Sample records for p450 2c8 substrate

  1. Identification of putative substrates for cynomolgus monkey cytochrome P450 2C8 by substrate depletion assays with 22 human P450 substrates and inhibitors.

    PubMed

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2016-07-01

    Cynomolgus monkeys are widely used in drug developmental stages as non-human primate models. Previous studies used 89 compounds to investigate species differences associated with cytochrome P450 (P450 or CYP) function that reported monkey specific CYP2C76 cleared 19 chemicals, and homologous CYP2C9 and CYP2C19 metabolized 17 and 30 human CYP2C9 and/or CYP2C19 substrates/inhibitors, respectively. In the present study, 22 compounds selected from viewpoints of global drug interaction guidances and guidelines were further evaluated to seek potential substrates for monkey CYP2C8, which is highly homologous to human CYP2C8 (92%). Amodiaquine, montelukast, quercetin and rosiglitazone, known as substrates or competitive inhibitors of human CYP2C8, were metabolically depleted by recombinant monkey CYP2C8 at relatively high rates. Taken together with our reported findings of the slow eliminations of amodiaquine and montelukast by monkey CYP2C9, CYP2C19 and CYP2C76, the present results suggest that these at least four chemicals may be good marker substrates for monkey CYP2C8. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Benzylic oxidation of gemfibrozil-1-O-beta-glucuronide by P450 2C8 leads to heme alkylation and irreversible inhibition.

    PubMed

    Baer, Brian R; DeLisle, Robert Kirk; Allen, Andrew

    2009-07-01

    Gemfibrozil-1-O-beta-glucuronide (GEM-1-O-gluc), a major metabolite of the antihyperlipidemic drug gemfibrozil, is a mechanism-based inhibitor of P450 2C8 in vitro, and this irreversible inactivation may lead to clinical drug-drug interactions between gemfibrozil and other P450 2C8 substrates. In light of this in vitro finding and the observation that the glucuronide conjugate does not contain any obvious structural alerts, the current study was conducted to determine the potential site of GEM-1-O-gluc bioactivation and the subsequent mechanism of P450 2C8 inhibition (i.e., modification of apoprotein or heme). LC/MS analysis of a reaction mixture containing recombinant P450 2C8 and GEM-1-O-gluc revealed that the substrate was covalently linked to the heme prosthetic heme group during catalysis. A combination of mass spectrometry and deuterium isotope effects revealed that a benzylic carbon on the 2',5'-dimethylphenoxy group of GEM-1-O-gluc was covalently bound to the heme of P450 2C8. The regiospecificity of substrate addition to the heme group was not confirmed experimentally, but computational modeling experiments indicated that the gamma-meso position was the most likely site of modification. The metabolite profile, which consisted of two benzyl alcohol metabolites and a 4'-hydroxy-GEM-1-O-gluc metabolite, indicated that oxidation of GEM-1-O-gluc was limited to the 2',5'-dimethylphenoxy group. These results are consistent with an inactivation mechanism wherein GEM-1-O-gluc is oxidized to a benzyl radical intermediate, which evades oxygen rebound, and adds to the gamma-meso position of heme. Mechanism-based inhibition of P450 2C8 can be rationalized by the formation of the GEM-1-O-gluc-heme adduct and the consequential restriction of additional substrate access to the catalytic iron center.

  3. Pungent ginger components modulates human cytochrome P450 enzymes in vitro

    PubMed Central

    Li, Mian; Chen, Pei-zhan; Yue, Qing-xi; Li, Jing-quan; Chu, Rui-ai; Zhang, Wei; Wang, Hui

    2013-01-01

    Aim: Ginger rhizome is used worldwide as a spicy flavor agent. This study was designed to explore the potential effects of pungent ginger components, 6-, 8-, and 10-gingerol, on human cytochrome P450 (CYP450) enzymes that are responsible for the metabolism of many prescription drugs. Methods: The activities of human CYP2C9, CYP2C19, CYP2D6, and CYP3A4 were analyzed using Vivid P450 assay kits. The mRNA expression of CYP3A4 in human hepatocellular carcinoma cell line HepG2 was measured using quantitative real-time PCR assay. Results: All three gingerols potently inhibited CYP2C9 activity, exerted moderate inhibition on CYP2C19 and CYP3A4, and weak inhibion on CYP2D6. 8-Gingerol was the most potent in inhibition of P450 enzymes with IC50 values of 6.8, 12.5, 8.7, and 42.7 μmol/L for CYP2C9, CYP2C19, CYP3A4, and CYP2D6, respectively. By comparing the effects of gingerols on CYP3A4 with three different fluorescent substrate probes, it was demonstrated that the inhibition of gingerols on CYP3A4 had no substrate-dependence. In HepG2 cells, 8-gingerol and 10-gingerol inhibited, but 6-gingerol induced mRNA expression of CYP3A4. Conclusion: 6-, 8-, and 10-gingerol suppress human cytochrome P450 activity, while 8- and 10-gingerol inhibit CYP3A4 expression. The results may have an implication for the use of ginger or ginger products when combined with therapeutic drugs that are metabolized by cytochrome P450 enzymes. PMID:23770984

  4. Exogenous steroid substrate modifies the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on estradiol production of human luteinized granulosa cells in vitro.

    PubMed

    Morán, F M; Lohstroh, P; VandeVoort, C A; Chen, J; Overstreet, J W; Conley, A J; Lasley, B L

    2003-01-01

    The in vitro effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on steroid metabolism in human luteinized granulosa cells (hLGC) have been summarized as a decreased estradiol (E(2)) production without altering either E(2) metabolism or cytochrome P450 aromatase activity. In the present study, hLGC were used to analyze the fate of different substrates for cytochrome P450 17alpha-hydroxylase/17,20-lyase (P450(c17)) in the presence or absence of TCDD. Human LGCs were plated directly on plastic culture dishes in medium supplemented with 2 IU/ml of hCG. TCDD (10 nM) or its solvent was added directly to the cells at the time of medium change, every 48 h for 8 days. The objective of the experiment was to test the hypothesis that exogenous steroid, substrate for P450(c17), would reduce the TCDD effects on E(2) synthesis. With dehydroepiandrosterone (DHEA) (a P450(c17) product), a dose-related increase in E(2) production was observed and the effect of TCDD on lowering E(2) production disappeared. In contrast, with increasing doses, up to 10 micro M, of pregnenolone (P(5)), no change in E(2) production was observed. However, 17alpha-hydroxypregnenolone (17P(5)) at 10 micro M produced a modest but significant increase in the E(2) production. Treatments with P(5) and 17P(5) did not alter the effect of TCDD on E(2) production. Radiolabeled substrate utilization by hLGC suggests that the principal metabolic pathway for Delta5 substrates is the conversion to a Delta4 product probably by a very active 3beta-hydroxysteroid dehydrogenase. We conclude that estrogen production by hLGC is limited at the level of lyase activity. Thus, these data suggest that the most likely target for the TCDD-induced inhibition of estrogen synthesis by hLGC is the 17,20-lyase activity of the P450(c17) enzyme complex.

  5. An in vitro evaluation of cytochrome P450 inhibition and P-glycoprotein interaction with goldenseal, Ginkgo biloba, grape seed, milk thistle, and ginseng extracts and their constituents.

    PubMed

    Etheridge, Amy S; Black, Sherry R; Patel, Purvi R; So, James; Mathews, James M

    2007-07-01

    Drug-herb interactions can result from the modulation of the activities of cytochrome P450 (P450) and/or drug transporters. The effect of extracts and individual constituents of goldenseal, Ginkgo biloba (and its hydrolyzate), grape seed, milk thistle, and ginseng on the activities of cytochrome P450 enzymes CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 in human liver microsomes were determined using enzyme-selective probe substrates, and their effect on human P-glycoprotein (Pgp) was determined using a baculovirus expression system by measuring the verapamil-stimulated, vanadate-sensitive ATPase activity. Extracts were analyzed by HPLC to standardize their concentration(s) of constituents associated with the pharmacological activity, and to allow comparison of their effects on P450 and Pgp with literature values. Many of the extracts/constituents exerted > or = 50 % inhibition of P450 activity. These include those from goldenseal (normalized to alkaloid content) inhibiting CYP2C8, CYP2D6, and CYP3A4 at 20 microM, ginkgo inhibiting CYP2C8 at 10 microM, grape seed inhibiting CYP2C9 and CYP3A4 at 10 microM, milk thistle inhibiting CYP2C8 at 10 microM, and ginsenosides F1 and Rh1 (but not ginseng extract) inhibiting CYP3A4 at 10 microM. Goldenseal extracts/constituents (20 microM, particularly hydrastine) and ginsenoside Rh1 stimulated ATPase at about half of the activity of the model substrate, verapamil (20 microM). The data suggest that the clearance of a variety of drugs may be diminished by concomitant use of these herbs via inhibition of P450 enzymes, but less so by Pgp-mediated effects.

  6. Cytochrome p450 architecture and cysteine nucleophile placement impact raloxifene-mediated mechanism-based inactivation.

    PubMed

    VandenBrink, Brooke M; Davis, John A; Pearson, Josh T; Foti, Robert S; Wienkers, Larry C; Rock, Dan A

    2012-11-01

    The propensity for cytochrome P450 (P450) enzymes to bioactivate xenobiotics is governed by the inherent chemistry of the xenobiotic itself and the active site architecture of the P450 enzyme(s). Accessible nucleophiles in the active site or egress channels of the P450 enzyme have the potential of sequestering reactive metabolites through covalent modification, thereby limiting their exposure to other proteins. Raloxifene, a drug known to undergo CYP3A-mediated reactive metabolite formation and time-dependent inhibition in vitro, was used to explore the potential for bioactivation and enzyme inactivation of additional P450 enzymes (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A5). Every P450 tested except CYP2E1 was capable of raloxifene bioactivation, based on glutathione adduct formation. However, raloxifene-mediated time-dependent inhibition only occurred in CYP2C8 and CYP3A4. Comparable inactivation kinetics were achieved with K(I) and k(inact) values of 0.26 μM and 0.10 min(-1) and 0.81 μM and 0.20 min(-1) for CYP2C8 and CYP3A4, respectively. Proteolytic digests of CYP2C8 and CYP3A4 Supersomes revealed adducts to Cys225 and Cys239 for CYP2C8 and CYP3A4, respectively. For each P450 enzyme, proposed substrate/metabolite access channels were mapped and active site cysteines were identified, which revealed that only CYP2C8 and CYP3A4 possess accessible cysteine residues near the active site cavities, a result consistent with the observed kinetics. The combined data suggest that the extent of bioactivation across P450 enzymes does not correlate with P450 inactivation. In addition, multiple factors contribute to the ability of reactive metabolites to form apo-adducts with P450 enzymes.

  7. Engineering Macaca fascicularis cytochrome P450 2C20 to reduce animal testing for new drugs.

    PubMed

    Rua, Francesco; Sadeghi, Sheila J; Castrignanò, Silvia; Di Nardo, Giovanna; Gilardi, Gianfranco

    2012-12-01

    In order to develop in vitro methods as an alternative to P450 animal testing in the drug discovery process, two main requisites are necessary: 1) gathering of data on animal homologues of the human P450 enzymes, currently very limited, and 2) bypassing the requirement for both the P450 reductase and the expensive cofactor NADPH. In this work, P450 2C20 from Macaca fascicularis, homologue of the human P450 2C8 has been taken as a model system to develop such an alternative in vitro method by two different approaches. In the first approach called "molecular Lego", a soluble self-sufficient chimera was generated by fusing the P450 2C20 domain with the reductase domain of cytochrome P450 BM3 from Bacillus megaterium (P450 2C20/BMR). In the second approach, the need for the redox partner and also NADPH were both obviated by the direct immobilization of the P450 2C20 on glassy carbon and gold electrodes. Both systems were then compared to those obtained from the reconstituted P450 2C20 monooxygenase in presence of the human P450 reductase and NADPH using paclitaxel and amodiaquine, two typical drug substrates of the human P450 2C8. The K(M) values calculated for the 2C20 and 2C20/BMR in solution and for 2C20 immobilized on electrodes modified with gold nanoparticles were 1.9 ± 0.2, 5.9 ± 2.3, 3.0 ± 0.5 μM for paclitaxel and 1.2 ± 0.2, 1.6±0.2 and 1.4 ± 0.2 μM for amodiaquine, respectively. The data obtained not only show that the engineering of M. fascicularis did not affect its catalytic properties but also are consistent with K(M) values measured for the microsomal human P450 2C8 and therefore show the feasibility of developing alternative in vitro animal tests. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Comprehensive Evaluation for Substrate Selectivity of Cynomolgus Monkey Cytochrome P450 2C9, a New Efavirenz Oxidase.

    PubMed

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-07-01

    Cynomolgus monkeys are widely used as primate models in preclinical studies, because of their evolutionary closeness to humans. In humans, the cytochrome P450 (P450) 2C enzymes are important drug-metabolizing enzymes and highly expressed in livers. The CYP2C enzymes, including CYP2C9, are also expressed abundantly in cynomolgus monkey liver and metabolize some endogenous and exogenous substances like testosterone, S-mephenytoin, and diclofenac. However, comprehensive evaluation regarding substrate specificity of monkey CYP2C9 has not been conducted. In the present study, 89 commercially available drugs were examined to find potential monkey CYP2C9 substrates. Among the compounds screened, 20 drugs were metabolized by monkey CYP2C9 at a relatively high rates. Seventeen of these compounds were substrates or inhibitors of human CYP2C9 or CYP2C19, whereas three drugs were not, indicating that substrate specificity of monkey CYP2C9 resembled those of human CYP2C9 or CYP2C19, with some differences in substrate specificities. Although efavirenz is known as a marker substrate for human CYP2B6, efavirenz was not oxidized by CYP2B6 but by CYP2C9 in monkeys. Liquid chromatography-mass spectrometry analysis revealed that monkey CYP2C9 and human CYP2B6 formed the same mono- and di-oxidized metabolites of efavirenz at 8 and 14 positions. These results suggest that the efavirenz 8-oxidation could be one of the selective markers for cynomolgus monkey CYP2C9 among the major three CYP2C enzymes tested. Therefore, monkey CYP2C9 has the possibility of contributing to limited specific differences in drug oxidative metabolism between cynomolgus monkeys and humans. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Cytochrome P450 2C8 pharmacogenetics: a review of clinical studies

    PubMed Central

    Daily, Elizabeth B; Aquilante, Christina L

    2009-01-01

    Cytochrome P450 (CYP) 2C8 is responsible for the oxidative metabolism of many clinically available drugs from a diverse number of drug classes (e.g., thiazolidinediones, meglitinides, NSAIDs, antimalarials and chemotherapeutic taxanes). The CYP2C8 enzyme is encoded by the CYP2C8 gene, and several common nonsynonymous polymorphisms (e.g., CYP2C8*2 and CYP2C8*3) exist in this gene. The CYP2C8*2 and *3 alleles have been associated in vitro with decreased metabolism of paclitaxel and arachidonic acid. Recently, the influence of CYP2C8 polymorphisms on substrate disposition in humans has been investigated in a number of clinical pharmacogenetic studies. Contrary to in vitro data, clinical data suggest that the CYP2C8*3 allele is associated with increased metabolism of the CYP2C8 substrates, rosiglitazone, pioglitazone and repaglinide. However, the CYP2C8*3 allele has not been associated with paclitaxel pharmacokinetics in most clinical studies. Furthermore, clinical data regarding the impact of the CYP2C8*3 allele on the disposition of NSAIDs are conflicting and no definitive conclusions can be made at this time. The purpose of this review is to highlight these clinical studies that have investigated the association between CYP2C8 polymorphisms and CYP2C8 substrate pharmacokinetics and/or pharmacodynamics in humans. In this review, CYP2C8 clinical pharmacogenetic data are provided by drug class, followed by a discussion of the future of CYP2C8 clinical pharmacogenetic research. PMID:19761371

  10. Similar substrate specificity of cynomolgus monkey cytochrome P450 2C19 to reported human P450 2C counterpart enzymes by evaluation of 89 drug clearances.

    PubMed

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-12-01

    Cynomolgus monkeys are used widely in preclinical studies as non-human primate species. The amino acid sequence of cynomolgus monkey cytochrome P450 (P450 or CYP) 2C19 is reportedly highly correlated to that of human CYP2C19 (92%) and CYP2C9 (93%). In the present study, 89 commercially available compounds were screened to find potential substrates for cynomolgus monkey CYP2C19. Of 89 drugs, 34 were metabolically depleted by cynomolgus monkey CYP2C19 with relatively high rates. Among them, 30 compounds have been reported as substrates or inhibitors of, either or both, human CYP2C19 and CYP2C9. Several compounds, including loratadine, showed high selectivity to cynomolgus monkey CYP2C19, and all of these have been reported as human CYP2C19 and/or CYP2C9 substrates. In addition, cynomolgus monkey CYP2C19 formed the same loratadine metabolite as human CYP2C19, descarboethoxyloratadine. These results suggest that cynomolgus monkey CYP2C19 is generally similar to human CYP2C19 and CYP2C9 in its substrate recognition functionality. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Monkey liver cytochrome P450 2C9 is involved in caffeine 7-N-demethylation to form theophylline.

    PubMed

    Utoh, Masahiro; Murayama, Norie; Uno, Yasuhiro; Onose, Yui; Hosaka, Shinya; Fujino, Hideki; Shimizu, Makiko; Iwasaki, Kazuhide; Yamazaki, Hiroshi

    2013-12-01

    Caffeine (1,3,7-trimethylxanthine) is a phenotyping substrate for human cytochrome P450 1A2. 3-N-Demethylation of caffeine is the main human metabolic pathway, whereas monkeys extensively mediate the 7-N-demethylation of caffeine to form pharmacological active theophylline. Roles of monkey P450 enzymes in theophylline formation from caffeine were investigated using individual monkey liver microsomes and 14 recombinantly expressed monkey P450 enzymes, and the results were compared with those for human P450 enzymes. Caffeine 7-N-demethylation activity in microsomes from 20 monkey livers was not strongly inhibited by α-naphthoflavone, quinidine or ketoconazole, and was roughly correlated with diclofenac 4'-hydroxylation activities. Monkey P450 2C9 had the highest activity for caffeine 7-N-demethylation. Kinetic analysis revealed that monkey P450 2C9 had a high Vmax/Km value for caffeine 7-N-demethylation, comparable to low Km value for monkey liver microsomes. Caffeine could dock favorably with monkey P450 2C9 modeled for 7-N-demethylation and with human P450 1A2 for 3-N-demethylation. The primary metabolite theophylline was oxidized to 8-hydroxytheophylline in similar ways by liver microsomes and by recombinant P450s in both humans and monkeys. These results collectively suggest a high activity for monkey liver P450 2C9 toward caffeine 7-N-demethylation, whereas, in humans, P450 1A2-mediated caffeine 3-N-demethylation is dominant.

  12. High-Throughput Cytochrome P450 Cocktail Inhibition Assay for Assessing Drug-Drug and Drug-Botanical Interactions

    PubMed Central

    Li, Guannan; Huang, Ke; Nikolic, Dejan

    2015-01-01

    Detection of drug-drug interactions is essential during the early stages of drug discovery and development, and the understanding of drug-botanical interactions is important for the safe use of botanical dietary supplements. Among the different forms of drug interactions that are known, inhibition of cytochrome P450 (P450) enzymes is the most common cause of drug-drug or drug-botanical interactions. Therefore, a rapid and comprehensive mass spectrometry–based in vitro high-throughput P450 cocktail inhibition assay was developed that uses 10 substrates simultaneously against nine CYP isoforms. Including probe substrates for CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and two probes targeting different binding sites of CYP3A4/5, this cocktail simultaneously assesses at least as many P450 enzymes as previous assays while remaining among the fastest due to short incubation times and rapid analysis using ultrahigh pressure liquid chromatography–tandem mass spectrometry. The method was validated using known inhibitors of each P450 enzyme and then shown to be useful not only for single-compound testing but also for the evaluation of potential drug-botanical interactions using the botanical dietary supplement licorice (Glycyrrhiza glabra) as an example. PMID:26285764

  13. Luminogenic cytochrome P450 assays.

    PubMed

    Cali, James J; Ma, Dongping; Sobol, Mary; Simpson, Daniel J; Frackman, Susan; Good, Troy D; Daily, William J; Liu, David

    2006-08-01

    Luminogenic cytochrome P450 (CYP) assays couple CYP enzyme activity to firefly luciferase luminescence in a technology called P450-Glo(TM) (Promega). Luminogenic substrates are used in assays of human CYP1A1, -1A2, -1B1, -2C8, -2C9, -2C19, -2D6, -2J2, -3A4, -3A7, -4A11, -4F3B, -4F12 and -19. The assays detect dose-dependent CYP inhibition by test compounds against recombinant CYP enzymes or liver microsomes. Induction or inhibition of CYP activities in cultured hepatocytes is measured in a nonlytic approach that leaves cells intact for additional analysis. Luminogenic CYP assays offer advantages of speed and safety over HPLC and radiochemical-based methods. Compared with fluorogenic methods the approach offers advantages of improved sensitivity and decreased interference between optical properties of test compound and CYP substrate. These homogenous assays are sensitive and robust tools for high-throughput CYP screening in early drug discovery.

  14. The Ontogeny of Cytochrome P450 Enzyme Activity and Protein Abundance in Conventional Pigs in Support of Preclinical Pediatric Drug Research.

    PubMed

    Millecam, Joske; De Clerck, Laura; Govaert, Elisabeth; Devreese, Mathias; Gasthuys, Elke; Schelstraete, Wim; Deforce, Dieter; De Bock, Lies; Van Bocxlaer, Jan; Sys, Stanislas; Croubels, Siska

    2018-01-01

    Since the implementation of several legislations to improve pediatric drug research, more pediatric clinical trials are being performed. In order to optimize these pediatric trials, adequate preclinical data are necessary, which are usually obtained by juvenile animal models. The growing piglet has been increasingly suggested as a potential animal model due to a high degree of anatomical and physiological similarities with humans. However, physiological data in pigs on the ontogeny of major organs involved in absorption, distribution, metabolism, and excretion of drugs are largely lacking. The aim of this study was to unravel the ontogeny of porcine hepatic drug metabolizing cytochrome P450 enzyme (CYP450) activities as well as protein abundances. Liver microsomes from 16 conventional pigs (8 males and 8 females) per age group: 2 days, 4 weeks, 8 weeks, and 6-7 months were prepared. Activity measurements were performed with substrates of major human CYP450 enzymes: midazolam (CYP3A), tolbutamide (CYP2C), and chlorzoxazone (CYP2E). Next, the hepatic scaling factor, microsomal protein per gram liver (MPPGL), was determined to correct for enzyme losses during the fractionation process. Finally, protein abundance was determined using proteomics and correlated with enzyme activity. No significant sex differences within each age category were observed in enzyme activity or MPPGL. The biotransformation rate of all three substrates increased with age, comparable with human maturation of CYP450 enzymes. The MPPGL decreased from birth till 8 weeks of age followed by an increase till 6-7 months of age. Significant sex differences in protein abundance were observed for CYP1A2, CYP2A19, CYP3A22, CYP4V2, CYP2C36, CYP2E_1, and CYP2E_2. Midazolam and tolbutamide are considered good substrates to evaluate porcine CYP3A/2C enzymes, respectively. However, chlorzoxazone is not advised to evaluate porcine CYP2E enzyme activity. The increase in biotransformation rate with age can be attributed to an increase in absolute amount of CYP450 proteins. Finally, developmental changes were observed regarding the involvement of specific CYP450 enzymes in the biotransformation of the different substrates.

  15. [Effect of oligosaccharide esters and polygalaxanthone Ill from Polygala tenuifolia willd towards cytochrome P450].

    PubMed

    Li, Zhao-liang; Dong, Xian-zhe; Wang, Dong-xiao; Dong, Rui-hua; Guo, Ting-ting; Sun, Yan; Liu, Ping

    2014-11-01

    Five compounds (tenuifoliside C, tenuifoliside D, telephiose A, telephiose C and polygalaxanthone III) from polygala tenuifolia wild were incubated together with CYP probe substrate in human liver microsomes to investigate the inhibitory effect towards CYP450 enzyme. Phenacetin (CYP1A2), coumarin (CYP2A6), paclitaxel (CYP2C8), diclofenac (CYP2C9), S-mepheriytoin (CYP2C19), dextromethorphan (CYP2D6), chlorzoxazone (CYP2E1), midazolam (CYP3A) were selected as the isoforfn specific substrate. And the formation of paracetamol, 7-hydroxycoumarin, 6alpha-hydroxy paclitaxel, 4'-hydroxydiclofenac, dextrorphan, 6-hydroxychlorzoxazone, 1'-hydroxymidazolam, 4'-hydroxymephenytoin were detected respectively to measure the effect towards CYP450 by high-pressure liquid chromatography (HPLC). The result shows that five compounds from polygala tenuifolia willd significantly inhibit chlorzoxazone 6-hydroxylation catalyzed by CYP2E1, while showed no effect towards CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A. And IC50 value was 38.73, 54.14, 61.77, 62.22, 50.56 micromol x L(-1), respectively.

  16. An extensive cocktail approach for rapid risk assessment of in vitro CYP450 direct reversible inhibition by xenobiotic exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaggiari, Dany, E-mail: dany.spaggiari@unige.ch

    Acute exposure to environmental factors strongly affects the metabolic activity of cytochrome P450 (P450). As a consequence, the risk of interaction could be increased, modifying the clinical outcomes of a medication. Because toxic agents cannot be administered to humans for ethical reasons, in vitro approaches are therefore essential to evaluate their impact on P450 activities. In this work, an extensive cocktail mixture was developed and validated for in vitro P450 inhibition studies using human liver microsomes (HLM). The cocktail comprised eleven P450-specific probe substrates to simultaneously assess the activities of the following isoforms: 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6,more » 2E1, 2J2 and subfamily 3A. The high selectivity and sensitivity of the developed UHPLC-MS/MS method were critical for the success of this methodology, whose main advantages are: (i) the use of eleven probe substrates with minimized interactions, (ii) a low HLM concentration, (iii) fast incubation (5 min) and (iv) the use of metabolic ratios as microsomal P450 activities markers. This cocktail approach was successfully validated by comparing the obtained IC{sub 50} values for model inhibitors with those generated with the conventional single probe methods. Accordingly, reliable inhibition values could be generated 10-fold faster using a 10-fold smaller amount of HLM compared to individual assays. This approach was applied to assess the P450 inhibition potential of widespread insecticides, namely, chlorpyrifos, fenitrothion, methylparathion and profenofos. In all cases, P450 2B6 was the most affected with IC{sub 50} values in the nanomolar range. For the first time, mixtures of these four insecticides incubated at low concentrations showed a cumulative inhibitory in vitro effect on P450 2B6. - Highlights: • Ten P450 isoforms activities assessed simultaneously with only one incubation. • P450 activity levels measured using the metabolic ratio approach. • IC{sub 50} values generated 10-fold faster and cheaper compared to individual assays. • P450 2B6 was the most affected by pesticides with IC{sub 50} in the nanomolar range. • Cumulative inhibition of P450 2B6 by mixtures of four low-dosed insecticides.« less

  17. Induction of P450 3A1/2 and 2C6 by gemfibrozil in Sprague-Dawley rats.

    PubMed

    Liu, Aiming; Yang, Julin; Zhao, Xin; Jiao, Xiaolan; Zhao, Weihong; Ma, Qing; Tang, Zhiyuan; Dai, Renke

    2011-01-01

    Fibrates are a group of peroxisome proliferator-activated receptor α agonists used in the treatment of dyslipidemia; however, they have been reported to cause species-related hepatocarcinogenesis and clinical myotoxicity. Gemfibrozil is one of the most commonly used fibrates, and it shows the highest risk for myotoxicity among the fibrates. The inhibitory drug-drug interaction mechanism associated with gemfibrozil has been explored recently, and the induction of human P450 3A4 and 2C8 has been reported. In this study, in vivo induction of rat P450 by gemfibrozil was studied in Sprague-Dawley rats. After the rats were dosed with gemfibrozil by oral gavage, microsomes were prepared. The metabolic activities of P450 3A1/2, 2C6, and 2D2 were assayed using probe substrates, and the systemic concentration of gemfibrozil during its administration was determined. P450 3A1/2 and 2C6 activities were induced 32-77% in the rats by gemfibrozil when the exposure concentration was in the clinical range. These data indicate that the inducibility of homologous P450 isoforms by gemfibrozil is similar in Sprague-Dawley rats and in humans. Inductive drug-drug interactions and inhibitory actions are involved in the co-administration of gemfibrozil with other drugs, which suggests the relevance for a fibrate-toxicology investigation.

  18. Relative contribution of rat cytochrome P450 isoforms to the metabolism of caffeine: the pathway and concentration dependence.

    PubMed

    Kot, Marta; Daniel, Władysława A

    2008-04-01

    The aim of the present study was to estimate the relative contribution of rat P450 isoforms to the metabolism of caffeine and to assess the usefulness of caffeine as a marker substance for estimating the activity of P450 in rat liver and its potential for pharmacokinetic interactions in pharmacological experiments. The results obtained using rat cDNA-expressed P450s indicated that 8-hydroxylation was the main oxidation pathway of caffeine (70%) in the rat. CYP1A2 was found to be a key enzyme catalyzing 8-hydroxylation (72%) and substantially contributing to 3-N-demethylation (47%) and 1-N-demethylation (37.5%) at a caffeine concentration of 0.1mM (relevant to "the maximum therapeutic concentration in humans"). Furthermore, CYP2C11 considerably contributed to 3-N-demethylation (31%). The CYP2C subfamily (66%) - mainly CYP2C6 (27%) and CYP2C11 (29%) - played a major role in catalyzing 7-N-demethylation. At higher substrate concentrations, the contribution of CYP1A2 to the metabolism of caffeine decreased in favor of CYP2C11 (N-demethylations) and CYP3A2 (mainly 8-hydroxylation). The obtained results were confirmed with liver microsomes (inhibition and correlation studies). Therefore, caffeine may be used as a marker substance for assessing the activity of CYP1A2 in rats, using 8-hydroxylation (but not 3-N-demethylation-like in humans); moreover, caffeine may also be used to simultaneously, preliminarily estimate the activity of CYP2C using 7-N-demethylation as a marker reaction. Hence caffeine pharmacokinetics in rats may be changed by drugs affecting the activity of CYP1A2 and/or CYP2C, e.g. by some antidepressants.

  19. Selective aliphatic carbon-hydrogen bond activation of protected alcohol substrates by cytochrome P450 enzymes.

    PubMed

    Bell, Stephen G; Spence, Justin T J; Liu, Shenglan; George, Jonathan H; Wong, Luet-Lok

    2014-04-21

    Protected cyclohexanol and cyclohex-2-enol substrates, containing benzyl ether and benzoate ester moieties, were designed to fit into the active site of the Tyr96Ala mutant of cytochrome P450cam. The protected cyclohexanol substrates were efficiently and selectively hydroxylated by the mutant enzyme at the trans C-H bond of C-4 on the cyclohexyl ring. The selectivity of oxidation of the benzoate ester protected cyclohexanol could be altered by making alternative amino acid substitutions in the P450cam active site. The addition of the double bond in the cyclohexyl ring of the benzoate ester protected cyclohex-2-enol has a debilitative effect on the activity of the Tyr96Ala mutant with this substrate. However, the Phe87Ala/Tyr96Phe double mutant, which introduces space at a different location in the active site than the Tyr96Ala mutant, was able to efficiently hydroxylate the C-H bonds of 1-cyclohex-2-enyl benzoate at the allylic C-4 position. Mutations at Phe87 improved the selectivity of the oxidation of 1-phenyl-1-cyclohexylethylene to trans-4-phenyl-ethenylcyclohexanol (92%) when compared to single mutants at Tyr96 of P450cam.

  20. Human Cytochrome P450 21A2, the Major Steroid 21-Hydroxylase

    PubMed Central

    Pallan, Pradeep S.; Wang, Chunxue; Lei, Li; Yoshimoto, Francis K.; Auchus, Richard J.; Waterman, Michael R.; Guengerich, F. Peter; Egli, Martin

    2015-01-01

    Cytochrome P450 (P450) 21A2 is the major steroid 21-hydroxylase, and deficiency of this enzyme is involved in ∼95% of cases of human congenital adrenal hyperplasia, a disorder of adrenal steroidogenesis. A structure of the bovine enzyme that we published previously (Zhao, B., Lei, L., Kagawa, N., Sundaramoorthy, M., Banerjee, S., Nagy, L. D., Guengerich, F. P., and Waterman, M. R. (2012) Three-dimensional structure of steroid 21-hydroxylase (cytochrome P450 21A2) with two substrates reveals locations of disease-associated variants. J. Biol. Chem. 287, 10613–10622), containing two molecules of the substrate 17α-hydroxyprogesterone, has been used as a template for understanding genetic deficiencies. We have now obtained a crystal structure of human P450 21A2 in complex with progesterone, a substrate in adrenal 21-hydroxylation. Substrate binding and release were fast for human P450 21A2 with both substrates, and pre-steady-state kinetics showed a partial burst but only with progesterone as substrate and not 17α-hydroxyprogesterone. High intermolecular non-competitive kinetic deuterium isotope effects on both kcat and kcat/Km, from 5 to 11, were observed with both substrates, indicative of rate-limiting C–H bond cleavage and suggesting that the juxtaposition of the C21 carbon in the active site is critical for efficient oxidation. The estimated rate of binding of the substrate progesterone (kon 2.4 × 107 m−1 s−1) is only ∼2-fold greater than the catalytic efficiency (kcat/Km = 1.3 × 107 m−1 s−1) with this substrate, suggesting that the rate of substrate binding may also be partially rate-limiting. The structure of the human P450 21A2-substrate complex provides direct insight into mechanistic effects of genetic variants. PMID:25855791

  1. Metabolite formation kinetics and intrinsic clearance of phenacetin, tolbutamide, alprazolam, and midazolam in adenoviral cytochrome P450-transfected HepG2 cells and comparison with hepatocytes and in vivo.

    PubMed

    Donato, M Teresa; Hallifax, David; Picazo, Laura; Castell, José V; Houston, J Brian; Gomez-Lechón, M José; Lahoz, Agustin

    2010-09-01

    Cryopreserved human hepatocytes and other in vitro systems often underpredict in vivo intrinsic clearance (CL(int)). The aim of this study was to explore the potential utility of HepG2 cells transduced with adenovirus vectors expressing a single cytochrome P450 enzyme (Ad-CYP1A2, Ad-CYP2C9, or Ad-CYP3A4) for metabolic clearance predictions. The kinetics of metabolite formation from phenacetin, tolbutamide, and alprazolam and midazolam, selected as substrates probes for CYP1A2, CYP2C9, and CYP3A4, respectively, were characterized in this in vitro system. The magnitude of the K(m) or S(50) values observed in Ad-P450 cells was similar to those found in the literature for other human liver-derived systems. For each substrate, CL(int) (or CL(max)), values from Ad-P450 systems were scaled to human hepatocytes in primary culture using the relative activity factor (RAF) approach. Scaled Ad-P450 CL(int) values were approximately 3- to 6-fold higher (for phenacetin O-deethylation, tolbutamide 4-hydroxylation, and alprazolam 4-hydroxyaltion) or lower (midazolam 1'-hydroxylation) than those reported for human cryopreserved hepatocytes in suspension. Comparison with the in vivo data reveals that Ad-P450 cells provide a favorable prediction of CL(int) for the substrates studied (in a range of 20-200% in vivo observed CL(int)). This is an improvement compared with the consistent underpredictions (<10-50% in in vivo observed CL(int)) found in cryopreserved hepatocyte studies with the same substrates. These results suggest that the Ad-P450 cell is a promising in vitro system for clearance predictions of P450-metabolized drugs.

  2. Difference in luteal and placental P450(17) alpha: substrate preference and hormonal regulation in the rat.

    PubMed

    Eckstein, B; Khan, I; Gibori, G

    1987-12-01

    The purpose of this study was to assess the substrate specificity of P450(17) alpha in both the corpus luteum and placenta of pregnant rats, and to analyse the site at which LH/human chorionic gonadotrophin (hCG) regulates the activities of this enzyme. To distinguish the substrate preference, placentas and corpora lutea were obtained from rats on day 15 of pregnancy. Tissues were homogenized and the 10,000 g supernatants incubated in the presence of equimolar concentrations of [14C]progesterone and [3H]17 alpha-hydroxyprogesterone as substrate with either NADH or NADPH as cofactors for 2, 8, 16 and 24 min. The labelling pattern of both 17 alpha-hydroxyprogesterone and testosterone indicated that the corpus luteum produced testosterone preferentially from progesterone, whereas the placenta principally used 17 alpha-hydroxyprogesterone and synthesized six times as much testosterone from 17 alpha-hydroxyprogesterone than from progesterone. Addition of either NADPH or NADH as cofactors had no effect on substrate preference. The products of the two enzymatic activities were identified by recrystallization to constant 14C/3H ratios. The ratio of 14C/3H in testosterone produced by the corpus luteum was 16-fold higher than in that produced by the placenta. To explore which of the two activities of P450(17) alpha is regulated by the gonadotrophin, rats were treated with either 1.5 IU hCG or vehicle between days 13 and 15 of pregnancy. Hydroxylase and lyase activities were determined on day 15 after incubation for 2, 8, 16 or 24 min in the presence of either NADH or NADPH. Administration of hCG significantly inhibited NADH-dependent 17 alpha-hydroxylase in the placenta at each time-point studied.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Lettuce Costunolide Synthase (CYP71BL2) and Its Homolog (CYP71BL1) from Sunflower Catalyze Distinct Regio- and Stereoselective Hydroxylations in Sesquiterpene Lactone Metabolism*

    PubMed Central

    Ikezawa, Nobuhiro; Göpfert, Jens Christian; Nguyen, Don Trinh; Kim, Soo-Un; O'Maille, Paul E.; Spring, Otmar; Ro, Dae-Kyun

    2011-01-01

    Sesquiterpene lactones (STLs) are terpenoid natural products possessing the γ-lactone, well known for their diverse biological and medicinal activities. The occurrence of STLs is sporadic in nature, but most STLs have been isolated from plants in the Asteraceae family. Despite the implication of the γ-lactone group in many reported bioactivities of STLs, the biosynthetic origins of the γ-lactone ring remains elusive. Germacrene A acid (GAA) has been suggested as a central precursor of diverse STLs. The regioselective (C6 or C8) and stereoselective (α or β) hydroxylation on a carbon of GAA adjacent to its carboxylic acid at C12 is responsible for the γ-lactone formation. Here, we report two cytochrome P450 monooxygenases (P450s) capable of catalyzing 6α- and 8β-hydroxylation of GAA from lettuce and sunflower, respectively. To identify these P450s, sunflower trichomes were isolated to generate a trichome-specific transcript library, from which 10 P450 clones were retrieved. Expression of these clones in a yeast strain metabolically engineered to synthesize substrate GAA identified a P450 catalyzing 8β-hydroxylation of GAA, but the STL was not formed by spontaneous lactonization. Subsequently, we identified the closest homolog of the GAA 8β-hydroxylase from lettuce and discovered 6α-hydroxylation of GAA by the recombinant enzyme. The resulting 6α-hydroxy-GAA spontaneously undergoes a lactonization to yield the simplest form of STL, costunolide. Furthermore, we demonstrate the milligram per liter scale de novo synthesis of costunolide using the lettuce P450 in an engineered yeast strain, an important advance that will enable exploitation of STLs. Evolution and homology models of these two P450s are discussed. PMID:21515683

  4. Key Mutations Alter the Cytochrome P450 BM3 Conformational Landscape and Remove Inherent Substrate Bias*

    PubMed Central

    Butler, Christopher F.; Peet, Caroline; Mason, Amy E.; Voice, Michael W.; Leys, David; Munro, Andrew W.

    2013-01-01

    Cytochrome P450 monooxygenases (P450s) have enormous potential in the production of oxychemicals, due to their unparalleled regio- and stereoselectivity. The Bacillus megaterium P450 BM3 enzyme is a key model system, with several mutants (many distant from the active site) reported to alter substrate selectivity. It has the highest reported monooxygenase activity of the P450 enzymes, and this catalytic efficiency has inspired protein engineering to enable its exploitation for biotechnologically relevant oxidations with structurally diverse substrates. However, a structural rationale is lacking to explain how these mutations have such effects in the absence of direct change to the active site architecture. Here, we provide the first crystal structures of BM3 mutants in complex with a human drug substrate, the proton pump inhibitor omeprazole. Supported by solution data, these structures reveal how mutation alters the conformational landscape and decreases the free energy barrier for transition to the substrate-bound state. Our data point to the importance of such “gatekeeper” mutations in enabling major changes in substrate recognition. We further demonstrate that these mutants catalyze the same 5-hydroxylation reaction as performed by human CYP2C19, the major human omeprazole-metabolizing P450 enzyme. PMID:23828198

  5. Monkey liver cytochrome P450 2C19 is involved in R- and S-warfarin 7-hydroxylation.

    PubMed

    Hosoi, Yoshio; Uno, Yasuhiro; Murayama, Norie; Fujino, Hideki; Shukuya, Mitsunori; Iwasaki, Kazuhide; Shimizu, Makiko; Utoh, Masahiro; Yamazaki, Hiroshi

    2012-12-15

    Cynomolgus monkeys are widely used as primate models in preclinical studies. However, some differences are occasionally seen between monkeys and humans in the activities of cytochrome P450 enzymes. R- and S-warfarin are model substrates for stereoselective oxidation in humans. In this current research, the activities of monkey liver microsomes and 14 recombinantly expressed monkey cytochrome P450 enzymes were analyzed with respect to R- and S-warfarin 6- and 7-hydroxylation. Monkey liver microsomes efficiently mediated both R- and S-warfarin 7-hydroxylation, in contrast to human liver microsomes, which preferentially catalyzed S-warfarin 7-hydroxylation. R-Warfarin 7-hydroxylation activities in monkey liver microsomes were not inhibited by α-naphthoflavone or ketoconazole, and were roughly correlated with P450 2C19 levels and flurbiprofen 4-hydroxylation activities in microsomes from 20 monkey livers. In contrast, S-warfarin 7-hydroxylation activities were not correlated with the four marker drug oxidation activities used. Among the 14 recombinantly expressed monkey P450 enzymes tested, P450 2C19 had the highest activities for R- and S-warfarin 7-hydroxylations. Monkey P450 3A4 and 3A5 slowly mediated R- and S-warfarin 6-hydroxylations. Kinetic analysis revealed that monkey P450 2C19 had high V(max) and low K(m) values for R-warfarin 7-hydroxylation, comparable to those for monkey liver microsomes. Monkey P450 2C19 also mediated S-warfarin 7-hydroxylation with V(max) and V(max)/K(m) values comparable to those for recombinant human P450 2C9. R-warfarin could dock favorably into monkey P450 2C19 modeled. These results collectively suggest high activities for monkey liver P450 2C19 toward R- and S-warfarin 6- and 7-hydroxylation in contrast to the saturation kinetics of human P450 2C9-mediated S-warfarin 7-hydroxylation. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. In Vitro and in Vivo Inhibitory Effects of Glycyrrhetinic Acid in Mice and Human Cytochrome P450 3A4

    PubMed Central

    Lv, Qiao-Li; Wang, Gui-Hua; Chen, Shu-Hui; Hu, Lei; Zhang, Xue; Ying, Guo; Qin, Chong-Zhen; Zhou, Hong-Hao

    2015-01-01

    Glycyrrhetinic acid (GA) has been used clinically in the treatment of patients with chronic hepatitis. This study evaluated the effect of GA on the activity of five P450(CYP450) cytochrome enzymes: CYP2A6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, in human liver microsomes (HLMs) and recombinant cDNA-expressed enzyme systems using a HPLC-MS/MS CYP-specific probe substrate assay. With midazolam as the probe substrate, GA greatly decreased CYP3A4 activity with IC50 values of 8.195 μM in HLMs and 7.498 μM in the recombinant cDNA-expressed CYP3A4 enzyme system, respectively. It significantly decreased CYP3A4 activity in a dose- but not time-dependent manner. Results from Lineweaver–Burk plots showed that GA could inhibit CYP3A4 activity competitively, with a Ki value of 1.57 μM in HLMs. Moreover, CYP2C9 and CYP2C19 could also be inhibited significantly by GA with IC50 of 42.89 and 40.26 μM in HLMs, respectively. Other CYP450 isoforms were not markedly affected by GA. The inhibition was also confirmed by an in vivo study of mice. In addition, it was observed that mRNA expressions of the Cyps2c and 3a family decreased significantly in the livers of mice treated with GA. In conclusion, this study indicates that GA may exert herb-drug interactions by competitively inhibiting CYP3A4. PMID:26712778

  7. In Vitro and in Vivo Inhibitory Effects of Glycyrrhetinic Acid in Mice and Human Cytochrome P450 3A4.

    PubMed

    Lv, Qiao-Li; Wang, Gui-Hua; Chen, Shu-Hui; Hu, Lei; Zhang, Xue; Ying, Guo; Qin, Chong-Zhen; Zhou, Hong-Hao

    2015-12-25

    Glycyrrhetinic acid (GA) has been used clinically in the treatment of patients with chronic hepatitis. This study evaluated the effect of GA on the activity of five P450(CYP450) cytochrome enzymes: CYP2A6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, in human liver microsomes (HLMs) and recombinant cDNA-expressed enzyme systems using a HPLC-MS/MS CYP-specific probe substrate assay. With midazolam as the probe substrate, GA greatly decreased CYP3A4 activity with IC50 values of 8.195 μM in HLMs and 7.498 μM in the recombinant cDNA-expressed CYP3A4 enzyme system, respectively. It significantly decreased CYP3A4 activity in a dose- but not time-dependent manner. Results from Lineweaver-Burk plots showed that GA could inhibit CYP3A4 activity competitively, with a Ki value of 1.57 μM in HLMs. Moreover, CYP2C9 and CYP2C19 could also be inhibited significantly by GA with IC50 of 42.89 and 40.26 μM in HLMs, respectively. Other CYP450 isoforms were not markedly affected by GA. The inhibition was also confirmed by an in vivo study of mice. In addition, it was observed that mRNA expressions of the Cyps2c and 3a family decreased significantly in the livers of mice treated with GA. In conclusion, this study indicates that GA may exert herb-drug interactions by competitively inhibiting CYP3A4.

  8. Human Cytochrome P450 Enzyme Modulation by Gymnema sylvestre: A Predictive Safety Evaluation by LC-MS/MS.

    PubMed

    Rammohan, Bera; Samit, Karmakar; Chinmoy, Das; Arup, Saha; Amit, Kundu; Ratul, Sarkar; Sanmoy, Karmakar; Dipan, Adhikari; Tuhinadri, Sen

    2016-07-01

    Traditionally GS is used to treat diabetes mellitus. Drug-herb interaction of GS via cytochrome P450 enzyme system by substrate cocktail method using HLM has not been reported. To evaluate the in-vitro modulatory effects of GS extracts (aqueous, methanol, ethyl acetate, chloroform and n -hexane) and deacylgymnemic acid (DGA) on human CYP1A2, 2C8, 2C9, 2D6 and 3A4 activities in HLM. Probe substrate-based LCMS/MS method was established for all CYPs. The metabolite formations were examined after incubation of probe substrates with HLM in the presence or absence of extracts and DGA. The inhibitory effects of GS extracts and DGA were characterized with kinetic parameters IC50 and Ki values. GS extracts showed differential effect on CYP activities in the following order of inhibitory potency: ethyl acetate > Chloroform > methanol > n -hexane > aqueous > DGA. This differential effect was observed against CYP1A2, 2C9 and less on CYP3A4 and 2C8 but all CYPs were unaffected by aqueous extract and DGA. The ethyl acetate and chloroform extract exhibited moderate inhibition towards CYP1A2 and 3A4. The aqueous extract and DGA however showed negligible inhibition towards all five major human CYPs with very high IC50 values (>90μg/ml). The results of our study revealed that phytoconstituents contained in GS, particularly in ethyl acetate and chloroform extracts, were able to inhibit CYP1A2, 3A4 and 2C9. The presence of relatively small, lipophillic yet slightly polar compounds within the GS extracts may be attributed for inhibition activities. These suggest that the herb or its extracts should be examined for potential pharmacokinetic drug interactions in vivo . Abbreviations used: GS: Gymnema sylvestre , GSE: Gymnema sylvestre extract, DGA: deacyl gymnemic acid, CYP: cytochrome P450, DMSO: dimethylsulphoxide, HLM: human liver microsomes, LC-MS/MS: liquid chromatography tandem mass spectroscopy, NADPH: reduced nicotinamide adeninedinucleotide phosphate, NRS: nicotinamide adeninedinucleotide phosphate regenerating system, CHE: chloroform extract, EAE: ethyl acetate extract, NHE- n -hexane extract, AE: aqueous extract, ME: methanol extract.

  9. Pharmacokinetic Effects of Isavuconazole Coadministration With the Cytochrome P450 Enzyme Substrates Bupropion, Repaglinide, Caffeine, Dextromethorphan, and Methadone in Healthy Subjects.

    PubMed

    Yamazaki, Takao; Desai, Amit; Goldwater, Ronald; Han, David; Howieson, Corrie; Akhtar, Shahzad; Kowalski, Donna; Lademacher, Christopher; Pearlman, Helene; Rammelsberg, Diane; Townsend, Robert

    2017-01-01

    This report describes phase 1 clinical trials performed to assess interactions of oral isavuconazole at the clinically targeted dose (200 mg, administered as isavuconazonium sulfate 372 mg, 3 times a day for 2 days; 200 mg once daily [QD] thereafter) with single oral doses of the cytochrome P450 (CYP) substrates: bupropion hydrochloride (CYP2B6; 100 mg; n = 24), repaglinide (CYP2C8/CYP3A4; 0.5 mg; n = 24), caffeine (CYP1A2; 200 mg; n = 24), dextromethorphan hydrobromide (CYP2D6/CYP3A4; 30 mg; n = 24), and methadone (CYP2B6/CYP2C19/CYP3A4; 10 mg; n = 23). Compared with each drug alone, coadministration with isavuconazole changed the area under the concentration-time curves (AUC ∞ ) and maximum concentrations (C max ) as follows: bupropion, AUC ∞ reduced 42%, C max reduced 31%; repaglinide, AUC ∞ reduced 8%, C max reduced 14%; caffeine, AUC ∞ increased 4%, C max reduced 1%; dextromethorphan, AUC ∞ increased 18%, C max increased 17%; R-methadone, AUC ∞ reduced 10%, C max increased 3%; S-methadone, AUC ∞ reduced 35%, C max increased 1%. In all studies, there were no deaths, 1 serious adverse event (dextromethorphan study; perioral numbness, numbness of right arm and leg), and adverse events leading to study discontinuation were rare. Thus, isavuconazole is a mild inducer of CYP2B6 but does not appear to affect CYP1A2-, CYP2C8-, or CYP2D6-mediated metabolism. © 2016 The Authors. Clinical Pharmacology in Drug Development Published by Wiley Periodicals, Inc. on behalf of The American College of Clinical Pharmacology.

  10. Inhibitory effects of cytostatically active 6-aminobenzo[c]phenanthridines on cytochrome P450 enzymes in human hepatic microsomes.

    PubMed

    Zebothsen, Inga; Kunze, Thomas; Clement, Bernd

    2006-07-01

    Besides assays for the evaluation of efficacy new drug candidates have to undergo extensive testings for enhancement of pharmaceutical drug safety and optimization of application. The objective of the present work was to investigate the pharmacokinetic drug drug interaction potential for the cytostatically active 6-aminobenzo[c]phenanthridines BP-11 (6-amino-11,12-dihydro-11-(4-hydroxy-3,5-dimethoxyphenyl)benzo[c]phenanthridine) and BP-D7 (6-amino-11-(3,4,5-trimethoxyphenyl)benzo[c]phenanthridine) in vitro through incubation with human hepatic microsomes and marker substrates. For these studies the cytochrome P-450 isoenzymes and corresponding marker substrates recommended by the EMEA (The European Agency for the Evaluation of Medicinal Products) were chosen. In detail these selective substrates were caffeine (CYP1A2), coumarin (CYP2A6), tolbutamide (CYP2C9), S-(+)-mephenytoin (CYP2C19), dextromethorphane (CYP2D6), chlorzoxazone (CYP2E1) and testosterone (CYP3A4). Incubations with each substrate were carried out without a possible inhibitor and in the presence of a benzo[c]phenanthridine or a selective inhibitor at varying concentrations. Marker activities were determined by HPLC (high performance liquid chromatography). For the isoenzymes showing more than 50% inhibition by the addition of 20 microM BP-11 or BP-D7 additional concentrations of substrate and inhibitor were tested for a characterization of the inhibition. The studies showed a moderate risk for BP-11 for interactions with the cytochrome P-450 isoenzymes CYP1A2, CYP2C9, CYP2D6 and CYP3A4. BP-D7, the compound with the highest cytotstatic efficacy, showed only a moderate risk for interactions with drugs, also metabolized by CYP3A4.

  11. Quantitative production of compound I from a cytochrome P450 enzyme at low temperatures. Kinetics, activation parameters, and kinetic isotope effects for oxidation of benzyl alcohol.

    PubMed

    Wang, Qin; Sheng, Xin; Horner, John H; Newcomb, Martin

    2009-08-05

    Cytochrome P450 enzymes are commonly thought to oxidize substrates via an iron(IV)-oxo porphyrin radical cation transient termed Compound I, but kinetic studies of P450 Compounds I are essentially nonexistent. We report production of Compound I from cytochrome P450 119 (CYP119) in high conversion from the corresponding Compound II species at low temperatures in buffer mixtures containing 50% glycerol by photolysis with 365 nm light from a pulsed lamp. Compound I was studied as a reagent in oxidations of benzyl alcohol and its benzylic mono- and dideuterio isotopomers. Pseudo-first-order rate constants obtained at -50 degrees C with concentrations of substrates between 1.0 and 6.0 mM displayed saturation kinetics that gave binding constants for the substrate in the Compound I species (K(bind)) and first-order rate constants for the oxidation reactions (k(ox)). Representative results are K(bind) = 214 M(-1) and k(ox) = 0.48 s(-1) for oxidation of benzyl alcohol. For the dideuterated substrate C(6)H(5)CD(2)OH, kinetics were studied between -50 and -25 degrees C, and a van't Hoff plot for complexation and an Arrhenius plot for the oxidation reaction were constructed. The H/D kinetic isotope effects (KIEs) at -50 degrees C were resolved into a large primary KIE (P = 11.9) and a small, inverse secondary KIE (S = 0.96). Comparison of values extrapolated to 22 degrees C of both the rate constant for oxidation of C(6)H(5)CD(2)OH and the KIE for the nondeuterated and dideuterated substrates to values obtained previously in laser flash photolysis experiments suggested that tunneling could be a significant component of the total rate constant at -50 degrees C.

  12. Mechanistic Study of the Stereoselective Hydroxylation of [2-2 H1 ,3-2 H1 ]Butanes Catalyzed by Cytochrome P450 BM3 Variants.

    PubMed

    Yang, Chung-Ling; Lin, Cheng-Hung; Luo, Wen-I; Lee, Tsu-Lin; Ramu, Ravirala; Ng, Kok Yaoh; Tsai, Yi-Fang; Wei, Guor-Tzo; Yu, Steve S-F

    2017-02-21

    Engineered bacterial cytochrome P450s are noted for their ability in the oxidation of inert small alkanes. Cytochrome P450 BM3 L188P A328F (BM3 PF) and A74E L188P A328F (BM3 EPF) variants are able to efficiently oxidize n-butane to 2-butanol. Esterification of the 2-butanol derived from this reaction mediated by the aforementioned two mutants gives diastereomeric excesses (de) of -56±1 and -52±1 %, respectively, with the preference for the oxidation occurring at the C-H S bond. When tailored (2R,3R)- and (2S,3S)-[2- 2 H 1 ,3- 2 H 1 ]butane probes are employed as substrates for both variants, the obtained de values from (2R,3R)-[2- 2 H 1 ,3- 2 H 1 ]butane are -93 and -92 % for BM3 PF and EPF, respectively; whereas the obtained de values from (2S,3S)-[2- 2 H 1 ,3- 2 H 1 ]butane are 52 and 56 % in the BM3 PF and EPF systems, respectively. The kinetic isotope effects (KIEs) for the oxidation of (2R,3R)-[2- 2 H 1 ,3- 2 H 1 ]butane are 7.3 and 7.8 in BM3 PF and EPF, respectively; whereas KIEs for (2S,3S)-[2- 2 H 1 ,3- 2 H 1 ]butanes are 18 and 25 in BM3 PF and EPF, respectively. The discrepancy in KIEs obtained from the two substrates supports the two-state reactivity (TSR) that is proposed for alkane oxidation in cytochrome P450 systems. Moreover, for the first time, experimental evidence for tunneling in the oxidation mediated by P450 is given through the oxidation of the C-H R bond in (2S,3S)-[2- 2 H 1 ,3- 2 H 1 ]butane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Fungal P450 (CYP5136A3) Capable of Oxidizing Polycyclic Aromatic Hydrocarbons and Endocrine Disrupting Alkylphenols: Role of Trp129 and Leu324

    PubMed Central

    Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Yadav, Jagjit S.

    2011-01-01

    The model white rot fungus Phanerochaete chrysosporium, which is known for its versatile pollutant-biodegradation ability, possesses an extraordinarily large repertoire of P450 monooxygenases in its genome. However, the majority of these P450s have hitherto unknown function. Our initial studies using a genome-wide gene induction strategy revealed multiple P450s responsive to individual classes of xenobiotics. Here we report functional characterization of a cytochrome P450 monooxygenase, CYP5136A3 that showed common responsiveness and catalytic versatility towards endocrine-disrupting alkylphenols (APs) and mutagenic/carcinogenic polycyclic aromatic hydrocarbons (PAHs). Using recombinant CYP5136A3, we demonstrated its oxidation activity towards APs with varying alkyl side-chain length (C3-C9), in addition to PAHs (3–4 ring size). AP oxidation involves hydroxylation at the terminal carbon of the alkyl side-chain (ω-oxidation). Structure-activity analysis based on a 3D model indicated a potential role of Trp129 and Leu324 in the oxidation mechanism of CYP5136A3. Replacing Trp129 with Leu (W129L) and Phe (W129F) significantly diminished oxidation of both PAHs and APs. The W129L mutation caused greater reduction in phenanthrene oxidation (80%) as compared to W129F which caused greater reduction in pyrene oxidation (88%). Almost complete loss of oxidation of C3-C8 APs (83–90%) was observed for the W129L mutation as compared to W129F (28–41%). However, the two mutations showed a comparable loss (60–67%) in C9-AP oxidation. Replacement of Leu324 with Gly (L324G) caused 42% and 54% decrease in oxidation activity towards phenanthrene and pyrene, respectively. This mutation also caused loss of activity towards C3-C8 APs (20–58%), and complete loss of activity toward nonylphenol (C9-AP). Collectively, the results suggest that Trp129 and Leu324 are critical in substrate recognition and/or regio-selective oxidation of PAHs and APs. To our knowledge, this is the first report on an AP-oxidizing P450 from fungi and on structure-activity relationship of a eukaryotic P450 for fused-ring PAHs (phenanthrene and pyrene) and AP substrates. PMID:22164262

  14. Inhibition of cytochrome P450 2B4 by environmentally persistent free radical-containing particulate matter

    PubMed Central

    Reed, James R.; dela Cruz, Albert Leo N.; Lomnicki, Slawo M.; Backes, Wayne L.

    2015-01-01

    Combustion processes generate particulate matter (PM) that can affect human health. The presence of redox-active metals and aromatic hydrocarbons in the post-combustion regions results in the formation of air-stable, environmentally persistent free radicals (EPFRs) on entrained particles. Exposure to EPFRs has been shown to negatively influence pulmonary and cardiovascular functions. Cytochromes P450 (P450/CYP) are endoplasmic reticulum resident proteins that are responsible for the metabolism of foreign compounds. Previously, it was shown that model EPFRs, generated by exposure of silica containing 5% copper oxide (CuO-Si) to either dicholorobenzene (DCB230) or 2-monochlorophenol (MCP230) at ≥ 230°C, inhibited six forms of P450 in rat liver microsomes (Toxicol. Appl. Pharmacol. (2014) 277:200-209). In this study, the inhibition of P450 by MCP230 was examined in more detail by measuring its effect on the rate of metabolism of 7-ethoxy-4-trifluoromethylcoumarin (7EFC) and 7-benzyloxyresorufin (7BRF) by the purified, reconstituted CYP2B4 system. MCP230 inhibited the CYP2B4-mediated metabolism of 7EFC at least 10-fold more potently than non-EPFR controls (CuO-Si, silica, and silica generated from heating silica and MCP at 50°C, so that EPFRs were not formed (MCP50)). The inhibition by EPFRs was specific for the P450 and did not affect the ability of the redox partner, P450 reductase (CPR) from reducing cytochrome c. All of the PM inhibited CYP2B4-mediated metabolism noncompetitively with respect to substrate. When CYP2B4-mediated metabolism of 7EFC was measured as a function of the CPR concentration, the mechanism of inhibition was competitive. EPFRs likely inhibit CYP2B4-mediated substrate metabolism by physically disrupting the CPR•P450 complex. PMID:25817938

  15. Relationship between hydrocarbon structure and induction of P450: effects on protein levels and enzyme activities.

    PubMed

    Backes, W L; Sequeira, D J; Cawley, G F; Eyer, C S

    1993-12-01

    1. Treatment of male rat with the small aromatic hydrocarbons, benzene, toluene, ethylbenzene, n-propylbenzene, m-xylene, and p-xylene increased several P450-dependent activities, with ethylbenzene, m-xylene, and n-propylbenzene producing the greatest response. Hydrocarbon treatment differentially affected toluene metabolism, producing a response dependent on the metabolite monitored. In untreated rats, benzyl alcohol was the major hydroxylation product of toluene metabolism, comprising > 99% of the total metabolites formed. Hydrocarbon treatment increased the overall rate of toluene metabolism by dramatically increasing the amount of aromatic hydroxylation. Ethylbenzene, n-propylbenzene and m-xylene were the most effective inducers of aromatic hydroxylation of toluene. In contrast, production of the major toluene metabolite benzyl alcohol was increased only after treatment with m-xylene. 2. P450 2B1/2B2 levels were induced by each of the hydrocarbons examined, with the magnitude of induction increasing with increasing hydrocarbon size. P450 1A1 was also induced after hydrocarbon exposure; however, the degree of induction was smaller than that observed for P450 2B1/2B2. P450 2C11 levels were suppressed after treatment with benzene, ethylbenzene and n-propylbenzene. 3. Taken together these results display two induction patterns. The first generally corresponds to changes in the P450 2B subfamily, where activities (e.g. the aromatic hydroxylations of toluene) were most effectively induced by ethylbenzene, n-propylbenzene and m-xylene. In the second, induction was observed only after m-xylene treatment, a pattern that was found when the metabolism of the substrate was catalysed by both the P450 2B subfamily and P450 2C11. Hydrocarbons that both induced P450 2B1/2B2 and suppressed P450 2C11 (such as ethylbenzene and n-propylbenzene) showed little change in activities catalysed by both isozymes (e.g. aliphatic hydroxylation of toluene, and aniline hydroxylation); however, m-xylene treatment led to elevated P450 2B1/2B2 levels without significantly suppressing P450 2C11. m-Xylene produced significant increases in activities efficiently catalysed by both isozymes. Therefore, the unique induction pattern observed after m-xylene treatment can be accounted for by induction of P450 2B1/2B2 without concomitant suppression of P450 2C11.

  16. Metabolism of proposed nerve agent pretreatment, pyridostigmine bromide. Final report, December 1995-December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leo, K.U.

    A reverse phase High Pressure Liquid Chromatography (HPLC) method was developed to separate pyridostigmine bromide from four potential metabolites. Using male and female microsomes from both rat and human, our data suggest that pyridostigmine bromide is not metabolized by the human live microsomes or DNA expressed human CYP-450s via direct observation of no metabolites being formed for incubations up to 90 minutes. Indirect evidence that pyridostigmine metabolism is not via the major human hepatic CYP-450s involved in drug metabolism, 1A2, 2C9, 2E1, 2D6, and 3A4, was observed by failure to inhibit these isozymes while co-incubated with substrates specific for thosemore » isozymes at concentrations of 2-3 times Km. The following CYP-450 substrates were co-incubated with pyridostigmine: phenacetin, tolbutamide, chlorzoxazone, bufuralol, and testosterone. Using unlabelled and 14C-pyridostigmine, metabolite formation was not observed in both male and female rat and human subcellular fractions, specifically cytosol and S9, or under conditions favoring human FMO activity (pH 8.3). These findings indicate the metabolism of pyridostigmine bromide is unlikely to be under any component of sexual dimorphism.« less

  17. Use of deuterated camphor as substrate in 1H ENDOR studies of hydroxylation by cryoreduced oxy P450cam provides new evidence for the involvement of compound I

    PubMed Central

    Davydov, Roman; Dawson, John H.; Perera, Roshan; Hoffman, Brian M.

    2013-01-01

    EPR and 1H ENDOR spectroscopies have been used to analyze intermediate states formed during the hydroxylation of (1R)-camphor [H2-camphor] and (1R)-5,5-dideuterocamphor [D2-camphor] as induced by cryoreduction (77 K)/annealing of the ternary ferrous cytochrome P450cam-O2-substrate complex. Hydroxylation of H2-camphor produced a primary product state in which 5-exo-hydroxycamphor is coordinated with Fe(III). ENDOR spectra contained signals derived from two protons [Fe(III)-bound C5-OHexo and C5-Hendo] from camphor. When D2-camphor was hydroxylated under the same condition in H2O or D2O buffer, both ENDOR Hexo and Hendo signals are absent. For D2-camphor in H2O buffer, H/D exchange causes the C5-OHexo signal to reappear during relaxation upon annealing to 230 K; for H2-camphor in D2O, the C5-OHexo signal decreases through H/D exchange. These observations clearly show that Cpd I is the reactive species in the hydroxylation of camphor in P450cam. PMID:23215047

  18. Pharmacokinetic Effects of Isavuconazole Coadministration With the Cytochrome P450 Enzyme Substrates Bupropion, Repaglinide, Caffeine, Dextromethorphan, and Methadone in Healthy Subjects

    PubMed Central

    Yamazaki, Takao; Desai, Amit; Goldwater, Ronald; Han, David; Howieson, Corrie; Akhtar, Shahzad; Kowalski, Donna; Lademacher, Christopher; Pearlman, Helene; Rammelsberg, Diane

    2016-01-01

    Abstract This report describes phase 1 clinical trials performed to assess interactions of oral isavuconazole at the clinically targeted dose (200 mg, administered as isavuconazonium sulfate 372 mg, 3 times a day for 2 days; 200 mg once daily [QD] thereafter) with single oral doses of the cytochrome P450 (CYP) substrates: bupropion hydrochloride (CYP2B6; 100 mg; n = 24), repaglinide (CYP2C8/CYP3A4; 0.5 mg; n = 24), caffeine (CYP1A2; 200 mg; n = 24), dextromethorphan hydrobromide (CYP2D6/CYP3A4; 30 mg; n = 24), and methadone (CYP2B6/CYP2C19/CYP3A4; 10 mg; n = 23). Compared with each drug alone, coadministration with isavuconazole changed the area under the concentration‐time curves (AUC∞) and maximum concentrations (Cmax) as follows: bupropion, AUC∞ reduced 42%, Cmax reduced 31%; repaglinide, AUC∞ reduced 8%, Cmax reduced 14%; caffeine, AUC∞ increased 4%, Cmax reduced 1%; dextromethorphan, AUC∞ increased 18%, Cmax increased 17%; R‐methadone, AUC∞ reduced 10%, Cmax increased 3%; S‐methadone, AUC∞ reduced 35%, Cmax increased 1%. In all studies, there were no deaths, 1 serious adverse event (dextromethorphan study; perioral numbness, numbness of right arm and leg), and adverse events leading to study discontinuation were rare. Thus, isavuconazole is a mild inducer of CYP2B6 but does not appear to affect CYP1A2‐, CYP2C8‐, or CYP2D6‐mediated metabolism. PMID:27273149

  19. Human Cytochrome P450 Enzyme Modulation by Gymnema sylvestre: A Predictive Safety Evaluation by LC-MS/MS

    PubMed Central

    Rammohan, Bera; Samit, Karmakar; Chinmoy, Das; Arup, Saha; Amit, Kundu; Ratul, Sarkar; Sanmoy, Karmakar; Dipan, Adhikari; Tuhinadri, Sen

    2016-01-01

    Background: Traditionally GS is used to treat diabetes mellitus. Drug-herb interaction of GS via cytochrome P450 enzyme system by substrate cocktail method using HLM has not been reported. Objective: To evaluate the in-vitro modulatory effects of GS extracts (aqueous, methanol, ethyl acetate, chloroform and n-hexane) and deacylgymnemic acid (DGA) on human CYP1A2, 2C8, 2C9, 2D6 and 3A4 activities in HLM. Material and Methods: Probe substrate-based LCMS/MS method was established for all CYPs. The metabolite formations were examined after incubation of probe substrates with HLM in the presence or absence of extracts and DGA. The inhibitory effects of GS extracts and DGA were characterized with kinetic parameters IC50 and Ki values. Results: GS extracts showed differential effect on CYP activities in the following order of inhibitory potency: ethyl acetate > Chloroform > methanol > n-hexane > aqueous > DGA. This differential effect was observed against CYP1A2, 2C9 and less on CYP3A4 and 2C8 but all CYPs were unaffected by aqueous extract and DGA. The ethyl acetate and chloroform extract exhibited moderate inhibition towards CYP1A2 and 3A4. The aqueous extract and DGA however showed negligible inhibition towards all five major human CYPs with very high IC50 values (>90μg/ml). Conclusion: The results of our study revealed that phytoconstituents contained in GS, particularly in ethyl acetate and chloroform extracts, were able to inhibit CYP1A2, 3A4 and 2C9. The presence of relatively small, lipophillic yet slightly polar compounds within the GS extracts may be attributed for inhibition activities. These suggest that the herb or its extracts should be examined for potential pharmacokinetic drug interactions in vivo. Abbreviations used: GS: Gymnema sylvestre, GSE: Gymnema sylvestre extract, DGA: deacyl gymnemic acid, CYP: cytochrome P450, DMSO: dimethylsulphoxide, HLM: human liver microsomes, LC-MS/MS: liquid chromatography tandem mass spectroscopy, NADPH: reduced nicotinamide adeninedinucleotide phosphate, NRS: nicotinamide adeninedinucleotide phosphate regenerating system, CHE: chloroform extract, EAE: ethyl acetate extract, NHE- n-hexane extract, AE: aqueous extract, ME: methanol extract PMID:27761064

  20. Affinity alkylation of the active site of C/sub 21/ steroid side-chain cleavage cytochrome P-450 from neonatal porcine testis: a unique cysteine residue alkylated by 17-(bromoacetoxy)progesterone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onoda, M.; Haniu, M.; Yanagibashi, K.

    1987-01-27

    The affinity alkylating progesterone analogue 17-(bromoacetoxy)progesterone has been used to label the active site of a microsomal cytochrome P-450 enzyme from neonatal pig testis. The enzyme causes removal of the C/sub 20/ and C/sub 21/ side chains from the substrates progesterone and pregnenolone by catalyzing both 17-hydroxylase and C/sub 17,20/-lyase reactions, which produce the corresponding C/sub 1//sup 9/ steroidal precursors of testosterone. The progesterone analogue causes simultaneous inactivation of the two catalytic activities of the enzyme by a first-order kinetic process that obeys saturation kinetics. Progesterone and 17-hydroxyprogesterone each protect the enzyme against inactivation. The progesterone analogue is a competitivemore » inhibitor of the enzyme with K/sub i/ values of 8.4 ..mu..M and 7.8 ..mu..M for progesterone and 17-hydroxyprogesterone, respectively. The enzyme inactivation and kinetic data are consistent with a theory proposing that the analogue and the two substrates compete for the same active site. The radioactive analogue 17-((/sup 14/C)bromoacetoxy)progesterone causes inactivation of the enzyme with incorporation of 1.5-2.2 mol of the analogue per mole of inactivated enzyme. When this experiment is carried out in the presence of a substrate, then 0.9-1.2 mol of radioactive analogue is incorporated per mole of inactivated enzyme. The data suggest that the analogue can bind to two different sites, one of which is related to the catalytic site. Radiolabeled enzyme samples, from reactions of the /sup 14/C-labeled analogue with the enzyme alone or with enzyme in the presence of a substrate, were subjected to amino acid analysis and also in tryptic digestion and peptide mapping.« less

  1. The effect of varying halogen substituent patterns on the cytochrome P450 catalysed dehalogenation of 4-halogenated anilines to 4-aminophenol metabolites.

    PubMed

    Cnubben, N H; Vervoort, J; Boersma, M G; Rietjens, I M

    1995-05-11

    The cytochrome P450 catalysed biotransformation of 4-halogenated anilines was studied in vitro with special emphasis on the dehalogenation to 4-aminophenol metabolites. The results demonstrated that a fluorine substituent at the C4 position was more easily eliminated from the aromatic ring than a chloro-, bromo- or iodo-substituent. HPLC analysis of in vitro biotransformation patterns revealed that the dehalogenation of the C4-position was accompanied by formation of non-halogenated 4-aminophenol, without formation of NIH-shifted metabolites. Changes in the apparent Vmax for the microsomal oxidative dehalogenation appeared to correlate with the electronegativity of the halogen substituent at C4, the fluorine substituent being the one most easily eliminated. A similar decrease in the rate of dehalogenation from a fluoro- to a chloro- to a bromo- to an iodo-substituent was observed in a system with purified reconstituted cytochrome P450 IIB1, in a tertiair butyl hydroperoxide supported microsomal cytochrome P450 system as well as in a system with microperoxidase 8. This microperoxidase 8 is a haem-based mini-enzyme without a substrate binding site, capable of catalysing cytochrome P450-like reaction chemistry. Together, these results excluded the possibility that the difference in the rate of dehalogenation with a varying C4-halogen substituent arose from a change in the contribution of cytochrome P450 enzymes involved in oxidative dehalogenation with a change in the halogen substituent. Rather, they strongly suggested that the difference was indeed due to an intrinsic electronic parameter of the various C4 halogenated anilines dependent on the type of halogen substituent. Additional in vitro experiments with polyfluorinated anilines demonstrated that elimination of the C4-fluorine substituent became more difficult upon the introduction of additional electron withdrawing fluorine substituents in the aniline-ring. 19F-NMR analysis of the metabolite patterns showed that the observed decrease in 4-aminophenol formation was accompanied by a metabolic switch to 2-aminophenols and N-hydroxyanilines, while products resulting from NIH-type mechanisms were not observed. For a C4-chloro-, bromo-, or iodo-substituted 2-fluoroaniline the Vmax for the oxidative dehalogenation was reduced by the additional electron withdrawing fluorine substituent at the C2 position in a similar way.(ABSTRACT TRUNCATED AT 400 WORDS)

  2. Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench.

    PubMed Central

    Sibbesen, O; Koch, B; Halkier, B A; Møller, B L

    1994-01-01

    The cytochrome P-450 enzyme (hemethiolate enzyme) that catalyzes the N-hydroxylation of L-tyrosine to N-hydroxytyrosine, the committed step in the biosynthesis of the cyanogenic glucoside dhurrin, has been isolated from microsomes prepared from etiolated seedlings of Sorghum bicolor (L.) Moench. The cytochrome P-450 enzyme was solubilized with the detergents Renex 690, reduced Triton X-100, and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and isolated by ion-exchange (DEAE-Sepharose) and dye (Cibacron blue and reactive red 120) column chromatography. To prevent irreversible aggregation of the cytochrome P-450 enzyme, the isolation procedure was designed without any concentration step--i.e., with dilution of the ion-exchange gel with gel filtration material. The isolated enzyme, which we designate the cytochrome P-450TYR enzyme, gives rise to the specific formation of a type I substrate binding spectrum in the presence of L-tyrosine. The microsomal preparation contains 0.2 nmol of total cytochrome P-450/mg of protein. The cytochrome P-450TYR enzyme is estimated to constitute approximately 20% of the total cytochrome P-450 content of the microsomal membranes and about 0.2% of their total protein content. The apparent molecular mass of the cytochrome P-450TYR enzyme is 57 kDa, and the N-terminal amino acid sequence is ATMEVEAAAATVLAAP. A polyclonal antibody raised against the isolated cytochrome P-450TYR enzyme is specific as monitored by Western blot analysis and inhibits the in vitro conversion of L-tyrosine to p-hydroxymandelonitrile catalyzed by the microsomal system. The cytochrome P-450TYR enzyme exhibits high substrate specificity and acts as an N-hydroxylase on a single endogenous substrate. The reported isolation procedure based on dye columns constitutes a gentle isolation method for cytochrome P-450 enzymes and is of general use as indicated by its ability to separate cytochrome P-450TYR from the cytochrome P-450 enzyme catalyzing the C-hydroxylation of p-hydroxyphenylacetonitrile and from cinnamic acid 4-hydroxylase. Images PMID:7937883

  3. A possible role of NADPH-dependent cytochrome P450nor isozyme in glycolysis under denitrifying conditions.

    PubMed

    Watsuji, Tomo-o; Takaya, Naoki; Nakamura, Akira; Shoun, Hirofumi

    2003-05-01

    The denitrifying fungus Cylindrocarpon tonkinense contains two isozymes of cytochrome P450nor. One isozyme, P450nor1, uses NADH specifically as its electron donor whereas the other isozyme P450nor2 prefers NADPH to NADH. Here we show that P450nor1 is localized in both cytosol and mitochondria, like P450nor of Fusarium oxysporum, while P450nor2 is exclusively in cytosol. We also found that the addition of glucose as a carbon source to the culture media leads to the production of much more P450nor2 in the fungal cells than a non-fermentable substrate (glycerol or acetate) does. These results suggest that the NADP-dependent pentose phosphate cycle acts predominantly in C. tonkinense as the glycolysis pathway under the denitrifying conditions, which was confirmed by the observation that glucose induced enzyme activities involved in the cycle. These results showed that P450nor2 should act as the electron sink under anaerobic, denitrifying conditions to regenerate NADP+ for the pentose phosphate cycle.

  4. Computational Elucidation of Selectivities and Mechanisms Performed by Organometallic and Bioinorganic Catalysts

    NASA Astrophysics Data System (ADS)

    Grandner, Jessica Marie

    Computational methods were used to determine the mechanisms and selectivities of organometallic-catalyzed reactions. The first half of the dissertation focuses on the study of metathesis catalysts in collaboration with the Grubbs group at CalTech. Chapter 1 describes the studies of the decomposition modes of several ruthenium-based metathesis catalysts. These studies were performed to better understand the decomposition of such catalysts in order to prevent decomposition (Chapter 1.2) or utilize decomposed catalysts for alternative reactions (Chapter 1.1). Chapter 2.1 describes the computational investigation of the origins of stereoretentive metathesis with ruthenium-based metathesis catalysts. These findings were then used to computationally design E-selective metathesis catalysts (Chapter 2.2). While the first half of the dissertation was centered around ruthenium catalysts, the second half of the dissertation pertains to iron-catalyzed reaction, in particular, iron-catalyzed reactions by P450 enzymes. The elements of Chapter 3 concentrate on the stereo- and chemo-selectivity of P450-catalyzed C-H hydroxylations. By combining multiple computational methods, the inherent activity of the iron-oxo catalyst and the influence of the active site on such reactions were illuminated. These discoveries allow for the engineering of new substrates and mutant enzymes for tailored C-H hydroxylation. While the mechanism of C-H hydroxylations catalyzed by P450 enzymes has been well studied, there are several P450-catalyzed transformations for which the mechanism is unknown. The components of Chapter 4 describe the use of computations to determine the mechanisms of complex, multi-step reactions catalyzed by P450s. The determination of these mechanisms elucidates how these enzymes react with various functional groups and substrate architectures and allows for a better understanding of how drug-like compounds may be broken down by human P450s.

  5. Biotechnological Production of Caffeic Acid by Bacterial Cytochrome P450 CYP199A2

    PubMed Central

    Arai, Yuka; Kino, Kuniki

    2012-01-01

    Caffeic acid is a biologically active molecule that has various beneficial properties, including antioxidant, anticancer, and anti-inflammatory activities. In this study, we explored the catalytic potential of a bacterial cytochrome P450, CYP199A2, for the biotechnological production of caffeic acid. When the CYP199A2 enzyme was reacted with p-coumaric acid, it stoichiometrically produced caffeic acid. The crystal structure of CYP199A2 shows that Phe at position 185 is situated directly above, and only 6.35 Å from, the heme iron. This F185 residue was replaced with hydrophobic or hydroxylated amino acids using site-directed mutagenesis to create mutants with novel and improved catalytic properties. In whole-cell assays with the known substrate of CYP199A2, 2-naphthoic acid, only the wild-type enzyme hydroxylated 2-naphthoic acid at the C-7 and C-8 positions, whereas all of the active F185 mutants exhibited a preference for C-5 hydroxylation. Interestingly, several F185 mutants (F185V, F185L, F185I, F185G, and F185A mutants) also acquired the ability to hydroxylate cinnamic acid, which was not hydroxylated by the wild-type enzyme. These results demonstrate that F185 is an important residue that controls the regioselectivity and the substrate specificity of CYP199A2. Furthermore, Escherichia coli cells expressing the F185L mutant exhibited 5.5 times higher hydroxylation activity for p-coumaric acid than those expressing the wild-type enzyme. By using the F185L whole-cell catalyst, the production of caffeic acid reached 15 mM (2.8 g/liter), which is the highest level so far attained in biotechnological production of this compound. PMID:22729547

  6. Structural basis for binding of fluorinated glucose and galactose to Trametes multicolor pyranose 2-oxidase variants with improved galactose conversion.

    PubMed

    Tan, Tien Chye; Spadiut, Oliver; Gandini, Rosaria; Haltrich, Dietmar; Divne, Christina

    2014-01-01

    Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O) catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C) with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose and D-galactose and can be used to refine future enzyme designs for more efficient use of lactose-hydrolysis byproducts.

  7. Structural Basis for Binding of Fluorinated Glucose and Galactose to Trametes multicolor Pyranose 2-Oxidase Variants with Improved Galactose Conversion

    PubMed Central

    Gandini, Rosaria; Haltrich, Dietmar; Divne, Christina

    2014-01-01

    Each year, about six million tons of lactose are generated from liquid whey as industrial byproduct, and optimally this large carbohydrate waste should be used for the production of value-added products. Trametes multicolor pyranose 2-oxidase (TmP2O) catalyzes the oxidation of various monosaccharides to the corresponding 2-keto sugars. Thus, a potential use of TmP2O is to convert the products from lactose hydrolysis, D-glucose and D-galactose, to more valuable products such as tagatose. Oxidation of glucose is however strongly favored over galactose, and oxidation of both substrates at more equal rates is desirable. Characterization of TmP2O variants (H450G, V546C, H450G/V546C) with improved D-galactose conversion has been given earlier, of which H450G displayed the best relative conversion between the substrates. To rationalize the changes in conversion rates, we have analyzed high-resolution crystal structures of the aforementioned mutants with bound 2- and 3-fluorinated glucose and galactose. Binding of glucose and galactose in the productive 2-oxidation binding mode is nearly identical in all mutants, suggesting that this binding mode is essentially unaffected by the mutations. For the competing glucose binding mode, enzyme variants carrying the H450G replacement stabilize glucose as the α-anomer in position for 3-oxidation. The backbone relaxation at position 450 allows the substrate-binding loop to fold tightly around the ligand. V546C however stabilize glucose as the β-anomer using an open loop conformation. Improved binding of galactose is enabled by subtle relaxation effects at key active-site backbone positions. The competing binding mode for galactose 2-oxidation by V546C stabilizes the β-anomer for oxidation at C1, whereas H450G variants stabilize the 3-oxidation binding mode of the galactose α-anomer. The present study provides a detailed description of binding modes that rationalize changes in the relative conversion rates of D-glucose and D-galactose and can be used to refine future enzyme designs for more efficient use of lactose-hydrolysis byproducts. PMID:24466218

  8. Analysis of the Functional Polymorphism in the Cytochrome P450 CYP2C8 Gene rs11572080 with Regard to Colorectal Cancer Risk

    PubMed Central

    Ladero, José M.; Agúndez, José A. G.; Martínez, Carmen; Amo, Gemma; Ayuso, Pedro; García-Martín, Elena

    2012-01-01

    In addition to the known effects on drug metabolism and response, functional polymorphisms of genes coding for xenobiotic-metabolizing enzymes (XME) play a role in cancer. Genes coding for XME act as low-penetrance genes and confer modest but consistent and significant risks for a variety of cancers related to the interaction of environmental and genetic factors. Consistent evidence supports a role for polymorphisms of the cytochrome P450 CYP2C9 gene as a protecting factor for colorectal cancer susceptibility. It has been shown that CYP2C8 and CYP2C9 overlap in substrate specificity. Because CYP2C8 has the common functional polymorphisms rs11572080 and rs10509681 (CYP2C8*3), it could be speculated that part of the findings attributed to CYP2C9 polymorphisms may actually be related to the presence of polymorphisms in the CYP2C8 gene. Nevertheless, little attention has been paid to the role of the CYP2C8 polymorphism in colorectal cancer. We analyzed the influence of the CYP2C8*3 allele in the risk of developing colorectal cancer in genomic DNA from 153 individuals suffering colorectal cancer and from 298 age- and gender-matched control subjects. Our findings do not support any effect of the CYP2C8*3 allele (OR for carriers of functional CYP2C8 alleles = 0.50 (95% CI = 0.16–1.59; p = 0.233). The absence of a relative risk related to CYP2C8*3 did not vary depending on the tumor site. We conclude that the risk of developing colorectal cancer does not seem to be related to the commonest functional genetic variation in the CYP2C8 gene. PMID:23420707

  9. Expression of paclitaxel-inactivating CYP3A activity in human colorectal cancer: implications for drug therapy

    PubMed Central

    Martínez, C; García-Martín, E; Pizarro, R M; García-Gamito, F J; Agúndez, J A G

    2002-01-01

    Cytochrome P450 3A is a drug-metabolising enzyme activity due to CYP3A4 and CYP3A5 gene products, that is involved in the inactivation of anticancer drugs. This study analyses the potential of cytochrome P450 3A enzyme in human colorectal cancer to impact anticancer therapy with drugs that are cytochrome P450 3A substrates. Enzyme activity, variability and properties, and the ability to inactivate paclitaxel (taxol) were analysed in human colorectal cancer and healthy colorectal epithelium. Cytochrome P450 3A enzyme activity is present in healthy and tumoral samples, with a nearly 10-fold interindividual variability. Nifedipine oxidation activity±s.d. for colorectal cancer microsomes was 67.8±36.6 pmol min−1 mg−1. The Km of the tumoral enzyme (42±8 μM) is similar to that in healthy colorectal epithelium (36±8 μM) and the human liver enzyme. Colorectal cancer microsomes metabolised the anticancer drug paclitaxel with a mean activity was 3.1±1.2 pmol min−1 mg−1. The main metabolic pathway is carried out by cytochrome P450 3A, and it is inhibited by the cytochrome P450 3A-specific inhibitor ketoconazole with a KI value of 31 nM. This study demonstrates the occurrence of cytochrome P450 3A-dependent metabolism in colorectal cancer tissue. The metabolic activity confers to cancer cells the ability to inactivate cytochrome P450 3A substrates and may modulate tumour sensitivity to anticancer drugs. British Journal of Cancer (2002) 87, 681–686. doi:10.1038/sj.bjc.6600494 www.bjcancer.com © 2002 Cancer Research UK PMID:12237780

  10. Oxidative metabolism of 1-nitropyrene by rabbit liver microsomes and purified microsomal cytochrome P-450 isozymes.

    PubMed

    Howard, P C; Reed, K A; Koop, D R

    1988-08-01

    Rabbit liver (male) microsomal metabolism of 10 microM [4,5,9,10-3H]-1-nitropyrene (1NP) was investigated. The total metabolism was not appreciably different with rates of 4.44 +/- 0.45, 3.98 +/- 0.19, 3.90 +/- 0.16, and 3.75 +/- 0.27 nmol/min/mg protein, respectively, for microsomes from phenobarbital, Aroclor-1254, ethanol-treated, and untreated rabbits. However, a more noticeable difference was found in the formation of specific metabolites. Phenobarbital treatment induced changes which favored 1-nitropyrene-3-ol formation, and Aroclor-1254 and ethanol-induced changes which favored 1-nitropyren-6-ol and 1-nitropyren-8-ol formation. 1NP was incubated with untreated microsomes and alpha-naphthoflavone, an inhibitor of rabbit cytochrome P-450 form 6 at low concentrations (less than 1 microM), and an activator of form 3c at high concentrations. The presence of alpha-naphthoflavone changed the profile of metabolites while not affecting the total metabolism. Using purified isozymes of rabbit P-450, we found the constitutive form 3b metabolized 1NP at the highest rate with a catalytic activity of 26.8 nmol/min/nmol P-450. Forms 2 and 6 exhibited rates of 2 and 2.2 nmol/min/nmol P-450. Forms 3a, 3c, and 4 had rates about 50- to 300-fold lower than form 3b. High performance liquid chromatography was used to identify the metabolites when the incubations were carried out in the presence of purified rabbit epoxide hydrolase. With form 6, 54% of the metabolites were accounted for as 1-nitropyren-3-ol, while with form 3b, 73% of the metabolites were 1-nitropyren-6-ol and 1-nitropyren-8-ol. The K-region dihydrodiols were formed by forms 2 and 3b, but not by forms 3c or 6. These results demonstrate that 1NP is a preferential substrate for form 3b, and that a preponderance of the metabolism with untreated rabbit liver microsomes can be attributed to this isozyme.

  11. In vitro characterization of sarizotan metabolism: hepatic clearance, identification and characterization of metabolites, drug-metabolizing enzyme identification, and evaluation of cytochrome p450 inhibition.

    PubMed

    Gallemann, Dieter; Wimmer, Elmar; Höfer, Constance C; Freisleben, Achim; Fluck, Markus; Ladstetter, Bernhard; Dolgos, Hugues

    2010-06-01

    In vitro biotransformation studies of sarizotan using human liver microsomes (HLM) showed aromatic and aliphatic monohydroxylation and dealkylation. Recombinant cytochromes P450 (P450) together with P450-selective inhibitors in HLM/hepatocyte cultures were used to evaluate the relative contribution of different P450s and revealed major involvement of CYP3A4, CYP2C9, CYP2C8, and CYP1A2 in sarizotan metabolism. The apparent K(m, u) and V(max) of sarizotan clearance, as investigated in HLM, were 9 microM and 3280 pmol/mg/min, predicting in vivo hepatic clearance of 0.94 l/h, which indicates that sarizotan is a low-clearance compound in humans and suggests nonsaturable metabolism at the targeted plasma concentration (< or =1 microM). This finding is confirmed by the reported human clearance (CL/F of 3.6-4.4 l/h) and by the dose-linear area under the curve increase observed with doses up to 25 mg. The inhibitory effect of sarizotan toward six major P450s was evaluated using P450-specific marker reactions in pooled HLM. K(i, u) values of sarizotan against CYP2C8, CYP2C19, and CYP3A4 were >10 microM, whereas those against CYP2D6 and CYP1A2 were 0.43 and 8.7 microM, respectively. Based on the estimates of sarizotan concentrations at the enzyme active sites, no clinically significant drug-drug interactions (DDIs) due to P450 inhibition are expected. This result has been confirmed in human DDI studies in which no inhibition of five major P450s was observed in terms of marker metabolite formation.

  12. Nanoscale Electron Transport Measurements of Immobilized Cytochrome P450 Proteins

    PubMed Central

    Bostick, Christopher D.; Flora, Darcy R.; Gannett, Peter M.; Tracy, Timothy S.; Lederman, David

    2015-01-01

    Gold nanopillars, functionalized with an organic self-assembled monolayer, can be used to measure the electrical conductance properties of immobilized proteins without aggregation. Measurements of the conductance of nanopillars with cytochrome P450 2C9 (CYP2C9) proteins using conducting probe atomic force microscopy demonstrate that a correlation exists between the energy barrier height between hopping sites and CYP2C9 metabolic activity. Measurements performed as a function of tip force indicate that, when subjected to a large force, the protein is more stable in the presence of a substrate. This agrees with the hypothesis that substrate entry into the active site helps to stabilize the enzyme. The relative distance between hopping sites also increases with increasing force, possibly because protein functional groups responsible for electron transport depend on the structure of the protein. The inhibitor sulfaphenazole, in addition to the previously studied aniline, increased the barrier height for electron transfer and thereby makes CYP2C9 reduction more difficult and inhibits metabolism. This suggests that P450 Type II binders may decrease the ease of electron transport processes in the enzyme, in addition to occupying the active site. PMID:25804257

  13. Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane.

    PubMed

    Kharasch, E D; Thummel, K E

    1993-10-01

    Renal and hepatic toxicity of the fluorinated ether volatile anesthetics is caused by biotransformation to toxic metabolites. Metabolism also contributes significantly to the elimination pharmacokinetics of some volatile agents. Although innumerable studies have explored anesthetic metabolism in animals, there is little information on human volatile anesthetic metabolism with respect to comparative rates or the identity of the enzymes responsible for defluorination. The first purpose of this investigation was to compare the metabolism of the fluorinated ether anesthetics by human liver microsomes. The second purpose was to test the hypothesis that cytochrome P450 2E1 is the specific P450 isoform responsible for volatile anesthetic defluorination in humans. Microsomes were prepared from human livers. Anesthetic metabolism in microsomal incubations was measured by fluoride production. The strategy for evaluating the role of P450 2E1 in anesthetic defluorination involved three approaches: for a series of 12 human livers, correlation of microsomal defluorination rate with microsomal P450 2E1 content (measured by Western blot analysis), correlation of defluorination rate with microsomal P450 2E1 catalytic activity using marker substrates (para-nitrophenol hydroxylation and chlorzoxazone 6-hydroxylation), and chemical inhibition by P450 isoform-selective inhibitors. The rank order of anesthetic metabolism, assessed by fluoride production at saturating substrate concentrations, was methoxyflurane > sevoflurane > enflurane > isoflurane > desflurane > 0. There was a significant linear correlation of sevoflurane and methoxyflurane defluorination with antigenic P450 2E1 content (r = 0.98 and r = 0.72, respectively), but not with either P450 1A2 or P450 3A3/4. Comparison of anesthetic defluorination with either para-nitrophenol or chlorzoxazone hydroxylation showed a significant correlation for sevoflurane (r = 0.93, r = 0.95) and methoxyflurane (r = 0.78, r = 0.66). Sevoflurane defluorination was also highly correlated with that of enflurane (r = 0.93), which is known to be metabolized by human P450 2E1. Diethyldithiocarbamate, a selective inhibitor of P450 2E1, produced a concentration-dependent inhibition of sevoflurane, methoxyflurane, and isoflurane defluorination. No other isoform-selective inhibitor diminished the defluorination of sevoflurane, whereas methoxyflurane defluorination was inhibited by the selective P450 inhibitors furafylline (P450 1A2), sulfaphenazole (P450 2C9/10), and quinidine (P450 2D6) but to a much lesser extent than by diethyldithiocarbamate. These results demonstrate that cytochrome P450 2E1 is the principal, if not sole human liver microsomal enzyme catalyzing the defluorination of sevoflurane. P450 2E1 is the principal, but not exclusive enzyme responsible for the metabolism of methoxyflurane, which also appears to be catalyzed by P450s 1A2, 2C9/10, and 2D6. The data also suggest that P450 2E1 is responsible for a significant fraction of isoflurane metabolism. Identification of P450 2E1 as the major anesthetic metabolizing enzyme in humans provides a mechanistic understanding of clinical fluorinated ether anesthetic metabolism and toxicity.

  14. Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibuya, Keisuke, E-mail: k.shibuya@aist.go.jp; Sawa, Akihito

    2015-10-15

    We systematically examined the effects of the substrate temperature (T{sub S}) and the oxygen pressure (P{sub O2}) on the structural and optical properties polycrystalline V O{sub 2} films grown directly on Si(100) substrates by pulsed-laser deposition. A rutile-type V O{sub 2} phase was formed at a T{sub S} ≥ 450 °C at P{sub O2} values ranging from 5 to 20 mTorr, whereas other structures of vanadium oxides were stabilized at lower temperatures or higher oxygen pressures. The surface roughness of the V O{sub 2} films significantly increased at growth temperatures of 550 °C or more due to agglomeration of Vmore » O{sub 2} on the surface of the silicon substrate. An apparent change in the refractive index across the metal–insulator transition (MIT) temperature was observed in V O{sub 2} films grown at a T{sub S} of 450 °C or more. The difference in the refractive index at a wavelength of 1550 nm above and below the MIT temperature was influenced by both the T{sub S} and P{sub O2}, and was maximal for a V O{sub 2} film grown at 450 °C under 20 mTorr. Based on the results, we derived the P{sub O2} versus 1/T{sub S} phase diagram for the films of vanadium oxides, which will provide a guide to optimizing the conditions for growth of V O{sub 2} films on silicon platforms.« less

  15. Role of cytochrome P450 IA2 in acetanilide 4-hydroxylation as determined with cDNA expression and monoclonal antibodies.

    PubMed

    Liu, G; Gelboin, H V; Myers, M J

    1991-02-01

    The role of P450 IA2 in the hydroxylation of acetanilide was examined using an inhibitory monoclonal antibody (MAb) 1-7-1 and vaccinia cDNA expression producing murine P450 IA1 (mIA1), murine P450 IA2 (mIA2), or human P450 IA2 (hIA2). Acetanilide hydroxylase (AcOH) activity was measured using an HPLC method with more than 500-fold greater sensitivity than previously described procedures. This method, which does not require the use of radioactive acetanilide, was achieved by optimizing both the gradient system and the amount of enzyme needed to achieve detection by uv light. MAb 1-7-1 inhibits up to 80% of the AcOH activity in both rat liver microsomes and cDNA expressed mouse and human P450 IA2. MAb 1-7-1, which recognizes both P450 IA1 and P450 IA2, completely inhibits the aryl hydrocarbon hydroxylase (AHH) activity of cDNA expressed in IA1. The inhibition of only 80% of the AHH activity present in MC liver microsomes by MAb 1-7-1 suggests that additional P450 forms are contributing to the overall AHH activity present in methylcholanthrene (MC)-liver microsomes as MAb 1-7-1 almost completely inhibits the AHH activity of expressed mIA1. Maximal inhibition of IA2 by 1-7-1 results in an 80% decrease in acetanilide hydroxylase activity in both liver microsomes and expressed mouse and human IA2. The capacity of MAb 1-7-1 to produce identical levels of inhibition of acetanilide hydroxylase activity in rat MC microsomes (80%) and in expressed mouse (81%) and human P450 IA2 (80%) strongly suggests that P450 IA2 is the major and perhaps the only enzyme responsible for the metabolism of acetanilide. These results demonstrate the complementary utility of monoclonal antibodies and cDNA expression for defining the contribution of specific P450 enzymes to the metabolism of a given substrate. This complementary approach allows for a more precise determination of the inhibitory capacity of MAb with respect to the metabolic capacity of the target P450.

  16. Mutation of the Inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 Alters Lignin Composition and Improves Saccharification1[W][OPEN

    PubMed Central

    Sundin, Lisa; Vanholme, Ruben; Geerinck, Jan; Goeminne, Geert; Höfer, René; Kim, Hoon; Ralph, John; Boerjan, Wout

    2014-01-01

    ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE1 (ATR1) and ATR2 provide electrons from NADPH to a large number of CYTOCHROME P450 (CYP450) enzymes in Arabidopsis (Arabidopsis thaliana). Whereas ATR1 is constitutively expressed, the expression of ATR2 appears to be induced during lignin biosynthesis and upon stresses. Therefore, ATR2 was hypothesized to be preferentially involved in providing electrons to the three CYP450s involved in lignin biosynthesis: CINNAMATE 4-HYDROXYLASE (C4H), p-COUMARATE 3-HYDROXYLASE1 (C3H1), and FERULATE 5-HYDROXYLASE1 (F5H1). Here, we show that the atr2 mutation resulted in a 6% reduction in total lignin amount in the main inflorescence stem and a compositional shift of the remaining lignin to a 10-fold higher fraction of p-hydroxyphenyl units at the expense of syringyl units. Phenolic profiling revealed shifts in lignin-related phenolic metabolites, in particular with the substrates of C4H, C3H1 and F5H1 accumulating in atr2 mutants. Glucosinolate and flavonol glycoside biosynthesis, both of which also rely on CYP450 activities, appeared less affected. The cellulose in the atr2 inflorescence stems was more susceptible to enzymatic hydrolysis after alkaline pretreatment, making ATR2 a potential target for engineering plant cell walls for biofuel production. PMID:25315601

  17. Investigation of drug-drug interactions caused by human pregnane X receptor-mediated induction of CYP3A4 and CYP2C subfamilies in chimeric mice with a humanized liver.

    PubMed

    Hasegawa, Maki; Tahara, Harunobu; Inoue, Ryo; Kakuni, Masakazu; Tateno, Chise; Ushiki, Junko

    2012-03-01

    The induction of cytochrome P450 (P450) enzymes is one of the risk factors for drug-drug interactions (DDIs). To date, the human pregnane X receptor (PXR)-mediated CYP3A4 induction has been well studied. In addition to CYP3A4, the expression of CYP2C subfamily is also regulated by PXR, and the DDIs caused by the induction of CYP2C enzymes have been reported to have a major clinical impact. The purpose of the present study was to investigate whether chimeric mice with a humanized liver (PXB mice) can be a suitable animal model for investigating the PXR-mediated induction of CYP2C subfamily, together with CYP3A4. We evaluated the inductive effect of rifampicin (RIF), a typical human PXR ligand, on the plasma exposure to the four P450 substrate drugs (triazolam/CYP3A4, pioglitazone/CYP2C8, (S)-warfarin/CYP2C9, and (S)-(-)-mephenytoin/CYP2C19) by cassette dosing in PXB mice. The induction of several drug-metabolizing enzymes and transporters in the liver was also examined by measuring the enzyme activity and mRNA expression levels. Significant reductions in the exposure to triazolam, pioglitazone, and (S)-(-)-mephenytoin, but not to (S)-warfarin, were observed. In contrast to the in vivo results, all the four P450 isoforms, including CYP2C9, were elevated by RIF treatment. The discrepancy in the (S)-warfarin results between in vivo and in vitro studies may be attributed to the relatively small contribution of CYP2C9 to (S)-warfarin elimination in the PXB mice used in this study. In summary, PXB mice are a useful animal model to examine DDIs caused by PXR-mediated induction of CYP2C and CYP3A4.

