] toxicity. Co-administration of 3BrPA (3-bromopyruvate), a well-known inhibitor of glycolysis, and succinate dehydrogenase, enhanced apoptosis and AMPK/p38(MAPK)/p53 signalling pathway activation. Under these conditions, no toxic effect was observed in SOD (superoxide dismutase)-overexpressing SH-SY5Y cells or in PCNs (primary cortical neurons), which are, conversely, sensitized to the combined treatment with [Cu(isaepy)(2)] and 3BrPA only if grown in low-glucose medium or incubated with the glucose-6-phosphate dehydrogenase inhibitor dehydroepiandrosterone. Overall, the results suggest that NADPH deriving from the pentose phosphate pathway contributes to PCN resistance to [Cu(isaepy)(2)] toxicity and propose its employment in combination with 3BrPA as possible tool for cancer treatment. © The Authors Journal compilation © 2011 Biochemical Society

  1. Lidocaine attenuates lipopolysaccharide-induced inflammatory responses in microglia.

    PubMed

    Yuan, Tong; Li, Zhiwen; Li, Xinbai; Yu, Gaoqi; Wang, Na; Yang, Xige

    2014-11-01

    Lidocaine has been used as a local anesthetic with anti-inflammatory properties, but its effects on neuroinflammation have not been well defined. In the present study, we investigated the prophylactic effects of lidocaine on lipopolysaccharide (LPS)-activated microglia and explored the underlying mechanisms. Microglial cells were incubated with or without 1 μg/mL LPS in the presence or absence of lidocaine, a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor (SB203580), a nuclear factor-kappa B (NF-κB) inhibitor (pyrrolidine dithiocarbamate), or small interfering RNA. The protein and expression levels of inflammatory mediators, such as monocyte chemotactic protein 1, nitric oxide, prostaglandin E2, interleukin 1β, and tumor necrosis factor α were measured using enzyme-linked immunosorbent assays and real-time polymerase chain reaction. The effect of lidocaine on NF-κB and p38 MAPK activation was evaluated using enzyme-linked immunosorbent assays, Western blot analysis, and electrophoretic mobility shift assay. Lidocaine (≥2 μg/mL) significantly inhibited the release and expression of nitric oxide, monocyte chemotactic protein 1, prostaglandin E2, interleukin 1β, and tumor necrosis factor α in LPS-activated microglia. Treatment with lidocaine also significantly inhibited the phosphorylation of p38 MAPK and the nuclear translocation of NF-κB p50/p65, increased the protein levels of inhibitor kappa B-α. Furthermore, our study shows that the LPS-induced release of inflammatory mediators was suppressed by SB203580, pyrrolidine dithiocarbamate, and small interfering RNA. Prophylactic treatment with lidocaine inhibits LPS-induced release of inflammatory mediators from microglia, and these effects may be mediated by blockade of p38 MAPK and NF-κB signaling pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Leptin regulates MMP-2, TIMP-1 and collagen synthesis via p38 MAPK in HL-1 murine cardiomyocytes.

    PubMed

    Schram, Kristin; De Girolamo, Sabrina; Madani, Siham; Munoz, Diana; Thong, Farah; Sweeney, Gary

    2010-12-01

    A clear association between obesity and heart failure exists and a significant role for leptin, the product of the obese gene, has been suggested. One aspect of myocardial remodeling which characterizes heart failure is a disruption in the balance of extracellular matrix synthesis and degradation. Here we investigated the effects of leptin on matrix metalloproteinase (MMP) activity, tissue inhibitor of metalloproteinase (TIMP) expression, as well as collagen synthesis in HL-1 cardiac muscle cells. Gelatin zymographic analysis of MMP activity in conditioned media showed that leptin enhanced MMP-2 activity in a dose- and time-dependent manner. Leptin is known to stimulate phosphorylation of p38 MAPK in cardiac cells and utilization of the p38 MAPK inhibitor, SB203580, demonstrated that this kinase also plays a role in regulating several extracellular matrix components, such that inhibition of p38 MAPK signaling prevented the leptin-induced increase in MMP-2 activation. We also observed that leptin enhanced collagen synthesis determined by both proline incorporation and picrosirius red staining of conditioned media. Pro-collagen type-I and pro-collagen type-III expression, measured by real-time PCR and Western blotting were also increased by leptin, effects which were again attenuated by SB203580. In summary, these results demonstrate the potential for leptin to play a role in mediating myocardial ECM remodeling and that the p38 MAPK pathway plays an important role in mediating these effects.

  3. Involvement of p38 MAPK- and JNK-modulated expression of Bcl-2 and Bax in Naja nigricollis CMS-9-induced apoptosis of human leukemia K562 cells.

    PubMed

    Chen, Ying-Jung; Liu, Wen-Hsin; Kao, Pei-Hsiu; Wang, Jeh-Jeng; Chang, Long-Sen

    2010-06-15

    CMS-9, a phospholipase A(2) (PLA(2)) isolated from Naja nigricollis venom, induced apoptosis of human leukemia K562 cells, characterized by mitochondrial depolarization, modulation of Bcl-2 family members, cytochrome c release and activation of caspases 9 and 3. Moreover, an increase in intracellular Ca2+ concentration and the production of reactive oxygen species (ROS) was noted. Pretreatment with BAPTA-AM (Ca2+ chelator) and N-acetylcysteine (NAC, ROS scavenger) proved that Ca2+ was an upstream event in inducing ROS generation. Upon exposure to CMS-9, activation of p38 MAPK and JNK was observed in K562 cells. BAPTA-AM or NAC abrogated CMS-9-elicited p38 MAPK and JNK activation, and rescued viability of CMS-9-treated K562 cells. SB202190 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor) suppressed CMS-9-induced dissipation of mitochondrial membrane potential, Bcl-2 down-regulation, Bax up-regulation and increased mitochondrial translocation of Bax. Inactivation of PLA(2) activity reduced drastically the cytotoxicity of CMS-9, and a combination of lysophosphatidylcholine and stearic acid mimicked the cytotoxic effects of CMS-9. Taken together, our data suggest that CMS-9-induced apoptosis of K562 cells is catalytic activity-dependent and is mediated through mitochondria-mediated death pathway triggered by Ca2+/ROS-evoked p38 MAPK and JNK activation. 2010 Elsevier Ltd. All rights reserved.

  4. Osthole Attenuates Hepatic Injury in a Rodent Model of Trauma-Hemorrhage

    PubMed Central

    Yu, Huang-Ping; Liu, Fu-Chao; Tsai, Yung-Fong; Hwang, Tsong-Long

    2013-01-01

    Recent evidences show that osthole possesses anti-inflammatory properties and protective effects following shock-like states, but the mechanism of these effects remains unknown. The p38 mitogen-activated protein kinase (p38 MAPK) pathway exerts anti-inflammatory effects in injury. The aim of this study was to investigate whether p38 MAPK plays any role in the osthole-mediated attenuation of hepatic injury after trauma-hemorrhage. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35–40 mmHg for 90 minutes), followed by fluid resuscitation. During resuscitation, a single dose of osthole (3 mg/kg, intravenously) with and without a p38 MAPK inhibitor SB-203580 (2 mg/kg, intravenously), SB-203580 or vehicle was administered. Plasma alanine aminotransferase (ALT) with aspartate aminotransferase (AST) concentrations and various hepatic parameters were measured (n = 8 rats/group) at 24 hours after resuscitation. The results showed that trauma-hemorrhage increased hepatic myeloperoxidase activity, intercellular adhesion molecule-1 and interleukin-6 levels, and plasma ALT and AST concentrations. These parameters were significantly improved in the osthole-treated rats subjected to trauma-hemorrhage. Osthole treatment also increased hepatic phospho-p38 MAPK expression compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of SB-203580 with osthole abolished the osthole-induced beneficial effects on the above parameters and hepatic injury. These results suggest that the protective effect of osthole administration on alleviation of hepatic injury after trauma-hemorrhage, which is, at least in part, through p38 MAPK-dependent pathway. PMID:23755293

  5. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells

    PubMed Central

    Wang, Feng; Wang, Qi; Zhou, Zhi-Wei; Yu, Song-Ning; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Yin-Xue; Yang, Tianxing; Sun, Tao; Li, Min; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Plumbagin (PLB), an active naphthoquinone compound, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of PLB for the treatment of pancreatic cancer is unclear. This study aimed to examine the pancreatic cancer cell killing effect of PLB and investigate the underlying mechanism in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that PLB exhibited potent inducing effects on cell cycle arrest in PANC-1 and BxPC-3 cells via the modulation of cell cycle regulators including CDK1/CDC2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. PLB treatment concentration- and time-dependently increased the percentage of autophagic cells and significantly increased the expression level of phosphatase and tensin homolog, beclin 1, and the ratio of LC3-II over LC3-I in both PANC-1 and BxPC-3 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin and p38 mitogen-activated protein kinase (p38 MAPK) pathways and activation of 5′-AMP-dependent kinase as indicated by their altered phosphorylation, contributing to the proautophagic activities of PLB in both cell lines. Furthermore, SB202190, a selective inhibitor of p38 MAPK, and wortmannin, a potent, irreversible, and selective PI3K inhibitor, remarkably enhanced PLB-induced autophagy in PANC-1 and BxPC-3 cells, indicating the roles of PI3K and p38 MAPK mediated signaling pathways in PLB-induced autophagic cell death in both cell lines. In addition, PLB significantly inhibited epithelial to mesenchymal transition phenotype in both cell lines with an increase in the expression level of E-cadherin and a decrease in N-cadherin. Moreover, PLB treatment significantly suppressed the expression of Sirt1 in both cell lines. These findings show that PLB promotes cell cycle arrest and autophagy but inhibits epithelial to mesenchymal transition phenotype in pancreatic cancer cells with the involvement of PI3K/protein kinase B/mammalian target of rapamycin and p38 MAPK mediated pathways. PMID:25632222

  6. INTRACELLULAR SIGNALING BY BILE ACIDS

    PubMed Central

    Anwer, Mohammed Sawkat

    2014-01-01

    Bile acids, synthesized from cholesterol, are known to produce beneficial as well as toxic effects in the liver. The beneficial effects include choleresis, immunomodulation, cell survival, while the toxic effects include cholestasis, apoptosis and cellular toxicity. It is believed that bile acids produce many of these effects by activating intracellular signaling pathways. However, it has been a challenge to relate intracellular signaling to specific and at times opposing effects of bile acids. It is becoming evident that bile acids produce different effects by activating different isoforms of phosphoinositide 3-kinase (PI3K), Protein kinase Cs (PKCs), and mitogen activated protein kinases (MAPK). Thus, the apoptotic effect of bile acids may be mediated via PI3K-110γ, while cytoprotection induce by cAMP-GEF pathway involves activation of PI3K-p110α/β isoforms. Atypical PKCζ may mediate beneficial effects and nPKCε may mediate toxic effects, while cPKCα and nPKCδ may be involved in both beneficial and toxic effects of bile acids. The opposing effects of nPKCδ activation may depend on nPKCδ phosphorylation site(s). Activation of ERK1/2 and JNK1/2 pathway appears to mediate beneficial and toxic effects, respectively, of bile acids. Activation of p38α MAPK and p38β MAPK may mediate choleretic and cholestatic effects, respectively, of bile acids. Future studies clarifying the isoform specific effects on bile formation should allow us to define potential therapeutic targets in the treatment of cholestatic disorders. PMID:25378891

  7. Uric acid stimulates proliferative pathways in vascular smooth muscle cells through the activation of p38 MAPK, p44/42 MAPK and PDGFRβ.

    PubMed

    Kırça, M; Oğuz, N; Çetin, A; Uzuner, F; Yeşilkaya, A

    2017-04-01

    Hyperuricemia and angiotensin II (Ang II) may have a pathogenetic role in the development of hypertension and atherosclerosis as well as cardiovascular disease (CVD) and its prognosis. The purpose of this study was to investigate whether uric acid can induce proliferative pathways of vascular smooth muscle cell (VSMC) that are thought to be responsible for the development of CVD. The phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), p44/42 mitogen-activated protein kinase (p44/42 MAPK) and platelet-derived growth factor receptor β (PDGFRβ) was measured by Elisa and Western blot techniques to determine the activation of proliferative pathways in primary cultured VSMCs from rat aorta. Results demonstrated that uric acid can stimulate p38 MAPK, p44/42 MAPK and PDGFRβ phosphorylation in a time- and concentration-dependent manner. Furthermore, treatment of VSMCs with the angiotensin II type I receptor (AT1R) inhibitor losartan suppressed p38 MAPK and p44/42 MAPK induction by uric acid. The stimulatory effect of uric acid on p38 MAPK was higher compared to that of Ang II. The results of this study show for the first time that uric acid-induced PDGFRβ phosphorylation plays a crucial role in the development of CVDs and that elevated uric acid levels could be a potential therapeutical target in CVD patients.

  8. Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses

    PubMed Central

    Yang, Yanyan; Yu, Tao; Sung, Gi-Ho; Yoo, Byong Chul

    2014-01-01

    Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases. PMID:24771982

  9. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui

    2015-04-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressedmore » c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression.« less

  10. Carprofen Induction of p75NTR Dependent Apoptosis via the p38 MAPK Pathway in Prostate Cancer Cells

    PubMed Central

    Khwaja, Fatima S.; Quann, Emily J.; Pattabiraman, Nagarajan; Wynne, Shehla; Djakiew, Daniel

    2008-01-01

    The p75NTR functions as a tumor suppressor in prostate epithelial cells, where its expression declines with progression to malignant cancer. Previously, we demonstrated that treatment with R-flurbiprofen or ibuprofen induced p75NTR expression in several prostate cancer cell lines leading to p75NTR mediated decreased survival. Utilizing the 2-phenyl propionic acid moiety of these profens as a pharmacophore, we screened an in silico data base of 30 million compounds and identified carprofen as having an order of magnitude greater activity for induction of p75NTR levels and inhibition of cell survival. Prostate (PC-3, DU-145) and bladder (T24) cancer cells were more sensitive to carprofen induction of p75NTR associated loss of survival than breast (MCF7) and fibroblast (3T3) cells. Transfection of prostate cell lines with a dominant negative form of p75NTR prior to carprofen treatment partially rescued cell survival demonstrating a cause and effect relationship between carprofen induction of p75NTR levels and inhibition of survival. Carprofen induced apoptotic nuclear fragmentation in prostate but not in MCF7 and 3T3 cells. Furthermore, siRNA knockdown of the p38 MAPK protein prevented induction of p75NTR by carprofen in both prostate cell lines. Carprofen treatment induced phosphorylation of p38 MAPK as early as within 1 minute. Expression of a dominant negative form of MK2, the kinase downstream of p38 MAPK frequently associated with signaling cascades leading to apoptosis, prevented carprofen induction of the p75NTR protein. Collectively, we identify carprofen as a highly potent profen capable of inducing p75NTR dependent apoptosis via the p38 MAPK pathway in prostate cancer cells. PMID:18974393

  11. RhoA-ROCK and p38MAPK-MSK1 mediate vitamin D effects on gene expression, phenotype, and Wnt pathway in colon cancer cells.

    PubMed

    Ordóñez-Morán, Paloma; Larriba, María Jesús; Pálmer, Héctor G; Valero, Ruth A; Barbáchano, Antonio; Duñach, Mireia; de Herreros, Antonio García; Villalobos, Carlos; Berciano, María Teresa; Lafarga, Miguel; Muñoz, Alberto

    2008-11-17

    The active vitamin D metabolite 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) inhibits proliferation and promotes differentiation of colon cancer cells through the activation of vitamin D receptor (VDR), a transcription factor of the nuclear receptor superfamily. Additionally, 1,25(OH)(2)D(3) has several nongenomic effects of uncertain relevance. We show that 1,25(OH)(2)D(3) induces a transcription-independent Ca(2+) influx and activation of RhoA-Rho-associated coiled kinase (ROCK). This requires VDR and is followed by activation of the p38 mitogen-activated protein kinase (p38MAPK) and mitogen- and stress-activated kinase 1 (MSK1). As shown by the use of chemical inhibitors, dominant-negative mutants and small interfering RNA, RhoA-ROCK, and p38MAPK-MSK1 activation is necessary for the induction of CDH1/E-cadherin, CYP24, and other genes and of an adhesive phenotype by 1,25(OH)(2)D(3). RhoA-ROCK and MSK1 are also required for the inhibition of Wnt-beta-catenin pathway and cell proliferation. Thus, the action of 1,25(OH)(2)D(3) on colon carcinoma cells depends on the dual action of VDR as a transcription factor and a nongenomic activator of RhoA-ROCK and p38MAPK-MSK1.

  12. Regulation of Hippo signalling by p38 signalling.

    PubMed

    Huang, Dashun; Li, Xiaojiao; Sun, Li; Huang, Ping; Ying, Hao; Wang, Hui; Wu, Jiarui; Song, Haiyun

    2016-08-01

    The Hippo signalling pathway has a crucial role in growth control during development, and its dysregulation contributes to tumorigenesis. Recent studies uncover multiple upstream regulatory inputs into Hippo signalling, which affects phosphorylation of the transcriptional coactivator Yki/YAP/TAZ by Wts/Lats. Here we identify the p38 mitogen-activated protein kinase (MAPK) pathway as a new upstream branch of the Hippo pathway. In Drosophila, overexpression of MAPKK gene licorne (lic), or MAPKKK gene Mekk1, promotes Yki activity and induces Hippo target gene expression. Loss-of-function studies show that lic regulates Hippo signalling in ovary follicle cells and in the wing disc. Epistasis analysis indicates that Mekk1 and lic affect Hippo signalling via p38b and wts We further demonstrate that the Mekk1-Lic-p38b cascade inhibits Hippo signalling by promoting F-actin accumulation and Jub phosphorylation. In addition, p38 signalling modulates actin filaments and Hippo signalling in parallel to small GTPases Ras, Rac1, and Rho1. Lastly, we show that p38 signalling regulates Hippo signalling in mammalian cell lines. The Lic homologue MKK3 promotes nuclear localization of YAP via the actin cytoskeleton. Upregulation or downregulation of the p38 pathway regulates YAP-mediated transcription. Our work thus reveals a conserved crosstalk between the p38 MAPK pathway and the Hippo pathway in growth regulation. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  13. IL-17A induces eotaxin-1/CC chemokine ligand 11 expression in human airway smooth muscle cells: role of MAPK (Erk1/2, JNK, and p38) pathways.

    PubMed

    Rahman, Muhammad Shahidur; Yamasaki, Akira; Yang, Jie; Shan, Lianyu; Halayko, Andrew J; Gounni, Abdelilah Soussi

    2006-09-15

    Recently, IL-17A has been shown to be expressed in higher levels in respiratory secretions from asthmatics and correlated with airway hyperresponsiveness. Although these studies raise the possibility that IL-17A may influence allergic disease, the mechanisms remain unknown. In this study, we investigated the molecular mechanisms involved in IL-17A-mediated CC chemokine (eotaxin-1/CCL11) production from human airway smooth muscle (ASM) cells. We found that incubation of human ASM cells with rIL-17A resulted in a significant increase of eotaxin-1/CCL11 release from ASM cells that was reduced by neutralizing anti-IL-17A mAb. Moreover, IL-17A significantly induced eotaxin-1/CCL11 release and mRNA expression, an effect that was abrogated with cycloheximide and actinomycin D treatment. Furthermore, transfection studies using a luciferase-driven reporter construct containing eotaxin-1/CCL11 proximal promoter showed that IL-17A induced eotaxin-1/CCL11 at the transcriptional level. IL-17A also enhanced significantly IL-1beta-mediated eotaxin-1/CCL11 mRNA, protein release, and promoter activity in ASM cells. Primary human ASM cells pretreated with inhibitors of MAPK p38, p42/p44 ERK, JNK, or JAK but not PI3K, showed a significant decrease in eotaxin-1/CCL11 release upon IL-17A treatment. In addition, IL-17A mediated rapid phosphorylation of MAPK (p38, JNK, and p42/44 ERK) and STAT-3 but not STAT-6 or STAT-5 in ASM cells. Taken together, our data provide the first evidence of IL-17A-induced eotaxin-1/CCL11 expression in ASM cells via MAPK (p38, p42/p44 ERK, JNK) signaling pathways. Our results raise the possibility that IL-17A may play a role in allergic asthma by inducing eotaxin-1/CCL11 production.

  14. Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1

    PubMed Central

    Blagoveshchenskaya, Anastasia; Cheong, Fei Ying; Rohde, Holger M.; Glover, Greta; Knödler, Andreas; Nicolson, Teresa; Boehmelt, Guido; Mayinger, Peter

    2008-01-01

    When a growing cell expands, lipids and proteins must be delivered to its periphery. Although this phenomenon has been observed for decades, it remains unknown how the secretory pathway responds to growth signaling. We demonstrate that control of Golgi phosphatidylinositol-4-phosphate (PI(4)P) is required for growth-dependent secretion. The phosphoinositide phosphatase SAC1 accumulates at the Golgi in quiescent cells and down-regulates anterograde trafficking by depleting Golgi PI(4)P. Golgi localization requires oligomerization of SAC1 and recruitment of the coat protein (COP) II complex. When quiescent cells are stimulated by mitogens, SAC1 rapidly shuttles back to the endoplasmic reticulum (ER), thus releasing the brake on Golgi secretion. The p38 mitogen-activated kinase (MAPK) pathway induces dissociation of SAC1 oligomers after mitogen stimulation, which triggers COP-I–mediated retrieval of SAC1 to the ER. Inhibition of p38 MAPK abolishes growth factor–induced Golgi-to-ER shuttling of SAC1 and slows secretion. These results suggest direct roles for p38 MAPK and SAC1 in transmitting growth signals to the secretory machinery. PMID:18299350

  15. Nur77 inhibits oxLDL induced apoptosis of macrophages via the p38 MAPK signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Qin; Han, Fei; Peng, Shi

    2016-03-18

    The interaction between macrophages and oxLDL plays a crucial role in the initiation and progression of atherosclerosis. As a key initiator in a number of plaque promoting processes, oxLDL induces variable effects such as cell apoptosis or proliferation. Orphan nuclear receptor Nur77 is potently induced in macrophages by diverse stimuli, suggesting that it is of importance in vascular inflammation resulting in atherosclerosis, but whether Nur77 induction is detrimental or protective is unclear. In our study, we explore the role of Nur77 in the regulation of oxLDL-induced macrophage apoptosis and the signaling pathways that are involved. We found that oxLDL inducedmore » Nur77 expression in a dose and time dependent fashion, and cell viability was decreased in parallel. To determine whether Nur77 induction contributes to the loss of cell viability or is a protective mechanism, the effect of Nur77 overexpression was examined. Importantly, Nur77 overexpression inhibited the oxLDL-induced decrease of cell viability, inhibited the production of apoptotic bodies and restored DNA synthesis following oxLDL exposure. Furthermore, we found that Nur77 induction is mediated through the p38 MAPK signaling pathway. After pretreatment with SB203580, cell viability was decreased, the expression of CyclinA2 and PCNA was attenuated and the percentage of cell apoptosis was enhanced. Likewise, Nur77 overexpression increased the expression of the cell cycle genes PCNA and p21, and attenuated the increase in caspase-3. On the other hand, knockdown of Nur77 expression by specific siRNA resulted in the increased expression of caspase 3. The results demonstrate that Nur77 is induced by oxLDL via the p38 MAPK signaling pathway, which is involved in the regulation of cell survival. Nur77 enhanced cell survival via suppressing apoptosis, without affecting cell proliferation of activated macrophages, which may be beneficial in patients with atherosclerosis. - Highlights: • oxLDL could induce Nur77 expression. • Nur77 overexpression inhibited oxLDL-induced cell viability, production of apoptotic bodies and restored DNA synthesis. • Cell viability, CyclinA2 and PCNA expression and cell apoptosis were mediated through the p38 MAPK signaling pathway. • Nur77 overexpression mediated the expression of genes PCNA, p21, and caspase-3.« less

  16. p38 MAPK signal pathway involved in anti-inflammatory effect of Chaihu-Shugan-San and Shen-ling-bai-zhu-San on hepatocyte in non-alcoholic steatohepatitis rats.

    PubMed

    Yang, QinHe; Xu, YongJian; Feng, GaoFei; Hu, ChaoFeng; Zhang, YuPei; Cheng, ShaoBing; Wang, YanPing; Gong, XiangWen

    2014-01-01

    Traditional Chinese Medicine (TCM), has over thousands-of-years history of use. Chaihu-Shugan-San (CSS), and Shen-ling-bai-zhu-San (SLBZS), are famous traditional Chinese herbal medicine formulas, which have been used in China, for the treatment of many chronic diseases. This study investigated the anti-inflammatory effects of CSS and SLBZS on signaling molecules involved in p38 mitogen-activated protein kinase (p38 MAPK), pathway on hepatocytes of non-alcoholic steatohepatitis (NASH), rats induced by high fat diet. SD male rats were randomly divided into 8 groups: negative control group, model control group, high (9.6g/kg/day)/low (3.2g/kg/day)-dose CSS group, high (30g/kg/day)/low (10g/kg/day)-dose SLBZS group, high (39.6g/kg/day)/low (13.2g/kg/day)-dose integrated group. The rats of NASH model were induced by feeding a high-fat diet. After 16, wks, Hepatocytes were isolated from 6, rats in each group by collagenase perfusion. The liver histopathological changes and serum inflammatory cytokines TNF-α, IL-6 were determined. The proteins of TLR4, phosphor-p38 MAPK and p38 MAPK involved in p38 MAPK signal pathway were assayed. The statistical data indicated the NASH model rats reproduced typical histopathological features of NASH in human. CSS and SLBZS ameliorated lipid metabolic disturbance, attenuated NASH progression, decreased the levels of TNF-α and IL-6 in serum, as well as inhibited TLR4 protein expression, p38 MAPK phosphorylation, and activation of p38 MAPK. In conclusion, CSS and SLBZS might work as a significant anti-inflammatory effect on hepatocyte of NASH by inhibiting the activation of TLR4, p-p38 MAPK and p38 MAPK involved in p38 MAPK signal pathway. To some extent, CSS and SLBZS may be a potential alternative and complementary medicine to protect against liver injury, alleviate the inflammation reaction, moderate NASH progression.

  17. Coal-induced interleukin-6 gene expression is mediated through ERKs and p38 MAPK pathways.

    PubMed

    Huang, X; Zhang, Q

    2003-08-15

    In the present study, we have tested the ability of coal dust to stimulate kinase phosphorylation of activator protein-1 (AP-1) signal transduction pathways and production of interleukin-6 (IL-6) in both mouse epidermal JB6 and human lung epithelial A549 cells. Seven coal samples from three coalmine regions of Pennsylvania (PA), West Virginia (WV), and Utah (UT) with high, medium, and low prevalence of coal workers' pneumoconiosis (CWP), respectively, were investigated. Results from the present study indicate that three PA coals stimulated the mitogen-activated protein kinase (MAPK) family of extracellular signal-regulated kinases (ERKs) and p38 MAPK, but not c-Jun-NH2-terminal kinases (JNKs) in human lung A549 cells. The effects of three UT coals on the kinase phosphorylation were less as compared to those of the PA coals. Coal dusts from three coalmine regions induced IL-6 in a dose-dependent manner in both JB6 and A549 cells. Interestingly, levels of IL-6 in both cells treated with coals from three coalmine regions correlated well with CWP prevalence from that region. To assess the role of AP-1 pathways in coal-mediated transcriptional activation of IL-6, various inhibitors were used in cells treated with one PA coal, which induced a maximal response. It was found that the increase in IL-6 protein and mRNA by the PA coal was completely eliminated by the pretreatment of both cell types with PD98059, a specific MEK1 inhibitor, and SB202190, a p38 kinase inhibitor. Our results indicate that coal dust can stimulate IL-6 release from mouse epidermal JB6 cells and human lung epithelial A549 cells, and the coal-induced IL-6 increase may involve ERKs and p38 MAPK pathways.

  18. Naja nigricollis CMS-9 enhances the mitochondria-mediated death pathway in adaphostin-treated human leukaemia U937 cells.

    PubMed

    Chen, Ying-Jung; Wang, Jeh-Jeng; Chang, Long-Sen

    2011-11-01

    1. The aim of the present study was to explore the effect of the Naja nigricollis phospholipase A(2) CMS-9 on adaphostin-induced death of human leukaemia U937 cells. 2. Leukaemia U937 cells (Bcr/Abl-negative cells) were treated with adaphostin (0-10 μmol/L) and CMS-9 (0-1 μmol/L). The effects of CMS-9, adaphostin and their combination on cell viability, the generation reactive oxygen species (ROS), [Ca(2+) ](i) , p38 mitogen-activated protein kinase (MAPK) activation, Akt and extracellular signal-regulated kinase (ERK) inactivation, mitochondrial membrane potential (ΔΨ(m) ) and Bcl-2 family proteins were analysed. 3. Both adaphostin and CMS-9 induced U937 cell apoptosis, characterized by dissipation of ΔΨ(m) and ROS generation. Combined treatment further increased ΔΨ(m) loss and reduced the viability of adaphostin-treated cells. Unlike in CMS-9-treated cells, in adaphostin-treated cells ROS-induced increases in [Ca(2+) ](i) were observed. CMS-9-induced ROS generation resulted in p38 MAPK activation, whereas adaphostin treatment elicited ROS/Ca(2+) -mediated inactivation of Akt and ERK. Moreover, Akt was found to be involved in ERK phosphorylation. Suppression of p38 MAPK activation blocked CMS-9-induced ΔΨ(m) loss and Bcl-xL downregulation. Overexpression of constitutively active Akt and mitogen-activated protein kinase kinase (MEK) 1 rescued adaphostin-induced ΔΨ(m) loss and Bcl-2 downregulation. Similarly, CMS-9 augmented adaphostin toxicity in human leukaemia K562 cells via increased mitochondrial alterations. 4. The results suggest that two distinct pathways mediate adaphostin- and CMS-9-induced mitochondrial damage (i.e. the ROS-Ca(2+) -Akt-ERK and ROS-p38 MAPK pathways, respectively). These distinct pathway explain the augmentation by CMS-9 of ΔΨ(m) loss and apoptosis in adaphostin-treated U937 cells. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  19. Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-beta-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo.

    PubMed

    Kamaraju, Anil K; Roberts, Anita B

    2005-01-14

    TGF-beta is a multifunctional cytokine known to exert its biological effects through a variety of signaling pathways of which Smad signaling is considered to be the main mediator. At present, the Smad-independent pathways, their interactions with each other, and their roles in TGF-beta-mediated growth inhibitory effects are not well understood. To address these questions, we have utilized a human breast cancer cell line MCF10CA1h and demonstrate that p38 MAP kinase and Rho/ROCK pathways together with Smad2 and Smad3 are necessary for TGF-beta-mediated growth inhibition of this cell line. We show that Smad2/3 are indispensable for TGF-beta-mediated growth inhibition, and that both p38 and Rho/ROCK pathways affect the linker region phosphorylation of Smad2/3. Further, by using Smad3 mutated at the putative phosphorylation sites in the linker region, we demonstrate that phosphorylation at Ser203 and Ser207 residues is required for the full transactivation potential of Smad3, and that these residues are targets of the p38 and Rho/ROCK pathways. We demonstrate that activation of the p38 MAP kinase pathway is necessary for the full transcriptional activation potential of Smad2/Smad3 by TGF-beta, whereas activity of Rho/ROCK is necessary for both down-regulation of c-Myc protein and up-regulation of p21waf1 protein, directly interfering with p21waf1 transcription. Our results not only implicate Rho/ROCK and p38 MAPK pathways as necessary for TGF-beta-mediated growth inhibition, but also demonstrate their individual contributions and the basis for their cooperation with each other.

  20. Protective Effect of Tropisetron on Rodent Hepatic Injury after Trauma-Hemorrhagic Shock through P38 MAPK-Dependent Hemeoxygenase-1 Expression

    PubMed Central

    Hwang, Tsong-Long; Tsai, Yung-Fong

    2012-01-01

    Tropisetron can decrease inflammatory cell responses and alleviate organ damage caused by trauma-hemorrhage, but the mechanism of these effects remains unknown. The p38 mitogen-activated protein kinase/hemeoxygenase-1 (p38 MAPK/HO-1) pathway exerts anti-inflammatory effects on different tissues. The aim of this study was to investigate whether p38 MAPK/HO-1 plays any role in the tropisetron-mediated attenuation of hepatic injury after trauma-hemorrhage. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35–40 mmHg for 90 min), followed by fluid resuscitation. During resuscitation, several treatment regimens were administered: four doses of tropisetron alone (0.1, 0.3, 1, 3 mg/kg body weight), or a single dose of tropisetron (1 mg/kg body weight) with and without a p38 MAPK inhibitor (SB-203580, 2 mg/kg body weight) or HO antagonist (chromium-mesoporphyrin, 2.5 mg/kg body weight). Various parameters were measured, and the animals were sacrificed at 24 h post-resuscitation. The results showed that trauma-hemorrhage increased the following parameters: plasma concentrations of aspartate (AST) and alanine aminotransferases (ALT), hepatic myeloperoxidase (MPO) activity, and levels of cytokine-induced neutrophil chemoattractant-1 and -3 (CINC-1 and CINC-3), intercellular adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-1α (MIP-1α). These parameters were significantly improved in the tropisetron-treated rats subjected to trauma-hemorrhage. Tropisetron treatment also increased hepatic p38 MAPK and HO-1 expression compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of SB-203580 or chromium-mesoporphyrin with tropisetron abolished the tropisetron-induced beneficial effects on the above parameters and hepatic injury. These results suggest that the protective effect of tropisetron administration on alleviation of hepatic injury after trauma-hemorrhage is likely mediated through p38 MAPK-dependent HO-1 expression. PMID:23285267

  1. Protective effect of tropisetron on rodent hepatic injury after trauma-hemorrhagic shock through P38 MAPK-dependent hemeoxygenase-1 expression.

    PubMed

    Liu, Fu-Chao; Yu, Huang-Ping; Hwang, Tsong-Long; Tsai, Yung-Fong

    2012-01-01

    Tropisetron can decrease inflammatory cell responses and alleviate organ damage caused by trauma-hemorrhage, but the mechanism of these effects remains unknown. The p38 mitogen-activated protein kinase/hemeoxygenase-1 (p38 MAPK/HO-1) pathway exerts anti-inflammatory effects on different tissues. The aim of this study was to investigate whether p38 MAPK/HO-1 plays any role in the tropisetron-mediated attenuation of hepatic injury after trauma-hemorrhage. Male Sprague-Dawley rats underwent trauma-hemorrhage (mean blood pressure maintained at approximately 35-40 mmHg for 90 min), followed by fluid resuscitation. During resuscitation, several treatment regimens were administered: four doses of tropisetron alone (0.1, 0.3, 1, 3 mg/kg body weight), or a single dose of tropisetron (1 mg/kg body weight) with and without a p38 MAPK inhibitor (SB-203580, 2 mg/kg body weight) or HO antagonist (chromium-mesoporphyrin, 2.5 mg/kg body weight). Various parameters were measured, and the animals were sacrificed at 24 h post-resuscitation. The results showed that trauma-hemorrhage increased the following parameters: plasma concentrations of aspartate (AST) and alanine aminotransferases (ALT), hepatic myeloperoxidase (MPO) activity, and levels of cytokine-induced neutrophil chemoattractant-1 and -3 (CINC-1 and CINC-3), intercellular adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-1α (MIP-1α). These parameters were significantly improved in the tropisetron-treated rats subjected to trauma-hemorrhage. Tropisetron treatment also increased hepatic p38 MAPK and HO-1 expression compared with vehicle-treated trauma-hemorrhaged rats. Co-administration of SB-203580 or chromium-mesoporphyrin with tropisetron abolished the tropisetron-induced beneficial effects on the above parameters and hepatic injury. These results suggest that the protective effect of tropisetron administration on alleviation of hepatic injury after trauma-hemorrhage is likely mediated through p38 MAPK-dependent HO-1 expression.

  2. Coriolus versicolor aqueous extract ameliorates insulin resistance with PI3K/Akt and p38 MAPK signaling pathways involved in diabetic skeletal muscle.

    PubMed

    Xian, Hui-Min; Che, Hui; Qin, Ying; Yang, Fan; Meng, Song-Yan; Li, Xiao-Guang; Bai, Yun-Long; Wang, Li-Hong

    2018-03-01

    Patients with type 2 diabetes mellitus (T2DM) are usually with poor immunity and easier to suffer from cancer and microbial infections. Herein, we report an efficient anti-diabetic medicinal mushroom, Coriolus versicolor (CV). This study aimed to investigate the anti-diabetic and anti-insulin-resistance effects of CV aqueous extract in myoblasts (L6 cells) and skeletal muscle of T2DM rat. Our results showed that CV extract treatment significantly reduced blood glucose levels of T2DM rats, whereas CV extract increased glucose consumption in insulin resistant L6 cells. Besides, the translocation and expression of glucose transporter 4 were enhanced by CV extract, which indicated that CV extract was effective in diabetic skeletal muscle. Moreover, CV extract treatments resulted in remarkable anti-insulin-resistance effects, which was reflected by the change of gene and protein expression levels in PI3K/Akt and p38 MAPK pathways. PI3K inhibitor, LY29004, and p38 MAPK inhibitor, SB203580 confirmed it further. In conclusion, our results demonstrated that the CV extract exhibited anti-diabetic and anti-insulin-resistance effects in diabetic skeletal muscle, and the effects were mediated by PI3K/Akt and p38 MAPK pathways. These findings are remarkable when considering the use of commercially available CV by diabetic patients who also suffer from cancer or microbial infections. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Neuroprotective Effects of a Novel Single Compound 1-Methoxyoctadecan-1-ol Isolated from Uncaria sinensis in Primary Cortical Neurons and a Photothrombotic Ischemia Model

    PubMed Central

    Kim, Ha Neui; Kim, Yu Ri; Hong, Jin Woo; Bae, Dong Won; Park, Se Jin; Shin, Hwa Kyoung; Choi, Byung Tae

    2014-01-01

    We identified a novel neuroprotective compound, 1-methoxyoctadecan-1-ol, from Uncaria sinensis (Oliv.) Havil and investigated its effects and mechanisms in primary cortical neurons and in a photothrombotic ischemic model. In primary rat cortical neurons against glutamate-induced neurotoxicity, pretreatment with 1-methoxyoctadecan-1-ol resulted in significantly reduced neuronal death in a dose-dependent manner. In addition, treatment with 1-methoxyoctadecan-1-ol resulted in decreased neuronal apoptotic death, as assessed by nuclear morphological approaches. To clarify the neuroprotective mechanism of 1-methoxyoctadecan-1-ol, we explored the downstream signaling pathways of N-methyl-D-aspartate receptor (NMDAR) with calpain activation. Treatment with glutamate leads to early activation of NMDAR, which in turn leads to calpain-mediated cleavage of striatal-enriched protein tyrosine phosphatase (STEP) and subsequent activation of p38 mitogen activated protein kinase (MAPK). However, pretreatment with 1-methoxyoctadecan-1-ol resulted in significantly attenuated activation of GluN2B-NMDAR and a decrease in calpain-mediated STEP cleavage, leading to subsequent attenuation of p38 MAPK activation. We confirmed the critical role of p38 MAPK in neuroprotective effects of 1-methoxyoctadecan-1-ol using specific inhibitor SB203580. In the photothrombotic ischemic injury in mice, treatment with 1-methoxyoctadecan-1-ol resulted in significantly reduced infarct volume, edema size, and improved neurological function. 1-methoxyoctadecan-1-ol effectively prevents cerebral ischemic damage through down-regulation of calpain-mediated STEP cleavage and activation of p38 MAPK. These results suggest that 1-methoxyoctadecan-1-ol showed neuroprotective effects through down-regulation of calpain-mediated STEP cleavage with activation of GluN2B-NMDAR, and subsequent alleviation of p38 MAPK activation. In addition, 1-methoxyoctadecan-1-ol might be a useful therapeutic agent for brain disorder such as ischemic stroke. PMID:24416390

  4. MCP-1-mediated activation of microglia promotes white matter lesions and cognitive deficits by chronic cerebral hypoperfusion in mice.

    PubMed

    Yuan, Bangqing; Shi, Hui; Zheng, Kuang; Su, Zulu; Su, Hai; Zhong, Ming; He, Xuenong; Zhou, Changlong; Chen, Hao; Xiong, Qijiang; Zhang, Yi; Yang, Zhao

    2017-01-01

    Microglia activation played a vital role in the pathogenesis of white matter lesions (WMLs) by chronic cerebral hypoperfusion. In addition, hypoxia induced up-regulated expression of MCP-1, promotes the activation of microglia. However, the role of MCP-1-mediated microglia activation in chronic cerebral ischemia is still unknown. To explore that, chronic cerebral hypoperfusion model was established by permanent stenosis of bilateral common carotid artery in mice. The activation of microglia and the related signal pathway p38MAPK/PKC in white matter, and working memory of mice were observed. We found that stenosis of common carotid arteries could induce MCP-1-mediated activation of microglia through p38MAPK/PKC pathway and white matter lesions. Taken together, our findings represent a novel mechanism of MCP-1 involved in activation of microglia and provide a novel therapeutical strategy for chronic cerebral hypoperfusion. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Hypoglycemic Effect of Opuntia ficus-indica var. saboten Is Due to Enhanced Peripheral Glucose Uptake through Activation of AMPK/p38 MAPK Pathway.

    PubMed

    Leem, Kang-Hyun; Kim, Myung-Gyou; Hahm, Young-Tae; Kim, Hye Kyung

    2016-12-09

    Opuntia ficus-indica var. saboten (OFS) has been used in traditional medicine for centuries to treat several illnesses, including diabetes. However, detailed mechanisms underlying hypoglycemic effects remain unclear. In this study, the mechanism underlying the hypoglycemic activity of OFS was evaluated using in vitro and in vivo systems. OFS treatment inhibited α-glucosidase activity and intestinal glucose absorption assessed by Na⁺-dependent glucose uptake using brush border membrane vesicles. AMP-activated protein kinase (AMPK) is widely recognized as an important regulator of glucose transport in skeletal muscle, and p38 mitogen-activated protein kinase (MAPK) has been proposed to be a component of AMPK-mediated signaling. In the present study, OFS dose-dependently increased glucose uptake in L6 muscle cells. The AMPK and p38 MAPK phosphorylations were stimulated by OFS, and inhibitors of AMPK (compound C ) and p38 MAPK (SB203580) abolished the effects of OFS. Furthermore, OFS increased glucose transporter 4 (GLUT4) translocation to the plasma membrane. OFS administration (1 g/kg and 2 g/kg body weight) in db/db mice dose-dependently ameliorated hyperglycemia, hyperinsulinemia, and glucose tolerance. Insulin resistance assessed by homeostasis model assessment of insulin resistance and quantitative insulin sensitivity check index were also dose-dependently improved with OFS treatment. OFS administration improved pancreatic function through increased β-cell mass in db/db mice. These findings suggest that OFS acts by inhibiting glucose absorption from the intestine and enhancing glucose uptake from insulin-sensitive muscle cells through the AMPK/p38 MAPK signaling pathway.

  6. Hypoglycemic Effect of Opuntia ficus-indica var. saboten Is Due to Enhanced Peripheral Glucose Uptake through Activation of AMPK/p38 MAPK Pathway

    PubMed Central

    Leem, Kang-Hyun; Kim, Myung-Gyou; Hahm, Young-Tae; Kim, Hye Kyung

    2016-01-01

    Opuntia ficus-indica var. saboten (OFS) has been used in traditional medicine for centuries to treat several illnesses, including diabetes. However, detailed mechanisms underlying hypoglycemic effects remain unclear. In this study, the mechanism underlying the hypoglycemic activity of OFS was evaluated using in vitro and in vivo systems. OFS treatment inhibited α-glucosidase activity and intestinal glucose absorption assessed by Na+-dependent glucose uptake using brush border membrane vesicles. AMP-activated protein kinase (AMPK) is widely recognized as an important regulator of glucose transport in skeletal muscle, and p38 mitogen-activated protein kinase (MAPK) has been proposed to be a component of AMPK-mediated signaling. In the present study, OFS dose-dependently increased glucose uptake in L6 muscle cells. The AMPK and p38 MAPK phosphorylations were stimulated by OFS, and inhibitors of AMPK (compound C) and p38 MAPK (SB203580) abolished the effects of OFS. Furthermore, OFS increased glucose transporter 4 (GLUT4) translocation to the plasma membrane. OFS administration (1 g/kg and 2 g/kg body weight) in db/db mice dose-dependently ameliorated hyperglycemia, hyperinsulinemia, and glucose tolerance. Insulin resistance assessed by homeostasis model assessment of insulin resistance and quantitative insulin sensitivity check index were also dose-dependently improved with OFS treatment. OFS administration improved pancreatic function through increased β-cell mass in db/db mice. These findings suggest that OFS acts by inhibiting glucose absorption from the intestine and enhancing glucose uptake from insulin-sensitive muscle cells through the AMPK/p38 MAPK signaling pathway. PMID:27941667

  7. BMP15 regulates AMH expression via the p38 MAPK pathway in granulosa cells from goat.

    PubMed

    Zhao, Zhongquan; Guo, Fangyue; Sun, Xiaowei; He, Qijie; Dai, Zinuo; Chen, Xiaochuan; Zhao, Yongju; Wang, Jian

    2018-05-31

    Anti-Mullerian hormone (AMH), a member of the TGF-β superfamily, is produced by granulosa cells (GCs) of preantral and small antral follicles and plays a role in regulating the recruitment of primordial follicles and the FSH-dependent development of follicles. However, the regulation of AMH expression in follicles remains poorly understood. The objectives of this study were to determine the following: 1. the association between bone morphogenetic protein 15 (BMP15) and AMH; 2. whether BMP15 can regulate the expression of AMH by inhibiting the p38 MAPK pathway; and 3. whether SRY-related HMG box 9 (SOX9), a transcription factor for AMH, is involved in the regulation of AMH expression by BMP15. In this study, an inhibitor of p38 MAPK and an siRNA specific for p38 MAPK were used to prevent the function of the p38 MAPK signaling pathway. Then, AMH mRNA expression and AMH secretion were detected in goat GCs using an RT-PCR assay and ELISA, respectively, after treatment with BMP15. The results indicated that BMP15 up-regulates the transcription of AMH and that the inhibition of p38 MAPK decreases the BMP15-induced expression of AMH and SOX9, suggesting that BMP15 up-regulates the expression of AMH via the p38 MAPK signaling pathway, and this process involves the SOX9 transcription factor. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Meta-Analysis of Global Transcriptomics Suggests that Conserved Genetic Pathways are Responsible for Quercetin and Tannic Acid Mediated Longevity in C. elegans

    PubMed Central

    Pietsch, Kerstin; Saul, Nadine; Swain, Suresh C.; Menzel, Ralph; Steinberg, Christian E. W.; Stürzenbaum, Stephen R.

    2012-01-01

    Recent research has highlighted that the polyphenols Quercetin and Tannic acid are capable of extending the lifespan of Caenorhabditis elegans. To gain a deep understanding of the underlying molecular genetics, we analyzed the global transcriptional patterns of nematodes exposed to three concentrations of Quercetin or Tannic acid, respectively. By means of an intricate meta-analysis it was possible to compare the transcriptomes of polyphenol exposure to recently published datasets derived from (i) longevity mutants or (ii) infection. This detailed comparative in silico analysis facilitated the identification of compound specific and overlapping transcriptional profiles and allowed the prediction of putative mechanistic models of Quercetin and Tannic acid mediated longevity. Lifespan extension due to Quercetin was predominantly driven by the metabolome, TGF-beta signaling, Insulin-like signaling, and the p38 MAPK pathway and Tannic acid’s impact involved, in part, the amino acid metabolism and was modulated by the TGF-beta and the p38 MAPK pathways. DAF-12, which integrates TGF-beta and Insulin-like downstream signaling, and genetic players of the p38 MAPK pathway therefore seem to be crucial regulators for both polyphenols. Taken together, this study underlines how meta-analyses can provide an insight of molecular events that go beyond the traditional categorization into gene ontology-terms and Kyoto encyclopedia of genes and genomes-pathways. It also supports the call to expand the generation of comparative and integrative databases, an effort that is currently still in its infancy. PMID:22493606

  9. A Conditional Knockout Mouse Model Reveals a Critical Role of PKD1 in Osteoblast Differentiation and Bone Development

    PubMed Central

    Li, Shao; Xu, Wanfu; Xing, Zhe; Qian, Jiabi; Chen, Liping; Gu, Ruonan; Guo, Wenjing; Lai, Xiaoju; Zhao, Wanlu; Li, Songyu; Wang, Yaodong; Wang, Q. Jane; Deng, Fan

    2017-01-01

    The protein kinase D family of serine/threonine kinases, particularly PKD1, has been implicated in the regulation of a complex array of fundamental biological processes. However, its function and mechanism underlying PKD1-mediated the bone development and osteoblast differentiation are not fully understood. Here we demonstrate that loss of PKD1 function led to impaired bone development and osteoblast differentiation through STAT3 and p38 MAPK signaling using in vitro and in vivo bone-specific conditional PKD1-knockout (PKD1-KO) mice models. These mice developed markedly craniofacial dysplasia, scapula dysplasia, long bone length shortage and body weight decrease compared with wild-type littermates. Moreover, deletion of PKD1 in vivo reduced trabecular development and activity of osteoblast development, confirmed by Micro-CT and histological staining as well as expression of osteoblastic marker (OPN, Runx2 and OSX). Mechanistically, loss of PKD1 mediated the downregulation of osteoblast markers and impaired osteoblast differentiation through STAT3 and p38 MAPK signaling pathways. Taken together, these results demonstrated that PKD1 contributes to the osteoblast differentiation and bone development via elevation of osteoblast markers through activation of STAT3 and p38 MAPK signaling pathways. PMID:28084409

  10. Betalactam antibiotics affect human dendritic cells maturation through MAPK/NF-kB systems. Role in allergic reactions to drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Soledad; Department of Medical Biochemistry, Molecular Biology and Immunology, The University of Seville Medical School, Seville; Gomez, Enrique

    The mechanisms leading to drug allergy in predisposed patients, especially those related to T-cell-mediated drug hypersensitivity, are not well understood. A key event in allergic reactions to drugs is the maturation process undergone by dendritic cells (DCs). Although amoxicillin (AX) has been reported to interact and maturate DCs from patients with AX-induced delayed-type hypersensitivity, the cell signaling pathways related to AX-mediated DC maturation have not been elucidated. We sought to determine the role of the MAPK and NF-κΒ pathways on AX-induced DC maturation and functional status. For that purpose, in monocyte-derived-DCs from AX-delayed allergic patients and tolerant subjects, we analyzedmore » the activation pattern of p38MAPK, JNK, and ERK signaling and the NF-κB, maturation markers as well as endocytosis and allostimulatory capacities driven by AX-stimulated-DCs. Our data reveal that AX induces an increase in the phosphorylation levels of the three MAPKsand activated NF-κB in DCs from allergic patients. Moreover, the inhibition of these pathways prevents the up-regulation of surface molecules induced by AX. Additionally, we observed that the allostimulatory capacity and the endocytosis down-regulation in AX-stimulated-DCs from allergic patients depend on JNK and NF-κB activities. Taken together, our data shed light for the first time on the main signaling pathways involved in DC maturation from AX-delayed allergic patient. - Highlights: • The cell signaling pathways related to drug-mediated DC maturation were tested. • Amoxicillin induces activation of MAPK and NF-κB in DCs from allergic patients. • The inhibition of these pathways prevents the up-regulation of DC surface molecules. • Their allostimulatory and endocytosis capacities depend on JNK and NF-κB activities. • The low involvement of p38-MAPK could be the cause of an incomplete DC maturation.« less

  11. L-Ascorbate Attenuates the Endotoxin-Induced Production of Inflammatory Mediators by Inhibiting MAPK Activation and NF-κB Translocation in Cortical Neurons/Glia Cocultures

    PubMed Central

    Huang, Ya-Ni; Lai, Chien-Cheng; Chiu, Chien-Tsai; Lin, Jhen-Jhe; Wang, Jia-Yi

    2014-01-01

    In response to acute insults to the central nervous system, such as pathogen invasion or neuronal injuries, glial cells become activated and secrete inflammatory mediators such as nitric oxide (NO), cytokines, and chemokines. This neuroinflammation plays a crucial role in the pathophysiology of chronic neurodegenerative diseases. Endogenous ascorbate levels are significantly decreased among patients with septic encephalopathy. Using the bacterial endotoxin lipopolysaccharide (LPS) to induce neuroinflammation in primary neuron/glia cocultures, we investigated how L-ascorbate (vitamin C; Vit. C) affected neuroinflammation. LPS (100 ng/ml) induced the expression of inducible NO synthase (iNOS) and the production of NO, interleukin (IL)-6, and macrophage inflammatory protein-2 (MIP-2/CXCL2) in a time-dependent manner; however, cotreatment with Vit. C (5 or 10 mM) attenuated the LPS-induced iNOS expression and production of NO, IL-6, and MIP-2 production. The morphological features revealed after immunocytochemical staining confirmed that Vit. C suppressed LPS-induced astrocytic and microglial activation. Because Vit. C can be transported into neurons and glia via the sodium-dependent Vit. C transporter-2, we examined how Vit. C affected LPS-activated intracellular signaling in neuron/glia cocultures. The results indicated the increased activation (caused by phosphorylation) of mitogen-activated protein kinases (MAPKs), such as p38 at 30 min and extracellular signal-regulated kinases (ERKs) at 180 min after LPS treatment. The inhibition of p38 and ERK MAPK suppressed the LPS-induced production of inflammatory mediators. Vit. C also inhibited the LPS-induced activation of p38 and ERK. Combined treatments of Vit. C and the inhibitors of p38 and ERK yielded no additional inhibition compared with using the inhibitors alone, suggesting that Vit. C functions through the same signaling pathway (i.e., MAPK) as these inhibitors. Vit. C also reduced LPS-induced IκB-α degradation and NF-κB translocation. Thus, Vit. C suppressed the LPS-stimulated production of inflammatory mediators in neuron/glia cocultures by inhibiting the MAPK and NF-κB signaling pathways. PMID:24983461

  12. Porphyromonas gingivalis lipopolysaccharide activates canonical Wnt/β-catenin and p38 MAPK signalling in stem cells from the apical papilla.

    PubMed

    Wang, Jia; Dai, Jiewen; Liu, Bin; Gu, Shensheng; Cheng, Lan; Liang, Jingping

    2013-12-01

    As dental precursor cells, stem cells from the apical papilla (SCAP) are capable of forming roots and undergoing apexogenesis, which are impaired upon exposure to bacterial infection. Porphyromonas gingivalis is a common Gram-negative bacterium that is involved in pulpal and periapical infection. The purpose of this study was to investigate the effects of P. gingivalis lipopolysaccharide (LPS) on the Wnt/β-catenin and p38 mitogen-activated protein kinase (MAPK) signalling pathways in SCAP. As indicated by the IL-1β and TNF-α mRNA levels, P. gingivalis LPS induced the expression of pro-inflammatory cytokines in a dose-dependent manner. In addition, activation of the p38 MAPK and Wnt/β-catenin pathways was confirmed by the augmentation of phospho-p38 and β-catenin protein expression and increased expression of c-myc and cyclin D1 mRNA. Despite no significant increase in β-catenin mRNA expression, increased phosphorylation of glycogen synthase kinase (GSK)-3β suggested that GSK-3β was responsible for the accumulation of β-catenin in the cytoplasm and translocation to the nucleus. Previous studies have shown that GSK-3β plays a critical role in crosstalk between the Wnt/β-catenin and p38 MAPK pathways. In the present study, we showed that the level of p38 phosphorylation decreased upon pretreatment with a p38 MAPK inhibitor for 1 h before stimulating SCAP with 10 μg/ml P. gingivalis LPS. However, the levels of GSK-3β and β-catenin phosphorylation in the cytoplasm and nucleus were not significantly altered. Our results suggest that the p38 MAPK and canonical Wnt/β-catenin signalling pathways are activated by P. gingivalis LPS in SCAP, but we have no evidence that p38 MAPK is upstream of GSK-3β in the Wnt/β-catenin signalling pathway.

  13. Neuroprotective effects of ebselen in traumatic brain injury model: involvement of nitric oxide and p38 mitogen-activated protein kinase signalling pathway.

    PubMed

    Wei, Liang; Zhang, Yanfei; Yang, Cheng; Wang, Qi; Zhuang, Zhongwei; Sun, Zhiyang

    2014-02-01

    Previous investigations have found that ebselen is able to treat neurodegenerative diseases caused by radical and acute total cerebral ischaemia. The aim of the present study was to investigate the neuroprotective effects of ebselen in a traumatic brain injury (TBI) model. Ninety Sprague-Dawley rats were randomly divided into five groups (n = 18 in each): (i) sham operation; (ii) an injury model group; (iii) low-dose (3 mg/kg) ebselen-treated group; (iv) a moderate-dose (10 mg/kg) ebselen-treated group; and (v) a high-dose (30 mg/kg) ebselen-treated group. The TBI model was created according using a modified weight-drop model. Neurological severity score (NSS), brain water content and histopathological deficits were assessed as parameters of injury severity. Expression of nitric oxide (NO), inducible NO synthase (iNOS) mRNA, Toll-like receptor (TLR) and phosphorylated (p-) p38 mitogen-activated protein kinase (MAPK) were examined by chemical colorimetry, quantitative polymerase chain reaction and western blotting 24 h after intragastric ebselen administration. Rats in the TBI model group exhibited markedly more severe neurological injury (higher NSS, more brain water content and more histopathological deficits) than those in the sham-operated group. Ebselen treatment significantly ameliorated the neurological injury of TBI rats in a dose-dependent manner. Moreover, ebselen significantly reduced the NO and iNOS mRNA levels and inhibited TLR4 and p-p38 MAPK expression, indicating the involvement of NO and p38 MAPK signalling pathways in the neuroprotection afforded by ebselen. In conclusion, ebselen ameliorated neurological injury, possibly by reducing NO levels and modulating the TLR4-mediated p38 MAPK signalling pathway. Therefore, ebselen may have potential to treat secondary injuries of TBI. © 2013 Wiley Publishing Asia Pty Ltd.

  14. Serotonin disrupts esophageal mucosal integrity: an investigation using a stratified squamous epithelial model.

    PubMed

    Wu, Liping; Oshima, Tadayuki; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2016-11-01

    Serotonin regulates gastrointestinal function, and mast cells are a potential nonneuronal source of serotonin in the esophagus. Tight junction (TJ) proteins in the esophageal epithelium contribute to the barrier function, and the serotonin signaling pathway may contribute to epithelial leakage in gastroesophageal reflux disease. Therefore, the aim of this study was to investigate the role of serotonin on barrier function, TJ proteins, and related signaling pathways. Normal primary human esophageal epithelial cells were cultured with use of an air-liquid interface system. Serotonin was added to the basolateral compartment, and transepithelial electrical resistance (TEER) was measured. The expression of TJ proteins and serotonin receptor 7 (5-HT 7 ) was assessed by Western blotting. The involvement of 5-HT 7 was assessed with use of an antagonist and an agonist. The underlying cellular signaling pathways were examined with use of specific blockers. Serotonin decreased TEER and reduced the expression of TJ proteins ZO-1, occludin, and claudin 1, but not claudin 4. A 5-HT 7 antagonist blocked the serotonin-induced decrease in TEER, and a 5-HT 7 agonist decreased TEER. Inhibition of p38 mitogen-activated protein kinase (MAPK) reduced the serotonin-induced decrease in TEER. Inhibition of p38 MAPK blocked the decrease of ZO-1 levels, whereas extracellular-signal-regulated kinase (ERK) inhibition blocked the decrease in occludin levels. Cell signaling pathway inhibitors had no effect on serotonin-induced alterations in claudin 1 and claudin 4 levels. Serotonin induced phosphorylation of p38 MAPK and ERK, and a 5-HT 7 antagonist partially blocked serotonin-induced phosphorylation of p38 MAPK but not that of ERK. Serotonin disrupted esophageal squamous epithelial barrier function by modulating the levels of TJ proteins. Serotonin signaling pathways may mediate the pathogenesis of gastroesophageal reflux disease.

  15. Rat mesothelioma cell proliferation requires p38δ mitogen activated protein kinase and C/EBP-α.

    PubMed

    Zhong, Jun; Lardinois, Didier; Szilard, John; Tamm, Michael; Roth, Michael

    2011-08-01

    Pleural malignant mesothelioma is a rare but deadly tumour mainly induced by asbestos inhalation. Despite the ban of asbestos in 1990 in 52 countries, mesothelioma cases still increase worldwide. In pleural mesothelioma, p38 mitogen activated protein kinases (MAPK) have been suggested to play a major role in carcinogenesis and aggressiveness of tumours. The aim of this study was to determine the role of the different four p38 MAPK isoforms and their effect on proliferation together with the underlying signalling pathways in a rat pleural mesothelioma cell line. Rat pleural mesothelioma cells were stimulated with platelet-derived growth factor (PDGF)-BB and/or transforming growth factor beta (TGF)-β. MAPK and transcription factor expression and activation was monitored in the cytosol and nucleus by immuno-blotting. Proliferation was determined by manual cell count and siRNAs were used to control MAPK and transcription factor expression and action. Only PDGF-BB, but not TGF-β1 induced proliferation via activated Erk1/2 and p38 MAPK. The p38α and δ isoforms were expressed in the cytosol, and upon activation p38δ translocated into the nucleus, while p38α remained in the cytosol. No other p38 isoform was expressed by rat mesothelioma cells. C/EBP-α was found in both the cytosol and the nucleus, while C/EBP-β was not expressed at all. PDGF-BB induced proliferation was suppressed by down-regulation of either Erk1/2, or p38δ MAPK, or C/EBP-α. Furthermore, TGF-β inhibited PDGF-BB induced proliferation by interruption of p38 MAPK signalling. From this rat model, we conclude that in pleural mesothelioma, p38δ in C/EBP-α mediate proliferation and thus may represent new targets in mesothelioma therapy. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Various stressors rapidly activate the p38-MAPK signaling pathway in Mytilus galloprovincialis (Lam.).

    PubMed

    Gaitanaki, Catherine; Kefaloyianni, Erene; Marmari, Athina; Beis, Isidoros

    2004-05-01

    The stimulation of p38-MAPK signal transduction pathway by various stressful stimuli was investigated in the marine bivalve M. galloprovincialis. Oxidative stress (5 microM H2O2) induced a biphasic pattern of p38-MAPK phosphorylation with maximal values attained at 15 min (8.1-fold) and 1 h (8.0-fold) of treatment respectively. Furthermore, 1 microM SB203580 abolished the p38-MAPK phosphorylation induced by oxidative stress. Aerial exposure also induced a biphasic pattern of p38-MAPK phosphorylation, with maximal values attained at 1 h (6.8-fold) and 8 h (4.9-fold) respectively. Re-oxygenation following a 15 min of aerial exposure resulted in the progressive dephosphorylation of the kinase. Treatment with 0.5 M sorbitol (in normal seawater) induced the rapid kinase phosphorylation (9.2-fold) and this effect was reversible. Seawater salinities varying between 100-60% had no effect, whereas a salinity of 50% induced a significant p38-MAPK phosphorylation. Furthermore, hypertonicity (120% seawater) resulted in a moderate kinase phosphorylation. All the above results demonstrate for the first time in a marine invertebrate imposed to environmental and other forms of stress as an intact, living organism, that the p38-MAPK pathway is specifically activated by various stressful stimuli which this animal can often face and sustain in vivo.

  17. Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway

    PubMed Central

    Pinsino, Annalisa; Russo, Roberta; Bonaventura, Rosa; Brunelli, Andrea; Marcomini, Antonio; Matranga, Valeria

    2015-01-01

    Titanium dioxide nanoparticles (TiO2NPs) are one of the most widespread-engineered particles in use for drug delivery, cosmetics, and electronics. However, TiO2NP safety is still an open issue, even for ethical reasons. In this work, we investigated the sea urchin Paracentrotus lividus immune cell model as a proxy to humans, to elucidate a potential pathway that can be involved in the persistent TiO2NP-immune cell interaction in vivo. Morphology, phagocytic ability, changes in activation/inactivation of a few mitogen-activated protein kinases (p38 MAPK, ERK), variations of other key proteins triggering immune response (Toll-like receptor 4-like, Heat shock protein 70, Interleukin-6) and modifications in the expression of related immune response genes were investigated. Our findings indicate that TiO2NPs influence the signal transduction downstream targets of p38 MAPK without eliciting an inflammatory response or other harmful effects on biological functions. We strongly recommend sea urchin immune cells as a new powerful model for nano-safety/nano-toxicity investigations without the ethical normative issue. PMID:26412401

  18. [Role of p38MAPK/eNOS signaling pathway in the inhibition of AGEs-induced apoptosis of human umbilical vein endothelial cells by glucagon-like peptide-1].

    PubMed

    Zeng, Hailong; Huang, Zhiqiu; Zhang, Yineng; Sun, Huilin

    2016-01-01

    To investigate the role of p38MAPK signaling pathway in the mechanism by which glucagon-like peptide-1 (GLP-1) inhibits endothelial cell damage induced by AGEs. Human umbilical vein endothelial cells were divided into control group, AGEs group, GLP-1 group, AGEs+GLP-1 group, AGEs+inhibitor group, and AGEs+GLP-1+inhibitor group. The expressions of p-p38MAPK/p38MAPK and p-eNOS/eNOS protein were examined by Western blotting, and the cell apoptosis rates were tested by flow cytometry. Compared with the control group, AGEs significantly enhanced the expression of p-p38 MAPK protein (P=0.001) while GLP-1 significantly inhibited its expression (P<0.001). AGEs significantly inhibited the expression of p-eNOS protein (P=0.007), which was enhanced by GLP-1 and p38 MAPK inhibitor (SB203580) (P=0.004). Both SB203580 and GLP-1 treatment decreased the apoptosis rate of AGEs-treated cells (P<0.001). GLP-1 can protect human umbilical vein endothelial cells against AGEs-induced apoptosis partially by inhibiting the phosphorylation of p38MAPK protein and promoting the expression of p-eNOS protein.

  19. B7-H3 Augments Inflammatory Responses and Exacerbates Brain Damage via Amplifying NF-κB p65 and MAPK p38 Activation during Experimental Pneumococcal Meningitis.

    PubMed

    Chen, Xuqin; Li, Yan; Blankson, Siobhan; Liu, Min; Huang, Danping; Redmond, H Paul; Huang, Jing; Wang, Jiang Huai; Wang, Jian

    2017-01-01

    The costimulatory protein B7-H3 has been shown to play a contributory role in the development and progression of experimental pneumococcal meningitis by augmentation of the innate immunity-associated inflammatory response via a TLR2-dependent manner. This study aimed to clarify the component(s) of TLR2-mediated signal transduction pathways responsible for B7-H3-augmented inflammatory response and subsequent brain damage during experimental pneumococcal meningitis. Administration of B7-H3 did not augment expression of TLR2 and other TLR2 upstream components, but led to an enhanced formation of MyD88-IRAK immunocomplex in the brain of S. pneumoniae-infected mice. Furthermore, B7-H3 substantially augmented S. pneumoniae-induced activation of TLR2 downstream NF-κB p65 and MAPK p38 pathways in the brain of S. pneumoniae-infected mice. Notably, blockage of NF-κB p65 and/or MAPK p38 with their specific inhibitors strongly attenuated B7-H3-amplified inflammatory response with significantly reduced proinflammatory cytokine and chemokine production, and markedly ameliorated B7-H3-exacerbated disruption of blood-brain barrier and severity of disease status in S. pneumoniae-infected mice. These results indicate that targeting NF-κB p65 and/or MAPK p38 may represent a promising therapeutic option for amelioration of overwhelming inflammatory response-associated brain injury frequently observed during pneumococcal meningitis.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seung J.; Kim, Chae E.; Yun, Mi R.

    Exaggerated levels of 4-hydroxynonenal (HNE) and 5-lipoxygenase (5-LO) co-exist in macrophages in atherosclerotic lesions, and activated macrophages produce MMP-9 that degrades atherosclerotic plaque constituents. This study investigated the effects of HNE on MMP-9 production, and the potential role for 5-LO derivatives in MMP-9 production in murine macrophages. Stimulation of J774A.1 cells with HNE led to activation of 5-LO, as measured by leukotriene B{sub 4} (LTB{sub 4}) production. This was associated with an increased production of MMP-9, which was blunted by inhibition of 5-LO with MK886, a 5-LO inhibitor or with 5-LO siRNA. A cysteinyl-LT{sub 1} (cysLT{sub 1}) receptor antagonist, REV-5901more » as well as a BLT{sub 1} receptor antagonist, U-75302, also attenuated MMP-9 production induced by HNE. Furthermore, LTB{sub 4} and cysLT (LTC{sub 4} and LTD{sub 4}) enhanced MMP-9 production in macrophages, suggesting a pivotal role for 5-LO in HNE-mediated production of MMP-9. Among the MAPK pathways, LTB{sub 4} and cysLT enhanced phosphorylation of ERK and p38 MAPK, but not JNK. Linked to these results, a p38 MAPK inhibitor as well as an ERK inhibitor blunted MMP-9 production induced by LT. Collectively, these data suggest that 5-LO-derived LT mediates HNE-induced MMP-9 production via activation of ERK and p38 MAPK pathways, consequently leading to plaque instability in atherosclerosis.« less

  1. Neuroprotective Effect of Curcumin Against Cerebral Ischemia-Reperfusion Via Mediating Autophagy and Inflammation.

    PubMed

    Huang, Lifa; Chen, Chengwei; Zhang, Xin; Li, Xu; Chen, Zupeng; Yang, Chao; Liang, Xiaolong; Zhu, Guochong; Xu, Zhen

    2018-01-01

    Curcumin, a polyphenolic compound extracted from Curcuma longa, has drawn attention for its effective bioactivities against ischemia-induced injury. This study aimed to evaluate the neuroprotective effect of curcumin and investigate the underlying mechanism that mediates autophagy and inflammation in an animal model of middle cerebral artery occlusion (MCAO) in rats. Curcumin was delivered to Sprague Dawley male rats at a dose of 200 mg/kg curcumin by intraperitoneal injection 30 min after ischemia-reperfusion (I/R). LY294002, a specific inhibitor of the PI3K/Akt/mTOR pathway, as well as anisomycin, an activator of TLR4/p38/MAPK, was administered by ventricle injection 30 min before MCAO. The same volume of saline was given as a control. Brain infarction and neurological function were determined 24 h post-MCAO. Immunoblotting and immunofluorescence were used to detect alterations in autophagy-relevant proteins Akt, p-Akt, mTOR, p-mTOR, LC3-II, and LC3-I, and inflammation-related proteins TLR4, p-38, p-p38, and IL-1 in the ipsilateral hemisphere. Cerebral I/R injury resulted in significant alterations of LC3-II/LC3-I, IL-1, TLR4, and p-p38. Curcumin in MCAO rats significantly improved brain damage and neurological function by upregulating p-Akt and p-mTOR and downregulating LC3-II/LC3-I, IL-1, TLR4, p-38, and p-p38. However, these protective effects against ischemia could be suppressed when LY294002 or anisomycin was included. Curcumin exerts neuroprotective effects by attenuating autophagic activities through mediating the PI3K/Akt/mTOR pathway, while also suppressing an inflammatory reaction by regulating the TLR4/p38/MAPK pathway. Furthermore, this study indicates that curcumin could be an effective therapy for patients afflicted with ischemia.

  2. Species Comparison of the Role of p38 MAP Kinase in the Female Reproductive System.

    PubMed

    Radi, Zaher A; Marusak, Rosemary A; Morris, Dale L

    2009-06-01

    The p38 mitogen-activated protein kinases (MAPKs) are members of discrete signal transduction pathways that have significant regulatory roles in a variety of biological processes, depending on the cell, tissue and organ type. p38 MAPKs are involved in inflammation, cell growth and differentiation and cell cycle. In the female reproductive system, p38 MAPKs are known to regulate various aspects of the reproductive process such as mammalian estrous and menstrual cycles as well as early pregnancy and parturition. p38 MAPKs have also been implicated in alterations and pathologies observed in the female reproductive system. Therefore, pharmacologic modulation of p38 MAPKs, and inter-connected signaling pathways (e.g., estrogen receptor signaling, c-fos, c-jun), may influence reproductive physiology and function. This article provides a critical, comparative review of available data on the roles of p38 MAPKs in the mammalian female reproductive system and in reproductive pathophysiology in humans and preclinical species. We first introduce fundamental differences and similarities of the mammalian female reproductive system that should be considered by toxicologists and toxicologic pathologists when assessing the effects of new pharmacologic agents on the female reproductive system. We then explore in detail the known roles for p38 MAPKs and related molecules in female reproduction. This foundation is then extended to pathological conditions in which p38 MAPKs are thought to play an integral role.

  3. Tissue Factor Inflammatory Response Regulated by Promoter Genotype and p38 MAPK in Neonatal vs. Adult Microvascular Endothelial Cells

    PubMed Central

    Buzby, Jeffrey S.; Williams, Shirley A.; Imfeld, Karen L.; Kunicki, Thomas J.; Nugent, Diane J.

    2014-01-01

    Objective and design Variable tissue factor (TF) expression by human microvascular endothelial cells (HMVEC) may be regulated by two promoter haplotypes, distinguished by an 18 base pair deletion (D) or insertion (I) at -1208. We sought to determine the relationship between these haplotypes and interleukin-1 (IL-1α)-induced TF expression in neonatal versus adult HMVEC. Results IL-1-stimulated TF mRNA, protein, and activity were significantly higher in neonatal compared to adult D/D donors. IL-1-stimulated HMVEC from neonatal D/D donors expressed 3-fold higher levels of TF mRNA, 2-fold higher TF protein, and 4-fold increased TF activity compared to HMVEC from adult D/D donors. These results indicate that homozygosity for the D haplotype is characterized by increased response to IL-1 in neonates but not adults. IL-1 induced increased phosphorylation of p38 mitogen-activated protein kinase (MAPK), which was significantly greater in neonatal compared to adult HMVEC. Moreover, inhibition of the p38 MAPK pathway reduced IL-1-stimulated TF mRNA expression in D/D neonatal but not adult HMVEC. Conclusions Up-regulation of D/D neonatal HMVEC TF expression by IL-1 is mediated through the p38 MAPK pathway. This heightened response of D/D neonatal HMVEC to inflammatory stimuli may contribute to increased microvascular coagulopathies in susceptible newborn infants. PMID:24385191

  4. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways

    PubMed Central

    Doyle, Alexander; Zhang, Guohua; Abdel Fattah, Elmoataz A.; Eissa, N. Tony; Li, Yi-Ping

    2011-01-01

    Cachectic muscle wasting is a frequent complication of many inflammatory conditions, due primarily to excessive muscle catabolism. However, the pathogenesis and intervention strategies against it remain to be established. Here, we tested the hypothesis that Toll-like receptor 4 (TLR4) is a master regulator of inflammatory muscle catabolism. We demonstrate that TLR4 activation by lipopolysaccharide (LPS) induces C2C12 myotube atrophy via up-regulating autophagosome formation and the expression of ubiquitin ligase atrogin-1/MAFbx and MuRF1. TLR4-mediated activation of p38 MAPK is necessary and sufficient for the up-regulation of atrogin1/MAFbx and autophagosomes, resulting in myotube atrophy. Similarly, LPS up-regulates muscle autophagosome formation and ubiquitin ligase expression in mice. Importantly, autophagy inhibitor 3-methyladenine completely abolishes LPS-induced muscle proteolysis, while proteasome inhibitor lactacystin partially blocks it. Furthermore, TLR4 knockout or p38 MAPK inhibition abolishes LPS-induced muscle proteolysis. Thus, TLR4 mediates LPS-induced muscle catabolism via coordinate activation of the ubiquitin-proteasome and the autophagy-lysosomal pathways.—Doyle, A., Zhang, G., Abdel Fattah, E. A., Eissa, N. T., Li, Y.-P. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. PMID:20826541

  5. Differential roles of MAPK-Erk1/2 and MAPK-p38 in insulin or insulin-like growth factor-I (IGF-I) signaling pathways for progesterone production in human ovarian cells.

    PubMed

    Seto-Young, D; Avtanski, D; Varadinova, M; Park, A; Suwandhi, P; Leiser, A; Parikh, G; Poretsky, L

    2011-06-01

    Insulin and insulin like-growth factor-I (IGF-I) participate in the regulation of ovarian steroidogenesis. In insulin resistant states ovaries remain sensitive to insulin because insulin can activate alternative signaling pathways, such as phosphatidylinositol-3-kinase (PI-3 kinase) and mitogen-activated protein-kinase (MAPK) pathways, as well as insulin receptors and type 1 IGF receptors. We investigated the roles of MAPK-Erk1/2 and MAPK-p38 in insulin and IGF-I signaling pathways for progesterone production in human ovarian cells. Human ovarian cells were cultured in tissue culture medium in the presence of varying concentrations of insulin or IGF-I, with or without PD98059, a specific MAPK-Erk1/2 inhibitor, with or without SB203580, a specific MAPK-p38 inhibitor or with or without a specific PI-3-kinase inhibitor LY294002. Progesterone concentrations were measured using radioimmunoassay. PD98059 alone stimulated progesterone production in a dose-dependent manner by up to 65% (p<0.001). Similarly, LY294002 alone stimulated progesterone production by 13-18% (p<0.005). However, when used together, PD98059 and LY294002 inhibited progesterone production by 17-20% (p<0.001). SB203580 alone inhibited progesterone production by 20-30% (p<0.001). Insulin or IGF-I alone stimulated progesterone production by 40-60% (p<0.001). In insulin studies, PD98059 had no significant effect on progesterone synthesis while SB203580 abolished insulin-induced progesterone production. Either PD98059 or SB203580 abolished IGF-I-induced progesterone production. Both MAPK-Erk1/2 and MAPK-p38 participate in IGF-I-induced signaling pathways for progesterone production, while insulin-induced progesterone production requires MAPK-p38, but not MAPK-Erk1/2. These studies provide further evidence for divergence of insulin and IGF-I signaling pathways for human ovarian cell steroidogenesis. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Astaxanthin Inhibits Acetaldehyde-Induced Cytotoxicity in SH-SY5Y Cells by Modulating Akt/CREB and p38MAPK/ERK Signaling Pathways.

    PubMed

    Yan, Tingting; Zhao, Yan; Zhang, Xia; Lin, Xiaotong

    2016-03-10

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. Acetaldehyde, the most toxic metabolite of ethanol, mediates the brain tissue damage and cognitive dysfunction induced by chronic excessive alcohol consumption. In this study, the effect of astaxanthin, a marine bioactive compound, on acetaldehyde-induced cytotoxicity was investigated in SH-SY5Y cells. It was found that astaxanthin protected cells from apoptosis by ameliorating the effect of acetaldehyde on the expression of Bcl-2 family proteins, preventing the reduction of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bak induced by acetaldehyde. Further analyses showed that astaxanthin treatment inhibited acetaldehyde-induced reduction of the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). Astaxanthin treatment also prevented acetaldehyde-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK) and decrease of the level of activated extracellular signal-regulated kinases (ERKs). Activation of Akt/CREB pathway promotes cell survival and is involved in the upregulation of Bcl-2 gene. P38MAPK plays a critical role in apoptotic events while ERKs mediates the inhibition of apoptosis. Thus, astaxanthin may inhibit acetaldehyde-induced apoptosis through promoting the activation of Akt/CREB and ERKs and blocking the activation of p38MAPK. In addition, astaxanthin treatment suppressed the oxidative stress induced by acetaldehyde and restored the antioxidative capacity of SH-SY5Y cells. Therefore, astaxanthin may protect cells against acetaldehyde-induced cytotoxicity through maintaining redox balance and modulating apoptotic and survival signals. The results suggest that astaxanthin treatment may be beneficial for preventing neurotoxicity associated with acetaldehyde and excessive alcohol consumption.

  7. Hypoxia enhances periodontal ligament stem cell proliferation via the MAPK signaling pathway.

    PubMed

    He, Y; Jian, C X; Zhang, H Y; Zhou, Y; Wu, X; Zhang, G; Tan, Y H

    2016-11-21

    There is high incidence of periodontal disease in high-altitude environments; hypoxia may influence the proliferation and clone-forming ability of periodontal ligament stem cells (PDLSCs). The MAPK signaling pathway is closely correlated with cell proliferation, differentiation, and apoptosis. Thus, we isolated and cultured PDLSCs under hypoxic conditions to clarify the impact of hypoxia on PDLSC proliferation and the underlying mechanism. PDLSCs were separated and purified by the limiting dilution method and identified by flow cytometry. PDLSCs were cultured under hypoxic or normoxic conditions to observe their cloning efficiency. PDLSC proliferation at different oxygen concentrations was evaluated by MTT assay. Expression of p38/MAPK and MAPK/ERK signaling pathway members was detected by western blotting. Inhibitors for p38/MAPK or ERK were applied to PDLSCs to observe their impacts on clone formation and proliferation. Isolated PDLSCs exhibited typical stem cell morphological characteristics, strong abilities of globular clone formation and proliferation, and upregulated expression of mesenchymal stem cell markers. Stem cell marker expression was not statistically different between PDLSCs cultured under hypoxia and normoxia (P > 0.05). The clone number in the hypoxia group was significantly higher than that in the control (P < 0.05). PDLSC proliferation under hypoxia was higher than that of the control (P < 0.001). p38 and ERK1/2 phosphorylation in hypoxic PDLSCs was markedly enhanced compared to that in the control (P < 0.05). Either P38/MAPK inhibitor or ERK inhibitor treatment reduced clone formation and proliferation. Therefore, hypoxia enhanced PDLSC clone formation and proliferation by activating the p38/MAPK and ERK/MAPK signaling pathways.

  8. Metabolic Respiration Induces AMPK- and Ire1p-Dependent Activation of the p38-Type HOG MAPK Pathway

    PubMed Central

    Adhikari, Hema; Cullen, Paul J.

    2014-01-01

    Evolutionarily conserved mitogen activated protein kinase (MAPK) pathways regulate the response to stress as well as cell differentiation. In Saccharomyces cerevisiae, growth in non-preferred carbon sources (like galactose) induces differentiation to the filamentous cell type through an extracellular-signal regulated kinase (ERK)-type MAPK pathway. The filamentous growth MAPK pathway shares components with a p38-type High Osmolarity Glycerol response (HOG) pathway, which regulates the response to changes in osmolarity. To determine the extent of functional overlap between the MAPK pathways, comparative RNA sequencing was performed, which uncovered an unexpected role for the HOG pathway in regulating the response to growth in galactose. The HOG pathway was induced during growth in galactose, which required the nutrient regulatory AMP-dependent protein kinase (AMPK) Snf1p, an intact respiratory chain, and a functional tricarboxylic acid (TCA) cycle. The unfolded protein response (UPR) kinase Ire1p was also required for HOG pathway activation in this context. Thus, the filamentous growth and HOG pathways are both active during growth in galactose. The two pathways redundantly promoted growth in galactose, but paradoxically, they also inhibited each other's activities. Such cross-modulation was critical to optimize the differentiation response. The human fungal pathogen Candida albicans showed a similar regulatory circuit. Thus, an evolutionarily conserved regulatory axis links metabolic respiration and AMPK to Ire1p, which regulates a differentiation response involving the modulated activity of ERK and p38 MAPK pathways. PMID:25356552

  9. CXCL1 inhibits airway smooth muscle cell migration through the decoy receptor Duffy antigen receptor for chemokines.

    PubMed

    Al-Alwan, Laila A; Chang, Ying; Rousseau, Simon; Martin, James G; Eidelman, David H; Hamid, Qutayba

    2014-08-01

    Airway smooth muscle cell (ASMC) migration is an important mechanism postulated to play a role in airway remodeling in asthma. CXCL1 chemokine has been linked to tissue growth and metastasis. In this study, we present a detailed examination of the inhibitory effect of CXCL1 on human primary ASMC migration and the role of the decoy receptor, Duffy AgR for chemokines (DARC), in this inhibition. Western blots and pathway inhibitors showed that this phenomenon was mediated by activation of the ERK-1/2 MAPK pathway, but not p38 MAPK or PI3K, suggesting a biased selection in the signaling mechanism. Despite being known as a nonsignaling receptor, small interference RNA knockdown of DARC showed that ERK-1/2 MAPK activation was significantly dependent on DARC functionality, which, in turn, was dependent on the presence of heat shock protein 90 subunit α. Interestingly, DARC- or heat shock protein 90 subunit α-deficient ASMCs responded to CXCL1 stimulation by enhancing p38 MAPK activation and ASMC migration through the CXCR2 receptor. In conclusion, we demonstrated DARC's ability to facilitate CXCL1 inhibition of ASMC migration through modulation of the ERK-1/2 MAPK-signaling pathway. Copyright © 2014 by The American Association of Immunologists, Inc.

  10. A Role for p38 Mitogen-activated Protein Kinase-mediated Threonine 30-dependent Norepinephrine Transporter Regulation in Cocaine Sensitization and Conditioned Place Preference*

    PubMed Central

    Mannangatti, Padmanabhan; NarasimhaNaidu, Kamalakkannan; Damaj, Mohamad Imad; Ramamoorthy, Sammanda; Jayanthi, Lankupalle Damodara

    2015-01-01

    The noradrenergic and p38 mitogen-activated protein kinase (p38 MAPK) systems are implicated in cocaine-elicited behaviors. Previously, we demonstrated a role for p38 MAPK-mediated norepinephrine transporter (NET) Thr30 phosphorylation in cocaine-induced NET up-regulation (Mannangatti, P., Arapulisamy, O., Shippenberg, T. S., Ramamoorthy, S., and Jayanthi, L. D. (2011) J. Biol. Chem. 286, 20239–20250). The present study explored the functional interaction between p38 MAPK-mediated NET regulation and cocaine-induced behaviors. In vitro cocaine treatment of mouse prefrontal cortex synaptosomes resulted in enhanced NET function, surface expression, and phosphorylation. Pretreatment with PD169316, a p38 MAPK inhibitor, completely blocked cocaine-mediated NET up-regulation and phosphorylation. In mice, in vivo administration of p38 MAPK inhibitor SB203580 completely blocked cocaine-induced NET up-regulation and p38 MAPK activation in the prefrontal cortex and nucleus accumbens. When tested for cocaine-induced locomotor sensitization and conditioned place preference (CPP), mice receiving SB203580 on cocaine challenge day or on postconditioning test day exhibited significantly reduced cocaine sensitization and CPP. A transactivator of transcription (TAT) peptide strategy was utilized to test the involvement of the NET-Thr30 motif. In vitro treatment of synaptosomes with TAT-NET-Thr30 (wild-type peptide) completely blocked cocaine-mediated NET up-regulation and phosphorylation. In vivo administration of TAT-NET-Thr30 peptide but not TAT-NET-T30A (mutant peptide) completely blocked cocaine-mediated NET up-regulation and phosphorylation. In the cocaine CPP paradigm, mice receiving TAT-NET-Thr30 but not TAT-NET-T30A on postconditioning test day exhibited significantly reduced cocaine CPP. Following extinction, TAT-NET-Thr30 when given prior to cocaine challenge significantly reduced reinstatement of cocaine CPP. These results demonstrate that the direct inhibition of p38 MAPK or the manipulation of NET-Thr30 motif/phosphorylation via a TAT peptide strategy prevents cocaine-induced NET up-regulation, locomotor sensitization, and CPP, suggesting a role for Thr30-linked NET regulation in cocaine-elicited behaviors. PMID:25724654

  11. Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK–dependent integrin outside-in retractile signaling pathway

    PubMed Central

    Flevaris, Panagiotis; Li, Zhenyu; Zhang, Guoying; Zheng, Yi; Liu, Junling

    2009-01-01

    Mitogen-activated protein kinases (MAPK), p38, and extracellular stimuli-responsive kinase (ERK), are acutely but transiently activated in platelets by platelet agonists, and the agonist-induced platelet MAPK activation is inhibited by ligand binding to the integrin αIIbβ3. Here we show that, although the activation of MAPK, as indicated by MAPK phosphorylation, is initially inhibited after ligand binding to integrin αIIbβ3, integrin outside-insignaling results in a late but sustained activation of MAPKs in platelets. Furthermore, we show that the early agonist-induced MAPK activation and the late integrin-mediated MAPK activation play distinct roles in different stages of platelet activation. Agonist-induced MAPK activation primarily plays an important role in stimulating secretion of platelet granules, while integrin-mediated MAPK activation is important in facilitating clot retraction. The stimulatory role of MAPK in clot retraction is mediated by stimulating myosin light chain (MLC) phosphorylation. Importantly, integrin-dependent MAPK activation, MAPK-dependent MLC phosphorylation, and clot retraction are inhibited by a Rac1 inhibitor and in Rac1 knockout platelets, indicating that integrin-induced activation of MAPK and MLC and subsequent clot retraction is Rac1-dependent. Thus, our results reveal 2 different activation mechanisms of MAPKs that are involved in distinct aspects of platelet function and a novel Rac1-MAPK–dependent cell retractile signaling pathway. PMID:18957688

  12. Flavonoid Naringenin: A Potential Immunomodulator for Chlamydia trachomatis Inflammation

    PubMed Central

    Yilma, Abebayehu N.; Singh, Shree R.; Morici, Lisa; Dennis, Vida A.

