Science.gov

Sample records for p450 cyp udp-glucuronosyltransferase

  1. Curcuminoids inhibit multiple human cytochromes P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes, while piperine is a relatively selective CYP3A4 inhibitor

    PubMed Central

    Volak, Laurie P.; Ghirmai, Senait; Cashman, John R.; Court, Michael H.

    2008-01-01

    Curcuminoid extract and piperine are being evaluated for beneficial effects in Alzheimer’s disease, among other intractable disorders. Consequently, we studied the potential for herb-drug interactions involving cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes. The curcuminoid extract inhibited SULT > CYP2C19 > CYP2B6 > UGT > CYP2C9 > CYP3A activities with IC50 values ranging from 0.99 ± 0.04 to 25.3 ± 1.3 μM, while CYP2D6, CYP1A2, and CYP2E1 activities were less affected (IC50 values >60 μM). Inhibition of CYP3A activity by curcuminoid extract was consistent with competitive inhibition (Ki = 11.0 ± 1.3 μM), while inhibition of both CYP2C9 and CYP2C19 activities were consistent with mixed competitive-noncompetitive inhibition (10.6 ± 1.1 μM and 7.8 ± 0.9 μM, respectively). Piperine was a relatively selective noncompetitive inhibitor of CYP3A (IC50 5.5 ± 0.7 μM, Ki = 5.4 ± 0.3 μM) with less effect on other enzymes evaluated (IC50 >29 μM). Curcuminoid extract and piperine inhibited recombinant CYP3A4 much more potently (by >5-fold) than CYP3A5. Pure synthetic curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) were also evaluated for their effects on CYP3A, CYP2C9, UGT, and SULT activities. All three curcuminoids had similar effects on CYP3A, UGT, and SULT activity, but demethoxycurcumin (IC50 = 8.8 ± 1.2 μM) was more active against CYP2C9 than either curcumin or bisdemethoxycurcumin (IC50 >50 μM). Based on these data and expected tissue concentrations of inhibitors, we predict that an orally administered curcuminoid/piperine combination is most likely to inhibit CYP3A, CYP2C9, UGT, and SULT metabolism within the intestinal mucosa. PMID:18480186

  2. Sequential metabolism of sesamin by cytochrome P450 and UDP-glucuronosyltransferase in human liver.

    PubMed

    Yasuda, Kaori; Ikushiro, Shinichi; Kamakura, Masaki; Munetsuna, Eiji; Ohta, Miho; Sakaki, Toshiyuki

    2011-09-01

    Our previous study revealed that CYP2C9 played a central role in sesamin monocatecholization. In this study, we focused on the metabolism of sesamin monocatechol that was further converted into the dicatechol form by cytochrome P450 (P450) or the glucuronide by UDP-glucuronosyltransferase (UGT). Catecholization of sesamin monocatechol enhances its antioxidant activity, whereas glucuronidation strongly reduces its antioxidant activity. In human liver microsomes, the glucuronidation activity was much higher than the catecholization activity toward sesamin monocatechol. In contrast, in rat liver microsomes, catecholization is predominant over glucuronidation. In addition, rat liver produced two isomers of the glucuronide, whereas human liver produced only one glucuronide. These results suggest a significant species-based difference in the metabolism of sesamin between humans and rats. Kinetic studies using recombinant human UGT isoforms identified UGT2B7 as the most important UGT isoform for glucuronidation of sesamin monocatechol. In addition, a good correlation was observed between the glucuronidation activity and UGT2B7-specific activity in in vitro studies using 10 individual human liver microsomes. These results strongly suggest that UGT2B7 plays an important role in glucuronidation of sesamin monocatechol. Interindividual difference among the 10 human liver microsomes is approximately 2-fold. These results, together with our previous results on the metabolism of sesamin by human P450, suggest a small interindividual difference in sesamin metabolism. We observed the methylation activity toward sesamin monocatechol by catechol O-methyl transferase (COMT) in human liver cytosol. On the basis of these results, we concluded that CYP2C9, UGT2B7, and COMT played essential roles in the metabolism of sesamin in the human liver.

  3. Quantitative Atlas of Cytochrome P450, UDP-Glucuronosyltransferase, and Transporter Proteins in Jejunum of Morbidly Obese Subjects.

    PubMed

    Miyauchi, Eisuke; Tachikawa, Masanori; Declèves, Xavier; Uchida, Yasuo; Bouillot, Jean-Luc; Poitou, Christine; Oppert, Jean-Michel; Mouly, Stéphane; Bergmann, Jean-François; Terasaki, Tetsuya; Scherrmann, Jean-Michel; Lloret-Linares, Célia

    2016-08-01

    Protein expression levels of drug-metabolizing enzymes and transporters in human jejunal tissues excised from morbidly obese subjects during gastric bypass surgery were evaluated using quantitative targeted absolute proteomics. Protein expression levels of 15 cytochrome P450 (CYP) enzymes, 10 UDP-glucuronosyltransferase (UGT) enzymes, and NADPH-P450 reductase (P450R) in microsomal fractions from 28 subjects and 49 transporters in plasma membrane fractions from 24 of the same subjects were determined using liquid chromatography-tandem mass spectrometry. Based on average values, UGT1A1, UGT2B15, UGT2B17, SGLT1, and GLUT2 exhibited high expression levels (over 10 fmol/μg protein), though UGT2B15 expression was detected at a high level in only one subject. CYP2C9, CYP2D6, CYP3A5, UGT1A6, P450R, ABCG2, GLUT5, PEPT1, MCT1, 4F2 cell-surface antigen heavy chain (4F2hc), LAT2, OSTα, and OSTβ showed intermediate levels (1-10 fmol/μg protein), and CYP1A1, CYP1A2, CYP1B1, CYP2C18, CYP2C19, CYP2J2, CYP3A7, CYP4A11, CYP51A1, UGT1A3, UGT1A4, UGT1A8, UGT2B4, ABCC1, ABCC4, ABCC5, ABCC6, ABCG8, TAUT, OATP2A1, OATP2B1, OATP3A1, OATP4A1, OCTN1, CNT2, PCFT, MCT4, GLUT4, and SLC22A18 showed low levels (less than 1 fmol/μg protein). The greatest interindividual difference (364-fold) was detected for UGT2B17. However, differences in expression levels of other quantified UGTs (except UGT2B15 and UGT2B17), CYPs (except CYP1A1 and CYP3A5), and P450R, and all quantified transporters, were within 10-fold. Expression levels of CYP1A2 and GLUT4 were significantly correlated with body-mass index. The levels of 4F2hc showed significant gender differences. Smokers showed increased levels of UGT1A1 and UGT1A3. These findings provide a basis for understanding the changes in molecular mechanisms of jejunal metabolism and transport, as well as their interindividual variability, in morbidly obese patients.

  4. Octachlorostyrene induces cytochrome P450, UDP-glucuronosyltransferase, and sulfotransferase via the aryl hydrocarbon receptor and constitutive androstane receptor.

    PubMed

    Yanagiba, Yukie; Ito, Yuki; Kamijima, Michihiro; Gonzalez, Frank J; Nakajima, Tamie

    2009-09-01

    Octachlorostyrene (OCS) is a byproduct produced in the process of synthesis of chlorinated compounds. There are some reports concerning environmental contamination by OCS, but few on the toxicological effects on human. Drug-metabolizing enzymes may play an important role in toxicity through metabolic activation or deactivation of OCS. In this study, we investigated whether OCS influences these enzymes using wild-type and aryl hydrocarbon receptor (Ahr)-null mice; AhR regulates cytochrome P450 (CYP) 1A, UDP-glucuronosyltransferase (UGT), or sulfotransferase (SULT). Both mouse lines were treated with OCS (0, 32, and 64 mumol/kg) for 4 days by gavage. As a reference, the mice were treated with 20 mg/kg 3-methylcholanthrene (3MC) for 4 days. OCS treatment increased the expression of CYP 1A1 and CYP1A2 mRNA and ethoxyresorfin O-deethylase activity only in the wild-type mice, similar to that of the AhR activator 3MC. OCS treatment increased expression of UGT1A6 and SULT 1A1 mRNA and their associated enzyme activities only in Ahr-null mice, whereas 3MC still influenced these enzymes only in wild-type mice. OCS induced constitutive androstane receptor (CAR) only in Ahr-null mice, and the target gene CYP2B10 mRNA was induced more strongly in Ahr-null mice than in wild-type mice. 3MC slightly induced CYP2B10 mRNA only in the wild-type mice. These results suggest that CAR is involved in regulation of the UGT and SULT genes by OCS. Thus, OCS may regulate CYP1A via AhR, whereas it controls UGT1A6 and SULT1A via CAR.

  5. Inhibition of human drug-metabolising cytochrome P450 and UDP-glucuronosyltransferase enzyme activities in vitro by uremic toxins.

    PubMed

    Barnes, Kyra J; Rowland, Andrew; Polasek, Thomas M; Miners, John O

    2014-09-01

    To investigate the potential inhibitory effects of uremic toxins on the major human hepatic drug-metabolising cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes in vitro. Benzyl alcohol, p-cresol, indoxyl sulfate, hippuric acid and a combination of the four uremic toxins were co-incubated with human liver microsomes and selective probe substrates for the major human drug-metabolising CYP and UGT enzymes. The percentage of enzyme inhibition was calculated by measuring the rates of probe metabolite formation in the absence and presence of the uremic toxins. Kinetics studies were conducted to evaluate the K i values and mechanism(s) of the inhibition of CYP2E1, CYP3A4, UGT1A1 and UGT1A9 by p-cresol. The individual uremic toxins inhibited CYP and UGT enzymes to a variable extent. p-Cresol was the most potent individual inhibitor, producing >50% inhibition of CYP2E1, CYP3A4, UGT1A1, UGT1A9 and UGT2B7 at a concentration of 100 μM. The greatest inhibition was observed with UGT1A9. p-Cresol was shown to be an uncompetitive inhibitor of UGT1A9, with unbound K i values of 9.1 and 2.5 μM in the absence and presence of bovine serum albumin (BSA), respectively. K i values for p-cresol inhibition of human liver microsomal CYP2E1, CYP3A4 and UGT1A1 ranged from 43 to 89 μM. A combination of the four uremic toxins produced >50% decreases in the activities of CYP1A2, CYP2C9, CYP2E1, CYP3A4, UGT1A1, UGT1A9 and UGT2B7. Uremic toxins may contribute to decreases in drug hepatic clearance in individuals with kidney disease by inhibition of hepatic drug-metabolising enzymes.

  6. Effect of dietary eugenol on xenobiotic metabolism and mediation of UDP-glucuronosyltransferase and cytochrome P450 1A1 expression in rat liver.

    PubMed

    Iwano, Hidetomo; Ujita, Wakako; Nishikawa, Miyu; Ishii, Satomi; Inoue, Hiroki; Yokota, Hiroshi

    2014-03-01

    Xenobiotic-metabolizing enzymes (XMEs) play an important role in the elimination and detoxification of xenobiotics and drugs. A variety of natural dietary agents are known to protect against cancer by inducing XME. To elucidate the molecular mechanism of XME induction, we examined the effect of dietary eugenol (4-allyl-1-hydroxy-2-methoxybenzene) on xenobiotic metabolism. In this study, rats were administered dietary eugenol for 4 weeks to investigate the various effects of UDP-glucuronosyltransferase (UGT) and cytochrome P450 (CYP) expression. In rats administered dietary eugenol, expression levels of hepatic CYP1A 1 were reduced to 40% than of the controls, while expression of hepatic UGT1A6, UGT1A7 and UGT2B1 increased to 2-3 times than observed in the controls. Hepatic protein levels of UGT1A6 and 2B1 were also elevated in the eugenol-treated rats. These results suggest that the natural compound eugenol improves the xenobiotic-metabolizing systems that suppress and induce the expression of CYP1A1 and UGT, respectively.

  7. Mangifera indica L. extract and mangiferin modulate cytochrome P450 and UDP-glucuronosyltransferase enzymes in primary cultures of human hepatocytes.

    PubMed

    Rodeiro, Idania; José Gómez-Lechón, M; Perez, Gabriela; Hernandez, Ivones; Herrera, José Alfredo; Delgado, Rene; Castell, José V; Teresa Donato, M

    2013-05-01

    The aqueous stem bark extract of Mangifera indica L. (MSBE) has been reported to have antioxidant, anti-inflammatory and analgesic properties. In previous studies, we showed that MSBE and mangiferin, its main component, lower the activity of some cytochrome P-450 (P450) enzymes in rat hepatocytes and human liver microsomes. In the present study, the effects of MSBE and mangiferin on several P450 enzymes and UDP-glucuronosyltransferases (UGTs) in human-cultured hepatocytes have been examined. After hepatocytes underwent a 48-h treatment with sub-cytotoxic concentrations of the products (50-250 µg/mL), a concentration-dependent decrease of the activity of the five P450 enzymes measured (CYP1A2, 2A6, 2C9, 2D6 and 3A4) was observed. For all the activities, a reduction of at least 50% at the highest concentration (250 µg/mL) was observed. In addition, UGT activities diminished. MSBE considerably reduced UGT1A9 activity (about 60% at 250 µg/mL) and lesser effects on the other UGTs. In contrast, 250 µg/mL mangiferin had greater effects on UGT1A1 and 2B7 than on UGT1A9 (about 55% vs. 35% reduction, respectively). Quantification of specific mRNAs revealed reduced CYP3A4 and 3A5 mRNAs content, and an increase in CYP1A1, CYP1A2, UGT1A1 and UGT1A9 mRNAs. No remarkable effects on the CYP2A6, 2B6, 2C9, 2C19, 2D6 and 2E1 levels were observed. Our results suggest that the activity and/or expression of major P450 and UGT enzymes is modulated by MSBE and that potential herb-drugs interactions could arise after a combined intake of this extract with conventional medicines. Therefore, the potential safety risks of this natural product derived by altering the ADMET properties of co-administered drugs should be examined.

  8. Traditional Herbal Formulas to as Treatments for Musculoskeletal Disorders: Their Inhibitory Effects on the Activities of Human Microsomal Cytochrome P450s and UDP-glucuronosyltransferases

    PubMed Central

    Jin, Seong Eun; Seo, Chang-Seob; Shin, Hyeun-Kyoo; Ha, Hyekyung

    2016-01-01

    Objective: The aim of this study was to assess the influence of traditional herbal formulas, including Bangpungtongseong-san (BPTSS; Fangfengtongsheng-san, Bofu-tsusho-san), Ojeok-san (OJS; Wuji-san, Goshaku-san), and Oyaksungi-san (OYSGS; Wuyaoshungi-san, Uyakujyunki-san), on the activities of the human cytochrome P450s (CYP450s) and UDP-glucuronosyltransferases (UGTs), which are drug-metabolizing enzymes. Materials and Methods: The activities of the major human CYP450 isozymes (CYP1A2, CYP3A4, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP2E1) and UGTs (UGT1A1, UGT1A4, and UGT2B7) were investigated using in vitro fluorescence-based and luminescence-based enzyme assays, respectively. The inhibitory effects of the herbal formulas were characterized, and their IC50 values were determined. Results: BPTSS inhibited the activities of CYP1A2, CYP2C19, CYP2E1, and UGT1A1 while it exerted relatively weak inhibition on CYP2B6, CYP2C9, CYP2D6, and CYP3A4. BPTSS also negligibly inhibited the activities of UGT1A4 and UGT2B7, with IC50 values in the excess of 1000 μg/mL. OJS and OYSGS inhibited the activity of CYP2D6, whereas they exhibited no inhibition of the UGT1A4 activity at doses <1000 μg/mL. In addition, OJS inhibited the CYP1A2 activity but exerted a relatively weak inhibition on the activities of CYP2C9, CYP2C19, CYP2E1, and CYP3A4. Conversely, OJS negligibly inhibited the activities of CYP2B6, UGT1A1, and UGT2B7 with IC50 values in excess of 1000 μg/mL. OYSGS weakly inhibited the activities of CYP1A2, CYP2C19, CYP2E1, CYP3A4, and UGT1A1, with a negligible inhibition on the activities of CYP2B6, CYP2C9, and UGT2B7, with IC50 values in excess of 1000 μg/mL. Conclusions: These results provide information regarding the safety and effectiveness of BPTSS, OJS, and OYSGS when combined with conventional drugs. SUMMARY Bangpungtongseong-san inhibited the activities of human microsomal CYP1A2, CYP2C19, CYP2E1, and UGT1A1, with a negligibly inhibition on the activities of CYP2B6

  9. Effect of a New Prokinetic Agent DA-9701 Formulated with Corydalis Tuber and Pharbitidis Semen on Cytochrome P450 and UDP-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    PubMed Central

    Ji, Hye Young; Liu, Kwang Hyeon; Jeong, Ji Hyeon; Lee, Dae-Young; Shim, Hyun Joo; Son, Miwon; Lee, Hye Suk

    2012-01-01

    DA-9701 is a new botanical drug composed of the extracts of Corydalis tuber and Pharbitidis semen, and it is used as an oral therapy for the treatment of functional dyspepsia in Korea. The inhibitory potentials of DA-9701 and its component herbs, Corydalis tuber and Pharbitidis semen, on the activities of seven major human cytochrome P450 (CYP) enzymes and four UDP-glucuronosyltransferase (UGT) enzymes in human liver microsomes were investigated using liquid chromatography-tandem mass spectrometry. DA-9701 and Corydalis tuber extract slightly inhibited UGT1A1-mediated etoposide glucuronidation, with 50% inhibitory concentration (IC50) values of 188 and 290 μg/mL, respectively. DA-9701 inhibited CYP2D6-catalyzed bufuralol 1′-hydroxylation with an inhibition constant (Ki) value of 6.3 μg/mL in a noncompetitive manner. Corydalis tuber extract competitively inhibited CYP2D6-mediated bufuralol 1′-hydroxylation, with a Ki value of 3.7 μg/mL, whereas Pharbitidis semen extract showed no inhibition. The volume in which the dose could be diluted to generate an IC50 equivalent concentration (volume per dose index) value of DA-9701 for inhibition of CYP2D6 activity was 1.16 L/dose, indicating that DA-9701 may not be a potent CYP2D6 inhibitor. Further clinical studies are warranted to evaluate the in vivo extent of the observed in vitro interactions. PMID:22548118

  10. Further Characterization of the Metabolism of Desloratadine and Its Cytochrome P450 and UDP-glucuronosyltransferase Inhibition Potential: Identification of Desloratadine as a Relatively Selective UGT2B10 Inhibitor.

    PubMed

    Kazmi, Faraz; Yerino, Phyllis; Barbara, Joanna E; Parkinson, Andrew

    2015-09-01

    Desloratadine (Clarinex), the major active metabolite of loratadine (Claritin), is a nonsedating antihistamine used for the treatment of seasonal allergies and hives. Previously we reported that the formation of 3-hydroxydesloratadine, the major human metabolite of desloratadine, involves three sequential reactions, namely N-glucuronidation by UGT2B10 followed by 3-hydroxylation by CYP2C8 followed by deconjugation (rapid, nonenzymatic hydrolysis of the N-glucuronide). In this study we assessed the perpetrator potential of desloratadine based on in vitro studies of its inhibitory effects on cytochrome P450 and UDP-glucuronosyltransferase (UGT) enzymes in human liver microsomes (HLM). Desloratadine (10 µM) caused no inhibition (<15%) of CYP1A2, CYP2C8, CYP2C9, or CYP2C19 and weak inhibition (32-48%) of CYP2B6, CYP2D6, and CYP3A4/5. In cryopreserved human hepatocytes (CHH), which can form the CYP2C8 substrate desloratadine N-glucuronide, desloratadine did not inhibit the CYP2C8-dependent metabolism of paclitaxel or amodiaquine. Assessment of UGT inhibition identified desloratadine as a potent and relatively selective competitive inhibitor of UGT2B10 (Ki value of 1.3 μM). Chemical inhibition of UGT enzymes in HLM demonstrated that nicotine (UGT2B10 inhibitor) but not hecogenin (UGT1A4 inhibitor) completely inhibited the conversion of desloratadine (1 µM) to 3-hydroxydesloratadine in HLM fortified with both NADPH and UDP-glucuronic acid. 3-Hydroxydesloratadine formation correlated well with levomedetomidine glucuronidation (UGT2B10 marker activity) with a panel of individual CHH (r(2) = 0.72). Overall, the results of this study confirm the role of UGT2B10 in 3-hydroxydesloratadine formation and identify desloratadine as a relatively selective in vitro inhibitor of UGT2B10.

  11. Metabolic drug-drug interaction potential of macrolactin A and 7-O-succinyl macrolactin A assessed by evaluating cytochrome P450 inhibition and induction and UDP-glucuronosyltransferase inhibition in vitro.

    PubMed

    Bae, Soo Hyeon; Kwon, Min Jo; Park, Jung Bae; Kim, Doyun; Kim, Dong-Hee; Kang, Jae-Seon; Kim, Chun-Gyu; Oh, Euichaul; Bae, Soo Kyung

    2014-09-01

    Macrolactin A (MA) and 7-O-succinyl macrolactin A (SMA), polyene macrolides containing a 24-membered lactone ring, show antibiotic effects superior to those of teicoplanin against vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. MA and SMA are currently being evaluated as antitumor agents in preclinical studies in Korea. We evaluated the potential of MA and SMA for the inhibition or induction of human liver cytochrome P450 (CYP) enzymes and UDP-glucuronosyltransferases (UGTs) in vitro to assess their safety as new molecular entities. We demonstrated that MA and SMA are potent competitive inhibitors of CYP2C9, with Ki values of 4.06 μM and 10.6 μM, respectively. MA and SMA also weakly inhibited UGT1A1 activity, with Ki values of 40.1 μM and 65.3 μM, respectively. However, these macrolactins showed no time-dependent inactivation of the nine CYPs studied. In addition, MA and SMA did not induce CYP1A2, CYP2B6, or CYP3A4/5. On the basis of an in vitro-in vivo extrapolation, our data strongly suggested that MA and SMA are unlikely to cause clinically significant drug-drug interactions mediated via inhibition or induction of most of the CYPs involved in drug metabolism in vivo, except for the inhibition of CYP2C9 by MA. Similarly, MA and SMA are unlikely to inhibit the activity of UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7 enzymes in vivo. Although further investigations will be required to clarify the in vivo interactions of MA with CYP2C9-targeted drugs, our findings offer a clearer understanding and prediction of drug-drug interactions for the safe use of MA and SMA in clinical practice.

  12. Metabolic Drug-Drug Interaction Potential of Macrolactin A and 7-O-Succinyl Macrolactin A Assessed by Evaluating Cytochrome P450 Inhibition and Induction and UDP-Glucuronosyltransferase Inhibition In Vitro

    PubMed Central

    Bae, Soo Hyeon; Kwon, Min Jo; Park, Jung Bae; Kim, Doyun; Kim, Dong-Hee; Kang, Jae-Seon; Kim, Chun-Gyu; Oh, Euichaul

    2014-01-01

    Macrolactin A (MA) and 7-O-succinyl macrolactin A (SMA), polyene macrolides containing a 24-membered lactone ring, show antibiotic effects superior to those of teicoplanin against vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus. MA and SMA are currently being evaluated as antitumor agents in preclinical studies in Korea. We evaluated the potential of MA and SMA for the inhibition or induction of human liver cytochrome P450 (CYP) enzymes and UDP-glucuronosyltransferases (UGTs) in vitro to assess their safety as new molecular entities. We demonstrated that MA and SMA are potent competitive inhibitors of CYP2C9, with Ki values of 4.06 μM and 10.6 μM, respectively. MA and SMA also weakly inhibited UGT1A1 activity, with Ki values of 40.1 μM and 65.3 μM, respectively. However, these macrolactins showed no time-dependent inactivation of the nine CYPs studied. In addition, MA and SMA did not induce CYP1A2, CYP2B6, or CYP3A4/5. On the basis of an in vitro-in vivo extrapolation, our data strongly suggested that MA and SMA are unlikely to cause clinically significant drug-drug interactions mediated via inhibition or induction of most of the CYPs involved in drug metabolism in vivo, except for the inhibition of CYP2C9 by MA. Similarly, MA and SMA are unlikely to inhibit the activity of UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7 enzymes in vivo. Although further investigations will be required to clarify the in vivo interactions of MA with CYP2C9-targeted drugs, our findings offer a clearer understanding and prediction of drug-drug interactions for the safe use of MA and SMA in clinical practice. PMID:24890600

  13. Evaluation of the in vitro/in vivo drug interaction potential of BST204, a purified dry extract of ginseng, and its four bioactive ginsenosides through cytochrome P450 inhibition/induction and UDP-glucuronosyltransferase inhibition.

    PubMed

    Zheng, Yu Fen; Bae, Soo Hyeon; Choi, Eu Jin; Park, Jung Bae; Kim, Sun Ok; Jang, Min Jung; Park, Gyu Hwan; Shin, Wan Gyoon; Oh, Euichaul; Bae, Soo Kyung

    2014-06-01

    We evaluated the potential of BST204, a purified dry extract of ginseng, to inhibit or induce human liver cytochrome P450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) in vitro to assess its safety. In vitro drug interactions of four bioactive ginsenosides of BST204, S-Rg3, R-Rg3, S-Rh2, and R-Rh2, were also evaluated. We demonstrated that BST204 slightly inhibited CYP2C8, CYP2D6, CYP2C9, and CYP2B6 activities with IC50 values of 17.4, 26.8, 31.5, and 49.7μg/mL, respectively. BST204 also weakly inhibited UGT1A1, UGT1A9, and UGT2B7 activities with IC50 values of 14.5, 26.6, and 31.5μg/mL, respectively. The potential inhibition by BST204 of the three UGT activities might be attributable to S-Rg3, at least in part, as its inhibitory pattern was similar to that of BST204. However, BST204 showed no time-dependent inactivation of the nine CYPs studied. In addition, BST204 did not induce CYP1A2, 2B6, or 3A4/5. On the basis of an in vivo interaction studies, our data strongly suggest that BST204 is unlikely to cause clinically significant drug-drug interactions mediated via inhibition or induction of most CYPs or UGTs involved in drug metabolism in vivo. Our findings offer a clearer understanding and possibility to predict drug-drug interactions for the safe use of BST204 in clinical practice. Copyright © 2014. Published by Elsevier Ltd.

  14. A long-standing mystery solved: the formation of 3-hydroxydesloratadine is catalyzed by CYP2C8 but prior glucuronidation of desloratadine by UDP-glucuronosyltransferase 2B10 is an obligatory requirement.

    PubMed

    Kazmi, Faraz; Barbara, Joanna E; Yerino, Phyllis; Parkinson, Andrew

    2015-04-01

    Desloratadine (Clarinex), the major active metabolite of loratadine (Claritin), is a nonsedating long-lasting antihistamine that is widely used for the treatment of allergic rhinitis and chronic idiopathic urticaria. For over 20 years, it has remained a mystery as to which enzymes are responsible for the formation of 3-hydroxydesloratadine, the major active human metabolite, largely due to the inability of any in vitro system tested thus far to generate this metabolite. In this study, we demonstrated that cryopreserved human hepatocytes (CHHs) form 3-hydroxydesloratadine and its corresponding O-glucuronide. CHHs catalyzed the formation of 3-hydroxydesloratadine with a Km of 1.6 μM and a Vmax of 1.3 pmol/min per million cells. Chemical inhibition of cytochrome P450 (P450) enzymes in CHHs demonstrated that gemfibrozil glucuronide (CYP2C8 inhibitor) and 1-aminobenzotriazole (general P450 inhibitor) inhibited 3-hydroxydesloratadine formation by 91% and 98%, respectively. Other inhibitors of CYP2C8 (gemfibrozil, montelukast, clopidogrel glucuronide, repaglinide, and cerivastatin) also caused extensive inhibition of 3-hydroxydesloratadine formation (73%-100%). Assessment of desloratadine, amodiaquine, and paclitaxel metabolism by a panel of individual CHHs demonstrated that CYP2C8 marker activity robustly correlated with 3-hydroxydesloratadine formation (r(2) of 0.70-0.90). Detailed mechanistic studies with sonicated or saponin-treated CHHs, human liver microsomes, and S9 fractions showed that both NADPH and UDP-glucuronic acid are required for 3-hydroxydesloratadine formation, and studies with recombinant UDP-glucuronosyltransferase (UGT) and P450 enzymes implicated the specific involvement of UGT2B10 in addition to CYP2C8. Overall, our results demonstrate for the first time that desloratadine glucuronidation by UGT2B10 followed by CYP2C8 oxidation and a deconjugation event are responsible for the formation of 3-hydroxydesloratadine.

  15. CYP51--the omnipotent P450.

    PubMed

    Lepesheva, Galina I; Waterman, Michael R

    2004-02-27

    Sterol 14 alpha-demethylase (CYP51) is the single cytochrome P450 (CYP) required for sterol biosynthesis in different phyla, and it is the most widely distributed P450 gene family being found in all biological kingdoms. It catalyzes the first step following cyclization in sterol biosynthesis such as removal of the 14 alpha-methyl group from lanosterol in the cholesterol biosynthetic pathway, leading to formation of the initial substrate in steroid hormone biosynthesis. CYP51 from different phyla have low sequence similarity across kingdoms and contain only about 40 conserved amino acid residues in the whole family. An attempt to predict the possible role of these conserved residues is being made by a combination of the results of site-directed mutagenesis and information from the known crystal structure of sterol 14 alpha-demethylase from Mycobacterium tuberculosis.

  16. Canine cytochrome P450 (CYP) pharmacogenetics

    PubMed Central

    Court, Michael H.

    2013-01-01

    Synopsis The cytochrome P450 (CYP) drug metabolizing enzymes are essential for the efficient elimination of many clinically used drugs. These enzymes typically display high interindividual variability in expression and function resulting from enzyme induction, inhibition, and genetic polymorphism thereby predisposing patients to adverse drug reactions or therapeutic failure. There are also substantial species differences in CYP substrate specificity and expression that complicate direct extrapolation of information from humans to veterinary species. This article reviews the available published data regarding the presence and impact of genetic polymorphisms on CYP-dependent drug metabolism in dogs in the context of known human-dog CYP differences. Canine CYP1A2, which metabolizes phenacetin, caffeine, and theophylline, is the most widely studied polymorphic canine CYP. A single nucleotide polymorphism resulting in a CYP1A2 premature stop codon (c.1117C>T; R383X) with a complete lack of enzyme is highly prevalent in certain dog breeds including Beagle and Irish wolfhound. This polymorphism was shown to substantially affect the pharmacokinetics of several experimental compounds in Beagles during preclinical drug development. However, the impact on the pharmacokinetics of phenacetin (a substrate specific for human CYP1A2) was quite modest probably because other canine CYPs are capable of metabolizing phenacetin. Other canine CYPs with known genetic polymorphisms include CYP2C41 (gene deletion), as well as CYP2D15, CYP2E1, and CYP3A12 (coding SNPs). However the impact of these variants on drug metabolism in vitro or on drug pharmacokinetics is unknown. Future systematic investigations are needed to comprehensively identify CYP genetic polymorphisms that are predictive of drug effects in canine patients. PMID:23890236

  17. Regulation of UDP glucuronosyltransferase genes.

    PubMed

    Mackenzie, P I; Gregory, P A; Gardner-Stephen, D A; Lewinsky, R H; Jorgensen, B R; Nishiyama, T; Xie, Wen; Radominska-Pandya, A

    2003-06-01

    The UDP glucuronosyltransferase (UGT) content of cells and tissues is a major determinant of our response to those chemicals that are primarily eliminated by conjugation with glucuronic acid. There are marked interindividual differences in the content of UGTs in the liver and other organs. The mechanisms that lead to these differences are unknown but are most likely the result of differential UGT gene expression. Several transcription factors involved in the regulation of UGT genes have been identified. These include factors such as Hepatocyte Nuclear Factor 1, CAAT-Enhancer Binding Protein, Octamer transcription Factor 1 and Pbx2, which appear to control the constitutive levels of UGTs in tissues and organs. In addition, UGT gene expression is also modulated by hormones, drugs and other foreign chemicals through the action of proteins that bind and/or sense the presence of these chemicals. These proteins include the Ah receptor, members of the nuclear receptor superfamily, such as CAR and PXR and transcription factors that respond to stress.

  18. Effects of peppermint tea consumption on the activities of CYP1A2, CYP2A6, Xanthine Oxidase, N-acetyltranferase-2 and UDP-glucuronosyltransferases-1A1/1A6 in healthy volunteers.

    PubMed

    Begas, Elias; Tsioutsiouliti, Athanasia; Kouvaras, Evangelos; Haroutounian, Serkos A; Kasiotis, Konstantinos M; Kouretas, Dimitrios; Asprodini, Eftihia

    2017-02-01

    Peppermint leaves are widely used for the symptomatic treatment of digestive disorders. Previous studies have shown significant effects of its natural products on human enzyme activity; however, there is no study available concerning the effects of peppermint tea on metabolizing enzymes in humans. Aim of the present study was to investigate the effect of peppermint tea on CYP1A2, CYP2A6, Xanthine Oxidase (XO), N-acetyltranferase-2 (NAT2) and UDP-glucuronosyltransferases-1A1/1A6 (UGT1A1/1A6) activities in healthy subjects. Four males and five females consumed peppermint tea (2 g of dry leaves/200 mL water, twice daily) for six days. CYP1A2, CYP2A6, XO, NAT2 and UGT1A1/1A6 activities were determined before and at the end of the study period, using the following caffeine and paracetamol metabolic ratios: CYP1A2: 17MX/137MX (saliva) and (AFMU+1MU+1MX)/17MU (urine); CYP2A6: 17MU/(17MU + 17MX), XO: 1MU/(1MU+1MX), NAT2, AFMU/(AFMU+1MU+1MX) and UGT1A1/1A6 glucuronidated/total paracetamol, all determined in urine. NAT2 metabolic ratio was significantly reduced following peppermint consumption (0.15 ± 0.13 vs 0.14 ± 0.13; p < 0.05). CYP1A2 urine and saliva indices were reduced, yet not significantly, following peppermint consumption (urine: 3.17 ± 1.08 vs 2.91 ± 0.76, saliva: 0.56 ± 0.12 vs 0.50 ± 0.12; p > 0.05). Peppermint had no influence on CYP2A6, XO and UGT1A1/1A6 indices. Daily ingestion of peppermint tea may alter pharmacokinetics of clinically administered drugs and promote cancer chemoprevention through NAT2 inhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Cytochrome P450 (CYP450) Tests

    MedlinePlus

    ... EGAPP/recommend/CYP450.htm. Accessed July 13, 2015. Genetic testing — General public: CYP450 genotyping and use of SSRI drugs for depression in adults. Centers for Disease Control and Prevention. ...

  20. Structure–inhibition relationship of ginsenosides towards UDP-glucuronosyltransferases (UGTs)

    SciTech Connect

    Fang, Zhong-Ze; Cao, Yun-Feng; Hu, Cui-Min; Hong, Mo; Sun, Xiao-Yu; Ge, Guang-Bo; Liu, Yong; Zhang, Yan-Yan; Yang, Ling; Sun, Hong-Zhi

    2013-03-01

    The wide utilization of ginseng provides the high risk of herb–drug interaction (HDI) with many clinical drugs. The inhibition of ginsenosides towards drug-metabolizing enzymes (DMEs) has been regarded as an important reason for herb–drug interaction (HDI). Compared with the deep studies on the ginsenosides' inhibition towards cytochrome P450 (CYP), the inhibition of ginsenosides towards the important phase II enzymes UDP-glucuronosyltransferases (UGTs) remains to be unclear. The present study aims to evaluate the inhibition behavior of ginsenosides towards important UGT isoforms located in the liver and intestine using in vitro methods. The recombinant UGT isoform-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction was employed as in vitro probe reaction. The results showed that structure-dependent inhibition existed for the inhibition of ginsenosides towards UGT isoforms. To clarify the possibility of in vivo herb–drug interaction induced by this kind of inhibition, the ginsenoside Rg{sub 3} was selected as an example, and the inhibition kinetic type and parameters (K{sub i}) were determined. Rg{sub 3} competitively inhibited UGT1A7, 2B7 and 2B15-catalyzed 4-MU glucuronidation reaction, and exerted noncompetitive inhibition towards UGT1A8-catalyzed 4-MU glucuronidation. The inhibition parameters (K{sub i} values) were calculated to be 22.6, 7.9, 1.9, and 2.0 μM for UGT1A7, 1A8, 2B7 and 2B15. Using human maximum plasma concentration of Rg{sub 3} (400 ng/ml (0.5 μM)) after intramuscular injection of 60 mg Rg{sub 3}, the area under the plasma concentration-time curve (AUC) was extrapolated to increase by 2.2%, 6.3%, 26.3%, and 25% for the co-administered drugs completely undergoing the metabolism catalyzed by UGT1A7, 1A8, 2B7 and 2B15, respectively. All these results indicated that the ginsenosides' inhibition towards UGT isoforms might be an important reason for ginseng–drug interaction. - Highlights: ► Structure-dependent inhibition of

  1. The cytochrome P450 (CYP) gene superfamily in Daphnia pulex

    PubMed Central

    Baldwin, William S; Marko, Peter B; Nelson, David R

    2009-01-01

    Background Cytochrome P450s (CYPs) in animals fall into two categories: those that synthesize or metabolize endogenous molecules and those that interact with exogenous chemicals from the diet or the environment. The latter form a critical component of detoxification systems. Results Data mining and manual curation of the Daphnia pulex genome identified 75 functional CYP genes, and three CYP pseudogenes. These CYPs belong to 4 clans, 13 families, and 19 subfamilies. The CYP 2, 3, 4, and mitochondrial clans are the same four clans found in other sequenced protostome genomes. Comparison of the CYPs from D. pulex to the CYPs from insects, vertebrates and sea anemone (Nematostella vectensis) show that the CYP2 clan, and to a lesser degree, the CYP4 clan has expanded in Daphnia pulex, whereas the CYP3 clan has expanded in insects. However, the expansion of the Daphnia CYP2 clan is not as great as the expansion observed in deuterostomes and the nematode C. elegans. Mapping of CYP tandem repeat regions demonstrated the unusual expansion of the CYP370 family of the CYP2 clan. The CYP370s are similar to the CYP15s and CYP303s that occur as solo genes in insects, but the CYP370s constitute ~20% of all the CYP genes in Daphnia pulex. Lastly, our phylogenetic comparisons provide new insights into the potential origins of otherwise mysterious CYPs such as CYP46 and CYP19 (aromatase). Conclusion Overall, the cladoceran, D. pulex has a wide range of CYPs with the same clans as insects and nematodes, but with distinct changes in the size and composition of each clan. PMID:19383150

  2. Regulation of cytochrome P450 (CYP) genes by nuclear receptors.

    PubMed Central

    Honkakoski, P; Negishi, M

    2000-01-01

    Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks. PMID:10749660

  3. Characterization of human hepatic and extrahepatic UDP-glucuronosyltransferase enzymes involved in the metabolism of classic cannabinoids.

    PubMed

    Mazur, Anna; Lichti, Cheryl F; Prather, Paul L; Zielinska, Agnieszka K; Bratton, Stacie M; Gallus-Zawada, Anna; Finel, Moshe; Miller, Grover P; Radomińska-Pandya, Anna; Moran, Jeffery H

    2009-07-01

    Tetrahydrocannabinol (Delta(9)-THC), the primary psychoactive ingredient in marijuana, is subject to cytochrome P450 oxidation and subsequent UDP-glucuronosyltransferase (UGT)-dependent glucuronidation. Many studies have shown that CYP2C9 and CYP3A4 are the primary enzymes responsible for these cytochrome P450-dependent oxidations, but little work has been done to characterize phase II metabolic pathways. In this study, we test the hypothesis that there are specific human UGTs responsible for classic cannabinoid metabolism. The activities of 12 human recombinant UGTs toward classic cannabinoids [cannabinol (CBN), cannabidiol (CBD), (-)-Delta(8)-THC, (-)-Delta(9)-THC, (+/-)-11-hydroxy-Delta(9)-THC (THC-OH), and (-)-11-nor-9-carboxy-Delta(9)-THC (THC-COOH)] were evaluated using high-performance liquid chromatography-tandem mass spectrometry and labeling assays. Despite activity by UGT1A1, 1A3, 1A8, 1A9, 1A10, and 2B7 toward CBN, CBD, THC-OH, and THC-COOH, only selected UGTs demonstrate sufficient activity for further characterization of steady-state kinetics. CBN was the most recognized substrate as evidenced by activities from hepatic UGT1A9 and extrahepatic UGT1A7, UGT1A8, and UGT1A10. These results may reflect the introduction of an aromatic ring to Delta(9)-THC, leading to favorable pi stacking with phenylalanines in the UGT active site. Likewise, oxidation of Delta(9)-THC to THC-OH results in UGT1A9 and UGT1A10 activity toward the cannabinoid. Further oxidation to THC-COOH surprisingly leads to a loss in metabolism by UGT1A9 and UGT1A10, while creating a substrate recognized by UGT1A1 and UGT1A3. The resulting glucuronide of THC-COOH is the main metabolite found in urine, and thus these hepatic enzymes play a critical role in the metabolic clearance of cannabinoids. Taken together, glucuronidation of cannabinoids depends on upstream processing including enzymes such as CYP2C9 and CYP3A4.

  4. Characterization of Human Hepatic and Extrahepatic UDP-Glucuronosyltransferase Enzymes Involved in the Metabolism of Classic Cannabinoids

    PubMed Central

    Mazur, Anna; Lichti, Cheryl F.; Prather, Paul L.; Zielinska, Agnieszka K.; Bratton, Stacie M.; Gallus-Zawada, Anna; Finel, Moshe; Miller, Grover P.; Radomińska-Pandya, Anna; Moran, Jeffery H.

    2009-01-01

    Tetrahydrocannabinol (Δ9-THC), the primary psychoactive ingredient in marijuana, is subject to cytochrome P450 oxidation and subsequent UDP-glucuronosyltransferase (UGT)-dependent glucuronidation. Many studies have shown that CYP2C9 and CYP3A4 are the primary enzymes responsible for these cytochrome P450-dependent oxidations, but little work has been done to characterize phase II metabolic pathways. In this study, we test the hypothesis that there are specific human UGTs responsible for classic cannabinoid metabolism. The activities of 12 human recombinant UGTs toward classic cannabinoids [cannabinol (CBN), cannabidiol (CBD), (–)-Δ8-THC, (–)-Δ9-THC, (±)-11-hydroxy-Δ9-THC (THC-OH), and (–)-11-nor-9-carboxy-Δ9-THC (THC-COOH)] were evaluated using high-performance liquid chromatography-tandem mass spectrometry and labeling assays. Despite activity by UGT1A1, 1A3, 1A8, 1A9, 1A10, and 2B7 toward CBN, CBD, THC-OH, and THC-COOH, only selected UGTs demonstrate sufficient activity for further characterization of steady-state kinetics. CBN was the most recognized substrate as evidenced by activities from hepatic UGT1A9 and extrahepatic UGT1A7, UGT1A8, and UGT1A10. These results may reflect the introduction of an aromatic ring to Δ9-THC, leading to favorable π stacking with phenylalanines in the UGT active site. Likewise, oxidation of Δ9-THC to THC-OH results in UGT1A9 and UGT1A10 activity toward the cannabinoid. Further oxidation to THC-COOH surprisingly leads to a loss in metabolism by UGT1A9 and UGT1A10, while creating a substrate recognized by UGT1A1 and UGT1A3. The resulting glucuronide of THC-COOH is the main metabolite found in urine, and thus these hepatic enzymes play a critical role in the metabolic clearance of cannabinoids. Taken together, glucuronidation of cannabinoids depends on upstream processing including enzymes such as CYP2C9 and CYP3A4. PMID:19339377

  5. Phenobarbital induction and chemical synergism demonstrate the role of UDP-glucuronosyltransferases in detoxification of naphthalophos by Haemonchus contortus larvae.

    PubMed

    Kotze, Andrew C; Ruffell, Angela P; Ingham, Aaron B

    2014-12-01

    We used an enzyme induction approach to study the role of detoxification enzymes in the interaction of the anthelmintic compound naphthalophos with Haemonchus contortus larvae. Larvae were treated with the barbiturate phenobarbital, which is known to induce the activity of a number of detoxification enzymes in mammals and insects, including cytochromes P450 (CYPs), UDP-glucuronosyltransferases (UDPGTs), and glutathione (GSH) S-transferases (GSTs). Cotreatment of larvae with phenobarbital and naphthalophos resulted in a significant increase in the naphthalophos 50% inhibitory concentration (IC50) compared to treatment of larvae with the anthelmintic alone (up to a 28-fold increase). The phenobarbital-induced drug tolerance was reversed by cotreatment with the UDPGT inhibitors 5-nitrouracil, 4,6-dihydroxy-5-nitropyrimidine, probenecid, and sulfinpyrazone. Isobologram analysis of the interaction of 5-nitrouracil with naphthalophos in phenobarbital-treated larvae clearly showed the presence of strong synergism. The UDPGT inhibitors 5-nitrouracil, 4,6-dihydroxy-5-nitropyrimidine, and probenecid also showed synergistic effects with non-phenobarbital-treated worms (synergism ratio up to 3.2-fold). This study indicates that H. contortus larvae possess one or more UDPGT enzymes able to detoxify naphthalophos. In highlighting the protective role of this enzyme group, this study reveals the potential for UDPGT enzymes to act as a resistance mechanism that may develop under drug selection pressure in field isolates of this species. In addition, the data indicate the potential for a chemotherapeutic approach utilizing inhibitors of UDPGT enzymes as synergists to increase the activity of naphthalophos against parasitic worms and to combat detoxification-mediated drug resistance if it arises in the field. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Phenobarbital Induction and Chemical Synergism Demonstrate the Role of UDP-Glucuronosyltransferases in Detoxification of Naphthalophos by Haemonchus contortus Larvae

    PubMed Central

    Ruffell, Angela P.; Ingham, Aaron B.

    2014-01-01

    We used an enzyme induction approach to study the role of detoxification enzymes in the interaction of the anthelmintic compound naphthalophos with Haemonchus contortus larvae. Larvae were treated with the barbiturate phenobarbital, which is known to induce the activity of a number of detoxification enzymes in mammals and insects, including cytochromes P450 (CYPs), UDP-glucuronosyltransferases (UDPGTs), and glutathione (GSH) S-transferases (GSTs). Cotreatment of larvae with phenobarbital and naphthalophos resulted in a significant increase in the naphthalophos 50% inhibitory concentration (IC50) compared to treatment of larvae with the anthelmintic alone (up to a 28-fold increase). The phenobarbital-induced drug tolerance was reversed by cotreatment with the UDPGT inhibitors 5-nitrouracil, 4,6-dihydroxy-5-nitropyrimidine, probenecid, and sulfinpyrazone. Isobologram analysis of the interaction of 5-nitrouracil with naphthalophos in phenobarbital-treated larvae clearly showed the presence of strong synergism. The UDPGT inhibitors 5-nitrouracil, 4,6-dihydroxy-5-nitropyrimidine, and probenecid also showed synergistic effects with non-phenobarbital-treated worms (synergism ratio up to 3.2-fold). This study indicates that H. contortus larvae possess one or more UDPGT enzymes able to detoxify naphthalophos. In highlighting the protective role of this enzyme group, this study reveals the potential for UDPGT enzymes to act as a resistance mechanism that may develop under drug selection pressure in field isolates of this species. In addition, the data indicate the potential for a chemotherapeutic approach utilizing inhibitors of UDPGT enzymes as synergists to increase the activity of naphthalophos against parasitic worms and to combat detoxification-mediated drug resistance if it arises in the field. PMID:25288079

  7. An enlarged, adaptable active site in CYP164 family P450 enzymes, the sole P450 in Mycobacterium leprae.

    PubMed

    Agnew, Christopher R J; Warrilow, Andrew G S; Burton, Nicholas M; Lamb, David C; Kelly, Steven L; Brady, R Leo

    2012-01-01

    CYP164 family P450 enzymes are found in only a subset of mycobacteria and include CYP164A1, which is the sole P450 found in Mycobacterium leprae, the causative agent of leprosy. This has previously led to interest in this enzyme as a potential drug target. Here we describe the first crystal structure of a CYP164 enzyme, CYP164A2 from Mycobacterium smegmatis. CYP164A2 has a distinctive, enlarged hydrophobic active site that extends above the porphyrin ring toward the access channels. Unusually, we find that CYP164A2 can simultaneously bind two econazole molecules in different regions of the enlarged active site and is accompanied by the rearrangement and ordering of the BC loop. The primary location is through a classic interaction of the azole group with the porphyrin iron. The second econazole molecule is bound to a unique site and is linked to a tetracoordinated metal ion complexed to one of the heme carboxylates and to the side chains of His 105 and His 364. All of these features are preserved in the closely homologous M. leprae CYP164A1. The computational docking of azole compounds to a homology model of CYP164A1 suggests that these compounds will form effective inhibitors and is supported by the correlation of parallel docking with experimental binding studies of CYP164A2. The binding of econazole to CYP164A2 occurs primarily through the high-spin "open" conformation of the enzyme (K(d) [dissociation constant] of 0.1 μM), with binding to the low-spin "closed" form being significantly hindered (K(d) of 338 μM). These studies support previous suggestions that azole derivatives may provide an effective strategy to improve the treatment of leprosy.

  8. A new family of cytochrome P450 genes (CYP41) from the cattle tick, Boophilus microplus.

    PubMed

    Crampton, A L; Baxter, G D; Barker, S C

    1999-09-01

    We isolated and sequenced a cytochrome P450 (CYP) gene that is sufficiently different from other CYP genes that a new CYP family, CYP41 was created. CYP41 encodes a protein of 518 residues and is most similar to genes from the family CYP3; it is 36% identical to CYP3A2 and 34% identical to CYP3A28. We hypothesise that CYP41 encodes an enzyme that metabolizes xenobiotic compounds i.e. compounds that are foreign to the cattle tick. The phylogenetic position of CYP41 could not be resolved because of the high level of sequence divergence at both the nucleotide and amino acid levels.

  9. The diverse chemistry of cytochrome P450 17A1 (P450c17, CYP17A1)

    PubMed Central

    Yoshimoto, Francis K.; Auchus, Richard J.

    2014-01-01

    The steroid hydroxylation and carbon-carbon bond cleavage activities of cytochrome P450 17A1 (CYP17A1) are responsible for the production of glucocorticoids and androgens, respectively. The inhibition of androgen synthesis is an important strategy to treat androgen-dependent prostate cancer. We discuss the different enzymatic activities towards the various substrates of CYP17A1, demonstrating its promiscuity. Additionally, a novel interhelical interaction is proposed between the F-G loop and the B′-helix to explain the 16α-hydroxylase activity of human CYP17A1 with progesterone as the substrate. The techniques used by biochemists to study this important enzyme are also summarized. PMID:25482340

  10. Cytochrome P450 CYP1B1 activity in renal cell carcinoma.

    PubMed

    McFadyen, M C E; Melvin, W T; Murray, G I

    2004-08-31

    Renal cell carcinoma (RCC) is the most common malignancy of the kidney and has a poor prognosis due to its late presentation and resistance to current anticancer drugs. One mechanism of drug resistance, which is potentially amenable to therapeutic intervention, is based on studies in our laboratory. CYP1B1 is a cytochrome P450 enzyme overexpressed in a variety of malignant tumours. Our studies are now elucidating a functional role for CYP1B1 in drug resistance. Cytochrome P450 reductase (P450R) is required for optimal metabolic activity of CYP1B1. Both CYP1B1 and P450R can catalyse the biotransformation of anticancer drugs at the site of the tumour. In this investigation, we determined the expression of CYP1B1 and P450R in samples of normal kidney and RCC (11 paired normal and tumour and a further 15 tumour samples). The O-deethylation of ethoxyresorufin to resorufin was used to measure CYP1B1 activity in RCC. Cytochrome P450 reductase activity was determined by following the reduction of cytochrome c at 550 nm. The key finding of this study was the presence of active CYP1B1 in 70% of RCC. Coincubation with the CYP1B1 inhibitor alpha-naphthoflavone (10 nM) inhibited this activity. No corresponding CYP1B1 activity was detected in any of the normal tissue examined (n=11). Measurable levels of active P450R were determined in all normal (n=11) and tumour samples (n=26). The presence of detectable CYP1B1, which is capable of metabolising anticancer drugs in tumour cells, highlights a novel target for therapeutic intervention.

  11. Styrene Trimer May Increase Thyroid Hormone Levels via Down-Regulation of the Aryl Hydrocarbon Receptor (AhR) Target Gene UDP-Glucuronosyltransferase

    PubMed Central

    Yanagiba, Yukie; Ito, Yuki; Yamanoshita, Osamu; Zhang, Shu-Yun; Watanabe, Gen; Taya, Kazuyoshi; Li, Chun Mei; Inotsume, Yuko; Kamijima, Michihiro; Gonzalez, Frank J.; Nakajima, Tamie

    2008-01-01

    Background Styrene trimers (STs) are polystyrene-container–eluted materials that are sometimes detected in packaged foods. Although the possible endocrine-disrupting effects of STs, such as estrogenic activities, have been reported, their potential thyroid toxicity, such as that caused by the related endocrine disruptor 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has not been studied in detail. Objective Using wild-type and aryl hydrocarbon receptor (Ahr)–null mice, we investigated whether 2,4,6-triphenyl-1-hexene (ST-1), an isomer of STs, influences thyroxin (T4) levels in the same manner as TCDD, which induces UDP-glucuronosyltransferase (UGT) via the AhR, resulting in a decrease in T4 levels in the plasma of mice. Methods Both wild-type and Ahr-null mice (five mice per group) were treated for 4 days by gavage with ST-1 (0, 32, or 64 μmol/kg). Results High-dose (64 μmol/kg) ST-1 decreased the expression of AhR, cytochrome P450 (CYP) 1A1/2, UGT1A1/A6, and CYP2B10 mRNAs and the enzyme activity for CYP1A and UGT1A only in the wild-type mice. This dose decreased AhR DNA binding, but paradoxically increased AhR translocation to the nucleus. In contrast, a high dose of ST-1 increased T4 levels in the plasma in wild-type mice but did not influence T4 levels in AhR-null mice. Conclusions Although ST-1 treatment might cause an increase in AhR levels in the nucleus by inhibiting AhR export, this chemical down-regulated AhR mRNA, thus leading to down-regulation of AhR target genes and an increase in plasma T4 levels. PMID:18560529

  12. Male specific expression of a cytochrome P450 (Cyp312a1) in Drosophila melanogaster.

    PubMed

    Kasai, Shinji; Tomita, Takashi

    2003-01-24

    Using cDNA array techniques, the transcriptional levels of Drosophila cytochrome P450 (P450) genes were compared between male and female flies. Of the 86 P450s, 15 isoforms were picked up and the levels of transcription were confirmed by the real time quantitative RT-PCR. Cyp315a1 and Cyp302a1, which had been reported as P450s involved in the ecdysteroid biosynthesis, were included in the 15 isoforms and expression of these P450s was 8.6- and 7.9-fold higher in females than in males, respectively. In addition, we confirmed that expression of Cyp312a1 was 82-fold higher in adult males than females. This gene expression was observed mostly in the abdomen and its transcription level gradually increased from pupal stage and peaked in the 5-day-old adult. Furthermore, the male specific expression of Cyp312a1 was universally observed in three Drosophila strains originated from the USA (Oregon R), China (Canton S), and Japan (HKJ), suggesting possible involvement of this P450 in significant endogenous catalytic reaction(s). This is the first report of a P450 enzyme being predominantly expressed in male Drosophila.

  13. Cytochrome P450, CYP93A1, as a defense marker in soybean

    USDA-ARS?s Scientific Manuscript database

    CYP93A1 is a cytochrome P450 that is involved in the synthesis of the phytoalexin glyceollin in soybean (Glycine max L. Merr). The gene encoding CYP93A1 has been used as a defense marker in soybean cell cultures, however, little is known regarding how this gene is expressed in the intact plant. To f...

  14. Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes

    PubMed Central

    Brash, Alan R.

    2009-01-01

    The existence of CYP5, CYP8A, and the CYP74 enzymes specialized for reaction with fatty acid peroxide substrates presents opportunities for a “different look” at the catalytic cycle of the cytochrome P450s. This review considers how the properties of the peroxide-metabolizing enzymes are distinctive, and how they tie in with those of the conventional monooxygenase enzymes. Some unusual reactions of each class have parallels in the other. As new enzyme reactions and new P450 structures emerge there will be possibilities for finding their special properties and edging this knowledge into the big picture. PMID:19747698

  15. Identification of Cytochrome P450 ( CYP) genes in Zhikong scallop ( Chlamys farreri)

    NASA Astrophysics Data System (ADS)

    Guo, Huihui; Bao, Zhenmin; Du, Huixia; Zhang, Lingling; Wang, Shi; Sun, Luyang; Mou, Xiaoyu; Hu, Xiaoli

    2013-03-01

    Cytochrome P450 ( CYP) superfamily is one of the membership largest and function most diverse protein superfamily recogniozed among living beings. Members of this superfamily were further assigned to different families and subfamilies based on their amino acid similarities. According to their phylogenetic relationships, the CYP genes which likely diverged from common ancestor gene and may share common functions were grouped into one clan. Widely distributing scallops are a group of the most conspicuous bivalve; however the studies on their CYP is acarce. In this study, we searched the genome and expressed sequence tags of Zhikong scallop ( Chlamys farreri) for CYP genes. In total, 88 non-redundant CYP were identified, which were homed in 13 CYPs gene families. Phylogenetic analysis divided these genes into 4 CYP clans. As in deuterostomes, Clan 2 was the largest, which contained 33 genes belonging to CYP1, CYP2, CYP17 and CYP356 families. Clan 3 contgained 19 genes belonging to CYP3, CYP5 and CYP30 families. Clan 4 contained 23 genes, all belonging to CYP4 family. The mitochondrial CYP clan contained 9 genes belonging to CYP10 and CYP24 families. In comparison, protostomes ( C. farreri, D. pluex, D. melanogaster) contained more CYP genes than deuterostomes ( S. purpuratus and vertebrates) in Clan 2 but less genes in Clan 3 and Clan 4. Our findings will aid to deciphering CYP function and evolution in scallops and bivalves.

  16. Cytochromes P450 (CYP) in tropical fishes: catalytic activities, expression of multiple CYP proteins and high levels of microsomal P450 in liver of fishes from Bermuda.

    PubMed

    Stegeman, J J; Woodin, B R; Singh, H; Oleksiak, M F; Celander, M

    1997-01-01

    Hepatic microsomes prepared from 10 fish species from Bermuda were studied to establish features of cytochrome P450 (CYP) systems in tropical marine fish. The majority (7/10) of the species had total P450 content between 0.1 and 0.5 nmol/mg, and cytochrome b5 content between 0.025 and 0.25 nmol/mg. Ethoxycoumarin O-deethylase (ECOD) and aminopyrine N-demethylase (APND) rates in these 7 species were 0.23-2.1 nmol/min/mg and 0.5-11 nmol/min/mg, respectively, similar to rates in many temperate fish species. In contrast to those 7 species, sergeant major (Abudefduf saxatilis) and Bermuda chub (Kyphosus sectatrix) had microsomal P450 contents near 1.7 nmol/mg, among the highest values reported in untreated fish, and had greater rates of ECOD, APND, ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-depentylase than did most of the other species. Freshly caught individuals of all species had detectable levels of EROD and aryl hydrocarbon hydroxylase (AHH) activities. Those individuals with higher rates of EROD activity had greater content of immunodetected CYP1A protein, consistent with Ah-receptor agonists acting to induce CYP1A in many fish in Bermuda waters. Injection of tomtate and blue-striped grunt with beta-naphthoflavone (BNF; 50 or 100 mg/kg) induced EROD rates by 25 to 55-fold, suggesting that environmental induction in some fish was slight compared with the capacity to respond. AHH rates were induced only 3-fold in these same fish. The basis for disparity in the degree of EROD and AHH induction is not known. Rates of APND and testosterone 6 beta- and 16 beta-hydroxylase were little changed by BNF, indicating that these are not CYP1A activities in these fish. Antibodies to phenobarbital-inducible rat CYP2B1 or to scup P450B, a putative CYP2B, detected one or more proteins in several species, suggesting that CYP2B-like proteins are highly expressed in some tropical fishes. Generally, species with greater amounts of total P450 had greater amounts of

  17. Tumor-specific expression of cytochrome P450 CYP1B1.

    PubMed

    Murray, G I; Taylor, M C; McFadyen, M C; McKay, J A; Greenlee, W F; Burke, M D; Melvin, W T

    1997-07-15

    Cytochrome P450 CYP1B1 is a recently cloned dioxin-inducible form of the cytochrome P450 family of xenobiotic metabolizing enzymes. An antibody raised against a peptide specific for CYP1B1 was found to recognize CYP1B1 expressed in human lymphoblastoid cells but not to recognize other forms of cytochrome P450, particularly CYP1A1 and CYP1A2. Using this antibody, the cellular distribution and localization of CYP1B1 were investigated by immunohistochemistry in a range of malignant tumors and corresponding normal tissues. CYP1B1 was found to be expressed at a high frequency in a wide range of human cancers of different histogenetic types, including cancers of the breast, colon, lung, esophagus, skin, lymph node, brain, and testis. There was no detectable immunostaining for CYP1B1 in normal tissues. These results provide the basis for the development of novel methods of cancer diagnosis based on the identification of CYP1B1 in tumor cells and the development of anticancer drugs that are selectively activated in tumors by CYP1B1.

  18. CYP261 enzymes from deep sea bacteria: a clue to conformational heterogeneity in cytochromes P450

    PubMed Central

    Davydov, Dmitri R.; Sineva, Elena V.; Davydova, Nadezhda Y.; Bartlett, Douglas H.; Halpert, James R.

    2014-01-01

    We have explored the adaptation of the cytochromes P450 (P450) of deep-sea bacteria to high hydrostatic pressures. Strict conservation of the protein fold and functional importance of protein-bound water make P450 a unique subject for the studies of high pressure adaptation. Earlier we expressed and purified a fatty-acid binding P450 from the deep-sea bacteria Photobacterium profundum SS9 (CYP261C1). Here we report purification and initial characterization of its mesophilic ortholog from the shallow-water P. profundum 3TCK (CYP261C2), as well as another piezophilic enzyme, CYP261D1 from deep-see Moritella sp. PE36. Comparison of the three enzymes revealed a striking peculiarity of the piezophilic enzymes. Both CYP261C1 and CYP261D1 possess an apparent pressure-induced conformational toggle actuated at the pressures commensurate with the physiological pressure of habitation of the host bacteria. Furthermore, in contrast to CYP261C2, the piezophilic CYP261 enzymes may be chromatographically separated into two fractions with different properties, and different thermodynamic parameters of spin equilibrium in particular. According to our concept, the changes in the energy landscape that evolved in pressure-tolerant enzymes must stabilize the less-hydrated, closed conformers, which may be transient in the catalytic mechanisms of non-piezophilic enzymes. The studies of enzymes of piezophiles should help unravel the mechanisms that control water access during the catalytic cycle. PMID:23586990

  19. Metabolic inactivation of estrogens in breast tissue by UDP-glucuronosyltransferase enzymes: an overview

    PubMed Central

    Guillemette, Chantal; Bélanger, Alain; Lépine, Johanie

    2004-01-01

    The breast tissue is the site of major metabolic conversions of estradiol (E2) mediated by specific cytochromes P450 hydroxylations and methylation by catechol-O-methytransferase. In addition to E2 itself, recent findings highlight the significance of 4-hydroxylated estrogen metabolites as chemical mediators and their link to breast cancer development and progression, whereas, in opposition, 2-methoxylated estrogens appear to be protective. Recent data also indicate that breast tissue possesses enzymatic machinery to inactivate and eliminate E2 and its oxidized and methoxylated metabolites through conjugation catalyzed by UDP-glucuronosyltransferases (UGTs), which involves the covalent addition of glucuronic acid. In opposition to other metabolic pathways of estrogen, the UGT-mediated process leads to the formation of glucuronides that are devoid of biologic activity and are readily excreted from the tissue into the circulation. This review addresses the most recent findings on the identification of UGT enzymes that are responsible for the glucuronidation of E2 and its metabolites, and evidence regarding their potential role in breast cancer. PMID:15535854

  20. Cloning and expression of a member of a new cytochrome P-450 family: cytochrome P-450lin (CYP111) from Pseudomonas incognita.

    PubMed Central

    Ropp, J D; Gunsalus, I C; Sligar, S G

    1993-01-01

    Cytochrome P-450lin catalyzes the 8-methyl hydroxylation of linalool as the first committed step of its utilization by Pseudomonas incognita as the sole carbon source. By using a polymerase chain reaction-based cloning strategy, a 2.1-kb DNA fragment containing the cytochrome P-450lin gene (linC) was isolated. An open reading frame of 406 amino acids has been identified as that of P-450lin on the basis of amino acid sequence data from peptides of the native protein. Heterologous expression of functional holoprotein is exhibited by Escherichia coli transformed with pUC18 containing the subcloned linC gene under constitutive transcriptional control of the lac promoter. The G+C content of linC was found to be 55% overall and 58% in the third codon position. An optimized amino acid sequence alignment of P-450lin with cytochrome P-450cam shows that the two enzymes have only 25% identity. P-450lin was found to exhibit the expected conservation in the axial cysteine heme ligand-containing peptide and the threonine region postulated to form an O2-binding pocket (T. L. Poulos, B. C. Finzel, and A. J. Howard, J. Mol. Biol. 195:687-700, 1987). The low amino acid sequence identity between P-450lin and all other P-450 sequences has shown that P-450lin is the first member of the CYP111 P-450 gene family. PMID:8376348

  1. Synergistic Effects of Mutations in Cytochrome P450cam Designed to Mimic CYP101D1

    PubMed Central

    Batabyal, Dipanwita; Li, Huiying; Poulos, Thomas L.