  18. Pharmacokinetics and Differential Regulation of Cytochrome P450 Enzymes in Type 1 Allergic Mice.

    PubMed

    Tanino, Tadatoshi; Komada, Akira; Ueda, Koji; Bando, Toru; Nojiri, Yukie; Ueda, Yukari; Sakurai, Eiichi

    2016-12-01

    Type 1 allergic diseases are characterized by elevated production of specific immunoglobulin E (IgE) for each antigen and have become a significant health problem worldwide. This study investigated the effect of IgE-mediated allergy on drug pharmacokinetics. To further understand differential suppression of hepatic cytochrome P450 (P450) activity, we examined the inhibitory effect of nitric oxide (NO), a marker of allergic conditions. Seven days after primary sensitization (PS7) or secondary sensitization (SS7), hepatic CYP1A2, CYP2C, CYP2E1, and CYP3A activities were decreased to 45%-75% of the corresponding control; however, CYP2D activity was not downregulated. PS7 and SS7 did not change the expression levels of five P450 proteins. Disappearance of CYP1A2 and CYP2D substrates from the plasma was not significantly different between allergic mice and control mice. In contrast, the area under the curve of a CYP1A2-mediated metabolite in PS7 and SS7 mice was reduced by 50% of control values. Total clearances of a CYP2E1 substrate in PS7 and SS7 mice were significantly decreased to 70% and 50% respectively, of the control without altering plasma protein binding. Hepatic amounts of CYP1A2 and CYP2E1 substrates were enhanced by allergic induction, being responsible for each downregulated activity. NO scavenger treatment completely improved the downregulated P450 activities. Therefore, our data suggest that the onset of IgE-mediated allergy alters the pharmacokinetics of major P450-metabolic capacity-limited drugs except for CYP2D drugs. NO is highly expected to participate in regulatory mechanisms of the four P450 isoforms. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  19. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes.

    PubMed

    Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Grimmett, Paul E; Yadav, Jagjit S

    2013-04-01

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidized n-alkanes with various chain lengths (C9 to C12 and C15 to C19), as well as alkyl side chains (C3 to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills).

  20. CYP63A2, a Catalytically Versatile Fungal P450 Monooxygenase Capable of Oxidizing Higher-Molecular-Weight Polycyclic Aromatic Hydrocarbons, Alkylphenols, and Alkanes

    PubMed Central

    Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Grimmett, Paul E.

    2013-01-01

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidized n-alkanes with various chain lengths (C9 to C12 and C15 to C19), as well as alkyl side chains (C3 to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills). PMID:23416995

  1. Cytochrome P-450-catalyzed desaturation of valproic acid in vitro. Species differences, induction effects, and mechanistic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rettie, A.E.; Boberg, M.; Rettenmeier, A.W.

    1988-09-25

    The cytochrome P-450-mediated desaturation of valproic acid (VPA) to its hepatotoxic metabolite, 2-n-propyl-4-pentenoic acid (4-ene-VPA), was examined in liver microsomes from rats, mice, rabbits and humans. The highest substrate turnover was found with microsomes from rabbits (44.2 +/- 2.7 pmol of product/nmol P-450/15 min), while lower activities were observed in preparations from human, mouse, and rat liver, in that order. Pretreatment of animals with phenobarbital led to enhanced rates of formation of 4-ene-VPA in vitro and yielded induction ratios for desaturation ranging from 2.5 to 8.4, depending upon the species. Comparative studies in the rat showed that phenobarbital is amore » more potent inducer of olefin formation than either phenytoin or carbamazepine. The mechanism of the desaturation reaction was studied by inter- and intramolecular deuterium isotope effect experiments, which demonstrated that removal of a hydrogen atom from the subterminal C-4 position of VPA is rate limiting in the formation of both 4-ene- and 4-hydroxy-VPA. Hydroxylation at the neighboring C-5 position, on the other hand, was highly sensitive to deuterium substitution at that site, but not to deuteration at C-4. Based on these findings, it is proposed that 4-ene- and 4-hydroxy-VPA are products of a common P-450-dependent metabolic pathway, in which a carbon-centered free radical at C-4 serves as the key intermediate. 5-Hydroxy-VPA, in contrast, derives from an independent hydroxylation reaction.« less

  2. High-yield expression and purification of isotopically labeled cytochrome P450 monooxygenases for solid-state NMR spectroscopy

    PubMed Central

    Rupasinghe, Sanjeewa G.; Duan, Hui; Frericks Schmidt, Heather L.; Berthold, Deborah A.; Rienstra, Chad M.; Schuler, Mary A.

    2008-01-01

    Cytochrome P450 monooxygenases (P450s), which represent the major group of drug metabolizing enzymes in humans, also catalyze important synthetic and detoxicative reactions in insects, plants and many microbes. Flexibilities in their catalytic sites and membrane associations are thought to play central roles in substrate binding and catalytic specificity. To date, E. coli expression strategies for structural analysis of eukaryotic membrane-bound P450s by X-ray crystallography have necessitated full or partial removal of their N-terminal signal anchor domain (SAD) and, often, replacement of residues more peripherally associated with the membrane (such as the F-G loop region). Even with these modifications, investigations of P450 structural flexibility remain challenging with multiple single crystal conditions needed to identify spatial variations between substrate-free and different substrate-bound forms. To overcome these limitations, we have developed methods for the efficient expression of 13C- and 15N-labeled P450s and analysis of their structures by magic-angle spinning solid-state NMR (SSNMR) spectroscopy. In the presence of co-expressed GroEL and GroES chaperones, full-length (53 kDa) Arabidopsis 13C,15N-labeled CYP98A3 is expressed at yields of 2–4 mg per liter of minimal media without the necessity of generating side chain modifications or N-terminal deletions. Precipitated CYP98A3 generates high quality SSNMR spectra consistent with a homogeneous, folded protein. These data highlight the potential of these methodologies to contribute to the structural analysis of membrane-bound proteins. PMID:18005930

  3. Catalysis by cytochrome P-450 of an oxidative reaction in xenobiotic aldehyde metabolism: deformylation with olefin formation.

    PubMed Central

    Roberts, E S; Vaz, A D; Coon, M J

    1991-01-01

    As we have briefly described elsewhere, cytochrome P-450 catalyzes the oxidative deformylation of cyclohexane carboxaldehyde to yield cyclohexene and formic acid in a reaction believed to involve a peroxyhemiacetal-like adduct formed between the substrate and molecular oxygen-derived hydrogen peroxide. This reaction is a useful model for the demethylation reactions catalyzed by the steroidogenic P-450s, aromatase, and lanosterol demethylase. In the present study, the cytochrome P-450-catalyzed formation of olefinic products from a series of xenobiotic aldehydes has been demonstrated. Isobutyraldehyde and trimethylacetaldehyde, but not propionaldehyde, are converted to the predicted olefinic products, suggesting a requirement for branching at the alpha carbon. In addition, the four C5 aldehydes of similar hydrophobicity were compared for their ability to undergo the reaction. The straight-chain valeraldehyde gave no olefinic products with five different rabbit liver microsomal P-450 isozymes. However, increasing activity was seen with the other isomers in the order of isovaleraldehyde, 2-methylbutyraldehyde, and trimethylacetaldehyde, with all of the P-450 cytochromes. The catalytic rate with trimethylacetaldehyde is highest with antibiotic-inducible P-450 form 3A6, followed by phenobarbital-inducible form 2B4 and ethanol-inducible form 2E1. Citronellal, a beta-branched aldehyde that is found in many essential oils and is widely used as an odorant and a flavorant, was found to undergo the oxidative deformylation reaction to yield 2,6-dimethyl-1,5-heptadiene, but only with P-450 2B4. The oxidative cleavage reaction with olefin formation appears to be widespread, as judged by the variety of aldehydes that serve as substrates and of P-450 cytochromes that serve as catalysts. PMID:1924356

  4. The Use of Human Liver Cell Model and Cytochrome P450 Substrate-Inhibitor Panel for Studies of Dasatinib and Warfarin Interactions.

    PubMed

    Zakharyants, A A; Burmistrova, O A; Poloznikov, A A

    2017-02-01

    The possibility of interactions between warfarin and dasatinib and their interactions with other drugs metabolized by cytochrome P450 isoform CYP3A4 was demonstrated using a previously created cytochrome P450 substrate-inhibitor panel for preclinical in vitro studies of drug biotransformation on a 3D histotypical microfluidic cell model of human liver (liver-on-a-chip technology). Dasatinib and warfarin are inhibitors of CYP2C19 isoform and hence, can interfere the drugs metabolized by this isoform. Our findings are in line with the data obtained on primary culture of human hepatocytes and suggest that the model can be used in preclinical in vitro studies of drugs.

  5. Evidence for communality in the primary determinants of CYP74 catalysis and of structural similarities between CYP74 and classical mammalian P450 enzymes.

    PubMed

    Hughes, Richard K; Yousafzai, Faridoon K; Ashton, Ruth; Chechetkin, Ivan R; Fairhurst, Shirley A; Hamberg, Mats; Casey, Rod

    2008-09-01

    In silico structural analysis of CYP74C3, a membrane-associated P450 enzyme from the plant Medicago truncatula (barrel medic) with hydroperoxide lyase (HPL) specificity, showed that it had strong similarities to the structural folds of the classical microsomal P450 enzyme from rabbits (CYP2C5). It was not only the secondary structure predictions that supported the analysis but site directed mutagenesis of the substrate interacting residues was also consistent with it. This led us to develop a substrate-binding model of CYP74C3 which predicted three amino acid residues, N285, F287, and G288 located in the putative I-helix and distal haem pocket of CYP74C3 to be in close proximity to the preferred substrate 13-HPOTE. These residues were judged to be in equivalent positions to those identified in SRS-4 of CYP2C5. Significance of the residues and their relevance to the model were further assessed by site directed mutagenesis of the three residues followed by EPR spectroscopic and detailed kinetic investigations of the mutated proteins in the presence and absence of detergent. Although point mutation of the residues had no effect on the haem content of the mutated proteins, significant effects on the spin state equilibrium of the haem iron were noted. Kinetic effects of the mutations, which were investigated using three different substrates, were dramatic in nature. In the presence of detergent with the preferred substrate (13-HPOTE), the catalytic center activities and substrate binding affinities of the mutant proteins were reduced by a factor of 8-32 and 4-12, respectively, compared with wild-type--a two orders of magnitude reduction in catalytic efficiencies. We believe this is the first report where primary determinants of catalysis for any CYP74 enzyme, which are fully consistent with our model, have been identified. Our working model predicts that N285 is close enough to suggest that a hydrogen bond with the peroxy group of the enzyme substrate 13-HPOTE is warranted, whereas significance of F287 may arise from a strong hydrophobic interaction between the alkyl group(s) of the substrate and the phenyl ring of F287. We believe that G288 is crucial because of its size. Any other residue with a relatively bulky side chain will hinder the access of substrate to the active site. The effects of the mutations suggests that subtle protein conformational changes in the putative substrate-binding pocket regulate the formation of a fully active monomer-micelle complex with low-spin haem iron and that structural communication exists between the substrate- and micelle-binding sites of CYP74C3. Conservation in CYP74 sequence alignments suggests that N285, F287, and G288 in CYP74C3 and the equivalent residues at positions in other CYP74 enzymes are likely to be critical to catalysis. To support this we show that G324 in CYP74D4 (Arabidopsis AOS), equivalent to G288 in CYP74C3, is a primary determinant of positional specificity. We suggest that the overall structure of CYP74 enzymes is likely to be very similar to those described for classical P450 monooxygenase enzymes. 2008 Wiley-Liss, Inc.

  6. Cytochrome P450-mediated hepatic metabolism of new fluorescent substrates in cats and dogs.

    PubMed

    van Beusekom, C D; Schipper, L; Fink-Gremmels, J

    2010-12-01

    This study aimed to investigate the biotransformation of cat liver microsomes in comparison to dogs and humans using a high throughput method with fluorescent substrates and classical inhibitors specific for certain isozymes of the human cytochrome P450 (CYP) enzyme family. The metabolic activities associated with CYP1A, CYP2B, CYP2C, CYP2D, CYP2E and CYP3A were measured. Cat liver microsomes metabolized all substrates selected for the assessment of cytochrome P450 activity. The activities associated with CYP3A and CYP2B were higher than the activities of the other measured CYPs. Substrate selectivity could be demonstrated by inhibition studies with α-naphthoflavone (CYP1A), tranylcypromine/quercetine (CYP2C), quinidine (CYP2D), diethyldithiocarbamic acid (CYP2E) and ketoconazole (CYP3A) respectively. Other prototypical inhibitors used for characterization of human CYP activities such as furafylline (CYP1A), tranylcypromine (CYP2B) and sulfaphenazole (CYP2C) did not show significant effects in cat and dog liver microsomes. Moreover, IC50-values of cat CYPs differed from dog and human CYPs underlining the interspecies differences. Gender differences were observed in the oxidation of 7-ethoxy-4-trifluoromethylcoumarin (CYP2B) and 3-[2-(N, N-diethyl-N-methylamino)ethyl]-7-methoxy-4-methylcoumarin (CYP2D), which were significantly higher in male cats than in females. Conversely, oxidation of the substrates dibenzylfluorescein (CYP2C) and 7-methoxy-4-trifluoromethylcoumarin (CYP2E) showed significant higher activities in females than in male cats. Overall CYP-activities in cat liver microsomes were lower than in those from dogs or humans, except for CYP2B. The presented difference between feline and canine CYP-activities are useful to establish dose corrections for feline patients of intensively metabolized drugs licensed for dogs or humans. © 2010 Blackwell Publishing Ltd.

  7. Intermediates in the reaction of substrate-free cytochrome P450cam with peroxy acetic acid.

    PubMed

    Schünemann, V; Jung, C; Trautwein, A X; Mandon, D; Weiss, R

    2000-08-18

    Freeze-quenched intermediates of substrate-free cytochrome 57Fe-P450(cam) in reaction with peroxy acetic acid as oxidizing agent have been characterized by EPR and Mossbauer spectroscopy. After 8 ms of reaction time the reaction mixture consists of approximately 90% of ferric low-spin iron with g-factors and hyperfine parameters of the starting material; the remaining approximately 10% are identified as a free radical (S' = 1/2) by its EPR and as an iron(IV) (S= 1) species by its Mossbauer signature. After 5 min of reaction time the intermediates have disappeared and the Mossbauer and EPR-spectra exhibit 100% of the starting material. We note that the spin-Hamiltonian analysis of the spectra of the 8 ms reactant clearly reveals that the two paramagnetic species, e.g. the ferryl (iron(IV)) species and the radical, are not exchanged coupled. This led to the conclusion that under the conditions used, peroxy acetic acid oxidized a tyrosine residue (probably Tyr-96) into a tyrosine radical (Tyr*-96), and the iron(III) center of substrate-free P450(cam) to iron(IV).

  8. The interaction of representative members from two classes of antimycotics--the azoles and the allylamines--with cytochromes P-450 in steroidogenic tissues and liver.

    PubMed

    Schuster, I

    1985-06-01

    Spectrophotometric studies with ketoconazole, clotrimazole and miconazole show strong type-II interactions with several cytochromes P-450, particularly (Ks greater than 10(7)M-1; pH7.4; 25 degrees C) with the 11 beta-hydroxylase of adrenal mitochondria, with the 17 alpha/20 lyase of testis microsomes and with some forms of cytochromes P-450 of liver. A tight binding of the azoles also occurs to the reduced cytochromes, giving rise to an impeded CO binding to the haem iron. The binding of the azoles to 11 beta-hydroxylase and 17 alpha/20 lyase is much tighter than the binding of endogenous substrates, and consequently inhibition of steroidogenesis will occur at these sites. The metabolism of xenobiotic substrates by the cytochromes P-450 of liver will also be severely impeded. In contrast, the allylamines naftifine and SF 86-327 are type-I substrates for a small portion of cytochromes P-450 of liver microsomes only and there is no spectral evidence for binding to the cytochromes P-450 involved in steroid biosynthesis.

  9. Molecular modeling of cytochrome P450 3A4

    NASA Astrophysics Data System (ADS)

    Szklarz, Grazyna D.; Halpert, James R.

    1997-05-01

    The three-dimensional structure of human cytochrome P450 3A4 was modeled based on crystallographic coordinates of four bacterial P450s: P450 BM-3, P450cam, P450terp, and P450eryF. The P450 3A4 sequence was aligned to those of the known proteins using a structure-based alignment of P450 BM-3, P450cam, P450terp, and P450eryF. The coordinates of the model were then calculated using a consensus strategy, and the final structure was optimized in the presence of water. The P450 3A4 model resembles P450 BM-3 the most, but the B' helix is similar to that of P450eryF, which leads to an enlarged active site when compared with P450 BM-3, P450cam, and P450terp. The 3A4 residues equivalent to known substrate contact residues of the bacterial proteins and key residues of rat P450 2B1 are located in the active site or the substrate access channel. Docking of progesterone into the P450 3A4 model demonstrated that the substrate bound in a 6β-orientation can interact with a number of active site residues, such as 114, 119, 301, 304, 305, 309, 370, 373, and 479, through hydrophobic interactions. The active site of the enzyme can also accommodate erythromycin, which, in addition to the residues listed for progesterone, also contacts residues 101, 104, 105, 214, 215, 217, 218, 374, and 478. The majority of 3A4 residues which interact with progesterone and/or erythromycin possess their equivalents in key residues of P450 2B enzymes, except for residues 297, 480 and 482, which do not contact either substrate in P450 3A4. The results from docking of progesterone and erythromycin into the enzyme model make it possible to pinpoint residues which may be important for 3A4 function and to target them for site-directed mutagenesis.

  10. Crystal structures of substrate-free and retinoic acid-bound cyanobacterial cytochrome P450 CYP120A1.

    PubMed

    Kühnel, Karin; Ke, Na; Cryle, Max J; Sligar, Stephen G; Schuler, Mary A; Schlichting, Ilme

    2008-06-24

    The crystal structures of substrate-free and all-trans-retinoic acid-bound CYP120A1 from Synechocystis sp. PCC 6803 were determined at 2.4 and 2.1 A resolution, respectively, representing the first structural characterization of a cyanobacterial P450. Features of CYP120A1 not observed in other P450 structures include an aromatic ladder flanking the channel leading to the active site and a triple-glycine motif within SRS5. Using spectroscopic methods, CYP120A1 is shown to bind 13-cis-retinoic acid, 9-cis-retinoic acid, and retinal with high affinity and dissociation constants of less than 1 microM. Metabolism of retinoic acid by CYP120A1 suggests that CYP120A1 hydroxylates a variety of retinoid derivatives in vivo. On the basis of the retinoic acid-bound CYP120A1 crystal structure, we propose that either carbon 2 or the methyl groups (C16 or C17) of the beta-ionone ring are modified by CYP120A1.

  11. Metabolism of agrochemicals and related environmental chemicals based on cytochrome P450s in mammals and plants.

    PubMed

    Ohkawa, Hideo; Inui, Hideyuki

    2015-06-01

    A yeast gene expression system originally established for mammalian cytochrome P450 monooxygenase cDNAs was applied to functional analysis of a number of mammalian and plant P450 species, including 11 human P450 species (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1 and CYP3A4). The human P450 species CYP1A1, CYP1A2, CYP2B6, CYP2C18 and CYP2C19 were identified as P450 species metabolising various agrochemicals and environmental chemicals. CYP2C9 and CYP2E1 specifically metabolised sulfonylurea herbicides and halogenated hydrocarbons respectively. Plant P450 species metabolising phenylurea and sulfonylurea herbicides were also identified mainly as the CYP71 family, although CYP76B1, CYP81B1 and CYP81B2 metabolised phenylurea herbicides. The transgenic plants expressing these mammalian and plant P450 species were applied to herbicide tolerance as well as phytoremediation of agrochemical and environmental chemical residues. The combined use of CYP1A1, CYP2B6 and CYP2C19 belonging to two families and three subfamilies covered a wide variety of herbicide tolerance and phytoremediation of these residues. The use of 2,4-D-and bromoxynil-induced CYP71AH11 in tobacco seemed to enhance herbicide tolerance and selectivity. © 2014 Society of Chemical Industry.

  12. Novel phacB-encoded cytochrome P450 monooxygenase from Aspergillus nidulans with 3-hydroxyphenylacetate 6-hydroxylase and 3,4-dihydroxyphenylacetate 6-hydroxylase activities.

    PubMed

    Ferrer-Sevillano, Francisco; Fernández-Cañón, José M

    2007-03-01

    Aspergillus nidulans catabolizes phenylacetate (PhAc) and 3-hydroxy-, 4-hydroxy-, and 3,4-dihydroxyphenylacetate (3-OH-PhAc, 4-OH-PhAc, and 3,4-diOH-PhAc, respectively) through the 2,5-dihydroxyphenylacetate (homogentisic acid) catabolic pathway. Using cDNA subtraction techniques, we isolated a gene, denoted phacB, which is strongly induced by PhAc (and its hydroxyderivatives) and encodes a new cytochrome P450 (CYP450). A disrupted phacB strain (delta phacB) does not grow on 3-hydroxy-, 4-hydroxy-, or 3,4-dihydroxy-PhAc. High-performance liquid chromatography and gas chromatography-mass spectrum analyses of in vitro reactions using microsomes from wild-type and several A. nidulans mutant strains confirmed that the phacB-encoded CYP450 catalyzes 3-hydroxyphenylacetate and 3,4-dihydroxyphenylacetate 6-hydroxylations to generate 2,5-dihydroxyphenylacetate and 2,4,5-trihydroxyphenylacetate, respectively. Both of these compounds are used as substrates by homogentisate dioxygenase. This cytochrome P450 protein also uses PhAc as a substrate to generate 2-OH-PhAc with a very low efficiency. The phacB gene is the first member of a new CYP450 subfamily (CYP504B).

  13. Novel phacB-Encoded Cytochrome P450 Monooxygenase from Aspergillus nidulans with 3-Hydroxyphenylacetate 6-Hydroxylase and 3,4-Dihydroxyphenylacetate 6-Hydroxylase Activities▿

    PubMed Central

    Ferrer-Sevillano, Francisco; Fernández-Cañón, José M.

    2007-01-01

    Aspergillus nidulans catabolizes phenylacetate (PhAc) and 3-hydroxy-, 4-hydroxy-, and 3,4-dihydroxyphenylacetate (3-OH-PhAc, 4-OH-PhAc, and 3,4-diOH-PhAc, respectively) through the 2,5-dihydroxyphenylacetate (homogentisic acid) catabolic pathway. Using cDNA subtraction techniques, we isolated a gene, denoted phacB, which is strongly induced by PhAc (and its hydroxyderivatives) and encodes a new cytochrome P450 (CYP450). A disrupted phacB strain (ΔphacB) does not grow on 3-hydroxy-, 4-hydroxy-, or 3,4-dihydroxy-PhAc. High-performance liquid chromatography and gas chromatography-mass spectrum analyses of in vitro reactions using microsomes from wild-type and several A. nidulans mutant strains confirmed that the phacB-encoded CYP450 catalyzes 3-hydroxyphenylacetate and 3,4-dihydroxyphenylacetate 6-hydroxylations to generate 2,5-dihydroxyphenylacetate and 2,4,5-trihydroxyphenylacetate, respectively. Both of these compounds are used as substrates by homogentisate dioxygenase. This cytochrome P450 protein also uses PhAc as a substrate to generate 2-OH-PhAc with a very low efficiency. The phacB gene is the first member of a new CYP450 subfamily (CYP504B). PMID:17189487

  14. Different structure of the complexes of two cytochrome P-450 isozymes with acetanilide by 1H-NMR relaxation and spectrophotometry.

    PubMed

    Woldman YaYu; Weiner, L M; Lyakhovich, V V

    1993-05-28

    The functional and spectral characteristics of the interaction of acetanilide with phenobarbital- and methylcholanthrene- induced rat liver microsomes, as well as with corresponding major isozymes (cytochromes P-450b and P-450c) have been compared. The magnitude of the reverse 1st type binding spectra proved to be negatively correlated with the acetanilide oxidation on isozymes under study. The data on paramagnetic relaxation of acetanilide protons in the presence of P-450 have shown the structure of the enzyme-substrate complex to be different for two isozymes, acetanilide molecule being closer to Fe ion in the active site in the case of P-450c, which is active towards acetanilide oxidation. For the P-450c-acetanilide complex the group oxidized (phenyl) is the closest to Fe ion.

  15. Re-engineering Cytochrome P450 2B11dH for Enhanced Metabolism of Several Substrates Including the Anti-cancer Prodrugs Cyclophosphamide and Ifosfamide

    PubMed Central

    Sun, Ling; Chen, Chong S.; Waxman, David J.; Liu, Hong; Halpert, James R.; Kumar, Santosh

    2007-01-01

    Based on recent directed evolution of P450 2B1, six P450 2B11 mutants at three positions were created in an N-terminal modified construct termed P450 2B11dH and characterized for enzyme catalysis using five substrates. Mutant I209A demonstrated a 3.2-fold enhanced kcat/Km for 7-ethoxy-4-trifluoromethylcourmarin O-deethylation, largely due to a dramatic decrease in Km (0.72 vs. 18 μM). I209A also demonstrated enhanced selectivity for testosterone 16β-hydroxylation over 16α-hydroxylation. In contrast, V183L showed a 4-fold increased kcat for 7-benzyloxyresorufin debenzylation and a 4.7-fold increased kcat/Km for testosterone 16α-hydroxylation. V183L also displayed a 1.7-fold higher kcat/Km than P450 2B11dH with the anti-cancer prodrugs cyclophosphamide and ifosfamide, resulting from a ~4-fold decrease in Km. Introduction of the V183L mutation into full-length P450 2B11 did not enhance the kcat/Km. Overall, the re-engineered P450 2B11dH enzymes exhibited enhanced catalytic efficiency with several substrates including the anti-cancer prodrugs. PMID:17254539

  16. Bonding temperature dependence of GaInAsP/InP laser diode grown on hydrophilically directly bonded InP/Si substrate

    NASA Astrophysics Data System (ADS)

    Aikawa, Masaki; Onuki, Yuya; Hayasaka, Natsuki; Nishiyama, Tetsuo; Kamada, Naoki; Han, Xu; Kallarasan Periyanayagam, Gandhi; Uchida, Kazuki; Sugiyama, Hirokazu; Shimomura, Kazuhiko

    2018-02-01

    The bonding-temperature-dependent lasing characteristics of 1.5 a µm GaInAsP laser diode (LD) grown on a directly bonded InP/Si substrate were successfully obtained. We have fabricated the InP/Si substrate using a direct hydrophilic wafer bonding technique at bonding temperatures of 350, 400, and 450 °C, and deposited GaInAsP/InP double heterostructure layers on this InP/Si substrate. The surface conditions, X-ray diffraction (XRD) analysis, photoluminescence (PL) spectra, and electrical characteristics after the growth were compared at these bonding temperatures. No significant differences were confirmed in X-ray diffraction analysis and PL spectra at these bonding temperatures. We realized the room-temperature lasing of the GaInAsP LD on the InP/Si substrate bonded at 350 and 400 °C. The threshold current densities were 4.65 kA/cm2 at 350 °C and 4.38 kA/cm2 at 400 °C. The electrical resistance was found to increase with annealing temperature.

  17. Potential herb-drug interaction of shexiang baoxin pill in vitro based on drug metabolism/transporter

    PubMed Central

    Shen, Zhijie; Wang, Yingjie; Guo, Wei; Yao, Yili; Wang, Xiaolong

    2016-01-01

    Many researches have proved functions of anti-oxidation, endothelial protection and pro-angiogenesis efficiency of Shexiang Baoxin Pill (SBP). This study aims to investigate potential for metabolism-based interaction on CYP450s and transporter based interaction on OATP1B1, BRCP and MDR1. Human primary hepatocytes were used in this study. Probe substrates of cytochrome P450 enzymes were incubated in human liver microsomes (HLMs) with or without SBP and IC50 values were estimated. Inhibitive potential of SBP on activities of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4 was evaluated. Inducible potential of SBP on activities of CYP1A2, 2B6 and 3A4 was accessed. Inhibitive potential of SBP on human OATP1B1 was evaluated using cell-based assay. Inhibitive potential of SBP on human MDR1 and BCRP was also evaluated using vesicles assay. MDR1 and BCRP vesicle kit were used to determine ATP dependent uptake activity when incubated with SBP. SBP was a competitive inhibitor of CYP2B6, 2C19, while neither inhibitory nor inductive potentials toward other CYP450s were detected. No significant MDR1 inhibitory potential was estimated, while only high concentration of SBP (500 μg/ml) could inhibit activity of BCRP. Probe substrates Estradiol-17 β-glucuronide was incubated in HEK293-OATP1B1 and HEK293-MOCK cell system with different concentration of SBP and estimated IC50 was 179 μg/mL, which demonstrated a moderate inhibition potential against OATP1B1. In conclusion, outcome of this study suggests that SBP plays an important role in inhibition of CYP450 isozymes (including CYP2B6 and 2C9) and transporter OATP1B1. Therefore, precautions should be taken when using SBP for CYP and OATP-related herb-drug interactions. PMID:28078025

  18. Human reductive halothane metabolism in vitro is catalyzed by cytochrome P450 2A6 and 3A4.

    PubMed

    Spracklin, D K; Thummel, K E; Kharasch, E D

    1996-09-01

    The anesthetic halothane undergoes extensive oxidative and reductive biotransformation, resulting in metabolites that cause hepatotoxicity. Halothane is reduced anaerobically by cytochrome P450 (P450) to the volatile metabolites 2-chloro-1,1-difluoroethene (CDE) and 2-chloro-1,1,1-trifluoroethane (CTE). The purpose of this investigation was to identify the human P450 isoform(s) responsible for reductive halothane metabolism. CDE and CTE formation from halothane metabolism by human liver microsomes was determined by GC/MS analysis. Halothane metabolism to CDE and CTE under reductive conditions was completely inhibited by carbon monoxide, which implicates exclusively P450 in this reaction. Eadie-Hofstee plots of both CDE and CTE formation were nonlinear, suggesting multiple P450 isoform involvement. Microsomal CDE and CTE formation were each inhibited 40-50% by P450 2A6-selective inhibitors (coumarin and 8-methoxypsoralen) and 55-60% by P450 3A4-selective inhibitors (ketoconazole and troleandomycin). P450 1A-, 2B6-, 2C9/10-, and 2D6-selective inhibitors (7,8-benzoflavone, furafylline, orphenadrine, sulfaphenazole, and quinidine) had no significant effect on reductive halothane metabolism. Measurement of product formation catalyzed by a panel of cDNA-expressed P450 isoforms revealed that maximal rates of CDE formation occurred with P450 2A6, followed by P450 3A4. P450 3A4 was the most effective catalyst of CTE formation. Among a panel of 11 different human livers, there were significant linear correlations between the rate of CDE formation and both 2A6 activity (r = 0.64, p < 0.04) and 3A4 activity (r = 0.64, p < 0.03). Similarly, there were significant linear correlations between CTE formation and both 2A6 activity (r = 0.55, p < 0.08) and 3A4 activity (r = 0.77, p < 0.005). The P450 2E1 inhibitors 4-methylpyrazole and diethyldithiocarbamate inhibited CDE and CTE formation by 20-45% and 40-50%, respectively; however, cDNA-expressed P450 2E1 did not catalyze significant amounts of CDE or CTE production, and microsomal metabolite formation was not correlated with P450 2E1 activity. This investigation demonstrated that human liver microsomal reductive halothane metabolism is catalyzed predominantly by P450 2A6 and 3A4. This isoform selectivity for anaerobic halothane metabolism contrasts with that for oxidative human halothane metabolism, which is catalyzed predominantly by P450 2E1.

  19. High throughput assay for cytochrome P450 BM3 for screening libraries of substrates and combinatorial mutants.

    PubMed

    Tsotsou, Georgia Eleni; Cass, Anthony Edward George; Gilardi, Gianfranco

    2002-01-01

    A rapid method for identifying compounds that are potential substrates for the drug metabolising enzyme cytochrome P450 is described. The strategy is based on the detection of a degradation product of NAD(P)H oxidation during substrate turnover by the enzyme expressed in Escherichia coli cells spontaneously lysed under the experimental conditions. The performance of the method has been tested on two known substrates of the wild-type cytochrome P450 BM3, arachidonic (AA) and lauric (LA) acids, and two substrates with environmental significance, the anionic surfactant sodium dodecyl sulfate (SDS), and the solvent 1,1,2,2-tetrachloroethane (TCE). The minimal background signal given from cells expressing cytochrome P450 BM3 in the absence of added substrate is only 3% of the signal in the presence of saturating substrate. Control experiments have proven that this method is specifically detecting NADPH oxidation by catalytic turnover of P450 BM3. The assay has been adapted to a microtitre plate format and used to screen a series of furazan derivatives as potential substrates. Three derivatives were identified as substrates. The method gave a significant different signal for two isomeric furazan derivatives. All results found on the cell lysate were verified and confirmed with the purified enzyme. This strategy opens the way to automated high throughput screening of NAD(P)H-linked enzymatic activity of molecules of pharmacological and biotechnological interest and libraries of random mutants of NAD(P)H-dependent biocatalysts.

  20. CYP2J2 and CYP2C19 Are the Major Enzymes Responsible for Metabolism of Albendazole and Fenbendazole in Human Liver Microsomes and Recombinant P450 Assay Systems

    PubMed Central

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk

    2013-01-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo. PMID:23959307

  1. CYP2J2 and CYP2C19 are the major enzymes responsible for metabolism of albendazole and fenbendazole in human liver microsomes and recombinant P450 assay systems.

    PubMed

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk; Lee, Taeho; Liu, Kwang-Hyeon

    2013-11-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo.

  2. Electrochemistry of cytochrome P450 17α-hydroxylase/17,20-lyase (P450c17).

    PubMed

    Martin, Lisandra L; Kubeil, Clemens; Simonov, Alexandr N; Kuznetsov, Vladimir L; Corbin, C Jo; Auchus, Richard J; Conley, Alan J; Bond, Alan M; Rodgers, Raymond J

    2017-02-05

    Within the superfamily of cytochrome P450 enzymes (P450s), there is a small class which is functionally employed for steroid biosynthesis. The enzymes in this class appear to have a small active site to accommodate the steroid substrates specifically and snuggly, prior to the redox transformation or hydroxylation to form a product. Cytochrome P450c17 is one of these and is also a multi-functional P450, with two activities, the first 17α-hydroxylation of pregnenolone is followed by a subsequent 17,20-lyase transformation to dehydroepiandrosterone (DHEA) as the dominant pathways to cortisol precursors or androgens in humans, respectively. How P450c17 regulates these two redox reactions is of special interest. There is a paucity of direct electrochemical studies on steroidogenic P450s, and in this mini-review we provide an overview of these studies with P450c17. Historical consideration as to the difficulties in obtaining reliable electrochemistry due to issues of handling proteins on an electrode, together with advances in the electrochemical techniques are addressed. Recent work using Fourier transformed alternating current voltammetry is highlighted as this technique can provide both catalytic information simultaneously with the underlying redox transfer with the P450 haem. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Cytochrome P-450 isoforms involved in carboxylic acid ester cleavage of Hantzsch pyridine ester of pranidipine.

    PubMed

    Kudo, S; Okumura, H; Miyamoto, G; Ishizaki, T

    1999-02-01

    Cytochrome P-450 (CYP) isoforms responsible for the cleavage of Hantzsch pyridine ester at the 3-position of pranidipine were studied in vitro using cDNA-expressed human CYP enzymes. CYP1A1, 1A2, 2D6, and 3A4 cleaved the ester with a catalytic activity of 5.5, 0. 93, 13.1, and 22.4 nmol/30 min/nmol P-450, respectively. CYP2A6, 2B6, 2C8, 2C9, 2C19, and 2E1 were not involved in the de-esterification. The Km and Vmax values for the de-esterification were 11.8 microM and 0.47 nmol/min/nmol P-450 in the CYP2D6-catalyzed reaction and 8. 7 microM and 0.84 nmol/min/nmol P-450 in the CYP3A4-catalyzed reaction. The intrinsic clearance (Vmax/Km) of the de-esterification by CYP3A4 was 2-fold greater than that by CYP2D6. Quinidine almost completely inhibited the CYP2D6-mediated de-esterification at the concentration of 1 x 10(-6) M. Ketoconazole and troleandomycin inhibited the CYP3A4-mediated reaction in a dose-related manner. The results indicate that although the multiple CYP isoforms can catalyze the de-esterification, CYP3A4 and 2D6 are the major isoforms.

  4. Inhibitors of steroidal cytochrome p450 enzymes as targets for drug development.

    PubMed

    Baston, Eckhard; Leroux, Frédéric R

    2007-01-01

    Cytochrome P450's are enzymes which catalyze a large number of biological reactions, for example hydroxylation, N-, O-, S- dealkylation, epoxidation or desamination. Their substrates include fatty acids, steroids or prostaglandins. In addition, a high number of various xenobiotics are metabolized by these enzymes. The enzyme 17alpha-hydroxylase-C17,20-lyase (P450(17), CYP 17, androgen synthase), a cytochrome P450 monooxygenase, is the key enzyme for androgen biosynthesis. It catalyzes the last step of the androgen biosynthesis in the testes and adrenal glands and produces androstenedione and dehydroepiandrosterone from progesterone and pregnenolone. The microsomal enzyme aromatase (CYP19) transforms these androgens to estrone and estradiol. Estrogens stimulate tumor growth in hormone dependent breast cancer. In addition, about 80 percent of prostate cancers are androgen dependent. Selective inhibitors of these enzymes are thus important alternatives to treatment options like antiandrogens or antiestrogens. The present article deals with recent patents (focus on publications from 2000 - 2006) concerning P450 inhibitor design where steroidal substrates are involved. In this context a special focus is provided for CYP17 and CYP19. Mechanisms of action will also be discussed. Inhibitors of CYP11B2 (aldosterone synthase) will also be dealt with.

  5. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspera, Ruediger; Sahele, Tariku; Lakatos, Kyle

    Highlights: Black-Right-Pointing-Pointer Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k{sub cat} {approx} 25 min{sup -1}). Black-Right-Pointing-Pointer Reduction is a direct hydride transfer from R-NADP{sup 2}H to the carbonyl moiety. Black-Right-Pointing-Pointer P450 domain variants enhance reduction through potential allosteric/redox interactions. Black-Right-Pointing-Pointer Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k{sub cat} of {approx}25 min{sup -1} was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. Themore » reduction was caused by a direct hydride transfer from preferentially R-NADP{sup 2}H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP{sup 2}H but not D{sub 2}O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.« less

  6. The genetic and functional basis of isolated 17,20-lyase deficiency.

    PubMed

    Geller, D H; Auchus, R J; Mendonça, B B; Miller, W L

    1997-10-01

    Human male sexual differentiation requires production of fetal testicular testosterone, whose biosynthesis requires steroid 17,20-lyase activity. Patients with putative isolated 17,20-lyase deficiency have been reported. The existence of true isolated 17,20-lyase deficiency, however, has been questioned because 17 alpha-hydroxylase and 17,20-lyase activities are catalyzed by a single enzyme, microsomal cytochrome P450c17, and because the index case of apparent isolated 17,20-lyase deficiency had combined deficiencies of both activities. We studied two patients with clinical and hormonal findings suggestive of isolated 17,20-lyase deficiency. We found two patients homozygous for substitution mutations in CYP17, the gene encoding P450c17. When expressed in COS-1 cells, the mutants retained 17 alpha-hydroxylase activity but had minimal 17,20-lyase activity. Substrate competition experiments suggested that the mutations did not alter the enzyme's substrate-binding capacity, but co-transfection of cells with P450 oxidoreductase, the electron donor used by P450c17, indicated that the mutants had a diminished ability to interact with redox partners. Computer-graphic modelling of P450c17 suggests that both mutations lie in or near the redox-partner binding site, on the opposite side of the haem from the substrate-binding pocket. These mutations alter electrostatic charge distribution in the redox-partner binding site, so that electron transfer for the 17,20-lyase reaction is selectively lost or diverted to uncoupling reactions. These are the first proven cases of isolated 17,20-lyase deficiency, and they demonstrate a novel mechanism for loss of enzymatic activity.

  7. Comparison of intrinsic dynamics of cytochrome p450 proteins using normal mode analysis

    PubMed Central

    Dorner, Mariah E; McMunn, Ryan D; Bartholow, Thomas G; Calhoon, Brecken E; Conlon, Michelle R; Dulli, Jessica M; Fehling, Samuel C; Fisher, Cody R; Hodgson, Shane W; Keenan, Shawn W; Kruger, Alyssa N; Mabin, Justin W; Mazula, Daniel L; Monte, Christopher A; Olthafer, Augustus; Sexton, Ashley E; Soderholm, Beatrice R; Strom, Alexander M; Hati, Sanchita

    2015-01-01

    Cytochrome P450 enzymes are hemeproteins that catalyze the monooxygenation of a wide-range of structurally diverse substrates of endogenous and exogenous origin. These heme monooxygenases receive electrons from NADH/NADPH via electron transfer proteins. The cytochrome P450 enzymes, which constitute a diverse superfamily of more than 8,700 proteins, share a common tertiary fold but < 25% sequence identity. Based on their electron transfer protein partner, cytochrome P450 proteins are classified into six broad classes. Traditional methods of pro are based on the canonical paradigm that attributes proteins' function to their three-dimensional structure, which is determined by their primary structure that is the amino acid sequence. It is increasingly recognized that protein dynamics play an important role in molecular recognition and catalytic activity. As the mobility of a protein is an intrinsic property that is encrypted in its primary structure, we examined if different classes of cytochrome P450 enzymes display any unique patterns of intrinsic mobility. Normal mode analysis was performed to characterize the intrinsic dynamics of five classes of cytochrome P450 proteins. The present study revealed that cytochrome P450 enzymes share a strong dynamic similarity (root mean squared inner product > 55% and Bhattacharyya coefficient > 80%), despite the low sequence identity (< 25%) and sequence similarity (< 50%) across the cytochrome P450 superfamily. Noticeable differences in Cα atom fluctuations of structural elements responsible for substrate binding were noticed. These differences in residue fluctuations might be crucial for substrate selectivity in these enzymes. PMID:26130403

  8. Methoxyflurane acts at the substrate binding site of cytochrome P450 LM2 to induce a dependence on cytochrome b5.

    PubMed

    Lipka, J J; Waskell, L A

    1989-01-01

    Rabbit cytochrome P450 isozyme 2 requires cytochrome b5 to metabolize the volatile anesthetic methoxyflurane but not the substrate benzphetamine [E. Canova-Davis and L. Waskell (1984) J. Biol. Chem. 259, 2541-2546]. To determine whether the requirement for cytochrome b5 for methoxyflurane oxidation is mediated by an allosteric effect on cytochrome P450 LM2 or cytochrome P450 reductase, we have investigated whether this anesthetic can induce a role for cytochrome b5 in benzphetamine metabolism. Using rabbit liver microsomes and antibodies raised in guinea pigs against rabbit cytochrome b5, we found that methoxyflurane did not create a cytochrome b5 requirement for benzphetamine metabolism. Methoxyflurane also failed to induce a role for cytochrome b5 in benzphetamine metabolism in the purified, reconstituted mixed function oxidase system. Studies of the reaction kinetics established that in the absence of cytochrome b5, methoxyflurane and benzphetamine are competitive inhibitors, and that in the presence of cytochrome b5, benzphetamine and methoxyflurane are two alternate substrates in competition for a single site on the same enzyme. These results all indicate that the methoxyflurane-induced cytochrome b5 dependence of the mixed function oxidase cytochrome P450 LM2 system is a direct result of the interaction between methoxyflurane and the substrate binding site of cytochrome P450 LM2 and suggest the focus of future studies of this question.

  9. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes

    EPA Science Inventory

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was fo...

  10. Biotransformation of 2,2',5,5'-tetrachlorobiphenyl (PCB 52) and 3,3',4,4'-tetrachlorobiphenyl (PCB 77) by liver microsomes from four species of sea turtles.

    PubMed

    Richardson, Kristine L; Schlenk, Daniel

    2011-05-16

    The rates of oxidative metabolism of two tetrachlorobiphenyl congeners were determined in hepatic microsomes from four species of sea turtles, green (Chelonia mydas), olive ridley (Lepidochelys olivacea), loggerhead (Caretta caretta), and hawksbill (Eretmochelys imbricata). Hydroxylation of 3,3',4,4'-tetrachlorobiphenyl (PCB 77), an ortho-meta unsubstituted rodent cytochrome P450 (P450) 1A substrate PCB, was not observed in sea turtle microsomes. Sea turtle microsomes hydroxylated 2,2',5,5'-tetrachlorobiphenyl (PCB 52), a meta-para unsubstituted rodent P450 family 2 substrate PCB, at rates ranging from less than 0.5 to 53 pmol/min/mg protein. The P450 inhibitor ketoconazole inhibited hydroxylation of PCB 52, supporting the role of P450 catalysis. Sea turtle PCB 52 hydroxlyation rates strongly correlated with immunodetected P450 family 2-like and less so with P450 family 3-like hepatic proteins. Testosterone 6β-, 16α-, 16β-hydroxylase activities were also significantly correlated with the expression of these enzymes, indicating that P450 family 2 or P450 family 3 proteins are responsible for PCB hydroxylation in sea turtles. This study indicated species-specific PCB biotransformation in sea turtles and preferential elimination of meta-para unsubstituted PCB congeners over ortho-meta unsubstituted PCB congeners consistent with PCB accumulation patterns observed in tissues of sea turtles.

  11. The effect of the cytochrome P450 CYP2C8 polymorphism on the disposition of (R)-ibuprofen enantiomer in healthy subjects

    PubMed Central

    Martínez, Carmen; García-Martín, Elena; Blanco, Gerardo; Gamito, Francisco J G; Ladero, José M; Agúndez, José A G

    2005-01-01

    Aims To study the effect of CYP2C8*3, the most common CYP2C8 variant allele on the dis-position of (R)-ibuprofen and the association of CYP2C8*3 with variant CYP2C9 alleles. Methods Three hundred and fifty-five randomly selected Spanish Caucasians were screened for the common CYP2C8 and CYP2C9 mutations. The pharmacokinetics of (R)-ibuprofen were studied in 25 individuals grouped into different CYP2C8 genotypes. Results The allele frequency of CYP2C8*3 (0.17) was found to be higher than that reported for other Caucasian populations (P = 0.0001). The frequencies of CYP2C9*2 and CYP2C9*3 were 0.19 (0.16–0.21) and 0.10 (0.08–0.12), respectively. An association between CYP2C8*3 and CYP2C9*2 alleles was observed, occurring together at a frequency 2.4-fold higher than expected for a random association of alleles (P = 0.0001). The presence of the CYP2C8*3 allele was found to influence the pharmacokinetics of (R)-ibuprofen in a gene–dose effect manner. Thus, after administration of 400 mg ibuprofen, the plasma half-life (95% confidence intervals) for individuals with genotypes CYP2C8*1/*1, CYP2C8*1/*3 and CYP2C8*3/*3, was 2.0 h (1.8–2.2), 4.2 h (1.9–6.5; P < 0.05) and 9.0 h (7.8–10.2; P < 0.002), respectively. A statistically significant trend with respect to the number of variant CYP2C8*3 alleles was also observed for the area under the concentration-time curve (P < 0.025), and drug clearance (P < 0.03). Conclusion Polymorphism of the CYP2C8 gene was found to be common, with nearly 30% of the population studied carrying the variant CYP2C8*3 allele. The presence of the latter caused a significant effect on the disposition of (R)-ibuprofen. This suggests that a substantial proportion of Caucasian subjects may show alterations in the disposition of drugs that are CYP2C8 substrates. PMID:15606441

  12. Effects of oxidation-nitridation in the presence of water vapor on ASTM A335 P92 steel using SEM-EDS and XPS characterization techniques

    NASA Astrophysics Data System (ADS)

    Orozco, J. C.; Kafarov, V.; Y Peña, D.; Alviz, A.

    2017-12-01

    This research studies the physical and chemical changes in steel ASTM A335 P92, produced from a typical refinery corrosion environment. The environment evaluated was oxidation-nitridation with the presence of water vapor. In this study five (5) exposure times were selected: 1, 20, 50, 100 and 200 hours; As well as two (2) analysis temperatures: 450 and 550°C. The working pressure used was one (1) atmosphere. Bearing in mind the kinetic study, the behaviour shown in ASTM A335 P92 steel describes an accelerated growth until 50 hours, after this time growth is less. For the tests carried out at 450°C, the kinetic constant was 2x10-8g2mm-4h-1, as well as for 550°C the calculated kinetic constant was 3.1×10-7g2mm-4h-1 through the SEM-EDS characterization techniques, it was possible to appreciate a good adhesion and homogeneity of the layers formed on the metal matrix until a time of exposure of 100 hours at 450 and 550°C, different from that evidenced to 200 hours of exposure where the layer formed near to the substrate showed detachment, this is attributed to the formation of hydroxides product of water vapor. Among the results obtained are the elemental composition, the presence of nitrides such as Si3N4, also NSiO2 and NSi2O, molybdenum oxides: MoO2 and MoO3 and iron oxides: FeO and Fe2O3 can be evidenced.

  13. YouScript IMPACT Registry

    ClinicalTrials.gov

    2017-02-27

    Adverse Drug Events; Adverse Drug Reactions; Drug Interaction Potentiation; Drug Metabolism, Poor, CYP2D6-RELATED; Drug Metabolism, Poor, CYP2C19-RELATED; Cytochrome P450 Enzyme Deficiency; Cytochrome P450 CYP2D6 Enzyme Deficiency; Cytochrome P450 CYP2C9 Enzyme Deficiency; Cytochrome P450 CYP2C19 Enzyme Deficiency; Cytochrome P450 CYP3A Enzyme Deficiency; Poor Metabolizer Due to Cytochrome P450 CYP2C9 Variant; Poor Metabolizer Due to Cytochrome P450 CYP2C19 Variant; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  14. Pharmacogenetic Testing Among Home Health Patients

    ClinicalTrials.gov

    2016-09-20

    Adverse Drug Events; Adverse Drug Reactions; Drug Interaction Potentiation; Drug Metabolism, Poor, CYP2D6-RELATED; Drug Metabolism, Poor, CYP2C19-RELATED; Cytochrome P450 Enzyme Deficiency; Cytochrome P450 CYP2D6 Enzyme Deficiency; Cytochrome P450 CYP2C9 Enzyme Deficiency; Cytochrome P450 CYP2C19 Enzyme Deficiency; Cytochrome P450 CYP3A Enzyme Deficiency; Poor Metabolizer Due to Cytochrome P450 CYP2C9 Variant; Poor Metabolizer Due to Cytochrome p450 CYP2C19 Variant; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  15. Structures of Prostacyclin Synthase and Its Complexes with Substrate Analog and Inhibitor Reveal a Ligand-specific Heme Conformation Change*s

    PubMed Central

    Li, Yi-Ching; Chiang, Chia-Wang; Yeh, Hui-Chun; Hsu, Pei-Yung; Whitby, Frank G.; Wang, Lee-Ho; Chan, Nei-Li

    2008-01-01

    Prostacyclin synthase (PGIS) is a cytochrome P450 (P450) enzyme that catalyzes production of prostacyclin from prostaglandin H2. PGIS is unusual in that it catalyzes an isomerization rather than a monooxygenation, which is typical of P450 enzymes. To understand the structural basis for prostacyclin biosynthesis in greater detail, we have determined the crystal structures of ligand-free, inhibitor (minoxidil)-bound and substrate analog U51605-bound PGIS. These structures demonstrate a stereo-specific substrate binding and suggest features of the enzyme that facilitate isomerization. Unlike most microsomal P450s, where large substrate-induced conformational changes take place at the distal side of the heme, conformational changes in PGIS are observed at the proximal side and in the heme itself. The conserved and extensive heme propionate-protein interactions seen in all other P450s, which are largely absent in the ligand-free PGIS, are recovered upon U51605 binding accompanied by water exclusion from the active site. In contrast, when minoxidil binds, the propionate-protein interactions are not recovered and water molecules are largely retained. These findings suggest that PGIS represents a divergent evolution of the P450 family, in which a heme barrier has evolved to ensure strict binding specificity for prostaglandin H2, leading to a radical-mediated isomerization with high product fidelity. The U51605-bound structure also provides a view of the substrate entrance and product exit channels. PMID:18032380

  16. Aromatic Hydroxylation of Salicylic Acid and Aspirin by Human Cytochromes P450

    PubMed Central

    Bojić, Mirza; Sedgeman, Carl A.; Nagy, Leslie D.; Guengerich, F. Peter

    2015-01-01

    Aspirin (acetylsalicylic acid) is a well-known and widely-used analgesic. It is rapidly deacetylated to salicylic acid, which forms two hippuric acids—salicyluric acid and gentisuric acid—and two glucuronides. The oxidation of aspirin and salicylic acid has been reported with human liver microsomes, but data on individual cytochromes P450 involved in oxidation is lacking. In this study we monitored oxidation of these compounds by human liver microsomes and cytochrome P450 (P450) using UPLC with fluorescence detection. Microsomal oxidation of salicylic acid was much faster than aspirin. The two oxidation products were 2,5-dihydroxybenzoic acid (gentisic acid, documented by its UV and mass spectrum) and 2,3-dihydroxybenzoic acid. Formation of neither product was inhibited by desferrioxamine, suggesting a lack of contribution of oxygen radicals under these conditions. Although more liphophilic, aspirin was oxidized less efficiently, primarily to the 2,5-dihydroxy product. Recombinant human P450s 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 all catalyzed the 5-hydroxylation of salicylic acid. Inhibitor studies with human liver microsomes indicated that all six of the previously mentioned P450s could contribute to both the 5- and 3-hydroxylation of salicylic acid and that P450s 2A6 and 2B6 have contributions to 5-hydroxylation. Inhibitor studies indicated that the major human P450 involved in both 3- and 5-hydroxylation of salicylic acid is P450 2E1. PMID:25840124

  17. Functional expression of a putative geraniol 8-hydroxylase by reconstitution of bacterially expressed plant CYP76F45 and NADPH-cytochrome P450 reductase CPR I from Croton stellatopilosus Ohba.

    PubMed

    Sintupachee, Siriluk; Promden, Worrawat; Ngamrojanavanich, Nattaya; Sitthithaworn, Worapan; De-Eknamkul, Wanchai

    2015-10-01

    While attempting to isolate the enzyme geranylgeraniol 18-hydroxylase, which is involved in plaunotol biosynthesis in Croton stellatopilosus (Cs), the cDNAs for a cytochrome P450 monooxygenase(designated as CYP76F45) and an NADPH-cytochrome P450 reductase (designated as CPR I based on its classification) were isolated from the leaf. The CYP76F45 and CsCPR I genes have open reading frames (ORFs) encoding 507- and 711-amino acid proteins with predicted relative molecular weights of 56.7 and 79.0 kDa,respectively. Amino acid sequence comparison showed that both CYP76F45 (63–73%) and CsCPR I (79–83%) share relatively high sequence identities with homologous proteins in other plant species.Phylogenetic tree analysis confirmed that CYP76F45 belongs to the CYP76 family and that CsCPR I belongs to Class I of dicotyledonous CPRs, with both being closely related to Ricinus communis genes. Functional characterization of both enzymes, each expressed separately in Escherichia coli as recombinant proteins,showed that only simultaneous incubation of the membrane bound proteins with the substrate geraniol (GOH) and the coenzyme NADPH could form 8-hydroxygeraniol. The enzyme mixture could also utilize acyclic sesquiterpene farnesol (FOH) with a comparable substrate preference ratio (GOH:FOH) of 54:46. The levelsof the CYP76F45 and CsCPR I transcripts in the shoots, leaves and twigs of C. stellatopilosus were correlated with the levels of a major monoterpenoid indole alkaloid, identified tentatively as 19-Evallesamine,that accumulated in these plant parts. These results suggested that CYP76F45 and CPR I function as the enzyme geraniol-8-hydroxylase (G8H), which is likely to be involved in the biosynthesis of the indole alkaloid in C. stellatopilosus [corrected]. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. An indole-deficient Escherichia coli strain improves screening of cytochromes P450 for biotechnological applications.

    PubMed

    Brixius-Anderko, Simone; Hannemann, Frank; Ringle, Michael; Khatri, Yogan; Bernhardt, Rita

    2017-05-01

    Escherichia coli has developed into an attractive organism for heterologous cytochrome P450 production, but, in some cases, was restricted as a host in view of a screening of orphan cytochromes P450 or mutant libraries in the context of molecular evolution due to the formation of the cytochrome P450 inhibitor indole by the enzyme tryptophanase (TnaA). To overcome this effect, we disrupted the tnaA gene locus of E. coli C43(DE3) and evaluated the new strain for whole-cell substrate conversions with three indole-sensitive cytochromes P450, myxobacterial CYP264A1, and CYP109D1 as well as bovine steroidogenic CYP21A2. For purified CYP264A1 and CYP21A2, the half maximal inhibitory indole concentration was determined to be 140 and 500 μM, which is within the physiological concentration range occurring during cultivation of E. coli in complex medium. Biotransformations with C43(DE3)_∆tnaA achieved a 30% higher product formation in the case of CYP21A2 and an even fourfold increase with CYP264A1 compared with C43(DE3) cells. In whole-cell conversion based on CYP109D1, which converts indole to indigo, we could successfully avoid this reaction. Results in microplate format indicate that our newly designed strain is a suitable host for a fast and efficient screening of indole-influenced cytochromes P450 in complex medium. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  19. Efficient functional analysis system for cyanobacterial or plant cytochromes P450 involved in sesquiterpene biosynthesis.

    PubMed

    Harada, Hisashi; Shindo, Kazutoshi; Iki, Kanoko; Teraoka, Ayuko; Okamoto, Sho; Yu, Fengnian; Hattan, Jun-ichiro; Utsumi, Ryutaro; Misawa, Norihiko

    2011-04-01

    Tractable plasmids (pAC-Mv-based plasmids) for Escherichia coli were constructed, which carried a mevalonate-utilizing gene cluster, towards an efficient functional analysis of cytochromes P450 involved in sesquiterpene biosynthesis. They included genes coding for a series of redox partners that transfer the electrons from NAD(P)H to a P450 protein. The redox partners used were ferredoxin reductases (CamA and NsRED) and ferredoxins (CamB and NsFER), which are derived from Pseudomonas putida and cyanobacterium Nostoc sp. strain PCC 7120, respectively, as well as three higher-plant NADPH-P450 reductases, the Arabidopsis thaliana ATR2 and two corresponding enzymes derived from ginger (Zingiber officinale), named ZoRED1 and ZoRED2. We also constructed plasmids for functional analysis of two P450s, α-humulene-8-hydroxylase (CYP71BA1) from shampoo ginger (Zingiber zerumbet) and germacrene A hydroxylase (P450NS; CYP110C1) from Nostoc sp. PCC 7120, and co-transformed E. coli with each of the pAC-Mv-based plasmids. Production levels of 8-hydroxy-α-humulene with recombinant E. coli cells (for CYP71BA1) were 1.5- to 2.3-fold higher than that of a control strain without the mevalonate-pathway genes. Level of the P450NS product with the combination of NsRED and NsFER was 2.9-fold higher than that of the CamA and CamB. The predominant product of P450NS was identified as 1,2,3,5,6,7,8,8a-octahydro-6-isopropenyl-4,8a-dimethylnaphth-1-ol with NMR analyses. © Springer-Verlag 2011

  20. Cytochrome P450s and molecular epidemiology

    NASA Astrophysics Data System (ADS)

    Gonzalez, Frank J.; Gelboin, Harry V.

    1993-03-01

    Cytochrome P450 (P450) represent a superfamily of heme-containing monooxygenases that are found throughout the animal and plant kingdoms and in many microorganisms. A number of these enzymes are involved in biosynthetic pathways of steroid synthesis but in mammals the vast majority of P450s function to metabolize foreign chemicals or xenobiotics. In the classical phase I reactions on the latter, a membrane-bound P450 will hydroxylate a compound, usually hydrophobic in nature, and the hydroxyl group will serve as a substrate for the various transferases or phase II enzymes that attach hydrophilic substituents such as glutathione, sulfate or glucuronic acid. Some chemicals, however, are metabolically-activated by P450s to electrophiles capable of reacting with cellular macromolecules. The cellular concentrations of the chemical and P450, reactivity of the active metabolite with nucleic acid and the repairability of the resultant adducts, in addition to the nature of the cell type, likely determines whether a chemical will be toxic and kill the cell or will transform the cell. Immunocorrelative and cDNA-directed expression have been used to define the substrate specificities of numerous human P450s. Levels of expression of different human P450 forms have been measured by both in vivo and in vitro methodologies leading to the realization that a large degree of interindividual differences occur in P450 expression. Reliable procedures for measuring P450 expression in healthy and diseased subjects will lead to prospective and case- cohort studies to determine whether interindividual differences in levels of P450 are associated with susceptibility or resistance to environmentally-based disease.

  1. Evidence for tangeretin O-demethylation by rat and human liver microsomes.

    PubMed

    Canivenc-Lavier, M C; Brunold, C; Siess, M H; Suschetet, M

    1993-03-01

    1. Tangeretin, a polymethoxylated flavone, was studied as a substrate for cytochrome P450-catalysed demethylation reactions by rat and human liver microsomes. Evidence has been presented for the production of formaldehyde in the presence of tangeretin and NAD(P)H. Kinetic studies showed a Km value for tangeretin of about 18 microM in both species. 2. The reaction was inhibited by CO, piperonyl butoxide, 7,8-benzoflavone, propyl gallate, aminobenzothiazole and metyrapone. 3. Rats pretreated with classical cytochrome P450 inducers (Aroclor 1254, 3-methylcholanthrene, phenobarbital, dexamethasone and ciprofibrate) or with flavonoids (flavone, flavanone, quercetin and tangeretin) resulted in increased microsomal demethylation of tangeretin after 3-methylcholanthrene and flavone only. Tangeretin did not enhance its own metabolism. 4. Tangeretin interacted with the oxidized form of cytochrome P450 to produce a reverse type I spectrum. 5. Results indicate that tangeretin is metabolized in liver microsomes by an O-demethylation reaction involving cytochrome P450.

  2. Resonance Raman study on the structure of the active sites of microsomal cytochrome P-450 isozymes LM2 and LM4.

    PubMed

    Hildebrandt, P; Greinert, R; Stier, A; Taniguchi, H

    1989-12-08

    The isozymes 2 and 4 of rabbit microsomal cytochrome P-450 (LM2, LM4) have been studied by resonance Raman spectroscopy. Based on high quality spectra, a vibrational assignment of the porphyrin modes in the frequency range between 100-1700 cm-1 is presented for different ferric states of cytochrome P-450 LM2 and LM4. The resonance Raman spectra are interpreted in terms of the spin and ligation state of the heme iron and of heme-protein interactions. While in cytochrome P-450 LM2 the six-coordinated low-spin configuration is predominantly occupied, in the isozyme LM4 the five-coordinated high-spin form is the most stable state. The different stability of these two spin configurations in LM2 and LM4 can be attributed to the structures of the active sites. In the low-spin form of the isozymes LM4 the protein matrix forces the heme into a more rigid conformation than in LM2. These steric constraints are removed upon dissociation of the sixth ligand leading to a more flexible structure of the active site in the high-spin form of the isozyme LM4. The vibrational modes of the vinyl groups were found to be characteristic markers for the specific structures of the heme pockets in both isozymes. They also respond sensitively to type-I substrate binding. While in cytochrome P-450 LM4 the occupation of the substrate-binding pocket induces conformational changes of the vinyl groups, as reflected by frequency shifts of the vinyl modes, in the LM2 isozyme the ground-state conformation of these substituents remain unaffected, suggesting that the more flexible heme pocket can accommodate substrates without imposing steric constraints on the porphyrin. The resonance Raman technique makes structural changes visible which are induced by substrate binding in addition and independent of the changes associated with the shift of the spin state equilibrium: the high-spin states in the substrate-bound and substrate-free enzyme are structurally different. The formation of the inactive form, P-420, involves a severe structural rearrangement in the heme binding pocket leading to drastic changes of the vinyl group conformations. The conformational differences of the active sites in cytochromes P-450 LM2 and LM4 observed in this work contribute to the understanding of the structural basis accounting for substrate and product specificity of cytochrome P-450 isozymes.

  3. Construction and engineering of a thermostable self-sufficient cytochrome P450

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandai, Takao; Fujiwara, Shinsuke; Imaoka, Susumu, E-mail: imaoka@kwansei.ac.jp

    2009-06-19

    CYP175A1 is a thermophilic cytochrome P450 and hydroxylates {beta}-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP{sup +} reductase (FNR): H{sub 2}N-CYP175A1-Fdx-FNR-COOH (175FR) and H{sub 2}N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The V{sub max} value for {beta}-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the k{sub m} values of these enzymes were similar. 175RF retained 50% residual activity even at 80 {sup o}C.more » Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.« less

  4. Modulation of Cytochrome P450 Metabolism and Transport across Intestinal Epithelial Barrier by Ginger Biophenolics

    PubMed Central

    Yang, Chunhua; Donthamsetty, Shashikiran; Cantuaria, Guilherme; Jadhav, Gajanan R.; Vangala, Subrahmanyam; Reid, Michelle D.; Aneja, Ritu

    2014-01-01

    Natural and complementary therapies in conjunction with mainstream cancer care are steadily gaining popularity. Ginger extract (GE) confers significant health-promoting benefits owing to complex additive and/or synergistic interactions between its bioactive constituents. Recently, we showed that preservation of natural “milieu” confers superior anticancer activity on GE over its constituent phytochemicals, 6-gingerol (6G), 8-gingerol (8G), 10-gingerol (10G) and 6-shogaol (6S), through enterohepatic recirculation. Here we further evaluate and compare the effects of GE and its major bioactive constituents on cytochrome P450 (CYP) enzyme activity in human liver microsomes by monitoring metabolites of CYP-specific substrates using LC/MS/MS detection methods. Our data demonstrate that individual gingerols are potent inhibitors of CYP isozymes, whereas GE exhibits a much higher half-maximal inhibition value, indicating no possible herb-drug interactions. However, GE's inhibition of CYP1A2 and CYP2C8 reflects additive interactions among the constituents. In addition, studies performed to evaluate transporter-mediated intestinal efflux using Caco-2 cells revealed that GE and its phenolics are not substrates of P-glycoprotein (Pgp). Intriguingly, however, 10G and 6S were not detected in the receiver compartment, indicating possible biotransformation across the Caco-2 monolayer. These data strengthen the notion that an interplay of complex interactions among ginger phytochemicals when fed as whole extract dictates its bioactivity highlighting the importance of consuming whole foods over single agents. Our study substantiates the need for an in-depth analysis of hepatic biotransformation events and distribution profiles of GE and its active phenolics for the design of safe regimens. PMID:25251219

  5. Tissue Specific Modulation of cyp2c and cyp3a mRNA Levels and Activities by Diet-Induced Obesity in Mice: The Impact of Type 2 Diabetes on Drug Metabolizing Enzymes in Liver and Extra-Hepatic Tissues

    PubMed Central

    Chamoun, Michel; Gravel, Sophie; Turgeon, Jacques; Michaud, Veronique

    2017-01-01

    Various diseases such as type 2 diabetes (T2D) may alter drug clearance. The objective of this study was to evaluate the effects of T2D on CYP450 expressions and activities using high-fat diet (HFD) as a model of obesity-dependent diabetes in C57BL6 mice. The cyp450 mRNA expression levels for 15 different isoforms were determined in the liver and extra-hepatic tissues (kidneys, lungs and heart) of HFD-treated animals (n = 45). Modulation of cyp450 metabolic activities by HFD was assessed using eight known substrates for specific human ortholog CYP450 isoforms: in vitro incubations were conducted with liver and extra-hepatic microsomes. Expression levels of cyp3a11 and cyp3a25 mRNA were decreased in the liver (>2–14-fold) and kidneys (>2-fold) of HFD groups which correlated with a significant reduction in midazolam metabolism (by 21- and 5-fold in hepatic and kidney microsomes, respectively, p < 0.001). HFD was associated with decreased activities of cyp2b and cyp2c subfamilies in all organs tested except in the kidneys (for tolbutamide). Other cyp450 hepatic activities were minimally or not affected by HFD. Taken together, our data suggest that substrate-dependent and tissue-dependent modulation of cyp450 metabolic capacities by early phases of T2D are observed, which could modulate drug disposition and pharmacological effects in various tissues. PMID:28954402

  6. Coadministration of gemfibrozil and itraconazole has only a minor effect on the pharmacokinetics of the CYP2C9 and CYP3A4 substrate nateglinide

    PubMed Central

    Niemi, Mikko; Backman, Janne T; Juntti-Patinen, Laura; Neuvonen, Mikko; Neuvonen, Pertti J

    2005-01-01

    Background and aims Gemfibrozil, and particularly its combination with itraconazole, greatly increases the area under the plasma concentration-time curve [AUC(0, ∞)] and response to the cytochrome P450 (CYP) 2C8 and 3A4 substrate repaglinide. In vitro, gemfibrozil is a more potent inhibitor of CYP2C9 than of CYP2C8. Our aim was to investigate the effects of the gemfibrozil-itraconazole combination on the pharmacokinetics and pharmacodynamics of another meglitinide analogue, nateglinide, which is metabolized by CYP2C9 and CYP3A4. Methods In a randomized crossover study with two phases, nine healthy subjects took 600 mg gemfibrozil and 100 mg itraconazole (first dose 200 mg) twice daily or placebo for 3 days. On day 3, they ingested a single 30-mg dose of nateglinide. Plasma nateglinide and blood glucose concentrations were measured for up to 12 h. Results During the gemfibrozil-itraconazole phase, the AUC(0, ∞) and Cmax of nateglinide were 47% (range 23–74%; P < 0.0001) and 30% (range −8% to 104%; P = 0.0146) higher than during the placebo phase, respectively, but the tmax and t1/2 of nateglinide remained unchanged. The combination of gemfibrozil and itraconazole had no effect on the formation of the M7 metabolite of nateglinide but impaired its elimination. The blood glucose response to nateglinide was not significantly changed by coadministration of gemfibrozil and itraconazole. Conclusions The combination of gemfibrozil and itraconazole has only a limited influence on the pharmacokinetics of nateglinide. This is in marked contrast to the substantial effect of this combination on the pharmacokinetics of repaglinide. The findings suggest that in vivo gemfibrozil, probably due to its metabolites, is a much more potent inhibitor of CYP2C8 than of CYP2C9. PMID:16042675

  7. Functional analysis of human cytochrome P450 21A2 variants involved in congenital adrenal hyperplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chunxue; Pallan, Pradeep S.; Zhang, Wei

    Cytochrome P450 (P450, CYP) 21A2 is the major steroid 21-hydroxylase, converting progesterone to 11-deoxycorticosterone and 17α-hydroxyprogesterone (17α-OH-progesterone) to 11-deoxycortisol. More than 100 CYP21A2 variants give rise to congenital adrenal hyperplasia (CAH). We previously reported a structure of WT human P450 21A2 with bound progesterone and now present a structure bound to the other substrate (17α-OH-progesterone). We found that the 17α-OH-progesterone- and progesterone-bound complex structures are highly similar, with only some minor differences in surface loop regions. Twelve P450 21A2 variants associated with either salt-wasting or nonclassical forms of CAH were expressed, purified, and analyzed. The catalytic activities of these 12more » variants ranged from 0.00009% to 30% of WT P450 21A2 and the extent of heme incorporation from 10% to 95% of the WT. Substrate dissociation constants (Ks) for four variants were 37–13,000-fold higher than for WT P450 21A2. Cytochrome b5, which augments several P450 activities, inhibited P450 21A2 activity. Similar to the WT enzyme, high noncompetitive intermolecular kinetic deuterium isotope effects (≥ 5.5) were observed for all six P450 21A2 variants examined for 21-hydroxylation of 21-d3-progesterone, indicating that C–H bond breaking is a rate-limiting step over a 104-fold range of catalytic efficiency. Using UV-visible and CD spectroscopy, we found that P450 21A2 thermal stability assessed in bacterial cells and with purified enzymes differed among salt-wasting- and nonclassical-associated variants, but these differences did not correlate with catalytic activity. Our in-depth investigation of CAH-associated P450 21A2 variants reveals critical insight into the effects of disease-causing mutations on this important enzyme.« less

  8. Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a novel functional role for a buried arginine

    PubMed Central

    Winn, Peter J.; Lüdemann, Susanna K.; Gauges, Ralph; Lounnas, Valère; Wade, Rebecca C.

    2002-01-01

    Understanding the mechanism and specificity of substrate binding in the cytochrome P450 (P450) superfamily is an important step toward explaining its key role in drug metabolism, toxicity, xenobiotic degradation, and several biosynthetic pathways. Here we investigate the ligand exit pathways and mechanisms of P450cam (CYP101), P450BM-3 (CYP102), and P450eryF (CYP107A1) by using random expulsion molecular dynamics and classical molecular dynamics simulations. Although several different pathways are found for each protein, one pathway is common to all three. The mechanism of ligand exit along this pathway is, however, quite different in the three different proteins. For P450cam, small backbone conformational changes, in combination with aromatic side chain rotation, allow for the passage of the rather rigid, compact, and hydrophobic substrate, camphor. In P450BM-3, larger transient backbone changes are observed on ligand exit. R47, situated at the entrance to the channel, appears important in guiding negatively charged fatty acid substrates in and out of the active site. In P450eryF, an isolated buried arginine, R185, stabilized by four hydrogen bonds to backbone carbonyl oxygen atoms, is located in the exit channel and is identified as having a particularly unusual functionality, dynamically gating channel opening. The results for these three P450s suggest that the channel opening mechanisms are adjusted to the physico-chemical properties of the substrate and can kinetically modulate protein-substrate specificity. PMID:11959989

  9. Biochemical and structural characterization of CYP109A2, a vitamin D3 25-hydroxylase from Bacillus megaterium.

    PubMed

    Abdulmughni, Ammar; Jóźwik, Ilona K; Brill, Elisa; Hannemann, Frank; Thunnissen, Andy-Mark W H; Bernhardt, Rita

    2017-11-01

    Cytochrome P450 enzymes are increasingly investigated due to their potential application as biocatalysts with high regio- and/or stereo-selectivity and under mild conditions. Vitamin D 3 (VD 3 ) metabolites are of pharmaceutical importance and are applied for the treatment of VD 3 deficiency and other disorders. However, the chemical synthesis of VD 3 derivatives shows low specificity and low yields. In this study, cytochrome P450 CYP109A2 from Bacillus megaterium DSM319 was expressed, purified, and shown to oxidize VD 3 with high regio-selectivity. The in vitro conversion, using cytochrome P450 reductase (BmCPR) and ferredoxin (Fdx2) from the same strain, showed typical Michaelis-Menten reaction kinetics. A whole-cell system in B. megaterium overexpressing CYP109A2 reached 76 ± 5% conversion after 24 h and allowed to identify the main product by NMR analysis as 25-hydroxylated VD 3 . Product yield amounted to 54.9 mg·L -1 ·day -1 , rendering the established whole-cell system as a highly promising biocatalytic route for the production of this valuable metabolite. The crystal structure of substrate-free CYP109A2 was determined at 2.7 Å resolution, displaying an open conformation. Structural analysis predicts that CYP109A2 uses a highly similar set of residues for VD 3 binding as the related VD 3 hydroxylases CYP109E1 from B. megaterium and CYP107BR1 (Vdh) from Pseudonocardia autotrophica. However, the folds and sequences of the BC loops in these three P450s are highly divergent, leading to differences in the shape and apolar/polar surface distribution of their active site pockets, which may account for the observed differences in substrate specificity and the regio-selectivity of VD 3 hydroxylation. The atomic coordinates and structure factors have been deposited in the Protein Data Bank with accession code 5OFQ (substrate-free CYP109A2). Cytochrome P450 monooxygenase CYP109A2, EC 1.14.14.1, UniProt ID: D5DF88, Ferredoxin, UniProt ID: D5DFQ0, cytochrome P450 reductase, EC 1.8.1.2, UniProt ID: D5DGX1. © 2017 Federation of European Biochemical Societies.

  10. Buprofezin Is Metabolized by CYP353D1v2, a Cytochrome P450 Associated with Imidacloprid Resistance in Laodelphax striatellus.

    PubMed

    Elzaki, Mohammed Esmail Abdalla; Miah, Mohammad Asaduzzaman; Han, Zhaojun

    2017-11-29

    CYP353D1v2 is a cytochrome P450 related to imidacloprid resistance in Laodelphax striatellus . This work was conducted to examine the ability of CYP353D1v2 to metabolize other insecticides. Carbon monoxide difference spectra analysis indicates that CYP353D1v2 was successfully expressed in insect cell Sf9. The catalytic activity of CYP353D1v2 relating to degrading buprofezin, chlorpyrifos, and deltamethrin was tested by measuring substrate depletion and analyzing the formation of metabolites. The results showed the nicotinamide-adenine dinucleotide phosphate (NADPH)-dependent depletion of buprofezin (eluting at 8.7 min) and parallel formation of an unknown metabolite (eluting 9.5 min). However, CYP353D1v2 is unable to metabolize deltamethrin and chlorpyrifos. The recombinant CYP353D1v2 protein efficiently catalyzed the model substrate p -nitroanisole with a maximum velocity of 9.24 nmol/min/mg of protein and a Michaelis constant of Km = 6.21 µM. In addition, imidacloprid was metabolized in vitro by the recombinant CYP353D1v2 microsomes (catalytic constant Kcat) 0.064 pmol/min/pmol P450, Km = 6.41 µM. The mass spectrum of UPLC-MS analysis shows that the metabolite was a product of buprofezin, which was buprofezin sulfone. This result provided direct evidence that L. striatellus cytochrome P450 CYP353D1v2 is capable of metabolizing imidacloprid and buprofezin.

  11. Buprofezin Is Metabolized by CYP353D1v2, a Cytochrome P450 Associated with Imidacloprid Resistance in Laodelphax striatellus

    PubMed Central

    Elzaki, Mohammed Esmail Abdalla; Miah, Mohammad Asaduzzaman; Han, Zhaojun

    2017-01-01

    CYP353D1v2 is a cytochrome P450 related to imidacloprid resistance in Laodelphax striatellus. This work was conducted to examine the ability of CYP353D1v2 to metabolize other insecticides. Carbon monoxide difference spectra analysis indicates that CYP353D1v2 was successfully expressed in insect cell Sf9. The catalytic activity of CYP353D1v2 relating to degrading buprofezin, chlorpyrifos, and deltamethrin was tested by measuring substrate depletion and analyzing the formation of metabolites. The results showed the nicotinamide–adenine dinucleotide phosphate (NADPH)-dependent depletion of buprofezin (eluting at 8.7 min) and parallel formation of an unknown metabolite (eluting 9.5 min). However, CYP353D1v2 is unable to metabolize deltamethrin and chlorpyrifos. The recombinant CYP353D1v2 protein efficiently catalyzed the model substrate p-nitroanisole with a maximum velocity of 9.24 nmol/min/mg of protein and a Michaelis constant of Km = 6.21 µM. In addition, imidacloprid was metabolized in vitro by the recombinant CYP353D1v2 microsomes (catalytic constant Kcat) 0.064 pmol/min/pmol P450, Km = 6.41 µM. The mass spectrum of UPLC-MS analysis shows that the metabolite was a product of buprofezin, which was buprofezin sulfone. This result provided direct evidence that L. striatellus cytochrome P450 CYP353D1v2 is capable of metabolizing imidacloprid and buprofezin. PMID:29186030

  12. Radiometric assay for cytochrome P-450-catalyzed progesterone 16 alpha-hydroxylation and determination of an apparent isotope effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osawa, Y.; Coon, M.J.

    1987-08-01

    In the course of studies on the oxygenation of steroids by purified P-450 cytochromes, particularly rabbit liver microsomal cytochrome P-450 form 3b, a rapid and reliable radiometric assay has been devised for progesterone 16 alpha-hydroxylation. In view of the lack of a commercially available, suitably tritiated substrate, (1,2,6,7,16,17-3H)progesterone was treated with alkali to remove the label from potential hydroxylation sites other than the 16 alpha position. The resulting (1,7,16-3H)progesterone was added to a reconstituted enzyme system containing cytochrome P-450 form 3b, NADPH-cytochrome P-450 reductase, and NADPH, and the rate of 16 alpha-hydroxylation was measured by the formation of /sup 3/H/submore » 2/O. This reaction was shown to be linear with respect to time and to the cytochrome P-450 concentration. An apparent tritium isotope effect of 2.1 was observed by comparison of the rates of formation of tritium oxide and 16 alpha-hydroxyprogesterone, and the magnitude of the isotope effect was confirmed by an isotope competition assay in which a mixture of (1,7,16-/sup 3/H)progesterone and (4-14C)progesterone was employed.« less

  13. Molecular basis of P450 OleTJE: an investigation of substrate binding mechanism and major pathways

    NASA Astrophysics Data System (ADS)

    Du, Juan; Liu, Lin; Guo, Li Zhong; Yao, Xiao Jun; Yang, Jian Ming

    2017-05-01

    Cytochrome P450 OleTJE has attracted much attention for its ability to catalyze the decarboxylation of long chain fatty acids to generate alkenes, which are not only biofuel molecule, but also can be used broadly for making lubricants, polymers and detergents. In this study, the molecular basis of the binding mechanism of P450 OleTJE for arachidic acid, myristic acid, and caprylic acid was investigated by utilizing conventional molecular dynamics simulation and binding free energy calculations. Moreover, random acceleration molecular dynamics (RAMD) simulations were performed to uncover the most probable access/egress channels for different fatty acids. The predicted binding free energy shows an order of arachidic acid < myristic acid < caprylic acid. Key residues interacting with three substrates and residues specifically binding to one of them were identified. The RAMD results suggest the most likely channel for arachidic acid, myristic acid, and caprylic acid are 2e/2b, 2a and 2f/2a, respectively. It is suggested that the reaction is easier to carry out in myristic acid bound system than those in arachidic acid and caprylic acid bound system based on the distance of Hβ atom of substrate relative to P450 OleTJE Compound I states. This study provided novel insight to understand the substrate preference mechanism of P450 OleTJE and valuable information for rational enzyme design for short chain fatty acid decarboxylation.

  14. Application of the relative activity factor approach in scaling from heterologously expressed cytochromes p450 to human liver microsomes: studies on amitriptyline as a model substrate.

    PubMed

    Venkatakrishnan, K; von Moltke, L L; Greenblatt, D J

    2001-04-01

    The relative activity factor (RAF) approach is being increasingly used in the quantitative phenotyping of multienzyme drug biotransformations. Using lymphoblast-expressed cytochromes P450 (CYPs) and the tricyclic antidepressant amitriptyline as a model substrate, we have tested the hypothesis that the human liver microsomal rates of a biotransformation mediated by multiple CYP isoforms can be mathematically reconstructed from the rates of the biotransformation catalyzed by individual recombinant CYPs using the RAF approach, and that the RAF approach can be used for the in vitro-in vivo scaling of pharmacokinetic clearance from in vitro intrinsic clearance measurements in heterologous expression systems. In addition, we have compared the results of two widely used methods of quantitative reaction phenotyping, namely, chemical inhibition studies and the prediction of relative contributions of individual CYP isoforms using the RAF approach. For the pathways of N-demethylation (mediated by CYPs 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and E-10 hydroxylation (mediated by CYPs 2B6, 2D6, and 3A4), the model-predicted biotransformation rates in microsomes from a panel of 12 human livers determined from enzyme kinetic parameters of the recombinant CYPs were similar to, and correlated with the observed rates. The model-predicted clearance via N-demethylation was 53% lower than the previously reported in vivo pharmacokinetic estimates. Model-predicted relative contributions of individual CYP isoforms to the net biotransformation rate were similar to, and correlated with the fractional decrement in human liver microsomal reaction rates by chemical inhibitors of the respective CYPs, provided the chemical inhibitors used were specific to their target CYP isoforms.

  15. Human Hepatic Cytochrome P450-Specific Metabolism of the Organophosphorus Pesticides Methyl Parathion and Diazinon

    PubMed Central

    Tian, Yuan; Knaak, James B.; Kostyniak, Paul J.; Olson, James R.

    2012-01-01

    Organophosphorus pesticides (OPs) are a public health concern due to their worldwide use and documented human exposures. Phosphorothioate OPs are metabolized by cytochrome P450s (P450s) through either a dearylation reaction to form an inactive metabolite, or through a desulfuration reaction to form an active oxon metabolite, which is a potent cholinesterase inhibitor. This study investigated the rate of desulfuration (activation) and dearylation (detoxification) of methyl parathion and diazinon in human liver microsomes. In addition, recombinant human P450s were used to determine the P450-specific kinetic parameters (Km and Vmax) for each compound for future use in refining human physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models of OP exposure. The primary enzymes involved in bioactivation of methyl parathion were CYP2B6 (Km = 1.25 μM; Vmax = 9.78 nmol · min−1 · nmol P450−1), CYP2C19 (Km = 1.03 μM; Vmax = 4.67 nmol · min−1 · nmol P450−1), and CYP1A2 (Km = 1.96 μM; Vmax = 5.14 nmol · min−1 · nmol P450−1), and the bioactivation of diazinon was mediated primarily by CYP1A1 (Km = 3.05 μM; Vmax = 2.35 nmol · min−1 · nmol P450−1), CYP2C19 (Km = 7.74 μM; Vmax = 4.14 nmol · min−1 · nmol P450−1), and CYP2B6 (Km = 14.83 μM; Vmax = 5.44 nmol · min−1 · nmol P450−1). P450-mediated detoxification of methyl parathion only occurred to a limited extent with CYP1A2 (Km = 16.8 μM; Vmax = 1.38 nmol · min−1 · nmol P450−1) and 3A4 (Km = 104 μM; Vmax = 5.15 nmol · min−1 · nmol P450−1), whereas the major enzyme involved in diazinon detoxification was CYP2C19 (Km = 5.04 μM; Vmax = 5.58 nmol · min−1 · nmol P450−1). The OP- and P450-specific kinetic values will be helpful for future use in refining human PBPK/PD models of OP exposure. PMID:21969518

  16. Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, James R., E-mail: rreed@lsuhsc.edu; The Stanley S. Scott Cancer Center, Louisiana State University Health Science Center, 533 Bolivar St., New Orleans, LA 70112; Cawley, George F.

    2014-06-01

    Combustion processes generate particulate matter that affects human health. When incineration fuels include components that are highly enriched in aromatic hydrocarbons (especially halogenated varieties) and redox-active metals, ultrafine particulate matter containing air-stable, environmentally persistent free radicals (EPFRs) is generated. The exposure to fine EPFRs (less than 2.5 μm in diameter) has been shown to negatively influence pulmonary and cardiovascular functions in living organisms. The goal of this study was to determine if these EPFRs have a direct effect on cytochrome P450 function. This was accomplished by direct addition of the EPFRs to rat liver microsomal preparations and measurement of severalmore » P450 activities using form-selective substrates. The EPFRs used in this study were formed by heating vapors from an organic compound (either monochlorophenol (MCP230) or 1,2-dichlorobenzene (DCB230)) and 5% copper oxide supported on silica (approximately 0.2 μm in diameter) to 230 °C under vacuum. Both types of EPFRs (but not silica, physisorbed silica, or silica impregnated with copper oxide) dramatically inhibited the activities of CYP1A, CYP2B, CYP2E1, CYP2D2 and CYP3A when incubated at concentrations less than 0.1 mg/ml with microsomes and NADPH. Interestingly, at the same concentrations, the EPFRs did not inhibit HO-1 activity or the reduction of cytochrome c by NADPH-cytochrome P450 reductase. CYP2D2-selective metabolism by rat liver microsomes was examined in more detail. The inhibition of CYP2D2-selective metabolism by both DCB230- and MCP230-EPFRs appeared to be largely noncompetitive and was attenuated in the presence of catalase suggesting that reactive oxygen species may be involved in the mechanism of inhibition. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • EPFRs inhibit metabolism by all cytochromes P450 tested in rat liver microsomes. • EPFR-mediated inhibition is related to spin content and is sensitive to catalase. • EPFR inhibition of CYP2D2 is noncompetitive with respect to substrate. • Exposure to EPFRs may impair the ability to eliminate xenobiotics.« less

  17. The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling.

    PubMed

    Chandor-Proust, Alexia; Bibby, Jaclyn; Régent-Kloeckner, Myriam; Roux, Jessica; Guittard-Crilat, Emilie; Poupardin, Rodolphe; Riaz, Muhammad Asam; Paine, Mark; Dauphin-Villemant, Chantal; Reynaud, Stéphane; David, Jean-Philippe

    2013-10-01

    The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450-CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate-enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies.

  18. CYP2C8 activity recovers within 96 hours after gemfibrozil dosing: estimation of CYP2C8 half-life using repaglinide as an in vivo probe.

    PubMed

    Backman, Janne T; Honkalammi, Johanna; Neuvonen, Mikko; Kurkinen, Kaisa J; Tornio, Aleksi; Niemi, Mikko; Neuvonen, Pertti J

    2009-12-01

    Gemfibrozil 1-O-beta-glucuronide is a mechanism-based inhibitor of cytochrome P450 2C8. We studied the recovery of CYP2C8 activity after discontinuation of gemfibrozil treatment using repaglinide as a probe drug, to estimate the in vivo turnover half-life of CYP2C8. In a randomized five-phase crossover study, nine healthy volunteers ingested 0.25 mg of repaglinide alone or after different time intervals after a 3-day treatment with 600 mg of gemfibrozil twice daily. The area under the plasma concentration-time curve (AUC) from time 0 to infinity of repaglinide was 7.6-, 2.9-, 1.4- and 1.0-fold compared with the control phase when it was administered 1, 24, 48, or 96 h after the last gemfibrozil dose, respectively (P < 0.001 versus control for 1, 24, and 48 h after gemfibrozil). Thus, a strong CYP2C8 inhibitory effect persisted even after gemfibrozil and gemfibrozil 1-O-beta-glucuronide concentrations had decreased to less than 1% of their maximum (24-h dosing interval). In addition, the metabolite to repaglinide AUC ratios indicated that significant (P < 0.05) inhibition of repaglinide metabolism continued up to 48 h after gemfibrozil administration. Based on the recovery of repaglinide oral clearance, the in vivo turnover half-life of CYP2C8 was estimated to average 22 +/- 6 h (mean +/- S.D.). In summary, CYP2C8 activity is recovered gradually during days 1 to 4 after gemfibrozil discontinuation, which should be considered when CYP2C8 substrate dosing is planned. The estimated CYP2C8 half-life will be useful for in vitro-in vivo extrapolations of drug-drug interactions involving induction or mechanism-based inhibition of CYP2C8.

  19. Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance.

    PubMed

    Jones, Robert T; Bakker, Saskia E; Stone, Deborah; Shuttleworth, Sally N; Boundy, Sam; McCart, Caroline; Daborn, Phillip J; ffrench-Constant, Richard H; van den Elsen, Jean M H

    2010-10-01

    Overexpression of the cytochrome P450 gene Cyp6g1 confers resistance against DDT and a broad range of other insecticides in Drosophila melanogaster Meig. In the absence of crystal structures of CYP6G1 or complexes with its substrates, structural studies rely on homology modelling and ligand docking to understand P450-substrate interactions. Homology models are presented for CYP6G1, a P450 associated with resistance to DDT and neonicotinoids, and two other enzymes associated with insecticide resistance in D. melanogaster, CYP12D1 and CYP6A2. The models are based on a template of the X-ray structure of the phylogenetically related human CYP3A4, which is known for its broad substrate specificity. The model of CYP6G1 has a much smaller active site cavity than the template. The cavity is also 'V'-shaped and is lined with hydrophobic residues, showing high shape and chemical complementarity with the molecular characteristics of DDT. Comparison of the DDT-CYP6G1 complex and a non-resistant CYP6A2 homology model implies that tight-fit recognition of this insecticide is important in CYP6G1. The active site can accommodate differently shaped substrates ranging from imidacloprid to malathion but not the pyrethroids permethrin and cyfluthrin. The CYP6G1, CYP12D1 and CYP6A2 homology models can provide a structural insight into insecticide resistance in flies overexpressing P450 enzymes with broad substrate specificities.

  20. Physiogenomic analysis of CYP450 drug metabolism correlates dyslipidemia with pharmacogenetic functional status in psychiatric patients

    PubMed Central

    Ruaño, Gualberto; Villagra, David; Szarek, Bonnie; Windemuth, Andreas; Kocherla, Mohan; Gorowski, Krystyna; Berrezueta, Christopher; Schwartz, Harold I; Goethe, John

    2011-01-01

    Aims To investigate associations between novel human cytochrome P450 (CYP450) combinatory (multigene) and substrate-specific drug metabolism indices, and elements of metabolic syndrome, such as low density lipoprotein cholesterol (LDLc), high density lipoprotein cholesterol (HDLc), triglycerides and BMI, using physiogenomic analysis. Methods CYP2C9, CYP2C19 and CYP2D6 genotypes and clinical data were obtained for 150 consecutive, consenting hospital admissions with a diagnosis of major depressive disorder and who were treated with psychotropic medications. Data analysis compared clinical measures of LDLc, HDLc, triglyceride and BMI with novel combinatory and substrate-specific CYP450 drug metabolism indices. Results We found that a greater metabolic reserve index score is related to lower LDLc and higher HDLc, and that a greater metabolic alteration index score corresponds with higher LDLc and lower HLDc values. We also discovered that the sertraline drug-specific indices correlated with cholesterol and triglyceride values. Conclusions Overall, we demonstrated how a multigene approach to CYP450 genotype analysis yields more accurate and significant results than single-gene analyses. Ranking the individual with respect to the population represents a potential tool for assessing risk of dyslipidemia in major depressive disorder patients who are being treated with psychotropics. In addition, the drug-specific indices appear useful for modeling a variable of potential relevance to an individual’s risk of drug-related dyslipidemia. PMID:21861666

  1. Physiogenomic analysis of CYP450 drug metabolism correlates dyslipidemia with pharmacogenetic functional status in psychiatric patients.

    PubMed

    Ruaño, Gualberto; Villagra, David; Szarek, Bonnie; Windemuth, Andreas; Kocherla, Mohan; Gorowski, Krystyna; Berrezueta, Christopher; Schwartz, Harold I; Goethe, John

    2011-08-01

    To investigate associations between novel human cytochrome P450 (CYP450) combinatory (multigene) and substrate-specific drug metabolism indices, and elements of metabolic syndrome, such as low density lipoprotein cholesterol (LDLc), high density lipoprotein cholesterol (HDLc), triglycerides and BMI, using physiogenomic analysis. CYP2C9, CYP2C19 and CYP2D6 genotypes and clinical data were obtained for 150 consecutive, consenting hospital admissions with a diagnosis of major depressive disorder and who were treated with psychotropic medications. Data analysis compared clinical measures of LDLc, HDLc, triglyceride and BMI with novel combinatory and substrate-specific CYP450 drug metabolism indices. We found that a greater metabolic reserve index score is related to lower LDLc and higher HDLc, and that a greater metabolic alteration index score corresponds with higher LDLc and lower HLDc values. We also discovered that the sertraline drug-specific indices correlated with cholesterol and triglyceride values. Overall, we demonstrated how a multigene approach to CYP450 genotype analysis yields more accurate and significant results than single-gene analyses. Ranking the individual with respect to the population represents a potential tool for assessing risk of dyslipidemia in major depressive disorder patients who are being treated with psychotropics. In addition, the drug-specific indices appear useful for modeling a variable of potential relevance to an individual's risk of drug-related dyslipidemia.

  2. Physiologically Based Pharmacokinetic Modeling Suggests Limited Drug–Drug Interaction Between Clopidogrel and Dasabuvir

    PubMed Central

    Fu, W; Badri, P; Bow, DAJ; Fischer, V

    2017-01-01

    Dasabuvir, a nonnucleoside NS5B polymerase inhibitor, is a sensitive substrate of cytochrome P450 (CYP) 2C8 with a potential for drug–drug interaction (DDI) with clopidogrel. A physiologically based pharmacokinetic (PBPK) model was developed for dasabuvir to evaluate the DDI potential with clopidogrel, the acyl‐β‐D glucuronide metabolite of which has been reported as a strong mechanism‐based inhibitor of CYP2C8 based on an interaction with repaglinide. In addition, the PBPK model for clopidogrel and its metabolite were updated with additional in vitro data. Sensitivity analyses using these PBPK models suggested that CYP2C8 inhibition by clopidogrel acyl‐β‐D glucuronide may not be as potent as previously suggested. The dasabuvir and updated clopidogrel PBPK models predict a moderate increase of 1.5–1.9‐fold for Cmax and 1.9–2.8‐fold for AUC of dasabuvir when coadministered with clopidogrel. While the PBPK results suggest there is a potential for DDI between dasabuvir and clopidogrel, the magnitude is not expected to be clinically relevant. PMID:28411400

  3. Molecular cloning and characterization of a cytochrome P450 in sanguinarine biosynthesis from Eschscholzia californica cells.

    PubMed

    Takemura, Tomoya; Ikezawa, Nobuhiro; Iwasa, Kinuko; Sato, Fumihiko

    2013-07-01

    Benzophenanthridine alkaloids, such as sanguinarine, are produced from reticuline, a common intermediate in benzylisoquinoline alkaloid biosynthesis, via protopine. Four cytochrome P450s are involved in the biosynthesis of sanguinarine from reticuline; i.e. cheilanthifoline synthase (CYP719A5; EC 1.14.21.2.), stylopine synthase (CYP719A2/A3; EC 1.14.21.1.), N-methylstylopine hydroxylase (MSH) and protopine 6-hydroxylase (P6H; EC 1.14.13.55.). In this study, a cDNA of P6H was isolated from cultured Eschscholzia californica cells, based on an integrated analysis of metabolites and transcript expression profiles of transgenic cells with Coptis japonica scoulerine-9-O-methyltransferase. Using the full-length candidate cDNA for P6H (CYP82N2v2), recombinant protein was produced in Saccharomyces cerevisiae for characterization. The microsomal fraction containing recombinant CYP82N2v2 showed typical reduced CO-difference spectra of P450, and production of dihydrosanguinarine and dihydrochelerythrine from protopine and allocryptopine, respectively. Further characterization of the substrate-specificity of CYP82N2v2 indicated that 6-hydroxylation played a role in the reaction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Synthesis of p-type ZnO films

    NASA Astrophysics Data System (ADS)

    Ryu, Y. R.; Zhu, S.; Look, D. C.; Wrobel, J. M.; Jeong, H. M.; White, H. W.

    2000-06-01

    p-Type ZnO obtained by arsenic (As) doping is reported for the first time. Arsenic-doped ZnO (ZnO : As) films have been deposited on (0 0 1)-GaAs substrates by pulsed laser ablation. The process of synthesizing p-type ZnO : As films was performed in an ambient gas of ultra-pure (99.999%) oxygen. The ambient gas pressure was 35 mTorr with the substrate temperature in the range 300-450°C. ZnO films grown at 400°C and 450°C are p-type and As is a good acceptor. The acceptor peak is located at 3.32 eV and its binding energy is about 100 meV. Acceptor concentrations of As atoms in ZnO films were in the range from high 10 17 to high 10 21 atoms/cm 3 as determined by secondary ion mass spectroscopy (SIMS) and Hall effect measurements.

  5. Evaluation of six proton pump inhibitors as inhibitors of various human cytochromes P450: focus on cytochrome P450 2C19.

    PubMed

    Zvyaga, Tatyana; Chang, Shu-Ying; Chen, Cliff; Yang, Zheng; Vuppugalla, Ragini; Hurley, Jeremy; Thorndike, Denise; Wagner, Andrew; Chimalakonda, Anjaneya; Rodrigues, A David

    2012-09-01

    Six proton pump inhibitors (PPIs), omeprazole, lansoprazole, esomeprazole, dexlansoprazole, pantoprazole, and rabeprazole, were shown to be weak inhibitors of cytochromes P450 (CYP3A4, -2B6, -2D6, -2C9, -2C8, and -1A2) in human liver microsomes. In most cases, IC₅₀ values were greater than 40 μM, except for dexlansoprazole and lansoprazole with CYP1A2 (IC₅₀ = ∼8 μM) and esomeprazole with CYP2C8 (IC₅₀ = 31 μM). With the exception of CYP2C19 inhibition by omeprazole and esomeprazole (IC₅₀ ratio, 2.5 to 5.9), there was no evidence for a marked time-dependent shift in IC₅₀ (IC₅₀ ratio, ≤ 2) after a 30-min preincubation with NADPH. In the absence of preincubation, lansoprazole (IC₅₀ = 0.73 μM) and esomeprazole (IC₅₀ = 3.7 μM) were the most potent CYP2C19 inhibitors, followed by dexlansoprazole and omeprazole (IC₅₀ = ∼7.0 μM). Rabeprazole and pantoprazole (IC₅₀ = ≥ 25 μM) were the weakest. A similar ranking was obtained with recombinant CYP2C19. Despite the IC₅₀ ranking, after consideration of plasma levels (static and dynamic), protein binding, and metabolism-dependent inhibition, it is concluded that omeprazole and esomeprazole are the most potent CYP2C19 inhibitors. This was confirmed after the incubation of the individual PPIs with human primary hepatocytes (in the presence of human serum) and by monitoring their impact on diazepam N-demethylase activity at a low concentration of diazepam (2 μM). Data described herein are consistent with reports that PPIs are mostly weak inhibitors of cytochromes P450 in vivo. However, two members of the PPI class (esomeprazole and omeprazole) are more likely to serve as clinically relevant inhibitors of CYP2C19.