    2013-01-01

    Chlamydia trachomatis, the agent of bacterial sexually transmitted infections, can manifest itself as either acute cervicitis, pelvic inflammatory disease, or a chronic asymptomatic infection. Inflammation induced by C. trachomatis contributes greatly to the pathogenesis of disease. Here we evaluated the anti-inflammatory capacity of naringenin, a polyphenolic compound, to modulate inflammatory mediators produced by mouse J774 macrophages infected with live C. trachomatis. Infected macrophages produced a broad spectrum of inflammatory cytokines (GM-CSF, TNF, IL-1β, IL-1α, IL-6, IL-12p70, and IL-10) and chemokines (CCL4, CCL5, CXCL1, CXCL5, and CXCL10) which were downregulated by naringenin in a dose-dependent manner. Enhanced protein and mRNA gene transcript expressions of TLR2 and TLR4 in addition to the CD86 costimulatory molecule on infected macrophages were modulated by naringenin. Pathway-specific inhibition studies disclosed that p38 mitogen-activated-protein kinase (MAPK) is involved in the production of inflammatory mediators by infected macrophages. Notably, naringenin inhibited the ability of C. trachomatis to phosphorylate p38 in macrophages, suggesting a potential mechanism of its attenuation of concomitantly produced inflammatory mediators. Our data demonstrates that naringenin is an immunomodulator of inflammation triggered by C. trachomatis, which possibly may be mediated upstream by modulation of TLR2, TLR4, and CD86 receptors on infected macrophages and downstream via the p38 MAPK pathway. PMID:23766556

  13. Substance P activates both contractile and inflammatory pathways in lymphatics through the neurokinin receptors NK1R and NK3R.

    PubMed

    Chakraborty, Sanjukta; Nepiyushchikh, Zhanna; Davis, Michael J; Zawieja, David C; Muthuchamy, Mariappan

    2011-01-01

    The aim of this study was to elucidate the molecular signaling mechanisms by which substance P (SP) modulates lymphatic muscle contraction and to determine whether SP stimulates both contractile as well as inflammatory pathways in the lymphatics. A rat mesenteric lymphatic muscle cell culture model (RMLMCs) and known specific pharmacological inhibitors were utilized to delineate SP-mediated signaling pathways in lymphatics. We detected expression of neurokinin receptor 1 (NK1R) and neurokinin receptor 3 (NK3R) in RMLMCs. SP stimulation increased phosphorylation of myosin light chain 20 (MLC₂₀) as well as p38 mitogen associated protein kinase (p38-MAPK) and extracellular signal regulated kinase (ERK1/2) indicating activation of both a contractile and a pro-inflammatory MAPK pathway. Pharmacological inhibition of both NK1R and NK3R significantly affected the downstream SP signaling. We further examined whether there was any crosstalk between the two pathways upon SP stimulation. Inhibition of ERK1/2 decreased levels of p-MLC₂₀ after SP activation, in a PKC dependent manner, indicating a potential crosstalk between these two pathways. These data provide the first evidence that SP-mediated crosstalk between pro-inflammatory and contractile signaling mechanisms exists in the lymphatic system and may be an important bridge between lymphatic function modulation and inflammation. © 2010 John Wiley & Sons Ltd.

  14. Substance P activates both contractile and inflammatory pathways in lymphatics through the neurokinin receptors NK1R and NK3R

    PubMed Central

    Chakraborty, Sanjukta; Nepiyushchikh, Zhanna; Davis, Michael J.; Zawieja, David C.; Muthuchamy, Mariappan

    2010-01-01

    Objective The aim of this study was to elucidate the molecular signaling mechanisms by which substance P (SP) modulates lymphatic muscle contraction and to determine whether SP stimulates both contractile as well as inflammatory pathways in the lymphatics. Methods A rat mesenteric lymphatic muscle cell culture model (RMLMCs) and known specific pharmacological inhibitors were utilized to delineate SP mediated signaling pathways in lymphatics. Results We detected expression of neurokinin receptor 1 (NK1R) and neurokinin receptor 3 (NK3R) in RMLMCs. SP stimulation increased phosphorylation of myosin light chain 20 (MLC20) as well as p38 mitogen associated protein kinase (p38-MAPK) and extracellular signal regulated kinase (ERK1/2) indicating activation of both a contractile and a pro-inflammatory MAPK pathway. Pharmacological inhibition of both NK1R and NK3R significantly affected the downstream SP signaling. We further examined whether there was any crosstalk between the two pathways upon SP stimulation. Inhibition of ERK1/2 decreased levels of p-MLC20 after SP activation, in a PKC dependent manner, indicating a potential crosstalk between these two pathways. Conclusions These data provide the first evidence that SP mediated crosstalk between pro-inflammatory and contractile signaling mechanisms exists in the lymphatic system and may be an important bridge between lymphatic function modulation and inflammation. PMID:21166923

  15. Luteolin and Apigenin Attenuate 4-Hydroxy-2-Nonenal-Mediated Cell Death through Modulation of UPR, Nrf2-ARE and MAPK Pathways in PC12 Cells

    PubMed Central

    Wu, Pei-Shan; Yen, Jui-Hung; Kou, Mei-Chun; Wu, Ming-Jiuan

    2015-01-01

    Luteolin and apigenin are dietary flavones and exhibit a broad spectrum of biological activities including antioxidant, anti-inflammatory, anti-cancer and neuroprotective effects. The lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE) has been implicated as a causative agent in the development of neurodegenerative disorders. This study investigates the cytoprotective effects of luteolin and apigenin against 4-HNE-mediated cytotoxicity in neuronal-like catecholaminergic PC12 cells. Both flavones restored cell viability and repressed caspase-3 and PARP-1 activation in 4-HNE-treated cells. Luteolin also mitigated 4-HNE-mediated LC3 conversion and reactive oxygen species (ROS) production. Luteolin and apigenin up-regulated 4-HNE-mediated unfolded protein response (UPR), leading to an increase in endoplasmic reticulum chaperone GRP78 and decrease in the expression of UPR-targeted pro-apoptotic genes. They also induced the expression of Nrf2-targeted HO-1 and xCT in the absence of 4-HNE, but counteracted their expression in the presence of 4-HNE. Moreover, we found that JNK and p38 MAPK inhibitors significantly antagonized the increase in cell viability induced by luteolin and apigenin. Consistently, enhanced phosphorylation of JNK and p38 MAPK was observed in luteolin- and apigenin-treated cells. In conclusion, this result shows that luteolin and apigenin activate MAPK and Nrf2 signaling, which elicit adaptive cellular stress response pathways, restore 4-HNE-induced ER homeostasis and inhibit cytotoxicity. Luteolin exerts a stronger cytoprotective effect than apigenin possibly due to its higher MAPK, Nrf2 and UPR activation, and ROS scavenging activity. PMID:26087007

  16. PKR is a novel functional direct player that coordinates skeletal muscle differentiation via p38MAPK/AKT pathways.

    PubMed

    Alisi, A; Spaziani, A; Anticoli, S; Ghidinelli, M; Balsano, C

    2008-03-01

    Myogenic differentiation is a highly orchestrated multistep process controlled by extracellular growth factors that modulate largely unknown signals into the cell affecting the muscle-transcription program. P38MAPK-dependent signalling, as well as PI3K/Akt pathway, has a key role in the control of muscle gene expression at different stages during the myogenic process. P38MAPK affects the activities of transcription factors, such as MyoD and myogenin, and contributes, together with PI3K/Akt pathway, to control the early and late steps of myogenic differentiation. The aim of our work was to better define the role of PKR, a dsRNA-activated protein kinase, as potential component in the differentiation program of C2C12 murine myogenic cells and to correlate its activity with p38MAPK and PI3K/Akt myogenic regulatory pathways. Here, we demonstrate that PKR is an essential component of the muscle development machinery and forms a functional complex with p38MAPK and/or Akt, contributing to muscle differentiation of committed myogenic cells in vitro. Inhibition of endogenous PKR activity by a specific (si)RNA and a PKR dominant-negative interferes with the myogenic program of C2C12 cells, causing a delay in activation of myogenic specific genes and inducing the formation of thinner myofibers. In addition, the construction of three PKR mutants allowed us to demonstrate that both N and C-terminal regions of PKR are critical for the interaction with p38MAPK and Akt. The novel discovered complex permits PKR to timely regulate the inhibition/activation of p38MAPK and Akt, controlling in this way the different steps characterizing skeletal muscle differentiation.

  17. Role of human amnion-derived mesenchymal stem cells in promoting osteogenic differentiation by influencing p38 MAPK signaling in lipopolysaccharide -induced human bone marrow mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuli; Wu, Hongxia; Shen, Ming

    Periodontitis is a chronic inflammatory disease induced by bacterial pathogens, which not only affect connective tissue attachments but also cause alveolar bone loss. In this study, we investigated the anti-inflammatory effects of Human amnion-derived mesenchymal stem cells (HAMSCs) on human bone marrow mesenchymal stem cells (HBMSCs) under lipopolysaccharide (LPS)-induced inflammatory conditions. Proliferation levels were measured by flow cytometry and immunofluorescence staining of 5-ethynyl-2′-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were investigated using chromogenic alkaline phosphatase activity (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of HBMSCs osteogenic marker expression. Oxidative stress induced by LPS was investigated by assayingmore » reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity. Here, we demonstrated that HAMSCs increased the proliferation, osteoblastic differentiation, and SOD activity of LPS-induced HBMSCs, and down-regulated the ROS level. Moreover, our results suggested that the activation of p38 MAPK signal transduction pathway is essential for reversing the LPS-induced bone-destructive processes. SB203580, a selective inhibitor of p38 MAPK signaling, significantly suppressed the anti-inflammatory effects in HAMSCs. In conclusion, HAMSCs show a strong potential in treating inflammation-induced bone loss by influencing p38 MAPK signaling. - Highlights: • LPS inhibites osteogenic differentiation in HBMSCs via suppression of p38 MAPK signaling pathway. • HAMSCs promote LPS-induced HBMSCs osteogenic differentiation through p38 MAPK signaling pathway. • HAMSCs reverse LPS-induced oxidative stress in LPS-induced HBMSCs through p38 MAPK signaling pathway.« less

  18. Cigarette smoke-induced cell cycle arrest in spermatocytes [GC-2spd(ts)] is mediated through crosstalk between Ahr-Nrf2 pathway and MAPK signaling.

    PubMed

    Esakky, Prabagaran; Hansen, Deborah A; Drury, Andrea M; Moley, Kelle H

    2015-02-01

    Our earlier studies have demonstrated that the cigarette smoke in the form of cigarette smoke condensate (CSC) causes growth arrest of a mouse spermatocyte cell line [GC-2spd(ts)] through activation of the AHR-NRF2 pathway. The present study demonstrates the CSC-activated p38 and ERK MAPK signaling in GC-2spd(ts) via arylhydrocarbon receptor (AHR). Pharmacological inhibition by using AHR-antagonist, or p38 MAPK and ERK (MEK1) inhibitors significantly abrogates CSC-induced growth arrest by AHR and MAPK inactivation. QRT-PCR, western blot, and immunofluorescence of Ahr-target of Nrf2, and stress-inducible growth suppressive Atf3 and E2f4 following treatments indicate a crosstalk among these pathways. Regulation of Atf3 by Nrf2 and Ahr through RNA interference suggests the existence of a cross-regulatory loop between the targets. CSC induction of E2f4 via Atf3 and its regulation by pharmacological inhibitors reveal a possible regulatory mechanism of growth inhibitory CSC. SiRNA silencing of Ahr, Nrf2, Atf3, and E2f4 genes and downregulation of cyclins by CSC corroborate the growth inhibitory effect of cigarette smoke. Thus, the data obtained suggest that the CSC-mediated MAPKs and AHR-NRF2 crosstalks lay the molecular basis for the growth arrest and cell death of spermatocytes. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  19. Overactivation of Mitogen-Activated Protein Kinase and Suppression of Mitofusin-2 Expression Are Two Independent Events in High Mobility Group Box 1 Protein–Mediated T Cell Immune Dysfunction

    PubMed Central

    Tang, Lu-ming; Zhao, Guang-ju; Zhu, Xiao-mei; Dong, Ning; Yu, Yan

    2013-01-01

    High mobility group box 1 protein (HMGB1), a critical proinflammatory cytokine, has recently been identified to be an immunostimulatory signal involved in sepsis-related immune dysfunction when released extracellularly, but the potential mechanism involved remains elusive. Here, we showed that the treatment with HMGB1 in vitro inhibited T lymphocyte immune response and expression of mitofusin-2 (Mfn-2; a member of the mitofusin family) in a dose- and time-dependent manner. Upregulation of Mfn-2 expression attenuated the suppressive effect of HMGB1 on T cell immune function. The phosphorylation of both extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) was markedly upregulated by treating with high amount of HMGB1, while pretreatment with ERK1/2 and p38 MAPK-specific inhibitors (U0126 and SB203580) could attenuate suppression of T cell immune function and nuclear factor of activated T cell (NFAT) activation induced by HMGB1, respectively. HMGB1-induced activity of ERK1/2 and p38 was not fully inhibited in the presence of U0126 or SB203580. Interestingly, overexpression of Mfn-2 had no marked effect on HMGB1-mediated activation of MAPK, but could attenuate the suppressive effect of HMGB1 on the activity of NFAT. Thus, the mechanisms involved in HMGB1-induced T cell immune dysfunction in vitro at least partly include suppression of Mfn-2 expression, overactivation of ERK1/2, p38 MAPK, and intervention of NFAT activation, while the protective effect of Mfn-2 on T cell immune dysfunction induced by HMGB1 is dependent on other signaling pathway associated with NFAT, but not MAPK. Taken together, we conclude that overactivation of MAPK and suppression of Mfn-2 expression are two independent events in HMGB1-mediated T cell immune dysfunction. PMID:23697559

  20. Curcumin attenuates chronic intermittent hypoxia-induced brain injuries by inhibiting AQP4 and p38 MAPK pathway.

    PubMed

    Wang, Bo; Li, Wenyang; Jin, Hongyu; Nie, Xinshi; Shen, Hui; Li, Erran; Wang, Wei

    2018-09-01

    Chronic intermittent hypoxia (CIH) is one of the main features of obstructive sleep apnea (OSA), which is also commonly associated with neurocognitive impairments. The present study aimed to elucidate the beneficial effect of curcumin on CIH-induced brain injuries. Male balb/c mice (6 ∼ 8 weeks) were exposed to normoxia or a pattern of CIH (8 h/day, cycles of 180 s each, hypoxia: 5% O 2 for 50 s, reoxygenation: 21% O 2 for 50 s) for 10 weeks, along with daily curcumin treatment (50, 100, or 200 mg/kg, intragastrically) or its vehicle. The results showed that CIH induced significant brain edema, as well as neuronal apoptosis and astrogliosis in the cerebral cortex, brainstem, and cerebellum regions of brain. In addition, increased astrocytic AQP4 expression and activation of p38 MAPK pathway were observed after CIH exposure. Curcumin dose-dependently mitigated the brain edema and relevant cell alterations, showing a neuroprotective effect in CIH-induced brain injury. Together, these results suggest curcumin ameliorates the CIH-induced brain injuries, including brain edema, neuronal death and astrogliosis. The beneficial role of curcumin is mediated partially by regulating AQP4 and p38 MAPK pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. B7-H3 Augments Inflammatory Responses and Exacerbates Brain Damage via Amplifying NF-κB p65 and MAPK p38 Activation during Experimental Pneumococcal Meningitis

    PubMed Central

    Chen, Xuqin; Li, Yan; Blankson, Siobhan; Liu, Min; Huang, Danping; Redmond, H. Paul; Huang, Jing; Wang, Jiang Huai; Wang, Jian

    2017-01-01

    The costimulatory protein B7-H3 has been shown to play a contributory role in the development and progression of experimental pneumococcal meningitis by augmentation of the innate immunity-associated inflammatory response via a TLR2-dependent manner. This study aimed to clarify the component(s) of TLR2-mediated signal transduction pathways responsible for B7-H3-augmented inflammatory response and subsequent brain damage during experimental pneumococcal meningitis. Administration of B7-H3 did not augment expression of TLR2 and other TLR2 upstream components, but led to an enhanced formation of MyD88-IRAK immunocomplex in the brain of S. pneumoniae-infected mice. Furthermore, B7-H3 substantially augmented S. pneumoniae-induced activation of TLR2 downstream NF-κB p65 and MAPK p38 pathways in the brain of S. pneumoniae-infected mice. Notably, blockage of NF-κB p65 and/or MAPK p38 with their specific inhibitors strongly attenuated B7-H3-amplified inflammatory response with significantly reduced proinflammatory cytokine and chemokine production, and markedly ameliorated B7-H3-exacerbated disruption of blood-brain barrier and severity of disease status in S. pneumoniae-infected mice. These results indicate that targeting NF-κB p65 and/or MAPK p38 may represent a promising therapeutic option for amelioration of overwhelming inflammatory response-associated brain injury frequently observed during pneumococcal meningitis. PMID:28141831

  2. Ebselen suppresses inflammation induced by Helicobacter pylori lipopolysaccharide via the p38 mitogen-activated protein kinase signaling pathway.

    PubMed

    Xu, Ling; Gong, Changguo; Li, Guangming; Wei, Jue; Wang, Ting; Meng, Wenying; Shi, Min; Wang, Yugang

    2018-05-01

    Ebselen is a seleno-organic compound that has been demonstrated to have antioxidant and anti-inflammatory properties. A previous study determined that ebselen inhibits airway inflammation induced by inhalational lipopolysaccharide (LPS), however, the underlying molecular mechanism remains to be elucidated. The present study investigated the effect of ebselen on the glutathione peroxidase (GPX)‑reactive oxygen species (ROS) pathway and interleukin‑8 (IL‑8) expression induced by Helicobacter pylori LPS in gastric cancer (GC) cells. Cells were treated with 200 ng/ml H. pylori‑LPS in the presence or absence of ebselen for various durations and concentrations (µmol/l). The expression of toll‑like receptor 4 (TLR4), GPX2, GPX4, p38 mitogen‑activated protein kinase (p38 MAPK), phosphorylated‑p38 MAPK, ROS production and IL‑8 expression were detected with western blotting or ELISA. The present study revealed that TLR4 expression was upregulated; however, GPX2 and GPX4 expression was reduced following treatment with H. pylori LPS, which led to increased ROS production, subsequently altering the IL‑8 expression level in GC cells. Additionally, it was determined that ebselen prevented the reduction in GPX2/4 levels induced by H. pylori LPS, however, TLR4 expression was not affected. Ebselen may also block the expression of IL‑8 by inhibiting phosphorylation of p38 MAPK. These data suggest ebselen may inhibit ROS production triggered by H. pylori LPS treatment via GPX2/4 instead of TLR4 signaling and reduce phosphorylation of p38 MAPK, resulting in altered production of IL‑8. Ebselen may, therefore, be a potential therapeutic agent to mediate H. pylori LPS-induced cell damage.

  3. Trimethyltin-Induced Microglial Activation via NADPH Oxidase and MAPKs Pathway in BV-2 Microglial Cells.

    PubMed

    Kim, Da Jung; Kim, Yong Sik

    2015-01-01

    Trimethyltin (TMT) is known as a potent neurotoxicant that causes neuronal cell death and neuroinflammation, particularly in the hippocampus. Microglial activation is one of the prominent pathological features of TMT neurotoxicity. Nevertheless, it remains unclear how microglial activation occurs in TMT intoxication. In this study, we aimed to investigate the signaling pathways in TMT-induced microglial activation using BV-2 murine microglial cells. Our results revealed that TMT generates reactive oxygen species (ROS) and increases the expression of CD11b and nuclear factor-κB- (NF-κB-) mediated nitric oxide (NO) and tumor necrosis factor- (TNF-) α in BV-2 cells. We also observed that NF-κB activation was controlled by p38 and JNK phosphorylation. Moreover, TMT-induced ROS generation occurred via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in BV-2 cells. Interestingly, treatment with the NADPH oxidase inhibitor apocynin significantly suppressed p38 and JNK phosphorylation and NF-κB activation and ultimately the production of proinflammatory mediators upon TMT exposure. These findings indicate that NADPH oxidase-dependent ROS generation activated p38 and JNK mitogen-activated protein kinases (MAPKs), which then stimulated NF-κB to release proinflammatory mediators in the TMT-treated BV-2 cells.

  4. Trimethyltin-Induced Microglial Activation via NADPH Oxidase and MAPKs Pathway in BV-2 Microglial Cells

    PubMed Central

    Kim, Da Jung; Kim, Yong Sik

    2015-01-01

    Trimethyltin (TMT) is known as a potent neurotoxicant that causes neuronal cell death and neuroinflammation, particularly in the hippocampus. Microglial activation is one of the prominent pathological features of TMT neurotoxicity. Nevertheless, it remains unclear how microglial activation occurs in TMT intoxication. In this study, we aimed to investigate the signaling pathways in TMT-induced microglial activation using BV-2 murine microglial cells. Our results revealed that TMT generates reactive oxygen species (ROS) and increases the expression of CD11b and nuclear factor-κB- (NF-κB-) mediated nitric oxide (NO) and tumor necrosis factor- (TNF-) α in BV-2 cells. We also observed that NF-κB activation was controlled by p38 and JNK phosphorylation. Moreover, TMT-induced ROS generation occurred via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in BV-2 cells. Interestingly, treatment with the NADPH oxidase inhibitor apocynin significantly suppressed p38 and JNK phosphorylation and NF-κB activation and ultimately the production of proinflammatory mediators upon TMT exposure. These findings indicate that NADPH oxidase-dependent ROS generation activated p38 and JNK mitogen-activated protein kinases (MAPKs), which then stimulated NF-κB to release proinflammatory mediators in the TMT-treated BV-2 cells. PMID:26221064

  5. Up-regulation of IL-23 expression in human dental pulp fibroblasts by IL-17 via activation of the NF-κB and MAPK pathways.

    PubMed

    Wei, L; Liu, M; Xiong, H; Peng, B

    2017-11-06

    To investigate the effects of the pro-inflammatory and Th17-polarizing mediator IL-17 on HDPFs-mediated IL-23 production and the molecular mechanism involved. Interleukin (IL)-17R expression was determined by semi-quantitative reverse transcriptase-polymerase chain reaction and Western blot in cultured human dental pulp fibroblasts (HDPFs). Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay were used to determine IL-23 mRNA and protein levels in IL-17-stimulated HDPFs, respectively. The nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signalling pathways that mediate the IL-17-stimulated production of IL-23 was investigated using Western blot and specific signalling inhibitor analyses. Statistical analyses were performed using Kruskal-Wallis tests followed by the Mann-Whitney U-test. Statistical significance was considered when the P value < 0.05. Primary HDPFs steadily expressed IL-17R mRNA and surface-bound protein. IL-17 stimulated the expression of IL-23 mRNA and protein in cultured human dental pulp fibroblasts, which was attenuated by IL-17 or IL-17R neutralizing antibodies. In accordance with the enhanced expression of IL-23, IL-17 stimulation resulted in rapid activation of p38 MAPK, extracellular signal-regulated kinase (ERK) 1/2, c-Jun-N-terminal kinase (JNK) and NF-κB in HDPFs. Inhibitors of p38 MAPK, ERK 1/2 or NF-κB significantly suppressed, whereas blocking JNK substantially augmented IL-23 production from IL-17-stimulated HDPFs. HDPFs expressed IL-17R and responded to IL-17 to produce IL-23 via the activation of the NF-κB and MAPK signalling pathways. The findings provide insights into the cellular mechanisms of the participation of IL-17 in the activation of HDPFs in inflamed pulp tissue. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  6. Ghrelin protects against depleted uranium-induced apoptosis of MC3T3-E1 cells through oxidative stress-mediated p38-mitogen-activated protein kinase pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Yuhui; Liu, Cong; Huang, Jiawei

    Depleted uranium (DU) mainly accumulates in the bone over the long term. Osteoblast cells are responsible for the formation of bone, and they are sensitive to DU damage. However, studies investigating methods of reducing DU damage in osteoblasts are rarely reported. Ghrelin is a stomach hormone that stimulates growth hormones released from the hypothalamic–pituitary axis, and it is believed to play an important physiological role in bone metabolism. This study evaluates the impact of ghrelin on DU-induced apoptosis of the osteoblast MC3T3-E1 and investigates its underlying mechanisms. The results show that ghrelin relieved the intracellular oxidative stress induced by DU,more » eliminated reactive oxygen species (ROS) and reduced lipid peroxidation by increasing intracellular GSH levels; in addition, ghrelin effectively suppressed apoptosis, enhanced mitochondrial membrane potential, and inhibited cytochrome c release and caspase-3 activation after DU exposure. Moreover, ghrelin significantly reduced the expression of DU-induced phosphorylated p38-mitogen-activated protein kinase (MAPK). A specific inhibitor (SB203580) or specific siRNA of p38-MAPK could significantly suppress DU-induced apoptosis and related signals, whereas ROS production was not affected. In addition, ghrelin receptor inhibition could reduce the anti-apoptosis effect of ghrelin on DU and reverse the effect of ghrelin on intracellular ROS and p38-MAPK after DU exposure. These results suggest that ghrelin can suppress DU-induced apoptosis of MC3T3-E1 cells, reduce DU-induced oxidative stress by interacting with its receptor, and inhibit downstream p38-MAPK activation, thereby suppressing the mitochondrial-dependent apoptosis pathway. - Highlights: • Ghrelin suppressed DU-induced apoptosis of MC3T3-E1 cells. • Ghrelin inhibited DU-induced oxidative stress and further p38-MAPK activation. • Ghrelin further suppressed mitochondrial-dependent apoptosis pathway. • The anti-oxidation effect of ghrelin was regulated through its receptor. • Ghrelin has the potential for use in drug therapies for DU poisoning.« less

  7. Differential roles of PKC isoforms (PKCs) and Ca2+ in GnRH and phorbol 12-myristate 13-acetate (PMA) stimulation of p38MAPK phosphorylation in immortalized gonadotrope cells.

    PubMed

    Mugami, Shany; Kravchook, Shani; Rahamim-Ben Navi, Liat; Seger, Rony; Naor, Zvi

    2017-01-05

    We examined the role of PKCs and Ca 2+ in GnRH-stimulated p38MAPK phosphorylation in the gonadotrope derived αT3-1 and LβT2 cell lines. GnRH induced a slow and rapid increase in p38MAPK phosphorylation in αT3-1 and LβT2 cells respectively, while PMA gave a slow response. The use of dominant negatives for PKCs and peptide inhibitors for the receptors for activated C kinase (RACKs), has revealed differential role for PKCα, PKCβII, PKCδ and PKCε in p38MAPK phosphorylation in a ligand-and cell context-dependent manner. The paradoxical findings that PKCs activated by GnRH and PMA play a differential role in p38MAPK phosphorylation may be explained by differential localization of the PKCs. Basal, GnRH- and PMA- stimulation of p38MAPK phosphorylation in αT3-1 cells is mediated by Ca 2+ influx via voltage-gated Ca 2+ channels and Ca 2+ mobilization, while in the differentiated LβT2 gonadotrope cells it is mediated only by Ca 2+ mobilization. p38MAPK resides in the cell membrane and is relocated to the nucleus by GnRH (∼5 min). Thus, we have identified the PKCs and the Ca 2+ pools involved in GnRH stimulated p38MAPK phosphorylation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Regulation of RAW 264.7 cell-mediated immunity by polysaccharides from Agaricus blazei Murill via the MAPK signal transduction pathway.

    PubMed

    Cheng, Feier; Yan, Xiaoyan; Zhang, Miaoqing; Chang, Mingchang; Yun, Shaojun; Meng, Junlong; Liu, Jingyu; Feng, Cui-Ping

    2017-04-19

    Agaricus blazei Murill (ABM) is a common anticancer folk remedy. Its active ingredients, i.e., polysaccharides, have been isolated and exhibit indirect tumor-suppressing activity via immunological activation. The effects of polysaccharides derived from A. blazei Murill (ABMP) on RAW 264.7 cells were examined by western blotting and real-time reverse transcription polymerase chain reaction (RT-PCR). The effects of 500, 1000, and 2000 μg mL -1 ABMP on the growth of RAW 264.7 cells were evaluated by measuring the OD 490 value; the optimum concentration was found to be 1000 μg mL -1 . Based on the RT-PCR results, the expression levels of JNK, ERK, and p38 decreased substantially in lipopolysaccharide (LPS)-induced RAW 264.7 cells treated with ABMP. In RAW 264.7 cells treated with LPS, the protein expression levels of JNK, ERK, and p38 were decreased, as were the levels of phosphorylated JNK, ERK, and p38. These results indicate that the MAPK signal transduction pathway is a potential mechanism by which ABMP regulates the cell-mediated immunity of RAW 264.7 cells.

  9. Aldosterone Induces Apoptosis in Rat Podocytes: Role of PI3-K/Akt and p38MAPK Signaling Pathways

    PubMed Central

    Chen, Cheng; Liang, Wei; Jia, Junya; van Goor, Harry; Singhal, Pravin C.; Ding, Guohua

    2009-01-01

    Background Podocytes play a critical role in the pathogenesis of glomerulosclerosis. Increasing evidence suggests that aldosterone (ALD) is involved in the initiation and progression of glomerular damage. It is, however, unknown whether there is a direct injurious effect of ALD on podocytes. Therefore, in the present study, we evaluated the effect of ALD on podocyte apoptosis and studied the role of phosphatidylinositol 3-kinase/Akt (PI3-K/Akt) and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways in this process. Methods Podocytes were incubated in media containing either buffer or increasing concentrations of ALD (10–9∼10–5M) for variable time periods. The cells were also treated with either wortmannin (inhibitor of PI3-K, 100 nM), SB202190 (SB20, inhibitor of p38MAPK, 10 μM) or buffer. All treatments were performed with or without ALD (10–7M) for 24 h. At the end of the incubation period, apoptosis was evaluated by cell nucleus staining and flow cytometric analyses. Activation of PI3-K/Akt and p38MAPK phosphorylation of cultured rat podocytes was evaluated by performing Akt kinase assay and Western blot, respectively. Results Apoptosis of cultured rat podocytes was induced by ALD in a dose- and time-dependent manner. ALD inhibited the activity of PI3-K/Akt and increased the activation of p38MAPK. PI3-K/Akt activity was further inhibited by the addition of wortmannin to the cells in the presence of ALD. This was accompanied by a significant increase in apoptosis. ALD-induced p38MAPK phosphorylation and apoptosis were inhibited when the cells were pretreated with SB20. Furthermore, treatment with spironolactone not only attenuated the proapoptotic effect of ALD, but also significantly reversed its effects on PI3-K/Akt and p38MAPK signaling pathways. Conclusion ALD induces apoptosis in rat podocytes through inhibition of PI3-K/Akt and stimulation of p38 MAPK signaling pathways. Spironolactone attenuates ALD-induced podocyte apoptosis, thereby positioning this compound as a potential promising target of intervention in human renal damage. PMID:19590239

  10. Down-Regulation of AQP4 Expression via p38 MAPK Signaling in Temozolomide-Induced Glioma Cells Growth Inhibition and Invasion Impairment.

    PubMed

    Chen, Yuqin; Gao, Fei; Jiang, Rong; Liu, Hui; Hou, Jiaojiao; Yi, Yaoxing; Kang, Lili; Liu, Xueyuan; Li, Yuan; Yang, Mei

    2017-12-01

    Glioma is the most common and lethal central nervous system tumors. Temozolomide (TMZ) is an effective drug for malignant glioma, however, the intracellular and molecular mechanisms behind this anti-cancer effect have yet to be fully understood. The aim of the present study was to determine whether TMZ inhibits proliferation, invasion of glioma cells in vitro and whether these effects can be mediated through modulation of aquaporin 4 (AQP4) and phosphorylation of the MAPK pathway. The viability of U87 and U251 human glioma cells was evaluated using MTT assay. The cell cycle distribution was detected with flow cytometry. Migration ability and invasion ability were tested by scratch assays and transwell assays, respectively. The levels of AQP4 and MAPK were measured using immunoblot analyses. Our results showed that TMZ inhibited proliferation, migration and invasion, and induced G2/M arrest in U87 and U251 glioma cell lines. These changes were associated with a decrease in the levels of AQP4 expression as well as activation phosphorylated level of p38. Treatment with a p38 chemical activator (anisomycin) resulted in similar effects as TMZ treatment on glioma cells. And p38 chemical inhibitor (SB203580) could block these effects in glioma treated with TMZ, suggesting a direct up-regulation of the p38 signaling pathway. Therefore, we identified that TMZ might have therapeutic potential for controlling proliferation, invasion of malignant glioma by inhibiting AQP4 expression through activation of p38 signal transduction pathway. J. Cell. Biochem. 118: 4905-4913, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Potentiation of Schaffer-Collateral CA1 Synaptic Transmission by eEF2K and p38 MAPK Mediated Mechanisms.

    PubMed

    Weng, Weiguang; Chen, Ying; Wang, Man; Zhuang, Yinghan; Behnisch, Thomas

    2016-01-01

    The elongation factor 2 kinase (eEF2K), likewise known as CaMKIII, has been demonstrated to be involved in antidepressant responses of NMDA receptor antagonists. Even so, it remains open whether direct inhibition of eEF2K without altering up-stream or other signaling pathways affects hippocampal synaptic transmission and neuronal network synchrony. Inhibition of eEF2K by the selective and potent eEF2K inhibitor A-484954 induced a fast pre-synaptically mediated enhancement of synaptic transmission and synchronization of neural network activity. The eEF2K-inhibition mediated potentiation of synaptic transmission of hippocampal CA1 neurons is most notably independent of protein synthesis and does not rely on protein kinase C, protein kinase A or mitogen-activated protein kinase (MAPK)/extracellular signal-regulated protein kinase 1/2. Moreover, the strengthening of synaptic transmission in the response to the inhibition of eEF2K was strongly attenuated by the inhibition of p38 MAPK. In addition, we show the involvement of barium-sensitive and more specific the TWIK-related potassium-1 (TREK-1) channels in the eEF2K-inhibition mediated potentiation of synaptic transmission. These findings reveal a novel pathway of eEF2K mediated regulation of hippocampal synaptic transmission. Further research is required to study whether such compounds could be beneficial for the development of mood disorder treatments with a fast-acting antidepressant response.

  12. TES inhibits colorectal cancer progression through activation of p38.

    PubMed

    Li, Huili; Huang, Kun; Gao, Lu; Wang, Lixia; Niu, Yanfeng; Liu, Hongli; Wang, Zheng; Wang, Lin; Wang, Guobin; Wang, Jiliang

    2016-07-19

    The human TESTIN (TES) gene has been identified as a candidate tumor suppressor based on its location at a common fragile site - a region where loss of heterozygosity has been detected in numerous types of tumors. To investigate its role in colorectal cancer (CRC), we examined TES protein levels in CRC tissue samples and cell lines. We observed that TES was markedly reduced in both CRC tissue and cell lines. Additionally, overexpression of TES significantly inhibited cell proliferation, migration, and invasion, while increasing cell apoptosis in colon cancer cells. By contrast, shRNA-mediated TES knockdown elicited the opposite effects. TES inhibited the progression of CRC by up-regulating pro-apoptotic proteins, down-regulating anti-apoptotic proteins, and simultaneously activating p38 mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these data indicate that TES functions as a necessary suppressor of CRC progression by activating p38-MAPK signaling pathways. This suggests that TES may have a potential application in CRC diagnosis and targeted gene therapy.

  13. TES inhibits colorectal cancer progression through activation of p38

    PubMed Central

    Gao, Lu; Wang, Lixia; Niu, Yanfeng; Liu, Hongli; Wang, Zheng; Wang, Lin; Wang, Guobin; Wang, Jiliang

    2016-01-01

    The human TESTIN (TES) gene has been identified as a candidate tumor suppressor based on its location at a common fragile site – a region where loss of heterozygosity has been detected in numerous types of tumors. To investigate its role in colorectal cancer (CRC), we examined TES protein levels in CRC tissue samples and cell lines. We observed that TES was markedly reduced in both CRC tissue and cell lines. Additionally, overexpression of TES significantly inhibited cell proliferation, migration, and invasion, while increasing cell apoptosis in colon cancer cells. By contrast, shRNA-mediated TES knockdown elicited the opposite effects. TES inhibited the progression of CRC by up-regulating pro-apoptotic proteins, down-regulating anti-apoptotic proteins, and simultaneously activating p38 mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these data indicate that TES functions as a necessary suppressor of CRC progression by activating p38-MAPK signaling pathways. This suggests that TES may have a potential application in CRC diagnosis and targeted gene therapy. PMID:27323777

  14. Gypenoside IX Suppresses p38 MAPK/Akt/NFκB Signaling Pathway Activation and Inflammatory Responses in Astrocytes Stimulated by Proinflammatory Mediators.

    PubMed

    Wang, Xiaoshuang; Yang, Liu; Yang, Li; Xing, Faping; Yang, Hua; Qin, Liyue; Lan, Yunyi; Wu, Hui; Zhang, Beibei; Shi, Hailian; Lu, Cheng; Huang, Fei; Wu, Xiaojun; Wang, Zhengtao

    2017-12-01

    Gypenoside IX (GP IX) is a pure compound isolated from Panax notoginseng. Gypenosides have been implicated to benefit the recovery of enormous neurological disorders. By suppressing the activation of astrocytes, gypenosides can improve the cognitive impairment. However, so far, little is known about whether GP IX could restrain the inflammatory responses in astrocytes or reactive astrogliosis. In present study, the anti-inflammatory effects of GP IX were investigated in reactive astrocytes induced by proinflammatory mediators both in vitro and in vivo. GP IX significantly reduced the production of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) at either protein or mRNA level in glial cell line C6 cells stimulated by lipopolysaccharide (LPS)/TNF-α combination. It also alleviated the astrogliosis and decreased the production of inflammatory mediators in brain cortex of LPS-treated mice. Further study disclosed that GP IX inhibited nuclear translocation of nuclear factor kappa B (NFκB) and reduced its transcriptional activity. Meanwhile, GP IX significantly attenuated the phosphorylation of NFκB, inhibitor of kappa B (IκB), Akt, and p38 mitogen-activated protein kinase (MAPK) under inflammatory conditions both in vitro and in vivo. These findings indicated that GP IX might suppress reactive astrogliosis by suppressing Akt/p38 MAPK/NFκB signaling pathways. And GP IX might be a promising drug candidate or prodrug for the therapy of neuroinflammatory disorders characterized with reactive astrogliosis.

  15. Cell-free extracts of Propionibacterium acnes stimulate cytokine production through activation of p38 MAPK and Toll-like receptor in SZ95 sebocytes.

    PubMed

    Huang, Yu-Chun; Yang, Chao-Hsun; Li, Ting-Ting; Zouboulis, Christos C; Hsu, Han-Chi

    2015-10-15

    Propionibacterium acnes has been considered to influence the acne lesions. The present study intended to elucidate the underlying signaling pathways of P. acnes in human sebaceous gland cells relative to the generation of proinflammatory cytokines. Cell-free extracts of P. acnes under stationary growth phase were co-incubated with human immortalized SZ95 sebocytes. Then, cell-free P. acnes extracts-induced cytokine expression was evaluated by measuring mRNA and protein levels using quantitative RT-PCR and ELISA. Changes of phosphorylated cell signaling proteins and transcription factors were measured by Western blots and Milliplex assay. The interactive molecular mechanisms of P. acnes and sebocytes were examined through use of shRNA and the specific inhibitors of signaling pathways. Cell-free extracts of P. acnes significantly stimulated secretion of interleukin (IL)-8 and IL-6 in SZ95 sebocytes. The degradation of IκB-α and increased phosphorylation of IκB-α, p38 mitogen activated protein kinase (MAPK), CREB, and STAT3 were demonstrated. Quantitative RT-PCR measurements revealed that gene expression of IL-8 and Toll-like receptor 2 (TLR2) was enhanced by cell-free extracts of P. acnes. In addition, the NF-κB inhibitor BMS345541, p38 MAPK inhibitor SB203580, or anti-TLR2 neutralizing antibody prevented cell-free P. acnes extracts-induced secretion of IL-8. Knockdown of TLR2 using shRNA exerted similar inhibitory effects on IL-8 expression. Moreover, inhibition of STAT3 activity by STA-21 enhanced P. acnes-mediated secretion of IL-8. Cell-free extracts of P. acnes are capable to activate NF-κB and p38 MAPK pathways and up-regulate secretion of IL-8 through TLR2-dependent signaling in human SZ95 sebocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Targeting p38 Mitogen-Activated Protein Kinase Signaling Restores Subventricular Zone Neural Stem Cells and Corrects Neuromotor Deficits in Atm Knockout Mouse

    PubMed Central

    Kim, Jeesun

    2012-01-01

    Ataxia-telangiectasia (A-T) is a progressive degenerative disorder that results in major neurological disability. In A-T patients, necropsy has revealed atrophy of cerebellar cortical layers along with Purkinje and granular cell loss. We have previously identified an oxidative stress-mediated increase in phospho-p38 mitogen-activated protein kinase (MAPK) and the resultant downregulation of Bmi-1 and upregulation of p21 as key components of the mechanism causing defective proliferation of neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm−/− mice. However, the in vivo aspect of alteration in SVZ tissue and the functional significance of p38MAPK activation in NSCs for neuropathogenesis of ATM deficiency remain unknown. Here we show that the NSC population was abnormally decreased in the SVZ of 3-month-old Atm−/− mice; this decrease was accompanied by p38MAPK activation. However, after a 2-month treatment with the p38MAPK inhibitor SB203580, starting at 1 month old, Atm−/− mice showed restoration of normal levels of Bmi-1 and p21 with the rescue of NSC population in the SVZ. In addition, treated Atm−/− mice exhibited more Purkinje cells in the cerebellum. Most importantly, motor coordination of Atm−/− mice was significantly improved in the treatment group. Our results show for the first time in vivo evidence of depleted NSCs in the SVZ of Atm−/− mice and also demonstrate that pharmacologic inhibition of p38MAPK signaling has the potential to treat neurological defects of A-T. This study provides a promising approach targeting the oxidative stress-dependent p38 signaling pathway not only for A-T but also for other neurodegenerative disorders. PMID:23197859

  17. p38 MAPK pathway is essential for self-renewal of mouse male germline stem cells (mGSCs).

    PubMed

    Niu, Zhiwei; Mu, Hailong; Zhu, Haijing; Wu, Jiang; Hua, Jinlian

    2017-02-01

    Male germline stem cells (mGSCs), also called spermatogonial stem cells (SSCs), constantly generate spermatozoa in male animals. A number of preliminary studies on mechanisms of mGSC self-renewal have previously been conducted, revealing that several factors are involved in this regulated process. The p38 MAPK pathway is widely conserved in multiple cell types in vivo, and plays an important role in cell proliferation, differentiation, inflammation and apoptosis. However, its role in self-renewal of mGSCs has not hitherto been determined. Here, the mouse mGSCs were cultured and their identity was verified by semi-RT-PCR, alkaline phosphatase (AP) staining and immunofluorescence staining. Then, the p38 MAPK pathway was blocked by p38 MAPK-specific inhibitor SB202190. mGSC self-renewal ability was then analysed by observation of morphology, cell number, cell growth analysis, TUNEL incorporation assay and cell cycle analysis. Results showed that mouse mGSC self-renewal ability was significantly inhibited by SB202190. This study showed for the first time that the p38 MAPK pathway plays a key role in maintaining self-renewal capacity of mouse mGSCs, which offers a new self-renewal pathway for these cells and contributes to overall knowledge of the mechanisms of mGSC self-renewal. © 2016 John Wiley & Sons Ltd.

  18. Effects of Cyclic Mechanical Stretch on the Proliferation of L6 Myoblasts and Its Mechanisms: PI3K/Akt and MAPK Signal Pathways Regulated by IGF-1 Receptor.

    PubMed

    Fu, Shaoting; Yin, Lijun; Lin, Xiaojing; Lu, Jianqiang; Wang, Xiaohui

    2018-06-02

    Myoblast proliferation is crucial to skeletal muscle hypertrophy and regeneration. Our previous study indicated that mechanical stretch altered the proliferation of C2C12 myoblasts, associated with insulin growth factor 1 (IGF-1)-mediated phosphoinositide 3-kinase (PI3K)/Akt (also known as protein kinase B) and mitogen-activated protein kinase (MAPK) pathways through IGF-1 receptor (IGF-1R). The purpose of this study was to explore the same stretches on the proliferation of L6 myoblasts and its association with IGF-1-regulated PI3K/Akt and MAPK activations. L6 myoblasts were divided into three groups: control, 15% stretch, and 20% stretch. Stretches were achieved using FlexCell Strain Unit. Cell proliferation and IGF-1 concentration were detected by CCK8 and ELISA, respectively. IGF-1R expression, and expressions and activities of PI3K, Akt, and MAPKs (including extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38) were determined by Western blot. We found that 15% stretch promoted, while 20% stretch inhibited L6 myoblast proliferation. A 15% stretch increased IGF-1R level, although had no effect on IGF-1 secretion of L6 myoblasts, and PI3K/Akt and ERK1/2 (not p38) inhibitors attenuated 15% stretch-induced pro-proliferation. Exogenous IGF-1 reversed 20% stretch-induced anti-proliferation, accompanied with increases in IGF-1R level as well as PI3K/Akt and MAPK (ERK1/2 and p38) activations. In conclusion, stretch regulated L6 myoblasts proliferation, which may be mediated by the changes in PI3K/Akt and MAPK activations regulated by IGF-1R, despite no detectable IGF-1 from stretched L6 myoblasts.

  19. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Hideki, E-mail: hkimura@u-fukui.ac.jp; Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui; Mikami, Daisuke

    Highlights: • TNF-α increased VEGF-C expression by enhancing phosphorylation of p38MAPK and HSP27. • Telmisartan decreased TNF-α-stimulated expression of VEGF-C. • Telmisartan suppressed TNF-α-induced phosphorylation of p38MAPK and HSP27. • Telmisartan activated endogenous PPAR-δ protein. • Telmisartan suppressed p38MAPK phosphorylation in a PPAR-δ-dependent manner. - Abstract: Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area bymore » producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.« less

  20. Vascular Endothelial Growth Factor Receptor-2 Couples Cyclo-Oxygenase-2 with Pro-Angiogenic Actions of Leptin on Human Endothelial Cells

    PubMed Central

    Garonna, Elena; Botham, Kathleen M.; Birdsey, Graeme M.; Randi, Anna M.; Gonzalez-Perez, Ruben R.; Wheeler-Jones, Caroline P. D.

    2011-01-01

    Background The adipocyte-derived hormone leptin influences the behaviour of a wide range of cell types and is now recognised as a pro-angiogenic and pro-inflammatory factor. In the vasculature, these effects are mediated in part through its direct leptin receptor (ObRb)-driven actions on endothelial cells (ECs) but the mechanisms responsible for these activities have not been established. In this study we sought to more fully define the molecular links between inflammatory and angiogenic responses of leptin-stimulated human ECs. Methodology/Principal Findings Immunoblotting studies showed that leptin increased cyclo-oxygenase-2 (COX-2) expression (but not COX-1) in cultured human umbilical vein ECs (HUVEC) through pathways that depend upon activation of both p38 mitogen-activated protein kinase (p38MAPK) and Akt, and stimulated rapid phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) on Tyr1175. Phosphorylation of VEGFR2, p38MAPK and Akt, and COX-2 induction in cells challenged with leptin were blocked by a specific leptin peptide receptor antagonist. Pharmacological inhibitors of COX-2, the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and p38MAPK abrogated leptin-induced EC proliferation (assessed by quantifying 5-bromo-2′-deoxyuridine incorporation, calcein fluorescence and propidium iodide staining), slowed the increased migration rate of leptin-stimulated cells (in vitro wound healing assay) and inhibited leptin-induced capillary-like tube formation by HUVEC on Matrigel. Inhibition of VEGFR2 tyrosine kinase activity reduced leptin-stimulated p38MAPK and Akt activation, COX-2 induction, and pro-angiogenic EC responses, and blockade of VEGFR2 or COX-2 activities abolished leptin-driven neo-angiogenesis in a chick chorioallantoic membrane vascularisation assay in vivo. Conclusions/Significance We conclude that a functional endothelial p38MAPK/Akt/COX-2 signalling axis is required for leptin's pro-angiogenic actions and that this is regulated upstream by ObRb-dependent activation of VEGFR2. These studies identify a new function for VEGFR2 as a mediator of leptin-stimulated COX-2 expression and angiogenesis and have implications for understanding leptin's regulation of the vasculature in both non-obese and obese individuals. PMID:21533119

  1. Early activation of nSMase2/ceramide pathway in astrocytes is involved in ischemia-associated neuronal damage via inflammation in rat hippocampi

    PubMed Central

    2013-01-01

    Background Ceramide accumulation is considered a contributing factor to neuronal dysfunction and damage. However, the underlying mechanisms that occur following ischemic insult are still unclear. Methods In the present study, we established cerebral ischemia models using four-vessel occlusion and oxygen-glucose deprivation methods. The hippocampus neural cells were subjected to immunohistochemistry and immunofluorescence staining for ceramide and neutral sphingomyelinase 2 (nSMase2) levels; immunoprecipitation and immunoblot analysis for nSMase2, receptor for activated C kinase 1 (RACK1), embryonic ectoderm development (EED), p38 mitogen-activated protein kinase (p38MAPK) and phosphorylated p38MAPK expression; SMase assay for nSMase and acid sphingomyelinase (aSMase) activity; real-time reverse transcription polymerase chain reaction for cytokine expression; and Nissl, microtubule-associated protein 2 and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling staining. Results We found considerable production of ceramide in astrocytes, but not in neurons, during early cerebral ischemia. This was accompanied by the induction of nSMase (but not aSMase) activity in the rat hippocampi. The inhibition of nSMase2 activity effectively reduced ceramide accumulation in astrocytes and alleviated neuronal damage to some extent. Meanwhile, the expression levels of proinflammatory cytokines, including tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and IL-6, were found to be upregulated, which may have played an import role in neuronal damage mediated by the nSMase2/ceramide pathway. Although enhanced binding of nSMase2 with RACK1 and EED were also observed after cerebral ischemia, nSMase2 activity was not blocked by the TNF-α receptor inhibitor through RACK1/EED signaling. p38MAPK, but not protein kinase Cζ or protein phosphatase 2B, was able to induce nSMase2 activation after ischemia. p38MAPK can be induced by A2B adenosine receptor (A2BAR) activity. Conclusions These results indicate that the inhibition of ceramide production in astrocytes by targeting A2BAR/p38MAPK/nSMase2 signaling may represent a viable approach for attenuating inflammatory responses and neuronal damage after cerebral ischemia. PMID:24007266

  2. Interactions between Sirt1 and MAPKs regulate astrocyte activation induced by brain injury in vitro and in vivo.

    PubMed

    Li, Dan; Liu, Nan; Zhao, Hai-Hua; Zhang, Xu; Kawano, Hitoshi; Liu, Lu; Zhao, Liang; Li, Hong-Peng

    2017-03-29

    Astrocyte activation is a hallmark of traumatic brain injury resulting in neurological dysfunction or death for an overproduction of inflammatory cytokines and glial scar formation. Both the silent mating type information (Sirt1) expression and mitogen-activated protein kinase (MAPK) signal pathway activation represent a promising therapeutic target for several models of neurodegenerative diseases. We investigated the potential effects of Sirt1 upregulation and MAPK pathway pharmacological inhibition on astrocyte activation in vitro and in vivo. Moreover, we attempted to confirm the underlying interactions between Sirt1 and MAPK pathways in astrocyte activation after brain injury. The present study employs an interleukin-1β (IL-1β) stimulated primary cortical astrocyte model in vitro and a nigrostriatal pathway injury model in vivo to mimic the astrocyte activation induced by traumatic brain injury. The activation of GFAP, Sirt1, and MAPK pathways were detected by Western blot; astrocyte morphological hypertrophy was assessed using immunofluorescence staining; in order to explore the neuroprotective effect of regulation Sirt1 expression and MAPK pathway activation, the motor and neurological function tests were assessed after injury. GFAP level and morphological hypertrophy of astrocytes are elevated after injury in vitro or in vivo. Furthermore, the expressions of phosphorylated extracellular regulated protein kinases (p-ERK), phosphorylated c-Jun N-terminal kinase (p-JNK), and phosphorylated p38 activation (p-p38) are upregulated, but the Sirt1 expression is downregulated. Overexpression of Sirt1 significantly increases the p-ERK expression and reduces the p-JNK and p-p38 expressions. Inhibition of ERK, JNK, or p38 activation respectively with their inhibitors significantly elevated the Sirt1 expression and attenuated the astrocyte activation. Both the overproduction of Sirt1 and inhibition of ERK, JNK, or p38 activation can alleviate the astrocyte activation, thereby improving the neurobehavioral function according to the modified neurological severity scores (mNSS) and balance latency test. Thus, Sirt1 plays a protective role against astrocyte activation, which may be associated with the regulation of the MAPK pathway activation induced by brain injury in vitro and in vivo.

  3. Activation of the Rb/E2F1 pathway by the nonproliferative p38 MAPK during Fas (APO1/CD95)-mediated neuronal apoptosis.

    PubMed

    Hou, Sheng T; Xie, Xiaoqi; Baggley, Anne; Park, David S; Chen, Gao; Walker, Teena

    2002-12-13

    Aberrant activation of the Rb/E2F1 pathway in cycling cells, in response to mitogenic or nonmitogenic stress signals, leads to apoptosis through hyperphosphorylation of Rb. To test whether in postmitotic neurons the Rb/E2F1 pathway can be activated by the nonmitogenic stress signaling, we examined the role of the p38 stress-activated protein kinase (SAPK) in regulating Rb phosphorylation in response to Fas (CD95/APO1)-mediated apoptosis of cultured cerebellar granule neurons (CGNs). Anti-Fas antibody induced a dramatic and early activation of p38. Activated p38 was correlated with the induction of hyperphosphorylation of both endogenous and exogenous Rb. The p38-selective inhibitor, SB203580, attenuated such an increase in pRb phosphorylation and significantly protected CGNs from Fas-induced apoptosis. The cyclin-dependent kinase-mediated Rb phosphorylation played a lesser role in this neuronal death paradigm, since cyclin-dependent kinase inhibitors, such as olomoucine, roscovitine, and flavopiridol, did not significantly prevent anti-Fas antibody-evoked neuronal apoptosis. Hyperphosphorylation of Rb by p38 SAPK resulted in the release of Rb-bound E2F1. Increased E2F1 modulated neuronal apoptosis, since E2F1-/- CGNs were significantly less susceptible to Fas-mediated apoptosis in comparison with the wild-type CGNs. Taken together, these studies demonstrate that neuronal Rb/E2F1 is modulated by the nonproliferative p38 SAPK in Fas-mediated neuronal apoptosis.

  4. Mechanism of uptake of ZnO nanoparticles and inflammatory responses in macrophages require PI3K mediated MAPKs signaling.

    PubMed

    Roy, Ruchi; Parashar, Vyom; Chauhan, L K S; Shanker, Rishi; Das, Mukul; Tripathi, Anurag; Dwivedi, Premendra Dhar

    2014-04-01

    The inflammatory responses after exposure to zinc oxide nanoparticles (ZNPs) are known, however, the molecular mechanisms and direct consequences of particle uptake are still unclear. Dose and time-dependent increase in the uptake of ZNPs by macrophages has been observed by flow cytometry. Macrophages treated with ZNPs showed a significantly enhanced phagocytic activity. Inhibition of different internalization receptors caused a reduction in uptake of ZNPs in macrophages. The strongest inhibition in internalization was observed by blocking clathrin, caveolae and scavenger receptor mediated endocytic pathways. However, FcR and complement receptor-mediated phagocytic pathways also contributed significantly to control. Further, exposure of primary macrophages to ZNPs (2.5 μg/ml) caused (i) significant enhancement of Ras, PI3K, (ii) enhanced phosphorylation and subsequent activation of its downstream signaling pathways via ERK1/2, p38 and JNK MAPKs (iii) overexpression of c-Jun, c-Fos and NF-κB. Our results demonstrate that ZNPs induce the generation of reactive nitrogen species and overexpression of Cox-2, iNOS, pro-inflammatory cytokines (IL-6, IFN-γ, TNF-α, IL-17 and regulatory cytokine IL-10) and MAPKs which were found to be inhibited after blocking internalization of ZNPs through caveolae receptor pathway. These results indicate that ZNPs are internalized through caveolae pathway and the inflammatory responses involve PI3K mediated MAPKs signaling cascade. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. The FGL2/fibroleukin prothrombinase is involved in alveolar macrophage activation in COPD through the MAPK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yanling; Xu, Sanpeng; Xiao, Fei

    2010-05-28

    Fibrinogen-like protein 2 (FGL2)/fibroleukin has been reported to play a vital role in the pathogenesis of some critical inflammatory diseases by possessing immunomodulatory activity through the mediation of 'immune coagulation' and the regulation of maturation and proliferation of immune cells. We observed upregulated FGL2 expression in alveolar macrophages from peripheral lungs of chronic obstructive pulmonary disease (COPD) patients and found a correlation between FGL2 expression and increased macrophage activation markers (CD11b and CD14). The role of FGL2 in the activation of macrophages was confirmed by the detection of significantly decreased macrophage activation marker (CD11b, CD11c, and CD71) expression as wellmore » as the inhibition of cell migration and inflammatory cytokine (IL-8 and MMP-9) production in an LPS-induced FGL2 knockdown human monocytic leukemia cell line (THP-1). Increased FGL2 expression co-localized with upregulated phosphorylated p38 mitogen-activated protein kinase (p38-MAPK) in the lung tissues from COPD patients. Moreover, FGL2 knockdown in THP-1 cells significantly downregulated LPS-induced phosphorylation of p38-MAPK while upregulating phosphorylation of c-Jun N-terminal kinase (JNK). Thus, we demonstrate that FGL2 plays an important role in macrophage activation in the lungs of COPD patients through MAPK pathway modulation.« less

  6. Calcium oxalate crystals induces tight junction disruption in distal renal tubular epithelial cells by activating ROS/Akt/p38 MAPK signaling pathway.

    PubMed

    Yu, Lei; Gan, Xiuguo; Liu, Xukun; An, Ruihua

    2017-11-01

    Tight junction plays important roles in regulating paracellular transports and maintaining cell polarity. Calcium oxalate monohydrate (COM) crystals, the major crystalline composition of kidney stones, have been demonstrated to be able to cause tight junction disruption to accelerate renal cell injury. However, the cellular signaling involved in COM crystal-induced tight junction disruption remains largely to be investigated. In the present study, we proved that COM crystals induced tight junction disruption by activating ROS/Akt/p38 MAPK pathway. Treating Madin-Darby canine kidney (MDCK) cells with COM crystals induced a substantial increasing of ROS generation and activation of Akt that triggered subsequential activation of ASK1 and p38 mitogen-activated protein kinase (MAPK). Western blot revealed a significantly decreased expression of ZO-1 and occludin, two important structural proteins of tight junction. Besides, redistribution and dissociation of ZO-1 were observed by COM crystals treatment. Inhibition of ROS by N-acetyl-l-cysteine (NAC) attenuated the activation of Akt, ASK1, p38 MAPK, and down-regulation of ZO-1 and occludin. The redistribution and dissociation of ZO-1 were also alleviated by NAC treatment. These results indicated that ROS were involved in the regulation of tight junction disruption induced by COM crystals. In addition, the down-regulation of ZO-1 and occludin, the phosphorylation of ASK1 and p38 MAPK were also attenuated by MK-2206, an inhibitor of Akt kinase, implying Akt was involved in the disruption of tight junction upstream of p38 MAPK. Thus, these results suggested that ROS-Akt-p38 MAPK signaling pathway was activated in COM crystal-induced disruption of tight junction in MDCK cells.

  7. Activation of multiple mitogen-activated protein kinases by recombinant calcitonin gene-related peptide receptor.

    PubMed

    Parameswaran, N; Disa, J; Spielman, W S; Brooks, D P; Nambi, P; Aiyar, N

    2000-02-18

    Calcitonin gene-related peptide is a 37-amino-acid neuropeptide and a potent vasodilator. Although calcitonin gene-related peptide has been shown to have a number of effects in a variety of systems, the mechanisms of action and the intracellular signaling pathways, especially the regulation of mitogen-activated protien kinase (MAPK) pathway, is not known. In the present study we investigated the role of calcitonin gene-related peptide in the regulation of MAPKs in human embryonic kidney (HEK) 293 cells stably transfected with a recombinant porcine calcitonin gene-related peptide-1 receptor. Calcitonin gene-related peptide caused a significant dose-dependent increase in cAMP response and the effect was inhibited by calcitonin gene-related peptide(8-37), the calcitonin gene-related peptide-receptor antagonist. Calcitonin gene-related peptide also caused a time- and concentration-dependent increase in extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (P38 MAPK) activities, with apparently no significant change in cjun-N-terminal kinase (JNK) activity. Forskolin, a direct activator of adenylyl cyclase also stimulated ERK and P38 activities in these cells suggesting the invovement of cAMP in this process. Calcitonin gene-related peptide-stimulated ERK and P38 MAPK activities were inhibited significantly by calcitonin gene-related peptide receptor antagonist, calcitonin gene-related peptide-(8-37) suggesting the involvement of calcitonin gene-related peptide-1 receptor. Preincubation of the cells with the cAMP-dependent protein kinase inhibitor, H89 [¿N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, hydrochloride¿] inhibited calcitonin gene-related peptide-mediated activation of ERK and p38 kinases. On the other hand, preincubation of the cells with wortmannin ¿[1S-(1alpha,6balpha,9abeta,11alpha, 11bbeta)]-11-(acetyloxy)-1,6b,7,8,9a,10,11, 11b-octahydro-1-(methoxymethyl)-9a,11b-dimethyl-3H-furo[4,3, 2-de]indeno[4,5-h]-2-benzopyran-3,6,9-trione¿, a PI3-kinase inhibitor, attenuated only calcitonin gene-related peptide-induced ERK and not P38 MAPK activation. Thus, these data suggest that activation of ERK by calcitonin gene-related peptide involves a H89-sensitive protein kinase A and a wortmannin-sensitive PI3-kinase while activation of p38 MAPK by calcitonin gene-related peptide involves only the H89 sensitive pathway and is independent of PI3 kinase. This also suggests that although both ERK and P38 can be activated by protein kinase A, the distal signaling components to protein kinase A in the activation of these two kinases (ERK and P38) are different.

  8. Evaluation of the anti-inflammatory actions of various functional food materials including glucosamine on synovial cells.

    PubMed

    Yamagishi, Yoshie; Someya, Akimasa; Imai, Kensuke; Nagao, Junji; Nagaoka, Isao

    2017-08-01

    The anti-inflammatory actions of glucosamine (GlcN) on arthritic disorders involve the suppression of inflammatory mediator production from synovial cells. GlcN has also been reported to inhibit the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. The present study aimed to determine the cooperative and anti‑inflammatory actions of functional food materials and evaluated the production of interleukin (IL)‑8 and phosphorylation of p38 MAPK in IL-1β-activated synovial cells, incubated with the combination of GlcN and various functional food materials containing L‑methionine (Met), undenatured type II collagen (UC‑II), chondroitin sulfate (CS), methylsulfonylmethane (MSM) and agaro-oligosaccharide (AO). The results indicated that Met, UC‑II, CS, MSM and AO slightly or moderately suppressed the IL-1β-stimulated IL‑8 production by human synovial MH7A cells. The same compounds further decreased the IL‑8 level lowered by GlcN. Similarly, they slightly suppressed the phosphorylation level of p38 MAPK and further reduced the phosphorylation level lowered by GlcN. These observations suggest a possibility that these functional food materials exert an anti‑inflammatory action (inhibition of IL‑8 production) in combination with GlcN by cooperatively suppressing the p38 MAPK signaling (phosphorylation).

  9. Carprofen induction of p75NTR-dependent apoptosis via the p38 mitogen-activated protein kinase pathway in prostate cancer cells.

    PubMed

    Khwaja, Fatima S; Quann, Emily J; Pattabiraman, Nagarajan; Wynne, Shehla; Djakiew, Daniel

    2008-11-01

    The p75 neurotrophin receptor (p75(NTR)) functions as a tumor suppressor in prostate epithelial cells, where its expression declines with progression to malignant cancer. Previously, we showed that treatment with R-flurbiprofen or ibuprofen induced p75(NTR) expression in several prostate cancer cell lines leading to p75(NTR)-mediated decreased survival. Using the 2-phenyl propionic acid moiety of these profens as a pharmacophore, we screened an in silico database of 30 million compounds and identified carprofen as having an order of magnitude greater activity for induction of p75(NTR) levels and inhibition of cell survival. Prostate (PC-3 and DU-145) and bladder (T24) cancer cells were more sensitive to carprofen induction of p75(NTR)-associated loss of survival than breast (MCF-7) and fibroblast (3T3) cells. Transfection of prostate cell lines with a dominant-negative form of p75(NTR) before carprofen treatment partially rescued cell survival, showing a cause-and-effect relationship between carprofen induction of p75(NTR) levels and inhibition of survival. Carprofen induced apoptotic nuclear fragmentation in prostate but not in MCF-7 and 3T3 cells. Furthermore, small interfering RNA knockdown of the p38 mitogen-activated protein kinase (MAPK) protein prevented induction of p75(NTR) by carprofen in both prostate cell lines. Carprofen treatment induced phosphorylation of p38 MAPK as early as within 1 min. Expression of a dominant-negative form of MK2, the kinase downstream of p38 MAPK frequently associated with signaling cascades leading to apoptosis, prevented carprofen induction of the p75(NTR) protein. Collectively, we identify carprofen as a highly potent profen capable of inducing p75(NTR)-dependent apoptosis via the p38 MAPK pathway in prostate cancer cells.

  10. Role of Spm-Cer-S1P signalling pathway in MMP-2 mediated U46619-induced proliferation of pulmonary artery smooth muscle cells: protective role of epigallocatechin-3-gallate.

    PubMed

    Chowdhury, Animesh; Sarkar, Jaganmay; Chakraborti, Tapati; Chakraborti, Sajal

    2015-10-01

    During remodelling of pulmonary artery, marked proliferation of pulmonary artery smooth muscle cells (PASMCs) occurs, which contributes to pulmonary hypertension. Thromboxane A2 (TxA2) has been shown to produce pulmonary hypertension. The present study investigates the inhibitory effect of epigallocatechin-3-gallate (EGCG) on the TxA2 mimetic, U46619-induced proliferation of PASMCs. U46619 at a concentration of 10 nM induces maximum proliferation of bovine PASMCs. Both pharmacological and genetic inhibitors of p(38)MAPK, NF-κB and MMP-2 significantly inhibit U46619-induced cell proliferation. EGCG markedly abrogate U46619-induced p(38)MAPK phosphorylation, NF-κB activation, proMMP-2 expression and activation, and also the cell proliferation. U46619 causes an increase in the activation of sphingomyelinase (SMase) and sphingosine kinase (SPHK) and also increase sphingosine 1 phosphate (S1P) level. U46619 also induces phosphorylation of ERK1/2, which phosphorylates SPHK leading to an increase in S1P level. Both pharmacological and genetic inhibitors of SMase and SPHK markedly inhibit U46619-induced cell proliferation. Additionally, pharmacological and genetic inhibitors of MMP-2 markedly abrogate U46619-induced SMase activity and S1P level. EGCG markedly inhibit U46619-induced SMase activity, ERK1/2 and SPHK phosphorylation and S1P level in the cells. Overall, Sphingomyeline-Ceramide-Sphingosine-1-phosphate (Spm-Cer-S1P) signalling axis plays an important role in MMP-2 mediated U46619-induced proliferation of PASMCs. Importantly, EGCG inhibits U46619 induced increase in MMP-2 activation by modulating p(38)MAPK-NFκB pathway and subsequently prevents the cell proliferation. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Signaling pathways activation by primary endodontic infectious contents and production of inflammatory mediators.

    PubMed

    Martinho, Frederico C; Leite, Fabio R M; Chiesa, Wanderson M M; Nascimento, Gustavo G; Feres, Magda; Gomes, Brenda P F A

    2014-04-01

    This study investigated the bacterial community involved in primary endodontic diseases, evaluated its ability to activate the macrophage Toll-like receptor 4 receptor through p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways, and determined the levels of endotoxins and interleukins (interleukin [IL]-6 and -10) produced by endodontic content-stimulated macrophages. Samples were taken from 21 root canals by using sterile/apyrogenic paper points. Raw 264.7 macrophages were stimulated with root canal contents. Checkerboard DNA-DNA hybridization was used for bacterial analysis and the limulus amebocyte lysate assay for endotoxin measurement; p38 MAPK and NF-κB activation was determined by Western blot analysis. IL-6 and IL-10 were measured using the enzyme-linked immunosorbent assay. Bacteria and endotoxins were detected in 100% of the samples (21/21). The most frequently observed species were Parvimonas micra (16/21, 76%), Fusobacterium nucleatum ssp. nucleatum (15/21, 71%), and Porphyromonas endodontalis (14/21, 66%). Correlations were found between endotoxins and IL-6 and IL-10 (P < .05); p38 phosphorylation had a peak at 60 minutes, and NF-κB was quickly activated after 10 minutes of stimulation. It was concluded that the complex bacterial community was shown to be a potent activator of TLR-4 determined by the p38 MAPK and NF-κB signaling pathways, culminating in a high antigenicity against macrophages through the levels of IL-6 and IL-10, all significantly affected by endotoxin levels. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Lysosome trafficking is necessary for EGF-driven invasion and is regulated by p38 MAPK and Na+/H+ exchangers.

    PubMed

    Dykes, Samantha S; Steffan, Joshua J; Cardelli, James A

    2017-10-04

    Tumor invasion through a basement membrane is one of the earliest steps in metastasis, and growth factors, such as Epidermal Growth Factor (EGF) and Hepatocyte Growth Factor (HGF), stimulate this process in a majority of solid tumors. Basement membrane breakdown is one of the hallmarks of invasion; therefore, tumor cells secrete a variety of proteases to aid in this process, including lysosomal proteases. Previous studies demonstrated that peripheral lysosome distribution coincides with the release of lysosomal cathepsins. Immunofluorescence microscopy, western blot, and 2D and 3D cell culture techniques were performed to evaluate the effects of EGF on lysosome trafficking and cell motility and invasion. EGF-mediated lysosome trafficking, protease secretion, and invasion is regulated by the activity of p38 mitogen activated protein kinase (MAPK) and sodium hydrogen exchangers (NHEs). Interestingly, EGF stimulates anterograde lysosome trafficking through a different mechanism than previously reported for HGF, suggesting that there are redundant signaling pathways that control lysosome positioning and trafficking in tumor cells. These data suggest that EGF stimulation induces peripheral (anterograde) lysosome trafficking, which is critical for EGF-mediated invasion and protease release, through the activation of p38 MAPK and NHEs. Taken together, this report demonstrates that anterograde lysosome trafficking is necessary for EGF-mediated tumor invasion and begins to characterize the molecular mechanisms required for EGF-stimulated lysosome trafficking.

  13. p38 mitogen-activated protein kinase (MAPK) first regulates filamentous actin at the 8-16-cell stage during preimplantation development.

    PubMed

    Paliga, Andrew J M; Natale, David R; Watson, Andrew J

    2005-08-01

    The MAPK (mitogen-activated protein kinase) superfamily of proteins consists of four separate signalling cascades: the c-Jun N-terminal kinase or stress-activated protein kinases (JNK/SAPK); the ERKs (extracellular-signal-regulated kinases); the ERK5 or big MAPK1; and the p38 MAPK group of protein kinases, all of which are highly conserved. To date, our studies have focused on defining the role of the p38 MAPK pathway during preimplantation development. p38 MAPK regulates actin filament formation through the downstream kinases MAPKAPK2/3 (MAPK-activated protein kinase 2/3) or MAPKAPK5 [PRAK (p38 regulated/activated kinase)] and subsequently through HSP25/27 (heat-shock protein 25/27). We recently reported that 2-cell-stage murine embryos treated with cytokine-suppressive anti-inflammatory drugs (CSAIDtrade mark; SB203580 and SB220025) display a reversible blockade of development at the 8-16-cell stage, indicating that p38 (MAPK) activity is required to complete murine preimplantation development. In the present study, we have investigated the stage-specific action and role of p38 MAPK in regulating filamentous actin during murine preimplantation development. Treatment of 8-cell-stage embryos with SB203580 and SB220025 (CSAIDtrade mark) resulted in a blockade of preimplantation development, loss of rhodamine phalloidin fluorescence, MK-p (phosphorylated MAPKAPK2/3), HSP-p (phosphorylated HSP25/27) and a redistribution of alpha-catenin immunofluorescence by 12 h of treatment. In contrast, treatment of 2- and 4-cell-stage embryos with CSAIDtrade mark drugs resulted in a loss of MK-p and HSP-p, but did not result in a loss of rhodamine phalloidin fluorescence. All these effects of p38 MAPK inhibition were reversed upon removal of the inhibitor, and development resumed in a delayed but normal manner to the blastocyst stage. Treatment of 8-cell embryos with PD098059 (ERK pathway inhibitor) did not affect development or fluorescence of MK-p, HSP-p or rhodamine phalloidin. Murine preimplantation development becomes dependent on p38 MAPK at the 8-16-cell stage, which corresponds to the stage when p38 MAPK first regulates filamentous actin during early development.

  14. Expression of adipokines in osteoarthritis osteophytes and their effect on osteoblasts.

    PubMed

    Junker, Susann; Frommer, Klaus W; Krumbholz, Grit; Tsiklauri, Lali; Gerstberger, Rüdiger; Rehart, Stefan; Steinmeyer, Jürgen; Rickert, Markus; Wenisch, Sabine; Schett, Georg; Müller-Ladner, Ulf; Neumann, Elena

    2017-10-01

    Osteophyte formation in osteoarthritis (OA) is mediated by increased osteoblast activity, which is -in turn- regulated by the Wnt signaling pathway. Obesity is regarded a risk factor in OA, yet little is known about the interaction between adipose tissue-derived factors, the adipokines, and bone formation, although adipokines are associated with the pathogenesis of OA. Therefore, the effect of adipokines on bone and cartilage forming cells and osteophyte development was analyzed. Human OA osteophytes were histologically characterized and adipokine expression was evaluated by immunohistochemistry. Osteoblasts and chondrocytes were isolated from OA tissue and stimulated with adiponectin, resistin, or visfatin. Cytokine and osteoblast/chondrocyte markers were quantified and activation of Wnt and p38 MAPK signaling was analyzed. Adiponectin, resistin, and visfatin were expressed in OA osteophytes by various articular cell types. Stimulation of OA osteoblasts with adiponectin and of OA chondrocytes with visfatin led to an increased release of proinflammatory mediators but not to osteoblast differentiation or activation. Additionally, visfatin increased matrix degrading factors in chondrocytes. Wnt signaling was not altered by adipokines, but adiponectin induced p38 MAPK signaling in osteoblasts. Adipokines are present in OA osteophytes, and adiponectin and visfatin increase the release of proinflammatory mediators by osteoblasts and chondrocytes. The effects of adiponectin were mediated by p38 MAPK but not Wnt signaling in osteoblasts. Therefore, the results support the idea that adipokines do not directly influence osteophyte development but the proinflammatory conditions in OA. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Enhanced Expression of WD Repeat-Containing Protein 35 via CaMKK/AMPK Activation in Bupivacaine-Treated Neuro2a Cells

    PubMed Central

    Huang, Lei; Kondo, Fumio; Gosho, Masahiko; Feng, Guo-Gang; Harato, Misako; Xia, Zhong-yuan; Ishikawa, Naohisa; Fujiwara, Yoshihiro; Okada, Shoshiro

    2014-01-01

    We previously reported that bupivacaine induces reactive oxygen species (ROS) generation, p38 mitogen-activated protein kinase (MAPK) activation and nuclear factor-kappa B activation, resulting in an increase in expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. However, the identity of signaling upstream of p38 MAPK pathways to WDR35 expression remains unclear. It has been shown that AMP-activated protein kinase (AMPK) can activate p38 MAPK through diverse mechanisms. In addition, several kinases acting upstream of AMPK have been identified including Ca2+/calmodulin-dependent protein kinase kinase (CaMKK). Recent studies reported that AMPK may be involved in bupivacaine-induced cytotoxicity in Schwann cells and in human neuroblastoma SH-SY5Y cells. The present study was undertaken to test whether CaMKK and AMPK are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Our results showed that bupivacaine induced activation of AMPK and p38 MAPK in Neuro2a cells. The AMPK inhibitors, compound C and iodotubercidin, attenuated the bupivacaine-induced activation of AMPK and p38 MAPK, resulting in an inhibition of the bupivacaine-induced increase in WDR35 expression. Treatment with the CaMKK inhibitor STO-609 also attenuated the bupivacaine-induced activation of AMPK and p38 MAPK, resulting in an inhibition of the bupivacaine-induced increase in WDR35 expression. These results suggest that bupivacaine activates AMPK and p38 MAPK via CaMKK in Neuro2a cells, and that the CaMKK/AMPK/p38 MAPK pathway is involved in regulating WDR35 expression. PMID:24859235

  16. Electromagnetic-pulse-induced activation of p38 MAPK pathway and disruption of blood-retinal barrier.

    PubMed

    Li, Hai-Juan; Guo, Liang-Mei; Yang, Long-Long; Zhou, Yong-Chun; Zhang, Yan-Jun; Guo, Juan; Xie, Xue-Jun; Guo, Guo-Zhen

    2013-06-20

    The blood-retinal barrier (BRB) is critical for maintaining retina homeostasis and low permeability. In this study, we evaluated the effects of electromagnetic pulse (EMP) exposure on the permeability of BRB, alterations of tight junction (TJ) proteins of BRB and if any, involvement of mitogen-activated protein kinase (MAPK) pathway. Male Sprague-Dawley (SD) rats and RF/6A cells which were pretreated with or without MAPKs inhibitors were sham exposed or exposed to EMP at 200kV/m for 200 pulses. The alteration of BRB permeability was examined through fluorescence microscope and quantitatively assessed using Evans blue (EB) and endogenous albumin as tracers. The expressions of TJ proteins and some signaling molecules of MAPK pathway were measured by Western blots. The observations were that EMP exposure resulted in increased BRB permeability concurrent with the decreased expressions of occludin and claudin-5, which were correlated with the increased expressions of phospho-p38, phospho-JNK and phospho-ERK and could be blocked when pretreated with p38 MAPK inhibitor. Thus, the results suggested that the alterations of occludin and claudin-5 may play an important role in the disruption of TJs, which may lead to the transient breakdown of BRB after EMP exposure with the involvement of p38 MAPK pathway through phosphorylation of signaling molecules. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Glutamate-dependent transcriptional regulation in bergmann glia cells: involvement of p38 MAP kinase.

    PubMed

    Zepeda, Rossana C; Barrera, Iliana; Castelán, Francisco; Soto-Cid, Abraham; Hernández-Kelly, Luisa C; López-Bayghen, Esther; Ortega, Arturo

    2008-07-01

    Glutamate (Glu) is the major excitatory neurotransmitter in the Central Nervous System (CNS). Ionotropic and metabotropic glutamate receptors (GluRs) are present in neurons and glial cells and are involved in gene expression regulation. Mitogen-activated proteins kinases (MAPK) are critical for all the membrane to nuclei signaling pathways described so far. In cerebellar Bergmann glial cells, glutamate-dependent transcriptional regulation is partially dependent on p42/44 MAPK activity. Another member of this kinase family, p38 MAPK is activated by non-mitogenic stimuli through its Thr180/Tyr182 phosphorylation and phosphorylates cytoplasmic and nuclear protein targets involved in translational and transcriptional events. Taking into consideration that the role of p38MAPK in glial cells is not well understood, we demonstrate here that glutamate increases p38 MAPK phosphorylation in a time and dose dependent manner in cultured chick cerebellar Bergmann glial cells (BGC). Moreover, p38 MAPK is involved in the glutamate-induced transcriptional activation in these cells. Ionotropic as well as metabotropic glutamate receptors participate in p38 MAPK activation. The present findings demonstrate the involvement of p38 MAPK in glutamate-dependent gene expression regulation in glial cells.

  18. Curcumin suppresses JNK pathway to attenuate BPA-induced insulin resistance in LO2 cells.

    PubMed

    Geng, Shanshan; Wang, Shijia; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Zhu, Jianyun; Jiang, Ye; Yang, Xue; Li, Yuan; Chen, Yue; Wang, Xiaoqian; Meng, Yu; Zhong, Caiyun

    2018-01-01

    To examine whether curcumin has protective effect on insulin resistance induced by bisphenol A (BPA) in LO2 cells and whether this effect was mediated by inhibiting the inflammatory mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) pathways. LO2 cells were stimulated with BPA in the presence or absence of curcumin for 5 days. Glucose consumption, activation of insulin signaling, MAPKs and NF-κB pathways, levels of inflammatory cytokines and MDA production were analyzed. Curcumin prevented BPA-induced reduction of glucose consumption and suppression of insulin signaling pathway, indicating curcumin alleviated BPA-triggered insulin resistance in LO2 cells. mRNA and proteins levels of TNF-α and IL-6, as well as MDA level in LO2 cells treated with BPA were decreased by curcumin. Furthermore, curcumin downregulated the activation of p38, JNK, and NF-κB pathways upon stimulation with BPA. Inhibition of JNK pathway, but not p38 nor NF-κB pathway, improved glucose consumption and insulin signaling in BPA-treated LO2 cells. Curcumin inhibits BPA-induced insulin resistance by suppressing JNK pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. The PDZ-Binding Motif of Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Is a Determinant of Viral Pathogenesis

    PubMed Central

    Jimenez-Guardeño, Jose M.; Nieto-Torres, Jose L.; DeDiego, Marta L.; Regla-Nava, Jose A.; Fernandez-Delgado, Raul; Castaño-Rodriguez, Carlos; Enjuanes, Luis

    2014-01-01

    A recombinant severe acute respiratory syndrome coronavirus (SARS-CoV) lacking the envelope (E) protein is attenuated in vivo. Here we report that E protein PDZ-binding motif (PBM), a domain involved in protein-protein interactions, is a major determinant of virulence. Elimination of SARS-CoV E protein PBM by using reverse genetics caused a reduction in the deleterious exacerbation of the immune response triggered during infection with the parental virus and virus attenuation. Cellular protein syntenin was identified to bind the E protein PBM during SARS-CoV infection by using three complementary strategies, yeast two-hybrid, reciprocal coimmunoprecipitation and confocal microscopy assays. Syntenin redistributed from the nucleus to the cell cytoplasm during infection with viruses containing the E protein PBM, activating p38 MAPK and leading to the overexpression of inflammatory cytokines. Silencing of syntenin using siRNAs led to a decrease in p38 MAPK activation in SARS-CoV infected cells, further reinforcing their functional relationship. Active p38 MAPK was reduced in lungs of mice infected with SARS-CoVs lacking E protein PBM as compared with the parental virus, leading to a decreased expression of inflammatory cytokines and to virus attenuation. Interestingly, administration of a p38 MAPK inhibitor led to an increase in mice survival after infection with SARS-CoV, confirming the relevance of this pathway in SARS-CoV virulence. Therefore, the E protein PBM is a virulence domain that activates immunopathology most likely by using syntenin as a mediator of p38 MAPK induced inflammation. PMID:25122212

  20. 15-LO/15-HETE mediated vascular adventitia fibrosis via p38 MAPK-dependent TGF-β.

    PubMed

    Zhang, Li; Li, Yumei; Chen, Minggang; Su, Xiaojie; Yi, Dan; Lu, Ping; Zhu, Daling

    2014-02-01

    15-Lipoxygenase/15-hydroxyeicosatetraenoic acid (15-LO/15-HETE) is known to modulate pulmonary vascular medial hypertrophy and intimal endothelial cells migration and angiogenesis after hypoxia. However, it is unclear whether 15-HETE affects the adventitia of the pulmonary arterial wall. We performed immunohistochemistry, adventitia fibrosis, pulmonary artery fibroblasts phenotype and extracellular matrix (ECM) deposition to determine the role of 15-HETE in hypoxia-induced pulmonary vascular adventitia remodeling. Our studies showed that O2 deprivation induced adventitia hypertrophy of pulmonary arteries with ECM accumulation in both humans with pulmonary arterial hypertension and hypoxic rats. Hypoxia induced 15-LO expression in adventitia. With the inhibitor, NDGA depressed the hypoxia induced ECM deposition and 15-LO production in hypoxic rats. Hypoxia up-regulated the expression of α-SMA, type-Ia collagen and fibronectin in cultured fibroblasts, which seemed to be due to the increased 15-LO/15-HETE. Exogenous 15-HETE mediated the ECM and phenotypic alterations of the fibroblasts as well. The 15-LO/15-HETE induced adventitia fibrosis and fibroblasts phenotypic alterations depended on signaling of the transforming growth factor-β1 (TGF-β1)/Smad2/3 pathway. P38 mitogen-activated protein kinase (p38 MAPKs) was likely to mediate 15-LO induced TGF-β1 and Smad2/3 activation after hypoxia. The results suggest that adventitia fibrosis is an important event in the hypoxia induced pulmonary arterial remodeling, which relies on 15-LO/15-HETE induced p38 MAPK-dependent TGF-β1/Smad2/3 intracellular signaling systems. © 2013 Wiley Periodicals, Inc.

  1. Extracellular acidification synergizes with PDGF to stimulate migration of mouse embryo fibroblasts through activation of p38MAPK with a PTX-sensitive manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Caiyan; Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi; Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia

    The elucidation of the functional mechanisms of extracellular acidification stimulating intracellular signaling pathway is of great importance for developing new targets of treatment for solid tumors, and inflammatory disorders characterized by extracellular acidification. In the present study, we focus on the regulation of extracellular acidification on intracellular signaling pathways in mouse embryo fibroblasts (MEFs). We found extracellular acidification was at least partly involved in stimulating p38MAPK pathway through PTX-sensitive behavior to enhance cell migration in the presence or absence of platelet-derived growth factor (PDGF). Statistical analysis showed that the actions of extracellular acidic pH and PDGF on inducing enhancement ofmore » cell migration were not an additive effect. However, we also found extracellular acidic pH did inhibit the viability and proliferation of MEFs, suggesting that extracellular acidification stimulates cell migration probably through proton-sensing mechanisms within MEFs. Using OGR1-, GPR4-, and TDAG8-gene knock out technology, and real-time qPCR, we found known proton-sensing G protein-coupled receptors (GPCRs), transient receptor potential vanilloid subtype 1 (TRPV1), and acid-sensing ion channels (ASICs) were unlikely to be involved in the regulation of acidification on cell migration. In conclusion, our present study validates that extracellular acidification stimulates chemotactic migration of MEFs through activation of p38MAPK with a PTX-sensitive mechanism either by itself, or synergistically with PDGF, which was not regulated by the known proton-sensing GPCRs, TRPV1, or ASICs. Our results suggested that others proton-sensing GPCRs or ion channels might exist in MEFs, which mediates cell migration induced by extracellular acidification in the presence or absence of PDGF. - Highlights: • Acidic pH and PDGF synergize to stimulate MEFs migration via Gi/p38MAPK pathway. • Extracellular acidification inhibits the viability and proliferation of MEFs. • MEFs sense acidic pH was not regulated by known proton-sensing GPCRs, TRPV1 or ASICs.« less

  2. TWEAK promotes migration and invasion in MEFs through a mechanism dependent on ERKs activation and Fibulin 3 down-regulation.

    PubMed

    Sequera, Celia; Vázquez-Carballo, Ana; Arechederra, María; Fernández-Veledo, Sonia; Porras, Almudena

    2018-02-01

    TWEAK regulates multiple physio-pathological processes in fibroblasts such as fibrosis. It also induces migration and invasion in tumors and it can activate p38 MAPK in various cell types. Moreover, p38α MAPK promotes migration and invasion in several cancer cells types and in mouse embryonic fibroblasts (MEFs). However, it remains unknown if TWEAK could promote migration in fibroblasts and whether p38α MAPK might play a role. Our results reveal that TWEAK activates ERKs, Akt, and p38α/β MAPKs and reduces secreted Fibulin 3 in MEFs. TWEAK also increases migration and invasion in wt and p38α deficient MEFs, which indicates that p38α MAPK is not required to mediate these effects. In contrast, ERKs inhibition significantly decreases TWEAK-induced migration and Fibulin 3 knock-down mimics TWEAK effect. These results indicate that both ERKs activation and Fibulin 3 down-regulation would contribute to mediate TWEAK pro-migratory effect. In fact, the additional regulation of ERKs and/or p38β as a consequence of Fibulin 3 decrease might be also involved in the pro-migratory effect of TWEAK in MEFs. In conclusion, our studies uncover novel mechanisms by which TWEAK would favor tissue repair by promoting fibroblasts migration. © 2017 Wiley Periodicals, Inc.