    2013-01-01

    A close ortholog to the cytochrome P450cam (CYP101A1) that catalyzes the same hydroxylation of camphor to 5-exo hydroxycamphor is CYP101D1. There are potentially important differences in and around the active site that could contribute to subtle functional differences. Adjacent to the heme iron ligand, Cys357, is Leu358 in P450cam while this residue is Ala in CYP101D1. Leu358 plays a role in binding of the P450cam redox partner, putidaredoxin (Pdx). On the opposite side of the heme about 15 – 20 Å away Asp251 in P450cam plays a critical role in a proton relay network required for O2 activation but forms strong ion pairs with Arg186 and Lys178. In CYP101D1 a Gly replaces Lys178. Thus, the local electrostatic environment and ion pairing is substantially different in CYP101D1. These sites have been systematically mutated in P450cam to the corresponding residues in CYP101D1 and the mutants analyzed by crystallography, kinetics, and UV/Vis spectroscopy. Individually the mutants have little effect on activity or structure but in combination there is a major drop in enzyme activity. This loss in activity is due the mutants being locked in the low-spin state which prevents electron transfer from the P450cam redox partner, Pdx. These studies illustrate the strong synergistic effects on well separated parts of the structure in controlling the equilibrium between the open (low-spin) and closed (high-spin) conformational states. PMID:23865948

  2. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios.

    PubMed

    Williams, J Andrew; Hyland, Ruth; Jones, Barry C; Smith, Dennis A; Hurst, Susan; Goosen, Theunis C; Peterkin, Vincent; Koup, Jeffrey R; Ball, Simon E

    2004-11-01

    Glucuronidation is a listed clearance mechanism for 1 in 10 of the top 200 prescribed drugs. The objective of this article is to encourage those studying ligand interactions with UDP-glucuronosyltransferases (UGTs) to adequately consider the potential consequences of in vitro UGT inhibition in humans. Spurred on by interest in developing potent and selective inhibitors for improved confidence around UGT reaction phenotyping, and the increased availability of recombinant forms of human UGTs, several recent studies have reported in vitro inhibition of UGT enzymes. In some cases, the observed potency of UGT inhibitors in vitro has been interpreted as having potential relevance in humans via pharmacokinetic drug-drug interactions. Although there are reported examples of clinically relevant drug-drug interactions for UGT substrates, exposure increases of the aglycone are rarely greater than 100% in the presence of an inhibitor relative to its absence (i.e., AUCi/AUC < or = 2). This small magnitude in change is in contrast to drugs primarily cleared by cytochrome P450 enzymes, where exposures have been reported to increase as much as 35-fold on coadministration with an inhibitor (e.g., ketoconazole inhibition of CYP3A4-catalyzed terfenadine metabolism). In this article the evidence for purported clinical relevance of potent in vitro inhibition of UGT enzymes will be assessed, taking the following into account: in vitro data on the enzymology of glucuronide formation from aglycone, pharmacokinetic principles based on empirical data for inhibition of metabolism, and clinical data on the pharmacokinetic drug-drug interactions of drugs primarily cleared by glucuronidation.

  3. Interactions between Cytochromes P450 2B4 (CYP2B4) and 1A2 (CYP1A2) Lead to Alterations in Toluene Disposition and P450 Uncoupling

    PubMed Central

    Reed, James R.; Cawley, George F.; Backes, Wayne L.

    2013-01-01

    The goal of this study was to characterize the effects of CYP1A2•CYP2B4 complex formation on the rates and efficiency of toluene metabolism by comparing the results from simple reconstituted systems containing P450 reductase (CPR) and a single P450 to those using a mixed system containing CPR and both P450s. In the mixed system, the rates of formation of CYP2B4-specific benzyl alcohol and p-cresol were inhibited, whereas that of CYP1A2-specific o-cresol was increased, results consistent with the formation of a CYP1A2•CYP2B4 complex where the CYP1A2 moiety has higher affinity for CPR binding. Comparison of the rates of NADPH oxidation and production of hydrogen peroxide and excess water by the simple and mixed systems indicated that excess water formed at a much lower rate in the mixed system. The commensurate increase in the rate of CYP1A2-specific product formation suggested the P450P450 interaction increased the putative rate-limiting step of CYP1A2 catalysis, abstraction of a hydrogen radical from the substrate. Cumene hydroperoxide-supported metabolism was measured to determine whether the effects of the P450P450 interaction required the presence of CPR. Peroxidative metabolism was not affected by the interaction of the two P450s, even with CPR present. However, CPR did stimulate peroxidative metabolism by the simple system containing CYP1A2. These results suggest the major functional effects of the P450P450 interaction are mediated by changes in the relative abilities of the P450s to receive electrons from CPR. Furthermore, CPR may play an effector role by causing a conformation change in CYP1A2 that makes its metabolism more efficient. PMID:23675771

  4. Update on allele nomenclature for human cytochromes P450 and the Human Cytochrome P450 Allele (CYP-allele) Nomenclature Database.

    PubMed

    Sim, Sarah C; Ingelman-Sundberg, Magnus

    2013-01-01

    Interindividual variability in xenobiotic metabolism and drug response is extensive and genetic factors play an important role in this variation. A majority of clinically used drugs are substrates for the cytochrome P450 (CYP) enzyme system and interindividual variability in expression and function of these enzymes is a major factor for explaining individual susceptibility for adverse drug reactions and drug response. Because of the existence of many polymorphic CYP genes, for many of which the number of allelic variants is continually increasing, a universal and official nomenclature system is important. Since 1999, all functionally relevant polymorphic CYP alleles are named and published on the Human Cytochrome P450 Allele (CYP-allele) Nomenclature Web site (http://www.cypalleles.ki.se). Currently, the database covers nomenclature of more than 660 alleles in a total of 30 genes that includes 29 CYPs as well as the cytochrome P450 oxidoreductase (POR) gene. On the CYP-allele Web site, each gene has its own Webpage, which lists the alleles with their nucleotide changes, their functional consequences, and links to publications identifying or characterizing the alleles. CYP2D6, CYP2C9, CYP2C19, and CYP3A4 are the most important CYPs in terms of drug metabolism, which is also reflected in their corresponding highest number of Webpage hits at the CYP-allele Web site.The main advantage of the CYP-allele database is that it offers a rapid online publication of CYP-alleles and their effects and provides an overview of peer-reviewed data to the scientific community. Here, we provide an update of the CYP-allele database and the associated nomenclature.

  5. Covalent linkage of prosthetic heme to CYP4 family P450 enzymes.

    PubMed

    Henne, K R; Kunze, K L; Zheng, Y M; Christmas, P; Soberman, R J; Rettie, A E

    2001-10-30

    An extensive body of research on the structural properties of cytochrome P450 enzymes has established that these proteins possess a b-type heme prosthetic group which is noncovalently bound at the active site. Coordinate, electrostatic, and hydrogen bond interactions between the protein backbone and heme functional groups are readily overcome upon mild acid treatment of the enzyme, which releases free heme from the protein. In the present study, we have used a combination of HPLC, LC/ESI-MS, and SDS-PAGE techniques to demonstrate that members of the mammalian CYP4B, CYP4F, and CYP4A subfamilies bind their heme in an unusually tight manner. HPLC chromatography of CYP4B1 on a POROS R2 column under mild acidic conditions caused dissociation of less than one-third of the heme from the protein. Moreover, heme was not substantially removed from CYP4B1 under electrospray or electrophoresis conditions that readily release the prosthetic group from other non-CYP4 P450 isoforms. This was evidenced by an intact protein mass value of 59,217 +/- 3 amu for CYP4B1 (i.e., apoprotein plus heme) and extensive staining of this approximately 60 kDa protein with tetramethylbenzidine/H(2)O(2) following SDS-PAGE. In addition, treatment of CYP4B1, CYP4F3, and CYP4A5/7 with strong base generated a new, chromatographically distinct, polar heme species with a mass of 632.3 amu rather than 616.2 amu. This mass shift is indicative of the incorporation of an oxygen atom into the heme nucleus and is consistent with the presence of a novel covalent ester linkage between the protein backbone of the CYP4 family of mammalian P450s and their heme catalytic center.

  6. Interaction of isoflavonoids with human liver microsomal cytochromes P450: inhibition of CYP enzyme activities.

    PubMed

    Kopečná-Zapletalová, Michaela; Krasulová, Kristýna; Anzenbacher, Pavel; Hodek, Petr; Anzenbacherová, Eva

    2017-04-01

    1. The possibility of interaction of isoflavonoids with concomitantly taken drugs to determined isoflavonoids safety was studied. Inhibition of nine forms of cytochrome P450 (CYP3A4, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2C9, CYP2D6 and CYP2E1) by 12 isoflavonoids (daidzein, genistein, biochanin A, formononetin, glycitein, equol and six glucosides, daidzin, puerarin, genistin, sissotrin, ononin and glycitin) was studied systematically. 2. The most potent inhibitors were genistein and daidzein inhibiting noncompetitively the CYP2C9 with Ki of 35.95 ± 6.96 and 60.56 ± 3.53 μmol/l and CYP3A4 (inhibited by genistein with Ki of 23.25 ± 5.85 μmol/l also by a noncompetitive mechanism). Potent inhibition of CYP3A4 was observed also with biochanin A (Ki of 57.69 ± 2.36 μmol/l) and equol (Ki of 38.47 ± 2.32 μmol/l). 3. Genistein and daidzein inhibit noncompetitively CYP3A4 and CYP2C9. With plasma levels in micromolar range, a clinically important interaction with concomitantly taken drugs does not seem to be probable.

  7. Functional Characterization of CYP716 Family P450 Enzymes in Triterpenoid Biosynthesis in Tomato

    PubMed Central

    Yasumoto, Shuhei; Seki, Hikaru; Shimizu, Yuko; Fukushima, Ery O.; Muranaka, Toshiya

    2017-01-01

    Triterpenoids are a group of structurally diverse specialized metabolites that frequently show useful bioactivities. These chemicals are biosynthesized from the common precursor 2,3-oxidosqualene in plants. The carbon skeletons produced by oxidosqualene cyclase (OSC) are usually modified by cytochrome P450 monooxygenases (P450s) and UDP-dependent glycosyltransferases. These biosynthetic enzymes contribute to the structural diversification of plant triterpenoids. Until now, many P450 enzymes have been characterized as triterpenoid oxidases. Among them, the CYP716 family P450 enzymes, which have been isolated from a wide range of plant families, seem to contribute to the triterpenoid structural diversification. Many CYP716 family P450 enzymes have been characterized as the multifunctional triterpene C-28 oxidases, which oxidize α-amyrin and β-amyrin to the widely distributed triterpenoids ursolic and oleanolic acids, respectively. Tomato (Solanum lycopersicum) is one of the most important solanaceous crops in the world. However, little information is known regarding its triterpenoid biosynthesis. To understand the mechanism of triterpenoid biosynthesis in tomato, we focused on the function of CYP716 family enzymes as triterpenoid oxidases. We isolated all six CYP716 family genes from the Micro-Tom cultivar of tomato, and functionally characterized them in the heterologous yeast expression system. The in vivo enzymatic assays showed that CYP716A44 and CYP716A46 exhibited the ordinary C-28 oxidation activity against α-amyrin and β-amyrin to produce ursolic and oleanolic acids, respectively. Interestingly, one CYP716E subfamily enzyme, CYP716E26, exhibited the previously unreported C-6β hydroxylation activity against β-amyrin to produce a rare bioactive triterpenoid, daturadiol (olean-12-ene-3β,6β-diol). To determine the roles of the CYP716 family genes in tomato triterpenoid biosynthesis, we analyzed the gene expression and triterpenoid accumulation patterns in

  8. Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer

    PubMed Central

    McFadyen, M C E; Cruickshank, M E; Miller, I D; McLeod, H L; Melvin, W T; Haites, N E; Parkin, D; Murray, G I

    2001-01-01

    Ovarian cancer is the most frequent cause of death from gynaecological malignancies world wide. Little improvement has been made in the long-term outcome of this disease, with the 5-year survival of patients only 30%. This poor prognosis is due to the late presentation of the disease and to the unpredictable response of ovarian cancer to chemotherapy. The cytochrome P450 enzymes are a superfamily of haemoproteins, known to be involved in the metabolic activation and/or detoxification of a number of anti-cancer drugs. CYP1B1 is a tumour-related form of cytochrome P450 which is over expressed in a wide variety of primary tumours of different histological type. The presence of CYP1B1 may be of importance in the modulation of these tumours to anti-cancer drugs. We have conducted a comprehensive immunohistochemical investigation, into the presence of cytochrome P450 CYP1B1 in primary and metastatic ovarian cancer. The key findings of this study are the increased expression of CYP1B1 in the majority of ovarian cancers investigated (92%), with a strong correlation demonstrated between CYP1B1 expression in both primary and metastatic ovarian cancer (P= 0.005 Spearman's rank correlation test). In contrast no detectable CYP1B1 was found in normal ovary. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11461084

  9. Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer.

    PubMed

    McFadyen, M C; Cruickshank, M E; Miller, I D; McLeod, H L; Melvin, W T; Haites, N E; Parkin, D; Murray, G I

    2001-07-20

    Ovarian cancer is the most frequent cause of death from gynaecological malignancies world wide. Little improvement has been made in the long-term outcome of this disease, with the 5-year survival of patients only 30%. This poor prognosis is due to the late presentation of the disease and to the unpredictable response of ovarian cancer to chemotherapy. The cytochrome P450 enzymes are a superfamily of haemoproteins, known to be involved in the metabolic activation and/or detoxification of a number of anti-cancer drugs. CYP1B1 is a tumour-related form of cytochrome P450 which is over expressed in a wide variety of primary tumours of different histological type. The presence of CYP1B1 may be of importance in the modulation of these tumours to anti-cancer drugs. We have conducted a comprehensive immunohistochemical investigation, into the presence of cytochrome P450 CYP1B1 in primary and metastatic ovarian cancer. The key findings of this study are the increased expression of CYP1B1 in the majority of ovarian cancers investigated (92%), with a strong correlation demonstrated between CYP1B1 expression in both primary and metastatic ovarian cancer (P = 0.005 Spearman's rank correlation test). In contrast no detectable CYP1B1 was found in normal ovary.

  10. Chiral Inhibition of Rivaroxaban Derivatives Towards UDP-Glucuronosyltransferase (UGT) Isoforms.

    PubMed

    Yao, Zhuhua; Liu, Yong-Zhe; Ma, Ai-Lun; Wang, Shu-Fen; Lu, Dan; Hu, Cui-Min; Zhang, Yan-Yan; Wang, Haina; Hu, Lingyun; Deng, Jun; Yang, Kun; Fang, Zhong-Ze

    2015-12-01

    Rivaroxaban is an oral direct factor Xa (FXa) inhibitor clinically used to prevent and treat thromboembolic disorders. Drug-drug interaction (DDI) exist for rivaroxaban and the inhibitors of CYP3A4/5. This study aims to investigate the inhibition of rivaroxaban and its derivatives with a chiral center towards UDP-glucuronosyltransferases (UGTs). Chemical synthesis was performed to obtain rivaroxaban derivatives with different chiral centers. UGTs supersomes-catalyzed 4-methylumbelliferone (4-MU) glucuronidation was employed to evaluate the inhibition potential towards various UGT isoforms. A significant influence of rivaroxaban derivatives towards UGT1A3 was observed. Chiral centers produce different effects towards the effect of four pairs of rivaroxaban derivatives towards UGT1A3 activity, with stronger inhibition potential of S1 than R1, but stronger inhibition capability of R2, R3, R4 than S2, S3, and S4. Competitive inhibition of R3 and R4 towards UGT1A3 was demonstrated by Dixon and Lineweaver-Burk plots. In conclusion, the significant influence of rivaroxaban derivatives towards UGT1A3's activity was demonstrated in the present study. The chirality centers highly affected the inhibition behavior of rivaroxaban derivatives towards UGT1A3.

  11. Regioselective oxidation of lauric acid by CYP119, an orphan cytochrome P450 from Sulfolobus acidocaldarius.

    PubMed

    Lim, Young-Ran; Eun, Chang-Yong; Park, Hyoung-Goo; Han, Songhee; Han, Jung-Soo; Cho, Kyoung Sang; Chun, Young-Jin; Kim, Donghak

    2010-03-01

    Archaebacteria Sulfolobus acidocaldarius contains the highly thermophilic cytochrome P450 enzyme (CYP119). CYP119 possesses stable enzymatic activity at up to 85 degrees C. However, this enzyme is still considered as an orphan P450 without known physiological function with endogenous or xenobiotic substrates. We characterized the regioselectivity of lauric acid by CYP119 using the auxiliary redox partner proteins putidaredoxin (Pd) and putidaredoxin reductase (PdR). Purified CYP119 protein showed a tight binding affinity to lauric acid (K(d)=1.1+/-0.1 microM) and dominantly hydroxylated (omega-1) position of lauric acid. We determined the steady-state kinetic parameters; k(cat) was 10.8 min(-1) and K(m) was 12 microM. The increased ratio to omega-hydroxylated production of lauric acid catalyzed by CYP119 was observed with increase in the reaction temperature. These studies suggested that the regioselectivity of CYP119 provide the critical clue for the physiological enzyme function in this thermophilic archaebacteria. In addition, regioselectivity control of CYP119 without altering its thermostability can lead to the development of novel CYP119-based catalysts through protein engineering.

  12. Investigation of UDP-glucuronosyltransferases (UGTs) inhibitory properties of carvacrol.

    PubMed

    Dong, Rui-Hua; Fang, Zhong-Ze; Zhu, Liang-Liang; Liang, Si-Cheng; Ge, Guang-Bo; Yang, Ling; Liu, Ze-Yuan

    2012-01-01

    UDP-glucuronosyltransferases (UGTs), the most important phase II drug metabolizing enzymes (DMEs), could metabolize many drugs and various endogenous substances including bilirubin, steroid hormones, thyroid hormones, bile acids and fat-soluble vitamins. Evaluation of the inhibitory effects of compounds on UGTs is clinically important because inhibition of UGT isoforms could not only result in serious drug-drug interactions (DDIs), but also induce metabolic disorders of endogenous substances. The aim of the present study was to investigate the inhibitory effects of carvacrol on major UGT isoforms. The results showed that carvacrol could inhibit the activity of UGT1A9 with negligible effects on other UGT isoforms. When 4-methylumbelliferone (4-MU) was used as a nonspecific probe substrate and recombinant UGT enzymes were utilized as an enzyme resource, the inhibition of UGT1A9 was best fit to the competitive type and the inhibition kinetic parameter (K(i)) was calculated to be 5.7 µM. Furthermore, another specific probe substrate, propofol, was employed to determine the inhibitory kinetics of UGT1A9, and the results demonstrated that the inhibitory type was noncompetitive. The inhibition kinetic parameter (K(i)) was determined to be 25.0 µM. Because this substrate-dependent inhibition of UGT1A9 might confuse the in vitro-in vivo extrapolation, these in vitro inhibition kinetic parameters should be interpreted with special caution.

  13. Optimization of a UDP-glucuronosyltransferase assay for trout ...

    EPA Pesticide Factsheets

    An existing assay for hepatic UDP-glucuronosyltransferase (UGT) activity was optimized for use with trout liver S9 fractions. Individual experiments were conducted to determine the time dependence of UGT activity as well as optimal levels of S9 protein, uridine 5’-diphosphoglucuronic acid (UDPGA; a necessary cofactor), alamethicin (a pore-forming agent added to eliminate latency), and substrate (p-nitrophenol). Addition of Mg2+ (to 1 mM) or bovine serum albumin (BSA; to 2% w/v) had variable effects on activity, but these effects were minor. Eliminating alamethicin from the system resulted in very low levels of activity. A portion of this activity could be recovered by adding Triton X-100 or Brij 58; however, the optimal concentration range for either detergent was very narrow. All studies were performed under physiological conditions (pH 7.8, 11 °C) to support ongoing development of methods for extrapolating in vitro rates of biotransformation to the intact animal. When expressed on a pmol/min/g liver basis, UGT activities determined using this updated assay were substantially higher than those reported previously for uninduced trout. The purpose of the present study was to optimize an existing in vitro assay for hepatic UGT activity in rainbow trout. The original assay, adapted here for use with trout S9 fractions, was updated by incorporating a membrane disrupting agent (alamethicin) to reduce latency. Additional experiments were conducted to evaluate

  14. Characterization of equine cytochrome P450: role of CYP3A in the metabolism of diazepam.

    PubMed

    Nakayama, S M M; Ikenaka, Y; Hayami, A; Mizukawa, H; Darwish, W S; Watanabe, K P; Kawai, Y K; Ishizuka, M

    2016-10-01

    Research on drug metabolism and pharmacokinetics in large animal species including the horse is scarce because of the challenges in conducting in vivo studies. The metabolic reactions catalyzed by cytochrome P450s (CYPs) are central to drug pharmacokinetics. This study elucidated the characteristics of equine CYPs using diazepam (DZP) as a model compound as this drug is widely used as an anesthetic and sedative in horses, and is principally metabolized by CYPs. Diazepam metabolic activities were measured in vitro using horse and rat liver microsomes to clarify the species differences in enzyme kinetic parameters of each metabolite (temazepam [TMZ], nordiazepam [NDZ], p-hydroxydiazepam [p-OH-DZP], and oxazepam [OXZ]). In both species microsomes, TMZ was the major metabolite, but the formation rate of p-OH-DZP was significantly less in the horse. Inhibition assays with a CYP-specific inhibitors and antibody suggested that CYP3A was the main enzyme responsible for DZP metabolism in horse. Four recombinant equine CYP3A isoforms expressed in Cos-7 cells showed that CYP3A96, CYP3A94, and CYP3A89 were important for TMZ formation, whereas CYP3A97 exhibited more limited activity. Phylogenetic analysis suggested diversification of CYP3As in each mammalian order. Further study is needed to elucidate functional characteristics of each equine CYP3A isoform for effective use of diazepam in horses. © 2016 John Wiley & Sons Ltd.

  15. Characterization of arachidonic acid metabolism by rat cytochrome P450 enzymes: the involvement of CYP1As.

    PubMed

    El-Sherbeni, Ahmed A; El-Kadi, Ayman O S

    2014-09-01

    Cytochrome P450 (P450) enzymes mediate arachidonic acid (AA) oxidation to several biologically active metabolites. Our aims in this study were to characterize AA metabolism by different recombinant rat P450 enzymes and to identify new targets for modulating P450-AA metabolism in vivo. A liquid chromatography-mass spectrometry method was developed and validated for the simultaneous measurements of AA and 15 of its P450 metabolites. CYP1A1, CYP1A2, CYP2B1, CYP2C6, and CYP2C11 were found to metabolize AA with high catalytic activity, and CYP2A1, CYP2C13, CYP2D1, CYP2E1, and CYP3A1 had lower activity. CYP1A1 and CYP1A2 produced ω-1→4 hydroxyeicosatetraenoic acids (HETEs) as 88.7 and 62.7%, respectively, of the total metabolites formed. CYP2C11 produced epoxyeicosatrienoic acids (EETs) as 61.3%, and CYP2C6 produced midchain HETEs and EETs as 48.3 and 29.4%, respectively, of the total metabolites formed. The formation of CYP1A1, CYP1A2, CYP2C6, and CYP2C11 major metabolites followed an atypical kinetic profile of substrate inhibition. CYP1As inhibition by α-naphthoflavone or anti-CYP1As antibodies significantly reduced ω-1→4 HETE formation in the lungs and liver, whereas CYP1As induction by 3-methylcholanthrene resulted in a significant increase in ω-1→4 HETEs formation in the heart, lungs, kidney, and livers by 370, 646, 532, and 848%, respectively. In conclusion, our results suggest that CYP1As and CYP2Cs are major players in the metabolism of AA. The significant contribution of CYP1As to AA metabolism and their strong inducibility suggest their possible use as targets for the prevention and treatment of several diseases.

  16. Biosynthesis of Sandalwood Oil: Santalum album CYP76F Cytochromes P450 Produce Santalols and Bergamotol

    PubMed Central

    Diaz-Chavez, Maria L.; Moniodis, Jessie; Madilao, Lufiani L.; Jancsik, Sharon; Keeling, Christopher I.; Barbour, Elizabeth L.; Ghisalberti, Emilio L.; Plummer, Julie A.; Jones, Christopher G.; Bohlmann, Jörg

    2013-01-01

    Abstract Sandalwood oil is one of the world’s most highly prized essential oils, appearing in many high-end perfumes and fragrances. Extracted from the mature heartwood of several Santalum species, sandalwood oil is comprised mainly of sesquiterpene olefins and alcohols. Four sesquiterpenols, α-, β-, and epi-β-santalol and α-exo-bergamotol, make up approximately 90% of the oil of Santalum album. These compounds are the hydroxylated analogues of α-, β-, and epi-β-santalene and α-exo-bergamotene. By mining a transcriptome database of S. album for candidate cytochrome P450 genes, we cloned and characterized cDNAs encoding a small family of ten cytochrome P450-dependent monooxygenases annotated as SaCYP76F37v1, SaCYP76F37v2, SaCYP76F38v1, SaCYP76F38v2, SaCYP76F39v1, SaCYP76F39v2, SaCYP76F40, SaCYP76F41, SaCYP76F42, and SaCYP76F43. Nine of these genes were functionally characterized using in vitro assays and yeast in vivo assays to encode santalene/bergamotene oxidases and bergamotene oxidases. These results provide a foundation for production of sandalwood oil for the fragrance industry by means of metabolic engineering, as demonstrated with proof-of-concept formation of santalols and bergamotol in engineered yeast cells, simultaneously addressing conservation challenges by reducing pressure on supply of sandalwood from native forests. PMID:24324844

  17. Cytochrome P450 CYP3A in human renal cell cancer

    PubMed Central

    Murray, G I; McFadyen, M C E; Mitchell, R T; Cheung, Y-L; Kerr, A C; Melvin, W T

    1999-01-01

    Renal cell cancer is the main malignant tumour of the kidney and has an increasing incidence. This type of tumour has a poor prognosis and shows intrinsic resistance to several anti-cancer drugs. The CYP3A P450 family, which consists of three closely related forms, is involved in the oxidative activation and deactivation of a variety of carcinogens and several anti-cancer drugs. In this study the presence and cellular localization of CYP3A has been investigated using a combination of immunohistochemistry, immunoblotting and reverse transcriptase polymerase chain reaction (RT-PCR) in renal cell cancer and corresponding normal kidney. CYP3A was consistently expressed in both renal call cancer and in normal kidney. In renal cell cancer, CYP3A was localized to tumour cells and in normal kidney the predominant cellular localization of CYP3A was to proximal tubular epithelial cells. RT-PCR showed that both CYP3A5 mRNA and CYP3A7 mRNA were consistently present in both tumour and normal samples, while CYP3A4 mRNA was present in 65% of tumours and 90% of normal samples. This study indicates that individual members of the CYP3A family are expressed in renal cell cancer. The presence of CYP3A in renal cell cancer might be important in the metabolic potentiation as well as the detoxification of chemotherapeutic agents used to renal cancer. © 1999 Cancer Research Campaign PMID:10206301

  18. Polymorphic Cytochrome P450 Enzymes (CYPs) and Their Role in Personalized Therapy

    PubMed Central

    Preissner, Robert; Dunkel, Mathias; Gewiess, Andreas; Preissner, Saskia

    2013-01-01

    The cytochrome P450 (CYP) enzymes are major players in drug metabolism. More than 2,000 mutations have been described, and certain single nucleotide polymorphisms (SNPs) have been shown to have a large impact on CYP activity. Therefore, CYPs play an important role in inter-individual drug response and their genetic variability should be factored into personalized medicine. To identify the most relevant polymorphisms in human CYPs, a text mining approach was used. We investigated their frequencies in different ethnic groups, the number of drugs that are metabolized by each CYP, the impact of CYP SNPs, as well as CYP expression patterns in different tissues. The most important polymorphic CYPs were found to be 1A2, 2D6, 2C9 and 2C19. Thirty-four common allele variants in Caucasians led to altered enzyme activity. To compare the relevant Caucasian SNPs with those of other ethnicities a search in 1,000 individual genomes was undertaken. We found 199 non-synonymous SNPs with frequencies over one percent in the 1,000 genomes, many of them not described so far. With knowledge of frequent mutations and their impact on CYP activities, it may be possible to predict patient response to certain drugs, as well as adverse side effects. With improved availability of genotyping, our data may provide a resource for an understanding of the effects of specific SNPs in CYPs, enabling the selection of a more personalized treatment regimen. PMID:24340040

  19. Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy.

    PubMed

    Preissner, Sarah C; Hoffmann, Michael F; Preissner, Robert; Dunkel, Mathias; Gewiess, Andreas; Preissner, Saskia

    2013-01-01

    The cytochrome P450 (CYP) enzymes are major players in drug metabolism. More than 2,000 mutations have been described, and certain single nucleotide polymorphisms (SNPs) have been shown to have a large impact on CYP activity. Therefore, CYPs play an important role in inter-individual drug response and their genetic variability should be factored into personalized medicine. To identify the most relevant polymorphisms in human CYPs, a text mining approach was used. We investigated their frequencies in different ethnic groups, the number of drugs that are metabolized by each CYP, the impact of CYP SNPs, as well as CYP expression patterns in different tissues. The most important polymorphic CYPs were found to be 1A2, 2D6, 2C9 and 2C19. Thirty-four common allele variants in Caucasians led to altered enzyme activity. To compare the relevant Caucasian SNPs with those of other ethnicities a search in 1,000 individual genomes was undertaken. We found 199 non-synonymous SNPs with frequencies over one percent in the 1,000 genomes, many of them not described so far. With knowledge of frequent mutations and their impact on CYP activities, it may be possible to predict patient response to certain drugs, as well as adverse side effects. With improved availability of genotyping, our data may provide a resource for an understanding of the effects of specific SNPs in CYPs, enabling the selection of a more personalized treatment regimen.

  20. Oxidase uncoupling in heme monooxygenases: Human cytochrome P450 CYP3A4 in Nanodiscs

    SciTech Connect

    Grinkova, Yelena V.; Denisov, Ilia G.; McLean, Mark A.; Sligar, Stephen G.

    2013-01-25

    Highlights: ► Substantial reducing equivalents are lost in human P450 CYP3A4 via an oxidase channel. ► Substrate binding has a pronounced effect on uncoupling in cytochrome P450. ► Anionic phospholipids improve the overall coupling in CYP3A4 Nanodiscs. -- Abstract: The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons:1 dioxygen:1 product. However, three alternate unproductive pathways exist where the intermediate iron–oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involves release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen–oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed “Compound I”. This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP3A4

  1. Biotransformation of the chemopreventive agent isoliquiritigenin by UDP-glucuronosyltransferases

    PubMed Central

    Guo, Jian; Liu, Ang; Cao, Hongmei; Luo, Yan; Pezzuto, John M.; van Breemen, Richard B.

    2008-01-01

    Isoliquiritigenin (2’,4’,4-trihydroxychalcone), a chalcone found in licorice root and shallots, exhibits antioxidant, estrogenic, and anti-tumor activities. To complement our previous studies concerning the phase 1 metabolism of isoliquiritigenin, the phase 2 transformation of isoliquiritigenin by human hepatocytes and pooled human liver microsomes was investigated using liquid chromatography-tandem mass spectrometry and UV absorbance. Five glucuronides were detected corresponding to monoglucuronides of isoliquiritigenin and liquiritigenin, but no sulfate conjugates were observed. The UDP-glucuronosyltransferases (UGTs) involved in the formation of the major glucuronide conjugates were identified using recombinant human UGTs in combination with LC-MS. UGT1A1 and UGT1A9 were the major enzymes responsible for the formation of the most abundant conjugate, isoliquiritigenin 4’-O-glucuronide (MG5) with Km values of 4.30 ± 0.47 µM and 3.15 ± 0.24 µM, respectively. UGT1A1 and UGT1A10 converted isoliquiritigenin to the next most abundant phase 2 metabolite, isoliquiritigenin 2’-O-glucuronide (MG4) with Km values of 2.98 ± 0.8 µM and 25.8 ± 1.3 µM, respectively. In addition, isoliquiritigenin glucuronides MG4 and MG5 were formed by pooled human intestine and kidney microsomes, respectively. Based on the in vitro determination of a 25.3 min half-life for isoliquiritigenin when incubated with human liver microsomes, the intrinsic clearance of isoliquiritigenin was estimated to be 36.4 mL/min/kg. These studies indicate that isoliquiritigenin will be conjugated rapidly in the liver to form up to five monoglucuronides. PMID:18653743

  2. The inhibition of UDP-glucuronosyltransferases (UGTs) by vitamin A.

    PubMed

    Liu, Xin; Cao, Yun-Feng; Dong, Pei-Pei; Zhu, Liang-Liang; Zhao, Zhenying; Wu, Xue; Fu, Zhi-Wei; Huang, Chun-Ting; Fang, Zhong-Ze; Sun, Hong-Zhi

    2017-05-01

    1. The exposed level of vitamin A in plasma might be exceeded due to the both inadvertent and clinical utilization. The adverse effects of vitamin A have been frequently reported, however, the mechanism remains unclear. The inhibition of vitamin A on the activity of UDP-glucuronosyltransferases (UGTs) was determined using in vitro incubation system to explain the adverse effects of vitamin A from a new perspective. 2. UGT supersomes catalyzed glucuronidation of 4-methylumbelliferone (4-MU), trifluoperazine (TFP), and cotinine was used as the probe reaction to evaluate the inhibition of vitamin A toward UGT isoforms, and 100 μM of vitamin A significantly inhibited the activity of all the tested UGT isoforms. Vitamin A exerted competitive inhibition on the activity of UGT1A1, 2B4, 2B7, and 2B15, and the inhibition kinetic parameters (Ki) were calculated to be 31.1, 16.8, 2.2, and 11.6 μM for UGT1A1, 2B4, 2B7, and 2B15. In silico docking method was used to try to elucidate the inhibition mechanism of vitamin A toward UGT2B7. The results showed the significant contribution of hydrogen bonds and hydrophobic interaction on the UGT2B7 inhibition by vitamin A. 3. The present study provides a new perspective for the adverse effects of vitamin A through reporting the inhibition of vitamin A on the activity of important phase II drug-metabolizing enzymes UGTs, which benefits our deep understanding of mechanism of vitamin A's adverse effects when high exposure of vitamin A occurs.

  3. Substrate and Reaction Specificity of Mycobacterium tuberculosis Cytochrome P450 CYP121

    PubMed Central

    Fonvielle, Matthieu; Le Du, Marie-Hélène; Lequin, Olivier; Lecoq, Alain; Jacquet, Mickaël; Thai, Robert; Dubois, Steven; Grach, Guillaume; Gondry, Muriel; Belin, Pascal

    2013-01-01

    Cytochrome P450 CYP121 is essential for the viability of Mycobacterium tuberculosis. Studies in vitro show that it can use the cyclodipeptide cyclo(l-Tyr-l-Tyr) (cYY) as a substrate. We report an investigation of the substrate and reaction specificities of CYP121 involving analysis of the interaction between CYP121 and 14 cYY analogues with various modifications of the side chains or the diketopiperazine (DKP) ring. Spectral titration experiments show that CYP121 significantly bound only cyclodipeptides with a conserved DKP ring carrying two aryl side chains in l-configuration. CYP121 did not efficiently or selectively transform any of the cYY analogues tested, indicating a high specificity for cYY. The molecular determinants of this specificity were inferred from both crystal structures of CYP121-analog complexes solved at high resolution and solution NMR spectroscopy of the analogues. Bound cYY or its analogues all displayed a similar set of contacts with CYP121 residues Asn85, Phe168, and Trp182. The propensity of the cYY tyrosyl to point toward Arg386 was dependent on the presence of the DKP ring that limits the conformational freedom of the ligand. The correct positioning of the hydroxyl of this tyrosyl was essential for conversion of cYY. Thus, the specificity of CYP121 results from both a restricted binding specificity and a fine-tuned P450 substrate relationship. These results document the catalytic mechanism of CYP121 and improve our understanding of its function in vivo. This work contributes to progress toward the design of inhibitors of this essential protein of M. tuberculosis that could be used for antituberculosis therapy. PMID:23620594

  4. Effective cytochrome P450 (CYP) inhibitor isolated from thyme (Thymus saturoides) purchased from a Japanese market.

    PubMed

    Brahmi, Zeineb; Niwa, Hitomi; Yamasato, Mio; Shigeto, Sakurako; Kusakari, Yuna; Sugaya, Kouichi; Onose, Jun-ichi; Abe, Naoki

    2011-01-01

    A highly polymethylated flavone that effectively inhibited cytochrome P450s (CYPs) 1A2 and 3A4 (IC(50) = 2.41 and 1.71 µM) in vitro was isolated from thyme leaves (Thymus saturoides) purchased from a Japanese market. Its structure was spectroscopically identified as 4',5-dihydroxy-3',6,7,8-tetramethoxy flavone (8-methoxycirsilineol, 1). This is the first report describing a strong inhibitor of CYP1A2 and 3A4 isolated from Thymus saturoides.

  5. Mechanistic Scrutiny Identifies a Kinetic Role for Cytochrome b5 Regulation of Human Cytochrome P450c17 (CYP17A1, P450 17A1)

    PubMed Central

    Simonov, Alexandr N.; Holien, Jessica K.; Yeung, Joyee Chun In; Nguyen, Ann D.; Corbin, C. Jo; Zheng, Jie; Kuznetsov, Vladimir L.; Auchus, Richard J.; Conley, Alan J.; Bond, Alan M.; Parker, Michael W.; Rodgers, Raymond J.; Martin, Lisandra L.

    2015-01-01

    Cytochrome P450c17 (P450 17A1, CYP17A1) is a critical enzyme in the synthesis of androgens and is now a target enzyme for the treatment of prostate cancer. Cytochrome P450c17 can exhibit either one or two physiological enzymatic activities differentially regulated by cytochrome b5. How this is achieved remains unknown. Here, comprehensive in silico, in vivo and in vitro analyses were undertaken. Fluorescence Resonance Energy Transfer analysis showed close interactions within living cells between cytochrome P450c17 and cytochrome b5. In silico modeling identified the sites of interaction and confirmed that E48 and E49 residues in cytochrome b5 are essential for activity. Quartz crystal microbalance studies identified specific protein-protein interactions in a lipid membrane. Voltammetric analysis revealed that the wild type cytochrome b5, but not a mutated, E48G/E49G cyt b5, altered the kinetics of electron transfer between the electrode and the P450c17. We conclude that cytochrome b5 can influence the electronic conductivity of cytochrome P450c17 via allosteric, protein-protein interactions. PMID:26587646

  6. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 CYP4A15.

    PubMed

    Ngo, Suong Ngoc Thi; McKinnon, Ross Allan; Stupans, Ieva

    2006-07-05

    In the present study, the cloning, expression and characterization of hepatic cytochrome P450 (CYP) CYP4A from koala (Phascolarctos cinereus), an obligate eucalyptus feeder, is described. It has been previously reported that microsomal lauric acid hydroxylase activity (a CYP4A marker) and CYP content were higher in koala liver in comparison to that in human, rat or wallaby, species that do not ingest eucalyptus leaves as food [Ngo, S., Kong, S., Kirlich, A., Mckinnon, R.A., Stupans, I., 2000. Cytochrome P450 4A, peroxisomal enzymes and nicotinamide cofactors in koala liver. Comp. Biochem. Physiol., C 127, 327-334]. A 1544 bp koala liver CYP4A cDNA, designated CYP4A15, was cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The koala CYP4A15 cDNA encodes a protein of 500 amino acids and shares 69% nucleotide and 65% amino acid sequence identity to human CYP4A11. Transfection of the koala CYP4A15 cDNA into Cos-7 cells resulted in the expression of a protein with lauric acid hydroxylase activity. The koala CYP4A15 cDNA-expressed enzyme catalysed lauric acid hydroxylation at the rates of 0.45+/-0.18 nmol/min/mg protein and 4.79+/-1.91 nmol/min/nmol CYP (mean+/-SD, n=3), which were comparable to that of rat CYP4A subfamilies. Total CYP content for koala CYP4A15-expressed protein in Cos-7 cells was 0.094+/-0.001 nmol/mg protein (mean+/-SD, n=3) with negligible CYP content in untransfected Cos-7 cells lysate. Immunoblot analysis, using a sheep anti-rat CYP4A polyclonal antibody, detected multiple CYP4A immunoreactive bands in the liver from all species studied. The koala bands were found to be fainter and less confined but appeared much broader as compared to rat, human and wallaby. Northern blot analysis, utilising the koala CYP4A15 cDNA 417 bp probe, detected a mRNA species of approximately 2.6 kb in the koala liver and a mRNA species of approximately 2.4 kb in other species studied. Relative to the intensity of the beta

  7. Expression of the cytochrome P450 epoxygenase CYP2J2 in human monocytic leukocytes.

    PubMed

    Nakayama, Kaeko; Nitto, Takeaki; Inoue, Teruo; Node, Koichi

    2008-08-29

    CYP2J2 is one of the cytochrome P450 epoxygenases involved in the metabolism of arachidonic acid. CYP2J2 has been identified in several tissues, especially cardiovascular tissues. CYP2J2 has cardiovascular effects, as epoxyeicosatrienoic acid, one of its metabolites, has anti-inflammatory and vasodilative activities. We investigated the expression of CYP2J2 in human leukocytes using reverse transcription-polymerase chain reaction, immunoblotting and immunostaining. Human monocytic cells, but not human neutrophils, exhibited constitutive expression of CYP2J2. Furthermore, the expression of CYP2J2 mRNA increased when the human monocytic cell line THP-1 cells and human monocytes were stimulated with phorbol 12-myristate 13-acetate and macrophage-colony stimulating factor in combination with granulocyte/macrophage-colony stimulating factor, respectively. These results suggest that expression of CYP2J2 was up-regulated when human monocytes differentiated into macrophages and that human monocytic cells and macrophages have a pathway to metabolize arachidonic acid using CYP epoxygenases.

  8. Multiple UDP-glucuronosyltransferases in human liver microsomes glucuronidate both R- and S-7-hydroxywarfarin into two metabolites.

    PubMed

    Pugh, C Preston; Pouncey, Dakota L; Hartman, Jessica H; Nshimiyimana, Robert; Desrochers, Linda P; Goodwin, Thomas E; Boysen, Gunnar; Miller, Grover P

    2014-12-15

    The widely used anticoagulant Coumadin (R/S-warfarin) undergoes oxidation by cytochromes P450 into hydroxywarfarins that subsequently become conjugated for excretion in urine. Hydroxywarfarins may modulate warfarin metabolism transcriptionally or through direct inhibition of cytochromes P450 and thus, UGT action toward hydroxywarfarin elimination may impact levels of the parent drugs and patient responses. Nevertheless, relatively little is known about conjugation by UDP-glucuronosyltransferases in warfarin metabolism. Herein, we identified probable conjugation sites, kinetic mechanisms and hepatic UGT isoforms involved in microsomal glucuronidation of R- and S-7-hydroxywarfarin. Both compounds underwent glucuronidation at C4 and C7 hydroxyl groups based on elution properties and spectral characteristics. Their formation demonstrated regio- and enantioselectivity by UGTs and resulted in either Michaelis-Menten or substrate inhibition kinetics. Glucuronidation at the C7 hydroxyl group occurred more readily than at the C4 group, and the reaction was overall more efficient for R-7-hydroxywarfarin due to higher affinity and rates of turnover. The use of these mechanisms and parameters to model in vivo clearance demonstrated that contributions of substrate inhibition would lead to underestimation of metabolic clearance than that predicted by Michaelis-Menten kinetics. Lastly, these processes were driven by multiple UGTs indicating redundancy in glucuronidation pathways and ultimately metabolic clearance of R- and S-7-hydroxywarfarin. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Inhibitory effects of cytochrome P450 enzymes CYP2C8, CYP2C9, CYP2C19 and CYP3A4 by Labisia pumila extracts.

    PubMed

    Pan, Yan; Tiong, Kai Hung; Abd-Rashid, Badrul Amini; Ismail, Zakiah; Ismail, Rusli; Mak, Joon Wah; Ong, Chin Eng

    2012-09-28

    Labisa pumila (LP), popularly known with its local name, Kacip Fatimah, is a well known herb grown in Indochina and Southeast Asia and is traditionally used to regain energy after giving birth in women. The propensity of LP to cause drug-herb interaction via cytochrome P450 (CYP) enzyme system has not been investigated. To evaluate the in vitro inhibitory effects of various LP extracts (aqueous, ethanol, dichloromethane (DCM) and hexane) on cytochrome P450 2C8 (CYP2C8), CYP2C9, CYP2C19 and CYP3A4 activities. Probe substrate-based high performance liquid chromatography (HPLC) methods were established for CYP2C9, CYP2C19 and CYP3A4 whereas a fluorescence-based enzyme assay was established for CYP2C8. The metabolite formations were examined after incubation of probe substrate with respective CYP isoform in the present or absent of LP extracts. The inhibitory effect of LP was characterized with kinetic parameters IC(50) and K(i) values. LP extracts showed differential effect of CYP activities with the order of inhibitory potency as follows: dichloromethane>hexane>ethanol>aqueous. This differential effect was only observed in CYP2C isoforms but not CYP3A4. Both the hexane and DCM extracts exhibited moderate to potent inhibition towards CYP2C activities in different modes including non-competitive, competive and mixed-type. The DCM effect was notably strong for CYP2C8 and CYP2C9 showing K(i) values of below 1 μg/ml. The selectivity of LP for CYP2C isoforms rather than CYP3A4 may be attributed to the presence of relatively small, lipophilic yet slightly polar compounds within the LP extracts. The results of our study revealed that phytoconstituents contained in LP, particularly in hexane and dichloromethane extracts, were able to selectively inhibit CYP2C isoforms. The inactivation was characterized by low K(i) values, in particular, in CYP2C8 and CYP2C9. These in vitro data indicate that LB preparations contain constituents that can potently inhibit CYP2C activities and

  10. CYP5122A1, a Novel Cytochrome P450 Is Essential for Survival of Leishmania donovani

    PubMed Central

    Verma, Smriti; Mehta, Ashish; Shaha, Chandrima

    2011-01-01

    Background Cytochrome P450s (CYP450s) are hemoproteins catalysing diverse biochemical reactions important for metabolism of xenobiotics and synthesis of physiologically important compounds such as sterols. Therefore, they are functionally important for survival of invading pathogens. One such opportunistic pathogen Leishmania donovani causes visceral leishmaniasis worldwide, which is an important public health problem due to significant disease burden. The parasite genome database, Gene DB, annotates 3 CYP450s in Leishmania, however, the functional role of cytochrome P450 enzymes in Leishmania spp. remains elusive. Methodology/Principal Findings A CYP450-like gene cloned from Leishmania donovani was identified as a novel CYP450, the CYP5122A1. Upon co-localization with organelle specific markers, CYP5122A1 distribution was shown to be localized in the promastigote ER, mitochondria and the glycosomes. Replacement of one allele of CYP5122A1 with either neomycin or hygromycin gene by homologous recombination in Leishmania promastigotes induced substantial reduction of CYP5122A1 expression. These parasites showed impaired growth, lower mitochondrial Ca2+ and membrane potential resulting in low ATP generation. Also, these parasites were less infective in vitro and in vivo than their wild-type counterparts as assessed by incubation of Leishmania promastigotes with macrophages in vitro as well as through administration of parasites into hamsters. The HKOs were more susceptible to drugs like miltefosine and antimony, but showed reduced sensitivity to amphotericin B. Removal of two alleles of CYP5122A1 did not allow the parasites to survive. The mutant parasites showed 3.5 times lower ergosterol level as compared to the wild-type parasites when estimated by Gas chromatography/mass spectrometry. Complementation of CYP5122A1 through episomal expression of protein by using pXG-GFP+2 vector partially rescued CYP5122A1 expression and restored ergosterol levels by 1.8 times

  11. Glucuronidation of active tamoxifen metabolites by the human UDP glucuronosyltransferases.

    PubMed

    Sun, Dongxiao; Sharma, Arun K; Dellinger, Ryan W; Blevins-Primeau, Andrea S; Balliet, Renee M; Chen, Gang; Boyiri, Telih; Amin, Shantu; Lazarus, Philip

    2007-11-01

    Tamoxifen (TAM) is an antiestrogen that has been widely used in the treatment and prevention of breast cancer in women. One of the major mechanisms of metabolism and elimination of TAM and its major active metabolites 4-hydroxytamoxifen (4-OH-TAM) and 4-OH-N-desmethyl-TAM (endoxifen; 4-hydroxy-N-desmethyl-tamoxifen) is via glucuronidation. Although limited studies have been performed characterizing the glucuronidation of 4-OH-TAM, no studies have been performed on endoxifen. In the present study, characterization of the glucuronidating activities of human UDP glucuronosyltransferases (UGTs) against isomers of 4-OH-TAM and endoxifen was performed. Using homogenates of individual UGT-overexpressing cell lines, UGTs 2B7 approximately 1A8 > UGT1A10 exhibited the highest overall O-glucuronidating activity against trans-4-OH-TAM as determined by Vmax/K(M), with the hepatic enzyme UGT2B7 exhibiting the highest binding affinity and lowest K(M) (3.7 microM). As determined by Vmax/K(M), UGT1A10 exhibited the highest overall O-glucuronidating activity against cis-4-OH-TAM, 10-fold higher than the next-most active UGTs 1A1 and 2B7, but with UGT1A7 exhibiting the lowest K(M). Although both N- and O-glucuronidation occurred for 4-OH-TAM in human liver microsomes, only O-glucuronidating activity was observed for endoxifen; no endoxifen-N-glucuronidation was observed for any UGT tested. UGTs 1A10 approximately 1A8 > UGT2B7 exhibited the highest overall glucuronidating activities as determined by Vmax/K(M) for trans-endoxifen, with the extrahepatic enzyme UGT1A10 exhibiting the highest binding affinity and lowest K(M) (39.9 microM). Similar to that observed for cis-4-OH-TAM, UGT1A10 also exhibited the highest activity for cis-endoxifen. These data suggest that several UGTs, including UGTs 1A10, 2B7, and 1A8 play an important role in the metabolism of 4-OH-TAM and endoxifen.

  12. CYP709B3, a cytochrome P450 monooxygenase gene involved in salt tolerance in Arabidopsis thaliana

    PubMed Central

    2013-01-01

    Background Within the Arabidopsis genome, there are 272 cytochrome P450 monooxygenase (P450) genes. However, the biological functions of the majority of these P450s remain unknown. The CYP709B family of P450s includes three gene members, CYP709B1, CYP709B2 and CYP709B3, which have high amino acid sequence similarity and lack reports elucidating biological functions. Results We identified T-DNA insertion-based null mutants of the CYP709B subfamily of genes. No obvious morphological phenotypes were exhibited under normal growth conditions. When the responses to ABA and salt stress were studied in these mutants, only the cyp709b3 mutant showed sensitivity to ABA and salt during germination. Under moderate salt treatment (150 mM NaCl), cyp709b3 showed a higher percentage of damaged seedlings, indicating a lower tolerance to salt stress. CYP709B3 was highly expressed in all analyzed tissues and especially high in seedlings and leaves. In contrast, CYP709B1 and CYP709B2 were highly expressed in siliques, but were at very low levels in other tissues. Under salt stress condition, CYP709B3 gene expression was induced after 24 hr and remained at high expression level. Expression of the wild type CYP709B3 gene in the cyp709b3 mutant fully complemented the salt intolerant phenotype. Furthermore, metabolite profiling analysis revealed some differences between wild type and cyp709b3 mutant plants, supporting the salt intolerance phenotype of the cyp709b3 mutant. Conclusions These results suggest that CYP709B3 plays a role in ABA and salt stress response and provides evidence to support the functions of cytochrome P450 enzymes in plant stress response. PMID:24164720

  13. Evaluation of Luminescent P450 Analysis for Directed Evolution of Human CYP4A11.

    PubMed

    Choi, Seunghye; Han, Songhee; Lee, Hwayoun; Chun, Young-Jin; Kim, Donghak

    2013-11-01

    Cytochrome P450 4A11 (CYP4A11) is a fatty acid hydroxylase enzyme expressed in human liver. It catalyzes not only the hydroxylation of saturated and unsaturated fatty acids, but the conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE), a regulator of blood pressure. In this study, we performed a directed evolution analysis of CYP4A11 using the luminogenic assay system. A random mutant library of CYP4A11, in which mutations were made throughout the entire coding region, was screened with luciferase activity to detect the demethylation of luciferin-4A (2-[6-methoxyquinolin-2-yl]-4,5-dihydrothiazole-4-carboxylic acid) of CYP4A11 mutants in Escherichia coli. Consecutive rounds of random mutagenesis and screening yielded three improved CYP4A11 mutants, CP2600 (A24T/T263A), CP2601 (T263A), and CP2616 (A24T/T263A/V430E) with ~3-fold increase in whole cells and >10-fold increase in purified proteins on the luminescence assay. However, the steady state kinetic analysis for lauric acid hydroxylation showed the significant reductions in enzymatic activities in all three mutants. A mutant, CP2600, showed a 51% decrease in catalytic efficiency (k cat/K m) for lauric acid hydroxylation mainly due to an increase in K m. CP2601 and CP2616 showed much greater reductions (>75%) in the catalytic efficiency due to both a decrease in k cat and an increase in K m. These decreased catalytic activities of CP2601 and CP2616 can be partially attributed to the changes in substrate affinities. These results suggest that the enzymatic activities of CYP4A11 mutants selected from directed evolution using a luminogenic P450 substrate may not demonstrate a direct correlation with the hydroxylation activities of lauric acid.

  14. Selective steroid oxyfunctionalisation by CYP154C5, a bacterial cytochrome P450

    PubMed Central

    2013-01-01

    Background Cytochrome P450 monooxygenases – able to regio- and stereoselectively hydroxylate non-activated carbon atoms – are important enzymes for the synthesis of valuable intermediates in the production of steroid hormones in the pharmaceutical industry. However, up to now only a few bacterial enzymes able to hydroxylate steroids have been reported. CYP154C5 from Nocardia farcinica IFM 10152, a bacterial P450 monooxygenase, was previously shown to convert testosterone to 16α-hydroxytestosterone. Since the hydroxylation at 16α-position is of special interest for the pharmaceutical industry, we have studied this enzyme in more detail to investigate its activity and selectivity in bioconversions of further steroids. Results CYP154C5 was coexpressed in Escherichia coli together with putidaredoxin and putidaredoxin reductase from Pseudomonas putida as redox partners for electron transfer and applied in bioconversions of various pregnanes and androstanes [pregnenolone (1), dehydroepiandrosterone (2), progesterone (3), androstenedione (4), testosterone (5) and nandrolone (6)]. Structure elucidation of the formed products revealed an exclusive regio- and stereoselectivity of CYP154C5, always yielding the corresponding 16α-hydroxylated steroids. Application of whole cells expressing the three components, P450, Pdx and PdR, in steroid biotransformations resulted in significantly higher conversions and total turnover numbers (TTN) compared to reactions using cell-free extracts. Additionally, considerably higher substrate loads (up to 15 mM) were tolerated by the whole-cell system. Furthermore, turnover numbers (TON) were determined for the six different steroids using whole cells. Thus, testosterone was found to be the worst substrate with a TON of only 0.8 μmol substrate consumed min-1 μmol-1 CYP154C5, while progesterone and pregnenolone were converted the fastest resulting in TON of 3.3 μmol substrate consumed min-1 μmol-1 CYP154C5. Conclusion CYP154C5

  15. Potent inhibition by star fruit of human cytochrome P450 3A (CYP3A) activity.

    PubMed

    Hidaka, Muneaki; Fujita, Ken-ichi; Ogikubo, Tetsuya; Yamasaki, Keishi; Iwakiri, Tomomi; Okumura, Manabu; Kodama, Hirofumi; Arimori, Kazuhiko

    2004-06-01

    There has been very limited information on the capacities of tropical fruits to inhibit human cytochrome P450 3A (CYP3A) activity. Thus, the inhibitory effects of tropical fruits on midazolam 1'-hydroxylase activity of CYP3A in human liver microsomes were evaluated. Eight tropical fruits such as common papaw, dragon fruit, kiwi fruit, mango, passion fruit, pomegranate, rambutan, and star fruit were tested. We also examined the inhibition of CYP3A activity by grapefruit (white) and Valencia orange as controls. The juice of star fruit showed the most potent inhibition of CYP3A. The addition of a star fruit juice (5.0%, v/v) resulted in the almost complete inhibition of midazolam 1'-hydroxylase activity (residual activity of 0.1%). In the case of grape-fruit, the residual activity was 14.7%. The inhibition depended on the amount of fruit juice added to the incubation mixture (0.2-6.0%, v/v). The elongation of the preincubation period of a juice from star fruit (1.25 or 2.5%, v/v) with the microsomal fraction did not alter the CYP3A inhibition, suggesting that the star fruit did not contain a mechanism-based inhibitor. Thus, we discovered filtered extracts of star fruit juice to be inhibitors of human CYP3A activity in vitro.

  16. Targeting Steroidogenic Cytochromes P450 (CYPs) with 6-Substituted 1-Imidazolylmethylxanthones.

    PubMed

    Gobbi, Silvia; Hu, Qingzhong; Zimmer, Christina; Belluti, Federica; Rampa, Angela; Hartmann, Rolf W; Bisi, Alessandra

    2016-08-19

    Abnormally high corticosteroid levels are responsible for the onset of serious hormone-related diseases, and the inhibition of their biosynthesis by targeting cytochrome P450 (CYP) isoforms CYP11B1 and CYP11B2 has emerged as a promising strategy to restore healthy physiological levels of corticosteroids. With the aim of exploiting the xanthone scaffold as a privileged structure in medicinal chemistry and to further explore the chemical space of inhibitors of these CYPs, a small library of imidazolylmethylxanthones was designed based on the results of a previously described compound series. Assuming the capacity for an additional interaction with these enzymes, a properly selected substituent was introduced at position 6 of the xanthone core, maintaining the key imidazolylmethyl moiety at position 1. The 6-fluoro and 6-nitro derivatives [1-(1H-imidazol-1-yl)methyl-6-fluoro-9H-xanthen-9-one (1 a) and 1-(1H-imidazol-1-yl)methyl-6-nitro-9H-xanthen-9-one (1 d), respectively] proved to be active in the low nanomolar range, showing selectivity toward the related steroidogenic enzymes CYP19 and CYP17, even if the problem of selectivity between the two CYP11B isoforms remains unsolved. On the other hand, the 6-chloro derivative 1-(1H-imidazol-1-yl)methyl-6-chloro-9H-xanthen-9-one (1 b) was found to be a fairly potent and somewhat selective CYP19 inhibitor, confirming the versatility of the scaffold.

  17. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4.

    PubMed

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S; Zhou, Ruhong; Fadeel, Bengt

    2016-02-22

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification.

  18. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    PubMed Central

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-01-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification. PMID:26899743

  19. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    NASA Astrophysics Data System (ADS)

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-02-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification.

  20. Oxidase uncoupling in heme monooxygenases: human cytochrome P450 CYP3A4 in Nanodiscs.

    PubMed

    Grinkova, Yelena V; Denisov, Ilia G; McLean, Mark A; Sligar, Stephen G

    2013-01-25

    The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons:1 dioxygen:1 product. However, three alternate unproductive pathways exist where the intermediate iron-oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involves release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen-oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed "Compound I". This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP3A4 reconstituted in Nanodiscs. We discovered that the "oxidase" uncoupling pathway is also operating in the substrate free form of the enzyme with rate of this pathway substantially increasing with the first substrate binding event. Surprisingly, a large fraction of the reducing

  1. Whole-Genome Identification, Phylogeny, and Evolution of the Cytochrome P450 Family 2 (CYP2) Subfamilies in Birds

    PubMed Central

    Almeida, Daniela; Maldonado, Emanuel; Khan, Imran; Silva, Liliana; Gilbert, M. Thomas P.; Zhang, Guojie; Jarvis, Erich D.; O’Brien, Stephen J.; Johnson, Warren E.; Antunes, Agostinho

    2016-01-01

    The cytochrome P450 (CYP) superfamily defends organisms from endogenous and noxious environmental compounds, and thus is crucial for survival. However, beyond mammals the molecular evolution of CYP2 subfamilies is poorly understood. Here, we characterized the CYP2 family across 48 avian whole genomes representing all major extant bird clades. Overall, 12 CYP2 subfamilies were identified, including the first description of the CYP2F, CYP2G, and several CYP2AF genes in avian genomes. Some of the CYP2 genes previously described as being lineage-specific, such as CYP2K and CYP2W, are ubiquitous to all avian groups. Furthermore, we identified a large number of CYP2J copies, which have been associated previously with water reabsorption. We detected positive selection in the avian CYP2C, CYP2D, CYP2H, CYP2J, CYP2K, and CYP2AC subfamilies. Moreover, we identified new substrate recognition sites (SRS0, SRS2_SRS3, and SRS3.1) and heme binding areas that influence CYP2 structure and function of functional importance as under significant positive selection. Some of the positively selected sites in avian CYP2D are located within the same SRS1 region that was previously linked with the metabolism of plant toxins. Additionally, we find that selective constraint variations in some avian CYP2 subfamilies are consistently associated with different feeding habits (CYP2H and CYP2J), habitats (CYP2D, CYP2H, CYP2J, and CYP2K), and migratory behaviors (CYP2D, CYP2H, and CYP2J). Overall, our findings indicate that there has been active enzyme site selection on CYP2 subfamilies and differential selection associated with different life history traits among birds. PMID:26979796

  2. Whole-Genome Identification, Phylogeny, and Evolution of the Cytochrome P450 Family 2 (CYP2) Subfamilies in Birds.

    PubMed

    Almeida, Daniela; Maldonado, Emanuel; Khan, Imran; Silva, Liliana; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho

    2016-04-13

    The cytochrome P450 (CYP) superfamily defends organisms from endogenous and noxious environmental compounds, and thus is crucial for survival. However, beyond mammals the molecular evolution of CYP2 subfamilies is poorly understood. Here, we characterized the CYP2 family across 48 avian whole genomes representing all major extant bird clades. Overall, 12 CYP2 subfamilies were identified, including the first description of the CYP2F, CYP2G, and several CYP2AF genes in avian genomes. Some of the CYP2 genes previously described as being lineage-specific, such as CYP2K and CYP2W, are ubiquitous to all avian groups. Furthermore, we identified a large number of CYP2J copies, which have been associated previously with water reabsorption. We detected positive selection in the avian CYP2C, CYP2D, CYP2H, CYP2J, CYP2K, and CYP2AC subfamilies. Moreover, we identified new substrate recognition sites (SRS0, SRS2_SRS3, and SRS3.1) and heme binding areas that influence CYP2 structure and function of functional importance as under significant positive selection. Some of the positively selected sites in avian CYP2D are located within the same SRS1 region that was previously linked with the metabolism of plant toxins. Additionally, we find that selective constraint variations in some avian CYP2 subfamilies are consistently associated with different feeding habits (CYP2H and CYP2J), habitats (CYP2D, CYP2H, CYP2J, and CYP2K), and migratory behaviors (CYP2D, CYP2H, and CYP2J). Overall, our findings indicate that there has been active enzyme site selection on CYP2 subfamilies and differential selection associated with different life history traits among birds.

  3. Metabolism of the c-Fos/activator protein-1 inhibitor T-5224 by multiple human UDP-glucuronosyltransferase isoforms.

    PubMed

    Uchihashi, Shinsuke; Fukumoto, Hiroyuki; Onoda, Makoto; Hayakawa, Hiroyoshi; Ikushiro, Shin-ichi; Sakaki, Toshiyuki

    2011-05-01

    We developed 3-{5-[4-(cyclopentyloxy)-2-hydroxybenzoyl]-2-[(3-hydroxy-1,2-benzisoxazol-6-yl)methoxy]phenyl} propionic acid (T-5224) as a novel inhibitor of the c-Fos/activator protein-1 for rheumatoid arthritis therapy. We predicted the metabolism of T-5224 in humans by using human liver microsomes (HLM), human intestinal microsomes (HIM), recombinant human cytochrome P450 (P450), and UDP-glucuronosyltransferases (UGTs). T-5224 was converted to its acyl O-glucuronide (G2) by UGT1A1 and UGT1A3 and to its hydroxyl O-glucuronide (G3) by several UGTs, but it was not metabolized by the P450s. A comparison of the intrinsic clearances (CL(int)) between HLM and HIM suggested that the glucuronidation of T-5224 occurs predominantly in the liver. UGT1A1 showed a higher k(cat)/K(m) value than UGT1A3 for G2 formation, but a lower k(cat)/K(m) value than UGT1A3 for G3 formation. A high correlation was observed between G2 formation activity and UGT1A1-specific activity (β-estradiol 3-glucuronidation) in seven individual HLM. A high correlation was also observed between G2 formation activity and UGT1A1 content in the HLM. These results strongly suggest that UGT1A1 is responsible for G2 formation in human liver. In contrast, no such correlation was observed with G3 formation, suggesting that multiple UGT isoforms, including UGT1A1 and UGT1A3, are involved in G3 formation. G2 is also observed in rat and monkey liver microsomes as a major metabolite of T-5224, suggesting that G2 is not a human-specific metabolite. In this study, we obtained useful information on the metabolism of T-5224 for its clinical use.

  4. Development of NanoART for HIV Treatment: Minding the Cytochrome P450 (CYP) Enzymes

    PubMed Central

    Midde, Narasimha M.; Kumar, Santosh

    2015-01-01

    Sustained suppression of HIV viral load is the primary objective for HIV treatment, which successfully achieved by the use of a wide array of antiretroviral therapies (ART). Despite this enormous success low level of virus persists in the anatomical and cellular reservoirs of the body causing a multitude of immunological and neurocognitive deficits. Towards this, nano-formulations are gaining attention to solve these problems by delivering ART to the targeted locations such as brain, lymphoid tissues, and monocytes/macrophages. As cytochrome P450 (CYP) enzymes play a critical role in the metabolism of drugs and other xenobiotics, it is expected that the interaction of nanoparticles with CYP enzymes may result in adverse drug reactions, cellular toxicity, and alterations in CYP-mediated metabolism of other drug molecules. Considering these potential adverse outcomes it is imperative to design the nano-carriers that will have minimal impact on CYP enzymes. Therefore, developing a long-acting nanoART regimen with minimal side effects is an essential step to improve patient’s adherence to the treatment paradigm, effective treatment strategy, and to combat the HIV infection & AIDS. PMID:26635972

  5. Modeling of interactions between xenobiotics and cytochrome P450 (CYP) enzymes

    PubMed Central

    Raunio, Hannu; Kuusisto, Mira; Juvonen, Risto O.; Pentikäinen, Olli T.