  6. Drug & Gene Interaction Risk Analysis With & Without Genetic Testing Among Patients Undergoing MTM

    ClinicalTrials.gov

    2017-02-22

    Cytochrome P450 CYP2D6 Enzyme Deficiency; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Extensive Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Cytochrome P450 CYP2C9 Enzyme Deficiency; Cytochrome P450 CYP2C19 Enzyme Deficiency; Drug Metabolism, Poor, CYP2D6-RELATED; Drug Metabolism, Poor, CYP2C19-RELATED; CYP2D6 Polymorphism

  7. The CYP2C8 inhibitor gemfibrozil does not affect the pharmacokinetics of zafirlukast.

    PubMed

    Karonen, Tiina; Neuvonen, Pertti J; Backman, Janne T

    2011-02-01

    Gemfibrozil, a strong inhibitor of cytochrome P450 (CYP) 2C8 in vivo, was recently found to markedly increase the plasma concentrations of montelukast in humans. Like montelukast, zafirlukast is a substrate of CYP2C9 and CYP3A4 and a potent inhibitor of CYP2C8 in vitro. To investigate the contribution of CYP2C8 to the metabolism of zafirlukast in vivo, we studied the effect of gemfibrozil on the pharmacokinetics of zafirlukast. Ten healthy subjects in a randomized cross-over study took gemfibrozil 600 mg or placebo twice daily for 5 days, and on day 3, a single oral dose of 20 mg zafirlukast. The plasma concentrations of zafirlukast were measured for 72 h postdose. The mean total area under the plasma concentration-time curve of zafirlukast during the gemfibrozil phase was 102% (geometric mean ratio; 95% confidence interval 89-116%) of that during the placebo phase. Furthermore, there were no statistically significant differences in the peak plasma concentration, time of peak concentration, or elimination half-life of zafirlukast between the phases. Gemfibrozil has no effect on the pharmacokinetics of zafirlukast, indicating that CYP2C8 does not play a significant role in the elimination of zafirlukast.

  8. In planta functions of cytochrome P450 monooxygenase genes in the phytocassane biosynthetic gene cluster on rice chromosome 2.

    PubMed

    Ye, Zhongfeng; Yamazaki, Kohei; Minoda, Hiromi; Miyamoto, Koji; Miyazaki, Sho; Kawaide, Hiroshi; Yajima, Arata; Nojiri, Hideaki; Yamane, Hisakazu; Okada, Kazunori

    2018-06-01

    In response to environmental stressors such as blast fungal infections, rice produces phytoalexins, an antimicrobial diterpenoid compound. Together with momilactones, phytocassanes are among the major diterpenoid phytoalexins. The biosynthetic genes of diterpenoid phytoalexin are organized on the chromosome in functional gene clusters, comprising diterpene cyclase, dehydrogenase, and cytochrome P450 monooxygenase genes. Their functions have been studied extensively using in vitro enzyme assay systems. Specifically, P450 genes (CYP71Z6, Z7; CYP76M5, M6, M7, M8) on rice chromosome 2 have multifunctional activities associated with ent-copalyl diphosphate-related diterpene hydrocarbons, but the in planta contribution of these genes to diterpenoid phytoalexin production remains unknown. Here, we characterized cyp71z7 T-DNA mutant and CYP76M7/M8 RNAi lines to find that potential phytoalexin intermediates accumulated in these P450-suppressed rice plants. The results suggested that in planta, CYP71Z7 is responsible for C2-hydroxylation of phytocassanes and that CYP76M7/M8 is involved in C11α-hydroxylation of 3-hydroxy-cassadiene. Based on these results, we proposed potential routes of phytocassane biosynthesis in planta.

  9. Characterization of moclobemide N-oxidation in human liver microsomes.

    PubMed

    Hoskins, J; Shenfield, G; Murray, M; Gross, A

    2001-07-01

    1. Moclobemide underdergoes morpholine ring N-oxidation to form a major metabolite in plasma Rol2-5637. 2. The kinetics of moclobemide N-oxidation in human liver microsomes (HLM) (n = 6) have been investigated and the mixed-function oxidase enzymes catalysing this reaction have been identified using inhibition, enzyme correlation, altered pH and heat pretreatment experiments. 3. N-oxidation followed single enzyme Michealis-Menten kinetics (0.02-4.0 mm). Km app and Vmax ranged from 0.48 to 1.35 mM (mean +/- SD) 0.77 +/- 0.34 mM) and 0.22 to 2.15 nmol mg(-1) min(-1) (1.39 +/- 0.80 nmol mg(-1) respectively. 4. The N-oxidation of moclobemide strongly correlated with benzydamine N-oxidation a probe reaction for flavin-containing monoxygenase (FMO) activity (0.1 mM moclobemide, rs = 0.81, p < 0.005; 4 mM moclobemide, rs = 0.94, p = 0.0001). Correlations were observed between moclobemide N-oxidation and specific cytochromre P450 (CYP) activities at both moclobemide concentrations (0.1 mM moclobemide, CYP2C19 0.66, p < 0.05; 4 mM moclobemide, CYP2E1 rs = 0.56, p < 0.05). 5. The general P450 inhibitor, N-benzylimidazole, did not affect the rate of Rol2-5637 formation (0% inhibition versus control) (at 1.3 mM moclobemide. Furthermore, the rate of Ro12-5637 formation in HLM was unaffected by inhibitors Or substrates of specific P450s (< 10% inhibition versus control). 6. Heat pretreatment of HLM in the absence of NADPH (inactivating FMOs) resulted in 97% inhibition of Ro12-5637 formation. N-oxidation activity was greatest when incubated at pH 8.5. These results ilre consistent with the reaction being FMO medialtetd . 7. In conclusion, moclobemide N-oxidation activity has been observed in HLM in vitro and the reaction is predominantly catalysed by FMOs with a potentially small contribution from cytochrome P450 isoforms.

  10. Role of gemfibrozil as an inhibitor of CYP2C8 and membrane transporters.

    PubMed

    Tornio, Aleksi; Neuvonen, Pertti J; Niemi, Mikko; Backman, Janne T

    2017-01-01

    Cytochrome P450 (CYP) 2C8 is a drug metabolizing enzyme of major importance. The lipid-lowering drug gemfibrozil has been identified as a strong inhibitor of CYP2C8 in vivo. This effect is due to mechanism-based inhibition of CYP2C8 by gemfibrozil 1-O-β-glucuronide. In vivo, gemfibrozil is a fairly selective CYP2C8 inhibitor, which lacks significant inhibitory effect on other CYP enzymes. Gemfibrozil can, however, have a smaller but clinically meaningful inhibitory effect on membrane transporters, such as organic anion transporting polypeptide 1B1 and organic anion transporter 3. Areas covered: This review describes the inhibitory effects of gemfibrozil on CYP enzymes and membrane transporters. The clinical drug interactions caused by gemfibrozil and the different mechanisms contributing to the interactions are reviewed in detail. Expert opinion: Gemfibrozil is a useful probe inhibitor of CYP2C8 in vivo, but its effect on membrane transporters has to be taken into account in study design and interpretation. Moreover, gemfibrozil could be used to boost the pharmacokinetics of CYP2C8 substrate drugs. Identification of gemfibrozil 1-O-β-glucuronide as a potent mechanism-based inhibitor of CYP2C8 has led to recognition of glucuronide metabolites as perpetrators of drug-drug interactions. Recently, also acyl glucuronide metabolites of clopidogrel and deleobuvir have been shown to strongly inhibit CYP2C8.

  11. Effects of substrate heating and vacuum annealing on optical and electrical properties of alumina-doped ZnO films deposited by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tang, Chien-Jen; Wang, Chun-Yuan; Jaing, Cheng-Chung

    2011-10-01

    Alumina-doped zinc oxide (AZO) films have wide range of applications in optical and optoelectronic devices. AZO films have advantage in high transparency, high stability to hydrogen plasma and low cost to alternative ITO film. AZO film was prepared by direct-current (DC) magnetron sputtering from ceramic ZnO:Al2O3 target. The AZO films were compared in two different conditions. The first is substrate heating process, in which AZO film was deposited by different substrate temperature, room temperature, 150 °C and 250 °C. The second is vacuum annealing process, in which AZO film with deposited at room temperature have been annealed at 250 °C and 450 °C in vacuum. The optical properties, electrical properties, grain size and surface structure properties of the films were studied by UV-VIS-NIR spectrophotometer, Hall effect measurement equipment, x-ray diffraction, and scanning electron microscopy. The resistivity, carrier mobility, carrier concentration, and grain size of AZO films were 1.92×10-3 Ω-cm, 6.38 cm2/Vs, 5.08×1020 #/cm3, and 31.48 nm respectively, in vacuum annealing of 450 °C. The resistivity, carrier mobility, carrier concentration, and grain size of AZO films were 8.72×10-4 Ω-cm, 6.32 cm2/Vs, 1.13×1021 #/cm3, and 31.56 nm, respectively, when substrate temperature was at 250 °C. Substrate heating process is better than vacuum annealed process for AZO film deposited by DC Magnetron Sputtering.

  12. The Cytochrome P450 Enzyme Responsible for the Production of (Z)-Norendoxifen in vitro.

    PubMed

    Ma, Jianli; Chu, Zhong; Lu, Jessica Bo Li; Liu, Jinzhong; Zhang, Qingyuan; Liu, Zhaoliang; Tang, Dabei

    2018-01-01

    Norendoxifen, an active metabolite of tamoxifen, is a potent aromatase inhibitor. Little information is available regarding production of norendoxifen in vitro. Here, we conducted a series of kinetic and inhibition studies in human liver microsomes (HLMs) and expressed P450s to study the metabolic disposition of norendoxifen. To validate that norendoxifen was the metabolite of endoxifen, metabolites in HLMs incubates of endoxifen were measured using a HPLC/MS/MS method. To further probe the specific isoforms involved in the metabolic route, endoxifen was incubated with recombinant P450s (CYP 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4, 3A5 and CYP4A11). Formation rates of norendoxifen were evaluated in the absence and presence of P450 isoform specific inhibitors using HLMs. The peak of norendoxifen was found in the incubations consisting of endoxifen, HLMs, and cofactors. The retention times of norendoxifen, endoxifen, and the internal standard (diphenhydramine) were 7.81, 7.97, and 5.86 min, respectively. The K m (app) and V max (app) values of norendoxifen formation from endoxifen in HLM was 47.8 μm and 35.39 pmol min -1 mg -1 . The apparent hepatic intrinsic clearances of norendoxifen formation were 0.74 μl mg -1 min. CYP3A5 and CYP2D6 were the major enzymes capable of norendoxifen formation from endoxifen with the rates of 0.26 and 0.86 pmol pmol -1 P450 × min. CYP1A2, 3A2, 2C9, and 2C19 also contributed to norendoxifen formation, but the contributions were at least 6-fold lower. One micromolar ketoconazole (CYP3A inhibitor) showed an inhibitory effect on the rates of norendoxifen formation by 45%, but 1 μm quinidine (CYP2D6 inhibitor) does not show any inhibitory effect. Norendoxifen, metabolism from endoxifen by multiple P450s that including CYP3A5. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  13. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes: DISCOVERY OF P450-TYPE HYDROPEROXIDE LYASE ACTIVITY IN A CATALASE.

    PubMed

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E; Calcutt, Wade M; Brash, Alan R; Samel, Nigulas

    2015-08-07

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using (18)O-labeled substrate and incubations in H2(18)O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function

    PubMed Central

    Scott, Emily E.; Wolf, C. Roland; Otyepka, Michal; Humphreys, Sara C.; Reed, James R.; Henderson, Colin J.; McLaughlin, Lesley A.; Paloncýová, Markéta; Navrátilová, Veronika; Berka, Karel; Anzenbacher, Pavel; Dahal, Upendra P.; Barnaba, Carlo; Brozik, James A.; Jones, Jeffrey P.; Estrada, D. Fernando; Laurence, Jennifer S.; Park, Ji Won

    2016-01-01

    This symposium summary, sponsored by the ASPET, was held at Experimental Biology 2015 on March 29, 2015, in Boston, Massachusetts. The symposium focused on: 1) the interactions of cytochrome P450s (P450s) with their redox partners; and 2) the role of the lipid membrane in their orientation and stabilization. Two presentations discussed the interactions of P450s with NADPH-P450 reductase (CPR) and cytochrome b5. First, solution nuclear magnetic resonance was used to compare the protein interactions that facilitated either the hydroxylase or lyase activities of CYP17A1. The lyase interaction was stimulated by the presence of b5 and 17α-hydroxypregnenolone, whereas the hydroxylase reaction was predominant in the absence of b5. The role of b5 was also shown in vivo by selective hepatic knockout of b5 from mice expressing CYP3A4 and CYP2D6; the lack of b5 caused a decrease in the clearance of several substrates. The role of the membrane on P450 orientation was examined using computational methods, showing that the proximal region of the P450 molecule faced the aqueous phase. The distal region, containing the substrate-access channel, was associated with the membrane. The interaction of NADPH-P450 reductase (CPR) with the membrane was also described, showing the ability of CPR to “helicopter” above the membrane. Finally, the endoplasmic reticulum (ER) was shown to be heterogeneous, having ordered membrane regions containing cholesterol and more disordered regions. Interestingly, two closely related P450s, CYP1A1 and CYP1A2, resided in different regions of the ER. The structural characteristics of their localization were examined. These studies emphasize the importance of P450 protein organization to their function. PMID:26851242

  15. Endothelial expression of human cytochrome P450 epoxygenase CYP2C8 increases susceptibility to ischemia-reperfusion injury in isolated mouse heart

    PubMed Central

    Edin, Matthew L.; Wang, ZhongJing; Bradbury, J. Alyce; Graves, Joan P.; Lih, Fred B.; DeGraff, Laura M.; Foley, Julie F.; Torphy, Robert; Ronnekleiv, Oline K.; Tomer, Kenneth B.; Lee, Craig R.; Zeldin, Darryl C.

    2011-01-01

    Cytochrome P450 (CYP) epoxygenases CYP2C8 and CYP2J2 generate epoxyeicosatrienoic acids (EETs) from arachidonic acid. Mice with expression of CYP2J2 in cardiomyocytes (αMHC-CYP2J2 Tr) or treated with synthetic EETs have increased functional recovery after ischemia/reperfusion (I/R); however, no studies have examined the role of cardiomyocyte- vs. endothelial-derived EETs or compared the effects of different CYP epoxygenase isoforms in the ischemic heart. We generated transgenic mice with increased endothelial EET biosynthesis (Tie2-CYP2C8 Tr and Tie2-CYP2J2 Tr) or EET hydrolysis (Tie2-sEH Tr). Compared to wild-type (WT), αMHC-CYP2J2 Tr hearts showed increased recovery of left ventricular developed pressure (LVDP) and decreased infarct size after I/R. In contrast, LVDP recovery and infarct size were unchanged in Tie2-CYP2J2 Tr and Tie2-sEH Tr hearts. Surprisingly, compared to WT, Tie2-CYP2C8 Tr hearts had significantly reduced LVDP recovery (from 21 to 14%) and increased infarct size after I/R (from 51 to 61%). Tie2-CYP2C8 Tr hearts also exhibited increased reactive oxygen species (ROS) generation, dihydroxyoctadecenoic acid (DiHOME) formation, and coronary resistance after I/R. ROS scavengers and CYP2C8 inhibition reversed the detrimental effects of CYP2C8 expression in Tie2-CYP2C8 Tr hearts. Treatment of WT hearts with 250 nM 9,10-DiHOME decreased LVDP recovery compared to vehicle (16 vs. 31%, respectively) and increased coronary resistance after I/R. These data demonstrate that increased ROS generation and enhanced DiHOME synthesis by endothelial CYP2C8 impair functional recovery and mask the beneficial effects of increased EET production following I/R.—Edin, M. L., Wang, Z. J., Bradbury, J. A., Graves, J. P., Lih, F. B., DeGraff, L. M., Foley, J. F., Torphy, R., Ronnekleiv, O. K., Tomer, K. B., Lee, C. R., Zeldin, D. C. Endothelial expression of human cytochrome P450 epoxygenase CYP2C8 increases susceptibility to ischemia-reperfusion injury in isolated mouse heart. PMID:21697548

  16. Inhibition of oxidative drug metabolism by orphenadrine: in vitro and in vivo evidence for isozyme-specific complexation of cytochrome P-450 and inhibition kinetics.

    PubMed

    Reidy, G F; Mehta, I; Murray, M

    1989-05-01

    The anti-parkinsonian agent orphenadrine has been shown to form an in vitro metabolic intermediate (MI) complex in hepatic microsomes isolated from phenobarbital (PB)-treated rats. The present study was undertaken to assess the cytochrome P-450 isozyme specificity of inhibition and MI complexation. Spectral studies with untreated and PB-induced rat hepatic microsomes confirmed earlier reports on the selectivity of P-450 complexation by orphenadrine; MI complex formation was only observed with PB-induced microsomes. Inhibition studies with the P-450 substrates androst-4-ene-3,17-dione (androstenedione) and 7-pentoxyresorufin revealed selective inhibition of P-450 PB-B/D-associated monooxygenase activity. Thus, in microsomes from untreated male rats, orphenadrine failed to significantly inhibit (less than 50% inhibition up to a concentration of 300 microM) any of the major pathways of P-450-associated androstenedione metabolism. Preincubation of these microsomal fractions with orphenadrine and NADPH was not associated with increased inhibition of androstenedione metabolism. However, in PB-induced microsomes, P-450 PB-B/D-specific androstenedione 16 beta-hydroxylase activity was significantly and selectively inhibited (IC50 = 90 microM). Preincubation of orphenadrine with NADPH-supplemented PB-induced microsomes for 2, 4, or 8 min before androstenedione addition resulted in increased inhibition toward 16 beta-hydroxylase activity, lowering the observed IC50 to 6.6, 0.47, and 0.06 microM), respectively. Preincubation did not affect the selectivity of inhibition. In the absence of preincubation, orphenadrine appeared to be a potent mixed (competitive/noncompetitive)-type inhibitor of P-450 PB-B/D-associated pentoxyresorufin O-depentylation (Ki = 3.8 microM). Preincubation of orphenadrine with NADPH-supplemented microsomal fractions for 4 min resulted in a 30-fold lowering of the apparent inhibitor constant (Ki = 0.13 microM) and a change in the apparent inhibition kinetics to noncompetitive. Treatment of rats with orphenadrine (75 mg/kg/day intraperitoneally for 3 days) was associated with a 2-fold induction of total hepatic P-450, a 5- and 2.4-fold induction of androstenedione 16 beta- and 6 beta-hydroxylase activity, respectively, and formation of an orphenadrine-P-450 MI complex. Western blots of orphenadrine-induced microsomes revealed a 20-fold increase in P-450 PB-B/D-immunoreactive protein.(ABSTRACT TRUNCATED AT 400 WORDS)

  17. Molecular cloning and expression of CYP9A61: a chlorpyrifos-ethyl and lambda-cyhalothrin-inducible cytochrome P450 cDNA from Cydia pomonella.

    PubMed

    Yang, Xueqing; Li, Xianchun; Zhang, Yalin

    2013-12-13

    Cytochrome P450 monooxygenases (CYPs or P450s) play paramount roles in detoxification of insecticides in a number of insect pests. However, little is known about the roles of P450s and their responses to insecticide exposure in the codling moth Cydia pomonella (L.), an economically important fruit pest. Here we report the characterization and expression analysis of the first P450 gene, designated as CYP9A61, from this pest. The full-length cDNA sequence of CYP9A61 is 2071 bp long and its open reading frame (ORF) encodes 538 amino acids. Sequence analysis shows that CYP9A61 shares 51%-60% identity with other known CYP9s and contains the highly conserved substrate recognition site SRS1, SRS4 and SRS5. Quantitative real-time PCR showed that CYP9A61 were 67-fold higher in the fifth instar larvae than in the first instar, and more abundant in the silk gland and fat body than other tissues. Exposure of the 3rd instar larvae to 12.5 mg L(-1) of chlorpyrifos-ethyl for 60 h and 0.19 mg L(-1) of lambda-cyhalothrin for 36 h resulted in 2.20- and 3.47-fold induction of CYP9A61, respectively. Exposure of the 3rd instar larvae to these two insecticides also significantly enhanced the total P450 activity. The results suggested that CYP9A61 is an insecticide-detoxifying P450.

  18. Molecular Cloning and Expression of CYP9A61: A Chlorpyrifos-Ethyl and Lambda-Cyhalothrin-Inducible Cytochrome P450 cDNA from Cydia pomonella

    PubMed Central

    Yang, Xueqing; Li, Xianchun; Zhang, Yalin

    2013-01-01

    Cytochrome P450 monooxygenases (CYPs or P450s) play paramount roles in detoxification of insecticides in a number of insect pests. However, little is known about the roles of P450s and their responses to insecticide exposure in the codling moth Cydia pomonella (L.), an economically important fruit pest. Here we report the characterization and expression analysis of the first P450 gene, designated as CYP9A61, from this pest. The full-length cDNA sequence of CYP9A61 is 2071 bp long and its open reading frame (ORF) encodes 538 amino acids. Sequence analysis shows that CYP9A61 shares 51%–60% identity with other known CYP9s and contains the highly conserved substrate recognition site SRS1, SRS4 and SRS5. Quantitative real-time PCR showed that CYP9A61 were 67-fold higher in the fifth instar larvae than in the first instar, and more abundant in the silk gland and fat body than other tissues. Exposure of the 3rd instar larvae to 12.5 mg L−1 of chlorpyrifos-ethyl for 60 h and 0.19 mg L−1 of lambda-cyhalothrin for 36 h resulted in 2.20-and 3.47-fold induction of CYP9A61, respectively. Exposure of the 3rd instar larvae to these two insecticides also significantly enhanced the total P450 activity. The results suggested that CYP9A61 is an insecticide-detoxifying P450. PMID:24351812

  19. Structure and Dynamics of the Membrane-Bound Cytochrome P450 2C9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cojocaru, Vlad; Balali-Mood, Kia; Sansom, Mark S.

    The microsomal, membrane-bound, human cytochrome P450 (CYP) 2C9 is a liver-specific monooxygenase essential for drug metabolism. CYPs require electron transfer from the membrane-bound CYP reductase (CPR) for catalysis. The structural details and functional relevance of the CYP-membrane interaction are not understood. From multiple coarse grained molecular simulations started with arbitrary configurations of protein-membrane complexes, we found two predominant orientations of CYP2C9 in the membrane, both consistent with experiments and conserved in atomic-resolution simulations. The dynamics of membrane-bound and soluble CYP2C9 revealed correlations between opening and closing of different tunnels from the enzyme’s buried active site. The membrane facilitated the openingmore » of a tunnel leading into it by stabilizing the open state of an internal aromatic gate. Other tunnels opened selectively in the simulations of product-bound CYP2C9. We propose that the membrane promotes binding of liposoluble substrates by stabilizing protein conformations with an open access tunnel and provide evidence for selective substrate access and product release routes in mammalian CYPs. The models derived here are suitable for extension to incorporate other CYPs for oligomerization studies or the CYP reductase for studies of the electron transfer mechanism, whereas the modeling procedure is generally applicable to study proteins anchored in the bilayer by a single transmembrane helix.« less

  20. Effect of estradiol on apoptosis, proliferation and steroidogenic enzymes in the testes of the toad Rhinella arenarum (Amphibia, Anura).

    PubMed

    Scaia, María Florencia; Volonteri, María Clara; Czuchlej, Silvia Cristina; Ceballos, Nora Raquel

    2015-09-15

    Estrogens inhibit androgen production and this negative action on amphibian steroidogenesis could be related to the regulation of steroidogenic enzymes. Estrogens are also involved in the regulation of amphibian spermatogenesis by controlling testicular apoptosis and spermatogonial proliferation. The Bidder's organ (BO) is a structure characteristic from the Bufonidae family and in adult males of Rhinella arenarum it is one of the main sources of plasma estradiol (E2). The purpose of this study is to analyze the effect of E2 on testicular steroidogenic enzymes, apoptosis and proliferation in the toad R. arenarum. For this purpose, testicular fragments were treated during 24h with or without 2 or 20nM of E2. After treatments, the activities of cytochrome P450 17α-hydroxylase-C17-20 lyase (CypP450c17) and 3β-hydroxysteroid dehydrogenase/isomerase (3β-HSD/I) were measured by the transformation of radioactive substrates into products, and CypP450c17 expression was determined by Western blot analysis. Apoptosis in testicular sections was detected with a commercial fluorescent kit based on TUNEL method, and proliferation was evaluated by BrdU incorporation. Results indicate that E2 has no effect on CypP450c17 protein levels or enzymatic activity, while it reduces 3β-HSD/I activity during the post reproductive season. Furthermore, although E2 has no effect on apoptosis during the pre and the post reproductive seasons, it stimulates testicular apoptosis during the reproductive season, mostly in spermatocytes. Finally, E2 has no effect on testicular proliferation all year long. Taken together, these results suggest that E2 is involved in the regulation of testicular steroidogenesis and spermatogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Structural basis for androgen specificity and oestrogen synthesis in human aromatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Debashis; Griswold, Jennifer; Erman, Mary

    2009-03-06

    Aromatase cytochrome P450 is the only enzyme in vertebrates known to catalyse the biosynthesis of all oestrogens from androgens. Aromatase inhibitors therefore constitute a frontline therapy for oestrogen-dependent breast cancer. In a three-step process, each step requiring 1 mol of O{sub 2}, 1 mol of NADPH, and coupling with its redox partner cytochrome P450 reductase, aromatase converts androstenedione, testosterone and 16{alpha}-hydroxytestosterone to oestrone, 17{beta}-oestradiol and 17{beta},16{alpha}-oestriol, respectively. The first two steps are C19-methyl hydroxylation steps, and the third involves the aromatization of the steroid A-ring, unique to aromatase. Whereas most P450s are not highly substrate selective, it is the hallmarkmore » androgenic specificity that sets aromatase apart. The structure of this enzyme of the endoplasmic reticulum membrane has remained unknown for decades, hindering elucidation of the biochemical mechanism. Here we present the crystal structure of human placental aromatase, the only natural mammalian, full-length P450 and P450 in hormone biosynthetic pathways to be crystallized so far. Unlike the active sites of many microsomal P450s that metabolize drugs and xenobiotics, aromatase has an androgen-specific cleft that binds the androstenedione molecule snugly. Hydrophobic and polar residues exquisitely complement the steroid backbone. The locations of catalytically important residues shed light on the reaction mechanism. The relative juxtaposition of the hydrophobic amino-terminal region and the opening to the catalytic cleft shows why membrane anchoring is necessary for the lipophilic substrates to gain access to the active site. The molecular basis for the enzyme's androgenic specificity and unique catalytic mechanism can be used for developing next-generation aromatase inhibitors.« less

  2. Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution

    NASA Astrophysics Data System (ADS)

    Kille, Sabrina; Zilly, Felipe E.; Acevedo, Juan P.; Reetz, Manfred T.

    2011-09-01

    A current challenge in synthetic organic chemistry is the development of methods that allow the regio- and stereoselective oxidative C-H activation of natural or synthetic compounds with formation of the corresponding alcohols. Cytochrome P450 enzymes enable C-H activation at non-activated positions, but the simultaneous control of both regio- and stereoselectivity is problematic. Here, we demonstrate that directed evolution using iterative saturation mutagenesis provides a means to solve synthetic problems of this kind. Using P450 BM3(F87A) as the starting enzyme and testosterone as the substrate, which results in a 1:1 mixture of the 2β- and 15β-alcohols, mutants were obtained that are 96-97% selective for either of the two regioisomers, each with complete diastereoselectivity. The mutants can be used for selective oxidative hydroxylation of other steroids without performing additional mutagenesis experiments. Molecular dynamics simulations and docking experiments shed light on the origin of regio- and stereoselectivity.

  3. Inhibition of human P450 enzymes by natural extracts used in traditional medicine.

    PubMed

    Rodeiro, Idania; Donato, María T; Jimenez, Nuria; Garrido, Gabino; Molina-Torres, Jorge; Menendez, Roberto; Castell, José V; Gómez-Lechón, María J

    2009-02-01

    Different medicinal plants are widely used in Cuba and Mexico to treat several disorders. This paper reports in vitro inhibitory effects on the P450 system of herbal products commonly used by people in Cuba and Mexico in traditional medicine for decades. Experiments were conducted in human liver microsomes. The catalytic activities of CYP1A1/2, 2D6, and 3A4 were measured using specific probe substrates. The Heliopsis longipes extract exhibited a concentration-dependent inhibition of the three enzymes, and similar effects were produced by affinin (an alkamide isolated from the H. longipes extract) and two catalytically reduced alkamides. Mangifera indica L. and Thalassia testudinum extracts, two natural polyphenol-rich extracts, diminished CYP1A1/2 and 3A4 activities, but not the CYP2D6 activity. These results suggest that these herbs inhibit the major human P450 enzymes involved in drug metabolism and could induce potential herbal-drug interactions. Copyright (c) 2008 John Wiley & Sons, Ltd.

  4. Antiepileptic drugs affect neuronal androgen signaling via a cytochrome P450-dependent pathway.

    PubMed

    Gehlhaus, Marcel; Schmitt, Nina; Volk, Benedikt; Meyer, Ralf P

    2007-08-01

    Recent data imply an important role for brain cytochrome P450 (P450) in endocrine signaling. In epileptic patients, treatment with P450 inducers led to reproductive disorders; in mouse hippocampus, phenytoin treatment caused concomitant up-regulation of CYP3A11 and androgen receptor (AR). In the present study, we established specific in vitro models to examine whether CYP3A isoforms cause enhanced AR expression and activation. Murine Hepa1c1c7 cells and neuronal-type rat PC-12 cells were used to investigate P450 regulation and its effects on AR after phenytoin and phenobarbital administration. In both cell lines, treatment with antiepileptic drugs (AEDs) led to concomitant up-regulation of CYP3A (CYP3A11 in Hepa1c1c7 and CYP3A2 in PC-12) and AR mRNA and protein. Inhibition of CYP3A expression and activity by the CYP3A inhibitor ketoconazole or by CYP3A11-specific short interfering RNA molecules reduced AR expression to basal levels. The initial up-regulation of AR signal transduction, measured by an androgen-responsive element chloramphenicol-acetyltransferase reporter gene assay, was completely reversed after specific inhibition of CYP3A11. Withdrawal of the CYP3A11 substrate testosterone prevented AR activation, whereas AR mRNA expression remained up-regulated. In addition, recombinant CYP3A11 was expressed heterologously in PC-12 cells, thereby eliminating any direct drug influence on the AR. Again, the initial up-regulation of AR mRNA and activity was reduced to basal levels after silencing of CYP3A11. In conclusion, we show here that CYP3A2 and CYP3A11 are crucial mediators of AR expression and signaling after AED application. These findings point to an important and novel function of P450 in regulation of steroid hormones and their receptors in endocrine tissues such as liver and brain.

  5. Influence of Panax ginseng on Cytochrome P450 (CYP)3A and P-glycoprotein (Pgp) Activity in Healthy Subjects

    PubMed Central

    Malati, Christine Y.; Robertson, Sarah M.; Hunt, Jennifer D.; Chairez, Cheryl; Alfaro, Raul M.; Kovacs, Joseph A.; Penzak, Scott R.

    2012-01-01

    A number of herbal preparations have been shown to interact with prescription medications secondary to modulation of cytochrome P450 (CYP) and/or P-glycoprotein (P-gp). The purpose of this study was to determine the influence of Panax ginseng on CYP3A and P-gp function using the probe substrates midazolam and fexofenadine, respectively. Twelve healthy subjects (8 males) completed this open label, single sequence pharmacokinetic study. Healthy volunteers received single oral doses of midazolam 8 mg and fexofenadine 120 mg, before and after 28 days of P. ginseng 500 mg twice daily. Midazolam and fexofenadine pharmacokinetic parameter values were calculated and compared pre-and post P. ginseng administration. Geometric mean ratios (post-ginseng/pre-ginseng) for midazolam area under the concentration vs. time curve from zero to infinity (AUC0-∞), half life (T1/2), and maximum concentration (Cmax) were significantly reduced at 0.66 (0.55 – 0.78), 0.71 (0.53 – 0.90), and 0.74 (0.56 – 0.93), respectively. Conversely, fexofenadine pharmacokinetics were unaltered by P. ginseng administration. Based on these results, Panax ginseng appeared to induce CYP3A activity in the liver and possibly the gastrointestinal tract. Patients taking Panax ginseng in combination with CYP3A substrates with narrow therapeutic ranges should be monitored closely for adequate therapeutic response to the substrate medication. PMID:21646440

  6. Rapid screening of commercially available herbal products for the inhibition of major human hepatic cytochrome P450 enzymes using the N-in-one cocktail.

    PubMed

    Sevior, D K; Hokkanen, J; Tolonen, A; Abass, K; Tursas, L; Pelkonen, O; Ahokas, J T

    2010-04-01

    Self-administration of complementary products concurrently with conventional medication is increasingly common. The potential for cytochrome P450 (CYP) inhibition requires investigation. The N-in-one assay with ten probe substrates for nine CYPs was used with human liver microsomes to investigate ten products. CYP inhibition was measured in a single liquid chromatography-tandem mass spectrometry (LC/MS-MS) analysis. Estimated IC(50)-values were determined for the extracts that produced significant inhibition (less than 100 microg ml(-1)). Inhibition of CYP2C19 by dong quai (IC(50) = 13.7-14.3 microg ml(-1) for the methanolic extract) and CYP2D6 by goldenseal (IC(50) = 6.7 and 6.3 microg ml(-1) for the aqueous and methanolic extracts, respectively), are of particular concern as the potential for adverse interactions is high. The inhibition of CYP2C8 by horsetail (IC(50) = 93 microg ml(-1) for the aqueous extract) requires further investigation, as the potential for concurrent use with products that require CYP2C8 for metabolism is significant. CYP3A4 inhibition varied depending on the probe reaction being monitored. The earlier reported findings of inhibition by black cohosh, goldenseal and gotu kola were confirmed. The present work has shown that the N-in-one cocktail is a rapid and reliable method that can be used as an initial screen to help prioritize products that require more detailed investigations and it can also be applied to monitor product variability.

  7. Oxidase uncoupling in heme monooxygenases: Human cytochrome P450 CYP3A4 in Nanodiscs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinkova, Yelena V.; Denisov, Ilia G.; McLean, Mark A.

    Highlights: ► Substantial reducing equivalents are lost in human P450 CYP3A4 via an oxidase channel. ► Substrate binding has a pronounced effect on uncoupling in cytochrome P450. ► Anionic phospholipids improve the overall coupling in CYP3A4 Nanodiscs. -- Abstract: The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons:1 dioxygen:1 product. However, three alternate unproductive pathways exist where the intermediate iron–oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involvesmore » release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen–oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed “Compound I”. This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP3A4 reconstituted in Nanodiscs. We discovered that the “oxidase” uncoupling pathway is also operating in the substrate free form of the enzyme with rate of this pathway substantially increasing with the first substrate binding event. Surprisingly, a large fraction of the reducing equivalents used by the P450 system is wasted in this oxidase pathway. In addition, the overall coupling with testosterone and bromocryptine as substrates is significantly higher in the presence of anionic lipids, which is attributed to the changes in the redox potential of CYP3A4 and reductase.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, Xiaoyun; Xu, Feng, E-mail: xuf@xtal.tsinghua.edu.cn; Bell, Stephen G.

    The cytochrome P450 enzyme CYP203A1 from Rhodopseudomonas palustris binds a wide range of highly substituted aromatic compounds and may play an important role in the astonishing metabolic diversity of this organism. Crystals of CYP203A1 that diffract to 2.0 Å resolution have been obtained. Cytochrome P450 enzymes constitute a large family of haemoproteins that catalyze the monooxygenation of a great variety of endogenous and exogenous organic compounds. Cytochrome P450 203A1 (CYP203A1, RPA1009) from the metabolically versatile organism Rhodopseudomonas palustris binds a broad range of substrates, in particular substituted aromatic compounds. Crystals of CYP203A1 suitable for X-ray crystallography have been obtained andmore » diffraction data were collected in-house to 2.0 Å resolution from a single crystal. The crystals belong to space group P222, with unit-cell parameters a = 40.1, b = 95.1, c = 99.0 Å, α = β = γ = 90°. There is one protein molecule per asymmetric unit.« less

  9. Investigation of sarizotan's impact on the pharmacokinetics of probe drugs for major cytochrome P450 isoenzymes: a combined cocktail trial.

    PubMed

    Krösser, Sonja; Neugebauer, Roland; Dolgos, Hugues; Fluck, Markus; Rost, Karl-Ludwig; Kovar, Andreas

    2006-04-01

    The 5HT(1A) receptor agonist sarizotan is in clinical development for the treatment of dyskinesia, a potentially disabling complication in Parkinson's disease. We investigated the effect of sarizotan on the clinical pharmacokinetics of probe drugs for cytochrome P450 (CYP) to evaluate the risk of CYP-related drug-drug interactions. This was a double-blind, randomised, two-period cross-over interaction study with repeated administration of 5 mg sarizotan HCl or placebo b.i.d. for 8 days in 18 healthy volunteers. On day 4, a single dose of 100 mg metoprolol (CYP2D6 probe) was administered. On day 8, single doses of 100 mg caffeine (CYP1A2 probe), 50 mg diclofenac (CYP2C9 probe), 100 mg mephenytoin (CYP2C19 probe) and 7.5 mg midazolam (CYP3A4 probe) were simultaneously applied. Pharmacokinetic parameters for probe drugs and their metabolites in plasma and urinary recovery were determined. Concentration-time profiles and pharmacokinetic parameters of all probes and their metabolites remained unchanged after co-administration of sarizotan, compared with placebo. Analysis of variance of the area under the plasma concentration-time curve for probe drugs/metabolites, metabolic ratios and urinary excretion resulted in 90% confidence intervals within the acceptance range (0.8-1.25), indicating the absence of drug-drug interactions. At a dose higher than that intended for clinical use (1 mg b.i.d.), sarizotan had no effect on the metabolism and pharmacokinetics of specific probe drugs for CYP isoenzymes 1A2, 2C19, 2C9, 2D6 and 3A4. Pharmacokinetic interactions with co-administered drugs metabolised by these CYP isoforms are not expected, and dose adjustment of co-administered CYP substrates is not necessary.

  10. The Pharmacokinetics of the CYP3A Substrate Midazolam After Steady-state Dosing of Delafloxacin.

    PubMed

    Paulson, Susan K; Wood-Horrall, Rebecca N; Hoover, Randall; Quintas, Megan; Lawrence, Laura E; Cammarata, Sue K

    2017-06-01

    Delafloxacin is a novel anionic fluoroquinolone in Phase III development for the treatment of serious skin infections. The objective of this study was to evaluate the effects of delafloxacin on the pharmacokinetics of midazolam, a cytochrome P450 (CYP) 3A substrate. CYP3A activity using midazolam as a probe was assessed before and after multiple doses of delafloxacin to reach steady state. In this nonrandomized, open-label, single-sequence, Phase I study, 22 healthy male and female subjects were administered a single 5-mg oral dose of midazolam on days 1 and 8, with oral delafloxacin 450 mg every 12 hours administered from days 3 to 8. Full pharmacokinetic profiles were obtained on days 1 and 8 (midazolam and 1-hydroxymidazolam) and days 3 and 7 (delafloxacin). The geometric mean ratios (90% CIs) for AUC 0-∞ and C max of midazolam coadministered with delafloxacin versus midazolam alone were 89.4 (83.2-96.0) and 93.6 (83.7-104.6). Similarly, the geometric ratio for the AUC 0-∞ of 1-hydroxymidazolam, the primary metabolite of midazolam, was 105.7 (97.7-114.3); the ratio of C max was not equivalent at 116.1 (101.7-132.4), which was outside the CI of 80% to 125%. Multiple doses of oral delafloxacin for 6 days were generally well tolerated. Steady-state dosing of delafloxacin produced no significant changes in midazolam pharmacokinetics, except for a small but not clinically relevant change in the C max of 1-hydroxymidazolam. ClinicalTrials.gov identifier: NCT02505997. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Access channels to the buried active site control substrate specificity in CYP1A P450 enzymes.

    PubMed

    Urban, Philippe; Truan, Gilles; Pompon, Denis

    2015-04-01

    A cytochrome P450 active site is buried within the protein molecule and several channels connect the catalytic cavity to the protein surface. Their role in P450 catalysis is still matter of debate. The aim of this study was to understand the possible relations existing between channels and substrate specificity. Time course studies were carried out with a collection of polycyclic substrates of increasing sizes assayed with a library of wild-type and chimeric CYP1A enzymes. This resulted in a matrix of activities sufficiently large to allow statistical analysis. Multivariate statistical tools were used to decipher the correlation between observed activity shifts and sequence segment swaps. The global kinetic behavior of CYP1A enzymes toward polycyclic substrates is significantly different depending on the size of the substrate. Mutations which are close or lining the P450 channels significantly affect this discrimination, whereas mutations distant from the P450 channels do not. Size discrimination is taking place for polycyclic substrates at the entrance of the different P450 access channels. It is thus hypothesized that channels differentiate small from large substrates in CYP1A enzymes, implying that residues located at the surface of the protein may be implied in this differential recognition. Catalysis thus occurs after a two-step recognition process, one at the surface of the protein and the second within the catalytic cavity in enzymes with a buried active site. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities.

    PubMed

    Li, Xue-Qing; Andersson, Tommy B; Ahlström, Marie; Weidolf, Lars

    2004-08-01

    The human clearance of proton pump inhibitors (PPIs) of the substituted benzimidazole class is conducted primarily by the hepatic cytochrome P450 (P450) system. To compare the potency and specificity of the currently used PPIs (i.e., omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole) as inhibitors of four cytochrome P450 enzymes (CYP2C9, 2C19, 2D6, and 3A4), we performed in vitro studies using human liver microsomal preparations and recombinant CYP2C19. Sample analysis was done using selected reaction monitoring liquid chromatography/tandem mass spectometry. With several systems for CYP2C19 activity (two marker reactions, S-mephenytoin 4'-hydroxylation and R-omeprazole 5-hydroxylation, tested in either human liver microsomes or recombinant CYP2C19), the five PPIs showed competitive inhibition of CYP2C19 activity with K(i) of 0.4 to 1.5 microM for lansoprazole, 2 to 6 microM for omeprazole, approximately 8 microM for esomeprazole, 14 to 69 microM for pantoprazole, and 17 to 21 microM for rabeprazole. Pantoprazole was a competitive inhibitor of both CYP2C9-catalyzed diclofenac 4'-hydroxylation and CYP3A4-catalyzed midazolam 1'-hydroxylation (K(i) of 6 and 22 microM, respectively), which were at least 2 times more potent than the other PPIs. All PPIs were poor inhibitors of CYP2D6-mediated bufuralol 1'-hydroxylation with IC(50) > 200 microM. The inhibitory potency of a nonenzymatically formed product of rabeprazole, rabeprazole thioether, was also investigated and showed potent, competitive inhibition with K(i) values of 6 microM for CYP2C9, 2 to 8 microM for CYP2C19, 12 microM for CYP2D6, and 15 microM for CYP3A4. The inhibitory potency of R-omeprazole on the four studied P450 enzymes was also studied and showed higher inhibitory potency than its S-isomer on CYP2C9 and 2C19 activities. Our data suggest that, although the inhibitory profiles of the five studied PPIs were similar, lansoprazole and pantoprazole are the most potent in vitro inhibitors of CYP2C19 and CYP2C9, respectively. Esomeprazole showed less inhibitory potency compared with omeprazole and its R-enantiomer. The inhibitory potency of rabeprazole was relatively lower than the other PPIs, but its thioether analog showed potent inhibition on the P450 enzymes investigated, which may be clinically significant.

  13. Sequential Metabolism of Secondary Alkyl Amines to Metabolic-Intermediate Complexes: Opposing Roles for the Secondary Hydroxylamine and Primary Amine Metabolites of Desipramine, (S)-Fluoxetine, and N-Desmethyldiltiazem

    PubMed Central

    Hanson, Kelsey L.; VandenBrink, Brooke M.; Babu, Kantipudi N.; Allen, Kyle E.; Nelson, Wendel L.

    2010-01-01

    Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine ≫ primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d3-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation. PMID:20200233

  14. Sequential metabolism of secondary alkyl amines to metabolic-intermediate complexes: opposing roles for the secondary hydroxylamine and primary amine metabolites of desipramine, (s)-fluoxetine, and N-desmethyldiltiazem.

    PubMed

    Hanson, Kelsey L; VandenBrink, Brooke M; Babu, Kantipudi N; Allen, Kyle E; Nelson, Wendel L; Kunze, Kent L

    2010-06-01

    Three secondary amines desipramine (DES), (S)-fluoxetine [(S)-FLX], and N-desmethyldiltiazem (MA) undergo N-hydroxylation to the corresponding secondary hydroxylamines [N-hydroxydesipramine, (S)-N-hydroxyfluoxetine, and N-hydroxy-N-desmethyldiltiazem] by cytochromes P450 2C11, 2C19, and 3A4, respectively. The expected primary amine products, N-desmethyldesipramine, (S)-norfluoxetine, and N,N-didesmethyldiltiazem, are also observed. The formation of metabolic-intermediate (MI) complexes from these substrates and metabolites was examined. In each example, the initial rates of MI complex accumulation followed the order secondary hydroxylamine > secondary amine > primary amine, suggesting that the primary amine metabolites do not contribute to formation of MI complexes from these secondary amines. Furthermore, the primary amine metabolites, which accumulate in incubations of the secondary amines, inhibit MI complex formation. Mass balance studies provided estimates of the product ratios of N-dealkylation to N-hydroxylation. The ratios were 2.9 (DES-CYP2C11), 3.6 [(S)-FLX-CYP2C19], and 0.8 (MA-CYP3A4), indicating that secondary hydroxylamines are significant metabolites of the P450-mediated metabolism of secondary alkyl amines. Parallel studies with N-methyl-d(3)-desipramine and CYP2C11 demonstrated significant isotopically sensitive switching from N-demethylation to N-hydroxylation. These findings demonstrate that the major pathway to MI complex formation from these secondary amines arises from N-hydroxylation rather than N-dealkylation and that the primary amines are significant competitive inhibitors of MI complex formation.

  15. Catalytic strategy for carbon−carbon bond scission by the cytochrome P450 OleT

    PubMed Central

    Grant, Job L.; Mitchell, Megan E.; Makris, Thomas Michael

    2016-01-01

    OleT is a cytochrome P450 that catalyzes the hydrogen peroxide-dependent metabolism of Cn chain-length fatty acids to synthesize Cn-1 1-alkenes. The decarboxylation reaction provides a route for the production of drop-in hydrocarbon fuels from a renewable and abundant natural resource. This transformation is highly unusual for a P450, which typically uses an Fe4+−oxo intermediate known as compound I for the insertion of oxygen into organic substrates. OleT, previously shown to form compound I, catalyzes a different reaction. A large substrate kinetic isotope effect (≥8) for OleT compound I decay confirms that, like monooxygenation, alkene formation is initiated by substrate C−H bond abstraction. Rather than finalizing the reaction through rapid oxygen rebound, alkene synthesis proceeds through the formation of a reaction cycle intermediate with kinetics, optical properties, and reactivity indicative of an Fe4+−OH species, compound II. The direct observation of this intermediate, normally fleeting in hydroxylases, provides a rationale for the carbon−carbon scission reaction catalyzed by OleT. PMID:27555591

  16. Concentration-Dependent Inhibitory Effect of Baicalin on the Plasma Protein Binding and Metabolism of Chlorzoxazone, a CYP2E1 Probe Substrate, in Rats In Vitro and In Vivo

    PubMed Central

    Gao, Na; Zou, Dan; Qiao, Hai-Ling

    2013-01-01

    Some of the components found in herbs may be inhibitors or inducers of cytochrome P450 enzymes, which may therefore result in undesired herb-drug interactions. As a component extracted from Radix Scutellariae, the direct effect of baicalin on cytochrome P450 has not been investigated sufficiently. In this study, we investigated concentration-dependent inhibitory effect of baicalin on the plasma protein binding and metabolism of chlorzoxazone (CZN), a model CYP2E1 probe substrate, in rats in vitro and in vivo. Animal experiment was a randomized, three-period crossover design. Significant changes in pharmacokinetic parameters of CZN such as Cmax, t1/2 and Vd were observed after treatment with baicalin in vivo (P<0.05). Cmax decreased by 25% and 33%, whereas t1/2 increased by 34% and 53%, Vd increased by 37% and 50% in 225 mg/kg and 450 mg/kg baicalin-treated rats, respectively. The AUC and CL of CZN were not affected (P>0.05). Correlation analysis showed that the changes in CZN concentrations and baicalin concentrations were in good correlation (r>0.99). In vitro experiments, baicalin decreased the formation of 6-OH-chlorzoxazone in a concentration-dependent manner and exhibited a competitive inhibition in rat liver microsomes, with a Ki value of 145.8 µM. The values of Cmax/Ki were 20 and 39 after treatment with baicalin (225 and 450 mg/kg), respectively. Protein binding experiments in vivo showed that the plasma free-fraction (fu) of CZN increased 2.6-fold immediately after baicalin treatment (450 mg/kg) and in vitro showed that baicalin (125–2500 mg/L) increased the unbound CZN from 1.63% to 3.58%. The results indicate that pharmacokinetic changes in CZN are induced by inhibitory effect of baicalin on the plasma protein binding of CZN and CYP2E1 activity. PMID:23301016

  17. Evaluating the impact of type 2 diabetes mellitus on CYP450 metabolic activities: protocol for a case-control pharmacokinetic study.

    PubMed

    Gravel, Sophie; Chiasson, Jean-Louis; Dallaire, Suzanne; Turgeon, Jacques; Michaud, Veronique

    2018-02-08

    Diabetes affects more than 9% of the adult population worldwide. Patients with type 2 diabetes mellitus (T2DM) show variable responses to some drugs which may be due, in part, to variability in the functional activity of drug-metabolising enzymes including cytochromes P450 (CYP450s). CYP450 is a superfamily of enzymes responsible for xenobiotic metabolism. Knowledge must be gained on the impact of T2DM and related inflammatory processes on drug metabolism and its consequences on drug response. The aim of this study is to characterise the activity of CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4/5 in T2DM versus non-T2DM subjects following the administration of a cocktail of probe drug substrates. This single-centre clinical study proposes the first detailed characterisation of T2DM impacts on major CYP450 drug-metabolising enzyme activities. We intend to recruit 42 patients with controlled T2DM (A1C≤7%), 42 patients with uncontrolled T2DM (A1C>7%) and 42 non-diabetic control subjects. The primary objective is to determine and compare major CYP450 activities in patients with T2DM versus non-diabetic subjects by dosing in plasma and urine probe drug substrates and metabolites following the oral administration of a drug cocktail: caffeine (CYP1A2), bupropion (CYP2B6), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), chlorzoxazone (CYP2E1) and midazolam (CYP3A4/5). Secondary objectives will evaluate the influence of variables such as glycaemia, insulinaemia, genetic polymorphisms and inflammation. The value of an endogenous biomarker of CYP3A activity is also evaluated. The first patient was recruited in May 2015 and patients will be enrolled up to completion of study groups. Approval was obtained from the ethic review board of the CHUM research centre (Montreal, Canada). NCT02291666. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity.

    PubMed

    Sata, F; Sapone, A; Elizondo, G; Stocker, P; Miller, V P; Zheng, W; Raunio, H; Crespi, C L; Gonzalez, F J

    2000-01-01

    To determine the existence of mutant and variant CgammaP3A4 alleles in three racial groups and to assess functions of the variant alleles by complementary deoxyribonucleic acid (cDNA) expression. A bacterial artificial chromosome that contains the complete CgammaP3A4 gene was isolated and the exons and surrounding introns were directly sequenced to develop primers to polymerase chain reaction (PCR) amplify and sequence the gene from lymphocyte DNA. DNA samples from Chinese, black, and white subjects were screened. Mutating the affected amino acid in the wild-type cDNA and expressing the variant enzyme with use of the baculovirus system was used to functionally evaluate the variant allele having a missense mutation. To investigate the existence of mutant and variant CgammaP3A4 alleles in humans, all 13 exons and the 5'-flanking region of the human CgammaP3A4 gene in three racial groups were sequenced and four alleles were identified. An A-->G point mutation in the 5'-flanking region of the human CgammaP3A4 gene, designated CgammaP3A4*1B, was found in the three different racial groups. The frequency of this allele in a white population was 4.2%, whereas it was 66.7% in black subjects. The CgammaP3A4*1B allele was not found in Chinese subjects. A second variant allele, designated CgammaP3A4*2, having a Ser222Pro change, was found at a frequency of 2.7% in the white population and was absent in the black subjects and Chinese subjects analyzed. Baculovirus-directed cDNA expression revealed that the CYP3A4*2 P450 had a lower intrinsic clearance for the CYP3A4 substrate nifedipine compared with the wild-type enzyme but was not significantly different from the wild-type enzyme for testosterone 6beta-hydroxylation. Another rare allele, designated CgammaP3A4*3, was found in a single Chinese subject who had a Met445Thr change in the conserved heme-binding region of the P450. These are the first examples of potential function polymorphisms resulting from missense mutations in the CgammaP3A4 gene. The CgammaP3A4*2 allele was found to encode a P450 with substrate-dependent altered kinetics compared with the wild-type P450.

  19. Mobility of cytochrome P450 in the endoplasmic reticulum membrane.

    PubMed

    Szczesna-Skorupa, E; Chen, C D; Rogers, S; Kemper, B

    1998-12-08

    Cytochrome P450 2C2 is a resident endoplasmic reticulum (ER) membrane protein that is excluded from the recycling pathway and contains redundant retention functions in its N-terminal transmembrane signal/anchor sequence and its large, cytoplasmic domain. Unlike some ER resident proteins, cytochrome P450 2C2 does not contain any known retention/retrieval signals. One hypothesis to explain exclusion of resident ER proteins from the transport pathway is the formation of networks by interaction with other proteins that immobilize the proteins and are incompatible with packaging into the transport vesicles. To determine the mobility of cytochrome P450 in the ER membrane, chimeric proteins of either cytochrome P450 2C2, its catalytic domain, or the cytochrome P450 2C1 N-terminal signal/anchor sequence fused to green fluorescent protein (GFP) were expressed in transiently transfected COS1 cells. The laurate hydroxylase activities of cytochrome P450 2C2 or the catalytic domain with GFP fused to the C terminus were similar to the native enzyme. The mobilities of the proteins in the membrane were determined by recovery of fluorescence after photobleaching. Diffusion coefficients for all P450 chimeras were similar, ranging from 2.6 to 6.2 x 10(-10) cm2/s. A coefficient only slightly larger (7.1 x 10(-10) cm2/s) was determined for a GFP chimera that contained a C-terminal dilysine ER retention signal and entered the recycling pathway. These data indicate that exclusion of cytochrome P450 from the recycling pathway is not mediated by immobilization in large protein complexes.

  20. Enhanced hepatic and kidney cytochrome p-450 activities in nandrolone decanoate treated albino mice.

    PubMed

    Acharjee, B K; Mahanta, R

    2009-04-01

    Anabolic androgenic steroids are the xenobiotic substrates that are metabolized in the body by the protective enzyme systems. Mixed function oxygenase enzymes include a group of enzymes which play an essential role in the metabolism of a broad range of xenobiotics including endogenous and exogenous substrates. Cytochrome P-450, a member of mixed function oxygenase enzymes, plays an important role in oxidative metabolism of drugs and xenobiotics entering human body. Various anabolic steroids are found either to increase or decrease the activity of cytochrome P-450. However, effect of nandrolone decanoate, most commonly abused anabolic steroid, on cytochrome P-450 activity is still fragmentary. In the present study, albino mice were administered intramuscular 2.5 mg of nandrolone decanoate injection at 15 days interval. Cytochrome P-450 activity is determined by following the method of Omura and Sato (1964) in liver and kidney tissues of both normal and experimental groups upto 90 days. Investigation shows a significant (p <0.01) increase of cytochrome P-450 (nmol/mg) activity in liver tissue as compared to that of kidney tissues. A tissue specific and dose specific increase of cytochrome P-450 activity is observed. Mean cytochrome P-450 is found highest in liver tissue on 45(th) day whereas the activity in kidney tissue is noticed on 90(th) day of treatment. From the above observation, nandrolone decanoate can be suggested as a potent inducer of cytochrome P-450 activity like other anabolic steroids.

  1. Insights into molecular mechanisms of drug metabolism dysfunction of human CYP2C9*30

    PubMed Central

    Louet, Maxime; Labbé, Céline M.; Aono, Cassiano M.; Homem-de-Mello, Paula; Villoutreix, Bruno O.

    2018-01-01

    Cytochrome P450 2C9 (CYP2C9) metabolizes about 15% of clinically administrated drugs. The allelic variant CYP2C9*30 (A477T) is associated to diminished response to the antihypertensive effects of the prodrug losartan and affected metabolism of other drugs. Here, we investigated molecular mechanisms involved in the functional consequences of this amino-acid substitution. Molecular dynamics (MD) simulations performed for the active species of the enzyme (heme in the Compound I state), in the apo or substrate-bound state, and binding energy analyses gave insights into altered protein structure and dynamics involved in the defective drug metabolism of human CYP2C9.30. Our data revealed an increased rigidity of the key Substrate Recognition Sites SRS1 and SRS5 and shifting of the β turn 4 of SRS6 toward the helix F in CYP2C9.30. Channel and binding substrate dynamics analyses showed altered substrate channel access and active site accommodation. These conformational and dynamic changes are believed to be involved in the governing mechanism of the reduced catalytic activity. An ensemble of representative conformations of the WT and A477T mutant properly accommodating drug substrates were identified, those structures can be used for prediction of new CYP2C9 and CYP2C9.30 substrates and drug-drug interactions. PMID:29746595

  2. Electrical properties of multilayer (DLC-TiC) films produced by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Alawajji, Raad A.; Kannarpady, Ganesh K.; Nima, Zeid A.; Kelly, Nigel; Watanabe, Fumiya; Biris, Alexandru S.

    2018-04-01

    In this work, pulsed laser deposition was used to produce a multilayer diamond like carbon (ML (DLC-TiC)) thin film. The ML (DLC-TiC) films were deposited on Si (100) and glass substrates at various substrate temperatures in the range of 20-450 °C. Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and atomic force microscopy were utilized to characterize the prepared films. Raman analysis revealed that as the substrate temperature increased, the G-peak position shifted to a higher raman shift and the full width at half maximum of the G and D bands decreased. XPS analysis indicated a decrease in sp3/sp2 ratio and an increase in Ti-C bond intensity when the substrate temperature was increased. Additionally, the surface roughness of ML (DLC-TiC) filmswas affected by the type and temperature of the substrate. The electrical measurement results indicated that the electrical resistivity of the ML (DLC-TiC) film deposited on Si and glass substrates showed the same behavior-the resistivity decreased when substrate temperature increased. Furthermore, the ML (DLC-TiC) films deposited on silicon showed lower electrical resistivity, dropping from 8.39E-4 Ω-cm to 5.00E-4 Ω-cm, and, similarly, the films on the glass substrate displayed a drop in electrical resistivity from 1.8E-2 Ω-cm to 1.2E-3 Ω-cm. These enhanced electrical properties indicate that the ML (DLC-TiC) films have widespread potential as transducers for biosensors in biological research; electrochemical electrodes, because these films can be chemically modified; biocompatible coatings for medicals tools; and more.

  3. Iron(IV)hydroxide pK(a) and the role of thiolate ligation in C-H bond activation by cytochrome P450.

    PubMed

    Yosca, Timothy H; Rittle, Jonathan; Krest, Courtney M; Onderko, Elizabeth L; Silakov, Alexey; Calixto, Julio C; Behan, Rachel K; Green, Michael T

    2013-11-15

    Cytochrome P450 enzymes activate oxygen at heme iron centers to oxidize relatively inert substrate carbon-hydrogen bonds. Cysteine thiolate coordination to iron is posited to increase the pK(a) (where K(a) is the acid dissociation constant) of compound II, an iron(IV)hydroxide complex, correspondingly lowering the one-electron reduction potential of compound I, the active catalytic intermediate, and decreasing the driving force for deleterious auto-oxidation of tyrosine and tryptophan residues in the enzyme's framework. Here, we report on the preparation of an iron(IV)hydroxide complex in a P450 enzyme (CYP158) in ≥90% yield. Using rapid mixing technologies in conjunction with Mössbauer, ultraviolet/visible, and x-ray absorption spectroscopies, we determine a pK(a) value for this compound of 11.9. Marcus theory analysis indicates that this elevated pK(a) results in a >10,000-fold reduction in the rate constant for oxidations of the protein framework, making these processes noncompetitive with substrate oxidation.

  4. Integration and High-Temperature Characterization of Ferroelectric Vanadium-Doped Bismuth Titanate Thin Films on Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Ekström, Mattias; Khartsev, Sergiy; Östling, Mikael; Zetterling, Carl-Mikael

    2017-07-01

    4H-SiC electronics can operate at high temperature (HT), e.g., 300°C to 500°C, for extended times. Systems using sensors and amplifiers that operate at HT would benefit from microcontrollers which can also operate at HT. Microcontrollers require nonvolatile memory (NVM) for computer programs. In this work, we demonstrate the possibility of integrating ferroelectric vanadium-doped bismuth titanate (BiTV) thin films on 4H-SiC for HT memory applications, with BiTV ferroelectric capacitors providing memory functionality. Film deposition was achieved by laser ablation on Pt (111)/TiO2/4H-SiC substrates, with magnetron-sputtered Pt used as bottom electrode and thermally evaporated Au as upper contacts. Film characterization by x-ray diffraction analysis revealed predominately (117) orientation. P- E hysteresis loops measured at room temperature showed maximum 2 P r of 48 μC/cm2, large enough for wide read margins. P- E loops were measurable up to 450°C, with losses limiting measurements above 450°C. The phase-transition temperature was determined to be about 660°C from the discontinuity in dielectric permittivity, close to what is achieved for ceramics. These BiTV ferroelectric capacitors demonstrate potential for use in HT NVM applications for SiC digital electronics.

  5. Cytochrome P450 isoenzymes involved in rat liver microsomal metabolism of californine and protopine.

    PubMed

    Paul, Liane D; Springer, Dietmar; Staack, Roland F; Kraemer, Thomas; Maurer, Hans H

    2004-02-06

    Studies are described on the cytochrome P450 (CYP) isoenzyme dependence of the main metabolic steps of the Eschscholtzia californica alkaloids californine and protopine using rat liver microsomes. Preparations of E. californica are in use as phytopharmaceuticals and as herbal drugs of abuse. CYP isoenzyme dependences were studied using specific chemical inhibitors for CYP1A2, CYP2D1, and CYP3A2 (alpha-naphthoflavone, quinine, and ketoconazole, respectively). CYP2C11 was inhibited by specific antibodies for lack of specific chemical inhibitors. Californine N-demethylation was mainly catalyzed by CYP3A2 and to a minor extent by CYP1A2 and CYP2D1, but not by CYP2C11. CYP2D1 and CYP2C11 were shown to be mainly involved in demethylenation of both, californine and protopine, while CYP1A2 and CYP3A2 showed only minor contribution. Kinetic parameters of the reactions were established. K(m) and V(max) values for the californine N-demethylation were 4.5+/-4.7 microM and 22.9+/-13.7 min/mg protein (high affinity) and 161.3+/-16.7 microM and 311.8+/-39.4 min/mg protein (low affinity), respectively. Californine demethylenation and protopine demethylenation showed substrate inhibition and K(m) and V(max) values were 5.0+/-0.5 and 7.1+/-0.6 microM and 83.3+/-2.6 and 160.7+/-4.0 min/mg protein, respectively.

  6. Multi-step oxidations catalyzed by cytochrome P450 enzymes: Processive vs. distributive kinetics and the issue of carbonyl oxidation in chemical mechanisms

    PubMed Central

    Guengerich, F. Peter; Sohl, Christal D.; Chowdhury, Goutam

    2010-01-01

    Catalysis of sequential oxidation reactions is not unusual in cytochrome P450 (P450) reactions, not only in steroid metabolism but also with many xenobiotics. One issue is how processive/distributive these reactions are, i.e. how much do the “intermediate” products dissociate. Our work with human P450s 2E1, 2A6, and 19A1 on this subject has revealed a mixture of systems, surprisingly with a more distributive mechanism with an endogenous substrate (P450 19A1) than for some xenobiotics (P450s 2E1, 2A6). One aspect of this research involves carbonyl intermediates, and the choice of catalytic mechanism is linked to the hydration state of the aldehyde. The non-enzymatic rates of hydration and dehydration of carbonyls are not rapid and whether P450s catalyze the reversible hydration is unknown. If carbonyl hydration and dehydration are slow, the mechanism may be set by the carbonyl hydration status. PMID:20804723

  7. Pioglitazone, an in vitro inhibitor of CYP2C8 and CYP3A4, does not increase the plasma concentrations of the CYP2C8 and CYP3A4 substrate repaglinide.

    PubMed

    Kajosaari, Lauri I; Jaakkola, Tiina; Neuvonen, Pertti J; Backman, Janne T

    2006-03-01

    Pioglitazone, a thiazolidinedione antidiabetic, inhibits cytochrome P450 (CYP) 2C8 and CYP3A4 enzymes in vitro. Repaglinide, a meglitinide analogue antidiabetic, is metabolised by CYP2C8 and CYP3A4. In patients with type 2 diabetes, the pioglitazone-repaglinide combination has acted synergistically on glycaemic parameters. Our aim was to determine whether pioglitazone increases the plasma concentrations of repaglinide. In a randomized, 2-phase cross-over study, 12 healthy volunteers received 30 mg pioglitazone or placebo once daily for 5 days. On day 5, they ingested a single 0.25 mg dose of repaglinide 1 h after the last pretreatment dose. Plasma repaglinide and pioglitazone, and blood glucose concentrations were measured for 12 h. During the pioglitazone phase, the mean peak plasma repaglinide concentration (C(max)) and the total area under the concentration-time curve [AUC(0-infinity)] of repaglinide were 100% (range 53-157%, P=0.99) and 90% (range 63-120%, P=0.22), respectively, of those during the placebo phase. Also the half-life of repaglinide was unaffected, but the median peak time of repaglinide was shortened from 40 min to 20 min by pioglitazone (P=0.014). The short-term pioglitazone administration did not modify the blood glucose-lowering effect of a single dose of repaglinide. Pioglitazone does not increase the plasma concentrations of repaglinide, indicating that the inhibitory effect of pioglitazone on CYP2C8 and CYP3A4 is very weak in vivo, probably due to its extensive plasma protein binding. The synergistic effect of repaglinide and pioglitazone on the glycaemic parameters, seen in patients with type 2 diabetes during their long-term use, is unlikely to be caused by inhibition of repaglinide metabolism by pioglitazone.

  8. R-warfarin clearances from plasma associated with polymorphic cytochrome P450 2C19 and simulated by individual physiologically based pharmacokinetic models for 11 cynomolgus monkeys.

    PubMed

    Utoh, Masahiro; Kusama, Takashi; Miura, Tomonori; Mitsui, Marina; Kawano, Mirai; Hirano, Takahiro; Shimizu, Makiko; Uno, Yasuhiro; Yamazaki, Hiroshi

    2018-02-01

    1. Cynomolgus monkey cytochrome P450 2C19 (formerly known as P450 2C75), homologous to human P450 2C19, has been identified as R-warfarin 7-hydroxylase. In this study, simulations of R-warfarin clearance in individual cynomolgus monkeys genotyped for P450 2C19 p.[(Phe100Asn; Ala103Val; Ile112Leu)] were performed using individual simplified physiologically based pharmacokinetic (PBPK) modeling. 2. Pharmacokinetic parameters and absorption rate constants, volumes of the systemic circulation, and hepatic intrinsic clearances for individual PBPK models were estimated for eleven cynomolgus monkeys. 3. One-way ANOVA revealed significant effects of the genotype (p < 0.01) on the observed elimination half-lives and areas under the curves of R-warfarin among the homozygous mutant, heterozygous mutant, and wild-type groups. R-Warfarin clearances in individual cynomolgus monkeys genotyped for P450 2C19 were simulated by simplified PBPK modeling. The modeled hepatic intrinsic clearances were significantly associated with the P450 2C19 genotypes. The liver microsomal elimination rates of R-warfarin for individual animals after in vivo administration showed significant reductions associated with the genotype (p < 0.01). 4. This study provides important information to help simulate clearances of R-warfarin and related medicines associated with polymorphic P450 2C19 in individual cynomolgus monkeys, thereby facilitating calculation of the fraction of hepatic clearance.

  9. CYP101J2, CYP101J3, and CYP101J4, 1,8-Cineole-Hydroxylating Cytochrome P450 Monooxygenases from Sphingobium yanoikuyae Strain B2

    PubMed Central

    Unterweger, Birgit; Bulach, Dieter M.; Scoble, Judith; Midgley, David J.; Greenfield, Paul; Lyras, Dena; Johanesen, Priscilla

    2016-01-01

    ABSTRACT We report the isolation and characterization of three new cytochrome P450 monooxygenases: CYP101J2, CYP101J3, and CYP101J4. These P450s were derived from Sphingobium yanoikuyae B2, a strain that was isolated from activated sludge based on its ability to fully mineralize 1,8-cineole. Genome sequencing of this strain in combination with purification of native 1,8-cineole-binding proteins enabled identification of 1,8-cineole-binding P450s. The P450 enzymes were cloned, heterologously expressed (N-terminally His6 tagged) in Escherichia coli BL21(DE3), purified, and spectroscopically characterized. Recombinant whole-cell biotransformation in E. coli demonstrated that all three P450s hydroxylate 1,8-cineole using electron transport partners from E. coli to yield a product putatively identified as (1S)-2α-hydroxy-1,8-cineole or (1R)-6α-hydroxy-1,8-cineole. The new P450s belong to the CYP101 family and share 47% and 44% identity with other 1,8-cineole-hydroxylating members found in Novosphingobium aromaticivorans and Pseudomonas putida. Compared to P450cin (CYP176A1), a 1,8-cineole-hydroxylating P450 from Citrobacter braakii, these enzymes share less than 30% amino acid sequence identity and hydroxylate 1,8-cineole in a different orientation. Expansion of the enzyme toolbox for modification of 1,8-cineole creates a starting point for use of hydroxylated derivatives in a range of industrial applications. IMPORTANCE CYP101J2, CYP101J3, and CYP101J4 are cytochrome P450 monooxygenases from S. yanoikuyae B2 that hydroxylate the monoterpenoid 1,8-cineole. These enzymes not only play an important role in microbial degradation of this plant-based chemical but also provide an interesting route to synthesize oxygenated 1,8-cineole derivatives for applications as natural flavor and fragrance precursors or incorporation into polymers. The P450 cytochromes also provide an interesting basis from which to compare other enzymes with a similar function and expand the CYP101 family. This could eventually provide enough bacterial parental enzymes with similar amino acid sequences to enable in vitro evolution via DNA shuffling. PMID:27590809

  10. In vitro characterization of the inhibitory effects of ketoconazole on metabolic activities of cytochrome P-450 in canine hepatic microsomes.

    PubMed

    Kuroha, Masanori; Kuze, Yoji; Shimoda, Minoru; Kokue, Eiichi

    2002-06-01

    To evaluate the inhibitory potency of ketoconazole (KTZ) on the metabolic activities of isozymes of cytochrome P-450 (CYP) in dogs. 4 healthy 1-year-old male Beagles. Hepatic microsomes were harvested from 4 dogs after euthanasia. To investigate the effects of KTZ on CYP metabolic activities, 7-ethoxyresorufin, tolbutamide, bufuralol, and midazolam hydrochloride were used as specific substrates for CYP1A1/2, CYP2C21, CYP2D15, and CYP3A12, respectively. The concentrations of metabolites formed by CYP were measured by high-performance liquid chromatography, except for the resorufin concentrations that were measured by a fluorometric method. The reaction velocity-substrate concentration data were analyzed to obtain kinetic variables, including maximum reaction velocity, Michaelis-Menten constant, and inhibitory constant (Ki). KTZ competitively inhibited 7-ethoxyresorufin O-deethylation and midazolam 4-hydroxylation; it noncompetitively inhibited tolbutamide methylhydroxylation. Bufuralol 1'-hydroxylation was inhibited slightly by KTZ. The mean Ki values of KTZ were 10.6+/-6.0, 170+/-2.5, and 0.180+/-0.131 microM for 7-ethoxyresorufin O-deethylation, tolbutamide methylhydroxylation, and midazolam 4-hydroxylation, respectively. In dogs, KTZ at a therapeutic dose may change the pharmacokinetics of CYP3A12 substrates as a result of inhibition of their biotransformation. Furthermore, no influence of KTZ on the pharmacokinetics of CYP1A1/2, CYP2C21, and CYP2D15 substrates are likely. In clinical practice, adverse drug effects may develop when KTZ is administered concomitantly with a drug that is primarily metabolized by CYP3A12.

  11. Human metabolites of brevetoxin PbTx-2: Identification and confirmation of structure

    PubMed Central

    Guo, Fujiang; An, Tianying; Rein, Kathleen S.

    2010-01-01

    Four metabolites were identified upon incubation of brevetoxin (PbTx-2) with human liver microsomes. Chemical transformation of PbTx-2 confirmed the structures of three known metabolites BTX-B5, PbTx-9 and 41, 43-dihydro-BTX-B5 and a previously unknown metabolite, 41, 43-dihydro-PbTx-2. These metabolites were also observed upon incubation of PbTx-2 with nine human recombinant cytochrome P450s (1A1, 1A2, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 and 3A5). Cytochrome P450 3A4 produced oxidized metabolites while other CYPs generated the reduced products. PMID:20600229

  12. New reactions and products resulting from alternative interactions between the P450 enzyme and redox partners.

    PubMed

    Zhang, Wei; Liu, Yi; Yan, Jinyong; Cao, Shaona; Bai, Fali; Yang, Ying; Huang, Shaohua; Yao, Lishan; Anzai, Yojiro; Kato, Fumio; Podust, Larissa M; Sherman, David H; Li, Shengying

    2014-03-05

    Cytochrome P450 enzymes are capable of catalyzing a great variety of synthetically useful reactions such as selective C-H functionalization. Surrogate redox partners are widely used for reconstitution of P450 activity based on the assumption that the choice of these auxiliary proteins or their mode of action does not affect the type and selectivity of reactions catalyzed by P450s. Herein, we present an exceptional example to challenge this postulate. MycG, a multifunctional biosynthetic P450 monooxygenase responsible for hydroxylation and epoxidation of 16-membered ring macrolide mycinamicins, is shown to catalyze the unnatural N-demethylation(s) of a range of mycinamicin substrates when partnered with the free Rhodococcus reductase domain RhFRED or the engineered Rhodococcus-spinach hybrid reductase RhFRED-Fdx. By contrast, MycG fused with the RhFRED or RhFRED-Fdx reductase domain mediates only physiological oxidations. This finding highlights the larger potential role of variant redox partner protein-protein interactions in modulating the catalytic activity of P450 enzymes.

  13. [Effect of Gegen Qinlian decoction on hepatic cytochrome CYP450 isozymes in rats by HPLC-MS/MS].

    PubMed

    Liu, Zi-hua; An, Rui; Zhang, Yi-zhu; Gu, Qing-qing; You, Li-sha; Wang, Xin-hong

    2015-08-01

    To study the effect of Gegen Qinlian decoction and its major effective components on five hepatic microsomal CYP450 isozymes in rats. The in vitro hepatic microsomal incubation technique was used to co-culture Gegen Qinlian decoction and its major effective components together with each probe substrate. HPLC-MS/MS was used to establish the analytical method for metabolites of the five isoform probe substrates of CYP450 isozymes, detect the linearity among micoromal protein concentration, incubation time and metabolite formation amount. And HPLC-MS/MS was applied to determine the formation rate (V) of corresponding metabolites (acetaminophen, 4-OH-chlorzoxazone, dextrophan, 6-OH-chlorzoxazone and 6β-hydroxytestosterone) specific probe substrates of the five isoform probe substrates of CYP450 isozymes (phenacetin, polbutamide, dextromethorphan, chlorzoxazone, testosterone), in order to determine the activity of each isozyme. The result showed good linearity among acetaminophen, 4-OH-tolbutamide, dextrophan, 6-OH-chlorzoxazone and 6β-hydroxytestosterone, satisfactory precision, stability and average recovery, suggesting the method was feasible. The optimized in vitro microsomal incubation conditions conformed to the requirements in the guideline of drug-drug interaction. Gegen Qinlian decoction showed different degrees of inhibitor effect on 5 CYP450 isoforms (CYP1A2, CYP2C11, CYP2D2, CYP2E1, CYP3A1/2). Its major effective component berberine could inhibit each CYP450 isoform at high concentrations (except for CYP1A2, CYP3A1/2).

  14. Effect of structural evolution on mechanical properties of ZrO2 coated Ti-6Al-7Nb-biomedical application

    NASA Astrophysics Data System (ADS)

    Zalnezhad, E.

    2016-05-01

    Zirconia (ZrO2) nanotube arrays were fabricated by anodizing pure zirconium (Zr) coated Ti-6Al-7Nb in fluoride/glycerol electrolyte at a constant potential of 60 V for different times. Zr was deposited atop Ti-6Al-7Nb via a physical vapor deposition magnetron sputtering (PVDMS) technique. Structural investigations of coating were performed utilizing X-ray diffraction (XRD) analysis. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to characterize the morphology and microstructure of coatings. Unannealed ZrO2 nanotube arrays were amorphous. Monoclinic and tetragonal ZrO2 appeared when the coated substrates were heat treated at 450 °C and 650 °C, while monoclinic ZrO2 was found at 850 °C and 900 °C. Mechanical properties, including nanohardness and modulus of elasticity, were evaluated at different annealing temperatures using a nanoindentation test. The nanoindentation results show that the nanohardness and modulus of elasticity for Ti-6AL-7Nb increased by annealing ZrO2 coated substrate at 450 °C. The nanohardness and modulus of elasticity for coated substrate decreased with annealing temperatures of 650, 850, and 900 °C. At an annealing temperature of 900 °C, cracks in the ZrO2 thin film coating occurred. The highest nanohardness and elastic modulus values of 6.34 and 218 GPa were achieved at an annealing temperature of 450 °C.

  15. Mechanism-based inactivation of cytochrome P-450 dependent benzo(a)pyrene hydroxylase activity by acetylenic and olefinic polycyclic arylhydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, L.S.

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxygenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene (EP), 3-ethynylperylene (EPL), cis- and trans-1-(2-bromo-vinyl)pyrene (c-BVP and t-BVP), and 1-allylpyrene (AP) serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo(a)pyrene (BP) hydroxylase, while 1-vinyl-pyrene (VP) and phenyl 1-pyrenyl acetylene (PPA) do not cause a detectable suicide inhibition of the BP hydroxylase. The mechanism-based loss of BP hydroxylase activity caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes. In themore » presence of NADPH, /sup 3/H-labeled EP covalently attached to P-450 isozymes with a measured stoichiometry of one mole of EP per mole of the P-450 heme. The results of the effects of these aryl derivatives in the mammalian cell-mediated mutagenesis assay and toxicity assay show that none of the compounds examined nor any of the their metabolites produced in the incubation system are cytotoxic to V79 cells.« less

  16. Lack of Impact by SCY-078, a First-in-Class Oral Fungicidal Glucan Synthase Inhibitor, on the Pharmacokinetics of Rosiglitazone, a Substrate for CYP450 2C8, Supports the Low Risk for Clinically Relevant Metabolic Drug-Drug Interactions.

    PubMed

    Wring, Stephen; Murphy, Gail; Atiee, George; Corr, Christy; Hyman, Michele; Willett, Michael; Angulo, David

    2018-05-10

    SCY-078, the first in a new class of β 1,3-glucan synthesis inhibitors, is being developed as an oral and intravenous antifungal treatment for Candida and Aspergillus species fungal infections. In vitro, studies indicated SCY-078 is an inhibitor of cytochrome P450 (CYP) 2C8 with markedly lower effect over other CYP isozymes. To examine clinically relevant effects of the potential interaction with SCY-078, this phase 1, open-label, 2-period crossover study evaluated the pharmacokinetic parameters of rosiglitazone, a sensitive substrate of CYP2C8 metabolism, in the absence and presence of SCY-078 dosed to therapeutically relevant SCY-078 concentration exposure after repeat dosing. Healthy adult subjects were randomized to 2 treatment sequences: a single oral 4-mg rosiglitazone dose alone on day 1 or a 1250-mg SCY-078 loading dose on day 1 followed by a once-daily 750-mg SCY-078 dose for an additional 7 days (reflecting the clinical regimen evaluated during phase 2 studies for infections by Candida species) and concurrent administration of a single oral 4-mg rosiglitazone dose on day 3, before alternating following a ≥10-day washout. The exposure to SCY-078 observed in this study was in line with the intended exposure for treatment of invasive fungal infections. The 90% confidence intervals for rosiglitazone exposure geometric mean ratios were within the prespecified no effect interval of 0.70-1.43. Additionally, maximum concentration values for rosiglitazone and its metabolite, N-desmethylrosiglitazone, were not significantly affected by co-administration with SCY-078. Overall, rosiglitazone exposure was not impacted to a clinically meaningful extent with co-administration of therapeutically relevant SCY-078 concentration exposure after repeat dosing. The results are indicative of low risk for interaction of SCY-078 with drugs metabolized via the CYP family of enzymes. © 2018, The Authors. The Journal of Clinical Pharmacology published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.

  17. Varied clinical presentations of seven patients with mutations in CYP11A1 encoding the cholesterol side-chain cleavage enzyme, P450scc.

    PubMed

    Tee, Meng Kian; Abramsohn, Michal; Loewenthal, Neta; Harris, Mark; Siwach, Sudeep; Kaplinsky, Ana; Markus, Barak; Birk, Ohad; Sheffield, Val C; Parvari, Ruti; Pavari, Ruti; Hershkovitz, Eli; Miller, Walter L

    2013-02-01

    The cholesterol side-chain cleavage enzyme P450scc, encoded by CYP11A1, converts cholesterol to pregnenolone to initiate steroidogenesis. P450scc deficiency can disrupt adrenal and gonadal steroidogenesis, resembling congenital lipoid adrenal hyperplasia clinically and hormonally; only 12 such patients have been reported previously. We sought to expand clinical and genetic experience with P450scc deficiency. We sequenced candidate genes in 7 children with adrenal insufficiency who lacked disordered sexual development. P450scc missense mutations were recreated in the F2 vector, which expresses the fusion protein P450scc-Ferredoxin Reductase-Ferredoxin. COS-1 cells were transfected, production of pregnenolone was assayed, and apparent kinetic parameters were calculated. Previously described P450scc mutants were assayed in parallel. Four of five Bedouin children in one kindred were compound heterozygotes for mutations c.694C>T (Arg232Stop) and c.644T>C (Phe215Ser). Single-nucleotide polymorphism analysis confirmed segregation of these mutations. The fifth kindred member and another Bedouin patient presented in infancy and were homozygous for Arg232Stop. A patient from Fiji presenting in infancy was homozygous for c.358T>C (Arg120Stop). All mutations are novel. As assayed in the F2 fusion protein, P450scc Phe215Ser retained 2.5% of wild-type activity; previously described mutants Leu141Trp and Ala269Val had 2.6% and 12% of wild-type activity, respectively, and Val415Glu and c.835delA lacked detectable activity. Although P450scc is required to produce placental progesterone required to maintain pregnancy, severe mutations in P450scc are compatible with term gestation; milder P450scc mutations may present later without disordered sexual development. Enlarged adrenals usually distinguish steroidogenic acute regulatory protein deficiency from P450scc deficiency, but only DNA sequencing is definitive.

  18. Interaction of rocuronium with human liver cytochromes P450.

    PubMed

    Anzenbacherova, Eva; Spicakova, Alena; Jourova, Lenka; Ulrichova, Jitka; Adamus, Milan; Bachleda, Petr; Anzenbacher, Pavel

    2015-02-01

    Rocuronium is a neuromuscular blocking agent acting as a competitive antagonist of acetylcholine. Results of an inhibition of eight individual liver microsomal cytochromes P450 (CYP) are presented. As the patients are routinely premedicated with diazepam, possible interaction of diazepam with rocuronium has been also studied. Results indicated that rocuronium interacts with human liver microsomal CYPs by binding to the substrate site. Next, concentration dependent inhibition of liver microsomal CYP3A4 down to 42% (at rocuronium concentration 189 μM) was found. This effect has been confirmed with two CYP3A4 substrates, testosterone (formation of 6β-hydroxytestosterone) and diazepam (temazepam formation). CYP2C9 and CYP2C19 activities were inhibited down to 75-80% (at the same rocuronium concentration). Activities of other microsomal CYPs have not been inhibited by rocuronium. To prove the possibility of rocuronium interaction with other drugs (diazepam), the effect of rocuronium on formation of main diazepam metabolites, temazepam (by CYP3A4) and desmethyldiazepam, (also known as nordiazepam; formed by CYP2C19) in primary culture of human hepatocytes has been examined. Rocuronium has caused inhibition of both reactions by 20 and 15%, respectively. The results open a possibility that interactions of rocuronium with drugs metabolized by CYP3A4 (and possibly also CYP2C19) may be observed. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  19. On-line coupling of immobilized cytochrome P450 microreactor and capillary electrophoresis: A promising tool for drug development.

    PubMed

    Schejbal, Jan; Řemínek, Roman; Zeman, Lukáš; Mádr, Aleš; Glatz, Zdeněk

    2016-03-11

    In this work, the combination of an immobilized enzyme microreactor (IMER) based on the clinically important isoform cytochrome P450 2C9 (CYP2C9) with capillary electrophoresis (CE) is presented. The CYP2C9 was attached to magnetic SiMAG-carboxyl microparticles using the carbodiimide method. The formation of an IMER in the inlet part of the separation capillary was ensured by two permanent magnets fixed in a cassette from the CE apparatus in the repulsive arrangement. The resulting on-line system provides an integration of enzyme reaction mixing and incubation, reaction products separation, detection and quantification into a single fully automated procedure with the possibility of repetitive use of the enzyme and minuscule amounts of reactant consumption. The on-line kinetic and inhibition studies of CYP2C9's reaction with diclofenac as a model substrate and sulfaphenazole as a model inhibitor were conducted in order to demonstrate its practical applicability. Values of the apparent Michalis-Menten constant, apparent maximum reaction velocity, Hill coefficient, apparent inhibition constant and half-maximal inhibition concentration were determined on the basis of the calculation of the effective substrate and inhibitor concentrations inside the capillary IMER using a model described by the Hagen-Poisseulle law and a novel enhanced model that reflects the influence of the reactants' diffusion during the injection process. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Antibodies to P450IID6, SLA, PDH-E2 and BCKD-E2 in Japanese patients with chronic hepatitis.

    PubMed

    Nishioka, M; Morshed, S A; Parveen, S; Kono, K; Matsuoka, H; Manns, M P

    1997-12-01

    Auto-antibodies specific to various antigens in chronic hepatitis (CH) have been detected but their specificities and implications were uncertain. The aims of the present study were to investigate the frequency and the significance of seropositivity of antibodies to P450IID6 or liver/kidney microsome 1 (LKM1), soluble liver antigen (SLA), pyruvate dehydrogenase (PDH) and branched-chain keto acid dehydrogenase (BCKD) in 188 Japanese patients with different forms of CH by western blot or enzyme immunoassay (EIA). Anti-LKM1 was also measured by indirect immunofluorescent test. Anti-P450IID6 was found in 6/188 (3.2%) CH patients including 5/104 (4.8%) with hepatitis C virus (C) infection and 1/12 (8.3%) CH-C patients with antibodies to nuclear and smooth muscle antigens and hypergammaglobulinaemia (> 2.5 g/dL). This patient was the only one diagnosed with autoimmune hepatitis (AIH). All CH patients with hepatitis B (B), hepatitis non-B non-C (NBNC) and AIH were seronegative for anti-LKM1. Antibodies to soluble liver antigen were found in two of 188 (1%) patients, one with AIH and one with CH-B. Anti-BCKD-E2 but not anti-PDH-E2 was found in four patients (2.5%), one with AIH, two with CH-C, and one with NBNC. There was no obvious difference in age, sex ratio and laboratory findings in patients with or without anti-SLA and anti-BCKD-E2. Antibodies to P450IID6, SLA, PDH-E2 and BCKD-E2 are uncommon in adult CH-C, CH-B, CH-NBNC and AIH patients in Japan. Some of these patients positive for auto-antibodies appear to have autoimmune features and might require a careful follow up. The heterogeneity of these antibodies in CH preclude further justification for subtyping of AIH by the presence of the distinct auto-antibodies.

  1. Thermal process induced change of conductivity in As-doped ZnO

    NASA Astrophysics Data System (ADS)

    Su, S. C.; Fan, J. C.; Ling, C. C.

    2012-02-01

    Arsenic-doped ZnO films were fabricated by radio frequency magnetron sputtering method with different substrate temperature TS. Growing with the low substrate temperature of TS=200°C yielded n-type semi-insulating sample. Increasing the substrate temperature would yield p-type ZnO film and reproducible p-type film could be produced at TS~450°C. Post-growth annealing of the n-type As-doped ZnO sample grown at the low substrate temperature (TS=200°C) in air at 500°C also converted the film to p-type conductivity. Further increasing the post-growth annealing temperature would convert the p-type sample back to n-type. With the results obtained from the studies of positron annihilation spectroscopy (PAS), photoluminescence (PL), cathodoluminescence (CL), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS) and nuclear reaction analysis (NRA), we have proposed mechanisms to explain for the thermal process induced conduction type conversion as observed in the As-doped ZnO films.

  2. Effect of P450 Oxidoreductase Polymorphisms on the Metabolic Activities of Ten Cytochrome P450s Varied by Polymorphic CYP Genotypes in Human Liver Microsomes.

    PubMed

    Fang, Yan; Gao, Na; Tian, Xin; Zhou, Jun; Zhang, Hai-Feng; Gao, Jie; He, Xiao-Pei; Wen, Qiang; Jia, Lin-Jing; Jin, Han; Qiao, Hai-Ling

    2018-06-27

    Background/ Aims: Little is known about the effect of P450 oxidoreductase (POR) gene polymorphisms on the activities of CYPs with multiple genotypes. We genotyped 102 human livers for 18 known POR single nucleotide polymorphisms (SNPs) with allelic frequencies greater than 1% as well as for 27 known SNPs in 10 CYPs. CYP enzyme activities in microsomes prepared from these livers were determined by measuring probe substrate metabolism by high performance liquid chromatograph. We found that the effects of the 18 POR SNPs on 10 CYP activities were CYP genotype-dependent. The POR mutations were significantly associated with decreased overall Km for CYP2B6 and 2E1, and specific genotypes within CYP1A2, 2A6, 2B6, 2C8, 2D6 and 2E1 were identified as being affected by these POR SNPs. Notably, the effect of a specific POR mutation on the activity of a CYP genotype could not be predicted from other CYP genotypes of even the same CYP. When combining one POR SNP with other POR SNPs, a hitherto unrecognized effect of multiple-site POR gene polymorphisms (MSGP) on CYP activity was uncovered, which was not necessarily consistent with the effect of either single POR SNP. The effects of POR SNPs on CYP activities were not only CYP-dependent, but more importantly, CYP genotype-dependent. Moreover, the effect of a POR SNP alone and in combination with other POR SNPs (MSGP) was not always consistent, nor predictable. Understanding the impact of POR gene polymorphisms on drug metabolism necessitates knowing the complete SNP complement of POR and the genotype of the relevant CYPs. © 2018 The Author(s). Published by S. Karger AG, Basel.

  3. Studies to further investigate the inhibition of human liver microsomal CYP2C8 by the acyl-β-glucuronide of gemfibrozil.

    PubMed

    Jenkins, S M; Zvyaga, T; Johnson, S R; Hurley, J; Wagner, A; Burrell, R; Turley, W; Leet, J E; Philip, T; Rodrigues, A D

    2011-12-01

    In previous studies, gemfibrozil acyl-β-glucuronide, but not gemfibrozil, was found to be a mechanism-based inhibitor of cytochrome P450 2C8. To better understand whether this inhibition is specific for gemfibrozil acyl-β-glucuronide or whether other glucuronide conjugates are potential substrates for inhibition of this enzyme, we evaluated several pharmaceutical compounds (as their acyl glucuronides) as direct-acting and metabolism-dependent inhibitors of CYP2C8 in human liver microsomes. Of 11 compounds that were evaluated as their acyl glucuronide conjugates, only gemfibrozil acyl-β-glucuronide exhibited mechanism-based inhibition, indicating that CYP2C8 mechanism-based inhibition is very specific to certain glucuronide conjugates. Structural analogs of gemfibrozil were synthesized, and their glucuronide conjugates were prepared to further examine the mechanism of inhibition. When the aromatic methyl groups on the gemfibrozil moiety were substituted with trifluoromethyls, the resulting glucuronide conjugate was a weaker inhibitor of CYP2C8 and mechanism-based inhibition was abolished. However, the glucuronide conjugates of monomethyl gemfibrozil analogs were mechanism-based inhibitors of CYP2C8, although not as potent as gemfibrozil acyl-β-glucuronide itself. The ortho-monomethyl analog was a more potent inhibitor than the meta-monomethyl analog, indicating that CYP2C8 favors the ortho position for oxidation and potential inhibition. Molecular modeling of gemfibrozil acyl-β-glucuronide in the CYP2C8 active site is consistent with the ortho-methyl position being the favored site of covalent attachment to the heme. Moreover, hydrogen bonding to four residues (Ser100, Ser103, Gln214, and Asn217) is implicated.

  4. Current cytochrome P450 phenotyping methods applied to metabolic drug-drug interaction prediction in dogs.

    PubMed

    Mills, Beth Miskimins; Zaya, Matthew J; Walters, Rodney R; Feenstra, Kenneth L; White, Julie A; Gagne, Jason; Locuson, Charles W

    2010-03-01

    Recombinant cytochrome P450 (P450) phenotyping, different approaches for estimating fraction metabolized (f(m)), and multiple measures of in vivo inhibitor exposure were tested for their ability to predict drug interaction magnitude in dogs. In previous reports, midazolam-ketoconazole interaction studies in dogs have been attributed to inhibition of CYP3A pathways. However, in vitro phenotyping studies demonstrated higher apparent intrinsic clearances (CL(int,app)) of midazolam with canine CYP2B11 and CYP2C21. Application of activity correction factors and isoform hepatic abundance to liver microsome CL(int,app) values further implicated CYP2B11 (f(m) >or= 0.89) as the dog enzyme responsible for midazolam- and temazepam-ketoconazole interactions in vivo. Mean area under the curve (AUC) in the presence of the inhibitor/AUC ratios from intravenous and oral midazolam interaction studies were predicted well with unbound K(i) and estimates of unbound hepatic inlet inhibitor concentrations and intestinal metabolism using the AUC-competitive inhibitor relationship. No interactions were observed in vivo with bufuralol, although significant interactions with bufuralol were predicted with fluoxetine via CYP2D and CYP2C pathways (>2.45-fold) but not with clomipramine (<2-fold). The minor caffeine-fluvoxamine interaction (1.78-fold) was slightly higher than predicted values based on determination of a moderate f(m) value for CYP1A1, although CYP1A2 may also be involved in caffeine metabolism. The findings suggest promise for in vitro approaches to drug interaction assessment in dogs, but they also highlight the need to identify improved substrate and inhibitor probes for canine P450s.

  5. Structure and Biochemical Properties of the Alkene Producing Cytochrome P450 OleTJE (CYP152L1) from the Jeotgalicoccus sp. 8456 Bacterium*

    PubMed Central

    Belcher, James; McLean, Kirsty J.; Matthews, Sarah; Woodward, Laura S.; Fisher, Karl; Rigby, Stephen E. J.; Nelson, David R.; Potts, Donna; Baynham, Michael T.; Parker, David A.; Leys, David; Munro, Andrew W.

    2014-01-01

    The production of hydrocarbons in nature has been documented for only a limited set of organisms, with many of the molecular components underpinning these processes only recently identified. There is an obvious scope for application of these catalysts and engineered variants thereof in the future production of biofuels. Here we present biochemical characterization and crystal structures of a cytochrome P450 fatty acid peroxygenase: the terminal alkene forming OleTJE (CYP152L1) from Jeotgalicoccus sp. 8456. OleTJE is stabilized at high ionic strength, but aggregation and precipitation of OleTJE in low salt buffer can be turned to advantage for purification, because resolubilized OleTJE is fully active and extensively dissociated from lipids. OleTJE binds avidly to a range of long chain fatty acids, and structures of both ligand-free and arachidic acid-bound OleTJE reveal that the P450 active site is preformed for fatty acid binding. OleTJE heme iron has an unusually positive redox potential (−103 mV versus normal hydrogen electrode), which is not significantly affected by substrate binding, despite extensive conversion of the heme iron to a high spin ferric state. Terminal alkenes are produced from a range of saturated fatty acids (C12–C20), and stopped-flow spectroscopy indicates a rapid reaction between peroxide and fatty acid-bound OleTJE (167 s−1 at 200 μm H2O2). Surprisingly, the active site is highly similar in structure to the related P450BSβ, which catalyzes hydroxylation of fatty acids as opposed to decarboxylation. Our data provide new insights into structural and mechanistic properties of a robust P450 with potential industrial applications. PMID:24443585

  6. Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by umu gene response in Salmonella typhimurium TA 1535/pSK1002.

    PubMed

    Shimada, T; Iwasaki, M; Martin, M V; Guengerich, F P

    1989-06-15

    A total of 57 procarcinogens was examined for induction of umu gene response in the chimeric plasmid pSK1002, carried in Salmonella typhimurium TA 1535, after incubation with a series of human liver microsomal preparations which had been selected on the basis of characteristic levels of individual cytochrome P-450 (P-450) enzymes. The 18 most active compounds were selected and further analyzed using the umu gene response and correlative studies with a larger number of microsomal preparations, enzyme reconstitution studies involving purified enzymes, immunochemical inhibition, and patterns of stimulation and inhibition of catalytic activity by 7,8-benzoflavone. The results collectively indicate that 16 of these 18 most potent genotoxins examined are activated primarily either by P-450NF (the nifedipine oxidase) or P-450PA (the phenacetin O-deethylase). P-450NF appears to be the major enzyme involved in the bioactivation of aflatoxin B1, aflatoxin G1, sterigmatocystin, trans-7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, 6-aminochrysene, and tris-(2,3-dibromopropyl)phosphate in human liver. P-450PA appears to be the major enzyme involved in the bioactivation of 2-amino-3-methylimidazo[4,5-f]quinoline, 2-amino-3,5-dimethylimidazo[4, 5-f]quinoline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, 2-aminoanthracene, 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole, 2-aminofluorene, 2-acetylaminofluorene, 4-aminobiphenyl, 3-amino-1-methyl-5H-pyrido[4,3-b] indole, and 2-aminodipyrido[1,2-a:3',2'-d]imidazole. More than one enzyme appears to contribute significantly to the bioactivation of the other two compounds examined, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b] indole and 6-nitrochrysene. The literature suggests that the two human liver P-450s involved in activation of these 16 procarcinogens are highly inducible by barbiturates, macrolide antibodies, and certain steroids (P-450NF) and by smoking and ingestion of charcoal-containing food (P-450PA); noninvasive assays are available to monitor the function of both P-450NF and P-450PA.

  7. Fasting-Induced Changes in Hepatic P450 Mediated Drug Metabolism Are Largely Independent of the Constitutive Androstane Receptor CAR.

    PubMed

    de Vries, E M; Lammers, L A; Achterbergh, R; Klümpen, H-J; Mathot, R A A; Boelen, A; Romijn, J A

    2016-01-01

    Hepatic drug metabolism by cytochrome P450 enzymes is altered by the nutritional status of patients. The expression of P450 enzymes is partly regulated by the constitutive androstane receptor (CAR). Fasting regulates the expression of both P450 enzymes and CAR and affects hepatic drug clearance. We hypothesized that the fasting-induced alterations in P450 mediated drug clearance are mediated by CAR. To investigate this we used a drug cocktail validated in humans consisting of five widely prescribed drugs as probes for specific P450 enzymes: caffeine (CYP1A2), metoprolol (CYP2D6), omeprazole (CYP2C19), midazolam (CYP3A4) and s-warfarin (CYP2C9). This cocktail was administered to wild type (WT, C57Bl/6) mice or mice deficient for CAR (CAR-/-) that were either fed ad libitum or fasted for 24 hours. Blood was sampled at predefined intervals and drug concentrations were measured as well as hepatic mRNA expression of homologous/orthologous P450 enzymes (Cyp1a2, Cyp2d22, Cyp3a11, Cyp2c37, Cyp2c38 and Cyp2c65). Fasting decreased Cyp1a2 and Cyp2d22 expression and increased Cyp3a11 and Cyp2c38 expression in both WT and CAR-/- mice. The decrease in Cyp1a2 was diminished in CAR-/- in comparison with WT mice. Basal Cyp2c37 expression was lower in CAR-/- compared to WT mice. Fasting decreased the clearance of all drugs tested in both WT and CAR-/- mice. The absence of CAR was associated with an decrease in the clearance of omeprazole, metoprolol and midazolam in fed mice. The fasting-induced reduction in clearance of s-warfarin was greater in WT than in CAR-/-. The changes in drug clearance correlated with the expression pattern of the specific P450 enzymes in case of Cyp1a2-caffeine and Cyp2c37-omeprazole. We conclude that CAR is important for hepatic clearance of several widely prescribed drugs metabolized by P450 enzymes. However the fasting-induced alterations in P450 mediated drug clearance are largely independent of CAR.

  8. Changes in mixed-function oxidase system in the perfused liver of the cold-acclimated rat

    NASA Astrophysics Data System (ADS)

    Takano, T.; Miyazaki, Y.; Motohashi, Y.; Yamada, K.