  3. TMPYP4 exerted antitumor effects in human cervical cancer cells through activation of p38 mitogen-activated protein kinase.

    PubMed

    Cheng, Ming-Jun; Cao, Yun-Gui

    2017-07-03

    The aim of the present study was to investigate the potential effects of the 5,10,15,20-tetrakis (1-methylpyridinium-4-yl) porphyrin (TMPyP4) on the proliferation and apoptosis of human cervical cancer cells and the underlying mechanisms by which TMPyP4 exerted its actions. After human cervical cancer cells were treated with different doses of TMPyP4, cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) method, the apoptosis was observed by flow cytometry (FCM), and the expression of p38 mitogen-activated protein kinase (MAPK), phosphated p38 MAPK (p-p38 MAPK), capase-3, MAPKAPK2 (MK-2) and poly ADP-ribose polymerase (PARP) was measured by Western blot analysis. The analysis revealed that TMPyP4 potently suppressed cell viability and induced the apoptosis of human cervical cancer cells in a dose-dependent manner. In addition, the up-regulation of p-p38 MAPK expression levels was detected in TMPyP4-treated human cervical cancer cells. However, followed by the block of p38 MAPK signaling pathway using the inhibitor SB203580, the effects of TMPyP4 on proliferation and apoptosis of human cervical cancer cells were significantly changed. It was indicated that TMPyP4-inhibited proliferation and -induced apoptosis in human cervical cancer cells was accompanied by activating the p38 MAPK signaling pathway. Taken together, our study demonstrates that TMPyP4 may represent a potential therapeutic method for the treatment of cervical carcinoma.

  4. KIR2DL4 differentially signals downstream functions in human NK cells through distinct structural modules.

    PubMed

    Miah, S M Shahjahan; Hughes, Tracey L; Campbell, Kerry S

    2008-03-01

    KIR2DL4 (2DL4) is a member of the killer cell Ig-like receptor (KIR) family in human NK cells. It can stimulate potent cytokine production and weak cytolytic activity in resting NK cells, but the mechanism for 2DL4-mediated signaling remains unclear. In this study we characterized the signaling pathways stimulated by 2DL4 engagement. In a human NK-like cell line, KHYG-1, cross-linking of 2DL4 activated MAPKs including JNK, ERK, and p38. Furthermore, 2DL4 cross-linking resulted in phosphorylation of IkappaB kinase beta (IKKbeta) and the phosphorylation and degradation of IkappaBalpha, which indicate activation of the classical NF-kappaB pathway. Engagement of 2DL4 was also shown to activate the transcription and translation of a variety of cytokine genes, including TNF-alpha, IFN-gamma, MIP1alpha, MIP1beta, and IL-8. Pharmacological inhibitors of JNK, MEK1/2 and p38, blocked IFN-gamma, IL-8, and MIP1alpha production, suggesting that MAPKs are regulating 2DL4-mediated cytokine production in a nonredundant manner. Activation of both p38 and ERK appear to be upstream of the stimulation of NF-kappaB. Mutation of a transmembrane arginine in 2DL4 to glycine (R/G mutant) abrogated FcepsilonRI-gamma association, as well as receptor-mediated cytolytic activity and calcium responses. Surprisingly, the R/G mutant still activated MAPKs and the NF-kappaB pathway and selectively stimulated the production of MIP1alpha, but not that of IFN-gamma or IL-8. In conclusion, we provide evidence that the activating functions of 2DL4 can be compartmentalized into two distinct structural modules: 1) through transmembrane association with FcepsilonRI-gamma; and 2) through another receptor domain independent of the transmembrane arginine.

  5. Increasing Maternal Body Mass Index Is Associated with Systemic Inflammation in the Mother and the Activation of Distinct Placental Inflammatory Pathways1

    PubMed Central

    Aye, Irving L.M.H.; Lager, Susanne; Ramirez, Vanessa I.; Gaccioli, Francesca; Dudley, Donald J.; Jansson, Thomas; Powell, Theresa L.

    2014-01-01

    ABSTRACT Obese pregnant women have increased levels of proinflammatory cytokines in maternal circulation and placental tissues. However, the pathways contributing to placental inflammation in obesity are largely unknown. We tested the hypothesis that maternal body mass index (BMI) was associated with elevated proinflammatory cytokines in maternal and fetal circulations and increased activation of placental inflammatory pathways. A total of 60 women of varying pre-/early pregnancy BMI, undergoing delivery by Cesarean section at term, were studied. Maternal and fetal (cord) plasma were collected for analysis of insulin, leptin, IL-1beta, IL-6, IL-8, monocyte chemoattractant protein (MCP) 1, and TNFalpha by multiplex ELISA. Activation of the inflammatory pathways in the placenta was investigated by measuring the phosphorylated and total protein expression of p38-mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinase (JNK)-MAPK, signal transducer-activated transcription factor (STAT) 3, caspase-1, IL-1beta, IkappaB-alpha protein, and p65 DNA-binding activity. To determine the link between activated placental inflammatory pathways and elevated maternal cytokines, cultured primary human trophoblast (PHT) cells were treated with physiological concentrations of insulin, MCP-1, and TNFalpha, and inflammatory signaling analyzed by Western blot. Maternal BMI was positively correlated with maternal insulin, leptin, MCP-1, and TNFalpha, whereas only fetal leptin was increased with BMI. Placental phosphorylation of p38-MAPK and STAT3, and the expression of IL-1beta protein, were increased with maternal BMI; phosphorylation of p38-MAPK was also correlated with birth weight. In contrast, placental NFkappaB, JNK and caspase-1 signaling, and fetal cytokine levels were unaffected by maternal BMI. In PHT cells, p38-MAPK was activated by MCP-1 and TNFalpha, whereas STAT3 phosphorylation was increased following TNFalpha treatment. Maternal BMI is associated with elevated maternal cytokines and activation of placental p38-MAPK and STAT3 inflammatory pathways, without changes in fetal systemic inflammatory profile. Activation of p38-MAPK by MCP-1 and TNFalpha, and STAT3 by TNFalpha, suggests a link between elevated proinflammatory cytokines in maternal plasma and activation of placental inflammatory pathways. We suggest that inflammatory processes associated with elevated maternal BMI may influence fetal growth by altering placental function. PMID:24759787

  6. Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways.

    PubMed

    Aye, Irving L M H; Lager, Susanne; Ramirez, Vanessa I; Gaccioli, Francesca; Dudley, Donald J; Jansson, Thomas; Powell, Theresa L

    2014-06-01

    Obese pregnant women have increased levels of proinflammatory cytokines in maternal circulation and placental tissues. However, the pathways contributing to placental inflammation in obesity are largely unknown. We tested the hypothesis that maternal body mass index (BMI) was associated with elevated proinflammatory cytokines in maternal and fetal circulations and increased activation of placental inflammatory pathways. A total of 60 women of varying pre-/early pregnancy BMI, undergoing delivery by Cesarean section at term, were studied. Maternal and fetal (cord) plasma were collected for analysis of insulin, leptin, IL-1beta, IL-6, IL-8, monocyte chemoattractant protein (MCP) 1, and TNFalpha by multiplex ELISA. Activation of the inflammatory pathways in the placenta was investigated by measuring the phosphorylated and total protein expression of p38-mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinase (JNK)-MAPK, signal transducer-activated transcription factor (STAT) 3, caspase-1, IL-1beta, IkappaB-alpha protein, and p65 DNA-binding activity. To determine the link between activated placental inflammatory pathways and elevated maternal cytokines, cultured primary human trophoblast (PHT) cells were treated with physiological concentrations of insulin, MCP-1, and TNFalpha, and inflammatory signaling analyzed by Western blot. Maternal BMI was positively correlated with maternal insulin, leptin, MCP-1, and TNFalpha, whereas only fetal leptin was increased with BMI. Placental phosphorylation of p38-MAPK and STAT3, and the expression of IL-1beta protein, were increased with maternal BMI; phosphorylation of p38-MAPK was also correlated with birth weight. In contrast, placental NFkappaB, JNK and caspase-1 signaling, and fetal cytokine levels were unaffected by maternal BMI. In PHT cells, p38-MAPK was activated by MCP-1 and TNFalpha, whereas STAT3 phosphorylation was increased following TNFalpha treatment. Maternal BMI is associated with elevated maternal cytokines and activation of placental p38-MAPK and STAT3 inflammatory pathways, without changes in fetal systemic inflammatory profile. Activation of p38-MAPK by MCP-1 and TNFalpha, and STAT3 by TNFalpha, suggests a link between elevated proinflammatory cytokines in maternal plasma and activation of placental inflammatory pathways. We suggest that inflammatory processes associated with elevated maternal BMI may influence fetal growth by altering placental function. © 2014 by the Society for the Study of Reproduction, Inc.

  7. Secondhand Smoke-Prevalent Polycyclic Aromatic Hydrocarbon Binary Mixture-Induced Specific Mitogenic and Pro-inflammatory Cell Signaling Events in Lung Epithelial Cells.

    PubMed

    Osgood, Ross S; Upham, Brad L; Bushel, Pierre R; Velmurugan, Kalpana; Xiong, Ka-Na; Bauer, Alison K

    2017-05-01

    Low molecular weight polycyclic aromatic hydrocarbons (LMW PAHs; < 206.3 g/mol) are prevalent and ubiquitous environmental contaminants, presenting a human health concern, and have not been as thoroughly studied as the high MW PAHs. LMW PAHs exert their pulmonary effects, in part, through P38-dependent and -independent mechanisms involving cell-cell communication and the production of pro-inflammatory mediators known to contribute to lung disease. Specifically, we determined the effects of two representative LMW PAHs, 1-methylanthracene (1-MeA) and fluoranthene (Flthn), individually and as a binary PAH mixture on the dysregulation of gap junctional intercellular communication (GJIC) and connexin 43 (Cx43), activation of mitogen activated protein kinases (MAPK), and induction of inflammatory mediators in a mouse non-tumorigenic alveolar type II cell line (C10). Both 1-MeA, Flthn, and the binary PAH mixture of 1-MeA and Flthn dysregulated GJIC in a dose and time-dependent manner, reduced Cx43 protein, and activated the following MAPKs: P38, ERK1/2, and JNK. Inhibition of P38 MAPK prevented PAH-induced dysregulation of GJIC, whereas inhibiting ERK and JNK did not prevent these PAHs from dysregulating GJIC indicating a P38-dependent mechanism. A toxicogenomic approach revealed significant P38-dependent and -independent pathways involved in inflammation, steroid synthesis, metabolism, and oxidative responses. Genes in these pathways were significantly altered by the binary PAH mixture when compared with 1-MeA and Flthn alone suggesting interactive effects. Exposure to the binary PAH mixture induced the production and release of cytokines and metalloproteinases from the C10 cells. Our findings with a binary mixture of PAHs suggest that combinations of LMW PAHs may elicit synergistic or additive inflammatory responses which warrant further investigation and confirmation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Secondhand Smoke-Prevalent Polycyclic Aromatic Hydrocarbon Binary Mixture-Induced Specific Mitogenic and Pro-inflammatory Cell Signaling Events in Lung Epithelial Cells

    PubMed Central

    Osgood, Ross S.; Upham, Brad L.; Bushel, Pierre R.; Velmurugan, Kalpana; Xiong, Ka-Na

    2017-01-01

    Abstract Low molecular weight polycyclic aromatic hydrocarbons (LMW PAHs; < 206.3 g/mol) are prevalent and ubiquitous environmental contaminants, presenting a human health concern, and have not been as thoroughly studied as the high MW PAHs. LMW PAHs exert their pulmonary effects, in part, through P38-dependent and -independent mechanisms involving cell-cell communication and the production of pro-inflammatory mediators known to contribute to lung disease. Specifically, we determined the effects of two representative LMW PAHs, 1-methylanthracene (1-MeA) and fluoranthene (Flthn), individually and as a binary PAH mixture on the dysregulation of gap junctional intercellular communication (GJIC) and connexin 43 (Cx43), activation of mitogen activated protein kinases (MAPK), and induction of inflammatory mediators in a mouse non-tumorigenic alveolar type II cell line (C10). Both 1-MeA, Flthn, and the binary PAH mixture of 1-MeA and Flthn dysregulated GJIC in a dose and time-dependent manner, reduced Cx43 protein, and activated the following MAPKs: P38, ERK1/2, and JNK. Inhibition of P38 MAPK prevented PAH-induced dysregulation of GJIC, whereas inhibiting ERK and JNK did not prevent these PAHs from dysregulating GJIC indicating a P38-dependent mechanism. A toxicogenomic approach revealed significant P38-dependent and -independent pathways involved in inflammation, steroid synthesis, metabolism, and oxidative responses. Genes in these pathways were significantly altered by the binary PAH mixture when compared with 1-MeA and Flthn alone suggesting interactive effects. Exposure to the binary PAH mixture induced the production and release of cytokines and metalloproteinases from the C10 cells. Our findings with a binary mixture of PAHs suggest that combinations of LMW PAHs may elicit synergistic or additive inflammatory responses which warrant further investigation and confirmation. PMID:28329830

  9. Polydatin ameliorates Staphylococcus aureus-induced mastitis in mice via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB pathway.

    PubMed

    Jiang, Kang-Feng; Zhao, Gan; Deng, Gan-Zhen; Wu, Hai-Chong; Yin, Nan-Nan; Chen, Xiu-Ying; Qiu, Chang-Wei; Peng, Xiu-Li

    2017-02-01

    Recent studies show that Polydatin (PD) extracted from the roots of Polygonum cuspidatum Sieb, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. In this study, we investigated the anti-inflammatory effects of PD on Staphylococcus aureus-induced mastitis in mice and elucidated the potential mechanisms. In mice with S aureus-induced mastitis, administration of PD (15, 30, 45 mg/kg, ip) or dexamethasone (Dex, 5 mg/kg, ip) significantly suppressed the infiltration of inflammatory cells, ameliorated the mammary structural damage, and inhibited the activity of myeloperoxidase, a biomarker of neutrophils accumulation. Furthermore, PD treatment dose-dependently decreased the levels of TNF-α, IL-1β, IL-6 and IL-8 in the mammary gland tissues. PD treatment also dose-dependently decreased the expression of TLR2, MyD88, IRAK1, IRAK4 and TRAF6 as well as the phosphorylation of TAK1, MKK3/6, p38 MAPK, IκB-α and NF-κB in the mammary gland tissues. In mouse mammary epithelial cells (mMECs) infected by S aureus in vitro, pretreatment with PD dose-dependently suppressed the upregulated pro-inflammatory cytokines and signaling proteins, and the nuclear translocation of NF-κB p65 and AP-1. A TLR2-neutralizing antibody mimicked PD in its suppression on S aureus-induced upregulation of MyD88, p-p38 and p-p65 levels in mMECs. PD (50, 100 μg/mL) affected neither the growth of S aureus in vitro, nor the viability of mMECs. In conclusion, PD does not exhibit antibacterial activity against S aureus, its therapeutic effects in mouse S aureus-induced mastitis depend on its ability to down-regulate pro-inflammatory cytokine levels via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB signaling pathway.

  10. p75 Neurotrophin Receptor Signaling Activates Sterol Regulatory Element-binding Protein-2 in Hepatocyte Cells via p38 Mitogen-activated Protein Kinase and Caspase-3.

    PubMed

    Pham, Dan Duc; Do, Hai Thi; Bruelle, Céline; Kukkonen, Jyrki P; Eriksson, Ove; Mogollón, Isabel; Korhonen, Laura T; Arumäe, Urmas; Lindholm, Dan

    2016-05-13

    Nerve growth factor (NGF) influences the survival and differentiation of a specific population of neurons during development, but its role in non-neuronal cells has been less studied. We observed here that NGF and its pro-form, pro-NGF, are elevated in fatty livers from leptin-deficient mice compared with controls, concomitant with an increase in low density lipoprotein receptors (LDLRs). Stimulation of mouse primary hepatocytes with NGF or pro-NGF increased LDLR expression through the p75 neurotrophin receptor (p75NTR). Studies using Huh7 human hepatocyte cells showed that the neurotrophins activate the sterol regulatory element-binding protein-2 (SREBP2) that regulates genes involved in lipid metabolism. The mechanisms for this were related to stimulation of p38 mitogen-activated protein kinase (p38 MAPK) and activation of caspase-3 and SREBP2 cleavage following NGF and pro-NGF stimulations. Cell fractionation experiments showed that caspase-3 activity was increased particularly in the membrane fraction that harbors SREBP2 and caspase-2. Experiments showed further that caspase-2 interacts with pro-caspase-3 and that p38 MAPK reduced this interaction and caused caspase-3 activation. Because of the increased caspase-3 activity, the cells did not undergo cell death following p75NTR stimulation, possibly due to concomitant activation of nuclear factor-κB (NF-κB) pathway by the neurotrophins. These results identify a novel signaling pathway triggered by ligand-activated p75NTR that via p38 MAPK and caspase-3 mediate the activation of SREBP2. This pathway may regulate LDLRs and lipid uptake particularly after injury or during tissue inflammation accompanied by an increased production of growth factors, including NGF and pro-NGF. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. c-Raf/MEK/ERK pathway controls protein kinase C-mediated p70S6K activation in adult cardiac muscle cells.

    PubMed

    Iijima, Yoshihiro; Laser, Martin; Shiraishi, Hirokazu; Willey, Christopher D; Sundaravadivel, Balasubramanian; Xu, Lin; McDermott, Paul J; Kuppuswamy, Dhandapani

    2002-06-21

    p70S6 kinase (S6K1) plays a pivotal role in hypertrophic cardiac growth via ribosomal biogenesis. In pressure-overloaded myocardium, we show S6K1 activation accompanied by activation of protein kinase C (PKC), c-Raf, and mitogen-activated protein kinases (MAPKs). To explore the importance of the c-Raf/MAPK kinase (MEK)/MAPK pathway, we stimulated adult feline cardiomyocytes with 12-O-tetradecanoylphorbol-13-acetate (TPA), insulin, or forskolin to activate PKC, phosphatidylinositol-3-OH kinase, or protein kinase A (PKA), respectively. These treatments resulted in S6K1 activation with Thr-389 phosphorylation as well as mammalian target of rapamycin (mTOR) and S6 protein phosphorylation. Thr-421/Ser-424 phosphorylation of S6K1 was observed predominantly in TPA-treated cells. Dominant negative c-Raf expression or a MEK1/2 inhibitor (U0126) treatment showed a profound blocking effect only on the TPA-stimulated phosphorylation of S6K1 and mTOR. Whereas p38 MAPK inhibitors exhibited only partial effect, MAPK-phosphatase-3 expression significantly blocked the TPA-stimulated S6K1 and mTOR phosphorylation. Inhibition of mTOR with rapamycin blocked the Thr-389 but not the Thr-421/Ser-424 phosphorylation of S6K1. Therefore, during PKC activation, the c-Raf/MEK/extracellular signal-regulated kinase-1/2 (ERK1/2) pathway mediates both the Thr-421/Ser-424 and the Thr-389 phosphorylation in an mTOR-independent and -dependent manner, respectively. Together, our in vivo and in vitro studies indicate that the PKC/c-Raf/MEK/ERK pathway plays a major role in the S6K1 activation in hypertrophic cardiac growth.

  12. Docking, synthesis and pharmacological activity of novel urea-derivatives designed as p38 MAPK inhibitors.

    PubMed

    de Oliveira Lopes, Raquel; Romeiro, Nelilma Correia; de Lima, Cleverton Kleiton F; Louback da Silva, Leandro; de Miranda, Ana Luisa Palhares; Nascimento, Paulo Gustavo B D; Cunha, Fernando Q; Barreiro, Eliezer J; Lima, Lídia Moreira

    2012-08-01

    p38 mitogen-activated protein kinase (p38 MAPK) is an important signal transducing enzyme involved in many cellular regulations, including signaling pathways, pain and inflammation. Several p38 MAPK inhibitors have been developed as drug candidates to treatment of autoimmune disorders, such as rheumatoid arthritis. In this paper we reported the docking, synthesis and pharmacological activity of novel urea-derivatives (4a-e) designed as p38 MAPK inhibitors. These derivatives presented good theoretical affinity to the target p38 MAPK, standing out compound 4e (LASSBio-998), which showed a better score value compared to the prototype GK-00687. This compound was able to reduce in vitro TNF-α production and was orally active in a hypernociceptive murine model sensible to p38 MAPK inhibitors. Otherwise, compound 4e presented a dose-dependent analgesic effect in a model of antigen (mBSA)-induced arthritis and anti-inflammatory profile in carrageenan induced paw edema, indicating its potential as a new antiarthritis prototype. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Role of spinal p38α and β MAPK in inflammatory hyperalgesia and spinal COX-2 expression

    PubMed Central

    Fitzsimmons, Bethany L.; Zattoni, Michela; Svensson, Camilla I.; Steinauer, Joanne; Hua, Xiao-Ying; Yaksh, Tony L.

    2010-01-01

    Pharmacological studies indicate that spinal p38 MAPK plays a role in the development of hyperalgesia. We investigated whether either the spinal isoform p38α or p38β is involved in peripheral inflammation-evoked pain state and increased expression of spinal COX-2. Using intrathecal antisense oligonucleotides, we show that hyperalgesia is prevented by downregulation of p38β but not p38α, while increases in spinal COX-2 protein expression at eight hours is mediated by both p38α and β isoforms. These data suggest that early activation of spinal p38β isoform may affect acute facilitatory processing, and both p38β and α isforms mediate temporally delayed upregulation of spinal COX-2. PMID:20134354

  14. Dermal fibroblasts from long-lived Ames dwarf mice maintain their in vivo resistance to mitochondrial generated reactive oxygen species (ROS)

    PubMed Central

    Hsieh, Ching-Chyuan; Papaconstantinou, John

    2009-01-01

    Activation of p38 MAPK by ROS involves dissociation of an inactive, reduced thioredoxin-ASK1 complex [(SH)2Trx-ASK1]. Release of ASK1 activates its kinase activity thus stimulating the p38 MAPK pathway. The level of p38 MAPK activity is, therefore, regulated by the balance of free vs. bound ASK1. Longevity of Ames dwarf mice is attributed to their resistance to oxidative stress. The levels of (SH)2 Trx-ASK1 are more abundant in young and old dwarf mice compared to their age-matched controls suggesting that the levels of this complex may play a role in their resistance to oxidative stress. In these studies we demonstrate that dermal fibroblasts from these long-lived mice exhibit (a) higher levels of (SH)2Trx-ASK1 that correlate with their resistance to ROS generated by inhibitors of electron transport chain complexes CI (rotenone), CII (3-nitropropionic acid), CIII, (antimycin A), and H2O2-mediated activation of p38 MAPK, and (b) maintain their in vivo resistance to ROS generated by 3NPA. We propose that elevated levels of (SH)2Trx-ASK1 play a role in conferring resistance to mitochondrial generated oxidative stress and decreased endogenous ROS which are characteristics of longevity determination. PMID:20157567

  15. Effect of 3G cell phone exposure with computer controlled 2-D stepper motor on non-thermal activation of the hsp27/p38MAPK stress pathway in rat brain.

    PubMed

    Kesari, Kavindra Kumar; Meena, Ramovatar; Nirala, Jayprakash; Kumar, Jitender; Verma, H N

    2014-03-01

    Cell phone radiation exposure and its biological interaction is the present concern of debate. Present study aimed to investigate the effect of 3G cell phone exposure with computer controlled 2-D stepper motor on 45-day-old male Wistar rat brain. Animals were exposed for 2 h a day for 60 days by using mobile phone with angular movement up to zero to 30°. The variation of the motor is restricted to 90° with respect to the horizontal plane, moving at a pre-determined rate of 2° per minute. Immediately after 60 days of exposure, animals were scarified and numbers of parameters (DNA double-strand break, micronuclei, caspase 3, apoptosis, DNA fragmentation, expression of stress-responsive genes) were performed. Result shows that microwave radiation emitted from 3G mobile phone significantly induced DNA strand breaks in brain. Meanwhile a significant increase in micronuclei, caspase 3 and apoptosis were also observed in exposed group (P < 0.05). Western blotting result shows that 3G mobile phone exposure causes a transient increase in phosphorylation of hsp27, hsp70, and p38 mitogen-activated protein kinase (p38MAPK), which leads to mitochondrial dysfunction-mediated cytochrome c release and subsequent activation of caspases, involved in the process of radiation-induced apoptotic cell death. Study shows that the oxidative stress is the main factor which activates a variety of cellular signal transduction pathways, among them the hsp27/p38MAPK is the pathway of principle stress response. Results conclude that 3G mobile phone radiations affect the brain function and cause several neurological disorders.

  16. p38 MAPK-Mediated Bmi-1 Down-Regulation and Defective Proliferation in ATM-Deficient Neural Stem Cells Can Be Restored by Akt Activation

    PubMed Central

    Kim, Jeesun; Hwangbo, Jeon; Wong, Paul K. Y.

    2011-01-01

    A-T (ataxia telangiectasia) is a genetic disease caused by a mutation in the Atm (A-T mutated) gene that leads to neurodegeneration. Despite an increase in the numbers of studies in this area in recent years, the mechanisms underlying neurodegeneration in human A-T are still poorly understood. Previous studies demonstrated that neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm -/- mouse brains show defective self-renewal and proliferation, which is accompanied by activation of chronic p38 mitogen-activated protein kinase (MAPK) and a lower level of the polycomb protein Bmi-1. However, the mechanism underlying Bmi-1 down-regulation and its relevance to defective proliferation in Atm-/- NSCs remained unclear. Here, we show that over-expression of Bmi-1 increases self-renewal and proliferation of Atm-/- NSCs to normal, indicating that defective proliferation in Atm-/- NSCs is a consequence of down-regulation of Bmi-1. We also demonstrate that epidermal growth factor (EGF)-induced Akt phosphorylation renders Bmi-1 resistant to the proteasomal degradation, leading to its stabilization and accumulation in the nucleus. However, inhibition of the Akt-dependent Bmi-1 stabilizing process by p38 MAPK signaling reduces the levels of Bmi-1. Treatment of the Atm-/- NSCs with a specific p38 MAPK inhibitor SB203580 extended Bmi-1 posttranscriptional turnover and H2A ubiquitination in Atm-/- NSCs. Our observations demonstrate the molecular basis underlying the impairment of self-renewal and proliferation in Atm-/- NSCs through the p38 MAPK-Akt-Bmi-1-p21 signaling pathway. PMID:21305053

  17. Aqueous fraction from Cuscuta japonica seed suppresses melanin synthesis through inhibition of the p38 mitogen-activated protein kinase signaling pathway in B16F10 cells.

    PubMed

    Jang, Ji Yeon; Kim, Ha Neui; Kim, Yu Ri; Choi, Yung Hyun; Kim, Byung Woo; Shin, Hwa Kyoung; Choi, Byung Tae

    2012-05-07

    Semen cuscutae has been used traditionally to treat pimples and alleviate freckles and melasma in Korea. The present study aimed to investigate the inhibitory effect of Cuscuta japonica Choisy seeds on alpha-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis. The aqueous fraction from Semen cuscutae (AFSC) was used to determine anti-melanogenic effects by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay and Western blot analysis for melanin synthesis-related signaling proteins in B16F10 mouse melanoma cells. AFSC markedly inhibited α-MSH-induced melanin synthesis and tyrosinase activity, and also decreased α-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase-related proteins (TRPs). Moreover, AFSC significantly decreased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK) signaling through the down-regulation of α-MSH-induced cAMP. Furthermore, we confirmed that the specific inhibitor of p38 MAPK (SB203580)-mediated suppressed melanin synthesis and tyrosinase activity was further attenuated by AFSC. AFSC also further decreased SB203580-mediated suppression of MITF and TRP expression. These results indicate that AFSC inhibits p38 MAPK phosphorylation with suppressed cAMP levels and subsequently down-regulate MITF and TRP expression, which results in a marked reduction of melanin synthesis and tyrosinase activity in α-MSH-stimulated B16F10 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Costunolide ameliorates lipoteichoic acid-induced acute lung injury via attenuating MAPK signaling pathway.

    PubMed

    Chen, Zhengxu; Zhang, Dan; Li, Man; Wang, Baolong

    2018-06-12

    Lipoteichoic acid (LTA)-induced acute lung injury (ALI) is an experimental model for mimicking Gram-positive bacteria-induced pneumonia that is a refractory disease with lack of effective medicines. Here, we reported that costunolide, a sesquiterpene lactone, ameliorated LTA-induced ALI. Costunolide treatment reduced LTA-induced neutrophil lung infiltration, cytokine and chemokine production (TNF-α, IL-6 and KC), and pulmonary edema. In response to LTA challenge, treatment with costunolide resulted less iNOS expression and produced less inflammatory cytokines in bone marrow derived macrophages (BMDMs). Pretreatment with costunolide also attenuated the LTA-induced the phosphorylation of p38 MAPK and ERK in BMDMs. Furthermore, costunolide treatment reduced the phosphorylation of TAK1 and inhibited the interaction of TAK1 with Tab1. In conclusion, we have demonstrated that costunolide protects against LTA-induced ALI via inhibiting TAK1-mediated MAPK signaling pathway, and our studies suggest that costunolide is a promising agent for treatment of Gram-positive bacteria-mediated pneumonia. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Differential regulation of CD44 expression by lipopolysaccharide (LPS) and TNF-alpha in human monocytic cells: distinct involvement of c-Jun N-terminal kinase in LPS-induced CD44 expression.

    PubMed

    Gee, Katrina; Lim, Wilfred; Ma, Wei; Nandan, Devki; Diaz-Mitoma, Francisco; Kozlowski, Maya; Kumar, Ashok

    2002-11-15

    Alterations in the regulation of CD44 expression play a critical role in modulating cell adhesion, migration, and inflammation. LPS, a bacterial cell wall component, regulates CD44 expression and may modulate CD44-mediated biological effects in monocytic cells during inflammation and immune responses. In this study, we show that in normal human monocytes, LPS and LPS-induced cytokines IL-10 and TNF-alpha enhance CD44 expression. To delineate the mechanism underlying LPS-induced CD44 expression, we investigated the role of the mitogen-activated protein kinases (MAPKs), p38, p42/44 extracellular signal-regulated kinase, and c-Jun N-terminal kinase (JNK) by using their specific inhibitors. We demonstrate the involvement, at least in part, of p38 MAPK in TNF-alpha-induced CD44 expression in both monocytes and promonocytic THP-1 cells. However, neither p38 nor p42/44 MAPKs were involved in IL-10-induced CD44 expression in monocytes. To further dissect the TNF-alpha and LPS-induced signaling pathways regulating CD44 expression independent of IL-10-mediated effects, we used IL-10 refractory THP-1 cells as a model system. Herein, we show that CD44 expression induced by the LPS-mediated pathway predominantly involved JNK activation. This conclusion was based on results derived by transfection of THP-1 cells with a dominant-negative mutant of stress-activated protein/extracellular signal-regulated kinase kinase 1, and by exposure of cells to JNK inhibitors dexamethasone and SP600125. All these treatments prevented CD44 induction in LPS-stimulated, but not in TNF-alpha-stimulated, THP-1 cells. Furthermore, we show that CD44 induction may involve JNK-dependent early growth response gene activation in LPS-stimulated monocytic cells. Taken together, these results suggest a predominant role of JNK in LPS-induced CD44 expression in monocytic cells.

  20. An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients.

    PubMed

    Heit, Bryan; Tavener, Samantha; Raharjo, Eko; Kubes, Paul

    2002-10-14

    Neutrophils must follow both endogenous and bacterial chemoattractant signals out of the vasculature and through the interstitium to arrive at a site of infection. By necessity, in the setting of multiple chemoattractants, the neutrophils must prioritize, favoring end target chemoattractants (e.g., fMLP and C5a) emanating from the site of infection over intermediary endogenous chemoattractants (e.g., IL-8 and LTB4) encountered en route to sites of infection. In this study, we propose a hierarchical model of two signaling pathways mediating the decision-making process of the neutrophils, which allows end target molecules to dominate over intermediary chemoattractants. In an under agarose assay, neutrophils predominantly migrated toward end target chemoattractants via p38 MAPK, whereas intermediary chemoattractant-induced migration was phosphoinositide 3-kinase (PI3K)/Akt dependent. When faced with competing gradients of end target and intermediary chemoattractants, Akt activation was significantly reduced within neutrophils, and the cells migrated preferentially toward end target chemoattractants even at 1/1,000th that of intermediary chemoattractants. End target molecules did not require chemotactic properties, since the p38 MAPK activator, LPS, also inhibited Akt and prevented migration to intermediary chemoattractants. p38 MAPK inhibitors not only reversed this hierarchy, such that neutrophils migrated preferentially toward intermediary chemoattractants, but also allowed neutrophils to be drawn out of a local end target chemoattractant environment and toward intermediary chemoattractants unexpectedly in an exaggerated (two- to fivefold) fashion. This was entirely related to significantly increased magnitude and duration of Akt activation. Finally, end target chemoattractant responses were predominantly Mac-1 dependent, whereas nondominant chemoattractants used primarily LFA-1. These data provide support for a two pathway signaling model wherein the end target chemoattractants activate p38 MAPK, which inhibits intermediary chemoattractant-induced PI3K/Akt pathway, establishing an intracellular signaling hierarchy.

  1. Shigella flexneri type III secreted effector OspF reveals new crosstalks of proinflammatory signaling pathways during bacterial infection.

    PubMed

    Reiterer, Veronika; Grossniklaus, Lars; Tschon, Therese; Kasper, Christoph Alexander; Sorg, Isabel; Arrieumerlou, Cécile

    2011-07-01

    Shigella flexneri type III secreted effector OspF harbors a phosphothreonine lyase activity that irreversibly dephosphorylates MAP kinases (MAPKs) p38 and ERK in infected epithelial cells and thereby, dampens innate immunity. Whereas this activity has been well characterized, the impact of OspF on other host signaling pathways that control inflammation was unknown. Here we report that OspF potentiates the activation of the MAPK JNK and the transcription factor NF-κB during S. flexneri infection. This unexpected effect of OspF was dependent on the phosphothreonine lyase activity of OspF on p38, and resulted from the disruption of a negative feedback loop regulation between p38 and TGF-beta activated kinase 1 (TAK1), mediated via the phosphorylation of TAK1-binding protein 1. Interestingly, potentiated JNK activation was not associated with enhanced c-Jun signaling as OspF also inhibits c-Jun expression at the transcriptional level. Altogether, our data reveal the impact of OspF on the activation of NF-κB, JNK and c-Jun, and demonstrate the existence of a negative feedback loop regulation between p38 and TAK1 during S. flexneri infection. Furthermore, this study validates the use of bacterial effectors as molecular tools to identify the crosstalks that connect important host signaling pathways induced upon bacterial infection. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Fisetin induces apoptosis and endoplasmic reticulum stress in human non-small cell lung cancer through inhibition of the MAPK signaling pathway.

    PubMed

    Kang, Kyoung Ah; Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Ryu, Yea Seong; Oh, Min Chang; Kwon, Taeg Kyu; Chae, Sungwook; Hyun, Jin Won

    2016-07-01

    Fisetin (3,3',4',7-tetrahydroxyflavone), a dietary flavonoid compound, is currently being investigated for its anticancer effect in various cancer models, including lung cancer. Recent studies show that fisetin induces cell growth inhibition and apoptosis in the human non-small cell lung cancer line NCI-H460. In this study, we investigated whether fisetin can induce endoplasmic reticulum (ER) stress-mediated apoptosis in NCI-H460 cells. Fisetin induced mitochondrial reactive oxygen species (ROS) and characteristic signs of ER stress: ER staining; mitochondrial Ca(2+) overload; expression of ER stress-related proteins; glucose-regulated protein (GRP)-78, phosphorylation of protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) and phosphorylation of eukaryotic initiation factor-2 α subunit; cleavage of activating transcription factor-6; phosphorylation of inositol-requiring kinase-1 and splicing of X-box transcription factor-1; induction of C/EBP homologous protein and cleaved caspase-12. siRNA-mediated knockdown of CHOP and ATF-6 attenuated fisetin-induced apoptotic cell death. In addition, fisetin induced phosphorylation of ERK, JNK, and p38 MAPK. Moreover, silencing of the MAPK signaling pathway prevented apoptotic cell death. In summary, our results indicate that, in NCI-H460 cells, fisetin induces apoptosis and ER stress that is mediated by induction of the MAPK signaling pathway.

  3. Promotion of osteointegration under diabetic conditions by tantalum coating-based surface modification on 3-dimensional printed porous titanium implants.

    PubMed

    Wang, Lin; Hu, Xiaofan; Ma, Xiangyu; Ma, Zhensheng; Zhang, Yang; Lu, Yizhao; Li, Xiang; Lei, Wei; Feng, Yafei

    2016-12-01

    Clinical evidence indicates a high failure rate for titanium implants (TiI) in diabetic patients, involving the overproduction of reactive oxygen species (ROS) at the implant/bone interface. Tantalum coating on titanium (TaTi) has exerted better tissue integration properties than TiI, but its biological performance under diabetic conditions remains elusive. To investigate whether TaTi may ameliorate diabetes-induced implant destabilization and the underlying mechanisms, primary rabbit osteoblasts cultured on 3-dimensional printed TiI and TaTi were exposed to normal serum (NS), diabetic serum (DS), DS+NAC (a potent ROS inhibitor), and DS+SB203580 (a specific p38 MAPK inhibitor). An in vivo study was performed on diabetic sheep implanted with TiI or TaTi. Diabetes induced mitochondrial-derived ROS overproduction and caused cellular dysfunction and apoptosis, together with the activation of p38 MAPK in osteoblasts on TiI surface. Importantly, TaTi significantly attenuated ROS production and p38 MAPK phosphorylation and exerted more osseointegrative cell behavior than TiI, as shown by improved osteoblast adhesion, increased cell proliferation and differentiation and decreased apoptosis. These results were confirmed in vivo by the enhanced bone healing efficacy of TaTi. Moreover, treatment with NAC or SB203580 on TiI not only inhibited the activation of p38 MAPK but also improved cell function and alleviated apoptotic injury, whereas TaTi combined with NAC or SB203580 failed to further improve osteoblast functional recovery compared with TaTi alone. These results demonstrated that the tantalum coating markedly improved diabetes-induced impaired osteogenesis of TiI, which may be attributed to the suppression of the ROS-mediated p38 MAPK pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Substance P Receptor Antagonist Suppresses Inflammatory Cytokine Expression in Human Disc Cells.

    PubMed

    Kepler, Christopher K; Markova, Dessislava Z; Koerner, John D; Mendelis, Joseph; Chen, Chiu-Ming; Vaccaro, Alexander R; Risbud, Makarand V; Albert, Todd J; Anderson, D Greg

    2015-08-15

    Laboratory study. To evaluate whether blockade of the Substance P (SP) NK1R attenuates its proinflammatory effect on human intervertebral disc cells (IVD), and to evaluate the signaling pathways associated with SP. SP and its receptors are expressed in human IVD cells, and cause upregulation of inflammatory mediators; however, the effects of blocking these receptors have not been studied in human IVD cells. Human annulus fibrosus (AF) and nucleus pulposus (NP) cells were expanded in monolayer, and then suspended in alginate beads. The alginate beads were treated with culture medium first containing a high affinity NK1R antagonist (L-760735) at different concentrations, and then with medium containing both NK1R antagonist and SP at 2 concentrations. Ribonucleic acid was isolated and transcribed into cDNA. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to evaluate expression of interleukin (IL)-1β, IL-6, and IL-8. Western blot analysis was performed to examine levels of the phosphorylated p38 mitogen-activated protein kinase (MAPK), extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB p65). The cells were pretreated with specific inhibitors of p38 (SB203580), ERK1/2 (PD98059), and p65 (SM7368) and then stimulated with SP. We detected expression of NK1R, neurokinin receptor 2 (NK2R), and neurokinin receptor 3 (NK3R) in AF and NP cells. Treatment of disc cells with the NK1R antagonist was able to suppress expression of IL-1β, IL-6, and IL-8 in a dose-dependent manner. SP stimulation increased phosphorylation of p38-MAPK and ERK1/2, but not of NFκB p65. This indicates that p38-MAPK and ERK1/2 control SP-induced cytokine expression independently from NF-kB p65. Inhibition of p38 and ERK1/2 activation reduced SP-induced IL-6 production in human disc cells. NK1R is responsible for the proinflammatory effect of SP on IVD cells and this effect can be blocked by preventing binding of SP to NK1R. This study shows for the first time that SP mediates signaling in disc cells through NK1R and that SP activates the proinflammatory p38-MAPK and ERK1/2 pathways. 4.

  5. Ampelopsin-induced reactive oxygen species enhance the apoptosis of colon cancer cells by activating endoplasmic reticulum stress-mediated AMPK/MAPK/XAF1 signaling

    PubMed Central

    Park, Ga Bin; Jeong, Jee-Yeong; Kim, Daejin

    2017-01-01

    Ampelopsin (Amp) is bioactive natural product and exerts anti-cancer effects against several cancer types. The present study investigated the anti-colon cancer activity of Amp and explored its mechanism of action. The treatment of colon cancer cells with Amp resulted in the dose- and time-dependent induction of apoptosis via the activation of endoplasmic reticulum (ER) stress, 5′ adenosine monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal protein kinase (JNK)/p38 mitogen-activated protein kinases (MAPKs). Salubrinal, an ER stress inhibitor, prevented the upregulation of ER stress-associated proteins, including phosphorylated protein kinase RNA-like ER kinase, phosphorylated eukaryotic translation initiation factor 2α, glucose-regulated protein 78, and CCAAT/enhancer-binding protein homologous protein, as well as suppressing AMPK activation and the MAPK signaling pathway. Knockdown of AMPK by RNA interference failed to block ER stress. Additionally, SP600125 (a JNK inhibitor) and SB203580 (a p38-MAPK inhibitor) effectively inhibited apoptosis and attenuated the expression of X-linked IAP-associated factor 1 (XAF1) and apoptotic Bcl-2 family proteins (BCL2 antagonist/killer 1 and BCL2-associated X protein) in Amp-treated colon cancer cells. Furthermore, reactive oxygen species (ROS)-mediated ER stress/AMPK apoptotic signaling pathway in Amp-treated colon cancer cells were markedly inhibited by treatment with N-acetyl-L-cysteine, a ROS scavenger. These results demonstrate that treatment with Amp induces the apoptotic death of colon cancer cells through ER stress-initiated AMPK/MAPK/XAF1 signaling. These results also provide experimental information for developing Amp as therapeutic drug against colon cancer. PMID:29250183

  6. P38 mitogen-activated protein kinase (p38 MAPK) overexpression in clinical staging of nasopharyngeal carcinoma

    NASA Astrophysics Data System (ADS)

    Farhat; Asnir, R. A.; Yudhistira, A.; Daulay, E. R.; Muzakkir, M. M.; Yulius, S.

    2018-03-01

    Molecular biological research on nasopharyngeal carcinoma has been widely practiced, such as VEGF, EGFR, COX-2 expression and so on. MAPK plays a role in cell growth such as proliferation, differentiation, and apoptosis, primarily contributing to gene expression, where p38 MAPK pathway mostly associate with anti-apoptosis and cause cell transformation. The aim of this study is to determine the expression of p38 MAPK in clinical stage of nasopharyngeal carcinoma so that the result can be helpful in prognosis and adjunctive therapy in nasopharyngeal carcinoma. The research design is descriptive. It was done in THT- KL Department of FK USU/RSUP Haji Adam Malik, Medan and Pathology Anatomical Department of FK USU. The study was conducted from December 2011 to May 2012. The Samples are all patients who diagnosed with nasopharyngeal carcinoma in oncology division of Otorhinolaryngology Department. p38 MAPK overexpression was found in 21 samples (70%) from 30 nasopharyngeal carcinoma samples. The elevated of p38 MAPK expression most found on T4 by eight samples (38.1%), N3 lymph node group by nine samples (42.9%), stage IV of clinical staging is as many as 15 samples (71.4%). p38 MAPK most expressed in stage IV clinical staging of patients with nasopharyngeal carcinoma.

  7. CXCR3 chemokine receptor-induced chemotaxis in human airway epithelial cells: role of p38 MAPK and PI3K signaling pathways.

    PubMed

    Shahabuddin, Syed; Ji, Rong; Wang, Ping; Brailoiu, Eugene; Dun, Na; Yang, Yi; Aksoy, Mark O; Kelsen, Steven G

    2006-07-01

    Human airway epithelial cells (HAEC) constitutively express the CXC chemokine receptor CXCR3, which regulates epithelial cell movement. In diseases such as chronic obstructive pulmonary disease and asthma, characterized by denudation of the epithelial lining, epithelial cell migration may contribute to airway repair and reconstitution. This study compared the potency and efficacy of three CXCR3 ligands, I-TAC/CXCL11, IP-10/CXCL10, and Mig/CXCL9, as inducers of chemotaxis in HAEC and examined the underlying signaling pathways involved. Studies were performed in cultured HAEC from normal subjects and the 16-HBE cell line. In normal HAEC, the efficacy of I-TAC-induced chemotaxis was 349 +/- 88% (mean +/- SE) of the medium control and approximately one-half the response to epidermal growth factor, a highly potent chemoattractant. In normal HAEC, Mig, IP-10, and I-TAC induced chemotaxis with similar potency and a rank order of efficacy of I-TAC = IP-10 > Mig. Preincubation with pertussis toxin completely blocked CXCR3-induced migration. Of interest, intracellular [Ca(2+)] did not rise in response to I-TAC, IP-10, or Mig. I-TAC induced a rapid phosphorylation (5-10 min) of two of the three MAPKs, i.e., p38 and ERK1/2. Pretreatment of HAEC with the p38 inhibitor SB 20358 or the PI3K inhibitor wortmannin dose-dependently inhibited the chemotactic response to I-TAC. In contrast, the ERK1/2 inhibitor U0126 had no effect on chemotaxis. These data indicate that in HAEC, CXCR3-mediated chemotaxis involves a G protein, which activates both the p38 MAPK and PI3K pathways in a calcium-independent fashion.

  8. Geraniol ameliorates TNBS-induced colitis: Involvement of Wnt/β-catenin, p38MAPK, NFκB, and PPARγ signaling pathways.

    PubMed

    Soubh, Ayman A; Abdallah, Dalaal M; El-Abhar, Hanan S

    2015-09-01

    Geraniol, a natural component of plant essential oils, exhibits potent chemopreventive effects in the colon; however, its possible role/mechanisms in experimental colitis have not been elucidated, which is the aim of this study. To fulfill this goal, rats were treated for 11days with geraniol and/or sulfasalazine using a TNBS-induced colitis model. Geraniol significantly hindered the colitis-clinical signs (weight loss, colon edema,ulcerative area, colon/spleen mass indices) and opposed the altered oxidative/nitrosative stress. It restored the depleted total antioxidant capacity and lessened the elevated levels of nitric oxide and lipid peroxide. TNBS induced apoptosis and inflammatory cell infiltration, whereas geraniol curtailed these effects by diminishing the levels of caspase-3, intercellular adhesion molecule-1, and myeloperoxidase. The anti-inflammatory effect was documented by inhibiting the colon contents of prostaglandin E2 and interleukin-1β. In order to delve into the anti-colitic signaling pathways, geraniol inhibited the content/expression of glycogen synthase kinase (GSK)-3β, β-catenin, p38 mitogen activated protein kinase (p38MAPK), and nuclear factor kappa B (NFκB), but upregulated that of peroxisome proliferator activated receptor γ (PPARγ). These effects were comparable to those of sulfasalazine, the standard drug, whereas its combination with geraniol mediated effects that surpassed either treatment alone. Geraniol in the current study improved experimental colitis partly via its antioxidant, anti-inflammatory, and immunosuppressive potentials, possibly by modulating the Wnt/GSK-3β/β-catenin, p38MAPK, NFκB, and PPARγ signaling pathways. The study also revealed that geraniol represents a valuable asset against colitis alone or in combination with the conventional anti-colitic therapies. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. N-n-butyl Haloperidol Iodide Protects against Hypoxia/Reoxygenation Injury in Cardiac Microvascular Endothelial Cells by Regulating the ROS/MAPK/Egr-1 Pathway

    PubMed Central

    Lu, Shishi; Zhang, Yanmei; Zhong, Shuping; Gao, Fenfei; Chen, Yicun; Li, Weiqiu; Zheng, Fuchun; Shi, Ganggang

    2017-01-01

    Endothelium dysfunction induced by reactive oxygen species (ROS) is an important initial event at the onset of myocardial ischemia/reperfusion in which the Egr-1 transcription factor often serves as a master switch for various damage pathways following reperfusion injury. We hypothesized that an intracellular ROS/MAPK/Egr-1 signaling pathway is activated in cardiac microvascular endothelial cells (CMECs) following hypoxia/reoxygenation (H/R). ROS generation, by either H/R or the ROS donor xanthine oxidase-hypoxanthine (XO/HX) activated all three MAPKs (ERK1/2, JNK, p38), and induced Egr-1 expression and Egr-1 DNA-binding activity in CMECs, whereas ROS scavengers (EDA and NAC) had the opposite effect following H/R. Inhibitors of all three MAPKs individually inhibited induction of Egr-1 expression by H/R in CMECs. Moreover, N-n-butyl haloperidol (F2), previously shown to protect cardiomyocytes subjected to I/R, dose-dependently downregulated H/R-induced ROS generation, MAPK activation, and Egr-1 expression and activity in CMECs, whereas XO/HX and MAPK activators (EGF, anisomycin) antagonized the effects of F2. Inhibition of the ROS/MAPK/Egr-1 signaling pathway, by either F2, NAC, or inhibition of MAPK, increased CMEC viability and the GSH/GSSG ratio, and decreased Egr-1 nuclear translocation. These results show that the ROS/MAPK/Egr-1 signaling pathway mediates H/R injury in CMECs, and F2 blocks this pathway to protect against H/R injury and further alleviate myocardial I/R injury. PMID:28111550

  10. Airborne fine particulate matter causes murine bronchial hyperreactivity via MAPK pathway-mediated M3 muscarinic receptor upregulation.

    PubMed

    Wang, Rong; Xiao, Xue; Shen, Zhenxing; Cao, Lei; Cao, Yongxiao

    2017-02-01

    Regarding the human health effects, airborne fine particulate matter 2.5 (PM 2.5 ) is an important environmental risk factor. However, the underlying molecular mechanisms are largely unknown. The present study examined the hypothesis that PM 2.5 causes bronchial hyperreactivity by upregulated muscarinic receptors via the mitogen-activated protein kinase (MAPK) pathway. The isolated rat bronchi segments were cultured with different concentration of PM 2.5 for different time. The contractile response of the bronchi segments were recorded by a sensitive myograph. The mRNA and protein expression levels of M 3 muscarinic receptors were studied by quantitative real-time PCR and immunohistochemistry, respectively. The muscarinic receptors agonist, carbachol induced a remarkable contractile response on fresh and DMSO cultured bronchial segments. Compared with the fresh or DMSO culture groups, 1.0 µg/mL of PM 2.5 cultured for 24 h significantly enhanced muscarinic receptor-mediated contractile responses in bronchi with a markedly increased maximal contraction. In addition, the expression levels of mRNA and protein for M 3 muscarinic receptors in bronchi of PM 2.5 group were higher than that of fresh or DMSO culture groups. SB203580 (p38 inhibitor) and U0126 (MEK1/2 inhibitor) significantly inhibited the PM 2.5 -induced enhanced contraction and increased mRNA and protein expression of muscarinic receptors. However, JNK inhibitor SP600125 had no effect on PM 2.5 -induced muscarinic receptor upregulation and bronchial hyperreactivity. In conclusion, airborne PM 2.5 upregulates muscarinic receptors, which causes subsequently bronchial hyperreactivity shown as enhanced contractility in bronchi. This process may be mediated by p38 and MEK1/2 MAPK pathways. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 371-381, 2017. © 2016 Wiley Periodicals, Inc.

  11. Two Sulfur Glycoside Compounds Isolated from Lepidium apetalum Willd Protect NRK52e Cells against Hypertonic-Induced Adhesion and Inflammation by Suppressing the MAPK Signaling Pathway and RAAS.

    PubMed

    Yuan, Peipei; Zheng, Xiaoke; Li, Meng; Ke, Yingying; Fu, Yang; Zhang, Qi; Wang, Xiaolan; Feng, Weisheng

    2017-11-12

    Lepidium apetalum Willd has been used to reduce edema and promote urination. Cis -desulfoglucotropaeolin ( cis -DG) and trans -desulfoglucotropaeolin ( trans -DG) were isolated from Lepidium apetalum Willd, and caused a significant increase in cell viability in a hypertonic model in NRK52e cells. In the hypertonic model, cis -DG and trans -DG significantly promoted the cell viability of NRK52e cells and inhibited the elevation of Na⁺ in the supernatant, inhibited the renin-angiotensin-aldosterone (RAAS) system, significantly reduced the levels of angiotensin II (Ang II) and aldosterone (ALD), and lowered aquaporin-2 (AQP2) and Na⁺-K⁺ ATP content in renal medulla. After treatment with cis -DG and trans -DG, expression of calcineurin (CAN) and Ca/calmodulin-dependent protein kinase II (CaMK II) was decreased in renal tissue and Ca 2+ influx was inhibited, thereby reducing the secretion of transforming growth factor-β (TGFβ), reversing the increase in adhesion and inflammatory factor E-selectin and monocyte chemotactic protein 1 (MCP-1) induced by high NaCl, while reducing oxidative stress status and decreasing the expression of cyclooxygenase-2 (COX2). Furthermore, inhibition of protein kinase C (PKC) expression also contributed to these improvements. The cis -DG and trans -DG reduced the expression of p-p44/42 MAPK, p-JNK and p-p38, inhibited the phosphorylation of the MAPK signaling pathway in NRN52e cells induced by high salt, decreased the overexpression of p-p38 and p-HSP27, and inhibited the overactivation of the p38-MAPK signaling pathway, suggesting that the p38-MAPK pathway may play a vital role in the hypertonic-induced adhesion and inflammatory response. From the results of this study, it can be concluded that the mechanism of cis -DG and trans -DG may mainly be through inhibiting the p38-MAPK signaling pathway, inhibiting the excessive activation of the RAAS system, and thereby reducing adhesion and inflammatory factors.

  12. CD45-mediated signaling pathway is involved in Rhizoctonia bataticola lectin (RBL)-induced proliferation and Th1/Th2 cytokine secretion in human PBMC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pujari, Radha; Eligar, Sachin M.; Kumar, Natesh

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer RBL, a potent mitogenic and complex N-glycan specific lectin binds to CD45 on PBMC. Black-Right-Pointing-Pointer RBL triggers CD45-mediated signaling involved in activation of p38MAPK and STAT-5. Black-Right-Pointing-Pointer Inhibition of CD45 PTPase signaling blocks RBL-induced ZAP70 phosphorylation. Black-Right-Pointing-Pointer RBL-CD45 mediated signaling is crucial for RBL-induced immunodulatory activities. -- Abstract: We earlier reported the mitogenic and immunostimulatory activities of Rhizoctonia bataticola lectin (RBL), purified from phytopathogenic fungus R. bataticola in human PBMC. The lectin demonstrates specificity towards glycoproteins containing complex N-glycans. Since CD45-protein tyrosine phosphatase that abundantly expresses N-glycans is important in T-cell signaling, the study aimed to investigate themore » involvement of CD45 in the immunomodulatory activities of RBL. Flowcytometry and confocal microscopy studies revealed that RBL exhibited binding to PBMC and colocalized with CD45. The binding was comparable in cells expressing different CD45 isoforms-RA, -RB and -RO. CD45 blocking antibody reduced the binding and proliferation of PBMC induced by RBL. CD45-PTPase inhibitor dephostatin inhibited RBL-induced proliferation, expression of CD25 and pZAP-70. RBL-induced secretion of Th1/Th2 cytokines were significantly inhibited in presence of dephostatin. Also, dephostatin blocked phosphorylation of p38MAPK and STAT-5 that was crucial for the biological functions of RBL. The study demonstrates the involvement of CD45-mediated signaling in RBL-induced PBMC proliferation and Th1/Th2 cytokine secretion through activation of p38MAPK and STAT-5.« less

  13. Multiple Transduction Pathways Mediate Thyrotropin Receptor Signaling in Preosteoblast-Like Cells

    PubMed Central

    Boutin, Alisa; Neumann, Susanne

    2016-01-01

    It has been shown that the TSH receptor (TSHR) couples to a number of different signaling pathways, although the Gs-cAMP pathway has been considered primary. Here, we measured the effects of TSH on bone marker mRNA and protein expression in preosteoblast-like U2OS cells stably expressing TSHRs. We determined which signaling cascades are involved in the regulation of IL-11, osteopontin (OPN), and alkaline phosphatase (ALPL). We demonstrated that TSH-induced up-regulation of IL-11 is primarily mediated via the Gs pathway as IL-11 was up-regulated by forskolin (FSK), an adenylyl cyclase activator, and inhibited by protein kinase A inhibitor H-89 and by silencing of Gαs by small interfering RNA. OPN levels were not affected by FSK, but its up-regulation was inhibited by TSHR/Gi-uncoupling by pertussis toxin. Pertussis toxin decreased p38 MAPK kinase phosphorylation, and a p38 inhibitor and small interfering RNA knockdown of p38α inhibited OPN induction by TSH. Up-regulation of ALPL expression required high doses of TSH (EC50 = 395nM), whereas low doses (EC50 = 19nM) were inhibitory. FSK-stimulated cAMP production decreased basal ALPL expression, whereas protein kinase A inhibition by H-89 and silencing of Gαs increased basal levels of ALPL. Knockdown of Gαq/11 and a protein kinase C inhibitor decreased TSH-stimulated up-regulation of ALPL, whereas a protein kinase C activator increased ALPL levels. A MAPK inhibitor and silencing of ERK1/2 inhibited TSH-stimulated ALPL expression. We conclude that TSH regulates expression of different bone markers via distinct signaling pathways. PMID:26950201

  14. Induction of Tca8113 tumor cell apoptosis by icotinib is associated with reactive oxygen species mediated p38-MAPK activation.

    PubMed

    Yang, Cailing; Yan, Jianguo; Yuan, Guoyan; Zhang, Yinghua; Lu, Derong; Ren, Mingxin; Cui, Weigang

    2014-08-01

    Icotinib, a selective EGFR tyrosine kinase inhibitor (EGFR-TKI), has been shown to exhibit anti-tumor activity against several tumor cell lines. However, the exact molecular mechanism of icotinib's anti-tumor effect remains unknown. This study aims to examine the zytotoxic effect of icotinib on Tca8113 cells and its potential molecular mechanism. Icotinib significantly resulted in dose-dependent cell death as determined by MTT assay, accompanied by increased levels of Bax and DNA fragmentation. Icotinib could also induce Reactive Oxygen Species (ROS) generation. Further studies confirmed that scavenging of reactive oxygen species by N-acetyl-L-cysteine (NAC), and pharmacological inhibition of MAPK reversed icotinib-induced apoptosis in Tca8113 cells. Our data provide evidence that icotinib induces apoptosis, possibly via ROS-mediated MAPK pathway in Tca8113 cells.

  15. Schisandrin B elicits a glutathione antioxidant response and protects against apoptosis via the redox-sensitive ERK/Nrf2 pathway in H9c2 cells.

    PubMed

    Chiu, Po Yee; Chen, Na; Leong, Po Kuan; Leung, Hoi Yan; Ko, Kam Ming

    2011-04-01

    This study investigated the signal transduction pathway involved in the cytoprotective action of (-)schisandrin B [(-)Sch B, a stereoisomer of Sch B]. Using H9c2 cells, the authors examined the effects of (-)Sch B on MAPK and Nrf2 activation, as well as the subsequent eliciting of glutathione response and protection against apoptosis. Pharmacological tools, such as cytochrome P-450 (CYP) inhibitor, antioxidant, MAPK inhibitor, and Nrf2 RNAi, were used to delineate the signaling pathway. (-)Sch B caused a time-dependent activation of MAPK in H9c2 cells, with the degree of ERK activation being much larger than that of p38 or JNK. The MAPK activation was followed by an increase in the level of nuclear Nrf2, an indirect measure of Nrf2 activation, and the eliciting of a glutathione antioxidant response. The activation of MAPK and Nrf2 seemed to involve oxidants generated from a CYP-catalyzed reaction with (-)Sch B. Both ERK inhibition by U0126 and Nrf2 suppression by Nrf2 RNAi transfection largely abolished the cytoprotection against hypoxia/reoxygenation-induced apoptosis in (-)Sch B-pretreated cells. (-)Sch B pretreatment potentiated the reoxygenation-induced ERK activation, whereas both p38 and JNK activations were suppressed. Under the condition of ERK inhibition, Sch B treatment did not protect against ischemia/reperfusion injury in an ex vivo rat heart model. The results indicate that (-)Sch B triggers a redox-sensitive ERK/Nrf2 signaling, which then elicits a cellular glutathione antioxidant response and protects against hypoxia/reoxygenation-induced apoptosis in H9c2 cells. The ERK-mediated signaling is also likely involved in the cardioprotection afforded by Sch B in vivo.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Yuri, E-mail: saito-yu@bldon.med.osaka-u.ac.jp; Shibayama, Hirohiko; Tanaka, Hirokazu

    Research highlights: {yields} Anamorsin (AM) (also called CIAPIN-1) is a cell-death-defying factor. {yields} Biological mechanisms of AM functions have not been elucidated yet. {yields} PKC{theta} , PKC{delta} and p38MAPK were more phosphorylated in AM deficient MEF cells. {yields} AM may negatively regulates PKCs and p38MAPK in MEF cells. -- Abstract: Anamorsin (AM) plays crucial roles in hematopoiesis and embryogenesis. AM deficient (AM KO) mice die during late gestation; AM KO embryos are anemic and very small compared to wild type (WT) embryos. To determine which signaling pathways AM utilizes for these functions, we used murine embryonic fibroblast (MEF) cells generatedmore » from E-14.5 AM KO or WT embryos. Proliferation of AM KO MEF cells was markedly retarded, and PKC{theta}, PKC{delta}, and p38MAPK were more highly phosphorylated in AM KO MEF cells. Expression of cyclinD1, the target molecule of p38MAPK, was down-regulated in AM KO MEF cells. p38MAPK inhibitor as well as PKC inhibitor restored expression of cyclinD1 and cell growth in AM KO MEF cells. These data suggest that PKC{theta}, PKC{delta}, and p38MAPK activation lead to cell cycle retardation in AM KO MEF cells, and that AM may negatively regulate novel PKCs and p38MAPK in MEF cells.« less

  17. Src Family Kinases and p38 Mitogen-Activated Protein Kinases Regulate Pluripotent Cell Differentiation in Culture

    PubMed Central

    Tan, Boon Siang Nicholas; Kwek, Joly; Wong, Chong Kum Edwin; Saner, Nicholas J.; Yap, Charlotte; Felquer, Fernando; Morris, Michael B.; Gardner, David K.; Rathjen, Peter D.; Rathjen, Joy

    2016-01-01

    Multiple pluripotent cell populations, which together comprise the pluripotent cell lineage, have been identified. The mechanisms that control the progression between these populations are still poorly understood. The formation of early primitive ectoderm-like (EPL) cells from mouse embryonic stem (mES) cells provides a model to understand how one such transition is regulated. EPL cells form from mES cells in response to l-proline uptake through the transporter Slc38a2. Using inhibitors of cell signaling we have shown that Src family kinases, p38 MAPK, ERK1/2 and GSK3β are required for the transition between mES and EPL cells. ERK1/2, c-Src and GSK3β are likely to be enforcing a receptive, primed state in mES cells, while Src family kinases and p38 MAPK are involved in the establishment of EPL cells. Inhibition of these pathways prevented the acquisition of most, but not all, features of EPL cells, suggesting that other pathways are required. L-proline activation of differentiation is mediated through metabolism and changes to intracellular metabolite levels, specifically reactive oxygen species. The implication of multiple signaling pathways in the process suggests a model in which the context of Src family kinase activation determines the outcomes of pluripotent cell differentiation. PMID:27723793

  18. Sulforaphane, a natural constituent of broccoli, prevents cell death and inflammation in nephropathy.

    PubMed

    Guerrero-Beltrán, Carlos Enrique; Mukhopadhyay, Partha; Horváth, Béla; Rajesh, Mohanraj; Tapia, Edilia; García-Torres, Itzhel; Pedraza-Chaverri, José; Pacher, Pál

    2012-05-01

    Cisplatin (cis-diamminedichloroplatinum II, CIS) is a potent and widely used chemotherapeutic agent to treat various malignancies, but its therapeutic use is limited because of dose-dependent nephrotoxicity. Cell death and inflammation play a key role in the development and progression of CIS-induced nephropathy. Sulforaphane (SFN), a natural constituent of cruciferous vegetables such as broccoli, Brussels sprouts, etc., has been shown to exert various protective effects in models of tissue injury and cancer. In this study, we have investigated the role of prosurvival, cell death and inflammatory signaling pathways using a rodent model of CIS-induced nephropathy, and explored the effects of SFN on these processes. Cisplatin triggered marked activation of stress signaling pathways [p53, Jun N-terminal kinase (JNK), and p38-α mitogen-activated protein kinase (MAPK)] and promoted cell death in the kidneys (increased DNA fragmentation, caspases-3/7 activity, terminal deoxynucleotidyl transferase-mediated uridine triphosphate nick-end labeling), associated with attenuation of various prosurvival signaling pathways [e.g., extracellular signal-regulated kinase (ERK) and p38-β MAPK]. Cisplatin also markedly enhanced inflammation in the kidneys [promoted NF-κB activation, increased expression of adhesion molecules ICAM and VCAM, enhanced tumor necrosis factor-α (TNF-α) levels and inflammatory cell infiltration]. These effects were significantly attenuated by pretreatment of rodents with SFN. Thus, the cisplatin-induced nephropathy is associated with activation of various cell death and proinflammatory pathways (p53, JNK, p38-α, TNF-α and NF-κB) and impairments of key prosurvival signaling mechanisms (ERK and p38-β). SFN is able to prevent the CIS-induced renal injury by modulating these pathways, providing a novel approach for preventing this devastating complication of chemotherapy. Published by Elsevier Inc.

  19. Enteroaggregative Escherichia coli flagellin-induced interleukin-8 secretion requires Toll-like receptor 5-dependent p38 MAP kinase activation

    PubMed Central

    Khan, Mohammed A S; Kang, Jian; Steiner, Theodore S

    2004-01-01

    Enteroaggregative Escherichia coli (EAEC) is an emerging enteric pathogen that causes acute and chronic diarrhoea in a number of clinical settings. EAEC diarrhoea involves bacterial aggregation, adherence to intestinal epithelial cells and elaboration of several toxigenic bacterial mediators. Flagellin (FliC-EAEC), a major bacterial surface protein of EAEC, causes interleukin (IL)-8 release from several epithelial cell lines. The host response to flagellins from E. coli and several other bacteria is mediated by Toll-like receptor 5 (TLR5), which signals through nuclear factor kappa B (NF-κB) to induce transcription of pro-inflammatory cytokines. p38 mitogen-activating protein (MAP) kinase (MAPK) is a member of a family of stress-related kinases that influences a diverse range of cellular functions including host inflammatory responses to microbial products. We studied the role of p38 MAPK in FliC-EAEC-induced IL-8 secretion from Caco-2 human intestinal epithelial cells and THP-1 human monocytic cells. We found that IL-8 secretion from both cell types is dependent on p38 MAPK, which is phospho-activated in response to FliC-EAEC. The role of TLR5 in p38 MAPK-dependent IL-8 secretion was verified in HEp-2 cells transiently transfected with a TLR5 expression construct. Activation of interleukin-1 receptor-associated kinase (IRAK) was also observed in Caco-2 and TLR5-transfected HEp-2 cells after exposure to FliC-EAEC. Finally, we demonstrated that pharmacological inhibition of p38 MAPK reduced IL-8 transcription and mRNA levels, but did not affect NF-κB activation. Collectively, our results suggest that TLR5 mediates p38 MAPK-dependent IL-8 secretion from epithelial and monocytic cells incubated with FliC-EAEC, and that this effect requires IL-8 promoter activation independent of NF-κB nuclear migration. PMID:15270737

  20. Silymarin attenuates cigarette smoke extract-induced inflammation via simultaneous inhibition of autophagy and ERK/p38 MAPK pathway in human bronchial epithelial cells.

    PubMed

    Li, Diandian; Hu, Jun; Wang, Tao; Zhang, Xue; Liu, Lian; Wang, Hao; Wu, Yanqiu; Xu, Dan; Wen, Fuqiang

    2016-11-22

    Cigarette smoke (CS) is a major risk of chronic obstructive pulmonary disease (COPD), contributing to airway inflammation. Our previous study revealed that silymarin had an anti-inflammatory effect in CS-exposed mice. In this study, we attempt to further elucidate the molecular mechanisms of silymarin in CS extract (CSE)-induced inflammation using human bronchial epithelial cells. Silymarin significantly suppressed autophagy activation and the activity of ERK/p38 mitogen-activated protein kinase (MAPK) pathway in Beas-2B cells. We also observed that inhibiting the activity of ERK with specific inhibitor U0126 led to reduced autophagic level, while knockdown of autophagic gene Beclin-1 and Atg5 decreased the levels of ERK and p38 phosphorylation. Moreover, silymarin attenuated CSE-induced upregulation of inflammatory cytokines TNF-α, IL-6 and IL-8 which could also be dampened by ERK/p38 MAPK inhibitors and siRNAs for Beclin-1 and Atg5. Finally, we validated decreased levels of both autophagy and inflammatory cytokines (TNF-α and KC) in CS-exposed mice after silymarin treatment. The present research has demonstrated that CSE-induced autophagy in bronchial epithelia, in synergism with ERK MAPK pathway, may initiate and exaggerate airway inflammation. Silymarin could attenuate inflammatory responses through intervening in the crosstalk between autophagy and ERK MAPK pathway, and might be an ideal agent treating inflammatory pulmonary diseases.

  1. Time course of the MAPK and PI3-kinase response within 24 h of skeletal muscle overload

    NASA Technical Reports Server (NTRS)

    Carlson, C. J.; Fan, Z.; Gordon, S. E.; Booth, F. W.

    2001-01-01

    Knowledge of the molecular mechanisms by which skeletal muscle hypertrophies in response to increased mechanical loading may lead to the discovery of novel treatment strategies for muscle wasting and frailty. To gain insight into potential early signaling mechanisms associated with skeletal muscle hypertrophy, the temporal pattern of mitogen-activated protein kinase (MAPK) phosphorylation and phosphatidylinositol 3-kinase (PI3-kinase) activity during the first 24 h of muscle overload was determined in the rat slow-twitch soleus and fast-twitch plantaris muscles after ablation of the gastrocnemius muscle. p38alpha MAPK phosphorylation was elevated for the entire 24-h overload period in both muscles. In contrast, Erk 2 and p54 JNK phosphorylation were transiently increased by overload, returning to the levels of sham-operated controls by 24 h. PI3-kinase activity was increased by muscle overload only at 12 h of overload and only in the plantaris muscle. In summary, sustained elevation of p38alpha MAPK phosphorylation occurred early in response to muscle overload, identifying this pathway as a potential candidate for mediating early hypertrophic signals in response to skeletal muscle overload.

  2. Serotonin type-1D receptor stimulation of A-type K(+) channel decreases membrane excitability through the protein kinase A- and B-Raf-dependent p38 MAPK pathways in mouse trigeminal ganglion neurons.

    PubMed

    Zhao, Xianyang; Zhang, Yuan; Qin, Wenjuan; Cao, Junping; Zhang, Yi; Ni, Jianqiang; Sun, Yangang; Jiang, Xinghong; Tao, Jin

    2016-08-01

    Although recent studies have implicated serotonin 5-HT1B/D receptors in the nociceptive sensitivity of primary afferent neurons, the underlying molecular and cellular mechanisms remain unclear. In this study, we identified a novel functional role of the 5-HT1D receptor subtype in regulating A-type potassium (K(+)) currents (IA) as well as membrane excitability in small trigeminal ganglion (TG) neurons. We found that the selective activation of 5-HT1D, rather than 5-HT1B, receptors reversibly increased IA, while the sustained delayed rectifier K(+) current was unaffected. The 5-HT1D-mediated IA increase was associated with a depolarizing shift in the voltage dependence of inactivation. Blocking G-protein signaling with pertussis toxin or by intracellular application of a selective antibody raised against Gαo or Gβ abolished the 5-HT1D effect on IA. Inhibition of protein kinase A (PKA), but not of phosphatidylinositol 3-kinase or protein kinase C, abolished the 5-HT1D-mediated IA increase. Analysis of phospho-p38 (p-p38) revealed that activation of 5-HT1D, but not 5-HT1B, receptors significantly activated p38, while p-ERK and p-JNK were unaffected. The p38 MAPK inhibitor SB203580, but not its inactive analogue SB202474, and inhibition of B-Raf blocked the 5-HT1D-mediated IA response. Functionally, we observed a significantly decreased action potential firing rate induced by the 5-HT1D receptors; pretreatment with 4-aminopyridine abolished this effect. Taken together, these results suggest that the activation of 5-HT1D receptors selectively enhanced IA via the Gβγ of the Go-protein, PKA, and the sequential B-Raf-dependent p38 MAPK signaling cascade. This 5-HT1D receptor effect may contribute to neuronal hypoexcitability in small TG neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Size uniformity of animal cells is actively maintained by a p38 MAPK-dependent regulation of G1-length.

    PubMed

    Liu, Shixuan; Ginzberg, Miriam Bracha; Patel, Nish; Hild, Marc; Leung, Bosco; Li, Zhengda; Chen, Yen-Chi; Chang, Nancy; Wang, Yuan; Tan, Ceryl; Diena, Shulamit; Trimble, William; Wasserman, Larry; Jenkins, Jeremy L; Kirschner, Marc W; Kafri, Ran

    2018-03-29

    Animal cells within a tissue typically display a striking regularity in their size. To date, the molecular mechanisms that control this uniformity are still unknown. We have previously shown that size uniformity in animal cells is promoted, in part, by size-dependent regulation of G1 length. To identify the molecular mechanisms underlying this process, we performed a large-scale small molecule screen and found that the p38 MAPK pathway is involved in coordinating cell size and cell cycle progression. Small cells display higher p38 activity and spend more time in G1 than larger cells. Inhibition of p38 MAPK leads to loss of the compensatory G1 length extension in small cells, resulting in faster proliferation, smaller cell size and increased size heterogeneity. We propose a model wherein the p38 pathway responds to changes in cell size and regulates G1 exit accordingly, to increase cell size uniformity. © 2017, Liu et al.

  4. Immunomodulatory Effects of Lippia sidoides Extract: Induction of IL-10 Through cAMP and p38 MAPK-Dependent Mechanisms

    PubMed Central

    Rajgopal, Arun; Rebhun, John F.; Burns, Charlie R.; Scholten, Jeffrey D.; Balles, John A.

    2015-01-01

    Abstract Lippia sidoides is an aromatic shrub that grows wild in the northeastern region of Brazil. In local traditional medicine, the aerial portions of this species are used as anti-infectives, antiseptics, spasmolytics, sedatives, hypotensives, and anti-inflammatory agents. In this research, we evaluate the potential immunological properties of Lippia extract through in vitro analysis of its ability to modulate intracellular cyclic adenosine monophosphate (cAMP) levels and interleukin-10 (IL-10) production. These results show that Lippia extract increases intracellular cAMP through the inhibition of phosphodiesterase activity. They also demonstrate that Lippia extract increases IL-10 production in THP-1 monocytes through both an increase in intracellular cAMP and the activation of p38 MAPK. These results suggest that the Lippia-mediated inhibition of phosphodiesterase activity and the subsequent increase in intracellular cAMP may explain some of the biological activities associated with L. sidoides. In addition, the anti-inflammatory activity of L. sidoides may also be due, in part, to its ability to induce IL-10 production through the inhibition of cyclic nucleotide-dependent phosphodiesterase activity and by its activation of the p38 MAPK pathway. PMID:25599252

  5. Immunomodulatory effects of Lippia sidoides extract: induction of IL-10 through cAMP and p38 MAPK-dependent mechanisms.

    PubMed

    Rajgopal, Arun; Rebhun, John F; Burns, Charlie R; Scholten, Jeffrey D; Balles, John A; Fast, David J

    2015-03-01

    Lippia sidoides is an aromatic shrub that grows wild in the northeastern region of Brazil. In local traditional medicine, the aerial portions of this species are used as anti-infectives, antiseptics, spasmolytics, sedatives, hypotensives, and anti-inflammatory agents. In this research, we evaluate the potential immunological properties of Lippia extract through in vitro analysis of its ability to modulate intracellular cyclic adenosine monophosphate (cAMP) levels and interleukin-10 (IL-10) production. These results show that Lippia extract increases intracellular cAMP through the inhibition of phosphodiesterase activity. They also demonstrate that Lippia extract increases IL-10 production in THP-1 monocytes through both an increase in intracellular cAMP and the activation of p38 MAPK. These results suggest that the Lippia-mediated inhibition of phosphodiesterase activity and the subsequent increase in intracellular cAMP may explain some of the biological activities associated with L. sidoides. In addition, the anti-inflammatory activity of L. sidoides may also be due, in part, to its ability to induce IL-10 production through the inhibition of cyclic nucleotide-dependent phosphodiesterase activity and by its activation of the p38 MAPK pathway.

  6. NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chuen-Mao, E-mail: chuenmao@mail.cgu.edu.tw; Heart Failure Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan; Lee, I-Ta

    TNF-α plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression in rat embryonic-heart derived H9c2 cells are largely not defined. We demonstrated that in H9c2 cells, TNF-α induced MMP-9 mRNA and protein expression associated with an increase in the secretion of pro-MMP-9. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of ROS (N-acetyl-L-cysteine, NAC), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)],more » MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), NF-κB (Bay11-7082), or PYK2 (PF-431396) and transfection with siRNA of TNFR1, p47{sup phox}, p42, p38, JNK1, p65, or PYK2. Moreover, TNF-α markedly induced NADPH oxidase-derived ROS generation in these cells. TNF-α-enhanced p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-κB (p65) phosphorylation and in vivo binding of p65 to the MMP-9 promoter were inhibited by U0126, SB202190, SP600125, NAC, DPI, or APO. In addition, TNF-α-mediated PYK2 phosphorylation was inhibited by NAC, DPI, or APO. PYK2 inhibition could reduce TNF-α-stimulated MAPKs and NF-κB activation. Thus, in H9c2 cells, we are the first to show that TNF-α-induced MMP-9 expression is mediated through a TNFR1/NADPH oxidase/ROS/PYK2/MAPKs/NF-κB cascade. We demonstrated that NADPH oxidase-derived ROS generation is involved in TNF-α-induced PYK2 activation in these cells. Understanding the regulation of MMP-9 expression and NADPH oxidase activation by TNF-α on H9c2 cells may provide potential therapeutic targets of chronic heart failure. - Highlights: • TNF-α induces MMP-9 secretion and expression via a TNFR1-dependent pathway. • TNF-α induces ROS/PYK2-dependent MMP-9 expression in H9c2 cells. • TNF-α induces MMP-9 expression via a NADPH oxidase/ROS-dependent NF-κB signaling. • TNF-α activates MAPK phosphorylation through NADPH oxidase/ROS generation.« less

  7. The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo.

    PubMed

    Bueno, O F; De Windt, L J; Lim, H W; Tymitz, K M; Witt, S A; Kimball, T R; Molkentin, J D

    2001-01-19

    Mitogen-activated protein kinase (MAPK) signaling pathways are important regulators of cell growth, proliferation, and stress responsiveness. A family of dual-specificity MAP kinase phosphatases (MKPs) act as critical counteracting factors that directly regulate the magnitude and duration of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) activation. Here we show that constitutive expression of MKP-1 in cultured primary cardiomyocytes using adenovirus-mediated gene transfer blocked the activation of p38, JNK1/2, and ERK1/2 and prevented agonist-induced hypertrophy. Transgenic mice expressing physiological levels of MKP-1 in the heart showed (1) no activation of p38, JNK1/2, or ERK1/2; (2) diminished developmental myocardial growth; and (3) attenuated hypertrophy in response to aortic banding and catecholamine infusion. These results provide further evidence implicating MAPK signaling factors as obligate regulators of cardiac growth and hypertrophy and demonstrate the importance of dual-specificity phosphatases as counterbalancing regulatory factors in the heart.

  8. Coordination of Satellite Cell Activation and Self-Renewal by Par-Complex-Dependent Asymmetric Activation of p38α/β MAPK

    PubMed Central

    Troy, Andrew; Cadwallader, Adam B.; Fedorov, Yuri; Tyner, Kristina; Tanaka, Kathleen Kelly; Olwin, Bradley B.

    2014-01-01

    SUMMARY In response to muscle injury, satellite cells activate the p38α/β MAPK pathway to exit quiescence, then proliferate, repair skeletal muscle, and self-renew, replenishing the quiescent satellite cell pool. Although satellite cells are capable of asymmetric division, the mechanisms regulating satellite cell self-renewal are not understood. We found that satellite cells, once activated, enter the cell cycle and a subset undergoes asymmetric division, renewing the satellite cell pool. Asymmetric localization of the Par complex activates p38α/β MAPK in only one daughter cell, inducing MyoD, which permits cell cycle entry and generates a proliferating myoblast. The absence of p38α/β MAPK signaling in the other daughter cell prevents MyoD induction, renewing the quiescent satellite cell. Thus, satellite cells employ a mechanism to generate distinct daughter cells, coupling the Par complex and p38α/β MAPK signaling to link the response to muscle injury with satellite cell self-renewal. PMID:23040480

  9. HMGB1-TLR4 Axis Plays a Regulatory Role in the Pathogenesis of Mesial Temporal Lobe Epilepsy in Immature Rat Model and Children via the p38MAPK Signaling Pathway.

    PubMed

    Yang, Weihong; Li, Jing; Shang, Yun; Zhao, Li; Wang, Mingying; Shi, Jipeng; Li, Shujun

    2017-04-01

    The HMGB1-TLR4 axis is activated in adult mouse models of acute and chronic seizure. Nevertheless, whether HMGB1 was involved in the pathogenesis of mesial temporal lobe epilepsy (MTLE) remains unknown. In this study, we first measured the dynamic expression patterns of HMGB1 and TLR4 in the hippocampi of a rat model and in children with MTLE, as well as the levels of TNF-α and IL-1β. In addition, HMGB1 was added to mimic the process of inflammatory response in neurons. Neuronal somatic size and dendritic length were measured by immunohistochemistry and digital imaging. The results showed that the expression of HMGB1 and TLR4 as well as the levels of TNF-α and IL-1β were higher in the three stages of MTLE development in the rat model and in the children with MTLE. HMGB1 increased the levels of TNF-α and IL-1β, upregulated the protein level of p-p38MAPK and promoted the growth of cell somatic size and dendritic length in neurons. Pre-treatment with p38MAPK inhibitor SB203580 decreased the levels of TNF-α and IL-1β, while downregulation of TLR4 significantly reduced HMGB1-induced p38MAPK signaling pathway activation. These data demonstrated that the HMGB1-TLR4 axis may play an important role in the pathogenesis of MTLE via the p38MAPK signaling pathway.

  10. Hydrogen saline suppresses neuronal cell apoptosis and inhibits the p38 mitogen‑activated protein kinase‑caspase‑3 signaling pathway following cerebral ischemia‑reperfusion injury.

    PubMed

    Li, Da; Ai, Yanqiu

    2017-10-01

    Cerebral ischemia‑reperfusion injury (CIRI) is a serious pathological disease that is associated with a high rate death and disability. Saturated hydrogen (H2) saline exhibits brain protective functions through anti‑inflammatory, antioxidant and antiapoptotic effects. The present study investigated the potential treatment effects of H2 on CIRI. In addition, the potential protective mechanisms of H2 in the prevention of CIRI were investigated. Adult, male Sprague‑Dawley rats (n=60) were randomly divided into the following three groups: Sham‑operated group; IR group; and IR + H2 group (0.6 mmol/l, 0.5 ml/kg/day). Hematoxylin and eosin, and TUNEL staining were performed for histopathological analysis and investigation of apoptosis, respectively. In addition, the protein expression of caspase‑3, p38 mitogen‑activated protein kinase (MAPK) and phosphorylated‑p38 MAPK in the cortex were measured by western blotting analysis. These results demonstrated that H2 significantly reduced the number of apoptotic cells, and the protein expression of p38 MAPK and caspase‑3, compared with the IR group. These effects may be associated with the p38MAPK signaling pathway.

  11. Penehyclidine hydrochloride regulates mitochondrial dynamics and apoptosis through p38MAPK and JNK signal pathways and provides cardioprotection in rats with myocardial ischemia-reperfusion injury.

    PubMed

    Feng, Min; Wang, Lirui; Chang, Siyuan; Yuan, Pu

    2018-05-31

    The potential mechanism of penehyclidine hydrochloride (PHC) against myocardial ischemia-reperfusion (I/R) injury has not been fully elucidated. The aim of the present study was to reveal whether mitochondrial dynamics, apoptosis, and MAPKs were involved in the cardioprotective effect of this drug on myocardial I/R injury. Ninety healthy adult male Wistar rats were separately pretreated with normal saline (0.9%); PHC; and signal pathway blockers of MAPKs, Drp1, and Bcl-2. Coronary artery ligation and subsequent reperfusion were performed to induce myocardial I/R injury. Echocardiography was performed. Myocardial enzymes and oxidative stress markers were detected. Myocardial cell apoptotic rates and infarct sizes were measured. Mitochondrial function was evaluated. Expression levels of MAPKs, mitochondria regulatory proteins (Drp1, Mfn1/2), and apoptosis-related proteins (Bcl-2, Bax) were determined. PHC pretreatment improved myocardial abnormalities (dysfunction, injury, infarct size, and apoptotic rate), mitochondrial abnormalities (dysfunction and fission), and excessive oxidative stress and inhibited the activities of p38MAPK and JNK signal pathways in rats with myocardial I/R injury (P < 0.05). Additionally, p38MAPK and JNK blockers (SB239063 and SP600125, respectively) had an effect on rats same as that of PHC. Although Drp1 blocker (Mdivi-1) showed a similar cardioprotective effect (P < 0.05), it did not affect the expression of MAPKs and apoptosis-related proteins (P > 0.05). In addition, Bcl-2 blocker (ABT-737) caused a high expression of Drp1 and a low expression of Mfn1/2 (P < 0.05). PHC regulated mitochondrial dynamics and apoptosis through p38MAPK and JNK signal pathways and provided cardioprotection in rats with myocardial I/R injury. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Flavonoids from sea buckthorn inhibit the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages through the MAPK and NF-κB pathways.

    PubMed

    Jiang, Fan; Guan, Haining; Liu, Danyi; Wu, Xi; Fan, Mingcheng; Han, Jianchun

    2017-03-22

    Sea buckthorn has long been used as a functional food to regulate cholesterol, relieve angina, and diminish inflammation. Flavonoids are one of the main active components in sea buckthorn. We investigated the effects of sea buckthorn flavonoid (SF) treatment on two pathways that mediate inflammation, the mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) pathways, to explore the anti-inflammatory activity of SFs in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The LPS-induced over-production of nitric oxide (NO) and prostaglandin E2 (PGE 2 ) was inhibited by SFs through a mechanism related to the modulatory effects of the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) genes. Additionally, SFs downregulated the production and mRNA expression of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β. Moreover, SFs inhibited the phosphorylation of the p38 and stress-activated protein kinase/jun amino-terminal kinase (SAPK/JNK) MAPK pathways, and they reduced the nuclear translocation of NF-κB to prevent its activation by blocking the phosphorylation and degradation of inhibitor protein of NF-κB α (IκB-α). Based on these findings, SFs may exert their inhibitory effects on inflammation by regulating the release of inflammatory mediators through the MAPK and NF-κB pathways. SFs highlight the potential benefits of using functional foods with anti-inflammatory actions to combat inflammatory diseases.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Guang-Lin; Department of Pharmacology, University of Michigan, Ann Arbor; Du, Yi-Fang

    KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the anti-inflammatory activity test focusing on its modulation of inflammatory mediators as well as intracellular MAPK and NF-κB signaling pathways. In acute ear edema model, pretreatment with KYKZL-1 (p.o.) dose-dependently inhibited the xylene-induced ear edema in mice with a higher inhibition than diclofenac. In a three-day TPA-induced inflammation, KYKZL-1 also showed significant anti-inflammatory activity with inhibition ranging between 20% and 64%. In gastric lesion test, KYKZL-1 elicited markedly fewer stomach lesions with a low index of ulcer as compared to diclofenac in rats. In further studies, KYKZL-1 wasmore » found to significantly inhibit the production of NO, PGE{sub 2}, LTB{sub 4} in LPS challenged RAW264.7, which is parallel to its attenuation of the expression of iNOS, COX-2, 5-LOX mRNAs or proteins and inhibition of phosphorylation of p38 and ERK MAPKs and activation of NF-κB. Taken together, our data indicate that KYKZL-1 comprises dual inhibition of COX and 5-LOX and exerts an obvious anti-inflammatory activity with an enhanced gastric safety profile via simultaneous inhibition of phosphorylation of p38 and ERK MAPKs and activation of NF-κB. - Highlights: • KYKZL-1 is designed to exhibit COX/5-LOX dual inhibition. • KYKZL-1 inhibits NO, PGE{sub 2} and LTB{sub 4} and iNOS, COX-2 and 5-LOX mRNAs and MAPKs. • KYKZL-1 inhibits phosphorylation of MAPKs. • KYKZL-1 inactivates NF-κB pathway.« less

  14. Fisetin Protects PC12 Cells from Tunicamycin-Mediated Cell Death via Reactive Oxygen Species Scavenging and Modulation of Nrf2-Driven Gene Expression, SIRT1 and MAPK Signaling in PC12 Cells.