    2015-01-01

    The adverse effects to humans and environment of only few chemicals are well known. Absorption, distribution, metabolism, and excretion (ADME) are the steps of pharmaco/toxicokinetics that determine the internal dose of chemicals to which the organism is exposed. Of all the xenobiotic-metabolizing enzymes, the cytochrome P450 (CYP) enzymes are the most important due to their abundance and versatility. Reactions catalyzed by CYPs usually turn xenobiotics to harmless and excretable metabolites, but sometimes an innocuous xenobiotic is transformed into a toxic metabolite. Data on ADME and toxicity properties of compounds are increasingly generated using in vitro and modeling (in silico) tools. Both physics-based and empirical modeling approaches are used. Numerous ligand-based and target-based as well as combined modeling methods have been employed to evaluate determinants of CYP ligand binding as well as predicting sites of metabolism and inhibition characteristics of test molecules. In silico prediction of CYP–ligand interactions have made crucial contributions in understanding (1) determinants of CYP ligand binding recognition and affinity; (2) prediction of likely metabolites from substrates; (3) prediction of inhibitors and their inhibition potency. Truly predictive models of toxic outcomes cannot be created without incorporating metabolic characteristics; in silico methods help producing such information and filling gaps in experimentally derived data. Currently modeling methods are not mature enough to replace standard in vitro and in vivo approaches, but they are already used as an important component in risk assessment of drugs and other chemicals. PMID:26124721

  6. Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention

    PubMed Central

    2009-01-01

    CYP1A1 is one of the main cytochrome P450 enzymes, examined extensively for its capacity to activate compounds with carcinogenic properties. Continuous exposure to inhalation chemicals and environmental carcinogens is thought to increase the level of CYP1A1 expression in extrahepatic tissues, through the aryl hydrocarbon receptor (AhR). Although the latter has long been recognized as a ligand-induced transcription factor, which is responsible for the xenobiotic activating pathway of several phase I and phase II metabolizing enzymes, recent evidence suggests that the AhR is involved in various cell signaling pathways critical to cell cycle regulation and normal homeostasis. Disregulation of these pathways is implicated in tumor progression. In addition, it is becoming increasingly evident that CYP1A1 plays an important role in the detoxication of environmental carcinogens, as well as in the metabolic activation of dietary compounds with cancer preventative activity. Ultimately the contribution of CYP1A1 to cancer progression or prevention may depend on the balance of procarcinogen activation/detoxication and dietary natural product extrahepatic metabolism. PMID:19531241

  7. Cytochrome P450 Oxidoreductase Influences CYP2B6 Activity in Cyclophosphamide Bioactivation

    PubMed Central

    El-Serafi, Ibrahim; Afsharian, Parvaneh; Moshfegh, Ali; Hassan, Moustapha; Terelius, Ylva

    2015-01-01

    Introduction Cyclophosphamide is commonly used as an important component in conditioning prior to hematopoietic stem cell transplantation, a curative treatment for several hematological diseases. Cyclophosphamide is a prodrug activated mainly by cytochrome P450 2B6 (CYP2B6) in the liver. A high degree of inter- and intra-individual variation in cyclophosphamide kinetics has been reported in several studies. Materials and Methods Hydroxylation of cyclophosphamide was investigated in vitro using three microsomal batches of CYP2B6*1 with different ratios of POR/CYP expression levels. Twenty patients undergoing hematopoietic stem cell transplantation were also included in the study. All patients received an i.v. infusion of cyclophosphamide (60 mg/kg/day, for two days) as a part of their conditioning. Blood samples were collected from each patient before cyclophosphamide infusion, 6 h after the first dose and before and 6 h after the second dose. POR gene expression was measured by mRNA analysis and the pharmacokinetics of cyclophosphamide and its active metabolite were determined. Results A strong correlation between the in vitro intrinsic clearance of cyclophosphamide and the POR/CYP ratio was found. The apparent Km for CYP2B6.1 was almost constant (3-4 mM), while the CLint values were proportional to the POR/CYP ratio (3-34 μL/min/nmol CYP). In patients, the average expression of the POR gene in blood was significantly (P <0.001) up-regulated after cyclophosphamide infusion, with high inter-individual variations and significant correlation with the concentration ratio of the active metabolite 4-hydroxy-cyclophosphamide/cyclophosphamide. Nine patients were carriers for POR*28; four patients had relatively high POR expression. Conclusions This investigation shows for the first time that POR besides CYP2B6 can influence cyclophosphamide metabolism. Our results indicate that not only CYPs are important, but also POR expression and/or activity may influence

  8. Evolution of substrate recognition sites (SRSs) in cytochromes P450 from Apiaceae exemplified by the CYP71AJ subfamily.

    PubMed

    Dueholm, Bjørn; Krieger, Célia; Drew, Damian; Olry, Alexandre; Kamo, Tsunashi; Taboureau, Olivier; Weitzel, Corinna; Bourgaud, Frédéric; Hehn, Alain; Simonsen, Henrik Toft

    2015-06-26

    Large proliferations of cytochrome P450 encoding genes resulting from gene duplications can be termed as 'blooms', providing genetic material for the genesis and evolution of biosynthetic pathways. Furanocoumarins are allelochemicals produced by many of the species in Apiaceaous plants belonging to the Apioideae subfamily of Apiaceae and have been described as being involved in the defence reaction against phytophageous insects. A bloom in the cytochromes P450 CYP71AJ subfamily has been identified, showing at least 2 clades and 6 subclades within the CYP71AJ subfamily. Two of the subclades were functionally assigned to the biosynthesis of furanocoumarins. Six substrate recognition sites (SRS1-6) important for the enzymatic conversion were investigated in the described cytochromes P450 and display significant variability within the CYP71AJ subfamily. Homology models underline a significant modification of the accession to the iron atom, which might explain the difference of the substrate specificity between the cytochromes P450 restricted to furanocoumarins as substrates and the orphan CYP71AJ. Two subclades functionally assigned to the biosynthesis of furanocoumarins and four other subclades were identified and shown to be part of two distinct clades within the CYP71AJ subfamily. The subclades show significant variability within their substrate recognition sites between the clades, suggesting different biochemical functions and providing insights into the evolution of cytochrome P450 'blooms' in response to environmental pressures.

  9. Hepatic cytochrome P450 enzymes belonging to the CYP2C subfamily from an Australian marsupial, the koala (Phascolarctos cinereus).

    PubMed

    Jones, Brett R; El-Merhibi, Adaweyah; Ngo, Suong N T; Stupans, Ieva; McKinnon, Ross A

    2008-09-01

    Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of xenobiotics and endogenous substrates. We have previously reported that the obligate Eucalyptus feeder koala (Phascolarctos cinereus) exhibits a higher hepatic CYP2C activity as compared to non-Eucalyptus feeders human or rat, with stimulation of CYP2C activity by cineole. In the present study, we examine CYP2C expression by immunohistochemistry and describe the identification and cloning of koala CYP2Cs. Utilising anti-rat CYP2C6 antibody, the expression of CYP2C was found to be uniform across the hepatic sections, being consistent with that observed in human and rat. Two 1647 and 1638 bp koala liver CYP2C complete cDNAs, designated CYP2C47 and CYP2C48 respectively, were cloned by cDNA library screening. The koala CYP2C cDNAs encode a protein of 495 amino acids. Three additional partial CYP2C sequences were also identified from the koala, indicating the multiplicity of the CYP2C subfamily in this unique marsupial species. The results of this study demonstrate the presence of koala hepatic CYP2Cs that share several common features with other published CYP2Cs; however CYP2C47 and CYP2C48 contain four extra amino acid residues at the NH2-terminal, a transmembrane anchor which was reported being a fundamentally conserved structure core of all eukaryote CYP enzymes.

  10. Optimized UDP-glucuronosyltransferase (UGT) activity assay for trout liver S9 fractions

    EPA Pesticide Factsheets

    This publication provides an optimized UGT assay for trout liver S9 fractions which can be used to perform in vitro-in vivo extrapolations of measured UGT activityThis dataset is associated with the following publication:Ladd, M., P. Fitzsimmons , and J. Nichols. Optimization of a UDP-glucuronosyltransferase assay for trout liver S9 fractions: Activity enhancement by alamethicin, a pore-forming peptide. XENOBIOTICA. Taylor & Francis, Inc., Philadelphia, PA, USA, 46(12): 1066-1075, (2016).

  11. Cytochrome P450 gene CYP337 and heritability of fitness traits in the Glanville fritillary butterfly.

    PubMed

    de Jong, M A; Wong, S C; Lehtonen, R; Hanski, I

    2014-04-01

    Fitness-related life history traits often show substantial heritable genetic variation in natural populations, but knowledge of the genetic architecture of these traits is limited. In the Glanville fritillary butterfly, we measured the heritability of key life history traits in a large outdoor population cage during 2 years and generations and combined this experiment with an association study of a set of candidate genes. The genes were selected on the basis of previous genomic and transcriptomic studies and have been linked to the physiology and life history of this or other arthropod species. Heritability was high and significant for two traits, post-diapause larval development time (h(2) = 0.37) and lifetime egg (and larval) production (h(2) = 0.62); the latter is closely related to lifetime reproductive success and therefore fitness. We discovered a strong association between genetic polymorphism in the cytochrome P450 gene CYP337 and lifetime egg production, which accounted for 14% of the additive variance in egg production. This gene belongs to a group of cytochrome P450 genes that have a well-documented role in host plant adaptations in Lepidoptera and other insects and is likely to play an important role in the ecology and microevolution of the Glanville fritillary. This study provides a prime example of a gene associated with heritable fitness variation, measured under semi-natural ecological conditions.

  12. Transcriptional regulation of the grape cytochrome P450 monooxygenase gene CYP736B expression in response to Xylella fastidiosa infection

    PubMed Central

    2010-01-01

    Background Plant cytochrome P450 monooxygenases (CYP) mediate synthesis and metabolism of many physiologically important primary and secondary compounds that are related to plant defense against a range of pathogenic microbes and insects. To determine if cytochrome P450 monooxygenases are involved in defense response to Xylella fastidiosa (Xf) infection, we investigated expression and regulatory mechanisms of the cytochrome P450 monooxygenase CYP736B gene in both disease resistant and susceptible grapevines. Results Cloning of genomic DNA and cDNA revealed that the CYP736B gene was composed of two exons and one intron with GT as a donor site and AG as an acceptor site. CYP736B transcript was up-regulated in PD-resistant plants and down-regulated in PD-susceptible plants 6 weeks after Xf inoculation. However, CYP736B expression was very low in stem tissues at all evaluated time points. 5'RACE and 3'RACE sequence analyses revealed that there were three candidate transcription start sites (TSS) in the upstream region and three candidate polyadenylation (PolyA) sites in the downstream region of CYP736B. Usage frequencies of each transcription initiation site and each polyadenylation site varied depending on plant genotype, developmental stage, tissue, and treatment. These results demonstrate that expression of CYP736B is regulated developmentally and in response to Xf infection at both transcriptional and post-transcriptional levels. Multiple transcription start and polyadenylation sites contribute to regulation of CYP736B expression. Conclusions This report provides evidence that the cytochrome P450 monooxygenase CYP736B gene is involved in defense response at a specific stage of Xf infection in grapevines; multiple transcription initiation and polyadenylation sites exist for CYP736B in grapevine; and coordinative and selective use of transcription initiation and polyadenylation sites play an important role in regulation of CYP736B expression during growth

  13. CYP153A6, a Soluble P450 Oxygenase Catalyzing Terminal-Alkane Hydroxylation

    PubMed Central

    Funhoff, Enrico G.; Bauer, Ulrich; García-Rubio, Inés; Witholt, Bernard; van Beilen, Jan B.

    2006-01-01

    The first and key step in alkane metabolism is the terminal hydroxylation of alkanes to 1-alkanols, a reaction catalyzed by a family of integral-membrane diiron enzymes related to Pseudomonas putida GPo1 AlkB, by a diverse group of methane, propane, and butane monooxygenases and by some membrane-bound cytochrome P450s. Recently, a family of cytoplasmic P450 enzymes was identified in prokaryotes that allow their host to grow on aliphatic alkanes. One member of this family, CYP153A6 from Mycobacterium sp. HXN-1500, hydroxylates medium-chain-length alkanes (C6 to C11) to 1-alkanols with a maximal turnover number of 70 min−1 and has a regiospecificity of ≥95% for the terminal carbon atom position. Spectroscopic binding studies showed that C6-to-C11 aliphatic alkanes bind in the active site with Kd values varying from ∼20 nM to 3.7 μM. Longer alkanes bind more strongly than shorter alkanes, while the introduction of sterically hindering groups reduces the affinity. This suggests that the substrate-binding pocket is shaped such that linear alkanes are preferred. Electron paramagnetic resonance spectroscopy in the presence of the substrate showed the formation of an enzyme-substrate complex, which confirmed the binding of substrates observed in optical titrations. To rationalize the experimental observations on a molecular scale, homology modeling of CYP153A6 and docking of substrates were used to provide the first insight into structural features required for terminal alkane hydroxylation. PMID:16816194

  14. CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation.

    PubMed

    Funhoff, Enrico G; Bauer, Ulrich; García-Rubio, Inés; Witholt, Bernard; van Beilen, Jan B

    2006-07-01

    The first and key step in alkane metabolism is the terminal hydroxylation of alkanes to 1-alkanols, a reaction catalyzed by a family of integral-membrane diiron enzymes related to Pseudomonas putida GPo1 AlkB, by a diverse group of methane, propane, and butane monooxygenases and by some membrane-bound cytochrome P450s. Recently, a family of cytoplasmic P450 enzymes was identified in prokaryotes that allow their host to grow on aliphatic alkanes. One member of this family, CYP153A6 from Mycobacterium sp. HXN-1500, hydroxylates medium-chain-length alkanes (C6 to C11) to 1-alkanols with a maximal turnover number of 70 min(-1) and has a regiospecificity of > or =95% for the terminal carbon atom position. Spectroscopic binding studies showed that C6-to-C11 aliphatic alkanes bind in the active site with Kd values varying from approximately 20 nM to 3.7 microM. Longer alkanes bind more strongly than shorter alkanes, while the introduction of sterically hindering groups reduces the affinity. This suggests that the substrate-binding pocket is shaped such that linear alkanes are preferred. Electron paramagnetic resonance spectroscopy in the presence of the substrate showed the formation of an enzyme-substrate complex, which confirmed the binding of substrates observed in optical titrations. To rationalize the experimental observations on a molecular scale, homology modeling of CYP153A6 and docking of substrates were used to provide the first insight into structural features required for terminal alkane hydroxylation.

  15. Polymorphisms in the cytochrome P450 genes CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1, CYP19A1 and colorectal cancer risk

    PubMed Central

    Bethke, Lara; Webb, Emily; Sellick, Gabrielle; Rudd, Matthew; Penegar, Stephen; Withey, Laura; Qureshi, Mobshra; Houlston, Richard

    2007-01-01

    Background Cytochrome P450 (CYP) enzymes have the potential to affect colorectal cancer (CRC) risk by determining the genotoxic impact of exogenous carcinogens and levels of sex hormones. Methods To investigate if common variants of CYP1A2, CYP1B1, CYP3A4, CYP3A5, CYP11A1, CYP17A1 and CYP19A1 influence CRC risk we genotyped 2,575 CRC cases and 2,707 controls for 20 single nucleotide polymorphisms (SNPs) that have not previously been shown to have functional consequence within these genes. Results There was a suggestion of increased risk, albeit insignificant after correction for multiple testing, of CRC for individuals homozygous for CYP1B1 rs162558 and heterozygous for CYP1A2 rs2069522 (odds ratio [OR] = 1.36, 95% confidence interval [CI]: 1.03–1.80 and OR = 1.34, 95% CI: 1.00–1.79 respectively). Conclusion This study provides some support for polymorphic variation in CYP1A2 and CYP1B1 playing a role in CRC susceptibility. PMID:17615053

  16. In Silico Prediction of Cytochrome P450-Drug Interaction: QSARs for CYP3A4 and CYP2C9

    PubMed Central

    Nembri, Serena; Grisoni, Francesca; Consonni, Viviana; Todeschini, Roberto

    2016-01-01

    Cytochromes P450 (CYP) are the main actors in the oxidation of xenobiotics and play a crucial role in drug safety, persistence, bioactivation, and drug-drug/food-drug interaction. This work aims to develop Quantitative Structure-Activity Relationship (QSAR) models to predict the drug interaction with two of the most important CYP isoforms, namely 2C9 and 3A4. The presented models are calibrated on 9122 drug-like compounds, using three different modelling approaches and two types of molecular description (classical molecular descriptors and binary fingerprints). For each isoform, three classification models are presented, based on a different approach and with different advantages: (1) a very simple and interpretable classification tree; (2) a local (k-Nearest Neighbor) model based classical descriptors and; (3) a model based on a recently proposed local classifier (N-Nearest Neighbor) on binary fingerprints. The salient features of the work are (1) the thorough model validation and the applicability domain assessment; (2) the descriptor interpretation, which highlighted the crucial aspects of P450-drug interaction; and (3) the consensus aggregation of models, which largely increased the prediction accuracy. PMID:27294921

  17. Food-drug interactions via human cytochrome P450 3A (CYP3A).

    PubMed

    Fujita, Ken-ichi

    2004-01-01

    Food-drug interactions have been reported to occur in various systems in the body. The causes of these interactions are mainly divided into pharmacodynamic and pharmacokinetic processes. Among these processes, drug metabolism plays a crucial role in drug interactions. Metabolic food-drug interactions occur when a certain food alters the activity of a drug-metabolizing enzyme, leading to a modulation of the pharmacokinetics of drugs metabolized by the enzyme. A variety of interactions have been documented so far. Foods consisting of complex chemical mixtures, such as fruits, alcoholic beverages, teas, and herbs, possess the ability to inhibit or induce the activity of drug-metabolizing enzymes. According to results obtained thus far, cytochrome P450 3A4 (CYP3A4) appears to be a key enzyme in food-drug interactions. For example, interactions of grapefruit juice with felodipine and cyclosporine, red wine with cyclosporine, and St John's wort with various medicines including cyclosporine, have been demonstrated. The results indicate the requirement of dosage adjustment to maintain drug concentrations within their therapeutic windows. The CYP3A4-related interaction by food components may be related to the high level of expression of CYP3A4 in the small intestine, as well as its broad substrate specificity, as CYP3A4 is responsible for the metabolism of more than 50% of clinical pharmaceuticals. This review article summarizes the findings obtained to date concerning food-drug interactions and their clinical implications. It seems likely that more information regarding such interactions will accumulate in the future, and awareness is necessary for achieving optimal drug therapy.

  18. Cytochrome P450 monooxygenase CYP53 family in fungi: comparative structural and evolutionary analysis and its role as a common alternative anti-fungal drug target.

    PubMed

    Jawallapersand, Poojah; Mashele, Samson Sitheni; Kovačič, Lidija; Stojan, Jure; Komel, Radovan; Pakala, Suresh Babu; Kraševec, Nada; Syed, Khajamohiddin

    2014-01-01

    Cytochrome P450 monooxygenases (CYPs/P450s) are heme-thiolate proteins whose role as a drug target against pathogenic microbes has been explored because of their stereo- and regio-specific oxidation activity. We aimed to assess the CYP53 family's role as a common alternative drug target against animal (including human) and plant pathogenic fungi and its role in fungal-mediated wood degradation. Genome-wide analysis of fungal species revealed the presence of CYP53 members in ascomycetes and basidiomycetes. Basidiomycetes had a higher number of CYP53 members in their genomes than ascomycetes. Only two CYP53 subfamilies were found in ascomycetes and six subfamilies in basidiomycetes, suggesting that during the divergence of phyla ascomycetes lost CYP53 P450s. According to phylogenetic and gene-structure analysis, enrichment of CYP53 P450s in basidiomycetes occurred due to the extensive duplication of CYP53 P450s in their genomes. Numerous amino acids (103) were found to be conserved in the ascomycetes CYP53 P450s, against only seven in basidiomycetes CYP53 P450s. 3D-modelling and active-site cavity mapping data revealed that the ascomycetes CYP53 P450s have a highly conserved protein structure whereby 78% amino acids in the active-site cavity were found to be conserved. Because of this rigid nature of ascomycetes CYP53 P450s' active site cavity, any inhibitor directed against this P450 family can serve as a common anti-fungal drug target, particularly toward pathogenic ascomycetes. The dynamic nature of basidiomycetes CYP53 P450s at a gene and protein level indicates that these P450s are destined to acquire novel functions. Functional analysis of CYP53 P450s strongly supported our hypothesis that the ascomycetes CYP53 P450s ability is limited for detoxification of toxic molecules, whereas basidiomycetes CYP53 P450s play an additional role, i.e. involvement in degradation of wood and its derived components. This study is the first report on genome-wide comparative

  19. Cytochrome P450 Monooxygenase CYP53 Family in Fungi: Comparative Structural and Evolutionary Analysis and Its Role as a Common Alternative Anti-Fungal Drug Target

    PubMed Central

    Jawallapersand, Poojah; Mashele, Samson Sitheni; Kovačič, Lidija; Stojan, Jure; Komel, Radovan; Pakala, Suresh Babu; Kraševec, Nada; Syed, Khajamohiddin

    2014-01-01

    Cytochrome P450 monooxygenases (CYPs/P450s) are heme-thiolate proteins whose role as a drug target against pathogenic microbes has been explored because of their stereo- and regio-specific oxidation activity. We aimed to assess the CYP53 family's role as a common alternative drug target against animal (including human) and plant pathogenic fungi and its role in fungal-mediated wood degradation. Genome-wide analysis of fungal species revealed the presence of CYP53 members in ascomycetes and basidiomycetes. Basidiomycetes had a higher number of CYP53 members in their genomes than ascomycetes. Only two CYP53 subfamilies were found in ascomycetes and six subfamilies in basidiomycetes, suggesting that during the divergence of phyla ascomycetes lost CYP53 P450s. According to phylogenetic and gene-structure analysis, enrichment of CYP53 P450s in basidiomycetes occurred due to the extensive duplication of CYP53 P450s in their genomes. Numerous amino acids (103) were found to be conserved in the ascomycetes CYP53 P450s, against only seven in basidiomycetes CYP53 P450s. 3D-modelling and active-site cavity mapping data revealed that the ascomycetes CYP53 P450s have a highly conserved protein structure whereby 78% amino acids in the active-site cavity were found to be conserved. Because of this rigid nature of ascomycetes CYP53 P450s' active site cavity, any inhibitor directed against this P450 family can serve as a common anti-fungal drug target, particularly toward pathogenic ascomycetes. The dynamic nature of basidiomycetes CYP53 P450s at a gene and protein level indicates that these P450s are destined to acquire novel functions. Functional analysis of CYP53 P450s strongly supported our hypothesis that the ascomycetes CYP53 P450s ability is limited for detoxification of toxic molecules, whereas basidiomycetes CYP53 P450s play an additional role, i.e. involvement in degradation of wood and its derived components. This study is the first report on genome-wide comparative

  20. The dynamics of camphor in the cytochrome P450 CYP101D2

    PubMed Central

    Vohra, Shabana; Musgaard, Maria; Bell, Stephen G; Wong, Luet-Lok; Zhou, Weihong; Biggin, Philip C

    2013-01-01

    The recent crystal structures of CYP101D2, a cytochrome P450 protein from the oligotrophic bacterium Novosphingobium aromaticivorans DSM12444 revealed that both the native (substrate-free) and camphor-soaked forms have open conformations. Furthermore, two other potential camphor-binding sites were also identified from electron densities in the camphor-soaked structure, one being located in the access channel and the other in a cavity on the surface near the F-helix side of the F-G loop termed the substrate recognition site. These latter sites may be key intermediate positions on the pathway for substrate access to or product egress from the active site. Here, we show via the use of unbiased atomistic molecular dynamics simulations that despite the open conformation of the native and camphor-bound crystal structures, the underlying dynamics of CYP101D2 appear to be very similar to other CYP proteins. Simulations of the native structure demonstrated that the protein is capable of sampling many different conformational substates. At the same time, simulations with the camphor positioned at various locations within the access channel or recognition site show that movement towards the active site or towards bulk solvent can readily occur on a short timescale, thus confirming many previously reported in silico studies using steered molecular dynamics. The simulations also demonstrate how the fluctuations of an aromatic gate appear to control access to the active site. Finally, comparison of camphor-bound simulations with the native simulations suggests that the fluctuations can be of similar level and thus are more representative of the conformational selection model rather than induced fit. PMID:23832606

  1. Generation and characterization of novel cytochrome P450 Cyp2c gene cluster knockout and CYP2C9 humanized mouse lines.

    PubMed

    Scheer, Nico; Kapelyukh, Yury; Chatham, Lynsey; Rode, Anja; Buechel, Sandra; Wolf, C Roland

    2012-12-01

    Compared with rodents and many other animal species, the human cytochrome P450 (P450) Cyp2c gene cluster varies significantly in the multiplicity of functional genes and in the substrate specificity of its enzymes. As a consequence, the use of wild-type animal models to predict the role of human CYP2C enzymes in drug metabolism and drug-drug interactions is limited. Within the human CYP2C cluster CYP2C9 is of particular importance, because it is one of the most abundant P450 enzymes in human liver, and it is involved in the metabolism of a wide variety of important drugs and environmental chemicals. To investigate the in vivo functions of cytochrome P450 Cyp2c genes and to establish a model for studying the functions of CYP2C9 in vivo, we have generated a mouse model with a deletion of the murine Cyp2c gene cluster and a corresponding humanized model expressing CYP2C9 specifically in the liver. Despite the high number of functional genes in the mouse Cyp2c cluster and the reported roles of some of these proteins in different biological processes, mice deleted for Cyp2c genes were viable and fertile but showed certain phenotypic alterations in the liver. The expression of CYP2C9 in the liver also resulted in viable animals active in the metabolism and disposition of a number of CYP2C9 substrates. These mouse lines provide a powerful tool for studying the role of Cyp2c genes and of CYP2C9 in particular in drug disposition and as a factor in drug-drug interaction.

  2. Arachidonic Acid Inhibits Epithelial Na Channel Via Cytochrome P450 (CYP) Epoxygenase-dependent Metabolic Pathways

    PubMed Central

    Wei, Yuan; Lin, Dao-Hong; Kemp, Rowena; Yaddanapudi, Ganesh S.S.; Nasjletti, Alberto; Falck, John R.; Wang, Wen-Hui

    2004-01-01

    We used the patch-clamp technique to study the effect of arachidonic acid (AA) on epithelial Na channels (ENaC) in the rat cortical collecting duct (CCD). Application of 10 μM AA decreased the ENaC activity defined by NPo from 1.0 to 0.1. The dose–response curve of the AA effect on ENaC shows that 2 μM AA inhibited the ENaC activity by 50%. The effect of AA on ENaC is specific because neither 5,8,11,14-eicosatetraynoic acid (ETYA), a nonmetabolized analogue of AA, nor 11,14,17-eicosatrienoic acid mimicked the inhibitory effect of AA on ENaC. Moreover, inhibition of either cyclooxygenase (COX) with indomethacin or cytochrome P450 (CYP) ω-hydroxylation with N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) failed to abolish the effect of AA on ENaC. In contrast, the inhibitory effect of AA on ENaC was absent in the presence of N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide (MS-PPOH), an agent that inhibits CYP-epoxygenase activity. The notion that the inhibitory effect of AA is mediated by CYP-epoxygenase–dependent metabolites is also supported by the observation that application of 200 nM 11,12-epoxyeicosatrienoic acid (EET) inhibited ENaC in the CCD. In contrast, addition of 5,6-, 8,9-, or 14,15-EET failed to decrease ENaC activity. Also, application of 11,12-EET can still reduce ENaC activity in the presence of MS-PPOH, suggesting that 11,12-EET is a mediator for the AA-induced inhibition of ENaC. Furthermore, gas chromatography mass spectrometry analysis detected the presence of 11,12-EET in the CCD and CYP2C23 is expressed in the principal cells of the CCD. We conclude that AA inhibits ENaC activity in the CCD and that the effect of AA is mediated by a CYP-epoxygenase–dependent metabolite, 11,12-EET. PMID:15545402

  3. Structural characterization of CYP144A1 - a cytochrome P450 enzyme expressed from alternative transcripts in Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Chenge, Jude; Kavanagh, Madeline E.; Driscoll, Max D.; McLean, Kirsty J.; Young, Douglas B.; Cortes, Teresa; Matak-Vinkovic, Dijana; Levy, Colin W.; Rigby, Stephen E. J.; Leys, David; Abell, Chris; Munro, Andrew W.

    2016-05-01

    Mycobacterium tuberculosis (Mtb) causes the disease tuberculosis (TB). The virulent Mtb H37Rv strain encodes 20 cytochrome P450 (CYP) enzymes, many of which are implicated in Mtb survival and pathogenicity in the human host. Bioinformatics analysis revealed that CYP144A1 is retained exclusively within the Mycobacterium genus, particularly in species causing human and animal disease. Transcriptomic annotation revealed two possible CYP144A1 start codons, leading to expression of (i) a “full-length” 434 amino acid version (CYP144A1-FLV) and (ii) a “truncated” 404 amino acid version (CYP144A1-TRV). Computational analysis predicted that the extended N-terminal region of CYP144A1-FLV is largely unstructured. CYP144A1 FLV and TRV forms were purified in heme-bound states. Mass spectrometry confirmed production of intact, His6-tagged forms of CYP144A1-FLV and -TRV, with EPR demonstrating cysteine thiolate coordination of heme iron in both cases. Hydrodynamic analysis indicated that both CYP144A1 forms are monomeric. CYP144A1-TRV was crystallized and the first structure of a CYP144 family P450 protein determined. CYP144A1-TRV has an open structure primed for substrate binding, with a large active site cavity. Our data provide the first evidence that Mtb produces two different forms of CYP144A1 from alternative transcripts, with CYP144A1-TRV generated from a leaderless transcript lacking a 5‧-untranslated region and Shine-Dalgarno ribosome binding site.

  4. Structural characterization of CYP144A1 – a cytochrome P450 enzyme expressed from alternative transcripts in Mycobacterium tuberculosis

    PubMed Central

    Chenge, Jude; Kavanagh, Madeline E.; Driscoll, Max D.; McLean, Kirsty J.; Young, Douglas B.; Cortes, Teresa; Matak-Vinkovic, Dijana; Levy, Colin W.; Rigby, Stephen E. J.; Leys, David; Abell, Chris; Munro, Andrew W.

    2016-01-01

    Mycobacterium tuberculosis (Mtb) causes the disease tuberculosis (TB). The virulent Mtb H37Rv strain encodes 20 cytochrome P450 (CYP) enzymes, many of which are implicated in Mtb survival and pathogenicity in the human host. Bioinformatics analysis revealed that CYP144A1 is retained exclusively within the Mycobacterium genus, particularly in species causing human and animal disease. Transcriptomic annotation revealed two possible CYP144A1 start codons, leading to expression of (i) a “full-length” 434 amino acid version (CYP144A1-FLV) and (ii) a “truncated” 404 amino acid version (CYP144A1-TRV). Computational analysis predicted that the extended N-terminal region of CYP144A1-FLV is largely unstructured. CYP144A1 FLV and TRV forms were purified in heme-bound states. Mass spectrometry confirmed production of intact, His6-tagged forms of CYP144A1-FLV and -TRV, with EPR demonstrating cysteine thiolate coordination of heme iron in both cases. Hydrodynamic analysis indicated that both CYP144A1 forms are monomeric. CYP144A1-TRV was crystallized and the first structure of a CYP144 family P450 protein determined. CYP144A1-TRV has an open structure primed for substrate binding, with a large active site cavity. Our data provide the first evidence that Mtb produces two different forms of CYP144A1 from alternative transcripts, with CYP144A1-TRV generated from a leaderless transcript lacking a 5′-untranslated region and Shine-Dalgarno ribosome binding site. PMID:27225995

  5. A substrate-specific cytochrome P450 monooxygenase, CYP6AB11, from the polyphagous navel orangeworm (Amyelois transitella).

    PubMed

    Niu, Guodong; Rupasinghe, Sanjeewa G; Zangerl, Arthur R; Siegel, Joel P; Schuler, Mary A; Berenbaum, May R

    2011-04-01

    The navel orangeworm Amyelois transitella (Walker) (Lepidoptera: Pyralidae) is a serious pest of many tree crops in California orchards, including almonds, pistachios, walnuts and figs. To understand the molecular mechanisms underlying detoxification of phytochemicals, insecticides and mycotoxins by this species, full-length CYP6AB11 cDNA was isolated from larval midguts using RACE PCR. Phylogenetic analysis of this insect cytochrome P450 monooxygenase established its evolutionary relationship to a P450 that selectively metabolizes imperatorin (a linear furanocoumarin) and myristicin (a natural methylenedioxyphenyl compound) in another lepidopteran species. Metabolic assays conducted with baculovirus-expressed P450 protein, P450 reductase and cytochrome b(5) on 16 compounds, including phytochemicals, mycotoxins, and synthetic pesticides, indicated that CYP6AB11 efficiently metabolizes imperatorin (0.88 pmol/min/pmol P450) and slowly metabolizes piperonyl butoxide (0.11 pmol/min/pmol P450). LC-MS analysis indicated that the imperatorin metabolite is an epoxide generated by oxidation of the double bond in its extended isoprenyl side chain. Predictive structures for CYP6AB11 suggested that its catalytic site contains a doughnut-like constriction over the heme that excludes aromatic rings on substrates and allows only their extended side chains to access the catalytic site. CYP6AB11 can also metabolize the principal insecticide synergist piperonyl butoxide (PBO), a synthetic methylenedioxyphenyl compound, albeit slowly, which raises the possibility that resistance may evolve in this species after exposure to synergists under field conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes

    EPA Science Inventory

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was fo...

  7. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes

    EPA Science Inventory

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was fo...

  8. Differential expression of cytochrome P450 enzymes from the CYP2C subfamily in the human brain.

    PubMed

    Booth Depaz, Iris M; Toselli, Francesca; Wilce, Peter A; Gillam, Elizabeth M J

    2015-03-01

    Cytochrome P450 enzymes from the CYP2C subfamily play a prominent role in the metabolic clearance of many drugs. CYP2C enzymes have also been implicated in the metabolism of arachidonic acid to vasoactive epoxyeicosatrienoic acids. CYP2C8, CYP2C9, and CYP2C19 are expressed in the adult liver at significant levels; however, the expression of CYP2C enzymes in extrahepatic tissues such as the brain is less well characterized. Form-specific antibodies to CYP2C9 and CYP2C19 were prepared by affinity purification of antibodies raised to unique peptides. CYP2C9 and CYP2C19 were located in microsomal fractions of all five human brain regions examined, namely the frontal cortex, hippocampus, basal ganglia, amygdala, and cerebellum. Both CYP2C9 and CYP2C19 were detected predominantly within the neuronal soma but with expression extending down axons and dendrites in certain regions. Finally, a comparison of cortex samples from alcoholics and age-matched controls suggested that CYP2C9 expression was increased in alcoholics.

  9. Homology modeling, molecular dynamics simulations, and analysis of CYP119, a P450 enzyme from extreme acidothermophilic archaeon Sulfolobus solfataricus.

    PubMed

    Chang, Y T; Loew, G

    2000-03-14

    The recent characterization of a thermophilic and barophilic CYP119 from Sulfolobus solfataricus offers a new opportunity to identify the origin of its stability by comparing it with mesophilic P450s with known structures. Since the three-dimensional structure of CYP119 is not yet available, homology modeling techniques were used to build model structures for this enzyme. The overall quality and stability of the models were assessed using three protein analysis programs and by monitoring structural stability during 1 ns of molecular dynamics simulations at 300 and 390 K. The results show the CYP119 models to be of good quality. Possible origins of the thermo- and barostability of CYP119 were then investigated by examining the amino acid compositions and the three-dimensional structure of CYP119 compared with the five mesophilic templates. Three possible factors were identified that could contribute to the enhanced stability of CYP119. The first was the higher relative population of salt bridges and the presence of a few unique salt bridges found in CYP119 that were absent in all five template CYP450s. The second factor was a decreased population of Ala and an increased population of Ile found in the interior of CYP119, which are likely to improve packing in CYP119. The third factor was a more extensive aromatic cluster seen in CYP119 which was not found in all five template P450s. In addition, the model CYP119 three-dimensional structures were also used to determine key properties related to its function. Specifically, binding site residues and surface residues for redox partner interactions were identified. These residues identified together with those residues found that might contribute to the increased stability are suggested for future mutagenesis studies. The results obtained from these experimental studies shall then provide further validation of the suggested origins of stability and the structure-function relationships derived from the model structures of

  10. Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants

    PubMed Central

    Geisler, Katrin; Hughes, Richard K.; Sainsbury, Frank; Lomonossoff, George P.; Rejzek, Martin; Fairhurst, Shirley; Olsen, Carl-Erik; Motawia, Mohammed Saddik; Melton, Rachel E.; Hemmings, Andrew M.; Bak, Søren; Osbourn, Anne

    2013-01-01

    Members of the cytochromes P450 superfamily (P450s) catalyze a huge variety of oxidation reactions in microbes and higher organisms. Most P450 families are highly divergent, but in contrast the cytochrome P450 14α-sterol demethylase (CYP51) family is one of the most ancient and conserved, catalyzing sterol 14α-demethylase reactions required for essential sterol synthesis across the fungal, animal, and plant kingdoms. Oats (Avena spp.) produce antimicrobial compounds, avenacins, that provide protection against disease. Avenacins are synthesized from the simple triterpene, β-amyrin. Previously we identified a gene encoding a member of the CYP51 family of cytochromes P450, AsCyp51H10 (also known as Saponin-deficient 2, Sad2), that is required for avenacin synthesis in a forward screen for avenacin-deficient oat mutants. sad2 mutants accumulate β-amyrin, suggesting that they are blocked early in the pathway. Here, using a transient plant expression system, we show that AsCYP51H10 is a multifunctional P450 capable of modifying both the C and D rings of the pentacyclic triterpene scaffold to give 12,13β-epoxy-3β,16β-dihydroxy-oleanane (12,13β-epoxy-16β-hydroxy-β-amyrin). Molecular modeling and docking experiments indicate that C16 hydroxylation is likely to precede C12,13 epoxidation. Our computational modeling, in combination with analysis of a suite of sad2 mutants, provides insights into the unusual catalytic behavior of AsCYP51H10 and its active site mutants. Fungal bioassays show that the C12,13 epoxy group is an important determinant of antifungal activity. Accordingly, the oat AsCYP51H10 enzyme has been recruited from primary metabolism and has acquired a different function compared to other characterized members of the plant CYP51 family—as a multifunctional stereo- and regio-specific hydroxylase in plant specialized metabolism. PMID:23940321

  11. Insights into Hydrocarbon Assimilation by Eurotialean and Hypocrealean Fungi: Roles for CYP52 and CYP53 Clans of Cytochrome P450 Genes.

    PubMed

    Huarte-Bonnet, Carla; Kumar, Suresh; Saparrat, Mario C N; Girotti, Juan R; Santana, Marianela; Hallsworth, John E; Pedrini, Nicolás

    2017-09-23

    Several filamentous fungi are able to concomitantly assimilate both aliphatic and polycyclic aromatic hydrocarbons that are the biogenic by-products of some industrial processes. Cytochrome P450 monooxygenases catalyze the first oxidation reaction for both types of substrate. Among the cytochrome P450 (CYP) genes, the family CYP52 is implicated in the first hydroxylation step in alkane-assimilation processes, while genes belonging to the family CYP53 have been linked with oxidation of aromatic hydrocarbons. Here, we perform a comparative analysis of CYP genes belonging to clans CYP52 and CYP53 in Aspergillus niger, Beauveria bassiana, Metarhizium robertsii (formerly M. anisopliae var. anisopliae), and Penicillium chrysogenum. These species were able to assimilate n-hexadecane, n-octacosane, and phenanthrene, exhibiting a species-dependent modification in pH of the nutrient medium during this process. Modeling of the molecular docking of the hydrocarbons to the cytochrome P450 active site revealed that both phenanthrene and n-octacosane are energetically favored as substrates for the enzymes codified by genes belonging to both CYP52 and CYP53 clans, and thus appear to be involved in this oxidation step. Analyses of gene expression revealed that CYP53 members were significantly induced by phenanthrene in all species studied, but only CYP52X1 and CYP53A11 from B. bassiana were highly induced with n-alkanes. These findings suggest that the set of P450 enzymes involved in hydrocarbon assimilation by fungi is dependent on phylogeny and reveal distinct substrate and expression specificities.

  12. The revised human liver cytochrome P450 "Pie": absolute protein quantification of CYP4F and CYP3A enzymes using targeted quantitative proteomics.

    PubMed

    Michaels, Scott; Wang, Michael Zhuo

    2014-08-01

    The CYP4F subfamily of enzymes has been identified recently to be involved in the metabolism of endogenous compounds (arachidonic acid and leukotriene B4), nutrients (vitamins K1 and E), and xenobiotics (pafuramidine and fingolimod). CYP4F2 and CYP4F3B are reported to be expressed in the human liver. However, absolute concentrations of these enzymes in human liver microsomes (HLMs) and their interindividual variability have yet to be determined because of the lack of specific antibodies. Here, an liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based targeted quantitative proteomic approach was employed to determine the absolute protein concentrations of CYP4F2 and CYP4F3B compared with CYP3A in two panels of HLMs (n = 31). As a result, the human hepatic cytochrome P450 (P450) "pie" has been revised to include the contribution of CYP4F enzymes, which amounts to 15% of the total hepatic cytochrome P450 enzymes. CYP4F3B displayed low interindividual variability (3.3-fold) in the HLM panels whereas CYP4F2 displayed large variability (21-fold). However, CYP4F2 variability decreased to 3.4-fold if the two donors with the lowest expression were excluded. In contrast, CYP3A exhibited 29-fold interindividual variability in the same HLM panels. The proposed marker reaction for CYP4F enzymes pafuramidine/DB289 M1 formation did not correlate with CYP4F protein content, suggesting alternate metabolic pathways for DB289 M1 formation in HLMs. In conclusion, CYP4F enzymes are highly expressed in the human liver and their physiologic and pharmacologic roles warrant further investigation.

  13. Cytochrome P450 CYP2 genes in the common cormorant: Evolutionary relationships with 130 diapsid CYP2 clan sequences and chemical effects on their expression.

    PubMed

    Kubota, Akira; Stegeman, John J; Goldstone, Jared V; Nelson, David R; Kim, Eun-Young; Tanabe, Shinsuke; Iwata, Hisato

    2011-04-01

    Cytochrome P450 CYP2 family enzymes are important in a variety of physiological and toxicological processes. CYP2 genes are highly diverse and orthologous relationships remain clouded among CYP2s in different taxa. Sequence and expression analyses of CYP2 genes in diapsids including birds and reptiles may improve understanding of this CYP family. We sought CYP2 genes in a liver cDNA library of the common cormorant (Phalacrocorax carbo), and in the genomes of other diapsids, chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and anole lizard (Anolis carolinensis), for phylogenetic and/or syntenic analyses. Screening of the cDNA library yielded four CYP2 cDNA clones that were phylogenetically classified as CYP2C45, CYP2J25, CYP2AC1, and CYP2AF1. There are numerous newly identified diapsid CYP2 genes that include genes related to the human CYP2Cs, CYP2D6, CYP2G2P, CYP2J2, CYP2R1, CYP2U1, CYP2W1, CYP2AB1P, and CYP2AC1P. Syntenic relationships show that avian CYP2Hs are orthologous to CYP2C62P in humans, CYP2C23 in rats, and Cyp2c44 in mice, and suggest that avian CYP2Hs, along with human CYP2C62P and mouse Cyp2c44, could be renamed as CYP2C23, based upon the nomenclature rules. Analysis of sequence and synteny identifies cormorant and finch CYPs that are apparent orthologs of phenobarbital-inducible chicken CYP2C45. Transcripts of all four cormorant CYP2 genes were detected in the liver of birds from Lake Biwa, Japan. The transcript levels bore no significant relationship to levels of chlorinated organic pollutants in the liver, including polychlorinated biphenyls and dichlorodiphenyltrichloroethane and its metabolites. In contrast, concentrations of perfluorooctane sulfonate and perfluorononanoic acid were negatively correlated with levels of CYP2C45 and/or CYP2J25, suggesting down-regulation of expression by these environmental pollutants. This study expands our view of the phylogeny and evolution of CYP2s, and provides evolutionary insight into the chemical

  14. CYP1A1 based on metabolism of xenobiotics by cytochrome P450 regulates chicken male germ cell differentiation.

    PubMed

    Li, Dong; Wang, Man; Cheng, Shaoze; Zhang, Chen; Wang, Yilin; Zhang, Wenhui; Zhao, Ruifeng; Sun, Changhua; Zhang, Yani; Li, Bichun

    2017-04-01

    This study aimed to explore the regulatory mechanism of metabolism of xenobiotics by cytochrome P450 during the differentiation process of chicken embryonic stem cells (ESCs) into spermatogonial stem cells (SSCs) and consummate the induction differentiation system of chicken embryonic stem cells (cESCs) into SSCs in vitro. We performed RNA-Seq in highly purified male ESCs, male primordial germ cells (PGCs), and SSCs that are associated with the male germ cell differentiation. Thereinto, the metabolism of xenobiotics by cytochrome P450 was selected and analyzed with Venny among male ESC vs male PGC, male PGC vs SSC, and male ESC vs SSC groups and several candidates differentially expressed genes (DEGs) were excavated. Finally, quantitative real-time PCR (qRT-PCR) detected related DEGs under the condition of retinoic acid (RA) induction in vitro, and the expressions were compared with RNA-Seq. By knocking down CYP1A1, we detected the effect of CYP1A1-mediated metabolism of xenobiotics by cytochrome P450 on male germ cell differentiation by qRT-PCR and immunocytochemistry. Results showed that 17,742 DEGs were found during differentiation of ESCs into SSCs and enriched in 72 differently significant pathways. Thereinto, the metabolism of xenobiotics by cytochrome P450 was involved in the whole differentiation process of ESCs into SSCs and several candidate DEGs: CYP1A1, CYP3A4, CYP2D6, ALDH3B1, and ALDH1A3 were expressed with the same trend with RNA-Seq. Knockdown of CYP1A1 caused male germ cell differentiation under restrictions. Our findings showed that the metabolism of xenobiotics by cytochrome P450 was significantly different during the process of male germ cell differentiation and was persistently activated when we induced cESCs to differentiate into SSCs with RA in vitro, which illustrated that the metabolism of xenobiotics by cytochrome P450 played a crucial role in the differentiation process of ESCs into SSCs.

  15. Biochemical mechanisms of imidacloprid resistance in Nilaparvata lugens: over-expression of cytochrome P450 CYP6AY1.

    PubMed

    Ding, Zhiping; Wen, Yucong; Yang, Baojun; Zhang, Yixi; Liu, Shuhua; Liu, Zewen; Han, Zhaojun

    2013-11-01

    Imidacloprid is a key insecticide extensively used for control of Nilaparvata lugens, and its resistance had been reported both in the laboratory selected strains and field populations. A target site mutation Y151S in two nicotinic acetylcholine receptor subunits and enhanced oxidative detoxification have been identified in the laboratory resistant strain, contributing importantly to imidacloprid resistance in N. lugens. To date, however, imidacloprid resistance in field population is primarily attributable to enhanced oxidative detoxification by over-expressed P450 monooxygenases. A resistant strain (Res), originally collected from a field population and continuously selected in laboratory with imidacloprid for more than 40 generations, had 180.8-fold resistance to imidacloprid, compared to a susceptible strain (Sus). Expression of different putative P450 genes at mRNA levels was detected and compared between Res and Sus strains, and six genes were found expressed significantly higher in Res strain than in Sus strain. CYP6AY1 was found to be the most different expressed P450 gene and its mRNA level in Res strain was 17.9 times of that in Sus strain. By expressing in E. coli cells, CYP6AY1 was found to metabolize imidacloprid efficiently with initial velocity calculated of 0.851 ± 0.073 pmol/min/pmol P450. When CYP6AY1 mRNA levels in Res strain was reduced by RNA interference, imidacloprid susceptibility was recovered. In four field populations with different resistance levels, high levels of CYP6AY1 transcript were also found. In vitro and in vivo studies provided evidences that the over-expression of CYP6AY1 was one of the key factors contributing to imidacloprid resistance in the laboratory selected strain Res, which might also be the important mechanism for imidacloprid resistance in field populations, when the target site mutation was not prevalent at present.

  16. Selective inhibition of the cytochrome P450 isoform by hyperoside and its potent inhibition of CYP2D6.

    PubMed

    Song, Min; Hong, Miri; Lee, Min Young; Jee, Jun-Goo; Lee, You Mie; Bae, Jong-Sup; Jeong, Tae Cheon; Lee, Sangkyu

    2013-09-01

    Hyperoside, quercetin-3-O-galactoside, is a flavonoid isolated from Oenanthe javanica. In the present study, we investigated potential herb-drug inhibitory effects of hyperoside on nine cytochrome P450 (CYP) isoforms in pooled human liver microsomes (HLMs) and human recombinant cDNA expressed CYP using a cocktail probe assay. Hyperoside strongly inhibited CYP2D6-catalyzed dextromethorphan O-demethylation, with IC₅₀ values of 1.2 and 0.81 μM after 0 and 15 min of preincubation, and a Ki value of 2.01 μM in HLMs, respectively. Hyperoside strongly decreased CYP2D6 activity dose-, but not time-, dependently in HLMs. In addition, the Lineweaver-Burk and Secondary plots for the inhibition of CYP2D6 in HLMs fitted a competitive inhibition mode. Furthermore, hyperoside decreased CYP2D6-catalyzed dextromethorphan O-demethylation activity of human recombinant cDNA-expressed CYP2D6, with an IC₅₀ value of 3.87 μM. However, other CYPs were not inhibited significantly by hyperoside. In conclusion, our data demonstrate that hyperoside is a potent selective CYP2D6 inhibitor in HLMs, and suggest that hyperoside might cause herb-drug interactions when co-administrated with CYP2D substrates.

  17. Functional analysis of CYP6ER1, a P450 gene associated with imidacloprid resistance in Nilaparvata lugens

    PubMed Central

    Pang, Rui; Chen, Meng; Liang, Zhikun; Yue, Xiangzhao; Ge, Hu; Zhang, Wenqing

    2016-01-01

    The cytochrome P450 CYP6ER1 has been reported to play an important role in imidacloprid resistance of the brown planthopper (BPH), Nilaparvata lugens, and is overexpressed in most resistant populations. In the present study, we confirmed that CYP6ER1 expression can be induced by certain levels of imidacloprid. Developmental expression analysis revealed that CYP6ER1 was expressed highly in the adult stage, and tissue distribution analysis showed that CYP6ER1 was expressed mainly in the fat body and midgut. RNA interference (RNAi) of CYP6ER1 and transgenic expression of CYP6ER1 in Drosophila melanogaster both suggested that the expression of CYP6ER1 is sufficient to confer imidacloprid resistance. Furthermore, we analyzed the interaction of imidacloprid and CYP6ER1 monooxygenase by using dynamic simulations and molecular docking. We found that Nitrogen atoms in the heterocycle of the imidacloprid molecule may bind to iron atoms in the center of the homology model of CYP6ER1 via 4,5-dihedro-1H-imidazole. This finding contributes to a better understanding of how CYP6ER1 takes part in the insecticide metabolism. PMID:27721443

  18. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine.

    PubMed

    Yang, Xijia; Wu, Di; Shi, Jianxin; He, Yi; Pinot, Franck; Grausem, Bernard; Yin, Changsong; Zhu, Lu; Chen, Mingjiao; Luo, Zhijing; Liang, Wanqi; Zhang, Dabing

    2014-10-01

    Anther cuticle and pollen exine act as protective envelopes for the male gametophyte or pollen grain, but the mechanism underlying the synthesis of these lipidic polymers remains unclear. Previously, a tapetum-expressed CYP703A3, a putative cytochrome P450 fatty acid hydroxylase, was shown to be essential for male fertility in rice (Oryza sativa L.). However, the biochemical and biological roles of CYP703A3 has not been characterized. Here, we observed that cyp703a3-2 caused by one base insertion in CYP703A3 displays defective pollen exine and anther epicuticular layer, which differs from Arabidopsis cyp703a2 in which only defective pollen exine occurs. Consistently, chemical composition assay showed that levels of cutin monomers and wax components were dramatically reduced in cyp703a3-2 anthers. Unlike the wide range of substrates of Arabidopsis CYP703A2, CYP703A3 functions as an in-chain hydroxylase only for a specific substrate, lauric acid, preferably generating 7-hydroxylated lauric acid. Moreover, chromatin immunoprecipitation and expression analyses revealed that the expression of CYP703A3 is directly regulated by Tapetum Degeneration Retardation, a known regulator of tapetum PCD and pollen exine formation. Collectively, our results suggest that CYP703A3 represents a conserved and diversified biochemical pathway for in-chain hydroxylation of lauric acid required for the development of male organ in higher plants.

  19. Cytochrome b5 is a major determinant of human cytochrome P450 CYP2D6 and CYP3A4 activity in vivo.

    PubMed

    Henderson, Colin J; McLaughlin, Lesley A; Scheer, Nico; Stanley, Lesley A; Wolf, C Roland

    2015-04-01

    The cytochrome P450-dependent mono-oxygenase system is responsible for the metabolism and disposition of chemopreventive agents, chemical toxins and carcinogens, and >80% of therapeutic drugs. Cytochrome P450 (P450) activity is regulated transcriptionally and by the rate of electron transfer from P450 reductase. In vitro studies have demonstrated that cytochrome b5 (Cyb5) also modulates P450 function. We recently showed that hepatic deletion of Cyb5 in the mouse (HBN) markedly alters in vivo drug pharmacokinetics; a key outstanding question is whether Cyb5 modulates the activity of the major human P450s in drug disposition in vivo. To address this, we crossed mice humanized for CYP2D6 or CYP3A4 with mice carrying a hepatic Cyb5 deletion. In vitro triazolam 4-hydroxylation (probe reaction for CYP3A4) was reduced by >50% in hepatic microsomes from CYP3A4-HBN mice compared with controls. Similar reductions in debrisoquine 4-hydroxylation and metoprolol α-hydroxylation were observed using CYP2D6-HBN microsomes, indicating a significant role for Cyb5 in the activity of both enzymes. This effect was confirmed by the concentration-dependent restoration of CYP3A4-mediated triazolam turnover and CYP2D6-mediated bufuralol and debrisoquine turnover on addition of Escherichia coli membranes containing recombinant Cyb5. In vivo, the peak plasma concentration and area under the concentration time curve from 0 to 8 hours (AUC0-8 h) of triazolam were increased 4- and 5.7-fold, respectively, in CYP3A4-HBN mice. Similarly, the pharmacokinetics of bufuralol and debrisoquine were significantly altered in CYP2D6-HBN mice, the AUC0-8 h being increased ∼1.5-fold and clearance decreased by 40-60%. These data demonstrate that Cyb5 can be a major determinant of CYP3A4 and CYP2D6 activity in vivo, with a potential impact on the metabolism, efficacy, and side effects of numerous therapeutic drugs.

  20. Cytochrome P450 2B (CYP2B)-mediated activation of methyl-parathion in rat brain extracts.

    PubMed

    Albores, A; Ortega-Mantilla, G; Sierra-Santoyo, A; Cebrián, M E; Muñoz-Sánchez, J L; Calderón-Salinas, J V; Manno, M

    2001-10-15

    The role of cytochrome P450 (CYP) and the CYP isoform involved in the activation of the widely used pesticide methyl-parathion (MePA) were investigated in rat brain extracts by measuring the effect of different CYP inhibitors on acetylcholinesterase (AChE) inhibition by MePA. Brain extracts provide a useful tool to study the activation mechanisms of organophosphorus compounds (OP) since they contain both the activating enzyme(s) and the molecular target for OP toxicity. As expected, in incubations of rat brain extract supplemented with NADPH, AChE activity was non-competitively inhibited by the presence of MePA, indicating that MePA was activated to its reactive metabolite methyl-paraoxon (MePO). Indeed, Vmax(app) decreased from 13.4 to 8.7 micromol thionitrobenzoic acid (TNB)/min per mg protein. MePA activation by rat brain extracts, as measured by the AChE inhibition produced by the presence of the pesticide in the incubation, was fully prevented by previously bubbling the incubation mix with CO, by the presence of monoclonal anti-rat CYP2B1/2B2 antibodies and by the addition of phenobarbital (PB), a CYP2B substrate. Interestingly, MePA showed a greater affinity for CYP2B than PB. CYP1A1 antibodies showed no effect on MePA activation. The presence of cytochrome P450 2B (CYP2B) in the rat brain extracts was confirmed by immunoblotting. These results demonstrate indisputably the responsibility of CYP2B in MePA activation in the rat brain in vitro, suggesting that metabolic activation of OP compounds in situ might be crucial for their organ specific toxicity to the central nervous system also in vivo.

  1. Catalytic properties of the plant cytochrome P450 CYP73 expressed in yeast. Substrate specificity of a cinnamate hydroxylase.

    PubMed

    Pierrel, M A; Batard, Y; Kazmaier, M; Mignotte-Vieux, C; Durst, F; Werck-Reichhart, D

    1994-09-15

    The catalytic properties of CYP73, a cinnamate 4-hydroxylase isolated from Helianthus tuberosus tuber [Teutsch, H. G., Hasenfratz, M. P., Lesot, A., Stoltz, C., Garnier, J. M., Jeltsch, J. M., Durst, F. & Werck-Reichhart, D. (1993) Proc. Natl Acad. Sci. USA 90, 4102-4106] and expressed in an optimised yeast system [Urban, P., Werck-Reichart, D., Teutsch, G. H., Durst, F., Regnier, S., Kazmaier, M. & Pompon, D. (1994) Eur. J. Biochem. 222, 843-850] have been investigated. Microsomes from transformed yeast catalysed trans-cinnamate hydroxylation with high efficiency. CYP73 was highly specific for its natural substrate, and did not catalyse oxygenation of p-coumarate, benzoate, ferulate, naringenin or furanocoumarins. No metabolism of terpenoids or fatty acids, known substrates of plant P450s, was observed. CYP73 however demethylated the natural coumarin herniarin into umbelliferone. In addition, it was shown to oxygenate five xenobiotics and mechanism-based inactivators, including the herbicide chlorotoluron. All substrates of CYP73 were small planar aromatic molecules. Comparison of the kinetic parameters of CYP73 for its various substrates showed that, as expected, cinnamate was by far the best substrate of this P450. The physiological and toxicological significance of these observations are discussed.

  2. Molecular cloning and characterization of CYP719, a methylenedioxy bridge-forming enzyme that belongs to a novel P450 family, from cultured Coptis japonica cells.

    PubMed

    Ikezawa, Nobuhiro; Tanaka, Masaru; Nagayoshi, Masanori; Shinkyo, Raku; Sakaki, Toshiyuki; Inouye, Kuniyo; Sato, Fumihiko

    2003-10-03

    Two cytochrome P450 (P450) cDNAs involved in the biosynthesis of berberine, an antimicrobial benzylisoquinoline alkaloid, were isolated from cultured Coptis japonica cells and characterized. A sequence analysis showed that one C. japonica P450 (designated CYP719) belonged to a novel P450 family. Further, heterologous expression in yeast confirmed that it had the same activity as a methylenedioxy bridge-forming enzyme (canadine synthase), which catalyzes the conversion of (S)-tetrahydrocolumbamine ((S)-THC) to (S)-tetrahydroberberine ((S)-THB, (S)-canadine). The other P450 (designated CYP80B2) showed high homology to California poppy (S)-N-methylcoclaurine-3'-hydroxylase (CYP80B1), which converts (S)-N-methylcoclaurine to (S)-3'-hydroxy-N-methylcoclaurine. Recombinant CYP719 showed typical P450 properties as well as high substrate affinity and specificity for (S)-THC. (S)Scoulerine was not a substrate of CYP719, indicating that some other P450, e.g. (S)-cheilanthifoline synthase, is needed in (S)-stylopine biosynthesis. All of the berberine biosynthetic genes, including CYP719 and CYP80B2, were highly expressed in selected cultured C. japonica cells and moderately expressed in root, which suggests coordinated regulation of the expression of biosynthetic genes.

  3. The crystal structure of CYP24A1, a mitochondrial cytochrome P450 involved in vitamin D metabolism

    PubMed Central

    Goodin, David B.; Hong, Wen-Xu; Zhang, Qinghai; Johnson, Eric F.

    2009-01-01

    Cytochrome P450 (CYP) 24A1 catalyzes the side-chain oxidation of the hormonal form of vitamin D. Expression of CYP24A1 is up-regulated to attenuate vitamin-D signaling associated with calcium homeostasis and cellular growth processes. The development of therapeutics for disorders linked to vitamin D-insufficiency would be greatly facilitated by structural knowledge of CYP24A1. Here we report the crystal structure of rat CYP24A1 at 2.5 Å resolution. The structure exhibits an open cleft leading to the active site heme prosthetic group on the distal surface that is likely to define the path of substrate access into the active site. The entrance to the cleft is flanked by conserved hydrophobic residues on helices A′ and G′ suggesting a mode of insertion into the inner mitochondrial membrane. A docking model for 1α,25-(OH)2D3 binding in the open form of CYP24A1 is proposed that clarifies the structural determinants of secosteroid recognition and validates the predictive power of existing homology models of CYP24A1. Analysis of CYP24A1's proximal surface identifies the determinants of adrenodoxin recognition as a constellation of conserved residues from helices K, K″ and L that converge with an adjacent lysine-rich loop for binding the redox protein. Overall, the CYP24A1 structure provides the first template for understanding membrane insertion, substrate binding, and redox partner interaction in mitochondrial P450s. PMID:19961857

  4. The MrCYP52 Cytochrome P450 Monoxygenase Gene of Metarhizium robertsii Is Important for Utilizing Insect Epicuticular Hydrocarbons

    PubMed Central

    Lin, Liangcai; Fang, Weiguo; Liao, Xinggang; Wang, Fengqing; Wei, Dongzhi; St. Leger, Raymond J.

    2011-01-01

    Fungal pathogens of plants and insects infect their hosts by direct penetration of the cuticle. Plant and insect cuticles are covered by a hydrocarbon-rich waxy outer layer that represents the first barrier against infection. However, the fungal genes that underlie insect waxy layer degradation have received little attention. Here we characterize the single cytochrome P450 monoxygenase family 52 (MrCYP52) gene of the insect pathogen Metarhizium robertsii, and demonstrate that it encodes an enzyme required for efficient utilization of host hydrocarbons. Expressing a green florescent protein gene under control of the MrCYP52 promoter confirmed that MrCYP52 is up regulated on insect cuticle as well as by artificial media containing decane (C10), extracted cuticle hydrocarbons, and to a lesser extent long chain alkanes. Disrupting MrCYP52 resulted in reduced growth on epicuticular hydrocarbons and delayed developmental processes on insect cuticle, including germination and production of appressoria (infection structures). Extraction of alkanes from cuticle prevented induction of MrCYP52 and reduced growth. Insect bioassays against caterpillars (Galleria mellonella) confirmed that disruption of MrCYP52 significantly reduces virulence. However, MrCYP52 was dispensable for normal germination and appressorial formation in vitro when the fungus was supplied with nitrogenous nutrients. We conclude therefore that MrCYP52 mediates degradation of epicuticular hydrocarbons and these are an important nutrient source, but not a source of chemical signals that trigger infection processes. PMID:22194968

  5. Sex-specific differences in hyperoxic lung injury in mice: role of Cytochrome P450 (CYP)1A

    PubMed Central

    Lingappan, Krithika; Jiang, Weiwu; Wang, Lihua; Couroucli, Xanthi I.; Moorthy, Bhagavatula

    2015-01-01

    Sex-specific differences in pulmonary morbidity in adults and preterm infants are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. Cytochrome P450 (CYP)1A enzymes have been shown to play a mechanistic role in hyperoxic lung injury (HLI) in animal models. Whether CYP1A enzymes contribute to gender-specific differences in relation to HLI is unknown. In this investigation, we tested the hypothesis that mice will display gender-specific differences in HLI, and that this phenomenon will be altered in mice lacking the genes for Cyp1a1 or 1a2. Eight week-old male and female wild type (WT) (C57BL/6J) mice, Cyp1a1−/−, and Cyp1a2−/− mice were exposed to 72 hours of hyperoxia (FiO2>0.95). Lung injury and inflammation were assessed and pulmonary and hepatic CYP1A1 and CYP1A2 levels were quantified at the enzyme activity, protein and mRNA level. Upon exposure to hyperoxia, liver and lung microsomal proteins showed higher pulmonary CYP1A1 (apoprotein level and activity) in WT females compared to WT males and a greater induction in hepatic CYP1A2 mRNA levels and activity in WT females after hyperoxia exposure. The gender based female advantage was lost or reversed in Cyp1a1−/− and Cyp1a2−/− mice. These findings suggest an important role for CYP1A enzymes in the gender-specific modulation of hyperoxic lung injury. PMID:25703676

  6. Oxidation of 1-chloropyrene by human CYP1 family and CYP2A subfamily cytochrome P450 enzymes: catalytic roles of two CYP1B1 and five CYP2A13 allelic variants.