    1986-09-01

    Changes in the hepatic cytochrome P-450-dependent drug-metabolizing system were studied in perfused livers obtained from cold-acclimated male Wistar rats after 30 days of cold exposure (4‡C) when using hexobarbital as a substrate. In fasted animals the cold-acclimated rats showed higher levels of hexobarbital metabolic rates compared to control rats, but there was no significant difference in fed animals. The maximum rates of hexobarbital metabolism produced by xylitol perfusion were also significantly higher in the perfused liver of cold-acclimated rats. It was concluded that the function of the cytochrome P-450 system for hexobarbital in cold-acclimated rats changed due to both an increase in the activity of the cytochrome P-450 system and to changes in regulation of the cytochrome P-450 system by the supply of reducing equivalents.

  9. Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Xenobiotic and Natural Chemicals

    PubMed Central

    2015-01-01

    Analyzing the literature resources used in our previous reports, we calculated the fractions of the oxidoreductase enzymes FMO (microsomal flavin-containing monooxygenase), AKR (aldo-keto reductase), MAO (monoamine oxidase), and cytochrome P450 participating in metabolic reactions. The calculations show that the fractions of P450s involved in the metabolism of all chemicals (general chemicals, natural, and physiological compounds, and drugs) are rather consistent in the findings that >90% of enzymatic reactions are catalyzed by P450s. Regarding drug metabolism, three-fourths of the human P450 reactions can be accounted for by a set of five P450s: 1A2, 2C9, 2C19, 2D6, and 3A4, and the largest fraction of the P450 reactions is catalyzed by P450 3A enzymes. P450 3A4 participation in metabolic reactions of drugs varied from 13% for general chemicals to 27% for drugs. PMID:25485457

  10. Conformational change of cytochrome P450 1A2 induced by phospholipids and detergents.

    PubMed

    Yun, C H; Song, M; Kim, H

    1997-08-08

    Recently, it was reported that the activity of rabbit P450 1A2 is markedly increased at elevated salt concentration (Yun, C-H., Song, M., Ahn, T., and Kim, H. (1996) J. Biol. Chem. 271, 31312-31316). The activity increase of P450 1A2 coincides with the raised alpha-helix content and decreased beta-sheet content. The presence of phospholipid magnified this effect. Here, possible structural change of rabbit P450 1A2 accompanying the phospholipid-induced increase in its enzyme activity was investigated by circular dichroism, fluorescence spectroscopy, and absorption spectroscopy. Studies with the reconstituted system supported by cumene hydroperoxide or NADPH showed that the P450 1A2 activities were found to be dependent on the head group and hydrocarbon chain length of phospholipid. Phosphatidylcholines having short hydrocarbon chains with a carbon number of 8-12 were very efficient for reconstitution of the P450-catalyzed reactions supported by both cumene hydroperoxide and NADPH. It was found that the phospholipid increased the alpha-helix content and lowered the beta-sheet content of P450. Intrinsic fluorescence intensity is also increased in the presence of phospholipid. The low spin iron configuration of P450 1A2 shifted toward the high spin configuration by most of the phospholipids in the endoplasmic reticulum. Some synthetic phospholipids having short hydrocarbon chains with a carbon number of 10-12 caused a shift in the spin equilibrium of P450 1A2 toward low spin. The effect of detergents on the activity and conformation of P450 1A2 was also studied. It was found that the addition of detergents to P450 1A2 solution increased the enzyme activity of P450 1A2. Detergents also increased the alpha-helix content and lowered the beta-sheet content of P450 1A2. Intrinsic fluorescence emissions also increased with the presence of detergents. Octyl glucoside and deoxycholate caused a shift toward high spin. On the other hand, cholate caused a shift toward low spin. It was found that the activity increase of rabbit P450 1A2 coincides with the conformational change including raised alpha-helix content. It is proposed that the interaction with the phospholipid molecules surrounding P450 1A2 in the endoplasmic reticulum is important for a functional conformation of P450 1A2 in a monooxygenase system including NADPH-P450 reductase.

  11. Functionalized poly(3-hydroxybutyric acid) bodies as new in vitro biocatalysts.

    PubMed

    Stenger, Benjamin; Gerber, Adrian; Bernhardt, Rita; Hannemann, Frank

    2018-01-01

    Cytochromes P450 play a key role in the drug and steroid metabolism in the human body. This leads to a high interest in this class of proteins. Mammalian cytochromes P450 are rather delicate. Due to their localization in the mitochondrial or microsomal membrane, they tend to aggregate during expression and purification and to convert to an inactive form so that they have to be purified and stored in complex buffers. The complex buffers and low storage temperatures, however, limit the feasibility of fast, automated screening of the corresponding cytochrome P450-effector interactions, which are necessary to study substrate-protein and inhibitor-protein interactions. Here, we present the production and isolation of functionalized poly(3-hydroxybutyrate) granules (PHB bodies) from Bacillus megaterium MS941 strain. In contrast to the expression in Escherichia coli, where mammalian cytochromes P450 are associated to the cell membrane, when CYP11A1 is heterologously expressed in Bacillus megaterium, it is located on the PHB bodies. The surface of these particles provides a matrix for immobilization and stabilization of the CYP11A1 during the storage of the protein and substrate conversion. It was demonstrated that the PHB polymer basis is inert concerning the performed conversion. Immobilization of the CYP11A1 onto the PHB bodies allows freeze-drying of the complex without significant decrease of the CYP11A1 activity. This is the first lyophilization of a mammalian cytochrome P450, which allows storage over more than 18days at 4°C instead of storage at -80°C. In addition, we were able to immobilize the cytochrome P450 on the PHB bodies in vitro. In this case the expression of the protein is separated from the production of the immobilization matrix, which widens the application of this method. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The effects of febuxostat on the pharmacokinetic parameters of rosiglitazone, a CYP2C8 substrate

    PubMed Central

    Naik, Himanshu; Wu, Jing-tao; Palmer, Robert; McLean, Lachy

    2012-01-01

    AIMS To determine the effect of febuxostat on cytochrome P450 2C8 (CYP2C8) activity using rosiglitazone as a CYP2C8 substrate. METHODS Healthy subjects received febuxostat 120 mg daily (regimen A) or matching placebo (regimen B) for 9 days along with a single oral dose of rosiglitazone 4 mg on day 5 in a double-blind, randomized, cross-over fashion (≥7 day washout between periods). Plasma samples for analysis of the impact of febuxostat on the pharmacokinetics (PK) of rosiglitazone and its metabolite, N-desmethylrosiglitazone, were collected for 120 h after co-administration. RESULTS Of the 39 subjects enrolled, 36 completed the study and were included in the PK analyses. Rosiglitazone PK parameters were comparable between regimens A and B. Median time to maximal plasma concentration, mean maximal plasma concentration (Cmax), area under the concentration-time curve (AUC) from time zero to the last quantifiable concentration (AUC0–tlqc), AUC from time zero to infinity (AUC0–∞), and terminal elimination half-life for regimen A were 0.50 h, 308.6 ng ml−1, 1594.9 ng h ml−1, 1616.0 ng h ml−1 and 4.1 h, respectively, and for regimen B they were 0.50 h, 327.6 ng ml−1, 1564.5 ng h ml−1, 1584.2 ng h ml−1 and 4.0 h, respectively. Point estimates for the ratio of regimen A to regimen B (90% confidence intervals) for rosiglitazone Cmax, AUC0–tlqc and AUC0–∞ central values were 0.94 (0.89–1.00), 1.02 (1.00–1.04) and 1.02 (1.00–1.04), respectively. CONCLUSIONS Co-administration of febuxostat had no effect on rosiglitazone or N-desmethylrosiglitazone PK parameters, suggesting that febuxostat can be given safely with drugs metabolized through CYP2C8. PMID:22242967

  13. The Effect of Vinpocetine on Human Cytochrome P450 Isoenzymes by Using a Cocktail Method.

    PubMed

    Kong, Lingti; Song, Chunli; Ye, Linhu; Guo, Daohua; Yu, Meiling; Xing, Rong

    2016-01-01

    Vinpocetine is a derivative of the alkaloid vincamine, which had been prescribed for chronic cerebral vascular ischemia and acute ischemic stroke or used as a dietary supplement for its several different mechanisms of biological activities. However, information on the cytochrome P450 (CYP) enzyme-mediated drug metabolism has not been previously studied. The present study was performed to investigate the effects of vinpocetine on CYPs activity, and cocktail method was used, respectively. To evaluate the effects of vinpocetine on the activity of human CYP3A4, CYP2C9, CYP2C19, CYP2D6, and CYP2E1, human liver microsomes were utilized to incubate with the mixed CYPs probe substrates and the target components. The results indicate that vinpocetine exhibited weak inhibitory effect on the CYP2C9, where the IC50 value is 68.96 μM, whereas the IC50 values for CYP3A4, CYP2C19, CYP2D6, and CYP2E1 were all over range of 100 μM, which showed that vinpocetine had no apparent inhibitory effects on these CYPs. In conclusion, the results indicated that drugs metabolized by CYP2C9 coadministrated with vinpocetine may require attention or dose adjustment.

  14. The Effect of Vinpocetine on Human Cytochrome P450 Isoenzymes by Using a Cocktail Method

    PubMed Central

    Kong, Lingti; Song, Chunli; Ye, Linhu; Guo, Daohua; Yu, Meiling; Xing, Rong

    2016-01-01

    Vinpocetine is a derivative of the alkaloid vincamine, which had been prescribed for chronic cerebral vascular ischemia and acute ischemic stroke or used as a dietary supplement for its several different mechanisms of biological activities. However, information on the cytochrome P450 (CYP) enzyme-mediated drug metabolism has not been previously studied. The present study was performed to investigate the effects of vinpocetine on CYPs activity, and cocktail method was used, respectively. To evaluate the effects of vinpocetine on the activity of human CYP3A4, CYP2C9, CYP2C19, CYP2D6, and CYP2E1, human liver microsomes were utilized to incubate with the mixed CYPs probe substrates and the target components. The results indicate that vinpocetine exhibited weak inhibitory effect on the CYP2C9, where the IC50 value is 68.96 μM, whereas the IC50 values for CYP3A4, CYP2C19, CYP2D6, and CYP2E1 were all over range of 100 μM, which showed that vinpocetine had no apparent inhibitory effects on these CYPs. In conclusion, the results indicated that drugs metabolized by CYP2C9 coadministrated with vinpocetine may require attention or dose adjustment. PMID:27006677

  15. Clinical Drug-Drug Interaction Potential of BFE1224, Prodrug of Antifungal Ravuconazole, Using Two Types of Cocktails in Healthy Subjects.

    PubMed

    Ishii, Yasuyuki; Ito, Yuko; Matsuki, Shunji; Sanpei, Kasumi; Ogawa, Osamu; Takeda, Kenji; Schuck, Edgar L; Uemura, Naoto

    2018-05-16

    BFE1224, prodrug of ravuconazole, is a novel, once-daily, oral, triazole antifungal drug, and currently in development for the treatment of onychomycosis. The clinical drug-drug interaction (DDI) potential of BFE1224 with cytochrome P450 (CYP) and transporter was assessed by using two types of cocktails in healthy subjects in separate clinical studies. The CYP and transporter cocktails consisted of caffeine/tolbutamide/omeprazole/dextromethorphan/midazolam used in study 1 and digoxin/rosuvastatin used in study 2. In addition, repaglinide was separately administered to the same subjects in study 2. There were no major effects on the pharmacokinetics of CYP and transporter substrates, except for an approximate threefold increase in midazolam exposure after oral administration of BFE1224. The clinical DDIs of BFE1224 were mild for CYP3A and minor for other major CYPs (CYP1A2/2C8/2C9/2C19/2D6) as well as those of P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporting polypeptide (OATP) 1B1, and OATP1B3. © 2018 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  16. Effect of redox partner binding on CYP101D1 conformational dynamics.

    PubMed

    Batabyal, Dipanwita; Poulos, Thomas L

    2018-06-01

    We have compared the thermodynamics of substrate and redox partner binding of P450cam to its close homologue, CYP101D1, using isothermal titration calorimetry (ITC). CYP101D1 binds camphor about 10-fold more weakly than P450cam which is consistent with the inability of camphor to cause a complete low- to high-spin shift in CYP101D1. Even so molecular dynamics simulations show that camphor is very stable in the CYP101D1 active site similar to P450cam. ITC data on the binding of the CYP101D1 ferredoxin redox partner (abbreviated Arx) shows that the substrate-bound closed state of CYP101D1 binds Arx more tightly than the substrate-free open form. This is just the opposite to P450cam where Pdx (ferredoxin redox partner of P450cam) favors binding to the P450cam open state. In addition, CYP101D1-Arx binding has a large negative ΔS while the P450cam-Pdx has a much smaller ΔS indicating that interactions at the docking interface are different. The most obvious difference is that PDX D38 which forms an important ion pair with P450cam R112 at the center of the interface is Arx L39 in Arx. This suggests that Arx may adopt a different orientation than Pdx in order to optimize nonpolar interactions with Arx L39 . Copyright © 2018. Published by Elsevier Inc.

  17. Structural and Kinetic Basis of Steroid 17α,20-Lyase Activity in Teleost Fish Cytochrome P450 17A1 and Its Absence in Cytochrome P450 17A2*

    PubMed Central

    Pallan, Pradeep S.; Nagy, Leslie D.; Lei, Li; Gonzalez, Eric; Kramlinger, Valerie M.; Azumaya, Caleigh M.; Wawrzak, Zdzislaw; Waterman, Michael R.; Guengerich, F. Peter; Egli, Martin

    2015-01-01

    Cytochrome P450 (P450) 17A enzymes play a critical role in the oxidation of the steroids progesterone (Prog) and pregnenolone (Preg) to glucocorticoids and androgens. In mammals, a single enzyme, P450 17A1, catalyzes both 17α-hydroxylation and a subsequent 17α,20-lyase reaction with both Prog and Preg. Teleost fish contain two 17A P450s; zebrafish P450 17A1 catalyzes both 17α-hydroxylation and lyase reactions with Prog and Preg, and P450 17A2 is more efficient in pregnenolone 17α-hydroxylation but does not catalyze the lyase reaction, even in the presence of cytochrome b5. P450 17A2 binds all substrates and products, although more loosely than P450 17A1. Pulse-chase and kinetic spectral experiments and modeling established that the two-step P450 17A1 Prog oxidation is more distributive than the Preg reaction, i.e. 17α-OH product dissociates more prior to the lyase step. The drug orteronel selectively blocked the lyase reaction of P450 17A1 but only in the case of Prog. X-ray crystal structures of zebrafish P450 17A1 and 17A2 were obtained with the ligand abiraterone and with Prog for P450 17A2. Comparison of the two fish P450 17A-abiraterone structures with human P450 17A1 (DeVore, N. M., and Scott, E. E. (2013) Nature 482, 116–119) showed only a few differences near the active site, despite only ∼50% identity among the three proteins. The P450 17A2 structure differed in four residues near the heme periphery. These residues may allow the proposed alternative ferric peroxide mechanism for the lyase reaction, or residues removed from the active site may allow conformations that lead to the lyase activity. PMID:25533464

  18. In vitro effect of important herbal active constituents on human cytochrome P450 1A2 (CYP1A2) activity.

    PubMed

    Pan, Yan; Tiong, Kai Hung; Abd-Rashid, Badrul Amini; Ismail, Zakiah; Ismail, Rusli; Mak, Joon Wah; Ong, Chin Eng

    2014-10-15

    This study was designed to investigate eight herbal active constituents (andrographolide, asiaticoside, asiatic acid, madecassic acid, eupatorin, sinensetin, caffeic acid, and rosmarinic acid) on their potential inhibitory effects on human cytochrome P450 1A2 (CYP1A2) activity. A fluorescence-based enzyme assay was performed by co-incubating human cDNA-expressed CYP1A2 with its selective probe substrate, 3-cyano-7-ethoxycoumarin (CEC), in the absence or presence of various concentrations of herbal active constituents. The metabolite (cyano-hydroxycoumarin) formed was subsequently measured in order to obtain IC50 values. The results indicated that only eupatorin and sinensetin moderately inhibited CYP1A2 with IC50 values of 50.8 and 40.2 μM, while the other active compounds did not significantly affect CYP1A2 activity with IC50 values more than 100 μM. Ki values further determined for eupatorin and sinensetin were 46.4 and 35.2 μM, respectively. Our data indicated that most of the investigated herbal constituents have negligible CYP1A2 inhibitory effect. In vivo studies however may be warranted to ascertain the inhibitory effect of eupatorin and sinensetin on CYP1A2 activity in clinical situations. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Reversible and irreversible reactions of three oxygen precursors on InAs(0 0 1)-(4 × 2)/ c(8 × 2)

    NASA Astrophysics Data System (ADS)

    Clemens, Jonathon B.; Droopad, Ravi; Kummel, Andrew C.

    2010-10-01

    The substrate reactions of three common oxygen sources for gate oxide deposition on the group III rich InAs(0 0 1)-(4 × 2)/ c(8 × 2) surface are compared: water, hydrogen peroxide (HOOH), and isopropyl alcohol (IPA). Scanning tunneling microscopy reveals that surface atom displacement occurs in all cases, but via different mechanisms for each oxygen precursor. The reactions are examined as a function of post-deposition annealing temperature. Water reaction shows displacement of surface As atoms, but it does not fully oxidize the As; the reaction is reversed by high temperature (450 °C) annealing. Exposure to IPA and subsequent low-temperature annealing (100 °C) show the preferential reaction on the row features of InAs(0 0 1)-(4 × 2)/ c(8 × 2), but higher temperature anneals result in permanent surface atom displacement/etching. Etching of the substrate is observed with HOOH exposure for all annealing temperatures. While nearly all oxidation reactions on group IV semiconductors are irreversible, the group III rich surface of InAs(0 0 1) shows that oxidation displacement reactions can be reversible at low temperature, thereby providing a mechanism of self-healing during oxidation reactions.

  20. Insights into drug metabolism by cytochromes P450 from modelling studies of CYP2D6-drug interactions

    PubMed Central

    Maréchal, J-D; Kemp, C A; Roberts, G C K; Paine, M J I; Wolf, C R; Sutcliffe, M J

    2008-01-01

    The cytochromes P450 (CYPs) comprise a vast superfamily of enzymes found in virtually all life forms. In mammals, xenobiotic metabolizing CYPs provide crucial protection from the effects of exposure to a wide variety of chemicals, including environmental toxins and therapeutic drugs. Ideally, the information on the possible metabolism by CYPs required during drug development would be obtained from crystal structures of all the CYPs of interest. For some years only crystal structures of distantly related bacterial CYPs were available and homology modelling techniques were used to bridge the gap and produce structural models of human CYPs, and thereby obtain useful functional information. A significant step forward in the reliability of these models came seven years ago with the first crystal structure of a mammalian CYP, rabbit CYP2C5, followed by the structures of six human enzymes, CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6 and CYP3A4, and a second rabbit enzyme, CYP2B4. In this review we describe as a case study the evolution of a CYP2D6 model, leading to the validation of the model as an in silico tool for predicting binding and metabolism. This work has led directly to the successful design of CYP2D6 mutants with novel activity—including creating a testosterone hydroxylase, converting quinidine from inhibitor to substrate, creating a diclofenac hydroxylase and creating a dextromethorphan O-demethylase. Our modelling-derived hypothesis-driven integrated interdisciplinary studies have given key insight into the molecular determinants of CYP2D6 and other important drug metabolizing enzymes. PMID:18026129

  1. In silico prediction of multiple-category classification model for cytochrome P450 inhibitors and non-inhibitors using machine-learning method.

    PubMed

    Lee, J H; Basith, S; Cui, M; Kim, B; Choi, S

    2017-10-01

    The cytochrome P450 (CYP) enzyme superfamily is involved in phase I metabolism which chemically modifies a variety of substrates via oxidative reactions to make them more water-soluble and easier to eliminate. Inhibition of these enzymes leads to undesirable effects, including toxic drug accumulations and adverse drug-drug interactions. Hence, it is necessary to develop in silico models that can predict the inhibition potential of compounds for different CYP isoforms. This study focused on five major CYP isoforms, including CYP1A2, 2C9, 2C19, 2D6 and 3A4, that are responsible for more than 90% of the metabolism of clinical drugs. The main aim of this study is to develop a multiple-category classification model (MCM) for the major CYP isoforms using a Laplacian-modified naïve Bayesian method. The dataset composed of more than 4500 compounds was collected from the PubChem Bioassay database. VolSurf+ descriptors and FCFP_8 fingerprint were used as input features to build classification models. The results demonstrated that the developed MCM using Laplacian-modified naïve Bayesian method was successful in classifying inhibitors and non-inhibitors for each CYP isoform. Moreover, the accuracy, sensitivity and specificity values for both training and test sets were above 80% and also yielded satisfactory area under the receiver operating characteristic curve and Matthews correlation coefficient values.

  2. Human Liver Cytochrome P450 3A4 Ubiquitination

    PubMed Central

    Wang, YongQiang; Kim, Sung-Mi; Trnka, Michael J.; Liu, Yi; Burlingame, A. L.; Correia, Maria Almira

    2015-01-01

    CYP3A4 is an abundant and catalytically dominant human liver endoplasmic reticulum-anchored cytochrome P450 enzyme engaged in the biotransformation of endo- and xenobiotics, including >50% of clinically relevant drugs. Alterations of CYP3A4 protein turnover can influence clinically relevant drug metabolism and bioavailability and drug-drug interactions. This CYP3A4 turnover involves endoplasmic reticulum-associated degradation via the ubiquitin (Ub)-dependent 26 S proteasomal system that relies on two highly complementary E2 Ub-conjugating-E3 Ub-ligase (UBC7-gp78 and UbcH5a-C terminus of Hsc70-interacting protein (CHIP)-Hsc70-Hsp40) complexes, as well as protein kinases (PK) A and C. We have documented that CYP3A4 Ser/Thr phosphorylation (Ser(P)/Thr(P)) by PKA and/or PKC accelerates/enhances its Lys ubiquitination by either of these E2-E3 systems. Intriguingly, CYP3A4 Ser(P)/Thr(P) and ubiquitinated Lys residues reside within the cytosol-accessible surface loop and/or conformationally assembled acidic Asp/Glu clusters, leading us to propose that such post-translational Ser/Thr protein phosphorylation primes CYP3A4 for ubiquitination. Herein, this possibility was examined through various complementary approaches, including site-directed mutagenesis, chemical cross-linking, peptide mapping, and LC-MS/MS analyses. Our findings reveal that such CYP3A4 Asp/Glu/Ser(P)/Thr(P) surface clusters are indeed important for its intermolecular electrostatic interactions with each of these E2-E3 subcomponents. By imparting additional negative charge to these Asp/Glu clusters, such Ser/Thr phosphorylation would generate P450 phosphodegrons for molecular recognition by the E2-E3 complexes, thereby controlling the timing of CYP3A4 ubiquitination and endoplasmic reticulum-associated degradation. Although the importance of phosphodegrons in the CHIP targeting of its substrates is known, to our knowledge this is the first example of phosphodegron involvement in gp78-substrate recruitment, an important step in CYP3A4 proteasomal degradation. PMID:25451919

  3. Molecular evolution of the CYP2D subfamily in primates: purifying selection on substrate recognition sites without the frequent or long-tract gene conversion.

    PubMed

    Yasukochi, Yoshiki; Satta, Yoko

    2015-03-25

    The human cytochrome P450 (CYP) 2D6 gene is a member of the CYP2D gene subfamily, along with the CYP2D7P and CYP2D8P pseudogenes. Although the CYP2D6 enzyme has been studied extensively because of its clinical importance, the evolution of the CYP2D subfamily has not yet been fully understood. Therefore, the goal of this study was to reveal the evolutionary process of the human drug metabolic system. Here, we investigate molecular evolution of the CYP2D subfamily in primates by comparing 14 CYP2D sequences from humans to New World monkey genomes. Window analysis and statistical tests revealed that entire genomic sequences of paralogous genes were extensively homogenized by gene conversion during molecular evolution of CYP2D genes in primates. A neighbor-joining tree based on genomic sequences at the nonsubstrate recognition sites showed that CYP2D6 and CYP2D8 genes were clustered together due to gene conversion. In contrast, a phylogenetic tree using amino acid sequences at substrate recognition sites did not cluster the CYP2D6 and CYP2D8 genes, suggesting that the functional constraint on substrate specificity is one of the causes for purifying selection at the substrate recognition sites. Our results suggest that the CYP2D gene subfamily in primates has evolved to maintain the regioselectivity for a substrate hydroxylation activity between individual enzymes, even though extensive gene conversion has occurred across CYP2D coding sequences. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Molecular Evolution of the CYP2D Subfamily in Primates: Purifying Selection on Substrate Recognition Sites without the Frequent or Long-Tract Gene Conversion

    PubMed Central

    Yasukochi, Yoshiki; Satta, Yoko

    2015-01-01

    The human cytochrome P450 (CYP) 2D6 gene is a member of the CYP2D gene subfamily, along with the CYP2D7P and CYP2D8P pseudogenes. Although the CYP2D6 enzyme has been studied extensively because of its clinical importance, the evolution of the CYP2D subfamily has not yet been fully understood. Therefore, the goal of this study was to reveal the evolutionary process of the human drug metabolic system. Here, we investigate molecular evolution of the CYP2D subfamily in primates by comparing 14 CYP2D sequences from humans to New World monkey genomes. Window analysis and statistical tests revealed that entire genomic sequences of paralogous genes were extensively homogenized by gene conversion during molecular evolution of CYP2D genes in primates. A neighbor-joining tree based on genomic sequences at the nonsubstrate recognition sites showed that CYP2D6 and CYP2D8 genes were clustered together due to gene conversion. In contrast, a phylogenetic tree using amino acid sequences at substrate recognition sites did not cluster the CYP2D6 and CYP2D8 genes, suggesting that the functional constraint on substrate specificity is one of the causes for purifying selection at the substrate recognition sites. Our results suggest that the CYP2D gene subfamily in primates has evolved to maintain the regioselectivity for a substrate hydroxylation activity between individual enzymes, even though extensive gene conversion has occurred across CYP2D coding sequences. PMID:25808902

  5. Characterisation of the cytochrome P450 enzymes involved in the in vitro metabolism of granisetron.

    PubMed Central

    Bloomer, J C; Baldwin, S J; Smith, G J; Ayrton, A D; Clarke, S E; Chenery, R J

    1994-01-01

    1. The metabolism of granisetron was investigated in human liver microsomes to identify the specific forms of cytochrome P450 responsible. 2. 7-hydroxy and 9'-desmethyl granisetron were identified as the major products of metabolism following incubation of granisetron with human liver microsomes. At low, clinically relevant, concentrations of granisetron the 7-hydroxy metabolite predominated. Rates of granisetron 7-hydroxylation varied over 100-fold in the human livers investigated. 3. Enzyme kinetics demonstrated the involvement of at least two enzymes contributing to the 7-hydroxylation of granisetron, one of which was a high affinity component with a Km of 4 microM. A single, low affinity, enzyme was responsible for the 9'-desmethylation of granisetron. 4. Granisetron caused no inhibition of any of the cytochrome P450 activities investigated (CYP1A2, CYP2A6, CYP2B6, CYP2C9/8, CYP2C19, CYP2D6, CYP2E1 and CYP3A), at concentrations up to 250 microM. 5. Studies using chemical inhibitors selective for individual P450 enzymes indicated the involvement of cytochrome P450 3A (CYP3A), both pathways of granisetron metabolism being very sensitive to ketoconazole inhibition. Correlation data were consistent with the role of CYP3A3/4 in granisetron 9'-desmethylation but indicated that a different enzyme was involved in the 7-hydroxylation. PMID:7888294

  6. Functional Study of Cytochrome P450 Enzymes from the Brown Planthopper (Nilaparvata lugens Stål) to Analyze Its Adaptation to BPH-Resistant Rice

    PubMed Central

    Peng, Lei; Zhao, Yan; Wang, Huiying; Song, Chengpan; Shangguan, Xinxin; Ma, Yinhua; Zhu, Lili; He, Guangcun

    2017-01-01

    Plant-insect interactions constitute a complex of system, whereby plants synthesize toxic compounds as the main defense strategy to combat herbivore assault, and insects deploy detoxification systems to cope with toxic plant compounds. Cytochrom P450s are among the main detoxification enzymes employed by insects to combat the chemical defenses of host plants. In this study, we used Nilaparvata lugens (BPH) to constitute an ideal system for studying plant-insect interactions. By feeding BPHs with artificial diets containing ethanol extracts, we show that biotype Y BPHs have a greater ability to metabolize exogenous substrates than biotype 1 BPHs. NlCPR knockdown inhibited the ability of BPHs to feed on YHY15. qRT-PCR was used to screen genes in the P450 family, and upregulation of CYP4C61, CYP6AX1, and CYP6AY1 induced by YHY15 was investigated. When the three P450 genes were knocked down, only CYP4C61 dsRNA treatment was inhibited the ability of BPHs to feed on YHY15. These results indicate that BPH P450 enzymes are a key factor in the physiological functions of BPH when feeding on BPH-resistant rice. PMID:29249980

  7. Functional Study of Cytochrome P450 Enzymes from the Brown Planthopper (Nilaparvata lugens Stål) to Analyze Its Adaptation to BPH-Resistant Rice.

    PubMed

    Peng, Lei; Zhao, Yan; Wang, Huiying; Song, Chengpan; Shangguan, Xinxin; Ma, Yinhua; Zhu, Lili; He, Guangcun

    2017-01-01

    Plant-insect interactions constitute a complex of system, whereby plants synthesize toxic compounds as the main defense strategy to combat herbivore assault, and insects deploy detoxification systems to cope with toxic plant compounds. Cytochrom P450s are among the main detoxification enzymes employed by insects to combat the chemical defenses of host plants. In this study, we used Nilaparvata lugens (BPH) to constitute an ideal system for studying plant-insect interactions. By feeding BPHs with artificial diets containing ethanol extracts, we show that biotype Y BPHs have a greater ability to metabolize exogenous substrates than biotype 1 BPHs. NlCPR knockdown inhibited the ability of BPHs to feed on YHY15. qRT-PCR was used to screen genes in the P450 family, and upregulation of CYP4C61, CYP6AX1 , and CYP6AY1 induced by YHY15 was investigated. When the three P450 genes were knocked down, only CYP4C61 dsRNA treatment was inhibited the ability of BPHs to feed on YHY15. These results indicate that BPH P450 enzymes are a key factor in the physiological functions of BPH when feeding on BPH-resistant rice.

  8. In vitro metabolism of brucine by human liver microsomes and its interactions with CYP substrates.

    PubMed

    Li, Xin; Wang, Kai; Wei, Wei; Liu, Yong-yu; Gong, Lu

    2013-08-25

    Brucine, one of the main active ingredients in semen Strychni, has been included in many oral prescriptions of traditional Chinese medicine. In this study, we investigated the in vitro metabolism of brucine by human liver microsomes (HLMs) and the metabolic interactions of brucine with the substrates of cytochrome P450 (CYP450). Brucine was incubated with HLMs or CYP3A4 and then analysed by Liquid chromatography/mass spectrometry. The Km and Vmax values for HLMs were 30.53±3.14μM and 0.08±0.0029nmol/mg protein/min, respectively, while the corresponding values for CYP3A4 were 20.12±3.05μM and 6.40±0.21nmol/nmol P450/min. CYP3A4 may be the major enzyme responsible for brucine metabolism in HLMs, other human isoforms of CYP showed minimal or no effect on brucine metabolism. The inhibitory action of brucine was observed in CYP3A4 for the 1'-hydroxylation of midazolam, with inhibitory concentration 50 (IC50) of 8.4-fold higher than specific inhibitors in HLMs. Furthermore, brucine significantly inhibited the CYP3A4-catalyzed midazolam 1'-hydroxylation (Ki=2.14μM) at a concentration lower than 10μM, but no obvious inhibitory effects were observed on other CYP substrates (IC50>50μM). These results suggest that brucine has the potential to interact with a wide range of xenobiotics and endogenous chemicals especially CYP3A4 substrates. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Interactions between Cytochromes P450 2B4 (CYP2B4) and 1A2 (CYP1A2) Lead to Alterations in Toluene Disposition and P450 Uncoupling

    PubMed Central

    Reed, James R.; Cawley, George F.; Backes, Wayne L.

    2013-01-01

    The goal of this study was to characterize the effects of CYP1A2•CYP2B4 complex formation on the rates and efficiency of toluene metabolism by comparing the results from simple reconstituted systems containing P450 reductase (CPR) and a single P450 to those using a mixed system containing CPR and both P450s. In the mixed system, the rates of formation of CYP2B4-specific benzyl alcohol and p-cresol were inhibited, whereas that of CYP1A2-specific o-cresol was increased, results consistent with the formation of a CYP1A2•CYP2B4 complex where the CYP1A2 moiety has higher affinity for CPR binding. Comparison of the rates of NADPH oxidation and production of hydrogen peroxide and excess water by the simple and mixed systems indicated that excess water formed at a much lower rate in the mixed system. The commensurate increase in the rate of CYP1A2-specific product formation suggested the P450•P450 interaction increased the putative rate-limiting step of CYP1A2 catalysis, abstraction of a hydrogen radical from the substrate. Cumene hydroperoxide-supported metabolism was measured to determine whether the effects of the P450•P450 interaction required the presence of CPR. Peroxidative metabolism was not affected by the interaction of the two P450s, even with CPR present. However, CPR did stimulate peroxidative metabolism by the simple system containing CYP1A2. These results suggest the major functional effects of the P450•P450 interaction are mediated by changes in the relative abilities of the P450s to receive electrons from CPR. Furthermore, CPR may play an effector role by causing a conformation change in CYP1A2 that makes its metabolism more efficient. PMID:23675771

  10. Oxidation of Methyl and Ethyl Nitrosamines by Cytochromes P450 2E1 and 2B1

    PubMed Central

    Chowdhury, Goutam; Calcutt, M. Wade; Nagy, Leslie D.; Guengerich, F. Peter

    2012-01-01

    Cytochrome P450 (P450) 2E1 is the major enzyme that oxidizes N-nitrosodimethylamine (N,N-dimethylnitrosamine, DMN), a carcinogen and also a representative of some nitrosamines formed endogenously. Oxidation of DMN by rat or human P450 2E1 to HCHO showed a high apparent intrinsic kinetic deuterium isotope effect (KIE), ≥ 8. The KIE was not attenuated in non-competitive intermolecular experiments with rat liver microsomes (DV 12.5, D(V/K) 10.9, nomenclature of Northrop, D.B. (1982) Methods Enzymol. 87, 607–625) but was with purified human P450 2E1 (DV 3.3, D(V/K) 3.7), indicating that C-H bond breaking is partially rate-limiting with human P450 2E1. With N-nitrosodiethylamine (N,N-diethylnitrosamine, DEN), the intrinsic KIE was slightly lower and was not expressed (e.g., D(V/K) 1.2) in non-competitive intermolecular experiments. The same general pattern of KIEs was also seen in the D(V/K) results with DMN and DEN for the minor products resulting from the denitrosation reactions (CH3NH2, CH3CH2NH2, and NO2−). Experiments with deuterated N-nitroso-N-methyl,N-ethylamine demonstrated that the lower KIEs associated for ethyl compared to methyl oxidation could be distinguished within a single molecule. P450 2E1 oxidized DMN and DEN to aldehydes and then to the carboxylic acids. No kinetic lags were observed in acid formation; pulse-chase experiments with carrier aldehydes showed only limited equilibration with P450 2E1-bound aldehydes, indicative of processive reactions, as reported for P450 2A6 (Chowdhury, G. et al. (2010) J. Biol. Chem. 285, 8031–8044). These same features (no lag phase for HCO2H formation, lack of equilibration in pulse-chase assays) were also seen with (rat) P450 2B1, which has lower catalytic efficiency for DMN oxidation and a larger active site. Thus, the processivity of dialkylnitrosamine oxidation appears to be shared by a number of P450s. PMID:23186213

  11. Characterization of bismuth selenide (Bi2Se3) thin films obtained by evaporating the hydrothermally synthesised nano-particles

    NASA Astrophysics Data System (ADS)

    Indirajith, R.; Rajalakshmi, M.; Gopalakrishnan, R.; Ramamurthi, K.

    2016-03-01

    Bismuth selenide (Bi2Se3) was synthesized by hydrothermal method at 200 °C and confirmed by powder X-ray diffraction (XRD) studies. The synthesized material was utilized to deposit bismuth selenide thin films at various substrate temperatures (Room Temperature-RT, 150 °C, 250 °C, 350 °C and 450 °C) by electron beam evaporation technique. XRD study confirmed the polycrystalline nature of the deposited Bi2Se3films. Optical transmittance spectra showed that the deposited (at RT) films acquire relatively high average transmittance of 60%in near infrared region (1500-2500 nm). An indirect allowed optical band gap calculated from the absorption edge for the deposited films is ranging from 0.62 to 0.8 eV. Scanning electron and atomic force microscopy analyses reveal the formation of nano-scale sized particles on the surface and that the nature of surface microstructures is influenced by the substrate temperature. Hall measurements showed improved electrical properties, for the films deposited at 350 °C which possess 2.8 times the mobility and 0.9 times the resistivity of the films deposited at RT.

  12. Dominant role of cytochrome P-450 2E1 in human hepatic microsomal oxidation of the CFC-substitute 1,1,1,2-tetrafluoroethane.

    PubMed

    Surbrook, S E; Olson, M J

    1992-01-01

    The chlorofluorocarbon substitute 1,1,1,2-tetrafluoroethane (HFC-134a) is subject to metabolism by cytochrome P-450 in hepatic microsomes from rat, rabbit, and human. In rat and rabbit, the P-450 form 2E1 is a predominant low-KM, high-rate catalyst of HFC-134a biotransformation and is prominently involved in the metabolism of other tetrahaloalkanes of greater toxicity than HFC-134a [e.g. 1,2-dichloro-1,1-difluoroethane (HCFC-132b)]. In this study, we determined that the human ortholog of P-450 2E1 plays a role of similar importance in the metabolism of HFC-134a. In human hepatic microsomes from 12 individuals, preparations from subjects with relatively high P-450 2E1 levels were shown to metabolize HFC-134a at rates 5- to 10-fold greater than microsomes of individuals with lower levels of this enzyme; the increased rate of metabolism of HFC-134a was specifically linked to increased expression of P-450 2E1. The primary evidence for this conclusion is drawn from studies using mechanism-based inactivation of P-450 2E1 by diethyldithiocarbamate, competitive inhibition of HFC-134a oxidation by p-nitrophenol (a high-affinity substrate for P-450 2E1), strong positive correlation of rates of HFC-134a defluorination with p-nitrophenol hydroxylation in the study population, and correlation of P-450 2E1 levels with rates of halocarbon oxidation. Thus, our findings support the conclusion that human metabolism of HFC-134a is qualitatively similar to that of the species (rat and rabbit) used for toxicological assessment of this halocarbon.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. The Caffeine Cytochrome P450 1A2 Metabolic Phenotype Does Not Predict the Metabolism of Heterocyclic Aromatic Amines in Humans

    PubMed Central

    Turesky, Robert J.; White, Kami K.; Wilkens, Lynne R.; Marchand, Loïc Le

    2015-01-01

    2-Amino-1-methylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) are carcinogenic heterocyclic aromatic amines (HAAs) formed in well-done cooked meats. Chemicals that induce cytochrome P450 (P450) 1A2, a major enzyme involved in the bioactivation of HAAs, also form in cooked meat. Therefore, well-done cooked meat may pose an increase in cancer risk because it contains both inducers of P450 1A2 and procarcinogenic HAAs. We examined the influence of components in meat to modulate P450 1A2 activity and the metabolism of PhIP and MeIQx in volunteers during a 4 week feeding study of well-done cooked beef. The mean P450 1A2 activity, assessed by caffeine metabolic phenotyping, ranged from 6.3 to 7.1 before the feeding study commenced and from 9.6 to 10.4 during the meat feeding period: the difference in means was significant (P < 0.001). Unaltered PhIP, MeIQx, and their P450 1A2 metabolites, N2-(β-1-glucosiduronyl-2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (HON-PhIP-N2-Gl); N3-(β-1-glucosiduronyl-2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (HON-PhIP-N3-Gl); 2-amino-3-methylimidazo-[4,5-f]quinoxaline-8-carboxylic acid (IQx-8-COOH); and 2-amino-8-(hydroxymethyl)-3-methylimidazo[4,5-f]quinoxaline (8-CH2OH-IQx) were measured in urine during days 2, 14, and 28 days of the meat diet. Significant correlations were observed on these days between the levels of the unaltered HAAs and their oxidized metabolites, when expressed as percent of dose ingested or as metabolic ratios. However, there was no statistically significant correlation between the caffeine P450 1A2 phenotype and any urinary HAA biomarker. Although the P450 1A2 activity varied by greater than 20-fold among the subjects, there was a large intra-individual variation of the P450 1A2 phenotype and inconsistent responses to inducers of P450 1A2. The coefficient of variation of the P450 1A2 phenotype within-individual ranged between 1 to 112% (median=40%) during the entire course of the study. The caffeine metabolic phenotype for P450 1A2 was a poor predictor of oxidative urinary metabolites of PhIP and MeIQx and may not be a reliable measure to assess the role of HAAs in cancer risk. PMID:26203673

  14. Portulaca grandiflora as green roof vegetation: Plant growth and phytoremediation experiments.

    PubMed

    Vijayaraghavan, K; Arockiaraj, Jesu; Kamala-Kannan, Seralathan

    2017-06-03

    Finding appropriate rooftop vegetation may improve the quality of runoff from green roofs. Portulaca grandiflora was examined as possible vegetation for green roofs. Green roof substrate was found to have low bulk density (360.7 kg/m 3 ) and high water-holding capacity (49.4%), air-filled porosity (21.1%), and hydraulic conductivity (5270 mm/hour). The optimal substrate also supported the growth of P. grandiflora with biomass multiplication of 450.3% and relative growth rate of 0.038. Phytoextraction potential of P. grandiflora was evaluated using metal-spiked green roof substrate as a function of time and spiked substrate metal concentration. It was identified that P. grandiflora accumulated all metals (Al, Cd, Cr, Cu, Fe, Ni, Pb, and Zn) from metal-spiked green roof substrate. At the end of 40 days, P. grandiflora accumulated 811 ± 26.7, 87.2 ± 3.59, 416 ± 15.8, 459 ± 15.6, 746 ± 20.9, 357 ± 18.5, 565 ± 6.8, and 596 ± 24.4 mg/kg of Al, Cd, Cr, Cu, Fe, Ni, Pb and Zn, respectively. Results also indicated that spiked substrate metal concentration strongly influenced metal accumulation property of P. grandiflora with metal uptake increased and accumulation factor decreased with increase in substrate metal concentration. P. grandiflora also showed potential to translocate all the examined metals with translocation factor greater than 1 for Al, Cu, Fe, and Zn, indicating hyperaccumulation property.

  15. A Novel Semi-biosynthetic Route for Artemisinin Production Using Engineered Substrate-Promiscuous P450BM3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, Jeffrey; Yoshikuni, Yasuo; Fisher, Karl

    2009-11-30

    Production of fine heterologus pathways in microbial hosts is frequently hindered by insufficient knowledge of the native metabolic pathway and its cognate enzymes; often the pathway is unresolved and enzymes lack detailed characterization. An alternative paradigm to using native pathways is de novo pathway design using well-characterized, substrate-promiscuous enzymes. We demonstrate this concept using P450BM3 from Bacillus megaterium. Using a computer model, we illustrate how key P450BM3 activ site mutations enable binding of non-native substrate amorphadiene, incorporating these mutations into P450BM3 enabled the selective oxidation of amorphadiene arteminsinic-11s,12-epoxide, at titers of 250 mg L"1 in E. coli. We also demonstratemore » high-yeilding, selective transformations to dihydroartemisinic acid, the immediate precursor to the high value anti-malarial drug artemisinin.« less

  16. Prediction of Cytochrome P450 Profiles of Environmental Chemicals with QSAR Models Built from Drug-like Molecules

    EPA Science Inventory

    The human cytochrome P450 (CYP450) enzyme family is involved in the biotransformation of many environmental chemicals. As part of the U.S. Tox21 effort, we profiled the CYP450 activity of ~2800 chemicals predominantly of environmental concern against CYP1A2, CYP2C19, CYP2C9, CYP2...

  17. Homozygous Mutation G539R in the Gene for P450 Oxidoreductase in a Family Previously Diagnosed as Having 17,20-Lyase Deficiency

    PubMed Central

    Hershkovitz, Eli; Parvari, Ruthi; Wudy, Stefan A.; Hartmann, Michaela F.; Gomes, Larissa G.; Loewental, Neta; Miller, Walter L.

    2008-01-01

    Context: Very few patients have been described with isolated 17,20-lyase deficiency who have had their mutations in P450c17 (17α-hydroxylase/17,20-lyase) proven by DNA sequencing and in vitro characterization of the mutations. Most patients with 17,20-lyase deficiency have mutations in the domain of P450c17 that interact with the electron-donating redox partner, P450 oxidoreductase (POR). Objective: Our objective was to clarify the genetic and functional basis of isolated 17,20-lyase deficiency in familial cases who were previously reported as having 17,20-lyase deficiency. Patients: Four undervirilized males of an extended Bedouin family were investigated. One of these has previously been reported to carry mutations in the CYP17A1 gene encoding P450c17 causing isolated 17,20-lyase deficiency. Methods: Serum hormones were evaluated before and after stimulation with ACTH. Urinary steroid metabolites were profiled by gas chromatography-mass spectrometry. Exons 1 and 8 of CYP17A1 previously reported to harbor mutations in one of these patients and all 15 coding exons of POR were sequenced. Results: Gas chromatography-mass spectrometry (GC-MS) urinary steroid profiling and serum steroid measurements showed combined deficiencies of 17,20-lyase and 21-hydroxylase. Sequencing of exons 1 and 8 of CYP17A1 in two different laboratories showed no mutations. Sequencing of POR showed that all four patients were homozygous for G539R, a previously studied mutation that retains 46% of normal capacity to support the 17α-hydroxylase activity but only 8% of the 17,20-lyase activity of P450c17. Conclusion: POR deficiency can masquerade clinically as isolated 17,20-lyase deficiency. PMID:18559916

  18. Homozygous mutation G539R in the gene for P450 oxidoreductase in a family previously diagnosed as having 17,20-lyase deficiency.

    PubMed

    Hershkovitz, Eli; Parvari, Ruthi; Wudy, Stefan A; Hartmann, Michaela F; Gomes, Larissa G; Loewental, Neta; Miller, Walter L

    2008-09-01

    Very few patients have been described with isolated 17,20-lyase deficiency who have had their mutations in P450c17 (17alpha-hydroxylase/17,20-lyase) proven by DNA sequencing and in vitro characterization of the mutations. Most patients with 17,20-lyase deficiency have mutations in the domain of P450c17 that interact with the electron-donating redox partner, P450 oxidoreductase (POR). Our objective was to clarify the genetic and functional basis of isolated 17,20-lyase deficiency in familial cases who were previously reported as having 17,20-lyase deficiency. Four undervirilized males of an extended Bedouin family were investigated. One of these has previously been reported to carry mutations in the CYP17A1 gene encoding P450c17 causing isolated 17,20-lyase deficiency. Serum hormones were evaluated before and after stimulation with ACTH. Urinary steroid metabolites were profiled by gas chromatography-mass spectrometry. Exons 1 and 8 of CYP17A1 previously reported to harbor mutations in one of these patients and all 15 coding exons of POR were sequenced. Gas chromatography-mass spectrometry (GC-MS) urinary steroid profiling and serum steroid measurements showed combined deficiencies of 17,20-lyase and 21-hydroxylase. Sequencing of exons 1 and 8 of CYP17A1 in two different laboratories showed no mutations. Sequencing of POR showed that all four patients were homozygous for G539R, a previously studied mutation that retains 46% of normal capacity to support the 17alpha-hydroxylase activity but only 8% of the 17,20-lyase activity of P450c17. POR deficiency can masquerade clinically as isolated 17,20-lyase deficiency.

  19. In Silico Prediction of Cytochrome P450-Mediated Biotransformations of Xenobiotics: A Case Study of Epoxidation.

    PubMed

    Zhang, Jing; Ji, Li; Liu, Weiping

    2015-08-17

    Predicting the biotransformation of xenobiotics is important in toxicology; however, as more compounds are synthesized than can be investigated experimentally, powerful computational methods are urgently needed to prescreen potentially useful candidates. Cytochrome P450 enzymes (P450s) are the major enzymes involved in xenobiotic metabolism, and many substances are bioactivated by P450s to form active compounds. An example is the conversion of olefinic substrates to epoxides, which are intermediates in the metabolic activation of many known or suspected carcinogens. We have calculated the activation energies for epoxidation by the active species of P450 enzymes (an iron-oxo porphyrin cation radical oxidant, compound I) for a diverse set of 36 olefinic substrates with state-of-the-art density functional theory (DFT) methods. Activation energies can be estimated by the computationally less demanding method of calculating the ionization potentials of the substrates, which provides a useful and simple predictive model based on the reaction mechanism; however, the preclassification of these diverse substrates into weakly polar and strongly polar groups is a prerequisite for the construction of specific predictive models with good predictability for P450 epoxidation. This approach has been supported by both internal and external validations. Furthermore, the relation between the activation energies for the regioselective epoxidation and hydroxylation reactions of P450s and experimental data has been investigated. The results show that the computational method used in this work, single-point energy calculations with the B3LYP functional including zero-point energy and solvation and dispersion corrections based on B3LYP-optimized geometries, performs well in reproducing the experimental trends of the epoxidation and hydroxylation reactions.

  20. Predicting CYP2C19 Catalytic Parameters for Enantioselective Oxidations Using Artificial Neural Networks and a Chirality Code

    PubMed Central

    Hartman, Jessica H.; Cothren, Steven D.; Park, Sun-Ha; Yun, Chul-Ho; Darsey, Jerry A.; Miller, Grover P.

    2013-01-01

    Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (kcat, Km, and kcat/Km), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (kcat and Km) were more consistent with experimental values than those for catalytic efficiency (kcat/Km). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds. PMID:23673224

  1. Identification of human cytochrome P450 and flavin-containing monooxygenase enzymes involved in the metabolism of lorcaserin, a novel selective human 5-hydroxytryptamine 2C agonist.

    PubMed

    Usmani, Khawja A; Chen, Weichao G; Sadeque, Abu J M

    2012-04-01

    Lorcaserin, a selective serotonin 5-hydroxytryptamine 2C receptor agonist, is being developed for weight management. The oxidative metabolism of lorcaserin, mediated by recombinant human cytochrome P450 (P450) and flavin-containing monooxygenase (FMO) enzymes, was examined in vitro to identify the enzymes involved in the generation of its primary oxidative metabolites, N-hydroxylorcaserin, 7-hydroxylorcaserin, 5-hydroxylorcaserin, and 1-hydroxylorcaserin. Human CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, CYP3A4, and FMO1 are major enzymes involved in N-hydroxylorcaserin; CYP2D6 and CYP3A4 are enzymes involved in 7-hydroxylorcaserin; CYP1A1, CYP1A2, CYP2D6, and CYP3A4 are enzymes involved in 5-hydroxylorcaserin; and CYP3A4 is an enzyme involved in 1-hydroxylorcaserin formation. In 16 individual human liver microsomal preparations (HLM), formation of N-hydroxylorcaserin was correlated with CYP2B6, 7-hydroxylorcaserin was correlated with CYP2D6, 5-hydroxylorcaserin was correlated with CYP1A2 and CYP3A4, and 1-hydroxylorcaserin was correlated with CYP3A4 activity at 10.0 μM lorcaserin. No correlation was observed for N-hydroxylorcaserin with any P450 marker substrate activity at 1.0 μM lorcaserin. N-Hydroxylorcaserin formation was not inhibited by CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, and CYP3A4 inhibitors at the highest concentration tested. Furafylline, quinidine, and ketoconazole, selective inhibitors of CYP1A2, CYP2D6, and CYP3A4, respectively, inhibited 5-hydroxylorcaserin (IC(50) = 1.914 μM), 7-hydroxylorcaserin (IC(50) = 0.213 μM), and 1-hydroxylorcaserin formation (IC(50) = 0.281 μM), respectively. N-Hydroxylorcaserin showed low and high K(m) components in HLM and 7-hydroxylorcaserin showed lower K(m) than 5-hydroxylorcaserin and 1-hydroxylorcaserin in HLM. The highest intrinsic clearance was observed for N-hydroxylorcaserin, followed by 7-hydroxylorcaserin, 5-hydroxylorcaserin, and 1-hydroxylorcaserin in HLM. Multiple human P450 and FMO enzymes catalyze the formation of four primary oxidative metabolites of lorcaserin, suggesting that lorcaserin has a low probability of drug-drug interactions by concomitant medications.

  2. Cytochrome P450-inhibitory activity of parabens and phthalates used in consumer products.

    PubMed

    Ozaki, Hitomi; Sugihara, Kazumi; Watanabe, Yoko; Ohta, Shigeru; Kitamura, Shigeyuki

    2016-01-01

    The in vitro cytochrome P450 (CYP)-inhibitory effects of 11 parabens and 7 phthalates used in consumer products, as well as their hydrolytic metabolites, were investigated, using rat liver microsomes as an enzyme source. The effects on individual CYP isozymes were evaluated by assaying inhibition of activities towards specific substrates, i.e., ethoxyresorufin O-dealkylase (EROD), methoxyresorufin O-dealkylase (MROD), pentoxyresorufin O-dealkylase (PROD), 7-benzyloxy-4-trifluoromethylcoumarin dealkylase (BFCD), 7-methoxy-4-trifluoromethylcoumarin dealkylase (MFCD) and 7-ethoxy-4-trifluoromethylcoumarin dealkylase (EFCD) activities. These activities were dose-dependently inhibited, most potently by medium-side-chain parabens (C6-9) and phthalates (C4-6), and less potently by shorter- and longer-side-chain esters. The hydrolytic product of parabens, 4-hydroxybenzoic acid, was not inhibitory, while those of phthalates, phthalic acid monoesters, showed lower inhibitory activity than the parent phthalates. Parabens showed relatively potent inhibition of MFCD activity, considered to be mainly due to CYP2C, and phthalates showed relatively potent inhibition of PROD activity, considered to be mainly due to CYP2B.

  3. Insights into electron leakage in the reaction cycle of cytochrome P450 BM3 revealed by kinetic modeling and mutagenesis

    PubMed Central

    Lim, Joseph B; Barker, Kimberly A; Eller, Kristen A; Jiang, Linda; Molina, Veronica; Saifee, Jessica F; Sikes, Hadley D

    2015-01-01

    As a single polypeptide, cytochrome P450 BM3 fuses oxidase and reductase domains and couples each domain's function to perform catalysis with exceptional activity upon binding of substrate for hydroxylation. Mutations introduced into the enzyme to change its substrate specificity often decrease coupling efficiency between the two domains, resulting in unproductive consumption of cofactors and formation of water and/or reactive species. This phenomenon can correlate with leakage, in which P450 BM3 uses electrons from NADPH to reduce oxygen to water and/or reactive species even without bound substrate. The physical basis for leakage is not yet well understood in this particular member of the cytochrome P450 family. To clarify the relationship between leakage and coupling, we used simulations to illustrate how different combinations of kinetic parameters related to substrate-free consumption of NADPH and substrate hydroxylation can lead to either minimal effects on coupling or a dramatic decrease in coupling as a result of leakage. We explored leakage in P450 BM3 by introducing leakage-enhancing mutations and combining these mutations to assess whether doing so increases leakage further. The variants in this study provide evidence that while a transition to high spin may be vital for coupled hydroxylation, it is not required for enhanced leakage; substrate binding and the consequent shift in spin state are not necessary as a redox switch for catalytic oxidation of NADPH. Additionally, the variants in this study suggest a tradeoff between leakage and stability and thus evolvability, as the mutations we investigated were far more deleterious than other mutations that have been used to change substrate specificity. PMID:26311413

  4. Effects of Electro-Acupuncture on Ovarian P450arom, P450c17α and mRNA Expression Induced by Letrozole in PCOS Rats

    PubMed Central

    Wu, Huangan; Zhao, Jimeng; Cui, Yunhua; Liu, Huirong; Wu, Lingxiang; Shi, Yin; Zhu, Bing

    2013-01-01

    Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS). Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA) in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD) rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA) consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg−1 of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA) showed significantly decreased androgens (i.e., androstenedione and testosterone) with significantly increased estrogens (i.e., estrone, estradiol) and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive and endocrine metabolic disorders in PCOS. PMID:24260211

  5. Effects of electro-acupuncture on ovarian P450arom, P450c17α and mRNA expression induced by letrozole in PCOS rats.

    PubMed

    Sun, Jie; Jin, Chunlan; Wu, Huangan; Zhao, Jimeng; Cui, Yunhua; Liu, Huirong; Wu, Lingxiang; Shi, Yin; Zhu, Bing

    2013-01-01

    Hyperandrogenism is a core factor in the series of reproductive and endocrine metabolic disorders involved in polycystic ovary syndrome (PCOS). Abnormalities in enzymatic activity and the expression of ovarian granular cell layer P450arom and theca cell P450c17α can lead to an atypical environment of local ovarian hormones, including excessive androgen levels. Rat models prepared with letrozole exhibit similar endocrine and histological changes to those that occur in human PCOS. We used such a model to study the role of electro-acupuncture (EA) in regulating ovarian P450arom and P450c17α enzymatic activity and mRNA expression in PCOS rats. Female Sprague Dawley (SD) rats aged 42 days were randomly divided into 3 groups (control, PCOS, and PCOS EA) consisting of 10 rats each. The PCOS and PCOS EA groups were administered a gavage of 1.0 mg/kg(-1) of letrozole solution once daily for 21 consecutive days. Beginning in the ninth week, the PCOS EA group was administered low-frequency EA treatment daily for 14 consecutive days. After the treatment, we obtained the following results. The estrous cycles were restored in 8 of the 10 rats in the PCOS EA group, and their ovarian morphologies and ultrastructures normalized. The peripheral blood measurements (with ELISA) showed significantly decreased androgens (i.e., androstenedione and testosterone) with significantly increased estrogens (i.e., estrone, estradiol) and increased P450arom with decreased P450C17α. Immunohistochemistry and Western blotting methods showed enhanced expression of ovarian granular cell layer P450arom as well as decreased expression of theca cell layer P450C17α. Fluorescence quantitative PCR methods showed enhanced expression of ovarian granular cell layer P450arom mRNA as well as decreased expression of theca cell layer P450C17α mRNA. These results may help explain the effects of electro-acupuncture in changing the local ovarian hyperandrogenic environment and improving reproductive and endocrine metabolic disorders in PCOS.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Stephen G.; Hoskins, Nicola; Xu Feng

    Four (CYP195A2, CYP199A2, CYP203A1, and CYP153A5) of the seven P450 enzymes, and palustrisredoxin A, a ferredoxin associated with CYP199A2, from the metabolically diverse bacterium Rhodopseudomonas palustris have been expressed and purified. A range of substituted benzenes, phenols, benzaldehydes, and benzoic acids was shown to bind to the four P450 enzymes. Monooxygenase activity of CYP199A2 was reconstituted with palustrisredoxin A and putidaredoxin reductase of the P450cam system from Pseudomonas putida. We found that 4-ethylbenzoate and 4-methoxybenzoate were oxidized to single products, and 4-methoxybenzoate was demethylated to form 4-hydroxybenzoate. Crystals of substrate-free CYP199A2 which diffracted to {approx}2.0 A have been obtained.

  7. [Gene polymorphism of CYP450 2C9 and VKORC1 in Chinese population and their relationships to the maintaining dosage of warfarin].

    PubMed

    Zhang, Ya-nan; Cui, Wei; Han, Mei; Zheng, Bin; Liu, Fan; Xie, Rui-qin; Yang, Xiao-hong; Gu, Guo-qiang; Zheng, Hong-mei; Wen, Jin-kun

    2010-02-01

    To investigate the distribution of gene polymorphism of CYP450 2C9 and VKORC1-1639A/G in the Chinese population as well as the difference of genetic polymorphism between Chinese Han population and other ethnic populations. Contribution of CYP2C9 and VKORC1 genotype to the maintenance doses on warfarin was also studied. The genotype and allele frequencies were calculated and compared with those in other populations. One hundred and one patients with stable anticoagulation with warfarin under a target international normalized ratio (INR) of 2.0 to 3.0 were enrolled for studying the relationship between the CYP2C9 and VKORC1 gene polymorphism and the warfarin maintaining dosage. CYP450 2C9*3 + 1075C/A allele frequencies were:AA in 449 cases (92.2%), AC in 36 cases (7.4%) and CC in 2 cases (0.4%), respectively. VKORC1 -1639A/G allele frequencies were AA in 415 cases (85.2%), GA in 72 cases (14.8%), but GG in no case (0.0%), respectively. When linear stepwise regression analysis was used to identify factors contributing to warfarin stable dose, the final equation was: ln (D) = 0.346 + 0.017 (weight) - 0.376 (CYP450 2C9*3 + 1075C/A) + 0.148 (VKORC1-1639A/G) - 0.002 (age) (r = 0.827, P = 0.02). There existed significant gene polymorphism CYP450 2C9*3 + 1075C/A and VKORC1-1639A/G in the Chinese Han population. Both Gene polymorphisms of CYP450 2C9*3 + 1075C/A and VKORC1-1639A/G were significantly affecting the maintaining dose of warfarin in the Chinese population.

  8. Defining the in Vivo Role for cytochrome b5 in cytochrome P450 function through the conditional hepatic deletion of microsomal cytochrome b5.

    PubMed

    Finn, Robert D; McLaughlin, Lesley A; Ronseaux, Sebastien; Rosewell, Ian; Houston, J Brian; Henderson, Colin J; Wolf, C Roland

    2008-11-14

    In vitro, cytochrome b5 modulates the rate of cytochrome P450-dependent mono-oxygenation reactions. However, the role of this enzyme in determining drug pharmacokinetics in vivo and the consequential effects on drug absorption distribution, metabolism, excretion, and toxicity are unclear. In order to resolve this issue, we have carried out the conditional deletion of microsomal cytochrome b5 in the liver to create the hepatic microsomal cytochrome b5 null mouse. These mice develop and breed normally and have no overt phenotype. In vitro studies using a range of substrates for different P450 enzymes showed that in hepatic microsomal cytochrome b5 null NADH-mediated metabolism was essentially abolished for most substrates, and the NADPH-dependent metabolism of many substrates was reduced by 50-90%. This reduction in metabolism was also reflected in the in vivo elimination profiles of several drugs, including midazolam, metoprolol, and tolbutamide. In the case of chlorzoxazone, elimination was essentially unchanged. For some drugs, the pharmacokinetics were also markedly altered; for example, when administered orally, the maximum plasma concentration for midazolam was increased by 2.5-fold, and the clearance decreased by 3.6-fold in hepatic microsomal cytochrome b5 null mice. These data indicate that microsomal cytochrome b5 can play a major role in the in vivo metabolism of certain drugs and chemicals but in a P450- and substrate-dependent manner.

  9. The methoxychlor metabolite, HPTE, inhibits rat luteal cell progesterone production.

    PubMed

    Akgul, Yucel; Derk, Raymond C; Meighan, Terence; Rao, K Murali Krishna; Murono, Eisuke P

    2011-07-01

    The methoxychlor metabolite, HPTE, was shown to inhibit P450-cholesterol side-chain cleavage (P450scc) activity resulting in decreased progesterone production by cultured ovarian follicular cells in previous studies. It is not known whether HPTE has any effect on progesterone formation by the corpus luteum. Exposure to 100 nM HPTE reduced progesterone production by luteal cells with progressive declines to <22% of control at 500 nM HPTE. Similarly, HPTE progressively inhibited progesterone formation and P450scc catalytic activity of hCG- or 8 Br-cAMP-stimulated luteal cells. However, HPTE did not alter mRNA and protein levels of P450scc. Compounds acting as estrogen (17 β-estradiol, bisphenol-A or octylphenol), antiestrogen (ICI) or antiandrogen (monobutyl phthalate, flutamide or M-2) added alone to luteal cells did not mimic the action of HPTE on progesterone and P450scc activity. These results suggest that HPTE directly inhibits P450scc catalytic activity resulting in reduced progesterone formation, and this action was not mediated through estrogen or androgen receptors. Published by Elsevier Inc.

  10. Functional evolution and structural conservation in chimeric cytochromes p450: calibrating a structure-guided approach.

    PubMed

    Otey, Christopher R; Silberg, Jonathan J; Voigt, Christopher A; Endelman, Jeffrey B; Bandara, Geethani; Arnold, Frances H

    2004-03-01

    Recombination generates chimeric proteins whose ability to fold depends on minimizing structural perturbations that result when portions of the sequence are inherited from different parents. These chimeric sequences can display functional properties characteristic of the parents or acquire entirely new functions. Seventeen chimeras were generated from two CYP102 members of the functionally diverse cytochrome p450 family. Chimeras predicted to have limited structural disruption, as defined by the SCHEMA algorithm, displayed CO binding spectra characteristic of folded p450s. Even this small population exhibited significant functional diversity: chimeras displayed altered substrate specificities, a wide range in thermostabilities, up to a 40-fold increase in peroxidase activity, and ability to hydroxylate a substrate toward which neither parent heme domain shows detectable activity. These results suggest that SCHEMA-guided recombination can be used to generate diverse p450s for exploring function evolution within the p450 structural framework.

  11. An Overview of P450 Enzymes: Opportunity and Challenges in Industrial Applications

    DOE PAGES

    Notonier, Sandra; Alexander, Meyers; Jayakody, Lahiru N.

    2016-10-23

    Cytochrome P450 enzymes (P450s) containing a heme-iron center, are biocatalysts from all kingdoms, involvedin a large variety of reactions. Their potential in catalyzing a broad range of substrates makes perfect candidates for biotechnology applications and the production of high-value compounds. Biocatalytic reactions performed by P450s have a great interest in the pharmaceutical industry, fine chemicals, cosmetics, and for bioremediation procedures. However, the complex nature of this protein is still a major hurdle in the prospect of using their promising ability for expanding the number of industrial applications. Multiple approaches of protein engineering are currently conducted to improve activity, stability and/ormore » substrate specificity for a given reaction. Furthermore, in combination with the appropriate biocatalyst, a suitable bioengineering process is a key step in the implementation of P450s at the industrial scale.« less

  12. An Overview of P450 Enzymes: Opportunity and Challenges in Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notonier, Sandra; Alexander, Meyers; Jayakody, Lahiru N.

    Cytochrome P450 enzymes (P450s) containing a heme-iron center, are biocatalysts from all kingdoms, involvedin a large variety of reactions. Their potential in catalyzing a broad range of substrates makes perfect candidates for biotechnology applications and the production of high-value compounds. Biocatalytic reactions performed by P450s have a great interest in the pharmaceutical industry, fine chemicals, cosmetics, and for bioremediation procedures. However, the complex nature of this protein is still a major hurdle in the prospect of using their promising ability for expanding the number of industrial applications. Multiple approaches of protein engineering are currently conducted to improve activity, stability and/ormore » substrate specificity for a given reaction. Furthermore, in combination with the appropriate biocatalyst, a suitable bioengineering process is a key step in the implementation of P450s at the industrial scale.« less

  13. Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro.

    PubMed

    Weiss, Johanna; Haefeli, Walter Emil

    2013-05-01

    The objective of this study was to assess the drug-drug interaction potential of the new non-nucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine in vitro. The following were evaluated: P-glycoprotein (P-gp/ABCB1) inhibition by calcein assay; breast cancer resistance protein (BCRP/ABCG2) inhibition by pheophorbide A efflux; and inhibition of organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 by 8-fluorescein-cAMP uptake. Inhibition of cytochrome P450 enzymes was assessed using commercially available kits. Substrate characteristics were evaluated by growth inhibition assays in MDCKII cells overexpressing particular ABC transporters. Induction of drug-metabolising enzymes and transporters was quantified by real-time RT-PCR in LS180 cells, and activation of pregnane X receptor (PXR) by a reporter gene assay. Rilpivirine significantly inhibited P-gp (IC(50) = 13.1 ± 6.8 μmol/L), BCRP (IC(50) = 1.5 ± 0.3 μmol/L), OATP1B1 (IC(50) = 4.1 ± 1.8 μmol/L), OATP1B3 (IC(50) = 6.1 ± 0.9 μmol/L), CYP3A4 (IC(50) = 1.3 ± 0.6 μmol/L), CYP2C19 (IC(50) = 2.7 ± 0.3 μmol/L) and CYP2B6 (IC(50) = 4.2 ± 1.6 μmol/L). Growth inhibition assays indicate that rilpivirine is not a substrate of P-gp, BCRP, or multidrug resistance-associated proteins 1 and 2. In LS180 cells, rilpivirine induced mRNA expression of ABCB1, CYP3A4 and UGT1A3, whereas ABCC1, ABCC2, ABCG2, OATP1B1 and UGT1A9 were not induced. Moreover, rilpivirine was a PXR activator. In conclusion, rilpivirine inhibits and induces several relevant drug-metabolising enzymes and drug transporters, but owing to its low plasma concentrations it is most likely less prone to drug-drug interactions than older NNRTIs. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  14. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens.

    PubMed

    Bass, C; Carvalho, R A; Oliphant, L; Puinean, A M; Field, L M; Nauen, R; Williamson, M S; Moores, G; Gorman, K

    2011-12-01

    The brown planthopper, Nilaparvata lugens, is an economically significant pest of rice throughout Asia and has evolved resistance to many insecticides including the neonicotinoid imidacloprid. The resistance of field populations of N. lugens to imidacloprid has been attributed to enhanced detoxification by cytochrome P450 monooxygenases (P450s), although, to date, the causative P450(s) has (have) not been identified. In the present study, biochemical assays using the model substrate 7-ethoxycoumarin showed enhanced P450 activity in several resistant N. lugens field strains when compared with a susceptible reference strain. Thirty three cDNA sequences encoding tentative unique P450s were identified from two recent sequencing projects and by degenerate PCR. The mRNA expression level of 32 of these was examined in susceptible, moderately resistant and highly resistant N. lugens strains using quantitative real-time PCR. A single P450 gene (CYP6ER1) was highly overexpressed in all resistant strains (up to 40-fold) and the level of expression observed in the different N. lugens strains was significantly correlated with the resistance phenotype. These results provide strong evidence for a role of CYP6ER1 in the resistance of N. lugens to imidacloprid. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  15. Albendazole sulfonation by rat liver cytochrome P-450c.

    PubMed

    Souhaili-El Amri, H; Mothe, O; Totis, M; Masson, C; Batt, A M; Delatour, P; Siest, G

    1988-08-01

    The metabolism of albendazole (ABZ) was studied in perfused livers from control and ABZ-treated rats (10.6 mg/kg, per os, each day for 10 days). In the perfusion fluid, the concentration of ABZ-sulfoxide (SO-ABZ) remained unchanged in treated, as compared to control animals, whereas ABZ-sulfone (SO2-ABZ) was increased in treated animals. In bile, only SO-ABZ was present. The transformation kinetics of SO-ABZ to SO2-ABZ in microsomes from rats treated with ABZ, 3-methylcholanthrene, Aroclor and isosafrole were biphasic. This suggests that enzyme activity was a consequence of two enzyme systems, one characterized by low affinity and high capacity, the other by high affinity and low capacity, the latter could be induced by 3-methylcholanthrene, ABZ, Aroclor and isosafrole. Cytochrome P-450c was induced potently in vivo by ABZ as proven by increased monooxygenase (7-ethoxyresorufin and 7-ethoxycoumarin-O-deethylase) activities and by Elisa test (a 5-fold increase in hemoprotein concentration was observed). Purified and reconstituted cytochrome P-450c from 3-methylcholanthrene or ABZ-treated rat liver were able to produce SO2-ABZ (2.01 and 1.70 nmol/mg/15 min, respectively, whereas cytochrome P-450b produced 10 times less SO2-ABZ). Immunological assays, as well as activity measurements showed a relationship between cytochrome P-450c-3-methylcholanthrene and cytochrome P-450c-ABZ. We conclude that induction of cytochrome P-450c by ABZ is the probable explanation for the enhanced formation of SO2-ABZ in vivo.

  16. Are there differences in the catalytic activity per unit enzyme of recombinantly expressed and human liver microsomal cytochrome P450 2C9? A systematic investigation into inter-system extrapolation factors.

    PubMed

    Crewe, H K; Barter, Z E; Yeo, K Rowland; Rostami-Hodjegan, A

    2011-09-01

    The 'relative activity factor' (RAF) compares the activity per unit of microsomal protein in recombinantly expressed cytochrome P450 enzymes (rhCYP) and human liver without separating the potential sources of variation (i.e. abundance of enzyme per mg of protein or variation of activity per unit enzyme). The dimensionless 'inter-system extrapolation factor' (ISEF) dissects differences in activity from those in CYP abundance. Detailed protocols for the determination of this scalar, which is used in population in vitro-in vivo extrapolation (IVIVE), are currently lacking. The present study determined an ISEF for CYP2C9 and, for the first time, systematically evaluated the effects of probe substrate, cytochrome b5 and methods for assessing the intrinsic clearance (CL(int) ). Values of ISEF for S-warfarin, tolbutamide and diclofenac were 0.75 ± 0.18, 0.57 ± 0.07 and 0.37 ± 0.07, respectively, using CL(int) values derived from the kinetic values V(max) and K(m) of metabolite formation in rhCYP2C9 + reductase + b5 BD Supersomes™. The ISEF values obtained using rhCYP2C9 + reductase BD Supersomes™ were more variable, with values of 7.16 ± 1.25, 0.89 ± 0.52 and 0.50 ± 0.05 for S-warfarin, tolbutamide and diclofenac, respectively. Although the ISEF values obtained from rhCYP2C9 + reductase + b5 for the three probe substrates were statistically different (p < 0.001), the use of the mean value of 0.54 resulted in predicted oral clearance values for all three substrates within 1.4 fold of the observed literature values. For consistency in the relative activity across substrates, use of a b5 expressing recombinant system, with the intrinsic clearance calculated from full kinetic data is recommended for generation of the CYP2C9 ISEF. Furthermore, as ISEFs have been found to be sensitive to differences in accessory proteins, rhCYP system specific ISEFs are recommended. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Studies on the interactions between drugs and estrogen: analytical method for prediction system of gynecomastia induced by drugs on the inhibitory metabolism of estradiol using Escherichia coli coexpressing human CYP3A4 with human NADPH-cytochrome P450 reductase.

    PubMed

    Satoh, T; Fujita, K I; Munakata, H; Itoh, S; Nakamura, K; Kamataki, T; Itoh, S; Yoshizawa, I

    2000-11-15

    To establish a prediction system for drug-induced gynecomastia in clinical fields, a model reaction system was developed to explain numerically this side effect. The principle is based on the assumption that 50% inhibition concentration (IC(50)) of drugs on the in vitro metabolism of estradiol (E2) to its major product 2-hydroxyestradiol (2-OH-E2) can be regarded as the index for achieving this purpose. By using human cytochrome P450s coexpressed with human NADPH-cytochrome P450 reductase in Escherichia coli as the enzyme, the reaction was examined. Among the nine enzymes (CYP1A1, 1A2, 2A6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4) tested, CYP3A4 having a V(max)/K(m) (ml/min/nmol P450) value of 0.32 for production of 2-OH-E2 was shown to be the most suitable enzyme as the reagent. The inhibitory effects of ketoconazole, cyclosporin A, and cimetidine toward the 2-hydroxylation of E2 catalyzed by CYP3A4 were obtained, and their IC(50) values were 7 nM, 64 nM, and 290 microM, respectively. The present results suggest that IC(50) values thus obtained can be substituted as the prediction index for gynecomastia induced by drugs, considering the patients' individual information. Copyright 2000 Academic Press.

  18. Discovery of a regioselectivity switch in nitrating P450s guided by molecular dynamics simulations and Markov models

    NASA Astrophysics Data System (ADS)

    Dodani, Sheel C.; Kiss, Gert; Cahn, Jackson K. B.; Su, Ye; Pande, Vijay S.; Arnold, Frances H.

    2016-05-01

    The dynamic motions of protein structural elements, particularly flexible loops, are intimately linked with diverse aspects of enzyme catalysis. Engineering of these loop regions can alter protein stability, substrate binding and even dramatically impact enzyme function. When these flexible regions are unresolvable structurally, computational reconstruction in combination with large-scale molecular dynamics simulations can be used to guide the engineering strategy. Here we present a collaborative approach that consists of both experiment and computation and led to the discovery of a single mutation in the F/G loop of the nitrating cytochrome P450 TxtE that simultaneously controls loop dynamics and completely shifts the enzyme's regioselectivity from the C4 to the C5 position of L-tryptophan. Furthermore, we find that this loop mutation is naturally present in a subset of homologous nitrating P450s and confirm that these uncharacterized enzymes exclusively produce 5-nitro-L-tryptophan, a previously unknown biosynthetic intermediate.

  19. Mechanism-based inactivation of CYP2C9 by linderane.

    PubMed

    Wang, Hui; Wang, Kai; Mao, Xu; Zhang, Qingqing; Yao, Tong; Peng, Ying; Zheng, Jiang

    2015-01-01

    1. Linderane (LDR), a furan-containing sesquiterpenoid, is found in Lindera aggregata (Sims) Kosterm, a common traditional Chinese herbal medicine. We thoroughly studied the irreversible inhibitory effect of LDR on cytochrome P450 2C9 (CYP2C9). 2. LDR caused a time- and concentration-dependent inactivation of CYP2C9. In addition, the inactivation of CYP2C9 by LDR was NADPH-dependent and irreversible. More than 50% of CYP2C9 activity was lost after its incubation with LDR at the concentration of 10 μM for 15 min at 30 °C. The maximal rate constant for inactivation (kinact) was found to be 0.0419 min(-1), and the concentration required for half-maximal inactivation (KI) was 1.26 μM, respectively. Glutathione (GSH), catalase, and superoxide dismutase (SOD) failed to protect CYP2C9 against inactivation by LDR. Diclofenac, a substrate of CYP2C9, prevented the enzyme from inactivation produced by LDR. The estimated partition ratio of the inactivation was approximately 227. 3. Two reactive intermediates, including furanoepoxide and γ-ketoenal, might be responsible for the observed enzyme inactivation. The formation of the intermediates was verified by chemical synthesis. Multiple P450 enzymes, including CYPs 1A2, 2B6, 2C9, 2C19, 2D6, 3A4, and 3A5, were found to be involved in the metabolic activation of LDR. In conclusion, LDR was characterized as a mechanism-based inactivator of CYP2C9.

  20. Cytochrome P450 Initiates Degradation of cis-Dichloroethene by Polaromonas sp. Strain JS666

    PubMed Central

    Nishino, Shirley F.; Shin, Kwanghee A.; Gossett, James M.

    2013-01-01

    Polaromonas sp. strain JS666 grows on cis-1,2-dichoroethene (cDCE) as the sole carbon and energy source under aerobic conditions, but the degradation mechanism and the enzymes involved are unknown. In this study, we established the complete pathway for cDCE degradation through heterologous gene expression, inhibition studies, enzyme assays, and analysis of intermediates. Several lines of evidence indicate that a cytochrome P450 monooxygenase catalyzes the initial step of cDCE degradation. Both the transient accumulation of dichloroacetaldehyde in cDCE-degrading cultures and dichloroacetaldehyde dehydrogenase activities in cell extracts of JS666 support a pathway for degradation of cDCE through dichloroacetaldehyde. The mechanism minimizes the formation of cDCE epoxide. The molecular phylogeny of the cytochrome P450 gene and the organization of neighboring genes suggest that the cDCE degradation pathway recently evolved in a progenitor capable of degrading 1,2-dichloroethane either by the recruitment of the cytochrome P450 monooxygenase gene from an alkane catabolic pathway or by selection for variants of the P450 in a preexisting 1,2-dichloroethane catabolic pathway. The results presented here add yet another role to the broad array of productive reactions catalyzed by cytochrome P450 enzymes. PMID:23354711

  1. Sequentially evaporated thin Y-Ba-Co-O superconducting films on microwave substrates

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Rohrer, N. J.; Warner, J. D.; Bhasin, K. B.

    1989-01-01

    The development of high T sub c superconducting thin films on various microwave substrates is of major interest in space electronic systems. Thin films of YBa2Cu3O(7-Delta) were formed on SrTiO3, MgO, ZrO2 coated Al2O3, and LaAlO3 substrates by multi-layer sequential evaporation and subsequent annealing in oxygen. The technique allows controlled deposition of Cu, BaF2 and Y layers, as well as the ZrO buffer layers, to achieve reproducibility for microwave circuit fabrication. The three layer structure of Cu/BaF2/Y is repeated a minimum of four times. The films were annealed in an ambient of oxygen bubbled through water at temperatures between 850 C and 900 C followed by slow cooling (-2 C/minute) to 450 C, a low temperature anneal, and slow cooling to room temperature. Annealing times ranged from 15 minutes to 5 hrs. at high temperature and 0 to 6 hr. at 450 C. Silver contacts for four probe electrical measurements were formed by evaporation followed with an anneal at 500 C. The films were characterized by resistance-temperature measurements, energy dispersive X-ray spectroscopy, X-ray diffraction, and scanning electron microscopy. Critical transition temperatures ranged from 30 K to 87 K as a function of the substrate, composition of the film, thicknesses of the layers, and annealing conditions. Microwave ring resonator circuits were also patterned on these MgO and LaAlO3 substrates.

  2. Differential Cytochrome P450 2D Metabolism Alters Tafenoquine Pharmacokinetics

    PubMed Central

    Vuong, Chau; Xie, Lisa H.; Potter, Brittney M. J.; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Nanayakkara, N. P. Dhammika; Tekwani, Babu L.; Walker, Larry A.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.; Smith, Bryan

    2015-01-01

    Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. PMID:25870069

  3. Pyrethroid Activity-Based Probes for Profiling Cytochrome P450 Activities Associated with Insecticide Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Hanafy M.; O'Neill, Paul M.; Hong, David

    2014-01-18

    Pyrethroid insecticides are used to control a diverse spectrum of diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid metabolizing and non-metabolizing mosquito P450s, as well as rodent microsomes to measure labeling specificity, plus CPR and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using a deltamethrin mimetic PyABP we were able to profile active enzymes in rat liver microsomes and identify pyrethroid metabolizing enzymes in the targetmore » tissue. The most reactive enzyme was a P450, CYP2C11, which is known to metabolize deltamethrin. Furthermore, several other pyrethroid metabolizers were identified (CYPs 2C6, 3A4, 2C13 and 2D1) along with related detoxification enzymes, notably UDP-g’s 2B1 - 5, suggesting a network of associated pyrethroid metabolizing enzymes, or ‘pyrethrome’. Considering the central role that P450s play in metabolizing insecticides, we anticipate that PyABPs will aid the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450-insecticide interactions and aiding the development of new tools for disease control.« less

  4. A randomised study of the effect of danoprevir/ritonavir or ritonavir on substrates of cytochrome P450 (CYP) 3A and 2C9 in chronic hepatitis C patients using a drug cocktail.

    PubMed

    Morcos, Peter N; Chang, Linda; Kulkarni, Rohit; Giraudon, Mylene; Shulman, Nancy; Brennan, Barbara J; Smith, Patrick F; Tran, Jonathan Q

    2013-11-01

    The aim of this study was to evaluate the effects of danoprevir in combination with low-dose ritonavir (danoprevir/r) and placebo plus low-dose ritonavir on the pharmacokinetics of probe drugs for cytochrome P450 (CYP) 3A and CYP2C9, in patients with chronic hepatitis C. A total of 54 patients infected with hepatitis C virus genotype 1 received an oral drug cocktail (2 mg midazolam, 10 mg warfarin and 10 mg vitamin K) before and after 14 days of dosing with either danoprevir/r or placebo plus low-dose ritonavir (placebo/r). Serial pharmacokinetic samples were collected up to 24 (midazolam) and 72 (S-warfarin) h post-dose. Plasma concentrations of midazolam, α-hydroxymidazolam and S-warfarin were measured using validated assays. Pharmacokinetic parameters were estimated using non-compartmental analysis, and geometric mean ratios (GMRs) and 90 % confidence intervals (CIs) for the differences between baseline and post-dosing values were calculated. Danoprevir/r and placebo/r significantly increased midazolam area under the time-concentration curve (AUC0-∞) and reduced the midazolam metabolic ratio while S-warfarin AUC0-∞ was modestly decreased. When danoprevir data were pooled across doses, the midazolam GMR (90 % CI) AUC0-∞ was 9.41 (8.11, 10.9) and 11.14 (9.42, 13.2) following danoprevir/r and placebo/r dosing, respectively, and the S-warfarin GMR (90 % CI) AUC0-∞ was 0.72 (0.68, 0.76) and 0.76 (0.69, 0.85), respectively. The effects of danoprevir/r and placebo/r appeared to be qualitatively similar. Substantial inhibition of CYP3A- and modest induction of CYP2C9- activity were observed with danoprevir/r and low-dose ritonavir.

  5. Control by substrate of the cytochrome p450-dependent redox machinery: mechanistic insights.

    PubMed

    Hlavica, Peter

    2007-08-01

    Based on initial studies with bacterial CYP101A1, a popular concept emerged predicting that substrate-induced low-to-high spin conversion of P450s is universally associated with shifts of the midpoint potential to a more positive value to maximize rates of electron transfer and metabolic turnover. However, evaluation of the plethora of observations with pro- and eukaryotic hemoproteins suggests a caveat as to generalization of this principle. Thus, some P450s are inherently high-spin, so that there is no need for a supportive substrate-triggered impulse to electron flow. With other enzymes, high-spin content is not consonant with reductive activity, and spin transition as such is not essential to sustaining substrate oxidation. Also, with certain proteins the low-spin conformer is reduced as swift as the high-spin entity. Moreover, there is not regularly a linear relationship between high-spin level and anodic shift of the reduction potential. Similarly, in given cases turnover may proceed despite insignificant or even lacking substrate-provoked alterations in the redox behaviour. Thus, folding of the disparate and sometimes conflicting data into a harmonized overall picture is a lingering problem. Apart from direct perturbation of the electrochemical properties, substrate docking may entail changes in enzyme conformation such as to favour productive complexation with redox partners or modulate electron transfer conduits within preformed donor/acceptor adducts, resulting in elevated ease of flow of reducing equivalents. Substrate-steered ordering of the oligomeric aggregation state of P450s is likely to impose steric constraints on heterodimers, causing one component to more readily align with electron carriers. Careful uncovering of electrochemical mechanisms in these systems will be fruitful to tailoring of novel bioenergetic machines and redox chains via redox-inspired protein engineering or molecular Lego, capable of generating products of interest or degrading toxic pollutants. Finally, availability of P450 nanobiochips for high-throughput screening of substrate libraries might expedite drug development.

  6. Cytochrome P450 Monooxygenases for Fatty Acids and Xenobiotics in Marine Macroalgae1

    PubMed Central

    Pflugmacher, Stephan; Sandermann, Heinrich

    1998-01-01

    The metabolism of xenobiotics has mainly been investigated in higher plant species. We studied them in various marine macroalgae of the phyla Chlorophyta, Chromophyta, and Rhodophyta. Microsomes contained high oxidative activities for known cytochrome (Cyt) P450 substrates (fatty acids, cinnamic acid, 3- and 4-chlorobiphenyl, 2,3-dichlorobiphenyl, and isoproturon; up to 54 pkat/mg protein). The presence of Cyt P450 (approximately 50 pmol/mg protein) in microsomes of the three algal families was demonstrated by CO-difference absorption spectra. Intact algal tissue converted 3-chlorobiphenyl to the same monohydroxy-metabolite formed in vitro. This conversion was 5-fold stimulated upon addition of phenobarbital, and was abolished by the known P450 inhibitor, 1-aminobenzotriazole. It is concluded that marine macroalgae contain active species of Cyt P450 and could act as a metabolic sink for marine pollutants. PMID:9576781

  7. Electrical detection of DNA hybridization: three extraction techniques based on interdigitated Al/Al2O3 capacitors.

    PubMed

    Moreno-Hagelsieb, L; Foultier, B; Laurent, G; Pampin, R; Remacle, J; Raskin, J-P; Flandre, D

    2007-04-15

    Based on interdigitated aluminum electrodes covered with Al(2)O(3) and silver precipitation via biotin-antibody coupled gold nano-labels as signal enhancement, three complementary electrical methods were used and compared to detect the hybridization of target DNA for concentrations down to the 50 pM of a PCR product from cytochrome P450 2b2 gene. Human hepatic cytochrome P450 (CYP) enzymes participate in detoxification metabolism of xenobiotics. Therefore, determination of mutational status of P450 gene in a patient could have a significant impact on the choice of a medical treatment. Our three electrical extraction procedures are performed on the same interdigitated capacitive sensor lying on a passivated silicon substrate and consist in the measurement of respectively the low-frequency inter-electrodes capacitance, the high-frequency self-resonance frequency, and the equivalent MOS capacitance between the short-circuited electrodes and the backside metallization of the silicon substrate. This study is the first of its kind as it opens the way for correlation studies and noise reduction techniques based on multiple electrical measurements of the same DNA hybridization event with a single sensor.

  8. Permethrin induction of multiple cytochrome P450 genes in insecticide resistant mosquitoes, Culex quinquefasciatus.

    PubMed

    Gong, Youhui; Li, Ting; Zhang, Lee; Gao, Xiwu; Liu, Nannan

    2013-01-01

    The expression of some insect P450 genes can be induced by both exogenous and endogenous compounds and there is evidence to suggest that multiple constitutively overexpressed P450 genes are co-responsible for the development of resistance to permethrin in resistant mosquitoes. This study characterized the permethrin induction profiles of P450 genes known to be constitutively overexpressed in resistant mosquitoes, Culex quinquefasciatus. The gene expression in 7 of the 19 P450 genes CYP325K3v1, CYP4D42v2, CYP9J45, (CYP) CPIJ000926, CYP325G4, CYP4C38, CYP4H40 in the HAmCqG8 strain, increased more than 2-fold after exposure to permethrin at an LC50 concentration (10 ppm) compared to their acetone treated counterpart; no significant differences in the expression of these P450 genes in susceptible S-Lab mosquitoes were observed after permethrin treatment. Eleven of the fourteen P450 genes overexpressed in the MAmCqG6 strain, CYP9M10, CYP6Z12, CYP9J33, CYP9J43, CYP9J34, CYP306A1, CYP6Z15, CYP9J45, CYPPAL1, CYP4C52v1, CYP9J39, were also induced more than doubled after exposure to an LC50 (0.7 ppm) dose of permethrin. No significant induction in P450 gene expression was observed in the susceptible S-Lab mosquitoes after permethrin treatment except for CYP6Z15 and CYP9J39, suggesting that permethrin induction of these two P450 genes are common to both susceptible and resistant mosquitoes while the induction of the others are specific to insecticide resistant mosquitoes. These results demonstrate that multiple P450 genes are co-up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, providing additional support for their involvement in the detoxification of insecticides and the development of insecticide resistance.

  9. Simultaneous quantification of the abundance of several cytochrome P450 and uridine 5'-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics.

    PubMed

    Achour, Brahim; Russell, Matthew R; Barber, Jill; Rostami-Hodjegan, Amin

    2014-04-01

    Cytochrome P450 (P450) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes mediate a major proportion of phase I and phase II metabolism of xenobiotics. In vitro-in vivo extrapolation (IVIVE) of hepatic clearance in conjunction with physiologically-based pharmacokinetics (PBPK) has become common practice in drug development. However, prediction of xenobiotic kinetics in virtual populations requires knowledge of both enzyme abundances and the extent to which these correlate. A multiplexed quantification concatemer (QconCAT) strategy was used in this study to quantify the expression of several P450 and UGT enzymes simultaneously and to establish correlations between various enzyme abundances in 24 individual liver samples (ages 27-66, 14 male). Abundances were comparable to previously reported values, including CYP2C9 (40.0 ± 26.0 pmol mg(-1)), CYP2D6 (11.9 ± 13.2 pmol mg(-1)), CYP3A4 (68.1 ± 52.3 pmol mg(-1)), UGT1A1 (33.6 ± 34.0 pmol mg(-1)), and UGT2B7 (82.9 ± 36.1 pmol mg(-1)), expressed as mean ± S.D. Previous reports of correlations in expression of various P450 (CYP3A4/CYP3A5*1/*3, CYP2C8/CYP2C9, and CYP3A4/CYP2B6) were confirmed. New correlations were demonstrated between UGTs [including UGT1A6/UGT1A9 (r(s) = 0.82, P < 0.0001) and UGT2B4/UGT2B15 (r(s) = 0.71, P < 0.0001)]. Expression of some P450 and UGT enzymes were shown to be correlated [including CYP1A2/UGT2B4 (r(s) = 0.67, P = 0.0002)]. The expression of CYP3A5 in individuals with *1/*3 genotype (n = 11) was higher than those with *3/*3 genotype (n = 10) (P < 0.0001). No significant effect of gender or history of smoking or alcohol use on enzyme expression was observed; however, expression of several enzymes declined with age. The correlation matrix produced for the first time by this study can be used to generate more realistic virtual populations with respect to abundance of various enzymes.

  10. The Use of Immobilized Cytochrome P4502C9 in PMMA-Based Plug-Flow Bioreactors for the Production of Drug Metabolites

    PubMed Central

    Wollenberg, Lance A.; Kabulski, Jarod L.; Powell, Matthew J.; Chen, Jifeng; Flora, Darcy R.; Tracy, Timothy S.; Gannett, Peter M.

    2013-01-01

    Cytochrome P450 enzymes play a key role in the metabolism of pharmaceutical agents. To determine metabolite toxicity, it is necessary to obtain P450 metabolites from various pharmaceutical agents. Here, we describe a bioreactor that is made by immobilizing cytochrome P450 2C9 (CYP2C9) to a poly (methyl methacrylate) surface and, as an alternative to traditional chemical synthesis, can be used to biosynthesize P450 metabolites in a plug-flow bioreactor. As part of the development of the CYP2C9 bioreactor, we have studied two different methods of attachment: 1) coupling via the N-terminus using N-hydroxysulfosuccinimide 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide and 2) using the Ni(II) chelator 1-acetato-4-benzyl-triazacyclononane to coordinate the enzyme to the surface using a C-terminal histidine tag. Additionally, the propensity for metabolite production of the CYP2C9 proof-of-concept bioreactors as a function of enzyme attachment conditions (e.g., time and enzyme concentration) was examined. Our results show that the immobilization of CYP2C9 enzymes to a PMMA surface represents a viable and alternative approach to the preparation of CYP2C9 metabolites for toxicity testing. Furthermore, the basic approach can be adapted to any cytochrome P450 enzyme and in a high-throughput, automated process. PMID:24166101

  11. Mechanistic modeling to predict the transporter- and enzyme-mediated drug-drug interactions of repaglinide.

    PubMed

    Varma, Manthena V S; Lai, Yurong; Kimoto, Emi; Goosen, Theunis C; El-Kattan, Ayman F; Kumar, Vikas

    2013-04-01

    Quantitative prediction of complex drug-drug interactions (DDIs) is challenging. Repaglinide is mainly metabolized by cytochrome-P-450 (CYP)2C8 and CYP3A4, and is also a substrate of organic anion transporting polypeptide (OATP)1B1. The purpose is to develop a physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics and DDIs of repaglinide. In vitro hepatic transport of repaglinide, gemfibrozil and gemfibrozil 1-O-β-glucuronide was characterized using sandwich-culture human hepatocytes. A PBPK model, implemented in Simcyp (Sheffield, UK), was developed utilizing in vitro transport and metabolic clearance data. In vitro studies suggested significant active hepatic uptake of repaglinide. Mechanistic model adequately described repaglinide pharmacokinetics, and successfully predicted DDIs with several OATP1B1 and CYP3A4 inhibitors (<10% error). Furthermore, repaglinide-gemfibrozil interaction at therapeutic dose was closely predicted using in vitro fraction metabolism for CYP2C8 (0.71), when primarily considering reversible inhibition of OATP1B1 and mechanism-based inactivation of CYP2C8 by gemfibrozil and gemfibrozil 1-O-β-glucuronide. This study demonstrated that hepatic uptake is rate-determining in the systemic clearance of repaglinide. The model quantitatively predicted several repaglinide DDIs, including the complex interactions with gemfibrozil. Both OATP1B1 and CYP2C8 inhibition contribute significantly to repaglinide-gemfibrozil interaction, and need to be considered for quantitative rationalization of DDIs with either drug.

  12. Multiple Cytochrome P450 genes: their constitutive overexpression and permethrin induction in insecticide resistant mosquitoes, Culex quinquefasciatus.

    PubMed

    Liu, Nannan; Li, Ting; Reid, William R; Yang, Ting; Zhang, Lee

    2011-01-01

    Four cytochrome P450 cDNAs, CYP6AA7, CYP9J40, CYP9J34, and CYP9M10, were isolated from mosquitoes, Culex quinquefasciatus. The P450 gene expression and induction by permethrin were compared for three different mosquito populations bearing different resistance phenotypes, ranging from susceptible (S-Lab), through intermediate (HAmCq(G0), the field parental population) to highly resistant (HAmCq(G8), the 8(th) generation of permethrin selected offspring of HAmCq(G0)). A strong correlation was found for P450 gene expression with the levels of resistance and following permethrin selection at the larval stage of mosquitoes, with the highest expression levels identified in HAmCq(G8), suggesting the importance of CYP6AA7, CYP9J40, CYP9J34, and CYP9M10 in the permethrin resistance of larva mosquitoes. Only CYP6AA7 showed a significant overexpression in HAmCq(G8) adult mosquitoes. Other P450 genes had similar expression levels among the mosquito populations tested, suggesting different P450 genes may be involved in the response to insecticide pressure in different developmental stages. The expression of CYP6AA7, CYP9J34, and CYP9M10 was further induced by permethrin in resistant mosquitoes. Taken together, these results indicate that multiple P450 genes are up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, thus increasing the overall expression levels of P450 genes.

  13. Genetic determinants of drug responsiveness and drug interactions.

    PubMed

    Caraco, Y

    1998-10-01

    Six cytochrome P450 enzymes mediate the oxidative metabolism of most drugs in common use: CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4. These enzymes have selective substrate specificity, and their activity is characterized by marked interindividual variation. Some of these systems (CYP2C19, CYP2D6) are polymorphically distributed; thus, a subset of the population may be genetically deficient in enzyme activity. Phenotyping procedures designed to identify subjects with impaired metabolism who may be at increased risk for drug toxicity have been developed and validated. This has been supplemented in recent years by the availability of genetic analysis and the identification of specific alleles that are associated with altered (i.e., reduced, deficient, or increased) enzyme activity. The potential of genotyping to predict pharmacodynamics holds great promise for the future because it does not involve the administration of exogenous compound and is not confounded by drug therapy. Drug interactions caused by the inhibition or induction of oxidative drug metabolism may be of great clinical importance because they may result in drug toxicity or therapeutic failure. Further understanding of cytochrome P450 complexity may allow, through a combined in vitro-in vivo approach, the reliable prediction and possible prevention of deleterious drug interactions.

  14. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; de Vries, Emmely M; van Nierop, F Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R; Boelen, Anita; Romijn, Johannes A; Mathôt, Ron A A

    2015-06-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug metabolism. In a randomized crossover study design, nine healthy subjects ingested a cocktail consisting of five P450-specific probe drugs [caffeine (CYP1A2), S-warfarin (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6), and midazolam (CYP3A4)] on two occasions (control study after an overnight fast and after 36 h of fasting). Blood samples were drawn for pharmacokinetic analysis using nonlinear mixed effects modeling. In addition, we studied in Wistar rats the effects of short-term fasting on hepatic mRNA expression of P450 isoforms corresponding with the five studied P450 enzymes in humans. In the healthy subjects, short-term fasting increased oral caffeine clearance by 20% (P = 0.03) and decreased oral S-warfarin clearance by 25% (P < 0.001). In rats, short-term fasting increased mRNA expression of the orthologs of human CYP1A2, CYP2C19, CYP2D6, and CYP3A4 (P < 0.05), and decreased the mRNA expression of the ortholog of CYP2C9 (P < 0.001) compared with the postabsorptive state. These results demonstrate that short-term fasting alters cytochrome P450-mediated drug metabolism in a nonuniform pattern. Therefore, short-term fasting is another factor affecting cytochrome P450-mediated drug metabolism in humans. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  15. P450 oxidoreductase deficiency: a disorder of steroidogenesis with multiple clinical manifestations.

    PubMed

    Miller, Walter L

    2012-10-23

    Cytochrome P450 enzymes catalyze the biosynthesis of steroid hormones and metabolize drugs. There are seven human type I P450 enzymes in mitochondria and 50 type II enzymes in endoplasmic reticulum. Type II enzymes, including both drug-metabolizing and some steroidogenic enzymes, require electron donation from a two-flavin protein, P450 oxidoreductase (POR). Although knockout of the POR gene causes embryonic lethality in mice, we discovered human POR deficiency as a disorder of steroidogenesis associated with the Antley-Bixler skeletal malformation syndrome and found mild POR mutations in phenotypically normal adults with infertility. Assay results of mutant forms of POR using the traditional but nonphysiologic assay (reduction of cytochrome c) did not correlate with patient phenotypes; assays based on the 17,20 lyase activity of P450c17 (CYP17) correlated with clinical phenotypes. The POR sequence in 842 normal individuals revealed many polymorphisms; amino acid sequence variant A503V is encoded by ~28% of human alleles. POR A503V has about 60% of wild-type activity in assays with CYP17, CYP2D6, and CYP3A4, but nearly wild-type activity with P450c21, CYP1A2, and CYP2C19. Activity of a particular POR variant with one P450 enzyme will not predict its activity with another P450 enzyme: Each POR-P450 combination must be studied individually. Human POR transcription, initiated from an untranslated exon, is regulated by Smad3/4, thyroid receptors, and the transcription factor AP-2. A promoter polymorphism reduces transcription to 60% in liver cells and to 35% in adrenal cells. POR deficiency is a newly described disorder of steroidogenesis, and POR variants may account for some genetic variation in drug metabolism.

  16. DNA adducts of the tobacco carcinogens 2-amino-9H-pyrido[2,3-b]indole and 4-aminobiphenyl are formed at environmental exposure levels and persist in human hepatocytes.