    PubMed

    Yen, Jui-Hung; Wu, Pei-Shan; Chen, Shu-Fen; Wu, Ming-Jiuan

    2017-04-17

    Fisetin (3,7,3',4'-tetrahydroxyflavone) is a dietary flavonol and exhibits antioxidant, anti-inflammatory, and neuroprotective activities. However, high concentration of fisetin is reported to produce reactive oxygen species (ROS), induce endoplasmic reticulum (ER) stress and cause cytotoxicity in cancer cells. The aim of this study is to investigate the cytoprotective effects of low concentration of fisetin against tunicamycin (Tm)-mediated cytotoxicity in neuronal-like catecholaminergic PC12 cells. Cell viability was assayed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and apoptotic and autophagic markers were analyzed by Western blot. Gene expression of unfolded protein response (UPR) and Phase II enzymes was further investigated using RT-Q-PCR or Western blotting. Intracellular ROS level was measured using 2',7'-dichlorodihydrofluorescein diacetate (H₂DCFDA) by a fluorometer. The effects of fisetin on mitogen activated protein kinases (MAPKs) and SIRT1 (Sirtuin 1) signaling pathways were examined using Western blotting and specific inhibitors. Fisetin (<20 µM) restored cell viability and repressed apoptosis, autophagy and ROS production in Tm-treated cells. Fisetin attenuated Tm-mediated expression of ER stress genes, such as glucose-regulated proteins 78 (GRP78), C/EBP homologous protein (CHOP also known as GADD153) and Tribbles homolog 3 (TRB3), but induced the expression of nuclear E2 related factor (Nrf)2-targeted heme oxygenase (HO)-1, glutamate cysteine ligase (GCL) and cystine/glutamate transporter (xCT/SLC7A11), in both the presence and absence of Tm. Moreover, fisetin enhanced phosphorylation of ERK (extracellular signal-regulated kinase), JNK (c-JUN NH₂-terminal protein kinase), and p38 MAPK. Addition of JNK and p38 MAPK inhibitor significantly antagonized its cytoprotective activity and modulatory effects on UPR. Fisetin also restored Tm-inhibited SIRT1 expression and addition of sirtinol (SIRT1 activation inhibitor) significantly blocked fisetin-mediated cytoprotection. In conclusion, this result shows that fisetin activates Nrf2, MAPK and SIRT1, which may elicit adaptive cellular stress response pathways so as to protect cells from Tm-induced cytotoxicity.

  15. ERK and p38 MAPK-Activated Protein Kinases: a Family of Protein Kinases with Diverse Biological Functions

    PubMed Central

    Roux, Philippe P.; Blenis, John

    2004-01-01

    Conserved signaling pathways that activate the mitogen-activated protein kinases (MAPKs) are involved in relaying extracellular stimulations to intracellular responses. The MAPKs coordinately regulate cell proliferation, differentiation, motility, and survival, which are functions also known to be mediated by members of a growing family of MAPK-activated protein kinases (MKs; formerly known as MAPKAP kinases). The MKs are related serine/threonine kinases that respond to mitogenic and stress stimuli through proline-directed phosphorylation and activation of the kinase domain by extracellular signal-regulated kinases 1 and 2 and p38 MAPKs. There are currently 11 vertebrate MKs in five subfamilies based on primary sequence homology: the ribosomal S6 kinases, the mitogen- and stress-activated kinases, the MAPK-interacting kinases, MAPK-activated protein kinases 2 and 3, and MK5. In the last 5 years, several MK substrates have been identified, which has helped tremendously to identify the biological role of the members of this family. Together with data from the study of MK-knockout mice, the identities of the MK substrates indicate that they play important roles in diverse biological processes, including mRNA translation, cell proliferation and survival, and the nuclear genomic response to mitogens and cellular stresses. In this article, we review the existing data on the MKs and discuss their physiological functions based on recent discoveries. PMID:15187187

  16. Tanreqing Injection Attenuates Lipopolysaccharide-Induced Airway Inflammation through MAPK/NF-κB Signaling Pathways in Rats Model

    PubMed Central

    Liu, Wei; Jiang, Hong-li; Cai, Lin-li; Yan, Min; Dong, Shou-jin; Mao, Bing

    2016-01-01

    Background. Tanreqing injection (TRQ) is a commonly used herbal patent medicine for treating inflammatory airway diseases in view of its outstanding anti-inflammatory properties. In this study, we explored the signaling pathways involved in contributions of TRQ to LPS-induced airway inflammation in rats. Methods/Design. Adult male Sprague Dawley (SD) rats randomly divided into different groups received intratracheal instillation of LPS and/or intraperitoneal injection of TRQ. Bronchoalveolar Lavage Fluid (BALF) and lung samples were collected at 24 h, 48 h, and 96 h after TRQ administration. Protein and mRNA levels of tumor necrosis factor- (TNF-) α, Interleukin- (IL-) 1β, IL-6, and IL-8 in BALF and lung homogenate were observed by ELISA and real-time PCR, respectively. Lung sections were stained for p38 MAPK and NF-κB detection by immunohistochemistry. Phospho-p38 MAPK, phosphor-extracellular signal-regulated kinases ERK1/2, phospho-SAPK/JNK, phospho-NF-κB p65, phospho-IKKα/β, and phospho-IκB-α were measured by western blot analysis. Results. The results showed that TRQ significantly counteracted LPS-stimulated release of TNF-α, IL-1β, IL-6, and IL-8, attenuated cells influx in BALF, mitigated mucus hypersecretion, suppressed phosphorylation of NF-κB p65, IκB-α, ΙKKα/β, ERK1/2, JNK, and p38 MAPK, and inhibited p38 MAPK and NF-κB p65 expression in rat lungs. Conclusions. Results of the current research indicate that TRQ possesses potent exhibitory effects in LPS-induced airway inflammation by, at least partially, suppressing the MAPKs and NF-κB signaling pathways, in a general dose-dependent manner. PMID:27366191

  17. Trichomonas vaginalis Induces Production of Proinflammatory Cytokines in Mouse Macrophages Through Activation of MAPK and NF-κB Pathways Partially Mediated by TLR2

    PubMed Central

    Li, Ling; Li, Xin; Gong, Pengtao; Zhang, Xichen; Yang, Zhengtao; Yang, Ju; Li, Jianhua

    2018-01-01

    Trichomoniasis, caused by Trichomonas vaginalis infection, is the most prevalent sexually transmitted disease in female and male globally. However, the mechanisms by innate immunity against T. vaginalis infection have not been fully elucidated. Toll-like receptor2 (TLR2) has been shown to be involved in pathogen recognition, innate immunity activation, and inflammatory response to the pathogens. Nonetheless, the function of TLR2 against T. vaginalis remains unclear. In the present study, we investigated the role of TLR2 in mouse macrophages against T. vaginalis. RT-qPCR analysis revealed that T. vaginalis stimulation increased the gene expression of TLR2 in wild-type (WT) mouse macrophages. T. vaginalis also induced the secretion of IL-6, TNF-α, and IFN-γ in WT mouse macrophages, and the expression of these cytokines significantly decreased in TLR2-/- mouse macrophages and in WT mouse macrophages pretreated with MAPK inhibitors SB203580 (p38) and PD98059 (ERK). Western blot analysis demonstrated that T. vaginalis stimulation induced the activation of p38, ERK, and p65 NF-κB signal pathways in WT mouse macrophages, and the phosphorylation of p38, ERK, and p65 NF-κB significantly decreased in TLR2-/- mouse macrophages. Taken together, our data suggested that T. vaginalis may regulates proinflammatory cytokines production by activation of p38, ERK, and NF-κB p65 signal pathways via TLR2 in mouse macrophages. TLR2 might be involved in the defense and elimination of T. vaginalis infection. PMID:29692771

  18. Trichomonas vaginalis Induces Production of Proinflammatory Cytokines in Mouse Macrophages Through Activation of MAPK and NF-κB Pathways Partially Mediated by TLR2.

    PubMed

    Li, Ling; Li, Xin; Gong, Pengtao; Zhang, Xichen; Yang, Zhengtao; Yang, Ju; Li, Jianhua

    2018-01-01

    Trichomoniasis, caused by Trichomonas vaginalis infection, is the most prevalent sexually transmitted disease in female and male globally. However, the mechanisms by innate immunity against T. vaginalis infection have not been fully elucidated. Toll-like receptor2 (TLR2) has been shown to be involved in pathogen recognition, innate immunity activation, and inflammatory response to the pathogens. Nonetheless, the function of TLR2 against T. vaginalis remains unclear. In the present study, we investigated the role of TLR2 in mouse macrophages against T. vaginalis . RT-qPCR analysis revealed that T. vaginalis stimulation increased the gene expression of TLR2 in wild-type (WT) mouse macrophages. T. vaginalis also induced the secretion of IL-6, TNF-α, and IFN-γ in WT mouse macrophages, and the expression of these cytokines significantly decreased in TLR 2-/- mouse macrophages and in WT mouse macrophages pretreated with MAPK inhibitors SB203580 (p38) and PD98059 (ERK). Western blot analysis demonstrated that T. vaginalis stimulation induced the activation of p38, ERK, and p65 NF-κB signal pathways in WT mouse macrophages, and the phosphorylation of p38, ERK, and p65 NF-κB significantly decreased in TLR2 -/- mouse macrophages. Taken together, our data suggested that T. vaginalis may regulates proinflammatory cytokines production by activation of p38, ERK, and NF-κB p65 signal pathways via TLR2 in mouse macrophages. TLR2 might be involved in the defense and elimination of T. vaginalis infection.

  19. Oxymatrine Inhibits Influenza A Virus Replication and Inflammation via TLR4, p38 MAPK and NF-κB Pathways.

    PubMed

    Dai, Jian-Ping; Wang, Qian-Wen; Su, Yun; Gu, Li-Ming; Deng, Hui-Xiong; Chen, Xiao-Xuan; Li, Wei-Zhong; Li, Kang-Sheng

    2018-03-23

    Oxymatrine (OMT) is a strong immunosuppressive agent that has been used in the clinic for many years. In the present study, by using plaque inhibition, luciferase reporter plasmids, qRT-PCR, western blotting, and ELISA assays, we have investigated the effect and mechanism of OMT on influenza A virus (IAV) replication and IAV-induced inflammation in vitro and in vivo. The results showed that OMT had excellent anti-IAV activity on eight IAV strains in vitro. OMT could significantly decrease the promoter activity of TLR3, TLR4, TLR7, MyD88, and TRAF6 genes, inhibit IAV-induced activations of Akt, ERK1/2, p38 MAPK, and NF-κB pathways, and suppress the expressions of inflammatory cytokines and MMP-2/-9. Activators of TLR4, p38 MAPK and NF-κB pathways could significantly antagonize the anti-IAV activity of OMT in vitro, including IAV replication and IAV-induced cytopathogenic effect (CPE). Furthermore, OMT could reduce the loss of body weight, significantly increase the survival rate of IAV-infected mice, decrease the lung index, pulmonary inflammation and lung viral titter, and improve pulmonary histopathological changes. In conclusion, OMT possesses anti-IAV and anti-inflammatory activities, the mechanism of action may be linked to its ability to inhibit IAV-induced activations of TLR4, p38 MAPK, and NF-κB pathways.

  20. Arctigenin induces apoptosis in colon cancer cells through ROS/p38MAPK pathway.

    PubMed

    Li, Qing-chun; Liang, Yun; Tian, Yuan; Hu, Guang-rui

    2016-01-01

    In the current study the antiproliferative effect of arctigenin, plant lignin, was evaluated on human colon cancer cell line HT-29. Furthermore, attempts were made to explore the signaling mechanism which may be responsible for its effect. Cell growth inhibition was assessed by MTT and LDH assays. Flow cytometric analysis was performed to determine cell arrest in the cell cycle phase and apoptosis. Furthermore, to confirm the apoptotic activity of arctigenin, caspase-9 and -3 activities analysis was performed. The levels of reactive oxygen species (ROS) and p38 mitogen activated protein kinase (MAPK) were investigated to determine their role in inducing apoptosis in arctigenin-treated HT-29 colon cancer cell line. MTT and LDH results demonstrated significant cell growth inhibitory effect of arctigenin on HT-29 cells in a dose-dependent manner. Furthermore, increase in cell number arrested at G2/M phase was observed in flow cytometric analysis upon arctigenin treatment. In addition, arctigenin increased the apoptotic ratio in a dose-dependent manner. The involvement of intrinsic apoptotic pathway was indicated by the activation of caspase-9 and -3. Moreover, increased ROS production, activation of p38 MAPK and changes in mitochondrial membrane potential (ΔΨm) also revealed the role of intrinsic apoptotic signaling pathway in cell growth inhibition after arctigenin exposure. Arctigenin induces apoptosis in HT-29 colon cancer cells by regulating ROS and p38 MAPK pathways.

  1. Autoantibodies in the Autoimmune Disease Pemphigus Foliaceus Induce Blistering via p38 Mitogen-Activated Protein Kinase-Dependent Signaling in the Skin

    PubMed Central

    Berkowitz, Paula; Chua, Michael; Liu, Zhi; Diaz, Luis A.; Rubenstein, David S.

    2008-01-01

    Pemphigus foliaceus (PF) is a human autoimmune blistering disease in which a humoral immune response targeting the skin results in a loss of keratinocyte cell-cell adhesion in the superficial layers of the epidermal epithelium. In PF, desmoglein-1-specific autoantibodies induce blistering. Evidence is beginning to accumulate that activation of signaling may have an important role in the ability of pathogenic pemphigus IgGs to induce blistering and that both p38 mitogen-activated protein kinase (MAPK) and heat shock protein (HSP) 27 are part of this signaling pathway. This study was undertaken to investigate the ability of PF IgGs to activate signaling as well as the contribution of this signaling pathway to blister induction in an in vivo model of PF. Phosphorylation of both p38 MAPK and HSP25, the murine HSP27 homolog, was observed in the skin of PF IgG-treated mice. Furthermore, inhibition of p38 MAPK blocked the ability of PF IgGs to induce blistering in vivo. These results indicate that PF IgG-induced blistering is dependent on activation of p38 MAPK in the target keratinocyte. Rather than influencing the immune system, limiting the autoantibody-induced intracellular signaling response that leads to target end-organ damage may be a more viable therapeutic strategy for the treatment of autoimmune diseases. Inhibition of p38 MAPK may be an effective strategy for the treatment of PF. PMID:18988808

  2. Human prostate luminal cell differentiation requires NOTCH3 induction by p38-MAPK and MYC.

    PubMed

    Frank, Sander B; Berger, Penny L; Ljungman, Mats; Miranti, Cindy K

    2017-06-01

    Many pathways dysregulated in prostate cancer are also involved in epithelial differentiation. To better understand prostate tumor initiation, we sought to investigate specific genes and mechanisms required for normal basal to luminal cell differentiation. Utilizing human prostate basal epithelial cells and an in vitro differentiation model, we tested the hypothesis that regulation of NOTCH3 by the p38 MAPK family (hereafter p38-MAPK), via MYC, is required for luminal differentiation. Inhibition (SB202190 and BIRB796) or knockdown of p38α (also known as MAPK14) and/or p38δ (also known as MAPK13) prevented proper differentiation. Additionally, treatment with a γ-secretase inhibitor (RO4929097) or knockdown of NOTCH1 and/or NOTCH3 greatly impaired differentiation and caused luminal cell death. Constitutive p38-MAPK activation through MKK6(CA) increased NOTCH3 (but not NOTCH1) mRNA and protein levels, which was diminished upon MYC inhibition (10058-F4 and JQ1) or knockdown. Furthermore, we validated two NOTCH3 enhancer elements through a combination of enhancer (e)RNA detection (BruUV-seq) and luciferase reporter assays. Finally, we found that the NOTCH3 mRNA half-life increased during differentiation or upon acute p38-MAPK activation. These results reveal a new connection between p38-MAPK, MYC and NOTCH signaling, demonstrate two mechanisms of NOTCH3 regulation and provide evidence for NOTCH3 involvement in prostate luminal cell differentiation. © 2017. Published by The Company of Biologists Ltd.

  3. [Effect of P38MAPK signal transduction pathway on apoptosis of THP-1 induced by allicin].

    PubMed

    Liao, Yang; Chen, Jianbin; Tang, Weixue; Ge, Qunfang; Lu, Qianwei; Yang, Zesong

    2009-06-01

    The objective of this paper was to study the change of P38MAPK and Fas in the apoptosis of THP-1 cells induced by allicin. The proliferation inhibition rates of THP-1 cells after various treatments were examined by MTT assay. Apoptosis rate was determined with Annexin V- FITC/PI double staining by flow cytometry. The expression and distribution change of the phosphorylation p38MAPK (P-p38MAPK) were detected by immunohistochemical staining. The changes of P-p38 MAPK and Fas proteins were detected by Western blot. The proliferations of leukemia cell line THP-1 are inhibited by allicin. MTT assay showed that allicin can inhibit the proliferation of the THP-1 cell, and the inhibition was dependent on both dose and time. The IC50 of 72 hours was 12.8 mg x L(-1). Apoptosis rate detected by Annexin V-FITC/PI was proportional to the concentration of the allicin. After the immunohistochemical staining test, the P-p38MAPK was located in the cell nucleus and plasma, showing deep brown, when adding allicin to THP-1 cell. Western blot test showed that the P-p38MAPK proteins expression was proportional to the concentration of Allicin and was also dose dependent. The levels of P-p38MAPK in negative control group, 1/2 IC50 of 72 hours group and IC50 of 72 hours group were 0.259 8 +/- 0.013 2, 0.61 2 +/- 0.008 3 and 0.505 6 +/- 0.005 5 respectively, and the levels of Fas proteins were 0.287 4 +/- 0.008 9, 0.426 8 +/- 0.007 9 and 0.597 1 +/- 0.010 9 respectively. The difference was statistically significant when compared with the negative control group (P < 0.01). Allicin can significantly induce THP-1 cells apoptosis, and its mechanism may be related to the activation of P38MAPK/Fas.

  4. Possible role of ginsenoside Rb1 in skin wound healing via regulating senescent skin dermal fibroblast.

    PubMed

    Hou, Jingang; Kim, Sunchang

    2018-05-05

    Cellular senescence suppresses cancer by inducing irreversible cell growth arrest. Nevertheless, senescent cells is proposed as causal link with aging and aging-related pathologies. The physiological beneficial functions of senescent cells are still of paucity. Here we show that senescent human dermal fibroblast accelerates keratinocytes scratch wound healing and stimulates differentiation of fibroblast. Using oxidative stress (100 μM H 2 O 2 exposure for 1 h) induction, we successfully triggered fibroblast senescence and developed senescence associated secretory phenotype (SASP). The induction of SASP was regulated by p38MAPK/MSK2/NF-κB pathway. Interestingly, inhibition of p38MAPK activation only partially suppressed SASP. However, SASP was significantly inhibited by SB747651A, a specific MSK inhibitor. Additionally, we demonstrate that SASP stimulates migration of keratinocytes and myofibroblast transition of fibroblast, through fold-increased secretion of growth factors, platelet-derived growth factor AA (PDGF-AA) and AB (PDGF-AB), transforming growth factor beta 1 (TGF-β1) and beta 2 (TGF-β2), vascular endothelial growth factor A (VEGF-A) and D (VEGF-D), vascular endothelial growth factor receptor 2 (VEGFR2) and 3 (VEGFR3). Importantly, we also confirmed ginsenoside Rb1 promoted SASP-mediated healing process via p38MAPK/MSK2/NF-κB pathway. The results pointed to senescent fibroblast as a potential mechanism of wound healing control in human skin. Further, it provided a candidate targeted for wound therapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Regulation of human glioblastoma cell death by combined treatment of cannabidiol, γ-radiation and small molecule inhibitors of cell signaling pathways

    PubMed Central

    Ivanov, Vladimir N.; Wu, Jinhua; Hei, Tom K.

    2017-01-01

    Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. The challenging problem in cancer treatment is to find a way to upregulate radiosensitivity of GBM while protecting neurons and neural stem/progenitor cells in the brain. The goal of the present study was upregulation of the cytotoxic effect of γ-irradiation in GBM by non-psychotropic and non-toxic cannabinoid, cannabidiol (CBD). We emphasized three main aspects of signaling mechanisms induced by CBD treatment (alone or in combination with γ-irradiation) in human GBM that govern cell death: 1) CBD significantly upregulated the active (phosphorylated) JNK1/2 and MAPK p38 levels with the subsequent downregulation of the active phospho-ERK1/2 and phospho-AKT1 levels. MAPK p38 was one of the main drivers of CBD-induced cell death, while death levels after combined treatment of CBD and radiation were dependent on both MAPK p38 and JNK. Both MAPK p38 and JNK regulate the endogenous TRAIL expression. 2) NF-κB p65-P(Ser536) was not the main target of CBD treatment and this transcription factor was found at high levels in CBD-treated GBM cells. Additional suppression of p65-P(Ser536) levels using specific small molecule inhibitors significantly increased CBD-induced apoptosis. 3) CBD treatment substantially upregulated TNF/TNFR1 and TRAIL/TRAIL-R2 signaling by modulation of both ligand and receptor levels followed by apoptosis. Our results demonstrate that radiation-induced death in GBM could be enhanced by CBD-mediated signaling in concert with its marginal effects for neural stem/progenitor cells and astrocytes. It will allow selecting efficient targets for sensitization of GBM and overcoming cancer therapy-induced severe adverse sequelae. PMID:29088769

  6. Strategies of biochemical adaptation for hibernation in a South American marsupial Dromiciops gliroides: 1. Mitogen-activated protein kinases and the cell stress response.

    PubMed

    Wijenayake, Sanoji; Luu, Bryan E; Zhang, Jing; Tessier, Shannon N; Quintero-Galvis, Julian F; Gaitán-Espitia, Juan Diego; Nespolo, Roberto F; Storey, Kenneth B

    2017-12-14

    Hibernation is a period of torpor and heterothermy that is typically associated with a strong reduction in metabolic rate, global suppression of transcription and translation, and upregulation of various genes/proteins that are central to the cellular stress response such as protein kinases, antioxidants, and heat shock proteins. The current study examined cell signaling cascades in hibernating monito del monte, Dromiciops gliroides, a South American marsupial of the Order Microbiotheria. Responses to hibernation by members of the mitogen-activated protein kinase (MAPK) pathways, and their roles in coordinating hibernator metabolism were examined in liver, kidney, heart and brain of control and versus hibernating (4days continuous torpor) D. gliroides. The targets evaluated included key protein kinases in their activated phosphorylated forms (p-ERK/MAPK 1/2, p-MEK1, p-MSK1, p-p38, p-JNK) and related target proteins (p-CREB 2, p-ATF2, p-c-Jun and p-p53). Liver exhibited a strong coordinated response by MAPK members to hibernation with significant increases in protein phosphorylation levels of p-MEK1, p-ERK/MAPK1/2, p-MSK1, p-JNK and target proteins c-Jun, and p-ATF2, all combining to signify a strong activation of MAPK signaling during hibernation. Kidney also showed activation of MAPK cascades with significant increases in p-MEK1, p-ERK/MAPK1/2, p-p38, and p-c-Jun levels in hibernating animals. By contrast, responses by heart and brain indicated reduced MAPK pathway function during torpor with reduced phosphorylation of targets including p-ERK/MAPK 1/2 in both tissues as well as lower p-p38 and p-JNK content in heart. Overall, the data indicate a vital role for MAPK signaling in regulating the cell stress response during marsupial hibernation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Inhibitors of stress-activated protein/mitogen-activated protein kinase pathways.

    PubMed

    Malemud, Charles J

    2007-06-01

    The importance of stress-activated protein/mitogen-activated protein kinase (SAP/MAPK) pathway signalling (involving c-Jun-N-terminal kinase [JNK], extracellular signal-regulated kinase [ERK] and p38 kinase) in normal cellular proliferation, differentiation and programmed cell death has led to significant recent advances in our understanding of the role of SAP/MAPK signaling in inflammatory disorders such as arthritis and cardiovascular disease, cancer, and pulmonary and neurogenerative diseases. The discovery that several natural products such as resveratrol, tangeretin and ligustilide non-specifically inhibit SAP/MAPK signalling in vitro should now be logically extended to studies designed to determine how agents in these natural products regulate SAP/MAPK pathways in animal models of disease. A new generation of small-molecule SAP/MAPK inhibitors that demonstrate increasing specificity for each of the JNK, ERK and p38 kinase isoforms has shown promise in animal studies and could eventually prove effective for treating human diseases. Several of these compounds are already being tested in human subjects to assess their oral bioavailability, pharmacokinetics and toxicity.

  8. Ultrasound Stimulation of Different Dental Stem Cell Populations: Role of Mitogen-activated Protein Kinase Signaling.

    PubMed

    Gao, Qianhua; Walmsley, A Damien; Cooper, Paul R; Scheven, Ben A

    2016-03-01

    Mesenchymal stem cells (MSCs) from dental tissues may respond to low-intensity pulsed ultrasound (LIPUS) treatment, potentially providing a therapeutic approach to promoting dental tissue regeneration. This work aimed to compare LIPUS effects on the proliferation and MAPK signaling in MSCs from rodent dental pulp stem cells (DPSCs) compared with MSCs from periodontal ligament stem cells (PDLSCs) and bone marrow stem cells (BMSCs). Isolated MSCs were treated with 1-MHz LIPUS at an intensity of 250 or 750 mW/cm2 for 5 or 20 minutes. Cell proliferation was evaluated by 5-bromo-2-deoxyuridine (BrdU) staining after 24 hours of culture following a single LIPUS treatment. Specific ELISAs were used to determine the total and activated p38, ERK1/2, and JNK MAPK signaling proteins up to 4 hours after treatment. Selective MAPK inhibitors PD98059 (ERK1/2), SB203580 (p38), and SP600125 (JNK) were used to determine the role of activation of the particular MAPK pathways. The proliferation of all MSC types was significantly increased after LIPUS treatment. LIPUS at a 750-mW/cm2 dose induced the greatest effects on DPSCs. BMSC proliferation was stimulated in equal measures by both intensities, whereas 250 mW/cm2 LIPUS exposure exerted maximum effects on PDLSCs. ERK1/2 was activated immediately in DPSCs after treatment. Concomitantly, DPSC proliferation was specifically modulated by ERK1/2 inhibition, whereas p38 and JNK inhibition exerted no effects. In BMSCs, JNK MAPK signaling was LIPUS activated, and the increase in proliferation was blocked by specific inhibition of the JNK pathway. In PDLSCs, JNK MAPK signaling was activated immediately after LIPUS, whereas p-p38 MAPK increased significantly in these cells 4 hours after exposure. Correspondingly, JNK and p38 inhibition modulated LIPUS-stimulated PDLSC proliferation. LIPUS promoted MSC proliferation in an intensity and cell-specific dependent manner via activation of distinct MAPK pathways. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Insulin-Like Growth Factor 1 Receptor and p38 Mitogen-Activated Protein Kinase Signals Inversely Regulate Signal Transducer and Activator of Transcription 3 Activity to Control Human Dental Pulp Stem Cell Quiescence, Propagation, and Differentiation

    PubMed Central

    Vandomme, Jerome; Touil, Yasmine; Ostyn, Pauline; Olejnik, Cecile; Flamenco, Pilar; El Machhour, Raja; Segard, Pascaline; Masselot, Bernadette; Bailliez, Yves; Formstecher, Pierre

    2014-01-01

    Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Ylow stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration. PMID:24266654

  10. Naproxen Induces Type X Collagen Expression in Human Bone-Marrow-Derived Mesenchymal Stem Cells Through the Upregulation of 5-Lipoxygenase

    PubMed Central

    Alaseem, Abdulrahman M.; Madiraju, Padma; Aldebeyan, Sultan A.; Noorwali, Hussain; Antoniou, John

    2015-01-01

    Several studies have shown that type X collagen (COL X), a marker of late-stage chondrocyte hypertrophy, is expressed in mesenchymal stem cells (MSCs) from osteoarthritis (OA) patients. We recently found that Naproxen, but not other nonsteroidal anti-inflammatory drugs (NSAIDs) (Ibuprofen, Celebrex, Diclofenac), can induce type X collagen gene (COL10A1) expression in bone-marrow-derived MSCs from healthy and OA donors. In this study we determined the effect of Naproxen on COL X protein expression and investigated the intracellular signaling pathways that mediate Naproxen-induced COL10A1 expression in normal and OA hMSCs. MSCs of OA patients were isolated from aspirates from the intramedullary canal of donors (50–80 years of age) undergoing hip replacement surgery for OA and were treated with or without Naproxen (100 μg/mL). Protein expression and phosphorylation were determined by immunoblotting using specific antibodies (COL X, p38 mitogen-activated protein kinase [p38], phosphorylated-p38, c-Jun N-terminal kinase [JNK], phosphorylated-JNK, extracellular signal-regulated kinase [ERK], and phosphorylated-ERK). Real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the expression of COL10A1 and Runt-related transcription factor 2 gene (Runx2). Our results show that Naproxen significantly stimulated COL X protein expression after 72 h of exposure both in normal and OA hMSCs. The basal phosphorylation of mitogen-activated protein kinases (MAPKs) (ERK, JNK, and p38) in OA hMSCs was significantly higher than in normal. Naproxen significantly increased the MAPK phosphorylation in normal and OA hMSCs. NSAID cellular effects include cyclooxygenase, 5-lipoxygenase, and p38 MAPK signaling pathways. To investigate the involvement of these pathways in the Naproxen-induced COL10A1 expression, we incubated normal and OA hMSCs with Naproxen with and without inhibitors of ERK (U0126), JNK (BI-78D3), p38 (SB203580), and 5-lipoxygenase (MK-886). Our results showed that increased basal COL10A1 expression in OA hMSCs was significantly suppressed in the presence of JNK and p38 inhibitors, whereas Naproxen-induced COL10A1 expression was suppressed by 5-lipoxygenase inhibitor. This study shows that Naproxen induces COL X both at transcriptional and translational levels in normal and OA hMSCs. Elevated basal COL10A1 expression in OA hMSCs is probably through the activation of MAPK pathway and Naproxen-induced COL10A1 expression is through the increased 5-lipoxygenase signaling. PMID:25091567

  11. A low dose lipid infusion is sufficient to induce insulin resistance and a pro-inflammatory response in human subjects

    PubMed Central

    Lum, Helen; Alvarez, Andrea; Garduno-Garcia, Jose de Jesus; Daniel, Benjamin J.; Musi, Nicolas

    2018-01-01

    Objective The root cause behind the low-grade inflammatory state seen in insulin resistant (obesity and type 2 diabetes) states is unclear. Insulin resistant subjects have elevations in plasma free fatty acids (FFA), which are ligands for the pro-inflammatory toll-like receptor (TLR)4 pathway. We tested the hypothesis that an experimental elevation in plasma FFA (within physiological levels) in lean individuals would upregulate TLR4 and activate downstream pathways (e.g., MAPK) in circulating monocytes. Research design and methods Twelve lean, normal glucose-tolerant subjects received a low dose (30 ml/h) 48 h lipid or saline infusion on two different occasions. Monocyte TLR4 protein level, MAPK phosphorylation, and expression of genes in the TLR pathway were determined before and after each infusion. Results The lipid infusion significantly increased monocyte TLR4 protein and phosphorylation of JNK and p38 MAPK. Lipid-mediated increases in TLR4 and p38 phosphorylation directly correlated with reduced peripheral insulin sensitivity (M value). Lipid increased levels of multiple genes linked to inflammation, including several TLRs, CD180, MAP3K7, and CXCL10. Monocytes exposed in vivo to lipid infusion exhibited enhanced in vitro basal and LPS-stimulated IL-1β secretion. Conclusions In lean subjects, a small increase in plasma FFA (as seen in insulin resistant subjects) is sufficient to upregulate TLR4 and stimulate inflammatory pathways (MAPK) in monocytes. Moreover, lipids prime monocytes to endotoxin. We provide proof-of-concept data in humans indicating that the low-grade inflammatory state characteristic of obesity and type 2 diabetes could be caused (at least partially) by pro-inflammatory monocytes activated by excess lipids present in these individuals. PMID:29649324

  12. A low dose lipid infusion is sufficient to induce insulin resistance and a pro-inflammatory response in human subjects.

    PubMed

    Liang, Hanyu; Lum, Helen; Alvarez, Andrea; Garduno-Garcia, Jose de Jesus; Daniel, Benjamin J; Musi, Nicolas

    2018-01-01

    The root cause behind the low-grade inflammatory state seen in insulin resistant (obesity and type 2 diabetes) states is unclear. Insulin resistant subjects have elevations in plasma free fatty acids (FFA), which are ligands for the pro-inflammatory toll-like receptor (TLR)4 pathway. We tested the hypothesis that an experimental elevation in plasma FFA (within physiological levels) in lean individuals would upregulate TLR4 and activate downstream pathways (e.g., MAPK) in circulating monocytes. Twelve lean, normal glucose-tolerant subjects received a low dose (30 ml/h) 48 h lipid or saline infusion on two different occasions. Monocyte TLR4 protein level, MAPK phosphorylation, and expression of genes in the TLR pathway were determined before and after each infusion. The lipid infusion significantly increased monocyte TLR4 protein and phosphorylation of JNK and p38 MAPK. Lipid-mediated increases in TLR4 and p38 phosphorylation directly correlated with reduced peripheral insulin sensitivity (M value). Lipid increased levels of multiple genes linked to inflammation, including several TLRs, CD180, MAP3K7, and CXCL10. Monocytes exposed in vivo to lipid infusion exhibited enhanced in vitro basal and LPS-stimulated IL-1β secretion. In lean subjects, a small increase in plasma FFA (as seen in insulin resistant subjects) is sufficient to upregulate TLR4 and stimulate inflammatory pathways (MAPK) in monocytes. Moreover, lipids prime monocytes to endotoxin. We provide proof-of-concept data in humans indicating that the low-grade inflammatory state characteristic of obesity and type 2 diabetes could be caused (at least partially) by pro-inflammatory monocytes activated by excess lipids present in these individuals.

  13. Cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NF-κB-MT1MMP in activating proMMP-2 by ET-1 in pulmonary artery smooth muscle cells.

    PubMed

    Sarkar, Jaganmay; Chowdhury, Animesh; Chakraborti, Tapati; Chakraborti, Sajal

    2016-04-01

    Treatment of bovine pulmonary artery smooth muscle cells with endothelin-1 (ET-1) caused an increase in the expression and activation of proMMP-2 in the cells. The present study was undertaken to determine the underlying mechanisms involved in this scenario. We demonstrated that (i) pretreatment with NADPH oxidase inhibitor, apocynin; PKC-α inhibitor, Go6976; p(38)MAPK inhibitor SB203580 and NF-κB inhibitor, Bay11-7082 inhibited the expression and activation of proMMP-2 induced by ET-1; (ii) ET-1 treatment to the cells stimulated NADPH oxidase and PKCα activity, p(38)MAPK phosphorylation as well as NF-κB activation by translocation of NF-κBp65 subunit from cytosol to the nucleus, and subsequently by increasing its DNA-binding activity; (iii) ET-1 increases MT1-MMP expression, which was inhibited upon pretreatment with apocynin, Go6976, SB293580, and Bay 11-7082; (iv) ET-1 treatment to the cells downregulated TIMP-2 level. Although apocynin and Go6976 pretreatment reversed ET-1 effect on TIMP-2 level, yet pretreatment of the cells with SB203580 and Bay 11-7082 did not show any discernible change in TIMP-2 level by ET-1. Overall, our results suggest that ET-1-induced activation of proMMP-2 is mediated via cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NFκB-MT1MMP signaling pathways along with a marked decrease in TIMP-2 expression in the cells.

  14. TCDD and omeprazole prime platelets through the aryl hydrocarbon receptor (AhR) non-genomic pathway.

    PubMed

    Pombo, Mónica; Lamé, Michael W; Walker, Naomi J; Huynh, Danh H; Tablin, Fern

    2015-05-19

    The role of the aryl hydrocarbon receptor (AhR) in hemostasis has recently gained increased attention. Here, we demonstrate, by qRT-PCR and western blot, that human platelets express both AhR mRNA and AhR protein. AhR protein levels increase in a dose dependent manner when incubated with either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or omeprazole. Treatment of platelets with puromycin blocks increased AhR protein synthesis in the presence of AhR activators. Additionally, treatment of platelets with either activator results in phosphorylation of p38MAPK and cPLA2, two key signaling molecules in platelet activation pathways. Using the AhR competitive inhibitors alpha naphthoflavone and CH-223191, we show that phosphorylation of p38MAPK is AhR dependent. Further, inhibition of p38MAPK blocks downstream cPLA2 phosphorylation induced by TCDD or omeprazole. Treatment with AhR activators results in platelet priming, as demonstrated by increased platelet aggregation, which is inhibited by AhR antagonists. Our data support a model of the platelet AhR non-genomic pathway in which treatment with AhR activators results in increased expression of the AhR, phosphorylation of p38MAPK and cPLA2, leading to platelet priming in response to agonist. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. A stable aspirin-triggered lipoxin A4 analog blocks phosphorylation of leukocyte-specific protein 1 in human neutrophils.

    PubMed

    Ohira, Taisuke; Bannenberg, Gerard; Arita, Makoto; Takahashi, Minoru; Ge, Qingyuan; Van Dyke, Thomas E; Stahl, Gregory L; Serhan, Charles N; Badwey, John A

    2004-08-01

    Lipoxins and their aspirin-triggered 15-epimers are endogenous anti-inflammatory agents that block neutrophil chemotaxis in vitro and inhibit neutrophil influx in several models of acute inflammation. In this study, we examined the effects of 15-epi-16-(p-fluoro)-phenoxy-lipoxin A(4) methyl ester, an aspirin-triggered lipoxin A(4)-stable analog (ATLa), on the protein phosphorylation pattern of human neutrophils. Neutrophils stimulated with the chemoattractant fMLP were found to exhibit intense phosphorylation of a 55-kDa protein that was blocked by ATLa (10-50 nM). This 55-kDa protein was identified as leukocyte-specific protein 1, a downstream component of the p38-MAPK cascade in neutrophils, by mass spectrometry, Western blotting, and immunoprecipitation experiments. ATLa (50 nM) also reduced phosphorylation/activation of several components of the p38-MAPK pathway in these cells (MAPK kinase 3/MAPK kinase 6, p38-MAPK, MAPK-activated protein kinase-2). These results indicate that ATLa exerts its anti-inflammatory effects, at least in part, by blocking activation of the p38-MAPK cascade in neutrophils, which is known to promote chemotaxis and other proinflammatory responses by these cells.

  16. Uridine 5′-Triphosphate Promotes In Vitro Schwannoma Cell Migration through Matrix Metalloproteinase-2 Activation

    PubMed Central

    Martiañez, Tania; Segura, Mònica; Figueiro-Silva, Joana; Grijota-Martinez, Carmen; Trullas, Ramón; Casals, Núria

    2014-01-01

    In response to peripheral nerve injury, Schwann cells adopt a migratory phenotype and modify the extracellular matrix to make it permissive for cell migration and axonal re-growth. Uridine 5′-triphosphate (UTP) and other nucleotides are released during nerve injury and activate purinergic receptors expressed on the Schwann cell surface, but little is known about the involvement of purine signalling in wound healing. We studied the effect of UTP on Schwannoma cell migration and wound closure and the intracellular signaling pathways involved. We found that UTP treatment induced Schwannoma cell migration through activation of P2Y2 receptors and through the increase of extracellular matrix metalloproteinase-2 (MMP-2) activation and expression. Knockdown P2Y2 receptor or MMP-2 expression greatly reduced wound closure and MMP-2 activation induced by UTP. MMP-2 activation evoked by injury or UTP was also mediated by phosphorylation of all 3 major mitogen-activated protein kinases (MAPKs): JNK, ERK1/2, and p38. Inhibition of these MAPK pathways decreased both MMP-2 activation and cell migration. Interestingly, MAPK phosphorylation evoked by UTP exhibited a biphasic pattern, with an early transient phosphorylation 5 min after treatment, and a late and sustained phosphorylation that appeared at 6 h and lasted up to 24 h. Inhibition of MMP-2 activity selectively blocked the late, but not the transient, phase of MAPK activation. These results suggest that MMP-2 activation and late MAPK phosphorylation are part of a positive feedback mechanism to maintain the migratory phenotype for wound healing. In conclusion, our findings show that treatment with UTP stimulates in vitro Schwannoma cell migration and wound repair through a MMP-2-dependent mechanism via P2Y2 receptors and MAPK pathway activation. PMID:24905332

  17. Apelin-13 upregulates Egr-1 expression in rat vascular smooth muscle cells through the PI3K/Akt and PKC signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qi-Feng; Yu, Hong-Wei; Sun, Li-Li

    Previous studies have shown that Apelin-13 upregulates early growth response factor-1 (Egr-1) via the extracellular signal-regulated protein kinase (ERK) signaling pathway. Apelin-13 induces proliferation and migration of vascular smooth muscle cells (VSMCs) as well as the upregulation of osteopontin (OPN) via the upregulation of Egr-1. This study was designed to further explore the activity of Apelin-13 in VSMCs by investigating members of the mitogen-activated protein kinase (MAPK) family, in particular Jun kinase (JNK) and p38 mitogen-activated protein kinase (P38). We also examined whether the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) and protein kinase C (PKC) signaling pathways were involvedmore » in the regulation of Egr-1 by Apelin-13. We treated rat aortic VSMCs with Apelin-13 and examined the expression of JNK, p-JNK, P38, and p-P38 to investigate whether Apelin-13-mediated increases in Egr-1 occurred through the JNK and P38 signaling pathways. We then pretreated VSMCs with the Gi protein inhibitor pertussis toxin (PTX) and the Gq inhibitor YM254890, added Apelin-13 and looked for changes in Egr-1 expression. Finally, we pretreated with the PI3K inhibitor LY294002 and the PKC inhibitor GF109203X, and treated with Apelin-13. Our results showed that JNK and P38 did not participate in Apelin-13-mediated increase in Egr-1. Instead, Apelin-13 upregulation of Egr-1 was mediated by a PTX-sensitive Gi protein. Apelin-13 did increase ERK phosphorylation through the PI3K/Akt and PKC signaling pathways, resulting in changes in Egr-1 expression. These data provide important targets for future studies to modulate vascular remodeling. - Highlights: • Apelin-13 mediates Egr-1 upregulation in vascular smooth muscle cells via ERK1/2. • The underlying mechanisms are unknown, but exclude Jnk or p38 pathway activation. • Apelin-13 binds to Gi, activating the PI3K/Akt and PKC signaling cascades. • Consequent ERK phosphorylation results in increased Egr-1 expression. • These novel targets may be potential therapies for vascular remodeling diseases.« less

  18. The p38α mitogen-activated protein kinase as a central nervous system drug discovery target

    PubMed Central

    Borders, Aaron S; de Almeida, Lucia; Van Eldik, Linda J; Watterson, D Martin

    2008-01-01

    Protein kinases are critical modulators of a variety of cellular signal transduction pathways, and abnormal phosphorylation events can be a cause or contributor to disease progression in a variety of disorders. This has led to the emergence of protein kinases as an important new class of drug targets for small molecule therapeutics. A serine/threonine protein kinase, p38α mitogen-activated protein kinase (MAPK), is an established therapeutic target for peripheral inflammatory disorders because of its critical role in regulation of proinflammatory cytokine production. There is increasing evidence that p38α MAPK is also an important regulator of proinflammatory cytokine levels in the central nervous system, raising the possibility that the kinase may be a drug discovery target for central nervous system disorders where cytokine overproduction contributes to disease progression. Development of bioavailable, central nervous system-penetrant p38α MAPK inhibitors provides the required foundation for drug discovery campaigns targeting p38α MAPK in neurodegenerative disorders. PMID:19090985

  19. The p38alpha mitogen-activated protein kinase as a central nervous system drug discovery target.

    PubMed

    Borders, Aaron S; de Almeida, Lucia; Van Eldik, Linda J; Watterson, D Martin

    2008-12-03

    Protein kinases are critical modulators of a variety of cellular signal transduction pathways, and abnormal phosphorylation events can be a cause or contributor to disease progression in a variety of disorders. This has led to the emergence of protein kinases as an important new class of drug targets for small molecule therapeutics. A serine/threonine protein kinase, p38alpha mitogen-activated protein kinase (MAPK), is an established therapeutic target for peripheral inflammatory disorders because of its critical role in regulation of proinflammatory cytokine production. There is increasing evidence that p38alpha MAPK is also an important regulator of proinflammatory cytokine levels in the central nervous system, raising the possibility that the kinase may be a drug discovery target for central nervous system disorders where cytokine overproduction contributes to disease progression. Development of bioavailable, central nervous system-penetrant p38alpha MAPK inhibitors provides the required foundation for drug discovery campaigns targeting p38alpha MAPK in neurodegenerative disorders.

  20. Arctigenin induces the apoptosis of primary effusion lymphoma cells under conditions of glucose deprivation.

    PubMed

    Baba, Yusuke; Shigemi, Zenpei; Hara, Naoko; Moriguchi, Misato; Ikeda, Marina; Watanabe, Tadashi; Fujimuro, Masahiro

    2018-02-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of primary effusion lymphoma (PEL) and Kaposi's sarcoma. PEL is a type of non-Hodgkin's B-cell lymphoma, affecting immunosuppressed individuals, such as post-transplant or AIDS patients. However, since PEL is resistant to chemotherapeutic regimens, new effective treatment strategies are required. Arctigenin, a natural lignan compound found in the plant Arctium lappa, has been widely investigated as a potential anticancer agent in the clinical setting. In the present study, we examined the cytotoxic effects of arctigenin by cell viability assay and found that arctigenin markedly inhibited the proliferation of PEL cells compared with KSHV-uninfected B-lymphoma cells under conditions of glucose deprivation. Arctigenin decreased cellular ATP levels, disrupted mitochondrial membrane potential and triggered caspase-9-mediated apoptosis in the glucose-deprived PEL cells. In addition, western blot analysis using phospho-specific antibodies were used to evaluate activity changes in the signaling pathways of interest. As a result, arctigenin suppressed the activation of the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK) signaling pathways by inhibiting ERK and p38 MAPK phosphorylation in the glucose-deprived PEL cells. We confirmed that an inhibitor of ERK (U0126) or p38 MAPK (SB202190 and SB203580) suppressed the proliferation of the BC3 PEL cells compared with the KSHV-negative DG75 cells. Moreover, RT-PCR and luciferase reporter assay revealed that arctigenin and p38 MAPK inhibition by SB202190 or SB203580 downregulated the transcriptional expression of unfolded protein response (UPR)‑related molecules, including GRP78 and ATF6α under conditions of glucose deprivation. Finally, we confirmed that arctigenin did not affect KSHV replication in PEL cells, suggesting that arctigenin treatment for PEL does not contribute to the risk of de novo KSHV production. These data thus indicate that arctigenin may serve as a lead compound for the development of novel and effective drugs for the treatment of PEL.

  1. Inhibition of p38 MAPK enhances ABT-737-induced cell death in melanoma cell lines: novel regulation of PUMA.

    PubMed

    Keuling, Angela M; Andrew, Susan E; Tron, Victor A

    2010-06-01

    The mitogen-activated protein kinase (MAPK) pathway is constitutively activated in the majority of melanomas, promoting cell survival, proliferation and migration. In addition, anti-apoptotic Bcl-2 family proteins Mcl-1, Bcl-xL and Bcl-2 are frequently overexpressed, contributing to melanoma's well-documented chemoresistance. Recently, it was reported that the combination of MAPK pathway inhibition by specific MEK inhibitors and Bcl-2 family inhibition by BH3-mimetic ABT-737 synergistically induces apoptotic cell death in melanoma cell lines. Here we provide the first evidence that inhibition of another key MAPK, p38, synergistically induces apoptosis in melanoma cells in combination with ABT-737. We also provide novel mechanistic data demonstrating that inhibition of p38 increases expression of pro-apoptotic Bcl-2 protein PUMA. Furthermore, we demonstrate that PUMA can be cleaved by a caspase-dependent mechanism during apoptosis and identify what appears to be the PUMA cleavage product. Thus, our findings suggest that the combination of ABT-737 and inhibition of p38 is a promising, new treatment strategy that acts through a novel PUMA-dependent mechanism.

  2. Urotensin II contributes to collagen synthesis and up-regulates Egr-1 expression in cultured pulmonary arterial smooth muscle cells through the ERK1/2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Cai, Zhifeng; Liu, Mengmeng

    Aim: The objective of this study was to investigate the effects of urotensin II (UII) treatment on the proliferation and collagen synthesis of cultured rat pulmonary arterial smooth muscle cells (PASMCs) and to explore whether these effects are mediated by mitogen-activated protein kinase (MAPK) signaling pathways and early growth response 1 (Egr-1). Methods: The proliferation of cultured PASMCs stimulated with different doses of UII was detected by BrdU incorporation. The mRNA expression levels of procollagen I (procol I), procollagen III (procol III), extracellular regulated protein kinase 1/2 (ERK1/2), stress-stimulated protein kinase (Sapk), p38 MAPK (p38), and Egr-1 mRNA in culturedmore » PASMCs after treatment with UII, the UII-specific antagonist urantide, and the ERK1/2 inhibitor PD98059 were detected by real-time polymerase chain reaction (PCR), and the protein expression levels of procol I, procol III, phosphorylated (p)-ERK1/2, p-Sapk, p-p38, and Egr-1 were detected by Western blotting. Results: Treatment with UII increased the proliferation of cultured PASMCs in a dose-dependent manner (P < 0.05). However, treatment with urantide and PD98059 inhibited the promoting effect of UII on PASMC proliferation (P < 0.05). Real-time PCR analysis showed that UII up-regulated the expression of procol I, procol III, ERK1/2, Sapk, and Egr-1 mRNA (P < 0.05), but not p38 mRNA. However, the up-regulating effect of UII was inhibited by PD98059 and urantide. Western blotting analysis showed that UII increased the synthesis of collagen I, collagen III, p-ERK1/2, p-Sapk, and Egr-1, and these effects also were inhibited by PD98059 and urantide (P < 0.05). Conclusions: Egr-1 participates in the UII-mediated proliferation and collagen synthesis of cultured rat PASMCs via activation of the ERK1/2 signaling pathway.« less

  3. Berberine induces FasL-related apoptosis through p38 activation in KB human oral cancer cells

    PubMed Central

    KIM, JAE-SUNG; OH, DAHYE; YIM, MIN-JI; PARK, JIN-JU; KANG, KYEONG-ROK; CHO, IN-A; MOON, SUNG-MIN; OH, JI-SU; YOU, JAE-SEEK; KIM, CHUN SUNG; KIM, DO KYUNG; LEE, SOOK-YOUNG; LEE, GYEONG-JE; IM, HEE-JEONG; KIM, SU-GWAN

    2015-01-01

    In the present study, we examined the anticancer properties of berberine in KB oral cancer cells with a specific focus on its cellular mechanism. Berberine did not affect the cell viability of the primary human normal oral keratinocytes that were used as a control. However, the viability of KB cells was found to decrease significantly in the presence of berberine in a dose-dependent manner. Furthermore, in KB cells, berberine induced the fragmentation of genomic DNA, changes in cell morphology, and nuclear condensation. In addition, caspase-3 and -7 activation, and an increase in apoptosis were observed. Berberine was also found to upregulate significantly the expression of the death receptor ligand, FasL. In turn, this upregulation triggered the activation of pro-apoptotic factors such as caspase-8, -9 and -3 and poly(ADP-ribose) polymerase (PARP). Furthermore, pro-apoptotic factors such as Bax, Bad and Apaf-1 were also significantly upregulated by berberine. Anti-apoptotic factors such as Bcl-2 and Bcl-xL were downregulated. Z-VAD-FMK, a cell-permeable pan-caspase inhibitor, suppressed the activation of caspase-3 and PARP. These results clearly indicate that berberine-induced cell death of KB oral cancer cells was mediated by both extrinsic death receptor-dependent and intrinsic mitochondrial-dependent apoptotic signaling pathways. In addition, berberine-induced upregulation of FasL was shown to be mediated by the p38 MAPK signaling pathway. We also found that berberine-induced migration suppression was mediated by downregulation of MMP-2 and MMP-9 through phosphorylation of p38 MAPK. In summary, berberine has the potential to be used as a chemotherapeutic agent, with limited side-effects, for the management of oral cancer. PMID:25634589

  4. Involvement of MAPKs, NF-{kappa}B and p300 co-activator in IL-1{beta}-induced cytosolic phospholipase A{sub 2} expression in canine tracheal smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, S.-F.; Lin, C.-C.; Chen, H.-C.

    2008-11-01

    Cytosolic phospholipase A{sub 2} (cPLA{sub 2}) plays a pivotal role in mediating agonist-induced arachidonic acid release for prostaglandin (PG) synthesis during stimulation with interleukin-1{beta} (IL-1{beta}). However, the mechanisms underlying IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} synthesis by canine tracheal smooth muscle cells (CTSMCs) have not been defined. IL-1{beta} induced cPLA{sub 2} protein and mRNA expression, PGE{sub 2} production, and phosphorylation of p42/p44 MAPK, p38 MAPK (ATF{sub 2}), and JNK (c-Jun) in a time- and concentration-dependent manner, determined by Western blotting, RT-PCR, and ELISA, which was attenuated by the inhibitors of MEK1/2 (U0126), p38 MAPK (SB202190), and JNK (SP600125), ormore » transfection with dominant negative mutants of MEK1/2, p38, and JNK, respectively. Furthermore, IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} synthesis was inhibited by a selective NF-{kappa}B inhibitor (helenalin) or transfection with dominant negative mutants of NF-{kappa}B inducing kinase (NIK), I{kappa}B kinase (IKK)-{alpha}, and IKK-{beta}. Consistently, IL-1{beta} stimulated both I{kappa}B-{alpha} degradation and NF-{kappa}B translocation into nucleus in these cells. NF-{kappa}B translocation was blocked by helenalin, but not by U0126, SB202190, and SP600125. MAPKs together with NF-{kappa}B-activated p300 recruited to cPLA{sub 2} promoter thus facilitating the binding of NF-{kappa}B to cPLA{sub 2} promoter region and expression of cPLA{sub 2} mRNA. IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} production was inhibited by actinomycin D and cycloheximide, indicating the involvement of transcriptional and translational events in these responses. These results suggest that in CTSMCs, IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} synthesis was independently mediated through activation of MAPKs and NF-{kappa}B pathways and was connected to p300 recruitment and activation.« less

  5. Suppression of Akt/Foxp3-mediated miR-183 expression blocks Sp1-mediated ADAM17 expression and TNFα-mediated NFκB activation in piceatannol-treated human leukemia U937 cells.

    PubMed

    Liu, Wen-Hsin; Chang, Long-Sen

    2012-09-01

    To address the mechanism of piceatannol in inhibiting TNFα-mediated pathway, studies on piceatannol-treated human leukemia U937 cells were conducted. Piceatannol treatment reduced TNFα shedding and NFκB activation and decreased the release of soluble TNFα into the culture medium of U937 cells. Moreover, ADAM17 expression was down-regulated in piceatannol-treated cells. Over-expression of ADAM17 abrogated the ability of piceatannol to suppress TNFα-mediated NFκB activation. Piceatannol-evoked β-TrCP up-regulation promoted Sp1 degradation, thus reducing transcriptional level of ADAM17 gene in U937 cells. Piceatannol treatment induced p38 MAPK phosphorylation but inactivation of Akt and ERK. In contrast to p38 MAPK inhibitor or restoration of ERK activation, transfection of constitutive active Akt abolished the effect of piceatannol on β-TrCP, Sp1 and ADAM17 expression. Piceatannol-elicited down-regulation of miR-183 expression was found to cause β-TrCP up-regulation. Inactivation of Akt resulted in Foxp3 down-regulation and reduced miR-183 expression in piceatannol-treated cells. Knock-down of Foxp3 and chromatin immunoprecipitating revealed that Foxp3 genetically regulated transcription of miR-183 gene. Taken together, our data indicate that suppression of Akt/Foxp3-mediated miR-183 expression blocks Sp1-mediated ADAM17 expression in piceatannol-treated U937 cells. Consequently, piceatannol suppresses TNFα shedding, leading to inhibition of TNFα/NFκB pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Galectin-9 exhibits anti-myeloma activity through JNK and p38 MAP kinase pathways.

    PubMed

    Kobayashi, T; Kuroda, J; Ashihara, E; Oomizu, S; Terui, Y; Taniyama, A; Adachi, S; Takagi, T; Yamamoto, M; Sasaki, N; Horiike, S; Hatake, K; Yamauchi, A; Hirashima, M; Taniwaki, M

    2010-04-01

    Galectins constitute a family of lectins that specifically exhibit the affinity for beta-galactosides and modulate various biological events. Galectin-9 is a tandem-repeat type galectin with two carbohydrate recognition domains and has recently been shown to have an anti-proliferative effect on cancer cells. We investigated the effect of recombinant protease-resistant galectin-9 (hGal9) on multiple myeloma (MM). In vitro, hGal9 inhibited the cell proliferation of five myeloma cell lines examined, including a bortezomib-resistant subcell line, with IC(50) between 75.1 and 280.0 nM, and this effect was mediated by the induction of apoptosis with the activation of caspase-8, -9, and -3. hGal9-activated Jun NH(2)-terminal kinase (JNK) and p38 MAPK signaling pathways followed by H2AX phosphorylation. Importantly, the inhibition of either JNK or p38 MAPK partly inhibited the anti-proliferative effect of hGal9, indicating the crucial role of these pathways in the anti-MM effect of hGal9. hGal9 also induced cell death in patient-derived myeloma cells, some with poor-risk factors, such as chromosomal deletion of 13q or translocation t(4;14)(p16;q32). Finally, hGal9 potently inhibited the growth of human myeloma cells xenografted in nude mice. These suggest that hGal9 is a new therapeutic target for MM that may overcome resistance to conventional chemotherapy.

  7. TGF-β induction of FGF-2 expression in stromal cells requires integrated smad3 and MAPK pathways.

    PubMed

    Strand, Douglas W; Liang, Yao-Yun; Yang, Feng; Barron, David A; Ressler, Steven J; Schauer, Isaiah G; Feng, Xin-Hua; Rowley, David R

    2014-01-01

    Transforming Growth Factor-β (TGF-β) regulates the reactive stroma microenvironment associated with most carcinomas and mediates expression of many stromal derived factors important for tumor progression, including FGF-2 and CTGF. TGF-β is over-expressed in most carcinomas, and FGF-2 action is important in tumor-induced angiogenesis. The signaling mechanisms of how TGF-β regulates FGF-2 expression in the reactive stroma microenvironment are not understood. Accordingly, we have assessed key signaling pathways that mediate TGF-β1-induced FGF-2 expression in prostate stromal fibroblasts and mouse embryo fibroblasts (MEFs) null for Smad2 and Smad3. TGF-β1 induced phosphorylation of Smad2, Smad3, p38 and ERK1/2 proteins in both control MEFs and prostate fibroblasts. Of these, Smad3, but not Smad2 was found to be required for TGF-β1 induction of FGF-2 expression in stromal cells. ChIP analysis revealed a Smad3/Smad4 complex was associated with the -1.9 to -2.3 kb upstream proximal promoter of the FGF-2 gene, further suggesting a Smad3-specific regulation. In addition, chemical inhibition of p38 or ERK1/2 MAPK activity also blocked TGF-β1-induced FGF-2 expression in a Smad3-independent manner. Conversely, inhibition of JNK signaling enhanced FGF-2 expression. Together, these data indicate that expression of FGF-2 in fibroblasts in the tumor stromal cell microenvironment is coordinately dependent on both intact Smad3 and MAP kinase signaling pathways. These pathways and key downstream mediators of TGF-β action in the tumor reactive stroma microenvironment, may evolve as putative targets for therapeutic intervention.

  8. Hck is a key regulator of gene expression in alternatively activated human monocytes.

    PubMed

    Bhattacharjee, Ashish; Pal, Srabani; Feldman, Gerald M; Cathcart, Martha K

    2011-10-21

    IL-13 is a Th2 cytokine that promotes alternative activation (M2 polarization) in primary human monocytes. Our studies have characterized the functional IL-13 receptor complex and the downstream signaling events in response to IL-13 stimulation in alternatively activated monocytes/macrophages. In this report, we present evidence that IL-13 induces the activation of a Src family tyrosine kinase, which is required for IL-13 induction of M2 gene expression, including 15-lipoxygenase (15-LO). Our data show that Src kinase activity regulates IL-13-induced p38 MAPK tyrosine phosphorylation via the upstream kinases MKK3 or MKK6. Our findings also reveal that the IL-13 receptor-associated tyrosine kinase Jak2 is required for the activation of both Src kinase as well as p38 MAPK. Further, we found that Src tyrosine kinase-mediated activation of p38 MAPK is required for Stat1 and Stat3 serine 727 phosphorylation in alternatively activated monocytes/macrophages. Additional studies identify Hck as the specific Src family member, stimulated by IL-13 and involved in regulating both p38 MAPK activation and p38 MAPK-mediated 15-LO expression. Finally we show that the Hck regulates the expression of other alternative state (M2)-specific genes (Mannose receptor, MAO-A, and CD36) and therefore conclude that Hck acts as a key regulator controlling gene expression in alternatively activated monocytes/macrophages.

  9. Experimental and Computational Analysis of Polyglutamine-Mediated Cytotoxicity

    PubMed Central

    Tang, Matthew Y.; Proctor, Carole J.; Woulfe, John; Gray, Douglas A.

    2010-01-01

    Expanded polyglutamine (polyQ) proteins are known to be the causative agents of a number of human neurodegenerative diseases but the molecular basis of their cytoxicity is still poorly understood. PolyQ tracts may impede the activity of the proteasome, and evidence from single cell imaging suggests that the sequestration of polyQ into inclusion bodies can reduce the proteasomal burden and promote cell survival, at least in the short term. The presence of misfolded protein also leads to activation of stress kinases such as p38MAPK, which can be cytotoxic. The relationships of these systems are not well understood. We have used fluorescent reporter systems imaged in living cells, and stochastic computer modeling to explore the relationships of polyQ, p38MAPK activation, generation of reactive oxygen species (ROS), proteasome inhibition, and inclusion body formation. In cells expressing a polyQ protein inclusion, body formation was preceded by proteasome inhibition but cytotoxicity was greatly reduced by administration of a p38MAPK inhibitor. Computer simulations suggested that without the generation of ROS, the proteasome inhibition and activation of p38MAPK would have significantly reduced toxicity. Our data suggest a vicious cycle of stress kinase activation and proteasome inhibition that is ultimately lethal to cells. There was close agreement between experimental data and the predictions of a stochastic computer model, supporting a central role for proteasome inhibition and p38MAPK activation in inclusion body formation and ROS-mediated cell death. PMID:20885783

  10. Resveratrol Protects against TNF-α-Induced Injury in Human Umbilical Endothelial Cells through Promoting Sirtuin-1-Induced Repression of NF-KB and p38 MAPK

    PubMed Central

    Huang, Shujie; Zhu, Pengli

    2016-01-01

    Inflammation and reactive oxygen species (ROS) play important roles in the pathogenesis of atherosclerosis. Resveratrol has been shown to possess anti-inflammatory and antioxidative stress activities, but the underlying mechanisms are not fully understood. In the present study, we investigated the molecular basis associated with the protective effects of resveratrol on tumor necrosis factor-alpha (TNF-α)-induced injury in human umbilical endothelial cells (HUVECs) using a variety of approaches including a cell viability assay, reverse transcription and quantitative polymerase chain reaction, western blot, and immunofluorescence staining. We showed that TNF-α induced CD40 expression and ROS production in cultured HUVECs, which were attenuated by resveratrol treatment. Also, resveratrol increased the expression of sirtuin 1 (SIRT1); and repression of SIRT1 by small-interfering RNA (siRNA) and the SIRT1 inhibitor Ex527 reduced the inhibitory effects of resveratrol on CD40 expression and ROS generation. In addition, resveratrol downregulated the levels of p65 and phospho-p38 MAPK, but this inhibitory effect was attenuated by the suppression of SIRT1 activity. Moreover, the p38 MAPK inhibitor SD203580 and the nuclear factor (NF)-κB inhibitor pyrrolidine dithiocarbamate (PDTC) achieved similar repressive effects as resveratrol on TNF-α-induced ROS generation and CD40 expression. Thus, our study provides a mechanistic link between resveratrol and the activation of SIRT1, the latter of which is involved in resveratrol-mediated repression of the p38 MAPK/NF-κB pathway and ROS production in TNF-α-treated HUVECs. PMID:26799794

  11. SK-N-MC cell death occurs by distinct molecular mechanisms in response to hydrogen peroxide and superoxide anions: involvements of JAK2-STAT3, JNK, and p38 MAP kinases pathways.

    PubMed

    Moslehi, Maryam; Yazdanparast, Razieh

    2013-07-01

    Oxidative stress plays a vital role in the pathogenesis of neurodegenerative diseases. Nerve cells are incessantly exposed to environmental stresses leading to overproduction of some harmful species like reactive oxygen species (ROS). ROS including hydrogen peroxide and superoxide anion are potent inducers of various signaling pathways encompassing MAPKs and JAK-STAT pathways. In the current study, we scrutinized the effects of hydrogen peroxide and/or menadione (superoxide anion generator) on JNK/p38-MAPKs and JAK2-STAT3 pathways to elucidate the mechanism(s) by which each oxidant modulated the above-mentioned pathways leading to SK-N-MC cell death. Our results delineated that hydrogen peroxide and superoxide anion radical induced distinct responses as we showed that STAT3 and p38 were activated in response to hydrogen peroxide, but not superoxide anion radicals indicating the specificity in ROS-induced signaling pathways activations and behaviors. We also observed that menadione induced JNK-dependent p53 expression and apoptotic death in SK-N-MC cells while H2O2-induced JNK activation was p53 independent. Thus, we declare that ROS type has a key role in selective instigation of JNK/p38-MAPKs and JAK2-STAT3 pathways in SK-N-MC cells. Identifying these differential behaviors and mechanisms of hydrogen peroxide and superoxide anion functions illuminates the possible therapeutic targets in the prevention or treatment of ROS-induced neurodegenerative diseases such as Alzheimer's disease.

  12. Downstream components of RhoA required for signal pathway of superoxide formation during phagocytosis of serum opsonized zymosans in macrophages.

    PubMed

    Kim, Jun Sub; Kim, Jae Gyu; Jeon, Chan Young; Won, Ha Young; Moon, Mi Young; Seo, Ji Yeon; Kim, Jong Il; Kim, Jaebong; Lee, Jae Yong; Choi, Soo Young; Park, Jinseu; Yoon Park, Jung Han; Ha, Kwon Soo; Kim, Pyeung Hyeun; Park, Jae Bong

    2005-12-31

    Rac1 and Rac2 are essential for the control of oxidative burst catalyzed by NADPH oxidase. It was also documented that Rho is associated with the superoxide burst reaction during phagocytosis of serum- (SOZ) and IgG-opsonized zymosan particles (IOZ). In this study, we attempted to reveal the signal pathway components in the superoxide formation regulated by Rho GTPase. Tat-C3 blocked superoxide production, suggesting that RhoA is essentially involved in superoxide formation during phagocytosis of SOZ. Conversely SOZ activated both RhoA and Rac1/2. Inhibition of RhoA-activated kinase (ROCK), an important downstream effector of RhoA, by Y27632 and myosin light chain kinase (MLCK) by ML-7 abrogated superoxide production by SOZ. Extracellular signaling-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) were activated during phagocytosis of SOZ, and Tat-C3 and SB203580 reduced ERK1/2 and p38 MAPK activation, suggesting that RhoA and p38 MAPK may be upstream regulators of ERK1/2. Inhibition of ERK1/2, p38 MAPK, phosphatidyl inositol 3-kinase did not block translocation of RhoA to membranes, suggesting that RhoA is upstream to these kinases. Inhibition of RhoA by Tat-C3 blocked phosphorylation of p47(PHOX). Taken together, RhoA, ROCK, p38MAPK, ERK1/2, and p47(PHOX) may be subsequently activated, leading to activation of NADPH oxidase to produce superoxide.

  13. Sphingosine kinase inhibitor suppresses IL-18-induced interferon-gamma production through inhibition of p38 MAPK activation in human NK cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheon, Soyoung; Song, Seok Bean; Jung, Minkyung

    2008-09-12

    Natural killer (NK) cells play an important role in the innate immune response. Interleukin-18 (IL-18) is a well-known interferon-gamma (IFN-{gamma} inducing factor, which stimulates immune response in NK and T cells. Sphingosine kinase (SPHK) catalyzes the formation of sphingosine 1-phosphate (S1P), which acts as a second messenger to function as an anti-apoptotic factor and proliferation stimulator of immune cells. In this study, to elucidate whether SPHK is involved in IL-18-induced IFN-{gamma} production, we measured IL-18-induced IFN-{gamma} production after pre-treatment with SPHK inhibitor (SKI) in NK-92MI cells. We found that IL-18-induced IFN-{gamma} expression was blocked by SKI pre-treatment in both mRNAmore » and protein levels. In addition, the increased IFN-{gamma} production by stimulation with IL-18 is mediated through both SPHK and p38 MAPK. To determine the upstream signals of SKI and p38 MAPK in IL-18-induced IFN-{gamma} production, phosphorylation levels of p38 MAPK was measured after SKI pre-treatment. As a result, inhibition of SPHK by SKI blocked phosphorylation of p38 MAPK, showing that SPHK activation by IL-18 is an upstream signal of p38 MAPK activation. Inhibition of SPHK by SKI also inhibited IL-18-induced IFN-{gamma} production in human primary NK cells. In conclusion, SPHK activation is an essential factor for IL-18-induced IFN-{gamma} production via p38 MAPK.« less

  14. VEGF isoforms have differential effects on permeability of human pulmonary microvascular endothelial cells.

    PubMed

    Ourradi, Khadija; Blythe, Thomas; Jarrett, Caroline; Barratt, Shaney L; Welsh, Gavin I; Millar, Ann B

    2017-06-02

    Alternative splicing of Vascular endothelial growth factor-A mRNA transcripts (commonly referred as VEGF) leads to the generation of functionally differing isoforms, the relative amounts of which have potentially significant physiological outcomes in conditions such as acute respiratory distress syndrome (ARDS). The effect of such isoforms on pulmonary vascular permeability is unknown. We hypothesised that VEGF 165 a and VEGF 165 b isoforms would have differing effects on pulmonary vascular permeability caused by differential activation of intercellular signal transduction pathways. To test this hypothesis we investigated the physiological effect of VEGF 165 a and VEGF 165 b on Human Pulmonary Microvascular Endothelial Cell (HPMEC) permeability using three different methods: trans-endothelial electrical resistance (TEER), Electric cell-substrate impedance sensing (ECIS) and FITC-BSA passage. In addition, potential downstream signalling pathways of the VEGF isoforms were investigated by Western blotting and the use of specific signalling inhibitors. VEGF 165 a increased HPMEC permeability using all three methods (paracellular and transcellular) and led to associated VE-cadherin and actin stress fibre changes. In contrast, VEGF 165 b decreased paracellular permeability and did not induce changes in VE-cadherin cell distribution. Furthermore, VEGF 165 a and VEGF 165 b had differing effects on both the phosphorylation of VEGF receptors and downstream signalling proteins pMEK, p42/44MAPK, p38 MAPK, pAKT and peNOS. Interestingly specific inhibition of the pMEK, p38 MAPK, PI3 kinase and eNOS pathways blocked the effects of both VEGF 165 a and VEGF 165 b on paracellular permeability and the effect of VEGF 165 a on proliferation/migration, suggesting that this difference in cellular response is mediated by an as yet unidentified signalling pathway(s). This study demonstrates that the novel isoform VEGF 165 a and VEGF 165 b induce differing effects on permeability in pulmonary microvascular endothelial cells.

  15. Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yano, Hiroyuki; Division of Radioisotope Research, Department of Research Support, Research Promotion Project, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593; Hamanaka, Ryoji

    Highlights: Black-Right-Pointing-Pointer We examine how radiation affects the expression level and signal pathway of collagen. Black-Right-Pointing-Pointer TGF-{beta}1 mRNA is elevated earlier than those of collagen genes after irradiation. Black-Right-Pointing-Pointer Smad pathway mediates the expression of collagen in radiation induced fibrosis. Black-Right-Pointing-Pointer MAPK pathways are not affected in the expression of collagen after irradiation. -- Abstract: Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Realmore » time RT-RCR showed that both {alpha}1and {alpha}2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-{beta}1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-{beta} receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of {alpha}2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.« less

  16. Function-specific intracellular signaling pathways downstream of heparin-binding EGF-like growth factor utilized by human trophoblasts.

    PubMed

    Jessmon, Philip; Kilburn, Brian A; Romero, Roberto; Leach, Richard E; Armant, D Randall

    2010-05-01

    Heparin-binding EGF-like growth factor (HBEGF) is expressed by trophoblast cells throughout gestation. First-trimester cytotrophoblast cells are protected from hypoxia-induced apoptosis because of the accumulation of HBEGF through a posttranscriptional autocrine mechanism. Exogenous application of HBEGF is cytoprotective in a hypoxia/reoxygenation (H/R) injury model and initiates trophoblast extravillous differentiation to an invasive phenotype. The downstream signaling pathways induced by HBEGF that mediate these various cellular activities were identified using two human first-trimester cytotrophoblast cell lines, HTR-8/SVneo and SW.71, with similar results. Recombinant HBEGF (1 nM) induced transient phosphorylation of MAPK3/1 (ERK), MAPK14 (p38), and AKT within 15 min and JNK after 1-2 h. To determine which downstream pathways regulate the various functions of HBEGF, cells were treated with specific inhibitors of the ERK upstream regulator MEK (U0126), the AKT upstream regulator phosphoinositide-3 (PI3)-kinase (LY294002), MAPK14 (SB203580), and JNK (SP600125), as well as with inactive structural analogues. Only SB203580 specifically prevented HBEGF-mediated rescue during H/R, while each inhibitor attenuated HBEGF-stimulated cell migration. Accumulation of HBEGF at reduced oxygen was blocked only by a combination of U0126, SB203580, and SP600125. We conclude that HBEGF advances trophoblast extravillous differentiation through coordinate activation of PI3 kinase, ERK, MAPK14, and JNK, while only MAPK14 is required for its antiapoptotic activity. Additionally, hypoxia induces an autocrine increase in HBEGF protein levels through MAPK14, JNK or ERK. These experiments reveal a complexity of the intracellular signaling circuitry that regulates trophoblast functions critical for implantation and placentation.

  17. Function-Specific Intracellular Signaling Pathways Downstream of Heparin-Binding EGF-Like Growth Factor Utilized by Human Trophoblasts1

    PubMed Central

    Jessmon, Philip; Kilburn, Brian A.; Romero, Roberto; Leach, Richard E.; Armant, D. Randall

    2010-01-01

    Heparin-binding EGF-like growth factor (HBEGF) is expressed by trophoblast cells throughout gestation. First-trimester cytotrophoblast cells are protected from hypoxia-induced apoptosis because of the accumulation of HBEGF through a posttranscriptional autocrine mechanism. Exogenous application of HBEGF is cytoprotective in a hypoxia/reoxygenation (H/R) injury model and initiates trophoblast extravillous differentiation to an invasive phenotype. The downstream signaling pathways induced by HBEGF that mediate these various cellular activities were identified using two human first-trimester cytotrophoblast cell lines, HTR-8/SVneo and SW.71, with similar results. Recombinant HBEGF (1 nM) induced transient phosphorylation of MAPK3/1 (ERK), MAPK14 (p38), and AKT within 15 min and JNK after 1–2 h. To determine which downstream pathways regulate the various functions of HBEGF, cells were treated with specific inhibitors of the ERK upstream regulator MEK (U0126), the AKT upstream regulator phosphoinositide-3 (PI3)-kinase (LY294002), MAPK14 (SB203580), and JNK (SP600125), as well as with inactive structural analogues. Only SB203580 specifically prevented HBEGF-mediated rescue during H/R, while each inhibitor attenuated HBEGF-stimulated cell migration. Accumulation of HBEGF at reduced oxygen was blocked only by a combination of U0126, SB203580, and SP600125. We conclude that HBEGF advances trophoblast extravillous differentiation through coordinate activation of PI3 kinase, ERK, MAPK14, and JNK, while only MAPK14 is required for its antiapoptotic activity. Additionally, hypoxia induces an autocrine increase in HBEGF protein levels through MAPK14, JNK or ERK. These experiments reveal a complexity of the intracellular signaling circuitry that regulates trophoblast functions critical for implantation and placentation. PMID:20130271

  18. Role of androgen receptor on cyclic mechanical stretch-regulated proliferation of C2C12 myoblasts and its upstream signals: IGF-1-mediated PI3K/Akt and MAPKs pathways.

    PubMed

    Ma, Yiming; Fu, Shaoting; Lu, Lin; Wang, Xiaohui

    2017-07-15

    To detect the effects of androgen receptor (AR) on cyclic mechanical stretch-modulated proliferation of C2C12 myoblasts and its pathways: roles of IGF-1, PI3K and MAPK. C2C12 were randomly divided into five groups: un-stretched control, six or 8 h of fifteen percent stretch, and six or 8 h of twenty percent stretch. Cyclic mechanical stretch of C2C12 were completed using a computer-controlled FlexCell Strain Unit. Cell proliferation and IGF-1 concentration in medium were detected by CCK8 and ELISA, respectively. Expressions of AR and IGF-1R, and expressions and activities of PI3K, p38 and ERK1/2 in stretched C2C12 cells were determined by Western blot. ①The proliferation of C2C12 cells, IGF-1 concentration in medium, expressions of AR and IGF-1R, and activities of PI3K, p38 and ERK1/2 were increased by 6 h of fifteen percent stretch, while decreased by twenty percent stretch for six or 8 h ②The fifteen percent stretch-increased proliferation of C2C12 cells was reversed by AR inhibitor, Flutamide. ③The increases of AR expression, activities of PI3K, p38 and ERK1/2 resulted from fifteen percent stretch were attenuated by IGF-1 neutralizing antibody, while twenty percent stretch-induced decreases of the above indicators were enhanced by recombinant IGF-1. ④Specific inhibitors of p38, ERK1/2 and PI3K all decreased the expression of AR in fifteen percent and twenty percent of stretched C2C12 cells. Cyclic mechanical stretch modulated the proliferation of C2C12 cells, which may be attributed to the alterations of AR via IGF-1-PI3K/Akt and IGF-1-MAPK (p38, ERK1/2) pathways in C2C12 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Halofuginone inhibits Smad3 phosphorylation via the PI3K/Akt and MAPK/ERK pathways in muscle cells: Effect on myotube fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roffe, Suzy; Hagai, Yosey; Institute of Animal Sciences, Volcani Center, Bet Dagan 50250

    2010-04-01

    Halofuginone, a novel inhibitor of Smad3 phosphorylation, has been shown to inhibit muscle fibrosis and to improve cardiac and skeletal muscle functions in the mdx mouse model of Duchenne muscular dystrophy. Here, we demonstrate that halofuginone promotes the phosphorylation of Akt and mitogen-activated protein kinase (MAPK) family members in a C2 muscle cell line and in primary myoblasts derived from wild-type and mdx mice diaphragms. Halofuginone enhanced the association of phosphorylated Akt and MAPK/extracellular signal-regulated protein kinase (ERK) with the non-phosphorylated form of Smad3, accompanied by a reduction in Smad3 phosphorylation levels. This reduction was reversed by inhibitors of themore » phosphoinositide 3'-kinase/Akt (PI3K/Akt) and MAPK/ERK pathways, suggesting their specific role in mediating halofuginone's inhibitory effect on Smad3 phosphorylation. Halofuginone enhanced Akt, MAPK/ERK and p38 MAPK phosphorylation and inhibited Smad3 phosphorylation in myotubes, all of which are crucial for myotube fusion. In addition, halofuginone increased the association Akt and MAPK/ERK with Smad3. As a consequence, halofuginone promoted myotube fusion, as reflected by an increased percentage of C2 and mdx myotubes containing high numbers of nuclei, and this was reversed by specific inhibitors of the PI3K and MAPK/ERK pathways. Together, the data suggest a role, either direct or via inhibition of Smad3 phosphorylation, for Akt or MAPK/ERK in halofuginone-enhanced myotube fusion, a feature which is crucial to improving muscle function in muscular dystrophies.« less

  20. Icariin inhibits TNF-α/IFN-γ induced inflammatory response via inhibition of the substance P and p38-MAPK signaling pathway in human keratinocytes.

    PubMed

    Kong, Lingwen; Liu, Jiaqi; Wang, Jia; Luo, Qingli; Zhang, Hongying; Liu, Baojun; Xu, Fei; Pang, Qi; Liu, Yingchao; Dong, Jingcheng

    2015-12-01

    Pro-inflammatory cytokines play a crucial role in the etiology of atopic dermatitis. We demonstrated that Herba Epimedii has anti-inflammatory potential in an atopic dermatitis mouse model; however, limited research has been conducted on the anti-inflammatory effects and mechanism of icariin, the major active ingredient in Herba Epimedii, in human keratinocytes. In this study, we evaluated the anti-inflammatory potential and mechanisms of icariin in the tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ)-induced inflammatory response in human keratinocytes (HaCaT cells) by observing these cells in the presence or absence of icariin. We measured IL-6, IL-8, IL-1β, MCP-1 and GRO-α production by ELISA; IL-6, IL-8, IL-1β, intercellular adhesion molecule-1 (ICAM-1) and tachykinin receptor 1 (TACR1) mRNA expression by real-time PCR; and P38-MAPK, P-ERK and P-JNK signaling expression by western blot in TNF-α/IFN-γ-stimulated HaCaT cells before and after icariin treatment. The expression of TNF-α-R1 and IFN-γ-R1 during the stimulation of the cell models was also evaluated before and after icariin treatment. We investigated the effect of icariin on these pro-inflammatory cytokines and detected whether this effect occurred via the mitogen-activated protein kinase (MAPK) signal transduction pathways. We further specifically inhibited the activity of two kinases with 20μM SB203580 (a p38 kinase inhibitor) and 50μM PD98059 (an ERK1/2 kinase inhibitor) to determine the roles of the two signal pathways involved in the inflammatory response. We found that icariin inhibited TNF-α/IFN-γ-induced IL-6, IL-8, IL-1β, and MCP-1 production in a dose-dependent manner; meanwhile, the icariin treatment inhibited the gene expression of IL-8, IL-1β, ICAM-1 and TACR1 in HaCaT cells in a time- and dose-dependent manner. Icariin treatment resulted in a reduced expression of p-P38 and p-ERK signal activation induced by TNF-α/IFN-γ; however, only SB203580, the p38 alpha/beta inhibitor, inhibited the secretion of inflammatory cytokines induced by TNF-α/IFN-γ in cultured HaCaT cells. The differential expression of TNF-α-R1 and IFN-γ-R1 was also observed after the stimulation of TNF-α/IFN-γ, which was significantly normalized after the icariin treatment. Collectively, we illustrated the anti-inflammatory property of icariin in human keratinocytes. These effects were mediated, at least partially, via the inhibition of substance P and the p38-MAPK signaling pathway, as well as by the regulation of the TNF-α-R1 and IFN-γ-R1 signals. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The synergistic antitumor activity of arsenic trioxide and vitamin K2 in HL-60 cells involves increased ROS generation and regulation of the ROS-dependent MAPK signaling pathway.

    PubMed

    Qu, Hui; Tong, Danan; Zhang, Yanqing; Kang, Kai; Zhang, Yuling; Chen, Lan; Ren, Lihong

    2013-10-01

    The aim of this study was to investigate the synergistic anticancer effects of arsenic trioxide (ATO) and vitamin K2 (VK2) in HL-60 cells, and elucidate the potential mechanisms. HL-60 cells were exposed to ATO and VK2, either alone or in combination. Cell proliferation and apoptosis were assessed. The combination index (CI) method was used to evaluate whether the action of the drug combination was synergistic, additive or antagonistic. Reactive oxygen species (ROS) and the mitogen-activated protein kinase (MAPK) signaling pathway were also studied, to provide insight into potential mechanisms. The results showed that combining ATO with VK2 significantly inhibited HL-60 cell growth more than either agent alone, indicating a synergistic effect with CI < 1. Annexin V staining demonstrated that the inhibition of cell growth by the drug combination was mediated through an increase in apoptosis; this was supported by examination of caspase-3 and caspase-9 with Western blot assays. Furthermore, induction of ROS, and phosphorylation and activation of the JNK and p38 (but not ERK1/2) pathways, was observed in cells administered the drug combination. Prior treatment with the antioxidant, N-acetylcysteine, partly blocked the apoptosis and expression of caspase-3 induced by the drug combination; apoptosis and expression of caspase-3 were also reversed by inhibitors of JNK or p38. These results suggest that ATO and VK2 act synergistically to increase HL-60 cell apoptosis, through ROS generation and regulation of the MAPK signaling pathway.

  2. Formononetin accelerates wound repair by the regulation of early growth response factor-1 transcription factor through the phosphorylation of the ERK and p38 MAPK pathways.

    PubMed

    Huh, Jeong-Eun; Nam, Dong-Woo; Baek, Young-Hyun; Kang, Jung Won; Park, Dong-Suk; Choi, Do-Young; Lee, Jae-Dong

    2011-01-01

    Formononetin, a phytoestrogen from the root of Astragalus membranaceus, is used as a blood enhancer and to improve blood microcirculation in complementary and alternative medicine. The present study investigated the influence of formononetin on the expression of early growth response factor-1 (Egr-1) and growth factors contributing to wound healing. Formononetin significantly increased growth factors such as transforming growth factor-beta 1 (TGF-β1), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) in human umbilical vein endothelial cells (HUVECs). Formononetin also increased the expression of Egr-1 transcription factor by 3.2- and 10.5-fold, compared with recombinant VEGF(125) in HUVECs. The formononetin-mediated 12%-43% increase induced endothelial cell proliferation and recovered the migration of wounded HUVECs. In an ex vivo angiogenesis assay, formononetin produced a larger capillary sprouting area than produced using recombinant VEGF(125). Cell proliferation and migration of HUVECs were also greater in the presence of formonectin than VEGF(125). Western blot analysis of scratch-wounded confluent HUVECs showed that formononetin induced the phosphorylation of extracellular signal-regulated kinase (ERK) and slightly inhibited the phosphorylation of p38 mitogen-activated protein kinase (MAPK). The formononetin-mediated sustained activation of Egr-1 was suppressed by the ERK inhibitor PD98059 and the p38 inhibitor SB203580. PD98059 inhibited the formononetin-induced endothelial proliferation and repair in scratch-wounded HUVECs, SB203580 increased the cell proliferation and wound healing. Formononetin accelerate wound closure rate as early as day 3 after surgery and consistently observed until day 10 after in wound animal model. These data suggest that formononetin promotes endothelial repair and wound healing in a process involving the over-expression of Egr-1 transcription factor through the regulation of the ERK1/2 and p38 MAPK pathways. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  3. Fisetin Protects PC12 Cells from Tunicamycin-Mediated Cell Death via Reactive Oxygen Species Scavenging and Modulation of Nrf2-Driven Gene Expression, SIRT1 and MAPK Signaling in PC12 Cells

    PubMed Central

    Yen, Jui-Hung; Wu, Pei-Shan; Chen, Shu-Fen; Wu, Ming-Jiuan

    2017-01-01

    Background: Fisetin (3,7,3′,4′-tetrahydroxyflavone) is a dietary flavonol and exhibits antioxidant, anti-inflammatory, and neuroprotective activities. However, high concentration of fisetin is reported to produce reactive oxygen species (ROS), induce endoplasmic reticulum (ER) stress and cause cytotoxicity in cancer cells. The aim of this study is to investigate the cytoprotective effects of low concentration of fisetin against tunicamycin (Tm)-mediated cytotoxicity in neuronal-like catecholaminergic PC12 cells. Methods: Cell viability was assayed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and apoptotic and autophagic markers were analyzed by Western blot. Gene expression of unfolded protein response (UPR) and Phase II enzymes was further investigated using RT-Q-PCR or Western blotting. Intracellular ROS level was measured using 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) by a fluorometer. The effects of fisetin on mitogen activated protein kinases (MAPKs) and SIRT1 (Sirtuin 1) signaling pathways were examined using Western blotting and specific inhibitors. Results: Fisetin (<20 µM) restored cell viability and repressed apoptosis, autophagy and ROS production in Tm-treated cells. Fisetin attenuated Tm-mediated expression of ER stress genes, such as glucose-regulated proteins 78 (GRP78), C/EBP homologous protein (CHOP also known as GADD153) and Tribbles homolog 3 (TRB3), but induced the expression of nuclear E2 related factor (Nrf)2-targeted heme oxygenase (HO)-1, glutamate cysteine ligase (GCL) and cystine/glutamate transporter (xCT/SLC7A11), in both the presence and absence of Tm. Moreover, fisetin enhanced phosphorylation of ERK (extracellular signal-regulated kinase), JNK (c-JUN NH2-terminal protein kinase), and p38 MAPK. Addition of JNK and p38 MAPK inhibitor significantly antagonized its cytoprotective activity and modulatory effects on UPR. Fisetin also restored Tm-inhibited SIRT1 expression and addition of sirtinol (SIRT1 activation inhibitor) significantly blocked fisetin-mediated cytoprotection. In conclusion, this result shows that fisetin activates Nrf2, MAPK and SIRT1, which may elicit adaptive cellular stress response pathways so as to protect cells from Tm-induced cytotoxicity. PMID:28420170

  4. Hydroxysafflor Yellow A Attenuates Neuron Damage by Suppressing the Lipopolysaccharide-Induced TLR4 Pathway in Activated Microglial Cells.