    PubMed

    Shimada, Tsutomu; Murayama, Norie; Kakimoto, Kensaku; Takenaka, Shigeo; Lim, Young-Ran; Yeom, Sora; Kim, Donghak; Yamazaki, Hiroshi; Guengerich, F Peter; Komori, Masayuki

    2017-07-21

    1. 1-Chloropyrene, one of the major chlorinated polycyclic aromatic hydrocarbon contaminants, was incubated with human cytochrome P450 (P450 or CYP) enzymes including CYP1A1, 1A2, 1B1, 2A6, 2A13, 2B6, 2C9, 2D6, 2E1, 3A4 and 3A5. Catalytic differences in 1-chloropyrene oxidation by polymorphic two CYP1B1 and five CYP2A13 allelic variants were also examined. 2. CYP1A1 oxidized 1-chloropyrene at the 6- and 8-positions more actively than at the 3-position, while both CYP1B1.1 and 1B1.3 preferentially catalyzed 6-hydroxylation. 3. Five CYP2A13 allelic variants oxidized 8-hydroxylation much more than 6- and 3-hydroxylation, and the variant CYP2A13.3 was found to slowly catalyze these reactions with a lower kcat value than other CYP2A13.1 variants. 4. CYP2A6 catalyzed 1-chloropyrene 6-hydroxylation at a higher rate than the CYP2A13 enzymes, but the rate was lower than the CYP1A1 and 1B1 variants. Other human P450 enzymes had low activities towards 1-chloropyrene. 5. Molecular docking analysis suggested differences in the interaction of 1-chloropyrene with active sites of CYP1 and 2 A enzymes. In addition, a naturally occurring Thr134 insertion in CYP2A13.3 was found to affect the orientation of Asn297 in the I-helix in interacting with 1-chloropyrene (and also 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK) and caused changes in the active site of CYP2A13.3 as compared with CYP2A13.1.

  7. Peroxisome proliferator-activated receptor alpha, PPARα, directly regulates transcription of cytochrome P450 CYP2C8

    PubMed Central

    Thomas, Maria; Winter, Stefan; Klumpp, Britta; Turpeinen, Miia; Klein, Kathrin; Schwab, Matthias; Zanger, Ulrich M.

    2015-01-01

    The cytochrome P450, CYP2C8, metabolizes more than 60 clinically used drugs as well as endogenous substances including retinoic acid and arachidonic acid. However, predictive factors for interindividual variability in the efficacy and toxicity of CYP2C8 drug substrates are essentially lacking. Recently we demonstrated that peroxisome proliferator-activated receptor alpha (PPARα), a nuclear receptor primarily involved in control of lipid and energy homeostasis directly regulates the transcription of CYP3A4. Here we investigated the potential regulation of CYP2C8 by PPARα. Two linked intronic SNPs in PPARα (rs4253728, rs4823613) previously associated with hepatic CYP3A4 status showed significant association with CYP2C8 protein level in human liver samples (N = 150). Furthermore, siRNA-mediated knock-down of PPARα in HepaRG human hepatocyte cells resulted in up to ∼60 and ∼50% downregulation of CYP2C8 mRNA and activity, while treatment with the PPARα agonist WY14,643 lead to an induction by >150 and >100%, respectively. Using chromatin immunoprecipitation scanning assay we identified a specific upstream gene region that is occupied in vivo by PPARα. Electromobility shift assay demonstrated direct binding of PPARα to a DR-1 motif located at positions –2762/–2775 bp upstream of the CYP2C8 transcription start site. We further validated the functional activity of this element using luciferase reporter gene assays in HuH7 cells. Moreover, based on our previous studies we demonstrated that WNT/β-catenin acts as a functional inhibitor of PPARα-mediated inducibility of CYP2C8 expression. In conclusion, our data suggest direct involvement of PPARα in both constitutive and inducible regulation of CYP2C8 expression in human liver, which is further modulated by WNT/β-catenin pathway. PPARA gene polymorphism could have a modest influence on CYP2C8 phenotype. PMID:26582990

  8. Cytochrome P450 CYP1B1 Interacts with 8-Methoxypsoralen (8-MOP) and Influences Psoralen-Ultraviolet A (PUVA) Sensitivity

    PubMed Central

    Deeni, Yusuf Y.; Ibbotson, Sally H.; Woods, Julie A.; Wolf, C. Roland; Smith, Gillian

    2013-01-01

    Background There are unpredictable inter-individual differences in sensitivity to psoralen-UVA (PUVA) photochemotherapy, used to treat skin diseases including psoriasis. Psoralens are metabolised by cytochrome P450 enzymes (P450), and we hypothesised that variability in cutaneous P450 expression may influence PUVA sensitivity. We previously showed that P450 CYP1B1 was abundantly expressed in human skin and regulated by PUVA, and described marked inter-individual differences in cutaneous CYP1B1 expression. Objectives We investigated whether CYP1B1 made a significant contribution to 8-methoxypsoralen (8-MOP) metabolism, and whether individuality in CYP1B1 activity influenced PUVA sensitivity. Methods We used E. coli membranes co-expressing various P450s and cytochrome P450 reductase (CPR) to study 8-MOP metabolism and cytotoxicity assays in CYP1B1-expressing mammalian cells to assess PUVA sensitivity. Results We showed that P450s CYP1A1, CYP1A2, CYP1B1, CYP2A6 and CYP2E1 influence 8-MOP metabolism. As CYP1B1 is the most abundant P450 in human skin, we further demonstrated that: (i) CYP1B1 interacts with 8-MOP (ii) metabolism of the CYP1B1 substrates 7-ethoxyresorufin and 17-β-estradiol showed concentration-dependent inhibition by 8-MOP and (iii) inhibition of 7-ethoxyresorufin metabolism by 8-MOP was influenced by CYP1B1 genotype. The influence of CYP1B1 on PUVA cytotoxicity was further investigated in a Chinese hamster ovary cell line, stably expressing CYP1B1 and CPR, which was more sensitive to PUVA than control cells, suggesting that CYP1B1 metabolises 8-MOP to a more phototoxic metabolite(s). Conclusion Our data therefore suggest that CYP1B1 significantly contributes to cutaneous 8-MOP metabolism, and that individuality in CYP1B1 expression may influence PUVA sensitivity. PMID:24086543

  9. CYP4Z1 - A Human Cytochrome P450 Enzyme that Might Hold the Key to Curing Breast Cancer.

    PubMed

    Yang, Xu; Hutter, Michael; Goh, Wilson Wen Bin; Bureik, Matthias

    2017-01-01

    The human cytochrome P450 (CYP) enzyme CYP4Z1 is a fatty acid hydroxylase which among human CYPs is unique for being much stronger expressed in the mammary gland than in all other tissues. Moreover, it is strongly overexpressed in all subtypes of breast cancer, and some overexpression has also been found in other types of malignancies, such as ovarian, lung, and prostate cancers, respectively. Due to its unique expression pattern it is conceivable that this enzymes' activity might be exploited for a new therapeutic approach. However, the main challenge for a CYP4Z1-based prodrug strategy (CBPS) for the treatment of breast cancer (and possibly other CYP4Z1-positive malignancies) is the identification of candidate prodrugs that can be activated by this enzyme. In this mini-review we summarize the current knowledge about the enzymatic properties of the CYP4Z1 enzyme as well as on the expression pattern of the CYP4Z1 gene in both normal and cancer cells. Moreover, we present the first homology model of this enzyme and give an outlook on its potential use in cancer treatment strategies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. CYP90A1/CPD, a Brassinosteroid Biosynthetic Cytochrome P450 of Arabidopsis, Catalyzes C-3 Oxidation*

    PubMed Central

    Ohnishi, Toshiyuki; Godza, Blanka; Watanabe, Bunta; Fujioka, Shozo; Hategan, Lidia; Ide, Kouhei; Shibata, Kiyomi; Yokota, Takao; Szekeres, Miklos; Mizutani, Masaharu

    2012-01-01

    Brassinosteroids (BRs) are steroidal phytohormones that regulate plant growth and development. Whereas in Arabidopsis the network-like routes of BR biosynthesis have been elucidated in considerable detail, the roles of some of the biosynthetic enzymes and their participation in the different subpathways remained to be clarified. We investigated the function of the cytochrome P450 monooxygenase CYP90A1/CPD, which earlier had been proposed to act as a BR C-23 hydroxylase. Our GC-MS and genetic analyses demonstrated that the cpd mutation arrests BR synthesis upstream of the DET2-mediated 5α reduction step and that overexpression of the C-23 hydroxylase CYP90C1 does not alleviate BR deficiency in the cpd mutant. In line with these results, we found that CYP90A1/CPD heterologously expressed in a baculovirus-insect cell system catalyzes C-3 oxidation of the early BR intermediates (22S)-22-hydroxycampesterol and (22R,23R)-22,23-dihydroxycampesterol, as well as of 6-deoxocathasterone and 6-deoxoteasterone. Enzyme kinetic data of CYP90A1/CPD and DET2, together with those of the earlier studied CYP90B1, CYP90C1, and CYP90D1, suggest that BR biosynthesis proceeds mainly via the campestanol-independent pathway. PMID:22822057

  11. Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in Mycobacterium tuberculosis

    PubMed Central

    Belin, Pascal; Le Du, Marie Hélène; Fielding, Alistair; Lequin, Olivier; Jacquet, Mickaël; Charbonnier, Jean-Baptiste; Lecoq, Alain; Thai, Robert; Courçon, Marie; Masson, Cédric; Dugave, Christophe; Genet, Roger; Pernodet, Jean-Luc; Gondry, Muriel

    2009-01-01

    The gene encoding the cytochrome P450 CYP121 is essential for Mycobacterium tuberculosis. However, the CYP121 catalytic activity remains unknown. Here, we show that the cyclodipeptide cyclo(l-Tyr-l-Tyr) (cYY) binds to CYP121, and is efficiently converted into a single major product in a CYP121 activity assay containing spinach ferredoxin and ferredoxin reductase. NMR spectroscopy analysis of the reaction product shows that CYP121 catalyzes the formation of an intramolecular C-C bond between 2 tyrosyl carbon atoms of cYY resulting in a novel chemical entity. The X-ray structure of cYY-bound CYP121, solved at high resolution (1.4 Å), reveals one cYY molecule with full occupancy in the large active site cavity. One cYY tyrosyl approaches the heme and establishes a specific H-bonding network with Ser-237, Gln-385, Arg-386, and 3 water molecules, including the sixth iron ligand. These observations are consistent with low temperature EPR spectra of cYY-bound CYP121 showing a change in the heme environment with the persistence of the sixth heme iron ligand. As the carbon atoms involved in the final C-C coupling are located 5.4 Å apart according to the CYP121-cYY complex crystal structure, we propose that C-C coupling is concomitant with substrate tyrosyl movements. This study provides insight into the catalytic activity, mechanism, and biological function of CYP121. Also, it provides clues for rational design of putative CYP121 substrate-based antimycobacterial agents. PMID:19416919

  12. Identification and structural basis of the reaction catalyzed by CYP121, an essential cytochrome P450 in Mycobacterium tuberculosis.

    PubMed

    Belin, Pascal; Le Du, Marie Hélène; Fielding, Alistair; Lequin, Olivier; Jacquet, Mickaël; Charbonnier, Jean-Baptiste; Lecoq, Alain; Thai, Robert; Courçon, Marie; Masson, Cédric; Dugave, Christophe; Genet, Roger; Pernodet, Jean-Luc; Gondry, Muriel

    2009-05-05

    The gene encoding the cytochrome P450 CYP121 is essential for Mycobacterium tuberculosis. However, the CYP121 catalytic activity remains unknown. Here, we show that the cyclodipeptide cyclo(l-Tyr-l-Tyr) (cYY) binds to CYP121, and is efficiently converted into a single major product in a CYP121 activity assay containing spinach ferredoxin and ferredoxin reductase. NMR spectroscopy analysis of the reaction product shows that CYP121 catalyzes the formation of an intramolecular C-C bond between 2 tyrosyl carbon atoms of cYY resulting in a novel chemical entity. The X-ray structure of cYY-bound CYP121, solved at high resolution (1.4 A), reveals one cYY molecule with full occupancy in the large active site cavity. One cYY tyrosyl approaches the heme and establishes a specific H-bonding network with Ser-237, Gln-385, Arg-386, and 3 water molecules, including the sixth iron ligand. These observations are consistent with low temperature EPR spectra of cYY-bound CYP121 showing a change in the heme environment with the persistence of the sixth heme iron ligand. As the carbon atoms involved in the final C-C coupling are located 5.4 A apart according to the CYP121-cYY complex crystal structure, we propose that C-C coupling is concomitant with substrate tyrosyl movements. This study provides insight into the catalytic activity, mechanism, and biological function of CYP121. Also, it provides clues for rational design of putative CYP121 substrate-based antimycobacterial agents.

  13. The ecdysteroidogenic P450 Cyp302a1/disembodied from the silkworm, Bombyx mori, is transcriptionally regulated by prothoracicotropic hormone.

    PubMed

    Niwa, R; Sakudoh, T; Namiki, T; Saida, K; Fujimoto, Y; Kataoka, H

    2005-10-01

    During larval and pupal development of insects, ecdysone is synthesized in the prothoracic gland (PG). Although several Drosophila genes, including Halloween P450 genes, are known to be important for ecdysteroidogenesis in PG, little is known of the ecdysteroidogenic genes in other insects. Here we report on Cyp302a1/disembodied (dib-Bm), one of the Halloween P450s in the silkworm Bombyx mori that is a carbon-22 hydroxylase. dib-Bm is predominantly expressed in PG and its developmental expression profile is correlated with a change in the ecdysteroid titre in the haemolymph. Furthermore, dib-Bm expression in cultured PGs is significantly induced by treatment with prothoracicotropic hormone. This is the first report on the transcriptional induction of a steroidogenic gene by the tropic hormone in insects.

  14. De novo sequence analysis of cytochrome P450 1-3 genes expressed in ostrich liver with highest expression of CYP2G19.

    PubMed

    Kawai, Yusuke K; Watanabe, Kensuke P; Ishii, Akihiro; Ohnuma, Aiko; Sawa, Hirofumi; Ikenaka, Yoshinori; Ishizuka, Mayumi

    2013-09-01

    The cytochrome P450 (CYP) 1-3 families are involved in xenobiotic metabolism, and are expressed primarily in the liver. Ostriches (Struthio camelus) are members of Palaeognathae with the earliest divergence from other bird lineages. An understanding of genes coding for ostrich xenobiotic metabolizing enzyme contributes to knowledge regarding the xenobiotic metabolisms of other Palaeognathae birds. We investigated CYP1-3 genes expressed in female ostrich liver using a next-generation sequencer. We detected 10 CYP genes: CYP1A5, CYP2C23, CYP2C45, CYP2D49, CYP2G19, CYP2W2, CYP2AC1, CYP2AC2, CYP2AF1, and CYP3A37. We compared the gene expression levels of CYP1A5, CYP2C23, CYP2C45, CYP2D49, CYP2G19, CYP2AF1, and CYP3A37 in ostrich liver and determined that CYP2G19 exhibited the highest expression level. The mRNA expression level of CYP2G19 was approximately 2-10 times higher than those of other CYP genes. The other CYP genes displayed similar expression levels. Our results suggest that CYP2G19, which has not been a focus of previous bird studies, has an important role in ostrich xenobiotic metabolism.

  15. Cytochrome P450-Dependent Catabolism of Vitamin K: ω-Hydroxylation Catalyzed by Human CYP4F2 and CYP4F11

    PubMed Central

    Edson, Katheryne Z.; Prasad, Bhagwat; Unadkat, Jashvant D.; Suhara, Yoshitomo; Okano, Toshio; Guengerich, F. Peter

    2013-01-01

    Vitamin K plays an essential role in many biological processes including blood clotting, maintenance of bone health, and inhibition of arterial calcification. A menaquinone form of vitamin K, MK4, is increasingly recognized for its key roles in mitochondrial electron transport, as a ligand for the nuclear receptor SXR, which controls expression of genes involved in transport and metabolism of endo- and xenobiotics, and as a pharmacotherapeutic in the treatment of osteoporosis. Although cytochrome P450 (CYP) 4F2 activity is recognized as an important determinant of phylloquinone (K1) metabolism, the enzymes involved in menaquinone catabolism have not been studied previously. CYP4F2 and CYP4F11 were expressed and purified and found to be equally efficient as in vitro catalysts of MK4 ω-hydroxylation. CYP4F2, but not CYP4F11, catalyzed sequential metabolism of MK4 to the ω-acid without apparent release of the intermediate aldehyde. The ω-alcohol could also be metabolized to the acid by microsomal NAD+-dependent alcohol and aldehyde dehydrogenases. LC-MS/MS analysis of trypsinized human liver microsomes (using surrogate peptide approach) revealed mean concentrations of CYP4F2 and CYP4F11 to be 14.3 and 8.4 pmol/mg protein, respectively. Microsomal MK4 ω-hydroxylation activities correlated with the CYP4F2 V433M genotype but not CYP4F11 D446N genotype. Collectively, these data expand the lexicon of vitamin K ω-hydroxylases to include the ‘orphan’ P450 CYP4F11 and identify a common variant, CYP4F2 (rs2108622), as a major pharmacogenetic variable influencing MK4 catabolism. PMID:24138531

  16. Purification and characterization of a 4-hydroxybiphenyl UDP-glucuronosyltransferase from rat liver microsomes

    SciTech Connect

    Styczynski, B.; Green, M.; Coffman, B.; Puig, J.; Tephly, T. )

    1991-03-11

    A phenobarbital-inducible rat liver microsomal UDP-glucuronosyltransferase (4-HBP UDPGT) which catalyzes the glucuronidation of 4-hydroxybiphenyl has been purified to homogeneity. The apparent subunit molecular weight of this protein is 52,500 as determined by SDS-PAGE. 4-HBP UDPGT was shown to react with 4-hydroxybiphenyl, p-nitrophenol and 4-methylumbelliferone, but did not react with morphine, testosteron or chloramphenicol. Upon treatment with Endoglycosidase H, the 4-HBP UDPGT underwent about a 2,000 dalton decrease in subunit molecular weight, suggesting that this protein in N-glycosylated. Western blot analysis has revealed immunorecognition of 4-HBP UDPGT by antibodies raised in rabbit against rat 3{alpha}- and 17{beta}-hydroxysteroid UDPGTs. Additionally, the authors have obtained the N-terminal amino acid sequence of 4-HBP UDPGT. These data provide evidence which suggests that this protein is different from another UDPGT previously shown to react with 4-hydroxybiphenyl, testosterone and chloramphenicol.

  17. First-pass metabolism via UDP-glucuronosyltransferase: a barrier to oral bioavailability of phenolics

    PubMed Central

    Wu, Baojian; Kulkarni, Kaustubh; Basu, Sumit; Zhang, Shuxing; Hu, Ming

    2012-01-01

    Glucuronidation mediated by UDP-glucuronosyltransferases (UGTs) is a significant metabolic pathway that facilitates efficient elimination of numerous endo- and xenobiotics including phenolics. UGT genetic deficiency and polymorphisms or inhibition of glucuronidation by concomitant use of drugs are associated with inherited physiological disorders or drug induced toxicities. Moreover, extensive glucuronidation can be a barrier to oral bioavailability as the first-pass glucuronidation (or premature clearance by UGTs) of orally administered agents usually results in the poor oral bioavailability and lack of efficacies. This review focused on the first-pass glucuronidation of phenolics including natural polyphenols and pharmaceuticals. The complexity of UGT-mediated metabolism of phenolics is highlighted with species-, gender-, organ- and isoform-dependent specificity, as well as functional compensation between UGT1A and 2B subfamily. In addition, recent advances are discussed with respect to the mechanisms of enzymatic actions including the important properties such as binding pocket size and phosphorylation requirements. PMID:21484808

  18. In vitro characterization of glucuronidation of vanillin: identification of human UDP-glucuronosyltransferases and species differences.

    PubMed

    Yu, Jian; Han, Jing-Chun; Hua, Li-Min; Gao, Ya-Jie

    2013-09-01

    Vanillin is a food flavoring agent widely utilized in foods, beverages, drugs, and perfumes and has been demonstrated to exhibit multiple pharmacological activities. Given the importance of glucuronidation in the metabolism of vanillin, the UDP-glucuronosyltransferase conjugation pathway of vanillin was investigated in this study. Vanillin glucuronide was identified by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and a hydrolysis reaction catalyzed by β-glucuronidase. The kinetic study showed that vanillin glucuronidation by HLMs and HIMs followed Michaelis-Menten kinetics and the kinetic parameters were as follows: 134.9 ± 13.5 μM and 81.3 ± 11.3 μM for K(m) of HLMs and HIMs, 63.8 ± 2.0 nmol/min/mg pro and 13.4 ±2.0 nmol/min/mg pro for Vmax of HLMs and HIMs. All UDP-glucuronosyltransferase (UGT) isoforms except UGT1A4, 1A9, and 2B7 showed the capability to glucuronidate vanillin, and UGT1A6 exerted the higher V(max)/K(m) values than other UGT isoforms for the glucuronidation of vanillin when assuming expression of isoforms is similar in recombinant UGTs. Kinetic analysis using liver microsomes from six studied speices indicated that vanillin had highest affinity for the monkey liver microsomes enzyme (K(m)  = 25.6 ± 3.2 μM) and the lowest affinity for the mice liver microsomes enzyme (K(m)  = 149.1 ± 18.4 μM), and intrinsic clearance was in the following order: monkey > dog > minipig > mice > rat ~ human. These data collectively provided important information for understanding glucuronidation of vanillin.

  19. A potential role for human UDP-glucuronosyltransferase 1A4 promoter single nucleotide polymorphisms in the pharmacogenomics of tamoxifen and its derivatives.

    PubMed

    Greer, Aleksandra K; Dates, Centdrika R; Starlard-Davenport, Athena; Edavana, Vineetha K; Bratton, Stacie M; Dhakal, Ishwori B; Finel, Moshe; Kadlubar, Susan A; Radominska-Pandya, Anna

    2014-09-01

    Tamoxifen (Tam) is a selective estrogen receptor modulator used to inhibit breast tumor growth. Tam can be directly N-glucuronidated via the tertiary amine group or O-glucuronidated after cytochrome P450-mediated hydroxylation. In this study, the glucuronidation of Tam and its hydroxylated and/or chlorinated derivatives [4-hydroxytamoxifen (4OHTam), toremifene (Tor), and 4-hydroxytoremifene (4OHTor)] was examined using recombinant human UDP-glucuronosyltransferases (UGTs) from the 1A subfamily and human hepatic microsomes. Recombinant UGT1A4 catalyzed the formation of N-glucuronides of Tam and its derivatives and was the most active UGT enzyme toward these compounds. Therefore, it was hypothesized that single nucleotide polymorphisms (SNPs) in the promoter region of UGT1A4 have the ability to significantly decrease the glucuronidation rates of Tam metabolites in the human liver. In vitro activity of 64 genotyped human liver microsomes was used to determine the association between the UGT1A4 promoter and coding region SNPs and the glucuronidation rates of Tam, 4OHTam, Tor, and 4OHTor. Significant decreases in enzymatic activity were observed in microsomes for individuals heterozygous for -163G/A and -217T/G. These alterations in glucuronidation may lead to prolonged circulating half-lives and may potentially modify the effectiveness of these drugs in the treatment of breast cancer.

  20. Cytochrome P450 CYP81A12 and CYP81A21 Are Associated with Resistance to Two Acetolactate Synthase Inhibitors in Echinochloa phyllopogon1[W

    PubMed Central

    Iwakami, Satoshi; Endo, Masaki; Saika, Hiroaki; Okuno, Junichi; Nakamura, Naoki; Yokoyama, Masao; Watanabe, Hiroaki; Toki, Seiichi; Uchino, Akira; Inamura, Tatsuya

    2014-01-01

    Previous studies have demonstrated multiple herbicide resistance in California populations of Echinochloa phyllopogon, a noxious weed in rice (Oryza sativa) fields. It was suggested that the resistance to two classes of acetolactate synthase-inhibiting herbicides, bensulfuron-methyl (BSM) and penoxsulam (PX), may be caused by enhanced activities of herbicide-metabolizing cytochrome P450. We investigated BSM metabolism in the resistant (R) and susceptible (S) lines of E. phyllopogon, which were originally collected from different areas in California. R plants metabolized BSM through O-demethylation more rapidly than S plants. Based on available information about BSM tolerance in rice, we isolated and analyzed P450 genes of the CYP81A subfamily in E. phyllopogon. Two genes, CYP81A12 and CYP81A21, were more actively transcribed in R plants compared with S plants. Transgenic Arabidopsis (Arabidopsis thaliana) expressing either of the two genes survived in media containing BSM or PX at levels at which the wild type stopped growing. Segregation of resistances in the F2 generation from crosses of R and S plants suggested that the resistance to BSM and PX were each under the control of a single regulatory element. In F6 recombinant inbred lines, BSM and PX resistances cosegregated with increased transcript levels of CYP81A12 and CYP81A21. Heterologously produced CYP81A12 and CYP81A21 proteins in yeast (Saccharomyces cerevisiae) metabolized BSM through O-demethylation. Our results suggest that overexpression of the two P450 genes confers resistance to two classes of acetolactate synthase inhibitors to E. phyllopogon. The overexpression of the two genes could be regulated simultaneously by a single trans-acting element in the R line of E. phyllopogon. PMID:24760819

  1. SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions

    PubMed Central

    Preissner, Saskia; Kroll, Katharina; Dunkel, Mathias; Senger, Christian; Goldsobel, Gady; Kuzman, Daniel; Guenther, Stefan; Winnenburg, Rainer; Schroeder, Michael; Preissner, Robert

    2010-01-01

    Much of the information on the Cytochrome P450 enzymes (CYPs) is spread across literature and the internet. Aggregating knowledge about CYPs into one database makes the search more efficient. Text mining on 57 CYPs and drugs led to a mass of papers, which were screened manually for facts about metabolism, SNPs and their effects on drug degradation. Information was put into a database, which enables the user not only to look up a particular CYP and all metabolized drugs, but also to check tolerability of drug-cocktails and to find alternative combinations, to use metabolic pathways more efficiently. The SuperCYP database contains 1170 drugs with more than 3800 interactions including references. Approximately 2000 SNPs and mutations are listed and ordered according to their effect on expression and/or activity. SuperCYP (http://bioinformatics.charite.de/supercyp) is a comprehensive resource focused on CYPs and drug metabolism. Homology-modeled structures of the CYPs can be downloaded in PDB format and related drugs are available as MOL-files. Within the resource, CYPs can be aligned with each other, drug-cocktails can be ‘mixed’, SNPs, protein point mutations, and their effects can be viewed and corresponding PubMed IDs are given. SuperCYP is meant to be a platform and a starting point for scientists and health professionals for furthering their research. PMID:19934256

  2. The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling.

    PubMed

    Chandor-Proust, Alexia; Bibby, Jaclyn; Régent-Kloeckner, Myriam; Roux, Jessica; Guittard-Crilat, Emilie; Poupardin, Rodolphe; Riaz, Muhammad Asam; Paine, Mark; Dauphin-Villemant, Chantal; Reynaud, Stéphane; David, Jean-Philippe

    2013-10-01

    The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450-CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate-enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies.

  3. In Vitro Functional Characterisation of Cytochrome P450 (CYP) 2C19 Allelic Variants CYP2C19*23 and CYP2C19*24.

    PubMed

    Lau, Pui Shen; Leong, Kenny Voon Gah; Ong, Chin Eng; Dong, Amelia Nathania Hui Min; Pan, Yan

    2017-02-01

    Cytochrome P450 (CYP) 2C19 is essential for the metabolism of clinically used drugs including omeprazole, proguanil, and S-mephenytoin. This hepatic enzyme exhibits genetic polymorphism with inter-individual variability in catalytic activity. This study aimed to characterise the functional consequences of CYP2C19*23 (271 G>C, 991 A>G) and CYP2C19*24 (991 A>G, 1004 G>A) in vitro. Mutations in CYP2C19 cDNA were introduced by site-directed mutagenesis, and the CYP2C19 wild type (WT) as well as variants proteins were subsequently expressed using Escherichia coli cells. Catalytic activities of CYP2C19 WT and those of variants were determined by high performance liquid chromatography-based essay employing S-mephenytoin and omeprazole as probe substrates. Results showed that the level of S-mephenytoin 4'-hydroxylation activity of CYP2C19*23 (V max 111.5 ± 16.0 pmol/min/mg, K m 158.3 ± 88.0 μM) protein relative to CYP2C19 WT (V max 101.6 + 12.4 pmol/min/mg, K m 123.0 ± 19.2 μM) protein had no significant difference. In contrast, the K m of CYP2C19*24 (270.1 ± 57.2 μM) increased significantly as compared to CYP2C19 WT (123.0 ± 19.2 μM) and V max of CYP2C19*24 (23.6 ± 2.6 pmol/min/mg) protein was significantly lower than that of the WT protein (101.6 ± 12.4 pmol/min/mg). In vitro intrinsic clearance (CLint = V max/K m) for CYP2C19*23 protein was 85.4 % of that of CYP2C19 WT protein. The corresponding CLint value for CYP2C19*24 protein reduced to 11.0 % of that of WT protein. These findings suggested that catalytic activity of CYP2C19 was not affected by the corresponding amino acid substitutions in CYP2C19*23 protein; and the reverse was true for CYP2C19*24 protein. When omeprazole was employed as the substrate, K m of CYP2C19*23 (1911 ± 244.73 μM) was at least 100 times higher than that of CYP2C19 WT (18.37 ± 1.64 μM) and V max of CYP2C19*23 (3.87 ± 0.74 pmol/min/mg) dropped to 13.4 % of the CYP2C19 WT (28.84 ± 0.61

  4. Structural Characterization and Ligand/Inhibitor Identification Provide Functional Insights into the Mycobacterium tuberculosis Cytochrome P450 CYP126A1*

    PubMed Central

    Chenge, Jude T.; Duyet, Le Van; Swami, Shalini; McLean, Kirsty J.; Kavanagh, Madeline E.; Coyne, Anthony G.; Rigby, Stephen E. J.; Cheesman, Myles R.; Girvan, Hazel M.; Levy, Colin W.; Rupp, Bernd; von Kries, Jens P.; Abell, Chris; Leys, David; Munro, Andrew W.

    2017-01-01

    The Mycobacterium tuberculosis H37Rv genome encodes 20 cytochromes P450, including P450s crucial to infection and bacterial viability. Many M. tuberculosis P450s remain uncharacterized, suggesting that their further analysis may provide new insights into M. tuberculosis metabolic processes and new targets for drug discovery. CYP126A1 is representative of a P450 family widely distributed in mycobacteria and other bacteria. Here we explore the biochemical and structural properties of CYP126A1, including its interactions with new chemical ligands. A survey of azole antifungal drugs showed that CYP126A1 is inhibited strongly by azoles containing an imidazole ring but not by those tested containing a triazole ring. To further explore the molecular preferences of CYP126A1 and search for probes of enzyme function, we conducted a high throughput screen. Compounds containing three or more ring structures dominated the screening hits, including nitroaromatic compounds that induce substrate-like shifts in the heme spectrum of CYP126A1. Spectroelectrochemical measurements revealed a 155-mV increase in heme iron potential when bound to one of the newly identified nitroaromatic drugs. CYP126A1 dimers were observed in crystal structures of ligand-free CYP126A1 and for CYP126A1 bound to compounds discovered in the screen. However, ketoconazole binds in an orientation that disrupts the BC-loop regions at the P450 dimer interface and results in a CYP126A1 monomeric crystal form. Structural data also reveal that nitroaromatic ligands “moonlight” as substrates by displacing the CYP126A1 distal water but inhibit enzyme activity. The relatively polar active site of CYP126A1 distinguishes it from its most closely related sterol-binding P450s in M. tuberculosis, suggesting that further investigations will reveal its diverse substrate selectivity. PMID:27932461

  5. Influence of various polymorphic variants of cytochrome P450 oxidoreductase (POR) on drug metabolic activity of CYP3A4 and CYP2B6.

    PubMed

    Chen, Xuan; Pan, Li Qiang; Naranmandura, Hua; Zeng, Su; Chen, Shu Qing

    2012-01-01

    Cytochrome P450 oxidoreductase (POR) is known as the sole electron donor in the metabolism of drugs by cytochrome P450 (CYP) enzymes in human. However, little is known about the effect of polymorphic variants of POR on drug metabolic activities of CYP3A4 and CYP2B6. In order to better understand the mechanism of the activity of CYPs affected by polymorphic variants of POR, six full-length mutants of POR (e.g., Y181D, A287P, K49N, A115V, S244C and G413S) were designed and then co-expressed with CYP3A4 and CYP2B6 in the baculovirus-Sf9 insect cells to determine their kinetic parameters. Surprisingly, both mutants, Y181D and A287P in POR completely inhibited the CYP3A4 activity with testosterone, while the catalytic activity of CYP2B6 with bupropion was reduced to approximately ~70% of wild-type activity by Y181D and A287P mutations. In addition, the mutant K49N of POR increased the CLint (Vmax/Km) of CYP3A4 up to more than 31% of wild-type, while it reduced the catalytic efficiency of CYP2B6 to 74% of wild-type. Moreover, CLint values of CYP3A4-POR (A115V, G413S) were increased up to 36% and 65% of wild-type respectively. However, there were no appreciable effects observed by the remaining two mutants of POR (i.e., A115V and G413S) on activities of CYP2B6. In conclusion, the extent to which the catalytic activities of CYP were altered did not only depend on the specific POR mutations but also on the isoforms of different CYP redox partners. Thereby, we proposed that the POR-mutant patients should be carefully monitored for the activity of CYP3A4 and CYP2B6 on the prescribed medication.

  6. Influence of Various Polymorphic Variants of Cytochrome P450 Oxidoreductase (POR) on Drug Metabolic Activity of CYP3A4 and CYP2B6

    PubMed Central

    Naranmandura, Hua; Zeng, Su; Chen, Shu Qing

    2012-01-01

    Cytochrome P450 oxidoreductase (POR) is known as the sole electron donor in the metabolism of drugs by cytochrome P450 (CYP) enzymes in human. However, little is known about the effect of polymorphic variants of POR on drug metabolic activities of CYP3A4 and CYP2B6. In order to better understand the mechanism of the activity of CYPs affected by polymorphic variants of POR, six full-length mutants of POR (e.g., Y181D, A287P, K49N, A115V, S244C and G413S) were designed and then co-expressed with CYP3A4 and CYP2B6 in the baculovirus-Sf9 insect cells to determine their kinetic parameters. Surprisingly, both mutants, Y181D and A287P in POR completely inhibited the CYP3A4 activity with testosterone, while the catalytic activity of CYP2B6 with bupropion was reduced to approximately ∼70% of wild-type activity by Y181D and A287P mutations. In addition, the mutant K49N of POR increased the CLint (Vmax/Km) of CYP3A4 up to more than 31% of wild-type, while it reduced the catalytic efficiency of CYP2B6 to 74% of wild-type. Moreover, CLint values of CYP3A4-POR (A115V, G413S) were increased up to 36% and 65% of wild-type respectively. However, there were no appreciable effects observed by the remaining two mutants of POR (i.e., A115V and G413S) on activities of CYP2B6. In conclusion, the extent to which the catalytic activities of CYP were altered did not only depend on the specific POR mutations but also on the isoforms of different CYP redox partners. Thereby, we proposed that the POR-mutant patients should be carefully monitored for the activity of CYP3A4 and CYP2B6 on the prescribed medication. PMID:22719896

  7. In vitro evaluation of valproic acid as an inhibitor of human cytochrome P450 isoforms: preferential inhibition of cytochrome P450 2C9 (CYP2C9)

    PubMed Central

    Wen, Xia; Wang, Jun-Sheng; Kivistö, Kari T; Neuvonen, Pertti J; Backman, Janne T

    2001-01-01

    Aims To evaluate the potency and specificity of valproic acid as an inhibitor of the activity of different human CYP isoforms in liver microsomes. Methods Using pooled human liver microsomes, the effects of valproic acid on seven CYP isoform specific marker reactions were measured: phenacetin O-deethylase (CYP1A2), coumarin 7-hydroxylase (CYP2A6), tolbutamide hydroxylase (CYP2C9), S-mephenytoin 4′-hydroxylase (CYP2C19), dextromethorphan O-demethylase (CYP2D6), chlorzoxazone 6-hydroxylase (CYP2E1) and midazolam 1′-hydroxylase (CYP3A4). Results Valproic acid competitively inhibited CYP2C9 activity with a Ki value of 600 µm. In addition, valproic acid slightly inhibited CYP2C19 activity (Ki = 8553 µm, mixed inhibition) and CYP3A4 activity (Ki = 7975 µm, competitive inhibition). The inhibition of CYP2A6 activity by valproic acid was time-, concentration- and NADPH-dependent (KI = 9150 µm, Kinact=0.048 min−1), consistent with mechanism-based inhibition of CYP2A6. However, minimal inhibition of CYP1A2, CYP2D6 and CYP2E1 activities was observed. Conclusions Valproic acid inhibits the activity of CYP2C9 at clinically relevant concentrations in human liver microsomes. Inhibition of CYP2C9 can explain some of the effects of valproic acid on the pharmacokinetics of other drugs, such as phenytoin. Co-administration of high doses of valproic acid with drugs that are primarily metabolized by CYP2C9 may result in significant drug interactions. PMID:11736863

  8. Catalytically Relevant Electrostatic Interactions of Cytochrome P450c17 (CYP17A1) and Cytochrome b5*

    PubMed Central

    Peng, Hwei-Ming; Liu, Jiayan; Forsberg, Sarah E.; Tran, Hong T.; Anderson, Sean M.; Auchus, Richard J.

    2014-01-01

    Two acidic residues, Glu-48 and Glu-49, of cytochrome b5 (b5) are essential for stimulating the 17,20-lyase activity of cytochrome P450c17 (CYP17A1). Substitution of Ala, Gly, Cys, or Gln for these two glutamic acid residues abrogated all capacity to stimulate 17,20-lyase activity. Mutations E49D and E48D/E49D retained 23 and 38% of wild-type activity, respectively. Using the zero-length cross-linker ethyl-3-(3-dimethylaminopropyl)carbodiimide, we obtained cross-linked heterodimers of b5 and CYP17A1, wild-type, or mutations R347K and R358K. In sharp contrast, the b5 double mutation E48G/E49G did not form cross-linked complexes with wild-type CYP17A1. Mass spectrometric analysis of the CYP17A1-b5 complexes identified two cross-linked peptide pairs as follows: CYP17A1-WT: 84EVLIKK89-b5: 53EQAGGDATENFEDVGHSTDAR73 and CYP17A1-R347K: 341TPTISDKNR349-b5: 40FLEEHPGGEEVLR52. Using these two sites of interaction and Glu-48/Glu-49 in b5 as constraints, protein docking calculations based on the crystal structures of the two proteins yielded a structural model of the CYP17A1-b5 complex. The appositional surfaces include Lys-88, Arg-347, and Arg-358/Arg-449 of CYP17A1, which interact with Glu-61, Glu-42, and Glu-48/Glu-49 of b5, respectively. Our data reveal the structural basis of the electrostatic interactions between these two proteins, which is critical for 17,20-lyase activity and androgen biosynthesis. PMID:25315771

  9. Cytochrome P450 gene, CYP4G51, modulates hydrocarbon production in the pea aphid, Acyrthosiphon pisum.

    PubMed

    Chen, Nan; Fan, Yong-Liang; Bai, Yu; Li, Xiang-Dong; Zhang, Zhan-Feng; Liu, Tong-Xian

    2016-09-01

    Terrestrial insects deposit a layer of hydrocarbons (HCs) as waterproofing agents on their epicuticle. The insect-specific CYP4G genes, subfamily members of P450, have been found in all insects with sequenced genomes to date. They are critical for HC biosynthesis in Drosophila; however, their functional roles in other insects including the piercing-sucking hemipterous aphids remain unknown. In this study, we presented the molecular characterization and a functional study of the CYP4G51 gene in the pea aphid, Acyrthosiphon pisum (Harris). CYP4G51 transcript was detectable across the whole life cycle of A. pisum, and was prominently expressed in the aphid head and abdominal cuticle. Up-regulation of CYP4G51 under desiccation stress was more significant in the third instar nymphs compared with the adults. Also, up-regulation of CYP4G51 was observed when the aphids fed on an artificial diet compared with those fed on the broad bean plant, and was positively correlated with a high level of cuticular HCs (CHCs). RNAi knockdown of CYP4G51 significantly reduced its expression and caused reductions in both internal and external HCs. A deficiency in CHCs resulted in aphids being more susceptible to desiccation, with increased mortality under desiccation stress. The current results confirm that CYP4G51 modulates HC biosynthesis to protect aphids from desiccation. Moreover, our data also indicate that saturated and straight-chain HCs play a major role in cuticular waterproofing in the pea aphid. A. pisum CYP4G51 could be considered as a novel RNAi target in the field of insect pest management.

  10. Optimizing QSAR models for predicting ligand binding to the drug-metabolizing cytochrome P450 isoenzyme CYP2D6.

    PubMed

    Saraceno, Marilena; Massarelli, Ilaria; Imbriani, Marcello; James, Thomas L; Bianucci, Anna M

    2011-08-01

    The cytochrome P450 isozyme CYP2D6 binds a large variety of drugs, oxidizing many of them, and plays a crucial role in establishing in vivo drug levels, especially in multidrug regimens. The current study aimed to develop reliable predictive models for estimating the CYP2D6 inhibition properties of drug candidates. Quantitative structure-activity relationship (QSAR) studies utilizing 51 known CYP2D6 inhibitors were carried out. Performance achieved using models based on two-dimensional (2D) molecular descriptors was compared with performance using models entailing additional molecular descriptors that depend upon the three-dimensional (3D) structure of ligands. To properly compute the descriptors, all the 3D inhibitor structures were optimized such that induced-fit binding of the ligand to the active site was accommodated. CODESSA software was used to obtain equations for correlating the structural features of the ligands to their pharmacological effects on CYP2D6 (inhibition). The predictive power of all the QSAR models obtained was estimated by applying rigorous statistical criteria. To assess the robustness and predictability of the models, predictions were carried out on an additional set of known molecules (prediction set). The results showed that only models incorporating 3D descriptors in addition to 2D molecular descriptors possessed the requisite high predictive power for CYP2D6 inhibition.

  11. The P450 oxidoreductase (POR) rs2868177 and cytochrome P450 (CYP) 2B6*6 polymorphisms contribute to the interindividual variability in human CYP2B6 activity.

    PubMed

    Gao, Li-Chen; Liu, Fang-Qun; Yang, Li; Cheng, Lin; Dai, Hai-Ying; Tao, Ran; Cao, Shi-Peng; Wang, Di; Tang, Jie

    2016-10-01

    To investigate whether single-nucleotide polymorphisms (SNPs) in the P450 oxidoreductase (POR) gene were correlated with interindividual variations in cytochrome P450 (CYP) 2B6 activity. Thirty-six healthy volunteers who tested CYP2B6 and POR polymorphisms were enrolled in the study. CYP2B6 activity was measured by bupropion hydroxylation with LC/MS/MS. The ratio of hydroxybupropion versus bupropion (AUC_hyd/AUC_bup) in terms of area under the time-concentration curve (AUC) was used to represent the CYP2B6 activity. The volunteers carrying CYP2B6*1/*1 showed a significantly higher mean AUC_hyd/ AUC_bup than those CYP2B6*1/*6 and CYP2B6*6/*6 variants (15.66 ± 1.65 vs. 9.25 ± 1.92, P = 0.008 and 15.66 ± 1.65 vs. 8.21 ± 1.74, P = 0.006, respectively). POR rs2868177 (6593 A > G) AA homozygotes showed a significantly lower mean AUC_hyd/ AUC_bup than that of POR rs2868177 AG heterozygotes or GG homozygotes (8.13 ± 1.37 vs. 12.15 ± 2.97, P = 0.005 and 8.13 ± 1.37 vs. 17.59 ± 3.25, P = 0.001, respectively). Moreover, POR rs2868177 AG heterozygotes and GG homozygotes showed a significantly increased mean AUC_hyd/AUC_bup than AA homozygotes in the CYP2B6*1/*1 and CYP2B6*6 carriers (16.40 ± 2.01 vs. 12.40 ± 1.45, P = 0.006 and 10.65 ± 1.47 vs. 6.54 ± 1.25, P = 0.004, respectively). Meanwhile, a strong correlation between the genetic variations (POR rs2868177 and CYP2B6*6) and AUC_hyd/ AUC_bup was found (P = 0.009 and P = 0.001, respectively). There was no significant difference in the mean AUC_hyd/AUC_bup among different POR *28 genotypes (P > 0.05). POR rs2868177 and CYP2B6*6 variants contribute to the interindividual variability in human CYP2B6 activity, which may affect the disposition and interaction of other CYP2B6 substrate drugs.

  12. Cytochrome P450 CYP3A in marsupials: cloning and characterisation of the second identified CYP3A subfamily member, isoform 3A78 from koala (Phascolarctos cinereus).

    PubMed

    El-Merhibi, Adaweyah; Ngo, Suong N T; Crittenden, Tamara A; Marchant, Ceilidh L; Stupans, Ieva; McKinnon, Ross A

    2011-11-01

    Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of xenobiotics and endogenous substrates. Previously, we cloned and characterised the CYP2C, CYP4A, and CYP4B gene subfamilies from marsupials and demonstrated important species-differences in both activity and tissue expression of these CYP enzymes. Recently, we isolated the Eastern grey kangaroo CYP3A70. Here we have cloned and characterised the second identified member of marsupial CYP3A gene subfamily, CYP3A78 from the koala (Phascolarctos cinereus). In addition, we have examined the gender-differences in microsomal erythromycin N-demethylation activity (a CYP3A marker) and CYP3A protein expression across test marsupial species. Significant differences in hepatic erythromycin N-demethylation activity were observed between male and female koalas, with the activity detected in female koalas being 2.5-fold higher compared to that in male koalas (p<0.01). No gender-differences were observed in tammar wallaby or Eastern grey kangaroo. Immunoblot analysis utilising anti-human CYP3A4 antibody detected immunoreactive proteins in liver microsomes from all test male and female marsupials including the koala, tammar wallaby, and Eastern grey kangaroo, with no gender-differences detected across test marsupials. A 1610 bp koala hepatic CYP3A complete cDNA, designated CYP3A78, was cloned by reverse transcription-polymerase chain reaction approaches. It displays 64% nucleotide and 57% amino acid sequence identity to the Eastern grey kangaroo CYP3A70. The CYP3A78 cDNA encodes a protein of 515 amino acids, shares approximately 68% nucleotide and 56% amino acid sequence identity to human CYP3A4, and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Collectively, this study provides primary molecular data regarding koala hepatic CYP3A78 gene and enables further functional analyses of CYP

  13. The oxidation of hydrophobic aromatic substrates using a variant of the P450 monooxygenase CYP101B1.

    PubMed

    Sarkar, Md Raihan; Lee, Joel H Z; Bell, Stephen Graham

    2017-09-03

    The cytochrome P450 monooxygenase CYP101B1, from a Novosphingobium bacterium is able to bind and oxidise aromatic substrates but at a lower activity and efficiency compared to norisoprenoids and monoterpenoid esters. Histidine 85 of CYP101B1 aligns with tyrosine 96 of CYP101A1, which in this enzyme forms the only hydrophilic interaction with its substrate, camphor. The histidine residue of CYP101B1 was modified to a phenylalanine with the aim of improving the activity of the enzyme for hydrophobic substrates. The H85F mutant lowered the binding affinity and activity of the enzyme for β-ionone and altered the oxidation selectivity. This variant also showed enhanced affinity and activity towards alkylbenzenes, styrenes and methylnaphthalenes. For example the product formation rate of acenaphthene oxidation was improved 6-fold to 245 nmol.nmol-CYP-1.min-1. Certain disubstituted naphthalenes and substrates such as phenylcyclohexane, and biphenyls, were oxidised with lower activity by the H85F variant. Variants at H85 (A and G) designed to introduce additional space in the active site to accommodate these larger substrates did not engender improvements in the oxidation activity. As the H85F mutant of CYP101B1 improved the oxidation of hydrophobic substrates this residue is likely to be in the substrate binding pocket or the access channel of the enzyme. The side chain of the histidine may interact with the carbonyl groups of the favoured norisoprenoid substrates of CYP101B1. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The Schistosoma mansoni Cytochrome P450 (CYP3050A1) Is Essential for Worm Survival and Egg Development.

    PubMed

    Ziniel, Peter D; Karumudi, Bhargava; Barnard, Andrew H; Fisher, Ethan M S; Thatcher, Gregory R J; Podust, Larissa M; Williams, David L

    2015-12-01

    Schistosomiasis affects millions of people in developing countries and is responsible for more than 200,000 deaths annually. Because of toxicity and limited spectrum of activity of alternatives, there is effectively only one drug, praziquantel, available for its treatment. Recent data suggest that drug resistance could soon be a problem. There is therefore the need to identify new drug targets and develop drugs for the treatment of schistosomiasis. Analysis of the Schistosoma mansoni genome sequence for proteins involved in detoxification processes found that it encodes a single cytochrome P450 (CYP450) gene. Here we report that the 1452 bp open reading frame has a characteristic heme-binding region in its catalytic domain with a conserved heme ligating cysteine, a hydrophobic leader sequence present as the membrane interacting region, and overall structural conservation. The highest sequence identity to human CYP450s is 22%. Double stranded RNA (dsRNA) silencing of S. mansoni (Sm)CYP450 in schistosomula results in worm death. Treating larval or adult worms with antifungal azole CYP450 inhibitors results in worm death at low micromolar concentrations. In addition, combinations of SmCYP450-specific dsRNA and miconazole show additive schistosomicidal effects supporting the hypothesis that SmCYP450 is the target of miconazole. Treatment of developing S. mansoni eggs with miconazole results in a dose dependent arrest in embryonic development. Our results indicate that SmCYP450 is essential for worm survival and egg development and validates it as a novel drug target. Preliminary structure-activity relationship suggests that the 1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethan-1-ol moiety of miconazole is necessary for activity and that miconazole activity and selectivity could be improved by rational drug design.

  15. Estrogen and Cytochrome P450 1B1 Contribute to Both Early- and Late-Stage Head and Neck Carcinogenesis

    PubMed Central

    Shatalova, Ekaterina G.; Klein-Szanto, Andres J.P.; Devarajan, Karthik; Cukierman, Edna; Clapper, Margie L.

    2010-01-01

    Squamous cell carcinoma of the head and neck (HNSCC) is the sixth most common type of cancer in the U.S. The goal of this study was to evaluate the contribution of estrogens to the development of HNSCCs. Various cell lines derived from early- and late-stage head and neck lesions were used to: characterize the expression of estrogen synthesis and metabolism genes, including cytochrome P450 (CYP)1B1, examine the effect of estrogen on gene expression and evaluate the role of CYP1B1 and/or estrogen in cell motility, proliferation and apoptosis. Estrogen metabolism genes (CYP1B1, CYP1A1, catechol-o-methyltransferase, UDP-glucuronosyltransferase 1A1, and glutathione-S-transferase P1) and estrogen receptor (ER)β were expressed in cell lines derived from both premalignant (MSK-Leuk1) and malignant (HNSCC) lesions. Exposure to estrogen induced CYP1B1 2.3 to 3.6 fold relative to vehicle-treated controls (P=0.0004) in MSK-Leuk1 cells but not in HNSCC cells. CYP1B1 knockdown by shRNA reduced the migration and proliferation of MSK-Leuk1 cells by 57% and 45%, respectively. Exposure of MSK-Leuk1 cells to estrogen inhibited apoptosis by 26%, while supplementation with the antiestrogen fulvestrant restored estrogen-dependent apoptosis. Representation of the estrogen pathway in human head and neck tissues from 128 patients was examined using tissue microarrays. The majority of the samples exhibited immunohistochemical staining for ERβ (91.9%), CYP1B1 (99.4%) and 17β-estradiol (88.4%). CYP1B1 and ERβ were elevated in HNSCCs relative to normal epithelium (P=0.024 and 0.008, respectively). These data provide novel insight into the mechanisms underlying head and neck carcinogenesis and facilitate the identification new targets for chemopreventive intervention. PMID:21205741

  16. Molecular cloning, bacterial expression and functional characterisation of cytochrome P450 monooxygenase, CYP97C27, and NADPH-cytochrome P450 reductase, CPR I, from Croton stellatopilosus Ohba.

    PubMed

    Sintupachee, Siriluk; Ngamrojanavanich, Nattaya; Sitthithaworn, Worapan; De-Eknamkul, Wanchai

    2014-12-01

    The cDNAs for cytochrome P450 monooxygenase (designated as CYP97C27 by D. Nelson's group) and NADPH-cytochrome P450 reductase (designated as CPR I based on its classification) were isolated from Croton stellatopilosus leaves, which actively biosynthesise plaunotol (18-OH geranylgeraniol). CYP97C27 and CPR I contain open reading frames encoding proteins of 471 and 711 amino acids with predicted molecular masses of 53 and 79kDa, respectively. By aligning the deduced sequences of CYP97C27 and CPR I with other plant species, all functional domains of CYP97C27 (heme and oxygen binding) and CPR I (CYP- and FMN, FAD, and NADPH cofactor binding) were identified. Amino acid sequence comparison indicated that both CYP97C27 (85-93%) and CPR I (79-83%) share high sequence identities with homologous proteins in other plant species, suggesting that CYP97C27 belongs to the CYP97C subfamily and that CPR I belongs to class I of the dicotyledonous CPR. Functional characterisation of both enzymes, produced in Escherichia coli (pET32a/BL21(DE3)) as recombinant proteins, showed that simultaneous incubation of CYP97C27 and CPR I with the substrate geranylgeraniol (GGOH) and coenzyme NADPH led to formation of the product plaunotol. In C. stellatopilosus, the levels of the CYP97C27 and CPR I transcripts were highly correlated with those of several mRNAs involved in the plaunotol biosynthetic pathway, suggesting that CYP97C27 and CPR I are the enzymes that catalyse the last hydroxylation step of the pathway.

  17. Pymetrozine is hydroxylated by CYP6CM1, a cytochrome P450 conferring neonicotinoid resistance in Bemisia tabaci.

    PubMed

    Nauen, Ralf; Vontas, John; Kaussmann, Martin; Wölfel, Katharina

    2013-04-01

    Resistance to neonicotinoid insecticides such as imidacloprid in the cotton whitefly, Bemisia tabaci, is linked to its hydroxylation by constitutively overexpressed CYP6CM1, a cytochrome P450 enzyme. Here, an investigation was conducted to establish whether CYP6CM1 functionally expressed in Sf9 cells also detoxifies pymetrozine, a selective homopteran feeding blocker known to be cross-resistant to neonicotinoids in whiteflies. Incubation of pymetrozine with functionally expressed Bemisia CYP6CM1 and subsequent LC-MS/MS analysis revealed a rapid formation of two pymetrozine metabolites by hydroxylation of its heterocyclic 1,2,4-triazine ring system. Enzyme kinetics revealed a Km value of 5.9 ± 0.3 µM and a time-dependent depletion of pymetrozine. The known cross-resistance between imidacloprid, other neonicotinoid insecticides and pymetrozine in B. tabaci is most likely conferred by the very same detoxification mechanism, i.e. a monooxygenase-based hydroxylation mechanism linked to the overexpression of CYP6CM1. These insecticide chemistries should not be alternated in whitefly resistance management strategies. © 2012 Society of Chemical Industry.

  18. Influence of Panax ginseng on Cytochrome P450 (CYP)3A and P-glycoprotein (Pgp) Activity in Healthy Subjects

    PubMed Central

    Malati, Christine Y.; Robertson, Sarah M.; Hunt, Jennifer D.; Chairez, Cheryl; Alfaro, Raul M.; Kovacs, Joseph A.; Penzak, Scott R.

    2012-01-01

    A number of herbal preparations have been shown to interact with prescription medications secondary to modulation of cytochrome P450 (CYP) and/or P-glycoprotein (P-gp). The purpose of this study was to determine the influence of Panax ginseng on CYP3A and P-gp function using the probe substrates midazolam and fexofenadine, respectively. Twelve healthy subjects (8 males) completed this open label, single sequence pharmacokinetic study. Healthy volunteers received single oral doses of midazolam 8 mg and fexofenadine 120 mg, before and after 28 days of P. ginseng 500 mg twice daily. Midazolam and fexofenadine pharmacokinetic parameter values were calculated and compared pre-and post P. ginseng administration. Geometric mean ratios (post-ginseng/pre-ginseng) for midazolam area under the concentration vs. time curve from zero to infinity (AUC0-∞), half life (T1/2), and maximum concentration (Cmax) were significantly reduced at 0.66 (0.55 – 0.78), 0.71 (0.53 – 0.90), and 0.74 (0.56 – 0.93), respectively. Conversely, fexofenadine pharmacokinetics were unaltered by P. ginseng administration. Based on these results, Panax ginseng appeared to induce CYP3A activity in the liver and possibly the gastrointestinal tract. Patients taking Panax ginseng in combination with CYP3A substrates with narrow therapeutic ranges should be monitored closely for adequate therapeutic response to the substrate medication. PMID:21646440

  19. Transcriptional response elements in the promoter of CYP6B1, an insect P450 gene regulated by plant chemicals.

    PubMed

    Petersen, Rebecca A; Niamsup, Hataichanoke; Berenbaum, May R; Schuler, Mary A

    2003-02-17

    Papilio polyxenes, a lepidopteran continually exposed to toxic furanocoumarins in its hostplants, owes its tolerance to these compounds to the transcriptional induction of the CYP6B1 gene encoding a P450 capable of metabolizing linear furanocoumarins, such as xanthotoxin, at high rates. Transient expression of various lengths of wild-type and mutant CYP6B1v3 promoter in lepidopteran Sf9 cells defines a positive element (XRE-xan) from -136 to -119 required for both basal and xanthotoxin-inducible transcription and a negative element from -228 to -146 that represses basal transcription. Fusion of the CYP6B1v3 XRE-xan element to the Drosophila melanogaster Eip28/29 core promoter indicates that the XRE-xan functions in conjunction with its own core promoter but not with a heterologous core promoter. Sequence searches of the CYP6B1v3 proximal promoter region revealed a number of putative elements (XRE-AhR, ARE, OCT-1, EcRE, C/EBP, Inr) sharing sequence similarity with those in other regulated vertebrate and insect promoters. Mutation of TGAC nucleotides shared by the overlapping EcRE/ARE/XRE-xan indicates that this sequence is essential for basal and regulated transcription of this gene. Mutagenesis in the non-overlapping region of the EcRE indicates it modulates basal transcription. These findings are incorporated into a working model for regulation of this toxin-inducible promoter.

  20. Molecular Cloning and Expression of CYP9A61: A Chlorpyrifos-Ethyl and Lambda-Cyhalothrin-Inducible Cytochrome P450 cDNA from Cydia pomonella

    PubMed Central

    Yang, Xueqing; Li, Xianchun; Zhang, Yalin

    2013-01-01

    Cytochrome P450 monooxygenases (CYPs or P450s) play paramount roles in detoxification of insecticides in a number of insect pests. However, little is known about the roles of P450s and their responses to insecticide exposure in the codling moth Cydia pomonella (L.), an economically important fruit pest. Here we report the characterization and expression analysis of the first P450 gene, designated as CYP9A61, from this pest. The full-length cDNA sequence of CYP9A61 is 2071 bp long and its open reading frame (ORF) encodes 538 amino acids. Sequence analysis shows that CYP9A61 shares 51%–60% identity with other known CYP9s and contains the highly conserved substrate recognition site SRS1, SRS4 and SRS5. Quantitative real-time PCR showed that CYP9A61 were 67-fold higher in the fifth instar larvae than in the first instar, and more abundant in the silk gland and fat body than other tissues. Exposure of the 3rd instar larvae to 12.5 mg L−1 of chlorpyrifos-ethyl for 60 h and 0.19 mg L−1 of lambda-cyhalothrin for 36 h resulted in 2.20-and 3.47-fold induction of CYP9A61, respectively. Exposure of the 3rd instar larvae to these two insecticides also significantly enhanced the total P450 activity. The results suggested that CYP9A61 is an insecticide-detoxifying P450. PMID:24351812

  1. Metabolic interactions of magnolol with cytochrome P450 enzymes: uncompetitive inhibition of CYP1A and competitive inhibition of CYP2C.

    PubMed

    Kim, Sang-Bum; Kang, Hee Eun; Cho, Hyun-Jong; Kim, Yeong Shik; Chung, Suk-Jae; Yoon, In-Soo; Kim, Dae-Duk

    2016-01-01

    Magnolol (MAG; 5,5'-diallyl-2,2'-biphenyldiol) is a major bioactive component of Magnolia officinalis. We investigated the metabolic interactions of MAG with hepatic cytochrome P450 monooxygenase (CYP) through in vitro microsomal metabolism study using human (HLM) and rat liver microsomes (RLM). CYP2C and 3A subfamilies were significantly involved in the metabolism of MAG, while CYP1A subfamily was not in HLM and RLM. The relative contribution of phase I enzymes including CYP to the metabolism of MAG was comparable to that of uridine diphosphate glucuronosyltransferase (UGT) in RLM. Moreover, MAG potently inhibited the metabolic activity of CYP1A (IC50 of 1.62 μM) and 2C (IC50 of 5.56 μM), while weakly CYP3A (IC50 of 35.0 μM) in HLM and RLM. By the construction of Dixon plot, the inhibition type of MAG on CYP activity in RLM was determined as follows: uncompetitive inhibitor for CYP1A (Ki of 1.09-12.0 μM); competitive inhibitor for CYP2C (Ki of 10.0-15.2 μM) and 3A (Ki of 93.7-183 μM). Based on the comparison of the current IC50 and Ki values with a previously reported liver concentration (about 13 μM) of MAG after its seven times oral administration at a dose of 50 mg/kg in rats, it is suggested that MAG could show significant inhibition of CYP1A and 2C, but not CYP3A, in the in vivo rat system. These results could lead to further studies in clinically significant metabolism-mediated MAG-drug interactions.

  2. Quantification of Hepatic UDP Glucuronosyltransferase 1A Splice Variant Expression and Correlation of UDP Glucuronosyltransferase 1A1 Variant Expression with Glucuronidation Activity

    PubMed Central

    Jones, Nathan R.; Sun, Dongxiao; Freeman, Willard M.

    2012-01-01

    The UDP glucuronosyltransferase (UGT) 1A gene cluster encodes nine UGT1A family members via splicing of individual first exons to common exons 2 through 5. Each of these nine UGT1As can also undergo alternative splicing at their 3′ ends by using an alternate exon 5, resulting in 27 different UGT1A mRNA species with each UGT1A gene encoding three different combinations of 5A and 5B UGT1A exons. To examine the importance of UGT1A exon 5 splice variants on overall UGT1A activity, a nested quantitative polymerase chain reaction assay was developed to accurately assess the combined expression of exon 5 splice variants (termed v2/v3) versus the expression of wild-type (termed v1) for each specific UGT1A. v1 expression was 16-, 17-, 57- and 29-fold higher than that observed for the levels of v2/v3 for UGTs 1A1, 1A4, 1A6, and 1A9, respectively, in normal human liver specimens. In a series of 58 normal human liver specimens, the expression of both UGT1A1 v1 and v2/v3 mRNAs was positively correlated with raloxifene glucuronidation activity in corresponding microsomes prepared from the same specimens (p < 0.0001, r2 = 0.720; p = 0.0002, r2 = 0.241, respectively), with expression of both variants lower in individuals homozygous for the UGT1A1*28 allele (42% for v1, p = 0.041; 53% for v2/v3, p = 0.0075). The expression of UGT1A1 v2/v3 was 1.6-fold higher than v1 (p = 0.03) in HepG2 cells, and short interfering RNA knockdown of HepG2 v2/v3 increased raloxifene glucuronidation activity by 83%. Together, these data suggest that hepatic UGT1A v2/v3 mRNA species are minor form variants in human livers from most individuals. PMID:22661630

  3. Altered CYP2C9 Activity Following Modulation of CYP3A4 Levels in Human Hepatocytes: an Example of Protein-Protein Interactions

    PubMed Central

    Tweedie, Donald J.; Chan, Tom S.; Tracy, Timothy S.

    2014-01-01

    Cytochrome P450 (P450) protein-protein interactions resulting in modulation of enzyme activities have been well documented using recombinant isoforms. This interaction has been less clearly demonstrated in a more physiologic in vitro system such as human hepatocytes. As an expansion of earlier work (Subramanian et al., 2010), in which recombinant CYP2C9 activity decreased with increasing levels of CYP3A4, the current study modulated CYP3A4 content in human hepatocytes to determine the impact on CYP2C9. Modulation of CYP3A4 levels in situ was enabled by the use of a long-term human hepatocyte culture model (HepatoPac) shown to retain phenotypic hepatocyte function over a number of weeks. The extended period of culture allowed time for knockdown of CYP3A4 protein by small interfering RNA (siRNA) with subsequent recovery, as well as upregulation through induction with a recovery period. CYP3A4 gene silencing resulted in a 60% decrease in CYP3A4 activity and protein levels with a concomitant 74% increase in CYP2C9 activity, with no change in CYP2C9 mRNA levels. Upon removal of siRNA, both CYP2C9 and CYP3A4 activities returned to pre-knockdown levels. Importantly, modulation of CYP3A4 protein levels had no impact on cytochrome P450 reductase activities or levels. However, the possibility for competition for limiting reductase cannot be ruled out. Interestingly, lowering CYP3A4 levels also increased UDP-glucuronosyltransferase 2B7 activity. These studies clearly demonstrate that alterations in CYP3A4 levels can modulate CYP2C9 activity in situ and suggest that further studies are warranted to evaluate the possible clinical consequences of these findings. PMID:25157098

  4. Role of retinoic acid metabolizing cytochrome P450s, CYP26, in inflammation and cancer

    PubMed Central

    Stevison, Faith; Jing, Jing; Tripathy, Sasmita; Isoherranen, Nina

    2016-01-01

    Vitamin A (retinol) and its active metabolite, all-trans-retinoic acid (atRA), play critical roles in regulating the differentiation, growth and migration of immune cells. Similarly, as critical signaling molecules in the regulation of the cell cycle, retinoids are important in cancers. Concentrations of atRA are tightly regulated in tissues, predominantly by the availability of retinol, synthesis of atRA by ALDH1A enzymes and metabolism and clearance of atRA by CYP26 enzymes. The ALDH1A and CYP26 enzymes are expressed in several cell types in the immune system and in cancer cells. In the immune system the ALDH1A and CYP26 enzymes appear to modulate RA concentrations. Consequently, alterations in the activity of ALDH1A and CYP26 enzymes are expected to change disease outcomes in inflammation. There is increasing evidence from various disease models of intestinal and skin inflammation that treatment with atRA has a positive effect on disease markers. However, whether aberrant atRA concentrations or atRA synthesis and metabolism play a role in inflammatory disease development and progression is not well understood. In cancers, especially in acute promyelocytic leukemia and neuroblastoma, increasing intracellular concentrations of atRA appears to provide clinical benefit. Inhibition of the CYP26 enzymes to increase atRA concentrations and combat therapy resistance has been pursued as a drug target in these cancers. This chapter covers the current knowledge of how atRA and retinol regulate the immune system and inflammation, how retinol and atRA metabolism is altered in inflammation and cancer and what roles atRA metabolizing enzymes have in immune responses and cancers. PMID:26233912

  5. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size.