    PubMed

    Nauwelaërs, Gwendoline; Bellamri, Medjda; Fessard, Valérie; Turesky, Robert J; Langouët, Sophie

    2013-09-16

    Aromatic amines and structurally related heterocyclic aromatic amines (HAAs) are produced during the combustion of tobacco or during the high-temperature cooking of meat. Exposure to some of these chemicals may contribute to the etiology of several common types of human cancers. 2-Amino-9H-pyrido[2,3-b]indole (AαC) is the most abundant HAA formed in mainstream tobacco smoke: it arises in amounts that are 25-100 times greater than the levels of the arylamine, 4-aminobiphenyl (4-ABP), a human carcinogen. 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is a prevalent HAA formed in cooked meats. AαC and MeIQx are rodent carcinogens; however, their carcinogenic potency in humans is unknown. A preliminary assessment of the carcinogenic potential of these HAAs in humans was conducted by examining the capacity of primary human hepatocytes to form DNA adducts of AαC and MeIQx, in comparison to 4-ABP, followed by the kinetics of DNA adduct removal by cellular enzyme repair systems. The principal DNA adducts formed were N-(deoxyguanosin-8-yl) (dG-C8) adducts. Comparable levels of DNA adducts were formed with AαC and 4-ABP, whereas adduct formation was ∼5-fold lower for MeIQx. dG-C8-AαC and dG-C8-4-ABP were formed at comparable levels in a concentration-dependent manner in human hepatocytes treated with procarcinogens over a 10,000-fold concentration range (1 nM-10 μM). Pretreatment of hepatocytes with furafylline, a selective inhibitor of cytochrome P450 1A2, resulted in a strong diminution of DNA adducts signifying that P450 1A2 is a major P450 isoform involved in bioactivation of these procarcinogens. The kinetics of adduct removal varied for each hepatocyte donor. Approximately half of the DNA adducts were removed within 24 h of treatment; however, the remaining lesions persisted over 5 days. The high levels of AαC present in tobacco smoke and its propensity to form persistent DNA adducts in human hepatocytes suggest that AαC can contribute to DNA damage and the risk of hepatocellular cancer in smokers.

  17. DNA Adducts of the Tobacco Carcinogens 2-Amino-9H-pyrido[2,3-b]indole and 4-Aminobiphenyl are Formed at Environmental Exposure levels and Persist in Human Hepatocytes

    PubMed Central

    Nauwelaërs, Gwendoline; Bellamri, Medjda; Fessard, Valérie; Turesky, Robert J.; Langouët, Sophie

    2013-01-01

    Aromatic amines and structurally related heterocyclic aromatic amines (HAAs) are produced during the combustion of tobacco or during the high-temperature cooking of meat. Exposure to some of these chemicals may contribute to the etiology of several common types of human cancers. 2-Amino-9H-pyrido[2,3-b]indole (AαC) is the most abundant HAA formed in mainstream tobacco smoke: it arises in amounts that are 25–100 times greater than the levels of the arylamine, 4-aminobiphenyl (4-ABP), a human carcinogen. 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is a prevalent HAA formed in cooked meats. AαC and MeIQx are rodent carcinogens; however, their carcinogenic potency in humans is unknown. A preliminary assessment of the carcinogenic potential of these HAAs in humans was conducted by examining the capacity of primary human hepatocytes to form DNA adducts of AαC and MeIQx, in comparison to 4-ABP, followed by the kinetics of DNA adduct removal by cellular enzyme repair systems. The principal DNA adducts formed were N-(deoxyguanosin-8-yl) (dG-C8) adducts. Comparable levels of DNA adducts were formed with AαC and 4-ABP, whereas adduct formation was ~5-fold lower for MeIQx. dG-C8-AαC and dG-C8-4-ABP were formed at comparable levels in a concentration-dependent manner in human hepatocytes treated with procarcinogens over a ten thousand-fold concentration range (1 nM – 10 µM). Pretreatment of hepatocytes with furafylline, a selective inhibitor of cytochrome P450 1A2, resulted in a strong diminution of DNA adducts signifying that P450 1A2 is a major P450 isoform involved in bioactivation of these procarcinogens. The kinetics of adduct removal varied for each hepatocyte donor. Approximately half of the DNA adducts were removed within 24 h of treatment; however, the remaining lesions persisted over 5 days. The high levels of AαC present in tobacco smoke and its propensity to form persistent DNA adducts in human hepatocytes, suggests that AαC can contribute to DNA damage and the risk of hepatocellular cancer in smokers. PMID:23898916

  18. Structure and expression of the rat CYP3A1 gene: isolation of the gene (P450/6betaB) and characterization of the recombinant protein.

    PubMed

    Nagata, K; Ogino, M; Shimada, M; Miyata, M; Gonzalez, F J; Yamazoe, Y

    1999-02-15

    A P450 gene (P450/6betaB) of the CYP3A subfamily was isolated from a rat genomic library. Nucleotide sequencing of the exons revealed a high similarity with P450PCN1 cDNA (Gonzalez et al. (1985), J. Biol. Chem. 260, 7345-7441), but differed in 41 nucleotides, resulting in 11 changes and 2 deletions of amino acid residues. The P450/6betaB spanned about 30 kbp and consisted of 13 exons, and was in exon number and size identical with CYP3A2 gene except in the 6th exon, which was shorter than that of CYP3A2. 6beta-B mRNA, which may be transcribed from P450/6betaB, was detected on Northern blotting and by reverse transcription-polymerase chain reaction (RT-PCR). Profiles of the developmental change and induction by a treatment with several chemicals were very similar to those of P450PCN1 mRNA reported previously. P450PCN1 mRNA and gene, however, were not detected by PCR in rats. To determine whether P450/6betaB encodes an active protein, a cDNA was isolated and expressed. Expression of 6beta-B cDNA in COS-1 cells was carried out and revealed that the recombinant protein comigrated with purified P4506beta-4 previously identified as CYP3A1. The recombinant 6beta-B protein showed similar turnover rate and regioselectivity for testosterone with purified P4506beta-4 by the simultaneous addition of NADPH-cytochrome P450 reductase and cytochrome b5. These data suggest that P450/6betaB encodes an active P450 form corresponding to CYP3A1 and P450PCN1 reported previously does not exist in rats. Copyright 1999 Academic Press.

  19. The Impact of the Hepatocyte-to-Plasma pH Gradient on the Prediction of Hepatic Clearance and Drug-Drug Interactions for CYP2C9 and CYP3A4 Substrates.

    PubMed

    Rougée, Luc R A; Mohutsky, Michael A; Bedwell, David W; Ruterbories, Kenneth J; Hall, Stephen D

    2017-09-01

    Surrogate assays for drug metabolism and inhibition are traditionally performed in buffer systems at pH 7.4, despite evidence that hepatocyte intracellular pH is 7.0. This pH gradient can result in a pK a -dependent change in intracellular/extracellular concentrations for ionizable drugs that could affect predictions of clearance and P450 inhibition. The effect of microsomal incubation pH on in vitro enzyme kinetic parameters for CYP2C9 (diclofenac, (S)-warfarin) and CYP3A4 (midazolam, dextromethorphan, testosterone) substrates, enzyme specific reversible inhibitors (amiodarone, desethylamiodarone, clozapine, nicardipine, fluconazole, fluvoxamine, itraconazole) and a mechanism-based inhibitor (amiodarone) was investigated. Intrinsic clearance through CYP2C9 significantly increased (25% and 50% for diclofenac and (S)-warfarin respectively) at intracellular pH 7.0 compared with traditional pH 7.4. The CYP3A4 substrate dextromethorphan intrinsic clearance was decreased by 320% at pH 7.0, while midazolam and testosterone remained unchanged. Reversible inhibition of CYP2C9 was less potent at pH 7.0 compared with 7.4, while CYP3A4 inhibition potency was variably affected. Maximum enzyme inactivation rate of amiodarone toward CYP2C9 and CYP3A4 decreased at pH 7.0, while the irreversible inhibition constant remained unchanged for CYP2C9, but decreased for CYP3A4 at pH 7.0. Predictions of clearance and drug-drug interactions made through physiologically based pharmacokinetic models were improved with the inclusion of predicted intracellular concentrations based at pH 7.0 and in vitro parameters determined at pH 7.0. No general conclusion on the impact of pH could be made and therefore a recommendation to change buffer pH to 7.0 cannot be made at this time. It is recommended that the appropriate hepatocyte intracellular pH 7.0 be used for in vitro determinations when in vivo predictions are made. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Challenges in assignment of allosteric effects in cytochrome P450-catalyzed substrate oxidations to structural dynamics in the hemoprotein architecture.

    PubMed

    Hlavica, Peter

    2017-02-01

    Cytochrome P450s (CYP) represent a superfamily of b-type hemoproteins catalyzing NAD(P)H-dependent oxidative biotransformation of a vast array of natural and xenobiotic compounds. Many eu- and prokaryotic members of this class of monooxygenases display complex non-Michaelis-Menten saturation kinetics, suggestive of homo-/heterotropic cooperativity arising from substrate-/effector-induced allosteric interactions. Here, the paradigm of multiple-ligand occupancy of the catalytic pocket in combination with enzyme oligomerization provides the most favored explanations for the atypical kinetic patterns. Making use of available data from crystallographic analyses, homology modeling and site-directed mutagenesis, the present review focuses on assessment of the topology of prospective key players dictating allosterism. Based on a general, CYP3A4-related construct, the majority of determinants were found to cluster within the six known substrate recognition sites (SRSs). Here, the B'/B'-C domains (SRS-1) and the F-helical region (SRS-2) harbor 51% of the critical residues, while SRS-4/5/6 each accommodate about 11-17% of the presumed docking spots. Of note, 12% of the total number of functional amino acids resides in non-SRS motifs. Average frequency of conservation of the allosteric sites examined was found to be fairly low (~13%), hinting at the requirement of some degree of conformational flexibility. Reactivity toward ligands coincides with the lipophilicity/hydrophilicity profile and bulkiness of the elements acting as selective filters. In sum, cooperative scenarios mainly pertain to regulative effects on substrate ingress, tuning of the open/closed equilibrium of the substrate access channel, modulation of the active-site capacity and productive ligand orientation toward the iron-oxene core. Deeper insight into the molecular mechanism of allostery may help avoid undesired drug-drug interplay in medicinal therapy and offer detoxification response to toxic agents. Finally, genetic manipulation of the cooperative machinery of P450s may provide a powerful tool in drug development. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Predicting the effect of cytochrome P450 inhibitors on substrate drugs: analysis of physiologically based pharmacokinetic modeling submissions to the US Food and Drug Administration.

    PubMed

    Wagner, Christian; Pan, Yuzhuo; Hsu, Vicky; Grillo, Joseph A; Zhang, Lei; Reynolds, Kellie S; Sinha, Vikram; Zhao, Ping

    2015-01-01

    The US Food and Drug Administration (FDA) has seen a recent increase in the application of physiologically based pharmacokinetic (PBPK) modeling towards assessing the potential of drug-drug interactions (DDI) in clinically relevant scenarios. To continue our assessment of such approaches, we evaluated the predictive performance of PBPK modeling in predicting cytochrome P450 (CYP)-mediated DDI. This evaluation was based on 15 substrate PBPK models submitted by nine sponsors between 2009 and 2013. For these 15 models, a total of 26 DDI studies (cases) with various CYP inhibitors were available. Sponsors developed the PBPK models, reportedly without considering clinical DDI data. Inhibitor models were either developed by sponsors or provided by PBPK software developers and applied with minimal or no modification. The metric for assessing predictive performance of the sponsors' PBPK approach was the R predicted/observed value (R predicted/observed = [predicted mean exposure ratio]/[observed mean exposure ratio], with the exposure ratio defined as [C max (maximum plasma concentration) or AUC (area under the plasma concentration-time curve) in the presence of CYP inhibition]/[C max or AUC in the absence of CYP inhibition]). In 81 % (21/26) and 77 % (20/26) of cases, respectively, the R predicted/observed values for AUC and C max ratios were within a pre-defined threshold of 1.25-fold of the observed data. For all cases, the R predicted/observed values for AUC and C max were within a 2-fold range. These results suggest that, based on the submissions to the FDA to date, there is a high degree of concordance between PBPK-predicted and observed effects of CYP inhibition, especially CYP3A-based, on the exposure of drug substrates.

  2. Association of cytochrome P450 genetic polymorphisms with neoadjuvant chemotherapy efficacy in breast cancer patients

    PubMed Central

    2012-01-01

    Background The enzymes of the cytochrome P450 family (CYPs) play an important role in the metabolism of a great variety of anticancer agents; therefore, polymorphisms in genes encoding for metabolizing enzymes and drugs transporters can affect drug efficacy and toxicity. Methods The genetic polymorphisms of cytochrome P450 were studied in 395 patients with breast cancer by RLFP analysis. Results Here, we studied the association of functionally significant variant alleles of CYP3A4, CYP3A5, CYP2B6, CYP2C8, CYP2C9 and CYP2C19 with the clinical response to neoadjuvant chemotherapy in breast cancer patients. A significant correlation was observed between the CYP2C9*2 polymorphism and chemotherapy resistance (OR = 4.64; CI 95% = 1.01 – 20.91), as well as between CYP2C9*2 heterozygotes and chemotherapy resistance in women with nodal forms of breast cancer and a cancer hereditary load (OR = 15.50; CI 95% = 1.08 – 826.12) when the potential combined effects were examined. No significant association between chemotherapy resistance and the other examined genotypes and the potential combined clinical and tumour-related parameters were discovered. Conclusion In conclusion, CYP2C9*2 was associated with neoadjuvant chemotherapy resistance (OR = 4.64; CI 95% = 1.01 – 20.91) in the population of interest. PMID:22702493

  3. Engineering and improvement of the efficiency of a chimeric [P450cam-RhFRed reductase domain] enzyme.

    PubMed

    Robin, Aélig; Roberts, Gareth A; Kisch, Johannes; Sabbadin, Federico; Grogan, Gideon; Bruce, Neil; Turner, Nicholas J; Flitsch, Sabine L

    2009-05-14

    A chimeric oxygenase, in which the P450cam domain was fused to the reductase host domains of a P450RhF from Rhodococcus sp. strain NCIMB 9784 was optimised to allow for a biotransformation at 30 mM substrate in 80% overall yield, with the linker region between P450 and FMN domain proving to be important for the effective biotransformation of (+)-camphor to 5-exo-hydroxycamphor.

  4. Epitaxial ferromagnetic single clusters and smooth continuous layers on large area MgO/CVD graphene substrates

    NASA Astrophysics Data System (ADS)

    Godel, Florian; Meny, Christian; Doudin, Bernard; Majjad, Hicham; Dayen, Jean-François; Halley, David

    2018-02-01

    We report on the fabrication of ferromagnetic thin layers separated by a MgO dielectric barrier from a graphene-covered substrate. The growth of ferromagnetic metal layers—Co or Ni0.8Fe0.2—is achieved by Molecular Beam Epitaxy (MBE) on a 3 nm MgO(111) epitaxial layer deposited on graphene. In the case of a graphene, grown by chemical vapor deposition (CVD) over Ni substrates, an annealing at 450 °C, under ultra-high-vacuum (UHV) conditions, leads to the dewetting of the ferromagnetic layers, forming well-defined flat facetted clusters whose shape reflects the substrate symmetry. In the case of CVD graphene transferred on SiO2, no dewetting is observed after same annealing. We attribute this difference to the mechanical stress states induced by the substrate, illustrating how it matters for epitaxial construction through graphene. Controlling the growth parameters of such magnetic single objects or networks could benefit to new architectures for catalysis or spintronic applications.

  5. Olfactory cytochrome P-450. Studies with suicide substrates of the haemoprotein.

    PubMed Central

    Reed, C J; Lock, E A; De Matteis, F

    1988-01-01

    1. The olfactory epithelium of male hamsters has been found to be extremely active in the cumene hydroperoxide-supported oxidation of tetramethylphenylenediamine, and this peroxidase activity has been shown to be cytochrome P-450-dependent. 2. The interaction of a series of suicide substrates of cytochrome P-450 with the hepatic and olfactory mono-oxygenase systems has been assessed by determination of peroxidase, 7-ethoxycoumarin O-de-ethylase (ECOD) and 7-ethoxyresorufin O-de-ethylase (EROD) activities after treatment in vivo with these compounds. Chloramphenicol, OOS-trimethylphosphorothiolate and two dihydropyridines [DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) and 4-ethyl DDC (3,5-diethoxycarbonyl-4-ethyl-1,4-dihydro-2,6-dimethylpyridine)] all caused similar percentage inhibitions of hepatic and olfactory activities, but the absolute amounts of enzymic activity lost were considerably greater in the latter tissue. In contrast, halothane had little effect upon hepatic cytochrome P-450-dependent reactions, whereas it severely inhibited those of the olfactory epithelium. 3. The time course of loss and recovery of hepatic and olfactory peroxidase, ECOD and EROD activities after a single dose of 4-ethyl DDC was studied. The rates of loss of activity observed were very similar, irrespective of tissue or reaction examined. In the olfactory epithelium, all three activities recovered concurrently and at a rate similar to that of the hepatic peroxidase activity. In contrast, the hepatic de-ethylation of 7-ethoxycoumarin and 7-ethoxy-resorufin recovered significantly more rapidly. 4. It is suggested that this behaviour is due to 4-ethyl DDC acting not only as a suicidal inhibitor but also as an inducer of certain forms of cytochrome P-450 in the liver; in the olfactory epithelium, however, inactivation, but not induction, occurs. Classical inducing agents were reported to have no effect upon olfactory cytochrome P-450, and in the present study neither phenobarbitone nor beta-naphthoflavone treatment had any effect upon olfactory cytochrome P-450-dependent reactions, although it induced those of the liver. PMID:3263118

  6. Expression of Cytochrome P450s in the Liver of Rats Administered with Socheongryong-tang, a Traditional Herbal Formula

    PubMed Central

    Jin, Seong Eun; Ha, Hyekyung; Seo, Chang-Seob; Shin, Hyeun-Kyoo; Jeong, Soo-Jin

    2016-01-01

    Objective: The purpose of this study was to investigate the potential influences of Socheongryong-tang (SCRT) on the messenger ribonucleic acid (mRNA) and protein expression of cytochrome P450 (CYP450) in vivo. Materials and Methods: SCRT was orally administered to either male or female Sprague-Dawley rats once daily at doses of 0, 1000, 2000, or 5000 mg/kg/day for 13 weeks. The mRNA expression of CYP450s (CYP1A1, 1A2, 2B1/2, 2C11, 2E1, 3A1, 3A2, and 4A1) in liver tissues was measured by reverse transcription polymerase chain reaction. And then, the protein expression of CYP1A1 and CYP2B1/2 in liver tissues was analyzed by the Western blot. Results: We found no significant influence in the mRNA expression of hepatic CYP1A2, 2C11, 2E1, 3A1, 3A2, and 4A1 after repeated administration of SCRT for 13 weeks. By contrast, the mRNA and protein expression of hepatic CYP1A1 was increased by repeated SCRT treatment in male rats, but not in female rats. The mRNA and protein expression of hepatic CYP2B1/2 in both genders was increased by administration of SCRT. Conclusion: A caution is needed when SCRT is co-administered with substrates of CYP2B1/2 for clinical usage. In case of male, an attention is also required when SCRT and drugs metabolized by CYP1A1 are taken together. Our findings provide information regarding the safety and effectiveness of SCRT when combined with conventional drugs. SUMMARY Oral administration of Socheongryong-tang for 13 weeks did not affect the mRNA expression of hepatic CYP1A2, 2C11, 2E1, 3A1, 3A2, and 4A1In male rats, oral administration of Socheongryong-tang for 13 weeks induced the mRNA and protein expression of hepatic CYP1A1 and CYP2B1/2In female rats, oral administration of Socheongryong-tang for 13 weeks induced the mRNA and protein expression of hepatic CYP2B1/2. Abbreviations used: SCRT: Socheongryong-tang, CYP450: Cytochrome P450, HPLC: High performance liquid chromatography, RT-PCR: Reverse transcription polymerase chain reaction. PMID:27601852

  7. Metabolism of 18-methoxycoronaridine, an ibogaine analog, to 18-hydroxycoronaridine by genetically variable CYP2C19.

    PubMed

    Zhang, Wenjiang; Ramamoorthy, Yamini; Tyndale, Rachel F; Glick, Stanley D; Maisonneuve, Isabelle M; Kuehne, Martin E; Sellers, Edward M

    2002-06-01

    18-Methoxycoronaridine, a newly developed ibogaine analog, has been reported to decrease the self-administration of morphine, cocaine, ethanol, and nicotine. It has also been reported to attenuate naltrexone-precipitated signs of morphine withdrawal. In this study, three metabolites of 18-methoxycoronaridine (18-MC) were separated and identified by high-performance liquid chromatography-electrospray ionization-mass spectrometry-mass spectrometry (HPLC-ESI-MS-MS); the major metabolite was 18-hydroxycoronaridine (18-HC). The other two metabolites were elucidated as hydroxylated metabolites on the basis of their MS-MS spectra. Catalytic studies of 18-MC O-demethylase activity in human liver microsomes indicate that one high affinity enzyme is involved in this reaction (K(m) from 2.81 to 7.9 microM; V(max) from 0.045 to 0.29 nmol/mg/min). In cDNA-expressing microsomes, only CYP2C19 displayed significant 18-MC O-demethylase activity (K(m) 1.34 microM; V(max) 0.21 nmol/mg/min). S-Mephenytoin, a selective CYP2C19 inhibitor, inhibited 18-MC O-demethylation by 65% at a concentration of 2 times its K(I), and antibodies against rat 2C (human CYP2C8, 2C9, 2C19) inhibited 18-HC formation by 70%. Studies with other cytochrome P450 (P450)-selective chemical inhibitors and antibodies failed to demonstrate an appreciable role for other P450s in this reaction. In addition, in microsomes from five different human livers, 18-MC O-demethylation correlated with S-mephenytoin 4'hydroxylase activity but not with other P450 probe reactions. These data indicate that 18-HC formation is the predominant pathway of 18-MC metabolism in vitro in human liver microsomes and that this metabolic pathway is primarily catalyzed by the polymorphic CYP2C19. The apparent selectivity of this pathway for CYP2C19 suggests 18-MC as a potentially useful probe of CYP2C19 activity in vitro and in vivo.

  8. Effects of adrenolytic mitotane on drug elimination pathways assessed in vitro.

    PubMed

    Theile, Dirk; Haefeli, Walter Emil; Weiss, Johanna

    2015-08-01

    Mitotane (1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane, o,p'-DDD) represents one of the most active drugs for the treatment of adrenocortical carcinoma. Its metabolites 1,1-(o,p'-dichlorodiphenyl) acetic acid (=o,p'-DDA) and 1,1-(o,p'-dichlorodiphenyl)-2,2 dichloroethene (=o,p'-DDE) partly contribute to its pharmacological effects. Because mitotane has a narrow therapeutic index and causes pharmacokinetic drug-drug interactions, knowledge about these compounds' effects on drug metabolizing and transporting proteins is crucial. Using quantitative real-time polymerase chain reaction, our study confirmed the strong inducing effects of o,p'-DDD on mRNA expression of cytochrome P450 3A4 (CYP3A4, 30-fold) and demonstrated that other enzymes and transporters are also induced (e.g., CYP1A2, 8.4-fold; ABCG2 (encoding breast resistance cancer protein, BCRP), 4.2-fold; ABCB1 (encoding P-glycoprotein, P-gp) 3.4-fold). P-gp induction was confirmed at the protein level. o,p'-DDE revealed a similar induction profile, however, with less potency and o,p'-DDA had only minor effects. Reporter gene assays clearly confirmed o,p'-DDD to be a PXR activator and for the first time demonstrated that o,p'-DDE and o,p'-DDA also activate PXR albeit with lower potency. Using isolated, recombinant CYP enzymes, o,p'-DDD and o,p'-DDE were shown to strongly inhibit CYP2C19 (IC50 = 0.05 and 0.09 µM). o,p'-DDA exhibited only minor inhibitory effects. In addition, o,p'-DDD, o,p'-DDE, and o,p'-DDA are demonstrated to be neither substrates nor inhibitors of BCRP or P-gp function. In summary, o,p'-DDD and o,p'-DDE might be potential perpetrators in pharmacokinetic drug-drug interactions through induction of drug-metabolizing enzymes or drug transporters and by potent inhibition of CYP2C19. In tumors over-expressing BCRP or P-gp, o,p'-DDD and its metabolites should retain their efficacy due to a lack of substrate characteristics.

  9. Induction of CYP1A1 and CYP1B1 by benzo(k)fluoranthene and benzo(a)pyrene in T-47D human breast cancer cells: Roles of PAH interactions and PAH metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spink, David C.; Wu, Susan J.; Spink, Barbara C.

    2008-02-01

    The interactions of polycyclic aromatic hydrocarbons (PAH) and cytochromes P450 (CYP) are complex; PAHs are enzyme inducers, substrates, and inhibitors. In T-47D breast cancer cells, exposure to 0.1 to 1 {mu}M benzo(k)fluoranthene (BKF) induced CYP1A1/1B1-catalyzed 17{beta}-estradiol (E{sub 2}) metabolism, whereas BKF levels greater than 1 {mu}M inhibited E{sub 2} metabolism. Time course studies showed that induction of CYP1-catalyzed E{sub 2} metabolism persisted after the disappearance of BKF or co-exposed benzo(a)pyrene, suggesting that BKF metabolites retaining Ah receptor agonist activity were responsible for prolonged CYP1 induction. BKF metabolites were shown, through the use of ethoxyresorufin O-deethylase and CYP1A1-promoter-luciferase reporter assays tomore » induce CYP1A1/1B1 in T-47D cells. Metabolites formed by oxidation at the C-2/C-3 region of BKF had potencies for CYP1 induction exceeding those of BKF, whereas C-8/C-9 oxidative metabolites were somewhat less potent than BKF. The activities of expressed human CYP1A1 and 1B1 with BKF as substrate were investigated by use of HPLC with fluorescence detection, and by GC/MS. The results showed that both enzymes efficiently catalyzed the formation of 3-, 8-, and 9-OHBKF from BKF. These studies indicate that the inductive effects of PAH metabolites as potent CYP1 inducers are likely to be additional important factors in PAH-CYP interactions that affect metabolism and bioactivation of other PAHs, ultimately modulating PAH toxicity and carcinogenicity.« less

  10. Hydroxylation of salicylate by microsomal fractions and cytochrome P-450. Lack of production of 2,3-dihydroxybenzoate unless hydroxyl radical formation is permitted.

    PubMed Central

    Ingelman-Sundberg, M; Kaur, H; Terelius, Y; Persson, J O; Halliwell, B

    1991-01-01

    Attack by hydroxyl radicals (.OH) upon salicylate (2-hydroxybenzoate) leads to formation of both 2,3-dihydroxybenzoate (2,3-DHB) and 2,5-dihydroxybenzoate (gentisate, 2,5-DHB). It has been suggested that formation of 2,3-DHB from salicylate is a means of monitoring .OH formation. Production of 2,3-DHB and 2,5-DHB by liver microsomal fractions and isoforms of cytochrome P-450 was investigated. Liver microsomes prepared from variously treated rats and rabbits catalysed the formation of 2,5-DHB but not 2,3-DHB. Formation of 2,5-DHB was inhibited by CO, metyrapone and SKF-525A, but not by the .OH scavengers mannitol and formate or by the iron chelator desferrioxamine. Purified P-450s IIE1, IIB4 or IA2 from rabbit liver microsomes, reconstituted together with NADPH-cytochrome P-450 reductase, led to formation of equal amounts of 2,3-DHB and 2,5-DHB in reactions that were almost completely inhibited by mannitol or formate. Addition of Fe3+/EDTA either to microsomes or to membranes containing reconstituted P-450 caused formation of approximately equal amounts of 2,3-DHB and 2,5-DHB, consistent with an .OH-dependent attack on salicylate. The data indicate that the microsomal P-450 system catalyses hydroxylation of salicylate to 2,5-DHB, but not formation of 2,3-DHB. Hence measurement of 2,3-DHB might provide a means of monitoring .OH formation. Care must be taken in studies of substrate hydroxylation by microsomes or reconstituted P-450 systems to avoid artefacts resulting from .OH generation. PMID:2064611

  11. Cytochrome P450-Mediated Phytoremediation using Transgenic Plants: A Need for Engineered Cytochrome P450 Enzymes

    PubMed Central

    Kumar, Santosh; Jin, Mengyao; Weemhoff, James L

    2013-01-01

    There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression. On the other hand, bacterial CYP enzymes show limited substrate diversity and usually do not metabolize herbicides and industrial contaminants. Therefore, there has been a considerable interest for biotechnological industries and the scientific community to design CYP enzymes to improve their catalytic efficiency, stability, expression, substrate diversity, and the suitability of P450-CPR fusion enzymes. Engineered CYP enzymes have potential for transgenic plants-mediated phytoremediation of herbicides and environmental contaminants. In this review we discuss: 1) the role of CYP enzymes in phytoremediation using transgenic plants, 2) problems associated with wild-type CYP enzymes in phytoremediation, and 3) examples of engineered CYP enzymes and their potential role in transgenic plant-mediated phytoremediation. PMID:25298920

  12. Bioengineering Anabolic Vitamin D-25-Hydroxylase Activity into the Human Vitamin D Catabolic Enzyme, Cytochrome P450 CYP24A1, by a V391L Mutation*

    PubMed Central

    Kaufmann, Martin; Prosser, David E.; Jones, Glenville

    2011-01-01

    CYP24A1 is a mitochondrial cytochrome P450 (CYP) that catabolizes 1α,25-dihydroxyvitamin D3 (1α,25-(OH)2D3) to different products: calcitroic acid or 1α,25-(OH)2D3-26,23-lactone via multistep pathways commencing with C24 and C23 hydroxylation, respectively. Despite the ability of CYP24A1 to catabolize a wide range of 25-hydroxylated analogs including 25-hydroxyvitamin D3, the enzyme is unable to metabolize the synthetic prodrug, 1α-hydroxyvitamin D3 (1α-OH-D3), presumably because it lacks a C25-hydroxyl. In the current study we show that a single V391L amino acid substitution in the β3a-strand of human CYP24A1 converts this enzyme from a catabolic 1α,25-(OH)2D3-24-hydroxylase into an anabolic 1α-OH-D3-25-hydroxylase, thereby forming the hormone, 1α,25-(OH)2D3. Furthermore, because the mutant enzyme retains its basal ability to catabolize 1α,25-(OH)2D3 via C24 hydroxylation, it can also make calcitroic acid. Previous work has shown that an A326G mutation is responsible for the regioselectivity differences observed between human (primarily C24-hydroxylating) and opossum (C23-hydroxylating) CYP24A1. When the V391L and A326G mutations were combined (V391L/A326G), the mutant enzyme continued to form 1α,25-(OH)2D3 from 1α-OH-D3, but this initial product was diverted via the C23 hydroxylation pathway into the 26,23-lactone. The relative position of Val-391 in the β3a-strand of a homology model and the crystal structure of rat CYP24A1 is consistent with hydrophobic contact of Val-391 and the substrate side chain near C21. We interpret that the substrate specificity of V391L-modified human CYP24A1 toward 1α-OH-D3 is enabled by an altered contact with the substrate side chain that optimally positions C25 of the 1α-OH-D3 above the heme for hydroxylation. PMID:21697097

  13. Mechanism of interactions of α-naphthoflavone with cytochrome P450 3A4 explored with an engineered enzyme bearing a fluorescent probe†

    PubMed Central

    Tsalkova, Tamara N.; Davydova, Nadezhda Y.; Halpert, James R.; Davydov, Dmitri R.

    2008-01-01

    Design of a partially cysteine-depleted C98S/C239S/C377S/C468A cytochrome P450 3A4 mutant designated CYP3A4(C58,C64) allowed site-directed incorporation of thiol-reactive fluorescent probes into α-helix A‥ The site of modification was identified as Cys-64 with the help of CYP3A4(C58) and CYP3A4(C64), each bearing only one accessible cysteine. Changes in the fluorescence of CYP3A4(C58,C64) labeled with 6-bromoacetyl-2-dimethylaminonaphthalene (BADAN), 7-diethylamino-3-(4’-maleimidylphenyl)-4-methylcoumarin (CPM), or monobromobimane (mBBr) were used to study the interactions with bromocriptine (BCT), 1-pyrenebutanol (1-PB), testosterone (TST), and α-naphthoflavone (ANF). Of these substrates only ANF has a specific effect, causing a considerable decrease in fluorescence intensity of BADAN and CPM and increasing the fluorescence of mBBr. This ANF-binding event in the case of BADAN-modified enzyme is characterized by an S50 of 18.2 ± 0.7, compared with the value of 2.2 ± 0.3 for the ANF-induced spin transition, thus revealing an additional low affinity binding site. Studies of the effect of TST, 1-PB, and BCT on the interactions of ANF monitored by changes in fluorescence of CYP3A4(C58,C64)-BADAN or by the ANF-induced spin transition revealed no competition by these substrates. Investigation of the kinetics of fluorescence increase upon H2O2-dependent heme depletion suggests that labeled CYP3A4(C58,C64) is represented by two conformers, one of which has the fluorescence of the BADAN and CPM labels completely quenched, presumably by photoinduced electron transfer from the neighboring Trp-72 and/or Tyr-68 residues. The binding of ANF to the newly discovered binding site appears to affect the interactions of the label with the above residue(s), thus modulating the fraction of the fluorescent conformer. PMID:17198380

  14. RNA-Seq and molecular docking reveal multi-level pesticide resistance in the bed bug

    PubMed Central

    2012-01-01

    Background Bed bugs (Cimex lectularius) are hematophagous nocturnal parasites of humans that have attained high impact status due to their worldwide resurgence. The sudden and rampant resurgence of C. lectularius has been attributed to numerous factors including frequent international travel, narrower pest management practices, and insecticide resistance. Results We performed a next-generation RNA sequencing (RNA-Seq) experiment to find differentially expressed genes between pesticide-resistant (PR) and pesticide-susceptible (PS) strains of C. lectularius. A reference transcriptome database of 51,492 expressed sequence tags (ESTs) was created by combining the databases derived from de novo assembled mRNA-Seq tags (30,404 ESTs) and our previous 454 pyrosequenced database (21,088 ESTs). The two-way GLMseq analysis revealed ~15,000 highly significant differentially expressed ESTs between the PR and PS strains. Among the top 5,000 differentially expressed ESTs, 109 putative defense genes (cuticular proteins, cytochrome P450s, antioxidant genes, ABC transporters, glutathione S-transferases, carboxylesterases and acetyl cholinesterase) involved in penetration resistance and metabolic resistance were identified. Tissue and development-specific expression of P450 CYP3 clan members showed high mRNA levels in the cuticle, Malpighian tubules, and midgut; and in early instar nymphs, respectively. Lastly, molecular modeling and docking of a candidate cytochrome P450 (CYP397A1V2) revealed the flexibility of the deduced protein to metabolize a broad range of insecticide substrates including DDT, deltamethrin, permethrin, and imidacloprid. Conclusions We developed significant molecular resources for C. lectularius putatively involved in metabolic resistance as well as those participating in other modes of insecticide resistance. RNA-Seq profiles of PR strains combined with tissue-specific profiles and molecular docking revealed multi-level insecticide resistance in C. lectularius. Future research that is targeted towards RNA interference (RNAi) on the identified metabolic targets such as cytochrome P450s and cuticular proteins could lay the foundation for a better understanding of the genetic basis of insecticide resistance in C. lectularius. PMID:22226239

  15. Inhibition of Human Cytochrome P450 2c8-catalyzed Amodiaquine N-desethylation: Effect of Five Traditionally and Commonly Used Herbs

    PubMed Central

    Muthiah, Yasotha Devi; Ong, Chin Eng; Sulaiman, Siti Amrah; Ismail, Rusli

    2016-01-01

    Background: In Southeast Asia and many parts of the world, herbal products are increasingly used in parallel with modern medicine. Objective: This study aimed to investigate the effects of herbs commonly used in Southeast Asia on activity of cytochrome P450 2C8 (CYP2C8), an important human hepatic enzyme in drug metabolism. Materials and Methods: The selected herbs, such as Eurycoma longifolia Jack (ELJ), Labisia pumila (LP), Echinacea purpurea (EP), Andrographis paniculata (AP), and Ginkgo biloba (GB), were subjected to inhibition studies using an in vitro CYP2C8 activity marker, amodiaquine N-desethylase assay. Inhibition parameters, inhibitory concentration 50% (IC50), and Ki values were determined to study the potency and mode of inhibition. Results: All herbs inhibited CYP2C8 with the following order of potency: LP > ELJ > GB > AP > EP. LP and ELJ inhibited potently at Ki's of 2 and 4 times the Ki of quercetin, the positive control. The inhibition by LP was uncompetitive in nature as compared to competitive or mixed type inhibition observed with other herbs. GB exhibited moderate inhibitory effect at a Ki6 times larger than quercetin Ki. AP and EP, on the other hand, showed only weak inhibition. Conclusion: The herbs we chose represented the more commonly used herbs in Southeast Asia where collision of tradition and modernization in healthcare, if not properly managed, may lead to therapeutic misadventures. We conclude that concurrent consumption of some herbs, in particular, LP and ELJ, may have relevance in drug-herb interactions via CYP2C8 inhibition in vivo. SUMMARY Herbs are increasingly used in parallel with modern medicines nowadays. In this study five commonly used herbs in Southeast Asia region, ELJ, LP, EP, AP and GB, were investigated for their in vitro inhibitory potency on CYP2C8, an important drug-metaboliz-ing human hepatic enzyme. All herbs inhibited CYP2C8 activity marker, amodiaquine N-desethylation, with potency order of LP > ELJ > GB >AP > EP. LP, ELJ and GB exhibited Ki values of 2, 4 and 6 times the Ki of quercetin, the positive control, indicating potent to moderate degree of enzyme inhibition. AP and EP, on the other hand, showed only weak inhibition. In summary, concurrent consumption of some herbs especially LP and ELJ may have relevance in drug-herb interactions via CYP2C8 inhibition in vivo. Abbreviations Used: AQ: Amodiaquine, AP: Andrographis paniculata, CYP: Cytochrome P450, DEAQ: Desethylamodiaquine, EP: Echinacea purpurea, ELJ: Eurycoma longifolia Jack, GB: Ginkgo biloba, Ki: Inhibition constant, LP: Labisia pumila, Vmax: Maximal velocity, Km: Michaelis-Menten constant. PMID:27695271

  16. The effects of commercial preparations of herbal supplements commonly used by women on the biotransformation of fluorogenic substrates by human cytochromes P450.

    PubMed

    Ho, Shirley H Y; Singh, Mohini; Holloway, Alison C; Crankshaw, Denis J

    2011-07-01

    The study set out to determine the potential for commercially available preparations of black cohosh (Actaea racemosa), chaste tree berry (Vitex agnus-castus), crampbark (Viburnum opulus) and false unicorn (Chamaelirium luteum) to inhibit the major human drug metabolizing enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 as well as CYP1A1 which activates some carcinogens. In vitro microplate-based assays using cDNA-expressed CYP450 isoforms and fluorogenic substrates were used. Components of the commercial herbal preparations interfered with the assays and limited the concentration ranges that could be tested. Nevertheless, the fluorogenic assays were robust, reproducible and easy to perform and thus are still useful for initial screening for potential herb-drug interactions. None of the preparations affected CYPs 1A1 or 2C9 at the concentrations tested but all preparations inhibited some of the enzymes with potencies around 1 μg/mL. The three most potent interactions were: chaste tree berry and CYP2C19 (IC₅₀) 0.22 μg/mL); chaste tree berry and CYP3A4 (IC₅₀) 0.3 μg/mL); black cohosh and CYP2C19 (IC₅₀) 0.37 μg/mL,). Thus, the study successfully identified the potential for the commercial herbal preparations to inhibit human drug metabolizing enzymes. Whether this potential translates into clinically significant herb-drug interactions can only be confirmed by appropriate in vivo studies. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Altered cytochrome P450 activities and expression levels in the liver and intestines of the monosodium glutamate-induced mouse model of human obesity.

    PubMed

    Tomankova, Veronika; Liskova, Barbora; Skalova, Lenka; Bartikova, Hana; Bousova, Iva; Jourova, Lenka; Anzenbacher, Pavel; Ulrichova, Jitka; Anzenbacherova, Eva

    2015-07-15

    Cytochromes P450 (CYPs) are enzymes present from bacteria to man involved in metabolism of endogenous and exogenous compounds incl. drugs. Our objective was to assess whether obesity leads to changes in activities and expression of CYPs in the mouse liver, small intestine and colon. An obese mouse model with repeated injection of monosodium glutamate (MSG) to newborns was used. Controls were treated with saline. All mice were sacrificed at 8 months. In the liver and intestines, levels of CYP mRNA and proteins were analyzed using RT-PCR and Western blotting. Activities of CYP enzymes were measured with specific substrates of human orthologous forms. At the end of the experiment, body weight, plasma insulin and leptin levels as well as the specific content of hepatic CYP enzymes were increased in obese mice. Among CYP enzymes, hepatic CYP2A5 activity, protein and mRNA expression increased most significantly in obese animals. Higher activities and protein levels of hepatic CYP2E1 and 3A in the obese mice were also found. No or a weak effect on CYPs 2C and 2D was observed. In the small intestine and colon, no changes of CYP enzymes were detected except for increased expression of CYP2E1 and decreased expression of CYP3A mRNAs in the colon of the obese mice. Results of our study suggest that the specific content and activities of some liver CYP enzymes (especially CYP2A5) can be increased in obese mice. Higher activity of CYP2A5 (CYP2A6 human ortholog) could lead to altered metabolism of drug substrates of this enzyme (valproic acid, nicotine, methoxyflurane). Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Free energy calculations give insight into the stereoselective hydroxylation of α-ionones by engineered cytochrome P450 BM3 mutants.

    PubMed

    de Beer, Stephanie B A; Venkataraman, Harini; Geerke, Daan P; Oostenbrink, Chris; Vermeulen, Nico P E

    2012-08-27

    Previously, stereoselective hydroxylation of α-ionone by Cytochrome P450 BM3 mutants M01 A82W and M11 L437N was observed. While both mutants hydroxylate α-ionone in a regioselective manner at the C3 position, M01 A82W catalyzes formation of trans-3-OH-α-ionone products whereas M11 L437N exhibits opposite stereoselectivity, producing trans-(3S,6S)-OH-α-ionone and cis-(3S,6R)-OH-α-ionone. Here, we explore the stereoselective C3 hydroxylation of α-ionone by Cytochrome P450 BM3 mutants M01 A82W and M11 L437N using molecular dynamics-based free energy calculations to study the interaction between the enzyme and both the substrates and the products. The one-step perturbation approach is applied using an optimized reference state for substrates and products. While the free energy differences between the substrates free in solution amount to ~0 kJ mol(-1), the differences in mutant M01 A82W agree with the experimentally obtained dissociation constants K(d). Moreover, a correlation with experimentally observed trends in product formation is found in both mutants. The trans isomers show the most favorable relative binding free energy in the range of all four possible hydroxylated diastereomers for mutant M01 A82W, while the trans product from (6S)-α-ionone and the cis product from (6R)-α-ionone show highest affinity for mutant M11 L437N. Marcus theory is subsequently used to relate the thermodynamic stability to transition state energies and rates of formation.

  19. Re-engineering of CYP2C9 to probe acid-base substrate selectivity.

    PubMed

    Tai, Guoying; Dickmann, Leslie J; Matovic, Nicholas; DeVoss, James J; Gillam, Elizabeth M J; Rettie, Allan E

    2008-10-01

    A common feature of many CYP2C9 ligands is their weak acidity. As revealed by crystallography, the structural basis for this behavior involves a charge-pairing interaction between an anionic moiety on the substrate and an active site R108 residue. In the present study we attempted to re-engineer CYP2C9 to better accept basic ligands by charge reversal at this key residue. We expressed and purified the R108E and R108E/D293N mutants and compared their ability with that of native CYP2C9 to interact with (S)-warfarin, diclofenac, pyrene, propranolol, and ibuprofen amine. As expected, the R108E mutant maintained all the native enzyme's pyrene 1-hydroxylation activity, but catalytic activity toward diclofenac and (S)-warfarin was abrogated. In contrast, the double mutant displayed much less selectivity in its behavior toward these control ligands. Neither of the mutants displayed significant enhancement of propranolol metabolism, and all three preparations exhibited a type II (inhibitor) rather than type I (substrate) spectrum with ibuprofen amine, although binding became progressively weaker with the single and double mutants. Collectively, these data underscore the importance of the amino acid at position 108 in the acid substrate selectivity of CYP2C9, highlight the accommodating nature of the CYP2C9 active site, and provide a cautionary note regarding facile re-engineering of these complex cytochrome P450 active sites.

  20. Re-engineering of CYP2C9 to Probe Acid-Base Substrate Selectivity

    PubMed Central

    Tai, Guoying; Dickmann, Leslie J.; Matovic, Nicholas; DeVoss, James J.; Gillam, Elizabeth M. J.; Rettie, Allan E.

    2009-01-01

    A common feature of many CYP2C9 ligands is their weak acidity. As revealed by crystallography, the structural basis for this behavior involves a charge-pairing interaction between an anionic moiety on the substrate and an active site R108 residue. In the present study we attempted to re-engineer CYP2C9 to better accept basic ligands by charge reversal at this key residue. We expressed and purified the R108E and R108E/D293N mutants and compared their ability with that of native CYP2C9 to interact with (S)-warfarin, diclofenac, pyrene, propranolol, and ibuprofen amine. As expected, the R108E mutant maintained all the native enzyme's pyrene 1-hydroxylation activity, but catalytic activity toward diclofenac and (S)-warfarin was abrogated. In contrast, the double mutant displayed much less selectivity in its behavior toward these control ligands. Neither of the mutants displayed significant enhancement of propranolol metabolism, and all three preparations exhibited a type II (inhibitor) rather than type I (substrate) spectrum with ibuprofen amine, although binding became progressively weaker with the single and double mutants. Collectively, these data underscore the importance of the amino acid at position 108 in the acid substrate selectivity of CYP2C9, highlight the accommodating nature of the CYP2C9 active site, and provide a cautionary note regarding facile re-engineering of these complex cytochrome P450 active sites. PMID:18606741

  1. Time course for the modulation of hepatic cytochrome P450 after administration of ethylbenzene and its correlation with toluene metabolism.

    PubMed

    Yuan, W; Sequeira, D J; Cawley, G F; Eyer, C S; Backes, W L

    1997-03-01

    The goal of the present study was to examine the time course for changes in P450 expression and hydrocarbon metabolism after acute treatment with the simple aromatic hydrocarbon ethylbenzene (EB) and to correlate these alterations with the changes observed in alkylbenzene metabolism. Male Holtzman rats were treated with a single intraperitoneal injection of EB, and the effects on specific P450-dependent activities, immunoreactive P450 isozyme levels, and RNA levels were measured at various times after injection. Toluene was used as the test alkylbenzene for examination of the EB-mediated changes on in vitro hydrocarbon metabolism. In untreated rats, toluene was metabolized almost entirely by aliphatic hydroxylation (to benzyl alcohol); however, in EB-treated rats, significant quantities of benzyl alcohol, o-cresol, and p-cresol were produced. Interestingly, 5-10 h after EB treatment, there was a 40% decrease in benzyl alcohol production. By 24 h, rates of benzyl alcohol formation returned to control levels, whereas there was a 7-fold increase in o-cresol and a greater that 50-fold increase in p-cresol production. The changes in the disposition of toluene were then correlated with changes in particular P450 isozymes. Several P450 isozymes were induced after EB administration. P450 2B1/2-dependent testosterone 16 beta-hydroxylation and P450 2B1/2-immunoreactive protein were elevated 30-fold after EB administration, reaching maxima by 24 h and remaining elevated 48 h after exposure. Changes in P450 2B1 and 2B2 RNA preceded those of the proteins. Similar results were observed with P450 1A1. P450 2E1 RNA levels were elevated after a single EB injection. However, the elevation in P450 2E1-dependent activities and immunoreactive protein levels preceded the changes in RNA, suggesting that multiple steps are affected by EB exposure. In contrast to the increases in some isozymes, P450 2C11 protein was rapidly suppressed (within the first 2-10 h) after hydrocarbon exposure, suggestive of a destabilization of the protein. When comparing the changes in P450 isozymes to alterations in toluene metabolism, the immediate suppression in aliphatic hydroxylation of toluene (in the first 5-10 h) was consistent with the decrease in P450 2C11. Subsequent to this effect, P450 2B1/2 and 2E1 were induced, which elevated production of this metabolite to control levels. The increase in the aromatic hydroxylation of toluene to both o, and p-cresol was consistent with the induction of P450s 2B1/2, 2E1, and 1A1.

  2. Rational engineering of the fungal P450 monooxygenase CYP5136A3 to improve its oxidizing activity toward polycyclic aromatic hydrocarbons.

    PubMed

    Syed, Khajamohiddin; Porollo, Aleksey; Miller, David; Yadav, Jagjit S

    2013-09-01

    A promising polycyclic aromatic hydrocarbon-oxidizing P450 CYP5136A3 from Phanerochaete chrysosporium was rationally engineered to enhance its catalytic activity. The residues W129 and L324 found to be critical in substrate recognition were transformed by single (L324F) and double (W129L/L324G, W129L/L324F, W129A/L324G, W129F/L324G and W129F/L324F) mutations, and the engineered enzyme forms were expressed in Pichia pastoris. L324F and W129F/L324F mutations enhanced the oxidation activity toward pyrene and phenanthrene. L324F also altered the regio-selectivity favoring C position 4 over 9 for hydroxylation of phenanthrene. This is the first instance of engineering a eukaryotic P450 for enhanced oxidation of these fused-ring hydrocarbons.

  3. Oxygen vacancy induced room temperature ferromagnetism in (In1-xNix)2O3 thin films

    NASA Astrophysics Data System (ADS)

    Chakraborty, Deepannita; Kaleemulla, S.; Kuppan, M.; Rao, N. Madhusudhana; Krishnamoorthi, C.; Omkaram, I.; Reddy, D. Sreekantha; Rao, G. Venugopal

    2018-05-01

    Nickel doped indium oxide thin films (In1-xNix)2O3 at x = 0.00, 0.03, 0.05 and 0.07 were deposited onto glass substrates by electron beam evaporation technique. The deposited thin films were subjected to annealing in air at 250 °C, 350 °C and 450 °C for 2 h using high temperature furnace. A set of films were vacuum annealed at 450 °C to study the role of oxygen on magnetic properties of the (In1-xNix)2O3 thin films. The thin films were subjected to different characterization techniques to study their structural, chemical, surface, optical and magnetic properties. All the synthesized air annealed and vacuum annealed films exhibit body centered cubic structure without any secondary phases. No significant change in the diffraction peak position, either to lower or higher diffraction angles has been observed. The band gap of the films decreased from 3.73 eV to 3.63 eV with increase of annealing temperature from 250 °C to 450 °C, in the presence of air. From a slight decrease in strength of magnetization to a complete disappearance of hysteresis loop has been observed in pure In2O3 thin films with increasing the annealing temperature from 250 °C to 450 °C, in the presence of air. The (In1-xNix)2O3 thin films annealed under vacuum follow a trend of enhancement in the strength of magnetization to increase in temperature from 250 °C to 450 °C. The hysteresis loop does not disappear at 450 °C in (In1-xNix)2O3 thin films, as observed in the case of pure In2O3 thin films.

  4. Temperature characteristics of SAW resonators on Sc0.26Al0.74N/polycrystalline diamond heterostructures

    NASA Astrophysics Data System (ADS)

    Sinusía Lozano, M.; Chen, Z.; Williams, Oliver A.; Iriarte, G. F.

    2018-07-01

    Surface acoustic wave (SAW) resonators have been fabricated on a 2 μm scandium aluminium nitride (ScAlN) film deposited by means of pulsed-DC reactive magnetron sputtering on a 5.8 μm polycrystalline diamond substrate. Thin film characterization comprised of the assessment of the thin film texture by means of x-ray diffraction (XRD) measurements, reporting highly c-axis oriented ScAlN thin films with a full width at half maximum (FWHM) of the ω-θ scans below 2°. Compositional and piezoelectric analyses of the thin films synthesized with the sputtering parameters used in this work, namely a sputtering power of 700 W and a synthesis pressure of 0.53 Pa, have reported a thin film composition of Sc0.26Al0.74N together with a piezoelectric d33 constant of ‑11 pC/N. Finally, a SAW resonator has been characterized using a vector network analyser (VNA) under various substrate temperature conditions with two iterations. The resulting temperature coefficient of frequency (TCF) values show a highly linear behaviour within two temperature ranges, namely from 20 K to room temperature (300 K) (‑12.5 ppm/K) as well as from 300 K up to 450 K (‑34.6 ppm/K).

  5. Differential cytochrome P450 2D metabolism alters tafenoquine pharmacokinetics.

    PubMed

    Vuong, Chau; Xie, Lisa H; Potter, Brittney M J; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K; Sciotti, Richard J; Zottig, Victor E; Nanayakkara, N P Dhammika; Tekwani, Babu L; Walker, Larry A; Smith, Philip L; Paris, Robert M; Read, Lisa T; Li, Qigui; Pybus, Brandon S; Sousa, Jason C; Reichard, Gregory A; Smith, Bryan; Marcsisin, Sean R

    2015-07-01

    Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Association between genetic polymorphisms in DNA mismatch repair-related genes with risk and prognosis of head and neck squamous cell carcinoma.

    PubMed

    Nogueira, Guilherme Augusto Silva; Lourenço, Gustavo Jacob; Oliveira, Camila Borges Martins; Marson, Fernando Augusto Lima; Lopes-Aguiar, Leisa; Costa, Ericka Francislaine Dias; Lima, Tathiane Regine Penna; Liutti, Vitor Teixeira; Leal, Frederico; Santos, Vivian Castro Antunes; Rinck-Junior, José Augusto; Lima, Carmen Silvia Passos

    2015-08-15

    We examined the influence of MLH1 c.-93G>A, MSH2 c.211 + 9C>G, MSH3 c.3133G>A and EXO1 c.1765G>A polymorphisms, involved in DNA mismatch repair (MMR), on head and neck (HN) squamous cell carcinoma (SCC) risk and prognosis. Aiming to identify genotypes, DNA from 450 HNSCC patients and 450 controls was analyzed by PCR-RFLP or real time PCR. MSH2 GG plus MSH3 GG (31.7% vs. 18.7%, p = 0.003) genotypes were higher in laryngeal SCC (LSCC) patients than in controls. Carriers of the respective combined genotype were under a 3.69 (95% CI: 1.54-8.81)-fold increased risk of LSCC. Interactions of tobacco and tobacco plus all the above-mentioned polymorphisms on HNSCC and LSCC risk were also evident in study (p = 0.001). At 60 months of follow-up, relapse-free survival (RFS) was shorter in patients with EXO1 GG genotype (54.8% vs. 61.1%, p = 0.03) and overall survival (OS) was shorter in patients with MSH3 GG genotype (42.8% vs. 52.5%, p = 0.02) compared to those with other genotypes, respectively. After multivariate Cox analysis, patients with EXO1 GG and MSH3 GG genotypes had worst RFS (HR: 1.50, 95% CI: 1.03-2.20, p = 0.03) and OS (HR: 1.59, 95% CI: 1.19-2.13, P = 0.002) than those with the remaining genotypes, respectively. Our data present, for the first time, evidence that inherited MLH1 c.-93G>A, MSH2 c.211 + 9C>G, MSH3 c.3133G>A, and EXO1 c.1765G>A abnormalities of DNA MMR pathway are important determinants of HNSCC, particularly among smokers, and predictors of patient outcomes. © 2015 UICC.

  7. Low temperature (150 °C) fabrication of high-performance TiO{sub 2} films for dye-sensitized solar cells using ultraviolet light and plasma treatments of TiO{sub 2} paste containing organic binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zen, Shungo, E-mail: zen@streamer.t.u-tokyo.ac.jp; Ono, Ryo, E-mail: ryo-ono@k.u-tokyo.ac.jp; Inoue, Yuki

    2015-03-14

    Dye-sensitized solar cells (DSSCs) require annealing of TiO{sub 2} photoelectrodes at 450 °C to 550 °C. However, such high-temperature annealing is unfavorable because it limits the use of materials that cannot withstand high temperatures, such as plastic substrates. In our previous paper, a low-temperature annealing technique of TiO{sub 2} photoelectrodes using ultraviolet light and dielectric barrier discharge treatments was proposed to reduce the annealing temperature from 450 °C to 150 °C for a TiO{sub 2} paste containing an organic binder. Here, we measure the electron diffusion length in the TiO{sub 2} film, the amount of dye adsorption on the TiO{sub 2} film, and themore » sheet resistance of a glass substrate of samples manufactured with the 150 °C annealing method, and we discuss the effect that the 150 °C annealing method has on those properties of DSSCs.« less

  8. Effect of cytochrome P450 2C19 polymorphisms on the Helicobacter pylori eradication rate following two-week triple therapy with pantoprazole or rabeprazole.

    PubMed

    Ormeci, A; Emrence, Z; Baran, B; Gokturk, S; Soyer, O M; Evirgen, S; Akyuz, F; Karaca, C; Besisik, F; Kaymakoglu, S; Ustek, D; Demir, K

    2016-03-01

    Cytochrome P450 2C19 (CYP2C19) polymorphisms play an important role in the metabolism of proton pump inhibitors. Rabeprazole is primarily metabolized via non-enzymatic pathways. In this study, we determined whether rabeprazole- and pantoprazole-based eradication treatments were influenced by CYP2C19 polymorphisms. A total of 200 patients infected with Helicobacter pylori were treated with either 40 mg of pantoprazole or 20 mg of rabeprazole plus 500 mg of clarithromycin, 1000 mg of amoxicillin twice daily for 2 weeks. CYP2C19 genotype status was determined by Polymerase Chain Reaction (PCR)-restriction-fragment-length polymorphism. The genotypes of cytochrome P450 2C19 were classified as homozigote extensive metabolizer (HomEM), heterozigote metabolizer (HetEM) and poor metabolizer (PM). The CYP2C19 genotype of all patients, the effectiveness of the treatment, the effect of the genotypic polymorphism on the treatment were assessed. The frequencies of HotEM, HetEM, PM were 78%, 19.5% and 2.5%, respectively. 48% (n = 96) of the patients received treatment with rabeprazole and 52% (n = 104) with pantoprazole. The eradication rate was 64.7% for HomEM, 79.4% for HetEM, 100% for PM (p = 0.06). In HetEM, PM, are considered as a single group, the eradication rates were higher in patients with the HetEM and PM (HetEM+PM) genotypes than in those with the wild-type genotype (81.8 vs. 64.7% p = 0.031). Among the patients treated with rabeprazole, the eradication rates were significantly lower in those with the HomEM genotype than in those with the HetEM+PM genotypes (60% vs. 85.7% p = 0.023). The genotypic polymorphism is effective on the rate of eradication. Eradication treatment rate with rabeprazole is influenced by CYP2C19 genotype.

  9. Efavirenz Primary and Secondary Metabolism In Vitro and In Vivo: Identification of Novel Metabolic Pathways and Cytochrome P450 2A6 as the Principal Catalyst of Efavirenz 7-Hydroxylation

    PubMed Central

    Ogburn, Evan T.; Jones, David R.; Masters, Andrea R.; Xu, Cong; Guo, Yingying

    2010-01-01

    Efavirenz primary and secondary metabolism was investigated in vitro and in vivo. In human liver microsome (HLM) samples, 7- and 8-hydroxyefavirenz accounted for 22.5 and 77.5% of the overall efavirenz metabolism, respectively. Kinetic, inhibition, and correlation analyses in HLM samples and experiments in expressed cytochrome P450 show that CYP2A6 is the principal catalyst of efavirenz 7-hydroxylation. Although CYP2B6 was the main enzyme catalyzing efavirenz 8-hydroxylation, CYP2A6 also seems to contribute. Both 7- and 8-hydroxyefavirenz were further oxidized to novel dihydroxylated metabolite(s) primarily by CYP2B6. These dihydroxylated metabolite(s) were not the same as 8,14-dihydroxyefavirenz, a metabolite that has been suggested to be directly formed via 14-hydroxylation of 8-hydroxyefavirenz, because 8,14-dihydroxyefavirenz was not detected in vitro when efavirenz, 7-, or 8-hydroxyefavirenz were used as substrates. Efavirenz and its primary and secondary metabolites that were identified in vitro were quantified in plasma samples obtained from subjects taking a single 600-mg oral dose of efavirenz. 8,14-Dihydroxyefavirenz was detected and quantified in these plasma samples, suggesting that the glucuronide or the sulfate of 8-hydroxyefavirenz might undergo 14-hydroxylation in vivo. In conclusion, efavirenz metabolism is complex, involving unique and novel secondary metabolism. Although efavirenz 8-hydroxylation by CYP2B6 remains the major clearance mechanism of efavirenz, CYP2A6-mediated 7-hydroxylation (and to some extent 8-hydroxylation) may also contribute. Efavirenz may be a valuable dual phenotyping tool to study CYP2B6 and CYP2A6, and this should be further tested in vivo. PMID:20335270

  10. Functional characterization of cytochromes P450 2B from the desert woodrat Neotoma lepida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilderman, P. Ross, E-mail: pwilderman@ucsd.edu; Jang, Hyun-Hee; Malenke, Jael R.

    Mammalian detoxification processes have been the focus of intense research, but little is known about how wild herbivores process plant secondary compounds, many of which have medicinal value or are drugs. cDNA sequences that code for three enzymes of the cytochrome P450 (CYP) 2B subfamily, here termed 2B35, 2B36, and 2B37 have been recently identified from a wild rodent, the desert woodrat (Malenke et al., 2012). Two variant clones of each enzyme were engineered to increase protein solubility and to facilitate purification, as reported for CYP2B enzymes from multiple species. When expressed in Escherichia coli each of the woodrat proteinsmore » gave the characteristic maximum at 450 nm in a reduced carbon monoxide difference spectrum but generally expressed at lower levels than rat CYP2B1. Two enzymes, 2B36 and 2B37, showed dealkylation activity with the model substrates 7-ethoxy-4-(trifluoromethyl)coumarin and 7-benzyloxyresorufin, whereas 2B35 was inactive. Binding of the monoterpene (+)-α-pinene produced a Type I shift in the absorbance spectrum of each enzyme. Mutation of 2B37 at residues 114, 262, or 480, key residues governing ligand interactions with other CYP2B enzymes, did not significantly change expression levels or produce the expected functional changes. In summary, two catalytic and one ligand-binding assay are sufficient to distinguish among CYP2B35, 2B36, and 2B37. Differences in functional profiles between 2B36 and 2B37 are partially explained by changes in substrate recognition site residue 114, but not 480. The results advance our understanding of the mechanisms of detoxification in wild mammalian herbivores and highlight the complexity of this system. - Highlights: • Three CYP2B enzymes from Neotoma lepida were cloned, engineered, and expressed. • A mix of catalytic and binding assays yields unique results for each enzyme. • Mutational analysis indicates CYP{sub 2}B substrate recognition remains to be clarified. • Reported N. lepida gene sequences allow for larger scale analyses of CYP{sub 2}B enzymes.« less

  11. Anti-liver-kidney microsome antibody type 1 recognizes human cytochrome P450 db1.

    PubMed

    Gueguen, M; Yamamoto, A M; Bernard, O; Alvarez, F

    1989-03-15

    Anti-liver-kidney microsome antibody type 1 (LKM1), present in the sera of a group of children with autoimmune hepatitis, was recently shown to recognize a 50 kDa protein identified as rat liver cytochromes P450 db1 and db2. High homology between these two members of the rat P450 IID subfamily and human P450 db1 suggested that anti-LKM1 antibody is directed against this human protein. To test this hypothesis, a human liver cDNA expression library in phage lambda GT-11 was screened using rat P450 db1 cDNA as a probe. Two human cDNA clones were found to be identical to human P450 db1 by restriction mapping. Immunoblot analysis using as antigen, the purified fusion protein from one of the human cDNA clones showed that only anti-LKM1 with anti-50 kDa reactivity recognized the fusion protein. This fusion protein was further used to develop an ELISA test that was shown to be specific for sera of children with this disease. These results: 1) identify the human liver antigen recognized by anti-LKM1 auto-antibodies as cytochrome P450 db1, 2) allow to speculate that mutation on the human P450 db1 gene could alter its expression in the hepatocyte and make it auto-antigenic, 3) provide a simple and specific diagnostic test for this disease.

  12. The Role of Human Cytochrome P450 Enzymes in the Formation of 2-Hydroxymetronidazole: CYP2A6 is the High Affinity (Low Km) Catalyst

    PubMed Central

    Cohen-Wolkowiez, Michael; Sampson, Mario R.; Kearns, Gregory L.

    2013-01-01

    Despite metronidazole’s widespread clinical use since the 1960s, the specific enzymes involved in its biotransformation have not been previously identified. Hence, in vitro studies were conducted to identify and characterize the cytochrome P450 enzymes involved in the formation of the major metabolite, 2-hydroxymetronidazole. Formation of 2-hydroxymetronidazole in human liver microsomes was consistent with biphasic, Michaelis-Menten kinetics. Although several cDNA-expressed P450 enzymes catalyzed 2-hydroxymetronidazole formation at a supratherapeutic concentration of metronidazole (2000 μM), at a “therapeutic concentration” of 100 μM only CYPs 2A6, 3A4, 3A5, and 3A7 catalyzed metronidazole 2-hydroxylation at rates substantially greater than control vector, and CYP2A6 catalyzed 2-hydroxymetronidazole formation at rates 6-fold higher than the next most active enzyme. Kinetic studies with these recombinant enzymes revealed that CYP2A6 has a Km = 289 μM which is comparable to the Km for the high-affinity (low-Km) enzyme in human liver microsomes, whereas the Km values for the CYP3A enzymes corresponded with the low-affinity (high-Km) component. The sample-to-sample variation in 2-hydroxymetronidazole formation correlated significantly with CYP2A6 activity (r ≥ 0.970, P < 0.001) at substrate concentrations of 100 and 300 μM. Selective chemical inhibitors of CYP2A6 inhibited metronidazole 2-hydroxylation in a concentration-dependent manner and inhibitory antibodies against CYP2A6 virtually eliminated metronidazole 2-hydroxylation (>99%). Chemical and antibody inhibitors of other P450 enzymes had little or no effect on metronidazole 2-hydroxylation. These results suggest that CYP2A6 is the primary catalyst responsible for the 2-hydroxylation of metronidazole, a reaction that may function as a marker of CYP2A6 activity both in vitro and in vivo. PMID:23813797

  13. Inhibition of cytochrome P450 enzymes by saturated and unsaturated fatty acids in human liver microsomes, characterization of enzyme kinetics in the presence of bovine serum albumin (0.1 and 1.0% w/v) and in vitro - in vivo extrapolation of hepatic clearance.

    PubMed

    Palacharla, Raghava Choudary; Uthukam, Venkatesham; Manoharan, Arunkumar; Ponnamaneni, Ranjith Kumar; Padala, Nagasurya Prakash; Boggavarapu, Rajesh Kumar; Bhyrapuneni, Gopinadh; Ajjala, Devender Reddy; Nirogi, Ramakrishna

    2017-04-01

    The objective of the study was to determine the effect of fatty acids on CYP enzymes and the effect of BSA on intrinsic clearance of probe substrates. The inhibitory effect of thirteen fatty acids including saturated, mono-unsaturated and polyunsaturated fatty acids on CYP enzymes, kinetic parameters and intrinsic clearance values of nine CYP marker probe substrate reactions in the absence and presence of BSA (0.1 and 1.0% w/v) were characterized in human liver microsomes. The results demonstrate that most of the unsaturated fatty acids showed marked inhibition towards CYP2C8 mediated amodiaquine N-deethylation followed by inhibition of CYP2C9 and CYP2B6 mediated activities. The addition of 0.1% BSA in the incubation markedly improved the unbound intrinsic clearance values of probe substrates by reducing the K m values with little or no effect on maximal velocity. The addition of BSA (0.1 and 1.0% w/v) did not influence the unbound intrinsic clearance of marker reactions for CYP2A6, and CYP3A4 enzymes. The addition of 0.1% w/v BSA is sufficient to determine the intrinsic clearance of marker probe reactions by metabolite formation approach. The predicted hepatic clearance values for the substrates using the well-stirred model, in the presence of BSA (0.1% BSA), are comparable to the in vivo hepatic clearance values. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effect of Elevated Atmospheric CO2 and Temperature on the Disease Severity of Rocket Plants Caused by Fusarium Wilt under Phytotron Conditions.

    PubMed

    Chitarra, Walter; Siciliano, Ilenia; Ferrocino, Ilario; Gullino, Maria Lodovica; Garibaldi, Angelo

    2015-01-01

    The severity of F. oxysporum f.sp. conglutinans on rocket plants grown under simulated climate change conditions has been studied. The rocket plants were cultivated on an infested substrate (4 log CFU g-1) and a non-infested substrate over three cycles. Pots were placed in six phytotrons in order to simulate different environmental conditions: 1) 400-450 ppm CO2, 18-22°C; 2) 800-850 ppm CO2, 18-22°C; 3) 400-450 ppm CO2, 22-26°C, 4) 800-850 ppm CO2, 22-26°C, 5) 400-450 ppm CO2, 26-30°C; 6) 800-850 ppm CO2, 26-30°C. Substrates from the infested and control samples were collected from each phytotron at 0, 60 and 120 days after transplanting. The disease index, microbial abundance, leaf physiological performances, root exudates and variability in the fungal profiles were monitored. The disease index was found to be significantly influenced by higher levels of temperature and CO2. Plate counts showed that fungal and bacterial development was not affected by the different CO2 and temperature levels, but a significant decreasing trend was observed from 0 up to 120 days. Conversely, the F. oxysporum f.sp. conglutinans plate counts did not show any significantly decrease from 0 up to 120 days. The fungal profiles, evaluated by means of polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE), showed a relationship to temperature and CO2 on fungal diversity profiles. Different exudation patterns were observed when the controls and infested plants were compared, and it was found that both CO2 and temperature can influence the release of compounds from the roots of rocket plants. In short, the results show that global climate changes could influence disease incidence, probably through plant-mediated effects, caused by soilborne pathogens.

  15. Effects of CYP2C19 Variants on Fluoxetine Metabolism in vitro.

    PubMed

    Fang, Ping; He, Jia-Yang; Han, Ai-Xia; Lan, Tian; Dai, Da-Peng; Cai, Jian-Ping; Hu, Guo-Xin

    2017-01-01

    CYP2C19 is an important member of the cytochrome P450 enzyme superfamily. We recently identified 31 CYP2C19 alleles in the Han Chinese population. The aim of this study was to assess the catalytic activities of these allelic isoforms and their effects on the metabolism of fluoxetine in vitro. The wild-type and 30 CYP2C19 variants were expressed in insect cells and each variant was characterized using fluoxetine as the substrate. Reactions were performed at 37°C with 20-1,000 µmol/L substrate for 30 min. By using ultra-high performance liquid chromatography-mass spectrometry to detect the products, the kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of norfluoxetine were determined. Among the CYP2C19 variants tested, T130M showed similar intrinsic clearance (Vmax/Km) values with CYP2C19*1, while the intrinsic clearance values of other variants were significantly decreased (from 9.56 to 77.77%). In addition, CYP2C19*3 and *35FS could not be detected because they have no detectable enzyme activity. In China, the assessment of CYP2C19 variants in vitro offers valuable information relevant to the personalized medicine for CYP2C19-metabolized drug. © 2017 S. Karger AG, Basel.

  16. 3- and 4-pyridylalkyl adamantanecarboxylates: inhibitors of human cytochrome P450(17 alpha) (17 alpha-hydroxylase/C17,20-lyase). Potential nonsteroidal agents for the treatment of prostatic cancer.

    PubMed

    Chan, F C; Potter, G A; Barrie, S E; Haynes, B P; Rowlands, M G; Houghton, J; Jarman, M

    1996-08-16

    Various 3- and 4-pyridylalkyl 1-adamantanecarboxylates have been synthesized and tested for inhibitory activity toward the 17 alpha-hydroxylase and C17,20-lyase activities of human testicular cytochrome P450(17 alpha). The 4-pyridylalkyl esters were much more inhibitory than their 3-pyridylalkyl counterparts. The most potent was (S)-1-(4-pyridyl)ethyl 1-adamantanecarboxylate (3b; IC50 for lyase, 1.8 nM), whereas the (R)-enantiomer 3a was much less inhibitory (IC50 74 nM). Nearly as potent as 3b was the dimethylated counterpart, the 2-(4-pyridylpropan-2-yl) ester 5 (IC50 2.7 nM), which was also more resistant to degradation by esterases. In contrast to their 4-pyridyl analogs, the enantiomers of the 1-(3-pyridyl)ethyl ester were similarly inhibitory (IC50 for lyase; (R)-isomer 8a 150 nM, (S)-isomer 8b 230 nM). Amides corresponding to the 4-pyridylmethyl ester 1 and the (S)-1-(4-pyridyl)ethyl ester 3b, respectively 11 and 15b, were much less inhibitory than their ester counterparts. On the basis of a combination of inhibitory potency and resistance to esterases, the ester 5 was the best candidate for further development as a potential nonsteroidal inhibitor of cytochrome P450(17 alpha) for the treatment of prostate cancer.

  17. Benzo[a]pyrene-7,8-dihydrodiol promotes checkpoint activation and G2/M arrest in human bronchoalveolar carcinoma H358 cells.

    PubMed

    Caino, M Cecilia; Oliva, Jose L; Jiang, Hao; Penning, Trevor M; Kazanietz, Marcelo G

    2007-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are potent carcinogens that require metabolic activation inside cells. The proximate carcinogens PAH-diols can be converted to o-quinones by aldo-keto reductases (AKRs) or to diol-epoxides by cytochrome P450 (P450) enzymes. We assessed the effect of benzo[a]pyrene-7,8-dihydrodiol (BPD) on proliferation in p53-null bronchoalveolar carcinoma H358 cells. BPD treatment led to a significant inhibition of proliferation and arrest in G2/M in H358 cells. The relative contribution of the AKR and P450 pathways to cell cycle arrest was assessed. Overexpression of AKR1A1 did not affect cell proliferation or cell cycle progression, and benzo[a]pyrene-7,8-dione did not cause any noticeable effect on cell growth, suggesting that AKR1A1 metabolic products were not involved in the antiproliferative effect of BPD. On the other hand, blockade of P450 induction or inhibition of P450 activity greatly impaired the effect of BPD. Moreover, P450 induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin significantly enhanced the antiproliferative effect of BPD. Mechanistic studies revealed that BPD caused a DNA damage response, Chk1 activation, and accumulation of phospho-Cdc2 (Tyr15) in H358 cells, effects that were impaired by an ataxia-telangectasia mutated (ATM)/ATM-related (ATR) inhibitor. Similar results were observed in human bronchoepithelial BEAS-2B cells, arguing for analogous mechanisms in tumorigenic and immortalized nontumorigenic cells lacking functional p53. Our data suggest that a p53-independent pathway operates in lung epithelial cells in response to BPD that involves P450 induction and subsequent activation of the ATR/ATM/Chk1 damage check-point pathway and cell cycle arrest in G2/M.

  18. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes

    PubMed Central

    2012-01-01

    Background Yarrowia lipolytica efficiently metabolizes and assimilates hydrophobic compounds such as n-alkanes and fatty acids. Efficient substrate uptake is enabled by naturally secreted emulsifiers and a modified cell surface hydrophobicity and protrusions formed by this yeast. We were examining the potential of recombinant Y. lipolytica as a biocatalyst for the oxidation of hardly soluble hydrophobic steroids. Furthermore, two-liquid biphasic culture systems were evaluated to increase substrate availability. While cells, together with water soluble nutrients, are maintained in the aqueous phase, substrates and most of the products are contained in a second water-immiscible organic solvent phase. Results For the first time we have co-expressed the human cytochromes P450 2D6 and 3A4 genes in Y. lipolytica together with human cytochrome P450 reductase (hCPR) or Y. lipolytica cytochrome P450 reductase (YlCPR). These whole-cell biocatalysts were used for the conversion of poorly soluble steroids in biphasic systems. Employing a biphasic system with the organic solvent and Y. lipolytica carbon source ethyl oleate for the whole-cell bioconversion of progesterone, the initial specific hydroxylation rate in a 1.5 L stirred tank bioreactor was further increased 2-fold. Furthermore, the product formation was significantly prolonged as compared to the aqueous system. Co-expression of the human CPR gene led to a 4-10-fold higher specific activity, compared to the co-overexpression of the native Y. lipolytica CPR gene. Multicopy transformants showed a 50-70-fold increase of activity as compared to single copy strains. Conclusions Alkane-assimilating yeast Y. lipolytica, coupled with the described expression strategies, demonstrated its high potential for biotransformations of hydrophobic substrates in two-liquid biphasic systems. Especially organic solvents which can be efficiently taken up and/or metabolized by the cell might enable more efficient bioconversion as compared to aqueous systems and even enable simple, continuous or at least high yield long time processes. PMID:22876969

  19. Metabolic capabilities of cytochrome P450 enzymes in Chinese liver microsomes compared with those in Caucasian liver microsomes

    PubMed Central

    Yang, Junling; He, Minxia M; Niu, Wei; Wrighton, Steven A; Li, Li; Liu, Yang; Li, Chuan

    2012-01-01

    AIM The most common causes of variability in drug response include differences in drug metabolism, especially when the hepatic cytochrome P450 (CYP) enzymes are involved. The current study was conducted to assess the differences in CYP activities in human liver microsomes (HLM) of Chinese or Caucasian origin. METHODS The metabolic capabilities of CYP enzymes in 30 Chinese liver microsomal samples were compared with those of 30 Caucasian samples utilizing enzyme kinetics. Phenacetin O-deethylation, coumarin 7-hydroxylation, bupropion hydroxylation, amodiaquine N-desethylation, diclofenac 4′-hydroxylation (S)-mephenytoin 4′-hydroxylation, dextromethorphan O-demethylation, chlorzoxazone 6-hydroxylation and midazolam 1′-hydroxylation/testosterone 6β-hydroxylation were used as probes for activities of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A, respectively. Mann-Whitney U test was used to assess the differences. RESULTS The samples of the two ethnic groups were not significantly different in cytochrome-b5 concentrations but were significantly different in total CYP concentrations and NADPH-P450 reductase activity (P < 0.05). Significant ethnic differences in intrinsic clearance were observed for CYP1A2, CYP2C9, CYP2C19 and CYP2E1; the median values of the Chinese group were 54, 58, 26, and 35% of the corresponding values of the Caucasian group, respectively. These differences were associated with differences in Michaelis constant or maximum velocity. Despite negligible difference in intrinsic clearance, the Michaelis constant of CYP2B6 appeared to have a significant ethnic difference. No ethnic difference was observed for CYP2A6, CYP2C8, CYP2D6 and CYP3A. CONCLUSIONS These data extend our knowledge on the ethnic differences in CYP enzymes and will have implications for drug discovery and drug therapy for patients from different ethnic origins. PMID:21815912

  20. Effect of gamma-oryzanol on cytochrome P450 activities in human liver microsomes.

    PubMed

    Umehara, Ken; Shimokawa, Yoshihiko; Miyamoto, Gohachiro

    2004-07-01

    The effects of gamma-oryzanol, a drug mainly used for the treatment of hyperlipidaemia, on several cytochrome P450 (CYP) specific reactions in human liver microsomes were investigated to predict drug interactions with gamma-oryzanol in vivo from in vitro data. The following eight CYP catalytic reactions were used in this study: CYP1A1/2-mediated 7-ethoxyresorufin O-deethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated 7-benzyloxyresorufin O-debenzylation, CYP2C8/9-mediated tolbutamide methylhydroxylation, CYP2C19-mediated S-mephenytoin 4'-hydroxylation, CYP2D6-mediated bufuralol 1'-hydroxylation, CYP2E1-mediated chlorzoxazone 6-hydroxylation, and CYP3A4-mediated testosterone 6beta-hydroxylation. gamma-Oryzanol had little inhibitory effects on CYP activities, indicating that this compound would not be expected to cause clinically significant interactions with other CYP-metabolized drugs at expected therapeutic concentrations.

  1. Very low temperature (450 °C) selective epitaxial growth of heavily in situ boron-doped SiGe layers

    NASA Astrophysics Data System (ADS)

    Aubin, J.; Hartmann, J. M.; Veillerot, M.; Essa, Z.; Sermage, B.

    2015-11-01

    We have investigated the feasibility of selectively growing SiGe:B layers at 450 °C, 20 Torr in a 300 mm industrial reduced pressure chemical vapor deposition tool. A reduced H2 carrier gas mass-flow has been used in order to have acceptable growth rates at such a temperature, which is very low indeed. We have first of all studied on blanket Si wafers the in situ boron doping of SiGe with Si2H6, GeH4 and B2H6. A growth rate increase by a factor close to 7 together with a Ge concentration decrease from 53% down to 32% occurred as the diborane mass-flow increased. Very high B+ ion concentrations were obtained in layers that were single crystalline and smooth. Their concentration increased almost linearly with the B2H6 mass-flow, from 1.8 up to 8.3 × 1020 cm-3. The associated resistivity dropped from 0.43 down to 0.26 mΩ cm. We have then tested whether or not selectivity versus SiO2 could be achieved by adding various amounts of HCl to Si2H6 + GeH4 +B2H6. Single crystalline growth rates of intrinsic SiGe(:B) on Si were very similar to poly-crystalline growth rates on SiO2-covered substrates irrespective of the HCl flow. Straightforward selectivity was thus not feasible with a co-flow approach. As a consequence, a 450 °C deposition/etch (DE) process was evaluated. Growth occurred at 20 Torr with the above-mentioned chemistry, while the selective etch of poly-SiGe:B versus c-SiGe:B was conducted at 740 Torr with a medium HCl mass-flow (F(HCl)/F(H2) = 0.2) and a high H2 flow. A 2.2 etch selectivity was achieved while retaining single crystalline if slightly rough SiGe:B layers.

  2. Effect of film thickness on soft magnetic behavior of Fe2CoSi Heusler alloy for spin transfer torque device applications

    NASA Astrophysics Data System (ADS)

    Asvini, V.; Saravanan, G.; Kalaiezhily, R. K.; Raja, M. Manivel; Ravichandran, K.

    2018-04-01

    Fe2CoSi based Heusler alloy thin films were deposited on Si (111) wafer (substrate) of varying thickness using ultra high vacuum DC magnetron sputtering. The structural behavior was observed and found to be hold the L21 structure. The deposited thin films were characterized magnetic properties using vibrating sample magnetometer; the result shows a very high saturated magnetization (Ms), lowest coercivity (Hc), high curie transition temperature (Tc) and low hysteresis loss. Thin film thickness of 75 nm Fe2CoSi sample maintained at substrate temperature 450°C shows the lowest coercivity (Hc=7 Oe). In general, Fe2CoSi Heusler alloys curie transition temperature is very high, due to strong exchange interaction between the Fe and Co atoms. The substrate temperature was kept constant at 450°C for varying thickness (e.g. 5, 20, 50, 75 and 100 nm) of thin film sample. The 75 nm thickness thin film sample shows well crystallanity and good magnetic properties, further squareness ratio in B-H loop increases with the increase in film thickness.

  3. Investigation of the pharmacokinetic interactions of deferasirox, a once-daily oral iron chelator, with midazolam, rifampin, and repaglinide in healthy volunteers.

    PubMed

    Skerjanec, Andrej; Wang, Jixian; Maren, Kelly; Rojkjaer, Lisa

    2010-02-01

    Deferasirox, a newly developed iron chelator, was coadministered orally with either a known inducer of drug metabolism or with cosubstrates for cytochrome P450 (CYP) to characterize the potential for drug-drug interactions. In the induction assessment, single-dose deferasirox pharmacokinetics were obtained in the presence and absence of a repeated-dose regimen of rifampin. In the CYP3A interaction evaluation, midazolam and its active hydroxylated metabolite were assessed after single doses of midazolam in the presence and absence of steady-state concentrations of deferasirox. To test for interaction at the level of CPY2C8, single-dose repaglinide pharmacokinetics/pharmacodynamics were determined with and without repeated-dose administration of deferasirox. After rifampin, a significant reduction (44%) in plasma exposure (AUC) to deferasirox was observed. Upon coadministration of midazolam, there was a modest reduction of up to 22% in midazolam exposure (AUC, C(max)), suggesting a modest induction of CYP3A4/5 by deferasirox. Def erasirox caused increases in repaglinide plasma C(max) and AUC of 1.5-fold to over 2-fold, respectively, with little change in blood glucose measures. Specific patient prescribing recommendations were established when coadministering deferasirox with midazolam, repaglinide, and rifampin. These recommendations may also apply to other substrates of CYP3A4/5 and CYP2C8 or potent inducers of glucuronidation.

  4. In vitro assessment of 39 CYP2C9 variants found in the Chinese population on the metabolism of the model substrate fluoxetine and a summary of their effects on other substrates.

    PubMed

    Ji, Y; Chen, S; Zhao, L; Pan, P; Wang, L; Cai, J; Dai, D; Hu, G; Cai, J P; Huang, H

    2015-06-01

    Cytochrome P450 2C9 (CYP2C9) is a polymorphic enzyme that is responsible for clearing approximately 15% of clinically important drugs. The objective of this study was to assess the catalytic characteristics of 39 CYP2C9 isoforms found in the Chinese population and their effects on the metabolism of the model substrate fluoxetine in vitro. Baculovirus-mediated expressing system was used to highly express wild-type and the 38 CYP2C9 allelic variants in insect cell microsomes. Then, the enzymatic characteristics of each variant were evaluated using fluoxetine as the substrate. Reactions were performed at 37 °C with the insect microsomes and 10-200 μm fluoxetine for 60 min. After termination, the products were precipitated and used for signal collection by UPLC-MS/MS. Of the 39 tested CYP2C9 isoforms, only four variants (CYP2C9*3, CYP2C9*27, CYP2C9*34 and CYP2C9*37) exhibited similar relative clearance values to that of the wild-type CYP2C9*1. Moreover, five variants (CYP2C9*14, CYP2C9*36, CYP2C9*45, CYP2C9*48 and CYP2C9*55) showed a higher intrinsic clearance value than the wild-type protein, whereas the remaining 29 CYP2C9 isoforms exhibited significantly decreased clearance values (from 6·23% to 87·74%) compared to CYP2C9*1. In addition, 28 CYP2C9 isoforms including CYP2C9*3 exhibited a trend towards substrate inhibition for fluoxetine. This study provides the most comprehensive data on the enzymatic activities associated with all reported CYP2C9 variants in the Chinese population with regard to the widely used antidepressant drug, fluoxetine. Our data indicate that more attention should be paid to subjects carrying the corresponding infrequent CYP2C9 alleles when administering fluoxetine in the clinic. © 2015 John Wiley & Sons Ltd.

  5. Point mutation of Arg440 to his in cytochrome P450c17 causes severe 17{alpha}-hydroxylase deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fardella, C.E.; Hum, D.W.; Miller, W.L.

    Genetic disorders in the gene encoding P450c17 cause 17{alpha}-hydroxylase deficiency. The consequent defects in the synthesis of cortisol and sex steroids cause sexual infantilism and a female phenotype in both genetic sexes as well as mineralorcorticoid excess and hypertension. A 15-yr-old patient from Germany was seen for absent pubertal development and mild hypertension with hypokalemia, high concentrations of 17-deoxysteroids, and hypergonadotropic hypogonadism. Analysis of her P450c17 gene by polymerase chain reaction amplification and direct sequencing showed mutation of codon 440 from CGC (Arg) to CAC (His). Expression of a vector encoding this mutated form of P450c17 in transfected nonsteroidogenic COS-1more » cells showed that the mutant P450c17 protein was produced, but it lacked both 17{alpha}-hydroxylase and 17,20-lyase activities. To date, 15 different P450c17 mutations have been described in 23 patients with 17{alpha}-hydroxylase deficiency, indicating that mutations in this gene are due to random events. 36 refs., 3 figs., 2 tabs.« less

  6. [Effect of Transcutaneuos Acupoint Electrostimulation on Serum Sex Hormone Levels and Expression of Ovarian Steroid Hormone Metabolic Enzymes in Polycystic Ovary Syndrome Rats].

    PubMed

    Zhou, Jian-yong; Zhang, Xiao-yue; Yu, Mei-ling; Lu, Sheng-feng; Chen, Xia

    2016-02-01

    To observe the effect of transcutaneuos acupoint electrostimulation(TAES) on ovarian serum sex hormone levels and ovarian follicle granular cell aromatase cytochrome P 450 (P 450 arom) protein and follicle theca cell cytochrome P 450 17 α-hydroxylase/c 17-20 lyase cytochrome P 450 (P 450 c 17 α) protein expression in polycystic ovary syndrome (PCOS)rats, so as to explore its mechanisms underlying improvement of PCOS. METHODS Forty SD rats were randomly divided into four groups: normal control, model, medication and TAES (10 rats/group). The PCOS model was established by giving (gavage) the animals with letrozole solution (1.0 mg/kg, once daily for 21 consecutive days). Rats of the medication group were treated with Clomiphene (1 mg/kg) once daily for 7 days, and those of the TAES group were treated with electrical stimulation (2 Hz, 3 mA) of "Guanyuan" (CV 4) and "Sanyinjiao" (SP 6) areas for 30 min, once daily for 7 consecutive days. The rats body weight and bilateral ovarian weight were detected, and the ovarian structure and follicular development degree were observed under light microscope after H. E. stain, and the serum testosterone (T), estradiol (E2), luteotrophic hormone (LH) and follicle-stimulating hormone (FSH) contents were detected using radioimmunoassay. The expression of ovarian P 450 arom (for production of estrogen)protein and P 450 c 17 α (for production of androgen) protein was detected by using immunohistochemical stain and Western blot, respectively. The body weight, bilateral ovary weight, serum T and LH contents, and ratio of LH/FSH, and ovarian P 450 c 17 α immunoactivity and protein expression levels in the model group were all significantly increased compared with the normal control group (P < 0.01), and the levels of serum E2 and ovarian P 450 arom immunoactivity and protein expression were significantly decreased after modeling (P < 0.01). Following the treatment, the increased body weight, ovary weight, serum T and LH contents, ratio of LH/FSH, and ovarian P 450 c 17 α immunoactivity and protein expression levels, and the decreased ovarian P 450 arom immunoactivity and protein expression levels were reversed in the TAES group (P < 0.01, P < 0.05) rather than in the medication group, except serum T and ratio of LH/FSH in the medication group. No significant differences were found between the medication and TAES groups in the serum T and ratio of LH/FSH (P > 0.05). In addition, the increased vesicular follicle number, the decreased corepus luteum number and the thickness of granular cell layer were markedly improved in the TAES group. TAES intervention can reduce both body weight and ovarian weight and regulate the levels of serum sex hormones and ovarian P 450 c 17 α and P 450 arom protein expression levels in PCOS rats, which may contribute to its effect in improving PCOS.

  7. Simultaneous pharmacokinetics evaluation of human cytochrome P450 probes, caffeine, warfarin, omeprazole, metoprolol and midazolam, in common marmosets (Callithrix jacchus).

    PubMed

    Uehara, Shotaro; Inoue, Takashi; Utoh, Masahiro; Toda, Akiko; Shimizu, Makiko; Uno, Yasuhiro; Sasaki, Erika; Yamazaki, Hiroshi

    2016-01-01

    1. Pharmacokinetics of human cytochrome P450 probes (caffeine, racemic warfarin, omeprazole, metoprolol and midazolam) composite, after single intravenous and oral administrations at doses of 0.20 and 1.0 mg kg(-1), respectively, to four male common marmosets were investigated. 2. The plasma concentrations of caffeine and warfarin decreased slowly in a monophasic manner but those of omeprazole, metoprolol and midazolam decreased extensively after intravenous and oral administrations, in a manner that approximated those as reported for pharmacokinetics in humans. 3. Bioavailabilities were ∼100% for caffeine and warfarin, but <25% for omeprazole and metoprolol. Bioavailability of midazolam was 4% in marmosets, presumably because of contribution of marmoset P450 3A4 expressed in small intestine and liver, with a high catalytic efficiency for midazolam 1'-hydroxylation as evident in the recombinant system. 4. These results suggest that common marmosets, despite their rapid clearance of some human P450 probe substrates, could be an experimental model for humans and that marmoset P450s have functional characteristics that differ from those of human and/or cynomolgus monkey P450s in some aspects, indicating their importance in modeling in P450-dependent drug metabolism studies in marmosets and of further studies.

  8. Hepatic Disposition of Gemfibrozil and Its Major Metabolite Gemfibrozil 1-O-β-Glucuronide.

    PubMed

    Kimoto, Emi; Li, Rui; Scialis, Renato J; Lai, Yurong; Varma, Manthena V S

    2015-11-02

    Gemfibrozil (GEM), which decreases serum triglycerides and low density lipoprotein, perpetrates drug-drug interactions (DDIs) with several drugs. These DDIs are primarily attributed to the inhibition of drug transporters and metabolic enzymes, particularly cytochrome P450 (CYP) 2C8 by the major circulating metabolite gemfibrozil 1-O-β-glucuronide (GG). Here, we characterized the transporter-mediated hepatic disposition of GEM and GG using sandwich-cultured human hepatocytes (SCHH) and transporter-transfect systems. Significant active uptake was noted in SCHH for the metabolite. GG, but not GEM, showed substrate affinity to organic anion transporting polypeptide (OATP) 1B1, 1B3, and 2B1. In SCHH, glucuronidation was characterized affinity constants (Km) of 7.9 and 61.4 μM, and biliary excretion of GG was observed. Furthermore, GG showed active basolateral efflux from preloaded SCHH and ATP-dependent uptake into membrane vesicles overexpressing multidrug resistance-associated protein (MRP) 2, MRP3, and MRP4. A mathematical model was developed to estimate hepatic uptake and efflux kinetics of GEM and GG based on SCHH studies. Collectively, the hepatic transporters play a key role in the disposition and thus determine the local concentrations of GEM and more so for GG, which is the predominant inhibitory species against CYP2C8 and OATP1B1.

  9. Membrane-bound human orphan cytochrome P450 2U1: Sequence singularities, construction of a full 3D model, and substrate docking.

    PubMed

    Ducassou, Lionel; Dhers, Laura; Jonasson, Gabriella; Pietrancosta, Nicolas; Boucher, Jean-Luc; Mansuy, Daniel; André, François

    2017-09-01

    Human cytochrome P450 2U1 (CYP2U1) is an orphan CYP that exhibits several distinctive characteristics among the 57 human CYPs with a highly conserved sequence in almost all living organisms. We compared its protein sequence with those of the 57 human CYPs and constructed a 3D structure of a full-length CYP2U1 model bound to a POPC membrane. We also performed docking experiments of arachidonic acid (AA) and N-arachidonoylserotonin (AS) in this model. The protein sequence of CYP2U1 displayed two unique characteristics when compared to those of the human CYPs, the presence of a longer N-terminal region upstream of the putative trans-membrane helix (TMH) containing 8 proline residues, and of an insert of about 20 amino acids containing 5 arginine residues between helices A' and A. Its N-terminal part upstream of TMH involved an additional short terminal helix, in a manner similar to what was reported in the crystal structure of Saccharomyces cerevisiae CYP51. Our model also showed a specific interaction between the charged residues of insert AA' and phosphate groups of lipid polar heads, suggesting a possible role of this insert in substrate recruitment. Docking of AA and AS in this model showed these substrates in channel 2ac, with the terminal alkyl chain of AA or the indole ring of AS close to the heme, in agreement with the reported CYP2U1-catalyzed AA and AS hydroxylation regioselectivities. This model should be useful to find new endogenous or exogenous CYP2U1 substrates and to interpret the regioselectivity of their hydroxylation. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. Imidacloprid is degraded by CYP353D1v2, a cytochrome P450 overexpressed in a resistant strain of Laodelphax striatellus.

    PubMed

    Elzaki, Mohammed Esmail Abdalla; Miah, Mohammad Asaduzzaman; Wu, Min; Zhang, Haomiao; Pu, Jian; Jiang, Ling; Han, Zhaojun

    2017-07-01

    Cytochrome P450s are associated with the metabolising of a wide range of compounds, including insecticides. CYP353D1v2 has been found to be overexpressed in an imidacloprid-resistant strain of Laodelphax striatellus. Thus, this study was conducted to express CYP353D1v2 in Sf9 cells as a recombinant protein, to assess its ability to metabolise imidacloprid. Western blot and carbon monoxide difference spectrum analysis indicated that the intact CYP353D1v2 protein had been successfully expressed in Sf9 insect cells. Catalytic activity tests with four traditional P450-activity-probing substrates found that the expressed CYP353D1v2 preferentially metabolised p-nitroanisole, ethoxycoumarin and ethoxyresorufin with specific activities of 32.70, 0.317 and 1.22 pmol min -1 pmol -1 protein respectively, but no activity to luciferin-H EGE. The enzyme activity for degrading imidacloprid was tested by measuring substrate depletion and formation of the metabolite. Kinetic parameters for imidacloprid were K m 5.99 ± 0.95 µm and k cat 0.03 ± 0.0004 min -1 . The chromatogram analysis showed clearly the NADPH-dependent depletion of imidacloprid and the formation of an unknown metabolite. The UPLC-MS mass spectrum demonstrated that the metabolite was an oxidative product of imidacloprid, 5-hydroxy-imidacloprid. These results suggest that CYP353D1v2 in L. striatellus is capable of degrading imidacloprid, and that enzyme activity can be evaluated well only by some traditional probing substrates. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Functional characterisation of an engineered multidomain human P450 2E1 by molecular Lego.

    PubMed

    Fairhead, Michael; Giannini, Silva; Gillam, Elizabeth M J; Gilardi, Gianfranco

    2005-12-01

    The human cytochrome P450s constitute an important family of monooxygenase enzymes that carry out essential roles in the metabolism of endogenous compounds and foreign chemicals. We present here results of a fusion between a human P450 enzyme and a bacterial reductase that for the first time is shown does not require the addition of lipids or detergents to achieve wild-type-like activities. The fusion enzyme, P450 2E1-BMR, contains the N-terminally modified residues 22-493 of the human P450 2E1 fused at the C-terminus to residues 473-1049 of the P450 BM3 reductase (BMR). The P450 2E1-BMR enzyme is active, self-sufficient and presents the typical marker activities of the native human P450 2E1: the hydroxylation of p-nitrophenol (KM=1.84+/-0.09 mM and kcat of 2.98+/-0.04 nmol of p-nitrocatechol formed per minute per nanomole of P450) and chlorzoxazone (KM=0.65+/-0.08 mM and kcat of 0.95+/-0.10 nmol of 6-hydroxychlorzoxazone formed per minute per nanomole of P450). A 3D model of human P450 2E1 was generated to rationalise the functional data and to allow an analysis of the surface potentials. The distribution of charges on the model of P450 2E1 compared with that of the FMN domain of BMR provides the ground for the understanding of the interaction between the fused domains. The results point the way to successfully engineer a variety of catalytically self-sufficient human P450 enzymes for drug metabolism studies in solution.

  12. Effects of interferon-tau and steroids on cytochrome P450 activity in bovine endometrial epithelial cells

    USDA-ARS?s Scientific Manuscript database

    The objective of the current study was to examine cyclooxygenase (COX), cytochrome P450 1A (CYP1A) and 2C (CYP2C) activity in bovine endometrial cell cultures following exposure to oxytocin (OT), interferon-t (IFN), estradiol (E2) and/or progesterone (P4). Bovine endometrial epithelial cells were tr...

  13. Expression and Characterization of CYP52 Genes Involved in the Biosynthesis of Sophorolipid and Alkane Metabolism from Starmerella bombicola

    PubMed Central

    Huang, Fong-Chin; Peter, Alyssa

    2014-01-01

    Three cytochrome P450 monooxygenase CYP52 gene family members were isolated from the sophorolipid-producing yeast Starmerella bombicola (former Candida bombicola), namely, CYP52E3, CYP52M1, and CYP52N1, and their open reading frames were cloned into the pYES2 vector for expression in Saccharomyces cerevisiae. The functions of the recombinant proteins were analyzed with a variety of alkane and fatty acid substrates using microsome proteins or a whole-cell system. CYP52M1 was found to oxidize C16 to C20 fatty acids preferentially. It converted oleic acid (C18:1) more efficiently than stearic acid (C18:0) and linoleic acid (C18:2) and much more effectively than α-linolenic acid (C18:3). No products were detected when C10 to C12 fatty acids were used as the substrates. Moreover, CYP52M1 hydroxylated fatty acids at their ω- and ω-1 positions. CYP52N1 oxidized C14 to C20 saturated and unsaturated fatty acids and preferentially oxidized palmitic acid, oleic acid, and linoleic acid. It only catalyzed ω-hydroxylation of fatty acids. Minor ω-hydroxylation activity against myristic acid, palmitic acid, palmitoleic acid, and oleic acid was shown for CYP52E3. Furthermore, the three P450s were coassayed with glucosyltransferase UGTA1. UGTA1 glycosylated all hydroxyl fatty acids generated by CYP52E3, CYP52M1, and CYP52N1. The transformation efficiency of fatty acids into glucolipids by CYP52M1/UGTA1 was much higher than those by CYP52N1/UGTA1 and CYP52E3/UGTA1. Taken together, CYP52M1 is demonstrated to be involved in the biosynthesis of sophorolipid, whereas CYP52E3 and CYP52N1 might be involved in alkane metabolism in S. bombicola but downstream of the initial oxidation steps. PMID:24242247

  14. Inhibition of the human liver microsomal and human cytochrome P450 1A2 and 3A4 metabolism of estradiol by deployment-related and other chemicals.