    PubMed

    Lv, Yanni; Qian, Yisong; Ou-Yang, Aijun; Fu, Longsheng

    2016-11-01

    Microglia activation initiates a neurological deficit cascade that contributes to substantial neuronal damage and impairment following ischemia stroke. Toll-like receptor 4 (TLR4) has been demonstrated to play a critical role in this cascade. In the current study, we tested the hypothesis that hydroxysafflor yellow A (HSYA), an active ingredient extracted from Flos Carthami tinctorii, alleviated inflammatory damage, and mediated neurotrophic effects in neurons by inducing the TLR4 pathway in microglia. A non-contact Transwell co-culture system comprised microglia and neurons was treated with HSYA followed by a 1 mg/mL lipopolysaccharide (LPS) stimulation. The microglia were activated prior to neuronal apoptosis, which were induced by increasing TLR4 expression in the activated microglia. However, HSYA suppressed TLR4 expression in the activated microglia, resulting in less neuronal damage at the early stage of LPS stimulation. Western blot analysis and immunofluorescence indicated that dose-dependently HSYA down-regulated TLR4-induced downstream effectors myeloid differentiation factor 88 (MyD88), nuclear factor kappa b (NF-κB), and the mitogen-activated protein kinases (MAPK)-regulated proteins c-Jun NH2-terminal protein kinase (JNK), protein kinase (ERK) 1/2 (ERK1/2), p38 MAPK (p38), as well as the LPS-induced inflammatory cytokine release. However, HSYA up-regulated brain-derived neurotrophic factor (BDNF) expression. Our data suggest that HSYA could exert neurotrophic and anti-inflammatory functions in response to LPS stimulation by inhibiting TLR4 pathway-mediated signaling.

  5. 6-Gingerol protects intestinal barrier from ischemia/reperfusion-induced damage via inhibition of p38 MAPK to NF-κB signalling.

    PubMed

    Li, Yanli; Xu, Bin; Xu, Ming; Chen, Dapeng; Xiong, Yongjian; Lian, Mengqiao; Sun, Yuchao; Tang, Zeyao; Wang, Li; Jiang, Chunling; Lin, Yuan

    2017-05-01

    Intestinal ischemia reperfusion (I/R) injury caused by severe trauma, intestinal obstruction, and operation is one of the tough challenges in clinic. 6-Gingerol (6G), a main active ingredient of ginger, is found to have anti-microbial, anti-inflammatory, anti-oxidative, and anti-cancer activities. The present study was designed to characterize the potential protective effects of 6G on rat intestinal I/R injury and reveal the correlated mechanisms. Rat intestinal I/R model was established with clamping the superior mesenteric artery (SMA) and 6G was intragastrically administered for three consecutive days before I/R injury. Caco-2 and IEC-6 cells were incubated under hypoxia/reoxygenation (H/R) conditions to simulate I/R injury in vitro. The results showed that 6G significantly alleviated intestinal injury in I/R injured rats by reducing the generation of oxidative stress and inhibiting p38 MAPK signaling pathway. 6G significantly reduced MDA level and increased the levels of SOD, GSH, and GSH-Px in I/R injured intestinal tissues. 6G significantly decreased the production of proinflammatory cytokines including TNF-α, IL-1β, and IL-6, and inhibited the expression of inflammatory mediators iNOS/NO in I/R injured intestinal tissues. The impaired intestinal barrier function was restored by using 6G in I/R injured rats and in both Caco-2 and IEC-6 cells characterized by inhibiting p38 MAPK phosphorylation, nuclear translocation of NF-κB, and expression of myosin light chain kinase (MLCK) protein. 6G also reduced the generation of reactive oxygen species (ROS) in both Caco-2 and IEC-6 cells. In vitro transfection of p38 MAPK siRNA mitigated the impact of 6G on NF-κB and MLCK expression, and the results further corroborated the protective effects of 6G on intestinal I/R injury by repressing p38 MAPK signaling. In conclusion, the present study suggests that 6G exerts protective effects against I/R-induced intestinal mucosa injury by inhibiting the formation of ROS and p38 MAPK activation, providing novel insights into the mechanisms of this therapeutic candidate for the treatment of intestinal injury. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Key Role of ROS in the Process of 15-Lipoxygenase/15-Hydroxyeicosatetraenoiccid-Induced Pulmonary Vascular Remodeling in Hypoxia Pulmonary Hypertension

    PubMed Central

    Qiu, Yanli; Liu, Gaofeng; Sheng, Tingting; Yu, Xiufeng; Wang, Shuang; Zhu, Daling

    2016-01-01

    We previously reported that 15-lipoxygenase (15-LO) and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) were up-regulated in pulmonary arterial cells from both pulmonary artery hypertension patients and hypoxic rats and that these factors mediated the progression of pulmonary hypertension (PH) by affecting the proliferation and apoptosis of pulmonary arterial (PA) cells. However, the underlying mechanisms of the remodeling induced by 15-HETE have remained unclear. As reactive oxygen species (ROS) and 15-LO are both induced by hypoxia, it is possible that ROS are involved in the events of hypoxia-induced 15-LO expression that lead to PH. We employed immunohistochemistry, tube formation assays, bromodeoxyuridine (BrdU) incorporation assays, and cell cycle analyses to explore the role of ROS in the process of 15-HETE-mediated hypoxic pulmonary hypertension (HPH). We found that exogenous 15-HETE facilitated the generation of ROS and that this effect was mainly localized to mitochondria. In particular, the mitochondrial electron transport chain and nicotinamide-adenine dinucleotide phosphate oxidase 4 (Nox4) were responsible for the significant 15-HETE-stimulated increase in ROS production. Moreover, ROS induced by 15-HETE stimulated endothelial cell (EC) migration and promoted pulmonary artery smooth muscle cell (PASMC) proliferation under hypoxia via the p38 MAPK pathway. These results indicated that 15-HETE-regulated ROS mediated hypoxia-induced pulmonary vascular remodeling (PVR) via the p38 MAPK pathway. PMID:26871724

  7. Distinct MAPK signaling pathways, p21 up-regulation and caspase-mediated p21 cleavage establishes the fate of U937 cells exposed to 3-hydrogenkwadaphnin: Differentiation versus apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moosavi, Mohammad Amin; Yazdanparast, Razieh

    2008-07-01

    Despite the depth of knowledge concerning the pathogenesis of acute myeloblastic leukemia (AML), long-term survival remains unresolved. Therefore, new agents that act more selectively and more potently are required. In that line, we have recently characterized a novel diterpene ester, called 3-hydrogenkwadaphnin (3-HK), with capability to induce both differentiation and apoptosis in various leukemia cell lines. These effects of 3-HK were mediated through inhibition of inosine 5'-monophosphate dehydrogenase, a selective up-regulated enzyme in cancerous cells, especially leukemia. However, it remains elusive to understand how cells display different fates in response to 3-HK. Here, we report the distinct molecular signaling pathwaysmore » involved in forcing of 3-HK-treated U937 cells to undergo differentiation and apoptosis. After 3-HK (15 nM) treatment, a portion of U937 cells adhered to the culture plates and showed macrophage criteria while others remained in suspension and underwent apoptosis. The differentiated cells arrested in G{sub 0}/G{sub 1} phase of cell cycle and showed early activation of ERK1/2 pathway (3 h) along with ERK-dependent p21{sup Cip/WAF1} (p21) up-regulation and expression of p27{sup Kip1} and Bcl-2. In contrast, the suspension cells underwent apoptosis through Fas/FasL and mitochondrial pathways. The occurrence of apoptosis in these cells were accompanied with caspase-8-mediated p21 cleavage and delayed activation (24 h) of JNK1/2 and p38 MAPK. Taken together, these results suggest that distinct signaling pathways play a pivotal role in fates of drug-treated leukemia cells, thus this may pave some novel therapeutical utilities.« less

  8. p38 mitogen-activated protein kinase-induced nuclear factor kappa-light-chain-enhancer of activated B cell activity is required for neuroprotection in retinal ischemia/reperfusion injury.

    PubMed

    Jiang, Shao-Yun; Zou, Yuan-Yuan; Wang, Jian-Tao

    2012-01-01

    In our previous study, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) played a neuroprotective role in retinal ischemia/reperfusion (I/R) injury in rats. However, the mechanism of NF-κB neuroprotection is still unclear. We hypothesize that p38 mitogen-activated protein kinase (MAPK) is expressed and NF-κB activity induced by p38 MAPK plays a neuroprotective role through antiapoptotic genes (B-cell lymphoma [Bcl]-2 and Bcl-XL) in retinal cells in retinal I/R injury. Retinal ischemia was induced by elevating intraocular pressure in rats. After retinal I/R, the p38 MAPK, NF-κB p65, Bcl-2, and Bcl-XL mRNA levels were measured with real-time polymerase chain reaction. NF-κB p65 activity was assessed with NF-κB enzyme-linked immunosorbent assay in retinal I/R injury and after application of the p38 MAPK inhibitor (SB203580). Furthermore, SB203580 and NF-κB p65 short interfering RNA (siRNA) were used in retinal I/R injury to examine the effects on Bcl-2 and Bcl-XL levels and nucleosome release in the retina and cell survival in the ganglion cell layer. The mRNA levels of NF-κB p65 and p38 MAPK reached a peak at 6 h after retinal I/R and then decreased gradually. The mRNA levels of Bcl-2 and Bcl-XL significantly increased at 2, 4, and 6 h, peaked at 8 h, and decreased gradually, but remained at a higher level compared with the normal control, which was accompanied by an increase in NF-κB p65 in nuclear extracts. After application of SB203580, the increase in the NF-κB p65 levels in the nucleus induced with I/R was completely abolished, and the mRNA expression of Bcl-2 and Bcl-XL decreased significantly compared with the I/R controls. In addition, NF-κB p65 siRNA inhibited Bcl-2 and Bcl-XL expression. Inhibition of the p38 MAPK-NF-κB pathway (using SB203580 or NF-κB p65 siRNA) increased retinal nucleosome release and decreased the number of ganglion cells. These findings provide evidence of crosstalk between p38 MAPK and NF-κB p65 and demonstrate a possible neuroprotective role for the p38 MAPK-NF-κB pathway through Bcl-2 and Bcl-XL in retinal I/R injury in rats.

  9. p38 mitogen-activated protein kinase–induced nuclear factor kappa-light-chain-enhancer of activated B cell activity is required for neuroprotection in retinal ischemia/reperfusion injury

    PubMed Central

    Jiang, Shao-Yun; Zou, Yuan-Yuan

    2012-01-01

    Purpose In our previous study, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) played a neuroprotective role in retinal ischemia/reperfusion (I/R) injury in rats. However, the mechanism of NF-κB neuroprotection is still unclear. We hypothesize that p38 mitogen-activated protein kinase (MAPK) is expressed and NF-κB activity induced by p38 MAPK plays a neuroprotective role through antiapoptotic genes (B-cell lymphoma [Bcl]-2 and Bcl-XL) in retinal cells in retinal I/R injury. Methods Retinal ischemia was induced by elevating intraocular pressure in rats. After retinal I/R, the p38 MAPK, NF-κB p65, Bcl-2, and Bcl-XL mRNA levels were measured with real-time polymerase chain reaction. NF-κB p65 activity was assessed with NF-κB enzyme-linked immunosorbent assay in retinal I/R injury and after application of the p38 MAPK inhibitor (SB203580). Furthermore, SB203580 and NF-κB p65 short interfering RNA (siRNA) were used in retinal I/R injury to examine the effects on Bcl-2 and Bcl-XL levels and nucleosome release in the retina and cell survival in the ganglion cell layer. Results The mRNA levels of NF-κB p65 and p38 MAPK reached a peak at 6 h after retinal I/R and then decreased gradually. The mRNA levels of Bcl-2 and Bcl-XL significantly increased at 2, 4, and 6 h, peaked at 8 h, and decreased gradually, but remained at a higher level compared with the normal control, which was accompanied by an increase in NF-κB p65 in nuclear extracts. After application of SB203580, the increase in the NF-κB p65 levels in the nucleus induced with I/R was completely abolished, and the mRNA expression of Bcl-2 and Bcl-XL decreased significantly compared with the I/R controls. In addition, NF-κB p65 siRNA inhibited Bcl-2 and Bcl-XL expression. Inhibition of the p38 MAPK-NF-κB pathway (using SB203580 or NF-κB p65 siRNA) increased retinal nucleosome release and decreased the number of ganglion cells. Conclusions These findings provide evidence of crosstalk between p38 MAPK and NF-κB p65 and demonstrate a possible neuroprotective role for the p38 MAPK-NF-κB pathway through Bcl-2 and Bcl-XL in retinal I/R injury in rats. PMID:22876136

  10. Osmolarity affects matrix synthesis in the nucleus pulposus associated with the involvement of MAPK pathways: A study of ex vivo disc organ culture system.

    PubMed

    Li, Pei; Gan, Yibo; Xu, Yuan; Li, Songtao; Song, Lei; Li, Sukai; Li, Huijuan; Zhou, Qiang

    2016-06-01

    Matrix homeostasis within the nucleus pulposus (NP) is important for disc function. Unfortunately, the effects of osmolarity on NP matrix synthesis in a disc organ culture system and the underlying mechanisms are largely unknown. The present study was to investigate the effects of different osmolarity modes (constant and cyclic) and osmolarity levels (hypo-, iso-, and hyper-) on NP matrix synthesis using a disc organ culture system and determine whether ERK1/2 or p38MAPK pathway has a role in this process. Porcine discs were cultured for 7 days in various osmotic media, including constant hypo-, iso-, hyper-osmolarity (330, 430, and 550 mOsm/kg, respectively) and cyclic-osmolarity (430 mOsm/kg for 8 h, followed by 550 mOsm/kg for 16 h). The role of ERK1/2 and p38MAPK pathways were determined by their inhibitors U0126 and SB202190 respectively. The expression of SOX9 and downstream aggrecan and collagen II, biochemical content, and histology were used to assess NP matrix synthesis. The findings revealed that NP matrix synthesis was promoted in iso- and cyclic-osmolarity cultures compared to hypo- or hyper-osmolarity culture although the level of matrix synthesis in cyclic-osmolarity culture did not reach that in iso-osmolarity culture. Further analysis suggested that inhibition of the ERK1/2 or p38MAPK pathway in iso- and cyclic-osmolarity cultures reduced NP matrix production. Therefore, we concluded that the effects of osmolarity on NP matrix synthesis depend on osmolarity level (hypo-, iso-, or hyper-) and osmolarity mode (constant or cyclic), and the ERK1/2 and p38MAPK pathways may participate in this process. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1092-1100, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Mechanisms involved in p53 downregulation by leptin in trophoblastic cells.

    PubMed

    Toro, Ayelén Rayen; Pérez-Pérez, Antonio; Corrales Gutiérrez, Isabel; Sánchez-Margalet, Víctor; Varone, Cecilia Laura

    2015-11-01

    Leptin, a 16-kDa polypeptide hormone, is produced by the adipocyte and can also be synthesized by placenta. We previously demonstrated that leptin promotes proliferation and survival in placenta, in part mediated by the p53 pathway. In this work, we investigated the mechanisms involved in leptin down-regulation of p53 level. The human first trimester cytotrophoblastic Swan-71 cell line and human placental explants at term were used. In order to study the late phase of apoptosis, triggered by serum deprivation, experiments of DNA fragmentation were carried out. Exogenous leptin added to human placental explants, showed a decrease on DNA ladder formation and MAPK pathway is involved in this leptin effect. We also found that under serum deprivation condition, leptin decreases p53 levels and the inhibitory leptin effect is lost when cells were pretreated with 50 μM PD98059 or 10 μM LY29004; or were transfected with dominant negative mutants of intermediates of these pathways, suggesting that MAPK and PI3K signaling pathways are necessaries for leptin action. Additionally, leptin diminished Ser-46 p53 phosphorylation and this effect in placental explants was mediated by the activation of MAPK and PI3K pathways. Finally, in order to assess leptin effect on p53 half-life experiments with cycloheximide were performed and MDM-2 expression was analyzed. Leptin diminished p53 half-life and up-regulated MDM-2 expression. In summary, we provided evidence suggesting that leptin anti-apoptotic effect is mediated by MAPK and PI3K pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Upregulation of Nicotinic Acetylcholine Receptor alph4+beta2 through a Ligand-Independent PI3Kbeta Mechanism That Is Enhanced by TNFalpha and the Jak2/p38Mapk Pathways.

    PubMed

    Rogers, Scott W; Gahring, Lorise C

    2015-01-01

    High affinity nicotine-binding sites in the mammalian brain are neuronal nicotinic acetylcholine receptors (nAChR) assembled from at least alpha4 and beta2 subunits into pentameric ion channels. When exposed to ligands such as nicotine, these receptors respond by undergoing upregulation, a correlate of nicotine addiction. Upregulation can be measured using HEK293 (293) cells that stably express alpha4 and beta2 subunits using quantification of [3H]epibatidine ([3H]Eb) binding to measure mature receptors. Treatment of these cells with choline also produces upregulation through a hemicholinium3 (HC3)-sensitive (choline kinase) and an HC3-insensitive pathway which are both independent of the mechanism used by nicotine for upregulation. In both cases, upregulation is significantly enhanced by the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) which signals through its receptor Tnfr1 to activate p38Mapk. Here we report that the inhibition of class1 phosphoinositide 3-kinases isoform PI3Kbeta using the selective antagonist PI828 is alone sufficient to produce upregulation and enhance both nicotine and choline HC3-sensitive mediated upregulation. Further, these processes are impacted upon by an AG-490 sensitive Jak2-associated pathway. Both PI3Kbeta (negative) and Jak2 (positive) modulation of upregulation converge through p38Mapk and both overlap with TNFalpha enhancement of this process. Upregulation through the PI3Kbeta pathway did not require Akt. Collectively these findings support upregulation of endogenous alpha4beta2 as a balance among cellular signaling networks that are highly responsive to multiple environmental, inflammatory and metabolic agents. The findings also suggest how illness and metabolic stress could alter the expression of this important nicotinic receptor and novel avenues to intercede in modifying its expression.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Heng Kean

    14-Deoxy-11,12-didehydroandrographolide (14-DDA), a major diterpenoid isolated from Andrographis paniculata (Burm.f.) Nees, is known to be cytotoxic and elicits a non-apoptotic cell death in T-47D breast carcinoma cells. In this study, the mechanistic toxicology properties of 14-DDA in T-47D cells were further investigated. 14-DDA is found to induce the formation of endoplasmic reticulum (ER) vacuoles and autophagosomes, with concurrent upregulation of LC3-II in the breast carcinoma cells. It stimulated an increase in cytosolic calcium concentration and caused a collapse in mitochondrial membrane potential in these cells. In addition, both DDIT3 and GADD45A, molecules implicated in ER stress pathway, were significantly upregulated.more » DDIT3 knockdown suppressed the formation of both ER vacuoles and autophagosomes, indicating that 14-DDA-induced ER stress and autophagy is dependent on this transcription factor. Collectively, it is possible that GADD45A/p38 MAPK/DDIT3 pathway is involved in the 14-DDA-induced ER-stress-mediated autophagy in T-47D cells. - Highlights: • The mechanistic toxicology properties of 14-DDA in T-47D breast carcinoma cells were investigated. • 14-DDA induces the formation of ER vacuoles and autophagosomes, with concurrent upregulation of LC3-II. • It stimulates an increase in cytosolic calcium concentration and causing collapse in the mitochondrial membrane potential. • Both DDIT3 and GADD45A, molecules implicated in ER stress pathway, were significantly upregulated. • 4-DDA induces ER stress-mediated autophagy in T-47D cells possibly via GADD45A/p38 MAPK/DDIT3 pathway.« less

  14. Calcium alters monoamine oxidase-A parameters in human cerebellar and rat glial C6 cell extracts: possible influence by distinct signalling pathways.

    PubMed

    Cao, Xia; Li, Xin-Min; Mousseau, Darrell D

    2009-07-31

    Calcium (Ca(2+)) is known to augment monoamine oxidase-A (MAO-A) activity in cell cultures as well as in brain extracts from several species. This association between Ca(2+) and MAO-A could contribute to their respective roles in cytotoxicity. However, the effect of Ca(2+) on MAO-A function in human brain has as yet to be examined as does the contribution of specific signalling cascades. We examined the effects of Ca(2+) on MAO-A activity and on [(3)H]Ro 41-1049 binding to MAO-A in human cerebellar extracts, and compared this to its effects on MAO-A activity in glial C6 cells following the targeting of signalling pathways using specific chemical inhibitors. Ca(2+) enhances MAO-A activity as well as the association of [(3)H]Ro 41-1049 to MAO-A in human cerebellar extracts. The screening of neuronal and glial cell cultures reveals that MAO-A activity does not always correlate with the expression of either mao-A mRNA or MAO-A protein. Inhibition of the individual PI3K/Akt, ERK and p38(MAPK) signalling pathways in glial C6 cells all augment basal MAO-A activity. Inhibition of the p38(MAPK) pathway also augments Ca(2+)-sensitive MAO-A activity. We also observe the inverse relation between p38(MAPK) activation and MAO-A function in C6 cultures grown to full confluence. The Ca(2+)-sensitive component to MAO-A activity is present in human brain and in vitro studies link it to the p38(MAPK) pathway. This means of influencing MAO-A function could explain its role in pathologies as diverse as neurodegeneration and cancers.

  15. The P38alpha and P38delta MAP kinases may be gene therapy targets in the future treatment of severe burns.

    PubMed

    Wang, Shuyun; Huang, Qiaobing; Guo, Xiaohua; Brunk, Ulf T; Han, Jiahuai; Zhao, Keseng; Zhao, Ming

    2010-08-01

    Microvascular barrier damage, induced by thermal injury, imposes life-threatening problems owing to the pathophysiological consequences of plasma loss and impaired perfusion that finally may lead to multiple organ failure. The aim of the present study was to define the signaling role of selected mitogen-activated protein kinases (MAPKs) in general vessel hyperpermeability caused by burns and to look for a potential gene therapy. Rearrangement of cytoskeletons and cell tight junctions were evaluated by phalloidin labeling of actin and immunocytochemical demonstration of the ZO-1 protein, whereas blood vessel permeability was evaluated by a fluorescence ratio technique. The p38 MAPK inhibitor SB203580 largely blocked burn serum-induced stress-fiber formation and tight-junction damage. Using the adenoviral approach to transfect dominant negative forms of p38 MAPKs, we found that p38alpha and p38delta had similar effects. The in vivo part of the study showed that transfection of these two constructs significantly lowered general venular hyperpermeability and enhanced the survival of burned animals. Because the p38 MAPK pathway seems to play a crucial role in burn-induced vascular hyperpermeability, general transfection with p38 MAP dominant negative constructs might become a new therapeutic method to block burn-induced plasma leakage.

  16. Global functional analyses of cellular responses to pore-forming toxins.

    PubMed

    Kao, Cheng-Yuan; Los, Ferdinand C O; Huffman, Danielle L; Wachi, Shinichiro; Kloft, Nicole; Husmann, Matthias; Karabrahimi, Valbona; Schwartz, Jean-Louis; Bellier, Audrey; Ha, Christine; Sagong, Youn; Fan, Hui; Ghosh, Partho; Hsieh, Mindy; Hsu, Chih-Shen; Chen, Li; Aroian, Raffi V

    2011-03-01

    Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.

  17. p38β, A novel regulatory target of Pokemon in hepatic cells.

    PubMed

    Chen, Zhe; Liu, Feng; Zhang, Nannan; Cao, Deliang; Liu, Min; Tan, Ying; Jiang, Yuyang

    2013-06-27

    Pokemon is an important proto-oncogene involved in various biological processes and cancer development, such as cell differentiation, tumorigenesis and metastasis. Pokemon is recognized as a transcription factor localized upstream of several oncogenes, regulating their expression. p38MAPKs act as key regulatory factors in cellular signaling pathways associated with inflammatory responses, cell proliferation, differentiation and survival. p38β, a member of p38MAPK family, is closely correlated with tumorigenesis, but the mechanism of activation remains unclear. In this study, we found overexpression of Pokemon promoted the growth, migration and invasion of HepG2 cells. However, a p38 inhibitor SB202190 efficiently attenuated the promoting effect of Pokemon in the HepG2 cells. Targeted expression or silencing of Pokemon changed cellular p38β protein level and phosphorylation of downstream ATF2 in the p38 signaling pathway. Both dual luciferase report assay and ChIP assay suggested that p38β is a novel regulatory target of the transcription factor Pokemon and positively regulated by Pokemon in hepatic cells.

  18. p38β, A Novel Regulatory Target of Pokemon in Hepatic Cells

    PubMed Central

    Chen, Zhe; Liu, Feng; Zhang, Nannan; Cao, Deliang; Liu, Min; Tan, Ying; Jiang, Yuyang

    2013-01-01

    Pokemon is an important proto-oncogene involved in various biological processes and cancer development, such as cell differentiation, tumorigenesis and metastasis. Pokemon is recognized as a transcription factor localized upstream of several oncogenes, regulating their expression. p38MAPKs act as key regulatory factors in cellular signaling pathways associated with inflammatory responses, cell proliferation, differentiation and survival. p38β, a member of p38MAPK family, is closely correlated with tumorigenesis, but the mechanism of activation remains unclear. In this study, we found overexpression of Pokemon promoted the growth, migration and invasion of HepG2 cells. However, a p38 inhibitor SB202190 efficiently attenuated the promoting effect of Pokemon in the HepG2 cells. Targeted expression or silencing of Pokemon changed cellular p38β protein level and phosphorylation of downstream ATF2 in the p38 signaling pathway. Both dual luciferase report assay and ChIP assay suggested that p38β is a novel regulatory target of the transcription factor Pokemon and positively regulated by Pokemon in hepatic cells. PMID:23807508

  19. Effects of cadmium on MAPK signalling pathways and HSP70 expression in a human trophoblast cell line.

    PubMed

    Valbonesi, P; Ricci, L; Franzellitti, S; Biondi, C; Fabbri, E

    2008-08-01

    The aim of this work was to provide a greater insight into the possible effects of Cd on signal transduction and stress-related pathways in reproductive tissues. Cd is a known placental toxin in both animals and humans. Our experiments were designed to study the influence of Cd on MAPK (ERK1/2, JNK1/2 and p38MAPK) activation in the extravillous trophoblast cell line, HTR-8/SVneo, used as an experimental model. We also studied the HSP70 response in cells exposed to Cd, since these proteins may have an important role in conferring protection and tolerance against teratogenic concentrations of the metal. The effects of Cd were compared with those of a well-known toxic agent, H2O2. The metal triggered MAPK activation in a dose- and time-dependent manner. At 30 microM Cd, stimulations of about 300%, 550% and 250% were observed for ERK1/2, JNK1/2, and p38MAPK, respectively. Phosphorylation of ERK1/2 and JNK1/2 was significantly induced after a 1-h exposure to 30 microM Cd, while that of p38MAPK occurred only after 8h. Similarly, H2O2 caused dose- and time-dependent activation of MAPK pathways. Cd potently stimulated HSP70 expression and that of related genes HSP70 A, B and C. H2O2 did not increase HSP70 and HSP70 A and B expression, while temporarily increasing HSP70C transcript levels. In conclusion, Cd triggers different stress responses in trophoblast cells involving HSP70 and SAPK, and also enhances ERK1/2 phosphorylation. Since MAPK dependent pathways play a crucial role during pregnancy, non-physiological activation by Cd exposure may disrupt normal functions in trophoblast cells.

  20. Jellyfish extract induces apoptotic cell death through the p38 pathway and cell cycle arrest in chronic myelogenous leukemia K562 cells

    PubMed Central

    Kwak, Choong-Hwan; Abekura, Fukushi; Park, Jun-Young; Park, Nam Gyu; Chang, Young-Chae; Lee, Young-Choon; Chung, Tae-Wook; Ha, Ki-Tae; Son, Jong-Keun

    2017-01-01

    Jellyfish species are widely distributed in the world’s oceans, and their population is rapidly increasing. Jellyfish extracts have several biological functions, such as cytotoxic, anti-microbial, and antioxidant activities in cells and organisms. However, the anti-cancer effect of Jellyfish extract has not yet been examined. We used chronic myelogenous leukemia K562 cells to evaluate the mechanisms of anti-cancer activity of hexane extracts from Nomura’s jellyfish in vitro. In this study, jellyfish are subjected to hexane extraction, and the extract is shown to have an anticancer effect on chronic myelogenous leukemia K562 cells. Interestingly, the present results show that jellyfish hexane extract (Jellyfish-HE) induces apoptosis in a dose- and time-dependent manner. To identify the mechanism(s) underlying Jellyfish-HE-induced apoptosis in K562 cells, we examined the effects of Jellyfish-HE on activation of caspase and mitogen-activated protein kinases (MAPKs), which are responsible for cell cycle progression. Induction of apoptosis by Jellyfish-HE occurred through the activation of caspases-3,-8 and -9 and phosphorylation of p38. Jellyfish-HE-induced apoptosis was blocked by a caspase inhibitor, Z-VAD. Moreover, during apoptosis in K562 cells, p38 MAPK was inhibited by pretreatment with SB203580, an inhibitor of p38. SB203580 blocked jellyfish-HE-induced apoptosis. Additionally, Jellyfish-HE markedly arrests the cell cycle in the G0/G1 phase. Therefore, taken together, the results imply that the anti-cancer activity of Jellyfish-HE may be mediated apoptosis by induction of caspases and activation of MAPK, especially phosphorylation of p38, and cell cycle arrest at the Go/G1 phase in K562 cells. PMID:28133573

  1. p38 MAPK and PI3K/AKT Signalling Cascades inParkinson’s Disease

    PubMed Central

    Jha, Saurabh Kumar; Jha, Niraj Kumar; Kar, Rohan; Ambasta, Rashmi K; Kumar, Pravir

    2015-01-01

    Parkinson's disease (PD) is a chronic neurodegenerative condition which has the second largest incidence rate among all other neurodegenerative disorders barring Alzheimer's disease (AD). Currently there is no cure and researchers continue to probe the therapeutic prospect in cell cultures and animal models of PD. Out of the several factors contributing to PD prognosis, the role of p38 MAPK (Mitogen activated protein-kinase) and PI3K/AKT signalling module in PD brains is crucial because the impaired balance between the pro- apoptotic and anti-apoptotic pathways trigger unwanted phenotypes such as microglia activation, neuroinflammation, oxidative stress and apoptosis. These factors continue challenging the brain homeostasis in initial stages thereby essentially assisting the dopaminergic (DA) neurons towards progressive degeneration in PD. Neurotherapeutics against PD shall then be targeted against the misregulated accomplices of the p38 and PI3K/AKT cascades. In this review, we have outlined many such established mechanisms involving the p38 MAPK and PI3K/AKT pathways which can offer therapeutic windows for the rectification of aberrant DA neuronal dynamics in PD brains. PMID:26261796

  2. Sex-specific control of CNS autoimmunity by p38 MAPK signaling in myeloid cells

    PubMed Central

    Krementsov, Dimitry N.; Noubade, Rajkumar; Dragon, Julie A.; Otsu, Kinya; Rincon, Mercedes; Teuscher, Cory

    2013-01-01

    Objective Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), characterized by a global increasing incidence driven by relapsing-remitting disease in females. p38 MAP kinase (MAPK) has been described as a key regulator of inflammatory responses in autoimmunity, but its role in the sexual dimorphism in MS or MS models remains unexplored. Methods Toward this end, we used experimental autoimmune encephalomyelitis (EAE), the principal animal model of MS, combined with pharmacologic and genetic inhibition of p38 MAPK activity and transcriptomic analyses. Results Pharmacologic inhibition of p38 MAPK selectively ameliorated EAE in female mice. Conditional deletion studies demonstrated that p38α signaling in macrophages/myeloid cells, but not T cells or dendritic cells, recapitulated this sexual dimorphism. Analysis of CNS inflammatory infiltrates showed that female, but not male mice lacking p38α in myeloid cells exhibited reduced immune cell activation compared with controls, while peripheral T cell priming was unaffected in both sexes. Transcriptomic analyses of myeloid cells revealed differences in p38α-controlled transcripts comprising female- and male-specific gene modules, with greater p38α dependence of pro-inflammatory gene expression in females. Interpretation Our findings demonstrate a key role for p38α in myeloid cells in CNS autoimmunity and uncover important molecular mechanisms underlying sex differences in disease pathogenesis. Taken together, our results suggest that the p38 MAPK signaling pathway represents a novel target for much needed disease modifying therapies for MS. PMID:24027119

  3. Synergistic effect of atorvastatin and cyanidin-3-glucoside against angiotensin II-mediated vascular smooth muscle cell proliferation and migration through MAPK and PI3K/Akt pathways.

    PubMed

    Pantan, Rungusa; Tocharus, Jiraporn; Phatsara, Manussabhorn; Suksamrarn, Apichart; Tocharus, Chainarong

    2016-09-13

    This study aimed to investigate the mechanism of cyanidin-3-glucoside (C3G) in synergy with atorvastatin, even when it is used in low concentrations. Human aortic smooth muscle cells (HASMCs) were used to verify the synergistic mechanism of atorvastatin and C3G against angiotensin II-induced proliferation and migration. BrdU incorporation assay was used to evaluate cell proliferation. Wound healing and Boyden chamber assays were used to investigate cell migration. The cell cycle was examined using flow cytometry. The results revealed that atorvastatin and C3G exhibit a synergistic effect in ameliorating HASMC proliferation and migration by enhancing cell cycle arrest. In addition, these effects also decreased mitogen-activated protein kinase (MAPK) activity by attenuating the expression of phospho-p38, phospho-extracellular signaling-regulated kinase 1/2, and phospho-c-Jun N-terminal kinase. Furthermore, the combination of atorvastatin and C3G modulated the PI3K/Akt pathway and upregulated p21 Cip1 , which was associated with decreases in cyclin D 1 and phospho-retinoblastoma expressions. The synergistic effect of atorvastatin and C3G induced anti-proliferation and anti-migration through MAPK and PI3K/Akt pathways mediated by AT 1 R. These results suggest that the synergistic effect of atorvastatin and C3G may be an alternative therapy for atherosclerosis patients.

  4. Hindlimb unweighting induces changes in the p38MAPK contractile pathway of the rat abdominal aorta.

    PubMed

    Summers, Scott Matthew; Hayashi, Yuichiro; Nguyen, Steven Vu; Nguyen, Thu Minh; Purdy, Ralph Earl

    2009-07-01

    Hindlimb unweighting (HLU) of rats is a model used to mimic the cephalic fluid shift potentially involved in the orthostatic intolerance experienced by astronauts. Certain arteries in these rats exhibit a decreased contractile response to adrenergic agonists. It was shown previously that this may be caused by changes in thick filament regulation (Summers et al., Vascul Pharmacol 48: 208-214, 2008). In the present study, it was hypothesized that HLU also modifies thin filament regulation by effects on p38(MAPK) and ERK. Abdominal aorta rings from 20-day HLU rats and untreated controls were subjected to phenylephrine and phorbol 12,13-dibutyrate (PDBU) concentration response curves in the presence and absence of two inhibitors: the p38(MAPK) inhibitor SB-203580 and the MEK inhibitor U-0126. SB-203580 decreased control sensitivity to both agonists, but HLU sensitivity was not significantly affected. U-0126, which blocks enzymes immediately upstream of ERK, affected sensitivity to both agonists equally between control and HLU. Western blot analysis revealed no change in total levels of p38(MAPK) and its downstream target heat shock protein 27 but did reveal a decrease in phosphorylated levels of both after stimulation with PDBU and phenylephrine after HLU treatment. Neither total ERK nor phosphorylated levels after stimulation were affected by HLU. Total levels of caldesmon, a molecule downstream of both pathways, were decreased, but phosphorylated levels after stimulation were decreased by roughly twice as much. The results of this study demonstrate that HLU downregulates p38(MAPK), but not ERK, signaling. In turn, this may decrease actin availability for contraction.

  5. Protective Effect of Saccharomyces boulardii on Deoxynivalenol-Induced Injury of Porcine Macrophage via Attenuating p38 MAPK Signal Pathway.

    PubMed

    Chang, Chao; Wang, Kun; Zhou, Sheng-Nan; Wang, Xue-Dong; Wu, Jin-E

    2017-05-01

    The aims of our study were to evaluate the effects of Saccharomyces boulardii (S. boulardii) on deoxynivalenol (DON)-induced injury in porcine alveolar macrophage cells (PAMCs) and to explore the underlying mechanisms. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometric analysis, ELISA, qRT-PCR, and western blot were performed to assess whether S. boulardii could prevent DON-induced injury by p38 mitogen-activated protein kinase (p38 MAPK) signal pathway. The results showed that pretreatment with 8 μM DON could decrease the viability of PAMC and significantly increase the apoptosis rate of PAMC, whereas S. boulardii could rescue apoptotic PAMC cells induced by DON. Further experiments revealed that S. boulardii effectively reversed DON-induced cytotoxicity via downregulating the expression of TNF-α, IL-6, and IL-lβ. In addition, S. boulardii significantly alleviated DON-induced phosphorylation and mRNA expression of p38 and further increased the expression of apoptosis regulation genes Bcl-xl and Bcl-2 and inhibited the activation of Bax. Our results suggest that S. boulardii could suppress DON-induced p38 MAPK pathway activation and reduce the expression of downstream inflammatory cytokines, as well as promote the expression of anti-apoptotic genes to inhibit apoptosis induced by DON in PAMC.

  6. IL-12 and IL-23 Production in Toxoplasma gondii- or LPS-Treated Jurkat T Cells via PI3K and MAPK Signaling Pathways.

    PubMed

    Ismail, Hassan Ahmed Hassan Ahmed; Kang, Byung-Hun; Kim, Jae-Su; Lee, Jae-Hyung; Choi, In-Wook; Cha, Guang-Ho; Yuk, Jae-Min; Lee, Young-Ha

    2017-12-01

    IL-12 and IL-23 are closely related in structure, and have been shown to play crucial roles in regulation of immune responses. However, little is known about the regulation of these cytokines in T cells. Here, we investigated the roles of PI3K and MAPK pathways in IL-12 and IL-23 production in human Jurkat T cells in response to Toxoplasma gondii and LPS. IL-12 and IL-23 production was significantly increased in T cells after stimulation with T. gondii or LPS. T. gondii and LPS increased the phosphorylation of AKT, ERK1/2, p38 MAPK, and JNK1/2 in T cells from 10 min post-stimulation, and peaked at 30-60 min. Inhibition of the PI3K pathway reduced IL-12 and IL-23 production in T. gondii-infected cells, but increased in LPS-stimulated cells. IL-12 and IL-23 production was significantly reduced by ERK1/2 and p38 MAPK inhibitors in T. gondii- and LPS-stimulated cells, but not in cells treated with a JNK1/2 inhibitor. Collectively, IL-12 and IL-23 production was positively regulated by PI3K and JNK1/2 in T. gondii-infected Jurkat cells, but negatively regulated in LPS-stimulated cells. And ERK1/2 and p38 MAPK positively regulated IL-12 and IL-23 production in Jurkat T cells. These data indicate that T. gondii and LPS induced IL-12 and IL-23 production in Jurkat T cells through the regulation of the PI3K and MAPK pathways; however, the mechanism underlying the stimulation of IL-12 and IL-23 production by T. gondii in Jurkat T cells is different from that of LPS.

  7. Involvement of the MAPK pathway in the pressure-induced synovial metaplasia procedure for the temporomandibular joint.

    PubMed

    Wu, M J; Lu, H P; Gu, Z Y; Zhou, Y Q

    2016-06-20

    Abnormal pressure is an important factor that contributes to bone adaptation in the temporomandibular joint (TMJ). We determined the effect of the mitogen-activated protein kinases (MAPK) pathway on the pressure-induced synovial metaplasia procedure for the TMJ, both in vitro and in vivo. Synovial fibroblasts (SFs) were exacted from rat TMJs and exposed to different hydrostatic pressures. The protein extracts were analyzed to determine the activation of ERK1/2, JNK, and p38. Surgical anterior disc displacement (ADD) was also performed on Japanese rabbits, and the proteins of TMJ were isolated to analyze pressure-induced MAPK activation after 1, 2, 4, and 8 weeks. The results showed that the activation of ERK1/2 and JNK in SFs significantly changed with increasing hydrostatic pressure, whereas p38 activation did not change. Moreover, p38 was activated in animals 1 week after surgical ADD. The levels of p38 gradually increased after 2 and 4 weeks, and then slightly decreased but remained higher than in the control 8 weeks after surgical ADD. Nevertheless, JNK was rarely activated after the ADD treatment. Our findings suggest the involvement of MAPK activation in the pressure-induced synovial metaplasia procedure with pressure loading in TMJ.

  8. The Drosophila MAPK p38c Regulates Oxidative Stress and Lipid Homeostasis in the Intestine

    PubMed Central

    Chakrabarti, Sveta; Poidevin, Mickaël; Lemaitre, Bruno

    2014-01-01

    The p38 mitogen-activated protein (MAP) kinase signaling cassette has been implicated in stress and immunity in evolutionarily diverse species. In response to a wide variety of physical, chemical and biological stresses p38 kinases phosphorylate various substrates, transcription factors of the ATF family and other protein kinases, regulating cellular adaptation to stress. The Drosophila genome encodes three p38 kinases named p38a, p38b and p38c. In this study, we have analyzed the role of p38c in the Drosophila intestine. The p38c gene is expressed in the midgut and upregulated upon intestinal infection. We showed that p38c mutant flies are more resistant to infection with the lethal pathogen Pseudomonas entomophila but are more susceptible to the non-pathogenic bacterium Erwinia carotovora 15. This phenotype was linked to a lower production of Reactive Oxygen Species (ROS) in the gut of p38c mutants, whereby the transcription of the ROS-producing enzyme Duox is reduced in p38c mutant flies. Our genetic analysis shows that p38c functions in a pathway with Mekk1 and Mkk3 to induce the phosphorylation of Atf-2, a transcription factor that controls Duox expression. Interestingly, p38c deficient flies accumulate lipids in the intestine while expressing higher levels of antimicrobial peptide and metabolic genes. The role of p38c in lipid metabolism is mediated by the Atf3 transcription factor. This observation suggests that p38c and Atf3 function in a common pathway in the intestine to regulate lipid metabolism and immune homeostasis. Collectively, our study demonstrates that p38c plays a central role in the intestine of Drosophila. It also reveals that many roles initially attributed to p38a are in fact mediated by p38c. PMID:25254641

  9. Induction of keratinocyte migration by ECa 233 is mediated through FAK/Akt, ERK, and p38 MAPK signaling.

    PubMed

    Singkhorn, Sawana; Tantisira, Mayuree H; Tanasawet, Supita; Hutamekalin, Pilaiwanwadee; Wongtawatchai, Tulaporn; Sukketsiri, Wanida

    2018-03-13

    Centella asiatica is widely considered the most important medicinal plant for treating and relieving skin diseases. Recently developed standardized extract of Centella asiatica ECa 233 has demonstrated positive effects on wound healing of incision and burn wound in rats. However, knowledge associated with wound healing mechanism of ECa 233 was scare. Therefore, this study aimed to investigate the effect and underlying molecular mechanisms of ECa 233 on the migration of a human keratinocyte cell line (HaCaT) using scratch wound healing assay. Formation of filopodia, a key protein in cell migration as well as signaling pathways possibly involved were subsequently assessed. It was found that HaCaT cell migration was significantly enhanced by ECa 233 in a concentration- and time-dependent manner. The filopodia formations were accordingly increased in exposure to ECa 233 at concentrations of 0.1-100 μg/ml. Furthermore, ECa 233 was found to significantly upregulate the expression of Rac1 and RhoA and to induce phosphorylation of FAK and Akt as well as ERK and p38 MAPK. Taken all together, it is suggestive that ECa 233 induces cell migration and subsequently promotes wound healing activity, through the activation of FAK, Akt, and MAPK signaling pathways thereby supporting the role of ECa 233 to be further developed for the clinical treatment of wound. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Delayed Cell Cycle Progression and Apoptosis Induced by Hemicellulase-Treated Agaricus blazei

    PubMed Central

    Kasai, Hirotake

    2007-01-01

    We examined the effects of hemicellulase-treated Agaricus blazei (AB fraction H, ABH) on growth of several tumor cell lines. ABH inhibited the proliferation of some cell lines without cytotoxic effects. It markedly prolonged the S phase of the cell cycle. ABH also induced mitochondria-mediated apoptosis in different cell lines. However, it had no impact on the growth of other cell lines. ABH induced strong activation of p38 mitogen-activated protein kinase (MAPK) in the cells in which it evoked apoptosis. On the other hand, ABH showed only a weak p38 activation effect in those cell lines in which it delayed cell cycle progression with little induction of apoptosis. However, p38 MAPK-specific inhibitor inhibited both ABH-induced effects, and ABH also caused apoptosis in the latter cells under conditions of high p38 MAPK activity induced by combined treatment with TNF-α. These results indicate that the responsiveness of p38 MAPK to ABH, which differs between cell lines, determines subsequent cellular responses on cell growth. PMID:17342245

  11. ISA virus regulates the generation of reactive oxygen species and p47phox expression in a p38 MAPK-dependent manner in Salmo salar.

    PubMed

    Olavarría, Víctor H; Valdivia, Sharin; Salas, Boris; Villalba, Melina; Sandoval, Rodrigo; Oliva, Harold; Valdebenito, Samuel; Yañez, Alejandro

    2015-02-01

    Several viruses, including Orthomyxovirus, utilize cellular reactive oxygen species (ROS) for viral genomic replication and survival within host cells. However, the role of ROS in early events of viral entry and signal induction has not been elucidated. Here, we show that ISA virus (ISAV) induces ROS production very early during infection of CHSE-214 and SHK-1Ycells, and that production is sustained over the observed 24h post-infection. The mitogen-activated protein kinase (MAPK) family is responsible for important signaling pathways. In this study, we report that ISAV activates ERK and p38 in Salmo salar. In salmonid macrophages, while ERK was required for SOD, GLURED, p47phox expression, p38 regulated the ROS production by the NADPH oxidase complex activation. These results, together with the presence of several consensus target motifs for p38 MAPK in the promoter of the S. salar p47phox gene, suggest that p38 MAPK regulates p47phox gene expression in fish through the activation of this key transcription factor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Connexin 32 and its derived homotypic gap junctional intercellular communication inhibit the migration and invasion of transfected HeLa cells via enhancement of intercellular adhesion.

    PubMed

    Yang, Jie; Liu, Bing; Wang, Qin; Yuan, Dongdong; Hong, Xiaoting; Yang, Yan; Tao, Liang

    2011-01-01

    The effects of connexin (Cx) and its derived homotypic gap junctional intercellular communication (GJIC) between tumor cells on the invasion of metastatic cancers and the underlying mechanisms remain unclear. In this study, we investigated the influence of Cx32 and the homotypic GJIC mediated by this Cx on the migration, invasion and intercellular adhesion of transfected HeLa cells. The expression of Cx32 significantly increased cell adhesion and inhibited migration and invasion. The inhibition of GJIC by oleamide, a widely used GJIC inhibitor, reduced the enhanced adhesion and partly reversed the decreased migration and invasion that had been induced by Cx32 expression. Blockage of the p38 and extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase (ERK1/2 MAPKs) pathways using their specific inhibitors attenuated the effects of Cx32, but not those of GJIC, on cell adhesion, migration and invasion. These results indicate that the homotypic GJIC mediated by Cx32, as well as the Cx itself, inhibit cell migration and invasion, most likely through the elevation of intercellular adhesion. The suppressive effect of Cx32 on the migration and invasion of cancer cells, but not that of its derived homotypic GJIC, partly depends on the activation of the p38 and the ERK1/2 MAPKs pathways.

  13. Tormentic acid inhibits LPS-induced inflammatory response in human gingival fibroblasts via inhibition of TLR4-mediated NF-κB and MAPK signalling pathway.

    PubMed

    Jian, Cong-Xiang; Li, Ming-Zhe; Zheng, Wei-Yin; He, Yong; Ren, Yu; Wu, Zhong-Min; Fan, Quan-Shui; Hu, Yong-He; Li, Chen-Jun

    2015-09-01

    Periodontal disease is one of the most prevalent oral diseases, which is associated with inflammation of the tooth-supporting tissues. Tormentic acid (TA), a triterpene isolated from Rosa rugosa, has been reported to exert anti-inflammatory effects. The aim of this study was to investigate the anti-inflammatory effects of TA on lipopolysaccharide (LPS)-stimulated human gingival fibroblasts (HGFs). The levels of inflammatory cytokines such as interleukin (IL)-6 and chemokines such as IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). The expression of Toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), IκBα, p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) was determined by Western blotting. The results showed that Porphyromonas gingivalis LPS significantly upregulated the expression of IL-6 and IL-8. TA inhibited the LPS-induced production of IL-6 and IL-8 in a dose-dependent manner. Furthermore, TA inhibited LPS-induced TLR4 expression; NF-κB activation; IκBα degradation; and phosphorylation of ERK, JNK, and P38. TA inhibits the LPS-induced inflammatory response in HGFs by suppressing the TLR4-mediated NF-κB and mitogen-activated protein kinase (MAPK) signalling pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Effects of Aronia melanocarpa 'Viking' Extracts in Attenuating RANKL-Induced Osteoclastic Differentiation by Inhibiting ROS Generation and c-FOS/NFATc1 Signaling.

    PubMed

    Ghosh, Mithun; Kim, In Sook; Lee, Young Min; Hong, Seong Min; Lee, Taek Hwan; Lim, Ji Hong; Debnath, Trishna; Lim, Beong Ou

    2018-03-08

    This study aimed to determine the anti-osteoclastogenic effects of extracts from Aronia melanocarpa 'Viking' (AM) and identify the underlying mechanisms in vitro. Reactive oxygen species (ROS) are signal mediators in osteoclast differentiation. AM extracts inhibited ROS production in RAW 264.7 cells in a dose-dependent manner and exhibited strong radical scavenging activity. The extracts also attenuated the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts. To attain molecular insights, the effect of the extracts on the signaling pathways induced by receptor activator of nuclear factor kappa B ligand (RANKL) were also investigated. RANKL triggers many transcription factors through the activation of mitogen-activated protein kinase (MAPK) and ROS, leading to the induction of osteoclast-specific genes. The extracts significantly suppressed RANKL-induced activation of MAPKs, such as extracellular signal-regulated kinase (ERK), c-Jun- N -terminal kinase (JNK) and p38 and consequently led to the downregulation of c-Fos and nuclear factor of activated T cells 1 (NFATc1) protein expression which ultimately suppress the activation of the osteoclast-specific genes, cathepsin K, TRAP, calcitonin receptor and integrin β₃. In conclusion, our findings suggest that AM extracts inhibited RANKL-induced osteoclast differentiation by downregulating ROS generation and inactivating JNK/ERK/p38, nuclear factor kappa B (NF-κB)-mediated c-Fos and NFATc1 signaling pathway.

  15. Cholesterol depletion in cell membranes of human airway epithelial cells suppresses MUC5AC gene expression.

    PubMed

    Song, Kee Jae; Kim, Na Hyun; Lee, Gi Bong; Kim, Ji Hoon; Kwon, Jin Ho; Kim, Kyung-Su

    2013-05-01

    If cholesterol in the cell membrane is depleted by treating cells with methyl-β-cyclodextrin (MβCD), the activities of transmembrane receptors are altered in a cell-specific and/or receptor-specific manner. The proinflammatory cytokines, IL-1β is potent inducers of MUC5AC mRNA and protein synthesis in human airway epithelial cells. Cells activated by IL-1β showed increased phosphorylation of extracellular signal regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). Thus, we investigated the effects of cholesterol depletion on the expression of MUC5AC in human airway epithelial cells and whether these alterations to MUC5AC expression were related to MAPK activity. After NCI-H292 cells were pretreated with 1% MβCD before adding IL-1β for 24 hours, MUC5AC mRNA expression was determined by reverse transcription- polymerase chain reaction (RT-PCR) and real time-PCR. Cholesterol depletion by MβCD was measured by modified microenzymatic fluorescence assay and filipin staining. The phosphorylation of IL-1 receptor, ERK and p38 MAPK, was analyzed by western blot. Cholesterol in the cell membrane was significantly depleted by treatment with MβCD on cells. IL-1β-induced MUC5AC mRNA expression was decreased by MβCD and this decrease occurred IL-1-receptor- specifically. Moreover, we have shown that MβCD suppressed the activation of ERK1/2 and p38 MAPK in cells activated with IL-1β. This result suggests that MβCD-mediated suppression of IL-1β-induced MUC5AC mRNA operated via the ERK- and p38 MAPK-dependent pathway. Cholesterol depletion in NCI-H292 cell membrane may be considered an anti-hypersecretory method since it effectively inhibits mucus secretion of respiratory epithelial cells.

  16. Low-dose occupational exposure to benzene and signal transduction pathways involved in the regulation of cellular response to oxidative stress.

    PubMed

    Fenga, Concettina; Gangemi, Silvia; Giambò, Federica; Tsitsimpikou, Christina; Golokhvast, Kirill; Tsatsakis, Aristidis; Costa, Chiara

    2016-02-15

    Benzene metabolism seems to modulate NF-κB, p38-MAPK (mitogen-activated protein kinase) and signal transducer and activator of transcription 3 (STAT3) signalling pathways via the production of reactive oxygen species. This study aims to evaluate the effects of low-dose, long-term exposure on NF-κB, STAT3, p38-MAPK and stress-activated protein kinase/Jun amino-terminal kinase (SAPK/JNK) signal transduction pathways in peripheral blood mononuclear cells in gasoline station attendants. The influence of consumption of vegetables and fruits on these pathways has also been evaluated. A total of 91 men, employed in gasoline stations located in eastern Sicily, were enrolled for this study and compared with a control group of 63 male office workers with no history of exposure to benzene. The exposure was assessed by measuring urinary trans,trans-muconic acid (t,t-MA) concentration. Quantitative analyses were performed for proteins NF-κB p65, phospho-NF-κB p65, phospho-IκB-α, phospho-SAPK/JNK, phospho-p38 MAPK and phospho-STAT3 using an immunoenzymatic assay. The results of this study indicate significantly higher t,t-MA levels in gasoline station attendants. With regard to NF-κB, phospho-IκB-α and phospho-STAT3 proteins, statistically significant differences were observed in workers exposed to benzene. However, no differences were observed in SAPK/JNK and p38-MAPK activation. These changes were positively correlated with t,t-MA levels, but only phospho-NF-κB p65 was associated with the intake of food rich in antioxidant active principles. Chronic exposure to low-dose benzene can modulate signal transduction pathways activated by oxidative stress and involved in cell proliferation and apoptosis. This could represent a possible mechanism of carcinogenic action of chronic benzene exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. JWA gene regulates PANC-1 pancreatic cancer cell behaviors through MEK-ERK1/2 of the MAPK signaling pathway.

    PubMed

    Wu, Yuan-Yuan; Ma, Tie-Liang; Ge, Zhi-Jun; Lin, Jie; Ding, Wei-Liang; Feng, Jia-Ke; Zhou, Su-Jun; Chen, Guo-Chang; Tan, Yong-Fei; Cui, Guo-Xing

    2014-10-01

    The present study aimed to investigate the role of JWA gene in the proliferation, apoptosis, invasion and migration of PANC-1 pancreatic cancer cells and the effect on the MAPK signaling pathway. Human PANC-1 pancreatic cancer cells were cultured in vitro , and small interfering RNA (siRNA) was designed for the JWA gene. The siRNA was transfected into PANC-1 cells. Subsequently, the cell proliferation was measured by MTT assay; cell apoptosis was detected by analyzing BAX and Bcl-2 protein expression; cell migration and invasion were measured using Transwell ® chambers; and the protein expression of JWA and ERK1/2, JNK and p38 and their phosphorylated forms were measured by western blotting. By utilizing the MTT assay, the results showed that when JWA protein expression was inhibited, the proliferation of PANC-1 cells was enhanced. In addition, the expression of apoptosis-associated protein (AAP) BAX was substantially decreased, while the expression of the apoptosis inhibitor gene, Bcl-2 , was significantly enhanced. Using Transwell chambers, it was found that the number of penetrating PANC-1 cells was significantly increased after transfection with JWA siRNA, suggesting that the migration and invasion of the cells was substantially increased. By studying the association between JWA and the MAPK pathway in PANC-1 cells, it was found that the expression of p-ERK1/2 of the MAPK pathway was significantly downregulated following JWA siRNA transfection. However, the expression levels of ERK1/2, JNK, p38, p-JNK and p-p38 showed no significant differences. In conclusion, it was shown that JWA affects the proliferation, apoptosis, invasion and migration of PANC-1 pancreatic cancer cells which could be attributed to effects on the expression of ERK1/2 in the MAPK pathway.

  18. Magnolol protects against trimethyltin-induced neuronal damage and glial activation in vitro and in vivo.

    PubMed

    Kim, Da Jung; Kim, Yong Sik

    2016-03-01

    Trimethyltin (TMT), an organotin with potent neurotoxic effects by selectively damaging to hippocampus, is used as a tool for creating an experimental model of neurodegeneration. In the present study, we investigated the protective effects of magnolol, a natural biphenolic compound, on TMT-induced neurodegeneration and glial activation in vitro and in vivo. In HT22 murine neuroblastoma cells, TMT induced necrotic/apoptotic cell death and oxidative stress, including intracellular reactive oxygen species (ROS), protein carbonylation, induction of heme oxygenase-1 (HO-1), and activation of all mitogen-activated protein kinases (MAPKs) family proteins. However, magnolol treatment significantly suppressed neuronal cell death by inhibiting TMT-mediated ROS generation and activation of JNK and p38 MAPKs. In BV-2 microglial cells, magnolol efficiently attenuated TMT-induced microglial activation via suppression of ROS generation and activation of JNK, p38 MAPKs, and nuclear factor-κB (NF-κB) signaling. In an in vivo mouse study, TMT induced massive neuronal damage and enhanced oxidative stress at day 2. We also observed a concomitant increase in glial cells and inducible nitric oxide synthase (iNOS) expression on the same day. These features of TMT toxicity were reversed by treatment of magnolol. We observed that p-JNK and p-p38 MAPK levels were increased in the mouse hippocampus at day 1 after TMT treatment and that magnolol blocked TMT-induced JNK and p38 MAPK activation. Magnolol administration prevented TMT-induced hippocampal neurodegeneration and glial activation, possibly through the regulation of TMT-mediated ROS generation and MAPK activation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Arctigenin protects against ultraviolet-A-induced damage to stemness through inhibition of the NF-κB/MAPK pathway.

    PubMed

    Park, See-Hyoung; Cho, Jae Youl; Oh, Sae Woong; Kang, Mingyeong; Lee, Seung Eun; Yoo, Ju Ah; Jung, Kwangseon; Lee, Jienny; Lee, Sang Yeol; Lee, Jongsung

    2018-02-25

    The stemness of stem cells is negatively affected by ultraviolet A (UVA) irradiation. This study was performed to examine the effects of arctigenin on UVA-irradiation-induced damage to the stemness of human mesenchymal stem cells (hMSCs) derived from adipose tissue. The mechanisms of action of arctigenin were also investigated. A BrdU-incorporation assay demonstrated that arctigenin attenuated the UVA-induced reduction of the cellular proliferative potential. Arctigenin also increased the UVA-induced reduction in stemness of hMSCs by upregulating stemness-related genes such as SOX2, OCT4, and NANOG. In addition, the UVA-induced reduction in the mRNA expression level of hypoxia-inducible factor (HIF)-1α was significantly recovered by arctigenin. The antagonizing effect of arctigenin on UVA irradiation was mediated by reduced PGE 2 production through the inhibition of MAPKs (p42/44 MAPK, p38 MAPK, and JNK) and NF-κB. Overall, these findings suggest that arctigenin can ameliorate the reduced stemness of hMSCs induced by UVA irradiation. The effects of arctigenin are mediated by PGE 2 -cAMP signaling-dependent upregulation of HIF-1α. Therefore, arctigenin could be used as an antagonist to attenuate the effects of UVA irradiation. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. p38 Mitogen-Activated Protein Kinase/Signal Transducer and Activator of Transcription-3 Pathway Signaling Regulates Expression of Inhibitory Molecules in T Cells Activated by HIV-1–Exposed Dendritic Cells

    PubMed Central

    Che, Karlhans Fru; Shankar, Esaki Muthu; Muthu, Sundaram; Zandi, Sasan; Sigvardsson, Mikael; Hinkula, Jorma; Messmer, Davorka; Larsson, Marie

    2012-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection enhances the expression of inhibitory molecules on T cells, leading to T-cell impairment. The signaling pathways underlying the regulation of inhibitory molecules and subsequent onset of T-cell impairment remain elusive. We showed that both autologous and allogeneic T cells exposed to HIV-pulsed dendritic cells (DCs) upregulated cytotoxic T-lymphocyte antigen (CTLA-4), tumor-necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), lymphocyte-activation gene-3 (LAG3), T-cell immunoglobulin mucin-3 (TIM-3), CD160 and certain suppression-associated transcription factors, such as B-lymphocyte induced maturation protein-1 (BLIMP-1), deltex homolog 1 protein (DTX1) and forkhead box P3 (FOXP3), leading to T-cell suppression. This induction was regulated by p38 mitogen-activated protein kinase/signal transducer and activator of transcription-3 (P38MAPK/STAT3) pathways, because their blockade significantly abrogated expression of all the inhibitory molecules studied and a subsequent recovery in T-cell proliferation. Neither interleukin-6 (IL-6) nor IL-10 nor growth factors known to activate STAT3 signaling events were responsible for STAT3 activation. Involvement of the P38MAPK/STAT3 pathways was evident because these proteins had a higher level of phosphorylation in the HIV-1–primed cells. Furthermore, blockade of viral CD4 binding and fusion significantly reduced the negative effects DCs imposed on primed T cells. In conclusion, HIV-1 interaction with DCs modulated their functionality, causing them to trigger the activation of the P38MAPK/STAT3 pathway in T cells, which was responsible for the upregulation of inhibitory molecules. PMID:22777388

  1. Momordin Ic couples apoptosis with autophagy in human hepatoblastoma cancer cells by reactive oxygen species (ROS)-mediated PI3K/Akt and MAPK signaling pathways.

    PubMed

    Mi, Yashi; Xiao, Chunxia; Du, Qingwei; Wu, Wanqiang; Qi, Guoyuan; Liu, Xuebo

    2016-01-01

    Momordin Ic is a principal saponin constituent of Fructus Kochiae, which acts as an edible and pharmaceutical product more than 2000 years in China. Our previous research found momordin Ic induced apoptosis by PI3K/Akt and MAPK signaling pathways in HepG2 cells. While the role of autophagy in momordin Ic induced cell death has not been discussed, and the connection between the apoptosis and autophagy is not clear yet. In this work, we reported momordin Ic promoted the formation of autophagic vacuole and expression of Beclin 1 and LC-3 in a dose- and time-dependent manner. Compared with momordin Ic treatment alone, the autophagy inhibitor 3-methyladenine (3-MA) also can inhibit apoptosis, while autophagy activator rapamycin (RAP) has the opposite effect, and the apoptosis inhibitor ZVAD-fmk also inhibited autophagy induced by momordin Ic. Momordin Ic simultaneously induces autophagy and apoptosis by suppressing the ROS-mediated PI3K/Akt and activating the ROS-related JNK and P38 pathways. Additionally, momordin Ic induces apoptosis by suppressing PI3K/Akt-dependent NF-κB pathways and promotes autophagy by ROS-mediated Erk signaling pathway. Those results suggest that momordin Ic has great potential as a nutritional preventive strategy in cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Adverse effects of MWCNTs on life parameters, antioxidant systems, and activation of MAPK signaling pathways in the copepod Paracyclopina nana.

    PubMed

    Kim, Duck-Hyun; Puthumana, Jayesh; Kang, Hye-Min; Lee, Min-Chul; Jeong, Chang-Bum; Han, Jeonghoon; Hwang, Dae-Sik; Kim, Il-Chan; Lee, Jin Wuk; Lee, Jae-Seong

    2016-10-01

    Engineered multi-walled carbon nanotubes (MWCNTs) have received widespread applications in a broad variety of commercial products due to low production cost. Despite their significant commercial applications, CNTs are being discharged to aquatic ecosystem, leading a threat to aquatic life. Thus, we investigated the adverse effect of CNTs on the marine copepod Paracyclopina nana. Additional to the study on the uptake of CNTs and acute toxicity, adverse effects on life parameters (e.g. growth, fecundity, and size) were analyzed in response to various concentrations of CNTs. Also, as a measurement of cellular damage, oxidative stress-related markers were examined in a time-dependent manner. Moreover, activation of redox-sensitive mitogen-activated protein kinase (MAPK) signaling pathways along with the phosphorylation pattern of extracellular signal-regulated kinase (ERK), p38, and c-Jun-N-terminal kinases (JNK) were analyzed to obtain a better understanding of molecular mechanism of oxidative stress-induced toxicity in the copepod P. nana. As a result, significant inhibition on life parameters and evoked antioxidant systems were observed without ROS induction. In addition, CNTs activated MAPK signaling pathway via ERK, suggesting that phosphorylated ERK (p-ERK)-mediated adverse effects are the primary cause of in vitro and in vivo endpoints in response to CNTs exposure. Moreover, ROS-independent activation of MAPK signaling pathway was observed. These findings will provide a better understanding of the mode of action of CNTs on the copepod P. nana at cellular and molecular level and insight on possible ecotoxicological implications in the marine environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Diarachidonoylphosphoethanolamine induces apoptosis of malignant pleural mesothelioma cells through a Trx/ASK1/p38 MAPK pathway.

    PubMed

    Tsuchiya, Ayako; Kaku, Yoshiko; Nakano, Takashi; Nishizaki, Tomoyuki

    2015-11-01

    1,2-Diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE) induces both necrosis/necroptosis and apoptosis of NCI-H28 malignant pleural mesothelioma (MPM) cells. The present study was conducted to understand the mechanism for DAPE-induced apoptosis of NCI-H28 cells. DAPE induced caspase-independent apoptosis of NCI-H28 malignant pleural mesothelioma (MPM) cells, and the effect of DAPE was prevented by antioxidants or an inhibitor of NADPH oxidase (NOX). DAPE generated reactive oxygen species (ROS) and inhibited activity of thioredoxin (Trx) reductase (TrxR). DAPE decreased an association of apoptosis signal-regulating kinase 1 (ASK1) with thioredoxin (Trx), thereby releasing ASK1. DAPE activated p38 mitogen-activated protein kinase (MAPK), which was inhibited by an antioxidant or knocking-down ASK1. In addition, DAPE-induced NCI-H28 cell death was also prevented by knocking-down ASK1. Taken together, the results of the present study indicate that DAPE stimulates NOX-mediated ROS production and suppresses TrxR activity, resulting in the decrease of reduced Trx and the dissociation of ASK1 from a complex with Trx, allowing sequential activation of ASK1 and p38 MAPK, to induce apoptosis of NCI-H28 MPM cells. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  4. Therapy with radio-attenuated vaccine in experimental murine visceral leishmaniasis showed enhanced T cell and inducible nitric oxide synthase levels, suppressed tumor growth factor-beta production with higher expression of some signaling molecules.

    PubMed

    Datta, Sanchita; Roy, Syamal; Manna, Madhumita

    2015-01-01

    Visceral leishmaniasis (VL) or Kala-Azar (KA) is one of the most deadly forms of disease among all neglected tropical diseases. There are no satisfactory drugs or vaccine candidates available for this dreaded disease. Our previous studies showed promising therapeutic and prophylactic efficacy of the live, radio-attenuated parasites through intramuscular (I.M.) and intraperitoneal (I.P.) route in BALB/c mice model. The T-cell proliferation level, the mRNA expression level of inducible nitric oxide synthase (iNOS) and tumor growth factor-beta (TGF-β) genes and finally the phosphorylation levels of phosphoinositide dependent kinase 1 (PDK1), phosphoinositide 3 kinase (PI3K) and p38 mitogen activated protein kinase (p38MAPK) molecules were checked in BALB/c mice model immunized with radio-attenuated Leishmania donovani parasites through I.M. route. Higher T-cell proliferation, increased iNOS level, and suppressed TGF-β level were found in treated infected animal groups (100 and 150Gy) in relation to untreated infected animals. Likewise, phosphorylation levels of PDK1, PI3K and p38MAPK of these two groups were increased when compared to untreated infected controls. The clearance of the parasites from treated infected groups of animals may be mediated by the restoration of T-cell due to therapy with radio-attenuated L. donovani parasites. The killing of parasites was mediated by increase in nitric oxide release through PDK1, PI3K and p38MAPK signaling pathways. A lower TGF-β expression has augmented the restored Th1 ambience in the 100 and 150Gy treated animal groups proving further the efficacy of the candidate vaccine. Copyright © 2015. Published by Elsevier Editora Ltda.

  5. Tetramethylpyrazine suppresses transient oxygen-glucose deprivation-induced connexin32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathway in cultured hippocampal neurons.

    PubMed

    Gong, Gu; Yuan, Libang; Cai, Lin; Ran, Maorong; Zhang, Yulan; Gong, Huaqu; Dai, Xuemei; Wu, Wei; Dong, Hailong

    2014-01-01

    Tetramethylpyrazine (TMP) has been widely used in China as a drug for the treatment of various diseases. Recent studies have suggested that TMP has a protective effect on ischemic neuronal damage. However, the exact mechanism is still unclear. This study aims to investigate the mechanism of TMP mediated ischemic hippocampal neurons injury induced by oxygen-glucose deprivation (OGD). The effect of TMP on hippocampal neurons viability was detected by MTT assay, LDH release assay and apoptosis rate was measured by flow cytometry. TMP significantly suppressed neuron apoptosis in a concentration-dependent manner. TMP could significantly reduce the elevated levels of connexin32 (Cx32) induced by OGD. Knockdown of Cx32 by siRNA attenuated OGD injury. Moreover, our study showed that viability was increased in siRNA-Cx32-treated-neurons, and neuron apoptosis was suppressed by activating Bcl-2 expression and inhibiting Bax expression. Over expression of Cx32 could decrease neurons viability and increase LDH release. Furthermore, OGD increased phosphorylation of ERK1/2 and p38, whose inhibitors relieved the neuron injury and Cx32 up-regulation. Taken together, TMP can reverse the OGD-induced Cx32 expression and cell apoptosis via the ERK1/2 and p38 MAPK pathways.

  6. Effect of β-glucan on MUC4 and MUC5B expression in human airway epithelial cells.

    PubMed

    Kim, Yong-Dae; Bae, Chang Hoon; Song, Si-Youn; Choi, Yoon Seok

    2015-08-01

    β-Glucan is found in the cell walls of fungi, bacteria, and some plant tissues, and is detected by the innate immune system. Furthermore, this recognition is known to worsen respiratory symptoms in patients with allergic and inflammatory airway diseases. However, the means by which β-glucan affects the secretion of major mucins by human airway epithelial cells has not been elucidated. Therefore, in this study, the effect and signaling pathway of β-glucan on mucins MUC4 and MUC5B were investigated in human airway epithelial cells. In NCI-H292 cells and human normal nasal epithelial cells, the effect and signaling pathway of β-glucan on MUC4 and MUC5B expression were investigated using reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassay, and immunoblot analysis with specific inhibitors and small interfering RNA (siRNA). β-Glucan increased MUC4 and MUC5B expression and activated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). SB203580 (a p38 MAPK inhibitor) and pyrrolidine dithiocarbamate (PDTC; a NF-κB inhibitor) inhibited β-glucan-induced MUC4 and MUC5B expression. In addition, siRNA knockdown of p38 MAPK blocked β-glucan-induced MUC4 and MUC5B mRNA expression and β-glucan-activated phosphorylation of NF-κB. Furthermore, Toll-like receptor 4 (TLR4) mRNA expression was increased by β-glucan, and siRNA knockdown of TLR4 blocked β-glucan-induced MUC4 and MUC5B mRNA expression and β-glucan-activated phosphorylation of p38 MAPK and NF-κB. These results demonstrate that in human airway epithelial cells β-glucan induces MUC4 and MUC5B expression via the TLR4-p38 MAPK-NF-κB signaling pathway. © 2015 ARS-AAOA, LLC.

  7. Cardioprotective role of P38 MAPK during myocardial infarction via parallel activation of α-crystallin B and Nrf2.

    PubMed

    Mitra, Arkadeep; Ray, Aramita; Datta, Ritwik; Sengupta, Shantanu; Sarkar, Sagartirtha

    2014-09-01

    Myocardial infarction (MI) is defined as cardiac cell death due to prolonged ischemia. Although necrotic cell death was considered to be solely responsible for myocyte death during MI, it was recently revealed that apoptosis also plays its part in this death process. Our laboratory has recently shown that endoplasmic reticulum (ER) stress-induced apoptosis is the predominant route for apoptosis during MI and the conventional mitochondrial pathway is bypassed by activation of a small heat shock protein α-crystallin B (CRYAB). Since CRYAB is a direct target of P38 mitogen-activated protein kinase (MAPK) cascade, we were prompted to check the role of P38 MAPK in 20-week-old male Wister rats immediately after infarct formation. Interestingly, parallel activation of mitochondrial apoptotic pathway with an increase in ER stress-induced apoptotic load was observed along with decreased activation of CRYAB and Nrf2 (a pro-survival protein activated in response to ER stress) in MI rats treated with SB203580, a specific inhibitor of P38α and P38β compared to the MI alone. As a cumulative effect, this inhibitor treatment also resulted in significant increase in the levels of caspase3 activity and TUNEL positivity, the end point apoptotic markers. Furthermore, SB203580-treated hypoxic adult cardiomyocytes showed formation of desmin aggregates which were previously associated with impaired cardiac function. Thus, this study shows for the first time the precise mechanism by which P38 MAPK plays a pro-survival role and confers protection of cardiomyocytes, during infarct formation. © 2014 Wiley Periodicals, Inc.

  8. Cellular FLICE-inhibitory Protein (cFLIP) Isoforms Block CD95- and TRAIL Death Receptor-induced Gene Induction Irrespective of Processing of Caspase-8 or cFLIP in the Death-inducing Signaling Complex*

    PubMed Central

    Kavuri, Shyam M.; Geserick, Peter; Berg, Daniela; Dimitrova, Diana Panayotova; Feoktistova, Maria; Siegmund, Daniela; Gollnick, Harald; Neumann, Manfred; Wajant, Harald; Leverkus, Martin

    2011-01-01

    Death receptors (DRs) induce apoptosis but also stimulate proinflammatory “non-apoptotic” signaling (e.g. NF-κB and mitogen-activated protein kinase (MAPK) activation) and inhibit distinct steps of DR-activated maturation of procaspase-8. To examine whether isoforms of cellular FLIP (cFLIP) or its cleavage products differentially regulate DR signaling, we established HaCaT cells expressing cFLIPS, cFLIPL, or mutants of cFLIPL (cFLIPD376N and cFLIPp43). cFLIP variants blocked TRAIL- and CD95L-induced apoptosis, but the cleavage pattern of caspase-8 in the death inducing signaling complex was different: cFLIPL induced processing of caspase-8 to the p43/41 fragments irrespective of cFLIP cleavage. cFLIPS or cFLIPp43 blocked procaspase-8 cleavage. Analyzing non-apoptotic signaling pathways, we found that TRAIL and CD95L activate JNK and p38 within 15 min. cFLIP variants and different caspase inhibitors blocked late death ligand-induced JNK or p38 MAPK activation suggesting that these responses are secondary to cell death. cFLIP isoforms/mutants also blocked death ligand-mediated gene induction of CXCL-8 (IL-8). Knockdown of caspase-8 fully suppressed apoptotic and non-apoptotic signaling. Knockdown of cFLIP isoforms in primary human keratinocytes enhanced CD95L- and TRAIL-induced NF-κB activation, and JNK and p38 activation, underscoring the regulatory role of cFLIP for these DR-mediated signals. Whereas the presence of caspase-8 is critical for apoptotic and non-apoptotic signaling, cFLIP isoforms are potent inhibitors of TRAIL- and CD95L-induced apoptosis, NF-κB activation, and the late JNK and p38 MAPK activation. cFLIP-mediated inhibition of CD95 and TRAIL DR could be of crucial importance during keratinocyte skin carcinogenesis and for the activation of innate and/or adaptive immune responses triggered by DR activation in the skin. PMID:21454681

  9. ROS generation and MAPKs activation contribute to the Ni-induced testosterone synthesis disturbance in rat Leydig cells.

    PubMed

    Han, Aijie; Zou, Lingyue; Gan, Xiaoqin; Li, Yu; Liu, Fangfang; Chang, Xuhong; Zhang, Xiaotian; Tian, Minmin; Li, Sheng; Su, Li; Sun, Yingbiao

    2018-06-15

    Nickel (Ni) can disorder testosterone synthesis in rat Leydig cells, whereas the mechanisms remain unclear. The aim of this study was to investigate the role of reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) in Ni-induced disturbance of testosterone synthesis in rat Leydig cells. The testosterone production and ROS levels were detected in Leydig cells. The mRNA and protein levels of testosterone synthetase, including StAR, CYP11A1, 3β-HSD, CYP17A1 and 17β-HSD, were determined. Effects of Ni on the ERK1/2, p38 and JNK MAPKs were also investigated. The results showed that Ni triggered ROS generation, consequently resulted in the decrease of testosterone synthetase expression and testosterone production in Leydig cells, which were then attenuated by ROS scavengers of N-acetylcysteine (NAC) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), indicating that ROS are involved in the Ni-induced testosterone biosynthesis disturbance. Meanwhile Ni activated the ERK1/2, p38 and JNK MAPKs. Furthermore, Ni-inhibited testosterone synthetase expression levels and testosterone secretion were all alleviated by co-treatment with MAPK specific inhibitors (U0126 and SB203580, respectively), implying that Ni inhibited testosterone synthesis through activating ERK1/2 and p38 MAPK signal pathways in Leydig cells. In conclusion, these findings suggest that Ni causes testosterone synthesis disorder, partly, via ROS and MAPK signal pathways. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. The activation of p38 MAPK limits the abnormal proliferation of vascular smooth muscle cells induced by high sodium concentrations

    PubMed Central

    WU, YAN; ZHOU, JUAN; WANG, HUAN; WU, YUE; GAO, QIYUE; WANG, LIJUN; ZHAO, QIANG; LIU, PEINING; GAO, SHANSHAN; WEN, WEN; ZHANG, WEIPING; LIU, YAN; YUAN, ZUYI

    2016-01-01

    The aim of the present study was to ascertain whether high sodium levels can directly promote the proliferation of vascular smooth muscle cells (VSMCs) and to elucidate the underlying mechanisms. Additional sodium chloride (NaCl) was added to the routine culture medium. Cell proliferation was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 5-ethynyl-2′-deoxyuridine (EdU) incorporation assay. The mRNA expression level of proliferating cell nuclear antigen (PCNA) was measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The protein expression levels of PCNA and phosphorylated c-Jun amino N-terminal kinase (p-JNK), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) were measured by western blot analysis. Cell proliferation assay revealed that Na+ rather than Cl− or osmotic pressure promoted the proliferation of the VSMCs. The high sodium level upregulated the expression of PCNA and the phosphorylation levels of JNK, ERK1/2 and p38 MAPK. The inhibition of JNK and ERK1/2 decreased PCNA expression. Of note, the inhibition of p38 MAPK using the inhibitor, SB203580, increased PCNA expression. However, when p38 MAPK was activated by anisomycin, PCNA expression was decreased. On the whole, our findings demonstrate that a relatively high sodium level per se directly promotes the proliferation of VSMCs through the JNK/ERK1/2/PCNA pathway. At the same time, this induction of the proliferation of VSMCs due to high sodium levels can be maintained at a low level via the activation of p38 MAPK. PMID:26530729

  11. SL4, a chalcone-based compound, induces apoptosis in human cancer cells by activation of the ROS/MAPK signalling pathway.

    PubMed

    Wang, L-H; Li, H-H; Li, M; Wang, S; Jiang, X-R; Li, Y; Ping, G-F; Cao, Q; Liu, X; Fang, W-H; Chen, G-L; Yang, J-Y; Wu, C-F

    2015-12-01

    SL4, a chalcone-based compound, exhibits clearly inhibitory effects on HIF-1 and has been shown to effectively suppress tumour invasion and angiogenesis in vitro and in vivo. Here, studies were conducted to determine SL4's anti-apoptotic effects and its underlying mechanisms, in human cancer cells. Cytotoxicity, apoptotic induction and its involved mechanisms of SL4 were investigated using normal cells, cancer cells and mouse xenograft models. The role of reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK) signalling in SL4-induced apoptosis was explored by manipulating specific scavenger or signalling inhibitors, in cultured cells. SL4 significantly inhibited cell population growth of human cancer cell lines but exhibited lower cytotoxicity against normal cells. In addition, SL4 effectively induced apoptosis of Hep3B and MDA-MB-435 cells by activating procaspase-8, -9 and -3, and down-regulating expression levels of XIAP, but did not affect HIF-1 apoptosis-related targets, Survivin and Bcl-XL. Further study showed that SL4 also reduced mitochondrial membrane potential and promoted generation of ROS. ROS generation and apoptotic induction by SL4 were blocked by NAC, a scavenger of ROS, suggesting SL4-induced apoptosis via ROS accumulation. We also found that MAPKs, JNK and p38, but not ERK1/2, to be critical mediators in SL4-induced apoptosis. SP600125 and SB203580, specific inhibitors of JNK kinase and p38 kinase, significantly retarded apoptosis induced by SL4. Moreover, anti-oxidant NAC blocked activation of JNK and p38 induced by SL4, indicating that ROS may act as upstream signalling of JNK and p38 activation. It is noteworthy that animal studies revealed dramatic reduction (49%) in tumour volume after 11 days SL4 treatment. These data demonstrate that SL4 induced apoptosis in human cancer cells through activation of the ROS/MAPK signalling pathway, suggesting that it may be a novel lead compound, as a cancer drug candidate, with polypharmacological characteristics. © 2015 John Wiley & Sons Ltd.

  12. Single Molecule Analysis of Serotonin Transporter Regulation Using Antagonist-Conjugated Quantum Dots Reveals Restricted, p38 MAPK-Dependent Mobilization Underlying Uptake Activation

    PubMed Central

    Chang, Jerry C.; Tomlinson, Ian D.; Warnement, Michael R.; Ustione, Alessandro; Carneiro, Ana M. D.; Piston, David W.; Blakely, Randy D.; Rosenthal, Sandra J.

    2012-01-01

    The presynaptic serotonin (5-HT) transporter (SERT) is targeted by widely prescribed antidepressant medications. Altered SERT expression or regulation has been implicated in multiple neuropsychiatric disorders, including anxiety, depression and autism. Here, we implement a generalizable strategy that exploits antagonist-conjugated quantum dots (Qdots) to monitor, for the first time, single SERT proteins on the surface of serotonergic cells. We document two pools of SERT proteins defined by lateral mobility, one that exhibits relatively free diffusion, and a second, localized to cholesterol and GM1 ganglioside-enriched microdomains, that displays restricted mobility. Receptor-linked signalling pathways that enhance SERT activity mobilize transporters that, nonetheless, remain confined to membrane microdomains. Mobilization of transporters arise from a p38 MAPK-dependent untethering of the SERT C-terminus from the juxtamembrane actin cytoskeleton. Our studies establish the utility of ligand-conjugated Qdots for analysis of the behaviour of single membrane proteins and reveal a physical basis for signaling-mediated SERT regulation. PMID:22745492

  13. Antimelanogenic effect of c-phycocyanin through modulation of tyrosinase expression by upregulation of ERK and downregulation of p38 MAPK signaling pathways

    PubMed Central

    2011-01-01

    Background Pigmentation is one of the essential defense mechanisms against oxidative stress or UV irradiation; however, abnormal hyperpigmentation in human skin may pose a serious aesthetic problem. C-phycocyanin (Cpc) is a phycobiliprotein from spirulina and functions as an antioxidant and a light harvesting protein. Though it is known that spirulina has been used to reduce hyperpigmentation, little literature addresses the antimelanogenic mechanism of Cpc. Herein, we investigated the rationale for the Cpc-induced inhibitory mechanism on melanin synthesis in B16F10 melanoma cells. Methods Cpc-induced inhibitory effects on melanin synthesis and tyrosinase expression were evaluated. The activity of MAPK pathways-associated molecules such as MAPK/ERK and p38 MAPK, were also examined to explore Cpc-induced antimelanogenic mechanisms. Additionally, the intracellular localization of Cpc was investigated by confocal microscopic analysis to observe the migration of Cpc. Results Cpc significantly (P < 0.05) reduced both tyrosinase activity and melanin production in a dose-dependent manner. This phycobiliprotein elevated the abundance of intracellular cAMP leading to the promotion of downstream ERK1/2 phosphorylation and the subsequent MITF (the transcription factor of tyrosinase) degradation. Further, Cpc also suppressed the activation of p38 causing the consequent disturbed activation of CREB (the transcription factor of MITF). As a result, Cpc negatively regulated tyrosinase gene expression resulting in the suppression of melanin synthesis. Moreover, the entry of Cpc into B16F10 cells was revealed by confocal immunofluorescence localization and immunoblot analysis. Conclusions Cpc exerted dual antimelanogenic mechanisms by upregulation of MAPK/ERK-dependent degradation of MITF and downregulation of p38 MAPK-regulated CREB activation to modulate melanin formation. Cpc may have potential applications in biomedicine, food, and cosmetic industries. PMID:21988805

  14. Redox-Sensitive Induction of Src/PI3-kinase/Akt and MAPKs Pathways Activate eNOS in Response to EPA:DHA 6:1

    PubMed Central

    Zgheel, Faraj; Alhosin, Mahmoud; Rashid, Sherzad; Burban, Mélanie; Auger, Cyril; Schini-Kerth, Valérie B.

    2014-01-01

    Aims Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation. Methods and Results EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 1∶1, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively. Conclusion Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS. PMID:25133540

  15. Redox-sensitive induction of Src/PI3-kinase/Akt and MAPKs pathways activate eNOS in response to EPA:DHA 6:1.

    PubMed

    Zgheel, Faraj; Alhosin, Mahmoud; Rashid, Sherzad; Burban, Mélanie; Auger, Cyril; Schini-Kerth, Valérie B

    2014-01-01

    Omega-3 fatty acid products containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have vasoprotective effects, in part, by stimulating the endothelial formation of nitric oxide (NO). This study determined the role of the EPA:DHA ratio and amount, and characterized the mechanism leading to endothelial NO synthase (eNOS) activation. EPA:DHA 6∶1 and 9∶1 caused significantly greater endothelium-dependent relaxations in porcine coronary artery rings than EPA:DHA 3∶1, 1∶1, 1∶3, 1∶6, 1∶9, EPA and DHA alone, and EPA:DHA 6∶1 with a reduced EPA + DHA amount, which were inhibited by an eNOS inhibitor. Relaxations to EPA:DHA 6∶1 were insensitive to cyclooxygenase inhibition, and reduced by inhibitors of either oxidative stress, Src kinase, PI3-kinase, p38 MAPK, MEK, or JNK. EPA:DHA 6∶1 induced phosphorylation of Src, Akt, p38 MAPK, ERK, JNK and eNOS; these effects were inhibited by MnTMPyP. EPA:DHA 6∶1 induced the endothelial formation of ROS in coronary artery sections as assessed by dihydroethidium, and of superoxide anions and hydrogen peroxide in cultured endothelial cells as assessed by electron spin resonance with the spin probe CMH, and the Amplex Red based assay, respectively. Omega-3 fatty acids cause endothelium-dependent NO-mediated relaxations in coronary artery rings, which are dependent on the EPA:DHA ratio and amount, and involve an intracellular activation of the redox-sensitive PI3-kinase/Akt and MAPKs pathways to activate eNOS.