    PubMed

    Ma, Meng; Wang, Qian; Li, Zhanjie; Cheng, Huihui; Li, Zhaojie; Liu, Xiangli; Song, Weining; Appels, Rudi; Zhao, Huixian

    2015-07-01

    Several studies have described quantitative trait loci (QTL) for seed size in wheat, but the relevant genes and molecular mechanisms remain largely unknown. Here we report the functional characterization of the wheat TaCYP78A3 gene and its effect on seed size. TaCYP78A3 encoded wheat cytochrome P450 CYP78A3, and was specifically expressed in wheat reproductive organs. TaCYP78A3 activity was positively correlated with the final seed size. Its silencing caused a reduction of cell number in the seed coat, resulting in an 11% decrease in wheat seed size, whereas TaCYP78A3 over-expression induced production of more cells in the seed coat, leading to an 11-48% increase in Arabidopsis seed size. In addition, the cell number in the final seed coat was determined by the TaCYP78A3 expression level, which affected the extent of integument cell proliferation in the developing ovule and seed. Unfortunately, TaCYP78A3 over-expression in Arabidopsis caused a reduced seed set due to an ovule developmental defect. Moreover, TaCYP78A3 over-expression affected embryo development by promoting embryo integument cell proliferation during seed development, which also ultimately affected the final seed size in Arabidopsis. In summary, our results indicated that TaCYP78A3 plays critical roles in influencing seed size by affecting the extent of integument cell proliferation. The present study provides direct evidence that TaCYP78A3 affects seed size in wheat, and contributes to an understanding of the cellular basis of the gene influencing seed development.

  6. Genome-wide identification of 52 cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus and their B[α]P-induced expression patterns.

    PubMed

    Han, Jeonghoon; Kim, Duck-Hyun; Kim, Hui-Su; Nelson, David R; Lee, Jae-Seong

    2017-09-01

    Cytochrome P450s (CYPs) are enzymes with a heme-binding domain that are found in all living organisms. CYP enzymes have important roles associated with detoxification of xenobiotics and endogenous compounds (e.g. steroids, fatty acids, and hormones). Although CYP enzymes have been reported in several invertebrates, including insects, little is known about copepod CYPs. Here, we identified the entire repertoire of CYP genes (n=52) from whole genome and transcriptome sequences of the benthic copepod Tigriopus japonicus, including a tandem duplication (CYP3026A3, CYP3026A4, CYP3026A5), and examined patterns of gene expression over various developmental stages and in response to benzo[α]pyrene (B[α]P) exposure. Through phylogenetic analysis, the 52 T. japonicus CYP genes were assigned to five distinct clans: CYP2 (22 genes), CYP3 (19 genes), CYP4 (two genes), CYP20 (one gene), and mitochondrial (eight genes). Developmental stage and gender-specific expression patterns of the 52 T. japonicus CYPs were analyzed. CYP3022A1 was constitutively expressed during all developmental stages. CYP genes in clans 2 and 3 were induced in response to B[α]P, suggesting that these differentially modulated CYP transcripts are likely involved in defense against exposure to B[α]P and other pollutants. This study enhances our understanding of the repertoire of CYP genes in copepods and of their potential role in development and detoxification in copepods. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Two-dimensional NMR and All-atom Molecular Dynamics of Cytochrome P450 CYP119 Reveal Hidden Conformational Substates*

    PubMed Central

    Lampe, Jed N.; Brandman, Relly; Sivaramakrishnan, Santhosh; de Montellano, Paul R. Ortiz

    2010-01-01

    Cytochrome P450 enzymes are versatile catalysts involved in a wide variety of biological processes from hormonal regulation and antibiotic synthesis to drug metabolism. A hallmark of their versatility is their promiscuous nature, allowing them to recognize a wide variety of chemically diverse substrates. However, the molecular details of this promiscuity have remained elusive. Here, we have utilized two-dimensional heteronuclear single quantum coherence NMR spectroscopy to examine a series of mutants site-specific labeled with the unnatural amino acid, [13C]p-methoxyphenylalanine, in conjunction with all-atom molecular dynamics simulations to examine substrate and inhibitor binding to CYP119, a P450 from Sulfolobus acidocaldarius. The results suggest that tight binding hydrophobic ligands tend to lock the enzyme into a single conformational substate, whereas weak binding low affinity ligands bind loosely in the active site, resulting in a distribution of localized conformers. Furthermore, the molecular dynamics simulations suggest that the ligand-free enzyme samples ligand-bound conformations of the enzyme and, therefore, that ligand binding may proceed largely through a process of conformational selection rather than induced fit. PMID:20097757

  8. A Quantitative High-Throughput 96-well plate Fluorescence Assay for Mechanism-Based Inactivators of Cytochromes P450 Exemplified using CYP2B6

    PubMed Central

    Kenaan, Cesar; Zhang, Haoming; Hollenberg, Paul F.

    2010-01-01

    Mechanism-based inactivators such as bergamottin are useful chemical tools for identifying the roles of specific active-site amino acid residues in the reactions catalyzed by the cytochromes P450 (CYPs or P450s) that are responsible for the metabolism of a wide variety of drugs and endogenous substrates. In clinical settings mechanism-based inactivation of P450s involved in xenobiotic metabolism has the potential to lead to adverse drug-drug interactions and assays to identify and characterize drug candidates as P450 inactivators are important in drug discovery and development. Here we present a quantitative high-throughput protocol for investigating cytochrome P450 mechanism-based inactivators using the example of CYP2B6 and bergamottin to illustrate the finer points of this protocol. This protocol details the adaptation of a 7-ethoxytrifluoromethyl coumarin (7-EFC) O-deethylation fluorescence activity assay to a 96-well microtiter plate format and uses a plate-reader to detect the fluorescence of the product. Compared to previous methods, this protocol requires less P450 and takes significantly less time while greatly increasing throughput. The protocol as written takes approximately two hours to complete. The principles and procedures outlined in this protocol can be easily adapted to other inactivators, P450 isoforms, substrates and plate-readers. PMID:20885377

  9. The cytochrome p450 homepage.

    PubMed

    Nelson, David R

    2009-10-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 ( CYP ) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described.

  10. The involvement of cytochrome P450 system in the fate of 2,4,6-trinitrotoluene (TNT) in European eel [Anguilla anguilla (Linnaeus, 1758)].

    PubMed

    Torre, C Della; Corsi, I; Alcaro, L; Amato, E; Focardi, S

    2006-12-01

    TNT (2,4,6-trinitrotoluene) was the most common nitro aromatic explosive available in World War II ammunitions. The presence of ordnance dumped at sea might represent a great concern for marine species living close to dumping sites and the toxicological properties of the chemicals released into the marine environments need to be evaluated. The aim of the present study is to investigate the involvement of CYP (cytochrome P450) system in the metabolism of TNT in marine organisms by using the European eel [Anguilla anguilla (Linnaeus, 1758)] as model species. In vivo exposure to sublethal concentration of TNT (0.5, 1 and 2.5 mg/l) leads to a significant decrease in the phase I CYP1A catalytic activities such as EROD (7-ethoxyresorufin-O-de-ethylase) and MROD (7-methoxyresorufin-O-de-ethylase). On the opposite, a significant increase in NADPH cytochrome c reductase activity as well as phase II UDP-glucuronosyltransferase activity is observed. An inhibition at enzyme level is hypothesized for both CYP1A enzymes, also confirmed by a similar decrease observed after in vitro exposure. An active role of NADPH cytochrome c reductase and phase II enzymes in the TNT metabolism may also be hypothesized.

  11. Transcription analysis of neonicotinoid resistance in Mediterranean (MED) populations of B. tabaci reveal novel cytochrome P450s, but no nAChR mutations associated with the phenotype.

    PubMed

    Ilias, Aris; Lagnel, Jacques; Kapantaidaki, Despoina E; Roditakis, Emmanouil; Tsigenopoulos, Costas S; Vontas, John; Tsagkarakou, Anastasia

    2015-11-14

    Bemisia tabaci is one of the most damaging agricultural pests world-wide. Although its control is based on insecticides, B. tabaci has developed resistance against almost all classes of insecticides, including neonicotinoids. We employed an RNA-seq approach to generate genome wide expression data and identify genes associated with neonicotinoid resistance in Mediterranean (MED) B. tabaci (Q1 biotype). Twelve libraries from insecticide resistant and susceptible whitefly populations were sequenced on an Illumina Next-generation sequencing platform, and genomic sequence information of approximately 73 Gbp was generated. A reference transcriptome was built by de novo assembly and functionally annotated. A total of 146 P450s, 18 GSTs and 23 CCEs enzymes (unigenes) potentially involved in the detoxification of xenobiotics were identified, along with 78 contigs encoding putative target proteins of six different insecticide classes. Ten unigenes encoding nicotinic Acetylcholine Receptors (nAChR), the target of neoinicotinoids, were identified and phylogenetically classified. No nAChR polymorphism potentially related with the resistant phenotypes, was observed among the studied strains. DE analysis revealed that among the 550 differentially (logFC > 1) over-transcribed unigenes, 52 detoxification enzymes were over expressed including unigenes with orthologues in P450s, GSTs, CCE and UDP-glucuronosyltransferases. Eight P450 unigenes belonging to clades CYP2, CYP3 and CYP4 were highly up-regulated (logFC > 2) including CYP6CM1, a gene already known to confer imidacloprid resistance in B. tabaci. Using quantitative qPCRs, a larger screening of field MED B. tabaci from Crete with known neonicotinoid phenotype was performed to associate expression levels of P450s with resistance levels. Expression levels of five P450s, including CYP6CM1, were found associated with neonicotinoid resistance. However, a significant correlation was found only in CYP303 and CYP6CX3, with imidacloprid

  12. Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway.

    PubMed

    Eljounaidi, Kaouthar; Cankar, Katarina; Comino, Cinzia; Moglia, Andrea; Hehn, Alain; Bourgaud, Frédéric; Bouwmeester, Harro; Menin, Barbara; Lanteri, Sergio; Beekwilder, Jules

    2014-06-01

    Cynara cardunculus (Asteraceae) is a cross pollinated perennial crop which includes the two cultivated taxa globe artichoke and cultivated cardoon. The leaves of these plants contain high concentrations of sesquiterpene lactones (STLs) among which cynaropicrin is the most represented, and has recently attracted attention because of its therapeutic potential as anti-tumor and anti-photoaging agent. Costunolide is considered the common precursor of the STLs and three enzymes are involved in its biosynthetic pathway: i.e. the germacrene A synthase (GAS), the germacrene A oxidase (GAO) and the costunolide synthase (COS). Here we report on the isolation of two P450 genes, (i.e. CYP71AV9 and CYP71BL5), in a set of ∼19,000 C. cardunculus unigenes, and their functional characterization in yeast and in planta. The metabolite analyses revealed that the co-expression of CYP71AV9 together with GAS resulted in the biosynthesis of germacra-1(10),4,11(13)-trien-12-oic acid in yeast. The co-expression of CYP71BL5 and CYP71AV9 with GAS led to biosynthesis of the free costunolide in yeast and costunolide conjugates in Nicotiana benthamiana, demonstrating their involvement in STL biosynthesis as GAO and COS enzymes. The substrate specificity of CYP71AV9 was investigated by testing its ability to convert amorpha-4,11-diene, (+)-germacrene D and cascarilladiene to their oxidized products when co-expressed in yeast with the corresponding terpene synthases.

  13. Steviol glucuronidation and its potential interaction with UDP-glucuronosyltransferase 2B7 substrates.

    PubMed

    Wang, Meiyu; Lu, Jia; Li, Jiajun; Qi, Huixin; Wang, Yedong; Zhang, Hongjian

    2014-02-01

    Hydrolysis of stevioside and rebaudioside A in the gastrointestinal tract after oral intake leads to the formation of steviol, the aglycone, which is absorbed into the circulation. Although in vivo studies have shown that steviol is cleared from the body via glucuronidation, the role of liver vs. intestine in steviol glucuronidation has not been well defined and related UDP-glucuronosyltransferases (UGTs) have not been identified. The present study investigated steviol glucuronidation and obtained kinetic parameters in liver and intestinal microsomes of human and rat, as well as in recombinant human UGT systems. Results suggest that organ specificity exists in the intrinsic clearance of the glucuronidation reaction. Steviol glucuronidation was primarily mediated by UGT2B7 at low concentration and UGT2B7 and UGT1A3 at high concentration. Inhibition studies with selected UGT2B7 substrates indicate that diclofenac displayed a relatively strong inhibition (Ki, 4.2 μM) against steviol glucuronidation in human liver microsomes. Taken together, the identification of the involvement of UGT2B7 in steviol glucuronidation would provide a mechanistic basis for the evaluation of the interaction between steviol and diclofenac. As metabolic clearance of botanical-derived products can be the objects (victims) of botanical-drug interactions, further studies are needed to investigate the in vivo relevance of such interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Xenobiotic Metabolism in Mice Lacking the UDP-Glucuronosyltransferase 2 Family

    PubMed Central

    Fay, Matthew J.; Nguyen, My Trang; Snouwaert, John N.; Dye, Rebecca; Grant, Delores J.; Bodnar, Wanda M.

    2015-01-01

    UDP-Glucuronosyltransferases (UGTs) conjugate a glucuronyl group from glucuronic acid to a wide range of lipophilic substrates to form a hydrophilic glucuronide conjugate. The glucuronide generally has decreased bioactivity and increased water solubility to facilitate excretion. Glucuronidation represents an important detoxification pathway for both endogenous waste products and xenobiotics, including drugs and harmful industrial chemicals. Two clinically significant families of UGT enzymes are present in mammals: UGT1s and UGT2s. Although the two families are distinct in gene structure, studies using recombinant enzymes have shown considerable overlap in their ability to glucuronidate many substrates, often obscuring the relative importance of the two families in the clearance of particular substrates in vivo. To address this limitation, we have generated a mouse line, termed ΔUgt2, in which the entire Ugt2 gene family, extending over 609 kilobase pairs, is excised. This mouse line provides a means to determine the contributions of the two UGT families in vivo. We demonstrate the utility of these animals by defining for the first time the in vivo contributions of the UGT1 and UGT2 families to glucuronidation of the environmental estrogenic agent bisphenol A (BPA). The highest activity toward this chemical is reported for human and rodent UGT2 enzymes. Surprisingly, our studies using the ΔUgt2 mice demonstrate that, while both UGT1 and UGT2 isoforms can conjugate BPA, clearance is largely dependent on UGT1s. PMID:26354949

  15. UDP-Glucuronosyltransferase 1a Enzymes Are Present and Active in the Mouse Blastocyst

    PubMed Central

    Yamauchi, Yasuhiro; Sato, Brittany L.M.; Rougée, Luc R.A.; Ward, Monika A.

    2014-01-01

    The UDP-glucuronosyltransferase (UGT) enzymes are critical for regulating nutrients, hormones, and endobiotics, as well as for detoxifying xenobiotics. Human and murine fetuses are known to express glucuronidation enzymes, but there are currently no data prior to implantation. Here we addressed this gap in knowledge and tested whether Ugt enzymes are already present in preimplantation-stage embryos. Blastocysts were obtained after in vitro fertilization with gametes from B6D2F1 hybrid mice and from embryo culture. Protein expression and localization were determined using pan-specific UGT1A and UGT2B, as well as anti-human isoform-specific antibodies. Immunofluorescence analysis showed that blastocysts expressed Ugt1a globally, in the cytoplasm and nuclei of all of the cells. Western blots demonstrated the presence of Ugt1a6 but not Ugt1a1, Ugt1a3, Ugt1a4, or Ugt1a9. The Ugt2b proteins were not detected by either assay. The level of Ugt activity in murine blastocysts was comparable with that of the adult human liver (per milligram of protein), but the activity of β-glucuronidase, an Ugt-partnering enzyme responsible for substrate regeneration, was lower. Altogether, these data confirm that Ugt1a proteins are present and active in preimplantation murine embryos and point to a potential role for these proteins in implantation and early embryonic and fetal development. PMID:25200869

  16. UDP-glucuronosyltransferase 1A7 polymorphisms are associated with liver cirrhosis.

    PubMed

    Tang, Kung-Sheng; Lee, Chuan-Mo; Teng, Hsiu-Chen; Huang, May-Jen; Huang, Ching-Shan

    2008-02-15

    Variations in the UDP-glucuronosyltransferase (UGT) 1A7 gene have been found to be related to the development of hepatocellular carcinoma (HCC). Since the pathogenesis of liver cirrhosis is not dissimilar to that of HCC, we hypothesized that UGT1A7 genetic polymorphisms may be associated with liver cirrhosis. PCR-restriction fragment length polymorphism was utilized to determine UGT for 1A7 genotypes for the 159 patients with liver cirrhosis and 263 gender/age matched controls. Simple logistic regression analysis revealed that significant risk factors for liver cirrhosis were (1) hepatitis B virus (HBV) infection, (2) hepatitis C virus (HCV) infection, (3) HBV infection plus HCV infection and (4) low-activity UGT1A7 genotypes. The results of further multivariate logistic regression confirmed these associations. Interaction of low-activity UGT1A7 genotypes and HBV (or HCV) infection produced an additive effect upon the risk for the development of liver cirrhosis [observed odds ratio (OR) (54.59) greater than the expected OR (18.05)]. UGT1A7 low/low genotype was also related to advanced liver cirrhosis (Child-Pugh classes C and/or B) (OR=7.50, P=0.009). This study demonstrates the novel findings that carriage of low-activity UGT1A7 genotypes represents a risk factor for the development and functional severity of liver cirrhosis.

  17. UDP-glucuronosyltransferases 1A6 and 1A10 catalyze reduced menadione glucuronidation

    SciTech Connect

    Nishiyama, Takahito; Ohnuma, Tomokazu; Inoue, Yuu; Kishi, Takehiko; Ogura, Kenichiro; Hiratsuka, Akira

    2008-06-27

    Menadione (2-methyl-1,4-naphthoquine), also known as vitamin K3, has been widely used as a model compound in the field of oxidative stress-related research. The metabolism of menadione has been studied, and it is known that menadione undergoes a two-electron reduction by NAD(P)H:Quinone oxidoreductase 1 (NQO1) after which the reduced form of menadione (2-methyl-1,4-naphthalenediol, menadiol) is glucuronidated and excreted in urine. To investigate which human UDP-glucuronosyltransferase (UGT) isoforms participate in the glucuronidation of menadiol reduced by NQO1 from menadione, we first constructed heterologously expressed NQO1 in Sf9 cells and tested the menadiol glucuronidating activity of 16 human recombinant UGT isoforms. Of the 16 UGT isoforms, UGTs 1A6, 1A7, 1A8, 1A9, and 1A10 catalyzed menadiol glucuronidation, and, of these, UGTs 1A6 and 1A10 catalyzed menadiol glucuronidation at much higher rates than the other UGTs. Menadiol was regioselectively glucuronidated in the manner of 4-position > 1-position by UGTs 1A7, 1A8, 1A9, and 1A10. In contrast to these UGTs, only UGT1A6 exhibited 1-menadiol-preferential glucuronidating activity. The results suggest possible detoxification pathways for quinones via NQO1 reduction followed by UGT glucuronidation.

  18. Chirality Influence of Zaltoprofen Towards UDP-Glucuronosyltransferases (UGTs) Inhibition Potential.

    PubMed

    Jia, Lin; Hu, Cuimin; Wang, Haina; Liu, Yongzhe; Liu, Xin; Zhang, Yan-Yan; Li, Wei; Wang, Li-Xuan; Cao, Yun-Feng; Fang, Zhong-Ze

    2015-06-01

    Zaltoprofen (ZLT) is a nonsteroidal antiinflammation drug, and has been clinically employed to treat rheumatoid arthritis, osteoarthritis, and other chronic inflammatory pain conditions. The present study aims to investigate the chirality influence of zaltoprofen towards the inhibition potential towards UDP-glucuronosyltransferases (UGTs) isoforms. In vitro a recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation incubation system was employed to investigate the inhibition of (R)-zaltoprofen and (S)-zaltoprofen towards UGT isoforms. The inhibition difference capability was observed for the inhibition of (R)-zaltoprofen and (S)-zaltoprofen towards UGT1A8 and UGT2B7, but not for other tested UGT isoforms. (R)-zaltoprofen exhibited noncompetitive inhibition towards UGT1A8 and competitive inhibition towards UGT2B7. The inhibition kinetic parameters were calculated to be 35.3 μM and 19.2 μM for UGT1A8 and UGT2B7. (R)-zaltoprofen and (S)-zaltoprofen exhibited a different inhibition type towards UGT1A7. Based on the reported maximum plasma concentration of (R)-zaltoprofen in vivo, a high drug-drug interaction between (R)-zaltoprofen and the drugs mainly undergoing UGT1A7, UGT1A8, and UGT2B7-catalyzed glucuronidation was indicated.

  19. Weak activity of UDP-glucuronosyltransferase toward Bisphenol analogs in mouse perinatal development

    PubMed Central

    YABUSAKI, Risa; IWANO, Hidetomo; TSUSHIMA, Sumito; KOIKE, Nanako; OHTANI, Naoko; TANEMURA, Kentaro; INOUE, Hiroki; YOKOTA, Hiroshi

    2015-01-01

    Bisphenol A (BPA) is a widely used industrial chemical that disrupts endocrine function. BPA is an endocrine disrupting chemical (EDC) that has been demonstrated to affect reproductive organ development, brain development, metabolic disease and post-natal behavior. Accordingly, Bisphenol analogs, Bisphenol F (BPF, bis (4-hydroxyphenyl) methane) and Bisphenol AF (BPAF, 4,4-hexafluoroisopropylidene) diphenol) are used as replacements for BPA. BPA is mainly metabolized by UDP-glucuronosyltransferase (UGT), UGT2B1, but this effective metabolizing system is weak in the fetus. In the present study, we demonstrated that hepatic UGT activity toward BPAF was very weak, in comparison with BPA and BPF, in the fetus, pups and dams. Conversely, hepatic UGT activity toward BPF was very weak in the fetus and newborn pups, and was increased to the same level as BPA post-partum. In conclusion, BPAF possibly tends to accumulate in the fetus, because of weak metabolism during the perinatal period, suggesting that the metabolism of individual Bisphenol analogs requires assessment to properly gauge their risks. PMID:26074487

  20. Xenobiotic Metabolism in Mice Lacking the UDP-Glucuronosyltransferase 2 Family.

    PubMed

    Fay, Matthew J; Nguyen, My Trang; Snouwaert, John N; Dye, Rebecca; Grant, Delores J; Bodnar, Wanda M; Koller, Beverly H

    2015-12-01

    UDP-Glucuronosyltransferases (UGTs) conjugate a glucuronyl group from glucuronic acid to a wide range of lipophilic substrates to form a hydrophilic glucuronide conjugate. The glucuronide generally has decreased bioactivity and increased water solubility to facilitate excretion. Glucuronidation represents an important detoxification pathway for both endogenous waste products and xenobiotics, including drugs and harmful industrial chemicals. Two clinically significant families of UGT enzymes are present in mammals: UGT1s and UGT2s. Although the two families are distinct in gene structure, studies using recombinant enzymes have shown considerable overlap in their ability to glucuronidate many substrates, often obscuring the relative importance of the two families in the clearance of particular substrates in vivo. To address this limitation, we have generated a mouse line, termed ΔUgt2, in which the entire Ugt2 gene family, extending over 609 kilobase pairs, is excised. This mouse line provides a means to determine the contributions of the two UGT families in vivo. We demonstrate the utility of these animals by defining for the first time the in vivo contributions of the UGT1 and UGT2 families to glucuronidation of the environmental estrogenic agent bisphenol A (BPA). The highest activity toward this chemical is reported for human and rodent UGT2 enzymes. Surprisingly, our studies using the ΔUgt2 mice demonstrate that, while both UGT1 and UGT2 isoforms can conjugate BPA, clearance is largely dependent on UGT1s.

  1. Effects of Dietary Components on Testosterone Metabolism via UDP-Glucuronosyltransferase.

    PubMed

    Jenkinson, Carl; Petroczi, Andrea; Naughton, Declan P

    2013-01-01

    THE POTENTIAL INTERFERENCE IN TESTOSTERONE METABOLISM THROUGH INGESTED SUBSTANCES HAS RAMIFICATIONS FOR: (i) a range of pathologies such as prostate cancer, (ii) medication contra-indications, (iii) disruption to the endocrine system, and (iv) potential confounding effects on doping tests. Conjugation of anabolic steroids during phase II metabolism, mainly driven by UDP-glucuronosyltransferase (UGT) 2B7, 2B15, and 2B17, has been shown to be impaired in vitro by a range of compounds including xenobiotics and pharmaceuticals. Following early reports on the effects of a range of xenobiotics on UGT activity in vitro, the work was extended to reveal similar effects with common non-steroidal anti-inflammatory drugs. Notably, recent studies have evidenced inhibitory effects of the common foodstuffs green tea and red wine, along with their constituent flavonoids and catechins. This review amalgamates the existing evidence for the inhibitory effects of various pharmaceutical and dietary substances on the rate of UGT glucuronidation of testosterone; and evaluates the potential consequences for health linked to steroid levels, interaction with treatment drugs metabolized by the UGT enzyme and steroid abuse in sport.

  2. Effects of Dietary Components on Testosterone Metabolism via UDP-Glucuronosyltransferase

    PubMed Central

    Jenkinson, Carl; Petroczi, Andrea; Naughton, Declan P.

    2013-01-01

    The potential interference in testosterone metabolism through ingested substances has ramifications for: (i) a range of pathologies such as prostate cancer, (ii) medication contra-indications, (iii) disruption to the endocrine system, and (iv) potential confounding effects on doping tests. Conjugation of anabolic steroids during phase II metabolism, mainly driven by UDP-glucuronosyltransferase (UGT) 2B7, 2B15, and 2B17, has been shown to be impaired in vitro by a range of compounds including xenobiotics and pharmaceuticals. Following early reports on the effects of a range of xenobiotics on UGT activity in vitro, the work was extended to reveal similar effects with common non-steroidal anti-inflammatory drugs. Notably, recent studies have evidenced inhibitory effects of the common foodstuffs green tea and red wine, along with their constituent flavonoids and catechins. This review amalgamates the existing evidence for the inhibitory effects of various pharmaceutical and dietary substances on the rate of UGT glucuronidation of testosterone; and evaluates the potential consequences for health linked to steroid levels, interaction with treatment drugs metabolized by the UGT enzyme and steroid abuse in sport. PMID:23847592

  3. Metabolism of parabens (4-hydroxybenzoic acid esters) by hepatic esterases and UDP-glucuronosyltransferases in man.

    PubMed

    Abbas, Suzanne; Greige-Gerges, Hélène; Karam, Nancy; Piet, Marie-Hélène; Netter, Patrick; Magdalou, Jacques

    2010-01-01

    Parabens (alkyl esters of 4-hydroxybenzoic acid) are widely used as preservatives in drugs, cosmetic products, and foodstuffs. Safety concerns have recently increased due to the potential health risks associated to exposure to large amounts of these substances. Biotransformation of parabens mainly includes hydrolysis of the ester bond and glucuronidation reactions. The hydrolysis and glucuronidation of a series of six parabens differing by the nature of the alkyl group were investigated in human liver microsomes and plasma, and the major human UDP-glucuronosyltransferase (UGT) isoforms involved in the reaction were identified. Methyl- and ethylparaben were stable in human plasma, with 95% of the initial concentration remaining after 24 h. On the other hand, propyl-, butyl- and benzylparaben concentrations decreased by 50% under similar conditions. In contrast, rapid hydrolysis was measured with human liver microsomes depending on the alkyl chain length, with t(1/2) varying from 22 min for methylparaben to 87 min for butylparaben. All parabens were actively glucuronidated by liver microsomes, in comparison to 4-hydroxybenzoic acid. They were mainly substrates of human recombinant UGT1A1, UGT1A8, UGT1A9, UGT2B7, UGT2B15 and UGT2B17. In conclusion, the parabens were readily metabolized in human liver through esterase hydrolysis and glucuronidation by several UGT isoforms. These results suggest that these parabens do not accumulate in human tissue.

  4. Biotransformation of baicalin to baicalein significantly strengthens the inhibition potential towards UDP-glucuronosyltransferases (UGTs) isoforms.

    PubMed

    Teng, Yanjie; Nian, Hong; Zhao, Hongtao; Chen, Pei; Wang, Guan

    2013-09-01

    The aim of the present study was to investigate the influence of biotransformation of baicalin into baicalein towards the inhibition potential towards one of the most important drug-metabolizing enzymes (DMEs) UDP-glucuronosyltransferases (UGTs). in vitro incubation method using recombinant UGTs-catalyzed 4-methylumbelliferone (4-MU) glucuronidation was used to evaluate the inhibition towards important UGT isoforms in the liver, including UGT1A1, 1A3, 1A6, 1A9, and 2B7. At the same concentration (100 microM), baicalein showed stronger inhibition potential than baicalin towards all the tested UGT isoforms. Data fitting using Dixon plot and Lineweaver-Burk plot was carried out to determine the inhibition type, and the second plot with the slopes from Lineweaver-Burk plot towards baicalein's concentrations was used to calculate the inhibition kinetic parameters (K(i)). Competitive inhibition type was observed for UGT1A1, 1A6, 1A9 and 2B7, and noncompetitive inhibition was detected for UGT1A3. The inhibition kinetic parameters (K(i)) were calculated to be 1.2, 5.1, 15.3, 26.3, and 48.9 microM for UGT1A1, 1A3, 1A6, 1A9, and 2B7, respectively. All these information reminds us of the necessary monitoring when oral administration of baicalin or baicalin-containing herbs.

  5. Effect of antipsychotic drugs on human liver cytochrome P-450 (CYP) isoforms in vitro: preferential inhibition of CYP2D6.

    PubMed

    Shin, J G; Soukhova, N; Flockhart, D A

    1999-09-01

    The ability of antipsychotic drugs to inhibit the catalytic activity of five cytochrome P-450 (CYP) isoforms was compared using in vitro human liver microsomal preparations to evaluate the relative potential of these drugs to inhibit drug metabolism. The apparent kinetic parameters for enzyme inhibition were determined by nonlinear regression analysis of the data. All antipsychotic drugs tested competitively inhibited dextromethorphan O-demethylation, a selective marker for CYP2D6, in a concentration-dependent manner. Thioridazine and perphenazine were the most potent, with IC(50) values (2.7 and 1.5 microM) that were comparable to that of quinidine (0.52 microM). The estimated K(i) values for CYP2D6-catalyzing dextrorphan formation were ranked in the following order: perphenazine (0.8 microM), thioridazine (1.4 microM), chlorpromazine (6.4 microM), haloperidol (7.2 microM), fluphenazine (9.4 microM), risperidone (21.9 microM), clozapine (39.0 microM), and cis-thiothixene (65.0 microM). No remarkable inhibition of other CYP isoforms was observed except for moderate inhibition of CYP1A2-catalyzed phenacetin O-deethylation by fluphenazine (K(i) = 40.2 microM) and perphenazine (K(i) = 65.1). The estimated K(i) values for the inhibition of CYP2C9, 2C19, and 3A were >300 microM in almost all antipsychotics tested. These results suggest that antipsychotic drugs exhibit a striking selectivity for CYP2D6 compared with other CYP isoforms. This may reflect a remarkable commonality of structure between the therapeutic targets for these drugs, the transporters, and metabolic enzymes that distribute and eliminate them. Clinically, coadministration of these medicines with drugs that are primarily metabolized by CYP2D6 may result in significant drug interactions.

  6. Evidence for communality in the primary determinants of CYP74 catalysis and of structural similarities between CYP74 and classical mammalian P450 enzymes.

    PubMed

    Hughes, Richard K; Yousafzai, Faridoon K; Ashton, Ruth; Chechetkin, Ivan R; Fairhurst, Shirley A; Hamberg, Mats; Casey, Rod

    2008-09-01

    In silico structural analysis of CYP74C3, a membrane-associated P450 enzyme from the plant Medicago truncatula (barrel medic) with hydroperoxide lyase (HPL) specificity, showed that it had strong similarities to the structural folds of the classical microsomal P450 enzyme from rabbits (CYP2C5). It was not only the secondary structure predictions that supported the analysis but site directed mutagenesis of the substrate interacting residues was also consistent with it. This led us to develop a substrate-binding model of CYP74C3 which predicted three amino acid residues, N285, F287, and G288 located in the putative I-helix and distal haem pocket of CYP74C3 to be in close proximity to the preferred substrate 13-HPOTE. These residues were judged to be in equivalent positions to those identified in SRS-4 of CYP2C5. Significance of the residues and their relevance to the model were further assessed by site directed mutagenesis of the three residues followed by EPR spectroscopic and detailed kinetic investigations of the mutated proteins in the presence and absence of detergent. Although point mutation of the residues had no effect on the haem content of the mutated proteins, significant effects on the spin state equilibrium of the haem iron were noted. Kinetic effects of the mutations, which were investigated using three different substrates, were dramatic in nature. In the presence of detergent with the preferred substrate (13-HPOTE), the catalytic center activities and substrate binding affinities of the mutant proteins were reduced by a factor of 8-32 and 4-12, respectively, compared with wild-type--a two orders of magnitude reduction in catalytic efficiencies. We believe this is the first report where primary determinants of catalysis for any CYP74 enzyme, which are fully consistent with our model, have been identified. Our working model predicts that N285 is close enough to suggest that a hydrogen bond with the peroxy group of the enzyme substrate 13-HPOTE is

  7. Crystal structure of cytochrome P450 14α-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors

    PubMed Central

    Podust, Larissa M.; Poulos, Thomas L.; Waterman, Michael R.

    2001-01-01

    Cytochrome P450 14α-sterol demethylases (CYP51) are essential enzymes in sterol biosynthesis in eukaryotes. CYP51 removes the 14α-methyl group from sterol precursors such as lanosterol, obtusifoliol, dihydrolanosterol, and 24(28)-methylene-24,25-dihydrolanosterol. Inhibitors of CYP51 include triazole antifungal agents fluconazole and itraconazole, drugs used in treatment of topical and systemic mycoses. The 2.1- and 2.2-Å crystal structures reported here for 4-phenylimidazole- and fluconazole-bound CYP51 from Mycobacterium tuberculosis (MTCYP51) are the first structures of an authentic P450 drug target. MTCYP51 exhibits the P450 fold with the exception of two striking differences—a bent I helix and an open conformation of BC loop—that define an active site-access channel running along the heme plane perpendicular to the direction observed for the substrate entry in P450BM3. Although a channel analogous to that in P450BM3 is evident also in MTCYP51, it is not open at the surface. The presence of two different channels, with one being open to the surface, suggests the possibility of conformationally regulated substrate-in/product-out openings in CYP51. Mapping mutations identified in Candida albicans azole-resistant isolates indicates that azole resistance in fungi develops in protein regions involved in orchestrating passage of CYP51 through different conformational stages along the catalytic cycle rather than in residues directly contacting fluconazole. These new structures provide a basis for rational design of new, more efficacious antifungal agents as well as insight into the molecular mechanism of P450 catalysis. PMID:11248033

  8. Immobilized Cytochrome P450 for Monitoring of P450-P450 Interactions and Metabolism.

    PubMed

    Bostick, Chris D; Hickey, Katherine M; Wollenberg, Lance A; Flora, Darcy R; Tracy, Timothy S; Gannett, Peter M

    2016-05-01

    Cytochrome P450 (P450) protein-protein interactions have been shown to alter their catalytic activity. Furthermore, these interactions are isoform specific and can elicit activation, inhibition, or no effect on enzymatic activity. Studies show that these effects are also dependent on the protein partner cytochrome P450 reductase (CPR) and the order of protein addition to purified reconstituted enzyme systems. In this study, we use controlled immobilization of P450s to a gold surface to gain a better understanding of P450-P450 interactions between three key drug-metabolizing isoforms (CYP2C9, CYP3A4, and CYP2D6). Molecular modeling was used to assess the favorability of homomeric/heteromeric P450 complex formation. P450 complex formation in vitro was analyzed in real time utilizing surface plasmon resonance. Finally, the effects of P450 complex formation were investigated utilizing our immobilized platform and reconstituted enzyme systems. Molecular modeling shows favorable binding of CYP2C9-CPR, CYP2C9-CYP2D6, CYP2C9-CYP2C9, and CYP2C9-CYP3A4, in rank order.KDvalues obtained via surface plasmon resonance show strong binding, in the nanomolar range, for the above pairs, with CYP2C9-CYP2D6 yielding the lowestKD, followed by CYP2C9-CYP2C9, CYP2C9-CPR, and CYP2C9-CYP3A4. Metabolic incubations show that immobilized CYP2C9 metabolism was activated by homomeric complex formation. CYP2C9 metabolism was not affected by the presence of CYP3A4 with saturating CPR concentrations. CYP2C9 metabolism was activated by CYP2D6 at saturating CPR concentrations in solution but was inhibited when CYP2C9 was immobilized. The order of addition of proteins (CYP2C9, CYP2D6, CYP3A4, and CPR) influenced the magnitude of inhibition for CYP3A4 and CYP2D6. These results indicate isoform-specific P450 interactions and effects on P450-mediated metabolism. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Identification and Characterization of CYP9A40 from the Tobacco Cutworm Moth (Spodoptera litura), a Cytochrome P450 Gene Induced by Plant Allelochemicals and Insecticides

    PubMed Central

    Wang, Rui-Long; Staehelin, Christian; Xia, Qing-Qing; Su, Yi-Juan; Zeng, Ren-Sen

    2015-01-01

    Cytochrome P450 monooxygenases (P450s) of insects play crucial roles in the metabolism of endogenous and dietary compounds. Tobacco cutworm moth (Spodoptera litura), an important agricultural pest, causes severe yield losses in many crops. In this study, we identified CYP9A40, a novel P450 gene of S. litura, and investigated its expression profile and potential role in detoxification of plant allelochemicals and insecticides. The cDNA contains an open reading frame encoding 529 amino acid residues. CYP9A40 transcripts were found to be accumulated during various development stages of S. litura and were highest in fifth and sixth instar larvae. CYP9A40 was mainly expressed in the midgut and fat body. Larval consumption of xenobiotics, namely plant allelochemicals (quercetin and cinnamic acid) and insecticides (deltamethrin and methoxyfenozide) induced accumulation of CYP9A40 transcripts in the midgut and fat body. Injection of dsCYP9A40 (silencing of CYP9A40 by RNA interference) significantly increased the susceptibility of S. litura larvae to the tested plant allelochemicals and insecticides. These results indicate that CYP9A40 expression in S. litura is related to consumption of xenobiotics and suggest that CYP9A40 is involved in detoxification of these compounds. PMID:26393579

  10. Identification and Characterization of CYP9A40 from the Tobacco Cutworm Moth (Spodoptera litura), a Cytochrome P450 Gene Induced by Plant Allelochemicals and Insecticides.

    PubMed

    Wang, Rui-Long; Staehelin, Christian; Xia, Qing-Qing; Su, Yi-Juan; Zeng, Ren-Sen

    2015-09-18

    Cytochrome P450 monooxygenases (P450s) of insects play crucial roles in the metabolism of endogenous and dietary compounds. Tobacco cutworm moth (Spodoptera litura), an important agricultural pest, causes severe yield losses in many crops. In this study, we identified CYP9A40, a novel P450 gene of S. litura, and investigated its expression profile and potential role in detoxification of plant allelochemicals and insecticides. The cDNA contains an open reading frame encoding 529 amino acid residues. CYP9A40 transcripts were found to be accumulated during various development stages of S. litura and were highest in fifth and sixth instar larvae. CYP9A40 was mainly expressed in the midgut and fat body. Larval consumption of xenobiotics, namely plant allelochemicals (quercetin and cinnamic acid) and insecticides (deltamethrin and methoxyfenozide) induced accumulation of CYP9A40 transcripts in the midgut and fat body. Injection of dsCYP9A40 (silencing of CYP9A40 by RNA interference) significantly increased the susceptibility of S. litura larvae to the tested plant allelochemicals and insecticides. These results indicate that CYP9A40 expression in S. litura is related to consumption of xenobiotics and suggest that CYP9A40 is involved in detoxification of these compounds.

  11. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    SciTech Connect

    Flueck, Christa E.; Mullis, Primus E.; Pandey, Amit V.

    2010-10-08

    Research highlights: {yields} Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). {yields} Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. {yields} We are reporting that mutations in POR may reduce CYP3A4 activity. {yields} POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. {yields} Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.

  12. Hyper- and Hypo- Induction of Cytochrome P450 activities with Aroclor 1254 and 3-Methylcholanthrene in Cyp1a2(−/−) mice

    PubMed Central

    Barker, Melissa L.; Hathaway, Laura B.; Arch, Dorinda D.; Westbroek, Mark L.; Kushner, James P.; Phillips, John D.; Franklin, Michael R.

    2009-01-01

    The response of hepatic mono-oxygenase activities to Aroclor 1254 or 3-methylcholanthrene was investigated in wild-type and Cyp1a2(−/−) mice. Cytochrome P450 concentrations were similar in naïve Cyp1a2(−/−) and wild-type mice. There was no difference between naïve wild-type and Cyp1a2(−/−) animals in 7-ethoxyresorufin and 7-ethoxy-4-trifluoromethylcoumarin dealkylase activities, nor was the induction response after 3-methylcholanthrene any different between the two genotypes. However, both activities were induced to a higher extent in Cyp1a2(−/−) mice after Aroclor 1254. In contrast, 7-pentoxyresorufin dealkylation activity was lower in Cyp1a2(−/−) mice and this differential was maintained during induction by both agents. 7-Methoxy- and 7-benzoxyresorufin dealkylation activities were also lower than wild-type in naïve Cyp1a2(−/−) animals and during 3-methylcholanthrene induction, but showed accelerated induction in Cyp1a2(−/−) mice with Aroclor 1254. Bufuralol 1′- and testosterone 6β-hydroxylation activities, and P450 characteristics were evaluated 48 hours after inducer administration. Bufuralol 1′-hydroxylation, a sexual dimorphic activity (female > male) showed no genotype differences in naïve animals. Activity changes varied across gender and genotype, with 3-methylcholanthrene and Aroclor 1254 inducing in male Cyp1a2(−/−), and Aroclor 1254 inducing in female wild-type. Testosterone 6β-hydroxylation activity was 16% higher in Cyp1a2(−/−) mice and neither 3-methylcholanthrene nor Aroclor 1254 elicited induction. After Aroclor 1254, a 24% increase in P450 concentration with a hypsochromic shift in the ferrous-CO maximum characteristic of CYP1A enzymes occurred in wild-type, compared to no change in either parameter in Cyp1a2(−/−) mice. Induction changes with 3-methylcholanthrene were greater in wild-type mice, a 60% increase in concentration and ~2 nm hypsochromic shift versus a 10% increase and ~1 nm hypsochromic

  13. Characterization of the peroxidase activity of CYP119, a thermostable P450 from Sulfolobus acidocaldarius.

    PubMed

    Rabe, Kersten S; Kiko, Kathrin; Niemeyer, Christof M

    2008-02-15

    We report the cloning, expression, and purification of CYP119, a thermostable enzyme previously thought to derive from Sulfolobus solfataricus. Sequence analysis suggested that, in contrast to the conclusions of earlier studies, the enzyme stems from the closely related Sulfolobus acidocaldarius, and we were indeed able to clone the gene from the genomic DNA of this organism. For the first time, we report here on the peroxidase activity of this enzyme and the optimization of the associated reaction parameters. The optimized reaction conditions were then applied to the biocatalytic epoxidation of styrene. The values obtained for k(cat) (78.2+/-20.6 min(-1)) and K(M) (9.2+/-4.3 mM) indicated an approximately 100-fold increased catalytic activity over previously reported results.

  14. Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticae.

    PubMed

    Riga, M; Tsakireli, D; Ilias, A; Morou, E; Myridakis, A; Stephanou, E G; Nauen, R; Dermauw, W; Van Leeuwen, T; Paine, M; Vontas, J

    2014-03-01

    Abamectin is one of the most important insecticides worldwide. It is used against major agricultural pests and insects of public health importance, as well as against endoparasites in animal health. Abamectin has been used successfully for the control of the spider mite Tetranychus urticae, a major agricultural pest with global distribution, an extremely diverse host range, and a remarkable ability to develop resistance against insecticides including abamectin. Target site resistance mutations may explain a large part of resistance, although genetic evidence and transcriptomic data indicated that additional mechanisms may also be implicated in the abamectin resistant phenotype. To investigate a functional link between cytochrome P450-mediated metabolism and abamectin resistance, we recombinantly expressed three cytochrome P450s (CYP392A16, CYP392D8 and CYP392D10) that have been associated with high levels of abamectin resistance in a resistant T. urticae strain isolated from Greece. CYP392A16 was expressed predominately in its P450 form however, both CYP392D8 and CYP392D10 were expressed predominately as P420, despite optimization efforts on expression conditions. CYP392A16 catalyses the hydroxylation of abamectin (Kcat=0.54 pmol/min/pmol P450; Km=45.9 μM), resulting in a substantially less toxic compound as confirmed by bioassays with the partially purified metabolite. However, CYP392A16 did not metabolize hexythiazox, clofentezine and bifenthrin, active ingredients that also showed reduced toxicity in the abamectin resistant strain. Among a number of fluorescent and luminescent substrates screened, Luciferin-ME EGE was preferentially metabolized by CYP392A16, and it may be a potential diagnostic probe for metabolic resistance detection and monitoring.

  15. Molecular characterization of cytochrome P450 CYP6B47 cDNAs and 5'-flanking sequence from Spodoptera litura (Lepidoptera: Noctuidae): its response to lead stress.

    PubMed

    Zhou, Jialiang; Zhang, Guren; Zhou, Qiang

    2012-05-01

    In insects, P450s are responsible for the oxidative metabolism of structurally diverse endogenous and exogenous compounds including plant allelochemicals and insecticides. A novel full-length P450 cDNA, CYP6B47, was cloned from Spodoptera litura (Lepidoptera: Noctuidae). The sequence is 1718 bp in length with an ORF of 1509 bp encoding 503 amino acid residues. The phylogenetic analysis indicated that CYP6B47 belongs to CYP3 clan and second clade of CYP6Bs which contain 11 P450s from Noctuidae. Quantitative real-time PCR showed that CYP6B47 was expressed only in larvae stages and had a high level of transcription in the midgut and fat body. In addition, we cloned a 2141-bp 5'-flanking regions and presented the basal luciferase activities of promoter. We also predicted multiple putative elements for transcription factors binding in the 5'-flanking region. Interestingly, the expression of CYP6B47 significantly increased in the midgut and fat body after lead (Pb) exposure for 5 generations. Larvae tolerance to the alpha-cypermethrin (35% increased in LC(50)) and fenvalerate (52% increased in LC(50)) were improved after pre-exposure to 50 mg/kg Pb. These dates suggested that lead increased tolerance of larvae to insecticides mainly through transcriptional induction of detoxification genes including CYP6B47. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Influence of amino acid residue 374 of cytochrome P-450 2D6 (CYP2D6) on the regio- and enantio-selective metabolism of metoprolol.

    PubMed Central

    Ellis, S W; Rowland, K; Ackland, M J; Rekka, E; Simula, A P; Lennard, M S; Wolf, C R; Tucker, G T

    1996-01-01

    Cytochrome P-450 2D6 (CYP2D6) is an important human drug-metabolizing enzyme responsible for the oxidation of more than 30 widely used therapeutic agents. The enzymes encoded by the published genomic [Kimura, Umeno, Skoda, Meyer and Gonzalez (1989) Am. J. Hum. Genet. 45, 889-904] and cDNA [Gonzalez, Skoda, Kimura, Umeno, Zanger, Nebert, Gelboin, Hardwick and Meyer (1988) Nature 331, 442-446] sequences of CYP2D6, and presumed to represent wild-type sequences, differ at residue 374 and encode valine (CYP2D6-Val) and methionine (CYP2D6-Met) respectively. The influence of this amino acid difference on cytochrome P-450 expression, ligand binding, catalysis and stereoselective oxidation of metoprolol was investigated by the heterologous expression of the corresponding cDNAs in the yeast Saccharomyces cerevisiae. The level of expression of apo- and holo-protein was similar with each form of CYP2D6 cDNA, and the binding affinities of a series of ligands to CYP2D6-Val and CYP2D6-Met were identical. The enantioselective O-demethylation and alpha-hydroxylation of metoprolol were also similar with each form of CYP2D6, O-demethylation being R-(+)- enantioselective (CYP2D6-Val: R/S, 1.6; CYP2D6-Met: R/S, 1.4), whereas alpha-hydroxylation showed a preference for S-(-)-metoprolol (CYP2D6-Val: R/S, 0.7; CYP2D6-Met: R/S, 0.8). However, although the favoured regiomer overall was O-demethylmetoprolol (ODM), the regioselectivity for O-demethylation of each metoprolol enantiomer was significantly greater for CYP2D6-Val [R-(+)-: ODM/alpha-hydroxymetoprolol (alpha OH), 5.9; S-(-)-: ODM/alpha OH, 2.5) than that observed for CYP2D6-Met [R-(+)-: ODM/alpha OH, 2.2; S-(-)-: ODM/alpha OH, 1.4]. The stereoselective properties of CYP2D6-Val were consistent with those observed for CYP2D6 in human liver microsomes. The difference in the stereoselective properties of CYP2D6-Val and CYP2D6-Met were rationalized with respect to a homology model of the active site of CYP2D6 based on an alignment with

  17. Inhibitory effects of cytochrome P450 enzymes CYP1A2, CYP2A6, CYP2E1 and CYP3A4 by extracts and alkaloids of Gelsemium elegans roots.

    PubMed

    Wang, Yinghao; Wu, Shuisheng; Chen, Zhichun; Zhang, Hua; Zhao, Wanli

    2015-05-26

    Gelsemium elegans (GE), widely distributed in East Asia, South East Asia and Northern America, is a kind of well-known toxic plant throughout the world. Yet it has been used as a Chinese folk medicine for treatment of malignant tumors, pain, rheumatic arthritis, psoriasis and immune function. The present study was to investigate the potential inhibitory effects of G. elegans (GE) roots on four major cytochrome P450 (CYP450) isoforms (CYP1A2, CYP2A6, CYP2E1 and CYP3A4) in vitro. Four extracts (petroleum ether, dichloromethane, EtOAc and aqueous) of GE and two commercially available alkaloids (koumine and humantenmine) were screened for their CYP isoforms inhibitory activity. Four enzyme inhibition assays were examined according to the method of the literature. Phenacetin, coumarin, chlorzoxazone and testosterone were used as probe substrates in order to determine CYP1A2, CYP2A6, CYP2E1 and CYP3A4 catalytic activity, respectively. Each probe substrate was incubated with or without each extract and active constituent for corresponding isoform, followed by determination of the kinetics parameters, IC50 and Ki, to characterize inhibitory effects. GE dichloromethane extract selectively inhibited activities of CYP2E1 (IC50=29.04µg/ml) and CYP2A6 (IC50=46.84µg/ml), with Ki of 10.16 and 19.33µg/ml, respectively. In the case of alkaloids, koumine exhibited significant inhibitory effects on CYP2E1 while humantenmine showed more potent inhibition on CYP2E1 and CYP2A6 (IC50 of 47.44, 18.34 and 45.87µg/ml, Ki of 31.20, 35.06 and 52.06µg/ml, respectively). Because of their relatively high Ki values, the active constituents in GE dichloromethane extract were analyzed. The UPLC-DAD-ESI-MS/MS data showed that GE dichloromethane extract contains 6 kinds of indole alkaloids (koumine, humantenmine, humantenine, humantenirine, N-methoxytaberpsychine, and sempervirine). As for CYP1A2 and CYP3A4, the negligible inhibitions were observed. G. elegans extracts inhibited several CYP450

  18. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for Codeine Therapy in the Context of Cytochrome P450 2D6 (CYP2D6) Genotype

    PubMed Central

    Crews, KR; Gaedigk, A; Dunnenberger, HM; Klein, TE; Shen, DD; Callaghan, JT; Kharasch, ED; Skaar, TC

    2012-01-01

    Codeine is bioactivated to morphine, a strong opioid agonist, by the hepatic cytochrome P450 2D6 (CYP2D6); hence, the efficacy and safety of codeine as an analgesic are governed by CYP2D6 polymorphisms. Codeine has little therapeutic effect in patients who are CYP2D6 poor metabolizers, whereas the risk of morphine toxicity is higher in ultrarapid metabolizers. The purpose of this guideline (periodically updated at http://www.pharmgkb.org) is to provide information relating to the interpretation of CYP2D6 genotype test results to guide the dosing of codeine. PMID:22205192

  19. Homozygous disruption of P450 side-chain cleavage (CYP11A1) is associated with prematurity, complete 46,XY sex reversal, and severe adrenal failure.

    PubMed

    Hiort, Olaf; Holterhus, Paul-Martin; Werner, Ralf; Marschke, Christine; Hoppe, Ute; Partsch, Carl-Joachim; Riepe, Felix G; Achermann, John C; Struve, Dagmar

    2005-01-01

    Disruption of the P450 side-chain cleavage cytochrome (P450scc) enzyme due to deleterious mutations of the CYP11A1 gene is thought to be incompatible with fetal survival because of impaired progesterone production by the fetoplacental unit. We present a 46,XY patient with a homozygous disruption of CYP11A1. The child was born prematurely with complete sex reversal and severe adrenal insufficiency. Laboratory data showed diminished or absent steroidogenesis in all pathways. Molecular genetic analysis of the CYP11A1 gene revealed a homozygous single nucleotide deletion leading to a premature termination at codon position 288. This mutation will delete highly conserved regions of the P450scc enzyme and thus is predicted to lead to a nonfunctional protein. Both healthy parents were heterozygous for this mutation. Our report demonstrates that severe disruption of P450scc can be compatible with survival in rare instances. Furthermore, defects in this enzyme are inherited in an autosomal-recessive fashion, and heterozygote carriers can be healthy and fertile. The possibility of P450scc-independent pathways of steroid synthesis in addition to the current concept of luteoplacental shift of progesterone synthesis in humans has to be questioned.

  20. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar.

    PubMed

    Irmisch, Sandra; Clavijo McCormick, Andrea; Günther, Jan; Schmidt, Axel; Boeckler, Gerhard Andreas; Gershenzon, Jonathan; Unsicker, Sybille B; Köllner, Tobias G

    2014-12-01

    Numerous plant species emit volatile nitriles upon herbivory, but the biosynthesis as well as the relevance of these nitrogenous compounds in plant-insect interactions remains unknown. Populus trichocarpa has been shown to produce a complex blend of nitrogenous volatiles, including aldoximes and nitriles, after herbivore attack. The aldoximes were previously reported to be derived from amino acids by the action of cytochrome P450 enzymes of the CYP79 family. Here we show that nitriles are derived from aldoximes by another type of P450 enzyme in P. trichocarpa. First, feeding of deuterium-labeled phenylacetaldoxime to poplar leaves resulted in incorporation of the label into benzyl cyanide, demonstrating that poplar volatile nitriles are derived from aldoximes. Then two P450 enzymes, CYP71B40v3 and CYP71B41v2, were characterized that produce aliphatic and aromatic nitriles from their respective aldoxime precursors. Both possess typical P450 sequence motifs but do not require added NADPH or cytochrome P450 reductase for catalysis. Since both enzymes are expressed after feeding by gypsy moth caterpillars, they are likely to be involved in herbivore-induced volatile nitrile emission in P. trichocarpa. Olfactometer experiments showed that these volatile nitriles have a strong repellent activity against gypsy moth caterpillars, suggesting they play a role in induced direct defense against poplar herbivores. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  1. Cytochrome P450 CYP71BE5 in grapevine (Vitis vinifera) catalyzes the formation of the spicy aroma compound (-)-rotundone.

    PubMed

    Takase, Hideki; Sasaki, Kanako; Shinmori, Hideyuki; Shinohara, Akira; Mochizuki, Chihiro; Kobayashi, Hironori; Ikoma, Gen; Saito, Hiroshi; Matsuo, Hironori; Suzuki, Shunji; Takata, Ryoji

    2016-02-01

    (-)-Rotundone is a potent odorant molecule with a characteristic spicy aroma existing in various plants including grapevines (Vitis vinifera). It is considered to be a significant compound in wines and grapes because of its low sensory threshold and aroma properties. (-)-Rotundone was first identified in red wine made from the grape cultivar Syrah and here we report the identification of VvSTO2 as a α-guaiene 2-oxidase which can transform α-guaiene to (-)-rotundone in the grape cultivar Syrah. It is a cytochrome P450 (CYP) enzyme belonging to the CYP 71BE subfamily, which overlaps with the very large CYP71D family and, to the best of our knowledge, this is the first functional characterization of an enzyme from this family. VvSTO2 was expressed at a higher level in the Syrah grape exocarp (skin) in accord with the localization of (-)-rotundone accumulation in grape berries. α-Guaiene was also detected in the Syrah grape exocarp at an extremely high concentration. These findings suggest that (-)-rotundone accumulation is regulated by the VvSTO2 expression along with the availability of α-guaiene as a precursor. VvSTO2 expression during grape maturation was considerably higher in Syrah grape exocarp compared to Merlot grape exocarp, consistent with the patterns of α-guaiene and (-)-rotundone accumulation. On the basis of these findings, we propose that VvSTO2 may be a key enzyme in the biosynthesis of (-)-rotundone in grapevines by acting as a α-guaiene 2-oxidase. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. A high throughput screening assay to screen for CYP2E1 metabolism and inhibition using a fluorogenic vivid p450 substrate.

    PubMed

    Marks, Bryan D; Smith, Ronald W; Braun, Heidi A; Goossens, Tony A; Christenson, Marie; Ozers, Mary S; Lebakken, Connie S; Trubetskoy, Olga V

    2002-11-01

    Large-scale screening of multiple compound libraries and combinatorial libraries for pharmacological activity is one of the novel approaches of the modern drug discovery process. The application of isozyme-specific high-throughput screening (HTS) assays for characterizing the interactions of potential drug candidates with major human drug-metabolizing cytochrome p450 enzymes (p450s) is newly becoming an essential part of this process. Fluorescence-based HTS assays have been successfully employed for in vitro assessment of drug-drug interactions and enzyme inhibition with several p450 isoforms, including CYP3A4, CYP2D6, CYP2C9, and CYP2C19. Here we describe a fluorescence-based HTS assay for detecting drug metabolism and inhibition with human CYP2E1. CYP2E1 plays an important role in the metabolism of several drugs, many solvents, and toxins and therefore has been repeatedly linked to numerous pathologies, including cancer, liver and kidney toxicity, diabetes, and alcoholism. The assay is based on the ability of a drug to compete with the fluorogenic Vivid CYP2E1 Blue Substrate for CYP2E1 metabolism and thus enables rapid screening of lead molecules for their inhibitory potential. We have used this assay to screen a panel of drugs and compounds for their effects on CYP2E1 metabolism and inhibition. Our results demonstrate the assay's usefulness in identifying CYP2E1 substrates and inhibitors and in enabling in-depth characterization of their interactions with the CYP2E1 isozyme. We also present detailed characteristics of the assay, including its dynamic range and Z'-factor values, which indicate that this robust assay is well suited for kinetic and inhibition studies in HTS formats.

  3. Involvement of the CYP78A subfamily of cytochrome P450 monooxygenases in protonema growth and gametophore formation in the moss Physcomitrella patens.

    PubMed

    Katsumata, Takumi; Fukazawa, Jutarou; Magome, Hiroshi; Jikumaru, Yusuke; Kamiya, Yuji; Natsume, Masahiro; Kawaide, Hiroshi; Yamaguchi, Shinjiro

    2011-01-01

    CYP78 is a plant-specific family of cytochrome P450 monooxygenases, some members of which regulate the plastochron length and organ size in angiosperms. The CYP78 family appears to be highly conserved in land plants, but there have been no reports on the role of CYP78s in bryophytes. The moss, Physcomitrella patens, possesses two CYP78As, CYP78A27 and CYP78A28. We produced single and double mutants and overexpression lines for CYP78A27 and CYP78A28 by gene targeting to investigate the function of CYP78As in P. patens. Neither the cyp78a27 nor cyp78a28 single mutant showed any obvious phenotype, while the double mutant exhibited severely retarded protonemal growth and gametophore development. The endogenous levels of some plant hormones were also altered in the double mutant. Transgenic lines that overexpressed CYP78A27 or CYP78A28 showed delayed and reduced bud formation. Our results suggest that CYP78As participate in the synthesis of a critical growth regulator in P. patens.

  4. Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm (Spodoptera litura) and RNA interference to evaluate its role in commonly used insecticides.

    PubMed

    Wang, Rui-Long; Zhu-Salzman, Keyan; Baerson, Scott R; Xin, Xiao-Wei; Li, Jun; Su, Yi-Juan; Zeng, Ren-Sen

    2017-04-01

    Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides leading to resistance in insect populations. A polyphagous pest, Spodoptera litura, has developed resistance to a wide range of insecticides. In the present study, a novel P450 gene, CYP321B1, was cloned from S. litura. The function of CYP321B1 was assessed using RNA interference (RNAi) and monitoring resistance levels for three commonly used insecticides, including chlorpyrifos, β-cypermethrin and methomyl. The full-length complementary DNA sequence of CYP321B1 is 1814 bp long with an open reading frame of 1 488 bp encoding 495 amino acid residues. Quantitative reverse-transcriptase polymerase chain reaction analyses during larval and pupal development indicated that CYP321B1 expression was highest in the midgut of fifth-instar larvae, followed by fat body and cuticle. The expression of CYP321B1 in the midgut was up-regulated by chlorpyrifos, β-cypermethrin and methomyl with both lethal concentration at 15% (LC15 ) (50, 100 and 150 μg/mL, respectively) and 50%(LC50 ) dosages (100, 200 and 300 μg/mL, respectively). Addition of piperonyl butoxide (PBO) significantly increased the toxicity of chlorpyrifos, β-cypermethrin and methomyl to S. litura, suggesting a marked synergism of the three insecticides with PBO and P450-mediated detoxification. RNAi-mediated silencing of CYP321B1 further increased mortality by 25.6% and 38.9% when the fifth-instar larvae were exposed to chlorpyrifos and β-cypermethrin, respectively, at the LC50 dose levels. The results demonstrate that CYP321B1 might play an important role in chlorpyrifos and β-cypermethrin detoxification in S. litura. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  5. Susceptibility to endometrial cancer: influence of allelism at p53, glutathione S-transferase (GSTM1 and GSTT1) and cytochrome P-450 (CYP1A1) loci.

    PubMed Central

    Esteller, M.; García, A.; Martínez-Palones, J. M.; Xercavins, J.; Reventós, J.

    1997-01-01

    A case-control study was designed to identify associations between polymorphisms at p53, cytochrome P-450 (CYP1A1) and glutathione-S-transferases and endometrial cancer susceptibility. Among all polymorphisms analysed, an insertional variant in p53 (P53PIN3) and two polymorphisms in the 3'-end and exon 7 of CYP1A1 showed significant association with enhanced endometrial cancer risk. Images Figure 1 Figure 2 PMID:9155064

  6. Alteration in the Expression of Cytochrome P450s (CYP1A1, CYP2E1, and CYP3A11) in the Liver of Mouse Induced by Microcystin-LR

    PubMed Central

    Zhang, Bangjun; Liu, Yang; Li, Xiaoyu

    2015-01-01

    Microcystins (MCs) are cyclic heptapeptide toxins and can accumulate in the liver. Cytochrome P450s (CYPs) play an important role in the biotransformation of endogenous substances and xenobiotics in animals. It is unclear if the CYPs are affected by MCs exposure. The objective of this study was to evaluate the effects of microcystin-LR (MCLR) on cytochrome P450 isozymes (CYP1A1, CYP2E1, and CYP3A11) at mRNA level, protein content, and enzyme activity in the liver of mice the received daily, intraperitoneally, 2, 4, and 8 µg/kg body weight of MCLR for seven days. The result showed that MCLR significantly decreased ethoxyresorufin-O-deethylase (EROD) (CYP1A1) and erythromycin N-demthylase (ERND) (CYP3A11) activities and increased aniline hydroxylase (ANH) activity (CYP2E1) in the liver of mice during the period of exposure. Our findings suggest that MCLR exposure may disrupt the function of CYPs in liver, which may be partly attributed to the toxicity of MCLR in mice. PMID:25831226

  7. UDP-glucuronosyltransferase expression in mouse liver is increased in obesity- and fasting-induced steatosis.

    PubMed

    Xu, Jialin; Kulkarni, Supriya R; Li, Liya; Slitt, Angela L

    2012-02-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lep(ob/ob) (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance.