    PubMed

    Usmani, Khawja A; Cho, Taehyeon M; Rose, Randy L; Hodgson, Ernest

    2006-09-01

    Cytochromes P450 (P450s) are major catalysts in the metabolism of xenobiotics and endogenous substrates such as estradiol (E2). It has previously been shown that E2 is predominantly metabolized in humans by CYP1A2 and CYP3A4 with 2-hydroxyestradiol (2-OHE2) the major metabolite. This study examines effects of deployment-related and other chemicals on E2 metabolism by human liver microsomes (HLM) and individual P450 isoforms. Kinetic studies using HLM, CYP3A4, and CYP1A2 showed similar affinities (Km) for E2 with respect to 2-OHE2 production. Vmax and CLint values for HLM are 0.32 nmol/min/mg protein and 7.5 microl/min/mg protein; those for CYP3A4 are 6.9 nmol/min/nmol P450 and 291 microl/min/nmol P450; and those for CYP1A2 are 17.4 nmol/min/nmol P450 and 633 microl/min/nmol P450. Phenotyped HLM use showed that individuals with high levels of CYP1A2 and CYP3A4 have the greatest potential to metabolize E2. Preincubation of HLM with a variety of chemicals, including those used in military deployments, resulted in varying levels of inhibition of E2 metabolism. The greatest inhibition was observed with organophosphorus compounds, including chlorpyrifos and fonofos, with up to 80% inhibition for 2-OHE2 production. Carbaryl, a carbamate pesticide, and naphthalene, a jet fuel component, inhibited ca. 40% of E2 metabolism. Preincubation of CYP1A2 with chlorpyrifos, fonofos, carbaryl, or naphthalene resulted in 96, 59, 84, and 87% inhibition of E2 metabolism, respectively. Preincubation of CYP3A4 with chlorpyrifos, fonofos, deltamethrin, or permethrin resulted in 94, 87, 58, and 37% inhibition of E2 metabolism. Chlorpyrifos inhibition of E2 metabolism is shown to be irreversible.

  15. Inhibitory effects of spirulina platensis on carcinogen-activating cytochrome P450 isozymes and potential for drug interactions.

    PubMed

    Savranoglu, Seda; Tumer, Tugba Boyunegmez

    2013-01-01

    Spirulina platensis (SP) has been considered as potential food source of 21st century due to its remarkable nutrient profile and therapeutic benefits. However, the cytochrome P450 (CYP)-mediated drug/chemical interaction potential of SP has not yet been pursued. We investigated the effects of SP on the expressions and enzymatic activities of main CYP isozymes. After the rats were orally administered with SP daily for 5 consecutive weeks, there were significant downregulations in hepatic expression levels and inhibition in enzymatic activities of CYP1A2 and CYP2E1 compared to controls. In addition, a significant decrease was observed in CYP2C6-associated enzyme activity with no remarkable changes in messenger RNA (mRNA)/protein levels. The SP application resulted in significant increases in mRNA/protein levels of both CYP2B1 and CYP3A1 without a significant change in enzyme activities. These findings partly explain the chemopreventive properties of SP toward various organ toxicities, mutagenesis, and carcinogenesis; however, its coadministration with some CYP substrates may lead to undesirable drug interactions.

  16. Comparison of the biotransformation of the 14C-labelled insecticide carbaryl by non-transformed and human CYP1A1-, CYP1A2-, and CYP3A4-transgenic cell cultures of Nicotiana tabacum.

    PubMed

    Schmidt, Burkhard; Faymonville, Tanja; Gembé, Eva; Joussen, Nicole; Schuphan, Ingolf

    2006-08-01

    Transgenic tobacco-cell-suspension cultures expressing separately the human cytochrome P450 monooxygenases CYP1A1, CYP1A2, and CYP3A4 were utilized to study the biotransformation of the 14C-labelled insecticide carbaryl (=naphthalen-1-yl methylcarbamate). The resulting data were compared to similar data from the corresponding non-transformed (NT) tobacco-cell culture and commercially available membrane preparations (Bactosomes) of genetically modified bacteria separately containing the same human P450s. A rapid conversion rate of carbaryl was observed with the CYP1A1 and CYP1A2 cells, where only 49.7 and 0.2% of applied carbaryl (1 mg/l), respectively, remained after 24 h, as compared to 77.7% in the non-transformed culture. Unexpectedly, the corresponding results obtained from the CYP3A4 cultures were not definite. With 25 mg/l of carbaryl and 96 h of incubation, it was proven that the insecticide is also substrate of CYP3A4. This finding was supported by GC/EI-MS analysis of the primary metabolite pattern produced by the isozyme. This consisted of naphthalene-1-ol, N-(hydroxymethyl)carbaryl, 4-hydroxycarbaryl, and 5-hydroxycarbaryl, whereas the main product in non-transformed cells was N-(hydroxymethyl)carbaryl. Data obtained from the CYP1A1, CYP1A2, or CYP3A4 Bactosomes agreed with those of the P450-transgenic tobacco cells. Problems with GC/EI-MS analysis of carbaryl and its metabolites are discussed.

  17. Initial growth processes in the epitaxy of Ge with GeH{sub 4} on oxidized Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angermeier, D.; Kuhn, W.S.; Druihle, R.

    1997-02-01

    The heteroepitaxial growth of Ge on (100) Si in a horizontal, atmospheric pressure metallorganic vapor-phase epitaxy reactor is reported using germane GeH{sub 4} (0.1% in H{sub 2}). A particularly crucial parameter for germanium deposition on silicon is the time for the onset of epitaxial growth, the incubation time. The time was measured at substrate temperatures between 450 and 600{degree}C. At a substrate temperature of 450{degree}C an incubation time of 520 s was found and for the subsequent epitaxy growth rates of 50 nm/min were determined by Nomarski microscopy and electron diffraction. The existence of residual oxide in the reactor chambermore » forming an in situ SiO{sub 2} layer was evaluated by x-ray photoemission spectroscopy. To obtain a more thorough understanding of the gas- and solid-phase composition of Ge, Si, and oxygen the Gibbs energy of the system was calculated for various growth temperatures. It was concluded that SiO{sub 2} molecules are reduced by GeH{sub 4} molecules during the incubation period.« less

  18. Synthesis of ¹³C-lidocaine as a probe of breath test for the evaluation of cytochrome P450 activity.

    PubMed

    Mitome, Hidemichi; Sugiyama, Erika; Sato, Hitoshi; Akira, Kazuki

    2014-01-01

    (13)C-Labeled lidocaine, 2-di[1-(13)C]ethylamino-N-(2,6-dimethylphenyl)acetamide (1), was synthesized from [1-(13)C]acetic acid in six steps, as a probe for a breath test to evaluate in vivo cytochrome P450 activity. The measurement of (13)CO2 in breath was successfully performed following oral administration of (13)C-lidocaine 1 to mice.

  19. Engineering human cytochrome P450 enzymes into catalytically self-sufficient chimeras using molecular Lego.

    PubMed

    Dodhia, Vikash Rajnikant; Fantuzzi, Andrea; Gilardi, Gianfranco

    2006-10-01

    The membrane-bound human cytochrome P450s have essential roles in the metabolism of endogenous compounds and drugs. Presented here are the results on the construction and characterization of three fusion proteins containing the N-terminally modified human cytochrome P450s CYP2C9, CY2C19 and CYP3A4 fused to the soluble NADPH-dependent oxidoreductase domain of CYP102A1 from Bacillus megaterium. The constructs, CYP2C9/BMR, CYP2C19/BMR and CYP3A4/BMR are well expressed in Escherichia coli as holo proteins. The chimeras can be purified in the absence of detergent and the purified enzymes are both active and correctly folded in the absence of detergent, as demonstrated by circular dichroism and functional studies. Additionally, in comparison with the parent P450 enzyme, these chimeras have greatly improved solubility properties. The chimeras are catalytically self-sufficient and present turnover rates similar to those reported for the native enzymes in reconstituted systems, unlike previously reported mammalian cytochrome P450 fusion proteins. Furthermore the specific activities of these chimeras are not dependent on the enzyme concentration present in the reaction buffer and they do not require the addition of accessory proteins, detergents or phospholipids to be fully active. The solubility, catalytic self-sufficiency and wild-type like activities of these chimeras would greatly simplify the studies of cytochrome P450 mediated drug metabolism in solution.

  20. Cytochrome P450 monooxygenases: perspectives for synthetic application.

    PubMed

    Urlacher, Vlada B; Eiben, Sabine

    2006-07-01

    Cytochrome P450 monooxygenases are versatile biocatalysts that introduce oxygen into a vast range of molecules. These enzymes catalyze diverse reactions in a regio- and stereoselective manner, and their properties have been used for drug development, bioremediation and the synthesis of fine chemicals and other useful compounds. However, the potential of P450 monooxygenases has not been fully exploited; there are some drawbacks limiting the broader implementation of these catalysts for commercial needs. Protein engineering has produced P450 enzymes with widely altered substrate specificities, substantially increased activity and higher stability. Furthermore, electrochemical and enzymatic approaches for the replacement or regeneration of NAD(P)H have been developed, enabling the more cost-effective use of P450 enzymes. In this review, we focus on the aspects relevant to the synthetic applications of P450 enzymes and their optimization for commercial needs.

  1. Binding of Diverse Environmental Chemicals with Human Cytochromes P450 2A13, 2A6, and 1B1 and Enzyme Inhibition

    PubMed Central

    Shimada, Tsutomu; Kim, Donghak; Murayama, Norie; Tanaka, Katsuhiro; Takenaka, Shigeo; Nagy, Leslie D.; Folkman, Lindsay M.; Foroozesh, Maryam K.; Komori, Masayuki; Yamazaki, Hiroshi; Guengerich, F. Peter

    2014-01-01

    A total of 68 chemicals including derivatives of naphthalene, phenanthrene, fluoranthene, pyrene, biphenyl, and flavone were examined for their abilities to interact with human P450s 2A13 and 2A6. Fifty-one of these 68 chemicals induced stronger Type I binding spectra (iron low- to high-spin state shift) with P450 2A13 than those seen with P450 2A6, i.e. the spectral binding intensities (ΔAmax/Ks ratio) determined with these chemicals were always higher for P450 2A13. In addition, benzo[c]phenanthrene, fluoranthene, 2,3-dihydroxy-2,3-dihydrofluoranthene, pyrene, 1-hydroxypyrene, 1-nitropyrene, 1-acetylpyrene, 2-acetylpyrene, 2,5,2’,5’-tetrachlorobiphenyl, 7-hydroxyflavone, chrysin, and galangin were found to induce a Type I spectral change only with P450 2A13. Coumarin 7-hydroxylation, catalyzed by P450 2A13, was strongly inhibited by 2’-methoxy-5,7-dihydroxyflavone, 2-ethynylnaphthalene, 2’-methoxyflavone, 2-naphththalene propargyl ether, acenaphthene, acenaphthylene, naphthalene, 1-acetylpyrene, flavanone, chrysin, 3-ethynylphenanthrene, flavone, and 7-hydroxyflavone; these chemicals induced Type I spectral changes with low Ks values. On the basis of the intensities of the spectral changes and inhibition of P450 2A13, we classified the 68 chemicals into eight groups based on the order of affinities for these chemicals and inhibition of P450 2A13. The metabolism of chemicals by P450 2A13 during the assays explained why some of the chemicals that bound well were poor inhibitors of P450 2A13. Finally, we compared the 68 chemicals for their abilities to induce Type I spectral changes of P450 2A13 with the Reverse Type I binding spectra observed with P450 1B1: 45 chemicals interacted with both P450s 2A13 and 1B1, indicating that the two enzymes have some similarty of structural features regarding these chemicals. Molecular docking analyses suggest similarities at the active sites of these P450 enzymes. These results indicate that P450 2A13, as well as Family 1 P450 enzymes, is able to catalyze many detoxication and activation reactions with chemicals of environmental interest. PMID:23432429

  2. Promising Tools in Prostate Cancer Research: Selective Non-Steroidal Cytochrome P450 17A1 Inhibitors

    PubMed Central

    Bonomo, Silvia; Hansen, Cecilie H.; Petrunak, Elyse M.; Scott, Emily E.; Styrishave, Bjarne; Jørgensen, Flemming Steen; Olsen, Lars

    2016-01-01

    Cytochrome P450 17A1 (CYP17A1) is an important target in the treatment of prostate cancer because it produces androgens required for tumour growth. The FDA has approved only one CYP17A1 inhibitor, abiraterone, which contains a steroidal scaffold similar to the endogenous CYP17A1 substrates. Abiraterone is structurally similar to the substrates of other cytochrome P450 enzymes involved in steroidogenesis, and interference can pose a liability in terms of side effects. Using non-steroidal scaffolds is expected to enable the design of compounds that interact more selectively with CYP17A1. Therefore, we combined a structure-based virtual screening approach with density functional theory (DFT) calculations to suggest non-steroidal compounds selective for CYP17A1. In vitro assays demonstrated that two such compounds selectively inhibited CYP17A1 17α-hydroxylase and 17,20-lyase activities with IC50 values in the nanomolar range, without affinity for the major drug-metabolizing CYP2D6 and CYP3A4 enzymes and CYP21A2, with the latter result confirmed in human H295R cells. PMID:27406023

  3. Cytochromes P450 Catalyze the Reduction of α,β-Unsaturated Aldehydes

    PubMed Central

    Amunom, Immaculate; Dieter, Laura J.; Tamasi, Viola; Cai, Jan; Conklin, Daniel J.; Srivastava, Sanjay; Martin, Martha V.; Guengerich, F. Peter; Prough, Russell A.

    2011-01-01

    The metabolism of α,β-unsaturated aldehydes, e.g. 4-hydroxynonenal, involves oxidation to carboxylic acids, reduction to alcohols, and glutathionylation to eventually form mercapturide conjugates. Recently we demonstrated that P450s can oxidize aldehydes to carboxylic acids, a reaction previously thought to involve aldehyde dehydrogenase. When recombinant cytochrome P450 3A4 was incubated with 4-hydroxynonenal, O2, and NADPH, several products were produced, including 1,4-dihydroxynonene (DHN), 4-hydroxy-2-nonenoic acid (HNA), and an unknown metabolite. Several P450s catalyzed the reduction reaction in the order (human) P450 2B6 ≅ P450 3A4 > P450 1A2 > P450 2J2 > (mouse) P450 2c29. Other P450s did not catalyze the reduction reaction (human P450 2E1 & rabbit P450 2B4). Metabolism by isolated rat hepatocytes showed that HNA formation was inhibited by cyanamide, while DHN formation was not affected. Troleandomycin increased HNA production 1.6-fold while inhibiting DHN formation, suggesting that P450 3A11 is a major enzyme involved in rat hepatic clearance of 4-HNE. A fluorescent assay was developed using 9-anthracenealdehyde to measure both reactions. Feeding mice diet containing t-butylated hydroxyanisole increased the level of both activities with hepatic microsomal fractions, but not proportionally. Miconazole (0.5 mM) was a potent inhibitor of these microsomal reduction reactions, while phenytoin and α-naphthoflavone (both at 0.5 mM) were partial inhibitors, suggesting the role of multiple P450 enzymes. The oxidative metabolism of these aldehydes was inhibited >90% in an Ar or CO atmosphere, while the reductive reactions were not greatly affected. These results suggest that P450s are significant catalysts of reduction of α,β-unsaturated aldehydes in liver. PMID:21766881

  4. Structural Characterization and Ligand/Inhibitor Identification Provide Functional Insights into the Mycobacterium tuberculosis Cytochrome P450 CYP126A1*

    PubMed Central

    Chenge, Jude T.; Duyet, Le Van; Swami, Shalini; McLean, Kirsty J.; Kavanagh, Madeline E.; Coyne, Anthony G.; Rigby, Stephen E. J.; Cheesman, Myles R.; Girvan, Hazel M.; Levy, Colin W.; Rupp, Bernd; von Kries, Jens P.; Abell, Chris; Leys, David; Munro, Andrew W.

    2017-01-01

    The Mycobacterium tuberculosis H37Rv genome encodes 20 cytochromes P450, including P450s crucial to infection and bacterial viability. Many M. tuberculosis P450s remain uncharacterized, suggesting that their further analysis may provide new insights into M. tuberculosis metabolic processes and new targets for drug discovery. CYP126A1 is representative of a P450 family widely distributed in mycobacteria and other bacteria. Here we explore the biochemical and structural properties of CYP126A1, including its interactions with new chemical ligands. A survey of azole antifungal drugs showed that CYP126A1 is inhibited strongly by azoles containing an imidazole ring but not by those tested containing a triazole ring. To further explore the molecular preferences of CYP126A1 and search for probes of enzyme function, we conducted a high throughput screen. Compounds containing three or more ring structures dominated the screening hits, including nitroaromatic compounds that induce substrate-like shifts in the heme spectrum of CYP126A1. Spectroelectrochemical measurements revealed a 155-mV increase in heme iron potential when bound to one of the newly identified nitroaromatic drugs. CYP126A1 dimers were observed in crystal structures of ligand-free CYP126A1 and for CYP126A1 bound to compounds discovered in the screen. However, ketoconazole binds in an orientation that disrupts the BC-loop regions at the P450 dimer interface and results in a CYP126A1 monomeric crystal form. Structural data also reveal that nitroaromatic ligands “moonlight” as substrates by displacing the CYP126A1 distal water but inhibit enzyme activity. The relatively polar active site of CYP126A1 distinguishes it from its most closely related sterol-binding P450s in M. tuberculosis, suggesting that further investigations will reveal its diverse substrate selectivity. PMID:27932461

  5. Hydrazine-Assisted Formation of Indium Phosphide (InP)-Based Nanowires and Core-Shell Composites

    PubMed Central

    Patzke, Greta R.; Kontic, Roman; Shiolashvili, Zeinab; Makhatadze, Nino; Jishiashvili, David

    2012-01-01

    Indium phosphide nanowires (InP NWs) are accessible at 440 °C from a novel vapor phase deposition approach from crystalline InP sources in hydrazine atmospheres containing 3 mol % H2O. Uniform zinc blende (ZB) InP NWs with diameters around 20 nm and lengths up to several tens of micrometers are preferably deposited on Si substrates. InP particle sizes further increase with the deposition temperature. The straightforward protocol was extended on the one-step formation of new core-shell InP–Ga NWs from mixed InP/Ga source materials. Composite nanocables with diameters below 20 nm and shells of amorphous gallium oxide are obtained at low deposition temperatures around 350 °C. Furthermore, InP/Zn sources afford InP NWs with amorphous Zn/P/O-coatings at slightly higher temperatures (400 °C) from analogous setups. At 450 °C, the smooth outer layer of InP-Zn NWs is transformed into bead-shaped coatings. The novel combinations of the key semiconductor InP with isotropic insulator shell materials open up interesting application perspectives in nanoelectronics. PMID:28809296

  6. Impact of Fusarium mycotoxins on hepatic and intestinal mRNA expression of cytochrome P450 enzymes and drug transporters, and on the pharmacokinetics of oral enrofloxacin in broiler chickens.

    PubMed

    Antonissen, Gunther; Devreese, Mathias; De Baere, Siegrid; Martel, An; Van Immerseel, Filip; Croubels, Siska

    2017-03-01

    Cytochrome P450 (CYP450) drug biotransformation enzymes and multidrug resistance (MDR) proteins may influence drug disposition processes. The first part of the study aimed to evaluate the effect of mycotoxins deoxynivalenol (DON) and/or fumonisins (FBs), at contamination levels approaching European Union guidance levels, on intestinal and hepatic CYP450 enzymes and MDR proteins gene expression in broiler chickens. mRNA expression of genes encoding CYP450 enzymes (CYP3A37, CYP1A4 and CYP1A5) and drug transporters (MDR1/ABCB1 and MRP2/ABCC2) was determined using qRT-PCR. A significant up-regulation of CYP1A4 (P = 0.037) and MDR1 (P = 0.036) was observed in the jejunum of chickens fed a diet contaminated with FBs. The second part of this study aimed to investigate the impact of feeding a FBs contaminated diet on the oral absorption of enrofloxacin (10 mg/kg BW), a MDR1 substrate. A significant (P = 0.045), however small, decreased area under the plasma concentration-time curve (AUC 0-48  h, mean ± SD) was observed for enrofloxacin in chickens fed the FBs contaminated diet compared to the control group, 16.28 ± 1.82 h μg/mL versus 18.27 ± 1.79 h μg/mL. These findings suggest that concurrent administration of drugs with FBs contaminated feed might alter the pharmacokinetic characteristics of CYP1A4 substrate drugs and MDR1 substrates, such as enrofloxacin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mechanism-based pharmacokinetic modeling to evaluate transporter-enzyme interplay in drug interactions and pharmacogenetics of glyburide.

    PubMed

    Varma, Manthena V S; Scialis, Renato J; Lin, Jian; Bi, Yi-An; Rotter, Charles J; Goosen, Theunis C; Yang, Xin

    2014-07-01

    The purpose of this study is to characterize the involvement of hepato-biliary transport and cytochrome-P450 (CYP)-mediated metabolism in the disposition of glyburide and predict its pharmacokinetic variability due to drug interactions and genetic variations. Comprehensive in vitro studies suggested that glyburide is a highly permeable drug with substrate affinity to multiple efflux pumps and to organic anion transporting polypeptide (OATP)1B1 and OATP2B1. Active hepatic uptake was found to be significantly higher than the passive uptake clearance (15.8 versus 5.3 μL/min/10(6)-hepatocytes), using the sandwich-cultured hepatocyte model. In vitro, glyburide is metabolized (intrinsic clearance, 52.9 μL/min/mg-microsomal protein) by CYP3A4, CYP2C9, and CYP2C8 with fraction metabolism of 0.53, 0.36, and 0.11, respectively. Using these in vitro data, physiologically based pharmacokinetic models, assuming rapid-equilibrium between blood and liver compartments or permeability-limited hepatic disposition, were built to describe pharmacokinetics and evaluate drug interactions. Permeability-limited model successfully predicted glyburide interactions with rifampicin and other perpetrator drugs. Conversely, model assuming rapid-equilibrium mispredicted glyburide interactions, overall, suggesting hepatic uptake as the primary rate-determining process in the systemic clearance of glyburide. Further modeling and simulations indicated that the impairment of CYP2C9 function has a minimal effect on the systemic exposure, implying discrepancy in the contribution of CYP2C9 to glyburide clearance.

  8. Binding of bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine to wild-type and F120A mutant cytochrome P450 2D6 studied by resonance Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonifacio, Alois; Keizers, Peter H.J.; Commandeur, Jan N.M.

    2006-05-12

    Cytochrome P450 2D6 (CYP2D6) is one of the most important drug-metabolizing enzymes in humans. Resonance Raman data, reported for First time for CYP2D6, show that the CYP2D6 heme is found to be in a six-coordinated low-spin state in the absence of substrates, and it is perturbed to different extents by bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine (MDMA). Dextromethorphan and MDMA induce in CYP2D6 a significant amount of five-coordinated high-spin heme species and reduce the polarity of its heme-pocket, whereas bufuralol does not. Spectra of the F120A mutant CYP2D6 suggest that Phe{sup 12} is involved in substrate-binding of dextromethorphan and MDMA, being responsiblemore » for the spectral differences observed between these two compounds and bufuralol. These differences could be explained postulating a different substrate mobility for each compound in the CYP2D6 active site, consistently with the role previously suggested for Phe{sup 12} in binding dextromethorphan and MDMA.« less

  9. Binding of bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine to wild-type and F120A mutant cytochrome P450 2D6 studied by resonance Raman spectroscopy.

    PubMed

    Bonifacio, Alois; Keizers, Peter H J; Commandeur, Jan N M; Vermeulen, Nico P E; Robert, Bruno; Gooijer, Cees; van der Zwan, Gert

    2006-05-12

    Cytochrome P450 2D6 (CYP2D6) is one of the most important drug-metabolizing enzymes in humans. Resonance Raman data, reported for the first time for CYP2D6, show that the CYP2D6 heme is found to be in a six-coordinated low-spin state in the absence of substrates, and it is perturbed to different extents by bufuralol, dextromethorphan, and 3,4-methylenedioxymethylamphetamine (MDMA). Dextromethorphan and MDMA induce in CYP2D6 a significant amount of five-coordinated high-spin heme species and reduce the polarity of its heme-pocket, whereas bufuralol does not. Spectra of the F120A mutant CYP2D6 suggest that Phe120 is involved in substrate-binding of dextromethorphan and MDMA, being responsible for the spectral differences observed between these two compounds and bufuralol. These differences could be explained postulating a different substrate mobility for each compound in the CYP2D6 active site, consistently with the role previously suggested for Phe120 in binding dextromethorphan and MDMA.

  10. Occupation of the cytochrome P450 substrate pocket by diverse compounds at general anesthesia concentrations.

    PubMed

    LaBella, F S; Stein, D; Queen, G

    1998-10-02

    Each of a diverse array of compounds, at concentrations reported to effect general anesthesia, when added to liver microsomes, forms a complex with cytochromes P450 to generate, with reference to a cuvette containing microsomes only, a characteristic absorbance-difference spectrum. This spectrum results from a change in the electron-spin state of the heme iron atom induced upon entry by the anesthetic molecule into the enzyme catalytic pocket. The difference spectrum, representing the anesthetic-P450 complex, is characteristic of substances that are substrates for the enzyme. For the group of compounds as a whole, the magnitudes of the absorbance-difference spectra vary only about twofold, although the anesthetic potencies vary by several orders of magnitude. The dissociation constants (Ks), calculated from absorbance data and representing affinities of the anesthetics for P450, agree closely with the respective EC50 (concentration that effects anesthesia in 50% of individuals) values, and with the respective Ki (concentration that inhibits P450 catalytic activities half-maximally) values reported by us previously. The absorbance complex resulting from the occupation of the catalytic pocket by endogenous substrates, androstenedione and arachidonic acid, is inhibited, competitively, by anesthetics. Occupation of and perturbation of the heme catalytic pocket by anesthetic, as monitored by the absorbance-difference spectrum, is rapidly reversible. The presumed in vivo consequences of perturbation by general anesthetics of heme proteins is suppression of the generation of chemical signals that determine cell sensitivity and response.

  11. Autoantibodies against cytochrome P450s in sera of children treated with immunosuppressive drugs

    PubMed Central

    LYTTON, S D; BERG, U; NEMETH, A; INGELMAN-SUNDBERG, M

    2002-01-01

    Treatment with the immunosuppressive drugs cyclosporin and tacrolimus, the mainstays of anti-graft rejection and autoimmune disease therapy, is limited by their hepato-and nephrotoxicity. The metabolic conversion of these compounds to more easily excretable products is catalysed mainly by hepatic cytochrome P4503A4 (CYP3A4) but also involves extrahepatic CYP3A5 and other P450 forms. We set out to study whether or not exposure to cyclosporin and FK506 in children undergoing organ transplantation leads to formation of autoantibodies against P450s. Immunoblotting analysis revealed anti-CYP reactivity in 16% of children on CyA for anti-graft rejection or treatment of nephrosis (n = 67), 31% of kidney transplant patients switched from CyA to FK506 (n = 16), and 21% of kidney and or liver transplant patients on FK506 (n = 14). In contrast, the frequency of reactive immunoblots was only 8·5% among the normal paediatric controls (n = 25) and 7% among adult kidney transplant patients on CyA or FK506 (n = 30). The CYP2C9+ sera were able to immunoprecipitate in vitro translated CYP2C9 and the immunoblot reactivity showed striking correlation to peaks in the age at onset of drug exposure. Sera were isoform selective as evidenced from Western blotting using human liver microsomes and heterologously expressed human P450s. These findings suggest that anti-cytochrome P450 autoantibodies, identified on the basis of their specific binding in immunoblots, are significantly increased among children on immunosuppressive drugs and in some cases are associated with drug toxicity and organ rejection. PMID:11876753

  12. Autoantibodies against cytochrome P450s in sera of children treated with immunosuppressive drugs.

    PubMed

    Lytton, S D; Berg, U; Nemeth, A; Ingelman-Sundberg, M

    2002-02-01

    Treatment with the immunosuppressive drugs cyclosporin and tacrolimus, the mainstays of anti-graft rejection and autoimmune disease therapy, is limited by their hepato- and nephrotoxicity. The metabolic conversion of these compounds to more easily excretable products is catalysed mainly by hepatic cytochrome P4503A4 (CYP3A4) but also involves extrahepatic CYP3A5 and other P450 forms. We set out to study whether or not exposure to cyclosporin and FK506 in children undergoing organ transplantation leads to formation of autoantibodies against P450s. Immunoblotting analysis revealed anti-CYP reactivity in 16% of children on CyA for anti-graft rejection or treatment of nephrosis (n = 67), 31% of kidney transplant patients switched from CyA to FK506 (n = 16), and 21% of kidney and or liver transplant patients on FK506 (n = 14). In contrast, the frequency of reactive immunoblots was only 8.5% among the normal paediatric controls (n = 25) and 7% among adult kidney transplant patients on CyA or FK506 (n = 30). The CYP2C9+ sera were able to immunoprecipitate in vitro translated CYP2C9 and the immunoblot reactivity showed striking correlation to peaks in the age at onset of drug exposure. Sera were isoform selective as evidenced from Western blotting using human liver microsomes and heterologously expressed human P450s. These findings suggest that anti-cytochrome P450 autoantibodies, identified on the basis of their specific binding in immunoblots, are significantly increased among children on immunosuppressive drugs and in some cases are associated with drug toxicity and organ rejection.

  13. Identification and analysis of CYP450 genes from transcriptome of Lonicera japonica and expression analysis of chlorogenic acid biosynthesis related CYP450s.

    PubMed

    Qi, Xiwu; Yu, Xu; Xu, Daohua; Fang, Hailing; Dong, Ke; Li, Weilin; Liang, Chengyuan

    2017-01-01

    Lonicera japonica is an important medicinal plant that has been widely used in traditional Chinese medicine for thousands of years. The pharmacological activities of L. japonica are mainly due to its rich natural active ingredients, most of which are secondary metabolites. CYP450s are a large, complex, and widespread superfamily of proteins that participate in many endogenous and exogenous metabolic reactions, especially secondary metabolism. Here, we identified CYP450s in L. japonica transcriptome and analyzed CYP450s that may be involved in chlorogenic acid (CGA) biosynthesis. The recent availability of L. japonica transcriptome provided opportunity to identify CYP450s in this herb. BLAST based method and HMM based method were used to identify CYP450s in L. japonica transcriptome. Then, phylogenetic analysis, conserved motifs analysis, GO annotation, and KEGG annotation analyses were conducted to characterize the identified CYP450s. qRT-PCR was used to explore expression patterns of five CGA biosynthesis related CYP450s. In this study, 151 putative CYP450s with complete cytochrome P450 domain, which belonged to 10 clans, 45 families and 76 subfamilies, were identified in L. japonica transcriptome. Phylogenetic analysis classified these CYP450s into two major branches, A-type (47%) and non-A type (53%). Both types of CYP450s had conserved motifs in L. japonica . The differences of typical motif sequences between A-type and non-A type CYP450s in L. japonica were similar with other plants. GO classification indicated that non-A type CYP450s participated in more molecular functions and biological processes than A-type. KEGG pathway annotation totally assigned 47 CYP450s to 25 KEGG pathways. From these data, we cloned two LjC3Hs (CYP98A subfamily) and three LjC4Hs (CYP73A subfamily) that may be involved in biosynthesis of CGA, the major ingredient for pharmacological activities of L. japonica . qRT-PCR results indicated that two LjC3Hs exhibited oppositing expression patterns during the flower development and LjC3H2 exhibited a similar expression pattern with CGA concentration measured by HPLC. The expression patterns of three LjC4Hs were quite different and the expression pattern of LjC4H3 was quite similar with that of LjC3H1 . Our results provide a comprehensive identification and characterization of CYP450s in L. japonica . Five CGA biosynthesis related CYP450s were cloned and their expression patterns were explored. The different expression patterns of two LjC3Hs and three LjC4Hs may be due to functional divergence of both substrate and catalytic specificity during plant evolution. The co-expression pattern of LjC3H1 and LjC4H3 strongly suggested that they were under coordinated regulation by the same transcription factors due to same cis elements in their promoters. In conclusion, this study provides insight into CYP450s and will effectively facilitate the research of biosynthesis of CGA in L. japonica .

  14. High Expression of UGT1A1/1A6 in Monkey Small Intestine: Comparison of Protein Expression Levels of Cytochromes P450, UDP-Glucuronosyltransferases, and Transporters in Small Intestine of Cynomolgus Monkey and Human.

    PubMed

    Akazawa, Takanori; Uchida, Yasuo; Miyauchi, Eisuke; Tachikawa, Masanori; Ohtsuki, Sumio; Terasaki, Tetsuya

    2018-01-02

    Cynomolgus monkeys have been widely used for the prediction of drug absorption in humans. The purpose of this study was to clarify the regional protein expression levels of cytochromes P450 (CYPs), UDP-glucuronosyltransferases (UGTs), and transporters in small intestine of cynomolgus monkey using liquid chromatography-tandem mass spectrometry, and to compare them with the corresponding levels in human. UGT1A1 in jejunum and ileum were >4.57- and >3.11-fold and UGT1A6 in jejunum and ileum were >16.1- and >8.57-fold, respectively, more highly expressed in monkey than in human. Also, jejunal expression of monkey CYP3A8 (homologue of human CYP3A4) was >3.34-fold higher than that of human CYP3A4. Among apical drug efflux transporters, BCRP showed the most abundant expression in monkey and human, and the expression levels of BCRP in monkey and human were >1.74- and >1.25-fold greater than those of P-gp and >2.76- and >4.50-fold greater than those of MRP2, respectively. These findings should be helpful to understand species differences of the functions of CYPs, UGTs, and transporters between monkey and human. The UGT1A1/1A6 data would be especially important because it is difficult to identify isoforms responsible for species differences of intestinal glucuronidation by means of functional studies due to overlapping substrate specificity.

  15. Cytochrome P450 systems--biological variations of electron transport chains.

    PubMed

    Hannemann, Frank; Bichet, Andreas; Ewen, Kerstin M; Bernhardt, Rita

    2007-03-01

    Cytochromes P450 (P450) are hemoproteins encoded by a superfamily of genes nearly ubiquitously distributed in different organisms from all biological kingdoms. The reactions carried out by P450s are extremely diverse and contribute to the biotransformation of drugs, the bioconversion of xenobiotics, the bioactivation of chemical carcinogens, the biosynthesis of physiologically important compounds such as steroids, fatty acids, eicosanoids, fat-soluble vitamins and bile acids, the conversion of alkanes, terpenes and aromatic compounds as well as the degradation of herbicides and insecticides. Cytochromes P450 belong to the group of external monooxygenases and thus receive the necessary electrons for oxygen cleavage and substrate hydroxylation from different redox partners. The classical as well as the recently discovered P450 redox systems are compiled in this paper and classified according to their composition.

  16. Nitrous oxide-forming codenitrification catalyzed by cytochrome P450nor.

    PubMed

    Su, Fei; Takaya, Naoki; Shoun, Hirofumi

    2004-02-01

    Intact cells of the denitrifying fungus Fusarium oxysporum were previously shown to catalyze codenitrification to form a hybrid nitrous oxide (N2O) species from nitrite and other nitrogen compounds such as azide and ammonia. Here we show that cytochrome P450nor can catalyze the codenitrification reaction to form N2O from nitric oxide (NO) but not nitrite, and azide or ammonia. The results show that the direct substrate of the codenitrification by intact cells should not be nitrite but NO, which is formed from nitrite by the reaction of a dissimilatory nitrite reductase.

  17. Mechanism-based inactivation of benzo(a)pyrene hydroxylase by aryl acetylenes and aryl olefins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, L.S.; Lu, J.Y.L.; Alworth, W.L.

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxgenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene, 3-ethynylperylene, 2-ethynylfluorene, methyl 1-pyrenyl acetylene, cis- and trans-1-(2-bromovinyl)pyrene, and 1-allylpyrene serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo(a)pyrene hydroxylase, while 1-vinylpyrene and phenyl 1-pyrenyl acetylene do not cause a detectable suicide inhibition of benzo(a)pyrene hydroxylase. The mechanism-based loss of benzo(a)pyrene hydroxylase caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes (suicide destruction). The suicide inhibition by these aryl acetylenesmore » therefore does not involve covalent binding to the heme moiety of the monooxygenase. Nevertheless, in the presence of NADPH, /sup 3/H-labeled 1-ethynylpyrene becomes covalently attached to the cytochrome P-450 protein; the measured stoichiometry of binding is one 1-ethynylpyrene per P-450 heme unit. The authors conclude that the inhibition of benzo(a)pyrene hydroxylase produced by 1-ethynylpyrene may be related to the mechanism of suicide inhibition of P-450 activity by chloramphenicol rather than the mechanism of suicide destruction of P-450 previously described for acetylene and propyne.« less

  18. Inactivation of CYP2A6 by the Dietary Phenylpropanoid trans-Cinnamic Aldehyde (Cinnamaldehyde) and Estimation of Interactions with Nicotine and Letrozole

    PubMed Central

    Chan, Jeannine; Oshiro, Tyler; Thomas, Sarah; Higa, Allyson; Black, Stephen; Todorovic, Aleksandar; Elbarbry, Fawzy

    2016-01-01

    Human exposure to trans-cinnamic aldehyde [t-CA; cinnamaldehyde; cinnamal; (E)-3-phenylprop-2-enal] is common through diet and through the use of cinnamon powder for diabetes and to provide flavor and scent in commercial products. We evaluated the likelihood of t-CA to influence metabolism by inhibition of P450 enzymes. IC50 values from recombinant enzymes indicated that an interaction is most probable for CYP2A6 (IC50 = 6.1 µM). t-CA was 10.5-fold more selective for human CYP2A6 than for CYP2E1; IC50 values for P450s 1A2, 2B6, 2C9, 2C19, 2D6, and 3A4 were 15.8-fold higher or more. t-CA is a type I ligand for CYP2A6 (KS = 14.9 µM). Inhibition of CYP2A6 by t-CA was metabolism-dependent; inhibition required NADPH and increased with time. Glutathione lessened the extent of inhibition modestly and statistically significantly. The carbon monoxide binding spectrum was dramatically diminished after exposure to NADPH and t-CA, suggesting degradation of the heme or CYP2A6 apoprotein. Using a static model and mechanism-based inhibition parameters (KI = 18.0 µM; kinact = 0.056 minute−1), changes in the area under the concentration-time curve (AUC) for nicotine and letrozole were predicted in the presence of t-CA (0.1 and 1 µM). The AUC fold-change ranged from 1.1 to 3.6. In summary, t-CA is a potential source of pharmacokinetic variability for CYP2A6 substrates due to metabolism-dependent inhibition, especially in scenarios when exposure to t-CA is elevated due to high dietary exposure, or when cinnamon is used as a treatment of specific disease states (e.g., diabetes). PMID:26851241

  19. Gravity Persistent Signal 1 (GPS1) reveals novel cytochrome P450s involved in gravitropism.

    PubMed

    Withers, John C; Shipp, Matthew J; Rupasinghe, Sanjeewa G; Sukumar, Poornima; Schuler, Mary A; Muday, Gloria K; Wyatt, Sarah E

    2013-01-01

    Gravity is an important environmental factor that affects growth and development of plants. In response to changes in gravity, directional growth occurs along the major axes and lateral branches of both shoots and roots. The gravity persistent signal (gps) mutants of Arabidopsis thaliana were previously identified as having an altered response to gravity when reoriented relative to the gravity vector in the cold, with the gps1 mutant exhibiting a complete loss of tropic response under these conditions. Thermal asymmetric interlaced (TAIL) PCR was used to identify the gene defective in gps1. Gene expression data, molecular modeling and computational substrate dockings, quantitative RT-PCR analyses, reporter gene fusions, and physiological analyses of knockout mutants were used to characterize the genes identified. Cloning of the gene defective in gps1 and genetic complementation revealed that GPS1 encodes CYP705A22, a cytochrome P450 monooxygenase (P450). CYP705A5, a closely related family member, was identified as expressed specifically in roots in response to gravistimulation, and a mutation affecting its expression resulted in a delayed gravity response, increased flavonol levels, and decreased basipetal auxin transport. Molecular modeling coupled with in silico substrate docking and diphenylboric acid 2-aminoethyl ester (DBPA) staining indicated that these P450s are involved in biosynthesis of flavonoids potentially involved in auxin transport. The characterization of two novel P450s (CYP705A22 and CYP705A5) and their role in the gravity response has offered new insights into the regulation of the genetic and physiological controls of plant gravitropism.

  20. Study of the overproduced uridine-diphosphate-N-acetylmuramate:L-alanine ligase from Escherichia coli.

    PubMed

    Liger, D; Masson, A; Blanot, D; van Heijenoort, J; Parquet, C

    1996-01-01

    The UDP-N-acetylmuramate:L-alanine ligase of Escherichia coli is responsible for the addition of the first amino acid of the peptide moiety in the assembly of the monomer unit of peptidoglycan. It catalyzes the formation of the amide bond between UDP-N-acetylmuramic acid (UDP-MurNAc) and L-alanine. The UDP-MurNAc-L-alanine ligase was overproduced 2000-fold in a strain harboring a recombinant plasmid (pAM1005) with the murC gene under the control of the inducible promoter trc. The murC gene product appears as a 50-kDa protein accounting for ca. 50% of total cell proteins. A two-step purification led to 1 g of a homogeneous protein from an 8-liter culture. The N-terminal sequence of the purified protein correlated with the nucleotide sequence of the gene. The stability of the enzymatic activity is strictly dependent on the presence of 2-mercaptoethanol. The K(m) values for substrates UDP-N-acetylmuramic acid, L-alanine, and ATP were estimated; 100, 20, and 450 microM, respectively. The specificity of the enzyme for its substrates was investigated with various analogues. Preliminary experiments attempting to elucidate the enzymatic mechanism were consistent with the formation of an acylphosphate intermediate.

  1. Environmentally persistent free radical-containing particulate matter competitively inhibits metabolism by cytochrome P450 1A2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, James R., E-mail: rreed@lsuhsc.edu; Cruz, Albert Leo N. dela, E-mail: adelac2@tigers.lsu.edu; Lomnicki, Slawo M., E-mail: slomni1@lsu.edu

    Combustion processes generate different types of particulate matter (PM) that can have deleterious effects on the pulmonary and cardiovascular systems. Environmentally persistent free radicals (EPFRs) represent a type of particulate matter that is generated after combustion of environmental wastes in the presence of redox-active metals and aromatic hydrocarbons. Cytochromes P450 (P450/CYP) are membrane-bound enzymes that are essential for the phase I metabolism of most lipophilic xenobiotics. The EPFR formed by chemisorption of 2-monochlorophenol to silica containing 5% copper oxide (MCP230) has been shown to generally inhibit the activities of different forms of P450s without affecting those of cytochrome P450 reductasemore » and heme oxygenase-1. The mechanism of inhibition of rat liver microsomal CYP2D2 and purified rabbit CYP2B4 by MCP230 has been shown previously to be noncompetitive with respect to substrate. In this study, MCP230 was shown to competitively inhibit metabolism of 7-benzyl-4-trifluoromethylcoumarin and 7-ethoxyresorufin by the purified, reconstituted rabbit CYP1A2. MCP230 is at least 5- and 50-fold more potent as an inhibitor of CYP1A2 than silica containing 5% copper oxide and silica, respectively. Thus, even though PM generally inhibit multiple forms of P450, PM interacts differently with the forms of P450 resulting in different mechanisms of inhibition. P450s function as oligomeric complexes within the membrane. We also determined the mechanism by which PM inhibited metabolism by the mixed CYP1A2–CYP2B4 complex and found that the mechanism was purely competitive suggesting that the CYP2B4 is dramatically inhibited when bound to CYP1A2. - Highlights: • Combustion of organic pollutants generates long-lived particulate radicals (EPFRs). • Particulate matter (PM) competitively inhibited CYP1A2 activity. • EPFRs were much more potent CYP1A2 inhibitors than other types of PM. • PM interacts differently with different forms of P450. • PM competitively inhibited metabolism by the mixed CYP1A2–CYP2B4 complex.« less

  2. Radiative Transfer in Seagrass Canopies

    DTIC Science & Technology

    1999-09-30

    Radiative Transfer in Seagrass Canopies Richard C. Zimmerman Moss Landing Marine Laboratories P. O. Box 450 Moss Landing, CA 95039 phone (831) 655...models of radiative transfer for optically shallow waters with benthic substrates colonized by submerged plant canopies ( seagrasses and seaweeds). Such...coastal resources. SCIENTIFIC OBJECTIVES The objectives of this study are to • Develop radiative transfer models of seagrass and seaweed canopies in

  3. CYP2C9 Genotype-Dependent Warfarin Pharmacokinetics: Impact of CYP2C9 Genotype on R- and S-Warfarin and Their Oxidative Metabolites.

    PubMed

    Flora, Darcy R; Rettie, Allan E; Brundage, Richard C; Tracy, Timothy S

    2017-03-01

    Multiple factors can impact warfarin therapy, including genetic variations in the drug-metabolizing enzyme cytochrome P450 2C9 (CYP2C9). Compared with individuals with the wild-type allele, CYP2C9*1, carriers of the common *3 variant have significantly impaired CYP2C9 metabolism. Genetic variations in CYP2C9, the primary enzyme governing the metabolic clearance of the more potent S-enantiomer of the racemic anticoagulant warfarin, may impact warfarin-drug interactions. To establish a baseline for such studies, plasma and urine concentrations of R- and S-warfarin and 10 warfarin metabolites were monitored for up to 360 hours following a 10-mg warfarin dose in healthy subjects with 4 different CYP2C9 genotypes: CYP2C9*1/*1 (n = 8), CYP2C9*1/*3 (n = 9), CYP2C9*2/*3 (n = 3), and CYP2C9*3/*3 (n = 4). Plasma clearance of S-warfarin, but not R-warfarin, decreased multiexponentially and in a CYP2C9 gene-dependent manner: 56%, 70%, and 75% for CYP2C9*1/*3, CYP2C9*2/*3, and CYP2C9*3/*3 genotypes, respectively, compared with CYP2C9*1/*1, resulting in pronounced differences in the S:R ratio that identified warfarin-sensitive genotypes. CYP2C9 was the primary P450 enzyme contributing to S-warfarin metabolism and a minor contributor to R-warfarin metabolism. In the presence of a defective CYP2C9 allele, switching of warfarin metabolism to other oxidative pathways and P450 enzymes for the metabolic elimination of S-warfarin was not observed. The 10-hydroxywarfarin metabolites, whose detailed pharmacokinetics are reported for the first time, exhibited a prolonged half-life with no evidence of renal excretion and displayed elimination rate-limited kinetics. Understanding the impact of CYP2C9 genetics on warfarin pharmacokinetics lays the foundation for future genotype-dependent warfarin-drug interaction studies. © 2016, The American College of Clinical Pharmacology.

  4. Complementary DNA cloning, functional expression and characterization of a novel cytochrome P450, CYP2D50, from equine liver.

    PubMed

    DiMaio Knych, H K; Stanley, S D

    2008-10-01

    Members of the CYP2D family constitute only about 2-4% of total hepatic CYP450s, however, they are responsible for the metabolism of 20-25% of commonly prescribed therapeutic compounds. CYP2D enzymes have been identified in a number of different species. However, vast differences in the metabolic activity of these enzymes have been well documented. In the horse, the presence of a member of the CYP2D family has been suggested from studies with equine liver microsomes, however its presence has not been definitively proven. In this study a cDNA encoding a novel CYP2D enzyme (CYP2D50) was cloned from equine liver and expressed in a baculovirus expression system. The nucleotide sequence of CYP2D50 was highly homologous to that of human CYP2D6 and therefore the activity of the enzyme was characterized using dextromethorphan and debrisoquine, two isoform selective substrates for the human orthologue. CYP2D50 displayed optimal catalytic activity with dextromethorphan using molar ratios of CYP2D50 to NADPH CYP450 reductase of 1:15. Although CYP2D50 and CYP2D6 shared significant sequence homology, there were striking differences in the catalytic activity between the two enzymes. CYP2D50 dextromethorphan-O-demethylase activity was nearly 180-fold slower than the human counterpart, CYP2D6. Similarly, rates of formation of 4-hydroxydebrisoquine activity were 50-fold slower for CYP2D50 compared to CYP2D6. The results of this study demonstrate substantial interspecies variability in metabolism of substrates by CYP2D orthologues in the horse and human and support the need to fully characterize this enzyme system in equids.

  5. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae.

    PubMed

    Balabanidou, Vasileia; Kampouraki, Anastasia; MacLean, Marina; Blomquist, Gary J; Tittiger, Claus; Juárez, M Patricia; Mijailovsky, Sergio J; Chalepakis, George; Anthousi, Amalia; Lynd, Amy; Antoine, Sanou; Hemingway, Janet; Ranson, Hilary; Lycett, Gareth J; Vontas, John

    2016-08-16

    The role of cuticle changes in insecticide resistance in the major malaria vector Anopheles gambiae was assessed. The rate of internalization of (14)C deltamethrin was significantly slower in a resistant strain than in a susceptible strain. Topical application of an acetone insecticide formulation to circumvent lipid-based uptake barriers decreased the resistance ratio by ∼50%. Cuticle analysis by electron microscopy and characterization of lipid extracts indicated that resistant mosquitoes had a thicker epicuticular layer and a significant increase in cuticular hydrocarbon (CHC) content (∼29%). However, the CHC profile and relative distribution were similar in resistant and susceptible insects. The cellular localization and in vitro activity of two P450 enzymes, CYP4G16 and CYP4G17, whose genes are frequently overexpressed in resistant Anopheles mosquitoes, were analyzed. These enzymes are potential orthologs of the CYP4G1/2 enzymes that catalyze the final step of CHC biosynthesis in Drosophila and Musca domestica, respectively. Immunostaining indicated that both CYP4G16 and CYP4G17 are highly abundant in oenocytes, the insect cell type thought to secrete hydrocarbons. However, an intriguing difference was indicated; CYP4G17 occurs throughout the cell, as expected for a microsomal P450, but CYP4G16 localizes to the periphery of the cell and lies on the cytoplasmic side of the cell membrane, a unique position for a P450 enzyme. CYP4G16 and CYP4G17 were functionally expressed in insect cells. CYP4G16 produced hydrocarbons from a C18 aldehyde substrate and thus has bona fide decarbonylase activity similar to that of dmCYP4G1/2. The data support the hypothesis that the coevolution of multiple mechanisms, including cuticular barriers, has occurred in highly pyrethroid-resistant An gambiae.

  6. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae

    PubMed Central

    Balabanidou, Vasileia; Kampouraki, Anastasia; MacLean, Marina; Blomquist, Gary J.; Tittiger, Claus; Juárez, M. Patricia; Mijailovsky, Sergio J.; Chalepakis, George; Anthousi, Amalia; Lynd, Amy; Antoine, Sanou; Hemingway, Janet; Ranson, Hilary; Lycett, Gareth J.; Vontas, John

    2016-01-01

    The role of cuticle changes in insecticide resistance in the major malaria vector Anopheles gambiae was assessed. The rate of internalization of 14C deltamethrin was significantly slower in a resistant strain than in a susceptible strain. Topical application of an acetone insecticide formulation to circumvent lipid-based uptake barriers decreased the resistance ratio by ∼50%. Cuticle analysis by electron microscopy and characterization of lipid extracts indicated that resistant mosquitoes had a thicker epicuticular layer and a significant increase in cuticular hydrocarbon (CHC) content (∼29%). However, the CHC profile and relative distribution were similar in resistant and susceptible insects. The cellular localization and in vitro activity of two P450 enzymes, CYP4G16 and CYP4G17, whose genes are frequently overexpressed in resistant Anopheles mosquitoes, were analyzed. These enzymes are potential orthologs of the CYP4G1/2 enzymes that catalyze the final step of CHC biosynthesis in Drosophila and Musca domestica, respectively. Immunostaining indicated that both CYP4G16 and CYP4G17 are highly abundant in oenocytes, the insect cell type thought to secrete hydrocarbons. However, an intriguing difference was indicated; CYP4G17 occurs throughout the cell, as expected for a microsomal P450, but CYP4G16 localizes to the periphery of the cell and lies on the cytoplasmic side of the cell membrane, a unique position for a P450 enzyme. CYP4G16 and CYP4G17 were functionally expressed in insect cells. CYP4G16 produced hydrocarbons from a C18 aldehyde substrate and thus has bona fide decarbonylase activity similar to that of dmCYP4G1/2. The data support the hypothesis that the coevolution of multiple mechanisms, including cuticular barriers, has occurred in highly pyrethroid-resistant An. gambiae. PMID:27439866

  7. Temperature & wood source control PyOM turnover in a Northern American forest

    NASA Astrophysics Data System (ADS)

    Hatton, Pierre-Joseph; Le Moine, James; Auclerc, Apolline; Gormley, Mark; Filley, Tim R.; Nadelhoffer, Knute J.; Bird, Jeff. A.

    2016-04-01

    Surprisingly little is known about how pyrolysis temperature and wood source affect the stability of forest-fire derived pyrogenic organic matter (PyOM). Here, we show that wood source and temperature affect in situ mineralization rates of PyOM in soils for two co-occurring gymnosperm (jack pine; JP [Pinus banksiana]) and angiosperm (red maple; RM [Acer rubrum])¬ species from North American boreal-temperate ecotones. We assess the effect of pyrolysis temperature on PyOM fates by following the decay of 13C/15N-enriched JP wood (JPwood) and PyOM produced at 300 °C (JP300) and 450 °C (JP450); and assess the effect of PyOM wood source by comparing fates of JP450 and RM450. JPwood mineralized 18× faster than JP300 and 44× faster than JP450 after 2.8y. RM450 mineralized initially faster than JP450 during the first ~2y, but became equivalent afterwards (1.1±0.2% of CO¬2 losses after 2.8y). Modeled turnover times suggest that this can be attributed to ~1% of fast-cycling PyOM (<3y). Slower-cycling pools are 12× faster for JPwood (13±5y) than for JP300 (157±28y) and 55× faster than for JP450 (700±229y). Modeled turnover times of the slow-cycling pools were equivalent for JP450 and RM450. The priming effect was positive for JPwood (0.10±0.05), neutral for JP300 (-0.02±0.04), and negative for JP450 (-0.15±0.03) and RM50 (-0.59±0.03). DOC losses were minimal compared with CO2 losses (DOC:CO2 ratio ≤0.005), but followed the same patterns: JPwood 6× greater than that of JP300 and 39× greater compared with JP450. After 1y, C recoveries were lower for JPwood than for PyOM, with no influence of pyrolysis temperature or wood source (yet); N recoveries did not differ. PLFA-(13)C data reveal that (i) treatments have similar microbial communities after 1y, (ii) JPwood is preferentially utilized by fungi, and (iii) bacteria increasingly utilize PyOM as pyrolysis temperature increases. Estimated carbon use efficiency decreased with increasing pyrolysis temperature (JPwood~JP300>JP450~RM450). Although insignificant, potential phenol oxidase and peroxidase activities decrease with increasing pyrolysis temperature. Neither PyOM nor wood additions (~11% of soil C stock 0-20 cm depth) affected pH or Ec after 1y. We provide the first, field experimental evidence that pyrolysis temperature and wood source affect the turnover of PyOM in soil. We show faster, initial decay for PyOM produced at lesser temperature and RM (angiosperm) compared with JP (gymnosperm). This study offers realistic insights on (i) the controls underlying in situ PyOM turnover, and on (ii) how ongoing/projected changes in tree species composition and fire frequency/intensity/distribution may affect PyOM in soil of North America temperate-boreal ecotones.

  8. Insights into Hydrocarbon Assimilation by Eurotialean and Hypocrealean Fungi: Roles for CYP52 and CYP53 Clans of Cytochrome P450 Genes.

    PubMed

    Huarte-Bonnet, Carla; Kumar, Suresh; Saparrat, Mario C N; Girotti, Juan R; Santana, Marianela; Hallsworth, John E; Pedrini, Nicolás

    2018-03-01

    Several filamentous fungi are able to concomitantly assimilate both aliphatic and polycyclic aromatic hydrocarbons that are the biogenic by-products of some industrial processes. Cytochrome P450 monooxygenases catalyze the first oxidation reaction for both types of substrate. Among the cytochrome P450 (CYP) genes, the family CYP52 is implicated in the first hydroxylation step in alkane-assimilation processes, while genes belonging to the family CYP53 have been linked with oxidation of aromatic hydrocarbons. Here, we perform a comparative analysis of CYP genes belonging to clans CYP52 and CYP53 in Aspergillus niger, Beauveria bassiana, Metarhizium robertsii (formerly M. anisopliae var. anisopliae), and Penicillium chrysogenum. These species were able to assimilate n-hexadecane, n-octacosane, and phenanthrene, exhibiting a species-dependent modification in pH of the nutrient medium during this process. Modeling of the molecular docking of the hydrocarbons to the cytochrome P450 active site revealed that both phenanthrene and n-octacosane are energetically favored as substrates for the enzymes codified by genes belonging to both CYP52 and CYP53 clans, and thus appear to be involved in this oxidation step. Analyses of gene expression revealed that CYP53 members were significantly induced by phenanthrene in all species studied, but only CYP52X1 and CYP53A11 from B. bassiana were highly induced with n-alkanes. These findings suggest that the set of P450 enzymes involved in hydrocarbon assimilation by fungi is dependent on phylogeny and reveal distinct substrate and expression specificities.

  9. In vitro metabolism of benzo[a]pyrene-7,8-dihydrodiol and dibenzo[def,p]chrysene-11,12 diol in rodent and human hepatic microsomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jordan N.; Mehinagic, Denis; Nag, Subhasree

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that are ubiquitously found in the environment, produced through combustion of organic matter or petrochemicals, and many of which are procarcinogens. The prototypic PAH, benzo[a]pyrene (B[a]P) and the highly carcinogenic dibenzo[def,p]chrysene (DBC) are metabolically activated by isoforms of the P450 enzyme superfamily producing benzo[a]pyrene-7,8-dihydrodiol (B[a]P diol), dibenzo[def,p]chrysene-11,12 diol (DBC diol). Each of these diols can be further metabolized by cytochrome P450 enzymes to highly reactive diol-epoxide metabolites that readily react with DNA or by phase II conjugation facilitating excretion. To complement prior in vitro metabolism studies with parent B[a]P and DBC, both phase Imore » metabolism and phase II glucuronidation of B[a]P diol and DBC diol were measured in hepatic microsomes from female B6129SF1/J mice, male Sprague-Dawley rats, and female humans. Metabolic parameters, including intrinsic clearance and Michaelis-Menten kinetics were calculated from substrate depletion data. Mice and rats demonstrated similar B[a]P diol phase I metabolic rates. Compared to rodents, human phase I metabolism of B[a]P diol demonstrated lower overall metabolic capacity, lower intrinsic clearance at higher substrate concentrations (>0.14 µM), and higher intrinsic clearance at lower substrate concentrations (<0.07 µM). Rates of DBC diol metabolism did not saturate in mice or humans and were highest overall in mice. Higher affinity constants and lower capacities were observed for DBC diol glucuronidation compared to B[a]P diol glucuronidation; however, intrinsic clearance values for these compounds were consistent within each species. Kinetic parameters reported here will be used to extend physiologically based pharmacokinetic (PBPK) models to include the disposition of B[a]P and DBC metabolites in animal models and humans to support future human health risk assessments.« less

  10. Effects of Annealing Temperature on Properties of Ti-Ga-Doped ZnO Films Deposited on Flexible Substrates.

    PubMed

    Chen, Tao-Hsing; Chen, Ting-You

    2015-11-03

    An investigation is performed into the optical, electrical, and microstructural properties of Ti-Ga-doped ZnO films deposited on polyimide (PI) flexible substrates and then annealed at temperatures of 300 °C, 400 °C, and 450 °C, respectively. The X-ray diffraction (XRD) analysis results show that all of the films have a strong (002) Ga doped ZnO (GZO) preferential orientation. As the annealing temperature is increased to 400 °C, the optical transmittance increases and the electrical resistivity decreases. However, as the temperature is further increased to 450 °C, the transmittance reduces and the resistivity increases due to a carbonization of the PI substrate. Finally, the crystallinity of the ZnO film improves with an increasing annealing temperature only up to 400 °C and is accompanied by a smaller crystallite size and a lower surface roughness.

  11. ZnSe Window Layers for GaAs and GaInP2 Solar Cells

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.

    1997-01-01

    This report concerns studies of the use of n-type ZnSe as a window layer for n/p GaAs and GaInP2 solar cells. Emphasis was placed in this phase of the project on characterizing the interface between n-type ZnSe films grown on epi-GaAs films grown onto single crystal GaAs. Epi-GaAs and heteroepitaxial ZnSe films were grown by MOCVD with a Spire 50OXT Reactor. After growing epitaxial GaAs films on single crystal GaAs wafers, well-oriented crystalline ZnSe films were grown by MOCVD. ZnSe films were grown with substrate temperatures ranging from 250 C to 450 C. Photoluminescence studies carried out by researchers at NASA Lewis determined that the surface recombination velocity at a GaAs surface was significantly reduced after the deposition of a heteroepitaxial layer of ZnSe. The optimum temperature for ZnSe deposition appears to be on the order of 350 C.

  12. Role of UDP-glucuronosyltransferase isoforms in 13-cis retinoic acid metabolism in humans.

    PubMed

    Rowbotham, Sophie E; Illingworth, Nicola A; Daly, Ann K; Veal, Gareth J; Boddy, Alan V

    2010-07-01

    13-cis Retinoic acid (13cisRA, isotretinoin) is an important drug in both dermatology, and the treatment of high-risk neuroblastoma. 13cisRA is known to undergo cytochrome P450-mediated oxidation, mainly by CYP2C8, but phase II metabolic pathways have not been characterized. In the present study, the glucuronidation activities of human liver (HLM) and intestinal microsomes (HIM), as well as a panel of human UDP-glucuronosyltransferases (UGTs) toward both 13cisRA and the 4-oxo metabolite, 4-oxo 13cisRA, were compared using high-performance liquid chromatography. Both HLM and, to a greater extent, HIM catalyzed the glucuronidation of 13cisRA and 4-oxo 13cisRA. Based on the structures of 13cisRA and 4-oxo 13cisRA, the glucuronides formed are conjugated at the terminal carboxylic acid. Further analysis revealed that UGT1A1, UGT1A3, UGT1A7, UGT1A8, and UGT1A9 were the major isoforms responsible for the glucuronidation of both substrates. For 13cisRA, a pronounced substrate inhibition was observed with individual UGTs and with HIM. UGT1A3 exhibited the highest rate of activity toward both substrates, and a high rate of activity toward 13cisRA glucuronidation was also observed with UGT1A7. However, for both substrates, K(m) values were above concentrations reported in clinical studies. Therefore, UGT1A9 is likely to be the most important enzyme in the glucuronidation of both substrates as this enzyme had the lowest K(m) and is expressed in both the intestine and at high levels in the liver.

  13. Seasonal changes in the activity of cytochrome P450(C17) from the testis of Bufo arenarum.

    PubMed

    Solari, J J F; Pozzi, A G; Ceballos, N R

    2002-12-01

    In Bufo arenarum, the biosynthesis of testosterone and 5alpha-dihydrotestosterone takes place through a complete 5-ene pathway, 5-androsten-3beta,17beta-diol being the immediate precursor of testosterone. Besides androgens, testes are able to synthesise 5alpha-pregnan-3,20-dione and several 3alpha and 20alpha reduced derivatives. During the breeding season, steroid biosynthesis turns from androgen to C21-steroid production. As a consequence, the cytochrome P450 17-hydroxylase, C17,20-lyase (CypP450(c17)) could be a key enzyme in that metabolic shift. The present study demonstrates that in testes of B. arenarum, CypP450(c17) co-localises with glucose-6-phosphatase in the microsomal fraction. CypP450(c17) possesses more affinity for pregnenolone than for progesterone in both non-reproductive (Km = 43.76 +/- 4.63 nM and 2,170 +/- 630 nM, respectively) and reproductive (Km = 37.46 +/- 4.19 nM and 3,060 +/- 190 nM, respectively) seasons. These results could explain the predominance of the 5-ene pathway for testosterone biosynthesis. Toad CypP450(c17) activity is higher in the non-reproductive period than the reproductive period, suggesting that this enzyme is an important factor in toad steroidogenic changes. Animals in reproductive conditions showed a significant reduction in circulating androgens. This is in agreement with the decrease in Vmax of cytochrome P450 17-hydroxylase activity, enhancing the physiological relevance of these in vitro results.

  14. Influence of CYP2C8 polymorphisms on the hydroxylation metabolism of paclitaxel, repaglinide and ibuprofen enantiomers in vitro.

    PubMed

    Yu, Lushan; Shi, Da; Ma, Liping; Zhou, Quan; Zeng, Su

    2013-07-01

    CYP2C8 plays an important role in the metabolism of various drugs, such as paclitaxel, repaglinide and ibuprofen. Polymorphisms in the CYP2C8 gene were shown to influence interindividual differences in the pharmacokinetics of paclitaxel, repaglinide and ibuprofen enantiomers. In this study, three CYP2C8 allelic variants (CYP2C8.2, CYP2C8.3 and CYP2C8.4) and wild-type CYP2C8 (CYP2C8.1) were co-expressed for the first time with human cytochrome P450 oxidoreductase (POR) and cytochrome b5 by using a baculovirus-assisted insect cell expression system. Further, the effects of genotype-phenotype correlations of CYP2C8 alleles on the metabolism of paclitaxel, repaglinide and ibuprofen enantiomers were evaluated. The CLint values of CYP2C8.2, CYP2C8.3 and CYP2C8.4 for paclitaxel were 47.7%, 64.3% and 30.2% of that of CYP2C8.1 (p<0.01). The CLint values of CYP2C8.2 and CYP2C8.4 for repaglinide were 77.9% and 80.2% of that of CYP2C8.1 (p<0.05), respectively, while the CLint value of CYP2C8.3 was 1.31-fold higher than that of CYP2C8.1 (p<0.05). The relative CLint values of CYP2C8.2, CYP2C8.3 and CYP2C8.4 were 110.5%, 72.3% and 49.7% of that of CYP2C8.1 and were 124.6%, 83.4% and 47.4% of that of CYP2C8.1 for R-ibuprofen and S-ibuprofen, respectively. Comparing hydroxylation by CYP2C8.1 and CYP2C8.3 resulted in higher and lower intrinsic clearance of repaglinide and ibuprofen enantiomers, respectively. These in vitro findings were consistent with the pharmacokinetics in volunteers who were heterozygous or homozygous carriers of CYP2C8*3. The results of this study provide useful information for predicting CYP2C8 phenotypes and may contribute to individualized drug therapy in the future. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Influence of vacuum annealing on the properties of Cu2SnS3 thin films using low cost ultrasonic spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Rahaman, Sabina; Sunil, M. Anantha; Shaik, Habibuddin; Ghosh, Kaustab

    2018-05-01

    Deposition of Cu2SnS3 (CTS) thin films is successfully carried out on soda lime glass substrate using low cost ultrasonic spray pyrolysis technique. Vacuum annealing of CTS films is carried out at different temperatures 350°C, 400°C and 450°C. The present work is to study the effect of annealing temperature on the crystal structure, surface morphology and optical properties of CTS thin films. Structural studies confirm the formation of CTS phase. Raman analysis is carried out to study presence of defects with annealing temperature. Optical studies confirm that film prepared at 450°C temperature is suitable as absorber material for photovoltaic applications.

  16. Aryl hydrocarbon receptor activation and CYP1A induction by cooked food-derived carcinogenic heterocyclic amines in human HepG2 cell lines.

    PubMed

    Sekimoto, Masashi; Sumi, Haruna; Hosaka, Takuomi; Umemura, Takashi; Nishikawa, Akiyoshi; Degawa, Masakuni

    2016-11-01

    The ability of nine cooked food-derived heterocyclic aromatic amines (HCAs), such as 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-6-methylpyrido[12-a:3',2'-d]imidazole (Glu-P-1), 2-amino-pyrido[12-a:3',2'-d]imidazole hydrochloride (Glu-P-2), 2-amino-9H-pyrido[2,3-b]indole (AαC), 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC), 2-amino-3-methylimidazo[4,5-f]quinolone (IQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-1-methyl-6-phenyl-1H-imidazo[4,5-b]pyridine (PhIP), to activate human aryl hydrocarbon receptor (hAhR) was examined using a HepG2-A10 cell line, which has previously established from human hepatocarcinoma-derived HepG2 cells for use in hAhR-based luciferase reporter gene assays. Trp-P-1, Trp-P-2, AαC, MeAαC, IQ and MeIQx showed a definite ability to induce not only luciferase (hAhR activation) in HepG2-A10 cells but also cytochrome P450 (CYP)1A1/1A2 mRNAs in HepG2 cells, while such the ability of Glu-P-1, Glu-P-2, and PhIP was very low. In addition, all the HCAs examined, especially MeAαC and MeIQx, had a definite capacity for inhibiting the activity of ethoxyresorfin O-deethylase (CYP1As, especially CYP1A1). The present findings demonstrate that all the HCAs examined have the ability to activate hAhR and its target genes, and further confirm that these HCAs become good substrates for human CYP1A subfamily enzyme(s). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Spectroscopic characterization of the oxyferrous complex of prostacyclin synthase in solution and in trapped sol–gel matrix

    PubMed Central

    Yeh, Hui-Chun; Hsu, Pei-Yung; Tsai, Ah-Lim; Wang, Lee-Ho

    2010-01-01

    Prostacyclin synthase (PGIS) is a member of the cytochrome P450 family in which the oxyferrous complexes are generally labile in the absence of substrate. At 4 °C, the on-rate constants and off-rate constants of oxygen binding to PGIS in solution are 5.9 × 105 m−1 ·s−1 and 29 s−1, respectively. The oxyferrous complex decays to a ferric form at a rate of 12 s−1. We report, for the first time, a stable oxyferrous complex of PGIS in a transparent sol–gel monolith. The encapsulated ferric PGIS retained the same spectroscopic features as in solution. The binding capabilities of the encapsulated PGIS were demonstrated by spectral changes upon the addition of O-based, N-based and C-based ligands. The peroxidase activity of PGIS in sol–gel was three orders of magnitude slower than that in solution owing to the restricted diffusion of the substrate in sol–gel. The oxyferrous complex in sol–gel was observable for 24 h at room temperature and displayed a much red-shifted Soret peak. Stabilization of the ferrous–carbon monoxide complex in sol–gel was observed as an enrichment of the 450-nm species over the 420-nm species. This result suggests that the sol–gel method may be applied to other P450s to generate a stable intermediate in the di-oxygen activation. PMID:18397321

  18. METABOLISM OF MYCLOBUTANIL AND TRIADIMEFON BY HUMAN AND RAT CYTOCHROME P450 ENZYMES AND LIVER MICROSOMES.

    EPA Science Inventory

    Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil wa...

  19. Characterization of human liver cytochrome P-450 enzymes involved in the O-demethylation of a new P-glycoprotein inhibitor HM-30181.

    PubMed

    Paek, In Bok; Kim, Sung Yeon; Kim, Maeng Sup; Kim, John; Lee, Gwansun; Lee, Hye Suk

    2007-08-01

    HM-30181, 4-oxo-4H-chromene-2-carboxylic acid [2-(2-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-2H-tetrazol-5-yl)-4,5-dimethoxy-phenyl]-amide, is a new P-glycoprotein inhibitor with the potential to increase the cytotoxic activity of orally coadministered paclitaxel. This study was performed to characterize human cytochrome P-450 (CYP) enzymes involved in the metabolism of HM-30181 to 4- or 5-O-desmethyl-HM-30181 (M2) and 6- or 7-O-desmethyl-HM-30181 (M3) and to investigate the inhibitory potential of HM-30181 on CYP enzymes in human liver microsomes. CYP3A4 was identified as the major isozyme responsible for the O-demethylation of HM-30181 to M2 and M3 based on the correlation analysis, chemical inhibition and immuno-inhibition study and metabolism in cDNA-expressed human CYP isozymes. HM-30181 itself had no inhibitory effects on CYPs 1A2, 2A6, 2C8, 2C9, 2C19, 2D6, and 3A4 in human liver microsomes, suggesting the possibility that the pharmacokinetics of HM-30181 could be changed with coadministration of known CYP3A4 inducers or inhibitors.

  20. Effect of Elevated Atmospheric CO2 and Temperature on the Disease Severity of Rocket Plants Caused by Fusarium Wilt under Phytotron Conditions

    PubMed Central

    Chitarra, Walter; Siciliano, Ilenia; Ferrocino, Ilario; Gullino, Maria Lodovica; Garibaldi, Angelo

    2015-01-01

    The severity of F. oxysporum f.sp. conglutinans on rocket plants grown under simulated climate change conditions has been studied. The rocket plants were cultivated on an infested substrate (4 log CFU g-1) and a non-infested substrate over three cycles. Pots were placed in six phytotrons in order to simulate different environmental conditions: 1) 400–450 ppm CO2, 18–22°C; 2) 800–850 ppm CO2, 18–22°C; 3) 400–450 ppm CO2, 22–26°C, 4) 800–850 ppm CO2, 22–26°C, 5) 400–450 ppm CO2, 26–30°C; 6) 800–850 ppm CO2, 26–30°C. Substrates from the infested and control samples were collected from each phytotron at 0, 60 and 120 days after transplanting. The disease index, microbial abundance, leaf physiological performances, root exudates and variability in the fungal profiles were monitored. The disease index was found to be significantly influenced by higher levels of temperature and CO2. Plate counts showed that fungal and bacterial development was not affected by the different CO2 and temperature levels, but a significant decreasing trend was observed from 0 up to 120 days. Conversely, the F. oxysporum f.sp. conglutinans plate counts did not show any significantly decrease from 0 up to 120 days. The fungal profiles, evaluated by means of polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE), showed a relationship to temperature and CO2 on fungal diversity profiles. Different exudation patterns were observed when the controls and infested plants were compared, and it was found that both CO2 and temperature can influence the release of compounds from the roots of rocket plants. In short, the results show that global climate changes could influence disease incidence, probably through plant-mediated effects, caused by soilborne pathogens. PMID:26469870

  1. Studies on Pharmacokinetic Drug Interaction Potential of Vinpocetine

    PubMed Central

    Manda, Vamshi K.; Avula, Bharathi; Dale, Olivia R.; Chittiboyina, Amar G.; Khan, Ikhlas A.; Walker, Larry A.; Khan, Shabana I.

    2015-01-01

    Abstract Background Vinpocetine, a semi-synthetic derivative of vincamine, is a popular dietary supplement used for the treatment of several central nervous system related disorders. Despite its wide use, no pharmacokinetic drug interaction studies are reported in the literature. Due to increasing use of dietary supplements in combination with conventional drugs, the risk of adverse effects is on the rise. As a preliminary step to predict a possibility of drug interaction during concomitant use of vinpocetine and conventional drugs, this study was carried out to evaluate the effects of vinpocetine on three main regulators of pharmacokinetic drug interactions namely, cytochromes P450 (CYPs), P-glycoprotein (P-gp), and Pregnane X receptor (PXR). Methods Inhibition of CYPs was evaluated by employing recombinant enzymes. The inhibition of P-gp was determined by calcein-AM uptake method in transfected and wild type MDCKII cells. Modulation of PXR activity was monitored through a reporter gene assay in HepG2 cells. Results Vinpocetine showed a strong inhibition of P-gp (EC50 8 μM) and a moderate inhibition of recombinant CYP3A4 and CYP2D6 (IC50 2.8 and 6.5 μM) with no activity towards CYP2C9, CYP2C19 and CYP1A2 enzymes. In HLM, competitive inhibition of CYP3A4 (IC50 54 and Ki 19 μM) and non-competitive inhibition of CYP2D6 (IC50 19 and Ki 26 μM) was observed. Activation of PXR was observed only at the highest tested concentration of vinpocetine (30 μM) while lower doses were ineffective. Conclusion Strong inhibition of P-gp by vinpocetine is indicative of a possibility of drug interactions by altering the pharmacokinetics of drugs, which are the substrates of P-gp. However, the effects on CYPs and PXR indicate that vinpocetine may not affect CYP-mediated metabolism of drugs, as the inhibitory concentrations are much greater than the expected plasma concentrations in humans. PMID:28930203

  2. Studies on Pharmacokinetic Drug Interaction Potential of Vinpocetine.

    PubMed

    Manda, Vamshi K; Avula, Bharathi; Dale, Olivia R; Chittiboyina, Amar G; Khan, Ikhlas A; Walker, Larry A; Khan, Shabana I

    2015-06-05

    Background: Vinpocetine, a semi-synthetic derivative of vincamine, is a popular dietary supplement used for the treatment of several central nervous system related disorders. Despite its wide use, no pharmacokinetic drug interaction studies are reported in the literature. Due to increasing use of dietary supplements in combination with conventional drugs, the risk of adverse effects is on the rise. As a preliminary step to predict a possibility of drug interaction during concomitant use of vinpocetine and conventional drugs, this study was carried out to evaluate the effects of vinpocetine on three main regulators of pharmacokinetic drug interactions namely, cytochromes P450 (CYPs), P-glycoprotein (P-gp), and Pregnane X receptor (PXR). Methods: Inhibition of CYPs was evaluated by employing recombinant enzymes. The inhibition of P-gp was determined by calcein-AM uptake method in transfected and wild type MDCKII cells. Modulation of PXR activity was monitored through a reporter gene assay in HepG2 cells. Results: Vinpocetine showed a strong inhibition of P-gp (EC 50 8 µM) and a moderate inhibition of recombinant CYP3A4 and CYP2D6 (IC 50 2.8 and 6.5 µM) with no activity towards CYP2C9, CYP2C19 and CYP1A2 enzymes. In HLM, competitive inhibition of CYP3A4 (IC 50 54 and K i 19 µM) and non-competitive inhibition of CYP2D6 (IC 50 19 and K i 26 µM) was observed. Activation of PXR was observed only at the highest tested concentration of vinpocetine (30 µM) while lower doses were ineffective. Conclusion: Strong inhibition of P-gp by vinpocetine is indicative of a possibility of drug interactions by altering the pharmacokinetics of drugs, which are the substrates of P-gp. However, the effects on CYPs and PXR indicate that vinpocetine may not affect CYP-mediated metabolism of drugs, as the inhibitory concentrations are much greater than the expected plasma concentrations in humans.

  3. Exploring the role of drug-metabolising enzymes in antidepressant side effects.

    PubMed

    Hodgson, Karen; Tansey, Katherine E; Uher, Rudolf; Dernovšek, Mojca Zvezdana; Mors, Ole; Hauser, Joanna; Souery, Daniel; Maier, Wolfgang; Henigsberg, Neven; Rietschel, Marcella; Placentino, Anna; Craig, Ian W; Aitchison, Katherine J; Farmer, Anne E; Dobson, Richard J B; McGuffin, Peter

    2015-07-01

    Cytochrome P450 enzymes are important in the metabolism of antidepressants. The highly polymorphic nature of these enzymes has been linked to variability in antidepressant metabolism rates, leading to hope regarding the use of P450 genotyping to guide treatment. However, evidence that P450 genotypic differences underlie the variation in treatment outcomes is inconclusive. We explored the links between both P450 genotype and serum concentrations of antidepressant with antidepressant side effects, using data from the Genome-Based Therapeutic Drugs for Depression Project (GENDEP), which is a large (n = 868), pharmacogenetic study of depressed individuals treated with escitalopram or nortriptyline. Patients were genotyped for the enzymes CYP2C19 and CYP2D6, and serum concentrations of both antidepressant and primary metabolite were measured after 8 weeks of treatment. Side effects were assessed weekly. We investigated associations between P450 genotypes, serum concentrations of antidepressants and side effects, as well as the relationship between P450 genotype and study discontinuation. P450 genotype did not predict total side effect burden (nortriptyline: n = 251, p = 0.5638, β = -0.133, standard error (SE) = 0.229; escitalopram: n = 340, p = 0.9627, β = -0.004, SE = 0.085), study discontinuation (nortriptyline n = 284, hazard ratio (HR) = 1.300, p = 0.174; escitalopram n = 376, HR = 0.870, p = 0.118) or specific side effects. Serum concentrations of antidepressant were only related to a minority of the specific side effects measured: dry mouth, dizziness and diarrhoea. In this sample where antidepressant dosage is titrated using clinical judgement, P450 genotypes do not explain differences between patients in side effects with antidepressants. Serum drug concentrations appear to only explain variability in the occurrence of a minority of specific side effects.

  4. Determination of Human Hepatic CYP2C8 and CYP1A2 Age-Dependent Expression to Support Human Health Risk Assessment for Early Ages

    EPA Science Inventory

    Predicting age-specific metabolism is important for evaluating age-related drug and chemical sensitivity. Multiple cytochrome P450s and carboxylesterase enzymes are responsible for human pyrethroid metabolism. Complete ontogeny data for each enzyme are needed to support in vitro ...

  5. Elicitor induction of a microsomal 5-O-(4-coumaroyl)shikimate 3'-hydroxylase in parsley cell suspension cultures.

    PubMed

    Heller, W; Kühnl, T

    1985-09-01

    Microsomal preparations from parsley cell suspension cultures challenged with an elicitor from Phytophthora megasperma f.sp. glycinea (Pmg) catalyze the formation of trans-5-O-caffeoylshikimate from trans-5-O-(4-coumaroyl)shikimate. Neither the cis isomer nor free 4-coumarate, 4-coumaroyl-CoA, or 5-O-(4-coumaroyl)quinate are substrates for this enzyme. The reaction is strictly dependent on NADPH as a reducing cofactor and on molecular oxygen. NADH, ascorbic acid, and 6,7-dimethyl-5,6,7,8-tetrahydropterine cannot substitute for NADPH. However, NADH enhances enzyme activity observed in the presence of NADPH. Cytochrome c and carbon monoxide inhibit the hydroxylation reaction, suggesting a cytochrome P-450-dependent mixed-function monooxygenase.

  6. Effects of Rolapitant Administered Intravenously on the Pharmacokinetics of a Modified Cooperstown Cocktail (Midazolam, Omeprazole, Warfarin, Caffeine, and Dextromethorphan) in Healthy Subjects.

    PubMed

    Wang, Xiaodong; Zhang, Zhi-Yi; Arora, Sujata; Wang, Jing; Lu, Sharon; Powers, Dan; Kansra, Vikram

    2018-04-25

    Rolapitant is a selective, long-acting neurokinin-1 receptor antagonist, approved in the United States and Europe for prevention of delayed chemotherapy-induced nausea and vomiting in adults. This open-label study evaluated the effects of a new intravenous formulation of rolapitant on cytochrome P450 (CYP) enzyme (CYP3A, CYP1A2, CYP2C9, CYP2C19, and CYP2D6) activity. On days 1 and 14, 36 healthy volunteers received a modified Cooperstown cocktail (midazolam 3 mg [CYP3A substrate], caffeine 200 mg [CYP1A2 substrate], S-warfarin 10 mg [CYP2C9 substrate] + vitamin K 10 mg, omeprazole 40 mg [CYP2C19 substrate], and dextromethorphan 30 mg [CYP2D6 substrate]). On day 7, subjects received the modified Cooperstown cocktail after 166.5-mg rolapitant infusion. On days 21, 28, and 35, subjects received oral dextromethorphan. Maximum plasma concentration (C max ) and area under the plasma concentration-time curve (AUC 0-last ) of probe drugs post- vs pre-rolapitant administration were assessed using geometric least-squares mean ratios (GMRs) with 90%CIs. The 90%CIs of the GMRs were within the 0.80-1.25 no-effect limits for caffeine and S-warfarin C max and AUC 0-last . For midazolam C max and AUC 0-last and omeprazole C max , the 90%CIs of the GMRs were marginally outside these limits. Intravenous rolapitant coadministration increased dextromethorphan exposure, peaking 14 days post-rolapitant administration (GMRs: C max , 2.74, 90%CI 2.21-3.40; AUC 0-last , 3.36, 90%CI 2.74-4.13). Intravenous rolapitant 166.5 mg and probe drugs were well tolerated when coadministered. These data suggest that intravenous rolapitant is not an inhibitor of CYP3A, CYP2C9, CYP2C19, or CYP1A2 but is a moderate inhibitor of CYP2D6. © 2018, The American College of Clinical Pharmacology.

  7. Assaying Oxidative Coupling Activity of CYP450 Enzymes.

    PubMed

    Agarwal, Vinayak

    2018-01-01

    Cytochrome P450 (CYP450) enzymes are ubiquitous catalysts in natural product biosynthetic schemes where they catalyze numerous different transformations using radical intermediates. In this protocol, we describe procedures to assay the activity of a marine bacterial CYP450 enzyme Bmp7 which catalyzes the oxidative radical coupling of polyhalogenated aromatic substrates. The broad substrate tolerance of Bmp7, together with rearrangements of the aryl radical intermediates leads to a large number of products to be generated by the enzymatic action of Bmp7. The complexity of the product pool generated by Bmp7 thus presents an analytical challenge for structural elucidation. To address this challenge, we describe mass spectrometry-based procedures to provide structural insights into aryl crosslinked products generated by Bmp7, which can complement subsequent spectroscopic experiments. Using the procedures described here, for the first time, we show that Bmp7 can efficiently accept polychlorinated aryl substrates, in addition to the physiological polybrominated substrates for the biosynthesis of polyhalogenated marine natural products. © 2018 Elsevier Inc. All rights reserved.

  8. [Progress on studies of impact on CYP450 enzymes activity of traditional Chinese medicine by Cocktail probe substrates approach].

    PubMed

    Du, Xi; He, Xin; Huang, Yu-Hong; Li, Zi-Qiang

    2016-12-01

    Cocktail probe substrates approach is a fast, sensitive and high through put method to determine cytochrome P450 enzymes activity. It has been widely used to screen early drug development, analyze drug metabolism types and confirm the metabolism pathways, study drug-drug interactions, optimize clinical regimen, evaluate post marketing drugs and help liver/kidney pathological studies. This article reviewed characteristics of Cocktail probe substrates, focused on the application to traditional Chinese medicine to CYP450 system as follows: the metabolic pathway research of Chinese herb active ingredients; processing way and compatibility of medical herbs affect CYP450; find out the metabolic characteristic of Chinese patent medicine, study in pharmacy of national minority; do research in liver protective effect of traditional Chinese medicine and evaluate traditional Chinese medicine syndromes in animal models. This article make a summary of existing research results and also make a comparison of cocktail probe substrates approach application to western medicine and Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.

  9. Frequency of CYP450 enzyme gene polymorphisms in the Greek population: review of the literature, original findings and clinical significance.

    PubMed

    Ragia, Georgia; Giannakopoulou, Efstathia; Karaglani, Makrina; Karantza, Ioanna-Maria; Tavridou, Anna; Manolopoulos, Vangelis G

    2014-01-01

    The cytochrome P450 (CYP450) enzyme family is involved in the oxidative metabolism of many therapeutic drugs and various endogenous substrates. These enzymes are highly polymorphic. Prevalence of CYP450 enzyme gene polymorphisms vary among different populations and substantial inter- and intra-ethnic variability in frequency of CYP450 enzyme gene polymorphisms has been reported. This paper provides an overview and investigation of CYP450 genotypic and phenotypic reports published in the Greek population.

  10. A CYP21A2 based whole-cell system in Escherichia coli for the biotechnological production of premedrol.

    PubMed

    Brixius-Anderko, Simone; Schiffer, Lina; Hannemann, Frank; Janocha, Bernd; Bernhardt, Rita

    2015-09-15

    Synthetic glucocorticoids like methylprednisolone (medrol) are of high pharmaceutical interest and represent powerful drugs due to their anti-inflammatory and immunosuppressive effects. Since the chemical hydroxylation of carbon atom 21, a crucial step in the synthesis of the medrol precursor premedrol, exhibits a low overall yield because of a poor stereo- and regioselectivity, there is high interest in a more sustainable and efficient biocatalytic process. One promising candidate is the mammalian cytochrome P450 CYP21A2 which is involved in steroid hormone biosynthesis and performs a selective oxyfunctionalization of C21 to provide the precursors of aldosterone, the main mineralocorticoid, and cortisol, the most important glucocorticoid. In this work, we demonstrate the high potential of CYP21A2 for a biotechnological production of premedrol, an important precursor of medrol. We successfully developed a CYP21A2-based whole-cell system in Escherichia coli by coexpressing the cDNAs of bovine CYP21A2 and its redox partner, the NADPH-dependent cytochrome P450 reductase (CPR), via a bicistronic vector. The synthetic substrate medrane was selectively 21-hydroxylated to premedrol with a max. yield of 90 mg L(-1) d(-1). To further improve the biocatalytic activity of the system by a more effective electron supply, we exchanged the CPR with constructs containing five alternative redox systems. A comparison of the constructs revealed that the redox system with the highest endpoint yield converted 70 % of the substrate within the first 2 h showing a doubled initial reaction rate compared with the other constructs. Using the best system we could increase the overall yield of premedrol to a maximum of 320 mg L(-1) d(-1) in shaking flasks. Optimization of the biotransformation in a bioreactor could further improve the premedrol gain to a maximum of 0.65 g L(-1) d(-1). We successfully established a CYP21-based whole-cell system for the biotechnological production of premedrol, a pharmaceutically relevant glucocorticoid, in E. coli and could improve the system by optimizing the redox system concerning reaction velocity and endpoint yield. This is the first step for a sustainable replacement of a complicated chemical low-yield hydroxylation by a biocatalytic cytochrome P450-based whole-cell system.

  11. Identification of human cytochrome P450 enzymes involved in the metabolism of IN-1130, a novel activin receptor-like kinase-5 (ALK5) inhibitor.

    PubMed

    Kim, Y W; Kim, Y K; Kim, D-K; Sheen, Y Y

    2008-05-01

    1. The in vitro metabolism of 3-((5-(6-methylpyridin-2-yl)-4-(quinoxalin-6-yl)-1H-imidazol-2-yl)methyl)benzamide (IN-1,130), a selective activin receptor-like kinase-5 (ALK5) inhibitor and a candidate drug for fibrotic disease, was studied. 2. The cytochrome P450s (CYPs) responsible for metabolism of IN-1,130 in liver microsomes of rat, mouse, dog, monkey and human, and in human CYP supersomestrade mark, were identified using specific CYP inhibitors. The order of disappearance of IN-1,130 in various liver microsomal systems studied was as follows: monkey, mouse, rat, human, and dog. 3. Five distinct metabolites (M1-M5) were identified in all the above microsomes and their production was substantially inhibited by CYP inhibitors such as SKF-525A and ketoconazole. Among nine human CYP supersomestrade mark examined, CYP3A4, CYP2C8, CYP2D6 1, and CYP2C19 were involved in the metabolism of IN-1,130, and the production of metabolites were significantly inhibited by specific CYP inhibitors. IN-1,130 disappeared fastest in CYP2C8 supersomes. CYP3A4 produced four metabolites of IN-1,130 (M1-M4), whereas supersomes expressing human FMO cDNAs, such as FMO1, FMO3, and FMO5, produced no metabolites. 4. Hence, it is concluded that metabolism of IN-1,130 is mediated by CYP3A4, CYP2C8, CYP2D6 1, and CYP2C19.

  12. Deoxysarpagine hydroxylase--a novel enzyme closing a short side pathway of alkaloid biosynthesis in Rauvolfia.

    PubMed

    Yu, Bingwu; Ruppert, Martin; Stöckigt, Joachim

    2002-08-01

    Microsomal preparations from cell suspension cultures of the Indian plant Rauvolfia serpentina catalyze the hydroxylation of deoxysarpagine under formation of sarpagine. The newly discovered enzyme is dependent on NADPH and oxygen. It can be inhibited by typical cytochrome P450 inhibitors such as cytochrome c, ketoconazole, metyrapone, tetcyclacis and carbon monoxide. The CO-effect is reversible with light (450 nm). The data indicate that deoxysarpagine hydroxylase is a novel cytochrome P450-dependent monooxygenase. A pH optimum of 8.0 and a temperature optimum of 35 degrees C were determined. K(m) values were 25 microM for NADPH and 7.4 microM for deoxysarpagine. Deoxysarpagine hydroxylase activity was stable in presence of 20% sucrose at -25 degrees C for >3 months. The analysis of presence of the hydroxylase in nine cell cultures of seven different families indicates a very limited taxonomic distribution of this enzyme.

  13. Hop (Humulus lupulus L.) Extract and 6-Prenylnaringenin Induce P450 1A1 Catalyzed Estrogen 2-Hydroxylation

    PubMed Central

    2016-01-01

    Humulus lupulus L. (hops) is a popular botanical dietary supplement used by women as a sleep aid and for postmenopausal symptom relief. In addition to its efficacy for menopausal symptoms, hops can also modulate the chemical estrogen carcinogenesis pathway and potentially protect women from breast cancer. In the present study, an enriched hop extract and the key bioactive compounds [6-prenylnarigenin (6-PN), 8-prenylnarigenin (8-PN), isoxanthohumol (IX), and xanthohumol (XH)] were tested for their effects on estrogen metabolism in breast cells (MCF-10A and MCF-7). The methoxyestrones (2-/4-MeOE1) were analyzed as biomarkers for the nontoxic P450 1A1 catalyzed 2-hydroxylation and the genotoxic P450 1B1 catalyzed 4-hydroxylation pathways, respectively. The results indicated that the hop extract and 6-PN preferentially induced the 2-hydroxylation pathway in both cell lines. 8-PN only showed slight up-regulation of metabolism in MCF-7 cells, whereas IX and XH did not have significant effects in either cell line. To further explore the influence of hops and its bioactive marker compounds on P450 1A1/1B1, mRNA expression and ethoxyresorufin O-dealkylase (EROD) activity were measured. The results correlated with the metabolism data and showed that hop extract and 6-PN preferentially enhanced P450 1A1 mRNA expression and increased P450 1A1/1B1 activity. The aryl hydrocarbon receptor (AhR) activation by the isolated compounds was tested using xenobiotic response element (XRE) luciferase construct transfected cells. 6-PN was found to be an AhR agonist that significantly induced XRE activation and inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced XRE activity. 6-PN mediated induction of EROD activity was also inhibited by the AhR antagonist CH223191. These data show that the hop extract and 6-PN preferentially enhance the nontoxic estrogen 2-hydroxylation pathway through AhR mediated up-regulation of P450 1A1, which further emphasizes the importance of standardization of botanical extracts to multiple chemical markers for both safety and desired bioactivity. PMID:27269377

  14. Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers.

    PubMed

    Yeh, Rosa F; Gaver, Vincent E; Patterson, Kristine B; Rezk, Naser L; Baxter-Meheux, Faustina; Blake, Michael J; Eron, Joseph J; Klein, Cheri E; Rublein, John C; Kashuba, Angela D M

    2006-05-01

    The effect of lopinavir/ritonavir (LPV/r) administration on cytochrome P450 (CYP) enzyme activity was quantified using a phenotyping biomarker cocktail. Changes in CYP2C9, CYP2C19, CYP3A, CYP1A2, N-acetyltransferase-2 (NAT-2), and xanthine oxidase (XO) activities were evaluated using warfarin (WARF) + vitamin K, omeprazole (OMP), intravenous (IV) and oral (PO) midazolam (MDZ), and caffeine (CAF). : Open-label, multiple-dose, pharmacokinetic study in healthy volunteers. Subjects (n = 14) simultaneously received PO WARF 10 mg, vitamin K 10 mg, OMP 40 mg, CAF 2 mg/kg, and IV MDZ 0.025 mg/kg on days (D) 1 and 14, and PO MDZ 5 mg on D2 and D15. LPV/r (400/100 mg twice daily) was administered on D4-17. CYP2C9 and CYP2C19 activities were quantified by S-WARF AUC0-inf and OMP/5-hydroxy OMP ratio, respectively. CYP1A2, NAT-2, and XO activities were quantified by urinary CAF metabolite ratios. Hepatic and intestinal + hepatic CYP3A activities were quantified by IV (CL) and PO (CL/F) MDZ clearance, respectively. After LPV/r therapy, CYP2C9, CYP2C19, and CYP1A2 activity increased by 29%, 100%, and 43% (P = 0.001, 0.046, and 0.001), respectively. No changes were seen in NAT-2 or XO activity. Hepatic and intestinal + hepatic CYP3A activity decreased by 77% (P < 0.001) and 92% (P = 0.001), respectively. LPV/r therapy results in modest induction of CYP1A2 and CYP2C9 and potent induction of CYP2C19 activity. Increasing doses of concomitant medications metabolized by these enzymes may be necessary. LPV/r inhibited intestinal CYP3A to a greater extent than hepatic CYP3A activity. Doses of concomitant CYP3A substrates should be reduced when combined with LPV/r, although intravenously administered compounds may require less of a relative dose reduction than orally administered compounds.

  15. Mechanism of bonding and debonding using surface activated bonding method with Si intermediate layer

    NASA Astrophysics Data System (ADS)

    Takeuchi, Kai; Fujino, Masahisa; Matsumoto, Yoshiie; Suga, Tadatomo

    2018-04-01

    Techniques of handling thin and fragile substrates in a high-temperature process are highly required for the fabrication of semiconductor devices including thin film transistors (TFTs). In our previous study, we proposed applying the surface activated bonding (SAB) method using Si intermediate layers to the bonding and debonding of glass substrates. The SAB method has successfully bonded glass substrates at room temperature, and the substrates have been debonded after heating at 450 °C, in which TFTs are fabricated on thin glass substrates for LC display devices. In this study, we conducted the bonding and debonding of Si and glass in order to understand the mechanism in the proposed process. Si substrates are also successfully bonded to glass substrates at room temperature and debonded after heating at 450 °C using the proposed bonding process. By the composition analysis of bonding interfaces, it is clarified that the absorbed water on the glass forms interfacial voids and cause the decrease in bond strength.

  16. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes

    PubMed Central

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E.; Calcutt, Wade M.; Brash, Alan R.; Samel, Nigulas

    2015-01-01

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using 18O-labeled substrate and incubations in H218O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom. PMID:26100625

  17. Cloning, expression and activation of a truncated 92-kDa gelatinase minienzyme.

    PubMed

    Kröger, M; Tschesche, H

    1997-09-01

    The matrix metalloproteinases (MMPs) are a family of highly homologous zinc-endopeptidases that degrade extracellular matrix components. Human 92-kDa gelatinase (MMP-9) represents one of the MMPs that cleaves native collagen type IV. As a basis for structural investigations, the short form (catalytic domain, amino acid residues 113-450) of the 92-kDa gelatinase cDNA was cloned and expressed in E. coli as a minienzyme. By combination of reverse transcription (RT) and polymerase chain reaction (PCR), the truncated 92-kDa gelatinase-cDNA was amplified from the corresponding mRNA derived from ovarian carcinoma cells. The cDNA fragment obtained was cloned in E. coli and sequenced. With the exception of one nucleotide inversion at position 745 (gt-->tg) the cDNA sequence was identical to the nucleotide sequence of the 92-kDa gelatinase as has been previously reported. The protein was expressed in E. coli using the vector pET-12b. The recombinant protein was stored in inclusion bodies and extracted as a 38 kDa species from the inclusion bodies by solubilization in 8 M urea. The product was purified by affinity chromatography and gel filtration. Amino-terminal sequence analysis confirmed the identity with the catalytic domain of 92-kDa gelatinase. The recombinant protein was refolded in the presence of Ca2+ and Zn2+ and yielded an active minienzyme with gelatinolytic activity. It degrades the native substrate collagen type IV and the synthetic substrate Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 x AcOH like the full-length 92-kDa gelatinase. The catalytic activity could be inhibited by the specific MMP inhibitors TIMP-1 and TIMP-2.

  18. In vitro inhibitory activities of the extract of Hibiscus sabdariffa L. (family Malvaceae) on selected cytochrome P450 isoforms.

    PubMed

    Johnson, Showande Segun; Oyelola, Fakeye Titilayo; Ari, Tolonen; Juho, Hokkanen

    2013-01-01

    Literature is scanty on the interaction potential of Hibiscus sabdariffa L., plant extract with other drugs and the affected targets. This study was conducted to investigate the cytochrome P450 (CYP) isoforms that are inhibited by the extract of Hibiscus sabdariffa L. in vitro. The inhibition towards the major drug metabolizing CYP isoforms by the plant extract were estimated in human liver microsomal incubations, by monitoring the CYP-specific model reactions through previously validated N-in-one assay method. The ethanolic extract of Hibiscus sabdariffa showed inhibitory activities against nine selected CYP isoforms: CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4. The concentrations of the extract which produced 50% inhibition of the CYP isoforms ranged from 306 µg/ml to 1660 µg/ml, and the degree of inhibition based on the IC50 values for each CYP isoform was in the following order: CYP1A2 > CYP2C8 > CYP2D6 > CYP2B6 > CYP2E1 > CYP2C19 > CYP3A4 > CYP2C9 > CYP2A6. Ethanolic extract of Hibiscus sabdariffa caused inhibition of CYP isoforms in vitro. These observed inhibitions may not cause clinically significant herb-drug interactions; however, caution may need to be taken in co-administering the water extract of Hibiscus sabdariffa with other drugs until clinical studies are available to further clarify these findings.

  19. Phenobarbital induction of cytochromes P-450. High-level long-term responsiveness of primary rat hepatocyte cultures to drug induction, and glucocorticoid dependence of the phenobarbital response.

    PubMed Central

    Waxman, D J; Morrissey, J J; Naik, S; Jauregui, H O

    1990-01-01

    The induction of hepatic cytochromes P-450 by phenobarbital (PB) was studied in rat hepatocytes cultured for up to 5 weeks on Vitrogen-coated plates in serum-free modified Chee's medium then exposed to PB (0.75 mM) for an additional 4 days. Immunoblotting analysis indicated that P-450 forms PB4 (IIB1) and PB5 (IIB2) were induced dramatically (greater than 50-fold increase), up to levels nearly as high as those achieved in PB-induced rat liver in vivo. The newly synthesized cytochrome P-450 was enzymically active, as shown by the major induction of the P-450 PB4-dependent steroid 16 beta-hydroxylase and pentoxyresorufin O-dealkylase activities in the PB-induced hepatocyte microsomes (up to 90-fold increase). PB induction of these P-450s was markedly enhanced by the presence of dexamethasone (50 nM-1 microM), which alone was not an affective inducing agent, and was inhibited by greater than 90% by 10% fetal bovine serum. The PB response was also inhibited (greater than 85%) by growth hormone (250 ng/ml), indicating that this hormone probably acts directly on the hepatocyte when it antagonizes the induction of P-450 PB4 in intact rats. In untreated hepatocytes, P-450 RLM2 (IIA2), P-450 3 (IIA1) and NADPH P-450 reductase levels were substantially maintained in the cultures for 10-20 days. The latter two enzymes were also inducible by PB to an extent (3-4 fold elevation) that is comparable with that observed in the liver in vivo. Moreover, P-450c (IA1) and P-450 3 (IIA1) were highly inducible by 3-methylcholanthrene (5 microM; 48 h exposure) even after 3 weeks in culture. In contrast, the male-specific pituitary-regulated P-450 form 2c (IIC11) was rapidly lost upon culturing the hepatocytes, suggesting that supplementation of appropriate hormonal factors may be necessary for its expression. The present hepatocyte culture system exhibits a responsiveness to drug inducers that is qualitatively and quantitatively comparable with that observed in vivo, and should prove valuable for more detailed investigations of the molecular and mechanistic basis of the response to PB and its modulation by endogenous hormones. Images Fig. 3. Fig. 5. PMID:2222405

  20. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1992-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  1. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1993-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  2. Wood source and pyrolysis temperature interact to control PyOM degradation rates

    NASA Astrophysics Data System (ADS)

    Bird, J. A.; Hatton, P. J.; Filley, T. R.; Chatterjee, S.; Auclerc, A.; Gormley, M.; Dastmalchi, K.; Stark, R. E.; Nadelhoffer, K. J.