  16. Lipopolysaccharide-regulated production of bone sialoprotein and interleukin-8 in human periodontal ligament fibroblasts: the role of toll-like receptors 2 and 4 and the MAPK pathway.

    PubMed

    Zhang, Y; Li, X

    2015-04-01

    Lipopolysaccharide (LPS) on the cell wall of periodontal pathogens is a major mediator of the inflammatory response and can enhance alveolar bone resorption in periodontitis. Bone sialoprotein is an early marker of osteoblast differentiation. The proinflammatory cytokine, interleukin-8 (IL-8), induces osteoclast differentiation, maturation and maintenance of bone resorption activity. However, the effects of LPS from periodontal pathogens on the expression of bone sialoprotein and IL-8 in human osteoblasts and the mechanism of periodontal bone metabolism regulation are rather unclear. The objectives of this study were to determine the effects of Porphyromonas gingivalis LPS on the production of bone sialoprotein and IL-8 in human periodontal ligament fibroblasts (hPDLFs), and to investigate whether toll-like receptor (TLR) 2, TLR4 and MAPKs pathways are involved in the regulation of production of bone sialoprotein and IL-8 by P. gingivalis LPS. The third-generation of hPDLFs were cultured with mineralization-inducing culture medium. After hPDLFs were treated with P. gingivalis LPS, bone sialoprotein and IL-8 mRNA expression were detected using Real time PCR. Then hPDLFs were transiently transfected with siTLR2 or siTLR4 (20 nm) or inhibited by MAPK signaling pathways inhibitors, and then bone sialoprotein and IL-8 mRNA and protein expression were also detected using Real time PCR and western blotting. Treatments with 0.01 and 0.1 mg/L of P. gingivalis LPS for 8 h up-regulated bone sialoprotein mRNA expression, whereas 10 and 100 mg/L of P. gingivalis LPS induced a significant decrease in the expression of bone sialoprotein mRNA. In contrast, IL8 mRNA levels were increased significantly by 10 mg/L of P. gingivalis LPS. Interestingly, small interfering RNA (siRNA) knock down of the TLR2 and ERK1/2 inhibitor, PD98059, abolished the effects of P. gingivalis LPS on the bone sialoprotein mRNA level, whereas siRNA knock down of the TLR2 and p38 MAPK inhibitor, SB203580, blocked the effect of P. gingivalis LPS on IL-8 in hPDLFs. This study suggests that in hPDLFs, P. gingivalis LPS suppresses bone sialoprotein and enhances IL-8 gene and protein expression via TLR2 and ERK1/2 or the p38 MAPK signaling pathway, respectively. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Antiallergic Activity of Ethanol Extracts of Arctium lappa L. Undried Roots and Its Active Compound, Oleamide, in Regulating FcεRI-Mediated and MAPK Signaling in RBL-2H3 Cells.

    PubMed

    Yang, Woong-Suk; Lee, Sung Ryul; Jeong, Yong Joon; Park, Dae Won; Cho, Young Mi; Joo, Hae Mi; Kim, Inhye; Seu, Young-Bae; Sohn, Eun-Hwa; Kang, Se Chan

    2016-05-11

    The antiallergic potential of Arctium lappa L. was investigated in Sprague-Dawley rats, ICR mice, and RBL-2H3 cells. Ethanol extract (90%) of A. lappa (ALE, 100 μg/mL) inhibited the degranulation rate by 52.9%, determined by the level of β-hexosaminidase. ALE suppressed passive cutaneous anaphylaxis (PCA) in rats and attenuated anaphylaxis and histamine release in mice. To identify the active compound of ALE, we subsequently fractionated and determined the level of β-hexosaminidase in all subfractions. Oleamide was identified as an active compound of ALE, which attenuated the secretion of histamine and the production of tumor necrosis factor (TNF)-α and interleukin-4 (IL-4) in cells treated with compound 48/80 or A23187/phorbol myristate acetate (PMA). Oleamide suppressed FcεRI-tyrosine kinase Lyn-mediated pathway, c-Jun N-terminal kinases (JNK/SAPK), and p38 mitogen-activated protein kinases (p38-MAPKs). These results showed that ALE and oleamide attenuated allergic reactions and should serve as a platform to search for compounds with antiallergic activity.

  18. Hypoxia-induced Bcl-2 expression in endothelial cells via p38 MAPK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Cui-Li, E-mail: zhangcuili@hotmail.com; Song, Fei; Zhang, Jing

    Angiogenesis and apoptosis are reciprocal processes in endothelial cells. Bcl-2, an anti-apoptotic protein, has been found to have angiogenic activities. The purpose of this study was to determine the role of Bcl-2 in hypoxia-induced angiogenesis in endothelial cells and to investigate the underlying mechanisms. Human aortic endothelial cells (HAECs) were exposed to hypoxia followed by reoxygenation. Myocardial ischemia and reperfusion mouse model was used and Bcl-2 expression was assessed. Bcl-2 expression increased in a time-dependent manner in response to hypoxia from 2 to 72 h. Peak expression occurred at 12 h (3- to 4-fold, p < 0.05). p38 inhibitor (SB203580)more » blocked hypoxia-induced Bcl-2 expression, whereas PKC, ERK1/2 and PI3K inhibitors did not. Knockdown of Bcl-2 resulted in decreased HAECs' proliferation and migration. Over-expression of Bcl-2 increased HAECs' tubule formation, whereas knockdown of Bcl-2 inhibited this process. In this model of myocardial ischemia and reperfusion, Bcl-2 expression was increased and was associated with increased p38 MAPK activation. Our results showed that hypoxia induces Bcl-2 expression in HAECs via p38 MAPK pathway.« less

  19. Second-generation inhibitors demonstrate the involvement of p38 mitogen-activated protein kinase in post-transcriptional modulation of inflammatory mediator production in human and rodent airways.

    PubMed

    Birrell, Mark A; Wong, Sissie; McCluskie, Kerryn; Catley, Matthew C; Hardaker, Elizabeth L; Haj-Yahia, Saleem; Belvisi, Maria G

    2006-03-01

    The exact role of p38 mitogen-activated protein kinase (MAPK) in the expression of inflammatory cytokines is not clear; it may regulate transcriptionally, post-transcriptionally, translationally, or post-translationally. The involvement of one or more of these mechanisms has been suggested to depend on the particular cytokine, the cell type studied, and the specific stimulus used. Interpretation of some of the published data is further complicated by the use of inhibitors such as 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole (SB 203580) used at single, high concentrations. The aim of this study was to determine the impact of two second-generation p38 MAPK inhibitors on the expression of a range of inflammatory cytokines at the gene and protein levels in human cultured cells. Similar assessment of the impact of these compounds on inflammatory cytokine expression in a preclinical in vivo model of airway inflammation was performed. The results in THP-1 cells and primary airway macrophages clearly show that protein expression is inhibited at much lower concentrations of inhibitor than are needed to impact on gene expression. In the rodent model, both compounds, at doses that cause maximal inhibition of cellular recruitment, inhibit tumor necrosis factor alpha (TNFalpha) protein production without impacting on nuclear factor kappaB pathway activation or TNFalpha gene expression. In summary, the data shown here demonstrate that, although at high compound concentrations there is some level of transcriptional regulation, the predominant role of p38 MAPK in cytokine production is at the translational level. These data question whether the effect of p38 inhibitors on gene transcription is related to their potential therapeutic role as anti-inflammatory compounds.

  20. Cigarette smoke induced urocystic epithelial mesenchymal transition via MAPK pathways.

    PubMed

    Yu, Dexin; Geng, Hao; Liu, Zhiqi; Zhao, Li; Liang, Zhaofeng; Zhang, Zhiqiang; Xie, Dongdong; Wang, Yi; Zhang, Tao; Min, Jie; Zhong, Caiyun

    2017-01-31

    Cigarette smoke has been shown to be a major risk factor for bladder cancer. Epithelial-mesenchymal transition (EMT) is a crucial process in cancer development. The role of MAPK pathways in regulating cigarette smoke-triggered urocystic EMT remains to be elucidated. Human normal urothelial cells and BALB/c mice were used as in vitro and in vivo cigarette smoke exposure models. Exposure of human normal urothelial cells to cigarette smoke induced morphological change, enhanced migratory and invasive capacities, reduced epithelial marker expression and increased mesenchymal marker expression, along with the activation of MAPK pathways. Moreover, we revealed that ERK1/2 and p38 inhibitors, but rather JNK inhibitor, effectively attenuated cigarette smoke-induced urocystic EMT. Importantly, the regulatory function of ERK1/2 and p38 pathways in cigarette smoke-triggered urocystic EMT was further confirmed in mice exposed to CS for 12 weeks. These findings could provide new insight into the molecular mechanisms of cigarette smoke-associated bladder cancer development as well as its potential intervention.

  1. Colon cancer cells colonize the lung from established liver metastases through p38 MAPK signalling and PTHLH.

    PubMed

    Urosevic, Jelena; Garcia-Albéniz, Xabier; Planet, Evarist; Real, Sebastián; Céspedes, María Virtudes; Guiu, Marc; Fernandez, Esther; Bellmunt, Anna; Gawrzak, Sylwia; Pavlovic, Milica; Mangues, Ramon; Dolado, Ignacio; Barriga, Francisco M; Nadal, Cristina; Kemeny, Nancy; Batlle, Eduard; Nebreda, Angel R; Gomis, Roger R

    2014-07-01

    The mechanisms that allow colon cancer cells to form liver and lung metastases, and whether KRAS mutation influences where and when metastasis occurs, are unknown. We provide clinical and molecular evidence showing that different MAPK signalling pathways are implicated in this process. Whereas ERK2 activation provides colon cancer cells with the ability to seed and colonize the liver, reduced p38 MAPK signalling endows cancer cells with the ability to form lung metastasis from previously established liver lesions. Downregulation of p38 MAPK signalling results in increased expression of the cytokine PTHLH, which contributes to colon cancer cell extravasation to the lung by inducing caspase-independent death in endothelial cells of the lung microvasculature. The concerted acquisition of metastatic traits in the colon cancer cells together with the sequential colonization of liver and lung highlights the importance of metastatic lesions as a platform for further dissemination.

  2. Monocyte 15-lipoxygenase gene expression requires ERK1/2 MAPK activity.

    PubMed

    Bhattacharjee, Ashish; Mulya, Anny; Pal, Srabani; Roy, Biswajit; Feldman, Gerald M; Cathcart, Martha K

    2010-11-01

    IL-13 induces profound expression of 15-lipoxygenase (15-LO) in primary human monocytes. Our studies have defined the functional IL-13R complex, association of Jaks with the receptor components, and the tyrosine phosphorylation of several Stat molecules in response to IL-13. Furthermore, we identified both p38MAPK and protein kinase Cδ as critical regulators of 15-LO expression. In this study, we report an ERK1/2-dependent signaling cascade that regulates IL-13-mediated 15-LO gene expression. We show the rapid phosphorylation/activation of ERK1/2 upon IL-13 exposure. Our results indicate that Tyk2 kinase is required for the activation of ERK1/2, which is independent of the Jak2, p38MAPK, and protein kinase Cδ pathways, suggesting bifurcating parallel regulatory pathways downstream of the receptor. To investigate the signaling mechanisms associated with the ERK1/2-dependent expression of 15-LO, we explored the involvement of transcription factors, with predicted binding sites in the 15-LO promoter, in this process including Elk1, early growth response-1 (Egr-1), and CREB. Our findings indicate that IL-13 induces Egr-1 nuclear accumulation and CREB serine phosphorylation and that both are markedly attenuated by inhibition of ERK1/2 activity. We further show that ERK1/2 activity is required for both Egr-1 and CREB DNA binding to their cognate sequences identified within the 15-LO promoter. Furthermore, by transfecting monocytes with the decoy oligodeoxyribonucleotides specific for Egr-1 and CREB, we discovered that Egr-1 and CREB are directly involved in regulating 15-LO gene expression. These studies characterize an important regulatory role for ERK1/2 in mediating IL-13-induced monocyte 15-LO expression via the transcription factors Egr-1 and CREB.

  3. cAMP signalling decreases p300 protein levels by promoting its ubiquitin/proteasome dependent degradation via Epac and p38 MAPK in lung cancer cells.

    PubMed

    Jeong, Min-Jae; Kim, Eui-Jun; Cho, Eun-Ah; Ye, Sang-Kyu; Kang, Gyeong Hoon; Juhnn, Yong-Sung

    2013-05-02

    The transcriptional coactivator p300 functions as a histone acetyltransferase and a scaffold for transcription factors. We investigated the effect of cAMP signalling on p300 expression. The activation of cAMP signalling by the expression of constitutively active Gαs or by treatment with isoproterenol decreased the p300 protein expression in lung cancer cells. Isoproterenol promoted the ubiquitination and subsequent proteasomal degradation of p300 in an Epac-dependent manner. Epac promoted p300 degradation by inhibiting the activity of p38 MAPK. It is concluded that cAMP signalling decreases the level of the p300 protein by promoting its ubiquitin-proteasome dependent degradation, which is mediated by Epac and p38 MAPK, in lung cancer cells. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Role of protein kinase C in TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells.

    PubMed

    Abraha, Abraham B; Rana, Krupa; Whalen, Margaret M

    2010-11-01

    Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposure of NK cells to tributyltin (TBT) greatly diminishes their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C(PKC) as well as MAPK activity. TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposure. TBT caused a 2–3-fold activation of PKC at concentrations ranging from 50 to 300 nM (16–98 ng/ml),indicating that activation of PKC occurs in response to TBT exposure. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells, validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that, in NK cells where PKC activation was blocked, there was no activation of the MAPK, p44/42 in response to TBT.However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including activation of p44/42 by TBT in NK cells.

  5. Role of protein kinase C in the TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells

    PubMed Central

    Abraha, Abraham B.; Rana, Krupa; Whalen, Margaret M.

    2010-01-01

    Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposures of NK cells to tributyltin (TBT) greatly diminish their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in the NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C (PKC) as well as MAPK activity. The TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in the inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposures. TBT caused a 2–3 fold activation of PKC at concentrations ranging from 50–300 nM (16–98 ng/mL), indicating that activation of PKC occurs in response to TBT exposures. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that in NK cells where PKC activation was blocked there was no activation of the MAPK, p44/42 in response to TBT. However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including the activation of p44/42 by TBT in NK cells. PMID:20390410

  6. Emodin Inhibition of Influenza A Virus Replication and Influenza Viral Pneumonia via the Nrf2, TLR4, p38/JNK and NF-kappaB Pathways.

    PubMed

    Dai, Jian-Ping; Wang, Qian-Wen; Su, Yun; Gu, Li-Ming; Zhao, Ying; Chen, Xiao-Xua; Chen, Cheng; Li, Wei-Zhong; Wang, Ge-Fei; Li, Kang-Sheng

    2017-10-18

    Lasting activations of toll-like receptors (TLRs), MAPK and NF-κB pathways can support influenza A virus (IAV) infection and promote pneumonia. In this study, we have investigated the effect and mechanism of action of emodin on IAV infection using qRT-PCR, western blotting, ELISA, Nrf2 luciferase reporter, siRNA and plaque inhibition assays. The results showed that emodin could significantly inhibit IAV (ST169, H1N1) replication, reduce IAV-induced expressions of TLR2/3/4/7, MyD88 and TRAF6, decrease IAV-induced phosphorylations of p38/JNK MAPK and nuclear translocation of NF-κB p65. Emodin also activated the Nrf2 pathway, decreased ROS levels, increased GSH levelss and GSH/GSSG ratio, and upregulated the activities of SOD, GR, CAT and GSH-Px after IAV infection. Suppression of Nrf2 via siRNA markedly blocked the inhibitory effects of emodin on IAV-induced activations of TLR4, p38/JNK, and NF-κB pathways and on IAV-induced production of IL-1β, IL-6 and expression of IAV M2 protein. Emodin also dramatically increased the survival rate of mice, reduced lung edema, pulmonary viral titer and inflammatory cytokines, and improved lung histopathological changes. In conclusion, emodin can inhibit IAV replication and influenza viral pneumonia, at least in part, by activating Nrf2 signaling and inhibiting IAV-induced activations of the TLR4, p38/JNK MAPK and NF-κB pathways.

  7. Kinase cascades and ligand-directed signaling at the kappa opioid receptor.

    PubMed

    Bruchas, Michael R; Chavkin, Charles

    2010-06-01

    The dynorphin/kappa opioid receptor (KOR) system has been implicated as a critical component of the stress response. Stress-induced activation of dynorphin-KOR is well known to produce analgesia, and more recently, it has been implicated as a mediator of stress-induced responses including anxiety, depression, and reinstatement of drug seeking. Drugs selectively targeting specific KOR signaling pathways may prove potentially useful as therapeutic treatments for mood and addiction disorders. KOR is a member of the seven transmembrane spanning (7TM) G-protein coupled receptor (GPCR) superfamily. KOR activation of pertussis toxin-sensitive G proteins leads to Galphai/o inhibition of adenylyl cyclase production of cAMP and releases Gbetagamma, which modulates the conductances of Ca(+2) and K(+) channels. In addition, KOR agonists activate kinase cascades including G-protein coupled Receptor Kinases (GRK) and members of the mitogen-activated protein kinase (MAPK) family: ERK1/2, p38 and JNK. Recent pharmacological data suggests that GPCRs exist as dynamic, multi-conformational protein complexes that can be directed by specific ligands towards distinct signaling pathways. Ligand-induced conformations of KOR that evoke beta-arrestin-dependent p38 MAPK activation result in aversion; whereas ligand-induced conformations that activate JNK without activating arrestin produce long-lasting inactivation of KOR signaling. In this review, we discuss the current status of KOR signal transduction research and the data that support two novel hypotheses: (1) KOR selective partial agonists that do not efficiently activate p38 MAPK may be useful analgesics without producing the dysphoric or hallucinogenic effects of selective, highly efficacious KOR agonists and (2) KOR antagonists that do not activate JNK may be effective short-acting drugs that may promote stress-resilience.

  8. Fisetin Inhibits Migration and Invasion of Human Cervical Cancer Cells by Down-Regulating Urokinase Plasminogen Activator Expression through Suppressing the p38 MAPK-Dependent NF-κB Signaling Pathway

    PubMed Central

    Chou, Ruey-Hwang; Hsieh, Shu-Ching; Yu, Yung-Luen; Huang, Min-Hsien; Huang, Yi-Chang; Hsieh, Yi-Hsien

    2013-01-01

    Fisetin (3,3’,4’,7-tetrahydroxyflavone), a naturally occurring flavonoid, has been reported to inhibit proliferation and induce apoptosis in several cancer types. However, its effect on the anti-metastatic potential of cervical cancer cells remains unclear. In the present study, we found that fisetin inhibits the invasion and migration of cervical cancer cells. The expression and activity of urokinase plasminogen activator (uPA) was significantly suppressed by fisetin in a dose-dependent manner. We also demonstrated that fisetin reduces the phosphorylation of p38 MAPK, but not that of ERK1/2, JNK1/2, or AKT. Addition of a p38 MAPK inhibitor, SB203580, further enhanced the inhibitory effect of fisetin on the expression and activity of uPA and the invasion and motility in cervical cancer cells. Fisetin suppressed the TPA (tetradecanoylphorbol-13-acetate)-induced activation of p38 MAPK and uPA, and inhibited the TPA-enhanced migratory and invasive abilities. Furthermore, the promoter activity of the uPA gene was dramatically repressed by fisetin, which disrupted the nuclear translocation of NF-κB and its binding amount on the promoter of the uPA gene, and these suppressive effects could be further enhanced by SB203580. This study provides strong evidence for the molecular mechanism of fisetin in inhibiting the aggressive phenotypes by repression of uPA via interruption of p38 MAPK-dependent NF-κB signaling pathway in cervical cancer cells and thus contributes insight to the potential of using fisetin as a therapeutic strategy against cervical cancer by inhibiting migration and invasion. PMID:23940799

  9. Lasiodin inhibits proliferation of human nasopharyngeal carcinoma cells by simultaneous modulation of the Apaf-1/caspase, AKT/MAPK and COX-2/NF-κB signaling pathways.

    PubMed

    Lin, Lianzhu; Deng, Wuguo; Tian, Yun; Chen, Wangbing; Wang, Jingshu; Fu, Lingyi; Shi, Dingbo; Zhao, Mouming; Luo, Wei

    2014-01-01

    Rabdosia serra has been widely used for the treatment of the various human diseases. However, the antiproliferative effects and underlying mechanisms of the compounds in this herb remain largely unknown. In this study, an antiproliferative compound against human nasopharyngeal carcinoma (NPC) cells from Rabdosia serra was purified and identified as lasiodin (a diterpenoid). The treatment with lasiodin inhibited cell viability and migration. Lasiodin also mediated the cell morphology change and induced apoptosis in NPC cells. The treatment with lasiodin induced the Apaf-1 expression, triggered the cytochrome-C release, and stimulated the PARP, caspase-3 and caspase-9 cleavages, thereby activating the apoptotic pathways. The treatment with lasiodin also significantly inhibited the phosphorylations of the AKT, ERK1/2, p38 and JNK proteins. The pretreatment with the AKT or MAPK-selective inhibitors considerably blocked the lasiodin-mediated inhibition of cell proliferation. Moreover, the treatment with lasiodin inhibited the COX-2 expression, abrogated NF-κB binding to the COX-2 promoter, and promoted the NF-κB translocation from cell nuclei to cytosol. The pretreatment with a COX-2-selective inhibitor abrogated the lasiodin-induced inhibition of cell proliferation. These results indicated that lasiodin simultaneously activated the Apaf-1/caspase-dependent apoptotic pathways and suppressed the AKT/MAPK and COX-2/NF-κB signaling pathways. This study also suggested that lasiodin could be a promising natural compound for the prevention and treatment of NPC.

  10. Pirfenidone attenuates the IL-1β-induced hyaluronic acid increase in orbital fibroblasts from patients with thyroid-associated ophthalmopathy.

    PubMed

    Chung, Seung Ah; Jeon, Bo Kyung; Choi, Youn-Hee; Back, Keum Ok; Lee, Jong Bok; Kook, Koung Hoon

    2014-04-09

    This study aimed to investigate the effect of pirfenidone on the IL-1β-induced hyaluronic acid (HA) increase in orbital fibroblasts from patients with thyroid-associated ophthalmopathy (TAO). Primary cultured orbital fibroblasts were obtained from patients with TAO, and the excreted levels of HA from IL-1β-treated cells with or without pirfenidone were measured. The effect of pirfenidone on IL-1β-induced hyaluronic acid synthase (HAS) expression was evaluated. The relevance of the mitogen-activated protein kinase (MAPK)-mediated signaling pathway in IL-1β-induced HAS expression was assessed using specific inhibitors to p38, extracellular signal-regulated kinase (ERK), or c-Jun N-terminal kinase (JNK). The phosphorylation level of each MAPK in IL-1β-treated cells with or without pirfenidone and the level of AP-1 DNA binding were measured. The inhibitory potency of pirfenidone on HA production was evaluated using dexamethasone as a reference agent. Pirfenidone strongly attenuated the IL-1β-induced HA release in a dose-dependent manner. The IL-1β-induced HAS expression was decreased significantly following cotreatment with pirfenidone at the mRNA and protein levels. The production of mRNAs was halted by cotreatment with inhibitors of ERK and p38, but not by inhibitors of JNK. The IL-1β-induced ERK and p38 phosphorylation, and AP-1 DNA binding were attenuated in the presence of pirfenidone. Pirfenidone showed greater potency than dexamethasone in inhibiting increases in IL-1β-induced HA. Pirfenidone attenuates the IL-1β-induced HA production in orbital fibroblasts from patients with TAO, at least in part, through suppression of the MAPK-mediated HAS expression. These results support the potential use of pirfenidone for treatment of patients with TAO.

  11. p38α MAPK Is Required for Tooth Morphogenesis and Enamel Secretion*

    PubMed Central

    Greenblatt, Matthew B.; Kim, Jung-Min; Oh, Hwanhee; Park, Kwang Hwan; Choo, Min-Kyung; Sano, Yasuyo; Tye, Coralee E.; Skobe, Ziedonis; Davis, Roger J.; Park, Jin Mo; Bei, Marianna; Glimcher, Laurie H.; Shim, Jae-Hyuck

    2015-01-01

    An improved understanding of the molecular pathways that drive tooth morphogenesis and enamel secretion is needed to generate teeth from organ cultures for therapeutic implantation or to determine the pathogenesis of primary disorders of dentition (Abdollah, S., Macias-Silva, M., Tsukazaki, T., Hayashi, H., Attisano, L., and Wrana, J. L. (1997) J. Biol. Chem. 272, 27678–27685). Here we present a novel ectodermal dysplasia phenotype associated with conditional deletion of p38α MAPK in ectodermal appendages using K14-cre mice (p38αK14 mice). These mice display impaired patterning of dental cusps and a profound defect in the production and biomechanical strength of dental enamel because of defects in ameloblast differentiation and activity. In the absence of p38α, expression of amelogenin and β4-integrin in ameloblasts and p21 in the enamel knot was significantly reduced. Mice lacking the MAP2K MKK6, but not mice lacking MAP2K MKK3, also show the enamel defects, implying that MKK6 functions as an upstream kinase of p38α in ectodermal appendages. Lastly, stimulation with BMP2/7 in both explant culture and an ameloblast cell line confirm that p38α functions downstream of BMPs in this context. Thus, BMP-induced activation of the p38α MAPK pathway is critical for the morphogenesis of tooth cusps and the secretion of dental enamel. PMID:25406311

  12. Comparative study of the efficacy of pulsed electromagnetic field and low level laser therapy on mitogen-activated protein kinases.

    PubMed

    El-Makakey, Ayman M; El-Sharaby, Radwa M; Hassan, Mohammed H; Balbaa, Alaa

    2017-03-01

    Mitogen-Activated Protein Kinases (MAPKs) consist of three major signaling members: extracellular signal-regulated kinase (ERK), p38 and C-JUN N-terminal kinase (JNK). We investigated physiological effects of Pulsed Electromagnetic Field Therapy (PEMFT) and Low Level Laser Therapy (LLLT) on human body, adopting the expression level of mitogen-activated protein kinases as an indicator via assessment of the activation levels of three major families of MAPKS, ERK, p38 and JNK in the peripheral lymphocytes of patients before and after the therapies. Assessment for the expression levels of MAPKs families' were done, in the peripheral lymphocytes of patients recently have appendectomy, using flow cytometric analysis of multiple signaling pathways, pre and post LLLT and PEMFT application (twice daily for 6 successive days) on the appendectomy wound. There were non-significant differences in the expression levels of MAPKs families' pre- therapies application. But there were significant increase in the ERK expression levels post application of LLLT compared to its pre application (p<0.01). Also, there was significant increase in the ERK, p38 and C-Jun N terminal expression level values post application of PEMFT compared to its pre application expression levels (p<0.01 for each). The present study demonstrates that PEMFT has a powerful healing effect more than LLLT as it increase the activation of ERK, P38 and C-Jun-N Terminal while LLLT only increase the activation of ERK. LLLT has more potent pain decreasing effect than PEMFT as it does not activate P38 pathway like PEMFT.

  13. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: molecular mechanism for cancer- and blood-brain barrier-related effects.

    PubMed

    Leszczynski, Dariusz; Joenväärä, Sakari; Reivinen, Jukka; Kuokka, Reetta

    2002-05-01

    We have examined whether non-thermal exposures of cultures of the human endothelial cell line EA.hy926 to 900 MHz GSM mobile phone microwave radiation could activate stress response. Results obtained demonstrate that 1-hour non-thermal exposure of EA.hy926 cells changes the phosphorylation status of numerous, yet largely unidentified, proteins. One of the affected proteins was identified as heat shock protein-27 (hsp27). Mobile phone exposure caused a transient increase in phosphorylation of hsp27, an effect which was prevented by SB203580, a specific inhibitor of p38 mitogen-activated protein kinase (p38MAPK). Also, mobile phone exposure caused transient changes in the protein expression levels of hsp27 and p38MAPK. All these changes were non-thermal effects because, as determined using temperature probes, irradiation did not alter the temperature of cell cultures, which remained throughout the irradiation period at 37 +/- 0.3 degrees C. Changes in the overall pattern of protein phosphorylation suggest that mobile phone radiation activates a variety of cellular signal transduction pathways, among them the hsp27/p38MAPK stress response pathway. Based on the known functions of hsp27, we put forward the hypothesis that mobile phone radiation-induced activation of hsp27 may (i) facilitate the development of brain cancer by inhibiting the cytochrome c/caspase-3 apoptotic pathway and (ii) cause an increase in blood-brain barrier permeability through stabilization of endothelial cell stress fibers. We postulate that these events, when occurring repeatedly over a long period of time, might become a health hazard because of the possible accumulation of brain tissue damage. Furthermore, our hypothesis suggests that other brain damaging factors may co-participate in mobile phone radiation-induced effects.

  14. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats.

    PubMed

    Chang, Xue-Ying; Cui, Lei; Wang, Xing-Zhi; Zhang, Lei; Zhu, Dan; Zhou, Xiao-Rong; Hao, Li-Rong

    2017-01-01

    This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta ( P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  15. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    PubMed Central

    Chang, Xue-ying; Cui, Lei; Wang, Xing-zhi; Zhang, Lei; Zhu, Dan

    2017-01-01

    Background This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Results Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway. PMID:28691026

  16. Involvement of PI3K/Akt, ERK and p38 signaling pathways in emodin-mediated extrinsic and intrinsic human hepatoblastoma cell apoptosis.

    PubMed

    Cui, Yuting; Lu, Peiran; Song, Ge; Liu, Qian; Zhu, Di; Liu, Xuebo

    2016-06-01

    As a natural anthraquinone derivative, 1,3,8-trihydroxy-6-methylanthraquinone, known as emodin, has recently been reported to possess potential chemopreventive capacity, but the underlying molecular mechanism of its hepatocyte toxicity remains poorly clarified. The present research indicated that emodin targeted HepG2 cells without being cytotoxic to primary human hepatocyte cells in comparison with chrysophanol and rhein. The anti-proliferative effect of emodin was ascribed to occurrence of apoptosis, which characterized by higher ethidium bromide signal, brighter DAPI fluorescence, cleavages of procaspase-3 and poly (ADP-ribose) polymerase as well as quantitative result from Annexin V-FITC/PI double staining. Furthermore, emodin improved Bax/Bcl-2 ratio, elicited disruption of mitochondrial membrane potential and promoted efflux of cytochrome c to cytosol, indicative of features of mitochondria-dependent apoptotic signals. Emodin concurrently led to activations of Fas, Fas-L, caspase-8 and tBid, which provoked death receptor apoptotic signals. Notably, activated tBid relayed the Fas apoptotic signal to the mitochondrial pathway. Besides, emodin effectively attenuated phosphorylations of Akt and ERK and promoted phosphorylation of p38. Inhibitions of PI3K/Akt and ERK and activation of p38 mediated emodin-induced apoptosis through modulating the mitochondrial pathway and/or death receptor pathway. Additionally, there was a cross-talk between PI3K/Akt and MAPKs pathways in emodin-induced apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Transcriptional Profiling of Human Peripheral Blood Mononuclear Cells Exposed to Bacillus anthracis in vitro

    DTIC Science & Technology

    2013-03-11

    are derived from the combination of three polypeptides, namely the Protective antigen (PA, 83 kDa), the edema factor (EF, 89 kDa), and the lethal...p38MAPK-dependent pathways. The T-cell receptors and CD3-mediated antigenic recognition processes are possibly restrained, and the expression of CD79...NY), using a VersArray microarrayer ( Bio -Rad, CA). Arrays were post- processed using UV-cross linking at 1200 mJ/cm2, followed by baking for 4 hrs

  18. Involvement of p38 MAPK activation mediated through AT1 receptors on spinal astrocytes and neurons in angiotensin II- and III-induced nociceptive behavior in mice.

    PubMed

    Nemoto, Wataru; Ogata, Yoshiki; Nakagawasai, Osamu; Yaoita, Fukie; Tadano, Takeshi; Tan-No, Koichi

    2015-12-01

    We have previously demonstrated the possibility that angiotensin (Ang) II and its N-terminal metabolite Ang (1-7) act as neurotransmitters and/or neuromodulators in the spinal transmission of nociceptive information. Ang III, which is a C-terminal metabolite of Ang II, can also act on AT1 receptors, but its role in spinal nociceptive transmission remains unclear. Therefore, we examined the role of Ang III on the spinal nociceptive system in comparison with that of Ang II. Intrathecal (i.t.) administration of Ang III into mice produced a nociceptive behavior, which was dose-dependently inhibited by the co-administration of the AT1 receptor antagonist losartan and the p38 MAPK inhibitor SB203580, but not by the AT2 receptor antagonist PD123319, MEK1/2 inhibitor U0126 and JNK inhibitor SP600125. In addition, Ang III increased the phosphorylation of p38 MAPK in the dorsal lumbar spinal cord, which was inhibited by losartan. These effects were similar to those of observed with Ang II. The nociceptive behavior produced by Ang II or III was also attenuated by the administration of the astrocytic inhibitor L-α-aminoadipic acid, but not by the microglial inhibitor minocycline. Double immunohistochemical staining showed that spinal AT1 receptors were expressed on neurons and astrocytes, and that i.t. administration of either Ang II or III phosphorylated p38 MAPK in both spinal astrocytes and neurons. These results indicate that Ang III produces nociceptive behavior similar to Ang II, and suggest that the phosphorylation of p38 MAPK mediated through AT1 receptors on spinal astrocytes and neurons contributes to Ang II- and III-induced nociceptive behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Arsenic trioxide inhibits Ewing's sarcoma cell invasiveness by targeting p38(MAPK) and c-Jun N-terminal kinase.

    PubMed

    Zhang, Shuai; Guo, Wei; Ren, Ting-Ting; Lu, Xin-Chang; Tang, Guo-Qing; Zhao, Fu-Long

    2012-01-01

    Ewing's sarcoma is the second most frequent primary malignant bone tumor, mainly affecting children and young adults. The notorious metastatic capability of this tumor aggravates patient mortality and remains a problem to be overcome. We investigated the effect of arsenic trioxide (As₂O₃) on the metastasis capability of Ewing's sarcoma cells. We performed 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide assays to choose appropriate concentrations of As₂O₃ for the experiments. Migration, invasion, and adhesion assays were performed to assess the effect of As₂O₃ on the metastasis of Ewing's sarcoma. Immunofluorescent staining was used to observe cytoskeleton reorganization in Ewing's sarcoma cells treated with As₂O₃. Changes in matrix metalloproteinase-9 expression and the mitogen-activated protein kinase (MAPK) pathway were investigated using western blot. Inhibitors of p38(MAPK) (sb202190) and c-Jun NH₂-terminal kinase (JNK, sp600125) were used in invasion assays to determine the effect of p38(MAPK) and JNK. We found that As₂O₃ may markedly inhibit the migration and invasion capacity of Ewing's sarcoma cells with structural rearrangements of the actin cytoskeleton. The expressions of matrix metalloproteinase-9, phosphor-p38(MAPK), and phosphor-JNK were suppressed by As₂O₃ treatment in a dose-dependent manner. The inhibitors of p38(MAPK) (sb202190) and JNK (sp600125) enhanced the inhibition induced by As₂O₃, which was counteracted by anisomycin, an activating agent of p38(MAPK) and JNK. Taken together, our results demonstrate that As₂O₃ can inhibit the metastasis capability of RD-ES and A-673 cells and may have new therapeutic value for Ewing's sarcoma.

  20. Anti-inflammatory effect of procyanidins from wild grape (Vitis amurensis) seeds in LPS-induced RAW 264.7 cells.

    PubMed

    Bak, Min-Ji; Truong, Van Long; Kang, Hey-Sook; Jun, Mira; Jeong, Woo-Sik

    2013-01-01

    In the present study, the anti-inflammatory effect and underlying mechanisms of wild grape seeds procyanidins (WGP) were examined using lipopolysaccharide- (LPS-) stimulated RAW 264.7 cells. We used nitric oxide (NO) and prostaglandin E2 (PGE2) and reactive oxygen species (ROS) assays to examine inhibitory effect of WGP and further investigated the mechanisms of WGP suppressed LPS-mediated genes and upstream expression by Western blot and confocal microscopy analysis. Our data indicate that WGP significantly reduced NO, PGE2, and ROS production and also inhibited the expression of proinflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions. Consistently, WGP significantly reduced LPS-stimulated expression of proinflammatory cytokines such as tumor necrosis factor α (TNF-α) and interleukin- (IL-) 1 β . Moreover, WGP prevented nuclear translocation of nuclear factor- κ B (NF κ B) p65 subunit by reducing inhibitory κ B- α (I κ B α) and NF κ B phosphorylation. Furthermore, we found that WGP inhibited LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK). Taken together, our results demonstrated that WGP exerts potent anti-inflammatory activity through the inhibition of iNOS and COX-2 by regulating NF κ B and p38 MAPK pathway.

  1. Effect of music therapy on pain behaviors in rats with bone cancer pain.

    PubMed

    Gao, Ji; Chen, Shaoqin; Lin, Suyong; Han, Hongjing

    2016-01-01

    To investigate the effects of music therapy on the pain behaviors and survival of rats with bone cancer pain and analyze the mediating mechanism of mitogen activated protein kinase (MAPK) signal transduction pathway. Male Wistar rats aged 5-8 weeks and weighing 160-200 g were collected. The rat models of colorectal cancer bone cancer pain was successfully established. Animals were divided into experimental and control group, each with 10 rats. The animals in the observation group were given Mozart K448 sonata, sound intensity of 60 db, played the sonata once every 1 hr in the daytime, stopped playing during the night, and this cycle was kept for 2 weeks. On the other hand, rats in the control group were kept under the same environment without music. Animals in the experimental group consumed more feed and gained significant weight in comparison to the control group. The tumor volume of the experimental group was significantly smaller than that of the control group (p<0.05). After 1-2 weeks of treatment, spontaneous foot withdrawal reflection caused by pain in the experimental group was significantly lower than that in the control group, heat pain threshold and free walking pain scoring in the experimental group were also significantly higher as compared with the control group (p<0.05). The expression of p38á and p38β in animals' spinal cord and dorsal root ganglion was significantly lower in the experimental group than in the control group (p< 0.05). Music therapy may improve the pain behaviors in rats with bone cancer pain, which might be related with low expression of p38á and p38β in the MAPK signal transduction pathway.

  2. Smad4 inactivation promotes malignancy and drug resistance of colon cancer

    PubMed Central

    Papageorgis, Panagiotis; Cheng, Kuanghung; Ozturk, Sait; Gong, Yi; Lambert, Arthur W.; Abdolmaleky, Hamid M.; Zhou, Jin-Rong; Thiagalingam, Sam

    2010-01-01

    SMAD4 is localized to chromosome 18q21, a frequent site for loss of heterozygosity (LOH) in advanced stage colon cancers. Although Smad4 is regarded as a signaling mediator of the TGFβ signaling pathway, its role as a major suppressor of colorectal cancer progression and the molecular events underlying this phenomenon, remain elusive. Here, we describe the establishment and use of colon cancer cell line model systems to dissect the functional roles of TGFβ and Smad4 inactivation in the manifestation of a malignant phenotype. We found that loss of SMAD4 and retention of intact TGFβ receptors could synergistically increase the levels of VEGF, a major pro-angiogenic factor. Pharmacological inhibition studies suggest that overactivation of the TGFβ-induced MEK-Erk and p38-MAPK auxiliary pathways are involved in the induction of VEGF expression in SMAD4 null cells. Overall, SMAD4 deficiency was responsible for the enhanced migration of colon cancer cells with a corresponding increase in MMP9, enhanced hypoxia-induced GLUT1 expression, increased aerobic glycolysis and resistance to 5′-fluoruracil-mediated apoptosis. Interestingly, Smad4 specifically interacts with HIF1α under hypoxic conditions providing a molecular basis for the differential regulation of target genes to suppress a malignant phenotype. In summary, our results define a molecular mechanism that explains how loss of the tumor suppressor Smad4 promotes colorectal cancer progression. These findings are also consistent with targeting TGFβ-induced auxiliary pathways, such as MEK-ERK, p38-MAPK and the glycolytic cascade, in SMAD4-deficient tumors as attractive strategies for therapeutic intervention. PMID:21245094

  3. PEST Motif Serine and Tyrosine Phosphorylation Controls Vascular Endothelial Growth Factor Receptor 2 Stability and Downregulation ▿

    PubMed Central

    Meyer, Rosana D.; Srinivasan, Srimathi; Singh, Amrik J.; Mahoney, John E.; Gharahassanlou, Kobra Rezazadeh; Rahimi, Nader

    2011-01-01

    The internalization and degradation of vascular endothelial growth factor receptor 2 (VEGFR-2), a potent angiogenic receptor tyrosine kinase, is a central mechanism for the regulation of the coordinated action of VEGF in angiogenesis. Here, we show that VEGFR-2 is ubiquitinated in response to VEGF, and Lys 48-linked polyubiquitination controls its degradation via the 26S proteosome. The degradation and ubiquitination of VEGFR-2 is controlled by its PEST domain, and the phosphorylation of Ser1188/Ser1191 is required for the ubiquitination of VEGFR-2. F-box-containing β-Trcp1 ubiquitin E3 ligase is recruited to S1188/S1191 VEGFR-2 and mediates the ubiquitination and degradation of VEGFR-2. The PEST domain also controls the activation of p38 mitogen-activated protein kinase (MAPK) through phospho-Y1173. The activation of p38 stabilizes VEGFR-2, and its inactivation accelerates VEGFR-2 downregulation. The VEGFR-2-mediated activation of p38 is established through the protein kinase A (PKA)/MKK6 pathway. PKA is recruited to VEGFR-2 through AKAP1/AKAP149, and its phosphorylation requires Y1173 of VEGFR-2. The study has identified a unique mechanism in which VEGFR-2 stability and degradation is modulated. The PEST domain acts as a dual modulator of VEGFR-2; the phosphorylation of S1188/S1191 controls ubiquitination and degradation via β-Trcp1, where the phosphorylation of Y1173 through PKA/p38 MAPK controls the stability of VEGFR-2. PMID:21402774

  4. TRPM2 contributes to LPS/IFNγ-induced production of nitric oxide via the p38/JNK pathway in microglia.

    PubMed

    Miyake, Takahito; Shirakawa, Hisashi; Kusano, Ayaka; Sakimoto, Shinya; Konno, Masakazu; Nakagawa, Takayuki; Mori, Yasuo; Kaneko, Shuji

    2014-02-07

    Microglia are immune cells that maintain brain homeostasis at a resting state by surveying the environment and engulfing debris. However, in some pathological conditions, microglia can produce neurotoxic factors such as pro-inflammatory cytokines and nitric oxide (NO) that lead to neuronal degeneration. Inflammation-induced calcium (Ca(2+)) signaling is thought to underlie this abnormal activation of microglia, but the mechanisms are still obscure. We previously showed that combined application of lipopolysaccharide and interferon γ (LPS/IFNγ) induced-production of NO in microglia from wild-type (WT) mice is significantly reduced in microglia from transient receptor potential melastatin 2 (TRPM2)-knockout (KO) mice. Here, we found that LPS/IFNγ produced a late-onset Ca(2+) signaling in WT microglia, which was abolished by application of the NADPH oxidase inhibitor diphenylene iodonium (DPI) and ML-171. In addition, pharmacological blockade or gene deletion of TRPM2 channel in microglia did not show this Ca(2+) signaling. Furthermore, pharmacological manipulation and Western blotting revealed that Ca(2+) mobilization, the proline-rich tyrosine kinase 2 (Pyk2), p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun NH2-terminal kinase (JNK) contributed to TRPM2-mediated LPS/IFNγ-induced activation, while the extracellular signal-regulated protein kinase (ERK) did not. These results suggest that LPS/IFNγ activates TRPM2-mediated Ca(2+) signaling, which in turn increases downstream p38 MAPK and JNK signaling and results in increased NO production in microglia. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. TNF-α stimulates System A amino acid transport in primary human trophoblast cells mediated by p38 MAPK signaling

    PubMed Central

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2015-01-01

    Maternal obesity and gestational diabetes mellitus (GDM) increase the risk of delivering infants that are large for gestational age with greater adiposity, who are prone to the development of metabolic disease in childhood and beyond. These maternal conditions are also associated with increased levels of the proinflammatory cytokine TNF-α in maternal tissues and the placenta. Recent evidence suggests that changes in placental amino acid transport contribute to altered fetal growth. TNF-α was previously shown to stimulate System A amino acid transport in primary human trophoblasts (PHTs), however the molecular mechanisms remain unknown. In this study, we tested the hypothesis that TNF-α regulates amino acid uptake in cultured PHTs by a mitogen-activated protein kinase (MAPK)-dependent mechanism. Treatment of PHTs with TNF-α significantly increased System A amino acid transport, as well as Erk and p38 MAPK signaling. Pharmacological antagonism of p38, but not Erk MAPK activity, inhibited TNF-α stimulated System A activity. Silencing of p38 MAPK using siRNA transfections prevented TNF-α stimulated System A transport in PHTs. TNF-α significantly increased the protein expression of System A transporters SNAT1 and SNAT2, but did not affect their mRNA expression. The effects of TNF-α on SNAT1 and SNAT2 protein expression were reversed by p38 MAPK siRNA silencing. In conclusion, TNF-α regulates System A activity through increased SNAT1 and SNAT2 transporter protein expression in PHTs. These findings suggest that p38 MAPK may represent a critical mechanistic link between elevated proinflammatory cytokines and increased placental amino acid transport in obese and GDM pregnancies associated with fetal overgrowth. PMID:26508738

  6. An ethyl acetate fraction derived from Houttuynia cordata extract inhibits the production of inflammatory markers by suppressing NF-кB and MAPK activation in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    PubMed

    Chun, Jin Mi; Nho, Kyoung Jin; Kim, Hyo Seon; Lee, A Yeong; Moon, Byeong Cheol; Kim, Ho Kyoung

    2014-07-10

    Houttuynia cordata Thunb. (Saururaceae) has been used in traditional medicine for treatment of inflammatory diseases. This study evaluated the anti-inflammatory effects of an ethyl acetate fraction derived from a Houttuynia cordata extract (HCE-EA) on the production of inflammatory mediators and the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. To measure the effects of HCE-EA on pro-inflammatory cytokine and inflammatory mediator's expression in RAW 264.7 cells, we used the following methods: cell viability assay, Griess reagent assay, enzyme-linked immunosorbent assay, real-time polymerase chain reaction and western blotting analysis. HCE-EA downregulated nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin (IL-6) production in the cells, as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, HCE-EA suppressed nuclear translocation of the NF-κB p65 subunit, which correlated with an inhibitory effect on IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) phosphorylation. HCE-EA also attenuated the activation of MAPKs (p38 and JNK). Our results suggest that the anti-inflammatory properties of HCE-EA may stem from the inhibition of pro-inflammatory mediators via suppression of NF-κB and MAPK signaling pathways.

  7. Magnoflorine Enhances LPS-Activated Pro-Inflammatory Responses via MyD88-Dependent Pathways in U937 Macrophages.

    PubMed

    Haque, Md Areeful; Jantan, Ibrahim; Harikrishnan, Hemavathy; Abdul Wahab, Siti Mariam

    2018-06-15

    Magnoflorine, a major bioactive metabolite isolated from Tinospora crispa, has been reported for its diverse biochemical and pharmacological properties. However, there is little report on its underlying mechanisms of action on immune responses, particularly on macrophage activation. In this study, we aimed to investigate the effects of magnoflorine, isolated from T. crispa on the pro-inflammatory mediators generation induced by LPS and the concomitant NF- κ B, MAPKs, and PI3K-Akt signaling pathways in U937 macrophages. Differentiated U937 macrophages were treated with magnoflorine and the release of pro-inflammatory mediators was evaluated through ELISA, while the relative mRNA expression of the respective mediators was quantified through qRT-PCR. Correspondingly, western blotting was executed to observe the modulatory effects of magnoflorine on the expression of various markers related to NF- κ B, MAPK and PI3K-Akt signaling activation in LPS-primed U937 macrophages. Magnoflorine significantly enhanced the upregulation of TNF- α , IL-1 β , and PGE 2 production as well as COX-2 protein expression. Successively, magnoflorine prompted the mRNA transcription level of these pro-inflammatory mediators. Magnoflorine enhanced the NF- κ B activation by prompting p65, I κ B α , and IKK α / β phosphorylation as well as I κ B α degradation. Besides, magnoflorine treatments concentration-dependently augmented the phosphorylation of JNK, ERK, and p38 MAPKs as well as Akt. The immunoaugmenting effects were further confirmed by investigating the effects of magnoflorine on specific inhibitors, where the treatment with specific inhibitors of NF- κ B, MAPKs, and PI3K-Akt proficiently blocked the magnoflorine-triggered TNF- α release and COX-2 expression. Magnoflorine furthermore enhanced the MyD88 and TLR4 upregulation. The results suggest that magnoflorine has high potential on augmenting immune responses. Georg Thieme Verlag KG Stuttgart · New York.

  8. Netrin-1 induces the migration of Schwann cells via p38 MAPK and PI3K-Akt signaling pathway mediated by the UNC5B receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Jianwei; Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050; Sun, Xiaolei

    2015-08-14

    Schwann cells (SCs) play an essentially supportive role in the regeneration of injured peripheral nerve system (PNS). As Netrin-1 is crucial for the normal development of nervous system (NS) and can direct the process of damaged PNS regeneration, our study was designed to determine the role of Netrin-1 in RSC96 Schwann cells (an immortalized rat Schwann cell line) proliferation and migration. Our studies demonstrated that Netrin-1 had no effect on RSC96 cells proliferation, while significantly promoted RSC96 cells migration. The Netrin-1-induced RSC96 cells migration was significantly attenuated by inhibition of p38 and PI3K through pretreatment with SB203580 and LY294002 respectively,more » but not inhibition of MEK1/2 and JNK by U0126-EtOH and SP600125 individually. Treatment with Netrin-1 enhanced the phosphorylation of p38 and Akt. QRT-PCR indicated that Netrin-1 and only its receptors Unc5a, Unc5b and Neogenin were expressed in RSC96 cells, among which Unc5b expressed the most. And UNC5B protein was significantly increased after stimulated by Netrin-1. In conclusion, we show here that Netrin-1-enhanced SCs migration is mediated by activating p38 MAPK and PI3K-Akt signal cascades via receptor UNC5B, which suggests that Netrin-1 could serve as a new therapeutic strategy and has potential application value for PNS regeneration. - Highlights: • Netrin-1 attracts RSC96 Schwann cells migration in a dose dependent manner. • Netrin-1 induced Schwann cells migration is p38 and PI3K-Akt signaling dependent. • UNC5B may be dominant receptor mediating Netrin-1′ effect on RSC96 cells motility. • Netrin-1 may promote peripheral nerve repair by enhancing Schwann cells motility.« less

  9. Paeoniflorin protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-κB-mediated inflammatory responses.

    PubMed

    Guo, Ruo-Bing; Wang, Guo-Feng; Zhao, An-Peng; Gu, Jun; Sun, Xiu-Lan; Hu, Gang

    2012-01-01

    Paeoniflorin (PF), the principal component of Paeoniae Radix prescribed in traditional Chinese medicine, has been reported to exhibit many pharmacological effects including protection against ischemic injury. However, the mechanisms underlying the protective effects of PF on cerebral ischemia are still under investigation. The present study showed that PF treatment for 14 days could significantly inhibit transient middle cerebral artery occlusion (MCAO)-induced over-activation of astrocytes and microglia, and prevented up-regulations of pro-inflamamtory mediators (TNFα, IL-1β, iNOS, COX(2) and 5-LOX) in plasma and brain. Further study demonstrated that chronic treatment with PF suppressed the activations of JNK and p38 MAPK, but enhanced ERK activation. And PF could reverse ischemia-induced activation of NF-κB signaling pathway. Moreover, our in vitro study revealed that PF treatment protected against TNFα-induced cell apoptosis and neuronal loss. Taken together, the present study demonstrates that PF produces a delayed protection in the ischemia-injured rats via inhibiting MAPKs/NF-κB mediated peripheral and cerebral inflammatory response. Our study reveals that PF might be a potential neuroprotective agent for stroke.

  10. Activation of the p38- pathway by a novel monoketone curcumin analog, EF24, suggests a potential combination strategy

    PubMed Central

    Thomas, Shala L.; Zhao, Jing; Li, Zijian; Lou, Bin; Du, Yuhong; Purcell, Jamie; Snyder, James P.; Khuri, Fadlo R.; Liotta, Dennis; Fu, Haian

    2010-01-01

    Increasing attention has been given to the anti-cancer effects of curcumin and the ability of this natural product to inhibit cancer cell proliferation. New curcumin analogs have been developed to optimize the in vitro and in vivo activity of the parent compound yet retain the same safety profile. EF24, a fluorinated synthetic analog, surpasses curcumin in its ability to inhibit cancer cell viability and down-regulate TNFα-induced NF-κB activation. Here we report a critical role of the p38-mediated signaling pathway in the determination of lung cancer cell’s sensitivity to EF24. We have found that EF24-induced decease of lung cancer cell viability was accompanied by upregulated mitogen-activated protein kinases (MAPK) as evidenced by increased phosphorylation of ERK1/2, JNK, and p38. Pharmacological investigation led to our suggestion that EF24 triggers a negative feedback loop through p38 activation. In support of this model, inhibition of p38, either by small molecule inhibitors or through an RNAi-mediated knockdown approach, enhanced the EF24 induced apoptotic death of A549 cells. Thus, inhibition of p38 may boost the EF24 anticancer effect. Indeed, a combination of EF24 and SB203580, a p38 inhibitor, synergistically inhibited clonogenic activity of A549 lung cancer cells and induced their apoptosis as reflected by poly(ADP-ribose) polymerase cleavage, the accumulation of the sub-G1 fraction of cells, and apoptotic cell staining. These studies offer a novel strategy that combines the curcumin analog EF24 with a p38 inhibitor for potentially enhanced therapy in the treatment of lung cancer. PMID:20615389

  11. Activation of the p38 pathway by a novel monoketone curcumin analog, EF24, suggests a potential combination strategy.

    PubMed

    Thomas, Shala L; Zhao, Jing; Li, Zijian; Lou, Bin; Du, Yuhong; Purcell, Jamie; Snyder, James P; Khuri, Fadlo R; Liotta, Dennis; Fu, Haian

    2010-11-01

    Increasing attention has been given to the anticancer effects of curcumin and the ability of this natural product to inhibit cancer cell proliferation. New curcumin analogs have been developed to optimize the in vitro and in vivo activity of the parent compound yet retain the same safety profile. EF24, a fluorinated synthetic analog, surpasses curcumin in its ability to inhibit cancer cell viability and down-regulate TNFα-induced NF-κB activation. Here we report a critical role of the p38-mediated signaling pathway in the determination of lung cancer cell's sensitivity to EF24. We have found that EF24-induced decease of lung cancer cell viability was accompanied by upregulated mitogen-activated protein kinases (MAPK) as evidenced by increased phosphorylation of ERK1/2, JNK, and p38. Pharmacological investigation led to our suggestion that EF24 triggers a negative feedback loop through p38 activation. In support of this model, inhibition of p38, either by small molecule inhibitors or through an RNAi-mediated knockdown approach, enhanced the EF24-induced apoptotic death of A549 cells. Thus, inhibition of p38 may boost the EF24 anticancer effect. Indeed, a combination of EF24 and SB203580, a p38 inhibitor, synergistically inhibited clonogenic activity of A549 lung cancer cells and induced their apoptosis as reflected by poly(ADP-ribose) polymerase cleavage, the accumulation of the sub-G(1) fraction of cells, and apoptotic cell staining. These studies offer a novel strategy that combines the curcumin analog EF24 with a p38 inhibitor for potentially enhanced therapy in the treatment of lung cancer. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeong Eun; Hanyang Biomedical Research Institute, Seoul; Park, Jae Hyeon

    2012-09-01

    Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity asmore » well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.« less

  13. Extremely low-level microwaves attenuate immune imbalance induced by inhalation exposure to low-level toluene in mice.

    PubMed

    Novoselova, Elena G; Glushkova, Olga V; Khrenov, Maxim O; Novoselova, Tatyana V; Lunin, Sergey M; Fesenko, Eugeny E

    2017-05-01

    To clarify whether extremely low-level microwaves (MW) alone or in combination with p38 inhibitor affect immune cell responses to inhalation exposure of mice to low-level toluene. The cytokine profile, heat shock proteins expression, and the activity of several signal cascades, namely, NF-κB, SAPK/JNK, IRF-3, p38 MAPK, and TLR4 were measured in spleen lymphocytes of mice treated to air-delivered toluene (0.6 mg/m 3 ) or extremely low-level microwaves (8.15-18 GHz, 1μW/cm 2 , 1 Hz swinging frequency) or combined action of these two factors. A single exposure to air-delivered low-level toluene induced activation of NF-κB, SAPK/JNK, IFR-3, p38 MAPK and TLR4 pathways. Furthermore, air toluene induced the expression of Hsp72 and enhanced IL-1, IL-6, and TNF-α in blood plasma, which is indicative of a pro-inflammatory response. Exposure to MW alone also resulted in the enhancement of the plasma cytokine values (e.g. IL-6, TNF-α, and IFN-γ) and activation of the NF-κB, MAPK p38, and especially the TLR4 pathways in splenic lymphocytes. Paradoxically, pre-exposure to MW partially recovered or normalized the lymphocyte parameters in the toluene-exposed mice, while the p38 inhibitor XI additionally increased protective activity of microwaves by down regulating MAPKs (JNK and p38), IKK, as well as expression of TLR4 and Hsp90-α. The results suggest that exposure to low-intensity MW at specific conditions may recover immune parameters in mice undergoing inhalation exposure to low-level toluene via mechanisms involving cellular signaling.

  14. Phosphorylation of the Grb2- and phosphatidylinositol 3-kinase p85-binding p36/38 by Syk in Lck-negative T cells.

    PubMed

    von Willebrand, M; Williams, S; Tailor, P; Mustelin, T

    1998-06-01

    Activation of the mitogen-activated protein kinase (MAPK) pathway by the T-cell antigen receptor (TCR) in T cells involves a positive role for phosphatidylinositol 3-kinase (PI3K) activity. We recently reported that over-expression of the Syk protein tyrosine kinase in the Lck-negative JCaM1 cells enabled the TCR to induce a normal activation of the Erk2 MAPK and enhanced transcription of a reporter gene driven by the nuclear factor of activated T cells and AP-1. Because this system allows us to analyse the targets for Syk in receptor-mediated signalling, we examined the role of PI3K in signalling events between the TCR-regulated Syk and the downstream activation of Erk2. We report that inhibition of PI3K by wortmannin or an inhibitory p85 construct, p85deltaiSH2, reduced the TCR-induced Syk-dependent activation of Erk2, as well as the appearance of phospho-Erk and phospho-Mek. At the same time, expression of Syk resulted in the activation-dependent phosphorylation of three proteins that bound to the src homology 2 (SH2) domains of PI3K p85. The strongest of these bands had an apparent molecular mass of 36-38 kDa on SDS gels, and it was quantitatively removed from the lysates by adsorption to a fusion protein containing the SH2 domain of Grb2. The appearance of this band was Syk dependent, and it was seen only upon triggering of the TCR complex. Thus, p36/38 was phosphorylated by Syk or a Syk-regulated kinase, and this protein may provide a link to the recruitment and activation of PI3K, as well as to the Ras-MAPK pathway, in TCR-triggered T cells.

  15. Anti-cancer effects of CME-1, a novel polysaccharide, purified from the mycelia of Cordyceps sinensis against B16-F10 melanoma cells.

    PubMed

    Jayakumar, Thanasekaran; Chiu, Chong-Chi; Wang, Shwu-Huey; Chou, Duen-Suey; Huang, Yung-Kai; Sheu, Joen-Rong

    2014-01-01

    Matrix metalloproteinases (MMPs) play important roles in the invasion and migration of cancer cells. In melanoma, several signaling pathways are constitutively activated. Among these, the mitogen-activated protein kinase (MAPKs) signaling pathways are activated through multiple signal transduction molecules and appear to play major roles in melanoma progression. Therefore, the inhibition of MAPK signaling might be a crucial role for the treatment of melanoma cancer. We examined the anticancer effect of CME-1, a novel water-soluble polysaccharide fraction, isolated from Cordyceps sinensis mycelia on B16-F10 melanoma cells. B16-F10 cells were exposed to different concentrations of CME-1 (250, 500 and 800 μg/ml) for 24 h in 5% CO² incubator at 37°C. Western blot analysis was performed to detect the expression of MMP-1, p-p38 MAPK, p-ERK1/2, and IkB-α in B16-F10 cells. Cell migration test was performed by wound healing migration assay. CME-1 suppresses cell migration in a concentration-dependent manner. Western blotting analysis revealed that CME-1 led to the reduction on the expression levels of MMP-1 and down regulated the expression of phosphorylated extracellular signal-regulated kinase (ERK1/2 and p38 mitogen-activated protein kinase (p38 MAPK). CME-1 restored the IkB-degradation in B16F10 cells. These results indicate that CME-1 inhibited MMP-1 expressions in B16F10 melanoma cells through either NF-kB or ERK/p38 MAPK down regulation thereby inhibiting B16F10 cell migration. Therefore, we proposed that CME-1 might be developed as a therapeutic potential candidate for the treatment of cancer metastasis.

  16. Targeted inhibition of p38alpha MAPK suppresses tumor-associated endothelial cell migration in response to hypericin-based photodynamic therapy.

    PubMed

    Hendrickx, Nico; Dewaele, Michael; Buytaert, Esther; Marsboom, Glenn; Janssens, Stefan; Van Boven, Maurits; Vandenheede, Jackie R; de Witte, Peter; Agostinis, Patrizia

    2005-11-25

    Photodynamic therapy (PDT) is an established anticancer modality and hypericin is a promising photosensitizer for the treatment of bladder tumors. We show that exposure of bladder cancer cells to hypericin PDT leads to a rapid rise in the cytosolic calcium concentration which is followed by the generation of arachidonic acid by phospholipase A2 (PLA2). PLA2 inhibition significantly protects cells from the PDT-induced intrinsic apoptosis and attenuates the activation of p38 MAPK, a survival signal mediating the up-regulation of cyclooxygenase-2 that converts arachidonic acid into prostanoids. Importantly, inhibition of p38alpha MAPK blocks the release of vascular endothelial growth factor and suppresses tumor-promoted endothelial cell migration, a key step in angiogenesis. Hence, targeted inhibition of p38alpha MAPK could be therapeutically beneficial to PDT, since it would prevent COX-2 expression, the inducible release of growth and angiogenic factors by the cancer cells, and cause an increase in the levels of free arachidonic acid, which promotes apoptosis.

  17. Amino-modified polystyrene nanoparticles affect signalling pathways of the sea urchin (Paracentrotus lividus) embryos.

    PubMed

    Pinsino, Annalisa; Bergami, Elisa; Della Torre, Camilla; Vannuccini, Maria Luisa; Addis, Piero; Secci, Marco; Dawson, Kenneth A; Matranga, Valeria; Corsi, Ilaria

    2017-03-01

    Polystyrene nanoparticles have been shown to pose serious risk to marine organisms including sea urchin embryos based on their surface properties and consequently behaviour in natural sea water. The aim of this study is to investigate the toxicity pathways of amino polystyrene nanoparticles (PS-NH 2 , 50 nm) in Paracentrotus lividus embryos in terms of development and signalling at both protein and gene levels. Two sub-lethal concentrations of 3 and 4 μg/mL of PS-NH 2 were used to expose sea urchin embryos in natural sea water (PS-NH 2 as aggregates of 143 ± 5 nm). At 24 and 48 h post-fertilisation (hpf) embryonic development was monitored and variations in the levels of key proteins involved in stress response and development (Hsp70, Hsp60, MnSOD, Phospho-p38 Mapk) as well as the modulation of target genes (Pl-Hsp70, Pl-Hsp60, Pl-Cytochrome b, Pl-p38 Mapk, Pl-Caspase 8, Pl-Univin) were measured. At 48 hpf various striking teratogenic effects were observed such as the occurrence of cells/masses randomly distributed, severe skeletal defects and delayed development. At 24 hpf a significant up-regulation of Pl-Hsp70, Pl-p38 Mapk, Pl-Univin and Pl-Cas8 genes was found, while at 48 hpf only for Pl-Univin was observed. Protein profile showed different patterns as a significant increase of Hsp70 and Hsp60 only after 48 hpf compared to controls. Conversely, P-p38 Mapk protein significantly increased at 24 hpf and decreased at 48 hpf. Our findings highlight that PS-NH 2 are able to disrupt sea urchin embryos development by modulating protein and gene profile providing new understandings into the signalling pathways involved.

  18. MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yanli; Zhao, Chaoxian; Sun, Xuewen

    MicroRNAs (miRNAs) have been suggested to play critical roles in skeletal muscle in response to exercise. Previous study has shown that miR-761 was involved in a novel model regulating the mitochondrial network. However, its role in mitochondrial biogenesis remains poorly understood. Therefore, the current study was aimed to examine the effect of miR-761 on mitochondrial biogenesis in skeletal muscle. Real-time quantitative PCR analysis demonstrated that aberrantly expressed miR-761 is involved in exercise activity and miR-761 is decreased by exercise training compared with the sedentary control mice. miR-761 suppresses mitochondrial biogenesis of C{sub 2}C{sub 12} myocytes by targeting the 3′-UTR ofmore » peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1α). Overexpression of miR-761 was capable of inhibiting the protein expression levels of PGC-1α. Moreover, miR-761 overexpression suppressed the p38 MAPK signaling pathway and down-regulated the expression of phosphorylated MAPK-activated protein kinase-2 (P-MK2), a downstream kinase of p38 MAPK. The phosphorylation of activating transcription factors 2 (ATF2) that plays a functional role in linking the activation of the p38 MAPK pathway to enhanced transcription of the PGC-1α was also inhibited by the overexpression of miR-761. These findings revealed a novel regulation mechanism for miR-761 in skeletal myocytes, and contributed to a better understanding of the modulation of skeletal muscle in response to exercise. - Highlights: • Endurance exercise decreases miR-761 expression in skeletal muscle. • MiR-761 suppresses mitochondrial biogenesis in C{sub 2}C{sub 12} myocytes. • MiR-761 directly targeted PGC-1α expression. • MiR-761 suppresses p38 MAPK signaling pathways in C{sub 2}C{sub 12} myocytes. • A novel mechanism for miR-761 in skeletal myocytes is demonstrated.« less

  19. Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways.

    PubMed

    Dai, Jianping; Gu, Liming; Su, Yun; Wang, Qianwen; Zhao, Ying; Chen, Xiaoxua; Deng, Huixiong; Li, Weizhong; Wang, Gefei; Li, Kangsheng

    2018-01-01

    Oxidative stress, Nrf2-HO-1 and TLR-MAPK/NF-κB signaling pathways have been proved to be involved in influenza A virus (IAV) replication and influenzal pneumonia. In the previous studies, we have performed several high-throughput drug screenings based on the TLR pathways. In the present study, through plaque inhibition test, luciferase reporter assay, TCID 50 , qRT-PCR, western blotting, ELISA and siRNA assays, we investigated the effect and mechanism of action of curcumin against IAV infection in vitro and in vivo. The results showed that curcumin could directly inactivate IAV, blocked IAV adsorption and inhibited IAV proliferation. As for the underlying mechanisms, we found that curcumin could significantly inhibit IAV-induced oxidative stress, increased Nrf2, HO-1, NQO1, GSTA3 and IFN-β production, and suppressed IAV-induced activation of TLR2/4/7, Akt, p38/JNK MAPK and NF-κB pathways. Suppression of Nrf2 via siRNA significantly abolished the stimulatory effect of curcumin on HO-1, NQO1, GSTA3 and IFN-β production and meanwhile blocked the inhibitory effect of curcumin on IAV M2 production. Oxidant H 2 O 2 and TLR2/4, p38/JNK and NF-κB agonists could significantly antagonize the anti-IAV activity of curcumin in vitro. Additionally, curcumin significantly increased the survival rate of mice, reduced lung index, inflammatory cytokines and lung IAV titer, and finally improved pulmonary histopathological changes after IAV infection. In conclusion, curcumin can directly inactivate IAV, inhibits IAV adsorption and replication; and its inhibition on IAV replication may be via activating Nrf2 signal and inhibiting IAV-induced activation of TLR2/4, p38/JNK MAPK and NF-κB pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Pirfenidone Induces G1 Arrest in Human Tenon's Fibroblasts In Vitro Involving AKT and MAPK Signaling Pathways.

    PubMed

    Guo, Xiujuan; Yang, Yangfan; Liu, Liling; Liu, Xiaoan; Xu, Jiangang; Wu, Kaili; Yu, Minbin

    2017-06-01

    To investigate the underlying mechanism by which pirfenidone blocks the transition from the G1 to S phase in primary human Tenon's fibroblasts. Primary human Tenon's fibroblasts were characterized by immunocytofluorescence staining with vimentin, fibroblast surface protein, and cytokeratin. After treating Tenon's fibroblasts with pirfenidone under proliferation conditions (10% fetal bovine serum), cell proliferation was measured using a WST-1 assay. Progression through the cell cycle was analyzed by flow cytometry. The expression of CDK2, CDK6, cyclinD1, cyclinD3, and cyclinE and the phosphorylation of AKT, ERK1/2/MAPK, JNK/MAPK, and p38 MAPK were estimated using western blot analysis. Under proliferative conditions, pirfenidone inhibited Tenon's fibroblasts proliferation and arrested the cell cycle at the G1 phase; decreased the phosphorylation of AKT, GSK3β, ERK1/2/MAPK, and JNK/MAPK; increased the phosphorylation of p38 MAPK; and inhibited CDK2, CDK6, cyclin D1, cyclin D3, and cyclin E in a dose-dependent manner. Inhibitors of AKT (LY294002), ERK1/2 (U0126), and JNK (SP600125) arrested the G1/S transition, similar to the effect of pirfenidone. The p38 inhibitor (SB202190) decreased the G1-blocking effect of pirfenidone. The expression of CDK2, CDK6, cyclin D1, and cyclin D3 were inhibited by LY294002, U0126, and SP600125. SB202190 attenuated the pirfenidone-induced reduction of CDK2, CDK6, cyclin D1, cyclin D3, and cyclin E. Pirfenidone inhibited HTFs proliferation and induced G1 arrest by downregulating CDKs and cyclins involving the AKT/GSK3β and MAPK signaling pathways.

  1. Mechanisms for type-II vitellogenesis-inhibiting hormone suppression of vitellogenin transcription in shrimp hepatopancreas: Crosstalk of GC/cGMP pathway with different MAPK-dependent cascades.

    PubMed

    Chen, Ting; Ren, Chunhua; Jiang, Xiao; Zhang, Lvping; Li, Hongmei; Huang, Wen; Hu, Chaoqun

    2018-01-01

    Vitellogenesis is the process of yolk formation via accumulating vitellin (Vn) with nutrients in the oocytes. Expression of vitellogenin (Vg), the precursor of Vn, is one of the indicators for the start of vitellogenesis. In Pacific white shrimp (Litopenaeus vannamei), the type-II vitellogenesis-inhibiting hormone (VIH-2) effectively suppresses hepatopancreatic Vg mRNA expression. In this study, we demonstrate the increasing transcript levels of hepatopancreatic Vg during L. vannamei ovarian development, suggesting that the hepatopancreas-derived Vg/Vn may also contribute to vitellogenesis in this species. Using a combination of in vivo injections and in vitro primary cell cultures, we provide evidences that the inhibition of VIH-2 on hepatopancreatic Vg gene expression is mediated through a functional coupling of the GC/cGMP pathway with different MAPK-dependent cascades in female shrimp. In VIH-2 signaling, the NO-independent GC/cGMP/PKG cascades were upstream of the MAPKs. Activations of the MAPK signal by VIH-2 include the phosphorylation of JNK and the mRNA/protein expression of P38MAPK. Additionally, the cAMP/PKA pathway is another positive intracellular signal for hepatopancreatic Vg mRNA expression but is independent of its VIH-2 regulation. Our findings establish a model for the signal transduction mechanism of Vg regulation by VIH and shed light on the biological functions and signaling of the CHH family in crustaceans.

  2. Mechanisms for type-II vitellogenesis-inhibiting hormone suppression of vitellogenin transcription in shrimp hepatopancreas: Crosstalk of GC/cGMP pathway with different MAPK-dependent cascades

    PubMed Central

    Ren, Chunhua; Jiang, Xiao; Zhang, Lvping; Li, Hongmei; Huang, Wen; Hu, Chaoqun

    2018-01-01

    Vitellogenesis is the process of yolk formation via accumulating vitellin (Vn) with nutrients in the oocytes. Expression of vitellogenin (Vg), the precursor of Vn, is one of the indicators for the start of vitellogenesis. In Pacific white shrimp (Litopenaeus vannamei), the type-II vitellogenesis-inhibiting hormone (VIH-2) effectively suppresses hepatopancreatic Vg mRNA expression. In this study, we demonstrate the increasing transcript levels of hepatopancreatic Vg during L. vannamei ovarian development, suggesting that the hepatopancreas-derived Vg/Vn may also contribute to vitellogenesis in this species. Using a combination of in vivo injections and in vitro primary cell cultures, we provide evidences that the inhibition of VIH-2 on hepatopancreatic Vg gene expression is mediated through a functional coupling of the GC/cGMP pathway with different MAPK-dependent cascades in female shrimp. In VIH-2 signaling, the NO-independent GC/cGMP/PKG cascades were upstream of the MAPKs. Activations of the MAPK signal by VIH-2 include the phosphorylation of JNK and the mRNA/protein expression of P38MAPK. Additionally, the cAMP/PKA pathway is another positive intracellular signal for hepatopancreatic Vg mRNA expression but is independent of its VIH-2 regulation. Our findings establish a model for the signal transduction mechanism of Vg regulation by VIH and shed light on the biological functions and signaling of the CHH family in crustaceans. PMID:29590153

  3. Differential signaling mechanism for HIV-1 Nef-mediated production of IL-6 and IL-8 in human astrocytes.

    PubMed

    Liu, Xun; Kumar, Anil

    2015-06-15

    Variety of HIV-1 viral proteins including HIV-1 Nef are known to activate astrocytes and microglia in the brain and cause the release of pro-inflammatory cytokines, which is thought to be one of the mechanisms leading to HIV-1- mediated neurotoxicity. IL-6 and IL-8 have been found in the CSF of patients with HIV-1 associated dementia (HAD), suggesting that they might play important roles in HIV-1 neuropathology. In the present study we examined the effects of HIV-1 Nef on IL-6 and IL-8 induction in astrocytes. The results demonstrate that both IL-6 and IL-8 are significantly induced in HIV-1 Nef-transfected SVGA astrocytes and HIV-1 Nef-treated primary fetal astrocytes. We also determined the molecular mechanisms responsible for the HIV-1 Nef-induced increased IL-6 and IL-8 by using chemical inhibitors and siRNAs against PI3K/Akt/PKC, p38 MAPK, NF-κB, CEBP and AP-1. Our results clearly demonstrate that the PI3K/PKC, p38 MAPK, NF-κB and AP-1 pathways are involved in HIV-1 Nef-induced IL-6 production in astrocytes, while PI3K/PKC and NF-κB pathways are involved in HIV-1 Nef-induced IL-8 production. These results offer new potential targets to develop therapeutic strategy for treatment of HIV-1 associated neurological disorders, prevalent in > 40% of individuals infected with HIV-1.

  4. Double-Stranded RNA-Dependent Protein Kinase Regulates the Motility of Breast Cancer Cells

    PubMed Central

    Xu, Mei; Chen, Gang; Wang, Siying; Liao, Mingjun; Frank, Jacqueline A.; Bower, Kimberly A.; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2012-01-01

    Double-stranded RNA (dsRNA)-dependent protein kinase (PKR) is an interferon-induced protein kinase that plays a central role in the anti-viral process. Due to its pro-apoptotic and anti-proliferative action, there is an increased interest in PKR modulation as an anti-tumor strategy. PKR is overexpressed in breast cancer cells; however, the role of PKR in breast cancer cells is unclear. The expression/activity of PKR appears inversely related to the aggressiveness of breast cancer cells. The current study investigated the role of PKR in the motility/migration of breast cancer cells. The activation of PKR by a synthesized dsRNA (PIC) significantly decreased the motility of several breast cancer cell lines (BT474, MDA-MB231 and SKBR3). PIC inhibited cell migration and blocked cell membrane ruffling without affecting cell viability. PIC also induced the reorganization of the actin cytoskeleton and impaired the formation of lamellipodia. These effects of PIC were reversed by the pretreatment of a selective PKR inhibitor. PIC also activated p38 mitogen-activated protein kinase (MAPK) and its downstream MAPK-activated protein kinase 2 (MK2). PIC-induced activation of p38 MAPK and MK2 was attenuated by the PKR inhibitor and the PKR siRNA, but a selective p38 MAPK inhibitor (SB203580) or other MAPK inhibitors did not affect PKR activity, indicating that PKR is upstream of p38 MAPK/MK2. Cofilin is an actin severing protein and regulates membrane ruffling, lamellipodia formation and cell migration. PIC inhibited cofilin activity by enhancing its phosphorylation at Ser3. PIC activated LIM kinase 1 (LIMK1), an upstream kinase of cofilin in a p38 MAPK-dependent manner. We concluded that the activation of PKR suppressed cell motility by regulating the p38 MAPK/MK2/LIMK/cofilin pathway. PMID:23112838

  5. PLCγ2 promotes apoptosis while inhibits proliferation in rat hepatocytes through PKCD/JNK MAPK and PKCD/p38 MAPK signalling.

    PubMed

    Chen, Xiaoguang; Lv, Qiongxia; Ma, Jun; Liu, Yumei

    2018-02-11

    The PLCG2 (PLCγ2) gene is a member of PLC gene family encoding transmembrane signalling enzymes involved in various biological processes including cell proliferation and apoptosis. Our earlier study indicated that PLCγ2 may be involved in the termination of regeneration of the liver which is mainly composed of hepatocytes, but its exact biological function and molecular mechanism in liver regeneration termination remains unclear. This study aims to examine the role of PLCγ2 in the growth of hepatocytes. A recombinant adenovirus expressing PLCγ2 was used to infect primary rat hepatocytes. PLCγ2 mRNA and protein levels were detected by qRT-PCR and Western blot. The subcellular location of PLCγ2 protein was tested by an immunofluorescence assay. The proliferation of hepatocytes was measured by MTT assay. The cell cycle and apoptosis were analysed by flow cytometry. Caspase-3, -8 and -9 activities were measured by a spectrophotometry method. Phosphorylation levels of PKCD, JNK and p38 in the infected cells were detected by Western blot. The possible mechanism underlying the role of PLCγ2 in hepatocyte growth was also explored by adding a signalling pathway inhibitor. Hepatocyte proliferation was dramatically reduced, while cell apoptosis was remarkably increased. The results demonstrated that PLCγ2 increased the phosphorylation of PKCD, p38 and JNK in rat hepatocytes. After PKCD activity was inhibited by the inhibitor Go 6983, the levels of both p-p38 and p-JNK MAPKs significantly decreased, and PLCγ2-induced cell proliferation inhibition and cell apoptosis were obviously reversed. This study showed that PLCγ2 regulates hepatocyte growth through PKCD-dependently activating p38 MAPK and JNK MAPK pathways; this result was experimentally based on the further exploration of the effect of PLCγ2 on hepatocyte growth in vivo. © 2018 John Wiley & Sons Ltd.

  6. Activation of the MAPK11/12/13/14 (p38 MAPK) pathway regulates the transcription of autophagy genes in response to oxidative stress induced by a novel copper complex in HeLa cells.

    PubMed

    Zhong, Wu; Zhu, Haichuan; Sheng, Fugeng; Tian, Yonglu; Zhou, Jun; Chen, Yingyu; Li, Song; Lin, Jian

    2014-07-01

    Transition metal copper (Cu) can exist in oxidized or reduced states in cells, leading to cytotoxicity in cancer cells through oxidative stress. Recently, copper complexes are emerging as a new class of anticancer compounds. Here, we report that a novel anticancer copper complex (HYF127c/Cu) induces oxidative stress-dependent cell death in cancer cells. Further, transcriptional analysis revealed that oxidative stress elicits broad transcriptional changes of genes, in which autophagy-related genes are significantly changed in HYF127c/Cu-treated cells. Consistently, autophagy was induced in HYF127c/Cu-treated cells and inhibitors of autophagy promoted cell death induced by HYF127c/Cu. Further analysis identified that the MAPK11/12/13/14 (formerly known as p38 MAPK) pathway was also activated in HYF127c/Cu-treated cells. Meanwhile, the MAPK11/12/13/14 inhibitor SB203580 downregulated autophagy by inhibiting the transcription of the autophagy genes MAP1LC3B, BAG3, and HSPA1A, and promoted HYF127c/Cu-induced cell death. These data suggest that copper-induced oxidative stress will induce protective autophagy through transcriptional regulation of autophagy genes by activation of the MAPK11/12/13/14 pathway in HeLa cells.

  7. A coordinated phosphorylation cascade initiated by p38MAPK/MSK1 directs RARα to target promoters

    PubMed Central

    Bruck, Nathalie; Vitoux, Dominique; Ferry, Christine; Duong, Vanessa; Bauer, Annie; de Thé, Hughes; Rochette-Egly, Cécile

    2009-01-01

    The nuclear retinoic acid (RA) receptor alpha (RARα) is a transcriptional transregulator that controls the expression of specific gene subsets through binding at response elements and dynamic interactions with coregulators, which are coordinated by the ligand. Here, we highlighted a novel paradigm in which the transcription of RARα target genes is controlled by phosphorylation cascades initiated by the rapid RA activation of the p38MAPK/MSK1 pathway. We demonstrate that MSK1 phosphorylates RARα at S369 located in the ligand-binding domain, allowing the binding of TFIIH and thereby phosphorylation of the N-terminal domain at S77 by cdk7/cyclin H. MSK1 also phosphorylates histone H3 at S10. Finally, the phosphorylation cascade initiated by MSK1 controls the recruitment of RARα/TFIIH complexes to response elements and subsequently RARα target gene activation. Cancer cells characterized by a deregulated p38MAPK/MSK1 pathway, do not respond to RA, outlining the essential contribution of the RA-triggered phosphorylation cascade in RA signalling. PMID:19078967

  8. Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling.

    PubMed

    Lu, Ming; Luo, Ying; Hu, Pengfei; Dou, Liping; Huang, Shuwei

    2018-01-01

    Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell migration assay. And we explored the underlying mechanism by Western blotting. AGEs significantly induced the proliferation and migration of VSMCs, but treatment with tanshinone IIA attenuated these effects. AGEs could increase the activity of the ERK1/2 and p38 pathways but not the JNK pathway. Treatment with tanshinone IIA inhibited the AGEs-induced activation of the ERK1/2 pathway but not the p38 pathway. Tanshinone IIA inhibits AGEs-induced proliferation and migration of VSMCs by suppressing the ERK1/2 MAPK signaling pathway.

  9. Mitogen-Activated Protein Kinase Phosphatase 1 Disrupts Proinflammatory Protein Synthesis in Endotoxin-Adapted Monocytes

    PubMed Central

    Brudecki, Laura; Ferguson, Donald A.; McCall, Charles E.

    2013-01-01

    Autotoxic production of proinflammatory mediators during early sepsis induces excessive inflammation, and their later suppression may limit the immune response. We previously reported that sepsis differentially represses transcription and translation of tumor necrosis factor alpha (TNF-α) and interleukin 1β (IL-1β) to reprogram sepsis inflammation. This switch is gene specific and plays a crucial role in the clinically relevant syndrome of endotoxin adaptation/tolerance, multiorgan failure, and poor sepsis outcome. To further define the mechanisms responsible for translation disruption that follows inflammation induction, we used THP-1 human promonocytes as a model of Toll-like receptor 4 (TLR4) responses found in sepsis. We showed that phosphorylation-dependent activation of p38 mitogen-activated protein kinase (MAPK) and translation disruption of TNF-α and IL-6 follow increased MAPK phosphatase 1 (MKP-1) expression and that MKP-1 knockdown rephosphorylates p38 and restores the capacity to translate TNF-α and IL-6 mRNAs. We also observed that the RNA-binding protein motif 4 (RBM4), a p38 MAPK target, accumulates in an unphosphorylated form in the cytosol in endotoxin-adapted cells, suggesting that dephosphorylated RBM4 may function as a translational repressor. Moreover, MKP-1 knockdown promotes RBM4 phosphorylation, blocks its transfer from the nucleus to the cytosol, and reverses translation repression. We also found that microRNA 146a (miR-146a) knockdown prevents and miR-146a transfection induces MKP-1 expression, which lead to increases or decreases in TNF-α and IL-6 translation, respectively. We conclude that a TLR4-, miR-146a-, p38 MAPK-, and MKP-1-dependent autoregulatory pathway regulates the translation of proinflammatory genes during the acute inflammatory response by spatially and temporally modifying the phosphorylation state of RBM4 translational repressor protein. PMID:23825193

  10. Benzo[a]pyrene activates an AhR/Src/ERK axis that contributes to CYP1A1 induction and stable DNA adducts formation in lung cells.

    PubMed

    Vázquez-Gómez, G; Rocha-Zavaleta, L; Rodríguez-Sosa, M; Petrosyan, P; Rubio-Lightbourn, J

    2018-06-01

    Benzo[a]pyrene (B[a]P), the most extensively studied carcinogen in cigarette smoke, has been regarded as a critical mediator of lung cancer. It is known that B[a]P-mediated Aryl hydrocarbon Receptor (AhR) activation stimulates the mitogen activated protein kinases (MAPK) signaling cascade in different cell models. MAPK pathway disturbances drive alterations in cellular processes, such as differentiation, proliferation, and apoptosis, and the disturbances may also modify the AhR pathway itself. However, MAPK involvement in B[a]P metabolic activation and toxicity in lung tissues is not well understood. Here, we used a non-transformed human bronchial epithelial lung cell line, BEAS-2B, to study the participation of ERK 1/2 kinases in the metabolic activation of B[a]P and in its related genotoxic effects. Our results indicate that B[a]P is not cytotoxic to BEAS-2B cells at relatively low concentrations, but it enhances CYP1A1 gene transcription and protein induction. Additionally, B[a]P promotes Src and ERK 1/2 phosphorylation. Accordingly, inhibition of both Src and ERK 1/2 phosphorylation decreases CYP1A1 protein induction, AhR nuclear translocation and production of B[a]P adducts. Together, these data suggest a crosstalk between AhR and the members of the MAPK pathway, ERK 1/2 mediated by Src kinase. This interaction is important for the adequate AhR pathway signaling that in turn induces transcription and protein induction of CYP1A1 and B[a]P-induced DNA damage in BEAS-2B cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Zinc deficiency exacerbates while zinc supplement attenuates cardiac hypertrophy in high-fat diet-induced obese mice through modulating p38 MAPK-dependent signaling.