  8. UDP-Glucuronosyltransferase Expression in Mouse Liver Is Increased in Obesity- and Fasting-Induced Steatosis

    PubMed Central

    Xu, Jialin; Kulkarni, Supriya R.; Li, Liya

    2012-01-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lepob/ob (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance. PMID:22031624

  9. Glucuronidation of Psilocin and 4-Hydroxyindole by the Human UDP-Glucuronosyltransferases

    PubMed Central

    Manevski, Nenad; Kurkela, Mika; Höglund, Camilla; Mauriala, Timo; Court, Michael H.; Yli-Kauhaluoma, Jari

    2010-01-01

    We have examined the glucuronidation of psilocin, a hallucinogenic indole alkaloid, by the 19 recombinant human UDP-glucuronosyltransferases (UGTs) of subfamilies 1A, 2A, and 2B. The glucuronidation of 4-hydroxyindole, a related indole that lacks the N,N-dimethylaminoethyl side chain, was studied as well. UGT1A10 exhibited the highest psilocin glucuronidation activity, whereas the activities of UGTs 1A9, 1A8, 1A7, and 1A6 were significantly lower. On the other hand, UGT1A6 was by far the most active enzyme mediating 4-hydroxyindole glucuronidation, whereas the activities of UGTs 1A7–1A10 toward 4-hydroxyindole resembled their respective psilocin glucuronidation rates. Psilocin glucuronidation by UGT1A10 followed Michaelis-Menten kinetics in which psilocin is a low-affinity high-turnover substrate (Km = 3.8 mM; Vmax = 2.5 nmol/min/mg). The kinetics of psilocin glucuronidation by UGT1A9 was more complex and may be best described by biphasic kinetics with both intermediate (Km1 = 1.0 mM) and very low affinity components. The glucuronidation of 4-hydroxyindole by UGT1A6 exhibited higher affinity (Km = 178 μM) and strong substrate inhibition. Experiments with human liver and intestinal microsomes (HLM and HIM, respectively) revealed similar psilocin glucuronidation activity in both samples, but a much higher 4-hydroxyindole glucuronidation rate was found in HLM versus HIM. The expression levels of UGTs 1A6–1A10 in different tissues were studied by quantitative real-time-PCR, and the results, together with the activity assays findings, suggest that whereas psilocin may be subjected to extensive glucuronidation by UGT1A10 in the small intestine, UGT1A9 is likely the main contributor to its glucuronidation once it has been absorbed into the circulation. PMID:20007669

  10. Photoaffinity labeling of rat liver microsomal morphine UDP-glucuronosyltransferase by ( sup 3 H)flunitrazepam

    SciTech Connect

    Thomassin, J.; Tephly, T.R. )

    1990-09-01

    Benzodiazepines have been shown to competitively inhibit morphine glucuronidation in rat and human hepatic microsomes. Flunitrazepam exerted a potent competitive inhibition of rat hepatic morphine UDP-glucuronosyltransferase (UDPGT) activity (Ki = 130 microM). It has no effect on the activity of p-nitrophenol, 17 beta-hydroxysteroid, 3 alpha-hydroxysteroid, or 4-hydroxybiphenyl UDPGTs. Because flunitrazepam is an effective photoaffinity label for benzodiazepine receptors, studied were performed in solubilized rat hepatic microsomes and with partially purified preparations of morphine UDPGT to determine the enhancement of flunitrazepam inhibition and binding to morphine UDPGT promoted by exposure to UV light. Under UV light, flunitrazepam inhibition was markedly enhanced. UV light exposure also led to a marked increase in binding of (3H)flunitrazepam to microsomal protein, which was protected substantially by preincubation with morphine. Testosterone, androsterone, and UDP-glucuronic acid did not protect against UV-enhanced flunitrazepam binding, and morphine did not reverse flunitrazepam binding once binding had occurred. As morphine UDPGT was purified, a good correlation was found between the increases in specific activity of morphine UDPGT and flunitrazepam binding to protein. Chromatofocusing chromatography showed that flunitrazepam bound only to fractions containing active morphine UDPGT, and no binding to 4-hydroxybiphenyl UDPGT was observed. Fluorography of a sodium dodecyl sulfate-polyacrylamide electrophoresis gel of solubilized hepatic microsomes that had been treated with (3H) flunitrazepam under UV light revealed a band with a monomeric molecular weight between 54,000 and 58,000. This monomeric molecular weight compares favorably with the reported monomeric molecular weight of homogeneous morphine UDPGT (56,000).

  11. Polymorphic variations in the expression of the chemical detoxifying UDP glucuronosyltransferases.

    PubMed

    Mackenzie, P I; Gregory, P A; Lewinsky, R H; Yasmin, S N; Height, T; McKinnon, R A; Gardner-Stephen, D A

    2005-09-01

    The UDP glucuronosyltransferases (UGT) are expressed predominantly in the liver and gastrointestinal tract in humans. Their expression varies widely between individuals, due in part to coding region polymorphisms that alter catalytic function and in part, to differences in the regulation of UGT genes. The latter differences are most likely the result of polymorphisms in the regulatory elements of UGT genes and in the transcription factors that bind to these elements. Several frequent polymorphisms in the promoters of UGT genes have been described; however, few of these fall within critical regulatory elements and alter UGT expression. Some rare mutations alter UGT promoter activity in in vitro systems but their effect in the clinic is still to be confirmed. Several transcription factors that regulate UGT gene expression in cells of hepatic and intestinal origin have been identified. These include positive regulators of UGT gene expression such as hepatocyte nuclear factor 1 alpha (HNF1 alpha), octamer transcription factor-1 (Oct-1) and the intestine-specific transcription factor, caudal-related homeodomain protein 2 (Cdx2). Negative regulators include the Pre B cell homeobox factor (Pbx2) and its dimerization partner, Pbx regulating protein 1 (Prep1). Polymorphisms in these transcription factors may cause differences in their interaction and binding to UGT promoters. Current work describing the effects of these transcription factor polymorphisms on UGT expression will be described. Knowledge of UGT promoter elements and the proteins that bind to these elements, as well as knowledge of polymorphisms that alter their function, may aid in the prediction of an individual's response to chemicals and in the prediction of chemical toxicities.

  12. Human UDP-Glucuronosyltransferases: Effects of altered expression in breast and pancreatic cancer cell lines.

    PubMed

    Dates, Centdrika R; Fahmi, Tariq; Pyrek, Sebastian J; Yao-Borengasser, Aiwei; Borowa-Mazgaj, Barbara; Bratton, Stacie M; Kadlubar, Susan A; Mackenzie, Peter I; Haun, Randy S; Radominska-Pandya, Anna

    2015-01-01

    Increased aerobic glycolysis and de novo lipid biosynthesis are common characteristics of invasive cancers. UDP-glucuronosyltransferases (UGTs) are phase II drug metabolizing enzymes that in normal cells possess the ability to glucuronidate these lipids and speed their excretion; however, de-regulation of these enzymes in cancer cells can lead to an accumulation of bioactive lipids, which further fuels cancer progression. We hypothesize that UGT2B isoform expression is down-regulated in cancer cells and that exogenous re-introduction of these enzymes will reduce lipid content, change the cellular phenotype, and inhibit cancer cell proliferation. In this study, steady-state mRNA levels of UGT isoforms from the 2B family were measured using qPCR in 4 breast cancer and 5 pancreatic cancer cell lines. Expression plasmids for UGT2B isoforms known to glucuronidate cellular lipids, UGT2B4, 2B7, and 2B15 were transfected into MCF-7 and Panc-1 cells, and the cytotoxic effects of these enzymes were analyzed using trypan blue exclusion, annexin V/PI staining, TUNEL assays, and caspase-3 immunohistochemistry. There was a significant decrease in cell proliferation and a significant increase in the number of dead cells after transfection with each of the 3 UGT isoforms in both cell lines. Cellular lipids were also found to be significantly decreased after transfection. The results presented here support our hypothesis and emphasize the important role UGTs can play in cellular proliferation and lipid homeostasis. Evaluating the effect of UGT expression on the lipid levels in cancer cell lines can be relevant to understanding the complex regulation of cancer cells, identifying the roles of UGTs as "lipid-controllers" in cellular homeostasis, and illustrating their suitability as targets for future clinical therapy development.

  13. Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: Implications for hyperbilirubinemia.

    PubMed

    Miners, John O; Chau, Nuy; Rowland, Andrew; Burns, Kushari; McKinnon, Ross A; Mackenzie, Peter I; Tucker, Geoffrey T; Knights, Kathleen M; Kichenadasse, Ganessan

    2017-04-01

    Kinase inhibitors (KIs) are a rapidly expanding class of drugs used primarily for the treatment of cancer. Data relating to the inhibition of UDP-glucuronosyltransferase (UGT) enzymes by KIs is sparse. However, lapatinib (LAP), pazopanib (PAZ), regorafenib (REG) and sorafenib (SOR) have been implicated in the development of hyperbilirubinemia in patients. This study aimed to characterise the role of UGT1A1 inhibition in hyperbilirubinemia and assess the broader potential of these drugs to perpetrate drug-drug interactions arising from UGT enzyme inhibition. Twelve recombinant human UGTs from subfamilies 1A and 2B were screened for inhibition by LAP, PAZ, REG and SOR. IC50 values for the inhibition of all UGT1A enzymes, except UGT1A3 and UGT1A4, by the four KIs were <10μM. LAP, PAZ, REG and SOR inhibited UGT1A1-catalysed bilirubin glucuronidation with mean IC50 values ranging from 34nM (REG) to 3734nM (PAZ). Subsequent kinetic experiments confirmed that REG and SOR were very potent inhibitors of human liver microsomal β-estradiol glucuronidation, an established surrogate for bilirubin glucuronidation, with mean Ki values of 20 and 33nM, respectively. Ki values for LAP and PAZ were approximately 1- and 2-orders of magnitude higher than those for REG and SOR. REG and SOR were equipotent inhibitors of human liver microsomal UGT1A9 (mean Ki 678nM). REG and SOR are the most potent inhibitors of a human UGT enzyme identified to date. In vitro-in vivo extrapolation indicates that inhibition of UGT1A1 contributes significantly to the hyperbilirubinemia observed in patients treated with REG and SOR, but not with LAP and PAZ. Inhibition of other UGT1A1 substrates in vivo is likely.

  14. Endogenous Protein Interactome of Human UDP-Glucuronosyltransferases Exposed by Untargeted Proteomics

    PubMed Central

    Rouleau, Michèle; Audet-Delage, Yannick; Desjardins, Sylvie; Rouleau, Mélanie; Girard-Bock, Camille; Guillemette, Chantal

    2017-01-01

    The conjugative metabolism mediated by UDP-glucuronosyltransferase enzymes (UGTs) significantly influences the bioavailability and biological responses of endogenous molecule substrates and xenobiotics including drugs. UGTs participate in the regulation of cellular homeostasis by limiting stress induced by toxic molecules, and by controlling hormonal signaling networks. Glucuronidation is highly regulated at genomic, transcriptional, post-transcriptional and post-translational levels. However, the UGT protein interaction network, which is likely to influence glucuronidation, has received little attention. We investigated the endogenous protein interactome of human UGT1A enzymes in main drug metabolizing non-malignant tissues where UGT expression is most prevalent, using an unbiased proteomics approach. Mass spectrometry analysis of affinity-purified UGT1A enzymes and associated protein complexes in liver, kidney and intestine tissues revealed an intricate interactome linking UGT1A enzymes to multiple metabolic pathways. Several proteins of pharmacological importance such as transferases (including UGT2 enzymes), transporters and dehydrogenases were identified, upholding a potential coordinated cellular response to small lipophilic molecules and drugs. Furthermore, a significant cluster of functionally related enzymes involved in fatty acid β-oxidation, as well as in the glycolysis and glycogenolysis pathways were enriched in UGT1A enzymes complexes. Several partnerships were confirmed by co-immunoprecipitations and co-localization by confocal microscopy. An enhanced accumulation of lipid droplets in a kidney cell model overexpressing the UGT1A9 enzyme supported the presence of a functional interplay. Our work provides unprecedented evidence for a functional interaction between glucuronidation and bioenergetic metabolism. PMID:28217095

  15. Structure and Protein–Protein Interactions of Human UDP-Glucuronosyltransferases

    PubMed Central

    Fujiwara, Ryoichi; Yokoi, Tsuyoshi; Nakajima, Miki

    2016-01-01

    Mammalian UDP-glucuronosyltransferases (UGTs) catalyze the transfer of glucuronic acid from UDP-glucuronic acid to various xenobiotics and endobiotics. Since UGTs comprise rate-limiting enzymes for metabolism of various compounds, co-administration of UGT-inhibiting drugs and genetic deficiency of UGT genes can cause an increased blood concentration of these compounds. During the last few decades, extensive efforts have been made to advance the understanding of gene structure, function, substrate specificity, and inhibition/induction properties of UGTs. However, molecular mechanisms and physiological importance of the oligomerization and protein–protein interactions of UGTs are still largely unknown. While three-dimensional structures of human UGTs can be useful to reveal the details of oligomerization and protein–protein interactions of UGTs, little is known about the protein structures of human UGTs due to the difficulty in solving crystal structures of membrane-bound proteins. Meanwhile, soluble forms of plant and bacterial UGTs as well as a partial domain of human UGT2B7 have been crystallized and enabled us to predict three-dimensional structures of human UGTs using a homology-modeling technique. The homology-modeled structures of human UGTs do not only provide the detailed information about substrate binding or substrate specificity in human UGTs, but also contribute with unique knowledge on oligomerization and protein–protein interactions of UGTs. Furthermore, various in vitro approaches indicate that UGT-mediated glucuronidation is involved in cell death, apoptosis, and oxidative stress as well. In the present review article, recent understandings of UGT protein structures as well as physiological importance of the oligomerization and protein–protein interactions of human UGTs are discussed. PMID:27822186

  16. Age-Dependent Hepatic UDP-Glucuronosyltransferase Gene Expression and Activity in Children

    PubMed Central

    Neumann, Elizabeth; Mehboob, Huma; Ramírez, Jacqueline; Mirkov, Snezana; Zhang, Min; Liu, Wanqing

    2016-01-01

    UDP-glucuronosyltransferases (UGTs) are important phase II drug metabolism enzymes. The aim of this study was to explore the relationship between age and changes in mRNA expression and activity of major human hepatic UGTs, as well as to understand the potential regulatory mechanism underlying this relationship. Using previously generated data, we investigated age-dependent mRNA expression levels of 11 hepatic UGTs (UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B10, UGT2B15, and UGT2B17) and 16 transcription factors (AHR, AR, CAR, ESR2, FXR, GCCR, HNF1a, HNF3a, HNF3b, HNF4a, PPARA, PPARG, PPARGC, PXR, SP1, and STAT3) in liver tissue of donors (n = 38) ranging from 0 to 25 years of age. We also examined the correlation between age and microsomal activities using 14 known UGT drug substrates in the liver samples (n = 19) of children donors. We found a statistically significant increase (nominal p < 0.05) in the expression of UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT2B7, and UGT2B17, as well as glucuronidation activities of serotonin, testosterone, and vorinostat during the first 25 years of life. Expression of estrogen receptor 1 and pregnane X receptor, two strong UGT transcriptional regulators, were significantly correlated with both age and UGT mRNA expression (p ≤ 0.05). These results suggest that both UGT expression and activity increase during childhood and adolescence, possibly driven in part by hormonal signaling. Our findings may help explain inter-patient variability in response to medications among children. PMID:27899892

  17. Comparison of the Inhibitory Potential of Bavachalcone and Corylin against UDP-Glucuronosyltransferases

    PubMed Central

    Shan, Lina; Zhang, Gang; Zhou, Dun; Qiu, Zhenyu; Tian, Lei; Yuan, Hongxia; Feng, Yujun; Shi, Xianbao

    2014-01-01

    Bavachalcone and corylin are two major bioactive compounds isolated from Psoralea corylifolia L., which has been widely used as traditional Chinese medicine for many years. As two antibiotic or anticancer drugs, bavachalcone and corylin are used in combination with other drugs; thus it is necessary to evaluate potential pharmacokinetic herb-drug interactions (HDI) of the two bioactive compounds. The aim of the present study was to compare the effects of liver UDP-glucuronosyltransferase (UGT) 1A1, UGT1A3, UGT1A7, UGT1A8, UGT 1A10, and UGT2B4 inhibited by bavachalcone and corylin. 4-Methylumbelliferone (4-MU) was used as a nonspecific “probe” substrate. Bavachalcone had stronger inhibition on UGT1A1 and UGT1A7 than corylin which did not inhibit UGT1A1, UGT1A3, UGT1A7, UGT1A8, UGT1A10, and UGT2B4. Data fitting using Dixon and Lineweaver-Burk plots demonstrated the noncompetitive inhibition of bavachalcone against UGT1A1 and UGT1A7-mediated 4-MU glucuronidation reaction. The values of inhibition kinetic parameters (Ki) were 5.41 μM and 4.51 μM for UGT1A1 and UGT1A7, respectively. The results of present study suggested that there was a possibility of UGT1A1 and UGT1A7 inhibition-based herb-drug interaction associated with bavachalcone and provided the basis for further in vivo studies to investigate the HDI potential between bavachalcone and UGT substrates. PMID:24829606

  18. Associations of UDP-glucuronosyltransferases polymorphisms with mycophenolate mofetil pharmacokinetics in Chinese renal transplant patients.

    PubMed

    Xie, Xiao-chun; Li, Jun; Wang, Hong-yang; Li, Hong-liang; Liu, Jing; Fu, Qian; Huang, Jia-wen; Zhu, Chen; Zhong, Guo-ping; Wang, Xue-ding; Sun, Ping-ping; Huang, Min; Wang, Chang-xi; Li, Jia-li

    2015-05-01

    To evaluate the effects of UDP-glucuronosyltransferases (UGTs) polymorphisms on the pharmacokinetics of the immunosuppressant mycophenolate mofetil (MMF) in Chinese renal transplant recipients. A total of 127 renal transplant patients receiving MMF were genotyped for polymorphisms in UGT1A9 -1818T>C, I399C>T, -118T9/10, -440C>T, -331T>C, UGT2B7 IVS1+985A>G, 211G>T, -900A>G, UGT1A8 518C>G and UGT1A7 622T>C. The plasma concentrations of the MMF active moiety mycophenolic acid (MPA) and main metabolite 7-O-MPA-glucuronide (MPAG) were analyzed using HPLC. Univariate and multivariate analyses were used to assess the effects of UGT-related gene polymorphisms on MPA pharmacokinetics. The dose-adjusted MPA AUC0-12 h of the patients with the UGT2B7 IVS1+985AG genotype was 48% higher than that of the patients with the IVS1+985AA genotype, which could explain 11.2% of the inter-individual variation in MPA pharmacokinetics. The dose-adjusted MPAG AUC0-12 h of the patients with the UGT1A7 622CC and UGT1A9 -440CT/-331TC genotypes, respectively, was significantly higher than that of the patients with 622T homozygotes and -440C/-331T homozygotes. Furthermore, the genotypes UGT1A9 -1818T>C and UGT1A8 518C>G were associated with a low dose-adjusted MPAG AUC0-12 h. The UGT2B7 11+985A>G genotype is associated with the pharmacokinetics of MPA in Chinese renal transplant patients, which demonstrates the usefulness of this SNP for individualizing MMF dosing.

  19. Inhibition of UDP-Glucuronosyltransferases (UGTs) Activity by constituents of Schisandra chinensis.

    PubMed

    Song, Jin-Hui; Cui, Li; An, Li-Bin; Li, Wen-Tao; Fang, Zhong-Ze; Zhang, Yan-Yan; Dong, Pei-Pei; Wu, Xue; Wang, Li-Xuan; Gonzalez, Frank J; Sun, Xiao-Yu; Zhao, De-Wei

    2015-10-01

    Structure-activity relationship for the inhibition of Schisandra chinensis's ingredients toward (Uridine-Diphosphate) UDP-glucuronosyltransferases (UGTs) activity was performed in the present study. In vitro incubation system was employed to screen the inhibition capability of S. chinensis's ingredients, and in silico molecular docking method was carried out to explain possible mechanisms. At 100 μM of compounds, the activity of UGTs was inhibited by less than 90% by schisandrol A, schisandrol B, schisandrin, schisandrin C, schisantherin A, gomisin D, and gomisin G. Schisandrin A exerted strong inhibition toward UGT1A1 and UGT1A3, with the residual activity to be 7.9% and 0% of control activity. Schisanhenol exhibited strong inhibition toward UGT2B7, with the residual activity to be 7.9% of control activity. Gomisin J of 100 μM inhibited 91.8% and 93.1% of activity of UGT1A1 and UGT1A9, respectively. Molecular docking prediction indicated different hydrogen bonds interaction resulted in the different inhibition potential induced by subtle structure alteration among schisandrin A, schisandrin, and schisandrin C toward UGT1A1 and UGT1A3: schisandrin A > schisandrin > schisandrin C. The detailed inhibition kinetic evaluation showed the strong inhibition of gomisin J toward UGT1A9 with the inhibition kinetic parameter (Ki ) to be 0.7 μM. Based on the concentrations of gomisin J in the plasma of the rats given with S. chinensis, high herb-drug interaction existed between S. chinensis and drugs mainly undergoing UGT1A9-mediated metabolism. In conclusion, in silico-in vitro method was used to give the inhibition information and possible inhibition mechanism for S. chinensis's components toward UGTs, which guide the clinical application of S. chinensis.

  20. Drug-Drug Interaction Potentials of Tyrosine Kinase Inhibitors via Inhibition of UDP-Glucuronosyltransferases

    PubMed Central

    Zhang, Nan; Liu, Yong; Jeong, Hyunyoung

    2015-01-01

    Tyrosine kinase inhibitors (TKIs) are anticancer drugs that may be co-administered with other drugs. The aims of this study are to investigate the inhibitory effects of TKIs on UDP-glucuronosyltransferase (UGT) activities, and to quantitatively evaluate their potential to cause drug-drug interactions (DDIs). Inhibition kinetic profiles of a panel of UGT enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17) by four TKIs (axitinib, imatinib, lapatinib and vandetanib) were characterized by using hepatic microsomes and recombinant proteins. Lapatinib exhibited potent competitive inhibition against UGT1A1 activity with a Ki of 0.5 μM. Imatinib was found to exhibit broad inhibition on several UGTs, particularly potent competitive inhibition against UGT2B17 with a Ki of 0.4 μM. The TKIs also exerted intermediate inhibition against several UGTs (i.e., UGT1A7 by lapatinib; UGT1A1 by imatinib; UGT1A4, 1A7 and 1A9 by axitinib; and UGT1A9 by vandetanib). Results from modeling for the quantitative prediction of DDI risk indicated that the coadministration of lapatinib or imatinib at clinical doses could result in a significant increase in AUC of drugs primarily cleared by UGT1A1 or 2B17. Lapatinib and imatinib may cause clinically significant DDIs when co-administered UGT1A1 or 2B17 substrates. PMID:26642944

  1. Inhibition of UDP-Glucuronosyltransferase (UGT) Isoforms by Arctiin and Arctigenin.

    PubMed

    Zhang, Hui; Zhao, Zhenying; Wang, Tao; Wang, Yijia; Cui, Xiao; Zhang, Huijuan; Fang, Zhong-Ze

    2016-07-01

    Arctiin is the major pharmacological ingredient of Fructus Arctii, and arctigenin is the metabolite of arctiin formed via the catalysis of human intestinal bacteria. The present study aims to investigate the inhibition profile of arctiin and arctigenin on important phase II drug-metabolizing enzymes UDP-glucuronosyltransferases (UGTs), indicating the possible herb-drug interaction. In vitro screening experiment showed that 100 μM of arctiin and arctigenin inhibited the activity of UGT1A3, 1A9, 2B7, and 2B15. Homology modeling-based in silico docking of arctiin and arctigenin into the activity cavity of UGT2B15 showed that hydrogen bonds and hydrophobic interactions contributed to the strong binding free energy of arctiin (-8.14 kcal/mol) and arctigenin (-8.43 kcal/mol) with UGT2B15. Inhibition kinetics study showed that arctiin and arctigenin exerted competitive and noncompetitive inhibition toward UGT2B15, respectively. The inhibition kinetic parameters (Ki ) were calculated to be 16.0 and 76.7 μM for the inhibition of UGT2B15 by arctiin and arctigenin, respectively. Based on the plasma concentration of arctiin and arctigenin after administration of 100 mg/kg of arctiin, the [I]/Ki values were calculated to be 0.3 and 0.007 for arctiin and arctigenin, respectively. Based on the inhibition evaluation standard ([I]/Ki  < 0.1, low possibility; 0.1 < [I]/Ki  < 1, medium possibility; [I]/Ki  > 1, high possibility), arctiin might induce drug-drug interaction with medium possibility. Based on these results, clinical monitoring the utilization of Fructus Arctii is very important and necessary. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. The inhibitory effects of nor-oleanane triterpenoid saponins from Stauntonia brachyanthera towards UDP-glucuronosyltransferases.

    PubMed

    Liu, Dan; Li, Shuang; Qi, Jia-Qi; Meng, Da-Li; Cao, Yun-Feng

    2016-07-01

    The inhibition of UDP-glucuronosyltransferases (UGTs) by herbal components might be an important reason for clinical herb-drug interaction (HDI). The inhibitory effects on UGTs via nor-oleanane triterpenoid saponins, which were the bioactive ingredients from Stauntonia brachyanthera, a traditional Chinese folk medicines with highly biological values, were evaluated comprehensively with recombinant UGT isoforms as enzyme source and a nonspecific substrate 4-methylumbelliferone (4-MU) as substrate. The results showed that there are seven compounds, 2, 3, 4, 8, 9, 13 and 14, respectively, exhibited potential inhibitions towards UGT1A1, UGT1A3 and UGT1A10 among all 23 compounds isolated from the plants. The IC50 values were 17.1μM, 13.5μM, 9.5μM, 15.7μM, 16.3μM, 1.1μM, and 0.3μM, respectively. Data fitting using Dixon and Lineweaver-Burk plots demonstrated that the inhibition of UGT1A10, UGT1A1 and UGT1A3 was best fit to noncompetitive type and competitive, respectively. The inhibition kinetic parameter (Ki) was calculated to be 39μM, 17μM, 3.3μM, 10μM, 9.3μM, 0.19μM, and 0.016μM, respectively. All these experimental data suggested that HDI might occur when compounds containing herbs were co-administered with drugs which mainly undergo UGTs-mediated metabolism.

  3. Dual Function of the Cytochrome P450 CYP76 Family from Arabidopsis thaliana in the Metabolism of Monoterpenols and Phenylurea Herbicides1[W][OPEN

    PubMed Central

    Höfer, René; Boachon, Benoît; Renault, Hugues; Gavira, Carole; Miesch, Laurence; Iglesias, Juliana; Ginglinger, Jean-François; Allouche, Lionel; Miesch, Michel; Grec, Sebastien; Larbat, Romain; Werck-Reichhart, Danièle

    2014-01-01

    Comparative genomics analysis unravels lineage-specific bursts of gene duplications related to the emergence of specialized pathways. The CYP76C subfamily of cytochrome P450 enzymes is specific to Brassicaceae. Two of its members were recently associated with monoterpenol metabolism. This prompted us to investigate the CYP76C subfamily genetic and functional diversification. Our study revealed high rates of CYP76C gene duplication and loss in Brassicaceae, suggesting the association of the CYP76C subfamily with species-specific adaptive functions. Gene differential expression and enzyme functional specialization in Arabidopsis thaliana, including metabolism of different monoterpenols and formation of different products, support this hypothesis. In addition to linalool metabolism, CYP76C1, CYP76C2, and CYP76C4 metabolized herbicides belonging to the class of phenylurea. Their ectopic expression in the whole plant conferred herbicide tolerance. CYP76Cs from A. thaliana. thus provide a first example of promiscuous cytochrome P450 enzymes endowing effective metabolism of both natural and xenobiotic compounds. Our data also suggest that the CYP76C gene family provides a suitable genetic background for a quick evolution of herbicide resistance. PMID:25082892

  4. Dual function of the cytochrome P450 CYP76 family from Arabidopsis thaliana in the metabolism of monoterpenols and phenylurea herbicides.

    PubMed

    Höfer, René; Boachon, Benoît; Renault, Hugues; Gavira, Carole; Miesch, Laurence; Iglesias, Juliana; Ginglinger, Jean-François; Allouche, Lionel; Miesch, Michel; Grec, Sebastien; Larbat, Romain; Werck-Reichhart, Danièle

    2014-11-01

    Comparative genomics analysis unravels lineage-specific bursts of gene duplications related to the emergence of specialized pathways. The CYP76C subfamily of cytochrome P450 enzymes is specific to Brassicaceae. Two of its members were recently associated with monoterpenol metabolism. This prompted us to investigate the CYP76C subfamily genetic and functional diversification. Our study revealed high rates of CYP76C gene duplication and loss in Brassicaceae, suggesting the association of the CYP76C subfamily with species-specific adaptive functions. Gene differential expression and enzyme functional specialization in Arabidopsis thaliana, including metabolism of different monoterpenols and formation of different products, support this hypothesis. In addition to linalool metabolism, CYP76C1, CYP76C2, and CYP76C4 metabolized herbicides belonging to the class of phenylurea. Their ectopic expression in the whole plant conferred herbicide tolerance. CYP76Cs from A. thaliana. thus provide a first example of promiscuous cytochrome P450 enzymes endowing effective metabolism of both natural and xenobiotic compounds. Our data also suggest that the CYP76C gene family provides a suitable genetic background for a quick evolution of herbicide resistance.

  5. Drug modulation of water-heme interactions in low-spin P450 complexes of CYP2C9d and CYP125A1.

    PubMed

    Conner, Kip P; Cruce, Alex A; Krzyaniak, Matthew D; Schimpf, Alina M; Frank, Daniel J; Ortiz de Montellano, Paul; Atkins, William M; Bowman, Michael K

    2015-02-10

    Azoles and pyridines are commonly incorporated into small molecule inhibitor scaffolds that target cytochromes P450 (CYPs) as a strategy to increase drug binding affinity, impart isoform-dependent selectivity, and improve metabolic stability. Optical absorbance spectra of the CYP-inhibitor complex are widely used to infer whether these inhibitors are ligated directly to the heme iron as catalytically inert, low-spin (type II) complexes. Here, we show that the low-spin complex between a drug-metabolizing CYP2C9 variant and 4-(3-phenylpropyl)-1H-1,2,3-triazole (PPT) retains an axial water ligand despite exhibiting elements of "classic" type II optical behavior. Hydrogens of the axial water ligand are observed by pulsed electron paramagnetic resonance (EPR) spectroscopy for both inhibitor-free and inhibitor-bound species and show that inhibitor binding does not displace the axial water. A (15)N label incorporated into PPT is 0.444 nm from the heme iron, showing that PPT is also in the active site. The reverse type I inhibitor, LP10, of CYP125A1 from Mycobacterium tuberculosis, known from X-ray crystal structures to form a low-spin water-bridged complex, is found by EPR and by visible and near-infrared magnetic circular dichroism spectroscopy to retain the axial water ligand in the complex in solution.

  6. Functional expression in yeast and characterization of a clofibrate-inducible plant cytochrome P-450 (CYP94A1) involved in cutin monomers synthesis.

    PubMed

    Tijet, N; Helvig, C; Pinot, F; Le Bouquin, R; Lesot, A; Durst, F; Salaün, J P; Benveniste, I

    1998-06-01

    The chemical tagging of a cytochrome P-450-dependent lauric acid omega-hydroxylase from clofibrate-treated Vicia sativa seedlings with [1-14C]11-dodecynoic acid allowed the isolation of a full-length cDNA designated CYP94A1. We describe here the functional expression of this novel P-450 in two Saccharomyces cerevisiae strains overproducing their own NADPH-cytochrome P-450 reductase or a reductase from Arabidopsis thaliana. The results show a much higher efficiency of the yeast strain overproducing the plant reductase compared with the yeast strain overproducing its own reductase for expressing CYP94A1. The methyl end of saturated (from C-10 to C-16) and unsaturated (C18:1, C18:2 and C18:3) fatty acids was mainly oxidized by CYP94A1. Both E/Z and Z/E configurations of 9, 12-octadecadienoic acids were omega-hydroxylated. Lauric, myristic and linolenic acids were oxidized with the highest turnover rate (24 min-1). The strong regioselectivity of CYP94A1 was clearly shifted with sulphur-containing substrates, since both 9- and 11-thia laurate analogues were sulphoxidized. Similar to animal omega-hydroxylases, this plant enzyme was strongly induced by clofibrate treatment. Rapid CYP94A1 transcript accumulation was detected less than 20 min after exposure of seedlings to the hypolipidaemic drug. The involvement of CYP94A1 in the synthesis of cutin monomers and fatty acid detoxification is discussed.

  7. Crystallization and Preliminary X-ray Analysis of Allene Oxide Synthase, Cytochrome P450 CYP74A2, from Parthenium argentatum

    USDA-ARS?s Scientific Manuscript database

    Oxylipins are oxygenated derivatives of fatty acids and pivotal signaling molecules in plants and animals. Allene oxide synthase (AOS) is a key cytochrome P450 CYP74 enzyme involved in the biosynthesis of plant oxylipin jasmonates to convert 13(S)-hydroperoxide to allene oxide. Guayule (Parthenium a...

  8. CYP2J2 and CYP2C19 Are the Major Enzymes Responsible for Metabolism of Albendazole and Fenbendazole in Human Liver Microsomes and Recombinant P450 Assay Systems

    PubMed Central

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk

    2013-01-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo. PMID:23959307

  9. CYP2J2 and CYP2C19 are the major enzymes responsible for metabolism of albendazole and fenbendazole in human liver microsomes and recombinant P450 assay systems.

    PubMed

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk; Lee, Taeho; Liu, Kwang-Hyeon

    2013-11-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo.

  10. 20-Hydroxyeicosatetraenoic Acid (HETE)-dependent Hypertension in Human Cytochrome P450 (CYP) 4A11 Transgenic Mice

    PubMed Central

    Savas, Üzen; Wei, Shouzou; Hsu, Mei-Hui; Falck, John R.; Guengerich, F. Peter; Capdevila, Jorge H.; Johnson, Eric F.

    2016-01-01

    Male and female homozygous 129/Sv mice carrying four copies of the human cytochrome P450 4A11 gene (CYP4A11) under control of its native promoter (B-129/Sv-4A11+/+) develop hypertension (142 ± 8 versus 113 ± 7 mm Hg systolic blood pressure (BP)), and exhibit increased 20-hydroxyeicosatetraenoic acid (20-HETE) in kidney and urine. The hypertension is reversible by a low-sodium diet and by the CYP4A inhibitor HET0016. B-129/Sv-4A11+/+ mice display an 18% increase of plasma potassium (p < 0.02), but plasma aldosterone, angiotensin II (ANGII), and renin activities are unchanged. This phenotype resembles human genetic disorders with elevated activity of the sodium chloride co-transporter (NCC) and, accordingly, NCC abundance is increased by 50% in transgenic mice, and NCC levels are normalized by HET0016. ANGII is known to increase NCC abundance, and renal mRNA levels of its precursor angiotensinogen are increased 2-fold in B-129/Sv-4A11+/+, and blockade of the ANGII receptor type 1 with losartan normalizes BP. A pro-hypertensive role for 20-HETE was implicated by normalization of BP and reversal of renal angiotensin mRNA increases by administration of the 20-HETE antagonists 2-((6Z,15Z)-20-hydroxyicosa-6,15-dienamido)acetate or (S)-2-((6Z,15Z)-20-hydroxyicosa-6,15-dienamido)succinate. SGK1 expression is also increased in B-129/Sv-4A11+/+ mice and paralleled increases seen for NCC. Losartan, HET0016, and 20-HETE antagonists each normalized SGK1 mRNA expression. These results point to a potential 20-HETE dependence of intrarenal angiotensinogen production and ANGII receptor type 1 activation that are associated with increases in NCC and SGK1 and identify elevated P450 4A11 activity and 20-HETE as potential risk factors for salt-sensitive human hypertension by perturbation of the renal renin-angiotensin axis. PMID:27298316

  11. Cytochromes P450 CYP94C1 and CYP94B3 Catalyze Two Successive Oxidation Steps of Plant Hormone Jasmonoyl-isoleucine for Catabolic Turnover

    PubMed Central

    Heitz, Thierry; Widemann, Emilie; Lugan, Raphaël; Miesch, Laurence; Ullmann, Pascaline; Désaubry, Laurent; Holder, Emilie; Grausem, Bernard; Kandel, Sylvie; Miesch, Michel; Werck-Reichhart, Danièle; Pinot, Franck

    2012-01-01

    The jasmonate hormonal pathway regulates important defensive and developmental processes in plants. Jasmonoyl-isoleucine (JA-Ile) has been identified as a specific ligand binding the COI1-JAZ co-receptor to relieve repression of jasmonate responses. Two JA-Ile derivatives, 12OH-JA-Ile and 12COOH-JA-Ile, accumulate in wounded Arabidopsis leaves in a COI1- and JAR1-dependent manner and reflect catabolic turnover of the hormone. Here we report the biochemical and genetic characterization of two wound-inducible cytochromes P450, CYP94C1 and CYP94B3, that are involved in JA-Ile oxidation. Both enzymes expressed in yeast catalyze two successive oxidation steps of JA-Ile with distinct characteristics. CYP94B3 performed efficiently the initial hydroxylation of JA-Ile to 12OH-JA-Ile, with little conversion to 12COOH-JA-Ile, whereas CYP94C1 catalyzed preferentially carboxy-derivative formation. Metabolic analysis of loss- and gain-of-function plant lines were consistent with in vitro enzymatic properties. cyp94b3 mutants were largely impaired in 12OH-JA-Ile levels upon wounding and to a lesser extent in 12COOH-JA-Ile levels. In contrast, cyp94c1 plants showed wild-type 12OH-JA-Ile accumulation but lost about 60% 12COOH-JA-Ile. cyp94b3cyp94c1 double mutants hyperaccumulated JA-Ile with near abolition of 12COOH-JA-Ile. Distinct JA-Ile oxidation patterns in different plant genotypes were correlated with specific JA-responsive transcript profiles, indicating that JA-Ile oxidation status affects signaling. Interestingly, exaggerated JA-Ile levels were associated with JAZ repressor hyperinduction but did not enhance durably defense gene induction, revealing a novel negative feedback signaling loop. Finally, interfering with CYP94 gene expression affected root growth sensitivity to exogenous jasmonic acid. These results identify CYP94B3/C1-mediated oxidation as a major catabolic route for turning over the JA-Ile hormone. PMID:22215670

  12. Effects of Hypoxia Exposure on Hepatic Cytochrome P450 1A (CYP1A) Expression in Atlantic Croaker: Molecular Mechanisms of CYP1A Down-Regulation

    PubMed Central

    Rahman, Md. Saydur; Thomas, Peter

    2012-01-01

    Hypoxia-inducible factor-α (HIF-α) and cytochrome P450 1A (CYP1A) are biomarkers of environmental exposure to hypoxia and organic xenobiotic chemicals that act through the aryl hydrocarbon receptor, respectively. Many aquatic environments heavily contaminated with organic chemicals, such as harbors, are also hypoxic. Recently, we and other scientists reported HIF-α genes are upregulated by hypoxia exposure in aquatic organisms, but the molecular mechanisms of hypoxia regulation of CYP1A expression have not been investigated in teleost fishes. As a first step in understanding the molecular mechanisms of hypoxia modulation of CYP1A expression in fish, we characterized CYP1A cDNA from croaker liver. Hypoxia exposure (dissolved oxygen, DO: 1.7 mg/L for 2 to 4 weeks) caused significant decreases in hepatic CYP1A mRNA and protein levels compared to CYP1A levels in fish held in normoxic conditions. In vivo studies showed that the nitric oxide (NO)-donor, S-nitroso-N-acetyl-DL-penicillamine, significantly decreased CYP1A expression in croaker livers, whereas the competitive inhibitor of NO synthase (NOS), Nω-nitro-L-arginine methyl ester, restored CYP1A mRNA and protein levels in hypoxia-exposed (1.7 mg DO/L for 4 weeks) fish. In vivo hypoxia exposure also markedly increased interleukin-1β (IL-1β, a cytokine), HIF-2α mRNA and endothelial NOS (eNOS) protein levels in croaker livers. Pharmacological treatment with vitamin E, an antioxidant, lowered the IL-1β, HIF-2α mRNA and eNOS protein levels in hypoxia-exposed fish and completely reversed the down-regulation of hepatic CYP1A mRNA and protein levels in response to hypoxia exposure. These results suggest that hypoxia-induced down-regulation of CYP1A is due to alterations of NO and oxidant status, and cellular IL-1β and HIF-α levels. Moreover, the present study provides the first evidence of a role for antioxidants in hepatic eNOS and IL-1β regulation in aquatic vertebrates during hypoxic stress. PMID:22815834

  13. Cytochrome P450 CYP4DE1 and CYP6CW3v2 contribute to ethiprole resistance in Laodelphax striatellus (Fallén).

    PubMed

    Elzaki, M E A; Zhang, W; Han, Z

    2015-06-01

    Laodelphax striatellus Fallén (Hemiptera: Delphacidae), a destructive pest of rice, has developed high resistance to multiple insecticides, threatening the success of pest management programmes. The present study investigated ethiprole resistance mechanisms in a field population that is highly resistant to ethiprole. That population was used to establish a laboratory population that was subjected to further selection to produce a resistant strain. Target genes were cloned and compared between the resistant and the susceptible strains, the role of detoxification enzymes was examined, and the relative expression levels of 71 detoxification enzyme genes were tested using quantitative real time (RT)-PCR. The laboratory selection enhanced the resistance from 107-fold to 180-fold. The Rdl-type target site mutation seldom occurred in the resistant strain and is unlikely to represent the major mechanism underlying the observed resistance. Of the three important detoxification enzymes, only P450 monooxygenase was found to be associated with ethiprole resistance. Moreover, two genes, CYP4DE1 and CYP6CW3v2, were found to be overexpressed in the resistant strain. Furthermore, gene-silencing via a double-stranded RNA feeding test was carried out, and the results showed that the mRNA levels of CYP4DE1 and CYP6CW3v2 were reduced in the resistant strain, whereas ethiprole susceptibility was increased. These results suggest that CYP4DE1 and CYP6CW3v2 play an important role in ethiprole resistance in L. striatellus. © 2015 The Royal Entomological Society.

  14. Heterologous expression of fungal cytochromes P450 (CYP5136A1 and CYP5136A3) from the white-rot basidiomycete Phanerochaete chrysosporium: Functionalization with cytochrome b5 in Escherichia coli.

    PubMed

    Hatakeyama, Mayumi; Kitaoka, Takuya; Ichinose, Hirofumi

    2016-07-01

    Cytochromes P450 from the white-rot basidiomycete Phanerochaete chrysosporium, CYP5136A1 and CYP5136A3, are capable of catalyzing oxygenation reactions of a wide variety of exogenous compounds, implying their significant roles in the metabolism of xenobiotics by the fungus. It is therefore interesting to explore their biochemistry to better understand fungal biology and to enable the use of fungal enzymes in the biotechnology sector. In the present study, we developed heterologous expression systems for CYP5136A1 and CYP5136A3 using the T7 RNA polymerase/promoter system in Escherichia coli. Expression levels of recombinant P450s were dramatically improved by modifications and optimization of their N-terminal amino acid sequences. A CYP5136A1 reaction system was reconstructed in E. coli whole cells by coexpression of CYP5136A1 and a redox partner, NADPH-dependent P450 reductase (CPR). The catalytic activity of CYP5136A1 was significantly increased when cytochrome b5 (Cyt-b5) was further coexpressed with CPR, indicating that Cyt-b5 supports electron transfer reactions from NAD(P)H to CYP5136A1. Notably, P450 reaction occurred in E. coli cells that harbored CYP5136A1 and Cyt-b5 but not CPR, implying that the reducing equivalents required for the P450 catalytic cycle were transferred via a CPR-independent pathway. Such an "alternative" electron transfer system in CYP5136A1 reaction was also demonstrated using purified enzymes in vitro. The fungal P450 reaction system may be associated with sophisticated electron transfer pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Tissue-, sex- and development-specific transcription profiles of eight UDP-glucuronosyltransferase genes in zebrafish (Danio rerio) and their regulation by activator of aryl hydrocarbon receptor.

    PubMed

    Christen, Verena; Fent, Karl

    2014-05-01

    UDP-Glucuronosyltransferases (Ugts) are phase II biotransformation enzymes that glucuronidate numerous endogenous and xenobiotic substrates. Based on the reported zebrafish Ugt gene repertoire, primers for the Ugt1a and Ugt1b family and for individual Ugt5a1, Ugt5a3, Ugt5a4, Ugt5a5, Ugt5c2 and Ugt5c3 were designed and applied in RT-qPCR analyses. Transcriptional expression profiles of these Ugts were analyzed in intestine, liver, gonad and brain of female and male adult zebrafish and at different embryonic developmental stages. We found tissue-, sex- and developmental-specific expression patterns for all isoforms. Throughout all tissues, the most abundant Ugts were Ugt1a, Ugt1b, Ugt5a1 and Ugt5a3. Expression during embryonic development was assessed between 24 and 120 hpf. Ugts showed a development-dependent expression. The pattern of Ugt1a, Ugt1b, Ugt5a1, Ugt5a3 and Ugt5a4 were similar with highest expression at 24 hpf followed by a decrease and rebound increase up to 120 hpf. To analyze for transcriptional regulation of Ugts by the arylhydrocarbon receptor (ahr2), zebrafish eleuthero-embryos were exposed to 5, 25 and 50μg/L benzo(a)pyrene (BaP), a model ahr2 regulator for cyp1a. Besides transcriptional induction of ahr2 and cyp1a, BaP produced a significant induction of Ugt1a, Ugt5a1, Ugt5a3 and Ugt5a5 as well as a down-regulation of Ugt1b. These data demonstrate the link between ahr2 signalling and transcriptional expression of Ugt genes. This is the first study showing transcriptional expression of eight different Ugts in tissues and during embryonic development and offers new perspectives on the involvement of Ugts in fish xenobiotic metabolism.

  16. Characterization of an Apis cerana cerana cytochrome P450 gene (AccCYP336A1) and its roles in oxidative stresses responses.

    PubMed

    Zhu, Ming; Zhang, Weixing; Liu, Feng; Chen, Xiaobo; Li, Han; Xu, Baohua

    2016-06-15

    Cytochrome P450 monooxygenases (P450), widely distributed multifunctional enzymes, that play an important role in the oxidative metabolism of endogenous compounds and xenobiotics. Studies have found that these enzymes show peroxidase-like activity and may thus be involved in protecting organisms against reactive oxygen species (ROS). In this work, Apis cerana cerana was used to investigate the molecular mechanisms of P450 family genes in resisting ROS damage. A cytochrome P450 gene was isolated, AccCYP336A1. The open reading frame (ORF) of AccCYP336A1 is 1491bp in length and encodes a predicted protein of 496 amino acids. The obtained amino acid sequence of AccCYP336A1 shared a high sequence identity with homologous proteins and contained the highly conserved features of this protein family. Quantitative real-time PCR (qRT-PCR) analysis showed that AccCYP336A1 was present in some fast developmental stages and had a higher expression in the epidermis than in other tissues. Additionally, the expression levels of AccCYP336A1 were up-regulated by cold (4 °C), heat (42 °C), ultraviolet (UV) radiation, H2O2 and pesticide (thiamethoxam, deltamethrin, methomyl and phoxim) treatments. These results were confirmed by the western blot assays. Furthermore, the recombinant AccCYP336A1 protein acted as an antioxidant that resisted paraquat-induced oxidative stress. Taken together, these results suggest that AccCYP336A1 may play a very significant role in antioxidant defense against ROS damage. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Metazoan cytochrome P450 evolution.

    PubMed

    Nelson, D R

    1998-11-01

    There are 37 cytochrome P450 families currently identified in animals. The concept of higher order groupings of P450 families called P450 CLANS is introduced. The mammalian CYP3 and CYP5 families belong to the same clan as insect CYP6 and CYP9. All mitochondrial P450s seem to belong to the same clan. Lack of mitochondrial P450s in C. elegans suggests that mitochondrial P450s probably arose from the mistargeting of a microsomal P450 after the coelomates diverged from acoelomates and pseudocoelomates. Different taxonomic groups appear to have recruited different ancestral P450s for expansion as they evolved, since each major taxon seems to have one large cluster of P450s. In insects, this cluster derives from the ancestor to the CYP4 family. Vertebrates and C. elegans may have used the same ancestor independently to generate the CYP1, 2, 17, and 21 families in vertebrates and a large distinctive clan with 45 genes in C. elegans.

  18. Engineering Herbicide Metabolism in Tobacco and Arabidopsis with CYP76B1, a Cytochrome P450 Enzyme from Jerusalem Artichoke1

    PubMed Central

    Didierjean, Luc; Gondet, Laurence; Perkins, Roberta; Lau, Sze-Mei Cindy; Schaller, Hubert; O'Keefe, Daniel P.; Werck-Reichhart, Danièle

    2002-01-01

    The Jerusalem artichoke (Helianthus tuberosus) xenobiotic inducible cytochrome P450, CYP76B1, catalyzes rapid oxidative dealkylation of various phenylurea herbicides to yield nonphytotoxic metabolites. We have found that increased herbicide metabolism and tolerance can be achieved by ectopic constitutive expression of CYP76B1 in tobacco (Nicotiana tabacum) and Arabidopsis. Transformation with CYP76B1 conferred on tobacco and Arabidopsis a 20-fold increase in tolerance to linuron, a compound detoxified by a single dealkylation, and a 10-fold increase in tolerance to isoproturon or chlortoluron, which need successive catalytic steps for detoxification. Two constructs for expression of translational fusions of CYP76B1 with P450 reductase were prepared to test if they would yield even greater herbicide tolerance. Plants expressing these constructs had lower herbicide tolerance than CYP76B1 alone, which is apparently a consequence of reduced stability of the fusion proteins. In all cases, increased herbicide tolerance results from more extensive metabolism, as demonstrated with exogenously fed phenylurea. Beside increased herbicide tolerance, expression of CYP76B1 has no other visible phenotype in the transgenic plants. Our data indicate that CYP76B1 can function as a selectable marker for plant transformation, allowing efficient selection in vitro and in soil-grown plants. Plants expressing CYP76B1 may also be a potential tool for phytoremediation of contaminated sites. PMID:12226498

  19. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes.

    PubMed

    Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Grimmett, Paul E; Yadav, Jagjit S

    2013-04-01

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidized n-alkanes with various chain lengths (C9 to C12 and C15 to C19), as well as alkyl side chains (C3 to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills).

  20. CYP63A2, a Catalytically Versatile Fungal P450 Monooxygenase Capable of Oxidizing Higher-Molecular-Weight Polycyclic Aromatic Hydrocarbons, Alkylphenols, and Alkanes

    PubMed Central

    Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Grimmett, Paul E.

    2013-01-01

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidized n-alkanes with various chain lengths (C9 to C12 and C15 to C19), as well as alkyl side chains (C3 to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills). PMID:23416995

  1. The Localization of Cytochrome P450s CYP1A1 and CYP1A2 into Different Lipid Microdomains Is Governed by Their N-terminal and Internal Protein Regions.

    PubMed

    Park, Ji Won; Reed, James R; Backes, Wayne L

    2015-12-04

    In cellular membranes, different lipid species are heterogeneously distributed forming domains with different characteristics. Ordered domains are tightly packed with cholesterol, sphingomyelin, and saturated fatty acids, whereas disordered domains contain high levels of unsaturated fatty acids. Our laboratory has shown that membrane heterogeneity affects the organization of cytochrome P450s and their cognate redox partner, the cytochrome P450 reductase (CPR). Despite the high degree of sequence similarity, CYP1A1 was found to localize to disordered regions, whereas CYP1A2 resided in ordered domains. We hypothesized that regions of amino acid sequence variability may contain signal motifs that direct CYP1A proteins into ordered or disordered domains. Thus, chimeric constructs of CYP1A1 and CYP1A2 were created, and their localization was tested in HEK293T cells. CYP1A2, containing the N-terminal regions from CYP1A1, no longer localized in ordered domains, whereas the N terminus of CYP1A2 partially directed CYP1A1 into ordered regions. In addition, intact CYP1A2 containing a 206-302-residue peptide segment of CYP1A1 had less affinity to bind to ordered microdomains. After expression, the catalytic activity of CYP1A2 was higher than that of the CYP1A1-CYP1A2 chimera containing the N-terminal end of CYP1A1 with subsaturating CPR concentrations, but it was approximately equal with excess CPR suggesting that the localization of the CYP1A enzyme in ordered domains favored its interaction with CPR. These data demonstrate that both the N-terminal end and an internal region of CYP1A2 play roles in targeting CYP1A2 to ordered domains, and domain localization may influence P450 function under conditions that resemble those found in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. The Role of Human Cytochrome P450 Enzymes in the Formation of 2-Hydroxymetronidazole: CYP2A6 is the High Affinity (Low Km) Catalyst

    PubMed Central

    Cohen-Wolkowiez, Michael; Sampson, Mario R.; Kearns, Gregory L.

    2013-01-01

    Despite metronidazole’s widespread clinical use since the 1960s, the specific enzymes involved in its biotransformation have not been previously identified. Hence, in vitro studies were conducted to identify and characterize the cytochrome P450 enzymes involved in the formation of the major metabolite, 2-hydroxymetronidazole. Formation of 2-hydroxymetronidazole in human liver microsomes was consistent with biphasic, Michaelis-Menten kinetics. Although several cDNA-expressed P450 enzymes catalyzed 2-hydroxymetronidazole formation at a supratherapeutic concentration of metronidazole (2000 μM), at a “therapeutic concentration” of 100 μM only CYPs 2A6, 3A4, 3A5, and 3A7 catalyzed metronidazole 2-hydroxylation at rates substantially greater than control vector, and CYP2A6 catalyzed 2-hydroxymetronidazole formation at rates 6-fold higher than the next most active enzyme. Kinetic studies with these recombinant enzymes revealed that CYP2A6 has a Km = 289 μM which is comparable to the Km for the high-affinity (low-Km) enzyme in human liver microsomes, whereas the Km values for the CYP3A enzymes corresponded with the low-affinity (high-Km) component. The sample-to-sample variation in 2-hydroxymetronidazole formation correlated significantly with CYP2A6 activity (r ≥ 0.970, P < 0.001) at substrate concentrations of 100 and 300 μM. Selective chemical inhibitors of CYP2A6 inhibited metronidazole 2-hydroxylation in a concentration-dependent manner and inhibitory antibodies against CYP2A6 virtually eliminated metronidazole 2-hydroxylation (>99%). Chemical and antibody inhibitors of other P450 enzymes had little or no effect on metronidazole 2-hydroxylation. These results suggest that CYP2A6 is the primary catalyst responsible for the 2-hydroxylation of metronidazole, a reaction that may function as a marker of CYP2A6 activity both in vitro and in vivo. PMID:23813797

  3. The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst.

    PubMed

    Pearce, Robin E; Cohen-Wolkowiez, Michael; Sampson, Mario R; Kearns, Gregory L

    2013-09-01

    Despite metronidazole's widespread clinical use since the 1960s, the specific enzymes involved in its biotransformation have not been previously identified. Hence, in vitro studies were conducted to identify and characterize the cytochrome P450 enzymes involved in the formation of the major metabolite, 2-hydroxymetronidazole. Formation of 2-hydroxymetronidazole in human liver microsomes was consistent with biphasic, Michaelis-Menten kinetics. Although several cDNA-expressed P450 enzymes catalyzed 2-hydroxymetronidazole formation at a supratherapeutic concentration of metronidazole (2000 μM), at a "therapeutic concentration" of 100 μM only CYPs 2A6, 3A4, 3A5, and 3A7 catalyzed metronidazole 2-hydroxylation at rates substantially greater than control vector, and CYP2A6 catalyzed 2-hydroxymetronidazole formation at rates 6-fold higher than the next most active enzyme. Kinetic studies with these recombinant enzymes revealed that CYP2A6 has a Km = 289 μM which is comparable to the Km for the high-affinity (low-Km) enzyme in human liver microsomes, whereas the Km values for the CYP3A enzymes corresponded with the low-affinity (high-Km) component. The sample-to-sample variation in 2-hydroxymetronidazole formation correlated significantly with CYP2A6 activity (r ≥ 0.970, P < 0.001) at substrate concentrations of 100 and 300 μM. Selective chemical inhibitors of CYP2A6 inhibited metronidazole 2-hydroxylation in a concentration-dependent manner and inhibitory antibodies against CYP2A6 virtually eliminated metronidazole 2-hydroxylation (>99%). Chemical and antibody inhibitors of other P450 enzymes had little or no effect on metronidazole 2-hydroxylation. These results suggest that CYP2A6 is the primary catalyst responsible for the 2-hydroxylation of metronidazole, a reaction that may function as a marker of CYP2A6 activity both in vitro and in vivo.

  4. The Gymnosperm Cytochrome P450 CYP750B1 Catalyzes Stereospecific Monoterpene Hydroxylation of (+)-Sabinene in Thujone Biosynthesis in Western Redcedar1[OPEN

    PubMed Central

    Blaukopf, Markus; Yuen, Macaire M.S.; Withers, Stephen G.; Mattsson, Jim; Russell, John H.; Bohlmann, Jörg

    2015-01-01

    Western redcedar (WRC; Thuja plicata) produces high amounts of oxygenated thujone monoterpenoids associated with resistance against herbivore feeding, particularly ungulate browsing. Thujones and other monoterpenoids accumulate in glandular structures in the foliage of WRC. Thujones are produced from (+)-sabinene by sabinol and sabinone. Using metabolite analysis, enzyme assays with WRC tissue extracts, cloning, and functional characterization of cytochrome P450 monooxygenases, we established that trans-sabin-3-ol but not cis-sabin-3-ol is the intermediate in thujone biosynthesis in WRC. Based on transcriptome analysis, full-length complementary DNA cloning, and characterization of expressed P450 proteins, we identified CYP750B1 and CYP76AA25 as the enzymes that catalyze the hydroxylation of (+)-sabinene to trans-sabin-3-ol. Gene-specific transcript analysis in contrasting WRC genotypes producing high and low amounts of monoterpenoids, including a glandless low-terpenoid clone, as well as assays for substrate specificity supported a biological role of CYP750B1 in α- and β-thujone biosynthesis. This P450 belongs to the apparently gymnosperm-specific CYP750 family and is, to our knowledge, the first member of this family to be functionally characterized. In contrast, CYP76AA25 has a broader substrate spectrum, also converting the sesquiterpene farnesene and the herbicide isoproturon, and its transcript profiles are not well correlated with thujone accumulation. PMID:25829465

  5. Microarray and RNAi Analysis of P450s in Anopheles gambiae Male and Female Steroidogenic Tissues: CYP307A1 Is Required for Ecdysteroid Synthesis

    PubMed Central

    Pondeville, Emilie; David, Jean-Philippe; Guittard, Emilie; Maria, Annick; Ranson, Hilary

    2013-01-01

    In insects, the steroid hormone 20-hydroxyecdysone (20E) coordinates major developmental transitions. While the first and the final steps of 20E biosynthesis are characterized, the pathway from 7-dehydrocholesterol to 5β-ketodiol, commonly referred as the “black box”, remains hypothetical and whether there are still unidentified enzymes is unknown. The black box would include some oxidative steps, which are believed to be mediated by P450 enzymes. To identify new enzyme(s) involved in steroid synthesis, we analyzed by small-scale microarray the expression of all the genes encoding P450 enzymes of the malaria mosquito Anopheles gambiae in active steroidogenic organs of adults, ovaries from blood-fed females and male reproductive tracts, compared to inactive steroidogenic organs, ovaries from non-blood-fed females. Some genes encoding P450 enzymes were specifically overexpressed in female ovaries after a blood-meal or in male reproductive tracts but only three genes were found to be overexpressed in active steroidogenic organs of both females and males: cyp307a1, cyp4g16 and cyp6n1. Among these genes, only cyp307a1 has an expression pattern similar to other mosquito steroidogenic genes. Moreover, loss-of-function by transient RNAi targeting cyp307a1 disrupted ecdysteroid production demonstrating that this gene is required for ecdysteroid biosynthesis in Anopheles gambiae. PMID:24324583

  6. The gymnosperm cytochrome P450 CYP750B1 catalyzes stereospecific monoterpene hydroxylation of (+)-sabinene in thujone biosynthesis in western redcedar.

    PubMed

    Gesell, Andreas; Blaukopf, Markus; Madilao, Lina; Yuen, Macaire M S; Withers, Stephen G; Mattsson, Jim; Russell, John H; Bohlmann, Jörg

    2015-05-01

    Western redcedar (WRC; Thuja plicata) produces high amounts of oxygenated thujone monoterpenoids associated with resistance against herbivore feeding, particularly ungulate browsing. Thujones and other monoterpenoids accumulate in glandular structures in the foliage of WRC. Thujones are produced from (+)-sabinene by sabinol and sabinone. Using metabolite analysis, enzyme assays with WRC tissue extracts, cloning, and functional characterization of cytochrome P450 monooxygenases, we established that trans-sabin-3-ol but not cis-sabin-3-ol is the intermediate in thujone biosynthesis in WRC. Based on transcriptome analysis, full-length complementary DNA cloning, and characterization of expressed P450 proteins, we identified CYP750B1 and CYP76AA25 as the enzymes that catalyze the hydroxylation of (+)-sabinene to trans-sabin-3-ol. Gene-specific transcript analysis in contrasting WRC genotypes producing high and low amounts of monoterpenoids, including a glandless low-terpenoid clone, as well as assays for substrate specificity supported a biological role of CYP750B1 in α- and β-thujone biosynthesis. This P450 belongs to the apparently gymnosperm-specific CYP750 family and is, to our knowledge, the first member of this family to be functionally characterized. In contrast, CYP76AA25 has a broader substrate spectrum, also converting the sesquiterpene farnesene and the herbicide isoproturon, and its transcript profiles are not well correlated with thujone accumulation.

  7. Crude oil exposure results in oxidative stress-mediated dysfunctional development and reproduction in the copepod Tigriopus japonicus and modulates expression of cytochrome P450 (CYP) genes.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Hwang, Dae-Sik; Shin, Kyung-Hoon; Lee, Yong Sung; Leung, Kenneth Mei-Yee; Lee, Su-Jae; Lee, Jae-Seong

    2014-07-01

    In this study, we investigated the effects of the water-accommodated fraction (WAF) of crude oil on the development and reproduction of the intertidal copepod Tigriopus japonicus through life-cycle experiments. Furthermore, we investigated the mechanisms underlying the toxic effects of WAF on this benthic organism by studying expression patterns of cytochrome P450 (CYP) genes. Development of T. japonicus was delayed and molting was interrupted in response to WAF exposure. Hatching rate was also significantly reduced in response to WAF exposure. Activities of antioxidant enzymes such as glutathione S-transferase (GST), glutathione reductase (GR), and catalase (CAT) were increased by WAF exposure in a concentration-dependent manner. These results indicated that WAF exposure resulted in oxidative stress, which in turn was associated with dysfunctional development and reproduction. To evaluate the involvement of cytochrome P450 (CYP) genes, we cloned the entire repertoire of CYP genes in T. japonicus (n=52) and found that the CYP genes belonged to five different clans (i.e., Clans 2, 3, 4, mitochondrial, and 20). We then examined expression patterns of these 52 CYP genes in response to WAF exposure. Three TJ-CYP genes (CYP3024A2, CYP3024A3, and CYP3027C2) belonging to CYP clan 3 were significantly induced by WAF exposure in a time- and concentration-dependent manner. We identified aryl hydrocarbon responsive elements (AhRE), xenobiotic responsive elements (XREs), and metal response elements (MRE) in the promoter regions of these three CYP genes, suggesting that these genes are involved in detoxification of toxicants. Overall, our results indicate that WAF can trigger oxidative stress and thus induce dysfunctional development and reproduction in the copepod T. japonicus. Furthermore, we identified three TJ-CYP genes that represent potential biomarkers of oil pollution.

  8. Isolation and Expression Analysis of CYP9A11 and Cytochrome P450 Reductase Gene in the Beet Armyworm (Lepidoptera: Noctuidae)

    PubMed Central

    Zhao, Chunqing; Feng, Xiaoyun; Tang, Tao; Qiu, Lihong

    2015-01-01

    Cytochrome P450 monooxygenases (CYPs), as an enzyme superfamily, is widely distributed in organisms and plays a vital function in the metabolism of exogenous and endogenous compounds by interacting with its obligatory redox partner, CYP reductase (CPR). A novel CYP gene (CYP9A11) and CPR gene from the agricultural pest insect Spodoptera exigua were cloned and characterized. The complete cDNA sequences of SeCYP9A11 and SeCPR are 1,931 and 3,919 bp in length, respectively, and contain open reading frames of 1,593 and 2,070 nucleotides, respectively. Analysis of the putative protein sequences indicated that SeCYP9A11 contains a heme-binding domain and the unique characteristic sequence (SRFALCE) of the CYP9 family, in addition to a signal peptide and transmembrane segment at the N-terminal. Alignment analysis revealed that SeCYP9A11 shares the highest sequence similarity with CYP9A13 from Mamestra brassicae, which is 66.54%. The putative protein sequence of SeCPR has all of the classical CPR features, such as an N-terminal membrane anchor; three conserved domain flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and nicotinamide adenine dinucleotide phosphate (NADPH) domain; and characteristic binding motifs. Phylogenetic analysis revealed that SeCPR shares the highest identity with HaCPR, which is 95.21%. The SeCYP9A11 and SeCPR genes were detected in the midgut, fat body, and cuticle tissues, and throughout all of the developmental stages of S. exigua. The mRNA levels of SeCYP9A11 and SeCPR decreased remarkably after exposure to plant secondary metabolites quercetin and tannin. The results regarding SeCYP9A11 and SeCPR genes in the current study provide foundation for the further study of S. exigua P450 system. PMID:26320261

  9. [Characteristics of steroid metabolism in transgenic Nicotiana tabacum plants bearing the CYP11A1 cDNA of cytochrome P450(SCC) from the bovine adrenal cortex].

    PubMed

    Spivak, S G; Berdichevets, I N; Litvinovskaia, R P; Drach, S V; Kartel', N A; Shpakovskiĭ, G V

    2010-01-01

    In the mitochondria of animal steroidogenic tissues, cytochrome P450(SCC), encoded by the CYP11A1 gene, catalyzes the conversion of cholesterol into pregnenolone - the general precursor of all steroid hormones. In this work, we study the steroid metabolism in transgenic tobacco plants carrying the CYP11A1 cDNA cytochrome P450(SCC)from the bovine adrenal cortex. The transgenic plants under investigation markedly surpass the control wild-type plants by size and are characterized by a shortened period of vegetative growth (by rapid flowering); their leaves contain pregnenolone - the product of a reaction catalyzed by cytochrome P450(SCC). The level of progesterone in transgenic tobacco leaves is higher than in the control plants of the wild type. The seeds of the transgenic plants contain less (24R)-brassinosteroids than the wild-type tobacco plants. The results obtained indicate that the synthesis of an active P450(SCC) cytochrome in transgenic Nicotiana tabacum plants has a profound effect on steroid metabolism and is responsible for the specific phenotypic features of transgenic plants bearing CYP11A1 cDNA.