    2015-12-01

    Surprisingly little is known about how shifts in tree species composition and increased forest fire frequency and intensity will affect one of the most stable pools of soil organic matter, i.e. the pyrogenic organic matter (PyOM or char). In a previous study, we showed that wood source and pyrolysis temperature interact to control PyOM structure and potential reactivity for two tree species common in high-latitude forests, jack pine (JP) and red maple (RM). Here, we investigate whether these differences affect PyOM turnover by examining the fates of 13C/15N-enriched JP wood and PyOM pyrolyzed at 300 (JP300) and 450 °C (JP450) and RM pyrolyzed at 450 °C (RM450). The substrates were applied 1-3 cm below the O/A interface of a well-drained Spodosol in a long-term forest fire study located at the University of Michigan Biological Station (Pellston, MI, USA). 13C-CO2effluxes from the first 996 days of decay showed a significant wood source by pyrolysis temperature interaction on PyOM field mineralisation rates, with RM450 mineralising twice faster than JP450 during the first 90 days. Increasing pyrolysis temperature substantially decreased field mineralization rates during the first 996 days, with mineralisation rates 24 and 80 times slower for JP300 and JP450 compared with JP wood. After 1 year, (i) bacterial groups were large sinks for PyOM-derived C as pyrolysis temperature increased and as substrate use efficiency decreased; (ii) potential phenol oxidase and net peroxidase activities were unaffected by the PyOM addition, although net peroxidase activities measured tended to lesser for soils amended with JP450 and RM450; and (iii) Collembola detritivores appeared less likely to be found for soils amended with JP450 and RM450. PyOM-derived C and N recoveries did not differ after 1 year; we will present 3-y recovery data. Our results suggest that the composition of angiosperms (e.g. RM) and gymnosperms (e.g. JP) in high-latitude forests is an underappreciated but essential determinant of soil PyOM stocks and reactivity, with angiosperms yielding more degradable PyOM. Considering the wood source by pyrolysis temperature interaction on PyOM will help providing more comprehensive large-scale assessments of PyOM stocks and reactivity potentials under current and future climate conditions.

  3. Importance of multi-P450 inhibition in drug-drug interactions: evaluation of incidence, inhibition magnitude and prediction from in vitro data

    PubMed Central

    Isoherranen, Nina; Lutz, Justin D; Chung, Sophie P; Hachad, Houda; Levy, Rene H; Ragueneau-Majlessi, Isabelle

    2012-01-01

    Drugs that are mainly cleared by a single enzyme are considered more sensitive to drug-drug interactions (DDIs) than drugs cleared by multiple pathways. However, whether this is true when a drug cleared by multiple pathways is co-administered with an inhibitor of multiple P450 enzymes (multi-P450 inhibition) is not known. Mathematically, simultaneous equipotent inhibition of two elimination pathways that each contributes half of the drug clearance is equal to equipotent inhibition of a single pathway that clears the drug. However, simultaneous strong or moderate inhibition of two pathways by a single inhibitor is perceived as an unlikely scenario. The aim of this study was (i) to identify P450 inhibitors currently in clinical use that can inhibit more than one clearance pathway of an object drug in vivo, and (ii) to evaluate the magnitude and predictability of DDIs caused by these multi-P450 inhibitors. Multi-P450 inhibitors were identified using the Metabolism and Transport Drug Interaction Database™. A total of 38 multi-P450 inhibitors, defined as inhibitors that increased the AUC or decreased the clearance of probes of two or more P450’s, were identified. Seventeen (45 %) multi-P450 inhibitors were strong inhibitors of at least one P450 and an additional 12 (32 %) were moderate inhibitors of one or more P450s. Only one inhibitor (fluvoxamine) was a strong inhibitor of more than one enzyme. Fifteen of the multi-P450 inhibitors also inhibit drug transporters in vivo, but such data are lacking on many of the inhibitors. Inhibition of multiple P450 enzymes by a single inhibitor resulted in significant (>2-fold) clinical DDIs with drugs that are cleared by multiple pathways such as imipramine and diazepam while strong P450 inhibitors resulted in only weak DDIs with these object drugs. The magnitude of the DDIs between multi-P450 inhibitors and diazepam, imipramine and omeprazole could be predicted using in vitro data with similar accuracy as probe substrate studies with the same inhibitors. The results of this study suggest that inhibition of multiple clearance pathways in vivo is clinically relevant and the risk of DDIs with object drugs may be best evaluated in studies using multi-P450 inhibitors. PMID:22823924

  4. [Effects of electroacupuncture of "Guanyuan" (CV 4)-"Zhongji" (CV 3) on ovarian P450 arom and P450c 17alpha expression and relevant sex hormone levels in rats with polycystic ovary syndrome].

    PubMed

    Sun, Jie; Zhao, Ji-meng; Ji, Rong; Liu, Hui-rong; Shi, Yin; Jin, Chun-lan

    2013-12-01

    To observe the effect of electroacupuncture (EA) on ovarian P 450 arom and P 450 c 17 alpha (aromatases) expression and related sex hormone levels in polycystic ovary syndrome (PCOS) rats. Thirty SD rats were randomly divided into normal control group, model group and EA group (10 rats/group). PCOS model was made by intragastric administration of letrozole at 1 mg/kg per day for consecutive 21 days. "Guanyuan" (CV 4) and "Zhongji" (CV 3) acupoints were stimulated 20 min by EA (2 mA, 2 Hz), once daily for consecutive 14 days. The damp ovarian weight was weighed and the pathological changes of the ovarian tissue were observed after H. E. staining. Ultrastructural changes of the ovarian tissue were observed by transmission electron microscope. Immunohistochemical staining was adopted to detect ovarian follicle granulosa cell P 450 arom and follicle membrane cell P 450 c 17 alpha expression. The contents of estradiol (E 2), estrone (E 1), androstenedione (ASD), testosterone (T), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in the ovarian tissue were measured by ELISA. Compared with the normal group, there was a significant increase in the damp weight of both left and right ovarian tissues in the model group (P < 0.01). After EA, the ovarian weight was remarkably reduced (P < 0.01). Pathological changes of the ovarian tissue such as thickening of the superficial albugineous coat of the ovary, thinning of the granular cell layer, and disappearance of the intraovular oocytes and coronaradiata under light microscope, and mitochondrion swelling, fracture or disappearance of mitochondrial cristae, and enlargement of the endoplasmic reticulum, etc. after modeling were obviously improved in the EA group. In comparison to the control group, the expression of the follicle granulosa cell P450 arom was significantly down-regulated and that of follicle membrane cell P 450 c 17 alpha was significantly upregulated in the model group (P < 0.01). After EA intervention these changes were obviously reversed (P < 0.05, P < 0.01). In the model group, there was a significant increase in the levels of ASD, T and LH in the ovarian tissues (P < 0.01) and a marked decrease in the contents of ovarian E 1 and E2 (P < 0.01) in comparison to the control group. After EA, the ovarian ASD, T and LH levels were notably decreased (P < 0.05, P < 0.01) and the E 1 and E 2 levels apparently increased (P < 0.01) compared with the model group. EA can improve letrozole-induced pathological changes of ovarian morphology and ultrastructure and obviously promote P 450 arom expression in the follicle granulosa cell layer and inhibit P 450 c 17 alpha expression in the follicle membrane cell layer, as well as regulate sex hormone levels in PCOS rats, facilitating the normal transformation of ovarian androgen to estrogen and restoring the local endocrine disorders.

  5. Imidacloprid is hydroxylated by Laodelphax striatellus CYP6AY3v2.

    PubMed

    Wang, R; Zhu, Y; Deng, L; Zhang, H; Wang, Q; Yin, M; Song, P; Elzaki, M E A; Han, Z; Wu, M

    2017-10-01

    Laodelphax striatellus (Fallén) is one of the most destructive pests of rice, and has developed high resistance to imidacloprid. Our previous work indicated a strong association between imidacloprid resistance and the overexpression of a cytochrome P450 gene CYP6AY3v2 in a L. striatellus imidacloprid resistant strain (Imid-R). In this study, a transgenic Drosophila melanogaster line that overexpressed the L. striatellus CYP6AY3v2 gene was established and was found to confer increased levels of imidacloprid resistance. Furthermore, CYP6AY3v2 was co-expressed with D. melanogaster cytochrome P450 reductase (CPR) in Spodoptera frugiperda 9 (SF9) cells. A carbon monoxide difference spectra analysis indicated that CYP6AY3v2 was expressed predominately in its cytochrome P450 (P450) form, which is indicative of a good-quality functional enzyme. The recombinant CYP6AY3v2 protein efficiently catalysed the model substrate P-nitroanisole to p-nitrophenol with a maximum velocity (V max ) of 60.78 ± 3.93 optical density (mOD)/min/mg protein. In addition, imidacloprid itself was metabolized by the recombinant CYP6AY3v2/nicotinamide adenine dinucleotide 2'-phosphate reduced tetrasodium salt (NADPH) CPR microsomes in in vitro assays (catalytic constant (K cat ) = 0.34 pmol/min/pmol P450, michaelis constant (K m ) = 41.98 μM), and imidacloprid depletion and metabolite peak formation were with a time dependence. The data provided direct evidence that CYP6AY3v2 is capable of hydroxylation of imidacloprid and conferring metabolic resistance in L. striatellus. © 2017 The Royal Entomological Society.

  6. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyanagi, Takashi

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form canmore » function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.« less

  7. Effect of Growth Parameters on SnO2 Nanowires Growth by Electron Beam Evaporation Method

    NASA Astrophysics Data System (ADS)

    Rakesh Kumar, R.; Manjula, Y.; Narasimha Rao, K.

    2018-02-01

    Tin oxide (SnO2) nanowires were synthesized via catalyst assisted VLS growth mechanism by the electron beam evaporation method at a growth temperature of 450 °C. The effects of growth parameters such as evaporation rate of Tin, catalyst film thickness, and different types of substrates on the growth of SnO2 nanowires were studied. Nanowires (NWs) growth was completely seized at higher tin evaporation rates due to the inability of the catalyst particle to initiate the NWs growth. Nanowires diameters were able to tune with catalyst film thickness. Nanowires growth was completely absent at higher catalyst film thickness due to agglomeration of the catalyst film. Optimum growth parameters for SnO2 NWs were presented. Nanocomposites such as Zinc oxide - SnO2, Graphene oxide sheets- SnO2 and Graphene nanosheets-SnO2 were able to synthesize at a lower substrate temperature of 450 °C. These nanocompsoites will be useful in enhancing the capacity of Li-ion batteries, the gas sensing response and also useful in increasing the photo catalytic activity.

  8. Pharmacokinetics of lacosamide and omeprazole coadministration in healthy volunteers: results from a phase I, randomized, crossover trial.

    PubMed

    Cawello, Willi; Mueller-Voessing, Christa; Fichtner, Andreas

    2014-05-01

    The antiepileptic drug lacosamide has a low potential for drug-drug interactions, but is a substrate and moderate inhibitor of the cytochrome P450 (CYP) enzyme CYP2C19. This phase I, randomized, open-label, two-way crossover trial evaluated the pharmacokinetic effects of lacosamide and omeprazole coadministration. Healthy, White, male volunteers (n = 36) who were not poor metabolizers of CYP2C19 were randomized to treatment A (single-dose 40 mg omeprazole on days 1 and 8 together with 6 days of multiple-dose lacosamide [200-600 mg/day] on days 3-8) and treatment B (single doses of 300 mg lacosamide on days 1 and 8 with 7 days of 40 mg/day omeprazole on days 3-9) in pseudorandom order, separated by a ≥ 7-day washout period. Area under the concentration-time curve (AUC) and peak concentration (C(max)) were the primary pharmacokinetic parameters measured for lacosamide or omeprazole administered alone (reference) or in combination (test). Bioequivalence was determined if the 90 % confidence interval (CI) of the ratio (test/reference) fell within the acceptance range of 0.8-1.25. The point estimates (90 % CI) of the ratio of omeprazole + lacosamide coadministered versus omeprazole alone for AUC (1.098 [0.996-1.209]) and C(max) (1.105 [0.979-1.247]) fell within the acceptance range for bioequivalence. The point estimates (90 % CI) of the ratio of lacosamide + omeprazole coadministration versus lacosamide alone also fell within the acceptance range for bioequivalence (AUC 1.133 [1.102-1.165]); C(max) 0.996 (0.947-1.047). Steady-state lacosamide did not influence omeprazole single-dose pharmacokinetics, and multiple-dose omeprazole did not influence lacosamide single-dose pharmacokinetics.

  9. Storage stability study of porcine hepatic and intestinal cytochrome P450 isoenzymes by use of a newly developed and fully validated highly sensitive HPLC-MS/MS method.

    PubMed

    Schelstraete, Wim; Devreese, Mathias; Croubels, Siska

    2018-02-01

    Microsomes are an ideal medium to investigate cytochrome P450 (CYP450) enzyme-mediated drug metabolism. However, before microsomes are prepared, tissues can be stored for a long time. Studies about the stability of these enzymes in porcine hepatic and intestinal tissues upon storage are lacking. To be able to investigate CYP450 stability in microsomes prepared from these tissues, a highly sensitive and rapid HPLC-MS/MS method for the simultaneous determination of six CYP450 metabolites in incubation medium was developed and validated. The metabolites, paracetamol (CYP1A), 7-hydroxy-coumarin (CYP2A), 1-hydroxy-midazolam (CYP3A), 4-hydroxy-tolbutamide (CYP2C), dextrorphan (CYP2D), and 6-hydroxy-chlorzoxazone (CYP2E) were extracted with ethyl acetate at pH 1.0, followed by evaporation and separation on an Agilent Zorbax Eclipse Plus C18 column. The method was fully validated in a GLP-compliant laboratory according to European guidelines and was highly sensitive (LOQ = 0.25-2.5 ng/mL), selective, had good precision (RSD-within, 1.0-9.1%; RSD-between, 1.0-18.4%) and accuracy (within-run, 83.3-102%; between-run, 78.5-102%), and showed no relative signal suppression and enhancement. Consequently, this method was applied to study the stability of porcine hepatic and intestinal CYP450 isoenzymes when tissues were stored at - 80 °C. The results indicate that porcine CYP450 isoenzymes are stable in tissues at least up to 4 months when snap frozen and stored at - 80 °C. Moreover, the results indicate differences in porcine CYP450 stability compared to rat, rabbit, and fish CYP450, as observed by other research groups, hence stressing the importance to investigate the CYP450 stability of a specific species.

  10. Gemfibrozil impairs imatinib absorption and inhibits the CYP2C8-mediated formation of its main metabolite.

    PubMed

    Filppula, A M; Tornio, A; Niemi, M; Neuvonen, P J; Backman, J T

    2013-09-01

    Cytochrome P450 (CYP) 3A4 is considered the most important enzyme in imatinib biotransformation. In a randomized, crossover study, 10 healthy subjects were administered gemfibrozil 600 mg or placebo twice daily for 6 days, and imatinib 200 mg on day 3, to study the significance of CYP2C8 in imatinib pharmacokinetics. Unexpectedly, gemfibrozil reduced the peak plasma concentration (Cmax) of imatinib by 35% (P < 0.001). Gemfibrozil also reduced the Cmax and area under the plasma concentration-time curve (AUC0-∞) of N-desmethylimatinib by 56 and 48% (P < 0.001), respectively, whereas the AUC0-∞ of imatinib was unaffected. Furthermore, gemfibrozil reduced the Cmax/plasma concentration at 24 h (C24 h) ratios of imatinib and N-desmethylimatinib by 44 and 17% (P < 0.05), suggesting diminished daily fluctuation of imatinib plasma concentrations during concomitant use with gemfibrozil. Our findings indicate significant participation of CYP2C8 in the metabolism of imatinib in humans, and support involvement of an intestinal influx transporter in imatinib absorption.

  11. Cytochrome P450scc-dependent metabolism of 7-dehydrocholesterol in placenta and epidermal keratinocytes

    PubMed Central

    Slominski, Andrzej T.; Kim, Tae-Kang; Chen, Jianjun; Nguyen, Minh N.; Li, Wei; Yates, Charles R.; Sweatman, Trevor; Janjetovic, Zorica; Tuckey, Robert C.

    2012-01-01

    The discovery that 7-dehydrocholesterol (7DHC) is an excellent substrate for cytochrome P450scc (CYP11A1) opens up new possibilities in biochemistry. To elucidate its biological significance we tested ex-vivo P450scc-dependent metabolism of 7DHC by tissues expressing high and low levels of P450scc activity, placenta and epidermal keratinocytes, respectively. Incubation of human placenta fragments with 7DHC led to its conversion to 7-dehydropregnenolone (7DHP), which was inhibited by DL-aminoglutethimide, and stimulated by forskolin. Final proof for P450scc involvement was provided in isolated placental mitochondria where production of 7DHP was almost completely inhibited by 22R-hydroxycholesterol. 7DHC was metabolized by placental mitochondria at a faster rate than exogenous cholesterol, under both limiting and saturating conditions of substrate transport, consistent with higher catalytic efficiency (kcat/Km) with 7DHC as substrate than with cholesterol. Ex-vivo experiments showed five 5,7-dienal intermediates with MS spectra of dihydroxy and mono-hydroxy-7DHC and retention time corresponding to 20,22(OH)27DHC and 22(OH)7DHC. The chemical structure of 20,22(OH)27DHC was defined by NMR. 7DHP was further metabolized by either placental fragments or placental microsomes to 7-dehydroprogesterone as defined by UV, MS and NMR, and to an additional product with a 5,7-dienal structure and MS corresponding to hydroxy-7DHP. Furthermore, epidermal keratinocytes transformed either exogenous or endogenous 7DHC to 7DHP. 7DHP inhibited keratinocytes proliferation, while the product of its pholytic transformation, pregcalciferol, lost this capability. In conclusion, tissues expressing P450scc can metabolize 7DHC to biologically active 7DHP with 22(OH)7DHC and 20,22(OH)27DHC serving as intermediates, and with further metabolism to 7-dehydroprogesterone and (OH)7DHP. PMID:22877869

  12. Electrochemistry of Canis familiaris cytochrome P450 2D15 with gold nanoparticles: An alternative to animal testing in drug discovery.

    PubMed

    Rua, Francesco; Sadeghi, Sheila J; Castrignanò, Silvia; Valetti, Francesca; Gilardi, Gianfranco

    2015-10-01

    This work reports for the first time the direct electron transfer of the Canis familiaris cytochrome P450 2D15 on glassy carbon electrodes to provide an analytical tool as an alternative to P450 animal testing in the drug discovery process. Cytochrome P450 2D15, that corresponds to the human homologue P450 2D6, was recombinantly expressed in Escherichia coli and entrapped on glassy carbon electrodes (GC) either with the cationic polymer polydiallyldimethylammonium chloride (PDDA) or in the presence of gold nanoparticles (AuNPs). Reversible electrochemical signals of P450 2D15 were observed with calculated midpoint potentials (E1/2) of −191 ± 5 and −233 ± 4 mV vs. Ag/AgCl for GC/PDDA/2D15 and GC/AuNPs/2D15, respectively. These experiments were then followed by the electro-catalytic activity of the immobilized enzyme in the presence of metoprolol. The latter drug is a beta-blocker used for the treatment of hypertension and is a specific marker of the human P450 2D6 activity. Electrocatalysis data showed that only in the presence of AuNps the expected α-hydroxy-metoprolol product was present as shown by HPLC. The successful immobilization of the electroactive C. familiaris cytochrome P450 2D15 on electrode surfaces addresses the ever increasing demand of developing alternative in vitromethods for amore detailed study of animal P450 enzymes' metabolism, reducing the number of animals sacrificed in preclinical tests.

  13. Effect of brominated flame retardant BDE-47 on androgen production of adult rat Leydig cells.

    PubMed

    Zhao, Yan; Ao, Hong; Chen, Li; Sottas, Chantal M; Ge, Ren-Shan; Zhang, Yunhui

    2011-08-28

    As one of the most abundant polybrominated diphenylethers (PBDEs) detected in adipose tissue and breast milk of humans, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is considered as a potential endocrine disruptor. The objective of this study is to explore whether environment-related level of BDE-47 could affect the androgen production in rat Leydig cells. Rat adult Leydig cells (ALCs) were treated with 10(-8) to 10(-4)M BDE-47 in vitro, the production of testosterone (T) and steroidogenic acute regulatory (StAR) protein level were determined. BDE-47 significantly increased basal T production and steroidogenic acute regulatory protein (StAR) level of ALCs after treatment with 10(-4)M BED-47. Overall, LH (0.1ng/ml) stimulated T production in ALCs by 6 folds, however it did not increase T production in BDE-47-treated ALCs when compared to untreated ALC. Both 8-Br-cAMP (for cAMP signaling) and 22R-hydroxycholesterol (22-diol, for P450 cholesterol side chain cleavage enzyme P450scc activity) significantly increased T production in ALCs treated with BDE-47 from 10(-7) to 10(-5)M. The results of this study indicate that environment-related level of BDE-47 in vitro increased T production in a dose-dependent manner. The stimulated effects of BDE-47 on StAR and P450scc might play key roles in BDE-47-mediated stimulation of T production. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. The role of annealing temperature variation on ZnO nanorods array deposited on TiO2 seed layer

    NASA Astrophysics Data System (ADS)

    Asib, N. A. M.; Aadila, A.; Afaah, A. N.; Rusop, M.; Khusaimi, Z.

    2018-05-01

    Seed layer of Titanium dioxide (TiO2) by sol-gel spin coating technique were coated on glass substrate to grow Zinc oxide nanorods (ZNR) by solution-immersion method. The fabricated ZNR were annealed at various temperatures ranged from 400 to 600° C. FESEM images revealed that smaller ZNR were densely grown at optimum temperature of 450 and 500°C. Meanwhile, for all samples a dominant (0 0 2) diffraction peak of ZNR recorded by XRD patterns was at 34.4° which corresponding to hexagonal ZNR with a wurtzite structure. UV-Vis absorbance spectra showed the maximum absorption properties at UV region were detected at 450 and 500°C. The samples also showed high absorbance values at visible region.

  15. Differential effects of traumatic brain injury on the cytochrome p450 system: a perspective into hepatic and renal drug metabolism.

    PubMed

    Kalsotra, Auinash; Turman, Cheri M; Dash, Pramod K; Strobel, Henry W

    2003-12-01

    Traumatic brain injury is known to cause several secondary effects, one of which is altered drug clearance. Given the fact that patients who sustain TBI are subsequently treated with a variety of pharmacological agents for the purpose of either neuroprotection or physiological support, it is imperative to clarify changes in expression and/or activities of enzymes involved in clearing drugs. The mixed function oxidase system, which consists of cytochrome P450 and cytochrome P450 reductase, plays a vital role in phase I drug metabolism. This paper addresses the issue as to what extent TBI affects the levels and activity of various rat CYP450 subfamilies. Our results show that TBI induces tissue-specific and time-dependent alterations. Total hepatic CYP450 content showed a biphasic response with a decrease seen at 24 h followed by an increase at 2 weeks. CYP450 reductase, in contrast, showed an opposite temporal profile. Immunoblot analyses and marker substrate metabolism demonstrated a clear decrease in hepatic CYP1A levels while a significant increase in kidney was seen at both 24 h and 2 weeks. A dramatic induction of CYP3A was evident at 2 weeks in liver, while no changes were noticed in CYP2B or CYP2D subfamilies. CYP4F subfamily showed induction in kidney only. Collectively, the data reveal the differential effects of TBI on hepatic and renal drug metabolism.

  16. Purification and Characterization of a Novel Thermo-Alkali-Stable Catalase from Thermus brockianus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Vicki Sue; Schaller, Kastli Dianne; Apel, William Arnold

    2003-10-01

    A novel thermo-alkali-stable catalase from Thermus brockianus was purified and characterized. The protein was purified from a T. brockianus cell extract in a three-step procedure that resulted in 65-fold purification to a specific activity of 5300 U/mg. The enzyme consisted of four identical subunits of 42.5 kDa as determined by SDS-PAGE and a total molecular mass measured by gel filtration of 178 kDa. The catalase was active over a temperature range from 30 to 94 C and a pH range from 6 to 10, with optimum activity occurring at 90 C and pH 8. At pH 8, the enzyme wasmore » extremely stable at elevated temperatures with half-lives of 330 h at 80 C and 3 h at 90 C. The enzyme also demonstrated excellent stability at 70 C and alkaline pH with measured half-lives of 510 h and 360 h at pHs of 9 and 10, respectively. The enzyme had an unusual pyridine hemochrome spectrum and appears to utilize eight molecules of heme c per tetramer rather than protoheme IX present in the majority of catalases studied to date. The absorption spectrum suggested that the heme iron of the catalase was in a 6-coordinate low spin state rather than the typical 5-coordinate high spin state. A Km of 35.5 mM and a Vmax of 20.3 mM/min·mg protein for hydrogen peroxide was measured, and the enzyme was not inhibited by hydrogen peroxide at concentrations up to 450 mM. The enzyme was strongly inhibited by cyanide and the traditional catalase inhibitor 3-amino-1,2,4-triazole. The enzyme also showed no peroxidase activity to peroxidase substrates o-dianisidine and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), a trait of typical monofunctional catalases. However, unlike traditional monofunctional catalases, the T. brockianus catalase was easily reduced by dithionite, a characteristic of catalase-peroxidases. The above properties indicate that this catalase has potential for applications in industrial bleaching processes to remove residual hydrogen peroxide from process streams.« less

  17. Stereoselective metabolism of endosulfan by human liver microsomes and human cytochrome P450 isoforms.

    PubMed

    Lee, Hwa-Kyung; Moon, Joon-Kwan; Chang, Chul-Hee; Choi, Hoon; Park, Hee-Won; Park, Byeoung-Soo; Lee, Hye-Suk; Hwang, Eul-Chul; Lee, Young-Deuk; Liu, Kwang-Hyeon; Kim, Jeong-Han

    2006-07-01

    Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,3,4-benzo(e)dioxathiepin-3-oxide) is a broad-spectrum chlorinated cyclodiene insecticide. This study was performed to elucidate the stereoselective metabolism of endosulfan in human liver microsomes and to characterize the cytochrome P450 (P450) enzymes that are involved in the metabolism of endosulfan. Human liver microsomal incubation of endosulfan in the presence of NADPH resulted in the formation of the toxic metabolite, endosulfan sulfate. The intrinsic clearances (CL(int)) of endosulfan sulfate from beta-endosulfan were 3.5-fold higher than those from alpha-endosulfan, suggesting that beta-endosulfan would be cleared more rapidly than alpha-endosulfan. Correlation analysis between the known P450 enzyme activities and the rate of the formation of endosulfan sulfate in the 14 human liver microsomes showed that alpha-endosulfan metabolism is significantly correlated with CYP2B6-mediated bupropion hydroxylation and CYP3A-mediated midazolam hydroxylation, and that beta-endosulfan metabolism is correlated with CYP3A activity. The P450 isoform-selective inhibition study in human liver microsomes and the incubation study of cDNA-expressed enzymes also demonstrated that the stereoselective sulfonation of alpha-endosulfan is mediated by CYP2B6, CYP3A4, and CYP3A5, and that that of beta-endosulfan is transformed by CYP3A4 and CYP3A5. The total CL(int) values of endosulfan sulfate formation catalyzed by CYP3A4 and CYP3A5 were consistently higher for beta-endosulfan than for the alpha-form (CL(int) of 0.67 versus 10.46 microl/min/pmol P450, respectively). CYP2B6 enantioselectively metabolizes alpha-endosulfan, but not beta-endosulfan. These findings suggest that the CYP2B6 and CYP3A enzymes are major enzymes contributing to the stereoselective disposition of endosulfan.

  18. Mining of the Uncharacterized Cytochrome P450 Genes Involved in Alkaloid Biosynthesis in California Poppy Using a Draft Genome Sequence

    PubMed Central

    Hori, Kentaro; Yamada, Yasuyuki; Purwanto, Ratmoyo; Minakuchi, Yohei; Toyoda, Atsushi; Hirakawa, Hideki

    2018-01-01

    Abstract Land plants produce specialized low molecular weight metabolites to adapt to various environmental stressors, such as UV radiation, pathogen infection, wounding and animal feeding damage. Due to the large variety of stresses, plants produce various chemicals, particularly plant species-specific alkaloids, through specialized biosynthetic pathways. In this study, using a draft genome sequence and querying known biosynthetic cytochrome P450 (P450) enzyme-encoding genes, we characterized the P450 genes involved in benzylisoquinoline alkaloid (BIA) biosynthesis in California poppy (Eschscholzia californica), as P450s are key enzymes involved in the diversification of specialized metabolism. Our in silico studies showed that all identified enzyme-encoding genes involved in BIA biosynthesis were found in the draft genome sequence of approximately 489 Mb, which covered approximately 97% of the whole genome (502 Mb). Further analyses showed that some P450 families involved in BIA biosynthesis, i.e. the CYP80, CYP82 and CYP719 families, were more enriched in the genome of E. californica than in the genome of Arabidopsis thaliana, a plant that does not produce BIAs. CYP82 family genes were highly abundant, so we measured the expression of CYP82 genes with respect to alkaloid accumulation in different plant tissues and two cell lines whose BIA production differs to estimate the functions of the genes. Further characterization revealed two highly homologous P450s (CYP82P2 and CYP82P3) that exhibited 10-hydroxylase activities with different substrate specificities. Here, we discuss the evolution of the P450 genes and the potential for further genome mining of the genes encoding the enzymes involved in BIA biosynthesis. PMID:29301019

  19. Defective Cytochrome P450-Catalysed Drug Metabolism in Niemann-Pick Type C Disease

    PubMed Central

    Wassif, Christopher A.; Gray, James; Burkert, Kathryn R.; Smith, David A.; Morris, Lauren; Cologna, Stephanie M.; Peer, Cody J.; Sissung, Tristan M.; Uscatu, Constantin-Daniel; Figg, William D.; Pavan, William J.; Vite, Charles H.; Porter, Forbes D.; Platt, Frances M.

    2016-01-01

    Niemann-Pick type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 gene. NPC is characterised by storage of multiple lipids in the late endosomal/lysosomal compartment, resulting in cellular and organ system dysfunction. The underlying molecular mechanisms that lead to the range of clinical presentations in NPC are not fully understood. While evaluating potential small molecule therapies in Npc1-/- mice, we observed a consistent pattern of toxicity associated with drugs metabolised by the cytochrome P450 system, suggesting a potential drug metabolism defect in NPC1 disease. Investigation of the P450 system in the context of NPC1 dysfunction revealed significant changes in the gene expression of many P450 associated genes across the full lifespan of Npc1-/- mice, decreased activity of cytochrome P450 reductase, and a global decrease of multiple cytochrome P450 catalysed dealkylation reactions. In vivo drug metabolism studies using a prototypic P450 metabolised drug, midazolam, confirmed dysfunction in drug clearance in the Npc1-/- mouse. Expression of the Phase II enzyme uridinediphosphate-glucuronosyltransferase (UGT) was also significantly reduced in Npc1-/- mice. Interestingly, reduced activity within the P450 system was also observed in heterozygous Npc1+/- mice. The reduced activity of P450 enzymes may be the result of bile acid deficiency/imbalance in Npc1-/- mice, as bile acid treatment significantly rescued P450 enzyme activity in Npc1-/- mice and has the potential to be an adjunctive therapy for NPC disease patients. The dysfunction in the cytochrome P450 system were recapitulated in the NPC1 feline model. Additionally, we present the first evidence that there are alterations in the P450 system in NPC1 patients. PMID:27019000

  20. Detoxification of ivermectin by ATP binding cassette transporter C4 and cytochrome P450 monooxygenase 6CJ1 in the human body louse, Pediculus humanus humanus.

    PubMed

    Kim, J H; Gellatly, K J; Lueke, B; Kohler, M; Nauen, R; Murenzi, E; Yoon, K S; Clark, J M

    2018-02-01

    We previously observed that ivermectin-induced detoxification genes, including ATP binding cassette transporter C4 (PhABCC4) and cytochrome P450 6CJ1 (CYP6CJ1) were identified from body lice following a brief exposure to a sublethal dose of ivermectin using a non-invasive induction assay. In this current study, the functional properties of PhABCC4 and CYP6CJ1 were investigated after expression in either X. laevis oocytes or using a baculovirus expression system, respectively. Efflux of [ 3 H]-9-(2-phosphonomethoxyethyl) adenine ([ 3 H]-PMEA), a known ABCC4 substrate in humans, was detected from PhABCC4 cRNA-injected oocytes by liquid scintillation spectrophotometric analysis and PhABCC4 expression in oocytes was confirmed using ABC transporter inhibitors. Efflux was also determined to be ATP-dependent. Using a variety of insecticides in a competition assay, only co-injection of ivermectin and dichlorodiphenyltrichloroethane led to decreased efflux of [ 3 H]-PMEA. PhABCC4-expressing oocytes also directly effluxed [ 3 H]-ivermectin, which increased over time. In addition, ivermectin appeared to be oxidatively metabolized and/or sequestered, although at low levels, following functional expression of CYP6CJ1 along with cytochrome P450 reductase in Sf9 cells. Our study suggests that PhABCC4 and perhaps CYP6CJ1 are involved in the Phase III and Phase I xenobiotic metabolism of ivermectin, respectively, and may play an important role in the evolution of ivermectin resistance in lice and other insects as field selection occurs. © 2017 The Royal Entomological Society.

  1. Effects of aging and rifampicin pretreatment on the pharmacokinetics of human cytochrome P450 probes caffeine, warfarin, omeprazole, metoprolol and midazolam in common marmosets genotyped for cytochrome P450 2C19.

    PubMed

    Toda, Akiko; Uehara, Shotaro; Inoue, Takashi; Utoh, Masahiro; Kusama, Takashi; Shimizu, Makiko; Uno, Yasuhiro; Mogi, Masayuki; Sasaki, Erika; Yamazaki, Hiroshi

    2018-07-01

    1. The pharmacokinetics were investigated for human cytochrome P450 probes after single intravenous and oral administrations of 0.20 and 1.0 mg/kg, respectively, of caffeine, warfarin, omeprazole, metoprolol and midazolam to aged (10-14 years old, n = 4) or rifampicin-treated/young (3 years old, n = 3) male common marmosets all genotyped as heterozygous for a cytochrome P450 2C19 variant. 2. Slopes of the plasma concentration-time curves after intravenous administration of warfarin and midazolam were slightly, but significantly (two-way analysis of variance), decreased in aged marmosets compared with young marmosets. The mean hepatic clearances determined by in silico fitting for individual pharmacokinetic models of warfarin and midazolam in the aged group were, respectively, 23% and 56% smaller than those for the young group. 3. Significantly enhanced plasma clearances of caffeine, warfarin, omeprazole and midazolam were evident in young marmosets pretreated with rifampicin (25 mg/kg daily for 4 days). Two- to three-fold increases in hepatic intrinsic clearance values were observed in the individual pharmacokinetic models. 4. The in vivo dispositions of multiple simultaneously administered drugs in old, young and P450-enzyme-induced marmosets were elucidated. The results suggest that common marmosets could be experimental models for aged, induced or polymorphic P450 enzymes in P450-dependent drug metabolism studies.

  2. Effect of carbon source on the accumulation of cytochrome P-450 in the yeast Saccharomyces cerevisiae.

    PubMed

    Kärenlampi, S O; Marin, E; Hänninen, O O

    1981-02-15

    The appearance of cytochrome P-450 in the yeast Saccharomyces cerevisiae depended on the substrate supporting growth. Cytochrome P-450 was apparent in yeast cells grown on a strongly fermentable sugar such as D-glucose, D-fructose or sucrose. When yeast was grown on D-galactose, D-mannose or maltose, where fermentation and respiration occurred concomitantly, cytochrome P-450 was also formed. The cytochrome P-450 concentration was maximal at the beginning of the stationary phase of the culture. Thereafter the concentration decreased, reaching zero at a late-stationary phase. When the yeast was grown on a medium that contained lactose or pentoses (L-arabinose, L-rhamnose, D-ribose and D-xylose), cytochrome P-450 did not occur. When a non-fermentable energy source (glycerol, lactate or ethanol) was used, no cytochrome P-450 was detectable. Transfer of cells from D-glucose medium to ethanol medium caused a slow disappearance of cytochrome P-450, although the amount of the haemoprotein still continued to increase in the control cultures. Cytochrome P-450 appeared thus to accumulate in conditions where the rate of growth was fast and fermentation occurred. Occurrence of this haemoprotein is not necessarily linked, however, with the repression of mitochondrial haemoprotein synthesis.

  3. Drug-Induced Gingival Overgrowth: The Genetic Dimension

    PubMed Central

    Charles, Noronha Shyam Curtis; Chavan, Rahul; Moon, Ninad Joshirao; Nalla, Srinivas; Mali, Jaydeepchandra; Prajapati, Anchal

    2014-01-01

    Background: Currently, the etiology of drug-induced gingival overgrowth is not entirely understood but is clearly multifactorial. Phenytoin, one of the common drugs implicated in gingival enlargement, is metabolized mainly by cytochrome P450 (CYP)2C9 and partly by CYP2C19. The CYP2C9 and CYP2C19 genes are polymorphically expressed and most of the variants result in decreased metabolism of the respective substrates. Aims: The present study was undertaken to investigate the influence of the CYP2C9*2 and *3 variant genotypes on phenytoin hydroxylation in subjects diagnosed with epilepsy from South India, thus establishing the genetic polymorphisms leading to its defective hydroxylation process. Materials and Methods: Fifteen epileptic subjects, age 9 to 60 years were included in the study. Among the study subjects, 8 were males and 7 were females. Genomic DNA was extracted from patients’ blood using Phenol-chloroform method and genotyping was done for CYP2C9 using customized TaqMan genotyping assays on a real time thermocycler, by allelic discrimination method. The genetic polymorphisms *1, *2 and *3 on CYP2C9 were selected based on their function and respective allele frequencies in Asian subcontinent among the Asian populations. Results: CYP2C9*1*2 and CYP2C9*3/*3 were identified with equal frequency in the study population. There were seven subjects with CYP2C9*1/*2 genotype (heterozygous mutant), one subject with CYP2C9*1/*1 (wild type) and seven study subjects with CYP2C9*3/*3 (homozygous mutant). Conclusion: The results obtained in the present study will be helpful in the medical prescription purposes of phenytoin, and a more personalized patient approach with its administration can be advocated. PMID:25317394

  4. Drug-induced gingival overgrowth: the genetic dimension.

    PubMed

    Charles, Noronha Shyam Curtis; Chavan, Rahul; Moon, Ninad Joshirao; Nalla, Srinivas; Mali, Jaydeepchandra; Prajapati, Anchal

    2014-09-01

    Currently, the etiology of drug-induced gingival overgrowth is not entirely understood but is clearly multifactorial. Phenytoin, one of the common drugs implicated in gingival enlargement, is metabolized mainly by cytochrome P450 (CYP)2C9 and partly by CYP2C19. The CYP2C9 and CYP2C19 genes are polymorphically expressed and most of the variants result in decreased metabolism of the respective substrates. The present study was undertaken to investigate the influence of the CYP2C9*2 and *3 variant genotypes on phenytoin hydroxylation in subjects diagnosed with epilepsy from South India, thus establishing the genetic polymorphisms leading to its defective hydroxylation process. Fifteen epileptic subjects, age 9 to 60 years were included in the study. Among the study subjects, 8 were males and 7 were females. Genomic DNA was extracted from patients' blood using Phenol-chloroform method and genotyping was done for CYP2C9 using customized TaqMan genotyping assays on a real time thermocycler, by allelic discrimination method. The genetic polymorphisms *1, *2 and *3 on CYP2C9 were selected based on their function and respective allele frequencies in Asian subcontinent among the Asian populations. CYP2C9*1*2 and CYP2C9*3/*3 were identified with equal frequency in the study population. There were seven subjects with CYP2C9*1/*2 genotype (heterozygous mutant), one subject with CYP2C9*1/*1 (wild type) and seven study subjects with CYP2C9*3/*3 (homozygous mutant). The results obtained in the present study will be helpful in the medical prescription purposes of phenytoin, and a more personalized patient approach with its administration can be advocated.

  5. Enzymes and Inhibitors in Neonicotinoid Insecticide Metabolism

    PubMed Central

    Shi, Xueyan; Dick, Ryan A.; Ford, Kevin A.; Casida, John E.

    2009-01-01

    Neonicotinoid insecticide metabolism involves considerable substrate specificity and regioselectivity of the relevant CYP450, aldehyde oxidase, and phase II enzymes. Human CYP450 recombinant enzymes carry out the following conversions: CYP3A4, 2C19 and 2B6 for thiamethoxam (TMX) to clothianidin (CLO); 3A4, 2C19 and 2A6 for CLO to desmethyl-CLO; 2C19 for TMX to desmethyl-TMX. Human liver aldehyde oxidase reduces the nitro substituent of CLO to nitroso much more rapidly than that of TMX. Imidacloprid (IMI), CLO and several of their metabolites do not give detectable N-glucuronides but 5-hydroxy-IMI, 4,5-diol-IMI and 4-hydroxy-thiacloprid are converted to O-glucuronides in vitro with mouse liver microsomes and UDP-glucuronic acid or in vivo in mice. Mouse liver cytosol with S-adenosylmethionine converts desmethyl-CLO to CLO but not desmethyl-TMX to TMX. Two organophosphorus CYP450 inhibitors partially block IMI, thiacloprid and CLO metabolism in vivo in mice, elevating the brain and liver levels of the parent compounds while reducing amounts of the hydroxylated metabolites. PMID:19391582

  6. Differential metabolism of diastereoisomeric diterpenes by Preussia minima, found as endophytic fungus in Cupressus lusitanica.

    PubMed

    Ud Din, Zia; de Medeiros, L S; Abreu, L M; Pfenning, Ludwig H; Lopes Jymeni, D B; Rodrigues-Filho, E

    2018-08-01

    The plant diastereoisomeric diterpenes ent-pimara-8(14)-15-dien-19-oic acid, obtained from Viguiera arenaria, and isopimara-8(14)-15-dien-18-oic acid, isolated from Cupressus lusitanica, were distinctly functionalized by the enzymes produced in whole cell cultures of the fungus Preussia minima, isolated from surface sterilized stems of C. lusitanica. The ent-pimaradienoic acid was transformed into the known 7β-hydroxy-ent-pimara-8(14)-15-dien-19-oic acid, and into the novel diterpenes 7-oxo-8 β-hydroxy-ent-pimara-8(14)-15-dien-19-oic and 7-oxo-9β-hydroxy-ent-pimara-8(14)-15-dien-19-oic acids. Isopimara-8(14)-15-dien-18-oic acid was converted into novel diterpenes 11α-hydroxyisopimara-8(14)-15-dien-18-oic acid, 7β,11α-dihydroxyisopimara-8(14)-15-dien-18-oic acid, and 1β,11α-dihydroxyisopimara-8(14)-15-dien-18-oic acid, along with the known 7β-hydroxyisopimara-8(14)-15-dien-18-oic acid. All compounds were isolated and fully characterized by 1D and 2D NMR, especially 13 C NMR. The diterpene bioproduct 7-oxo-9β-hydroxy-ent-pimara-8(14)-15-dien-19-oic acid is an isomer of sphaeropsidin C, a phytotoxin that affects cypress trees produced by Shaeropsis sapinea, one of the main phytopathogen of Cupressus. The differential metabolism of the diterpene isomers used as substrates for biotransformation was interpreted with the help of computational molecular docking calculations, considering as target enzymes those of cytochrome P450 group. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Ultrathin ZnO interfacial passivation layer for atomic layer deposited ZrO2 dielectric on the p-In0.2Ga0.8As substrate

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Lü, Hongliang; Yang, Tong; Zhang, Yuming; Zhang, Yimen; Liu, Dong; Ma, Zhenqiang; Yu, Weijian; Guo, Lixin

    2018-06-01

    Interfacial and electrical properties were investigated on metal-oxidesemiconductor capacitors (MOSCAPs) fabricated with bilayer ZnO/ZrO2 films by atomic layer deposition (ALD) on p-In0.2Ga0.8As substrates. The ZnO passivated In0.2Ga0.8As MOSCAPs have exhibited significantly improved capacitance-voltage (C-V) characteristics with the suppressed "stretched out" effect, increased accumulation capacitance and reduced accumulation frequency dispersion as well as the lower gate leakage current. In addition, the interface trap density (Dit) estimated by the Terman method was decreased dramatically for ZnO passivated p-In0.2Ga0.8As. The inherent mechanism is attributed to the fact that an ultrathin ZnO IPL employed by ALD prior to ZrO2 dielectric deposition can effectively suppress the formation of defect-related low-k oxides and As-As dimers at the interface, thus effectively improving the interface quality by largely removing the border traps aligned near the valence band edge of the p-In0.2Ga0.8As substrate.

  8. Selective oxidation of aliphatic C-H bonds in alkylphenols by a chemomimetic biocatalytic system.

    PubMed

    Du, Lei; Dong, Sheng; Zhang, Xingwang; Jiang, Chengying; Chen, Jingfei; Yao, Lishan; Wang, Xiao; Wan, Xiaobo; Liu, Xi; Wang, Xinquan; Huang, Shaohua; Cui, Qiu; Feng, Yingang; Liu, Shuang-Jiang; Li, Shengying

    2017-06-27

    Selective oxidation of aliphatic C-H bonds in alkylphenols serves significant roles not only in generation of functionalized intermediates that can be used to synthesize diverse downstream chemical products, but also in biological degradation of these environmentally hazardous compounds. Chemo-, regio-, and stereoselectivity; controllability; and environmental impact represent the major challenges for chemical oxidation of alkylphenols. Here, we report the development of a unique chemomimetic biocatalytic system originated from the Gram-positive bacterium Corynebacterium glutamicum The system consisting of CreHI (for installation of a phosphate directing/anchoring group), CreJEF/CreG/CreC (for oxidation of alkylphenols), and CreD (for directing/anchoring group offloading) is able to selectively oxidize the aliphatic C-H bonds of p - and m -alkylated phenols in a controllable manner. Moreover, the crystal structures of the central P450 biocatalyst CreJ in complex with two representative substrates provide significant structural insights into its substrate flexibility and reaction selectivity.

  9. Cytochrome P450 induction by rifampicin in healthy subjects: determination using the Karolinska cocktail and the endogenous CYP3A4 marker 4beta-hydroxycholesterol.

    PubMed

    Kanebratt, K P; Diczfalusy, U; Bäckström, T; Sparve, E; Bredberg, E; Böttiger, Y; Andersson, T B; Bertilsson, L

    2008-11-01

    The Karolinska cocktail, comprising caffeine, losartan, omeprazole, and quinine, was given before and after administration of rifampicin (20, 100, or 500 mg daily) to measure induction of cytochrome P450 (P450) enzymes. Rifampicin was given for 14 days to eight healthy subjects (all of whom possessed at least one wild-type CYP2C9 and one wild-type CYP2C19 gene) in each dose group. 4beta-hydroxycholesterol was assessed as an endogenous marker of CYP3A4 induction. A fourfold induction of CYP3A4 was seen at the highest dose by both quinine:3'-hydroxyquinine and 4beta-hydroxycholesterol measurements (P < 0.001). CYP3A4 was also induced at the two lower doses of rifampicin when measured by these two markers (P < 0.01 or P < 0.001). CYP1A2, CYP2C9, and CYP2C19 were induced after 500 mg rifampicin daily (1.2-fold, P < 0.05; 1.4-fold, P < 0.05; and 4.2-fold, P < 0.01, respectively). In conclusion, we have shown that the Karolinska cocktail and 4beta-hydroxycholesterol can be used for an initial screening of the induction properties of a drug candidate.

  10. In vitro and physiologically‐based pharmacokinetic based assessment of drug–drug interaction potential of canagliflozin

    PubMed Central

    Dallas, Shannon; Sensenhauser, Carlo; Lim, Heng Keang; Scheers, Ellen; Verboven, Peter; Cuyckens, Filip; Leclercq, Laurent; Evans, David C.; Kelley, Michael F.; Johnson, Mark D.; Snoeys, Jan

    2016-01-01

    Aims Canagliflozin is a recently approved drug for use in the treatment of type 2 diabetes. The potential for canagliflozin to cause clinical drug–drug interactions (DDIs) was assessed. Methods DDI potential of canagliflozin was investigated using in vitro test systems containing drug metabolizing enzymes or transporters. Basic predictive approaches were applied to determine potential interactions in vivo. A physiologically‐based pharmacokinetic (PBPK) model was developed and clinical DDI simulations were performed to determine the likelihood of cytochrome P450 (CYP) inhibition by canagliflozin. Results Canagliflozin was primarily metabolized by uridine 5′‐diphospho‐glucuronosyltransferase 1A9 and 2B4 enzymes. Canagliflozin was a substrate of efflux transporters (P‐glycoprotein, breast cancer resistance protein and multidrug resistance‐associated protein‐2) but was not a substrate of uptake transporters (organic anion transporter polypeptide isoforms OATP1B1, OATP1B3, organic anion transporters OAT1 and OAT3, and organic cationic transporters OCT1, and OCT2). In inhibition assays, canagliflozin was shown to be a weak in vitro inhibitor (IC50) of CYP3A4 (27 μmol l –1, standard error [SE] 4.9), CYP2C9 (80 μmol l –1, SE 8.1), CYP2B6 (16 μmol l–1, SE 2.1), CYP2C8 (75 μmol l –1, SE 6.4), P‐glycoprotein (19.3 μmol l –1, SE 7.2), and multidrug resistance‐associated protein‐2 (21.5 μmol l –1, SE 3.1). Basic models recommended in DDI guidelines (US Food & Drug Administration and European Medicines Agency) predicted moderate to low likelihood of interaction for these CYPs and efflux transporters. PBPK DDI simulations of canagliflozin with CYP probe substrates (simvastatin, S‐warfarin, bupropion, repaglinide) did not show relevant interaction in humans since mean areas under the concentration‐time curve and maximum plasma concentration ratios for probe substrates with and without canagliflozin and its 95% CIs were within 0.80–1.25. Conclusions In vitro DDI followed by a predictive or PBPK approach was applied to determine DDI potential of canagliflozin. Overall, canagliflozin is neither a perpetrator nor a victim of clinically important interactions. PMID:27862160

  11. Transmission electron microscopy characterization of the erbium silicide formation process using a Pt/Er stack on a silicon-on-insulator substrate.

    PubMed

    Łaszcz, A; Katcki, J; Ratajczak, J; Tang, Xiaohui; Dubois, E

    2006-10-01

    Very thin erbium silicide layers have been used as source and drain contacts to n-type Si in low Schottky barrier MOSFETs on silicon-on-insulator substrates. Erbium silicide is formed by a solid-state reaction between the metal and silicon during annealing. The influence of annealing temperature (450 degrees C, 525 degrees C and 600 degrees C) on the formation of an erbium silicide layer in the Pt/Er/Si/SiO(2)/Si structure was analysed by means of cross-sectional transmission electron microscopy. The Si grains/interlayer formed at the interface and the presence of Si grains within the Er-related layer constitute proof that Si reacts with Er in the presence of a Pt top layer in the temperature range 450-600 degrees C. The process of silicide formation in the Pt/Er/Si structure differs from that in the Er/Si structure. At 600 degrees C, the Pt top layer vanishes and a (Pt-Er)Si(x) system is formed.

  12. Cytochrome P450 2D-mediated metabolism is not necessary for tafenoquine and primaquine to eradicate the erythrocytic stages of Plasmodium berghei.

    PubMed

    Milner, Erin E; Berman, Jonathan; Caridha, Diana; Dickson, Samuel P; Hickman, Mark; Lee, Patricia J; Marcsisin, Sean R; Read, Lisa T; Roncal, Norma; Vesely, Brian A; Xie, Lisa H; Zhang, Jing; Zhang, Ping; Li, Qigui

    2016-12-07

    Due to the ability of the 8-aminoquinolines (8AQs) to kill different stages of the malaria parasite, primaquine (PQ) and tafenoquine (TQ) are vital for causal prophylaxis and the eradication of erythrocytic Plasmodium sp. parasites. Recognizing the potential role of cytochrome (CYP) 450 2D6 in the metabolism and subsequent hepatic efficacy of 8-aminoquinolines, studies were designed to explore whether CYP2D-mediated metabolism was related to the ability of single-dose PQ and TQ to eliminate the asexual and sexual erythrocytic stages of Plasmodium berghei. An IV P. berghei sporozoite murine challenge model was utilized to directly compare causal prophylactic and erythrocytic activity (asexual and sexual parasite stages) dose-response relationships in C57BL/6 wild-type (WT) mice and subsequently compare the erythrocytic activity of PQ and TQ in WT and CYP2D knock-out (KO) mice. Single-dose administration of either 25 mg/kg TQ or 40 mg/kg PQ eradicated the erythrocytic stages (asexual and sexual) of P. berghei in C57BL WT and CYP2D KO mice. In WT animals, the apparent elimination of hepatic infections occurs at lower doses of PQ than are required to eliminate erythrocytic infections. In contrast, the minimally effective dose of TQ needed to achieve causal prophylaxis and to eradicate erythrocytic parasites was analogous. The genetic deletion of the CYP2D cluster does not affect the ability of PQ or TQ to eradicate the blood stages (asexual and sexual) of P. berghei after single-dose administration.

  13. Inhibition effects of Vernonia cinerea active compounds against cytochrome P450 2A6 and human monoamine oxidases, possible targets for reduction of tobacco dependence.

    PubMed

    Prasopthum, Aruna; Pouyfung, Phisit; Sarapusit, Songklod; Srisook, Ekaruth; Rongnoparut, Pornpimol

    2015-04-01

    The human cytochrome P450 2A6 (CYP2A6) and monoamine oxidases (MAO-A and MAO-B), catalyzing nicotine and dopamine metabolisms, respectively, are two therapeutic targets of nicotine dependence. Vernonia cinerea, a medicinal plant commonly used for treatment of diseases such as asthma and bronchitis, has been shown reducing tobacco dependence effect among tobacco users. In the present study, we found eight active compounds isolated from V. cinerea that comprise inhibitory activity toward CYP2A6 and MAO-A and MAO-B enzymes using activity-guided assays, with coumarin as substrate of CYP2A6 and kynuramine of MAOs. These compounds were three flavones (apigenin, chrysoeriol, luteolin), one flavonol (quercetin), and four hirsutinolide-type sesquiterpene lactones (8α-(2-methylacryloyloxy)-hirsutinolide-13-O-acetate, 8α-(4-hydroxymethacryloyloxy)-hirsutinolide-13-O-acetate, 8α-tigloyloxyhirsutinolide-13-O-acetate, and 8α-(4-hydroxytigloyloxy)-hirsutinolide-13-O-acetate). Modes and kinetics of inhibition against the three enzymes were determined. Flavonoids possessed strong inhibitory effect on CYP2A6 in reversible mode, while inhibition by hirsutinolides was mechanism-based (NADPH-, concentration-, and time-dependence) and irreversible. Inhibition by hirsutinolides could not be reversed by dialysis and by addition of trapping agents or potassium ferricyanide. Flavonoids inhibited MAOs with variable degrees and were more prominent in inhibition toward MAO-A than hirsutinolides, while two of hirsutinolides inhibited MAO-B approximately comparable to two flavonoids. These results could have implications in combination of drug therapy for smoking cessation. Copyright © 2014 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  14. Genetic Overlap in Kallmann Syndrome, Combined Pituitary Hormone Deficiency, and Septo-Optic Dysplasia

    PubMed Central

    Raivio, Taneli; Avbelj, Magdalena; McCabe, Mark J.; Romero, Christopher J.; Dwyer, Andrew A.; Tommiska, Johanna; Sykiotis, Gerasimos P.; Gregory, Louise C.; Diaczok, Daniel; Tziaferi, Vaitsa; Elting, Mariet W.; Padidela, Raja; Plummer, Lacey; Martin, Cecilia; Feng, Bihua; Zhang, Chengkang; Zhou, Qun-Yong; Chen, Huaibin; Mohammadi, Moosa; Quinton, Richard; Sidis, Yisrael; Radovick, Sally; Dattani, Mehul T.

    2012-01-01

    Context: Kallmann syndrome (KS), combined pituitary hormone deficiency (CPHD), and septo-optic dysplasia (SOD) all result from development defects of the anterior midline in the human forebrain. Objective: The objective of the study was to investigate whether KS, CPHD, and SOD have shared genetic origins. Design and Participants: A total of 103 patients with either CPHD (n = 35) or SOD (n = 68) were investigated for mutations in genes implicated in the etiology of KS (FGFR1, FGF8, PROKR2, PROK2, and KAL1). Consequences of identified FGFR1, FGF8, and PROKR2 mutations were investigated in vitro. Results: Three patients with SOD had heterozygous mutations in FGFR1; these were either shown to alter receptor signaling (p.S450F, p.P483S) or predicted to affect splicing (c.336C>T, p.T112T). One patient had a synonymous change in FGF8 (c.216G>A, p.T72T) that was shown to affect splicing and ligand signaling activity. Four patients with CPHD/SOD were found to harbor heterozygous rare loss-of-function variants in PROKR2 (p.R85G, p.R85H, p.R268C). Conclusions: Mutations in FGFR1/FGF8/PROKR2 contributed to 7.8% of our patients with CPHD/SOD. These data suggest a significant genetic overlap between conditions affecting the development of anterior midline in the human forebrain. PMID:22319038

  15. Mechanism-based inactivation of CYP2C8 by gemfibrozil occurs rapidly in humans.

    PubMed

    Honkalammi, J; Niemi, M; Neuvonen, P J; Backman, J T

    2011-04-01

    To study the time to onset of mechanism-based inactivation of cytochrome P450 (CYP) 2C8 by gemfibrozil in vivo, we conducted a randomized five-phase crossover study in 10 healthy volunteers. In one phase the volunteers ingested 0.25 mg of repaglinide alone (control), and in the other phases they received 600 mg of gemfibrozil 0-6 h prior to the repaglinide dose. When gemfibrozil was taken 0, 1, 3, or 6 h before repaglinide, the geometric mean ratio relative to control (90% confidence interval (CI)) of repaglinide area under the plasma concentration-time curve (AUC(0-∞)) was 5.0-fold (4.3-5.7-fold), 6.3-fold (5.4-7.5-fold), 6.6-fold (5.6-7.7-fold), and 5.4-fold (4.8-6.1-fold), respectively (P < 0.001 vs. control). The geometric mean ratio relative to control (90% CI) of the maximum plasma concentration (C(max)) of the CYP2C8-mediated metabolite M4 was 1.0-fold (0.8-1.3-fold), 0.10-fold (0.06-0.17-fold, P < 0.001), 0.06-fold (0.04-0.10-fold, P < 0.001), and 0.09-fold (0.05-0.14-fold, P < 0.001), respectively. The strong inactivation of CYP2C8, evident as soon as 1 h after gemfibrozil dosing, has implications in clinical practice and in studies with gemfibrozil as a CYP2C8 model inhibitor.

  16. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts.

    PubMed

    Ding, Xinxin; Kaminsky, Laurence S

    2003-01-01

    Cytochrome P450 (CYP) enzymes in extrahepatic tissues often play a dominant role in target tissue metabolic activation of xenobiotic compounds. They may also determine drug efficacy and influence the tissue burden of foreign chemicals or bioavailability of therapeutic agents. This review focuses on xenobiotic-metabolizing CYPs of the human respiratory and gastrointestinal tracts, including the lung, trachea, nasal respiratory and olfactory mucosa, esophagus, stomach, small intestine, and colon. Many CYPs are expressed in one or more of these organs, including CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2F1, CYP2J2, CYP2S1, CYP3A4, CYP3A5, and CYP4B1. Of particular interest are the preferential expression of certain CYPs in the respiratory tract and the regional differences in CYP expression profile in different parts of the gastrointestinal tract. Current research activities on the characterization of CYP expression, function, and regulation in these tissues, as well as future research needs, are discussed.

  17. Synthesis of chiral 2-alkanols from n-alkanes by a P. putida whole-cell biocatalyst.

    PubMed

    Tieves, Florian; Erenburg, Isabelle N; Mahmoud, Osama; Urlacher, Vlada B

    2016-09-01

    The cytochrome P450 monooxygenase CYP154A8 from Nocardia farcinica was previously found to catalyze hydroxylation of linear alkanes (C7 -C9 ) with a high regio- and stereoselectivity. The objective of this study was to integrate CYP154A8 along with suitable redox partners into a whole-cell system for the production of chiral 2-alkanols starting from alkanes. Both recombinant Escherichia coli and Pseudomonas putida whole-cell biocatalysts tested for this purpose showed the ability to produce chiral alkanols, but a solvent tolerant P. putida strain demonstrated several advantages in the applied biphasic reaction system. The optimized P. putida whole-cell system produced ∼16 mM (S)-2-octanol with 87% ee from octane, which is more than sevenfold higher than the previously described system with isolated enzymes. The achieved enantiopurity of the product could further be increased up to 99% ee by adding an alcohol dehydrogenase (ADH) to the alkane-oxidizing P. putida whole-cell systems. By using this setup for the individual conversions of heptane, octane or nonane, 2.6 mM (S)-2-heptanol with 91% ee, 5.4 mM (S)-2-octanol with 97% ee, or 5.5 mM (S)-2-nonanol with 97% ee were produced, respectively. The achieved concentrations of chiral 2-alkanols are the highest reported for a P450-based whole-cell system so far. Biotechnol. Bioeng. 2016;113: 1845-1852. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Effects of folic acid supplementation on the pharmacokinetics and anticoagulant effect of warfarin: an open-label, prospective study of long-term administration in adults.

    PubMed

    Muszkat, Mordechai; Bialer, Omer; Blotnick, Simcha; Adar, Liat; Xie, Hong-Guang; Ufer, Mike; Cascorbi, Ingolf; Caraco, Yoseph

    2010-02-01

    Folic acid supplementation in patients with folic acid deficiency has been associated with increased clearance of phenytoin to its cytochrome P450 (CYP) 2C9-mediated metabolite, 5-(4'-hydroxyphenyl)-5-phenylhydantoin. The aim of this study was to determine whether folic acid supplementation increases the dosage requirement of the CYP2C9 substrate warfarin, and the formation clearance of the CYP2C9-mediated product, (S)-7-hydroxywarfarin. Patients aged >or=18 years with folic acid deficiency who were receiving long-term treatment with a stable dosage of warfarin were studied prospectively, before and 30 to 60 days after the initiation of supplementation with folic acid. Warfarin dosage and international normalized ratio (INR) were documented, and the formation clearance of (S)- and (R)-7-hydroxywarfarin and the oral clearance of (S)- and (R)-warfarin were determined. Twenty-four white patients (14 males; mean (SD) age, 55.0 [19.7] years; body mass index, 30.64 [6.8] kg/m(2)) were enrolled. Treatment with folic acid was associated with a significantly increased mean (SD) formation clearance of (S)-7-hydroxywarfarin (1.096 [0.816] vs 1.608 [1.302] mL/min; P = 0.048). Before folic acid supplementation, the mean (SD) warfarin dosage was 5.98 (2.12) mg/d, and the INR was 2.51 (0.55). During supplementation, the warfarin dosage was 6.17 (2.31) mg/d and the INR was 2.63 (0.65) (both, P = NS vs before supplementation). Folic acid supplementation was associated with significantly increased formation clearance of (S)-7-hydroxywarfarin. Changes in warfarin dosage requirements and INR were nonsignificant. Copyright 2010. Published by EM Inc USA.

  19. Activation of amino-alpha-carboline, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and a copper phthalocyanine cellulose extract of cigarette smoke condensate by cytochrome P-450 enzymes in rat and human liver microsomes.

    PubMed

    Shimada, T; Guengerich, F P

    1991-10-01

    The ability of cigarette smoke condensate to induce a genotoxic response has been measured in liver microsomal and reconstituted monooxygenase systems containing rat and human cytochrome P-450 (P-450) enzymes, as determined by umu gene expression in Salmonella typhimurium TA1535/pSK1002. The reactivities of amino-alpha-carboline and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), two compounds known to be present at considerable levels in cigarette smoke condensate, were also determined and compared with regard to genotoxicity. Amino-alpha-carboline and PhIP are activated principally by P-450 1A2 enzymes in human and rat liver microsomes: (a) activation of both compounds was catalyzed efficiently by liver microsomes prepared from rats treated with 5,6-benzoflavone, isosafrole, or the commercial polychlorinated biphenyl mixture Aroclor 1254, and the activities could be considerably inhibited by antibodies raised against P-450 1A1 or 1A2; (b) the rates of activation of these compounds were correlated with the amount of human P-450 1A2 and of phenacetin O-deethylation activity in different human liver microsomal preparations, and these activities were inhibited by anti-P-450 1A2; (c) reconstituted enzyme systems containing P-450 1A enzymes isolated from rats and humans showed the highest rates of activation of amino-alpha-carboline and PhIP. In rat liver microsomes PhIP may also be activated by P-450 3A enzymes; activity was induced in rats treated with pregnenolone 16 alpha-carbonitrile and was inhibited by anti-human P-450 3A4. However, in humans the contribution of P-450 3A enzymes could be excluded as judged by the very low effects of anti-P-450 3A4 on the microsomal activities and poor correlation with P-450 3A4-catalyzed activities in various liver samples. Cigarette smoke condensate strongly inhibited the activation of several potent procarcinogens by human liver microsomes, particularly the reactions catalyzed by P-450 1A2, but was not so inhibitory of the activation reactions catalyzed by P-450 3A4 and of P-450 2D6-catalyzed bufuralol 1'-hydroxylation. Genotoxic components of the cigarette smoke condensate were extracted by using copper phthalocyanine cellulose (blue cotton). Genotoxicity of this extract was observed only after activation by P-450, and the inhibition of P-450 1A2 activities by these extracts was slight.(ABSTRACT TRUNCATED AT 400 WORDS)

  20. Comparison of aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase induction by polycyclic aromatic compounds in human and mouse cell lines.

    PubMed

    Jaiswal, A K; Nebert, D W; Eisen, H W

    1985-08-01

    The human MCF-7 and the mouse Hepa-1 cell culture lines were compared for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]anthracene (BA) and TCDD- and BA-specific binding in the cytosol and nucleus. The effective concentration of BA in the growth medium required to induce either enzyme to 50% of its maximally inducible activity (EC50) was the same (5-11 microM) in both MCF-7 and Hepa-1 cells. On the other hand, the EC50 for TCDD in MCF-7 cells (5-25 nM) was more than 40-fold greater than that in Hepa-1 cells (0.4 to 0.6 nM). P1-450- and P3-450-specific mouse cDNA probes were used to quantitate mRNA induction in the Hepa-1 cell line. P1-450 mRNA was induced markedly by TCDD and benzo[a] anthracene, whereas P3-450 mRNA was induced negligibly. A P1-450-specific human cDNA probe was used to quantitate P1-450 mRNA induction in the MCF-7 cell line. Aryl hydrocarbon hydroxylase inducibility by TCDD or BA always paralleled P1-450 mRNA inducibility in either the mouse or human line. Although the cytosolic Ah receptor in Hepa-1 cells was easily detected by sucrose density gradient centrifugation, gel permeation chromatography, and anion-exchange high-performance liquid chromatography, the cytosolic receptor cannot be detected in MCF-7 cells. Following in vivo exposure of cultures to radiolabeled TCDD, the intranuclear concentration of inducer-receptor complex was at least fifty times greater in Hepa-1 than MCF-7 cultures. The complete lack of measurable cytosolic receptor and almost totally absent inducer-receptor complex in the nucleus of MCF-7 cells was, therefore, out of proportion to its capacity for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility. This MCF-7 line should provide an interesting model for a better understanding of the mechanisms of drug-metabolizing enzyme induction by polycyclic aromatic compounds, including the Ah receptor-mediated mechanism.

  1. Identification and in silico prediction of metabolites of the model compound, tebufenozide by human CYP3A4 and CYP2C19.

    PubMed

    Shirotani, Naoki; Togawa, Moe; Ikushiro, Shinichi; Sakaki, Toshiyuki; Harada, Toshiyuki; Miyagawa, Hisashi; Matsui, Masayoshi; Nagahori, Hirohisa; Mikata, Kazuki; Nishioka, Kazuhiko; Hirai, Nobuhiro; Akamatsu, Miki

    2015-10-15

    The metabolites of tebufenozide, a model compound, formed by the yeast-expressed human CYP3A4 and CYP2C19 were identified to clarify the substrate recognition mechanism of the human cytochrome P450 (CYP) isozymes. We then determined whether tebufenozide metabolites may be predicted in silico. Hydrogen abstraction energies were calculated with the density functional theory method B3LYP/6-31G(∗). A docking simulation was performed using FRED software. Several alkyl sites of tebufenozide were hydroxylated by CYP3A4 whereas only one site was modified by CYP2C19. The accessibility of each site of tebufenozide to the reaction center of CYP enzymes and the susceptibility of each hydrogen atom for metabolism by CYP enzymes were evaluated by a docking simulation and hydrogen abstraction energy estimation, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulation-specific P450 monooxygenases

    PubMed Central

    2010-01-01

    Background Cytochrome P450 monooxygenases (P450s) catalyze oxidation of various substrates using oxygen and NAD(P)H. Plant P450s are involved in the biosynthesis of primary and secondary metabolites performing diverse biological functions. The recent availability of the soybean genome sequence allows us to identify and analyze soybean putative P450s at a genome scale. Co-expression analysis using an available soybean microarray and Illumina sequencing data provides clues for functional annotation of these enzymes. This approach is based on the assumption that genes that have similar expression patterns across a set of conditions may have a functional relationship. Results We have identified a total number of 332 full-length P450 genes and 378 pseudogenes from the soybean genome. From the full-length sequences, 195 genes belong to A-type, which could be further divided into 20 families. The remaining 137 genes belong to non-A type P450s and are classified into 28 families. A total of 178 probe sets were found to correspond to P450 genes on the Affymetrix soybean array. Out of these probe sets, 108 represented single genes. Using the 28 publicly available microarray libraries that contain organ-specific information, some tissue-specific P450s were identified. Similarly, stress responsive soybean P450s were retrieved from 99 microarray soybean libraries. We also utilized Illumina transcriptome sequencing technology to analyze the expressions of all 332 soybean P450 genes. This dataset contains total RNAs isolated from nodules, roots, root tips, leaves, flowers, green pods, apical meristem, mock-inoculated and Bradyrhizobium japonicum-infected root hair cells. The tissue-specific expression patterns of these P450 genes were analyzed and the expression of a representative set of genes were confirmed by qRT-PCR. We performed the co-expression analysis on many of the 108 P450 genes on the Affymetrix arrays. First we confirmed that CYP93C5 (an isoflavone synthase gene) is co-expressed with several genes encoding isoflavonoid-related metabolic enzymes. We then focused on nodulation-induced P450s and found that CYP728H1 was co-expressed with the genes involved in phenylpropanoid metabolism. Similarly, CYP736A34 was highly co-expressed with lipoxygenase, lectin and CYP83D1, all of which are involved in root and nodule development. Conclusions The genome scale analysis of P450s in soybean reveals many unique features of these important enzymes in this crop although the functions of most of them are largely unknown. Gene co-expression analysis proves to be a useful tool to infer the function of uncharacterized genes. Our work presented here could provide important leads toward functional genomics studies of soybean P450s and their regulatory network through the integration of reverse genetics, biochemistry, and metabolic profiling tools. The identification of nodule-specific P450s and their further exploitation may help us to better understand the intriguing process of soybean and rhizobium interaction. PMID:21062474

  3. Influence of cytochrome 2C19 allelic variants on on-treatment platelet reactivity evaluated by five different platelet function tests.

    PubMed

    Gremmel, Thomas; Kopp, Christoph W; Moertl, Deddo; Seidinger, Daniela; Koppensteiner, Renate; Panzer, Simon; Mannhalter, Christine; Steiner, Sabine

    2012-05-01

    The antiplatelet effect of clopidogrel has been linked to cytochrome P450 2C19 (CYP2C19) carrier status. The presence of loss of function and gain of function variants were found to have a gene-dose effect on clopidogrel metabolism. However, genotyping is only one aspect of predicting response to clopidogrel and several platelet function tests are available to measure platelet response. Patients and methods We studied the influence of CYP2C19 allelic variants on on-treatment platelet reactivity as assessed by light transmission aggregometry (LTA), the VerifyNow P2Y12 assay, the VASP assay, multiple electrode aggregometry (MEA), and the Impact-R in 288 patients after stenting for cardiovascular disease. Allelic variants of CYP2C19 were determined with the Infiniti® CYP450 2C19+ assay and categorized into four metabolizer states (ultrarapid, extensive, intermediate, poor). Platelet reactivity increased linearly from ultrarapid to poor metabolizers using the VerifyNow P2Y12 assay (P = 0.04), the VASP assay (P = 0.02) and the Impact-R (P = 0.04). The proportion of patients with high on-treatment residual platelet reactivity (HRPR) identified by LTA, the VerifyNow P2Y12 assay and the VASP assay increased when the metabolizer status decreased, while no such relationship could be identified for results of MEA and Impact-R. The presence of loss of function variants (*2/*2, *2-8*/wt, *2/*17) was an independent predictor of HRPR in LTA and the VASP assay while it did not reach statistical significance in the VerifyNow P2Y12 assay, MEA, and the Impact-R. Depending on the type of platelet function test differences in the association of on-treatment platelet reactivity with CYP2C19 carrier status are observed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Polysaccharide peptides from Coriolus versicolor competitively inhibit model cytochrome P450 enzyme probe substrates metabolism in human liver microsomes.

    PubMed

    Yeung, John H K; Or, Penelope M Y

    2012-03-15

    Polysaccharide peptide (PSP), isolated from COV-1 strain of Coriolus versicolor, is commonly used as an adjunct in cancer chemotherapy or health supplement in China. Previous studies have shown that PSP decreased antipyrine clearance and inhibited rat CYP2C11-mediated tolbutamide 4-hydroxylation and in human CYP2C9. In this study, the effects of the water extractable fraction of PSP on the metabolism of model CYP1A2, CYP2D6, CYP2E1 and CYP3A4 probe substrates were investigated in pooled human liver microsomes. PSP (1.25-20μM) dose-dependently decreased CYP1A2-mediated metabolism of phenacetin to paracetamol (IC(50) 19.7μM) and CYP3A4-mediated metabolism of testosterone to 6β-hydroxytestosterone (IC(20) 7.06μM). Enzyme kinetics studies showed the inhibition of CYP1A2 activity was competitive and concentration-dependent (K(i)=18.4μM). Inhibition of testosterone to 6β-hydroxytestosterone was also competitive and concentration-dependent (K(i)=31.8μM). Metabolism of dextromethorphan to dextrorphan (CYP2D6-mediated) and chlorzoxazone to 6-hydroxychlorzoxazone (CYP2E1-mediated) was only minimally inhibited by PSP, with IC(20) values at 15.6μM and 11.9μM, respectively. This study demonstrated that PSP competitively inhibited the CYP1A2- and CYP3A4-mediated metabolism of model probe substrates in human liver microsomes in vitro. The relatively high K(i) values for CYP1A2 and CYP3A4 would suggest a low potential for PSP to cause herb-drug interaction related to these CYP isoforms. Copyright © 2011 Elsevier GmbH. All rights reserved.

  5. Human cytochrome P450scc (CYP11A1) catalyzes epoxide formation with ergosterol.

    PubMed

    Tuckey, Robert C; Nguyen, Minh N; Chen, Jianjun; Slominski, Andrzej T; Baldisseri, Donna M; Tieu, Elaine W; Zjawiony, Jordan K; Li, Wei

    2012-03-01

    Cytochrome P450scc (P450scc) catalyzes the cleavage of the side chain of both cholesterol and the vitamin D(3) precursor, 7-dehydrocholesterol. The aim of this study was to test the ability of human P450scc to metabolize ergosterol, the vitamin D(2) precursor, and define the structure of the major products. P450scc incorporated into the bilayer of phospholipid vesicles converted ergosterol to two major and four minor products with a k(cat) of 53 mol · min(-1) · mol P450scc(-1) and a K(m) of 0.18 mol ergosterol/mol phospholipid, similar to the values observed for cholesterol metabolism. The reaction of ergosterol with P450scc was scaled up to make enough of the two major products for structural analysis. From mass spectrometry, NMR, and comparison of the NMR data to that for similar molecules, we determined the structures of the two major products as 20-hydroxy-22,23-epoxy-22,23-dihydroergosterol and 22-keto-23-hydroxy-22,23-dihydroergosterol. Molecular modeling and nuclear Overhauser effect (or enhancement) spectroscopy spectra analysis helped to establish the configurations at C20, C22, and C23 and determine the final structures of major products as 22R,23S-epoxyergosta-5,7-diene-3β,20α-diol and 3β,23S-dihydroxyergosta-5,7-dien-22-one. It is likely that the formation of the second product is through a 22,23-epoxy (oxirane) intermediate followed by C22 hydroxylation with the formation of strained 22-hydroxy-22,23-epoxide (oxiranol), which is immediately transformed to the more stable α-hydroxyketone. Molecular modeling of ergosterol into the P450scc crystal structure positioned the ergosterol side chain consistent with formation of the above products. Thus, we have shown that P450scc efficiently catalyzes epoxide formation with ergosterol giving rise to novel epoxy, hydroxy, and keto derivatives, without causing cleavage of the side chain.

  6. A study to improve the mechanical properties of silicon carbide ribbon fibers

    NASA Technical Reports Server (NTRS)

    Debolt, H. E.; Robey, R. J.

    1976-01-01

    Preliminary deposition studies of SiC ribbon on a carbon ribbon substrate showed that the dominant strength limiting flaws were at the substrate surface. Procedures for making the carbon ribbon substrate from polyimide film were improved, providing lengths up to 450 meters (1,500 ft.) of flat carbon ribbon substrate 1,900 microns (75 mils) wide by 25 microns (1 mil) thick. The flaws on the carbon ribbon were smaller and less frequent than on carbon ribbon used earlier. SiC ribbon made using the improved substrate, including a layer of pyrolytic graphite to reduce further the severity of substrate surface flaws, showed strength levels up to the 2,068 MPa (300 Ksi) target of the program, with average strength levels over 1,700 MPa (250 Ksi) with coefficient of variation as low as 10% for some runs.

  7. The endogenous adrenodoxin reductase-like flavoprotein arh1 supports heterologous cytochrome P450-dependent substrate conversions in Schizosaccharomyces pombe.

    PubMed

    Ewen, Kerstin M; Schiffler, Burkhard; Uhlmann-Schiffler, Heike; Bernhardt, Rita; Hannemann, Frank

    2008-05-01

    Mitochondrial cytochromes P450 are essential for biosynthesis of steroid hormones, vitamin D and bile acids. In mammals, the electrons needed for these reactions are provided via adrenodoxin and adrenodoxin reductase (AdR). Recently, Schizosaccharomyces pombe was introduced as a new host for the functional expression of human mitochondrial steroid hydroxylases without the coexpression of their natural redox partners. This fact qualifies S. pombe for the biotechnological production of steroids and for application as inhibitor test organism of heterologously expressed cytochromes P450. In this paper, we present evidence that the S. pombe ferredoxin reductase, arh1, and ferredoxin, etp1fd provide mammalian class I cytochromes P450 with reduction equivalents. The recombinant reductase showed an unusual weak binding of flavin adenine dinucleotide (FAD), which was mastered by modifying the FAD-binding region by site-directed mutagenesis yielding a stable holoprotein. The modified reductase arh1_A18G displayed spectroscopic characteristics similar to AdR and was shown to be capable of accepting electrons with no evident preference for NADH or NADPH, respectively. Arh1_A18G can substitute for AdR by interacting not only with its natural redox partner etp1fd but also with the mammalian homolog adrenodoxin. Cytochrome P450-dependent substrate conversion with all combinations of the mammalian and yeast redox proteins was evaluated in a reconstituted system.

  8. Enhanced critical-current in P-doped BaFe2As2 thin films on metal substrates arising from poorly aligned grain boundaries.

    PubMed

    Sato, Hikaru; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2016-11-11

    Thin films of the iron-based superconductor BaFe 2 (As 1-x P x ) 2 (Ba122:P) were fabricated on polycrystalline metal-tape substrates with two kinds of in-plane grain boundary alignments (well aligned (4°) and poorly aligned (8°)) by pulsed laser deposition. The poorly aligned substrate is not applicable to cuprate-coated conductors because the in-plane alignment >4° results in exponential decay of the critical current density (J c ). The Ba122:P film exhibited higher J c at 4 K when grown on the poorly aligned substrate than on the well-aligned substrate even though the crystallinity was poorer. It was revealed that the misorientation angles of the poorly aligned samples were less than 6°, which are less than the critical angle of an iron-based superconductor, cobalt-doped BaFe 2 As 2 (~9°), and the observed strong pinning in the Ba122:P is attributed to the high-density grain boundaries with the misorientation angles smaller than the critical angle. This result reveals a distinct advantage over cuprate-coated conductors because well-aligned metal-tape substrates are not necessary for practical applications of the iron-based superconductors.

  9. The microsomal mixed function oxidase system of amphibians and reptiles: components, activities and induction.

    PubMed

    Ertl, R P; Winston, G W

    1998-11-01

    This article reviews current research in amphibian and reptilian cytochromes P450, important to the overall understanding of xenobiotic metabolism in the ecosystem and the evolution of P450s. Amphibians and reptilians contain the normal mixed function oxidase system (MFO). In general the MFO content and activities are less than those found in mammals, but only a few of the known activities have been examined in these vertebrate classes. Research to date has focused on two families of cytochromes P450, CYP1 and 2. The isoforms examined catalyze the classic activities but there have been notable absences. The total number of isoforms present and the breadth of substrates metabolized are yet unknown. Induction by foreign compounds (xenobiotics) is lengthier and yields lower levels of induced activity than is typically found in mammals. When these animals are pretreated with 3-methylcholanthrene (3MC) and beta-naphthaflavone (BNF), which are known to induce the same isoform in mammals, multiple isoforms are induced with different activities. Phenobarbital-pretreatment in turtles and alligators induces cytochromes P450 and suggestive data indicates induction in the lizard Agama lizard and the newt Pleurodeles waltl. In amphibians and reptiles a CYP2B protein does appear to be present along with constitutive activities associated with the 2 family of cytochromes P450. The markedly different response to classic inducers combined with lower or absent activities alters the view of how amphibians and reptilians respond to xenobiotic challenges.

  10. Modification of electrochemically deposited apatite using supercritical water.

    PubMed

    Ban, S; Hasegawa, J

    2001-12-01

    Supercritical water was used as a modification method of electrochemically deposited apatite on pure titanium. The apatites were coated on a commercially pure titanium plate using a hydrothermal-electrochemical method. A constant direct current at 12.5 mA/cm2 was loaded for 1 hr at 25, 60, 100, 150 and 200 degrees C in an electrolyte containing calcium and phosphate ions. The deposited apatite on the titanium substrate was stored in supercritical water at 450 degrees C under 45 MPa for 8 hr. With this treatment, the crystallinity of the apatites increased, sharp edges of the deposited apatites were rounded off, and the bonding strength of the titanium substrate to the deposited apatites significantly increased. On the other hand, weight loss in 0.01 N HCl decreased and the weight gain rate in a simulated body fluid also decreased with this treatment. It is suggested that the modification using supercritical water improved the mechanical strength of the deposited apatite, but worsened its bioactivity.

  11. Gene expression profiles of Drosophila melanogaster exposed to an insecticidal extract of Piper nigrum.

    PubMed

    Jensen, Helen R; Scott, Ian M; Sims, Steve; Trudeau, Vance L; Arnason, John Thor

    2006-02-22

    Black pepper, Piper nigrum L. (Piperaceae), has insecticidal properties and could potentially be utilized as an alternative to synthetic insecticides. Piperine extracted from P. nigrum has a biphasic effect upon cytochrome P450 monooxygenase activity with an initial suppression followed by induction. In this study, an ethyl acetate extract of P. nigrum seeds was tested for insecticidal activity toward adult Musca domestica and Drosophila melanogaster. The effect of this same P. nigrum extract upon differential gene expression in D. melanogaster was investigated using cDNA microarray analysis of 7380 genes. Treatment of D. melanogaster with P. nigrum extract led to a greater than 2-fold upregulation of transcription of the cytochrome P450 phase I metabolism genes Cyp 6a8, Cyp 9b2, and Cyp 12d1 as well as the glutathione-S-transferase phase II metabolism gene Gst-S1. These data suggests a complex effect of P. nigrum upon toxin metabolism.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debasis; Borkowski, Lauren A.; Kim, Sun Jin

    Two lithium-based metal-organic frameworks, Li{sub 2}(C{sub 14}H{sub 8}O{sub 4}) [Li{sub 2}(4,4'-BPDC) [1]; ULMOF-2, UL = ultralight; BPDC = biphenyldicarboxylate]; space group P2{sub 1}/c, a = 12.758(2) {angstrom}, b = 5.142(4) {angstrom}, c = 8.00(2) {angstrom}, {beta} = 97.23{sup o}, V = 520.6(14) {angstrom}{sup 3} and Li{sub 2}(C{sub 14}H{sub 8}O{sub 6}S) [Li{sub 2}(4,4'-SDB) [2]; ULMOF-3, UL = ultralight; SDB = sulfonyldibenzoate], space group P2{sub 1}/n, a = 5.5480(11) {angstrom}, b = 23.450(5) {angstrom}, c = 10.320(2) {angstrom}, {beta} = 96.47(3){sup o}, V = 1334.1(5) {angstrom}3, were synthesized. Compounds 1 and 2 were synthesized by solvothermal methods and were characterized using singlemore » crystal X-ray diffraction. Structure 1 consists of layers of two-dimensional antifluorite related LiO motif connected by BPDC linkers, whereas structure 2 is constructed by a combination of tetrameric lithium polyhedral clusters connected by the sulfonyldibenzoate linker. The frameworks are stable up to 575 and 500 C, respectively, under N{sub 2} atmosphere.« less

  13. Underwater Facilities Inspections and Assessments at Philadelphia Naval Shipyard, Philadelphia, Pennsylvania. Volume 1.

    DTIC Science & Technology

    1983-10-01

    NAVAL FACILITIES ENGINEERING COMMAND~ CORPORATION .𔃾CN C 33 pItLAOFLPHI* NAVAL SH4IP-110 PŕiIL -~~NA IA I 1OAQ 4C-14723, C-13041o, C- 13047 4C-1~3046...5ECTION 2 4 8 10 ATI i I 70 30 0 .50SCALE OF FEET GOAHI FCALE CHESAPEAKE DIVISION GRAPIC SALENAVAL FACILITIES ENGINEERING COMMAND C-DLS E.GINEERING...ELEVATION CORE LCC- ATI ~J 45+00 444-50 44+00 493+50 loyo OF V 1 11 FILE’ NV~ 45+0(o / 10 5TA � TIMBER 51NEETIW4& BATTER FILI c 0 - r, - Q Q -Q Q Q -Q- ’~ rP

  14. Inhibition of fipronil and nonane metabolism in human liver microsomes and human cytochrome P450 isoforms by chlorpyrifos.

    PubMed

    Joo, Hyun; Choi, Kyoungju; Rose, Randy L; Hodgson, Ernest

    2007-01-01

    Previous studies have established that chlorpyrifos (CPS), fipronil, and nonane can all be metabolized by human liver microsomes (HLM) and a number of cytochrome P450 (CYP) isoforms. However, metabolic interactions between these three substrates have not been described. In this study the effect of either coincubation or preincubation of CPS with HLM or CYP isoforms with either fipronil or nonane as substrate was investigated. In both co- and preincubation experiments, CPS significantly inhibited the metabolism of fipronil or nonane by HLM although CPS inhibited the metabolism of fipronil more effectively than that of nonane. CPS significantly inhibited the metabolism of fipronil by CYP3A4 as well as the metabolism of nonane by CYP2B6. In both cases, preincubation with CPS caused greater inhibition than coincubation, suggesting that the inhibition is mechanism based.

  15. Effect of triptolide on progesterone production from cultured rat granulosa cells.

    PubMed

    Zhang, J; Jiang, Z; Mu, X; Wen, J; Su, Y; Zhang, L

    2012-06-01

    Triptolide(CAS 38748-32-2), a major active component of Tripterygium wilfordii Hook F (TWHF), is known to have multiple pharmacological activities. However, studies have also shown that triptolide is highly disrupt to the reproductive system by disrupting normal steroid hormone signaling. In the present study, we investigated the effect of triptolide (5, 10, or 20 nM for 24 h) on progesterone production by rat granulosa cells. Triptolide inhibited both basal and human chorionic gonadotropin (HCG)- and 8-bromo-cAMP-stimulated progesterone production as revealed by RIA assay. Furthermore, the HCG-evoked increase in cellular cAMP content was also inhibited by triptolide, indicating that disruption of the cAMP/PKA signaling pathway may mediate the deleterious effects of triptolide on progesterone regulation. In addition, triptolide inhibited 25-OH-cholesterol-stimulated progesterone production, suggesting that activity of the P450 side chain cleavage (P450scc) enzyme was also be inhibited by triptolide. Western blot and quantitative real-time PCR (qRT-PCR) assays further revealed that triptolide decreased mRNA and protein expression of P450scc and the steroidogenic regulatory (StAR) protein in granulosa cells. In contrast, cell viability tests using 3-(4,5-dimethyl-thiazol-2-yl)-2,5- diphenyl-tetrazolium bromide (MTT) indicated that triptolide did not cause measurable cell death at doses that suppressed steroidogenesis. The reproductive toxicity of triptolide may be caused by disruption of cAMP/PKA-mediated expression of a number of progesterone synthesis enzymes or regulatory proteins, leading to reduced progesterone synthesis and reproductive dysfunction. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Induction by carrot allelochemicals of insecticide-metabolising enzymes in the southern armyworm (Spodoptera eridania).

    PubMed

    Brattsten, L B; Evans, C K; Bonetti, S; Zalkow, L H

    1984-01-01

    Carrot foliage monoterpenes induce cytochrome P-450 up to 2.9-fold, NADPH cytochrome c (P-450) reductase up to 1.6-fold, NADPH-oxidation up to 3.8-fold, aldrin epoxidation up to 1.5-fold in southern armyworm larval midgut tissues when incorporated in their diet at 0.2% for 3 days. Stigmasterol and ergosterol did not substantially induce microsomal oxidase activities and significantly inhibited GSH S-aryltransferase activity and sulfotransferase activity. Coumarin did not substantially affect microsomal oxidase and sulfotransferase activity but is the most potent inducer of GSH S-aryltransferase activity, increasing this activity 7-fold. None of the chemicals is acutely toxic to the sixth instar larvae or affect the larval weight gain except coumarin which significantly depressed the maximal body weight attained.

  17. The Karolinska cocktail for phenotyping of five human cytochrome P450 enzymes.

    PubMed

    Christensen, Magnus; Andersson, Katarina; Dalén, Per; Mirghani, Rajaa A; Muirhead, Gary J; Nordmark, Anna; Tybring, Gunnel; Wahlberg, Anneli; Yaşar, Umit; Bertilsson, Leif

    2003-06-01

    Our objectives were (1) to determine whether the drugs caffeine, losartan, omeprazole, debrisoquin (INN, debrisoquine), and quinine can be given simultaneously in low doses as a cocktail for the phenotyping of cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6, and 3A4, respectively, and (2) to design an administration schedule to give as few sampling occasions as possible. Twenty-four subjects were given oral doses of 100 mg caffeine, 25 mg losartan, 20 mg omeprazole, 10 mg debrisoquin, and 250 mg quinine on separate days. After a washout period of at least 4 days, all drugs were given simultaneously except for quinine, which was given 8 hours after the other drugs. Blood and urine samples were collected to determine parent drug and metabolite concentrations for assessment of phenotyping indices. Any difference between both single and cocktail doses was tested on a log-normal distribution. The phenotypic indices of CYP1A2 (paraxanthine/caffeine in 4-hour plasma), CYP2C9 (losartan/E-3174 [metabolite of losartan] in 0- to 8-hour urine), CYP2C19 (omeprazole/5-hydroxyomeprazole in 3-hour plasma), and CYP3A4 (quinine/3-hydroxyquinine in 16-hour plasma) were not significantly changed when probe drugs were administered alone compared with together, although a tendency toward higher concentrations of losartan was seen during simultaneous administration (95% confidence interval, 0.51-1.002; P =.051). The CYP2D6 phenotypic index (debrisoquin/4-hydroxydebrisoquin in 0- to 8-hour urine) was significantly changed when drugs were given together (95% confidence interval, 0.45-0.87; P =.007), indicating an inhibition of the debrisoquin metabolism. The within-subject coefficients of variation (8%-25%) were much lower than the between-subject coefficients of variation (34%-79%). The administration of drugs together suggests an inhibition of debrisoquin metabolism caused by the concurrent drugs given. By separating debrisoquin from the other cocktail drugs, this method is likely to be used as a tool to phenotype the enzymes CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 with only 2 urinary collections and 2 blood-sampling occasions.

  18. Epigenetic modification of histone 3 lysine 27: mediator subunit MED25 is required for the dissociation of polycomb repressive complex 2 from the promoter of cytochrome P450 2C9.

    PubMed

    Englert, Neal A; Luo, George; Goldstein, Joyce A; Surapureddi, Sailesh

    2015-01-23

    The Mediator complex is vital for the transcriptional regulation of eukaryotic genes. Mediator binds to nuclear receptors at target response elements and recruits chromatin-modifying enzymes and RNA polymerase II. Here, we examine the involvement of Mediator subunit MED25 in the epigenetic regulation of human cytochrome P450 2C9 (CYP2C9). MED25 is recruited to the CYP2C9 promoter through association with liver-enriched HNF4α, and we show that MED25 influences the H3K27 status of the HNF4α binding region. This region was enriched for the activating marker H3K27ac and histone acetyltransferase CREBBP after MED25 overexpression but was trimethylated when MED25 expression was silenced. The epigenetic regulator Polycomb repressive complex (PRC2), which represses expression by methylating H3K27, plays an important role in target gene regulation. Silencing MED25 correlated with increased association of PRC2 not only with the promoter region chromatin but with HNF4α itself. We confirmed the involvement of MED25 for fully functional preinitiation complex recruitment and transcriptional output in vitro. Formaldehyde-assisted isolation of regulatory elements (FAIRE) revealed chromatin conformation changes that were reliant on MED25, indicating that MED25 induced a permissive chromatin state that reflected increases in CYP2C9 mRNA. For the first time, we showed evidence that a functionally relevant human gene is transcriptionally regulated by HNF4α via MED25 and PRC2. CYP2C9 is important for the metabolism of many exogenous chemicals including pharmaceutical drugs as well as endogenous substrates. Thus, MED25 is important for regulating the epigenetic landscape resulting in transcriptional activation of a highly inducible gene, CYP2C9. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Immobilized Cytochrome P450 2C9 (CYP2C9): Applications for Metabolite Generation, Monitoring Protein-Protein Interactions, and Improving In-vivo Predictions Using Enhanced In-vitro Models

    NASA Astrophysics Data System (ADS)

    Wollenberg, Lance A.

    Cytochrome P450 (P450) enzymes are a family of oxoferroreductase enzymes containing a heme moiety and are well known to be involved in the metabolism of a wide variety of endogenous and xenobiotic materials. It is estimated that roughly 75% of all pharmaceutical compounds are metabolized by these enzymes. Traditional reconstituted in-vitro incubation studies using recombinant P450 enzymes are often used to predict in-vivo kinetic parameters of a drug early in development. However, in many cases, these reconstituted incubations are prone to aggregation which has been shown to affect the catalytic activity of an enzyme. Moreover, the presence of other isoforms of P450 enzymes present in a metabolic incubation, as is the case with microsomal systems, may affect the catalytic activity of an enzyme through isoform-specific protein-protein interactions. Both of these effects may result in inaccurate prediction of in-vivo drug metabolism using in-vitro experiments. Here we described the development of immobilized P450 constructs designed to elucidate the effects of aggregation and protein-protein interactions between P450 isoforms on catalytic activities. The long term objective of this project is to develop a system to control the oligomeric state of Cytochrome P450 enzymes to accurately elucidate discrepancies between in vitro reconstituted systems and actual in vivo drug metabolism for the precise prediction of metabolic activity. This approach will serve as a system to better draw correlations between in-vivo and in-vitro drug metabolism data. The central hypothesis is that Cytochrome P450 enzymes catalytic activity can be altered by protein-protein interactions occurring between Cytochrome P450 enzymes involved in drug metabolism, and is dependent on varying states of protein aggregation. This dissertation explains the details of the construction and characterization of a nanostructure device designed to control the state of aggregation of a P450 enzyme. Moreover, applications of immobilized P450 enzyme constructs will also be used for monitoring protein-protein interaction and metabolite production with the use of immobilized-P450 bioreactor constructs. This work provides insight into the effect on catalytic activity caused by both P450 aggregation as well as isoform-specific protein-protein interactions and provides insight in the production of biosynthetically produced drug metabolites

  20. Assessment of a dry extract from milk thistle (Silybum marianum) for interference with human liver cytochrome-P450 activities.

    PubMed

    Doehmer, Johannes; Weiss, Gabriele; McGregor, Gerard P; Appel, Kurt

    2011-02-01

    The effect of a standardised dry extract from Silybum marianum (HEPAR-PASC®) on the enzyme kinetics of cytochrome-P450 isoenzymes (CYP) was investigated with primary human hepatocytes and human liver microsomes in order to assess the potential for drug-drug interactions. A cytotoxic effect on hepatocytes was observed at concentrations at and above 50 μg/ml. The EC(50) value was calculated to be 72.0 μg/ml. Therefore, the chosen test concentrations for CYP induction on human hepatocytes were 50, 10, and 1.5 μg/ml, which allowed for interpretation of the clinical significance of the data with a range of 50-1-fold c(max) at maximal recommended doses. No induction was observed at the lowest concentration of 1.5 μg/ml, which is close to c(max). The extract did not induce CYP 3A4 at any of the tested concentrations. A low or marginal induction of 1A2, 2B6, and 2E1 at the maximum concentration of 50 μg/ml was observed. CYP inhibition on human microsomes was tested at concentrations of 150, 15, and 1.5 μg/ml. No or minor CYP inhibition was observed for all CYPs tested at the lowest concentration of 1.5 μg/ml, i.e. CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4. At concentrations of 15 and 150 μg/ml the extract significantly inhibited CYP 2B6, 2C8, 2C9, 2C19, 2E1, and 3A4. In these cases, K(i) values were determined. All K(i) values exceeded c(max) by at least a factor of 10-fold. According to FDA regulations 1>c(max)/K(i)>0.1 indicates, that drug-drug interactions are possible for CYPs 2C8, and 2C9, but not likely, and are remote for CYPs 2C19, 2D6, and 3A4. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Characterization of a novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase from a polychlorinated biphenyl- and naphthalene-degrading Bacillus sp. JF8.

    PubMed

    Hatta, Takashi; Mukerjee-Dhar, Gouri; Damborsky, Jiri; Kiyohara, Hohzoh; Kimbara, Kazuhide

    2003-06-13

    A novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl-1,2-dioxygenase (BphC_JF8) catalyzing the meta-cleavage of the hydroxylated biphenyl ring was purified from the thermophilic biphenyl and naphthalene degrader, Bacillus sp. JF8, and the gene was cloned. The native and recombinant BphC enzyme was purified to homogeneity. The enzyme has a molecular mass of 125 +/- 10 kDa and was composed of four identical subunits (35 kDa). BphC_JF8 has a temperature optimum of 85 degrees C and a pH optimum of 7.5. It exhibited a half-life of 30 min at 80 degrees C and 81 min at 75 degrees C, making it the most thermostable extradiol dioxygenase studied. Inductively coupled plasma mass spectrometry analysis confirmed the presence of 4.0-4.8 manganese atoms per enzyme molecule. The EPR spectrum of BphC_JF8 exhibited g = 2.02 and g = 4.06 signals having the 6-fold hyperfine splitting characteristic of Mn(II). The enzyme can oxidize a wide range of substrates, and the substrate preference was in the order 2,3-dihydroxybiphenyl > 3-methylcatechol > catechol > 4-methylcatechol > 4-chlorocatechol. The enzyme is resistant to denaturation by various chelators and inhibitors (EDTA, 1,10-phenanthroline, H2O2, 3-chlorocatechol) and did not exhibit substrate inhibition even at 3 mm 2,3-dihydroxybiphenyl. A decrease in Km accompanied an increase in temperature, and the Km value of 0.095 microm for 2,3-dihydroxybiphenyl (at 60 degrees C) is among the lowest reported. The kinetic properties and thermal stability of the native and recombinant enzyme were identical. The primary structure of BphC_JF8 exhibits less than 25% sequence identity to other 2,3-dihydroxybiphenyl 1,2-dioxygenases. The metal ligands and active site residues of extradiol dioxygenases are conserved, although several amino acid residues found exclusively in enzymes that preferentially cleave bicyclic substrates are missing in BphC_JF8. A three-dimensional homology model of BphC_JF8 provided a basis for understanding the substrate specificity, quaternary structure, and stability of the enzyme.