    PubMed

    Wang, Shudong; Luo, Manyu; Zhang, Zhiguo; Gu, Junlian; Chen, Jing; Payne, Kristen McClung; Tan, Yi; Wang, Yuehui; Yin, Xia; Zhang, Xiang; Liu, Gilbert C; Wintergerst, Kupper; Liu, Quan; Zheng, Yang; Cai, Lu

    2016-09-06

    Childhood obesity often leads to cardiovascular diseases, such as obesity-related cardiac hypertrophy (ORCH), in adulthood, due to chronic cardiac inflammation. Zinc is structurally and functionally essential for many transcription factors; however, its role in ORCH and underlying mechanism(s) remain unclear and were explored here in mice with obesity induced with high-fat diet (HFD). Four week old mice were fed on either HFD (60%kcal fat) or normal diet (ND, 10% kcal fat) for 3 or 6 months, respectively. Either diet contained one of three different zinc quantities: deficiency (ZD, 10mg zinc per 4057kcal), normal (ZN, 30mg zinc per 4057kcal) or supplement (ZS, 90mg zinc per 4057kcal). HFD induced a time-dependent obesity and ORCH, which was accompanied by increased cardiac inflammation and p38 MAPK activation. These effects were worsened by ZD in HFD/ZD mice and attenuated by ZS in HFD/ZS group, respectively. Also, administration of a p38 MAPK specific inhibitor in HFD mice for 3 months did not affect HFD-induced obesity, but completely abolished HFD-induced, and zinc deficiency-worsened, ORCH and cardiac inflammation. In vitro exposure of adult cardiomyocytes to palmitate induced cell hypertrophy accompanied by increased p38 MAPK activation, which was heightened by zinc depletion with its chelator TPEN. Inhibition of p38 MAPK with its specific siRNA also prevented the effects of palmitate on cardiomyocytes. These findings demonstrate that ZS alleviates but ZD heightens cardiac hypertrophy in HFD-induced obese mice through suppressing p38 MAPK-dependent cardiac inflammatory and hypertrophic pathways. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Serk In, E-mail: serkin@korea.edu; The BK21 Plus Program for Biomedical Sciences, Korea University College of Medicine, Seoul; Department of Medicine and Center for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN

    The radiation stress induces cytotoxic responses of cell death as well as cytoprotective responses of cell survival. Understanding exact cellular mechanism and signal transduction pathways is important in improving cancer radiotherapy. Increasing evidence suggests that cyclic AMP response element binding protein (CREB)/activating transcription factor (ATF) family proteins act as a survival factor and a signaling molecule in response to stress. We postulated that CREB inhibition via CRE decoy oligonucleotide increases tumor cell sensitization to γ-irradiation-induced cytotoxic stress. In the present study, we demonstrate that CREB phosphorylation and CREB DNA-protein complex formation increased in time- and radiation dose-dependent manners, while theremore » was no significant change in total protein level of CREB. In addition, CREB was phosphorylated in response to γ-irradiation through p38 MAPK pathway. Further investigation revealed that CREB blockade by decoy oligonucleotides functionally inhibited transactivation of CREB, and significantly increased radiosensitivity of multiple human cancer cell lines including TP53- and/or RB-mutated cells with minimal effects on normal cells. We also demonstrate that tumor cells ectopically expressing dominant negative mutant CREB (KCREB) and the cells treated with p38 MAPK inhibitors were more sensitive to γ-irradiation than wild type parental cells or control-treated cells. Taken together, we conclude that CREB protects tumor cells from γ-irradiation, and combination of CREB inhibition plus ionizing radiation will be a promising radiotherapeutic approach. - Highlights: • γ-Irradiation induced CREB phosphorylation and CRE-directed transcription in tumor. • γ-Irradiation-induced transcriptional activation of CREB was via p38 MAPK pathway. • CRE blockade increased radiosensitivity of tumor cells but not of normal cells. • CRE decoy oligonucleotides or p38 MAPK inhibitors can be used as radiosensitizers.« less

  13. SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway

    PubMed Central

    Li, Shih-Wein; Wang, Ching-Ying; Jou, Yu-Jen; Yang, Tsuey-Ching; Huang, Su-Hua; Wan, Lei; Lin, Ying-Ju; Lin, Cheng-Wen

    2016-01-01

    SARS coronavirus (SARS-CoV) papain-like protease (PLpro) has been identified in TGF-β1 up-regulation in human promonocytes (Proteomics 2012, 12: 3193-205). This study investigates the mechanisms of SARS-CoV PLpro-induced TGF-β1 promoter activation in human lung epithelial cells and mouse models. SARS-CoV PLpro dose- and time-dependently up-regulates TGF-β1 and vimentin in A549 cells. Dual luciferase reporter assays with TGF-β1 promoter plasmids indicated that TGF-β1 promoter region between −175 to −60, the Egr-1 binding site, was responsible for TGF-β1 promoter activation induced by SARS-CoV PLpro. Subcellular localization analysis of transcription factors showed PLpro triggering nuclear translocation of Egr-1, but not NF-κB and Sp-1. Meanwhile, Egr-1 silencing by siRNA significantly reduced PLpro-induced up-regulation of TGF-β1, TSP-1 and pro-fibrotic genes. Furthermore, the inhibitors for ROS (YCG063), p38 MAPK (SB203580), and STAT3 (Stattic) revealed ROS/p38 MAPK/STAT3 pathway involving in Egr-1 dependent activation of TGF-β1 promoter induced by PLpro. In a mouse model with a direct pulmonary injection, PLpro stimulated macrophage infiltration into lung, up-regulating Egr-1, TSP-1, TGF-β1 and vimentin expression in lung tissues. The results revealed that SARS-CoV PLpro significantly triggered Egr-1 dependent activation of TGF-β1 promoter via ROS/p38 MAPK/STAT3 pathway, correlating with up-regulation of pro-fibrotic responses in vitro and in vivo. PMID:27173006

  14. SARS coronavirus papain-like protease induces Egr-1-dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway.

    PubMed

    Li, Shih-Wein; Wang, Ching-Ying; Jou, Yu-Jen; Yang, Tsuey-Ching; Huang, Su-Hua; Wan, Lei; Lin, Ying-Ju; Lin, Cheng-Wen

    2016-05-13

    SARS coronavirus (SARS-CoV) papain-like protease (PLpro) has been identified in TGF-β1 up-regulation in human promonocytes (Proteomics 2012, 12: 3193-205). This study investigates the mechanisms of SARS-CoV PLpro-induced TGF-β1 promoter activation in human lung epithelial cells and mouse models. SARS-CoV PLpro dose- and time-dependently up-regulates TGF-β1 and vimentin in A549 cells. Dual luciferase reporter assays with TGF-β1 promoter plasmids indicated that TGF-β1 promoter region between -175 to -60, the Egr-1 binding site, was responsible for TGF-β1 promoter activation induced by SARS-CoV PLpro. Subcellular localization analysis of transcription factors showed PLpro triggering nuclear translocation of Egr-1, but not NF-κB and Sp-1. Meanwhile, Egr-1 silencing by siRNA significantly reduced PLpro-induced up-regulation of TGF-β1, TSP-1 and pro-fibrotic genes. Furthermore, the inhibitors for ROS (YCG063), p38 MAPK (SB203580), and STAT3 (Stattic) revealed ROS/p38 MAPK/STAT3 pathway involving in Egr-1 dependent activation of TGF-β1 promoter induced by PLpro. In a mouse model with a direct pulmonary injection, PLpro stimulated macrophage infiltration into lung, up-regulating Egr-1, TSP-1, TGF-β1 and vimentin expression in lung tissues. The results revealed that SARS-CoV PLpro significantly triggered Egr-1 dependent activation of TGF-β1 promoter via ROS/p38 MAPK/STAT3 pathway, correlating with up-regulation of pro-fibrotic responses in vitro and in vivo.

  15. p38 mitogen-activated protein kinase up-regulates NF-{kappa}B transcriptional activation through RelA phosphorylation during stretch-induced myogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Guoping; Liu, Dongxu; Liu, Jing

    2010-01-01

    p38 MAPK and nuclear factor-B (NF-B) signaling pathways play an indispensable role in the control of skeletal myogenesis. The specific contribution of these signaling pathways to the response of myoblast to the mechanical stimulation and the molecular mechanisms underlying this response remain unresolved. Using an established in vitro model, we now show that p38 MAP kinase activity regulates the transcriptional activation of NF-{kappa}B in response to mechanical stimulation of myoblasts. Furthermore, SB203580 blocked stretch-induced NF-{kappa}B activation during myogenesis, not through down-regulation of degradation of I{kappa}B-{alpha}, and consequent translocation of the p65 subunit of NF-{kappa}B to the nucleus. It is likelymore » that stretch-induced NF-{kappa}B activation by phosphorylation of p65 NF-{kappa}B. Moreover, depletion of p38{alpha} using siRNA significantly reduces stretch-induced phosphorylation of RelA and NF-{kappa}B activity. These results provides the first evidence of a cross-talk between p38 MAPK and NF-{kappa}B signaling pathways during stretch-induced myogenesis, with phosphorylation of RelA being one of the effectors of this promyogenic mechanism. The {alpha} isoform of p38MAP kinase regulates the transcriptional activation of NF-{kappa}B following stimulation with cyclic stretch.« less

  16. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways.

    PubMed

    Min, Jie; Huang, Kenan; Tang, Hua; Ding, Xinyu; Qi, Chen; Qin, Xiong; Xu, Zhifei

    2015-12-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose‑dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC.

  17. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways

    PubMed Central

    MIN, JIE; LI, XU; HUANG, KENAN; TANG, HUA; DING, XINYU; QI, CHEN; QIN, XIONG; XU, ZHIFEI

    2015-01-01

    Phloretin (Ph) existing in apples, pears and various vegetables is known to have antitumor activities in several cancer cell lines. However, little is known about its effect on human lung cancer cells. The aim of the present study was to see whether Ph could induce apoptosis of non-small cell lung cancer (NSCLC) cells, and explore the possible underlying mechanism of action. We found that Ph markedly induced cell apoptosis of NSCLC cell line A549, and inhibited the migration of A549 cells in a dose-dependent manner. The expression level of BAX, cleaved caspase-3 and -9, and degraded form of PARP was increased and Bcl-2 was decreased after Ph treatment. In addition, the phosphorylation of P38 MAPK, ERK1/2 and JNK1/2 was increased in a dose-dependent manner in parallel with Ph treatment. Inhibition of P38 MAPK and JNK1/2 by specific inhibitors significantly abolished the Ph-induced activation of the caspase-3 and -9. In vivo tumor-suppression assay further indicated that Ph (20 mg/kg) displayed a more significant inhibitory effect on A549 xenografts in tumor growth. All these findings indicate that Ph is able to inhibit NSCLC A549 cell growth by inducing apoptosis through P38 MAPK and JNK1/2 pathways, and therefore may prove to be an adjuvant to the treatment of NSCLC. PMID:26503828

  18. Acidic environment augments FcεRI-mediated production of IL-6 and IL-13 in mast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamide, Yosuke, E-mail: m08702012@gunma-u.ac.jp; Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara; Ishizuka, Tamotsu

    Although blood pH is maintained in a narrow range of around pH 7.4 in living organisms, inflammatory loci are characterized by acidic conditions. Mast cells tend to reside close to the surface of the body in areas such as the mucosa and skin where they may be exposed to exogenous acids, and they play an important role in immune responses. However, little is known about the effects of extracellular acidification on the functions of mast cell. Here, we found that extracellular acidification increased the dinitrophenyl-conjugated human serum albumin (DNP-HSA)-induced production of interleukin (IL)-6 and IL-13 in MC/9 cells or bonemore » marrow-derived mouse mast cells sensitized with anti-DNP IgE. Extracellular acidification also inhibited migration of MC/9 cells toward DNP-HSA. In addition, acidic pH stimulated antigen-induced activation of p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt). These findings suggest that extracellular acidification augmented antigen/IgE-induced and FcεRI-mediated production of IL-6 and IL-13 in mast cells, and that this was associated with the enhancement of p38 MAPK and Akt activation. - Highlights: • Antigen-induced IL-6 and IL-13 production was augmented by acidic pH in mast cells. • Acidic pH-induced actions were associated with activation of p38 MAPK and Akt. • Inhibition of p38 MAPK and Akt attenuated cytokine responses to acidic pH. • Acidic pH effects are not attributable to actions of known proton-sensing GPCRs.« less

  19. Morus alba Leaf Lectin (MLL) Sensitizes MCF-7 Cells to Anoikis by Inhibiting Fibronectin Mediated Integrin-FAK Signaling through Ras and Activation of P38 MAPK

    PubMed Central

    Saranya, Jayaram; Shilpa, Ganesan; Raghu, Kozhiparambil G.; Priya, Sulochana

    2017-01-01

    Lectins are a unique class of carbohydrate binding proteins/glycoproteins, and many of them possess anticancer properties. They can induce cell cycle arrest and apoptosis, inhibit protein synthesis, telomerase activity and angiogenesis in cancer cells. In the present study, we have demonstrated the effect of Morus alba leaf lectin (MLL) on anoikis induction in MCF-7 cells. Anoikis induction in cancer cells has a significant role in preventing early stage metastasis. MLL treatment in monolayers of MCF-7 cells caused significant detachment of cells in a time and concentration dependent manner. The detached cells failed to re-adhere and grew even to culture plates coated with different matrix proteins. DNA fragmentation, membrane integrity studies, annexin V staining, caspase 9 activation and upregulation of Bax/Bad confirmed that the detached cells underwent apoptosis. Upregulation of matrix metalloproteinase 9 (MMP-9) caused a decrease in fibronectin (FN) production which facilitated the cells to detach by blocking the FN mediated downstream signaling. On treatment with MLL, we have observed downregulation of integrin expression, decreased phosphorylation of focal adhesion kinase (FAK), loss in FAK-integrin interaction and active Ras. MLL treatment downregulated the levels of phosphorylated Akt and PI3K. Also, we have studied the effect of MLL on two stress activated protein kinases p38 MAPK and JNK. p38 MAPK activation was found to be elevated, but there was no change in the level of JNK. Thus our study substantiated the possible antimetastatic effect of MLL by inducing anoikis in MCF-7 cells by activation of caspase 9 and proapoptotic Bax/Bad by blockage of FN mediated integrin/FAK signaling and partly by activation of p38 MAPK. PMID:28223935

  20. Cold-induced retrotransposition of fish LINEs.

    PubMed

    Chen, Shue; Yu, Mengchao; Chu, Xu; Li, Wenhao; Yin, Xiujuan; Chen, Liangbiao

    2017-08-20

    Classes of retrotransposons constitute a large portion of metazoan genome. There have been cases reported that genomic abundance of retrotransposons is correlated with the severity of low environmental temperatures. However, the molecular mechanisms underlying such correlation are unknown. We show here by cell transfection assays that retrotransposition (RTP) of a long interspersed nuclear element (LINE) from an Antarctic notothenioid fish Dissostichus mawsoni (dmL1) could be activated by low temperature exposure, causing increased dmL1 copies in the host cell genome. The cold-induced dmL1 propagation was demonstrated to be mediated by the mitogen-activated protein kinases (MAPK)/p38 signaling pathway, which is activated by accumulation of reactive oxygen species (ROS) in cold-stressed conditions. Surprisingly, dmL1 transfected cells showed an increase in the number of viable cells after prolonged cold exposures than non-transfected cells. Features of cold inducibility of dmL1 were recapitulated in LINEs of zebrafish origin both in cultured cell lines and tissues, suggesting existence of a common cold-induced LINE amplification in fishes. The findings reveal an important function of LINEs in temperature adaptation and provid insights into the MAPK/p38 stress responsive pathway that shapes LINE composition in fishes facing cold stresses. Copyright © 2017. Published by Elsevier Ltd.

  1. Fine chalk dust induces inflammatory response via p38 and ERK MAPK pathway in rat lung.

    PubMed

    Zhang, Yuexia; Yang, Zhenhua; Chen, Yunzhu; Li, Ruijin; Geng, Hong; Dong, Wenjuan; Cai, Zongwei; Dong, Chuan

    2018-01-01

    Chalk teaching is widely used in the world due to low cost, especially in some developing countries. During teaching with chalks, a large amount of fine chalk dust is produced. Although exposure to chalk dust is associated with respiratory diseases, the mechanism underlying the correlation between chalk dust exposure and adverse effects has not fully been elucidated. In this study, inflammation and its signal pathway in rat lungs exposed to fine chalk dust were examined through histopathology analyses; pro-inflammatory gene transcription; and protein levels measured by HE staining, RT-PCR, and western blot analysis. The results demonstrated that fine chalk dust increased neutrophils and up-regulated inflammatory gene mRNA levels (TNF-α, IL-6, TGF-β1, iNOS, and ICAM-1), and oxidative stress marker (HO-1) level, leading to the increase of inflammatory cell infiltration and inflammatory injury on the lungs. These inflammation responses were mediated, at least in part, via p38 and extracellular regulated proteinase (ERK) mitogen-activated protein kinase (MAPK) signaling mechanisms. In contrast, N-acetyl-L-cysteine (NAC) supplement significantly ameliorated these changes in inflammatory responses. Our results support the hypothesis that fine chalk dust can damage rat lungs and the NAC supplement may attenuate fine chalk dust-associated lung inflammation.

  2. Non-Smad signaling pathways.

    PubMed

    Mu, Yabing; Gudey, Shyam Kumar; Landström, Maréne

    2012-01-01

    Transforming growth factor-beta (TGFβ) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGFβ signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (TβRI and TβRII, respectively). The activated TβR complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGFβ also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGFβ-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGFβ-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGFβ are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways.

  3. Evidence for the Involvement of p38 MAPK Activation in Barnacle Larval Settlement

    PubMed Central

    He, Li-Sheng; Xu, Ying; Matsumura, Kiyotaka; Zhang, Yu; Zhang, Gen; Qi, Shu-Hua; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus ( = Amphibalanus) amphitrite is a major marine fouling animal. Understanding the molecular mechanism of larval settlement in this species is critical for anti-fouling research. In this study, we cloned one isoform of p38 MAPK (Bar-p38 MAPK) from this species, which shares the significant characteristic of containing a TGY motif with other species such as yeast, Drosophila and humans. The activation of p38 MAPK was detected by an antibody that recognizes the conserved dual phosphorylation sites of TGY. The results showed that phospho-p38 MAPK (pp38 MAPK) was more highly expressed at the cyprid stage, particularly in aged cyprids, in comparison to other stages, including the nauplius and juvenile stages. Immunostaining showed that Bar-p38 MAPK and pp38 MAPK were mainly located at the cyprid antennules, and especially the third and fourth segments, which are responsible for substratum exploration during settlement. The expression and localization patterns of Bar-p38 MAPK suggest its involvement in larval settlement. This postulation was also supported by the larval settlement bioassay with the p38 MAPK inhibitor SB203580. Behavioral analysis by live imaging revealed that the larvae were still capable of exploring the surface of the substratum after SB203580 treatment. This shows that the effect of p38 MAPK on larval settlement might be by regulating the secretion of permanent proteinaceous substances. Furthermore, the level of pp38 MAPK dramatically decreased after full settlement, suggesting that Bar-p38 MAPK maybe plays a role in larval settlement rather than metamorphosis. Finally, we found that Bar-p38 MAPK was highly activated when larvae confronted extracts of adult barnacle containing settlement cues, whereas larvae pre-treated with SB203580 failed to respond to the crude adult extracts. PMID:23115639

  4. CCR-2 neutralization augments murine fresh BMC activation by Staphylococcus aureus via two distinct mechanisms: at the level of ROS production and cytokine response.

    PubMed

    Nandi, Ajeya; Bishayi, Biswadev

    2017-05-01

    CCR-2 signaling regulates recruitment of monocytes from the bone marrow into the bloodstream and then to sites of infection. We sought to determine whether CCL-2/CCR-2 signaling is involved in the killing of Staphylococcus aureus by murine bone marrow cells (BMCs). The intermittent link of reactive oxygen species (ROS)-NF-κB/p38-MAPK-mediated CCL-2 production in CCR-2 signaling prompted us to determine whether neutralization of CCR-2 augments the response of murine fresh BMCs (FBMCs) after S. aureus infection. It was observed that anti-CCR-2 Ab-treated FBMCs released fewer ROS on encountering S. aureus infection than CCR-2 non-neutralized FBMCs, also correlating with reduced killing of S. aureus in CCR-2 neutralized FBMCs. Staphylococcal catalase and SOD were also found to play a role in protecting S. aureus from the ROS-mediated killing of FBMC. S. aureus infection of CCR-2 intact FBMCs pre-treated with either NF-κB or p-38-MAPK blocker induced less CCL-2, suggesting that NF-κB or p-38-MAPK is required for CCL-2 production by FBMCs. Moreover, blocking of CCR-2 along with NF-κB or p-38-MAPK resulted in elevated CCL-2 production and reduced CCR-2 expression. Inhibition of CCR-2 impairs the response of murine BMCs to S. aureus infection by attenuation ROS production and modulating the cytokine response.

  5. Mechanisms of TNFalpha-induced cardiac dysfunction in cholestatic bile duct-ligated mice: interaction between TNFalpha and endocannabinoids.

    PubMed

    Yang, Ying-Ying; Liu, Hongqun; Nam, Soon Woo; Kunos, George; Lee, Samuel S

    2010-08-01

    Chronic liver disease is associated with endotoxemia, oxidative stress, increased endocannabinoids and decreased cardiac responsiveness. Endocannabinoids activate the tumor necrosis factor-alpha (TNFalpha)-nuclear factor kappaB (NFkappaB) pathway. However, how they interact with each other remains obscure. We therefore aimed to clarify the relationship between the TNFalpha-NFkappaB pathway and endocannabinoids in the pathogenesis of cardiodepression of cholestatic bile duct ligated (BDL) mice. BDL mice with TNFalpha knockout (TNFalpha-/-) and infusion of anti-TNFalpha antibody were used. Cardiac mRNA and protein expression of NFkappaBp65, c-Jun-N-terminal kinases (JNK), p38 mitogen-activated protein kinase (p38MAPK), extracelullar-signal- regulated kinase (ERK), inducible nitric oxide synthase (iNOS), Copper/Zinc and Magnesium-superoxide dismutase (Cu/ Zn- and Mn-SOD), cardiac anandamide, 2-arachidonoylglycerol (2-AG), nitric oxide (NOx) and glutathione, and plasma TNFalpha were measured. The effects of TNFalpha, cannabinoid receptor (CB1) antagonist AM251 and the endocannabinoid reuptake inhibitor UCM707, on the contractility of isolated cardiomyocytes, were assessed. In BDL mice, cardiac mRNA and protein expression of NFkappaBp65, p38MAPK, iNOS, NOx, anandamide, and plasma TNFa were increased, whereas glutathione, Cu/Zn-SOD, and Mn-SOD were decreased. Cardiac contractility was blunted in BDL mice. Anti-TNFa treatment in BDL mice decreased cardiac anandamide and NOx, reduced expression of NFkappaBp65, p38MAPK, and iNOS, enhanced expression of Cu/Zn-SOD and Mn-SOD, increased reductive glutathione and restored cardiomyocyte contractility. TNFa-depressed contractility was worsened by UCM707, whereas AM251 improved contractility. Increased TNFalpha, acting via NFkappaB-iNOS and p38MAPK signaling pathways, plays an important role in the pathogenesis of cardiodepression in BDL mice. TNFalpha also suppressed contractility by increasing oxidative stress and endocannabinoid activity.

  6. Activation of p38-MAPK by CXCL4/CXCR3 axis contributes to p53-dependent intestinal apoptosis initiated by 5-fluorouracil.

    PubMed

    Gao, Jing; Gao, Jin; Qian, Lan; Wang, Xia; Wu, Mingyuan; Zhang, Yang; Ye, Hao; Zhu, Shunying; Yu, Yan; Han, Wei

    2014-08-01

    Chemotherapy-induced mucositis (CIM) is a major does limiting side-effect of chemoagents such as 5-fluorouracil (5-FU). Molecules involved in this disease process are still not fully understood. We proposed that the homeostatically regulated genes during CIM may participate in the disease. A cluster of such genes were previously identified by expression gene-array from the mouse jejunum in 5-FU-induced mucositis model. Here, we report that CXCL4 is such a homeostatically regulated gene and serves as a new target for the antibody treatment of CIM. CXCL4 and its receptor CXCR3 were confirmed at both the gene and protein levels to be homeostatically regulated during 5-FU-induced mucositis. Using of CXCL4 neutralizing monoclonal antibody (CXCL4mab) decreased the incidence, severity, and duration of the chemotherapy-induced diarrhea, the major symptom of CIM, in a 5-FU mouse CIM model. Mechanistically, CXCL4mab reduced the apoptosis of the crypt epithelia by suppression of the 5-FU-induced expression of p53 and Bax through its receptor CXCR3. The downstream signaling pathway of CXCL4 in activation of the epithelial apoptosis was identified in an intestinal epithelial cell line (IEC-6). CXCL4 activated the phosphorylation of p38 MAPK, which mediated the stimulated expression of p53 and Bax, and resulted in the ultimate activation of Caspase-8, -9, and -3. Taken together, activation of CXCL4 expression by 5-FU in mice participates in 5-FU-induced intestinal mucositis through upregulation of p53 via activation of p38-MAPK, and CXCL4mab is potentially beneficial in preventing CIM in the intestinal tract.

  7. Activation of p38-MAPK by CXCL4/CXCR3 axis contributes to p53-dependent intestinal apoptosis initiated by 5-fluorouracil

    PubMed Central

    Gao, Jing; Gao, Jin; Qian, Lan; Wang, Xia; Wu, Mingyuan; Zhang, Yang; Ye, Hao; Zhu, Shunying; Yu, Yan; Han, Wei

    2014-01-01

    Chemotherapy-induced mucositis (CIM) is a major does limiting side-effect of chemoagents such as 5-fluorouracil (5-FU). Molecules involved in this disease process are still not fully understood. We proposed that the homeostatically regulated genes during CIM may participate in the disease. A cluster of such genes were previously identified by expression gene-array from the mouse jejunum in 5-FU-induced mucositis model. Here, we report that CXCL4 is such a homeostatically regulated gene and serves as a new target for the antibody treatment of CIM. CXCL4 and its receptor CXCR3 were confirmed at both the gene and protein levels to be homeostatically regulated during 5-FU-induced mucositis. Using of CXCL4 neutralizing monoclonal antibody (CXCL4mab) decreased the incidence, severity, and duration of the chemotherapy-induced diarrhea, the major symptom of CIM, in a 5-FU mouse CIM model. Mechanistically, CXCL4mab reduced the apoptosis of the crypt epithelia by suppression of the 5-FU-induced expression of p53 and Bax through its receptor CXCR3. The downstream signaling pathway of CXCL4 in activation of the epithelial apoptosis was identified in an intestinal epithelial cell line (IEC-6). CXCL4 activated the phosphorylation of p38 MAPK, which mediated the stimulated expression of p53 and Bax, and resulted in the ultimate activation of Caspase-8, -9, and -3. Taken together, activation of CXCL4 expression by 5-FU in mice participates in 5-FU-induced intestinal mucositis through upregulation of p53 via activation of p38-MAPK, and CXCL4mab is potentially beneficial in preventing CIM in the intestinal tract. PMID:24800927

  8. Diosgenin inhibits superoxide generation in FMLP-activated mouse neutrophils via multiple pathways.

    PubMed

    Lin, Y; Jia, R; Liu, Y; Gao, Y; Zeng, X; Kou, J; Yu, B

    2014-12-01

    Diosgenin possesses anti-inflammatory and anticancer properties. Activated neutrophils produce high concentrations of the superoxide anion which is involved in the pathophysiology of inflammation-related diseases and cancer. In the present study, the inhibitory effect and possible mechanisms of diosgenin on superoxide generation were investigated in mouse bone marrow neutrophils. Diosgenin potently and concentration-dependently inhibited the extracellular and intracellular superoxide anion generation in Formyl-Met-Leu-Phe (FMLP)- activated neutrophils, with IC50 values of 0.50 ± 0.08 μM and 0.66 ± 0.13 μM, respectively. Such inhibition was not mediated by scavenging the superoxide anion or by a cytotoxic effect. Diosgenin inhibited the phosphorylation of p47phox and membrane translocation of p47phox and p67phox, and thus blocking the assembly of nicotinamide adenine dinucleotide phosphate oxidase. Moreover, cellular cyclic adenosine monophosphate (cAMP) levels and protein kinase A (PKA) expression were also effectively increased by diosgenin. It attenuated FMLP-induced increase of phosphorylation of cytosolic phospholipase A (cPLA2), p21-activated kinase (PAK), Akt, p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase (ERK1/2), and c-Jun N-terminal kinase (JNK). Our data indicate that diosgenin exhibits inhibitory effects on superoxide anion production through the blockade of cAMP, PKA, cPLA2, PAK, Akt and MAPKs signaling pathways. The results may explain the clinical implications of diosgenin in the treatment of inflammation-related disorders.

  9. NMDA receptor dependent PGC-1alpha up-regulation protects the cortical neuron against oxygen-glucose deprivation/reperfusion injury.

    PubMed

    Luo, Yun; Zhu, Wenjing; Jia, Jia; Zhang, Chenyu; Xu, Yun

    2009-09-01

    The peroxisome proliferator activated receptor coactivator 1 alpha (PGC-1alpha) is a nuclear transcriptional coactivator that is widely expressed in the brain areas. Over-expression of PGC-1alpha can protect neuronal cells from oxidant-induced injury. The purpose of the current study is to investigate the role of PGC-1alpha in the oxygen (anoxia) deprivation (OGD) neurons. The PGC-1alpha mRNA and protein level between control and OGD neurons were examined by real-time PCR and Western blot. More PGC-1alpha expression was found in the OGD neurons compared with the normal group. Over-expression of PGC-1alpha suppressed cell apoptosis while inhibition of the PGC-1alpha expression induced cell apoptosis in OGD neurons. Furthermore, increase of PGC-1alpha resulted in activation of N-methyl-D-aspartate (NMDA) receptor, p38, and ERK mitogen-activated protein kinase (MAPK) pathway. The blocking of the NMDA receptor by its antagonists MK-801 reduced PGC-1alpha mRNA expression in OGD neurons, while NMDA itself can directly induce the expression of PGC-1alpha in neuronal cells. At the same time, PD98059 (ERK MAPK inhibitor) and SB203580 (P38 MAPK inhibitor) also prevented the up-regulation of PGC-1alpha in OGD neurons and MK801 can inhibit the expression of P38 and ERK MAPK. These data suggested that the expression of PGC-1alpha was up-regulated in OGD mice cortical neurons, which protected the neurons against OGD injury. Moreover, this effect was correlated to the NMDA receptor and the ERK and P38 MAPK pathway. The protective effect of PGC-1alpha on OGD cortical neurons may be useful for stroke therapy.

  10. Chronic ethanol exposure enhances the aggressiveness of breast cancer: the role of p38γ

    PubMed Central

    Xu, Mei; Wang, Siying; Ren, Zhenhua; Frank, Jacqueline A.; Yang, Xiuwei H.; Zhang, Zhuo; Ke, Zun-ji; Shi, Xianglin; Luo, Jia

    2016-01-01

    Both epidemiological and experimental studies suggest that ethanol may enhance aggressiveness of breast cancer. We have previously demonstrated that short term exposure to ethanol (12–48 hours) increased migration/invasion in breast cancer cells overexpressing ErbB2, but not in breast cancer cells with low expression of ErbB2, such as MCF7, BT20 and T47D breast cancer cells. In this study, we showed that chronic ethanol exposure transformed breast cancer cells that were not responsive to short term ethanol treatment to a more aggressive phenotype. Chronic ethanol exposure (10 days - 2 months) at 100 (22 mM) or 200 mg/dl (44 mM) caused the scattering of MCF7, BT20 and T47D cell colonies in a 3-dimension culture system. Chronic ethanol exposure also increased colony formation in an anchorage-independent condition and stimulated cell invasion/migration. Chronic ethanol exposure increased cancer stem-like cell (CSC) population by more than 20 folds. Breast cancer cells exposed to ethanol in vitro displayed a much higher growth rate and metastasis in mice. Ethanol selectively activated p38γ MAPK and RhoC but not p38α/β in a concentration-dependent manner. SP-MCF7 cells, a derivative of MCF7 cells which compose mainly CSC expressed high levels of phosphorylated p38γ MAPK. Knocking-down p38γ MAPK blocked ethanol-induced RhoC activation, cell scattering, invasion/migration and ethanol-increased CSC population. Furthermore, knocking-down p38γ MAPK mitigated ethanol-induced tumor growth and metastasis in mice. These results suggest that chronic ethanol exposure can enhance the aggressiveness of breast cancer by activating p38γ MAPK/RhoC pathway. PMID:26655092

  11. Essential role of protein kinase C delta in platelet signaling, alpha IIb beta 3 activation, and thromboxane A2 release.

    PubMed

    Yacoub, Daniel; Théorêt, Jean-François; Villeneuve, Louis; Abou-Saleh, Haissam; Mourad, Walid; Allen, Bruce G; Merhi, Yahye

    2006-10-06

    The protein kinase C (PKC) family is an essential signaling mediator in platelet activation and aggregation. However, the relative importance of the major platelet PKC isoforms and their downstream effectors in platelet signaling and function remain unclear. Using isolated human platelets, we report that PKCdelta, but not PKCalpha or PKCbeta, is required for collagen-induced phospholipase C-dependent signaling, activation of alpha(IIb)beta(3), and platelet aggregation. Analysis of PKCdelta phosphorylation and translocation to the membrane following activation by both collagen and thrombin indicates that it is positively regulated by alpha(IIb)beta(3) outside-in signaling. Moreover, PKCdelta triggers activation of the mitogen-activated protein kinase-kinase (MEK)/extracellular-signal regulated kinase (ERK) and the p38 MAPK signaling. This leads to the subsequent release of thromboxane A(2), which is essential for collagen-induced but not thrombin-induced platelet activation and aggregation. This study adds new insight to the role of PKCs in platelet function, where PKCdelta signaling, via the MEK/ERK and p38 MAPK pathways, is required for the secretion of thromboxane A(2).

  12. Dendritic cell MST1 inhibits Th17 differentiation

    PubMed Central

    Li, Chunxiao; Bi, Yujing; Li, Yan; Yang, Hui; Yu, Qing; Wang, Jian; Wang, Yu; Su, Huilin; Jia, Anna; Hu, Ying; Han, Linian; Zhang, Jiangyuan; Li, Simin; Tao, Wufan; Liu, Guangwei

    2017-01-01

    Although the differentiation of CD4+T cells is widely studied, the mechanisms of antigen-presenting cell-dependent T-cell modulation are unclear. Here, we investigate the role of dendritic cell (DC)-dependent T-cell differentiation in autoimmune and antifungal inflammation and find that mammalian sterile 20-like kinase 1 (MST1) signalling from DCs negatively regulates IL-17 producing-CD4+T helper cell (Th17) differentiation. MST1 deficiency in DCs increases IL-17 production by CD4+T cells, whereas ectopic MST1 expression in DCs inhibits it. Notably, MST1-mediated DC-dependent Th17 differentiation regulates experimental autoimmune encephalomyelitis and antifungal immunity. Mechanistically, MST1-deficient DCs promote IL-6 secretion and regulate the activation of IL-6 receptor α/β and STAT3 in CD4+T cells in the course of inducing Th17 differentiation. Activation of the p38 MAPK signal is responsible for IL-6 production in MST1-deficient DCs. Thus, our results define the DC MST1–p38MAPK signalling pathway in directing Th17 differentiation. PMID:28145433

  13. Angiotensin II increases CTGF expression via MAPKs/TGF-{beta}1/TRAF6 pathway in atrial fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jun; Liu, Xu, E-mail: xkliuxu@yahoo.cn; Wang, Quan-xing, E-mail: shmywqx@126.com

    2012-10-01

    The activation of transforming growth factor-{beta}1(TGF-{beta}1)/Smad signaling pathway and increased expression of connective tissue growth factor (CTGF) induced by angiotensin II (AngII) have been proposed as a mechanism for atrial fibrosis. However, whether TGF{beta}1/non-Smad signaling pathways involved in AngII-induced fibrogenetic factor expression remained unknown. Recently tumor necrosis factor receptor associated factor 6 (TRAF6)/TGF{beta}-associated kinase 1 (TAK1) has been shown to be crucial for the activation of TGF-{beta}1/non-Smad signaling pathways. In the present study, we explored the role of TGF-{beta}1/TRAF6 pathway in AngII-induced CTGF expression in cultured adult atrial fibroblasts. AngII (1 {mu}M) provoked the activation of P38 mitogen activated proteinmore » kinase (P38 MAPK), extracellular signal-regulated kinase 1/2(ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). AngII (1 {mu}M) also promoted TGF{beta}1, TRAF6, CTGF expression and TAK1 phosphorylation, which were suppressed by angiotensin type I receptor antagonist (Losartan) as well as p38 MAPK inhibitor (SB202190), ERK1/2 inhibitor (PD98059) and JNK inhibitor (SP600125). Meanwhile, both TGF{beta}1 antibody and TRAF6 siRNA decreased the stimulatory effect of AngII on TRAF6, CTGF expression and TAK1 phosphorylation, which also attenuated AngII-induced atrial fibroblasts proliferation. In summary, the MAPKs/TGF{beta}1/TRAF6 pathway is an important signaling pathway in AngII-induced CTGF expression, and inhibition of TRAF6 may therefore represent a new target for reversing Ang II-induced atrial fibrosis. -- Highlights: Black-Right-Pointing-Pointer MAPKs/TGF{beta}1/TRAF6 participates in AngII-induced CTGF expression in atrial fibroblasts. Black-Right-Pointing-Pointer TGF{beta}1/TRAF6 participates in AngII-induced atrial fibroblasts proliferation. Black-Right-Pointing-Pointer TRAF6 may represent a new target for reversing Ang II-induced atrial fibrosis.« less

  14. Kappa Opioid Receptor Activation of p38 MAPK Is GRK3- and Arrestin-dependent in Neurons and Astrocytes*

    PubMed Central

    Bruchas, Michael R.; Macey, Tara A.; Lowe, Janet D.; Chavkin, Charles

    2007-01-01

    AtT-20 cells expressing the wild-type kappa opioid receptor (KOR) increased phospho-p38 MAPK following treatment with the kappa agonist U50,488. The increase was blocked by the kappa antagonist norbinaltorphimine and not evident in untransfected cells. In contrast, U50,488 treatment of AtT-20 cells expressing KOR having alanine substituted for serine-369 (KSA) did not increase phospho-p38. Phosphorylation of serine 369 in the KOR carboxyl terminus by G-protein receptor kinase 3 (GRK3) was previously shown to be required for receptor desensitization, and the results suggest that p38 MAPK activation by KOR may require arrestin recruitment. This hypothesis was tested by transfecting arrestin3-(R170E), a dominant positive form of arrestin that does not require receptor phosphorylation for activation. AtT-20 cells expressing both KSA and arrestin3-(R170E) responded to U50,488 treatment with an increase in phospho-p38 consistent with the hypothesis. Primary cultured astrocytes (glial fibrillary acidic protein-positive) and neurons (γ-aminobutyric acid-positive) isolated from mouse striata also responded to U50,488 by increasing phospho-p38 immunolabeling. p38 activation was not evident in either striatal astrocytes or neurons isolated from KOR knock-out mice or GRK3 knock-out mice. Astrocytes pretreated with small interfering RNA for arrestin3 were also unable to activate p38 in response to U50,488 treatment. Furthermore, in striatal neurons, the kappa-mediated phospho-p38 labeling was colocalized with arrestin3. These findings suggest that KOR may activate p38 MAPK in brain by a GRK3 and arrestin-dependent mechanism. PMID:16648139

  15. Effect of baicalin on GLUT4 expression and glucose uptake in myotubes of rats.

    PubMed

    Fang, Penghua; Yu, Mei; Min, Wen; Wan, Dan; Han, Shiyu; Shan, Yizhi; Wang, Rui; Shi, Mingyi; Zhang, Zhenwen; Bo, Ping

    2018-03-01

    Although baicalin could attenuate obesity-induced insulin resistance, the detailed mechanism of baicalin on glucose uptake has not been sufficiently explored as yet. The aim of this study was to survey if baicalin might facilitate glucose uptake and to explore its signal mechanisms in L6 myotubes. L6 myotubes were treated with 100, 200, 400 μM baicalin for 6 h, 12 h and 24 h in this study. Then 2-NBDG and insulin signal protein levels in myotubes of L6 cells were examined. We discovered that administration of baicalin enhanced GLUT4, PGC-1α, pP38MAPK, pAKT and pAS160 contents, as well as GLUT4 mRNA and PGC-1α mRNA levels in L6 myotubes. The beneficial metabolic changes elicited by baicalin were abrogated in myotubes of L6 by P38MAPK or AKT inhibitors. These results suggest that baicalin promoted glucose uptake in myotubes by differential regulation on P38MAPK and AKT activity. In conclusion, these data provide insight that baicalin is a powerful and promising agent for the treament of hyperglycemia via AKT/AS160/GLUT4 and P38MAPK/PGC1α/GLUT4 pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies.

    PubMed

    Friedman, Joseph; Kraus, Sarah; Hauptman, Yirmi; Schiff, Yoni; Seger, Rony

    2007-08-01

    The exposure to non-thermal microwave electromagnetic fields generated by mobile phones affects the expression of many proteins. This effect on transcription and protein stability can be mediated by the MAPK (mitogen-activated protein kinase) cascades, which serve as central signalling pathways and govern essentially all stimulated cellular processes. Indeed, long-term exposure of cells to mobile phone irradiation results in the activation of p38 as well as the ERK (extracellular-signal-regulated kinase) MAPKs. In the present study, we have studied the immediate effect of irradiation on the MAPK cascades, and found that ERKs, but not stress-related MAPKs, are rapidly activated in response to various frequencies and intensities. Using signalling inhibitors, we delineated the mechanism that is involved in this activation. We found that the first step is mediated in the plasma membrane by NADH oxidase, which rapidly generates ROS (reactive oxygen species). These ROS then directly stimulate MMPs (matrix metalloproteinases) and allow them to cleave and release Hb-EGF [heparin-binding EGF (epidermal growth factor)]. This secreted factor activates the EGF receptor, which in turn further activates the ERK cascade. Thus this study demonstrates for the first time a detailed molecular mechanism by which electromagnetic irradiation from mobile phones induces the activation of the ERK cascade and thereby induces transcription and other cellular processes.

  17. Cross-talk between Smad and p38 MAPK signalling in transforming growth factor {beta} signal transduction in human glioblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziembowska, Magdalena; Danilkiewicz, Malgorzata; Wesolowska, Aleksandra

    2007-03-23

    Transforming growth factor-beta (TGF-{beta}) is a multifunctional cytokine involved in the regulation of cell proliferation, differentiation, and survival. Malignant tumour cells often do not respond to TGF-{beta} by growth inhibition, but retain responsiveness to cytokine in regulating extracellular matrix deposition, cell adhesion, and migration. We demonstrated that TGF-{beta}1 does not affect viability or proliferation of human glioblastoma T98G, but increases transcriptional responses exemplified by induction of MMP-9 expression. TGF-{beta} receptors were functional in T98G glioblastoma cells leading to SMAD3/SMAD4 nuclear translocation and activation of SMAD-dependent promoter. In parallel, a selective activation of p38 MAPK, and phosphorylation of its substrates: ATF2more » and c-Jun proteins were followed by a transient activation of AP-1 transcription factor. Surprisingly, an inhibition of p38 MAPK with a specific inhibitor, SB202190, abolished TGF-inducible activation of Smad-dependent promoter and decreased Smad2 phosphorylation. It suggests an unexpected interaction between Smad and p38 MAPK pathways in TGF-{beta}1-induced signalling.« less

  18. Mangiferin protect myocardial insults through modulation of MAPK/TGF-β pathways.

    PubMed

    Suchal, Kapil; Malik, Salma; Gamad, Nanda; Malhotra, Rajiv Kumar; Goyal, Sameer N; Ojha, Shreesh; Kumari, Santosh; Bhatia, Jagriti; Arya, Dharamvir Singh

    2016-04-05

    Mangiferin, a xanthone glycoside isolated from leaves of Mangifera indica (Anacardiaceae) is known to modulate many biological targets in inflammation and oxidative stress. The present study was designed to investigate whether mangiferin exerts protection against myocardial ischemia-reperfusion (IR) injury and possible role of Mitogen Activated Protein Kinase (MAPKs) and Transforming Growth Factor-β (TGF-β) pathways in its cardioprotection. Male albino Wistar rats were treated with mangiferin (40 mg/kg, i.p.) for 15 days. At the end of the treatment protocol, rats were subjected to IR injury consisting of 45 min ischemia followed by 1h reperfusion. IR-control rats caused significant cardiac dysfunction, increased serum cardiac injury markers, lipid peroxidation and a significant decrease in tissue antioxidants as compared to sham group. Histopathological examination of IR rats revealed myocardial necrosis, edema and infiltration of inflammatory cells. However, pretreatment with mangiferin significantly restored myocardial oxidant-antioxidant status, maintained membrane integrity, and attenuated the levels of proinflammatory cytokines, pro-apoptotic proteins and TGF-β. Furthermore, mangiferin significantly reduced the phosphorylation of p38, and JNK and enhanced phosphorylation of ERK1/2. These results suggest that mangiferin protects against myocardial IR injury by modulating MAPK mediated inflammation and apoptosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. DCPIB, a potent volume-regulated anion channel antagonist, attenuates microglia-mediated inflammatory response and neuronal injury following focal cerebral ischemia.

    PubMed

    Han, Qingdong; Liu, Shengwen; Li, Zhengwei; Hu, Feng; Zhang, Qiang; Zhou, Min; Chen, Jingcao; Lei, Ting; Zhang, Huaqiu

    2014-01-13

    Accumulating evidence indicates that extensive microglia activation-mediated local inflammation contributes to neuronal injury in cerebral ischemia. We have previously shown that 4-(2-butyl-6, 7-dichloro-2-cyclopentyl-indan-1-on-5-yl) oxobutyric acid (DCPIB), a potent volume-regulated anion channel (VRAC) inhibitor, suppresses pathological glutamate release and excitatory neurotoxicity in reversible middle cerebral artery occlusion (rMCAO) model in vivo. In the present study, we sought to determine whether DCPIB also attenuates microglia activation that could contribute to neuronal injury in the cerebral ischemia/reperfusion pathology. We show that oxygen-glucose deprivation (OGD) induced microglia proliferation, migration, and secretion of cytokines and all these pathological changes were effectively inhibited by DCPIB in vitro. In the microglia/neuron co-cultures, OGD induced neuronal damage was reduced markedly in the presence of DCPIB. In rat rMCAO animal model, DCPIB significantly attenuated microglia activation and neuronal death. Activation of mitogen-activated protein kinase (MAPK) signaling pathway is known to be a critical signaling pathway for microglia activation. We further explored a potential involvement of DCPIB in this pathway by western blot analysis. Under the conditions that MAPK pathway was activated either by lipopolysaccharides (LPS) or OGD, the levels of phosphorylated ERK1/2, JNK and p38 were reduced significantly in the presence of DCPIB. Altogether, our study demonstrated that DCPIB inhibits microglia activation potently under ischemic conditions both in vitro and in vivo. The DCPIB effect is likely attributable to both direct inhibition VRAC and indirect inhibition of MAPK pathway in microglia that are beneficial for the survival of neurons in cerebral ischemic conditions. © 2013 Elsevier B.V. All rights reserved.

  20. Adiponectin Suppresses UVB-Induced Premature Senescence and hBD2 Overexpression in Human Keratinocytes

    PubMed Central

    Kim, MinJeong; Park, Kui Young; Lee, Mi-Kyung; Jin, Taewon; Seo, Seong Jun

    2016-01-01

    Recent studies have revealed that adiponectin can suppress cellular inflammatory signaling pathways. This study aimed to elucidate the effect of adiponectin on the unregulated production of hBD2 in UVB-induced premature senescent keratinocytes. We constructed an in vitro model of premature senescent keratinocytes through repeated exposure to low energy UVB. After repeated low energy UVB exposure, there was significant generation of reactive oxygen species (ROS) and induction of senescence-associated markers, including senescence associated beta-galactosidase activity and expression of p16INK4a and histone H2AX. In addition, the present clinical study showed higher expression of hBD2 in sun-exposed skin of elderly group, and the overexpression of hBD2 was observed by c-Fos activation in vitro. Adiponectin has the ability to scavenge ROS and consequently inhibit MAPKs and SA-markers in UVB-exposed keratinocytes. An inhibitor study demonstrated that adiponectin downregulated hBD2 mRNA expression through suppression of the AP-1 transcription factor components c-Fos via inactivation of p38 MAPK. Collectively, the dysregulated production of hBD2 by the induction of oxidative stress was attenuated by adiponectin through the suppression of p38 and JNK/SAPK MAPK signaling in UVB-mediated premature senescent inducible conditions. These results suggest the feasibility of adiponectin as an anti-photoaging and anti-inflammatory agent in the skin. PMID:27526049

  1. Estrogen receptorβ2 regulates interlukin-12 receptorβ2 expression via p38 mitogen-activated protein kinase signaling and inhibits non-small-cell lung cancer proliferation and invasion.

    PubMed

    Liu, Zhao-Guo; Jiao, Xing-Yuan; Chen, Zhen-Guang; Feng, Ke; Luo, Hong-He

    2015-07-01

    Lung cancer is one of the most common types of cancer and is the leading cause of cancer-related mortality worldwide. Estrogens are known to be involved in the development and progression of non-small-cell lung cancer (NSCLC). These effects are initially mediated through binding of estrogen to estrogen receptors (ERs), in particular ERβ2. Our preliminary studies demonstrated that ERβ2 and interleukin-12 receptorβ2 (IL-12Rβ2) expression are correlated in NSCLC. The present study investigated the expression of these proteins in NSCLC cells and how changes in their expression affected cell proliferation and invasion. In addition, it aimed to explore whether p38 mitogen-activated protein kinase (p38MAPK) is involved in the regulation of IL-12Rβ2 expression by ERβ2. An immunocytochemical array was used to observe the distribution of ERβ2 and IL-12Rβ2. Co-immuoprecipitation was employed to observe the interaction between p38MAPK and IL-12Rβ2, by varying the expression of ERβ2 and p38MAPK. Western-blot analysis and reverse transcription-polymerase chain reaction assays were used to investigate the mechanism underlying ERβ2 regulation of IL-12Rβ2 expression. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, scratch wound healing and Transwell assays were used to investigate the impact of ERβ2 on proliferative, invasive and migratory abilities of NSCLC cells. ERβ2 was predominantly found in the cytoplasm and nucleus, whilst IL-12Rβ2 was largely confined to the cytoplasm, although a degree of expression was observed in the nucleus. Compared with normal bronchial epithelial cells, IL-12Rβ2 and ERβ2 were overexpressed in the NSCLC cell groups. Coimmuoprecipitation demonstrated an interaction between p38MAPK and IL-12Rβ2. ERβ2 appeared to upregulate IL-12Rβ2 expression and inhibition of p38MAPK attenuated this effect. ERβ2 and IL-12Rβ2 expression inhibited the proliferation, metastasis and invasion of NSCLC cell lines, but knockout of IL-12Rβ2, even in the presence of ERβ2, led to an increase in NSCLC cell proliferation and invasiveness. In conclusion, to the best of our knowledge this study is the first to demonstrate that IL-12Rβ2 may be important in the mechanisms underlying ERβ2 inhibition of NSCLC development, and that this interaction may be mediated via p38MAPK.

  2. Fish Scale Collagen Peptides Protect against CoCl2/TNF-α-Induced Cytotoxicity and Inflammation via Inhibition of ROS, MAPK, and NF-κB Pathways in HaCaT Cells

    PubMed Central

    Subhan, Fazli; Kang, Hae Yeong; Lim, Yeseon; Ikram, Muhammad; Baek, Sun-Yong; Jin, Songwan; Jeong, Young Hun; Kwak, Jong Young

    2017-01-01

    Skin diseases associated with inflammation or oxidative stress represent the most common problem in dermatology. The present study demonstrates that fish scale collagen peptides (FSCP) protect against CoCl2-induced cytotoxicity and TNF-α-induced inflammatory responses in human HaCaT keratinocyte cells. Our study is the first to report that FSCP increase cell viability and ameliorate oxidative injury in HaCaT cells through mechanisms mediated by the downregulation of key proinflammatory cytokines, namely, TNF-α, IL-1β, IL-8, and iNOS. FSCP also prevent cell apoptosis by repressing Bax expression, caspase-3 activity, and cytochrome c release and by upregulating Bcl-2 protein levels in CoCl2- or TNF-α-stimulated HaCaT cells. In addition, the inhibitory effects of FSCP on cytotoxicity and the induction of proinflammatory cytokine expression were found to be associated with suppression of the ROS, MAPK (p38/MAPK, ERK, and JNK), and NF-κB signaling pathways. Taken together, our data suggest that FSCP are useful as immunomodulatory agents in inflammatory or immune-mediated skin diseases. Furthermore, our results provide new insights into the potential therapeutic use of FSCP in the prevention and treatment of various oxidative- or inflammatory stress-related inflammation and injuries. PMID:28717410

  3. Fumaric acid attenuates the eotaxin-1 expression in TNF-α-stimulated fibroblasts by suppressing p38 MAPK-dependent NF-κB signaling.

    PubMed

    Roh, Kyung-Baeg; Jung, Eunsun; Park, Deokhoon; Lee, Jongsung

    2013-08-01

    Eotaxin-1 is a potent chemoattractant for eosinophils and a critical mediator during the development of eosinophilic inflammation. Fumaric acid is an intermediate product of the citric acid cycle, which is source of intracellular energy. Although fumaric acid ameliorates psoriasis and multiple sclerosis, its involvement in eotaxin-1-mediated effects has not been assessed. In this study, we investigated the effects of fumaric acid on eotaxin-1 expression in a mouse fibroblast cell line. We found that fumaric acid significantly inhibited tumor necrosis factor-α (TNF-α-induced eotaxin-1 expression. This fumaric acid effect was mediated through the inhibition of p38 mitogen-activated protein kinase (MAPK)-dependent nuclear factor (NF)-κB signaling. We also found that fumaric acid operates downstream of MEKK3 during TNF-α-induced NF-κB signaling, which upregulated eotaxin-1 expression. In addition, fumaric acid attenuated expression of CC-chemokine receptor 3 (CCR3), an eotaxin-1 receptor, and adhesion molecules that play important roles in eosinophil binding to induce allergic inflammation. Taken together, these findings indicate that inhibiting TNF-α-induced eotaxin-1 expression by fumaric acid occurs primarily through suppression of NF-κB signaling, which is mediated by inhibiting p38 MAPK and suggest that fumaric acid may be used as a complementary treatment option for eotaxin-1-mediated diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. TNF-α stimulates System A amino acid transport in primary human trophoblast cells mediated by p38 MAPK signaling.

    PubMed

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2015-10-01

    Maternal obesity and gestational diabetes mellitus (GDM) increase the risk of delivering infants that are large for gestational age with greater adiposity, who are prone to the development of metabolic disease in childhood and beyond. These maternal conditions are also associated with increased levels of the proinflammatory cytokine TNF-α in maternal tissues and the placenta. Recent evidence suggests that changes in placental amino acid transport contribute to altered fetal growth. TNF-α was previously shown to stimulate System A amino acid transport in primary human trophoblasts (PHTs), however the molecular mechanisms remain unknown. In this study, we tested the hypothesis that TNF-α regulates amino acid uptake in cultured PHTs by a mitogen-activated protein kinase (MAPK)-dependent mechanism. Treatment of PHTs with TNF-α significantly increased System A amino acid transport, as well as Erk and p38 MAPK signaling. Pharmacological antagonism of p38, but not Erk MAPK activity, inhibited TNF-α stimulated System A activity. Silencing of p38 MAPK using siRNA transfections prevented TNF-α stimulated System A transport in PHTs. TNF-α significantly increased the protein expression of System A transporters SNAT1 and SNAT2, but did not affect their mRNA expression. The effects of TNF-α on SNAT1 and SNAT2 protein expression were reversed by p38 MAPK siRNA silencing. In conclusion, TNF-α regulates System A activity through increased SNAT1 and SNAT2 transporter protein expression in PHTs. These findings suggest that p38 MAPK may represent a critical mechanistic link between elevated proinflammatory cytokines and increased placental amino acid transport in obese and GDM pregnancies associated with fetal overgrowth. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  5. CpG- and LPS-activated MAPK signaling in in vitro cultured salmon (Salmo salar) mononuclear phagocytes.

    PubMed

    Iliev, Dimitar B; Hansen, Tom; Jørgensen, Sven Martin; Krasnov, Aleksei; Jørgensen, Jorunn B

    2013-10-01

    The Mitogen-activated protein kinases (MAPK) are involved in transmitting intracellular signals downstream of diverse cell surface receptors and mediate the response to ligands such as growth factors, hormones and cytokines. In addition, MAPK are critically involved in the innate immune response to pathogen-derived substances, commonly referred to as pathogen-associated molecular patterns (PAMPs), such as bacterial lipopolysaccharide (LPS) and bacterial DNA rich in CpG dinucleotides. Currently, a great deal of knowledge is available about the involvement of MAPK in the innate immune response to PAMPs in mammals; however, little is known about the role of the different MAPK classes in the immune response to PAMPs in lower vertebrates. In the current study, p38 phosphorylation was induced by CpG oligonucleotides (ODNs) and LPS in primary salmon mononuclear phagocytes. Pre-treatment of the cells with a p38 inhibitor (SB203580) blocked the PAMP-induced p38 activity and suppressed the upregulation of most of the CpG- and LPS-induced transcripts highlighting the role of this kinase in the salmon innate immune response to PAMPs. In contrast to p38, the phosphorylation of extracellular signal-regulated kinase (ERK), a MAPK involved primarily in response to mitogens, was high in resting cells and, surprisingly, incubation with both CpG and control ODNs downregulated the phospho-ERK levels independently of p38 activation. The basal phospho-ERK level and the CpG-inducible p38 phosphorylation were greatly influenced by the length of in vitro incubation. The basal phospho-ERK level increased gradually throughout a 5-day culture period and was PI3K-dependent as demonstrated by its sensitivity to Wortmannin suggesting it is influenced by growth factors. Overall these data indicate that both basal and PAMP-induced activity of MAPKs might be greatly influenced by the differentiation status of salmon mononuclear phagocytes. Copyright © 2013. Published by Elsevier Ltd.

  6. Mitogen activated protein kinase (MAPK) pathway regulates heme oxygenase-1 gene expression by hypoxia in vascular cells.

    PubMed

    Ryter, Stefan W; Xi, Sichuan; Hartsfield, Cynthia L; Choi, Augustine M K

    2002-08-01

    Hypoxia induces the stress protein heme oxygenase-1 (HO-1), which participates in cellular adaptation. The molecular pathways that regulate ho-1 gene expression under hypoxia may involve mitogen activated protein kinase (MAPK) signaling and reactive oxygen. Hypoxia (8 h) increased HO-1 mRNA in rat pulmonary aortic endothelial cells (PAEC), and also activated both extracellular signal-regulated kinase 1 (ERK1)/ERK2 and p38 MAPK pathways. The role of these kinases in hypoxia-induced ho-1 gene expression was examined using chemical inhibitors of these pathways. Surprisingly, SB203580, an inhibitor of p38 MAPK, and PD98059, an inhibitor of mitogen-activated protein kinase kinase (MEK1), strongly enhanced hypoxia-induced HO-1 mRNA expression in PAEC. UO126, a MEK1/2 inhibitor, enhanced HO-1 expression in PAEC under normoxia, but not hypoxia. Diphenylene iodonium, an inhibitor of NADPH oxidase, also induced the expression of HO-1 in PAEC under both normoxia and hypoxia. Similar results were observed in aortic vascular smooth muscle cells. Furthermore, hypoxia induced activator protein (AP-1) DNA-binding activity in PAEC. Pretreatment with SB203580 and PD98059 enhanced AP-1 binding activity under hypoxia in PAEC; UO126 stimulated AP-1 binding under normoxia, whereas diphenylene iodonium stimulated AP-1 binding under normoxia and hypoxia. These results suggest a relationship between MAPK and hypoxic regulation of ho-1 in vascular cells, involving AP-1.

  7. Anti-Inflammatory Effects of Progesterone in Lipopolysaccharide-Stimulated BV-2 Microglia

    PubMed Central

    Lei, Beilei; Mace, Brian; Dawson, Hana N.; Warner, David S.; Laskowitz, Daniel T.; James, Michael L.

    2014-01-01

    Female sex is associated with improved outcome in experimental brain injury models, such as traumatic brain injury, ischemic stroke, and intracerebral hemorrhage. This implies female gonadal steroids may be neuroprotective. A mechanism for this may involve modulation of post-injury neuroinflammation. As the resident immunomodulatory cells in central nervous system, microglia are activated during acute brain injury and produce inflammatory mediators which contribute to secondary injury including proinflammatory cytokines, and nitric oxide (NO) and prostaglandin E2 (PGE2), mediated by inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively. We hypothesized that female gonadal steroids reduce microglia mediated neuroinflammation. In this study, the progesterone’s effects on tumor necrosis factor alpha (TNF-α), iNOS, and COX-2 expression were investigated in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Further, investigation included nuclear factor kappa B (NF-κB) and mitogen activated protein kinase (MAPK) pathways. LPS (30 ng/ml) upregulated TNF-α, iNOS, and COX-2 protein expression in BV-2 cells. Progesterone pretreatment attenuated LPS-stimulated TNF-α, iNOS, and COX-2 expression in a dose-dependent fashion. Progesterone suppressed LPS-induced NF-κB activation by decreasing inhibitory κBα and NF-κB p65 phosphorylation and p65 nuclear translocation. Progesterone decreased LPS-mediated phosphorylation of p38, c-Jun N-terminal kinase and extracellular regulated kinase MAPKs. These progesterone effects were inhibited by its antagonist mifepristone. In conclusion, progesterone exhibits pleiotropic anti-inflammatory effects in LPS-stimulated BV-2 microglia by down-regulating proinflammatory mediators corresponding to suppression of NF-κB and MAPK activation. This suggests progesterone may be used as a potential neurotherapeutic to treat inflammatory components of acute brain injury. PMID:25080336

  8. Mechanism of the melanogenesis stimulation activity of (-)-cubebin in murine B16 melanoma cells.

    PubMed

    Hirata, Noriko; Naruto, Shunsuke; Ohguchi, Kenji; Akao, Yukihiro; Nozawa, Yoshinori; Iinuma, Munekazu; Matsuda, Hideaki

    2007-07-15

    (-)-Cubebin showed a melanogenesis stimulation activity in a concentration-dependent manner in murine B16 melanoma cells without any significant effects on cell proliferation. Tyrosinase activity was increased at 24-72 h after addition of cubebin to B16 cells, and then intracellular melanin amount was increased at 48-96 h after the treatment. The expression levels of tyrosinase were time-dependently enhanced after the treatment with cubebin. At the same time, the expression levels of tyrosinase mRNA were also increased after addition of cubebin. Furthermore Western blot analysis revealed that cubebin elevated the level of phosphorylation of p38 mitogen-activated protein kinase (MAPK). SB203580, a selective inhibitor of p38 MAPK, completely blocked cubebin-induced expression of tyrosinase mRNA in B16 cells. These results suggested that cubebin increased melanogenesis in B16 cells through the enhancement of tyrosinase expression mediated by activation of p38 MAPK.

  9. Intracellular Networks of the PI3K/AKT and MAPK Pathways for Regulating Toxoplasma gondii-Induced IL-23 and IL-12 Production in Human THP-1 Cells

    PubMed Central

    Choi, In-Wook; Ismail, Hassan Ahmed Hassan Ahmed; Zhou, Wei; Cha, Guang-Ho; Zhou, Yu; Yuk, Jae-Min; Jo, Eun-Kyeong; Lee, Young-Ha

    2015-01-01

    Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells. PMID:26528819

  10. Rapid Activation of Nuclear Factor-κB by 17β-Estradiol and Selective Estrogen Receptor Modulators: Pathways Mediating Cellular Protection

    PubMed Central

    Stice, James P.; Mbai, Fiona N.; Chen, Le; Knowlton, Anne A.

    2012-01-01

    17β-estradiol (E2) treatment activates a set of protective response that have been found to protect cells from injury and more importantly to significantly abate the injuries associated with trauma-hemorrhage in vivo. Rapid NFκB activation has been found to be an important signaling step in E2 mediated protection in cell culture, in vivo ischemia and trauma-hemorrhage. In the current study, we investigated the signaling cascades linking E2 signaling with NFκB activation and the protective response, and compared them with the effects of two selective estrogen receptor modulators (SERMs), raloxifene and tamoxifen. Two candidate pathways, mitogen activated protein kinases (MAPK), and phosphatidylinositol-3-kinase (PI3-K) were studied. Selective inhibitors were used to identify each pathway's contribution to NFκB activation. Treatment of HCAECs with E2 activated PI3-K/Akt, p38, and JNK, all of which activated ERK 1/2 followed by NFκB activation. The combined activation of Akt, p38 and JNK was essential to activate NFκB. The two SERMs activated PI3-K and p38, which then phosphorylated ERK 1/2 and activated NFκB independent of the JNK pathway. NFkB activation by these compounds protected cells from hypoxia/reoxygenation injury. However, E2, unlike either SERM, led to modest increases in apoptosis through the JNK pathway. SERM treatment led to increased expression of the protective proteins, Mn-superoxide dismutase and endothelial nitric oxide synthase, that was not seen with E2. These results provide new insight into the pathways activating NFkB by E2 and SERMS and demonstrate that SERMs may have greater protective benefits than E2 in adult endothelial cells and potentially in vivo, as well. PMID:22683727

  11. Silica nanoparticles inhibit macrophage activity and angiogenesis via VEGFR2-mediated MAPK signaling pathway in zebrafish embryos.

    PubMed

    Duan, Junchao; Hu, Hejing; Feng, Lin; Yang, Xiaozhe; Sun, Zhiwei

    2017-09-01

    The safety evaluation of silica nanoparticles (SiNPs) are getting great attention due to its widely-used in food sciences, chemical industry and biomedicine. However, the adverse effect and underlying mechanisms of SiNPs on cardiovascular system, especially on angiogenesis is still unclear. This study was aimed to illuminate the possible mechanisms of SiNPs on angiogenesis in zebrafish transgenic lines, Tg(fli-1:EGFP) and Albino. SiNPs caused the cardiovascular malformations in a dose-dependent manner via intravenous microinjection. The incidences of cardiovascular malformations were observed as: Pericardial edema > Bradycardia > Blood deficiency. The area of subintestinal vessels (SIVs) was significant reduced in SiNPs-treated groups, accompanied with the weaken expression of vascular endothelial cells in zebrafish embryos. Using neutral red staining, the quantitative number of macrophage was declined; whereas macrophage inhibition rate was elevated in a dose-dependent way. Furthermore, SiNPs significantly decreased the mRNA expression of macrophage activity related gene, macrophage migration inhibitory factor (MIF) and the angiogenesis related gene, vascular endothelial growth factor receptor 2 (VEGFR2). The protein levels of p-Erk1/2 and p-p38 MAPK were markedly decreased in zebrafish exposed to SiNPs. Our results implicate that SiNPs inhibited the macrophage activity and angiogenesis via the downregulation of MAPK singaling pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. MAPK pathway activation by chronic lead-exposure increases vascular reactivity through oxidative stress/cyclooxygenase-2-dependent pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simões, Maylla Ronacher, E-mail: yllars@hotmail.com; Department of Pharmacology, Universidad Autonoma de Madrid, Instituto de Investigación Hospital Universitario La Paz; Aguado, Andrea

    Chronic exposure to low lead concentration produces hypertension; however, the underlying mechanisms remain unclear. We analyzed the role of oxidative stress, cyclooxygenase-2-dependent pathways and MAPK in the vascular alterations induced by chronic lead exposure. Aortas from lead-treated Wistar rats (1st dose: 10 μg/100 g; subsequent doses: 0.125 μg/100 g, intramuscular, 30 days) and cultured aortic vascular smooth muscle cells (VSMCs) from Sprague Dawley rats stimulated with lead (20 μg/dL) were used. Lead blood levels of treated rats attained 21.7 ± 2.38 μg/dL. Lead exposure increased systolic blood pressure and aortic ring contractile response to phenylephrine, reduced acetylcholine-induced relaxation and didmore » not affect sodium nitroprusside relaxation. Endothelium removal and L-NAME left-shifted the response to phenylephrine more in untreated than in lead-treated rats. Apocynin and indomethacin decreased more the response to phenylephrine in treated than in untreated rats. Aortic protein expression of gp91(phox), Cu/Zn-SOD, Mn-SOD and COX-2 increased after lead exposure. In cultured VSMCs lead 1) increased superoxide anion production, NADPH oxidase activity and gene and/or protein levels of NOX-1, NOX-4, Mn-SOD, EC-SOD and COX-2 and 2) activated ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized superoxide anion production, NADPH oxidase activity and mRNA levels of NOX-1, NOX-4 and COX-2. Blockade of the ERK1/2 and p38 signaling pathways abolished lead-induced NOX-1, NOX-4 and COX-2 expression. Results show that lead activation of the MAPK signaling pathways activates inflammatory proteins such as NADPH oxidase and COX-2, suggesting a reciprocal interplay and contribution to vascular dysfunction as an underlying mechanisms for lead-induced hypertension. - Highlights: • Lead-exposure increases oxidative stress, COX-2 expression and vascular reactivity. • Lead exposure activates MAPK signaling pathway. • ROS and COX-2 activation by MAPK in lead exposure • Relationship between vascular ROS and COX-2 products in lead exposure.« less

  13. Tristetraprolin regulates the expression of the human inducible nitric-oxide synthase gene.

    PubMed

    Fechir, Marcel; Linker, Katrin; Pautz, Andrea; Hubrich, Thomas; Förstermann, Ulrich; Rodriguez-Pascual, Fernando; Kleinert, Hartmut

    2005-06-01

    The expression of human inducible NO synthase (iNOS) is regulated both by transcriptional and post-transcriptional mechanisms. Stabilization of mRNAs often depends on activation of p38 mitogen-activated protein kinase (p38 MAPK). In human DLD-1 cells, inhibition of p38 MAPK by the compound 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580) or by overexpression of a dominant-negative p38 MAPKalpha protein resulted in a reduction of human iNOS mRNA and protein expression, whereas human iNOS promoter activity was not affected. An important RNA binding protein regulated by the p38 MAPK pathway and involved in the regulation of the stability of several mRNAs is tristetraprolin. RNase protection, quantitative real-time polymerase chain reaction, and Western blot experiments showed that cytokines used to induce iNOS expression in DLD-1 cells also enhanced tristetraprolin expression. SB203580 incubation reduced cytokine-mediated enhancement of tristetraprolin expression. Overexpression or down-regulation of tristetraprolin in stably transfected DLD-1- or A549/8 cells consistently resulted in enhanced or reduced iNOS expression by modulating iNOS-mRNA stability. In UV cross-linking experiments, recombinant tristetraprolin did not interact with the human iNOS mRNA. However, coimmunoprecipitation experiments showed interaction of tristetraprolin with the KH-type splicing regulatory protein (KSRP), which is known to recruit mRNAs containing AU-rich elements to the exosome for degradation. This tristetraprolin-KSRP interaction was enhanced by cytokines and reduced by SB203580 treatment. We conclude that tristetraprolin positively regulates human iNOS expression by enhancing the stability of human iNOS mRNA. Because tristetraprolin does not directly bind to the human iNOS mRNA but interacts with KSRP, tristetraprolin is likely to stabilize iNOS mRNA by capturing the KSRP-exosome complex.

  14. Mechanism of interleukin-13 production by granulocyte-macrophage colony-stimulating factor-dependent macrophages via protease-activated receptor-2.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-06-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes classically activated M1 macrophages. GM-CSF upregulates protease-activated receptor-2 (PAR-2) protein expression and activation of PAR-2 by human neutrophil elastase (HNE) regulates cytokine production. This study investigated the mechanism of PAR-2-mediated interleukin (IL)-13 production by GM-CSF-dependent macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. After stimulation with HNE to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway, IL-13 mRNA and protein levels were assessed by the reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. PAR-2 protein was detected in GM-CSF-dependent macrophages by Western blotting. Unexpectedly, PD98059 (an ERK1 inhibitor) increased IL-13 production, even at higher concentrations. Interestingly, U0126 (an ERK1/2 inhibitor) reduced IL-13 production in a concentration-dependent manner. Neither SB203580 (a p38alpha/p38beta inhibitor) nor BIRB796 (a p38gamma/p38delta inhibitor) affected IL-13 production, while TMB-8 (a calcium chelator) diminished IL-13 production. Stimulation with HNE promoted the production of IL-13 (a Th2 cytokine) by GM-CSF-dependent M1 macrophages. PAR-2-mediated IL-13 production may be dependent on the Ca(2+)/ERK2 signaling pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Fragment-based drug discovery of potent and selective MKK3/6 inhibitors.

    PubMed

    Adams, Mark; Kobayashi, Toshitake; Lawson, J David; Saitoh, Morihisa; Shimokawa, Kenichiro; Bigi, Simone V; Hixon, Mark S; Smith, Christopher R; Tatamiya, Takayuki; Goto, Masayuki; Russo, Joseph; Grimshaw, Charles E; Swann, Steven

    2016-02-01

    The MAPK signaling cascade, comprised of several linear and intersecting pathways, propagates signaling into the nucleus resulting in cytokine and chemokine release. The Map Kinase Kinase isoforms 3 and 6 (MKK3 and MKK6) are responsible for the phosphorylation and activation of p38, and are hypothesized to play a key role in regulating this pathway without the redundancy seen in downstream effectors. Using FBDD, we have discovered efficient and selective inhibitors of MKK3 and MKK6 that can serve as tool molecules to help further understand the role of these kinases in MAPK signaling, and the potential impact of inhibiting kinases upstream of p38. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yanyan; Gao, Chao; Shi, Yanru

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin.more » The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.« less

  17. Hsa-let-7c controls the committed differentiation of IGF-1-treated mesenchymal stem cells derived from dental pulps by targeting IGF-1R via the MAPK pathways.

    PubMed

    Liu, Gen-Xia; Ma, Shu; Li, Yao; Yu, Yan; Zhou, Yi-Xiang; Lu, Ya-Die; Jin, Lin; Wang, Zi-Lu; Yu, Jin-Hua

    2018-04-13

    The putative tumor suppressor microRNA let-7c is extensively associated with the biological properties of cancer cells. However, the potential involvement of let-7c in the differentiation of mesenchymal stem cells has not been fully explored. In this study, we investigated the influence of hsa-let-7c (let-7c) on the proliferation and differentiation of human dental pulp-derived mesenchymal stem cells (DPMSCs) treated with insulin-like growth factor 1 (IGF-1) via flow cytometry, CCK-8 assays, alizarin red staining, real-time RT-PCR, and western blotting. In general, the proliferative capabilities and cell viability of DPMSCs were not significantly affected by the overexpression or deletion of let-7c. However, overexpression of let-7c significantly inhibited the expression of IGF-1 receptor (IGF-1R) and downregulated the osteo/odontogenic differentiation of DPMSCs, as indicated by decreased levels of several osteo/odontogenic markers (osteocalcin, osterix, runt-related transcription factor 2, dentin sialophosphoprotein, dentin sialoprotein, alkaline phosphatase, type 1 collagen, and dentin matrix protein 1) in IGF-1-treated DPMSCs. Inversely, deletion of let-7c resulted in increased IGF-1R levels and enhanced osteo/odontogenic differentiation. Furthermore, the ERK, JNK, and P38 MAPK pathways were significantly inhibited following the overexpression of let-7c in DPMSCs. Deletion of let-7c promoted the activation of the JNK and P38 MAPK pathways. Our cumulative findings indicate that Let-7c can inhibit the osteo/odontogenic differentiation of IGF-1-treated DPMSCs by targeting IGF-1R via the JNK/P38 MAPK signaling pathways.

  18. The protective effect of Rhizoma Dioscoreae extract against alveolar bone loss in ovariectomized rats via regulating Wnt and p38 MAPK signaling.

    PubMed

    Zhang, Zhiguo; Xiang, Lihua; Bai, Dong; Wang, Wenlai; Li, Yan; Pan, Jinghua; Liu, Hong; Wang, Shaojun; Xiao, Gary Guishan; Ju, Dahong

    2014-12-12

    The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Female Wistar rats were subjected to either ovariectomy or a sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX) or RDE by oral gavage or with 17β-estradiol (E2) subcutaneously. After treatments, the bone mineral density (BMD), the three-dimensional bone architecture of the alveolar bone and the plasma biomarkers of bone turnover were analyzed to assess bone metabolism, and the histomorphometry of the alveolar bone was observed. Microarrays were used to evaluate gene expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of genes was further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using real-time quantitative RT-PCR (qRT-PCR). Our results showed that RDE inhibited alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 207 genes and downregulated expression levels of 176 genes in the alveolar bone. The IPA showed that several genes had the potential to code for proteins that were involved in the Wnt/β-catenin signaling pathway (Wnt7a, Fzd2, Tcf3, Spp1, Frzb, Sfrp2 and Sfrp4) and the p38 MAPK signaling pathway (Il1rn and Mapk14). These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may be involved in the reduced abnormal bone remodeling, which is associated with the modulation of the Wnt/β-catenin and the p38 MAPK signaling pathways via gene regulation.

  19. Active lipids of Ganoderma lucidum spores-induced apoptosis in human leukemia THP-1 cells via MAPK and PI3K pathways.

    PubMed

    Wang, Jia-He; Zhou, Yi-Jun; Zhang, Meng; Kan, Liang; He, Ping

    2012-01-31

    Ganoderma lucidum (Lingzhi) is traditionally drug, which has been traditionally effective used in the treatment of chronic hepatopathy, hypertension, hyperglycemia and cancer. THP-1 and HL-60 apoptosis induced by active lipids of Ganoderma lucidum spores was quantified by flow cytometry using FITC-conjugated annexin V and PI; MAPK and Akt were measured by Western blot, and caspase-3, -8 and -9 activities were also detected by spectrophotometric assay. Our results showed that active lipids of Ganoderma lucidum spores decreased phosphorylation-ERK1/2 (P-ERK1/2), P-Akt and increased P-JNK1/2, but did not affect expressions of P-p38 MAPK in THP-1 cells. Moreover, treatment of THP-1 cells with active lipids of Ganoderma lucidum spores resulted in activation of caspase-3, -8 and -9. Furthermore, LY294002 (Akt inhibitor) or PD98059 (ERK1/2 inhibitor) significantly enhanced active lipids of Ganoderma lucidum spores-induced apoptosis in THP-1 cells, whereas caspase inhibitors or SP600125 (JNK inhibitor), decreased apoptosis in THP-1 cells. Taken together, our study for the first time suggests that active lipids of Ganoderma lucidum spores is able to enhance apoptosis in THP-1 cells, at least in part, through inhibition of ERK1/2, Akt and activation of JNK1/2 signaling pathways. Moreover, it also triggers caspase-3, -8 and -9 activation mediated apoptotic induction. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Tumorigenicity of MCF-7 human breast cancer cells lacking the p38α mitogen-activated protein kinase.

    PubMed

    Mendoza, Rhone A; Moody, Emily E; Enriquez, Marlene I; Mejia, Sylvia M; Thordarson, Gudmundur

    2011-01-01

    We have generated cell lines with significantly reduced expression of the p38 mitogen-activated protein kinase (p38 MAPK), Min-p38 MAPK cells, and used these cells to investigate p38 MAPK's role in tumorigenesis of breast cancer cells. MCF-7 cells were stably transfected with a plasmid producing small interfering RNA that inhibited the expression of p38 MAPK. Control cells were stably transfected with the same plasmid producing non-interfering RNA. The reduction in the p38 MAPK activity caused a significant increase in the expressions of estrogen receptor-α (ERα) and the progesterone receptor, but eliminated the expression of ERβ. Min-p38 MAPK cells showed an enhanced overall growth response to 17β-estradiol (E₂), whereas GH plus epidermal growth factor were largely ineffective growth stimulators in these cells compared to controls. Although the long-term net growth rate of the Min-p38 MAPK cells was increased in response to E₂, their proliferation rate was lower compared to controls in short-term cultures. However, the Min-p38 MAPK cells did show a significant decreased rate of apoptosis after E₂ treatment and a reduction in the basal phosphorylation of p53 tumor suppressor protein compared to controls. When the Min-p38 MAPK cells were xenografted into E₂-treated athymic nude mice, their tumorigenicity was enhanced compared to control cells. Increased tumorigenicity of Min-p38 MAPK cells was caused mainly by a decrease in the apoptosis rate indicating that the lack of the p38 MAPK caused an imbalance to increase the ERα:ERβ ratio and a reduction in the activity of the p53 tumor suppressor protein.

  1. 2',5'-Dihydroxychalcone-induced glutathione is mediated by oxidative stress and kinase signaling pathways.

    PubMed

    Kachadourian, Remy; Pugazhenthi, Subbiah; Velmurugan, Kalpana; Backos, Donald S; Franklin, Christopher C; McCord, Joe M; Day, Brian J

    2011-09-15

    Hydroxychalcones are naturally occurring compounds that continue to attract considerable interest because of their anti-inflammatory and antiangiogenic properties. They have been reported to inhibit the synthesis of the inducible nitric oxide synthase and to induce the expression of heme oxygenase-1. This study examines the mechanisms by which 2',5'-dihydroxychalcone (2',5'-DHC) induces an increase in cellular glutathione (GSH) levels using a cell line stably expressing a luciferase reporter gene driven by antioxidant-response elements (MCF-7/AREc32). The 2',5'-DHC-induced increase in cellular GSH levels was partially inhibited by the catalytic antioxidant MnTDE-1,3-IP(5+), suggesting that reactive oxygen species (ROS) mediate the antioxidant adaptive response. 2',5'-DHC treatment induced phosphorylation of the c-Jun N-terminal kinase (JNK) pathway, which was also inhibited by MnTDE-1,3-IP(5+). These findings suggest a ROS-dependent activation of the AP-1 transcriptional response. However, whereas 2',5'-DHC triggered the NF-E2-related factor 2 (Nrf2) transcriptional response, cotreatment with MnTDE-1,3-IP(5+) did not decrease 2',5'-DHC-induced Nrf2/ARE activity, showing that this pathway is not dependent on ROS. Moreover, pharmacological inhibitors of mitogen-activated protein kinase (MAPK) pathways showed a role for JNK and p38MAPK in mediating the 2',5'-DHC-induced Nrf2 response. These findings suggest that the 2',5'-DHC-induced increase in GSH levels results from a combination of ROS-dependent and ROS-independent pathways. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Ciclopirox induces autophagy through reactive oxygen species-mediated activation of JNK signaling pathway

    PubMed Central

    Zhou, Hongyu; Shen, Tao; Shang, Chaowei; Luo, Yan; Liu, Lei; Yan, Juming; Li, Yan; Huang, Shile

    2014-01-01

    Ciclopirox olamine (CPX), a fungicide, has been demonstrated as a potential anticancer agent. However, the underlying anticancer mechanism is not well understood. Here, we found that CPX induced autophagy in human rhabdomyosarcoma (Rh30 and RD) cells. It appeared that CPX-induced autophagy was attributed to induction of reactive oxygen species (ROS), as N-acetyl-L-cysteine (NAC), a ROS scavenger and antioxidant, prevented this process. Furthermore, we observed that CPX induced activation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 MAPK, which was also blocked by NAC. However, only inhibition of JNK (with SP600125) or expression of dominant negative c-Jun partially prevented CPX-induced autophagy, indicating that ROS-mediated activation of JNK signaling pathway contributed to CPX-induced autophagy. Of interest, inhibition of autophagy by chloroquine (CQ) enhanced CPX-induced cell death, indicating that CPX-induced autophagy plays a pro-survival role in human rhabdomyosarcoma cells. Our finding suggests that the combination with autophagy inhibitors may be a novel strategy in potentiating the anticancer activity of CPX for treatment of rhabdomyosarcoma. PMID:25294812

  3. JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38

    PubMed Central

    Yi, Young-Su

    2017-01-01

    Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin E2 (PGE2) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1b without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the NF-kB transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the NF-kB pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the NF-kB and AP-1 pathways, respectively. PMID:28461777

  4. JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38.

    PubMed

    Yi, Young-Su; Kim, Mi-Yeon; Cho, Jae Youl

    2017-05-01

    Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1b without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the NF-kB transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the NF-kB pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the NF-kB and AP-1 pathways, respectively.

  5. Lysophosphatidylcholine up-regulates human endothelial nitric oxide synthase gene transactivity by c-Jun N-terminal kinase signalling pathway

    PubMed Central

    Xing, Feiyue; Liu, Jing; Mo, Yongyan; Liu, Zhifeng; Qin, Qinghe; Wang, Jingzhen; Fan, Zhenhua; Long, Yutian; Liu, Na; Zhao, Kesen; Jiang, Yong

    2009-01-01

    Human endothelial nitric oxide synthase (eNOS) plays a pivotal role in maintaining blood pressure homeostasis and vascular integrity. It has recently been reported that mitogen-activated protein kinases (MAPKs) are intimately implicated in expression of eNOS. However detailed mechanism mediated by them remains to be clarified. In this study, eNOS gene transactivity in human umbilical vein endothelial cells was up-regulated by stimulation of lysophosphatidylcholine (LPC). The stimulation of LPC highly activated both extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK), with differences in the dynamic processes of activation between them. Unexpectedly, p38 MAPK could not be activated by the stimulation of LPC. The activation of JNK signalling pathway by overexpression of JNK or its upstream kinase active mutant up-regulated the transactivity of eNOS significantly, but the activation of p38 signalling pathway down-regulated it largely. The inhibition of either ERK1/2 or JNK signalling pathway by kinase-selective inhibitors could markedly block the induction of the transactivity by LPC. It was observed by electrophoretic mobility shift assay that LPC stimulated both SP1 and AP1 DNA binding activity to go up. Additionally using decoy oligonucleotides proved that SP1 was necessary for maintaining the basal or stimulated transactivity, whereas AP1 contributed mainly to the increase of the stimulated transactivity. These findings indicate that the up-regulation of the eNOS gene transactivity by LPC involves the enhancement of SP1 transcription factor by the activation of JNK and ERK1/2 signalling pathways and AP1 transcription factor by the activation of JNK signalling pathway. PMID:18624763

  6. Glucocorticoid-mediated BIM induction and apoptosis are regulated by Runx2 and c-Jun in leukemia cells

    PubMed Central

    Heidari, N; Miller, A V; Hicks, M A; Marking, C B; Harada, H

    2012-01-01

    Glucocorticoids (GCs) are common components of many chemotherapeutic regimens for lymphoid malignancies. GC-induced apoptosis involves an intrinsic mitochondria-dependent pathway. BIM (BCL-2-interacting mediator of cell death), a BCL-2 homology 3-only pro-apoptotic protein, is upregulated by dexamethasone (Dex) treatment in acute lymphoblastic leukemia cells and has an essential role in Dex-induced apoptosis. It has been indicated that Dex-induced BIM is regulated mainly by transcription, however, the molecular mechanisms including responsible transcription factors are unclear. In this study, we found that Dex treatment induced transcription factor Runx2 and c-Jun in parallel with BIM induction. Dex-induced BIM and apoptosis were decreased in cells harboring dominant-negative c-Jun and were increased in cells with c-Jun overexpression. Cells harboring short hairpin RNA for Runx2 also decreased BIM induction and apoptosis. On the Bim promoter, c-Jun bound to and activated the AP-1-binding site at about −2.7 kb from the transcription start site. Treatment with RU486, a GC receptor antagonist, blocked Dex-induced Runx2, c-Jun and BIM induction, as well as apoptosis. Furthermore, pretreatment with SB203580, a p38-mitogen-activated protein kinase (MAPK) inhibitor, decreased Dex-induced Runx2, c-Jun and BIM, suggesting that p38-MAPK activation is upstream of the induction of these molecules. In conclusion, we identified the critical signaling pathway for GC-induced apoptosis, and targeting these molecules may be an alternative approach to overcome GC-resistance in leukemia treatment. PMID:22825467

  7. Osmostress induces autophosphorylation of Hog1 via a C-terminal regulatory region that is conserved in p38α.

    PubMed

    Maayan, Inbal; Beenstock, Jonah; Marbach, Irit; Tabachnick, Shira; Livnah, Oded; Engelberg, David

    2012-01-01

    Many protein kinases require phosphorylation at their activation loop for induction of catalysis. Mitogen-activated protein kinases (MAPKs) are activated by a unique mode of phosphorylation, on neighboring Tyrosine and Threonine residues. Whereas many kinases obtain their activation via autophosphorylation, MAPKs are usually phosphorylated by specific, dedicated, MAPK kinases (MAP2Ks). Here we show however, that the yeast MAPK Hog1, known to be activated by the MAP2K Pbs2, is activated in pbs2Δ cells via an autophosphorylation activity that is induced by osmotic pressure. We mapped a novel domain at the Hog1 C-terminal region that inhibits this activity. Removal of this domain provides a Hog1 protein that is partially independent of MAP2K, namely, partially rescues osmostress sensitivity of pbs2Δ cells. We further mapped a short domain (7 amino acid residues long) that is critical for induction of autophosphorylation. Its removal abolishes autophosphorylation, but maintains Pbs2-mediated phosphorylation. This 7 amino acids stretch is conserved in the human p38α. Similar to the case of Hog1, it's removal from p38α abolishes p38α's autophosphorylation capability, but maintains, although reduces, its activation by MKK6. This study joins a few recent reports to suggest that, like many protein kinases, MAPKs are also regulated via induced autoactivation.

  8. Osmostress Induces Autophosphorylation of Hog1 via a C-Terminal Regulatory Region That Is Conserved in p38α

    PubMed Central

    Maayan, Inbal; Beenstock, Jonah; Marbach, Irit; Tabachnick, Shira; Livnah, Oded; Engelberg, David

    2012-01-01

    Many protein kinases require phosphorylation at their activation loop for induction of catalysis. Mitogen-activated protein kinases (MAPKs) are activated by a unique mode of phosphorylation, on neighboring Tyrosine and Threonine residues. Whereas many kinases obtain their activation via autophosphorylation, MAPKs are usually phosphorylated by specific, dedicated, MAPK kinases (MAP2Ks). Here we show however, that the yeast MAPK Hog1, known to be activated by the MAP2K Pbs2, is activated in pbs2Δ cells via an autophosphorylation activity that is induced by osmotic pressure. We mapped a novel domain at the Hog1 C-terminal region that inhibits this activity. Removal of this domain provides a Hog1 protein that is partially independent of MAP2K, namely, partially rescues osmostress sensitivity of pbs2Δ cells. We further mapped a short domain (7 amino acid residues long) that is critical for induction of autophosphorylation. Its removal abolishes autophosphorylation, but maintains Pbs2-mediated phosphorylation. This 7 amino acids stretch is conserved in the human p38α. Similar to the case of Hog1, it’s removal from p38α abolishes p38α’s autophosphorylation capability, but maintains, although reduces, its activation by MKK6. This study joins a few recent reports to suggest that, like many protein kinases, MAPKs are also regulated via induced autoactivation. PMID:22984552

  9. Monocyte 15-Lipoxygenase Gene Expression Requires ERK1/2 MAPK Activity

    PubMed Central

    Bhattacharjee, Ashish; Mulya, Anny; Pal, Srabani; Roy, Biswajit; Feldman, Gerald M.; Cathcart, Martha K.