  10. Characterizing the effect of cytochrome P450 (CYP) 2C8, CYP2C9, and CYP2D6 genetic polymorphisms on stereoselective N-demethylation of fluoxetine.

    PubMed

    Wang, Zhangting; Wang, Shengjia; Huang, Minmin; Hu, Haihong; Yu, Lushan; Zeng, Su

    2014-03-01

    Fluoxetine (FLX) is one of the most widely prescribed selective serotonin reuptake inhibitors. Although FLX is used as racemate in the clinic, the clinical pharmacokinetics of FLX and its N-demethylation metabolite norfluoxetine (NFLX) show obvious cytochrome P450 (CYP) polymorphism dependency and exhibit marked stereoselectivity. However, the kinetic profiles of CYP variants to FLX remain unclear. In the present study, some variants of human CYP2C8, CYP2C9, and CYP2D6 were first expressed in insect cells, and their catalytic roles with respect to FLX enantiomers were then investigated. CYP2C8.4 and CYP2C9.10 showed significantly lower activity and CYP2C8.3 showed significantly higher activity toward both R- and S-FLX compared with the wildtype, while CYP2C9.3, CYP2C9.13, and CYP2C9.16 showed significantly lower activity only toward R-FLX. Five CYP2C9 variants and CYP2D6.1 exhibited significantly stereoselective kinetic profiles prior to R-FLX, and CYP2C8.3 showed a slight stereoselectivity. Interestingly, obvious substrate inhibition was observed in the CYP2C9 wildtype and its three variants only in the case of R-FLX. Together, these findings suggest that CYP2C9 and CYP2D6 polymorphism may play an important role in the clearance of FLX and also in the stereoselective kinetic profiles of FLX enantiomers.

  11. Methodologies for investigating drug metabolism at the early drug discovery stage: prediction of hepatic drug clearance and P450 contribution.

    PubMed

    Emoto, Chie; Murayama, Norie; Rostami-Hodjegan, Amin; Yamazaki, Hiroshi

    2010-10-01

    The attrition rate in drug development is being reduced by continuous advances in science and technology introduced by various academic institutions and pharmaceutical companies. This has been certainly noticeable in reducing the frequency with which unfavorable absorption, distribution, metabolism, and elimination (ADME) characteristics of any candidate drug causes failure in clinical development. Nonetheless, it is important that the objectives in reducing attrition during later stages of development are matched by information generated in the earliest stage of discovery. In this review, we summarize the methodologies employed during the early stages of drug discovery and discuss new findings in the areas of (1) drug metabolism enzymes, (2) the contribution of cytochrome P450 enzymes (P450, CYP) to hepatic metabolism, (3) prediction of hepatic intrinsic clearance, (4) reaction phenotyping, and (5) the metabolic differences between highly homologous enzymes such as CYP3A4 and CYP3A5. The total contribution of P450 and UDP-glucuronosyltransferases to drug metabolism is reported to be more than 80%; therefore, glucuronidation is increasingly recognized as an important clearance pathway in addition to that of P450 enzymes. When estimating the contribution of P450, interpreting the results of inhibition studies using a single P450 inhibitor can lead to false conclusions. For instance, 1-aminobenzotriazole and SKF-525A have a varying range of IC(50) values for inhibition of drug exidation-reaction by different CYP450 enzymes. There are disparities between methodologies at early stage drug discovery and late stage development. For example, although the drug depletion approach for the prediction of hepatic intrinsic clearance may not be desirable at late stages of development, it is suitable at the early drug discovery stage since kinetic characterization and measurement of specific drug metabolites are not required. Data from protein binding assays in plasma and

  12. Catalytic and immunochemical detection of hepatic and extrahepatic microsomal cytochrome P450 1A1 (CYP1A1) in white-sided dolphin (Lagenorhynchus acutus).

    PubMed

    Wilson, Joanna Y; Moore, Michael J; Stegeman, John J

    2010-02-18

    We have characterized microsomal systems and measured the levels of microsomal cytochrome P450 1A1 (CYP1A1) and ethoxyresorufin-O-deethylase (EROD) activity in multiple internal organs of male and female white-sided dolphin (Lagenorhynchus acutus) from the northwest Atlantic Ocean. Internal organs were sampled within 24h of death, sometimes in a period of hours, collection times which are significantly less than usually seen for marine mammals. Tissue autolysis, as assessed by histological analysis of liver, was minimal to none in all individuals. Total P420 did not correlate with time from death to sampling, suggesting that it is a poor indicator of P450 degradation in cetacean tissues where perfusion is not practical. The total hepatic microsomal P450 content, cytochrome b5 content, and NADPH-cytochrome c (P450) reductase (CPR) activity averaged 0.29nmolmg(-1), 0.12nmolmg(-1), and 238nmolmg(-1)min(-1), respectively. Microsomal CPR activity in liver was higher than that in lung and kidney, and was higher than that reported in liver of most other cetacean species. Immunodetected CYP1A1 content was low in all organs, less than 3pmolesCYP1A equivalentsmg(-1). EROD activity ranged from 9 to 376pmolesmg(-1)min(-1) and was greater in liver than in other tissues. Hepatic microsomal EROD activity and CYP1A1 content did not correlate. However, hepatic EROD activity, but not CYP1A1 protein content, was well correlated with both total PCB and Sigmamono-ortho PCB concentrations in blubber. Length, as a proxy for age, did not correlate with hepatic EROD activity or CYP1A1 protein levels, and sex did not influence the relationship between EROD and contaminant concentrations. We cannot easily control for the extent of tissue degradation in cetacean studies nor do we have a complete history of these animals. Therefore, other factors such as degradation or hormonal state may have a role in the observed relationships. Yet, as in other mammals, hepatic tissues appear to be a major

  13. Catalytic and Immunochemical Detection of Hepatic and Extrahepatic Microsomal Cytochrome P450 1A1 (CYP1A1) in White-sided Dolphin (Lagenorhynchus acutus)

    PubMed Central

    Wilson, Joanna Y.; Moore, Michael J.; Stegeman, John J.

    2009-01-01

    We have characterized microsomal systems and measured the levels of microsomal cytochrome P450 1A1 (CYP1A1) and ethoxyresorufin-O-deethylase activity in multiple internal organs of male and female white-sided dolphin (Lagenorhynchus acutus) from the northwest Atlantic Ocean. Internal organs were sampled within 24 hours of death, sometimes in a period of hours, collection times which are significantly less than usually seen for marine mammals. Tissue autolysis, as assessed by histological analysis of liver, was minimal to none in all individuals. Total P420 did not correlate with time from death to sampling, suggesting that it is a poor indicator of P450 degradation in cetacean tissues where perfusion isn’t practical. The total hepatic microsomal P450 content, cytochrome b5 content, and NADPH-cytochrome c (P450) reductase (CPR) activity averaged 0.29 nmol mg−1, 0.12 nmol mg−1, and 238 nmol mg−1 min−1, respectively. Microsomal CPR activity in liver was higher than that in lung and kidney, and was higher than that reported in liver of most other cetacean species. Immunodetected CYP1A1 content was low in all organs, less than 3 pmoles CYP1A equivalents mg−1. EROD activity ranged from 9 – 376 pmoles mg−1 min−1 and was greater in liver than in other tissues. Hepatic microsomal EROD activity and CYP1A1 content did not correlate. However, hepatic EROD activity, but not CYP1A1 protein content, was well correlated with both total PCB and Σmono-ortho PCB concentrations in blubber. Length, as a proxy for age, did not correlate with hepatic EROD activity or CYP1A1 protein levels, and sex did not influence the relationship between EROD and contaminant concentrations. We cannot easily control for the extent of tissue degradation in cetacean studies nor do we have a complete history of these animals. Therefore, other factors such as degradation or hormonal state may have a role in the observed relationships. Yet, as in other mammals, hepatic tissues appear to be

  14. The Cytochrome P450 gene CYP6P12 confers pyrethroid resistance in kdr-free Malaysian populations of the dengue vector Aedes albopictus

    PubMed Central

    Ishak, Intan H.; Riveron, Jacob M.; Ibrahim, Sulaiman S.; Stott, Rob; Longbottom, Joshua; Irving, Helen; Wondji, Charles S.

    2016-01-01

    Control of Aedes albopictus, major dengue and chikungunya vector, is threatened by growing cases of insecticide resistance. The mechanisms driving this resistance remain poorly characterised. This study investigated the molecular basis of insecticide resistance in Malaysian populations of Ae. albopictus. Microarray-based transcription profiling revealed that metabolic resistance (cytochrome P450 up-regulation) and possibly a reduced penetration mechanism (consistent over-expression of cuticular protein genes) were associated with pyrethroid resistance. CYP6P12 over-expression was strongly associated with pyrethroid resistance whereas CYP6N3 was rather consistently over-expressed across carbamate and DDT resistant populations. Other detoxification genes also up-regulated in permethrin resistant mosquitoes included a glucuronosyltransferase (AAEL014279-RA) and the glutathione-S transferases GSTS1 and GSTT3. Functional analyses further supported that CYP6P12 contributes to pyrethroid resistance in Ae. albopictus as transgenic expression of CYP6P12 in Drosophila was sufficient to confer pyrethroid resistance in these flies. Furthermore, molecular docking simulations predicted CYP6P12 possessing enzymatic activity towards pyrethroids. Patterns of polymorphism suggested early sign of selection acting on CYP6P12 but not on CYP6N3. The major role played by P450 in the absence of kdr mutations suggests that addition of the synergist PBO to pyrethroids could improve the efficacy of this insecticide class and overcome resistance in field populations of Ae. albopictus. PMID:27094778

  15. Effect of pyrazole, cobalt and phenobarbital on mouse liver cytochrome P-450 2a-4/5 (Cyp2a-4/5) expression.

    PubMed Central

    Hahnemann, B; Salonpää, P; Pasanen, M; Mäenpää, J; Honkakoski, P; Juvonen, R; Lang, M A; Pelkonen, O; Raunio, H

    1992-01-01

    Pyrazole, cobalt and phenobarbital increase the activity of coumarin 7-hydroxylase (COH) in mouse liver. To study the mechanism of this increase, we measured the expression of the cytochrome P-450 2a-4/5 (Cyp2a-4/5) complex, which mediates testosterone 15 alpha-hydroxylase and COH activities, as a function of dose and time after the treatment of C57BL/6 (B6) and DBA/2 (D2) male mice with the inducers. COH activity and Cyp2a-4/5 steady-state mRNA levels were increased in both strains in response to the inducers. No marked effect occurred with testosterone 15 alpha-hydroxylase or activities associated with Cyp1a-1 or Cyp2e-1. A 2-7-fold increase in response to the inducers was seen in the amount of P-450Coh (cytochrome P-450 isoenzyme catalysing coumarin 7-hydroxylation) protein in Western immunoblots. PCR amplification of a 1 kb region in Cyp2a-4/5-mRNA-derived cDNA, followed by cutting at the diagnostic PstI site, showed that most of the steady-state mRNA consisted of Cyp2a-5, which is also the form most affected by pyrazole. Nuclear run-off analysis revealed no increase in the transcription rate of Cyp2a-4/5 after pyrazole or cobalt treatment, whereas a 2-3-fold increase occurred after phenobarbital pretreatment in B6 mice. Together with previous reports [Aida & Negishi (1991) Biochemistry 30, 8041-8045], the current data suggest that both pyrazole and cobalt increase COH catalytic activity by affecting Cyp2a-5 by post-transcriptional mechanisms in mice. Images Fig. 1. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:1520280

  16. Site-directed mutation studies of human liver cytochrome P-450 isoenzymes in the CYP2C subfamily.

    PubMed Central

    Veronese, M E; Doecke, C J; Mackenzie, P I; McManus, M E; Miners, J O; Rees, D L; Gasser, R; Meyer, U A; Birkett, D J

    1993-01-01

    Evidence from human studies in vivo and in vitro strongly suggests that the methylhydroxylation of tolbutamide and the 4-hydroxylation of phenytoin, the major pathways in the elimination of these two drugs, are catalysed by the same cytochrome P-450 isoenzyme(s). In the present study we used site-directed mutagenesis and cDNA expression in COS cells to characterize in detail the kinetics of tolbutamide and phenytoin hydroxylations by seven CYP2C proteins (2C8, 2C9 and variants, and 2C10) in order to define the effects of small changes in amino acid sequences and the likely proteins responsible in the metabolism of these two drugs in man. Tolbutamide was hydroxylated to varying extents by all expressed cytochrome P-450 isoenzymes, although activity was much lower for the expressed 2C8 protein. While the apparent Km values for the 2C9/10 isoenzymes (71.6-131.7 microM) were comparable with the range of apparent Km values previously observed in human liver microsomes, the apparent Km for 2C8 (650.5 microM) was appreciably higher. The 2C8 enzyme also showed quite different sulphaphenazole inhibition characteristics. The 4-hydroxylation of phenytoin was also more efficiently catalysed by the 2C9/10 enzymes. These enzymes showed similarities in kinetics of phenytoin hydroxylation and sulphaphenazole inhibition compared with human liver phenytoin hydroxylase. Also of interest was the observation that, among the 2C9 variants, small differences in amino acid composition could appreciably affect both tolbutamide and phenytoin hydroxylations. The amino acid substitution Cys-144-->Arg increased both the rates of tolbutamide and phenytoin hydroxylations, while the Leu-359-->Ile change had a greater effect on phenytoin hydroxylation. We conclude that: (1) although 2C8 and 2C9/10 proteins metabolize tolbutamide. only 2C9/10 proteins play a major role in human liver; (2) 2C9/10 proteins also appear to be chiefly responsible for phenytoin hydroxylation; and (3) subtle differences in

  17. Interindividual variability of CYP2C19-catalyzed drug metabolism due to differences in gene diplotypes and cytochrome P450 oxidoreductase content.

    PubMed

    Shirasaka, Y; Chaudhry, A S; McDonald, M; Prasad, B; Wong, T; Calamia, J C; Fohner, A; Thornton, T A; Isoherranen, N; Unadkat, J D; Rettie, A E; Schuetz, E G; Thummel, K E

    2016-08-01

    Large interindividual variability has been observed in the metabolism of CYP2C19 substrates in vivo. The study aimed to evaluate sources of this variability in CYP2C19 activity, focusing on CYP2C19 diplotypes and the cytochrome P450 oxidoreductase (POR). CYP2C19 gene analysis was carried out on 347 human liver samples. CYP2C19 activity assayed using human liver microsomes confirmed a significant a priori predicted rank order for (S)-mephenytoin hydroxylase activity of CYP2C19*17/*17 > *1B/*17 > *1B/*1B > *2A/*17 > *1B/*2A > *2A/*2A diplotypes. In a multivariate analysis, the CYP2C19*2A allele and POR protein content were associated with CYP2C19 activity. Further analysis indicated a strong effect of the CYP2C19*2A, but not the *17, allele on both metabolic steps in the conversion of clopidogrel to its active metabolite. The present study demonstrates that interindividual variability in CYP2C19 activity is due to differences in both CYP2C19 protein content associated with gene diplotypes and the POR concentration.The Pharmacogenomics Journal advance online publication, 1 September 2015; doi:10.1038/tpj.2015.58.

  18. Interindividual variability of CYP2C19-catalyzed drug metabolism due to differences in gene diplotypes and cytochrome P450 oxidoreductase content

    PubMed Central

    Shirasaka, Y; Chaudhry, A S; McDonald, M; Prasad, B; Wong, T; Calamia, J C; Fohner, A; Thornton, T A; Isoherranen, N; Unadkat, J D; Rettie, A E; Schuetz, E G; Thummel, K E

    2016-01-01

    Large interindividual variability has been observed in the metabolism of CYP2C19 substrates in vivo. The study aimed to evaluate sources of this variability in CYP2C19 activity, focusing on CYP2C19 diplotypes and the cytochrome P450 oxidoreductase (POR). CYP2C19 gene analysis was carried out on 347 human liver samples. CYP2C19 activity assayed using human liver microsomes confirmed a significant a priori predicted rank order for (S)-mephenytoin hydroxylase activity of CYP2C19*17/*17 > *1B/*17 > *1B/*1B > *2A/*17 > *1B/*2A > *2A/*2A diplotypes. In a multivariate analysis, the CYP2C19*2A allele and POR protein content were associated with CYP2C19 activity. Further analysis indicated a strong effect of the CYP2C19*2A, but not the *17, allele on both metabolic steps in the conversion of clopidogrel to its active metabolite. The present study demonstrates that interindividual variability in CYP2C19 activity is due to differences in both CYP2C19 protein content associated with gene diplotypes and the POR concentration. PMID:26323597

  19. Mechanism-based inhibition of cytochrome P450 (CYP)2A6 by chalepensin in recombinant systems, in human liver microsomes and in mice in vivo

    PubMed Central

    Ueng, Yune-Fang; Chen, Chien-Chih; Chung, Yu-Ting; Liu, Tsung-Yun; Chang, Yu-Ping; Lo, Wei-Sheng; Murayama, Norie; Yamazaki, Hiroshi; Souček, Pavel; Chau, Gar-Yang; Chi, Chin-Wen; Chen, Ruei-Ming; Li, Ding-Tzai

    2011-01-01

    BACKGROUND AND PURPOSE Chalepensin is a pharmacologically active furanocoumarin compound found in rue, a medicinal herb. Here we have investigated the inhibitory effects of chalepensin on cytochrome P450 (CYP) 2A6 in vitro and in vivo. EXPERIMENTAL APPROACH Mechanism-based inhibition was studied in vitro using human liver microsomes and bacterial membranes expressing genetic variants of human CYP2A6. Effects in vivo were studied in C57BL/6J mice. CYP2A6 activity was assayed as coumarin 7-hydroxylation (CH) using HPLC and fluorescence measurements. Metabolism of chalepensin was assessed with liquid chromatography/mass spectrometry (LC/MS). KEY RESULTS CYP2A6.1, without pre-incubation with NADPH, was competitively inhibited by chalepensin. After pre-incubation with NADPH, inhibition by chalepensin was increased (IC50 value decreased by 98%). This time-dependent inactivation (kinact 0.044 min−1; KI 2.64 µM) caused the loss of spectrally detectable P450 content and was diminished by known inhibitors of CYP2A6, pilocarpine or tranylcypromine, and by glutathione conjugation. LC/MS analysis of chalepensin metabolites suggested an unstable epoxide intermediate was formed, identified as the corresponding dihydrodiol, which was then conjugated with glutathione. Compared with the wild-type CYP2A6.1, the isoforms CYP2A6.7 and CYP2A6.10 were less inhibited. In mouse liver microsomes, pre-incubation enhanced inhibition of CH activity. Oral administration of chalepensin to mice reduced hepatic CH activity ex vivo. CONCLUSIONS AND IMPLICATIONS Chalepensin was a substrate and a mechanism-based inhibitor of human CYP2A6. Formation of an epoxide could be a key step in this inactivation. ‘Poor metabolizers’ carrying CYP2A6*7 or *10 may be less susceptible to inhibition by chalepensin. Given in vivo, chalepensin decreased CYP2A activity in mice. PMID:21418183

  20. Differential expression of human cytochrome P450 enzymes from the CYP3A subfamily in the brains of alcoholic subjects and drug-free controls.

    PubMed

    Booth Depaz, Iris M; Toselli, Francesca; Wilce, Peter A; Gillam, Elizabeth M J

    2013-06-01

    Cytochrome P450 enzymes are responsible for the metabolism of most commonly used drugs. Among these enzymes, CYP3A forms mediate the clearance of around 40-50% of drugs and may also play roles in the biotransformation of endogenous compounds. CYP3A forms are expressed both in the liver and extrahepatically. However, little is known about the expression of CYP3A proteins in specific regions of the human brain. In this study, form-selective antibodies raised to CYP3A4 and CYP3A5 were used to characterize the expression of these forms in the human brain. Both CYP3A4 and CYP3A5 immunoreactivity were found to varying extents in the microsomal fractions of cortex, hippocampus, basal ganglia, amygdala, and cerebellum. However, only CYP3A4 expression was observed in the mitochondrial fractions of these brain regions. N-terminal sequencing confirmed the principal antigen detected by the anti-CYP3A4 antibody in cortical microsomes to be CYP3A4. Immunohistochemical analysis revealed that CYP3A4 and CYP3A5 expression was primarily localized in the soma and axonal hillock of neurons and varied according to cell type and cell layer within brain regions. Finally, analysis of the frontal cortex of chronic alcohol abusers revealed elevated expression of CYP3A4 in microsomal but not mitochondrial fractions; CYP3A5 expression was unchanged. The site-specific expression of CYP3A4 and CYP3A5 in the human brain may have implications for the role of these enzymes in both normal brain physiology and the response to drugs.

  1. In Vitro Glucuronidation of Fenofibric Acid by Human UDP-Glucuronosyltransferases and Liver Microsomes

    PubMed Central

    Tojcic, Jelena; Benoit-Biancamano, Marie-Odile; Court, Michael H.; Straka, Robert J.; Caron, Patrick

    2009-01-01

    Fenofibric acid (FA), the active moiety of fenofibrate, is an agonist of the peroxisome proliferator-activated nuclear receptor α that modulates triglyceride and cholesterol profiles. Lipid response to fenofibrate and FA serum concentrations is highly variable. Although FA is reported to be almost exclusively inactivated by UDP-glucuronosyltransferases (UGTs) into FA-glucuronide (FA-G), the contribution of UGT isoenzymes has never been systematically assessed. Heterologously expressed human UGT1A and UGT2B and their coding variants were tested for FA glucuronidation using liquid chromatography/mass spectrometry. Recombinant UGT2B7 presented the highest Vmax/Km value (2.10 μl/min/mg), 16-fold higher than the activity of other reactive UGTs, namely, UGT1A3, UGT1A6, and UGT1A9 (0.13, 0.09, and 0.02 μl/min/mg, respectively). UGT2B7.1 (His268) and UGT2B7.2 (Tyr268) enzyme activity was similar, whereas UGT1A3.2 (R11A47), UGT1A3.3 (Trp11), and UGT1A9.3 (Thr33) showed 61 to 96% reduced Vmax/Km values compared with the respective (1) reference proteins. FA-G formation by a human liver bank (n = 48) varied by 10-fold, but the rate of formation was not associated with common genetic variations in UGT1A3, UGT1A6, UGT1A9, and UGT2B7. Correlation with activities for the probe substrates zidovudine (UGT2B7; r2 = 0.75), mycophenolic acid (UGT1A9; r2 = 0.42), fulvestrant (UGT1A3; r2 = 0.36), but not serotonin (UGT1A6; r2 = 0.06) indicated a primary role for UGT2B7 and lesser roles of UGT1A9 and UGT1A3 in hepatic FA glucuronidation. This was confirmed by a strong correlation of FA-G formation with UGT2B7 protein content and inhibition by fluconazole, a known UGT2B7 selective inhibitor. Additional studies are required to identify genetic factors contributing to the observed FA glucuronidation variability. PMID:19661212

  2. Importance of UDP-glucuronosyltransferases 2A2 and 2A3 in tobacco carcinogen metabolism.

    PubMed

    Bushey, Ryan T; Dluzen, Douglas F; Lazarus, Philip

    2013-01-01

    UDP-glucuronosyltransferase A1 (UGT2A1) is expressed in the lung and exhibits activity against polycyclic aromatic hydrocarbons (PAHs), suggesting UGT2A1 involvement in the local metabolism of PAH tobacco carcinogens. The goal of the present study was to investigate the importance of two additional UGT2A enzymes, UGT2A2 and UGT2A3, in tobacco carcinogen metabolism. Real-time polymerase chain reaction suggested that wild-type UGT2A2 had the highest expression in the breast, followed by trachea > larynx > kidney. A novel splice variant of UGT2A2 lacking exon 3 (termed UGT2A2Δexon3) was investigated, with UGT2A2Δexon3 expression determined to be 25-50% that of wild-type UGT2A2 in all tissues examined. UGT2A3 was determined to be well expressed in the liver and colon, followed by pancreas > kidney > lung > tonsil > trachea > larynx. Cell homogenates prepared from human embryonic kidney (HEK)293 cells overexpressing wild-type UGT2A2 (termed UGT2A2_i1) exhibited glucuronidation activity, as observed by reverse-phase ultra-pressure liquid chromatography, against 1-hydroxy-(OH)-pyrene, 1-naphthol, and hydroxylated benzo(a)pyrene metabolites, whereas homogenates prepared from HEK293 cells overexpressing UGT2A3 only showed activity against simple PAHs like 1-OH-pyrene and 1-naphthol. Activity assays showed the UGT2A2Δexon3 protein (termed UGT2A2_i2) exhibited no detectable glucuronidation activity against all substrates examined; however, coexpression studies suggested that UGT2A2_i2 negatively modulates UGT2A2_i1 activity. Both UGT2A2 and UGT2A3 exhibited no detectable activity against complex PAH proximate carcinogens, tobacco-specific nitrosamines, or heterocyclic amines. These data suggest that, although UGT2A1 is the only UGT2A enzyme active against PAH proximate carcinogens (including PAH diols), both UGTs 2A1 and 2A2 play an important role in the local detoxification of procarcinogenic monohydroxylated PAH metabolites.

  3. Importance of UDP-Glucuronosyltransferases 2A2 and 2A3 in Tobacco Carcinogen Metabolism

    PubMed Central

    Bushey, Ryan T.; Dluzen, Douglas F.

    2013-01-01

    UDP-glucuronosyltransferase A1 (UGT2A1) is expressed in the lung and exhibits activity against polycyclic aromatic hydrocarbons (PAHs), suggesting UGT2A1 involvement in the local metabolism of PAH tobacco carcinogens. The goal of the present study was to investigate the importance of two additional UGT2A enzymes, UGT2A2 and UGT2A3, in tobacco carcinogen metabolism. Real-time polymerase chain reaction suggested that wild-type UGT2A2 had the highest expression in the breast, followed by trachea > larynx > kidney. A novel splice variant of UGT2A2 lacking exon 3 (termed UGT2A2Δexon3) was investigated, with UGT2A2Δexon3 expression determined to be 25–50% that of wild-type UGT2A2 in all tissues examined. UGT2A3 was determined to be well expressed in the liver and colon, followed by pancreas > kidney > lung > tonsil > trachea > larynx. Cell homogenates prepared from human embryonic kidney (HEK)293 cells overexpressing wild-type UGT2A2 (termed UGT2A2_i1) exhibited glucuronidation activity, as observed by reverse-phase ultra-pressure liquid chromatography, against 1-hydroxy-(OH)-pyrene, 1-naphthol, and hydroxylated benzo(a)pyrene metabolites, whereas homogenates prepared from HEK293 cells overexpressing UGT2A3 only showed activity against simple PAHs like 1-OH-pyrene and 1-naphthol. Activity assays showed the UGT2A2Δexon3 protein (termed UGT2A2_i2) exhibited no detectable glucuronidation activity against all substrates examined; however, coexpression studies suggested that UGT2A2_i2 negatively modulates UGT2A2_i1 activity. Both UGT2A2 and UGT2A3 exhibited no detectable activity against complex PAH proximate carcinogens, tobacco-specific nitrosamines, or heterocyclic amines. These data suggest that, although UGT2A1 is the only UGT2A enzyme active against PAH proximate carcinogens (including PAH diols), both UGTs 2A1 and 2A2 play an important role in the local detoxification of procarcinogenic monohydroxylated PAH metabolites. PMID:23086198

  4. Identification and preliminary characterization of UDP-glucuronosyltransferases catalyzing formation of ethyl glucuronide.

    PubMed

    Schwab, Nicole; Skopp, Gisela

    2014-04-01

    Ethyl glucuronide (EtG), a minor metabolite of ethanol, is used as a marker of alcohol consumption in a variety of clinical and forensic settings. At present there are very few studies of UDP-glucuronosyltransferases (UGT), responsible for catalyzing EtG formation, and the possible effect of nutritional components, e.g. flavonoids, which are extensively glucuronidated, on EtG formation has not been addressed at all. The following incubation conditions were optimized with regard to previously published conditions: buffer, substrate concentration, and incubation time. Isolation of EtG from the incubation mixture was also optimized. Recombinant UGT enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B7, 2B10, 2B15) were screened for their activity towards ethanol, and kinetic data were then established for all enzymes. It was decided to study the effect of the flavonoids quercetin and kaempferol on glucuronidation of ethanol. Isolation was by solid-phase extraction (SPE) to minimize matrix effects. Analysis was performed by liquid chromatography-tandem mass spectrometry (LC-MS-MS), with EtG-d5 as the internal standard. SPE was vital to avoid severe ion suppression after direct injection of the incubation solution. EtG formation was observed for all enzymes under investigation; their kinetics followed the Michaelis-Menten model, meaning the maximum reaction rate achieved at saturating substrate concentrations (V(max)) and the substrate concentration at which the reaction rate is half of V(max) (Michaelis-Menten constant, K(m)) could be calculated. The highest rate of glucuronidation was observed with UGT1A9 and 2B7. After co-incubation with both flavonoids, formation of EtG was significantly reduced for all enzymes except for UGT2B15, whose activity did not seem to be affected. Results reveal that multiple UGT isoforms are capable of catalyzing glucuronidation of ethanol; nevertheless, the effect of UGT polymorphism on glucuronidation of ethanol needs further study. Formation of Et

  5. Associations of UDP-glucuronosyltransferases polymorphisms with mycophenolate mofetil pharmacokinetics in Chinese renal transplant patients

    PubMed Central

    Xie, Xiao-chun; Li, Jun; Wang, Hong-yang; Li, Hong-liang; Liu, Jing; Fu, Qian; Huang, Jia-wen; Zhu, Chen; Zhong, Guo-ping; Wang, Xue-ding; Sun, Ping-ping; Huang, Min; Wang, Chang-xi; Li, Jia-li

    2015-01-01

    Aim: To evaluate the effects of UDP-glucuronosyltransferases (UGTs) polymorphisms on the pharmacokinetics of the immunosuppressant mycophenolate mofetil (MMF) in Chinese renal transplant recipients. Methods: A total of 127 renal transplant patients receiving MMF were genotyped for polymorphisms in UGT1A9 −1818T>C, I399C>T, −118T9/10, −440C>T, −331T>C, UGT2B7 IVS1+985A>G, 211G>T, −900A>G, UGT1A8 518C>G and UGT1A7 622T>C. The plasma concentrations of the MMF active moiety mycophenolic acid (MPA) and main metabolite 7-O-MPA-glucuronide (MPAG) were analyzed using HPLC. Univariate and multivariate analyses were used to assess the effects of UGT-related gene polymorphisms on MPA pharmacokinetics. Results: The dose-adjusted MPA AUC0–12 h of the patients with the UGT2B7 IVS1+985AG genotype was 48% higher than that of the patients with the IVS1+985AA genotype, which could explain 11.2% of the inter-individual variation in MPA pharmacokinetics. The dose-adjusted MPAG AUC0–12 h of the patients with the UGT1A7 622CC and UGT1A9 −440CT/−331TC genotypes, respectively, was significantly higher than that of the patients with 622T homozygotes and −440C/−331T homozygotes. Furthermore, the genotypes UGT1A9 −1818T>C and UGT1A8 518C>G were associated with a low dose-adjusted MPAG AUC0–12 h. Conclusion: The UGT2B7 11+985A>G genotype is associated with the pharmacokinetics of MPA in Chinese renal transplant patients, which demonstrates the usefulness of this SNP for individualizing MMF dosing. PMID:25864649

  6. The inhibition of UDP-glucuronosyltransferases (UGTs) by tetraiodothyronine (T4) and triiodothyronine (T3).

    PubMed

    Chen, Da-Wei; Du, Zuo; Zhang, Chun-Ze; Zhang, Wei-Hua; Cao, Yun-Feng; Sun, Hong-Zhi; Zhu, Zhi-Tu; Yang, Kun; Liu, Yong-Zhe; Zhao, Ze-Wei; Fu, Zhi-Wei; Gu, Wen-Qing; Yu, Yang; Fang, Zhong-Ze

    2017-03-13

    1. UDP-glucuronosyltransferases (UGTs) are important drug-metabolizing enzymes (DMEs) catalyzing the glucuronidation elimination of various xenobiotics and endogenous substances. Endogenous substances are important regulators for the activity of various UGT isoforms. Triiodothyronine (T3) and thyroxine (T4) are important thyroid hormones essential for normal cellular differentiation and growth. The present study aims to elucidate the inhibition behavior of T3 and T4 on the activity of UGT isoforms. 2. In vitro recombinant UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) was used to screen the inhibition potential of triiodothyronine (T3) and thyroxine (T4) on the activity of various UGT isoforms. Initial screening results showed that T4 exerted stronger inhibition potential than T3 on the activity of various UGT isoforms at 100 μM. Inhibition kinetics was determined for the inhibition of T4 on the representative UGT isoforms, including UGT1A1, -1A3, -1A7, -1A8, -1A10, and -2B7. The results showed that T4 competitively inhibited the activity of UGT1A1, -1A3, -1A7, 1A10, and -2B7, and noncompetitively inhibited the activity of UGT1A8. The inhibition kinetic parameters were calculated to be 1.5, 2.4, 11, 9.6, 4.8, and 3.0 μM for UGT1A1, -1A3, -1A7, -1A8, -1A10, and -2B7, respectively. In silico docking method was employed to demonstrate why T4 exerted stronger inhibition than T3 towards UGT1A1. Stronger hydrogen bonds and hydrophobic interaction between T4 and activity cavity of UGT1A1 than T3 contributed to stronger inhibition of T4 towards UGT1A1. 3. In conclusion, more clinical monitoring should be given for the patients with the elevation of T4 level due to stronger inhibition of UGT isoforms-catalyzed metabolism of drugs or endogenous substances by T4.

  7. Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver.

    PubMed

    Liu, Wanqing; Ramírez, Jacqueline; Gamazon, Eric R; Mirkov, Snezana; Chen, Peixian; Wu, Kehua; Sun, Chang; Cox, Nancy J; Cook, Edwin; Das, Soma; Ratain, Mark J

    2014-10-15

    The aim of this study was to discover cis- and trans-acting factors significantly affecting mRNA expression and catalytic activity of human hepatic UDP-glucuronosyltransferases (UGTs). Transcription levels of five major hepatic UGT1A (UGT1A1, UGT1A3, UGT1A4, UGT1A6 and UGT1A9) and five UGT2B (UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17) genes were quantified in human liver tissue samples (n = 125) using real-time PCR. Glucuronidation activities of 14 substrates were measured in 47 livers. We genotyped 167 tagSNPs (single-nucleotide polymorphisms) in UGT1A (n = 43) and UGT2B (n = 124), as well as the known functional UGT1A1*28 and UGT2B17 CNV (copy number variation) polymorphisms. Transcription levels of 15 transcription factors (TFs) known to regulate these UGTs were quantified. We found that UGT expression and activity were highly variable among the livers (median and range of coefficient of variations: 135%, 74-217% and 52%, 39-105%, respectively). CAR, PXR and ESR1 were found to be the most important trans-regulators of UGT transcription (median and range of correlation coefficients: 46%, 6-58%; 47%, 9-58%; and 52%, 24-75%, respectively). Hepatic UGT activities were mainly determined by UGT gene transcription levels. Twenty-one polymorphisms were significantly (FDR-adjusted P < 0.05) associated with mRNA expression and/or activities of UGT1A1, UGT1A3 and UGT2B17. We found novel SNPs in the UGT2B17 CNV region accounting for variability in UGT2B17 gene transcription and testosterone glucuronidation rate, in addition to that attributable to the UGT2B17 CNV. Our study discovered novel pharmacogenetic markers and provided detailed insight into the genetic network regulating hepatic UGTs.

  8. Functional significance of UDP-glucuronosyltransferase variants in the metabolism of active tamoxifen metabolites.

    PubMed

    Blevins-Primeau, Andrea S; Sun, Dongxiao; Chen, Gang; Sharma, Arun K; Gallagher, Carla J; Amin, Shantu; Lazarus, Philip

    2009-03-01

    Tamoxifen (TAM) is a selective estrogen receptor modulator widely used in the prevention and treatment of breast cancer. A major mode of metabolism of the major active metabolites of TAM, 4-OH-TAM and endoxifen, is by glucuronidation via the UDP-glucuronosyltransferase (UGT) family of enzymes. To examine whether polymorphisms in the UGT enzymes responsible for the glucuronidation of active TAM metabolites play an important role in interindividual differences in TAM metabolism, cell lines overexpressing wild-type or variant UGTs were examined for their activities against TAM metabolites in vitro. For variants of active extrahepatic UGTs, the UGT1A8(173Ala/277Tyr) variant exhibited no detectable glucuronidation activity against the trans isomers of either 4-OH-TAM or endoxifen. Little or no difference in TAM glucuronidating activity was observed for the UGT1A8(173Gly/277Cys) or UGT1A10(139Lys) variants compared with their wild-type counterparts. For active hepatic UGTs, the UGT2B7(268Tyr) variant exhibited significant (P < 0.01) 2- and 5-fold decreases in activity against the trans isomers of 4-OH-TAM and endoxifen, respectively, compared with wild-type UGT2B7(268His). In studies of 111 human liver microsomal specimens, the rate of O-glucuronidation against trans-4-OH-TAM and trans-endoxifen was 28% (P < 0.001) and 27% (P = 0.002) lower, respectively, in individuals homozygous for the UGT2B7 Tyr(268)Tyr genotype compared with subjects with the UGT2B7 His(268)His genotype, with a significant (P < 0.01) trend of decreasing activity against both substrates with increasing numbers of the UGT2B7(268His) allele. These results suggest that functional polymorphisms in TAM-metabolizing UGTs, including UGT2B7 and potentially UGT1A8, may be important in interindividual variability in TAM metabolism and response to TAM therapy.

  9. New insights into the risk of phthalates: Inhibition of UDP-glucuronosyltransferases.

    PubMed

    Liu, Xin; Cao, Yun-Feng; Ran, Rui-Xue; Dong, Pei-Pei; Gonzalez, Frank J; Wu, Xue; Huang, Ting; Chen, Jian-Xin; Fu, Zhi-Wei; Li, Rong-Shan; Liu, Yong-Zhe; Sun, Hong-Zhi; Fang, Zhong-Ze

    2016-02-01

    Wide utilization of phthalates-containing products results in the significant exposure of humans to these compounds. Many adverse effects of phthalates have been documented in rodent models, but their effects in humans exposed to these chemicals remain unclear until more mechanistic studies on phthalate toxicities can be carried out. To provide new insights to predict the potential adverse effects of phthalates in humans, the recent study investigated the inhibition of representative phthalates di-n-octyl ortho-phthalate (DNOP) and diphenyl phthalate (DPhP) towards the important xenobiotic and endobiotic-metabolizing UDP-glucuronosyltransferases (UGTs). An in vitro UGTs incubation system was employed to study the inhibition of DNOP and DPhP towards UGT isoforms. DPhP and DNOP weakly inhibited the activities of UGT1A1, UGT1A7, and UGT1A8. 100 µM of DNOP inhibited the activities of UGT1A3, UGT1A9, and UGT2B7 by 41.8% (p < 0.01), 45.6% (p < 0.01), and 48.8% (p < 0.01), respectively. 100 µM of DPhP inhibited the activity of UGT1A3, UGT1A6, and UGT1A9 by 81.8 (p < 0.001), 49.1% (p < 0.05), and 76.4% (p < 0.001), respectively. In silico analysis was used to explain the stronger inhibition of DPhP than DNOP towards UGT1A3 activity. Kinetics studies were carried our to determine mechanism of inhibition of UGT1A3 by DPhP. Both Dixon and Lineweaver-Burk plots showed the competitive inhibition of DPhP towards UGT1A3. The inhibition kinetic parameter (Ki) was calculated to be 0.89 µM. Based on the [I]/Ki standard ([I]/Ki < 0.1, low possibility; 1>[I]/Ki > 0.1, medium possibility; [I]/Ki > 1, high possibility), these studies predicted in vivo drug-drug interaction might occur when the plasma concentration of DPhP was above 0.089 µM. Taken together, this study reveales the potential for adverse effects of phthalates DNOP and DPhP as a result of UGT inhibition.

  10. Identification of promoter polymorphisms in the cytochrome P450CYP6AY1 linked with insecticide resistance in the brown planthopper, Nilaparvata lugens.

    PubMed

    Pang, R; Li, Y; Dong, Y; Liang, Z; Zhang, Y; Zhang, W

    2014-12-01

    Imidacloprid resistance in the brown planthopper, Nilaparvata lugens, is primarily the result of the over-expression of cytochrome P450 monooxygenases. Here, a field-collected strain of N. lugens was shown to be highly resistant to both imidacloprid and buprofezin. Insecticide exposure and quantitative real-time PCR revealed that its resistance was mainly associated with a cytochrome P450 gene, CYP6AY1. CYP6AY1 is known to metabolize imidacloprid but its effect on buprofezin is unclear. In the 5'-untranslated region of CYP6AY1, a novel alternative splicing was detected. After a 1990-bp promoter region was cloned, its basal luciferase activity was assessed. Furthermore, genotyping studies identified 12 variations in the promoter region that discriminated between the field-collected and control strain. Finally, survival bioassays revealed a single nucleotide polymorphism and an insertion-deletion polymorphism linked to buprofezin and imidacloprid resistance. Mutagenesis of these sites enhanced the promoter activity of CYP6AY1. These results suggest that promoter polymorphisms may affect P450-mediated multiple insecticide resistance of pests.

  11. CYP345E2, an antenna-specific cytochrome P450 from the mountain pine beetle, Dendroctonus ponderosae Hopkins, catalyses the oxidation of pine host monoterpene volatiles.

    PubMed

    Keeling, Christopher I; Henderson, Hannah; Li, Maria; Dullat, Harpreet K; Ohnishi, Toshiyuki; Bohlmann, Jörg

    2013-12-01

    The mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins) is a significant pest of western North American pine forests. This beetle responds to pheromones and host volatiles in order to mass attack and thus overcome the terpenoid chemical defences of its host. The ability of MPB antennae to rapidly process odorants is necessary to avoid odorant receptor saturation and thus the enzymes responsible for odorant clearance are an important aspect of host colonization. An antenna-specific cytochrome P450, DponCYP345E2, is the most highly expressed transcript in adult MPB antenna. In in vitro assays with recombinant enzyme, DponCYP345E2 used several pine host monoterpenes as substrates, including (+)-(3)-carene, (+)-β-pinene, (-)-β-pinene, (+)-limonene, (-)-limonene, (-)-camphene, (+)-α-pinene, (-)-α-pinene, and terpinolene. The substrates were epoxidized or hydroxylated, depending upon the substrate. To complement DponCYP345E2, we also functionally characterized the NADPH-dependent cytochrome P450 reductase and the cytochrome b5 from MPB. DponCYP345E2 is the first cytochrome P450 to be functionally characterized in insect olfaction and in MPB.

  12. Importance of cytochrome P450 (CYP450) in adverse drug reactions due to drug-drug interactions: a PharmacoVigilance study in France.

    PubMed

    Danton, Anne Charlotte; Montastruc, François; Sommet, Agnès; Durrieu, Geneviève; Bagheri, Haleh; Bondon-Guitton, Emmanuelle; Lapeyre-Mestre, Maryse; Montastruc, Jean-Louis

    2013-04-01

    Our aim was to characterize Adverse Drug Reactions (ADRs) related to drug-drug interactions (DDIs) related to involvement of cytochrome P450 (CYP450) isoenzymes in a pharmacovigilance database. ADRs recorded by Midi-Pyrénées PharmacoVigilance center (France) between 1 January and 31 August 2008 were extracted from the French PharmacoVigilance Database (FPVD). Among the 1,205 reported ADRs, 16 (1.3 %), can be explained by involvement of CYP450 isoenzymes (including 4 "serious"). All interactions involved CYP inhibitors, mainly for CYP3A4/5. The percentage of ADRs reported in the pharmacovigilance database and related to CYP450-induced DDIs appears to be relatively low (~ 1-2 %).

  13. Cross-linking of dicyclotyrosine by the cytochrome P450 enzyme CYP121 from Mycobacterium tuberculosis proceeds through a catalytic shunt pathway.

    PubMed

    Dornevil, Kednerlin; Davis, Ian; Fielding, Andrew J; Terrell, James R; Ma, Li; Liu, Aimin

    2017-08-18

    CYP121, the cytochrome P450 enzyme in Mycobacterium tuberculosis that catalyzes a single intramolecular C-C cross-linking reaction in the biosynthesis of mycocyclosin, is crucial for the viability of this pathogen. This C-C coupling reaction represents an expansion of the activities carried out by P450 enzymes distinct from oxygen insertion. Although the traditional mechanism for P450 enzymes has been well studied, it is unclear whether CYP121 follows the general P450 mechanism or uses a different catalytic strategy for generating an iron-bound oxidant. To gain mechanistic insight into the CYP121-catalyzed reaction, we tested the peroxide shunt pathway by using rapid kinetic techniques to monitor the enzyme activity with its substrate dicyclotyrosine (cYY) and observed the formation of the cross-linked product mycocyclosin by LC-MS. In stopped-flow experiments, we observed that cYY binding to CYP121 proceeds in a two-step process, and EPR spectroscopy indicates that the binding induces active site reorganization and uniformity. Using rapid freeze-quenching EPR, we observed the formation of a high-spin intermediate upon the addition of peracetic acid to the enzyme-substrate complex. This intermediate exhibits a high-spin (S = 5/2) signal with g values of 2.00, 5.77, and 6.87. Likewise, iodosylbenzene could also produce mycocyclosin, implicating compound I as the initial oxidizing species. Moreover, we also demonstrated that CYP121 performs a standard peroxidase type of reaction by observing substrate-based radicals. On the basis of these results, we propose plausible free radical-based mechanisms for the C-C bond coupling reaction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Understanding the Mechanism of Human P450 CYP1A2 Using Coupled Quantum-Classical Simulations in a Dynamical Environment

    SciTech Connect

    Draeger, E W; Bennion, B; Gygi, F; Lightstone, F

    2006-02-10

    The reaction mechanism of the human P450 CYP1A2 enzyme plays a fundamental role in understanding the effects of environmental carcinogens and mutagens on humans. Despite extensive experimental research on this enzyme system, key questions regarding its catalytic cycle and oxygen activation mechanism remain unanswered. In order to elucidate the reaction mechanism in human P450, new computational methods are needed to accurately represent this system. To enable us to perform computational simulations of unprecedented accuracy on these systems, we developed a dynamic quantum-classical (QM/MM) hybrid method, in which ab initio molecular dynamics are coupled with classical molecular mechanics. This will provide the accuracy needed to address such a complex, large biological system in a fully dynamic environment. We also present detailed calculations of the P450 active site, including the relative charge transfer between iron porphine and tetraphenyl porphyrin.

  15. Optimization of a UDP-glucuronosyltransferase assay for trout liver S9 fractions: Activity enhancement by alamethicin, a pore-forming peptide

    EPA Science Inventory

    An existing assay for hepatic UDP-glucuronosyltransferase (UGT) activity was optimized for use with trout liver S9 fractions. Individual experiments were conducted to determine the time dependence of UGT activity as well as optimal levels of S9 protein, uridine 5’-diphosph...

  16. Optimization of a UDP-glucuronosyltransferase assay for trout liver S9 fractions: Activity enhancement by alamethicin, a pore-forming peptide

    EPA Science Inventory

    An existing assay for hepatic UDP-glucuronosyltransferase (UGT) activity was optimized for use with trout liver S9 fractions. Individual experiments were conducted to determine the time dependence of UGT activity as well as optimal levels of S9 protein, uridine 5’-diphosph...

  17. Endothelial expression of human cytochrome P450 epoxygenase CYP2C8 increases susceptibility to ischemia-reperfusion injury in isolated mouse heart

    PubMed Central

    Edin, Matthew L.; Wang, ZhongJing; Bradbury, J. Alyce; Graves, Joan P.; Lih, Fred B.; DeGraff, Laura M.; Foley, Julie F.; Torphy, Robert; Ronnekleiv, Oline K.; Tomer, Kenneth B.; Lee, Craig R.; Zeldin, Darryl C.

    2011-01-01

    Cytochrome P450 (CYP) epoxygenases CYP2C8 and CYP2J2 generate epoxyeicosatrienoic acids (EETs) from arachidonic acid. Mice with expression of CYP2J2 in cardiomyocytes (αMHC-CYP2J2 Tr) or treated with synthetic EETs have increased functional recovery after ischemia/reperfusion (I/R); however, no studies have examined the role of cardiomyocyte- vs. endothelial-derived EETs or compared the effects of different CYP epoxygenase isoforms in the ischemic heart. We generated transgenic mice with increased endothelial EET biosynthesis (Tie2-CYP2C8 Tr and Tie2-CYP2J2 Tr) or EET hydrolysis (Tie2-sEH Tr). Compared to wild-type (WT), αMHC-CYP2J2 Tr hearts showed increased recovery of left ventricular developed pressure (LVDP) and decreased infarct size after I/R. In contrast, LVDP recovery and infarct size were unchanged in Tie2-CYP2J2 Tr and Tie2-sEH Tr hearts. Surprisingly, compared to WT, Tie2-CYP2C8 Tr hearts had significantly reduced LVDP recovery (from 21 to 14%) and increased infarct size after I/R (from 51 to 61%). Tie2-CYP2C8 Tr hearts also exhibited increased reactive oxygen species (ROS) generation, dihydroxyoctadecenoic acid (DiHOME) formation, and coronary resistance after I/R. ROS scavengers and CYP2C8 inhibition reversed the detrimental effects of CYP2C8 expression in Tie2-CYP2C8 Tr hearts. Treatment of WT hearts with 250 nM 9,10-DiHOME decreased LVDP recovery compared to vehicle (16 vs. 31%, respectively) and increased coronary resistance after I/R. These data demonstrate that increased ROS generation and enhanced DiHOME synthesis by endothelial CYP2C8 impair functional recovery and mask the beneficial effects of increased EET production following I/R.—Edin, M. L., Wang, Z. J., Bradbury, J. A., Graves, J. P., Lih, F. B., DeGraff, L. M., Foley, J. F., Torphy, R., Ronnekleiv, O. K., Tomer, K. B., Lee, C. R., Zeldin, D. C. Endothelial expression of human cytochrome P450 epoxygenase CYP2C8 increases susceptibility to ischemia-reperfusion injury in isolated mouse

  18. Transcriptional Regulation of the Grape Cytochrome P450 Monooxygenase Gene CYP736B Expression in Response to Xylella fastidiosa Infection

    USDA-ARS?s Scientific Manuscript database

    Plant cytochrome P450 monooxygenases are a group of versatile redox proteins that mediate the biosynthesis of lignins, terpenes, alkaloids, and a variety of other secondary compounds which act as plant defense agents. To determine if cytochrome P450 monooxygenases are involved in defense response to...

  19. Selective Usage of Transcription Initiation and Polyadenylation Sites in Grape Cytochrome P450 Monooxygenase Gene CYP736B Expression

    USDA-ARS?s Scientific Manuscript database

    Plant cytochrome P450 monooxygenases are versatile redox proteins that mediate biosynthesis of lignins, terpenes, alkaloids, and a variety of other secondary compounds as plant defense agents against a range of pathogens and insects. To determine if cytochrome P450 monooxygenases are involved in the...

  20. Cytochrome P450 2W1 (CYP2W1) - ready for use as the biomarker and drug target for cancer?

    PubMed

    Yan, Pan; Ong, Chin Eng

    2016-10-03

    1. This article aims to evaluate the potentials of using cytochrome P450 2W1 (CYP2W1) as a biomarker as well as a drug target of cancer because of its characteristic cancer-specific expression. 2. Discrepant findings comparing the expression levels of CYP2W1 in cancer and non-cancer samples were reported. In general, the expression followed a developmental pattern. The demethylation status of CpG island and the expression levels of CYP2W1 genes was positively correlated. 3. CYP2W1 was able to activate several procarcinogens, anti-cancer pro-drugs, and to metabolise many endogenous substances including fatty acids and lysophospholipids. 4. CYP2W1 expression level was suggested to serve as an independent prognostic biomarker in colorectal cancer and hepatocellular carcinoma. The correlation of genetic polymorphisms of CYP2W1 and cancer risk was uncertain. 5. Further characterisation of CYP2W1 structure is suggested to link to its functions. More studies are warranted to reveal the true status and the regulation of CYP2W1 expression across normal and cancer tissues. Catalytic activity of CYP2W1 should be tested on a wider spectrum of endogenous and exogenous substances before its use as the drug target. Larger size of clinical samples can be included to verify the potential of CYP2W1 as the prognostic or cancer risk biomarker.

  1. Characterization of the kaurene oxidase CYP701A3, a multifunctional cytochrome P450 from gibberellin biosynthesis.

    PubMed

    Morrone, Dana; Chen, Xiaoming; Coates, Robert M; Peters, Reuben J

    2010-11-01

    KO (kaurene oxidase) is a multifunctional cytochrome P450 catalysing three sequential oxidations in gibberellin phytohormone biosynthesis. These serve to transform the C4α methyl of the ent-kaurene olefin intermediate into the carboxylic acid moiety of ent-kauren-19-oic acid. To investigate the unknown catalytic mechanism and properties of KO, we have engineered the corresponding CYP701A3 from Arabidopsis thaliana (AtKO) for functional recombinant expression in Escherichia coli, involving use of a fully codon-optimized construct, along with additional N-terminal deletion and modification. This recombinant AtKO (rAtKO) was used to carry out 18O2 labelling studies with ent-kaurene, and the intermediates ent-kaurenol and ent-kaurenal, to investigate the multifunctional reaction sequence; revealing catalysis of three hydroxylation reactions, which further requires dehydration at some stage. Accordingly, following initial hydroxylation, ent-kaurenol must then be further hydroxylated to a gem-diol intermediate, and our data indicate that the subsequent reactions proceed via dehydration of the gem-diol to ent-kaurenal, followed by an additional hydroxylation to directly form ent-kaurenoic acid. Kinetic analysis indicates that these intermediates are all retained in the active site during the course of the reaction series, with the first hydroxylation being rate-limiting. In addition, investigation of alternative substrates demonstrated that ent-beyerene, which differs in ring structure distal to the C4α methyl, is only hydroxylated by rAtKO, indicating the importance of the exact tetracyclic ring structure of kaurane for multifunctional KO activity. Thus the results of the present study clarify the reaction sequence and enzymatic mechanism of KO, as well as substrate features critical for the catalysed multiple reaction sequence.

  2. LmCYP4G102: An oenocyte-specific cytochrome P450 gene required for cuticular waterproofing in the migratory locust, Locusta migratoria.

    PubMed

    Yu, Zhitao; Zhang, Xueyao; Wang, Yiwen; Moussian, Bernard; Zhu, Kun Yan; Li, Sheng; Ma, Enbo; Zhang, Jianzhen

    2016-07-22

    Cytochrome P450 superfamily proteins play important roles in detoxification of xenobiotics and during physiological and developmental processes. To contribute to our understanding of this large gene family in insects, we have investigated the function of the cytochrome P450 gene LmCYP4G102 in the migratory locust Locusta migratoria. Suppression of LmCYP4G102 expression by RNA interference (RNAi) does not interfere with moulting but causes rapid loss of body weight - probably due to massive loss of water, and death soon after moulting. Accordingly, maintaining these animals at 90% relative humidity prevented lethality. Consistently, RNAi against LmCYP4G102 provoked a decrease in the content of cuticular alkanes, which as an important fraction of cuticular hydrocarbons have been shown to confer desiccation resistance. In addition, the cuticle of LmCYP4G102-knockdown locusts was fragile and easier deformable than in control animals. Presumably, this phenotype is due to decreased amounts of cuticular water that is reported to modulate cuticle mechanics. Interestingly, LmCYP4G102 was not expressed in the epidermis that produces the cuticle but in the sub-epdiermal hepatocyte-like oenocytes. Together, our results suggest that the oenocyte-specific LmCYP4G102 plays a critical role in the synthesis of cuticular hydrocarbons, which are important for cuticle waterproofing and mechanical stability in L. migratoria.

  3. Cytochrome P-450 2D6 (CYP2D6) Genotype and Breast Cancer Recurrence in Tamoxifen-Treated Patients: Evaluating the Importance of Loss of Heterozygosity.

    PubMed

    Ahern, Thomas P; Hertz, Daniel L; Damkier, Per; Ejlertsen, Bent; Hamilton-Dutoit, Stephen J; Rae, James M; Regan, Meredith M; Thompson, Alastair M; Lash, Timothy L; Cronin-Fenton, Deirdre P

    2017-01-15

    Tamoxifen therapy for estrogen receptor-positive breast cancer reduces the risk of recurrence by approximately one-half. Cytochrome P-450 2D6, encoded by the polymorphic cytochrome P-450 2D6 gene (CYP2D6), oxidizes tamoxifen to its most active metabolites. Steady-state concentrations of endoxifen (4-hydroxy-N-desmethyltamoxifen), the most potent antiestrogenic metabolite, are reduced in women whose CYP2D6 genotypes confer poor enzyme function. Thirty-one studies of the association of CYP2D6 genotype with breast cancer survival have yielded heterogeneous results. Some influential studies genotyped DNA from tumor-infiltrated tissues, and their results may have been susceptible to germline genotype misclassification from loss of heterozygosity at the CYP2D6 locus. We systematically reviewed 6 studies of concordance between genotypes obtained from paired nonneoplastic and breast tumor-infiltrated tissues, all of which showed excellent CYP2D6 genotype agreement. We applied these concordance data to a quantitative bias analysis of the subset of the 31 studies that were based on genotypes from tumor-infiltrated tissue to examine whether genotyping errors substantially biased estimates of association. The bias analysis showed negligible bias by discordant genotypes. Summary estimates of association, with or without bias adjustment, indicated no clinically important association between CYP2D6 genotype and breast cancer survival in tamoxifen-treated women.

  4. Identification of a new plasmid-encoded cytochrome P450 CYP107DY1 from Bacillus megaterium with a catalytic activity towards mevastatin.

    PubMed

    Milhim, Mohammed; Putkaradze, Natalia; Abdulmughni, Ammar; Kern, Fredy; Hartz, Philip; Bernhardt, Rita

    2016-12-20

    In the current work, we describe the identification and characterization of the first plasmid-encoded P450 (CYP107DY1) from a Bacillus species. The recombinant CYP107DY1 exhibits characteristic P450 absolute and reduced CO-bound difference spectra. Reconstitution with different redox systems revealed the autologous one, consisting of BmCPR and Fdx2, as the most effective one. Screening of a library of 18 pharmaceutically relevant compounds displayed activity towards mevastatin to produce pravastatin. Pravastatin is an important therapeutic drug to treat hypercholesterolemia, which was described to be produced by oxyfunctionlization of mevastatin (compactin) by members of CYP105 family. The hydroxylation at C6 of mevastatin was also suggested by docking this compound into a computer model created for CYP107DY1. Moreover, in view of the biotechnological application, CYP107DY1 as well as its redox partners (BmCPR and Fdx2) were successfully utilized to establish an E. coli based whole-cell system for an efficient biotransformation of mevastatin. The in vitro and in vivo application of the CYP07DY1 also offers the possibility for the screening of more substrates, which could open up further biotechnological usage of this enzyme.

  5. LmCYP4G102: An oenocyte-specific cytochrome P450 gene required for cuticular waterproofing in the migratory locust, Locusta migratoria

    PubMed Central

    Yu, Zhitao; Zhang, Xueyao; Wang, Yiwen; Moussian, Bernard; Zhu, Kun Yan; Li, Sheng; Ma, Enbo; Zhang, Jianzhen

    2016-01-01

    Cytochrome P450 superfamily proteins play important roles in detoxification of xenobiotics and during physiological and developmental processes. To contribute to our understanding of this large gene family in insects, we have investigated the function of the cytochrome P450 gene LmCYP4G102 in the migratory locust Locusta migratoria. Suppression of LmCYP4G102 expression by RNA interference (RNAi) does not interfere with moulting but causes rapid loss of body weight - probably due to massive loss of water, and death soon after moulting. Accordingly, maintaining these animals at 90% relative humidity prevented lethality. Consistently, RNAi against LmCYP4G102 provoked a decrease in the content of cuticular alkanes, which as an important fraction of cuticular hydrocarbons have been shown to confer desiccation resistance. In addition, the cuticle of LmCYP4G102-knockdown locusts was fragile and easier deformable than in control animals. Presumably, this phenotype is due to decreased amounts of cuticular water that is reported to modulate cuticle mechanics. Interestingly, LmCYP4G102 was not expressed in the epidermis that produces the cuticle but in the sub-epdiermal hepatocyte-like oenocytes. Together, our results suggest that the oenocyte-specific LmCYP4G102 plays a critical role in the synthesis of cuticular hydrocarbons, which are important for cuticle waterproofing and mechanical stability in L. migratoria PMID:27444410

  6. Characterization and expression of cDNAs encoding P450c17-II (cyp17a2) in Japanese eel during induced ovarian development.

    PubMed

    Su, Ting; Ijiri, Shigeho; Kanbara, Hirokazu; Hagihara, Seishi; Wang, De-Shou; Adachi, Shinji

    2015-09-15

    Estradiol-17β (E2) and maturation-inducing hormone (MIH) are two steroid hormones produced in the teleost ovary that are required for vitellogenic growth and final oocyte maturation and ovulation. During this transition, the main steroid hormone produced in the ovary shifts from estrogens to progestogens. In the commercially important Japanese eel (Anguilla japonica), the MIH 17α,20β-dihydroxy-4-pregnen-3-one (DHP) is generated from its precursor by P450c17, which has both 17α-hydroxylase and C17-20 lyase activities. In order to elucidate the regulatory mechanism underlying the steroidogenic shift from E2 to DHP and the mechanistic basis for the failure of this shift in artificially matured eels, the cDNA for cyp17a2-which encodes P450c17-II-was isolated from the ovary of wild, mature Japanese eel and characterized, and the expression patterns of cyp17a1 and cyp17a2 during induced ovarian development were investigated in cultured eel ovaries. Five cDNAs (types I-V) encoding P450c17-II were identified that had minor sequence variations. HEK293T cells transfected with all but type II P450c17-II converted exogenous progesterone to 17α-hydroxyprogesterone (17α-P), providing evidence for 17α-hydroxylase activity; however, a failure to convert 17α-P to androstenedione indicated that C17-20 lyase activity was absent. Cyp17a2 mRNA was expressed mainly in the head kidney, ovary, and testis, and quantitative PCR analysis demonstrated that expression in the ovary increased during induced vitellogenesis and oocyte maturation/ovulation. In contrast, P450c17-I showed both 17α-hydroxylase and C17-20 lyase activities, and cyp17a1 expression increased until the mid-vitellogenic stage and remained high thereafter. Considering the high level of cyp17a2 transcript in the eel ovary at the migratory nucleus stage together with our previous report demonstrating that eel ovaries have strong 17α-P-to-DHP conversion activity, the failure of artificially maturing eels to produce

  7. The Cytochrome P450 Homepage

    PubMed Central

    2009-01-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 (CYP) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described. PMID:19951895

  8. Novel Substrate Specificity and Temperature-Sensitive Activity of Mycosphaerella graminicola CYP51 Supported by the Native NADPH Cytochrome P450 Reductase

    PubMed Central

    Price, Claire L.; Warrilow, Andrew G. S.; Parker, Josie E.; Mullins, Jonathan G. L.; Nes, W. David

    2015-01-01

    Mycosphaerella graminicola (Zymoseptoria tritici) is an ascomycete filamentous fungus that causes Septoria leaf blotch in wheat crops. In Europe the most widely used fungicides for this major disease are demethylation inhibitors (DMIs). Their target is the essential sterol 14α-demethylase (CYP51), which requires cytochrome P450 reductase (CPR) as its redox partner for functional activity. The M. graminicola CPR (MgCPR) is able to catalyze the sterol 14α-demethylation of eburicol and lanosterol when partnered with Candida albicans CYP51 (CaCYP51) and that of eburicol only with M. graminicola CYP51 (MgCYP51). The availability of the functional in vivo redox partner enabled the in vitro catalytic activity of MgCYP51 to be demonstrated for the first time. MgCYP51 50% inhibitory concentration (IC50) studies with epoxiconazole, tebuconazole, triadimenol, and prothioconazole-desthio confirmed that MgCYP51 bound these azole inhibitors tightly. The characterization of the MgCPR/MgCYP51 redox pairing has produced a functional method to evaluate the effects of agricultural azole fungicides, has demonstrated eburicol specificity in the activity observed, and supports the conclusion that prothioconazole is a profungicide. PMID:25746994

  9. Analysis of the Functional Polymorphism in the Cytochrome P450 CYP2C8 Gene rs11572080 with Regard to Colorectal Cancer Risk

    PubMed Central

    Ladero, José M.; Agúndez, José A. G.; Martínez, Carmen; Amo, Gemma; Ayuso, Pedro; García-Martín, Elena

    2012-01-01

    In addition to the known effects on drug metabolism and response, functional polymorphisms of genes coding for xenobiotic-metabolizing enzymes (XME) play a role in cancer. Genes coding for XME act as low-penetrance genes and confer modest but consistent and significant risks for a variety of cancers related to the interaction of environmental and genetic factors. Consistent evidence supports a role for polymorphisms of the cytochrome P450 CYP2C9 gene as a protecting factor for colorectal cancer susceptibility. It has been shown that CYP2C8 and CYP2C9 overlap in substrate specificity. Because CYP2C8 has the common functional polymorphisms rs11572080 and rs10509681 (CYP2C8*3), it could be speculated that part of the findings attributed to CYP2C9 polymorphisms may actually be related to the presence of polymorphisms in the CYP2C8 gene. Nevertheless, little attention has been paid to the role of the CYP2C8 polymorphism in colorectal cancer. We analyzed the influence of the CYP2C8*3 allele in the risk of developing colorectal cancer in genomic DNA from 153 individuals suffering colorectal cancer and from 298 age- and gender-matched control subjects. Our findings do not support any effect of the CYP2C8*3 allele (OR for carriers of functional CYP2C8 alleles = 0.50 (95% CI = 0.16–1.59; p = 0.233). The absence of a relative risk related to CYP2C8*3 did not vary depending on the tumor site. We conclude that the risk of developing colorectal cancer does not seem to be related to the commonest functional genetic variation in the CYP2C8 gene. PMID:23420707

  10. Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation

    PubMed Central

    Ohno, Yusuke; Nakamichi, Shota; Ohkuni, Aya; Kamiyama, Nozomi; Naoe, Ayano; Tsujimura, Hisashi; Yokose, Urara; Sugiura, Kazumitsu; Ishikawa, Junko; Akiyama, Masashi; Kihara, Akio

    2015-01-01

    A skin permeability barrier is essential for terrestrial animals, and its impairment causes several cutaneous disorders such as ichthyosis and atopic dermatitis. Although acylceramide is an important lipid for the skin permeability barrier, details of its production have yet to be determined, leaving the molecular mechanism of skin permeability barrier formation unclear. Here we identified the cytochrome P450 gene CYP4F22 (cytochrome P450, family 4, subfamily F, polypeptide 22) as the long-sought fatty acid ω-hydroxylase gene required for acylceramide production. CYP4F22 has been identified as one of the autosomal recessive congenital ichthyosis-causative genes. Ichthyosis-mutant proteins exhibited reduced enzyme activity, indicating correlation between activity and pathology. Furthermore, lipid analysis of a patient with ichthyosis showed a drastic decrease in acylceramide production. We determined that CYP4F22 was a type I membrane protein that locates in the endoplasmic reticulum (ER), suggesting that the ω-hydroxylation occurs on the cytoplasmic side of the ER. The preferred substrate of the CYP4F22 was fatty acids with a carbon chain length of 28 or more (≥C28). In conclusion, our findings demonstrate that CYP4F22 is an ultra-long-chain fatty acid ω-hydroxylase responsible for acylceramide production and provide important insights into the molecular mechanisms of skin permeability barrier formation. Furthermore, based on the results obtained here, we proposed a detailed reaction series for acylceramide production. PMID:26056268

  11. Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation.