  2. Cytochrome P450 binding studies of novel tacrine derivatives: Predicting the risk of hepatotoxicity.

    PubMed

    McEneny-King, Alanna; Osman, Wesseem; Edginton, Andrea N; Rao, Praveen P N

    2017-06-01

    The 1,2,3,4-tetrahydroacridine derivative tacrine was the first drug approved to treat Alzheimer's disease (AD). It is known to act as a potent cholinesterase inhibitor. However, tacrine was removed from the market due to its hepatotoxicity concerns as it undergoes metabolism to toxic quinonemethide species through the cytochrome P450 enzyme CYP1A2. Despite these challenges, tacrine serves as a useful template in the development of novel multi-targeting anti-AD agents. In this regard, we sought to evaluate the risk of hepatotoxicity in a series of C9 substituted tacrine derivatives that exhibit cholinesterase inhibition properties. The hepatotoxic potential of tacrine derivatives was evaluated using recombinant cytochrome (CYP) P450 CYP1A2 and CYP3A4 enzymes. Molecular docking studies were conducted to predict their binding modes and potential risk of forming hepatotoxic metabolites. Tacrine derivatives compound 1 (N-(3,4-dimethoxybenzyl)-1,2,3,4-tetrahydroacridin-9-amine) and 2 (6-chloro-N-(3,4-dimethoxybenzyl)-1,2,3,4-tetrahydroacridin-9-amine) which possess a C9 3,4-dimethoxybenzylamino substituent exhibited weak binding to CYP1A2 enzyme (1, IC 50 =33.0µM; 2, IC 50 =8.5µM) compared to tacrine (CYP1A2 IC 50 =1.5µM). Modeling studies show that the presence of a bulky 3,4-dimethoxybenzylamino C9 substituent prevents the orientation of the 1,2,3,4-tetrahydroacridine ring close to the heme-iron center of CYP1A2 thereby reducing the risk of forming hepatotoxic species. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Mechanistic Studies of the Yeast Polyamine Oxidase Fms1: Kinetic Mechanism, Substrate Specificity, and pH Dependence†

    PubMed Central

    Adachi, Mariya S.; Torres, Jason M.; Fitzpatrick, Paul F.

    2010-01-01

    The flavoprotein oxidase Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine and N1-acetylspermine to yield spermidine and 3-aminopropanal or N-acetyl-3-aminopropanal. The kinetic mechanism of the enzyme has been determined with both substrates. The initial velocity patterns are ping-pong, consistent with reduction being kinetically irreversible. Reduction of Fms1 by either substrate is biphasic. The rate constant for the rapid phase varies with the substrate concentration, with limiting rates for reduction of the enzyme of 126 and 1410 s−1 and apparent Kd values of 24.3 and 484 μM for spermine and N1-acetylspermine, respectively. The rapid phase is followed by a concentration-independent phase that is slower than turnover. The reaction of the reduced enzyme with oxygen is monophasic, with a rate constant of 402 mM−1 s−1 with spermine at 25 °C, and 204 mM−1 s−1 with N1-acetylspermine at 4 °C, pH 9.0. This step is followed by rate-limiting product dissociation. The kcat/Kamine-pH profiles are bell-shaped, with an average pKa value of 9.3 with spermine and pKa values of 8.3 and 9.6 with N1-acetylspermine. Both profiles are consistent with the active forms of substrates having two charged nitrogens. The pH profiles for the rate constant for flavin reduction show pKa values of 8.3 and 7.2 for spermine and N1-acetylspermine, respectively, for groups that must be unprotonated; these pKa values are assigned to the substrate N4. The kcat/KO2-pH profiles show pKa values of 7.5 for spermine and 6.8 for N1-acetylspermine. With both substrates, the kcat value decreases when a single residue is protonated. PMID:21067138

  4. Metabolism of endosulfan-alpha by human liver microsomes and its utility as a simultaneous in vitro probe for CYP2B6 and CYP3A4.

    PubMed

    Casabar, Richard C T; Wallace, Andrew D; Hodgson, Ernest; Rose, Randy L

    2006-10-01

    Endosulfan-alpha is metabolized to a single metabolite, endosulfan sulfate, in pooled human liver microsomes (Km = 9.8 microM, Vmax = 178.5 pmol/mg/min). With the use of recombinant cytochrome P450 (P450) isoforms, we identified CYP2B6 (Km = 16.2 microM, Vmax = 11.4 nmol/nmol P450/min) and CYP3A4 (Km = 14.4 microM, Vmax = 1.3 nmol/nmol P450/min) as the primary enzymes catalyzing the metabolism of endosulfan-alpha, although CYP2B6 had an 8-fold higher intrinsic clearance rate (CL(int) = 0.70 microl/min/pmol P450) than CYP3A4 (CL(int) = 0.09 microl/min/pmol P450). Using 16 individual human liver microsomes (HLMs), a strong correlation was observed with endosulfan sulfate formation and S-mephenytoin N-demethylase activity of CYP2B6 (r(2) = 0.79), whereas a moderate correlation with testosterone 6 beta-hydroxylase activity of CYP3A4 (r(2) = 0.54) was observed. Ticlopidine (5 microM), a potent CYP2B6 inhibitor, and ketoconazole (10 microM), a selective CYP3A4 inhibitor, together inhibited approximately 90% of endosulfan-alpha metabolism in HLMs. Using six HLM samples, the percentage total normalized rate (% TNR) was calculated to estimate the contribution of each P450 in the total metabolism of endosulfan-alpha. In five of the six HLMs used, the percentage inhibition with ticlopidine and ketoconazole in the same incubation correlated with the combined % TNRs for CYP2B6 and CYP3A4. This study shows that endosulfan-alpha is metabolized by HLMs to a single metabolite, endosulfan sulfate, and that it has potential use, in combination with inhibitors, as an in vitro probe for CYP2B6 and 3A4 catalytic activities.

  5. Comparison of short-wavelength blue-light autofluorescence and conventional blue-light autofluorescence in geographic atrophy.

    PubMed

    Borrelli, Enrico; Nittala, Muneeswar Gupta; Abdelfattah, Nizar Saleh; Lei, Jianqin; Hariri, Amir H; Shi, Yue; Fan, Wenying; Cozzi, Mariano; Sarao, Valentina; Lanzetta, Paolo; Staurenghi, Giovanni; Sadda, SriniVas R

    2018-06-05

    To systematically compare the intermodality and inter-reader agreement for two blue-light confocal fundus autofluorescence (FAF) systems. Thirty eyes (21 patients) with a diagnosis of geographic atrophy (GA) were enrolled. Eyes were imaged using two confocal blue-light FAF devices: (1) Spectralis device with a 488 nm excitation wavelength (488-FAF); (2) EIDON device with 450 nm excitation wavelength and the capability for 'colour' FAF imaging including both the individual red and green components of the emission spectrum. Furthermore, a third imaging modality (450-RF image) isolating and highlighting the red emission fluorescence component (REFC) was obtained and graded. Each image was graded by two readers to assess inter-reader variability and a single image for each modality was used to assess the intermodality variability. The 95% coefficient of repeatability (1.35 mm 2 for the 488-FAF-based grading, 8.13 mm 2 for the 450-FAF-based grading and 1.08 mm 2 for the 450-RF-based grading), the coefficient of variation (1.11 for 488-FAF, 2.05 for 450-FAF, 0.92 for 450-RF) and the intraclass correlation coefficient (0.994 for 488-FAF, 0.711 for 450-FAF, 0.997 for 450-RF) indicated that 450-FAF-based and 450-RF-based grading have the lowest and highest inter-reader agreements, respectively. The GA area was larger for 488-FAF images (median (IQR) 2.1 mm 2  (0.8-6.4 mm 2 )) than for 450-FAF images (median (IQR) 1.0 mm 2  (0.3-4.3 mm 2 ); p<0.0001). There was no significant difference in lesion area measurement between 488-FAF-based and 450-RF-based grading (median (IQR) 2.6 mm 2  (0.8-6.8 mm 2 ); p=1.0). The isolation of the REFC from the 450-FAF images allowed for a reproducible quantification of GA. This assessment had good comparability with that obtained with 488-FAF images. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Differentially regulated NADPH:cytochrome P450 oxidoreductases in parsley

    PubMed Central

    Koopmann, Edda; Hahlbrock, Klaus

    1997-01-01

    Two NADPH:cytochrome P450 oxidoreductases (CPRs) from parsley (Petroselinum crispum) were cloned, and the complete proteins were expressed and functionally identified in yeast. The two enzymes, designated CPR1 and CPR2, are 80% identical in amino acid sequence with one another and about 75% identical with CPRs from several other plant species. The mRNA accumulation patterns for CPR1 and CPR2 in fungal elicitor-treated or UV-irradiated cultured parsley cells and in developing or infected parsley plants were compared with those for cinnamate 4-hydroxylase (C4H), one of the most abundant CPR-dependent P450 enzymes in plants. All treatments strongly induced the mRNAs for C4H and CPR1 but not for CPR2, suggesting distinct metabolic roles of CPR1 and CPR2 and a functional relationship between CPR1 and C4H. PMID:9405720

  7. Characterization of human cytochrome P450s involved in the bioactivation of tri-ortho-cresyl phosphate (ToCP).

    PubMed

    Reinen, Jelle; Nematollahi, Leyla; Fidder, Alex; Vermeulen, Nico P E; Noort, Daan; Commandeur, Jan N M

    2015-04-20

    Tri-ortho-cresyl phosphate (ToCP) is a multipurpose organophosphorus compound that is neurotoxic and suspected to be involved in aerotoxic syndrome in humans. It has been reported that not ToCP itself but a metabolite of ToCP, namely, 2-(ortho-cresyl)-4H-1,2,3-benzodioxaphosphoran-2-one (CBDP), may be responsible for this effect as it can irreversibly bind to human butyrylcholinesterase (BuChE) and human acetylcholinesterase (AChE). The bioactivation of ToCP into CBDP involves Cytochrome P450s (P450s). However, the individual human P450s responsible for this bioactivation have not been identified yet. In the present study, we aimed to investigate the metabolism of ToCP by different P450s and to determine the inhibitory effect of the in vitro generated ToCP-metabolites on human BuChE and AChE. Human liver microsomes, rat liver microsomes, and recombinant human P450s were used for that purpose. The recombinant P450s 2B6, 2C18, 2D6, 3A4 and 3A5 showed highest activity of ToCP-bioactivation to BuChE-inhibitory metabolites. Inhibition experiments using pooled human liver microsomes indicated that P450 3A4 and 3A5 were mainly involved in human hepatic bioactivation of ToCP. In addition, these experiments indicated a minor role for P450 1A2. Formation of CBDP by in-house expressed recombinant human P450s 1A2 and 3A4 was proven by both LC-MS and GC-MS analysis. When ToCP was incubated with P450 1A2 and 3A4 in the presence of human BuChE, CBDP-BuChE-adducts were detected by LC-MS/MS which were not present in the corresponding control incubations. These results confirmed the role of human P450s 1A2 and 3A4 in ToCP metabolism and demonstrated that CBDP is the metabolite responsible for the BuChE inactivation. Interindividual differences at the level of P450 1A2 and 3A4 might play an important role in the susceptibility of humans in developing neurotoxic effects, such as aerotoxic syndrome, after exposure to ToCP.

  8. Fabrication and deformation behaviour of multilayer Al2O3/Ti/TiO2 nanotube arrays.

    PubMed

    Baradaran, S; Basirun, W J; Zalnezhad, E; Hamdi, M; Sarhan, Ahmed A D; Alias, Y

    2013-04-01

    In this study, titanium thin films were deposited on alumina substrates by radio frequency (RF) magnetron sputtering. The mechanical properties of the Ti coatings were evaluated in terms of adhesion strength at various RF powers, temperatures, and substrate bias voltages. The coating conditions of 400W of RF power, 250°C, and a 75V substrate bias voltage produced the strongest coating adhesion, as obtained by the Taguchi optimisation method. TiO2 nanotube arrays were grown as a second layer on the Ti substrates using electrochemical anodisation at a constant potential of 20V and anodisation times of 15min, 45min, and 75min in a NH4F electrolyte solution (75 ethylene glycol: 25 water). The anodised titanium was annealed at 450°C and 650°C in a N2 gas furnace to obtain different phases of titania, anatase and rutile, respectively. The mechanical properties of the anodised layer were investigated by nanoindentation. The results indicate that Young's modulus and hardness increased with annealing temperature to 650°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Oxidation resistance of biochars as a function of feedstock and pyrolysis condition.

    PubMed

    Han, Lanfang; Ro, Kyoung S; Wang, Yu; Sun, Ke; Sun, Haoran; Libra, Judy A; Xing, Baoshan

    2018-03-01

    Assessing biochar's ability to resist oxidation is fundamental to understanding its potential to sequester carbon. Chemical oxidation exhibits good performance in estimating the oxidation resistance of biochar. Herein, oxidation resistance of 14 types of biochars produced from four feedstocks at different pyrolysis conditions (hydrothermal versus thermal carbonization) was investigated via hydrogen peroxide oxidation with varying concentrations. The oxidation resistance of organic carbon (C) of hydrochars was relatively higher than that of 250°C pyrochars (P250) but was comparable to that of 450°C pyrochars (P450). Both hydrochars and P450 from ash-rich feedstocks contained at least three different C pools (5.9-18.3% labile, 43.2-56.5% semi-labile and 26.9-45.9% stable C). Part (<33%) of aromatic C within 600°C pyrochars (P600) was easily oxidizable, which consisted of amorphous C. The influence of pyrolysis temperature upon oxidation resistance of biochars depended on the feedstock. For ash-rich feedstock (rice straw, swine manure and poultry litter), the oxidation resistance of biochars was determined by both aromaticity and mineral components, and mineral protection was regulated by pyrolysis conditions. The amorphous silicon within hydrochars and P450 could interact with C, preventing C from being oxidized, to some extent. Nevertheless, this type of protection did not occur for P250 and P600. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. In vitro metabolism of benzo[a]pyrene-7,8-dihydrodiol and dibenzo[def,p]chrysene-11,12 diol in rodent and human hepatic microsomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jordan N.; Mehinagic, Denis; Nag, Subhasree

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that are ubiquitously found in the environment, produced through combustion of organic matter or petrochemicals, and many of which are procarcinogens. The prototypic PAH, benzo[a]pyrene (B[a]P) and the highly carcinogenic dibenzo[def,p]chrysene (DBC) are metabolically activated by isoforms of the P450 enzyme superfamily producing benzo[a]pyrene-7,8-dihydrodiol (B[a]P diol), dibenzo[def,p]chrysene-11,12 diol (DBC diol). Each of these diols can be further metabolized by cytochrome P450 enzymes to highly reactive diol-epoxide metabolites that readily react with DNA or by phase II conjugation facilitating excretion. To complement prior in vitro metabolism studies with parent B[a]P and DBC, both phase Imore » metabolism and phase II glucuronidation of B[a]P diol and DBC diol were measured in this paper in hepatic microsomes from female B6129SF1/J mice, male Sprague-Dawley rats, and female humans. Metabolic parameters, including intrinsic clearance and Michaelis-Menten kinetics were calculated from substrate depletion data. Mice and rats demonstrated similar B[a]P diol phase I metabolic rates. Compared to rodents, human phase I metabolism of B[a]P diol demonstrated lower overall metabolic capacity, lower intrinsic clearance at higher substrate concentrations (>0.14 μM), and higher intrinsic clearance at lower substrate concentrations (<0.07 μM). Rates of DBC diol metabolism did not saturate in mice or humans and were highest overall in mice. Higher affinity constants and lower capacities were observed for DBC diol glucuronidation compared to B[a]P diol glucuronidation; however, intrinsic clearance values for these compounds were consistent within each species. Finally, kinetic parameters reported here will be used to extend physiologically based pharmacokinetic (PBPK) models to include the disposition of B[a]P and DBC metabolites in animal models and humans to support future human health risk assessments.« less

  11. In vitro metabolism of benzo[a]pyrene-7,8-dihydrodiol and dibenzo[def,p]chrysene-11,12 diol in rodent and human hepatic microsomes

    DOE PAGES

    Smith, Jordan N.; Mehinagic, Denis; Nag, Subhasree; ...

    2017-01-21

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that are ubiquitously found in the environment, produced through combustion of organic matter or petrochemicals, and many of which are procarcinogens. The prototypic PAH, benzo[a]pyrene (B[a]P) and the highly carcinogenic dibenzo[def,p]chrysene (DBC) are metabolically activated by isoforms of the P450 enzyme superfamily producing benzo[a]pyrene-7,8-dihydrodiol (B[a]P diol), dibenzo[def,p]chrysene-11,12 diol (DBC diol). Each of these diols can be further metabolized by cytochrome P450 enzymes to highly reactive diol-epoxide metabolites that readily react with DNA or by phase II conjugation facilitating excretion. To complement prior in vitro metabolism studies with parent B[a]P and DBC, both phase Imore » metabolism and phase II glucuronidation of B[a]P diol and DBC diol were measured in this paper in hepatic microsomes from female B6129SF1/J mice, male Sprague-Dawley rats, and female humans. Metabolic parameters, including intrinsic clearance and Michaelis-Menten kinetics were calculated from substrate depletion data. Mice and rats demonstrated similar B[a]P diol phase I metabolic rates. Compared to rodents, human phase I metabolism of B[a]P diol demonstrated lower overall metabolic capacity, lower intrinsic clearance at higher substrate concentrations (>0.14 μM), and higher intrinsic clearance at lower substrate concentrations (<0.07 μM). Rates of DBC diol metabolism did not saturate in mice or humans and were highest overall in mice. Higher affinity constants and lower capacities were observed for DBC diol glucuronidation compared to B[a]P diol glucuronidation; however, intrinsic clearance values for these compounds were consistent within each species. Finally, kinetic parameters reported here will be used to extend physiologically based pharmacokinetic (PBPK) models to include the disposition of B[a]P and DBC metabolites in animal models and humans to support future human health risk assessments.« less

  12. In vitro metabolism of phenytoin in 36 CYP2C9 variants found in the Chinese population.

    PubMed

    Chen, Lian-Guo; Wang, Zhe; Zhu, Yuan; Xiong, Jian-Hua; Sun, Li-Rong; Dai, Da-Peng; Cai, Jian-Ping; Hu, Guo-Xin

    2016-06-25

    Cytochrome P450 2C9 (CYP2C9) is an important member of the cytochrome P450 enzyme superfamily, with 57 CYP2C9 allelic variants being previously reported. Recently, we identified 22 novel alleles (*36 -*56 and N418T) in the Han Chinese population. This study aims to assess the catalytic activities of wild-type (CYP2C9*1) and 36 CYP2C9 allelic variants found in the Chinese population toward phenytoin (PHT) in vitro. Insect microsomes expressing CYP2C9*1 and 36 CYP2C9 variants were incubated with 1-200 μM phenytoin for 30 min at 37 °C. Then, these products were extracted and the signal detection was performed by HPLC-MS/MS. The intrinsic clearance (Vmax/Km) values of all variants, with the exception of CYP2C9*2, CYP2C9*11, CYP2C9*23, CYP2C9*29, CYP2C9*34, CYP2C9*38, CYP2C9*44, CYP2C9*46 and CYP2C9*48, were significantly different from CYP2C9*1. CYP2C9*27, *40, *41, *47, *49, *51, *53, *54, *56 and N418T variant exhibited markedly larger values than CYP2C9*1 (>152.8%), whereas 17 variants exhibited smaller values (from 48.6% to 99.9%) due to larger Km and/or smaller Vmax values than CYP2C9*1. The findings suggest that more attention should be paid on subjects carrying these infrequent CYP2C9 alleles when administering phenytoin in clinic. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Beyond Iron: Iridium-Containing P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Key, Hanna M.; Dydio, Paweł; Liu, Zhennan

    Enzymes catalyze organic transformations with exquisite levels of selectivity, including chemoselectivity, stereoselectivity, and substrate selectivity, but the types of reactions catalyzed by enzymes are more limited than those of chemical catalysts. Thus, the convergence of chemical catalysis and biocatalysis can enable enzymatic systems to catalyze abiological reactions with high selectivity. Recently, we disclosed artificial enzymes constructed from the apo form of heme proteins and iridium porphyrins that catalyze the insertion of carbenes into a C-H bond. Here, we postulated that the same type of Ir(Me)-PIX enzymes could catalyze the cyclopropanation of a broad range of alkenes with control of multiplemore » modes of selectivity. Here, we report the evolution of artificial enzymes that are highly active and highly stereoselective for the addition of carbenes to a wide range of alkenes. These enzymes catalyze the cyclopropanation of terminal and internal, activated and unactivated, electron-rich and electron-deficient, conjugated and nonconjugated alkenes. In particular, Ir(Me)-PIX enzymes derived from CYP119 catalyze highly enantio- and diastereoselective cyclopropanations of styrene with ±98% ee, > 70:1 dr, > 75% yield, and ~10,000 turnovers (TON), as well as 1,2-disubstituted styrenes with up to 99% ee, 35:1 dr, and 54% yield. Moreover, Ir(Me)-PIX enzymes catalyze cyclopropanation of internal, unactivated alkenes with up to 99% stereoselectivity, 76% yield, and 1300 TON. They also catalyze cyclopropanation of natural products with diastereoselectivities that are complementary to those attained with standard transition metal catalysts. Finally, Ir(Me)-PIX P450 variants react with substrate selectivity that is reminiscent of natural enzymes; they react preferentially with less reactive internal alkenes in the presence of more reactive terminal alkenes. Altogether, the studies reveal the suitability of Ir-containing P450s to combine the broad reactivity and substrate scope of transition metal catalysts with the exquisite selectivity of enzymes, generating catalysts that enable reactions to occur with levels and modes of activity and selectivity previously unattainable with natural enzymes or transition metal complexes alone.« less

  14. Beyond Iron: Iridium-Containing P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes

    DOE PAGES

    Key, Hanna M.; Dydio, Paweł; Liu, Zhennan; ...

    2017-04-01

    Enzymes catalyze organic transformations with exquisite levels of selectivity, including chemoselectivity, stereoselectivity, and substrate selectivity, but the types of reactions catalyzed by enzymes are more limited than those of chemical catalysts. Thus, the convergence of chemical catalysis and biocatalysis can enable enzymatic systems to catalyze abiological reactions with high selectivity. Recently, we disclosed artificial enzymes constructed from the apo form of heme proteins and iridium porphyrins that catalyze the insertion of carbenes into a C-H bond. Here, we postulated that the same type of Ir(Me)-PIX enzymes could catalyze the cyclopropanation of a broad range of alkenes with control of multiplemore » modes of selectivity. Here, we report the evolution of artificial enzymes that are highly active and highly stereoselective for the addition of carbenes to a wide range of alkenes. These enzymes catalyze the cyclopropanation of terminal and internal, activated and unactivated, electron-rich and electron-deficient, conjugated and nonconjugated alkenes. In particular, Ir(Me)-PIX enzymes derived from CYP119 catalyze highly enantio- and diastereoselective cyclopropanations of styrene with ±98% ee, > 70:1 dr, > 75% yield, and ~10,000 turnovers (TON), as well as 1,2-disubstituted styrenes with up to 99% ee, 35:1 dr, and 54% yield. Moreover, Ir(Me)-PIX enzymes catalyze cyclopropanation of internal, unactivated alkenes with up to 99% stereoselectivity, 76% yield, and 1300 TON. They also catalyze cyclopropanation of natural products with diastereoselectivities that are complementary to those attained with standard transition metal catalysts. Finally, Ir(Me)-PIX P450 variants react with substrate selectivity that is reminiscent of natural enzymes; they react preferentially with less reactive internal alkenes in the presence of more reactive terminal alkenes. Altogether, the studies reveal the suitability of Ir-containing P450s to combine the broad reactivity and substrate scope of transition metal catalysts with the exquisite selectivity of enzymes, generating catalysts that enable reactions to occur with levels and modes of activity and selectivity previously unattainable with natural enzymes or transition metal complexes alone.« less

  15. Cloning and expression of SgCYP450-4 from Siraitia grosvenorii.

    PubMed

    Tu, Dongping; Ma, Xiaojun; Zhao, Huan; Mo, Changming; Tang, Qi; Wang, Liuping; Huang, Jie; Pan, Limei

    2016-11-01

    CYP450 plays an essential role in the development and growth of the fruits of Siraitia grosvenorii . However, little is known about the SgCYP450-4 gene in S. grosvenorii . Here, based on transcriptome data, a full-length cDNA sequence of SgCYP450-4 was cloned by reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid-amplification of cDNA ends (RACE) strategies. SgCYP450-4 is 1677 bp in length (GenBank accession No. AEM42985.1) and contains a complete open reading frame (ORF) of 1422 bp. The deduced protein was composed of 473 amino acids, the molecular weight is 54.01 kDa, the theoretical isoelectric point (PI) is 8.8, and the protein was predicted to possess cytochrome P450 domains. SgCYP450-4 gene was highly expressed in root, diploid fruit and fruit treated with hormone and pollination. At 10 days after treatment with pollination and hormones, the expression of Sg CYP450-4 had the highest level and then decreased over time, which was consistent with the development of fruits of S. Grosvenorii . Hormonal treatment could significantly induce the expression of SgCYP450-4 . These results provide a reference for regulation of fruit development and the use of parthenocarpy to generate seedless fruit, and provide a scientific basis for the production of growth regulator application agents.

  16. Gemfibrozil markedly increases the plasma concentrations of montelukast: a previously unrecognized role for CYP2C8 in the metabolism of montelukast.

    PubMed

    Karonen, T; Filppula, A; Laitila, J; Niemi, M; Neuvonen, P J; Backman, J T

    2010-08-01

    According to available information, montelukast is metabolized by cytochrome P450 (CYP) 3A4 and 2C9. In order to study the significance of CYP2C8 in the pharmacokinetics of montelukast, 10 healthy subjects were administered gemfibrozil 600 mg or placebo twice daily for 3 days, and 10 mg montelukast on day 3, in a randomized, crossover study. Gemfibrozil increased the mean area under the plasma concentration-time curve (AUC)(0-infinity), peak plasma concentration (C(max)), and elimination half-life (t(1/2)) of montelukast 4.5-fold, 1.5-fold, and 3.0-fold, respectively (P < 0.001). After administration of gemfibrozil, the time to reach C(max) (t(max)) of the montelukast metabolite M6 was prolonged threefold (P = 0.005), its AUC(0-7) was reduced by 40% (P = 0.027), and the AUC(0-24) of the secondary metabolite M4 was reduced by >90% (P < 0.001). In human liver microsomes, gemfibrozil 1-O-beta glucuronide inhibited the formation of M6 (but not of M5) from montelukast 35-fold more potently than did gemfibrozil (half-maximal inhibitory concentration (IC(50)) 3.0 and 107 micromol/l, respectively). In conclusion, gemfibrozil markedly increases the plasma concentrations of montelukast, indicating that CYP2C8 is crucial in the elimination of montelukast.

  17. Masking ability of a zirconia ceramic on composite resin substrate shades.

    PubMed

    Tabatabaian, Farhad; Shabani, Sima; Namdari, Mahshid; Sadeghpour, Koroush

    2017-01-01

    Masking ability of a restorative material plays an important role to cover discolored tooth structure; however, this ability has not yet been well understood in zirconia-based restorations. This study assessed the masking ability of a zirconia ceramic on composite resin substrates with different shades. Ten zirconia disc specimens, with 0.5 mm thickness and 10 mm diameter, were fabricated by a computer-aided design/computer-aided manufacturing system. A white substrate (control) and six composite resin substrates with different shades including A1, A2, A3, B2, C2, and D3 were prepared. The substrates had a cylindrical shape with 10 mm diameter and height. The specimens were placed onto the substrates for spectrophotometric evaluation. A spectrophotometer measured the L*, a*, and b* values for the specimens. ΔE values were calculated to determine the color differences between the groups and the control and then were compared with a perceptional threshold (ΔE = 2.6). Repeated measures ANOVA and Bonferroni tests were used for data analysis ( P < 0.05). The mean and standard deviation of ΔE values for A1, A2, A3, B2, C2, and D3 groups were 6.78 ± 1.59, 8.13 ± 1.66, 9.81 ± 2.64, 9.61 ± 1.38, 9.59 ± 2.63, and 8.13 ± 1.89, respectively. A significant difference was found among the groups in the ΔE values ( P = 0.006). The ΔE values were more than the perceptional threshold in all the groups ( P < 0.0001). Within the limitations of this study, it can be concluded that the tested zirconia ceramic could not thoroughly mask different shades of the composite resin substrates. Moreover, color masking of zirconia depends on the shade of substrate.

  18. Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993.

    PubMed

    Belova, Svetlana E; Kulichevskaya, Irina S; Bodelier, Paul L E; Dedysh, Svetlana N

    2013-03-01

    A novel species is proposed for two facultatively methanotrophic representatives of the genus Methylocystis, strains H2s(T) and S284, which were isolated from an acidic (pH 4.3) Sphagnum peat-bog lake (Teufelssee, Germany) and an acidic (pH 3.8) peat bog (European North Russia), respectively. Cells of strains H2s(T) and S284 are aerobic, Gram-negative, non-motile, curved coccoids or short rods that contain an intracytoplasmic membrane system typical of type-II methanotrophs. They possess both a soluble and a particulate methane monooxygenase (MMO); the latter is represented by two isozymes, pMMO1 and pMMO2. The preferred growth substrates are methane and methanol. In the absence of C1 substrates, however, these methanotrophs are capable of slow growth on acetate. Atmospheric nitrogen is fixed by means of an aerotolerant nitrogenase. Strains H2s(T) and S284 grow between pH 4.2 and 7.6 (optimum pH 6.0-6.5) and at 8-37 °C (optimum 25-30 °C). The major fatty acids are C18 : 1ω8c, C18 : 1ω7c and C16 : 1ω7c; the major quinone is Q-8. The DNA G+C content is 62.0-62.3 mol%. Strains H2s(T) and S284 share identical 16S rRNA gene sequences, which displayed 96.6-97.3 % similarity to sequences of other taxonomically characterized members of the genus Methylocystis. Therefore, strains H2s(T) and S284 are classified as members of a novel species, for which the name Methylocystis bryophila sp. nov. is proposed; strain H2s(T) ( = DSM 21852(T)  = VKM B-2545(T)) is the type strain.

  19. Cytochrome P450 peroxidase/peroxygenase mediated xenobiotic metabolic activation and cytotoxicity in isolated hepatocytes.

    PubMed

    Anari, M R; Khan, S; Liu, Z C; O'Brien, P J

    1995-12-01

    Cytochrome P450 (P450) can utilize organic hydroperoxides and peracids to support hydroxylation and dealkylation of various P450 substrates. However, the biological significance of this P450 peroxygenase/peroxidase activity in the bioactivation of xenobiotics in intact cells has not been demonstrated. We have shown that tert-butyl hydroperoxide (tBHP) markedly enhances 3-20-fold the cytotoxicity of various aromatic hydrocarbons and their phenolic metabolites. The tBHP-enhanced hepatocyte cytotoxicity of 4-nitroanisole (4-NA) and 4-hydroxyanisole (4-HA) was also accompanied by an increase in the hepatocyte O-demethylation of 4-NA and 4-HA up to 7.5- and 21-fold, respectively. Hepatocyte GSH conjugation by 4-HA was also markedly increased by tBHP. An LC/MS analysis of the GSH conjugates identified hydroquinone-GSH and 4-methoxy-catechol:GSH conjugates as the predominant adducts. Pretreatment of hepatocytes with P450 inhibitors, e.g., phenylimidazole, prevented tBHP-enhanced 4-HA metabolism, GSH depletion, and cytotoxicity. In conclusion, hydroperoxides can therefore be used by intact cells to support the bioactivation of xenobiotics through the P450 peroxidase/peroxygenase system.

  20. Influence of acute and chronic administration of methadone hydrochloride on NADPH-cytochrome c reductase and cytochrome P-450 of mouse liver microsomes.

    PubMed

    Datta, R K; Johnson, E A; Bhattacharjee, G; Stenger, R J

    1976-03-01

    Administration of a single acute dose (20 mg/kg body weight) of methadone hydrochloride to both male and female mice increased the specific activity of NADPH-cytochrome c reductase and did not change much the content of cytochrome P-450 of their liver microsomes. Administration of multiple acute doses of methadone in male mice increased the specific activity of cytochrome c reductase and the content of cytochrome P-450 of their liver microsomes. Chronic administration of progressively increasing doses of methadone (up to 40 mg/kg body weight) to male mice increased the specific activity of c reductase. Similar chronic administration of methadone up to 28 mg/kg body weight also increased the microsomal content of P-450, but with higher doses of methadone, the content of P-450 declined and finally dropped slightly below control levels. The levels of c reductase activity and P-450 content returned to normal about two weeks after discontinuation of methadone administration.

  1. Deltamethrin is metabolized by CYP6FU1, a cytochrome P450 associated with pyrethroid resistance, in Laodelphax striatellus.

    PubMed

    Elzaki, Mohammed Esmail Abdalla; Miah, Mohammad Asaduzzaman; Peng, Yingchuan; Zhang, Haomiao; Jiang, Ling; Wu, Min; Han, Zhaojun

    2018-06-01

    Cytochrome P450s (CYPs) are known to play a major role in metabolizing a wide range compounds. CYP6FU1 has been found to be over-expressed in a deltamethrin-resistant strain of Laodelphax striatellus. This study was conducted to express CYP6FU1 in Sf9 cells as a recombinant protein, to confirm its ability to degrade deltamethrin, chlorpyrifos, imidacloprid and traditional P450 probing substrates. Carbon monoxide difference spectrum analysis indicated that the intact CYP6FU1 protein was expressed in insect Sf9 cells. Catalytic activity tests with four traditional P450 probing substrates revealed that the expressed CYP6FU1 preferentially metabolized p-nitroanisole and ethoxyresorufin, but not ethoxycoumarin and luciferin-HEGE. The enzyme kinetic parameters were tested using p-nitroanisole. The michaelis constant (K m ) and catalytic constant (K cat ) values were 17.51 ± 4.29 µm and 0.218 ± 0.001 pmol min -1 mg -1 protein, respectively. Furthermore, CYP6FU1 activity for degradation of insecticides was tested by measuring substrate depletion and metabolite formation. The chromatogram analysis showed obvious nicotinamide-adenine dinucleotide phosphate (NADPH)-dependent depletion of deltamethrin, and formation of the unknown metabolite. Mass spectra and the molecular docking model showed that the metabolite was 4-hydroxy-deltamethrin. However, the recombinant CYP6FU1 could not metabolize imidacloprid and chlorpyrifos. These results confirmed that the over-expressed CYP6FU1 contributes to deltamethrin resistance in L. striatellus, and p-nitroanisole might be a potential diagnostic probe for deltamethrin metabolic resistance detection and monitoring. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Metabolism of myclobutanil and triadimefon by human and rat cytochrome P450 enzymes and liver microsomes.

    PubMed

    Barton, H A; Tang, J; Sey, Y M; Stanko, J P; Murrell, R N; Rockett, J C; Dix, D J

    2006-09-01

    Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil was metabolized more rapidly than triadimefon, which is consistent with metabolism of the n-butyl side-chain in the former and the t-butyl group in the latter compound. Human and rat CYP2C and CYP3A enzymes were the most active. Metabolism was similar in microsomes prepared from livers of control and low-dose rats. High-dose (115 mg kg-1 day-1 of triadimefon or 150 mg kg-1 day-1 of myclobutanil) rats showed increased liver weight, induction of total CYP, and increased metabolism of the two triazoles, though the apparent Km appeared unchanged relative to the control. These data identify CYP enzymes important for the metabolization of these two triazoles. Estimated hepatic clearances suggest that CYP induction may have limited impact in vivo.

  3. A Phase I, open-label, randomized, crossover study in three parallel groups to evaluate the effect of Rifampicin, Ketoconazole, and Omeprazole on the pharmacokinetics of THC/CBD oromucosal spray in healthy volunteers.

    PubMed

    Stott, Colin; White, Linda; Wright, Stephen; Wilbraham, Darren; Guy, Geoffrey

    2013-12-01

    This Phase I study aimed to assess the potential drug-drug interactions (pharmacokinetic [PK] and safety profile) of Δ9-tetrahydrocannabinol (THC)/cannabidiol (CBD) oromucosal spray (Sativex (®), nabiximols) in combination with cytochrome P450 (CYP450) inducer (rifampicin) or inhibitors (ketoconazole or omeprazole). Thirty-six healthy male subjects were divided into three groups of 12, and then randomized to one of two treatment sequences per group. Subjects received four sprays of THC/CBD (10.8/10 mg) alongside single doses of the CYP3A and 2C19 inducer rifampicin (600 mg), CYP3A inhibitor ketoconazole (400 mg) or CYP2C19 inhibitor omeprazole (40 mg). Plasma samples were analyzed for CBD, THC and its metabolite 11-hydroxy-THC (11-OH-THC). A single dose of four sprays of THC/CBD spray (10.8/10 mg) following repeated doses of rifampicin (600 mg) reduced the Cmax and AUC of all analytes. Cmax reduced from 2.94 to 1.88 ng/mL (-36%), 1.03 to 0.50 ng/mL (-52%) and 3.38 to 0.45 ng/mL (-87%) for THC, CBD and 11-OH-THC, respectively compared to single dose administration of THC/CBD spray alone. Ketoconazole co-administration with THC/CBD spray had the opposite effect, increasing the Cmax of the respective analytes from 2.65 to 3.36 ng/mL (+27%), 0.66 to 1.25 ng/mL (+89%) and 3.59 to 10.92 ng/mL (+204%). No significant deviations in Cmax or AUC for any analyte were observed when THC/CBD spray was co-administered with omeprazole. THC/CBD spray was well tolerated by the study subjects both alone and in combination with rifampicin, ketoconazole and omeprazole. Evaluation of the PKs of THC/CBD spray alone and in combination with CYP450 inhibitors/inducers suggests that all analytes are substrates for the isoenzyme CYP3A4, but not CYP2C19. On the basis of our findings, there is likely to be little impact on other drugs metabolized by CYP enzymes on the PK parameters of THC/CBD spray, but potential effects should be taken into consideration when co-administering THC/CBD spray with compounds which share the CYP3A4 pathway such as rifampicin or ketoconazole. NCT01323465.

  4. Regulation of oocyte maturation in fish.

    PubMed

    Nagahama, Yoshitaka; Yamashita, Masakane

    2008-06-01

    A period of oocyte growth is followed by a process called oocyte maturation (the resumption of meiosis) which occurs prior to ovulation and is a prerequisite for successful fertilization. Our studies using fish models have revealed that oocyte maturation is a three-step induction process involving gonadotropin (LH), maturation-inducing hormone (MIH), and maturation-promoting factor (MPF). LH acts on the ovarian follicle layer to produce MIH (17alpha, 20beta-dihydroxy-4-pregnen-3-one, 17alpha, 20beta-DP, in most fishes). The interaction of ovarian thecal and granulosa cell layers (two-cell type model), is required for the synthesis of 17alpha,20beta-DP. The dramatic increase in the capacity of postvitellogenic follicles to produce 17alpha,20beta-DP in response to LH is correlated with decreases in P450c17 (P450c17-I) and P450 aromatase (oP450arom) mRNA and increases in the novel form of P450c17 (P450c17-II) and 20beta-hydroxysteroid dehydrogenase (20beta-HSD) mRNA. Transcription factors such as Ad4BP/SF-1, Foxl2, and CREB may be involved in the regulation of expression of these steroidogenic enzymes. A distinct family of G-protein-coupled membrane-bound MIH receptors has been shown to mediate non-genomic actions of 17alpha, 20beta-DP. The MIH signal induces the de novo synthesis of cyclin B from the stored mRNA, which activates a preexisting 35 kDa cdc2 kinase via phosphorylation of its threonine 161 by cyclin-dependent kinase activating kinase, thus producing the 34 kDa active cdc2 (active MPF). Upon egg activation, MPF is inactivated by degradation of cyclin B. This process is initiated by the 26S proteasome through the first cut in its NH(2) terminus at lysine 57.

  5. Activity of influenza C virus O-acetylesterase with O-acetyl-containing compounds.

    PubMed Central

    Garcia-Sastre, A; Villar, E; Manuguerra, J C; Hannoun, C; Cabezas, J A

    1991-01-01

    Influenza C virus (strain C/Johannesburg/1/66) was grown, harvested, purified and used as source for the enzyme O-acetylesterase (N-acyl-O-acetylneuraminate O-acetylhydrolase; EC 3.1.1.53). This activity was studied and characterized with regard to some new substrates. The pH optimum of the enzyme is around 7.6, its stability at different pH values shows a result similar to that of the pH optimum, and its activity is well maintained in the pH range from 7.0 to 8.5 (all these tests were performed with 4-nitrophenyl acetate as substrate). Remarkable differences were found in the values of both Km and Vmax, with the synthetic substrates 4-nitrophenyl acetate, 2-nitrophenyl acetate, 4-methylumbelliferyl acetate, 1-naphthyl acetate and fluorescein diacetate. The use of 4-nitrophenyl acetate, 4-methylumbelliferyl acetate or 1-naphthyl acetate as substrate seems to be convenient for routine work, but it is better to carry out the measurements in parallel with those on bovine submandibular gland mucin (the latter is a natural and commercially available substrate). It was found that 4-acetoxybenzoic acid, as well as the methyl ester of 2-acetoxybenzoic acid, but not 2-acetoxybenzoic acid itself, are cleaved by this enzyme. Triacetin, di-O-acetyladenosine, tri-O-acetyladenosine, and di-O-acetyl-N-acetyladenosine phosphate, hitherto unreported as substrates for this viral esterase, are hydrolysed at different rates by this enzyme. We conclude that the O-acetylesterase from influenza C virus has a broad specificity towards both synthetic and natural non-sialic acid-containing substrates. Zn2+, Mn2+ and Pb2+ (as their chloride salts), N-acetylneuraminic acid, 4-methyl-umbelliferone and 2-acetoxybenzoic acid (acetylsalicylic acid) did not act as inhibitors. Images Fig. 1. PMID:1991039

  6. The mibefradil derivative NNC55-0396, a specific T-type calcium channel antagonist, exhibits less CYP3A4 inhibition than mibefradil.

    PubMed

    Bui, Peter H; Quesada, Arnulfo; Handforth, Adrian; Hankinson, Oliver

    2008-07-01

    A novel mibefradil derivative, NNC55-0396, designed to be hydrolysis-resistant, was shown to be a selective T-type Ca(2+) channel inhibitor without L-type Ca(2+) channel efficacy. However, its effects on cytochromes P450 (P450s) have not previously been examined. We investigated the inhibitory effects of NNC55-0396 toward seven major recombinant human P450s--CYP3A4, CYP2D6, CYP1A2, CYP2C9, CYP2C8, CYPC19, and CYP2E1--and compared its effects with those of mibefradil and its hydrolyzed metabolite, Ro40-5966. Our results show that CYP3A4 and CYP2D6 are the two P450s most affected by mibefradil, Ro40-5966, and NNC55-0396. Mibefradil (IC(50) = 33 +/- 3 nM, K(i) = 23 +/- 0.5 nM) and Ro40-5966 (IC(50) = 30 +/- 7.8 nM, K(i) = 21 +/- 2.8 nM) have a 9- to 10-fold greater inhibitory activity toward recombinant CYP3A4 benzyloxy-4-trifluoromethylcoumarin-O-debenzylation activity than NNC55-0396 (IC(50) = 300 +/- 30 nM, K(i) = 210 +/- 6 nM). More dramatically, mibefradil (IC(50) = 566 +/- 71 nM, K(i) = 202 +/- 39 nM) shows 19-fold higher inhibition of CYP3A-associated testosterone 6beta-hydroxylase activity in human liver microsomes compared with NNC55-0396 (IC(50) = 11 +/- 1.1 microM, K(i) = 3.9 +/- 0.4 microM). Loss of testosterone 6beta-hydroxylase activity by recombinant CYP3A4 was shown to be time- and concentration-dependent with both compounds. However, NNC55-0396 (K(I) = 3.87 microM, K(inact) = 0.061/min) is a much less potent mechanism-based inhibitor than mibefradil (K(I) = 83 nM, K(inact) = 0.048/min). In contrast, NNC55-0396 (IC(50) = 29 +/- 1.2 nM, K(i) = 2.8 +/- 0.3 nM) and Ro40-5966 (IC(50) = 46 +/- 11 nM, K(i) = 4.5 +/- 0.02 nM) have a 3- to 4-fold greater inhibitory activity toward recombinant CYP2D6 than mibefradil (IC(50) = 129 +/- 21 nM, K(i) = 12.7 +/- 0.9 nM). Our results suggest that NNC55-0396 could be a more favorable T-type Ca(2+) antagonist than its parent compound, mibefradil, which was withdrawn from the market because of strong inhibition of CYP3A4.

  7. Association of Cytochrome P450 2C19 Genotype With the Antiplatelet Effect and Clinical Efficacy of Clopidogrel Therapy

    PubMed Central

    Shuldiner, Alan R.; O'Connell, Jeffrey R.; Bliden, Kevin P.; Gandhi, Amish; Ryan, Kathleen; Horenstein, Richard B.; Damcott, Coleen M.; Pakyz, Ruth; Tantry, Udaya S.; Gibson, Quince; Pollin, Toni I.; Post, Wendy; Parsa, Afshin; Mitchell, Braxton D.; Faraday, Nauder; Herzog, William; Gurbel, Paul A.

    2013-01-01

    Context Clopidogrel therapy improves cardiovascular outcomes in patients with acute coronary syndromes and following percutaneous coronary intervention by inhibiting adenosine diphosphate (ADP)–dependent platelet activation. However, nonresponsiveness is widely recognized and is related to recurrent ischemic events. Objective To identify gene variants that influence clopidogrel response. Design, Setting, and Participants In the Pharmacogenomics of Antiplatelet Intervention (PAPI) Study (2006-2008), we administered clopidogrel for 7 days to 429 healthy Amish persons and measured response by ex vivo platelet aggregometry. A genome-wide association study was performed followed by genotyping the loss-of-function cytochrome P450 (CYP) 2C19*2 variant (rs4244285). Findings in the PAPI Study were extended by examining the relation of CYP2C19*2 genotype to platelet function and cardiovascular outcomes in an independent sample of 227 patients undergoing percutaneous coronary intervention. Main Outcome Measure ADP-stimulated platelet aggregation in response to clopidogrel treatment and cardiovascular events. Results Platelet response to clopidogrel was highly heritable (h2=0.73; P<.001). Thirteen single-nucleotide polymorphisms on chromosome 10q24 within the CYP2C18-CYP2C19-CYP2C9-CYP2C8 cluster were associated with diminished clopidogrel response, with a high degree of statistical significance (P=1.5 × 10−13 for rs12777823, additive model). The rs12777823 polymorphism was in strong linkage disequilibrium with the CYP2C19*2 variant, and was associated with diminished clopidogrel response, accounting for 12% of the variation in platelet aggregation to ADP (P=4.3 × 10−11). The relation between CYP2C19*2 genotype and platelet aggregation was replicated in clopidogrel-treated patients undergoing coronary intervention (P=.02). Furthermore, patients with the CYP2C19*2 variant were more likely (20.9% vs 10.0%) to have a cardiovascular ischemic event or death during 1 year of follow-up (hazard ratio, 2.42; 95% confidence interval, 1.18-4.99; P=.02). Conclusion CYP2C19*2 genotype was associated with diminished platelet response to clopidogrel treatment and poorer cardiovascular outcomes. PMID:19706858

  8. Assessment of inhibitory effects on major human cytochrome P450 enzymes by spasmolytics used in the treatment of overactive bladder syndrome.

    PubMed

    Dahlinger, Dominik; Aslan, Sevinc; Pietsch, Markus; Frechen, Sebastian; Fuhr, Uwe

    2017-07-01

    The objective of this study was to examine the inhibitory potential of darifenacin, fesoterodine, oxybutynin, propiverine, solifenacin, tolterodine and trospium chloride on the seven major human cytochrome P450 enzymes (CYP) by using a standardized and validated seven-in-one cytochrome P450 cocktail inhibition assay. An in vitro cocktail of seven highly selective probe substrates was incubated with human liver microsomes and varying concentrations of the seven test compounds. The major metabolites of the probe substrates were simultaneously analysed using a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Enzyme kinetics were estimated by determining IC 50 and K i values via nonlinear regression. Obtained K i values were used for predictions of potential clinical impact of the inhibition using a static mechanistic prediction model. In this study, 49 IC 50 experiments were conducted. In six cases, IC 50 values lower than the calculated threshold for drug-drug interactions (DDIs) in the gut wall were observed. In these cases, no increase in inhibition was determined after a 30 min preincubation. Considering a typical dosing regimen and applying the obtained K i values of 0.72 µM (darifenacin, 15 mg daily) and 7.2 µM [propiverine, 30 mg daily, immediate release (IR)] for the inhibition of CYP2D6 yielded a predicted 1.9-fold and 1.4-fold increase in the area under the curve (AUC) of debrisoquine (CYP2D6 substrate), respectively. Due to the inhibition of the particular intestinal CYP3A4, the obtained K i values of 14 µM of propiverine (30 mg daily, IR) resulted in a predicted doubling of the AUC for midazolam (CYP3A4 substrate). In vitro / in vivo extrapolation based on pharmacokinetic data and the conducted screening experiments yielded similar effects of darifenacin on CYP2D6 and propiverine on CYP3A4 as obtained in separately conducted in vivo DDI studies. As a novel finding, propiverine was identified to potentially inhibit CYP2D6 at clinically occurring concentrations.

  9. Assessment of inhibitory effects on major human cytochrome P450 enzymes by spasmolytics used in the treatment of overactive bladder syndrome

    PubMed Central

    Dahlinger, Dominik; Aslan, Sevinc; Pietsch, Markus; Frechen, Sebastian; Fuhr, Uwe

    2017-01-01

    Background: The objective of this study was to examine the inhibitory potential of darifenacin, fesoterodine, oxybutynin, propiverine, solifenacin, tolterodine and trospium chloride on the seven major human cytochrome P450 enzymes (CYP) by using a standardized and validated seven-in-one cytochrome P450 cocktail inhibition assay. Methods: An in vitro cocktail of seven highly selective probe substrates was incubated with human liver microsomes and varying concentrations of the seven test compounds. The major metabolites of the probe substrates were simultaneously analysed using a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Enzyme kinetics were estimated by determining IC50 and Ki values via nonlinear regression. Obtained Ki values were used for predictions of potential clinical impact of the inhibition using a static mechanistic prediction model. Results: In this study, 49 IC50 experiments were conducted. In six cases, IC50 values lower than the calculated threshold for drug–drug interactions (DDIs) in the gut wall were observed. In these cases, no increase in inhibition was determined after a 30 min preincubation. Considering a typical dosing regimen and applying the obtained Ki values of 0.72 µM (darifenacin, 15 mg daily) and 7.2 µM [propiverine, 30 mg daily, immediate release (IR)] for the inhibition of CYP2D6 yielded a predicted 1.9-fold and 1.4-fold increase in the area under the curve (AUC) of debrisoquine (CYP2D6 substrate), respectively. Due to the inhibition of the particular intestinal CYP3A4, the obtained Ki values of 14 µM of propiverine (30 mg daily, IR) resulted in a predicted doubling of the AUC for midazolam (CYP3A4 substrate). Conclusions: In vitro/in vivo extrapolation based on pharmacokinetic data and the conducted screening experiments yielded similar effects of darifenacin on CYP2D6 and propiverine on CYP3A4 as obtained in separately conducted in vivo DDI studies. As a novel finding, propiverine was identified to potentially inhibit CYP2D6 at clinically occurring concentrations. PMID:28747995

  10. Tirandamycin biosynthesis is mediated by co-dependent oxidative enzymes

    NASA Astrophysics Data System (ADS)

    Carlson, Jacob C.; Li, Shengying; Gunatilleke, Shamila S.; Anzai, Yojiro; Burr, Douglas A.; Podust, Larissa M.; Sherman, David H.

    2011-08-01

    Elucidation of natural product biosynthetic pathways provides important insights into the assembly of potent bioactive molecules, and expands access to unique enzymes able to selectively modify complex substrates. Here, we show full reconstitution, in vitro, of an unusual multi-step oxidative cascade for post-assembly-line tailoring of tirandamycin antibiotics. This pathway involves a remarkably versatile and iterative cytochrome P450 monooxygenase (TamI) and a flavin adenine dinucleotide-dependent oxidase (TamL), which act co-dependently through the repeated exchange of substrates. TamI hydroxylates tirandamycin C (TirC) to generate tirandamycin E (TirE), a previously unidentified tirandamycin intermediate. TirE is subsequently oxidized by TamL, giving rise to the ketone of tirandamycin D (TirD), after which a unique exchange back to TamI enables successive epoxidation and hydroxylation to afford, respectively, the final products tirandamycin A (TirA) and tirandamycin B (TirB). Ligand-free, substrate- and product-bound crystal structures of bicovalently flavinylated TamL oxidase reveal a likely mechanism for the C10 oxidation of TirE.

  11. Use of octopus as a bioindicator species: Baseline studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdway, D.A.; Butty, J.S.; Brennan, S.E.

    1995-12-31

    The Australian octopus Octopus pallidus, is abundant, territorial, has a large digestive gland. This study was undertaken to assess octopii as a potential bioindicator species by establishing the efficacy of capturing octopi using traplines, and determining the impact of various modifying factors on the activities of digestive gland mixed-function oxidase (MFO) enzymes including ethoxyresorufin O-deethylase (EROD), ethoxycoumarin O-deethylase (ECOD) and total P-450. Trap success rates in Port Phillip Bay were 15--28% for the ``potentially contaminated`` site and 85% for the reference site. Cytochrome P-450 showed significant seasonal differences, with no site or sex differences. Mean ({+-} SE) Autumn P-450 valuesmore » of 74.8 ({+-}5.5) pmol/mg protein were higher than Winter values of 51.2 ({+-}7.6), which were higher than Spring values of 21.8 ({+-}4.0) pmol/mg protein. Summer P-450 values of 61.4 ({+-} 9.8) pmol/mg protein were only different from Spring values. Mean ({+-} SE) Spring ECOD activity of 3.3 ({+-} 0.7) pmol/min/mg protein was lower than Summer, Autumn and Winter ECOD values of 8.9 ({+-} 1.6) 6.5 ({+-} 1.2) and 8.6 ({+-} 2.3) pmol/min/mg protein respectively. Females had roughly half the ECOD activities of males (3.8 {+-} 0.8 compared to 7.4 {+-} 0.9 pmol/min/mg protein). All octopi digestive gland EROD activities were low (roughly 0.2 pmol/min/mg protein) with no sex, site nor seasonal differences. Potential for using octopus as a bioindicator appears promising but sensitivity to chemical exposure has yet to be determined.« less

  12. [The metabolic fingerprint of the compatibility of Radix Aconite and Radix Paeoniae Alba and its effect on CYP450 enzymes].

    PubMed

    Bi, Yun-Feng; Zheng, Zhong; Pi, Zi-Feng; Liu, Zhi-Qiang; Song, Feng-Rui

    2014-12-01

    Using a UPLC-MS/MS (MRM) and cocktail probe substrates method, the metabolic fingerprint of the compatibility of Radix Aconite (RA) and Radix Paeoniae Alba (RPA) and its effect on CYP450 enzymes were investigated. These main CYP isoforms include CYP 1A2, CYP 2C, CYP 2E1, CYP 2D and CYP 3A. Compared with the inhibition effect of RA decoctions on CYP450 isoforms, their co-decoctions of RA and RPA with different proportions can decrease RA' inhibition on CYP3A, CYP2D, CYP2C and CYP1A2, but can not reduce RA' effect on CYP2E1. The metabolic fingerprints of RA decoction and co-decoctions with different proportions of RPA in CYP450 of rat liver were analyzed by UPLC-MS. Compared with the metabolic fingerprints of RA decoction, the intensity of diester-diterpenoid aconitum alkaloids decreased significantly, while the intensity of monoester-diterpenoid alkaloids significantly increased in the metabolic fingerprints of co-decoctions of RA and RPA. The results suggest that RA coadministration with RPA increased the degradation of toxic alkaloid and show the effect of toxicity reducing and efficacy enhancing.

  13. Suppressive effects of caraway (Carum carvi) extracts on 2, 3, 7, 8-tetrachloro-dibenzo-p-dioxin-dependent gene expression of cytochrome P450 1A1 in the rat H4IIE cells.

    PubMed

    Naderi-Kalali, B; Allameh, A; Rasaee, M J; Bach, H-J; Behechti, A; Doods, K; Kettrup, A; Schramm, K-W

    2005-04-01

    Cytochrome P450 1A1 (CYP1A1) is among the cytochrome P450 classes known to convert xenobiotics and endogenous compounds to toxic and/or carcinogenic metabolites. Suppression of CYP1A1 over expression by certain compounds is implicated in prevention of cancer caused by chemical carcinogens. Chemopreventive agents containing high levels of flavonoids and steroids-like compounds are known to suppress CYP1A1. This study was carried out for assessment of the genomic and proteomic effects of caraway (Carum carvi) extracts containing high levels of both flavonoids and steroid-like substances on ethoxy resorufin dealkylation (EROD) activity and CYP1A1 at mRNA levels. Rat hepatoma cells co-treated with a CYP1A1 inducer i.e. TCDD (2, 3, 7, 8-tetrachlorodibenzo-p-dioxin) and different preparations of caraway extracts at concentrations of 0, 0.13, 1.3, and 13 microM in culture medium. After incubation (37 degrees C and 7% CO2 for 20 h), changes in EROD specific activity recorded and compared in cells under different treatments. The results show that caraway seed extract prepared in three different organic solvents suppressed the enzyme activity in hepatoma cells in a dose-dependent manner. The extracts added above 0.13 microM could significantly inhibit EROD activity and higher levels of each extract (1.3 and 13 microM) caused approximately 10-fold suppression in the enzyme activity. Accordingly, data obtained from the RT-PCR (TaqMan) clearly showed the suppressive effects of plant extract on CYP1A1-related mRNA expression. These data clearly show that substances in caraway seeds extractable in organic solvents can potentially reverse the TCDD-dependent induction in cytochrome P450 1A1.

  14. Comparative study on inorganic composition and crystallographic properties of cortical and cancellous bone.

    PubMed

    Wang, Xiao-Yan; Zuo, Yi; Huang, Di; Hou, Xian-Deng; Li, Yu-Bao

    2010-12-01

    To comparatively investigate the inorganic composition and crystallographic properties of cortical and cancellous bone via thermal treatment under 700 °C. Thermogravimetric measurement, infrared spectrometer, X-ray diffraction, chemical analysis and X-ray photo-electron spectrometer were used to test the physical and chemical properties of cortical and cancellous bone at room temperature 250 °C, 450 °C, and 650 °C, respectively. The process of heat treatment induced an extension in the a-lattice parameter and changes of the c-lattice parameter, and an increase in the crystallinity reflecting lattice rearrangement after release of lattice carbonate and possible lattice water. The mineral content in cortical and cancellous bone was 73.2wt% and 71.5wt%, respectively. For cortical bone, the weight loss was 6.7% at the temperature from 60 °C to 250 °C, 17.4% from 250 °C to 450 °C, and 2.7% from 450 °C to 700 °C. While the weight loss for the cancellous bone was 5.8%, 19.9%, and 2.8 % at each temperature range, the Ca/P ratio of cortical bone was 1.69 which is higher than the 1.67 of stoichiometric HA due to the B-type CO₃²⁻ substitution in apatite lattice. The Ca/P ratio of cancellous bone was lower than 1.67, suggesting the presence of more calcium deficient apatite. The collagen fibers of cortical bone were arrayed more orderly than those of cancellous bone, while their mineralized fibers ollkded similar. The minerals in both cortical and cancellous bone are composed of poorly crystallized nano-size apatite crystals with lattice carbonate and possible lattice water. The process of heat treatment induces a change of the lattice parameter, resulting in lattice rearrangement after the release of lattice carbonate and lattice water and causing an increase in crystal size and crystallinity. This finding is helpful for future biomaterial design, preparation and application. Copyright © 2010 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  15. Cytochrome P450 Gene Variants, Race, and Mortality Among Clopidogrel Treated Patients Following Acute Myocardial Infarction

    PubMed Central

    Cresci, Sharon; Depta, Jeremiah P.; Lenzini, Petra A.; Li, Allie Y.; Lanfear, David E.; Province, Michael A.; Spertus, John A.; Bach, Richard G.

    2014-01-01

    Background Clopidogrel is recommended after acute myocardial infarction (AMI) but has variable efficacy and safety, in part related to the effect of cytochrome P450 (CYP) polymorphisms on its metabolism. The effect of CYP polymorphisms on cardiovascular events among clopidogrel-treated patients after AMI remains controversial, and no studies to date have investigated the association of CYP variants with outcomes in African American patients. Methods and Results 2732 subjects (2062 Caucasians; 670 African Americans) hospitalized with AMI enrolled in the prospective, multicenter TRIUMPH study were genotyped for CYP polymorphisms. The majority of Caucasians (79%) and African Americans (64.4%) were discharged on clopidogrel. Among Caucasians, carriers of the loss-of-function CYP2C19*2 allele had significantly increased 1-year mortality (adjusted HR: 1.70; CI: 1.01 to 2.86; p=0.046), and a trend toward increased rate of recurrent MI (adjusted HR: 2.10; CI 0.95 to 4.63; p= 0.066). Among African Americans, increased 1-year mortality was associated with the gain of function CYP2C19*17 allele (adjusted HR for *1/*17 vs. *1/*1: 2.02; CI: 0.92 to 4.44; *17/*17 vs. *1/*1: 8.97; CI: 3.34 to 24.10; p< 0.0001) and the CYP1A2*1C allele (adjusted HR for *1/*1C vs. *1/*1: 1.89; CI: 0.85 to 4.22; *1C/*1C vs. *1/*1: 4.96; CI: 1.69 to 14.56; p= 0.014). Bleeding events were significantly more common among African American carriers of CYP2C19*17 or CYP1A2*1C. Conclusions Both loss of function and gain of function CYP polymorphisms affecting clopidogrel metabolism are associated with increased mortality among clopidogrel treated patients following AMI; the specific polymorphism and the putative mechanism vary according to race. PMID:24762860

  16. Modulation of P450 enzymes by Cuban natural products rich in polyphenolic compounds in rat hepatocytes.

    PubMed

    Rodeiro, I; Donato, M T; Lahoz, A; González-Lavaut, J A; Laguna, A; Castell, J V; Delgado, R; Gómez-Lechón, M J

    2008-03-10

    This paper reports cytotoxic effects and changes in the P450 system after exposing rat hepatocytes to four polyphenol-rich products widely used in Cuban traditional medicine (Mangifera indica L. (MSBE), Thalassia testudinum (Tt), Erythroxylum minutifolium and confusum extracts). Effects of mangiferin, the main polyphenol in MSBE, were also evaluated. Cytotoxicity was assayed by the MTT test after exposure of cells to the products (50-1000 microg/mL) for 24 or 72 h. The results showed that 500 microg/mL MSBE was moderately cytotoxic after 72 h, while mangiferin was not. Marked reductions in cell viability were produced by Erythroxylum extracts at concentrations > or = 200 microg/mL, whereas only moderate effects were induced by 1000 microg/mL Tt. Seven specific P450 activities were evaluated after 48 h exposure of cells to the products. MSBE reduced phenacetin O-deethylation (POD; CYP1A2) activity in a concentration-dependent manner (IC(50)=190 microg/mL). No decreases were observed in other activities. In contrast, mangiferin produced reductions in five P450 activities: IC(50) values of 132, 194, >200, 151 and 137 microg/ml for POD (CYP1A2), midazolam 1'-hydroxylation (M1OH; CYP3A1), diclofenac 4'-hydroxylation (D4OH; CYP2C6), S-mephenytoin 4'-hydroxylation (SM4OH), and chlorzoxazone 6-hydroxyaltion (C6OH; CYP2E1), respectively. E. minutifolium, E. confusum and Tt extracts produced small reductions in SM4OH and C6OH activities, but no significant changes were noted in the other P450 activities. On the other hand, all the products increased the benzyloxyresorufin O-debenzylation (BROD; CYP2B1) activity, with MSBE, mangiferin or E. minutifolium showing the highest effects (about 2-fold over control). Our results showed in vitro effects of these natural products on P450 systems, possibly leading to potential metabolic-based interactions.

  17. Energy substrate utilization with and without exogenous carbohydrate intake in boys and men exercising in the heat.

    PubMed

    Leites, Gabriela T; Cunha, Giovani S; Chu, Lisa; Meyer, Flavia; Timmons, Brian W

    2016-11-01

    Little is known about energy yield during exercise in the heat in boys compared with men. To investigate substrate utilization with and without exogenous carbohydrate (CHO exo ) intake, seven boys [11.2 ± 0.2 (SE) yr] and nine men (24.0 ± 1.1 yr) cycled (4 × 20-min bouts) at a fixed metabolic heat production (Ḣ p ) per unit body mass (6 W/kg) in a climate chamber (38°C and 50% relative humidity), on two occasions. Participants consumed a 13 C-enriched 8% CHO beverage (CARB) or placebo beverage (CONT) in a double-blinded, counterbalanced manner. Substrate utilization was calculated for the last 60 min of exercise. CHO exo oxidation rate (2.0 ± 0.3 vs. 2.5 ± 0.2 mg·kg fat-free mass -1 ·min -1 , P = 0.02) and CHO exo oxidation efficiency (12.8 ± 0.6 vs. 16.0 ± 0.9%, P = 0.01) were lower in boys compared with men exercising in the heat. Total carbohydrate (CHO total ), endogenous CHO (CHO endo ), and total fat (Fat total ) remained stable in boys and men (P > 0.05) during CARB, whereas CHO total oxidation rate decreased (P < 0.001) and Fat total oxidation rate increased over time similarly in boys and men during CONT (P < 0.001). The relative contribution of CHO exo to total energy yield increased over time in both groups (P < 0.001). In conclusion, endogenous substrate metabolism and the relative contribution of fuels to total energy yield were not different between groups. The ingestion of a CHO beverage during exercise in the heat may be as beneficial for boys as men to spare endogenous substrate. Copyright © 2016 the American Physiological Society.

  18. An accurate and precise representation of drug ingredients.

    PubMed

    Hanna, Josh; Bian, Jiang; Hogan, William R

    2016-01-01

    In previous work, we built the Drug Ontology (DrOn) to support comparative effectiveness research use cases. Here, we have updated our representation of ingredients to include both active ingredients (and their strengths) and excipients. Our update had three primary lines of work: 1) analysing and extracting excipients, 2) analysing and extracting strength information for active ingredients, and 3) representing the binding of active ingredients to cytochrome P450 isoenzymes as substrates and inhibitors of those enzymes. To properly differentiate between excipients and active ingredients, we conducted an ontological analysis of the roles that various ingredients, including excipients, have in drug products. We used the value specification model of the Ontology for Biomedical Investigations to represent strengths of active ingredients and then analyzed RxNorm to extract excipient and strength information and modeled them according to the results of our analysis. We also analyzed and defined dispositions of molecules used in aggregate as active ingredients to bind cytochrome P450 isoenzymes. Our analysis of excipients led to 17 new classes representing the various roles that excipients can bear. We then extracted excipients from RxNorm and added them to DrOn for branded drugs. We found excipients for 5,743 branded drugs, covering ~27% of the 21,191 branded drugs in DrOn. Our analysis of active ingredients resulted in another new class, active ingredient role. We also extracted strengths for all types of tablets, capsules, and caplets, resulting in strengths for 5,782 drug forms, covering ~41% of the 14,035 total drug forms and accounting for ~97 % of the 5,970 tablets, capsules, and caplets in DrOn. We represented binding-as-substrate and binding-as-inhibitor dispositions to two cytochrome P450 (CYP) isoenzymes (CYP2C19 and CYP2D6) and linked these dispositions to 65 compounds. It is now possible to query DrOn automatically for all drug products that contain active ingredients whose molecular grains inhibit or are metabolized by a particular CYP isoenzyme. DrOn is open source and is available at http://purl.obolibrary.org/obo/dron.owl.

  19. Hepatic microsomal cytochromes P450 in mink fed Saginaw Bay carp (SBC)

    USGS Publications Warehouse

    Melancon, M.J.; LeCaptain, L.; Rattner, B.A.; Heaton, S.; Aulerich, R.; Tillitt, D.; Stegeman, John J.; Woodin, B.

    1992-01-01

    Livers from mink fed diets containing 0% (n = 12), 10% (n = 11), 20% (n = 12) and 40% (n = 10) SBC for 6 months contained 0.1, 2.2, 3.6, and 6.3 ug/g total PCBs, respectively. Hepatic microsomes were prepared and assayed for protein, arylhydrocarbon hydroxylase (AHH), benzyloxyresorufin-O-dealkylase (BROD), ethoxy-ROD (ER0D), pentoxy-ROD (PROD), and ethoxycoumarin-OD (ECOD). Mink fed SBC had increased AHH, EROD, and ECOD (group means 2.2-3.4 X control means), decreased BROD and unchanged PROD (the latter 2 assays indicators for phenobarbital-type induction in mammals). Three samples from each group were examined by western blot using a polyclonal anti-P450llB antibody and a monoclonal anti-P450lA antibody (MAb 1-12-3). Mink fed SBC showed induction of a protein recognized by anti-P450lA (8 X control), but had little protein recognized by anti-P450IlB. The monooxygenase activities and western blot data give a consistent picture of MC-type but not PB-type induction in mink fed SBC.

  20. Transposable elements are enriched within or in close proximity to xenobiotic-metabolizing cytochrome P450 genes

    PubMed Central

    Chen, Song; Li, Xianchun

    2007-01-01

    Background Transposons, i.e. transposable elements (TEs), are the major internal spontaneous mutation agents for the variability of eukaryotic genomes. To address the general issue of whether transposons mediate genomic changes in environment-adaptation genes, we scanned two alleles per each of the six xenobiotic-metabolizing Helicoverpa zea cytochrome P450 loci, including CYP6B8, CYP6B27, CYP321A1, CYP321A2, CYP9A12v3 and CYP9A14, for the presence of transposon insertions by genome walking and sequence analysis. We also scanned thirteen Drosophila melanogaster P450s genes for TE insertions by in silico mapping and literature search. Results Twelve novel transposons, including LINEs (long interspersed nuclear elements), SINEs (short interspersed nuclear elements), MITEs (miniature inverted-repeat transposable elements), one full-length transib-like transposon, and one full-length Tcl-like DNA transpson, are identified from the alleles of the six H. zea P450 genes. The twelve transposons are inserted into the 5'flanking region, 3'flanking region, exon, or intron of the six environment-adaptation P450 genes. In D. melanogaster, seven out of the eight Drosophila P450s (CYP4E2, CYP6A2, CYP6A8, CYP6A9, CYP6G1, CYP6W1, CYP12A4, CYP12D1) implicated in insecticide resistance are associated with a variety of transposons. By contrast, all the five Drosophila P450s (CYP302A1, CYP306A1, CYP307A1, CYP314A1 and CYP315A1) involved in ecdysone biosynthesis and developmental regulation are free of TE insertions. Conclusion These results indicate that TEs are selectively retained within or in close proximity to xenobiotic-metabolizing P450 genes. PMID:17381843

  1. Large-scale fabrication of nanopatterned sapphire substrates by annealing of patterned Al thin films by soft UV-nanoimprint lithography

    PubMed Central

    2013-01-01

    Large-scale nanopatterned sapphire substrates were fabricated by annealing of patterned Al thin films. Patterned Al thin films were obtained by soft UV-nanoimprint lithography and reactive ion etching. The soft mold with 550-nm-wide lines separated by 250-nm space was composed of the toluene-diluted polydimethylsiloxane (PDMS) layer supported by the soft PDMS. Patterned Al thin films were subsequently subjected to dual-stage annealing due to the melting temperature of Al thin films (660°C). The first comprised a low-temperature oxidation anneal at 450°C for 24 h. This was followed by a high-temperature annealing in the range of 1,000°C and 1,200°C for 1 h to induce growth of the underlying sapphire single crystal to consume the oxide layer. The SEM results indicate that the patterns were retained on sapphire substrates after high-temperature annealing at less than 1,200°C. Finally, large-scale nanopatterned sapphire substrates were successfully fabricated by annealing of patterned Al thin films for 24 h at 450°C and 1 h at 1,000°C by soft UV-nanoimprint lithography. PMID:24215718

  2. The regulation of cytochrome P450 2E1 during LPS-induced inflammation in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulla, Dalya; Goralski, Kerry B.; College of Pharmacy, Burbidge Building, Dalhousie University, Halifax, Nova Scotia, B3H 3J5

    2006-10-01

    It is well known that inflammatory and infectious conditions differentially regulate cytochrome P450 (P450)-mediated drug metabolism in the liver. We have previously outlined a potential pathway for the downregulation in hepatic cytochrome P450 following LPS-mediated inflammation in the CNS (Abdulla, D., Goralski, K.B., Garcia Del Busto Cano, E., Renton, K.W., 2005. The signal transduction pathways involved in hepatic cytochrome P450 regulation in the rat during an LPS-induced model of CNS inflammation. Drug Metab. Dispos). The purpose of this study was to outline the effects of LPS-induced peripheral and central nervous system inflammation on hepatic cytochrome P450 2E1 (CYP2E1) in vivo,more » an enzyme that plays an important role in various physiological and pathological states. We report an increase in hepatic mRNA expression of CYP2E1 that occurred as early as 2-3 h following either the intraperitoneal (i.p.) injection of 5 mg/kg LPS or i.c.v. administration of 25 {mu}g of LPS. This increase in CYP2E1 mRNA expression was sustained for 24 h. In sharp contrast to the increase in hepatic CYP2E1 mRNA, we observed a significant reduction in the catalytic activity of this enzyme 24 h following either the i.c.v. or i.p. administration of LPS. Cycloheximide or actinomycin-D did not change the LPS-mediated downregulation in hepatic CYP2E1 catalytic activity. Our results support the idea that LPS acts at two different levels to regulate hepatic CYP2E1: a transcriptional level to increase CYP2E1 mRNA expression and a post-transcriptional level to regulate CYP2E1 protein and activity.« less

  3. Regulation of Porcine Hepatic Cytochrome P450 — Implication for Boar Taint

    PubMed Central

    Rasmussen, Martin Krøyer; Zamaratskaia, Galia

    2014-01-01

    Cytochrome P450 (CYP450) is the major family of enzymes involved in the metabolism of several xenobiotic and endogenous compounds. Among substrates for CYP450 is the tryptophan metabolite skatole (3-methylindole), one of the major contributors to the off-odour associated with boar-tainted meat. The accumulation of skatole in pigs is highly dependent on the hepatic clearance by CYP450s. In recent years, the porcine CYP450 has attracted attention both in relation to meat quality and as a potential model for human CYP450. The molecular regulation of CYP450 mRNA expression is controlled by several nuclear receptors and transcription factors that are targets for numerous endogenously and exogenously produced agonists and antagonists. Moreover, CYP450 expression and activity are affected by factors such as age, gender and feeding. The regulation of porcine CYP450 has been suggested to have more similarities with human CYP450 than other animal models, including rodents. This article reviews the available data on porcine hepatic CYP450s and its implications for boar taint. PMID:25408844

  4. An in vitro system for measuring genotoxicity mediated by human CYP3A4 in Saccharomyces cerevisiae.

    PubMed

    Fasullo, Michael; Freedland, Julian; St John, Nicholas; Cera, Cinzia; Egner, Patricia; Hartog, Matthew; Ding, Xinxin

    2017-05-01

    P450 activity is required to metabolically activate many chemical carcinogens, rendering them highly genotoxic. CYP3A4 is the most abundantly expressed P450 enzyme in the liver, accounting for most drug metabolism and constituting 50% of all hepatic P450 activity. CYP3A4 is also expressed in extrahepatic tissues, including the intestine. However, the role of CYP3A4 in activating chemical carcinogens into potent genotoxins is unclear. To facilitate efforts to determine whether CYP3A4, per se, can activate carcinogens into potent genotoxins, we expressed human CYP3A4 in the DNA-repair mutant (rad4 rad51) strain of budding yeast Saccharomyces cerevisiae and tested the novel, recombinant yeast strain for ability to report CYP3A4-mediated genotoxicity of a well-known genotoxin, aflatoxin B1 (AFB 1 ). Yeast microsomes containing human CYP3A4, but not those that do not contain CYP3A4, were active in hydroxylation of diclofenac, a known CYP3A4 substrate drug, a result confirming CYP3A4 activity in the recombinant yeast strain. In cells exposed to AFB 1 , the expression of CYP3A4 supported DNA adduct formation, chromosome rearrangements, cell death, and expression of the large subunit of ribonucleotide reductase, Rnr3, a marker of DNA damage. Expression of CYP3A4 also conferred sensitivity in rad4 rad51 mutants exposed to colon carcinogen, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). These data confirm the ability of human CYP3A4 to mediate the genotoxicity of AFB 1 , and illustrate the usefulness of the CYP3A4-expressing, DNA-repair mutant yeast strain for screening other chemical compounds that are CYP3A4 substrates, for potential genotoxicity. Environ. Mol. Mutagen. 58:217-227, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Effect of Sodium Chloride and pH on Enterotoxin C Production

    PubMed Central

    Genigeorgis, Constantin; Foda, Mohamed S.; Mantis, Antony; Sadler, Walter W.

    1971-01-01

    Growth and production of enterotoxin C by Staphylococcus aureus strain 137 in 3% + 3% protein hydrolysate powder N-Z Amine NAK broths with 0 to 12% NaCl and an initial pH of 4.00 to 9.83 were studied during an 8-day incubation period at 37 C. Growth was initiated at pH values as low as 4.00 and as high as 9.83 at 0% salt level as long as the inoculum contained at least 108 cells per ml. Rate of growth decreased as the NaCl concentration was increased gradually to 12%. Enterotoxin C was produced in broths inoculated with 108 cells per ml and above and having initial pH ranges of 4.00 to 9.83, 4.40 to 9.43, 4.50 to 8.55 and respective NaCl concentrations of 0, 4, and 8%. In the presence of 10% NaCl, the pH range supporting enterotoxin C production was 5.45 to 7.30 for an inoculum level of 108 cells per ml and 6.38 to 7.30 for 3.6 × 106 cells per ml. In repeated experiments in which the inoculum contained 108 cells per ml, we failed to demonstrate enterotoxin C production in broths with 12% NaCl and a pH range of 4.50 to 8.55 and concentrated up to 14 times. The effect of NaCl on enterotoxin C production followed the same pattern as its effect on enterotoxin B production. As the concentration of NaCl increased from 0 to 10%, yields of enterotoxin B and C decreased to undetectable amounts. PMID:5574320

  6. Contrasting influence of NADPH and a NADPH-regenerating system on the metabolism of carbonyl-containing compounds in hepatic microsomes.

    PubMed

    Mazur, Christopher S; Kenneke, John F; Goldsmith, Michael-Rock; Brown, Cather

    2009-09-01

    Carbonyl containing xenobiotics may be susceptible to NADPH-dependent cytochrome P450 (P450) and carbonyl-reduction reactions. In vitro hepatic microsome assays are routinely supplied NADPH either by direct addition of NADPH or via an NADPH-regenerating system (NRS). In contrast to oxidative P450 transformations, which occur on the periphery of a microsome vesicle, intraluminal carbonyl reduction depends on transport of cofactors across the endoplasmic reticulum (ER) membrane into the lumen. Glucose 6-phosphate, a natural cofactor and component of the NRS matrix, is readily transported across the ER membrane and facilitates intraluminal NADPH production, whereas direct addition of NADPH has limited access to the lumen. In this study, we compared the effects of direct addition of NADPH and use of an NRS on the P450-mediated transformation of propiconazole and 11 beta-hydroxysteroid dehydrogenase type 1 (HSD1) carbonyl reduction of cortisone and the xenobiotic triadimefon in hepatic microsomes. Our results demonstrate that the use of NADPH rather than NRS can underestimate the kinetic rates of intraluminal carbonyl reduction, whereas P450-mediated transformations were unaffected. Therefore, in vitro depletion rates measured for a carbonyl-containing xenobiotic susceptible to both intraluminal carbonyl reduction and P450 processes may not be properly assessed with direct addition of NADPH. In addition, we used in silico predictions as follows: 1) to show that 11 beta-HSD1 carbonyl reduction was energetically more favorable than oxidative P450 transformation; and 2) to calculate chemical binding score and the distance between the carbonyl group and the hydride to be transferred by NADPH to identify other 11 beta-HSD1 substrates for which reaction kinetics may be underestimated by direct addition of NADPH.

  7. Amorphous metallizations for high-temperature semiconductor device applications

    NASA Technical Reports Server (NTRS)

    Wiley, J. D.; Perepezko, J. H.; Nordman, J. E.; Kang-Jin, G.

    1981-01-01

    The initial results of work on a class of semiconductor metallizations which appear to hold promise as primary metallizations and diffusion barriers for high temperature device applications are presented. These metallizations consist of sputter-deposited films of high T sub g amorphous-metal alloys which (primarily because of the absence of grain boundaries) exhibit exceptionally good corrosion-resistance and low diffusion coefficients. Amorphous films of the alloys Ni-Nb, Ni-Mo, W-Si, and Mo-Si were deposited on Si, GaAs, GaP, and various insulating substrates. The films adhere extremely well to the substrates and remain amorphous during thermal cycling to at least 500 C. Rutherford backscattering and Auger electron spectroscopy measurements indicate atomic diffussivities in the 10 to the -19th power sq cm/S range at 450 C.

  8. IR visible sum-frequency vibrational spectroscopy of Biphenyl-3 methylene thiol monolayer on gold and silver: effect of the visible wavelength on the SFG spectrum

    NASA Astrophysics Data System (ADS)

    Humbert, C.; Dreesen, L.; Mani, A. A.; Caudano, Y.; Lemaire, J.-J.; Thiry, P. A.; Peremans, A.

    2002-04-01

    We measured IR-visible sum-frequency generation spectra of CH 3-(C 6H 4) 2-(CH 2) 3-S-H (Biphenyl-3) self-assembled monolayers on a silver and a gold substrate. For the latter substrate, we observed different interference patterns between the resonant signal of the CH vibration and the non-resonant contribution of the substrate as a function of the visible beam wavelength. The non-linear response of the gold substrate is enhanced around 480 nm corresponding to the s-d interband transition. Such effect is not observed for the silver substrate the interband transition of which is located out of the investigated visible spectral range of 450-700 nm.

  9. Novel Aryl Substituted Pyrazoles as Small Molecule Inhibitors of Cytochrome P450 CYP121A1: Synthesis and Antimycobacterial Evaluation

    PubMed Central

    2017-01-01

    Three series of biarylpyrazole imidazole and triazoles are described, which vary in the linker between the biaryl pyrazole and imidazole/triazole group. The imidazole and triazole series with the short −CH2– linker displayed promising antimycobacterial activity, with the imidazole–CH2– series (7) showing low MIC values (6.25–25 μg/mL), which was also influenced by lipophilicity. Extending the linker to −C(O)NH(CH2)2– resulted in a loss of antimycobacterial activity. The binding affinity of the compounds with CYP121A1 was determined by UV–visible optical titrations with KD values of 2.63, 35.6, and 290 μM, respectively, for the tightest binding compounds 7e, 8b, and 13d from their respective series. Both binding affinity assays and docking studies of the CYP121A1 inhibitors suggest type II indirect binding through interstitial water molecules, with key binding residues Thr77, Val78, Val82, Val83, Met86, Ser237, Gln385, and Arg386, comparable with the binding interactions observed with fluconazole and the natural substrate dicyclotyrosine. PMID:29185746

  10. Thiolated polymers: evaluation of the influence of the amount of covalently attached L-cysteine to poly(acrylic acid).

    PubMed

    Palmberger, Thomas F; Albrecht, Karin; Loretz, Brigitta; Bernkop-Schnürch, Andreas

    2007-06-01

    It was the aim of this study to investigate the influence of the amount of thiol groups being covalently attached to poly(acrylic acid) 450 kDa on its properties. Five different PAA(450)-L-cysteine conjugates (PAA(450)-Cys) were synthesized bearing 53.0 (PAA I), 113.4 (PAA II), 288.8 (PAA III), 549.1 (PAA IV) and 767.0 (PAA V) micromol immobilized thiol groups per gram polymer. Mucoadhesion studies utilizing the rotating cylinder method, tensile studies and disintegration studies were performed. Self-crosslinking properties were measured by the increase in viscosity. Permeation studies were performed on rat small intestine and Caco-2 monolayers using sodium fluorescein as model drug. Following residence times on the rotating cylinder could be identified: PAA I 3.1; PAA II 5.2; PAA III 22.0; PAA IV 33.8; PAA V 53.7; control 1.3 [h]. The disintegration time of all PAA(450)-Cys tablets was strongly dependent on the degree of thiolation of the polymer. Self-crosslinking studies showed that the different PAA(450)-Cys conjugates (3% m/v) in phosphate buffer, pH 6.8, formed intramolecular disulfide bonds. In case of Caco-2 monolayer transport studies following P(app)-values could be identified: PAA I 9.8; PAA II 10.1; PAA III 11.1; PAA IV 8.9; PAA V 8.2; control 6.4 [P(app)x10(-6), cms(-1)]. Mucoadhesive and self-crosslinking properties are strongly dependent on the degree of thiolation of the polymer and with respect to transport studies, an optimum amount of covalently attached L-cysteine could be identified.

  11. Potential of decursin to inhibit the human cytochrome P450 2J2 isoform.

    PubMed

    Lee, Boram; Wu, Zhexue; Sung, Sang Hyun; Lee, Taeho; Song, Kyung-Sik; Lee, Min Young; Liu, Kwang-Hyeon

    2014-08-01

    CYP2J2 enzyme is highly expressed in human tumors and carcinoma cell lines, and epoxyeicosatrienoic acids, CYP2J2-mediated metabolites, have been implicated in the pathologic development of human cancers. To identify a CYP2J2 inhibitor, 50 natural products obtained from plants were screened using astemizole as a CYP2J2 probe substrate in human liver microsomes. Of these, decursin noncompetitively inhibited CYP2J2-mediated astemizole O-demethylation and terfenadine hydroxylation activities with Ki values of 8.34 and 15.8μM, respectively. It also showed cytotoxic effects against human hepatoma HepG2 cells in a dose-dependent manner while it did not show cytotoxicity against mouse hepatocytes. The present data suggest that decursin is a potential candidate for further evaluation for its CYP2J2 targeting anti-cancer activities. Studies are currently underway to test decursin as a potential therapeutic agent for cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Purification and properties of beta-galactosidase from Aspergillus nidulans.

    PubMed

    Díaz, M; Pedregosa, A M; de Lucas, J R; Torralba, S; Monistrol, I F; Laborda, F

    1996-12-01

    Beta-Galactosidase from mycelial extract of Aspergillus nidulans has been purified by substrate affinity chromatography and used to obtain anti-beta-galactosidase polyclonal antibodies. A. nidulans growing in lactose as carbon source synthesizes one active form of beta-galactosidase which seems to be a multimeric enzyme of 450 kDa composed of monomers with 120 and 97 kDa. Although the enzyme was not released to the culture medium, some enzymatic activity was detected in a cell-wall extract, thus suggesting that it can be an extracellular enzyme. Beta-Galactosidase of A. nidulans is a very unstable enzyme with an optimum pH value of 7.5 and an optimum temperature of 30 degrees C. It was only active against beta-galactoside substrates like lactose and p-nitrophenyl-beta-D-galactoside (PNPG).

  13. Contributions of Human Cytochrome P450 Enzymes to Glyburide Metabolism*

    PubMed Central

    Zhou, Lin; Naraharisetti, Suresh B.; Liu, Li; Wang, Honggang; Lin, Yvonne S.; Isoherranen, Nina; Unadkat, Jashvant D.; Hebert, Mary F.; Mao, Qingcheng

    2011-01-01

    Glyburide (GLB) is a widely used oral sulfonylurea for the treatment of gestational diabetes. Therapeutic use of GLB is often complicated by a substantial inter-individual variability in the pharmacokinetics and pharmacodynamics of the drug in human populations, which might be caused by inter-individual variations in factors such as GLB metabolism. Therefore, there has been a continued interest in identifying human cytochrome P450 (CYP) isoforms that play a major role in the metabolism of GLB. However, contrasting data are available in the present literature in this regard. In the present study, we systematically investigated the contributions of various human CYP isoforms (CYP3A4, CYP3A5, CYP2C8, CYP2C9, and CYP2C19) to in vitro metabolism of GLB. GLB depletion and metabolite formation in human liver microsomes were most significantly inhibited by the CYP3A inhibitor ketoconazole compared with the inhibitors of other CYP isoforms. Furthermore, multiple correlation analysis between GLB depletion and individual CYP activities was performed, demonstrating a significant correlation between GLB depletion and the CYP3A probe activity in 16 individual human liver microsomal preparations, but not between GLB depletion and the CYP2C19, CYP2C8, or CYP2C9 probe activity. By using recombinant supersomes overexpressing individual human CYP isoforms, we found that GLB could be depleted by all the enzymes tested; however, the intrinsic clearance (Vmax/Km) of CYP3A4 for GLB depletion was 4 – 17 times greater than that of other CYP isoforms. These results confirm that human CYP3A4 is the major enzyme invovled in the in vitro metabolism of GLB. PMID:20437462

  14. Five of 12 forms of vaccinia virus-expressed human hepatic cytochrome P450 metabolically activate aflatoxin B sub 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoyama, Toshifumi; Yamano, Shigeru; Gelboin, H.V.

    Twelve forms of human hepatic cytochrome P450 were expressed in hepatoma cells by means of recombinant vaccinia viruses. The expressed P450s were analyzed for their abilities to activate the potent hepatocarcinogen aflatoxin B{sub 1} to metabolites having mutagenic or DNA-binding properties. Five forms, P450s IA2, IIA3, IIB7, IIIA3, and IIIA4, activated aflatoxin B{sub 1} to mutagenic metabolites as assessed by the production of His revertants of Salmonella typhimurium in the Ames test. The same P450s catalyzed conversion of aflatoxin B{sub 1} to DNA-bound derivatives as judged by an in situ assay in which the radiolabeled carcinogen was incubated with cellsmore » expressing the individual P450 forms. Seven other human P450s, IIC8, IIC9, IID6, IIE1, IIF1, and IIIA5, and IVB1, did not significantly activate aflatoxin B{sub 1} as measured by both the Ames test and the DNA-binding assay. Moreover, polyclonal anti-rat liver P450 antibodies that crossreact with individual human P450s IA2, IIA3, IIIA3, and IIIA4 each inhibited aflatoxin B{sub 1} activation catalyzed by human liver S-9 extracts. Inhibition ranged from as low as 10% with antibody against IIA3 to as high as 65% with antibody against IIIA3 and IIIA4. These results establish that metabolic activation of aflatoxin B{sub 1} in human liver involves the contribution of multiple forms of P450.« less

  15. Adult granulosa cell tumors of the ovary: a retrospective study of 30 cases with respect to the expression of steroid synthesis enzymes.

    PubMed

    Kitamura, Sachiko; Abiko, Kaoru; Matsumura, Noriomi; Nakai, Hidekatsu; Akimoto, Yumiko; Tanimoto, Hirotoshi; Konishi, Ikuo

    2017-07-01

    Some, but not all, granulosa cell tumors are characterized by estrogen production. This study was designed to determine whether there are clinical or pathological variations in granulosa cell tumors in relation to the expression of sex steroid synthesis enzymes. Clinical symptoms, serum hormonal values, and histology of 30 granulosa cell tumor patients who underwent surgery between 2002 and 2014 were retrospectively reviewed. Most patients presented with abnormal genital bleeding including abnormal menstrual cycles. Eight of 16 patients older than 50 years had endometrial hyperplasia and one had endometrial cancer. Serum 17β-estradiol (E₂) levels tended to be higher in patients over 50 years of age (p=0.081). Serum follicle-stimulating hormone (FSH) levels were low in all patients irrespective of serum E₂ levels. Magnetic resonance imaging revealed a thicker endometrium in older as compared to younger patients (p<0.05). Tumor cells in the majority of cases were positive for inhibin α and P450 aromatase, irrespective of age and serum E₂ levels. P450 17α-hydroxylase (P450c17) expression varied among cases. P450c17 was strongly positive in luteinized tumor cells and weakly positive in theca cells and fibroblasts. High E₂ levels were associated with P450c17-positive cells in the tumor (p<0.05). The expression of hormone-synthesizing enzymes divides granulosa cell tumors into 2 distinct types; tumors with P450c17-positive cells show elevated serum E₂ and related clinical symptoms, while tumors without these cells show symptoms related to FSH suppression by inhibin. Copyright © 2017. Asian Society of Gynecologic Oncology, Korean Society of Gynecologic Oncology

  16. Steroid hormone profiling in obese and nonobese women with polycystic ovary syndrome.

    PubMed

    Deng, Yuying; Zhang, Yifei; Li, Shengxian; Zhou, Wenzhong; Ye, Lei; Wang, Lihua; Tao, Tao; Gu, Junjie; Yang, Zuwei; Zhao, Dandan; Gu, Weiqiong; Hong, Jie; Ning, Guang; Liu, Wei; Wang, Weiqing

    2017-10-26

    The study explored differences in the steroidogenic pathway between obese and nonobese women with polycystic ovary syndrome (PCOS) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). 1044 women with PCOS (including 350 lean, 312 overweight and 382 obese) and 366 control women without PCOS (including 203 lean, 32 overweight and 131 obese) were enrolled. The differences in steroid hormones were amplified in lean PCOS versus lean controls compared with obese PCOS versus obese controls. Compared with obese PCOS, lean PCOS demonstrated increased dehydroepiandrosterone sulfate (P = 0.015), 17-hydropregnenolone (P = 0.003), 17-hydroprogesterone (17-OHP) (P < 0.001), progesterone (P < 0.001) and estrone (P < 0.001) levels. Enzyme activity evaluation showed that lean PCOS had increased activity of P450c17 (17-hydropregnenolone/pregnenolone, P < 0.001), P450aro (P < 0.001), 3βHSD2 (progesterone/ pregnenolone and 17-OHP/17-hydropregnenolone, both P < 0.001) and decreased activity of P450c21(11-deoxycorticorsterone/progesterone and 11-deoxycortisol/17-OHP, P < 0.001). Moreover, we found higher frequencies of CYP21A2- (encoding P450c21) c.552 C > G (p. D184E) in lean PCOS compared with obese PCOS patients (P = 0.006). In conclusion, this study demonstrated for the first time that the adrenal-specific enzyme P450c21 showed decreased activity in lean PCOS patients, and that the adrenal androgen excess may play different roles in lean and obese PCOS patients, which represents as different enzyme activity in the steroidogenic pathway.

  17. Modulation of CYPs, P-gp, and PXR by Eschscholzia californica (California Poppy) and Its Alkaloids.

    PubMed

    Manda, Vamshi K; Ibrahim, Mohamed A; Dale, Olivia R; Kumarihamy, Mallika; Cutler, Stephen J; Khan, Ikhlas A; Walker, Larry A; Muhammad, Ilias; Khan, Shabana I

    2016-04-01

    Eschscholzia californica, a native US plant, is traditionally used as a sedative, analgesic, and anxiolytic herb. With the rapid rise in the use of herbal supplements together with over-the-counter and prescription drugs, the risk for potential herb-drug interactions is also increasing. Most of the clinically relevant pharmacokinetic drug interactions occur due to modulation of cytochrome P450 enzymes (CYPs), P-glycoprotein, and the pregnane X receptor by concomitantly used herbs. This study aimed to determine the effects of an EtOH extract, aqueous extract (tea), basic CHCl3 fractions, and isolated major alkaloids, namely protopine (1), escholtzine (2), allocryptopine (3), and californidine (4), of E. californica on the activity of cytochrome P450s, P-glycoprotein and the pregnane X receptor. The EtOH extract and fractions showed strong time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19, and reversible inhibition of CYP 2D6. Among the alkaloids, escholtzine (2) and allocryptopine (3) exhibited time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19 (IC50 shift ratio > 2), while protopine (1) and allocryptopine (3) showed reversible inhibition of CYP 2D6 enzyme. A significant activation of the pregnane X receptor (> 2-fold) was observed with the EtOH extract, basic CHCl3 fraction, and alkaloids (except protopine), which resulted into an increased expression of mRNA and the activity of CYP 3A4 and CYP 1A2. The expression of P-glycoprotein was unaffected. However, aqueous extract (tea) and its main alkaloid californidine (4) did not affect cytochrome P450s, P-glycoprotein, or the pregnane X receptor. This data suggests that EtOH extract of E. californica and its major alkaloids have a potential of causing interactions with drugs that are metabolized by cytochrome P450s, while the tea seems to be safer. Georg Thieme Verlag KG Stuttgart · New York.

  18. The influence of different light quality and benzene on gene expression and benzene degradation of Chlorophytum comosum.

    PubMed

    Setsungnern, Arnon; Treesubsuntorn, Chairat; Thiravetyan, Paitip

    2017-11-01

    Benzene, a carcinogenic compound, has been reported as a major indoor air pollutant. Chlorophytum comosum (C. comosum) was reported to be the highest efficient benzene removal plant among other screened plants. Our previous studies found that plants under light conditions could remove gaseous benzene higher than under dark conditions. Therefore, C. comosum exposure to airborne benzene was studied under different light quality at the same light intensity. C. comosum could remove 500 ppm gaseous benzene with the highest efficiency of 68.77% under Blue:Red = 1:1 LED treatments and the lowest one appeared 57.41% under white fluorescent treatment within 8 days. After benzene was uptaken by C. comosum, benzene was oxidized to be phenol in the plant cells by cytochrome P450 monooxygenase system. Then, phenol was catalyzed to be catechol that was confirmed by the up-regulation of phenol 2-monooxygenase (PMO) gene expression. After that, catechol was changed to cic, cis-muconic acid. Interestingly, cis,cis-muconic acid production was found in the plant tissues higher than phenol and catechol. The result confirmed that NADPH-cytochrome P450 reductase (CPR), cytochrome b5 (cyt b5), phenol 2-monooxygenase (PMO) and cytochrome P450 90B1 (CYP90B1) in plant cells were involved in benzene degradation or detoxification. In addition, phenol, catechol, and cis,cis-muconic acid production were found under the Blue-Red LED light conditions higher than under white fluorescent light conditions due to under LED light conditions gave higher NADPH contents. Hence, C. comosum under the Blue-Red LED light conditions had a high potential to remove benzene in a contaminated site. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Characterization of arylalkylamine N-acetyltransferase (AANAT) activities and action spectrum for suppression in the band-legged cricket, Dianemobius nigrofasciatus (Orthoptera: Gryllidae).

    PubMed

    Izawa, Norimitsu; Suzuki, Takeshi; Watanabe, Masakatsu; Takeda, Makio

    2009-04-01

    Arylalkylamine N-acetyltransferase (AANAT), constituting a large family of enzymes, catalyzes the transacetylation from acetyl-CoA to monoamine substrates, although homology among species is not very high. AANAT in vertebrates is photosensitive and mediates circadian regulation. Here, we analyzed AANAT of the cricket, Dianemobius nigrofasciatus. The central nervous system contained AANAT activity. The optimum pHs were 6.0 (a minor peak) and 10.5 (a major peak) with crude enzyme solution. We analyzed the kinetics at pH 10.5 using the sample containing collective AANAT activities, which we term AANAT. Lineweaver-Burk plot and secondary plot yielded a K(m) for tryptamine as substrate of 0.42 microM, and a V(max) of 9.39 nmol/mg protein/min. The apparent K(m) for acetyl-CoA was 59.9 microM and the V(max) was 8.14 nmol/mg protein/min. AANAT of D. nigrofasciatus was light-sensitive. The activity was higher at night-time than at day-time as in vertebrates. To investigate most effective wavelengths on AANAT activity, a series of monochromatic lights was applied (350, 400, 450, 500, 550, 600 and 650 nm). AANAT showed the highest sensitivity to around 450 nm and 550 nm. 450 nm light was more effective than 550 nm light. Therefore, the most effective light affecting AANAT activity is blue light, which corresponds to the absorption spectrum of blue wave (BW)-opsin.

  20. Mangifera indica L. extract and mangiferin modulate cytochrome P450 and UDP-glucuronosyltransferase enzymes in primary cultures of human hepatocytes.

    PubMed

    Rodeiro, Idania; José Gómez-Lechón, M; Perez, Gabriela; Hernandez, Ivones; Herrera, José Alfredo; Delgado, Rene; Castell, José V; Teresa Donato, M

    2013-05-01

    The aqueous stem bark extract of Mangifera indica L. (MSBE) has been reported to have antioxidant, anti-inflammatory and analgesic properties. In previous studies, we showed that MSBE and mangiferin, its main component, lower the activity of some cytochrome P-450 (P450) enzymes in rat hepatocytes and human liver microsomes. In the present study, the effects of MSBE and mangiferin on several P450 enzymes and UDP-glucuronosyltransferases (UGTs) in human-cultured hepatocytes have been examined. After hepatocytes underwent a 48-h treatment with sub-cytotoxic concentrations of the products (50-250 µg/mL), a concentration-dependent decrease of the activity of the five P450 enzymes measured (CYP1A2, 2A6, 2C9, 2D6 and 3A4) was observed. For all the activities, a reduction of at least 50% at the highest concentration (250 µg/mL) was observed. In addition, UGT activities diminished. MSBE considerably reduced UGT1A9 activity (about 60% at 250 µg/mL) and lesser effects on the other UGTs. In contrast, 250 µg/mL mangiferin had greater effects on UGT1A1 and 2B7 than on UGT1A9 (about 55% vs. 35% reduction, respectively). Quantification of specific mRNAs revealed reduced CYP3A4 and 3A5 mRNAs content, and an increase in CYP1A1, CYP1A2, UGT1A1 and UGT1A9 mRNAs. No remarkable effects on the CYP2A6, 2B6, 2C9, 2C19, 2D6 and 2E1 levels were observed. Our results suggest that the activity and/or expression of major P450 and UGT enzymes is modulated by MSBE and that potential herb-drugs interactions could arise after a combined intake of this extract with conventional medicines. Therefore, the potential safety risks of this natural product derived by altering the ADMET properties of co-administered drugs should be examined. Copyright © 2012 John Wiley & Sons, Ltd.

Top