    2011-01-01

    IL-13 induces profound expression of 15-lipoxygenase (15-LO) in primary human monocytes. Our studies have defined the functional IL-13R complex, association of Jaks with the receptor components, and the tyrosine phosphorylation of several Stat molecules in response to IL-13. Furthermore, we identified both p38MAPK and protein kinase Cδ as critical regulators of 15-LO expression. In this study, we report an ERK1/2-dependent signaling cascade that regulates IL-13–mediated 15-LO gene expression. We show the rapid phosphorylation/activation of ERK1/2 upon IL-13 exposure. Our results indicate that Tyk2 kinase is required for the activation of ERK1/2, which is independent of the Jak2, p38MAPK, and protein kinase Cδ pathways, suggesting bifurcating parallel regulatory pathways downstream of the receptor. To investigate the signaling mechanisms associated with the ERK1/2-dependent expression of 15-LO, we explored the involvement of transcription factors, with predicted binding sites in the 15-LO promoter, in this process including Elk1, early growth response-1 (Egr-1), and CREB. Our findings indicate that IL-13 induces Egr-1 nuclear accumulation and CREB serine phosphorylation and that both are markedly attenuated by inhibition of ERK1/2 activity. We further show that ERK1/2 activity is required for both Egr-1 and CREB DNA binding to their cognate sequences identified within the 15-LO promoter. Furthermore, by transfecting monocytes with the decoy oligodeoxyribonucleotides specific for Egr-1 and CREB, we discovered that Egr-1 and CREB are directly involved in regulating 15-LO gene expression. These studies characterize an important regulatory role for ERK1/2 in mediating IL-13–induced monocyte 15-LO expression via the transcription factors Egr-1 and CREB. PMID:20861348

  10. Fluoxetine protects against methamphetamine‑induced lung inflammation by suppressing oxidative stress through the SERT/p38 MAPK/Nrf2 pathway in rats.

    PubMed

    Wang, Yun; Gu, Yu-Han; Liu, Ming; Bai, Yang; Wang, Huai-Liang

    2017-02-01

    Methamphetamine (MA) abuse is a major public health and safety concern throughout the world and a growing burden on healthcare costs. The purpose of the present study was to investigate the protective effect of fluoxetine against MA‑induced chronic pulmonary inflammation and to evaluate the potential role of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidative stress. Wistar rats were divided into control, MA and two fluoxetine‑treated groups. Rats in the MA and the two fluoxetine‑treated groups were treated daily with intraperitoneal injection of 10 mg/kg MA twice daily. Rats in the two fluoxetine‑treated groups were injected intragastrically with fluoxetine (2 and 10 mg/kg) once daily, respectively. After 5 weeks, the rats were euthanized and hematoxylin and eosin staining, immunohistochemistry, western blot analysis and redox assay were performed. It was demonstrated that chronic exposure to MA can induce pulmonary inflammation in rats, with the symptoms of inflammatory cell infiltration, crowded lung parenchyma, thickened septum and a reduced number of alveolar sacs. Fluoxetine attenuated pulmonary inflammation and the expression of interleukin‑6 and tumor necrosis factor‑α in rat lungs. Fluoxetine inhibited MA‑induced increases in the expression levels of serotonin transporter (SERT) and p‑p38 mitogen‑activated protein kinase (MAPK), and reversed the MA‑induced decrease in nuclear Nrf2 and human heme oxygenase‑1 in lungs. Fluoxetine at 10 mg/kg significantly reversed the reduced glutathione (GSH) level, the ratio of GSH/oxidized glutathione, and the reactive oxygen species level in rat lungs from the MA group. These findings suggested that fluoxetine, a SERT inhibitor, has a protective effect against MA‑induced lung inflammation by suppressing oxidative stress through the SERT/p38 MAPK/Nrf2 pathway in rats.

  11. ALA/LA ameliorates glucose toxicity on HK-2 cells by attenuating oxidative stress and apoptosis through the ROS/p38/TGF-β1 pathway.

    PubMed

    Jiang, Mingxia; Zhang, Haifen; Zhai, Lijie; Ye, Bianliang; Cheng, Yin; Zhai, Chengkai

    2017-11-16

    Growing evidence indicates that oxidative stress (OS) plays a pivotal role in Diabetic nephropathy (DN). In a previous study we demonstrated that ALA/LA protected HK-2 cells against high glucose-induced cytotoxicity. So we aimed to establish the glucose injury model of HK-2 cells and investigate the beneficial effects of ALA/LA on high glucose-induced excessive production of TGF-β1 and the possible mechanisms mediating the effects. The expression of OS markers in high glucose-induced HK-2 cells treated with ALA/LA., including the antioxidant enzymes and reactive oxygen species (ROS) production, as well as the apoptosis rate were assayed by ELISA and flow cytometry. The p38/transforming growth factor β 1 (TGF-β 1 ) signal pathway were measured by real-time RT-PCR and western blot. The modeling condition of glucose toxicity on HK-2 cells was at the glucose concentration of 40.9 mM. ALA/LA can significantly increase the activities of antioxidant enzymes and decrease ROS production stimulated by high glucose. The study also found that ALA/LA caused a decrease in the apoptosis rate and TGF-β 1 level of HK-2 cells under high glucose stress through the ROS/p38 pathway. ALA/LA exerts protective effects in vitro through inhibition of ROS generation, down regulation of the activation of the p38MAPK pathway and the expression of TGF-β 1 in HK-2 cells.

  12. Tumor p38MAPK signaling enhances breast carcinoma vascularization and growth by promoting expression and deposition of pro-tumorigenic factors.

    PubMed

    Limoge, Michelle; Safina, Alfiya; Truskinovsky, Alexander M; Aljahdali, Ieman; Zonneville, Justin; Gruevski, Aleksandar; Arteaga, Carlos L; Bakin, Andrei V

    2017-09-22

    The breast carcinoma microenvironment strikingly influences cancer progression and response to therapy. Various cell types in the carcinoma microenvironment show significant activity of p38 mitogen-activated protein kinase (MAPK), although the role of p38MAPK in breast cancer progression is still poorly understood. The present study examined the contribution of tumor p38MAPK to breast carcinoma microenvironment and metastatic capacity. Inactivation of p38MAPK signaling in metastatic breast carcinoma cells was achieved by forced expression of the kinase-inactive mutant of p38/MAPK14 (a dominant-negative p38, dn-p38). Disruption of tumor p38MAPK signaling reduced growth and metastases of breast carcinoma xenografts. Importantly, dn-p38 markedly decreased tumor blood-vessel density and lumen sizes. Mechanistic studies revealed that p38 controls expression of pro-angiogenic extracellular factors such as matrix protein Fibronectin and cytokines VEGFA, IL8, and HBEGF. Tumor-associated fibroblasts enhanced tumor growth and vasculature as well as increased expression of the pro-angiogenic factors. These effects were blunted by dn-p38. Metadata analysis showed elevated expression of p38 target genes in breast cancers and this was an unfavorable marker of disease recurrence and poor-outcome. Thus, our study demonstrates that tumor p38MAPK signaling promotes breast carcinoma growth, invasive and metastatic capacities. Importantly, p38 enhances carcinoma vascularization by facilitating expression and deposition of pro-angiogenic factors. These results argue that p38MAPK is a valuable target for anticancer therapy affecting tumor vasculature. Anti-p38 drugs may provide new therapeutic strategies against breast cancer, including metastatic disease.

  13. Tumor p38MAPK signaling enhances breast carcinoma vascularization and growth by promoting expression and deposition of pro-tumorigenic factors

    PubMed Central

    Limoge, Michelle; Safina, Alfiya; Truskinovsky, Alexander M.; Aljahdali, Ieman; Zonneville, Justin; Gruevski, Aleksandar; Arteaga, Carlos L.; Bakin, Andrei V.

    2017-01-01

    The breast carcinoma microenvironment strikingly influences cancer progression and response to therapy. Various cell types in the carcinoma microenvironment show significant activity of p38 mitogen-activated protein kinase (MAPK), although the role of p38MAPK in breast cancer progression is still poorly understood. The present study examined the contribution of tumor p38MAPK to breast carcinoma microenvironment and metastatic capacity. Inactivation of p38MAPK signaling in metastatic breast carcinoma cells was achieved by forced expression of the kinase-inactive mutant of p38/MAPK14 (a dominant-negative p38, dn-p38). Disruption of tumor p38MAPK signaling reduced growth and metastases of breast carcinoma xenografts. Importantly, dn-p38 markedly decreased tumor blood-vessel density and lumen sizes. Mechanistic studies revealed that p38 controls expression of pro-angiogenic extracellular factors such as matrix protein Fibronectin and cytokines VEGFA, IL8, and HBEGF. Tumor-associated fibroblasts enhanced tumor growth and vasculature as well as increased expression of the pro-angiogenic factors. These effects were blunted by dn-p38. Metadata analysis showed elevated expression of p38 target genes in breast cancers and this was an unfavorable marker of disease recurrence and poor-outcome. Thus, our study demonstrates that tumor p38MAPK signaling promotes breast carcinoma growth, invasive and metastatic capacities. Importantly, p38 enhances carcinoma vascularization by facilitating expression and deposition of pro-angiogenic factors. These results argue that p38MAPK is a valuable target for anticancer therapy affecting tumor vasculature. Anti-p38 drugs may provide new therapeutic strategies against breast cancer, including metastatic disease. PMID:28977919

  14. Corticosteroid-Induced MKP-1 Represses Pro-Inflammatory Cytokine Secretion by Enhancing Activity of Tristetraprolin (TTP) in ASM Cells.

    PubMed

    Prabhala, Pavan; Bunge, Kristin; Ge, Qi; Ammit, Alaina J

    2016-10-01

    Exaggerated cytokine secretion drives pathogenesis of a number of chronic inflammatory diseases, including asthma. Anti-inflammatory pharmacotherapies, including corticosteroids, are front-line therapies and although they have proven clinical utility, the molecular mechanisms responsible for their actions are not fully understood. The corticosteroid-inducible gene, mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1, DUSP1) has emerged as a key molecule responsible for the repressive effects of steroids. MKP-1 is known to deactivate p38 MAPK phosphorylation and can control the expression and activity of the mRNA destabilizing protein-tristetraprolin (TTP). But whether corticosteroid-induced MKP-1 acts via p38 MAPK-mediated modulation of TTP function in a pivotal airway cell type, airway smooth muscle (ASM), was unknown. While pretreatment of ASM cells with the corticosteroid dexamethasone (preventative protocol) is known to reduce ASM synthetic function in vitro, the impact of adding dexamethasone after stimulation (therapeutic protocol) had not been explored. Whether dexamethasone modulates TTP in a p38 MAPK-dependent manner in this cell type was also unknown. We address this herein and utilize an in vitro model of asthmatic inflammation where ASM cells were stimulated with the pro-asthmatic cytokine tumor necrosis factor (TNF) and the impact of adding dexamethasone 1 h after stimulation assessed. IL-6 mRNA expression and protein secretion was significantly repressed by dexamethasone acting in a temporally distinct manner to increase MKP-1, deactivate p38 MAPK, and modulate TTP phosphorylation status. In this way, dexamethasone-induced MKP-1 acts via p38 MAPK to switch on the mRNA destabilizing function of TTP to repress pro-inflammatory cytokine secretion from ASM cells. J. Cell. Physiol. 231: 2153-2158, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Cyclic nucleotides and mitogen-activated protein kinases: regulation of simvastatin in platelet activation

    PubMed Central

    2010-01-01

    Background 3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) have been widely used to reduce cardiovascular risk. These statins (i.e., simvastatin) may exert other effects besides from their cholesterol-lowering actions, including inhibition of platelet activation. Platelet activation is relevant to a variety of coronary heart diseases. Although the inhibitory effect of simvastatin in platelet activation has been studied; the detailed signal transductions by which simvastatin inhibit platelet activation has not yet been completely resolved. Methods The aim of this study was to systematically examine the detailed mechanisms of simvastatin in preventing platelet activation. Platelet aggregation, flow cytometric analysis, immunoblotting, and electron spin resonance studies were used to assess the antiplatelet activity of simvastatin. Results Simvastatin (20-50 μM) exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists (i.e., thrombin). Simvastatin inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC), and mitogen-activated protein kinases (i.e., p38 MAPK, JNKs) phosphorylation in washed platelets. Simvastatin obviously increased both cyclic AMP and cyclic GMP levels. Simvastatin markedly increased NO release, vasodilator-stimulated phosphoprotein (VASP) phosphorylation, and endothelial nitric oxide synthase (eNOS) expression. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the simvastatin-mediated inhibitory effects on platelet aggregation, PLCγ2 and p38 MAPK phosphorylation, and simvastatin-mediated stimulatory effects on VASP and eNOS phosphorylation. Conclusion The most important findings of this study demonstrate for the first time that inhibitory effect of simvastatin in platelet activation may involve activation of the cyclic AMP-eNOS/NO-cyclic GMP pathway, resulting in inhibition of the PLCγ2-PKC-p38 MAPK-TxA2 cascade, and finally inhibition of platelet aggregation. PMID:20525309

  16. Potent antiplatelet activity of sesamol in an in vitro and in vivo model: pivotal roles of cyclic AMP and p38 mitogen-activated protein kinase.

    PubMed

    Chang, Chao C; Lu, Wan J; Chiang, Cheng W; Jayakumar, Thanasekaran; Ong, Eng T; Hsiao, George; Fong, Tsorng H; Chou, Duen S; Sheu, Joen R

    2010-12-01

    Sesamol is a potent phenolic antioxidant which possesses antimutagenic, antihepatotoxic and antiaging properties. Platelet activation is relevant to a variety of acute thrombotic events and coronary heart diseases. There have been few studies on the effect of sesamol on platelets. Therefore, the aim of this study was to systematically examine the detailed mechanisms of sesamol in preventing platelet activation in vitro and in vivo. Sesamol (2.5-5 μM) exhibited more potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists. Sesamol inhibited collagen-stimulated platelet activation accompanied by [Ca(2+)](i) mobilization, thromboxane A(2) (TxA(2)) formation, and phospholipase C (PLC)γ2, protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) phosphorylation in washed platelets. Sesamol markedly increased cAMP and cGMP levels, endothelial nitric oxide synthase (eNOS) expression and NO release, as well as vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the sesamol-mediated inhibitory effects on platelet aggregation and p38 MAPK phosphorylation, and sesamol-mediated stimulatory effects on VASP and eNOS phosphorylation, and NO release. Sesamol also reduced hydroxyl radical (OH(●)) formation in platelets. In an in vivo study, sesamol (5 mg/kg) significantly prolonged platelet plug formation in mice. The most important findings of this study demonstrate for the first time that sesamol possesses potent antiplatelet activity, which may involve activation of the cAMP-eNOS/NO-cGMP pathway, resulting in inhibition of the PLCγ2-PKC-p38 MAPK-TxA(2) cascade, and, finally, inhibition of platelet aggregation. Sesamol treatment may represent a novel approach to lowering the risk of or improving function in thromboembolism-related disorders. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Evaluation of signal transduction pathways after transient cutaneous adenoviral gene delivery

    PubMed Central

    2011-01-01

    Background Adenoviral vectors have provided effective methods for in vivo gene delivery in therapeutic applications. However, these vectors can induce immune responses that may severely affect the ability of vector re-application. There is limited information about the mechanisms and signal transduction pathways involved in adenoviral recognition. For optimization of cutaneous gene therapy it is necessary to investigate molecular mechanisms of virus recognition in epidermal cells. The aim of this study was to investigate the signal transduction of the innate immunity after adenoviral DNA internalization in keratinocytes. Methods In vitro, keratinocytes were transfected with DNA, in the presence and absence of inhibitors for signalling molecules. In vivo, immunocompetent and athymic mice (n = 3 per group) were twice transduced with an Ad-vector. Results The results show an acute induction of type-I-interferon after in vitro transfection. Inhibition of PI3K, p38 MAPK, JNK and NFkappaB resulted in a decreased expression of type-I-interferon. In contrast to immunocompetent mice, athymic mice demonstrated a constant transgene expression and reduced inflammatory response in vivo. Conclusion The results suggest an induction of the innate immunity triggered by cytoplasm localised DNA which is mediated by PI3K-, p38 MAPK-, JNK-, NFkappaB-, JAK/STAT- and ERK1/2-dependent pathways. A stable transgene expression and a reduced inflammatory response in immunodeficient mice have been observed. These results provide potential for an effective adenoviral gene delivery into immunosupressed skin. PMID:21255430

  18. Thrombin-induced glucose transport via Src–p38 MAPK pathway in vascular smooth muscle cells

    PubMed Central

    Kanda, Yasunari; Watanabe, Yasuhiro

    2005-01-01

    Thrombin is a mitogen for vascular smooth muscle cells (VSMC) and has been implicated in the development in atherosclerosis. However, little is known about the role of thrombin in glucose transport in VSMC. In this study, we examined the effect of thrombin on glucose uptake in rat A10 VSMC. We found that thrombin induced glucose uptake in a dose-dependent manner while hirudin, a potent thrombin inhibitor, prevented glucose uptake in the cells. PP2, a selective inhibitor of Src, prevented the thrombin-induced glucose uptake, but did not affect insulin-induced uptake. We also examined whether mitogen-activated protein kinase (MAPK) inhibitors influenced thrombin-induced glucose uptake. The p38 MAPK inhibitor (SB203580) inhibited thrombin-induced glucose uptake, but the MEK inhibitor (PD98059) did not. In contrast to thrombin, SB203580 did not affect insulin-induced glucose uptake. Furthermore, thrombin failed to translocate the insulin-sensitive glucose transporter GLUT4. These findings suggest that thrombin stimulates glucose transport via Src and subsequent p38 MAPK activation in VSMC. PMID:15951827

  19. Discovery of biaryl-4-carbonitriles as antihyperglycemic agents that may act through AMPK-p38 MAPK pathway.

    PubMed

    Goel, Atul; Nag, Pankaj; Rahuja, Neha; Srivastava, Rohit; Chaurasia, Sumit; Gautam, Sudeep; Chandra, Sharat; Siddiqi, Mohammad Imran; Srivastava, Arvind K

    2014-08-25

    A series of functionalized biaryl-4-carbonitriles was synthesized in three steps and evaluated for PTP-1B inhibitory activity. Among the synthesized compounds, four biaryls 6a-d showed inhibition (IC50 58-75 μM) against in vitro PTP-1B assay possibly due to interaction with amino acid residues Lys120, Tyr46 through hydrogen bonding and aromatic-aromatic interactions, respectively. Two biaryl-4-carbonitriles 6b and 6c showed improved glucose tolerance, fasting as well as postprandial blood glucose, serum total triglycerides, and increased high-density lipoprotein-cholesterol in SLM, STZ, STZ-S and C57BL/KsJ-db/db animal models. The bioanalysis of 4'-bromo-2,3-dimethyl-5-(piperidin-1-yl)biphenyl-4-carbonitrile (6b) revealed that like insulin, it increased 2-deoxyglucose uptake in skeletal muscle cells (L6 and C2C12 myotubes). The compound 6b significantly up-regulated the genes related to the insulin signaling pathways like AMPK, MAPK including glucose transporter-4 (GLUT-4) gene in muscle tissue of C57BL/KsJ-db/db mice. Furthermore, it was observed that the compound 6b up-regulated PPARα, UCP2 and HNF4α, which are key regulator of glucose, lipid, and fatty acid metabolism. Western blot analysis of the compound 6b showed that it significantly increased the phosphorylation of AMPK and p38 MAPK and ameliorated glucose uptake in C57BL/KsJ-db/db mice through the AMPK-p38 MAPK pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Synergistic activation of NF-{kappa}B by nontypeable H. influenzae and S. pneumoniae is mediated by CK2, IKK{beta}-I{kappa}B{alpha}, and p38 MAPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kweon, Soo-Mi; Wang, Beinan; Rixter, Davida

    2006-12-15

    In review of the past studies on NF-{kappa}B regulation, most of them have focused on investigating how NF-{kappa}B is activated by a single inducer at a time. Given the fact that, in mixed bacterial infections in vivo, multiple inflammation inducers, including both nontypeable Haemophilus influenzae (NTHi) and Streptococcus pneumoniae, are present simultaneously, a key issue that has yet to be addressed is whether NTHi and S. pneumoniae simultaneously activate NF-{kappa}B and the subsequent inflammatory response in a synergistic manner. Here, we show that NTHi and S. pneumoniae synergistically induce NF-{kappa}B-dependent inflammatory response via activation of multiple signaling pathways in vitromore » and in vivo. The classical IKK{beta}-I{kappa}B{alpha} and p38 MAPK pathways are involved in synergistic activation of NF-{kappa}B via two distinct mechanisms, p65 nuclear translocation-dependent and -independent mechanisms. Moreover, casein kinase 2 (CK2) is involved in synergistic induction of NF-{kappa}B via a mechanism dependent on phosphorylation of p65 at both Ser536 and Ser276 sites. These studies bring new insights into the molecular mechanisms underlying the NF-{kappa}B-dependent inflammatory response in polymicrobial infections and may lead to development of novel therapeutic strategies for modulating inflammation in mixed infections for patients with otitis media and chronic obstructive pulmonary diseases.« less

  1. Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

    PubMed Central

    Lu, Ming; Luo, Ying; Hu, Pengfei; Dou, Liping; Huang, Shuwei

    2018-01-01

    Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell migration assay. And we explored the underlying mechanism by Western blotting. Results: AGEs significantly induced the proliferation and migration of VSMCs, but treatment with tanshinone IIA attenuated these effects. AGEs could increase the activity of the ERK1/2 and p38 pathways but not the JNK pathway. Treatment with tanshinone IIA inhibited the AGEs-induced activation of the ERK1/2 pathway but not the p38 pathway. Conclusion: Tanshinone IIA inhibits AGEs-induced proliferation and migration of VSMCs by suppressing the ERK1/2 MAPK signaling pathway. PMID:29372041

  2. Polycyclic aromatic hydrocarbon (PAH)-mediated upregulation of hepatic microRNA-181 family promotes cancer cell migration by targeting MAPK phosphatase-5, regulating the activation of p38 MAPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Mi-Kyung; School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul 136-701; Park, Yong-Keun

    2013-11-15

    Growing evidence indicates that changes in microRNA (miRNA) expression in cancer induced by chemical carcinogens play an important role in cancer development and progression by regulating related genes. However, the mechanisms underlying miRNA involvement in hepatocarcinogenesis induced by polycyclic aromatic hydrocarbons (PAHs) remain unclear. Thus, the identification of aberrant miRNA expression during PAH-induced cancer cell migration will lead to a better understanding of the substantial role of miRNAs in cancer progression. In the present study, miRNA expression profiling showed significant upregulation of miR-181a, -181b, and -181d in human hepatocellular carcinoma cells (HepG2 line) exposed to benzo[a]anthracene (BA) and benzo[k]fluoranthene (BF).more » MAPK phosphatase-5 (MKP-5), a validated miR-181 target that deactivates MAPKs, was markedly suppressed while phosphorylation of p38 MAPK was increased after BA and BF exposure. The migration of HepG2 cells, observed using the scratch wound-healing assay, also increased in a dose-dependent manner. Depletion of miR-181 family members by miRNA inhibitors enhanced the expression of MKP-5 and suppressed the phosphorylation of p38 MAPK. Furthermore, the depletion of the miR-181 family inhibited cancer cell migration. Based on these results, we conclude that the miR-181 family plays a critical role in PAH-induced hepatocarcinogenesis by targeting MKP-5, resulting in the regulation of p38 MAPK activation. - Highlights: • We found significant upregulation of miR-181 family in HCC exposed to BA and BF. • We identified the MKP-5 as a putative target of miR-181 family. • MKP-5 was suppressed while p-P38 was increased after BA and BF exposure. • The migration of HepG2 cells increased in a dose-dependent manner.« less

  3. Activation of MAPK and FoxO by Manganese (Mn) in Rat Neonatal Primary Astrocyte Cultures

    PubMed Central

    Exil, Vernat; Ping, Li; Yu, Yingchun; Chakraborty, Sudipta; Caito, Samuel W.; Wells, K. Sam; Karki, Pratap; Lee, Eunsook; Aschner, Michael

    2014-01-01

    Environmental exposure to manganese (Mn) leads to a neurodegenerative disease that has shared clinical characteristics with Parkinson's disease (PD). Mn-induced neurotoxicity is time- and dose-dependent, due in part to oxidative stress. We ascertained the molecular targets involved in Mn-induced neurodegeneration using astrocyte culture as: (1) Astrocytes are vital for information processing within the brain, (2) their redox potential is essential in mitigating reactive oxygen species (ROS) levels, and (3) they are targeted early in the course of Mn toxicity. We first tested protein levels of Mn superoxide dismutase -2 (SOD-2) and glutathione peroxidase (GPx-1) as surrogates of astrocytic oxidative stress response. We assessed levels of the forkhead winged-helix transcription factor O (FoxO) in response to Mn exposure. FoxO is highly regulated by the insulin-signaling pathway. FoxO mediates cellular responses to toxic stress and modulates adaptive responses. We hypothesized that FoxO is fundamental in mediating oxidative stress response upon Mn treatment, and may be a biomarker of Mn-induced neurodegeneration. Our results indicate that 100 or 500 µM of MnCl2 led to increased levels of FoxO (dephosphorylated and phosphorylated) compared with control cells (P<0.01). p-FoxO disappeared from the cytosol upon Mn exposure. Pre-treatment of cultured cells with (R)-(−)-2-oxothiazolidine-4-carboxylic acid (OTC), a cysteine analog rescued the cytosolic FoxO. At these concentrations, MAPK phosphorylation, in particular p38 and ERK, and PPAR gamma coactivator-1 (PGC-1) levels were increased, while AKT phosphorylation remained unchanged. FoxO phosphorylation level was markedly reduced with the use of SB203580 (a p38 MAPK inhibitor) and PD98059 (an ERK inhibitor). We conclude that FoxO phosphorylation after Mn exposure occurs in parallel with, and independent of the insulin-signaling pathway. FoxO levels and its translocation into the nucleus are part of early events compensating for Mn-induced neurotoxicity and may serve as valuable targets for neuroprotection in the setting of Mn-induced neurodegeneration. PMID:24787138

  4. Manganese-exposed developing rats display motor deficits and striatal oxidative stress that are reversed by Trolox.

    PubMed

    Cordova, Fabiano M; Aguiar, Aderbal S; Peres, Tanara V; Lopes, Mark W; Gonçalves, Filipe M; Pedro, Daniela Z; Lopes, Samantha C; Pilati, Célso; Prediger, Rui D S; Farina, Marcelo; Erikson, Keith M; Aschner, Michael; Leal, Rodrigo B

    2013-07-01

    While manganese (Mn) is essential for proper central nervous system (CNS) development, excessive Mn exposure may lead to neurotoxicity. Mn preferentially accumulates in the basal ganglia, and in adults it may cause Parkinson's disease-like disorder. Compared to adults, younger individuals accumulate greater Mn levels in the CNS and are more vulnerable to its toxicity. Moreover, the mechanisms mediating developmental Mn-induced neurotoxicity are not completely understood. The present study investigated the developmental neurotoxicity elicited by Mn exposure (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 to PN27 in rats. Neurochemical analyses were carried out on PN29, with a particular focus on striatal alterations in intracellular signaling pathways (MAPKs, Akt and DARPP-32), oxidative stress generation and cell death. Motor alterations were evaluated later in life at 3, 4 or 5 weeks of age. Mn exposure (20 mg/kg) increased p38(MAPK) and Akt phosphorylation, but decreased DARPP-32-Thr-34 phosphorylation. Mn (10 and 20 mg/kg) increased caspase activity and F2-isoprostane production (a biological marker of lipid peroxidation). Paralleling the changes in striatal biochemical parameters, Mn (20 mg/kg) also caused motor impairment, evidenced by increased falling latency in the rotarod test, decreased distance traveled and motor speed in the open-field test. Notably, the antioxidant Trolox™ reversed the Mn (20 mg/kg)-dependent augmentation in p38(MAPK) phosphorylation and reduced the Mn (20 mg/kg)-induced caspase activity and F2-isoprostane production. Trolox™ also reversed the Mn-induced motor coordination deficits. These findings are the first to show that long-term exposure to Mn during a critical period of neurodevelopment causes motor coordination dysfunction with parallel increment in oxidative stress markers, p38(MAPK) phosphorylation and caspase activity in the striatum. Moreover, we establish Trolox™ as a potential neuroprotective agent given its efficacy in reversing the Mn-induced neurodevelopmental effects.

  5. The ethyl acetate fraction of Sargassum muticum attenuates ultraviolet B radiation-induced apoptotic cell death via regulation of MAPK- and caspase-dependent signaling pathways in human HaCaT keratinocytes.

    PubMed

    Piao, Mei Jing; Kim, Ki Cheon; Zheng, Jian; Yao, Cheng Wen; Cha, Ji Won; Boo, Sun Jin; Yoon, Weon Jong; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Ko, Mi Hee; Lee, Nam Ho; Hyun, Jin Won

    2014-09-01

    Our previous work demonstrated that an ethyl acetate extract derived from Sargassum muticum (Yendo) Fenshol (SME) protected human HaCaT keratinocytes against ultraviolet B (UVB)-induced oxidative stress by increasing antioxidant activity in the cells, thereby inhibiting apoptosis. The aim of the current study was to further elucidate the anti-apoptotic mechanism of SME against UVB-induced cell damage. The expression levels of several apoptotic-associated and mitogen-activated kinase (MAPK) signaling proteins were determined by western blot analysis of UVB-irradiated HaCaT cells with or without prior SME treatment. In addition, the loss of mitochondrial membrane potential (Δψm) was detected using flow cytometry or confocal microscopy and the mitochondria membrane-permeate dye, JC-1. Apoptosis was assessed by quantifying DNA fragmentation and apoptotic body formation. Furthermore, cell viability was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. SME absorbed electromagnetic radiation in the UVB range (280-320 nm) of the UV/visible light spectrum. SME also increased Bcl-2 and Mcl-1 expression in UVB-irradiated cells and decreased the Bax expression. Moreover, SME inhibited the UVB-induced disruption of mitochondrial membrane potential and prevented UVB-mediated increases in activated caspase-9 and caspase-3 (an apoptotic initiator and executor, respectively) levels. Notably, treatment with a pan-caspase inhibitor enhanced the anti-apoptotic effects of SME in UVB-irradiated cells. Finally, SME reduced the UVB-mediated phosphorylation of p38 MAPK and JNK, and prevented the UVB-mediated dephosphorylation of Erk1/2 and Akt. The present results indicate that SME safeguards HaCaT keratinocytes from UVB-mediated apoptosis by inhibiting a caspase-dependent signaling pathway.

  6. Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression.

    PubMed

    Lim, Eun Jin; Heo, Jeonghoon; Kim, Young-Ho

    2015-08-01

    Tunicamycin (TN), one of the endoplasmic reticulum stress inducers, has been reported to inhibit tumor cell growth and exhibit anticarcinogenic activity. However, the mechanism by which TN initiates apoptosis remains poorly understood. In the present study, we investigated the effect of TN on the apoptotic pathway in U937 cells. We show that TN induces apoptosis in association with caspase-3 activation, generation of reactive oxygen species (ROS), and downregulation of survivin expression. P38 MAPK (mitogen-activated protein kinase) and the generation of ROS signaling pathway play crucial roles in TN-induced apoptosis in U937 cells. We hypothesized that TN-induced activation of p38 MAPK signaling pathway is responsible for cell death. To test this hypothesis, we selectively inhibited MAPK during treatment with TN. Our data demonstrated that inhibitor of p38 (SB), but not ERK (PD) or JNK (SP), partially maintained apoptosis during treatment with TN. Pre-treatment with NAC and GSH markedly prevented cell death, suggesting a role for ROS in this process. Ectopic expression of survivin in U937 cells attenuated TN-induced apoptosis by suppression of caspase-3 cleavage, mitochondrial membrane potential, and cytochrome c release in U937 cells. Taken together, our results show that TN modulates multiple components of the apoptotic response of human leukemia cells and raise the possibility of a novel therapeutic strategy for hematological malignancies.

  7. Opposite Roles for p38MAPK-Driven Responses and Reactive Oxygen Species in the Persistence and Resolution of Radiation-Induced Genomic Instability

    PubMed Central

    Werner, Erica; Wang, Huichen; Doetsch, Paul W.

    2014-01-01

    We report the functional and temporal relationship between cellular phenotypes such as oxidative stress, p38MAPK-dependent responses and genomic instability persisting in the progeny of cells exposed to sparsely ionizing low-Linear Energy Transfer (LET) radiation such as X-rays or high-charge and high-energy (HZE) particle high-LET radiation such as 56Fe ions. We found that exposure to low and high-LET radiation increased reactive oxygen species (ROS) levels as a threshold-like response induced independently of radiation quality and dose. This response was sustained for two weeks, which is the period of time when genomic instability is evidenced by increased micronucleus formation frequency and DNA damage associated foci. Indicators for another persisting response sharing phenotypes with stress-induced senescence, including beta galactosidase induction, increased nuclear size, p38MAPK activation and IL-8 production, were induced in the absence of cell proliferation arrest during the first, but not the second week following exposure to high-LET radiation. This response was driven by a p38MAPK-dependent mechanism and was affected by radiation quality and dose. This stress response and elevation of ROS affected genomic instability by distinct pathways. Through interference with p38MAPK activity, we show that radiation-induced stress phenotypes promote genomic instability. In contrast, exposure to physiologically relevant doses of hydrogen peroxide or increasing endogenous ROS levels with a catalase inhibitor reduced the level of genomic instability. Our results implicate persistently elevated ROS following exposure to radiation as a factor contributing to genome stabilization. PMID:25271419

  8. SB203580 enhances the RV-induced loss of mitochondrial membrane potential and apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Li, Hai-yang; Zhuang, Cai-ping; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    Resveratrol (RV), a naturally occurring phytoalexin, is known to possess a wide spectrum of chemopreventive and chemotherapeutic effects in various stages of human tumors. p38, a member of the mitogen-activated protein kinase (MAPK) superfamily, is always activated by some extracellular stimulus to regulate many cellular signal transduction pathways, such as apoptosis, proliferation, and inflammation and so on. In this report, we assessed the effect of SB203580, a specific inhibitor of p38 MAPK signaling pathway, on the RV-induced apoptosis in human lung adenocarcinoma (A549) cells. CCK-8 assay showed that pretreatment with SB203580 significantly enhanced the cytotoxicity of RV, which was further verified by analyzing the phosphatidylserine externalization using flow cytometry. In order to further confirm whether SB203580 accelerated apoptosis via the intrinsic apoptosis pathway, we analyzed the dysfunction of mitochondrial membrane potential (Δψm) of cells stained with rhodamine 123 by using flow cytometry after treatment with RV in the absence and presence of SB203580. Our data for the first time reported that p38 inhibitor SB203580 enhanced the RV-induced apoptosis via a mitochondrial pathway.

  9. The effects of pleiotrophin in proliferative vitreoretinopathy.

    PubMed

    Ding, Xue; Bai, Yujing; Zhu, Xuemei; Li, Tianqi; Jin, Enzhong; Huang, Lvzhen; Yu, Wenzhen; Zhao, Mingwei

    2017-05-01

    The purpose of our study was to investigate the effects of pleiotrophin (PTN) in proliferative vitreoretinopathy (PVR) both in vitro and in vivo. Immunofluorescence was used to observe the PTN expression in periretinal membrane samples from patients with PVR and controls. ARPE-19 cells were exposed to TGF-β1. The epithelial-to-mesenchymal transition (EMT) of the ARPE-19 cells was confirmed by observed morphological changes and the increased expression of α-SMA and fibronectin at both the mRNA and protein levels. We used specific small interfering (si)RNA to knock down the expression of PTN. The subsequent effects of PTN inhibition were assessed with regard to the EMT, migration, proliferation, cytoskeletal arrangement, TGF-β signaling, PTN signaling, integral tight junction protein expression (e.g., claudin-1 and occludin), and p38 MAPK and p-p38 MAPK levels. Additionally, a PVR rat model was established by the intravitreal injection of ARPE-19 cells transfected with PTN-siRNA and was evaluated accordingly. PTN was highly expressed in PVR membranes compared to controls. PTN knockdown attenuated the TGF-β1-induced migration, proliferation, cytoskeletal rearrangement, and expression of EMT markers such as α-SMA and fibronectin in the ARPE-19 cells, and these effects may have been mediated through p38 MAPK signaling pathway activation. PTN silencing inhibited the up-regulation of claudin-1 and occludin stimulated by TGF-β1, and PTN knockdown inhibited the proliferative aspects of severe PVR in vivo. PTN is involved in the process of EMT induced by TGF-β1 in human ARPE-19 cells in vitro, and PTN knockdown attenuated the progression of experimental PVR in vivo. These findings provide new insights into the pathogenesis of PVR.

  10. A prenylated flavonoid, 10-oxomornigrol F, exhibits anti-inflammatory effects by activating the Nrf2/heme oxygenase-1 pathway in macrophage cells.

    PubMed

    Tran, Phi-Long; Tran, Phuong Thao; Tran, Huynh Nguyen Khanh; Lee, Suhyun; Kim, Okwha; Min, Buyng-Sun; Lee, Jeong-Hyung

    2018-02-01

    Prenylated flavonoids are a unique class of naturally occurring flavonoids that have various pharmacological activities. In the present study, we investigated the anti-inflammatory effect in murine macrophages of a prenylated flavonoid, 10-oxomornigrol F (OMF), which was isolated from the twigs of Morus alba (Moraceae). OMF inhibited the lipopolysaccharide (LPS)-induced production of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 in RAW264.7 cells, as well as in mouse bone marrow-derived macrophages (BMMs). OMF also rescued LPS-induced septic mortality in ICR mice. LPS-induced expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α and IL-6 was also significantly suppressed by OMF treatment in RAW264.7 cells. Treatment of RAW264.7 cells with OMF induced heme oxygenase (HO)-1 mRNA and protein expression and increased the nuclear translocation of the nuclear factor-E2-related factor 2 (Nrf2) as well as the expression of Nrf2 target genes, such as NAD(P)H:quinone oxidoreductase 1 (NQO1). Treatment of RAW264.7 cells with OMF increased the intracellular level of reactive oxygen species (ROS) and the phosphorylation levels of p38 mitogen-activated protein kinase (MAPK); co-treatment with the antioxidant N-acetyl-cysteine (NAC) blocked this OMF-induced p38 MAPK phosphorylation. Moreover, NAC, or SB203580 (a p38 MAPK inhibitor), blocked the OMF-induced nuclear translocation of Nrf2 and HO-1 expression, suggesting that OMF induces HO-1 expression by activating Nrf2 through the p38 MAPK pathway. Consistent with the notion that the Nrf2/HO-1 pathway has anti-inflammatory properties, inhibiting HO-1 significantly abrogated the anti-inflammatory effects of OMF in LPS-stimulated RAW264.7 cells. Taken together, these findings suggest that OMF exerts its anti-inflammatory effect by activating the Nrf2/HO-1 pathway, and may be a potential Nrf2 activator to prevent or treat inflammatory diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1.

    PubMed

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-02-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK-HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated.

  12. Tumorigenicity of MCF-7 human breast cancer cells lacking the p38α mitogen-activated protein kinase

    PubMed Central

    Mendoza, Rhone A; Moody, Emily E; Enriquez, Marlene I; Mejia, Sylvia M; Thordarson, Gudmundur

    2011-01-01

    We have generated cell lines with significantly reduced expression of the p38 mitogen-activated protein kinase (p38 MAPK), Min-p38 MAPK cells, and used these cells to investigate its role in tumorigenesis of breast cancer cells. MCF-7 cells were stably transfected with a plasmid producing small interfering RNA that inhibited the expression of p38 MAPK. Control cells were stably transfected with the same plasmid producing non-interfering RNA. The reduction in the p38 MAPK activity caused a significant increase in the expressions of the estrogen receptor-α (ERα) and the progesterone receptor, but eliminated the expression of the ERβ. Min-p38 MAPK cells showed an enhanced overall growth response to 17β-estradiol (E2), whereas growth hormone plus epidermal growth factor were largely ineffective growth stimulators in these cells compared to controls. Although the long-term net growth rate of the Min-p38 MAPK cells was increased in response to E2, their proliferation rate was not different from controls in short-term cultures. However, the Min-p38 MAPK cells did show a significant decreased rate of apoptosis after E2 treatment and a reduction in the basal phosphorylation of p53 tumor suppressor protein compared to controls. When the Min-p38 MAPK cells were xenografted into E2-treated athymic nude mice, their tumorigenicity was enhanced compared to control cells. Conclusions: increased tumorigenicity of Min-p38 MAPK cells was caused mainly by a decrease in apoptosis rate indicating that the lack of the p38 MAPK caused an imbalance to increase the ERα:ERβ ratio and a reduction in the activity of the p53 tumor suppressor protein. PMID:20974639

  13. Anti-inflammatory effects of ursodeoxycholic acid by lipopolysaccharide-stimulated inflammatory responses in RAW 264.7 macrophages

    PubMed Central

    Ko, Wan-Kyu; Lee, Soo-Hong; Kim, Sung Jun; Jo, Min-Jae; Kumar, Hemant; Han, In-Bo; Sohn, Seil

    2017-01-01

    Purpose The aim of this study was to investigate the anti-inflammatory effects of Ursodeoxycholic acid (UDCA) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods We induced an inflammatory process in RAW 264.7 macrophages using LPS. The anti-inflammatory effects of UDCA on LPS-stimulated RAW 264.7 macrophages were analyzed using nitric oxide (NO). Pro-inflammatory and anti-inflammatory cytokines were analyzed by quantitative real time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The phosphorylations of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 in mitogen-activated protein kinase (MAPK) signaling pathways and nuclear factor kappa-light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) signaling pathways were evaluated by western blot assays. Results UDCA decreased the LPS-stimulated release of the inflammatory mediator NO. UDCA also decreased the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin 1-α (IL-1α), interleukin 1-β (IL-1β), and interleukin 6 (IL-6) in mRNA and protein levels. In addition, UDCA increased an anti-inflammatory cytokine interleukin 10 (IL-10) in the LPS-stimulated RAW 264.7 macrophages. UDCA inhibited the expression of inflammatory transcription factor nuclear factor kappa B (NF-κB) in LPS-stimulated RAW 264.7 macrophages. Furthermore, UDCA suppressed the phosphorylation of ERK, JNK, and p38 signals related to inflammatory pathways. In addition, the phosphorylation of IκBα, the inhibitor of NF-κB, also inhibited by UDCA. Conclusion UDCA inhibits the pro-inflammatory responses by LPS in RAW 264.7 macrophages. UDCA also suppresses the phosphorylation by LPS on ERK, JNK, and p38 in MAPKs and NF-κB pathway. These results suggest that UDCA can serve as a useful anti-inflammatory drug. PMID:28665991

  14. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells

    PubMed Central

    Wang, Feng; Li, Hai; Yan, Xiao-Gang; Zhou, Zhi-Wei; Yi, Zhi-Gang; He, Zhi-Xu; Pan, Shu-Ting; Yang, Yin-Xue; Wang, Zuo-Zheng; Zhang, Xueji; Yang, Tianxing; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Pancreatic cancer is the most aggressive cancer worldwide with poor response to current therapeutics. Alisertib (ALS), a potent and selective Aurora kinase A inhibitor, exhibits potent anticancer effects in preclinical and clinical studies; however, the effect and underlying mechanism of ALS in the pancreatic cancer treatment remain elusive. This study aimed to examine the effects of ALS on cell growth, autophagy, and epithelial-to-mesenchymal transition (EMT) and to delineate the possible molecular mechanisms in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that ALS exerted potent cell growth inhibitory, pro-autophagic, and EMT-suppressing effects in PANC-1 and BxPC-3 cells. ALS remarkably arrested PANC-1 and BxPC-3 cells in G2/M phase via regulating the expression of cyclin-dependent kinases 1 and 2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. ALS concentration-dependently induced autophagy in PANC-1 and BxPC-3 cells, which may be attributed to the inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), p38 mitogen-activated protein kinase (p38 MAPK), and extracellular signal-regulated kinases 1 and 2 (Erk1/2) but activation of 5′-AMP-dependent kinase signaling pathways. ALS significantly inhibited EMT in PANC-1 and BxPC-3 cells with an increase in the expression of E-cadherin and a decrease in N-cadherin. In addition, ALS suppressed the expression of sirtuin 1 (Sirt1) and pre-B cell colony-enhancing factor/visfatin in both cell lines with a rise in the level of acetylated p53. These findings show that ALS induces cell cycle arrest and promotes autophagic cell death but inhibits EMT in pancreatic cancer cells with the involvement of PI3K/Akt/mTOR, p38 MAPK, Erk1/2, and Sirt1-mediated signaling pathways. Taken together, ALS may represent a promising anticancer drug for pancreatic cancer treatment. More studies are warranted to investigate other molecular targets and mechanisms and verify the efficacy and safety of ALS in the treatment of pancreatic cancer. PMID:25632225

  15. Friedelane-type triterpenoids as selective anti-inflammatory agents by regulation of differential signaling pathways in LPS-stimulated macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villar-Lorenzo, Andrea, E-mail: avillar@iib.uam.es

    A series of 31 pentacyclic triterpenoids isolated from the root barks of Celastrus vulcanicola and Maytenus jelskii were tested for cytotoxicity and inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compounds 18 (C18) and 25 (C25) exhibited significant inhibition of LPS-induced NO release at 50 and 25 μM concentrations, respectively, and decreased mRNAs of pro-inflammatory cytokines. At the molecular level, C18 neither inhibited LPS-mediated phosphorylation of mitogen activated protein kinases (MAPKs) nor nuclear translocation of nuclear factor kappa beta (NFκB). Instead, C18 enhanced and prolonged nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) andmore » increased the expression of its target genes including hemeoxigenase 1 (HO1). C25 efficiently inhibited LPS-mediated phosphorylation of JNK, p38 and ERK, without affecting NFκB or Nrf2 signaling pathways. Both compounds reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β (IL1β) proform, reflecting their ability to target the inflammasome. C25 also counteracted LPS effects on iNOS expression and pro-inflammatory cytokines mRNA levels in Bv-2 microglial cells. The anti-inflammatory effect of both compounds was also assessed in human macrophages. Our results suggest that triterpenoids C18 and C25 possess anti-inflammatory effects, which may be therapeutically relevant for diseases linked to inflammation. - Highlights: • Compounds 18 (C18) and 25 (C25) exert anti-inflammatory effects in macrophages. • C18 enhanced nuclear translocation of Nrf2 and increased HO1 expression. • C25 inhibited the phosphorylation of JNK, p38 and ERK, members of the MAPKs family. • C25 reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β. • C18 and C25 may be therapeutic agents for diseases linked to inflammation.« less

  16. Matrix metalloproteinase-2: A key regulator in coagulation proteases mediated human breast cancer progression through autocrine signaling.

    PubMed

    Das, Kaushik; Prasad, Ramesh; Ansari, Shabbir Ahmed; Roy, Abhishek; Mukherjee, Ashis; Sen, Prosenjit

    2018-06-02

    Cell invasion is attributed to the synthesis and secretion of proteolytically active matrix-metalloproteinases (MMPs) by tumor cells to degrade extracellular matrix (ECM) and promote metastasis. The role of protease-activated receptor 2 (PAR2) in human breast cancer migration/invasion via MMP-2 up-regulation remains ill-defined; hence we investigated whether TF-FVIIa/trypsin-mediated PAR2 activation induces MMP-2 expression in human breast cancer. MMP-2 expression and the signaling mechanisms were analyzed by western blotting and RT-PCR. MMP-2 activity was measured by gelatin zymography. Cell invasion was analyzed by transwell invasion assay whereas; wound healing assay was performed to understand the cell migratory potential. Here, we highlight that TF-FVIIa/trypsin-mediated PAR2 activation leads to enhanced MMP-2 expression in human breast cancer cells contributing to tumor progression. Knock-down of PAR2 abrogated TF-FVIIa/trypsin-induced up-regulation of MMP-2. Again, genetic manipulation of AKT or inhibition of NF-ĸB suggested that PAR2-mediated enhanced MMP-2 expression is dependent on the PI3K-AKT-NF-ĸB pathway. We also reveal that TF, PAR2, and MMP-2 are over-expressed in invasive breast carcinoma tissues as compared to normal. Knock-down of MMP-2 significantly impeded TF-FVIIa/trypsin-induced cell invasion. Further, we report that MMP-2 activates p38 MAPK-MK2-HSP27 signaling axis that leads to actin polymerization and induces cell migration. Pharmacological inhibition of p38 MAPK or MK2 attenuates MMP-2-induced cell migration. The study delineates a novel signaling pathway by which PAR2-induced MMP-2 expression regulates human breast cancer cell migration/invasion. Understanding these mechanistic details will certainly help to identify crucial targets for therapeutic interventions in breast cancer metastasis. Copyright © 2018. Published by Elsevier Masson SAS.

  17. LPS Increases 5-LO Expression on Monocytes via an Activation of Akt-Sp1/NF-κB Pathways.

    PubMed

    Lee, Seung Jin; Seo, Kyo Won; Kim, Chi Dae

    2015-05-01

    5-Lipoxygenase (5-LO) plays a pivotal role in the progression of atherosclerosis. Therefore, this study investigated the molecular mechanisms involved in 5-LO expression on monocytes induced by LPS. Stimulation of THP-1 monocytes with LPS (0~3 µg/ml) increased 5-LO promoter activity and 5-LO protein expression in a concentration-dependent manner. LPS-induced 5-LO expression was blocked by pharmacological inhibition of the Akt pathway, but not by inhibitors of MAPK pathways including the ERK, JNK, and p38 MAPK pathways. In line with these results, LPS increased the phosphorylation of Akt, suggesting a role for the Akt pathway in LPS-induced 5-LO expression. In a promoter activity assay conducted to identify transcription factors, both Sp1 and NF-κB were found to play central roles in 5-LO expression in LPS-treated monocytes. The LPS-enhanced activities of Sp1 and NF-κB were attenuated by an Akt inhibitor. Moreover, the LPS-enhanced phosphorylation of Akt was significantly attenuated in cells pretreated with an anti-TLR4 antibody. Taken together, 5-LO expression in LPS-stimulated monocytes is regulated at the transcriptional level via TLR4/Akt-mediated activations of Sp1 and NF-κB pathways in monocytes.

  18. Anti-inflammatory effect of cannabinoid agonist WIN55, 212 on mouse experimental colitis is related to inhibition of p38MAPK

    PubMed Central

    Feng, Ya-Jing; Li, Yong-Yu; Lin, Xu-Hong; Li, Kun; Cao, Ming-Hua

    2016-01-01

    AIM To investigate the anti-inflammatory effect and the possible mechanisms of an agonist of cannabinoid (CB) receptors, WIN55-212-2 (WIN55), in mice with experimental colitis, so as to supply experimental evidence for its clinical use in future. METHODS We established the colitis model in C57BL/6 mice by replacing the animals’ water supply with 4% dextran sulfate sodium (DSS) for 7 consecutive days. A colitis scoring system was used to evaluate the severity of colon local lesion. The plasma levels of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and the myeloperoxidase (MPO) activity in colon tissue were measured. The expressions of cannabinoid receptors, claudin-1 protein, p38 mitogen-activated protein kinase (p38MAPK) and its phosphorylated form (p-p38) in colon tissue were determined by immunohistochemistry and Western blot. In addition, the effect of SB203580 (SB), an inhibitor of p38, was investigated in parallel experiments, and the data were compared with those from intervention groups of WIN55 and SB alone or used together. RESULTS The results demonstrated that WIN55 or SB treatment alone or together improved the pathological changes in mice with DSS colitis, decreased the plasma levels of TNF-α, and IL-6, and MPO activity in colon. The enhanced expression of claudin-1 and the inhibited expression of p-p38 in colon tissues were found in the WIN55-treated group. Besides, the expression of CB1 and CB2 receptors was enhanced in the colon after the induction of DSS colitis, but reduced when p38MAPK was inhibited. CONCLUSION These results confirmed the anti-inflammatory effect and protective role of WIN55 on the mice with experimental colitis, and revealed that this agent exercises its action at least partially by inhibiting p38MAPK. Furthermore, the results showed that SB203580, affected the expression of CB1 and CB2 receptors in the mouse colon, suggesting a close linkage and cross-talk between the p38MAPK signaling pathway and the endogenous CB system. PMID:27920472

  19. Iron overload may promote alteration of NK cells and hematopoietic stem/progenitor cells by JNK and P38 pathway in myelodysplastic syndromes.

    PubMed

    Hua, Yanni; Wang, Chaomeng; Jiang, Huijuan; Wang, Yihao; Liu, Chunyan; Li, Lijuan; Liu, Hui; Shao, Zonghong; Fu, Rong

    2017-08-01

    The objective of the study was to examine levels of intracellular iron, reactive oxygen species (ROS) and the expression of JNK and p38MAPK in NK cells and hematopoietic stem/progenitor cells (HSPCs) in MDS patients, and explore potential mechanisms by which iron overload (IOL) promotes MDS progression. Thirty-four cases of MDS and six cases of AML transformed from MDS (MDS/AML) were included. HSPCs and NK cells were isolated by magnetic absorption cell sorting. We used flow cytometry to detect the levels of ROS and intracellular JNK and P38 in NK cells and HSPCs. Total RNA and protein were extracted from NK cells and CD34 + cells to examine the expression of JNK and p38MAPK using RT-PCR and Western blotting. Intracellular iron concentration was detected. Data were analyzed by SPSS 21 statistical software. Intracellular iron concentration and ROS were increased in both NK cells and HSPCs in MDS patients with iron overload (P < 0.05). MDS patients with iron overload had higher JNK expression and lower p38 expression in NK cells, and higher p38 expression in HSPCs compared with non-iron overload group. IOL may cause alterations in NK cells and HSPCs through the JNK and p38 pathways, and play a role in the transformation to AML from MDS.

  20. Effects of interleukins 2 and 12 on TBT-induced alterations of MAP kinases p38 and p44/42 in human natural killer cells.

    PubMed

    Aluoch, Aloice O; Whalen, Margaret M

    2006-01-01

    NK cells are lymphocytes in the non-adaptive immune system that protect the body against intracellular pathogens and eliminate tumor cells. Tributyltin (TBT) is a toxic chemical that has been detected in human foods as well as in human blood. The role of TBT in immunosuppression has been described, including inhibition of the human NK-cell cytotoxic function. Previous studies indicated that exposure of NK cells to TBT for 1 h induced progressive and irreversible inhibition of cytotoxic function. However, it was found that if NK cells were incubated in TBT-free media with either IL-2 or IL-12, loss of cytotoxic function was prevented/reversed within 24 h. Molecular studies established that loss of cytotoxic function is accompanied by alteration of MAP kinases (MAPKs) p38 and p44/42 phosphorylation. This study examined whether interleukin-mediated recovery of cytotoxicity involved reversal of tributyltin-altered p38 and p44/42 phosphorylation. The results indicated that there was no substantial IL-2 prevention/reversal of the TBT-induced alteration of phosphorylation of either p38 or p44/42 after either a 24 or 48 h recovery period. Additionally, IL-12 caused no substantial prevention/reversal of the TBT-induced alteration of phosphorylation of the MAPKs seen after either 24 or 48 h. These data suggest that IL-2 and/or IL-12-mediated recovery of NK cytotoxic function is not a result of prevention/reversal of TBT-induced phosphorylation of p38 and p44/42 MAPKs at the 24 or 48 h time points. Copyright 2005 John Wiley & Sons, Ltd.

  1. Anti-Proliferative Effects of Rutin on OLETF Rat Vascular Smooth Muscle Cells Stimulated by Glucose Variability

    PubMed Central

    Yu, Sung Hoon; Yu, Jae Myung; Lee, Seong Jin; Kang, Dong Hyun; Cho, Young Jung; Kim, Doo Man

    2016-01-01

    Purpose Proliferation of vascular smooth muscle cells (VSMCs) plays a crucial role in atherosclerosis. Rutin is a major representative of the flavonol subclass of flavonoids and has various pharmacological activities. Currently, data are lacking regarding its effects on VSMC proliferation induced by intermittent hyperglycemia. Here, we demonstrate the effects of rutin on VSMC proliferation and migration according to fluctuating glucose levels. Materials and Methods Primary cultures of male Otsuka Long-Evans Tokushima Fatty (OLETF) rat VSMCs were obtained from enzymatically dissociated rat thoracic aortas. VSMCs were incubated for 72 h with alternating normal (5.5 mmol/L) and high (25.0 mmol/L) glucose media every 12 h. Proliferation and migration of VSMCs, the proliferative molecular pathway [including p44/42 mitogen-activated protein kinases (MAPK), mitogen-activated protein kinase kinase 1/2 (MEK1/2), p38 MAPK, phosphoinositide 3-kinase (PI3K), c-Jun N-terminal protein kinase (JNK), nuclear factor kappa B (NF-κB), and Akt], the migratory pathway (big MAPK 1, BMK1), reactive oxygen species (ROS), and apoptotic pathway were analyzed. Results We found enhanced proliferation and migration of VSMCs when cells were incubated in intermittent high glucose conditions, compared to normal glucose. These effects were lowered upon rutin treatment. Intermittent treatment with high glucose for 72 h increased the expression of phospho-p44/42 MAPK (extracellular signal regulated kinase 1/2, ERK1/2), phospho-MEK1/2, phospho-PI3K, phospho-NF-κB, phospho-BMK1, and ROS, compared to treatment with normal glucose. These effects were suppressed by rutin. Phospho-p38 MAPK, phospho-Akt, JNK, and apoptotic pathways [B-cell lymphoma (Bcl)-xL, Bcl-2, phospho-Bad, and caspase-3] were not affected by fluctuations in glucose levels. Conclusion Fluctuating glucose levels increased proliferation and migration of OLETF rat VSMCs via MAPK (ERK1/2), BMK1, PI3K, and NF-κB pathways. These effects were inhibited by the antioxidant rutin. PMID:26847289

  2. Involvement of PI3K/AKT and MAPK Pathways for TNF-α Production in SiHa Cervical Mucosal Epithelial Cells Infected with Trichomonas vaginalis.

    PubMed

    Yang, Jung-Bo; Quan, Juan-Hua; Kim, Ye-Eun; Rhee, Yun-Ee; Kang, Byung-Hyun; Choi, In-Wook; Cha, Guang-Ho; Yuk, Jae-Min; Lee, Young-Ha

    2015-08-01

    Trichomonas vaginalis; induces proinflammation in cervicovaginal mucosal epithelium. To investigate the signaling pathways in TNF-α production in cervical mucosal epithelium after T. vaginalis infection, the phosphorylation of PI3K/AKT and MAPK pathways were evaluated in T. vaginalis-infected SiHa cells in the presence and absence of specific inhibitors. T. vaginalis increased TNF-α production in SiHa cells, in a parasite burden-dependent and incubation time-dependent manner. In T. vaginalis-infected SiHa cells, AKT, ERK1/2, p38 MAPK, and JNK were phosphorylated from 1 hr after infection; however, the phosphorylation patterns were different from each other. After pretreatment with inhibitors of the PI3K/AKT and MAPK pathways, TNF-α production was significantly decreased compared to the control; however, TNF-α reduction patterns were different depending on the type of PI3K/MAPK inhibitors. TNF-α production was reduced in a dose-dependent manner by treatment with wortmannin and PD98059, whereas it was increased by SP600125. These data suggested that PI3K/AKT and MAPK signaling pathways are important in regulation of TNF-α production in cervical mucosal epithelial SiHa cells. However, activation patterns of each pathway were different from the types of PI3K/MAPK pathways.

  3. Role of Phosphatidylinositol-3 Kinase Pathway in NMDA Preconditioning: Different Mechanisms for Seizures and Hippocampal Neuronal Degeneration Induced by Quinolinic Acid.

    PubMed

    Constantino, Leandra C; Binder, Luisa B; Vandresen-Filho, Samuel; Viola, Giordano G; Ludka, Fabiana K; Lopes, Mark W; Leal, Rodrigo B; Tasca, Carla I

    2018-04-20

    N-methyl D-aspartate (NMDA) preconditioning is evoked by the administration of a subtoxic dose of NMDA and is protective against neuronal excitotoxicity. This effect may involve a diversity of targets and cell signaling cascades associated to neuroprotection. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinases (MAPKs) such as extracellular regulated protein kinase 1/2 (ERK1/2) and p38 MAPK pathways play a major role in neuroprotective mechanisms. However, their involvement in NMDA preconditioning was not yet fully investigated. The present study aimed to evaluate the effect of NMDA preconditioning on PI3K/Akt, ERK1/2, and p38 MAPK pathways in the hippocampus of mice and characterize the involvement of PI3K on NMDA preconditioning-evoked prevention of seizures and hippocampal cell damage induced by quinolinic acid (QA). Thus, mice received wortmannin (a PI3K inhibitor) and 15 min later a subconvulsant dose of NMDA (preconditioning) or saline. After 24 h of this treatment, an intracerebroventricular QA infusion was administered. Phosphorylation levels and total content of Akt, glycogen synthase protein kinase-3β (GSK-3β), ERK1/2, and p38 MAPK were not altered after 24 h of NMDA preconditioning with or without wortmmanin pretreatment. Moreover, after QA administration, behavioral seizures, hippocampal neuronal degeneration, and Akt activation were evaluated. Inhibition of PI3K pathway was effective in abolishing the protective effect of NMDA preconditioning against QA-induced seizures, but did not modify neuronal protection promoted by preconditioning as evaluated by Fluoro-Jade B staining. The study confirms that PI3K participates in the mechanism of protection induced by NMDA preconditioning against QA-induced seizures. Conversely, NMDA preconditioning-evoked protection against neuronal degeneration is not altered by PI3K signaling pathway inhibition. These results point to differential mechanisms regarding protection against a behavioral and cellular manifestation of neural damage.

  4. Myricetin Protects Cells against Oxidative Stress-Induced Apoptosis via Regulation of PI3K/Akt and MAPK Signaling Pathways

    PubMed Central

    Kang, Kyoung Ah; Wang, Zhi Hong; Zhang, Rui; Piao, Mei Jing; Kim, Ki Cheon; Kang, Sam Sik; Kim, Young Woo; Lee, Jongsung; Park, Deokhoon; Hyun, Jin Won

    2010-01-01

    Recently, we demonstrated that myricetin exhibits cytoprotective effects against H2O2-induced cell damage via its antioxidant properties. In the present study, myricetin was found to inhibit H2O2-induced apoptosis in Chinese hamster lung fibroblast (V79-4) cells, as shown by decreased apoptotic bodies, nuclear fragmentation, sub-G1 cell population, and disruption of mitochondrial membrane potential (Δψm), which are increased in H2O2-treated cells. Western blot data showed that in H2O2-treated cells, myricetin increased the level of Bcl-2, which is an anti-apoptotic factor, and decreased the levels of Bax, active caspase-9 and -3, which are pro-apoptotic factors. And myricetin inhibited release of cytochrome c from mitochondria to cytosol in H2O2-treated cells. Myricetin-induced survival correlated with Akt activity, and the rescue of cells by myricetin treatment against H2O2-induced apoptosis was inhibited by the specific PI3K (phosphoinositol-3-kinase) inhibitor. Myricetin-mediated survival also inhibited the activation of p38 mitogen activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), which are members of MAPK. Our studies suggest that myricetin prevents oxidative stress-induced apoptosis via regulation of PI3K/Akt and MAPK signaling pathways. PMID:21151442

  5. Lactobacillus acidophilus Induces Cytokine and Chemokine Production via NF-κB and p38 Mitogen-Activated Protein Kinase Signaling Pathways in Intestinal Epithelial Cells

    PubMed Central

    Lü, Xuena; Man, Chaoxin; Han, Linlin; Shan, Yi; Qu, Xingguang; Liu, Ying; Yang, Shiqin; Xue, Yuqing; Zhang, Yinghua

    2012-01-01

    Intestinal epithelial cells can respond to certain bacteria by producing an array of cytokines and chemokines which are associated with host immune responses. Lactobacillus acidophilus NCFM is a characterized probiotic, originally isolated from human feces. This study aimed to test the ability of L. acidophilus NCFM to stimulate cytokine and chemokine production in intestinal epithelial cells and to elucidate the mechanisms involved in their upregulation. In experiments using intestinal epithelial cell lines and mouse models, we observed that L. acidophilus NCFM could rapidly but transiently upregulate a number of effector genes encoding cytokines and chemokines such as interleukin 1α (IL-1α), IL-1β, CCL2, and CCL20 and that cytokines showed lower expression levels with L. acidophilus NCFM treatment than chemokines. Moreover, L. acidophilus NCFM could activate a pathogen-associated molecular pattern receptor, Toll-like receptor 2 (TLR2), in intestinal epithelial cell lines. The phosphorylation of NF-κB p65 and p38 mitogen-activated protein kinase (MAPK) in intestinal epithelial cell lines was also enhanced by L. acidophilus NCFM. Furthermore, inhibitors of NF-κB (pyrrolidine dithiocarbamate [PDTC]) and p38 MAPK (SB203580) significantly reduced cytokine and chemokine production in the intestinal epithelial cell lines stimulated by L. acidophilus NCFM, suggesting that both NF-κB and p38 MAPK signaling pathways were important for the production of cytokines and chemokines induced by L. acidophilus NCFM. PMID:22357649

  6. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies

    PubMed Central

    Friedman, Joseph; Kraus, Sarah; Hauptman, Yirmi; Schiff, Yoni; Seger, Rony

    2007-01-01

    The exposure to non-thermal microwave electromagnetic fields generated by mobile phones affects the expression of many proteins. This effect on transcription and protein stability can be mediated by the MAPK (mitogen-activated protein kinase) cascades, which serve as central signalling pathways and govern essentially all stimulated cellular processes. Indeed, long-term exposure of cells to mobile phone irradiation results in the activation of p38 as well as the ERK (extracellular-signal-regulated kinase) MAPKs. In the present study, we have studied the immediate effect of irradiation on the MAPK cascades, and found that ERKs, but not stress-related MAPKs, are rapidly activated in response to various frequencies and intensities. Using signalling inhibitors, we delineated the mechanism that is involved in this activation. We found that the first step is mediated in the plasma membrane by NADH oxidase, which rapidly generates ROS (reactive oxygen species). These ROS then directly stimulate MMPs (matrix metalloproteinases) and allow them to cleave and release Hb-EGF [heparin-binding EGF (epidermal growth factor)]. This secreted factor activates the EGF receptor, which in turn further activates the ERK cascade. Thus this study demonstrates for the first time a detailed molecular mechanism by which electromagnetic irradiation from mobile phones induces the activation of the ERK cascade and thereby induces transcription and other cellular processes. PMID:17456048

  7. Inhibition of p38 MAPK attenuates renal atrophy and fibrosis in a murine renal artery stenosis model.

    PubMed

    Wang, Diping; Warner, Gina M; Yin, Ping; Knudsen, Bruce E; Cheng, Jingfei; Butters, Kim A; Lien, Karen R; Gray, Catherine E; Garovic, Vesna D; Lerman, Lilach O; Textor, Stephen C; Nath, Karl A; Simari, Robert D; Grande, Joseph P

    2013-04-01

    Renal artery stenosis (RAS) is an important cause of chronic renal dysfunction. Recent studies have underscored a critical role for CCL2 (MCP-1)-mediated inflammation in the progression of chronic renal damage in RAS and other chronic renal diseases. In vitro studies have implicated p38 MAPK as a critical intermediate for the production of CCL2. However, a potential role of p38 signaling in the development and progression of chronic renal disease in RAS has not been previously defined. We sought to test the hypothesis that inhibition of p38 MAPK ameliorates chronic renal injury in mice with RAS. We established a murine RAS model by placing a cuff on the right renal artery and treated mice with the p38 inhibitor SB203580 or vehicle for 2 wk. In mice treated with vehicle, the cuffed kidney developed interstitial fibrosis, tubular atrophy, and interstitial inflammation. In mice treated with SB203580, the RAS-induced renal atrophy was reduced (70% vs. 39%, P < 0.05). SB203580 also reduced interstitial inflammation and extracellular matrix deposition but had no effect on the development of hypertension. SB203580 partially blocked the induction of CCL2, CCL7 (MCP-3), CC chemokine receptor 2 (CCR2), and collagen 4 mRNA expression in the cuffed kidneys. In vitro, blockade of p38 hindered both TNF-α and TGF-β-induced CCL2 upregulation. Based on these observations, we conclude that p38 MAPK plays a critical role in the induction of CCL2/CCL7/CCR2 system and the development of interstitial inflammation in RAS.

  8. Distinct effects of thrombopoietin depending on a threshold level of activated Mpl in BaF-3 cells.

    PubMed

    Millot, Gaël A; Vainchenker, William; Duménil, Dominique; Svinarchuk, Fédor

    2002-06-01

    Thrombopoietin (TPO) plays a critical role in megakaryopoiesis through binding to its receptor Mpl. This involves activation of various intracellular signaling pathways, including phosphoinositide 3-kinase (PI3K) and the mitogen-activated protein kinase (MAPK) pathways. Their precise role in TPO-mediated proliferation, survival and differentiation is not fully understood. In the present study, we show that TPO induces different biological responses in Mpl-transduced BaF-3 cells, depending on the cell surface density of Mpl and the resulting activation level of signaling pathways. TPO mediates cell proliferation in cells expressing high levels of Mpl but only mediates survival without proliferation in cells expressing low levels of the receptor. By using the kinase inhibitors PD98059 and LY294002, we further showed that the activation level of the PI3K and MAPK p42/44 pathways is a determining factor for the proliferative effect. In cells expressing low levels of Mpl, the survival effect was strongly dependent on the activation level of the PI3K/AKT, but not the MAPK p42/44 pathway. Moreover, this effect was correlated with the phosphorylation level of BAD but not with the expression level of Bcl-X(L). However, PI3K pathway inhibition did not increase apoptosis when BaF-3 cells proliferated in response to TPO, indicating a compensating mechanism from other Mpl signaling pathways in this case.

  9. p38 MAPK activation and H3K4 trimethylation is decreased by lactate in vitro and high intensity resistance training in human skeletal muscle.

    PubMed

    Willkomm, Lena; Gehlert, Sebastian; Jacko, Daniel; Schiffer, Thorsten; Bloch, Wilhelm

    2017-01-01

    Exercise induces adaptation of skeletal muscle by acutely modulating intracellular signaling, gene expression, protein turnover and myogenic activation of skeletal muscle stem cells (Satellite cells, SCs). Lactate (La)-induced metabolic stimulation alone has been shown to modify SC proliferation and differentiation. Although the mechanistic basis remains elusive, it was demonstrated that La affects signaling via p38 mitogen activated protein kinase (p38 MAPK) which might contribute to trimethylation of histone 3 lysine 4 (H3K4me3) known to regulate satellite cell proliferation and differentiation. We investigated the effects of La on p38 MAPK and H3K4me3 in a model of activated SCs. Differentiating C2C12 myoblasts were treated with La (20 mM) and samples analysed using qRT-PCR, immunofluorescence, and western blotting. We determined a reduction of p38 MAPK phosphorylation, decreased H3K4me3 and reduced expression of Myf5, myogenin, and myosin heavy chain (MHC) leading to decreased differentiation of La-treated C2C12 cells after 5 days of repeated La treatment. We further investigated whether this regulatory pathway would be affected in human skeletal muscle by the application of two different resistance exercise regimes (RE) associated with distinct metabolic demands and blood La accumulation. Muscle biopsies were obtained 15, 30 min, 1, 4, and 24 h post exercise after moderate intensity RE (STD) vs. high intensity RE (HIT). Consistent with in vitro results, reduced p38 phosphorylation and blunted H3K4me3 were also observed upon metabolically demanding HIT RE in human skeletal muscle. Our data provide evidence that La-accumulation acutely affects p38 MAPK signaling, gene expression and thereby cell differentiation and adaptation in vitro, and likely in vivo.

  10. The role of slow and persistent TTX-resistant sodium currents in acute tumor necrosis factor-α-mediated increase in nociceptors excitability

    PubMed Central

    Gudes, Sagi; Barkai, Omer; Caspi, Yaki; Katz, Ben; Lev, Shaya

    2014-01-01

    Tetrodotoxin-resistant (TTX-r) sodium channels are key players in determining the input-output properties of peripheral nociceptive neurons. Changes in gating kinetics or in expression levels of these channels by proinflammatory mediators are likely to cause the hyperexcitability of nociceptive neurons and pain hypersensitivity observed during inflammation. Proinflammatory mediator, tumor necrosis factor-α (TNF-α), is secreted during inflammation and is associated with the early onset, as well as long-lasting, inflammation-mediated increase in excitability of peripheral nociceptive neurons. Here we studied the underlying mechanisms of the rapid component of TNF-α-mediated nociceptive hyperexcitability and acute pain hypersensitivity. We showed that TNF-α leads to rapid onset, cyclooxygenase-independent pain hypersensitivity in adult rats. Furthermore, TNF-α rapidly and substantially increases nociceptive excitability in vitro, by decreasing action potential threshold, increasing neuronal gain and decreasing accommodation. We extended on previous studies entailing p38 MAPK-dependent increase in TTX-r sodium currents by showing that TNF-α via p38 MAPK leads to increased availability of TTX-r sodium channels by partial relief of voltage dependence of their slow inactivation, thereby contributing to increase in neuronal gain. Moreover, we showed that TNF-α also in a p38 MAPK-dependent manner increases persistent TTX-r current by shifting the voltage dependence of activation to a hyperpolarized direction, thus producing an increase in inward current at functionally critical subthreshold voltages. Our results suggest that rapid modulation of the gating of TTX-r sodium channels plays a major role in the mediated nociceptive hyperexcitability of TNF-α during acute inflammation and may lead to development of effective treatments for inflammatory pain, without modulating the inflammation-induced healing processes. PMID:25355965

  11. Glutamate increases pancreatic cancer cell invasion and migration via AMPA receptor activation and Kras-MAPK signaling.

    PubMed

    Herner, Alexander; Sauliunaite, Danguole; Michalski, Christoph W; Erkan, Mert; De Oliveira, Tiago; Abiatari, Ivane; Kong, Bo; Esposito, Irene; Friess, Helmut; Kleeff, Jörg

    2011-11-15

    Glutamate has been implicated in tumorigenesis through activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPAR). However, the function of a glutamate-to-AMPAR signal in pancreatic ductal adenocarcinoma (PDAC) has remained elusive. We now show that glutamate-mediated AMPA receptor activation increases invasion and migration of pancreatic cancer cells via activation of the classical MAPK pathway. Glutamate levels were increased in pancreatic cancer accompanied by downregulation of GluR subunits 1, 2, and 4. In pancreatic cancer precursor lesions, pancreatic intraepithelial neoplasia (PanIN), GluR1 subunit levels were strikingly and step-wise increased but its expression was rare in PDAC. Pharmacological inhibition or RNAi-mediated suppression of GluR1 or GluR2 did not affect cancer cell growth but significantly decreased invasion. In a K-ras wildtype cell line, AMPA receptor activation enhanced K-ras activity and--further downstream--phosphorylation of p38 and of p44/42. Preemptive blockade of AMPA receptors in a mouse model of pancreatic cancer inhibited tumor cell settling. AMPA receptor activation thus not only activates MAPK signalling but also directly increases activity of K-ras. Glutamate might serve as a molecular switch that decreases the threshold of K-ras-induced oncogenic signalling and increases the chance of malignant transformation of pancreatic cancer precursor lesions. Copyright © 2011 UICC.

  12. Dopamine-Induced Apoptosis of Lactotropes Is Mediated by the Short Isoform of D2 Receptor

    PubMed Central

    Radl, Daniela Betiana; Ferraris, Jimena; Boti, Valeria; Seilicovich, Adriana; Sarkar, Dipak Kumar; Pisera, Daniel

    2011-01-01

    Dopamine, through D2 receptor (D2R), is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L) and short (D2S), are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850). SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process. PMID:21464994

  13. Dopamine-induced apoptosis of lactotropes is mediated by the short isoform of D2 receptor.

    PubMed

    Radl, Daniela Betiana; Ferraris, Jimena; Boti, Valeria; Seilicovich, Adriana; Sarkar, Dipak Kumar; Pisera, Daniel

    2011-03-25

    Dopamine, through D2 receptor (D2R), is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L) and short (D2S), are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850). SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process.

  14. Metadherin facilitates podocyte apoptosis in diabetic nephropathy

    PubMed Central

    Liu, Wen-Ting; Peng, Fen-Fen; Li, Hong-Yu; Chen, Xiao-Wen; Gong, Wang-Qiu; Chen, Wen-Jing; Chen, Yi-Hua; Li, Pei-Lin; Li, Shu-Ting; Xu, Zhao-Zhong; Long, Hai-Bo

    2016-01-01

    Apoptosis, one of the major causes of podocyte loss, has been reported to have a vital role in diabetic nephropathy (DN) pathogenesis, and understanding the mechanisms underlying the regulation of podocyte apoptosis is crucial. Metadherin (MTDH) is an important oncogene, which is overexpressed in most cancers and responsible for apoptosis, metastasis, and poor patient survival. Here we show that the expression levels of Mtdh and phosphorylated p38 mitogen-activated protein kinase (MAPK) are significantly increased, whereas those of the microRNA-30 family members (miR-30s) are considerably reduced in the glomeruli of DN rat model and in high glucose (HG)-induced conditionally immortalized mouse podocytes (MPC5). These levels are positively correlated with podocyte apoptosis rate. The inhibition of Mtdh expression, using small interfering RNA, but not Mtdh overexpression, was shown to inhibit HG-induced MPC5 apoptosis and p38 MAPK pathway, and Bax and cleaved caspase 3 expression. This was shown to be similar to the effects of p38 MAPK inhibitor (SB203580). Furthermore, luciferase assay results demonstrated that Mtdh represents the target of miR-30s. Transient transfection experiments, using miR-30 microRNA (miRNA) inhibitors, led to the increase in Mtdh expression and induced the apoptosis of MPC5, whereas the treatment with miR-30 miRNA mimics led to the reduction in Mtdh expression and apoptosis of HG-induced MPC5 cells in comparison with their respective controls. Our results demonstrate that Mtdh is a potent modulator of podocyte apoptosis, and that it represents the target of miR-30 miRNAs, facilitating podocyte apoptosis through the activation of HG-induced p38 MAPK-dependent pathway. PMID:27882943

  15. Butein induction of HO-1 by p38 MAPK/Nrf2 pathway in adipocytes attenuates high-fat diet induced adipose hypertrophy in mice.

    PubMed

    Wang, Zheng; Ka, Sun-O; Lee, Youngyi; Park, Byung-Hyun; Bae, Eun Ju

    2017-03-15

    Adipose tissue inflammation and oxidative stress are key components in the development of obesity and insulin resistance. Heme oxygenase (HO)-1 in adipocytes protects against obesity and adipose dysfunction. In this study, we report the identification of butein, a flavonoid chalcone, as a novel inducer of HO-1 expression in adipocytes in vitro and in vivo. Butein upregulated HO-1 mRNA and protein expression in 3T3-L1 adipocytes, accompanied by Kelch-Like ECH-Associated Protein (Keap) 1 degradation and increase in the nuclear level of nuclear factor erythroid 2-related factor 2 (Nrf2). Butein modulation of Keap1 and Nrf2 as well as HO-1 upregulation was reversed by pretreatment with p38 MAPK inhibitor SB203580, indicating the involvement of p38 MAPK in butein activation of Nrf2 in adipocytes. In addition, HO-1 activation by butein led to the inhibitions of reactive oxygen species and adipocyte differentiation, as evidenced by the fact that butein repression of reactive oxygen species and adipogenesis was reversed by pretreatment with HO-1 inhibitor SnPP. Induction of HO-1 expression by butein was also demonstrated in the adipose tissue of C57BL/6 mice fed a high-fat diet administered along with butein for three weeks, and correlated with the inhibitions of adiposity and adipose tissue inflammation, which were reversed by co-administration of SnPP. Altogether, our results demonstrate that butein activates the p38 MAPK/Nrf2/HO-1 pathway to act as a potent inhibitor of adipose hypertrophy and inflammation in a diet-induced obesity model and thus has potential for suppressing obesity-linked metabolic syndrome. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Ischemic time impacts biological integrity of phospho-proteins in PI3K/Akt, Erk/MAPK, and p38 MAPK signaling networks.

    PubMed

    Holzer, Timothy R; Fulford, Angie D; Arkins, Austin M; Grondin, Janet M; Mundy, Christopher W; Nasir, Aejaz; Schade, Andrew E

    2011-06-01

    Post-translational modifications of proteins, such as phosphorylation, are labile events dynamically regulated by opposing kinase and phosphatase activities. Preanalytical factors, such as ischemic time before fixation, affect these activities and can have a significant impact on the ability to elucidate signaling pathways in tissue. Immunohistochemical analysis of phosphorylated proteins involved in PI3K/Akt, Erk/MAPK, and p38 MAPK signaling networks was performed in human cell line xenografts from lung, brain, ovary, and prostate tumors. In order to replicate real-world practices, the tissues were subjected to ischemic times of 0 (baseline), 1, 4, and 24 hours before fixation in formalin. Two key concepts emerge from this analysis: (1) the stability of different phospho-epitopes within a given tumor type is variable (e.g. phospho-PRAS40 is more labile than phospho-S6 ribosomal protein) and (2) the stability of a given phospho-epitope (e.g. phospho-MAPKAPK2) varies significantly across different tumor types. These results highlight the importance of proper tissue acquisition and rapid fixation to preserve the biological integrity of signal transduction pathways that may guide therapeutic decision making.

  17. Early Secreted Antigenic Target of 6 kDa of Mycobacterium tuberculosis Stimulates Macrophage Chemoattractant Protein-1 Production by Macrophages and Its Regulation by p38 Mitogen-Activated Protein Kinases and Interleukin-4.

    PubMed

    Ma, J; Jung, B-G; Yi, N; Samten, B

    2016-07-01

    Early secreted antigenic target of 6 kDa (ESAT-6), the major virulence factor of Mycobacterium tuberculosis, affects host immunity and the formation of granulomas likely through inflammatory cytokines. To understand its role in this regard further, we investigated the effect of ESAT-6 on macrophages by determining the production of macrophage chemoattractant protein (MCP)-1, a major chemokine associated with tuberculosis pathogenesis, by murine bone marrow-derived macrophages (BMDMs) and its regulation by protein kinases and cytokines. The results revealed that ESAT-6, but not Ag85A and culture filtrate protein 10 kDa (CFP10), induced MCP-1 production by BMDMs dose and time dependently. Inhibition of p38 but not other mitogen-activated protein kinases (MAPK) and PI3K further enhanced ESAT-6-induced MCP-1 production by BMDMs. Inhibition of p38 MAPK enhanced ESAT-6-induced MCP-1 mRNA accumulation without affecting mRNA stability. ESAT-6 also induced TNF-α from BMDMs and MCP-1 from mouse lung epithelial cells, and these were suppressed by p38 MAPK inhibition, implying cytokine- and cell-specific effect of p38 MAPK inhibition on ESAT-6-induced MCP-1 by macrophages. Pretreatment of BMDMs with IL-4, but not other cytokines (IL-2, IL-10, TNF-α, IFN-γ and IL-1α) further elevated ESAT-6-stimulated MCP-1 production although IL-4 did not induce MCP-1 without ESAT-6. Both p38 MAPK inhibitor and IL-4 did not show additive effect on ESAT-6-induced MCP-1 protein level despite such effect on MCP-1 mRNA level was evident. In conclusion, these results indicate a specific role for both p38 MAPK and IL-4 in ESAT-6-induced MCP-1 production by macrophages and suggest a pathway with significance in tuberculosis pathogenesis. © 2016 The Foundation for the Scandinavian Journal of Immunology.

  18. Calcium Signaling Is Involved in Cadmium-Induced Neuronal Apoptosis via Induction of Reactive Oxygen Species and Activation of MAPK/mTOR Network

    PubMed Central

    Luo, Yan; Chen, Zi; Liu, Lei; Zhou, Hongyu; Chen, Wenxing; Shen, Tao; Han, Xiuzhen; Chen, Long; Huang, Shile

    2011-01-01

    Cadmium (Cd), a toxic environmental contaminant, induces oxidative stress, leading to neurodegenerative disorders. Recently we have demonstrated that Cd induces neuronal apoptosis in part by activation of the mitogen-activated protein kineses (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains elusive. Here we show that Cd elevated intracellular calcium ion ([Ca2+]i) level in PC12, SH-SY5Y cells and primary murine neurons. BAPTA/AM, an intracellular Ca2+ chelator, abolished Cd-induced [Ca2+]i elevation, and blocked Cd activation of MAKPs including extracellular signal-regulated kinase 1/2 (Erk1/2), c-Jun N-terminal kinase (JNK) and p38, and mTOR-mediated signaling pathways, as well as cell death. Pretreatment with the extracellular Ca2+ chelator EGTA also prevented Cd-induced [Ca2+]i elevation, MAPK/mTOR activation, as well as cell death, suggesting that Cd-induced extracellular Ca2+ influx plays a critical role in contributing to neuronal apoptosis. In addition, calmodulin (CaM) antagonist trifluoperazine (TFP) or silencing CaM attenuated the effects of Cd on MAPK/mTOR activation and cell death. Furthermore, Cd-induced [Ca2+]i elevation or CaM activation resulted in induction of reactive oxygen species (ROS). Pretreatment with BAPTA/AM, EGTA or TFP attenuated Cd-induced ROS and cleavage of caspase-3 in the neuronal cells. Our findings indicate that Cd elevates [Ca2+]i, which induces ROS and activates MAPK and mTOR pathways, leading to neuronal apoptosis. The results suggest that regulation of Cd-disrupted [Ca2+]i homeostasis may be a new strategy for prevention of Cd-induced neurodegenerative diseases. PMID:21544200

  19. Constitutive activation of MAPK cascade in acute quadriplegic myopathy.

    PubMed

    Di Giovanni, Simone; Molon, Annamaria; Broccolini, Aldobrando; Melcon, Gisela; Mirabella, Massimiliano; Hoffman, Eric P; Servidei, Serenella

    2004-02-01

    Acute quadriplegic myopathy (AQM; also called "critical illness myopathy") shows acute muscle wasting and weakness and is experienced by some patients with severe systemic illness, often associated with administration of corticosteroids and/or neuroblocking agents. Key aspects of AQM include muscle atrophy and myofilament loss. Although these features are shared with neurogenic atrophy, myogenic atrophy in AQM appears mechanistically distinct from neurogenic atrophy. Using muscle biopsies from AQM, neurogenic atrophy, and normal controls, we show that both myogenic and neurogenic atrophy share induction of myofiber-specific ubiquitin/proteosome pathways (eg, atrogin-1). However, AQM patient muscle showed a specific strong induction of transforming growth factor (TGF)-beta/MAPK pathways. Atrophic AQM myofibers showed coexpression of TGF-beta receptors, p38 MAPK, c-jun, and c-myc, including phosphorylated active forms, and these same fibers showed apoptotic features. Our data suggest a model of AQM pathogenesis in which stress stimuli (sepsis, corticosteroids, pH imbalance, osmotic imbalance) converge on the TGF-beta pathway in myofibers. The acute stimulation of the TGF-beta/MAPK pathway, coupled with the inactivity-induced atrogin-1/proteosome pathway, leads to the acute muscle loss seen in AQM patients.

  20. Structure-based design, synthesis and crystallization of 2-arylquinazolines as lipid pocket ligands of p38α MAPK

    PubMed Central

    Bührmann, Mike; Wiedemann, Bianca M.; Müller, Matthias P.; Hardick, Julia; Ecke, Maria

    2017-01-01

    In protein kinase research, identifying and addressing small molecule binding sites other than the highly conserved ATP-pocket are of intense interest because this line of investigation extends our understanding of kinase function beyond the catalytic phosphotransfer. Such alternative binding sites may be involved in altering the activation state through subtle conformational changes, control cellular enzyme localization, or in mediating and disrupting protein-protein interactions. Small organic molecules that target these less conserved regions might serve as tools for chemical biology research and to probe alternative strategies in targeting protein kinases in disease settings. Here, we present the structure-based design and synthesis of a focused library of 2-arylquinazoline derivatives to target the lipophilic C-terminal binding pocket in p38α MAPK, for which a clear biological function has yet to be identified. The interactions of the ligands with p38α MAPK was analyzed by SPR measurements and validated by protein X-ray crystallography. PMID:28892510

Top