    PubMed

    Ohno, Yusuke; Nakamichi, Shota; Ohkuni, Aya; Kamiyama, Nozomi; Naoe, Ayano; Tsujimura, Hisashi; Yokose, Urara; Sugiura, Kazumitsu; Ishikawa, Junko; Akiyama, Masashi; Kihara, Akio

    2015-06-23

    A skin permeability barrier is essential for terrestrial animals, and its impairment causes several cutaneous disorders such as ichthyosis and atopic dermatitis. Although acylceramide is an important lipid for the skin permeability barrier, details of its production have yet to be determined, leaving the molecular mechanism of skin permeability barrier formation unclear. Here we identified the cytochrome P450 gene CYP4F22 (cytochrome P450, family 4, subfamily F, polypeptide 22) as the long-sought fatty acid ω-hydroxylase gene required for acylceramide production. CYP4F22 has been identified as one of the autosomal recessive congenital ichthyosis-causative genes. Ichthyosis-mutant proteins exhibited reduced enzyme activity, indicating correlation between activity and pathology. Furthermore, lipid analysis of a patient with ichthyosis showed a drastic decrease in acylceramide production. We determined that CYP4F22 was a type I membrane protein that locates in the endoplasmic reticulum (ER), suggesting that the ω-hydroxylation occurs on the cytoplasmic side of the ER. The preferred substrate of the CYP4F22 was fatty acids with a carbon chain length of 28 or more (≥C28). In conclusion, our findings demonstrate that CYP4F22 is an ultra-long-chain fatty acid ω-hydroxylase responsible for acylceramide production and provide important insights into the molecular mechanisms of skin permeability barrier formation. Furthermore, based on the results obtained here, we proposed a detailed reaction series for acylceramide production.

  12. Heterologous Expression of Equine CYP3A94 and Investigation of a Tunable System to Regulate Co-Expressed NADPH P450 Oxidoreductase Levels

    PubMed Central

    Dettwiler, Ramona; Schmitz, Andrea L.; Plattet, Philippe; Zielinski, Jana; Mevissen, Meike

    2014-01-01

    The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR). The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD) that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS). Addition of “Shield-1” prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC) known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the equine CYP3A

  13. Production of ω-hydroxy palmitic acid using CYP153A35 and comparison of cytochrome P450 electron transfer system in vivo.

    PubMed

    Jung, Eunok; Park, Beom Gi; Ahsan, Md Murshidul; Kim, Joonwon; Yun, Hyungdon; Choi, Kwon-Young; Kim, Byung-Gee

    2016-12-01

    Bacterial cytochrome P450 enzymes in cytochrome P450 (CYP)153 family were recently reported as fatty acid ω-hydroxylase. Among them, CYP153As from Marinobacter aquaeolei VT8 (CYP153A33), Alcanivorax borkumensis SK2 (CYP153A13), and Gordonia alkanivorans (CYP153A35) were selected, and their specific activities and product yields of ω-hydroxy palmitic acid based on whole cell reactions toward palmitic acid were compared. Using CamAB as redox partner, CYP153A35 and CYP153A13 showed the highest product yields of ω-hydroxy palmitic acid in whole cell and in vitro reactions, respectively. Artificial self-sufficient CYP153A35-BMR was constructed by fusing it to the reductase domain of CYP102A1 (i.e., BM3) from Bacillus megaterium, and its catalytic activity was compared with CYP153A35 and CamAB systems. Unexpectedly, the system with CamAB resulted in a 1.5-fold higher yield of ω-hydroxy palmitic acid than that using A35-BMR in whole cell reactions, whereas the electron coupling efficiency of CYP153A35-BM3 reductase was 4-fold higher than that of CYP153A35 and CamAB system. Furthermore, various CamAB expression systems according to gene arrangements of the three proteins and promoter strength in their gene expression were compared in terms of product yields and productivities. Tricistronic expression of the three proteins in the order of putidaredoxin (CamB), CYP153A35, and putidaredoxin reductase (CamA), i.e., A35-AB2, showed the highest product yield from 5 mM palmitic acid for 9 h in batch reaction owing to the concentration of CamB, which is the rate-limiting factor for the activity of CYP153A35. However, in fed-batch reaction, A35-AB1, which expressed the three proteins individually using three T7 promoters, resulted with the highest product yield of 17.0 mM (4.6 g/L) ω-hydroxy palmitic acid from 20 mM (5.1 g/L) palmitic acid for 30 h.

  14. A Novel Rice Cytochrome P450 Gene, CYP72A31, Confers Tolerance to Acetolactate Synthase-Inhibiting Herbicides in Rice and Arabidopsis1[C][W][OPEN

    PubMed Central

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-01-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. PMID:24406793

  15. A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and Arabidopsis.

    PubMed

    Saika, Hiroaki; Horita, Junko; Taguchi-Shiobara, Fumio; Nonaka, Satoko; Nishizawa-Yokoi, Ayako; Iwakami, Satoshi; Hori, Kiyosumi; Matsumoto, Takashi; Tanaka, Tsuyoshi; Itoh, Takeshi; Yano, Masahiro; Kaku, Koichiro; Shimizu, Tsutomu; Toki, Seiichi

    2014-11-01

    Target-site and non-target-site herbicide tolerance are caused by the prevention of herbicide binding to the target enzyme and the reduction to a nonlethal dose of herbicide reaching the target enzyme, respectively. There is little information on the molecular mechanisms involved in non-target-site herbicide tolerance, although it poses the greater threat in the evolution of herbicide-resistant weeds and could potentially be useful for the production of herbicide-tolerant crops because it is often involved in tolerance to multiherbicides. Bispyribac sodium (BS) is an herbicide that inhibits the activity of acetolactate synthase. Rice (Oryza sativa) of the indica variety show BS tolerance, while japonica rice varieties are BS sensitive. Map-based cloning and complementation tests revealed that a novel cytochrome P450 monooxygenase, CYP72A31, is involved in BS tolerance. Interestingly, BS tolerance was correlated with CYP72A31 messenger RNA levels in transgenic plants of rice and Arabidopsis (Arabidopsis thaliana). Moreover, Arabidopsis overexpressing CYP72A31 showed tolerance to bensulfuron-methyl (BSM), which belongs to a different class of acetolactate synthase-inhibiting herbicides, suggesting that CYP72A31 can metabolize BS and BSM to a compound with reduced phytotoxicity. On the other hand, we showed that the cytochrome P450 monooxygenase CYP81A6, which has been reported to confer BSM tolerance, is barely involved, if at all, in BS tolerance, suggesting that the CYP72A31 enzyme has different herbicide specificities compared with CYP81A6. Thus, the CYP72A31 gene is a potentially useful genetic resource in the fields of weed control, herbicide development, and molecular breeding in a broad range of crop species. © 2014 American Society of Plant Biologists. All Rights Reserved.

  16. Intracellular accumulation of mercury enhances P450 CYP1A1 expression and Cl- currents in cultured shark rectal gland cells.

    PubMed

    Ke, Qingen; Yang, Yinke; Ratner, Martha; Zeind, John; Jiang, Canwen; Forrest, John N; Xiao, Yong-Fu

    2002-04-21

    The effects of acute and subchronic exposure to mercury on the Cl- current (ICl) were investigated in cultured shark rectal gland (SRG) cells. The effects of intracellular accumulation of mercury on cytochrome P450 (P450) were also assessed. Bath perfusion of a cocktail solution containing forskolin, 1-isobutyl-3-methylxanthine, and 8-bromoadenosine monophosphate enhanced ICl. Addition of 10 microM HgCl2 significantly inhibited the cAMP-activated ICl (p < 0.05, n = 11). Intracellular dialysis with ATP gamma S did not prevent the inhibitory effect of mercury on ICl. In contrast, incubation of SRG cells with 10 microM HgCl2 for 48 hrs markedly increased ICl (p < 0.01, n = 12). Dephosphorylation of the channel by intracellular dialysis with phosphatase I and II abolished the mercury-incubated increase in ICl. The P450-mediated metabolite of arachidonic acid, 11,12-epoxyeicosatrienoic acid (11,12-EET), significantly increased ICl. However, application of 11,12-dihydroxyeicosatrienoic acid (11,12-DHT) did not alter ICl. Mercury incubation for 48 hrs did not alter the protein expression of Cl- channels, but caused an induction of CYP1A1 in cultured SRG cells. In addition, co-incubation of SRG cells with mercury and the P450 inhibitor clotrimazole prevented the mercury-incubated increase in ICl. Our results demonstrate that acute and subchronic application of mercury has opposing effects on ICl in cultured SRG cells. The acute effect of mercury on ICl may result from mercury blockade of Cl- channels. The subchronic effect of mercury on ICl may be due to an induction of P450 CYP1A1 and its mediated metabolites, but not due to an over-expression of Cl- channels.

  17. Comparative Analysis of Recombinant Cytochrome P450 CYP9A61 from Cydia pomonella Expressed in Escherichia coli and Pichia pastoris.

    PubMed

    Yang, Xue-Qing; Wang, Wei; Tan, Xiao-Ling; Wang, Xiao-Qi; Dong, Hui

    2017-03-22

    On the basis of prior work, cytochrome P450 CYP9A61 was found to be enriched in fat bodies and during feeding stages, and transcription was induced by λ-cyhalothrin in Cydia pomonella. In this study, recombinant CYP9A61 was expressed in Escherichia coli and Pichia pastoris, and its biochemical properties were investigated. Substrate saturation curves and biochemical properties revealed that, in the presence of glycosylation, the yeast-secreted CYP9A61 exhibited a higher affinity for the substrate p-nitroanisole and was found to be more stable at certain pHs and temperatures than bacterially produced CYP9A61. Half-inhibitory concentrations (IC50) of three synthetic pyrethroids on both the bacterium- and yeast-expressed CYP9A61 suggested that recombinant CYP9A61 expressed in different hosts exhibits different inhibition properties. Taken together, our findings show that yeast-expressed CYP9A61 exhibits enzyme activity that is better than that expressed in bacteria and might be used for further metabolism assays to reveal the insecticide-detoxifying role of CYP9A61 in C. pomonella.

  18. Modularity of Conifer Diterpene Resin Acid Biosynthesis: P450 Enzymes of Different CYP720B Clades Use Alternative Substrates and Converge on the Same Products1[OPEN

    PubMed Central

    Yuen, Macaire M.S.; Bohlmann, Jörg

    2016-01-01

    Cytochrome P450 enzymes of the CYP720B subfamily play a central role in the biosynthesis of diterpene resin acids (DRAs), which are a major component of the conifer oleoresin defense system. CYP720Bs exist in families of up to a dozen different members in conifer genomes and fall into four different clades (I–IV). Only two CYP720B members, loblolly pine (Pinus taeda) PtCYP720B1 and Sitka spruce (Picea sitchensis) PsCYP720B4, have been characterized previously. Both are multisubstrate and multifunctional clade III enzymes, which catalyze consecutive three-step oxidations in the conversion of diterpene olefins to DRAs. These reactions resemble the sequential diterpene oxidations affording ent-kaurenoic acid from ent-kaurene in gibberellin biosynthesis. Here, we functionally characterized the CYP720B clade I enzymes CYP720B2 and CYP720B12 in three different conifer species, Sitka spruce, lodgepole pine (Pinus contorta), and jack pine (Pinus banksiana), and compared their activities with those of the clade III enzymes CYP720B1 and CYP720B4 of the same species. Unlike the clade III enzymes, clade I enzymes were ultimately found not to be active with diterpene olefins but converted the recently discovered, unstable diterpene synthase product 13-hydroxy-8(14)-abietene. Through alternative routes, CYP720B enzymes of both clades produce some of the same profiles of conifer oleoresin DRAs (abietic acid, neoabietic acid, levopimaric acid, and palustric acid), while clade III enzymes also function in the formation of pimaric acid, isopimaric acid, and sandaracopimaric acid. These results highlight the modularity of the specialized (i.e. secondary) diterpene metabolism, which produces conifer defense metabolites through variable combinations of different diterpene synthase and CYP720B enzymes. PMID:26936895

  19. Modularity of Conifer Diterpene Resin Acid Biosynthesis: P450 Enzymes of Different CYP720B Clades Use Alternative Substrates and Converge on the Same Products.

    PubMed

    Geisler, Katrin; Jensen, Niels Berg; Yuen, Macaire M S; Madilao, Lina; Bohlmann, Jörg

    2016-05-01

    Cytochrome P450 enzymes of the CYP720B subfamily play a central role in the biosynthesis of diterpene resin acids (DRAs), which are a major component of the conifer oleoresin defense system. CYP720Bs exist in families of up to a dozen different members in conifer genomes and fall into four different clades (I-IV). Only two CYP720B members, loblolly pine (Pinus taeda) PtCYP720B1 and Sitka spruce (Picea sitchensis) PsCYP720B4, have been characterized previously. Both are multisubstrate and multifunctional clade III enzymes, which catalyze consecutive three-step oxidations in the conversion of diterpene olefins to DRAs. These reactions resemble the sequential diterpene oxidations affording ent-kaurenoic acid from ent-kaurene in gibberellin biosynthesis. Here, we functionally characterized the CYP720B clade I enzymes CYP720B2 and CYP720B12 in three different conifer species, Sitka spruce, lodgepole pine (Pinus contorta), and jack pine (Pinus banksiana), and compared their activities with those of the clade III enzymes CYP720B1 and CYP720B4 of the same species. Unlike the clade III enzymes, clade I enzymes were ultimately found not to be active with diterpene olefins but converted the recently discovered, unstable diterpene synthase product 13-hydroxy-8(14)-abietene. Through alternative routes, CYP720B enzymes of both clades produce some of the same profiles of conifer oleoresin DRAs (abietic acid, neoabietic acid, levopimaric acid, and palustric acid), while clade III enzymes also function in the formation of pimaric acid, isopimaric acid, and sandaracopimaric acid. These results highlight the modularity of the specialized (i.e. secondary) diterpene metabolism, which produces conifer defense metabolites through variable combinations of different diterpene synthase and CYP720B enzymes. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. Characterization of a cytochrome P450 gene (CYP4G) and modulation under different exposures to xenobiotics (tributyltin, nonylphenol, bisphenol A) in Chironomus riparius aquatic larvae.

    PubMed

    Martínez-Paz, Pedro; Morales, Mónica; Martínez-Guitarte, José Luis; Morcillo, Gloria

    2012-03-01

    Cytochrome P450 family members participate in xenobiotic transformation as a detoxification mechanism. We have characterized a CYP gene, assigned to the 4G family, in Chironomus riparius, a reference organism in aquatic toxicology. Due to the potential interest of CYP genes and P450 proteins for monitoring pollution effects at the molecular level, the alterations in the pattern of expression of this gene, induced by different xenobiotics, were analyzed. Different compounds, such as the biocide tributyltin (TBTO) and two other well-known endocrine disruptors, nonylphenol (NP) and bisphenol A (BPA), were tested at different concentrations and acute exposures. Upregulation of the CrCYP4G gene was found after exposures to TBTO (1 ng/L 24h-0.1 ng/L 96 h) and, as measured by RT-PCR mRNA quantification, its level was up to twofold that of controls. However, in contrast, NP (1, 10, 100 μg/L, 24h) and BPA (0.5mg/L 24h-3mg/L 96 h) downregulated the gene (by around a half of the control level) suggesting that this gene responds specifically to particular chemicals in the environment. Glutathione-S-transferase (GST) enzymatic activity was also evaluated for each condition. A fairly good correlation was found with CYP4G gene behavior, as it was activated by TBTO (96 h), but inhibited by NP and BPA (24h). Only the higher concentration of BPA tested activated GST, whereas it inhibited CYP4G activity. The results show that different xenobiotics can induce distinct responses in the detoxification pathway, suggesting multiple xenobiotic transduction mechanisms. This work confirms that specific P450 codifying genes, as well as GST enzyme activities, could be suitable biomarkers for ecotoxicological studies.

  1. Unravelling the transcriptomic landscape of the major phase II UDP-glucuronosyltransferase drug metabolizing pathway using targeted RNA sequencing.

    PubMed

    Tourancheau, A; Margaillan, G; Rouleau, M; Gilbert, I; Villeneuve, L; Lévesque, E; Droit, A; Guillemette, C

    2016-02-01

    A comprehensive view of the human UDP-glucuronosyltransferase (UGT) transcriptome is a prerequisite to the establishment of an individual's UGT metabolic glucuronidation signature. Here, we uncover the transcriptome landscape of the 10 human UGT gene loci in normal and tumoral metabolic tissues by targeted RNA next-generation sequencing. Alignment on the human hg19 reference genome identifies 234 novel exon-exon junctions. We recover all previously known UGT1 and UGT2 enzyme-coding transcripts and identify over 130 structurally and functionally diverse novel UGT variants. We further expose a revised genomic structure of UGT loci and provide a comprehensive repertoire of transcripts for each UGT gene. Data also uncover a remodelling of the UGT transcriptome occurring in a tissue- and tumor-specific manner. The complex alternative splicing program regulating UGT expression and protein functions is likely critical in determining detoxification capacity of an organ and stress-related responses, with significant impact on drug responses and diseases.

  2. Role of extrahepatic UDP-glucuronosyltransferase 1A1: advances in understanding breast milk-induced neonatal hyperbilirubinemia

    PubMed Central

    Fujiwara, Ryoichi; Maruo, Yoshihiro; Chen, Shujuan; Tukey, Robert H.

    2015-01-01

    Newborns commonly develop physiological hyperbilirubinemia (also known as jaundice). With increased bilirubin levels being observed in breast-fed infants, breast-feeding has been recognized as a contributing factor for the development of neonatal hyperbilirubinemia. Bilirubin undergoes selective metabolism by UDP-glucuronosyltransferase (UGT) 1A1 and becomes a water soluble glucuronide. Although several factors such as gestational age, dehydration and weight loss, and increased enterohepatic circulation have been associated with breast milk-induced jaundice (BMJ), deficiency in UGT1A1 expression is a known cause of BMJ. It is currently believed that unconjugated bilirubin is metabolized mainly in the liver. However, recent findings support the concept that extrahepatic tissues, such as small intestine and skin, contribute to bilirubin glucuronidation during the neonatal period. We will review the recent advances made towards understanding biological and molecular events impacting BMJ, especially regarding the role of extrahepatic UGT1A1 expression. PMID:26342858

  3. Two Herbivore-Induced Cytochrome P450 Enzymes CYP79D6 and CYP79D7 Catalyze the Formation of Volatile Aldoximes Involved in Poplar Defense[C][W

    PubMed Central

    Irmisch, Sandra; Clavijo McCormick, Andrea; Boeckler, G. Andreas; Schmidt, Axel; Reichelt, Michael; Schneider, Bernd; Block, Katja; Schnitzler, Jörg-Peter; Gershenzon, Jonathan; Unsicker, Sybille B.; Köllner, Tobias G.

    2013-01-01

    Aldoximes are known as floral and vegetative plant volatiles but also as biosynthetic intermediates for other plant defense compounds. While the cytochrome P450 monooxygenases (CYP) from the CYP79 family forming aldoximes as biosynthetic intermediates have been intensively studied, little is known about the enzymology of volatile aldoxime formation. We characterized two P450 enzymes, CYP79D6v3 and CYP79D7v2, which are involved in herbivore-induced aldoxime formation in western balsam poplar (Populus trichocarpa). Heterologous expression in Saccharomyces cerevisiae revealed that both enzymes produce a mixture of different aldoximes. Knockdown lines of CYP79D6/7 in gray poplar (Populus × canescens) exhibited a decreased emission of aldoximes, nitriles, and alcohols, emphasizing that the CYP79s catalyze the first step in the formation of a complex volatile blend. Aldoxime emission was found to be restricted to herbivore-damaged leaves and is closely correlated with CYP79D6 and CYP79D7 gene expression. The semi-volatile phenylacetaldoxime decreased survival and weight gain of gypsy moth (Lymantria dispar) caterpillars, suggesting that aldoximes may be involved in direct defense. The wide distribution of volatile aldoximes throughout the plant kingdom and the presence of CYP79 genes in all sequenced genomes of angiosperms suggest that volatile formation mediated by CYP79s is a general phenomenon in the plant kingdom. PMID:24220631

  4. Dysregulations of UDP-glucuronosyltransferases in rats with valproic acid and high fat diet induced fatty liver.

    PubMed

    Zhang, Lifang; Chu, Xiaoman; Wang, Hong; Xie, Hao; Guo, Cen; Cao, Lijuan; Zhou, Xueyan; Wang, Guangji; Hao, Haiping

    2013-12-05

    Both high fat diet (HFD) and valproic acid (VPA) interfere with mitochondrial β-oxidation of fatty acids, which subsequently triggers microvesicular fatty liver and hepatic dysfunction. UDP-glucuronosyltransferases, the major phase II drug metabolism enzymes, play a pivotal role in detoxifying various exogenous and endogenous compounds. This study aimed to investigate the dysregulation patterns of major UDP-glucuronosyltransferases (UGTs) induced by VPA and/or HFD. Biochemical and histopathological results showed that chronic treatments of VPA and HFD induced fatty liver and liver dysfunction in a synergistic manner. VPA upregulated the mRNA levels of UGT1A1, 1A6, 1A7, and UGT2B1. Notably, the protein expression and enzymatic activity of UGT1A6 were significantly increased in rats treated with HFD or VPA alone, and were further enhanced by HFD and VPA co-treatment. This dysregulation pattern was largely recapitulated in the in vitro HepG2 cells assay by using VPA and oleic acid treatment. Moreover, the induction of UGTs was accompanied by the increased expression of constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor α (PPARα). In line with the up-regulation of UGT1A1 and UGT1A6, urine recovery of VPA glucuronide (VPA-G) was sharply increased by VPA treatment, and the co-treatment of HFD further aggravated this change. Since VPA is necessarily prescribed for long-term and the prevalence of HFD life style nowadays, the combined effect of HFD and VPA on disturbing UGTs should take concerns in the clinics. © 2013 Published by Elsevier B.V.

  5. Role of zebrafish cytochrome P450 CYP1C genes in the reduced mesencephalic vein blood flow caused by activation of AHR2

    SciTech Connect

    Kubota, Akira; Stegeman, John J.; Woodin, Bruce R.; Iwanaga, Toshihiko; Harano, Ryo; Peterson, Richard E.; Hiraga, Takeo; Teraoka, Hiroki

    2011-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). We previously reported a sensitive and useful endpoint of TCDD developmental toxicity in zebrafish, namely a decrease in blood flow in the dorsal midbrain, but downstream genes involved in the effect are not known. The present study addressed the role of zebrafish cytochrome P450 1C (CYP1C) genes in association with a decrease in mesencephalic vein (MsV) blood flow. The CYP1C subfamily was recently discovered in fish and includes the paralogues CYP1C1 and CYP1C2, both of which are induced via AHR2 in zebrafish embryos. We used morpholino antisense oligonucleotides (MO or morpholino) to block initiation of translation of the target genes. TCDD-induced mRNA expression of CYP1Cs and a decrease in MsV blood flow were both blocked by gene knockdown of AHR2. Gene knockdown of CYP1C1 by two different morpholinos and CYP1C2 by two different morpholinos, but not by their 5 nucleotide-mismatch controls, was effective in blocking reduced MsV blood flow caused by TCDD. The same CYP1C-MOs prevented reduction of blood flow in the MsV caused by {beta}-naphthoflavone (BNF), representing another class of AHR agonists. Whole-mount in situ hybridization revealed that mRNA expression of CYP1C1 and CYP1C2 was induced by TCDD most strongly in branchiogenic primordia and pectoral fin buds. In situ hybridization using head transverse sections showed that TCDD increased the expression of both CYP1Cs in endothelial cells of blood vessels, including the MsV. These results indicate a potential role of CYP1C1 and CYP1C2 in the local circulation failure induced by AHR2 activation in the dorsal midbrain of the zebrafish embryo. - Research Highlights: > We examine the roles of zebrafish CYP1C1 and CYP1C2 in TCDD developmental toxicity. > TCDD induces mRNA expression of both CYP1Cs in the mesencephalic vein. > Knockdown of each

  6. Identification of the Full 46 Cytochrome P450 (CYP) Complement and Modulation of CYP Expression in Response to Water-Accommodated Fractions of Crude Oil in the Cyclopoid Copepod Paracyclopina nana.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Kim, Hui-Su; Nelson, David R; Lee, Su-Jae; Park, Heum Gi; Lee, Jae-Seong

    2015-06-02

    The 46 cytochrome P450 (CYP) gene superfamily was identified in the marine copepod Paracyclopina nana after searching an RNA-seq database and comparing it with other copepod CYP gene families. To annotate the 46 Pn-CYP genes, a phylogenetic analysis of CYP genes was performed using a Bayesian method. Pn-CYP genes were separated into five different clans: CYP2, CYP3, CYP20, CYP26, and mitochondrial. Among these, the principal Pn-CYP genes involved in detoxification were identified by comparing them with those of the copepod Tigriopus japonicus and were examined with respect to their responses to exposure to a water-accommodated fraction (WAF) of crude oil and to the alkylated forms of two polycyclic aromatic hydrocarbons (PAHs; phenanthrene and fluorene). The expression of two Pn-CYP3027 genes (CYP3027F1 and CYP3027F2) was increased in response to WAF exposure and also was upregulated in response to the two alkylated PAHs. In particular, Pn-CYP3027F2 showed the most notable increase in response to 80% WAF exposure. These two responsive CYP genes (Pn-CYP3027F1 and CYP3027F2) were also phylogenetically clustered into the same clade of the WAF- and alkylated PAH-specific CYP genes of the copepod T. japonicus, suggesting that these CYP genes would be those chiefly involved in detoxification in response to WAF exposure in copepods. In this paper, we provide information on the copepod P. nana CYP gene superfamily and also speculate on its potential role in the detoxification of PAHs in marine copepods. Despite the nonlethality of WAF, Pn-CYP3027F2 was rapidly and significantly upregulated in response to WAF that may serve as a useful biomarker of 40% or higher concentration of WAF exposure. This paper will be helpful to better understand the molecular mechanistic events underlying the metabolism of environmental toxicants in copepods.

  7. Evaluation of toxic equivalency factors for induction of cytochromes P450 CYP1A1 and CYP1A2 enzyme activity by dioxin-like compounds.

    PubMed

    Toyoshiba, Hiroyoshi; Walker, Nigel J; Bailer, A John; Portier, Christopher J

    2004-01-15

    The toxic equivalency factor (TEF) method has been used to characterize the toxicity of human mixtures of dioxin-like compounds and is being considered for use with other classes of potentially toxic agents. TEFs are estimated by examining the relative potencies of the various congeners for a series of biological and toxicological effects. In this paper, we consider changes in activity for two enzymes, cytochrome P450 1A1 (CYP1A1)-associated 7-ethoxyresorufin-O-deethylase (EROD) and CYP1A2-associated acetanilide-4-hydroxylase (A4H) activity, resulting from exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3',4,4',5-pentachlorobiphenyl (PCB), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) or a mixture of these agents. The ratio of median effective dose (ED50) is one way to estimate the relative potencies, especially for gene expression and protein endpoints. ED50's were estimated with a nonlinear regression model in which dose-related changes in mean responses are described by a Hill function. ED50's along with other model parameters were estimated by fitting this model to a given data set. Significant differences in estimated model parameters were tested by likelihood ratio methods. The estimated parameters indicated that congener-specific dose-response shapes were significantly different, that additivity failed for these congeners, and that the ratios of ED50's did not predict the response seen for the mixture. These results indicate that for some biological responses, the use of a single relative potency factor (RPF) is not appropriate for the comparison of the dose response behavior of different dioxin-like congeners.

  8. Identification and functional analysis of a cytochrome P450 gene CYP9AQ2 involved in deltamethrin detoxification from Locusta migratoria.

    PubMed

    Guo, Yanqiong; Zhang, Xueyao; Wu, Haihua; Yu, Rongrong; Zhang, Jianzhen; Zhu, Kun Yan; Guo, Yaping; Ma, Enbo

    2015-07-01

    A 1578-bp cDNA of a cytochrome P450 gene (CYP9AQ2) was sequenced from the migratory locust, Locusta migratoria. It contains an open reading frame (ORF) of 1557 bp that encodes 519 amino acid residues. As compared with other known insect cytochrome P450 enzymes, the overall structure of its deduced protein is highly conserved. The expression of CYP9AQ2 was relatively higher in nymphal stages than in egg and adult stages, and the highest expression was found in fourth-instar nymphs, which was 8.7-fold higher than that of eggs. High expression of CYP9AQ2 was observed in foregut, followed by hindgut, Malpighian tubules, brain and fat bodies, which were 75~142-fold higher than that in hemolymph. Low expression was found in midgut, gastric cecum and hemolymph. The expression of CYP9AQ2 was up-regulated by deltamethrin at the concentrations of 0.04, 0.08, and 0.12 µg/mL and the maximal up-regulation was 2.6-fold at LD10 (0.04 µg/mL). RNA interference-mediated silencing of CYP9AQ2 led to an increased mortality of 25.3% when the nymphs were exposed to deltamethrin, suggesting that CYP9AQ2 plays an important role in deltamethrin detoxification in L. migratoria. Computational docking studies suggested that hydroxylation of the phenoxybenzyl moiety might be one of the deltamethrin metabolic pathways by CYP9AQ2. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Characterization and expression profile of the ovarian cytochrome P-450 aromatase (cyp19A1) gene during thermolabile sex determination in pejerrey, Odontesthes bonariensis.

    PubMed

    Karube, Makiko; Fernandino, Juan Ignacio; Strobl-Mazzulla, Pablo; Strüssmann, Carlos Augusto; Yoshizaki, Goro; Somoza, Gustavo Manuel; Patiño, Reynaldo

    2007-11-01

    Cytochrome P450 aromatase (cyp19) is an enzyme that catalyzes the conversion of androgens to estrogens and may play a role in temperature-dependent sex determination (TSD) of reptiles, amphibians, and fishes. In this study, the ovarian P450 aromatase form (cyp19A1) of pejerrey Odontesthes bonariensis, a teleost with marked TSD, was cloned and its expression profile evaluated during gonadal differentiation at feminizing (17 degrees C, 100% females), mixed-sex producing (24 and 25 degrees C, 73.3 and 26.7% females, respectively), and masculinizing (29 degrees C, 0% females) temperatures. The deduced cyp19A1 amino acid sequence shared high identity (>77.8%) with that from other teleosts but had low identity (<61.8%) with brain forms (cyp19A2), including that of pejerrey itself. The tissue distribution analysis of cyp19A1 mRNA in adult fish revealed high expression in the ovary. Semi-quantitative reverse transcription polymerase chain reaction analysis of the bodies of larvae revealed that cyp19A1 expression increased before the appearance of the first histological signs of ovarian differentiation at the feminizing temperature but remained low at the masculinizing temperature. The expression levels at mixed-sex producing temperatures were bimodal rather than intermediate, showing low and high modal values similar to those at the feminizing and masculinizing temperatures, respectively. The population percentages of high and low expression levels at intermediate temperatures were proportional to the percentage of females and males, respectively, and high levels were first observed at about the time of sex differentiation of females. These results suggest that cyp19A1 is involved in the process of ovarian formation and possibly also in the TSD of pejerrey. (c) 2007 Wiley-Liss, Inc.

  10. Characterization and expression profile of the ovarian cytochrome P-450 aromatase (cyp19A1) gene during thermolabile sex determination in Pejerrey, Odontesthes bonariensis

    USGS Publications Warehouse

    Karube, M.; Fernandino, J.I.; Strobl-Mazzulla, P.; Strussmann, C.A.; Yoshizaki, G.; Somoza, G.M.; Patino, R.

    2007-01-01

    Cytochrome P450 aromatase (cyp19) is an enzyme that catalyzes the conversion of androgens to estrogens and may play a role in temperature- dependent sex determination (TSD) of reptiles, amphibians, and fishes. In this study, the ovarian P450 aromatase form (cyp19A1) of pejerrey Odontesthes bonariensis, a teleost with marked TSD, was cloned and its expression profile evaluated during gonadal differentiation at feminizing (17??C, 100% females), mixed-sex producing (24 and 25??C, 73.3 and 26.7% females, respectively), and masculinizing (29??C, 0% females) temperatures. The deduced cyp19A1 amino acid sequence shared high identity (>77.8%) with that from other teleosts but had low identity (<61.8%) with brain forms (cyp19A2), including that of pejerrey itself. The tissue distribution analysis of cyp19A1 mRNA in adult fish revealed high expression in the ovary. Semi-quantitative reverse transcription polymerase chain reaction analysis of the bodies of larvae revealed that cyp19A1 expression increased before the appearance of the first histological signs of ovarian differentiation at the feminizing temperature but remained low at the masculinizing temperature. The expression levels at mixed-sex producing temperatures were bimodal rather than intermediate, showing low and high modal values similar to those at the feminizing and masculinizing temperatures, respectively. The population percentages of high and low expression levels at intermediate temperatures were proportional to the percentage of females and males, respectively, and high levels were first observed at about the time of sex differentiation of females. These results suggest that cyp19A1 is involved in the process of ovarian formation and possibly also in the TSD of pejerrey. ?? 2007 Wiley-Liss, Inc.

  11. A Fungal P450 (CYP5136A3) Capable of Oxidizing Polycyclic Aromatic Hydrocarbons and Endocrine Disrupting Alkylphenols: Role of Trp129 and Leu324

    PubMed Central

    Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Yadav, Jagjit S.

    2011-01-01

    The model white rot fungus Phanerochaete chrysosporium, which is known for its versatile pollutant-biodegradation ability, possesses an extraordinarily large repertoire of P450 monooxygenases in its genome. However, the majority of these P450s have hitherto unknown function. Our initial studies using a genome-wide gene induction strategy revealed multiple P450s responsive to individual classes of xenobiotics. Here we report functional characterization of a cytochrome P450 monooxygenase, CYP5136A3 that showed common responsiveness and catalytic versatility towards endocrine-disrupting alkylphenols (APs) and mutagenic/carcinogenic polycyclic aromatic hydrocarbons (PAHs). Using recombinant CYP5136A3, we demonstrated its oxidation activity towards APs with varying alkyl side-chain length (C3-C9), in addition to PAHs (3–4 ring size). AP oxidation involves hydroxylation at the terminal carbon of the alkyl side-chain (ω-oxidation). Structure-activity analysis based on a 3D model indicated a potential role of Trp129 and Leu324 in the oxidation mechanism of CYP5136A3. Replacing Trp129 with Leu (W129L) and Phe (W129F) significantly diminished oxidation of both PAHs and APs. The W129L mutation caused greater reduction in phenanthrene oxidation (80%) as compared to W129F which caused greater reduction in pyrene oxidation (88%). Almost complete loss of oxidation of C3-C8 APs (83–90%) was observed for the W129L mutation as compared to W129F (28–41%). However, the two mutations showed a comparable loss (60–67%) in C9-AP oxidation. Replacement of Leu324 with Gly (L324G) caused 42% and 54% decrease in oxidation activity towards phenanthrene and pyrene, respectively. This mutation also caused loss of activity towards C3-C8 APs (20–58%), and complete loss of activity toward nonylphenol (C9-AP). Collectively, the results suggest that Trp129 and Leu324 are critical in substrate recognition and/or regio-selective oxidation of PAHs and APs. To our knowledge, this is the first

  12. A CAR-responsive enhancer element locating approximately 31 kb upstream in the 5'-flanking region of rat cytochrome P450 (CYP) 3A1 gene.

    PubMed

    Gamou, Toshie; Habano, Wataru; Terashima, Jun; Ozawa, Shogo

    2015-04-01

    Constitutive androstane receptor (CAR) is one of the principal regulators of hepatic cytochrome P450s (CYPs) 3A (CYP3A). cDNA-mediated expression of a mature rat CAR (rCAR) into rat hepatoma cells induced CYP3A1 and CYP2B mRNAs. Aberrant rCAR failed in these inductions. Three important human CYP3A4 regulatory elements (REs), proximal ER6 (proER6), xenobiotic responsive enhancer module (XREM) and constitutive liver enhancer module (CLEM), support constitutive and inducible expression of CYP3As mediated by CAR and pregnane X receptor (PXR). NHR-scan software predicted proER6, XREM and CLEM at -255 b, -8 kb and -11.5 kb, respectively of CYP3A4, but neither XREM nor CLEM was predicted in rat CYP3A. A luciferase reporter construct carrying a 5'-flanking sequence of CYP3A1 (-31,739 to -31,585 from its transcription initiation site) revealed important for the rCAR-dependent transactivation of CYP3A1. This region includes two putative binding motifs of nuclear receptors (DR4 and DR2), a putative hepatocyte nuclear factor-1 binding motif (HNF1), nuclear factor-kappa B binding motif (NFκB), activator protein 1 binding motif (AP-1), and ecotropic viral integration site 1 binding motif (Evi1). We hereby conclude DR4 and/or DR2 motifs being primarily responsible and HNF1 being synergistically functioning elements for the rCAR-mediated transcription of CYP3A1. Copyright © 2015 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  13. Mitochondrial Targeting of Cytochrome P450 (CYP) 1B1 and Its Role in Polycyclic Aromatic Hydrocarbon-induced Mitochondrial Dysfunction*

    PubMed Central

    Bansal, Seema; Leu, Adrian N.; Gonzalez, Frank J.; Guengerich, F. Peter; Chowdhury, Anindya Roy; Anandatheerthavarada, Hindupur K.; Avadhani, Narayan G.

    2014-01-01

    We report that polycyclic aromatic hydrocarbon (PAH)-inducible CYP1B1 is targeted to mitochondria by sequence-specific cleavage at the N terminus by a cytosolic Ser protease (polyserase 1) to activate the cryptic internal signal. Site-directed mutagenesis, COS-7 cell transfection, and in vitro import studies in isolated mitochondria showed that a positively charged domain at residues 41–48 of human CYP1B1 is part of the mitochondrial (mt) import signal. Ala scanning mutations showed that the Ser protease cleavage site resides between residues 37 and 41 of human CYP1B1. Benzo[a]pyrene (BaP) treatment induced oxidative stress, mitochondrial respiratory defects, and mtDNA damage that was attenuated by a CYP1B1-specific inhibitor, 2,3,4,5-tetramethoxystilbene. In support, the mitochondrial CYP1B1 supported by mitochondrial ferredoxin (adrenodoxin) and ferredoxin reductase showed high aryl hydrocarbon hydroxylase activity. Administration of benzo[a]pyrene or 2,3,7,8-tetrachlorodibenzodioxin induced similar mitochondrial functional abnormalities and oxidative stress in the lungs of wild-type mice and Cyp1a1/1a2-null mice, but the effects were markedly blunted in Cyp1b1-null mice. These results confirm a role for CYP1B1 in inducing PAH-mediated mitochondrial dysfunction. The role of mitochondrial CYP1B1 was assessed using A549 lung epithelial cells stably expressing shRNA against NADPH-cytochrome P450 oxidoreductase or mitochondrial adrenodoxin. Our results not only show conservation of the endoprotease cleavage mechanism for mitochondrial import of family 1 CYPs but also reveal a direct role for mitochondrial CYP1B1 in PAH-mediated oxidative and chemical damage to mitochondria. PMID:24497629

  14. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    SciTech Connect

    Kubota, Akira; Bainy, Afonso C.D.; Woodin, Bruce R.; Goldstone, Jared V.; Stegeman, John J.

    2013-10-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with

  15. Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase

    SciTech Connect

    Li, Lenong; Chang, Zhenzhan; Pan, Zhiqiang; Fu, Zheng-Qing; Wang, Xiaoqiang

    2009-01-12

    Cytochrome P450s exist ubiquitously in all organisms and are involved in many biological processes. Allene oxide synthase (AOS) is a P450 enzyme that plays a key role in the biosynthesis of oxylipin jasmonates, which are involved in signal and defense reactions in higher plants. The crystal structures of guayule (Parthenium argentatum) AOS (CYP74A2) and its complex with the substrate analog 13(S)-hydroxyoctadeca-9Z,11E-dienoic acid have been determined. The structures exhibit a classic P450 fold but possess a heme-binding mode with an unusually long heme binding loop and a unique I-helix. The structures also reveal two channels through which substrate and product may access and leave the active site. The entrances are defined by a loop between {beta}3-2 and {beta}3-3. Asn-276 in the substrate binding site may interact with the substrate's hydroperoxy group and play an important role in catalysis, and Lys-282 at the entrance may control substrate access and binding. These studies provide both structural insights into AOS and related P450s and a structural basis to understand the distinct reaction mechanism.

  16. Complementary DNA cloning, functional expression and characterization of a novel cytochrome P450, CYP2D50, from equine liver.

    PubMed

    DiMaio Knych, H K; Stanley, S D

    2008-10-01

    Members of the CYP2D family constitute only about 2-4% of total hepatic CYP450s, however, they are responsible for the metabolism of 20-25% of commonly prescribed therapeutic compounds. CYP2D enzymes have been identified in a number of different species. However, vast differences in the metabolic activity of these enzymes have been well documented. In the horse, the presence of a member of the CYP2D family has been suggested from studies with equine liver microsomes, however its presence has not been definitively proven. In this study a cDNA encoding a novel CYP2D enzyme (CYP2D50) was cloned from equine liver and expressed in a baculovirus expression system. The nucleotide sequence of CYP2D50 was highly homologous to that of human CYP2D6 and therefore the activity of the enzyme was characterized using dextromethorphan and debrisoquine, two isoform selective substrates for the human orthologue. CYP2D50 displayed optimal catalytic activity with dextromethorphan using molar ratios of CYP2D50 to NADPH CYP450 reductase of 1:15. Although CYP2D50 and CYP2D6 shared significant sequence homology, there were striking differences in the catalytic activity between the two enzymes. CYP2D50 dextromethorphan-O-demethylase activity was nearly 180-fold slower than the human counterpart, CYP2D6. Similarly, rates of formation of 4-hydroxydebrisoquine activity were 50-fold slower for CYP2D50 compared to CYP2D6. The results of this study demonstrate substantial interspecies variability in metabolism of substrates by CYP2D orthologues in the horse and human and support the need to fully characterize this enzyme system in equids.

  17. Crystal Structure of Cytochrome P450 (CYP105P2) from Streptomyces peucetius and Its Conformational Changes in Response to Substrate Binding

    PubMed Central

    Lee, Chang Woo; Lee, Joo-Ho; Rimal, Hemraj; Park, Hyun; Lee, Jun Hyuck; Oh, Tae-Jin

    2016-01-01

    Cytochrome P450 monooxygenases (CYP, EC 1.14.14.1) belong to a large family of enzymes that catalyze the hydroxylation of various substrates. Here, we present the crystal structure of CYP105P2 isolated from Streptomyces peucetius ATCC27952 at a 2.1 Å resolution. The structure shows the presence of a pseudo-ligand molecule in the active site, which was co-purified fortuitously and is presumed to be a biphenyl derivative. Comparison with previously determined substrate-bound CYP structures showed that binding of the ligand produces large and distinctive conformational changes in α2–α3, α7–α9, and the C-terminal loop regions. This structural flexibility confirms our previous observation that CYP105P2 can accommodate a broad range of ligands. The structure complexed with a pseudo-ligand provides the first molecular view of CYP105P2–ligand interactions, and it indicates the involvement of hydrophobic residues (Pro82, Ala181, Met187, Leu189, Leu193, and Ile236) in the interactions between hydrophobic ligands and CYP105P2. These results provide useful insights into the structural changes involved in the recognition of different ligands by CYP105P2. PMID:27231902

  18. Cytochrome P450 CYP89A9 Is Involved in the Formation of Major Chlorophyll Catabolites during Leaf Senescence in Arabidopsis[W][OA

    PubMed Central

    Christ, Bastien; Süssenbacher, Iris; Moser, Simone; Bichsel, Nicole; Egert, Aurelie; Müller, Thomas; Hörtensteiner, Stefan

    2013-01-01

    Nonfluorescent chlorophyll catabolites (NCCs) were described as products of chlorophyll breakdown in Arabidopsis thaliana. NCCs are formyloxobilin-type catabolites derived from chlorophyll by oxygenolytic opening of the chlorin macrocycle. These linear tetrapyrroles are generated from their fluorescent chlorophyll catabolite (FCC) precursors by a nonenzymatic isomerization inside the vacuole of senescing cells. Here, we identified a group of distinct dioxobilin-type chlorophyll catabolites (DCCs) as the major breakdown products in wild-type Arabidopsis, representing more than 90% of the chlorophyll of green leaves. The molecular constitution of the most abundant nonfluorescent DCC (NDCC), At-NDCC-1, was determined. We further identified cytochrome P450 monooxygenase CYP89A9 as being responsible for NDCC accumulation in wild-type Arabidopsis; cyp89a9 mutants that are deficient in CYP89A9 function were devoid of NDCCs but accumulated proportionally higher amounts of NCCs. CYP89A9 localized outside the chloroplasts, implying that FCCs occurring in the cytosol might be its natural substrate. Using recombinant CYP89A9, we confirm FCC specificity and show that fluorescent DCCs are the products of the CYP89A9 reaction. Fluorescent DCCs, formed by this enzyme, isomerize to the respective NDCCs in weakly acidic medium, as found in vacuoles. We conclude that CYP89A9 is involved in the formation of dioxobilin-type catabolites of chlorophyll in Arabidopsis. PMID:23723324

  19. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae.

    PubMed

    Edi, Constant V; Djogbénou, Luc; Jenkins, Adam M; Regna, Kimberly; Muskavitch, Marc A T; Poupardin, Rodolphe; Jones, Christopher M; Essandoh, John; Kétoh, Guillaume K; Paine, Mark J I; Koudou, Benjamin G; Donnelly, Martin J; Ranson, Hilary; Weetman, David

    2014-03-01

    Malaria control relies heavily on pyrethroid insecticides, to which susceptibility is declining in Anopheles mosquitoes. To combat pyrethroid resistance, application of alternative insecticides is advocated for indoor residual spraying (IRS), and carbamates are increasingly important. Emergence of a very strong carbamate resistance phenotype in Anopheles gambiae from Tiassalé, Côte d'Ivoire, West Africa, is therefore a potentially major operational challenge, particularly because these malaria vectors now exhibit resistance to multiple insecticide classes. We investigated the genetic basis of resistance to the most commonly-applied carbamate, bendiocarb, in An. gambiae from Tiassalé. Geographically-replicated whole genome microarray experiments identified elevated P450 enzyme expression as associated with bendiocarb resistance, most notably genes from the CYP6 subfamily. P450s were further implicated in resistance phenotypes by induction of significantly elevated mortality to bendiocarb by the synergist piperonyl butoxide (PBO), which also enhanced the action of pyrethroids and an organophosphate. CYP6P3 and especially CYP6M2 produced bendiocarb resistance via transgenic expression in Drosophila in addition to pyrethroid resistance for both genes, and DDT resistance for CYP6M2 expression. CYP6M2 can thus cause resistance to three distinct classes of insecticide although the biochemical mechanism for carbamates is unclear because, in contrast to CYP6P3, recombinant CYP6M2 did not metabolise bendiocarb in vitro. Strongly bendiocarb resistant mosquitoes also displayed elevated expression of the acetylcholinesterase ACE-1 gene, arising at least in part from gene duplication, which confers a survival advantage to carriers of additional copies of resistant ACE-1 G119S alleles. Our results are alarming for vector-based malaria control. Extreme carbamate resistance in Tiassalé An. gambiae results from coupling of over-expressed target site allelic variants with

  20. CYP6 P450 Enzymes and ACE-1 Duplication Produce Extreme and Multiple Insecticide Resistance in the Malaria Mosquito Anopheles gambiae

    PubMed Central

    Jenkins, Adam M.; Regna, Kimberly; Muskavitch, Marc A. T.; Poupardin, Rodolphe; Jones, Christopher M.; Essandoh, John; Kétoh, Guillaume K.; Paine, Mark J. I.; Koudou, Benjamin G.; Donnelly, Martin J.; Ranson, Hilary; Weetman, David

    2014-01-01

    Malaria control relies heavily on pyrethroid insecticides, to which susceptibility is declining in Anopheles mosquitoes. To combat pyrethroid resistance, application of alternative insecticides is advocated for indoor residual spraying (IRS), and carbamates are increasingly important. Emergence of a very strong carbamate resistance phenotype in Anopheles gambiae from Tiassalé, Côte d'Ivoire, West Africa, is therefore a potentially major operational challenge, particularly because these malaria vectors now exhibit resistance to multiple insecticide classes. We investigated the genetic basis of resistance to the most commonly-applied carbamate, bendiocarb, in An. gambiae from Tiassalé. Geographically-replicated whole genome microarray experiments identified elevated P450 enzyme expression as associated with bendiocarb resistance, most notably genes from the CYP6 subfamily. P450s were further implicated in resistance phenotypes by induction of significantly elevated mortality to bendiocarb by the synergist piperonyl butoxide (PBO), which also enhanced the action of pyrethroids and an organophosphate. CYP6P3 and especially CYP6M2 produced bendiocarb resistance via transgenic expression in Drosophila in addition to pyrethroid resistance for both genes, and DDT resistance for CYP6M2 expression. CYP6M2 can thus cause resistance to three distinct classes of insecticide although the biochemical mechanism for carbamates is unclear because, in contrast to CYP6P3, recombinant CYP6M2 did not metabolise bendiocarb in vitro. Strongly bendiocarb resistant mosquitoes also displayed elevated expression of the acetylcholinesterase ACE-1 gene, arising at least in part from gene duplication, which confers a survival advantage to carriers of additional copies of resistant ACE-1 G119S alleles. Our results are alarming for vector-based malaria control. Extreme carbamate resistance in Tiassalé An. gambiae results from coupling of over-expressed target site allelic variants with

  1. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene.

    PubMed

    Cankar, Katarina; van Houwelingen, Adèle; Bosch, Dirk; Sonke, Theo; Bouwmeester, Harro; Beekwilder, Jules

    2011-01-03

    Chicory (Cichorium intybus L.), which is known to have a variety of terpene-hydroxylating activities, was screened for a P450 mono-oxygenase to convert (+)-valencene to (+)-nootkatone. A novel P450 cDNA was identified in a chicory root EST library. Co-expression of the enzyme with a valencene synthase in yeast, led to formation of trans-nootkatol, cis-nootkatol and (+)-nootkatone. The novel enzyme was also found to catalyse a three step conversion of germacrene A to germacra-1(10),4,11(13)-trien-12-oic acid, indicating its involvement in chicory sesquiterpene lactone biosynthesis. Likewise, amorpha-4,11-diene was converted to artemisinic acid. Surprisingly, the chicory P450 has a different regio-specificity on (+)-valencene compared to germacrene A and amorpha-4,11-diene.

  2. High expression of Cyp6g1, a cytochrome P450 gene, does not necessarily confer DDT resistance in Drosophila melanogaster.

    PubMed

    Kuruganti, Srilalitha; Lam, Vita; Zhou, Xuguo; Bennett, Gary; Pittendrigh, Barry R; Ganguly, Ranjan

    2007-02-15

    Cytochrome P450 monooxygenases, a family of detoxifying enzymes, are thought to confer resistance to various insecticides including DDT. Daborn et al. [Daborn, P., Yen, J.L., Bogwitz, M., Le Goff, G., Feil, et al. 2002. A single p450 allele associated with insecticide resistance in Drosophila. Science 297, 2253-2256.] suggested that the Accord transposable element causes overexpression of a Cyp6g1 allele, which has spread globally and is the basis of DDT resistance in Drosophila melanogaster populations. To determine whether the same phenomenon also operates in other Drosophila strains, we investigated 91-R, 91-C, ry(506), Wisconsin, Canton-SH and Hikone-RH strains. While the LC(50) values for the 91-R and Wisconsin strains are 8348 microg and 447 microg of DDT, respectively, values for the other four strains range between 0.74 to 20.9 microg. As expected, the susceptible ry(506) and 91-C strains have about 16-33-fold lower levels of CYP6G1 mRNA than the resistant 91-R and Wisconsin strains. Surprisingly, CYP6G1 mRNA and protein levels in the Canton-SH and Hikone-RH strains are as high as in the two resistant strains, yet they are as susceptible as the 91-C strain. The susceptible phenotype of the Canton-SH and Hikone-RH strains is not due to mutation in the Cyp6g1 gene; sequence analysis showed that Cyp6g1 alleles of resistant and susceptible strains are very similar and cannot be classified into resistant and susceptible alleles. As observed by others, we also found that only the 5'-upstream DNA of overexpressing alleles of Cyp6g1 has an insertional DNA, which is similar to Accord and Ninja elements. To examine the role of Cyp6g1 in DDT resistance, we substituted the Cyp6g1 allele of the 91-R strain with the allele from the susceptible 91-C strain via recombination and synthesized three recombinant lines. All three lines lacked Accord insertion and showed low expression of Cyp6g1 like the 91-C strain, yet they were as highly resistant as the 91-R strain. We

  3. Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm moth (Spodoptera litura) and RNA interference to evaluate its role in commonly used insecticides

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides leading to resistance in insect populations. A polyphagous pest, Spodoptera litura (Lepidoptera, Noctuidae) has been shown to be resistant to a wide range of insecticides. In this stu...

  4. Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng.

    PubMed

    Han, Jung-Yeon; Hwang, Hwan-Su; Choi, Su-Wan; Kim, Hyun-Jung; Choi, Yong-Eui

    2012-09-01

    Ginseng (Panax ginseng C.A. Meyer) is one of the most popular medicinal herbs, and the root of this plant contains pharmacologically active components, called ginsenosides. Ginsenosides, a class of tetracyclic triterpene saponins, are synthesized from dammarenediol-II after hydroxylation by cytochrome P450 (CYP) and then glycosylation by a glycosyltransferase. Protopanaxadiol synthase, which is a CYP enzyme (CYP716A47) that catalyzes the hydroxylation of dammarenediol-II at the C-12 position to yield protopanaxadiol, was recently characterized. Here, we isolated two additional CYP716A subfamily genes (CYP716A52v2 and CYP716A53v2) and determined that the gene product of CYP716A53v2 is a protopanaxadiol 6-hydroxylase that catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in P. ginseng. Both CYP716A47 and CYP716A53v2 mRNAs accumulated ubiquitously in all organs of ginseng plants. In contrast, CYP716A52v2 mRNA accumulated only in the rhizome. Methyl jasmonate (MeJA) treatment resulted in the obvious accumulation of CYP716A47 mRNA in adventitious roots. However, neither CYP716A52v2 nor CYP716A53v2 mRNA was affected by MeJA treatment during the entire culture period. The ectopic expression of CYP716A53v2 in recombinant WAT21 yeast resulted in protopanaxatriol production after protopanaxadiol was added to the culture medium. In vitro enzymatic activity assays revealed that CYP716A53v2 catalyzed the oxidation of protopanaxadiol to produce protopanaxatriol. The chemical structures of the protopanaxatriol products were confirmed using liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC/APCIMS). Our results indicate that the gene product of CYP716A53v2 is a protopanaxadiol 6-hydroxylase that produces protopanaxatriol from protopanaxadiol, which is an important step in the formation of dammarane-type triterpene aglycones in ginseng saponin biosynthesis.

  5. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus.

    PubMed

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon; Lee, Jae-Seong

    2017-03-01

    To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P<0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48h LD10 and LD50 were 1.35 and 1.84kJ/m(2), and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5kJ/m(2)) induced developmental delays, and higher doses (6-18kJ/m(2)) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12kJ/m(2)) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes.

  6. Expression of cytochrome P450 CYP81A6 in rice: tissue specificity, protein subcellular localization, and response to herbicide application*

    PubMed Central

    Lu, Hai-ping; Edwards, Martin; Wang, Qi-zhao; Zhao, Hai-jun; Fu, Hao-wei; Huang, Jian-zhong; Gatehouse, Angharad; Shu, Qing-yao

    2015-01-01

    The cytochrome P450 gene CYP81A6 confers tolerance to bentazon and metsulfuron-methyl, two selective herbicides widely used for weed control in rice and wheat fields. Knockout mutants of CYP81A6 are highly susceptible to both herbicides. The present study aimed to characterize the CYP81A6 expression in rice. Quantitative real-time polymerase chain reaction (PCR) analyses demonstrated that foliar treatment of bentazon (500 mg/L) greatly induced expression of CYP81A6 in both wild-type (Jiazhe B) and its knockout mutant (Jiazhe mB): a 10-fold increase at 9 h before returning to basal levels at 24 h in Jiazhe B, while in the mutant the expression level rose to >20-fold at 12 h and maintained at such high level up to 24 h post exposure. In contrast, metsulfuron-methyl (500 mg/L) treatment did not affect the expression of CYP81A6 in Jiazhe B within 80 h; thereafter the expression peaked at 120 h and returned gradually to basal levels by Day 6. We suggest that a metabolite of metsulfuron-methyl, 1H-2,3-benzothiazin-4-(3H)-one-2,2-dioxide, is likely to be responsible for inducing CYP81A6 expression, rather than the metsulfuron-methyl itself. Use of a promoter-GUS reporter construct (CYP81A6Pro::GUS) demonstrated that CYP81A6 was constitutively expressed throughout the plant, with the highest expression in the upper surfaces of leaves. Subcellular localization studies in rice protoplasts showed that CYP81A6 was localized in the endoplasmic reticulum. These observations advance our understanding of CYP81A6 expression in rice, particularly its response to the two herbicides. PMID:25644466

  7. Cyp7b, a novel brain cytochrome P450, catalyzes the synthesis of neurosteroids 7α-hydroxy dehydroepiandrosterone and 7α-hydroxy pregnenolone

    PubMed Central

    Rose, Ken A.; Stapleton, Genevieve; Dott, Karin; Kieny, Marie Paule; Best, Ruth; Schwarz, Margrit; Russell, David W.; Björkhem, Ingemar; Seckl, Jonathan; Lathe, Richard

    1997-01-01

    Steroids produced locally in brain (neurosteroids), including dehydroepiandrosterone (DHEA), influence cognition and behavior. We previously described a novel cytochrome P450, Cyp7b, strongly expressed in rat and mouse brain, particularly in hippocampus. Cyp7b is most similar to steroidogenic P450s and potentially could play a role in neurosteroid metabolism. To examine the catalytic activity of the enzyme mouse Cyp7b cDNA was introduced into a vaccinia virus vector. Extracts from cells infected with the recombinant showed NADPH-dependent conversion of DHEA (Km, 13.6 μM) and pregnenolone (Km, 4.0 μM) to slower migrating forms on thin layer chromatography. The expressed enzyme was less active against 25-hydroxycholesterol, 17β-estradiol and 5α-androstane-3β,17β-diol, with low to undetectable activity against progesterone, corticosterone, and testosterone. On gas chromatography and mass spectrometry of the Cyp7b metabolite of DHEA the retention time and fragmentation patterns were identical to those obtained with authentic 7α-hydroxy DHEA. The reaction product also comigrated on thin layer chromatography with 7α-hydroxy DHEA but not with 7β-hydroxy DHEA; when [7α-3H]pregnenolone was incubated with Cyp7b extracts the extent of release of radioactivity into the medium suggested that hydroxylation was preferentially at the 7α position. Brain extracts also efficiently liberated tritium from [7α-3H]pregnenolone and converted DHEA to a product with a chromatographic mobility indistinguishable from 7α-hydroxy DHEA. We conclude that Cyp7b is a 7α-hydroxylase participating in the synthesis, in brain, of neurosteroids 7α-hydroxy DHEA, and 7α-hydroxy pregnenolone. PMID:9144166

  8. Engineering the substrate specificity of cytochrome P450 CYP102A2 by directed evolution: production of an efficient enzyme for bioconversion of fine chemicals.

    PubMed

    Axarli, Irene; Prigipaki, Ariadne; Labrou, Nikolaos E

    2005-06-01

    The P450 cytochromes constitute a large family of hemoproteins that catalyze the monooxygenation of a diversity of hydrophobic substrates. CYP102A2 is a catalytically self-sufficient cytoplasmic enzyme from Bacillus subtilis, containing both a monooxygenase domain and a reductase domain on a single polypeptide chain. CYP102A2 was subjected to error-prone PCR to generate mutants with enhanced activity with fatty acids and other aromatic substrates. The library of CYP102A2 mutants was expressed in BL21(DE3) Escherichia coli cells and screened for their ability to oxidize different substrates by means of an activity assay. After a single round of error-prone PCR, the variant Pro15Ser exhibiting modified substrate specificity was generated. This variant showed approximately 6- to 9-fold increased activity with SDS, lauric acid and 1,4-naphthoquinone, and enhanced activity for other substrates such as ethacrynic acid and epsilon-amino-n-caproic acid. Molecular modeling of the CYP102A2 monooxygenase domain suggested that Pro15 is located in a short helical segment and is involved in extensive interactions between the N-terminal domain and the beta2 sheet, which contribute to the formation of the substrate binding site. Thus, Pro15 appears to affect substrate binding and catalysis indirectly. These results clearly demonstrate the importance of remote residues, not readily predicted by rational design, for the determination of substrate specificity. In addition, we report here that the Pro15Ser variant of CYP102A2 can be efficiently immobilized on epoxy-activated Sepharose at pH 8.5 and 4 degrees C. The immobilized variant of CYP102A2 retains most of its activity (81%) and shows improved stability at 37 degrees C. The approach offers the possibility of designing a P450 bioreactor that can be operated over a long period of time with high efficiency and which can be used in fine chemical synthesis.

  9. The Effect of UDP-glucuronosyltransferase 1A1 Expression on the Mutagenicity and Metabolism of the Cooked-Food Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4-5,b]pyridine in CHO cells

    SciTech Connect

    Malfatti, M A; Wu, R W; Felton, J S

    2004-08-13

    UDP-glucuronosyltransferase proteins (UGT) catalyze the glucuronidation of both endogenous and xenobiotic compounds. In previous studies UGT1A1 has been implicated in the detoxification of certain food-borne-carcinogenic-heterocyclic amines. To determine the importance of UDP-glucuronosyltransferase 1A1 (UGT1A1) in the biotransformation of the cooked-food carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), genetically modified CHO cells that are nucleotide excision repair-deficient, and express cytochrome P4501A2 (UV5P3 cell line) were transfected with a cDNA plasmid of human UGT1A1 to establish the UDPglucuronosyltransferase 1A1 expressing 5P3hUGT1A1 cell line. Expression of the UGT1A1 gene was verified by screening neogene expressing clonal isolates (G-418 resistant) for their sensitivity to cell killing from PhIP exposure. Five of eleven clones were chosen for further analysis due to their resistance to cell killing. Western blot analysis was used to confirm the presence of the UGT1A1 and CYP1A2 proteins. All five clones displayed a 52 kDa protein band, which corresponded to a UGT1A1 control protein. Only four of the clones had a protein band that corresponded to the CYP1A2 control protein. Correct fragment size of the cDNAs in the remaining 4 clones was confirmed by RT-PCR and quantification of the mRNA product was accomplished by real-time RT-PCR. Expression of UGT1A1 in the transfected cells was 10{sup 4}-10{sup 5} fold higher relative to the UV5P3 parental cells. One clone (No.14) had a 10 fold higher increase in expression at 1.47 x 10{sup 5} over the other three clones. This clone was also the most active in converting N-hydroxy-PhIP to N-hydroxy-PhIP glucuronide conjugates in microsomal metabolism assays. Based on the D{sub 50} values, the cytotoxic effect of PhIP was decreased {approx}350 fold in the 5P3hUGT1A1 cells compared to the UV5P3 control cells. In addition no significant increase in mutation frequency was observed in the

  10. Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis.

    PubMed

    Bak, S; Olsen, C E; Halkier, B A; Møller, B L

    2000-08-01

    Novel cyanogenic plants have been generated by the simultaneous expression of the two multifunctional sorghum (Sorghum bicolor [L.] Moench) cytochrome P450 enzymes CYP79A1 and CYP71E1 in tobacco (Nicotiana tabacum cv Xanthi) and Arabidopsis under the regulation of the constitutive 35S promoter. CYP79A1 and CYP71E1 catalyze the conversion of the parent amino acid tyrosine to p-hydroxymandelonitrile, the aglycone of the cyanogenic glucoside dhurrin. CYP79A1 catalyzes the conversion of tyrosine to p-hydroxyphenylacetaldoxime and CYP71E1, the subsequent conversion to p-hydroxymandelonitrile. p-Hydroxymandelonitrile is labile and dissociates into p-hydroxybenzaldehyde and hydrogen cyanide, the same products released from dhurrin upon cell disruption as a result of pest or herbivore attack. In transgenic plants expressing CYP79A1 as well as CYP71E1, the activity of CYP79A1 is higher than that of CYP71E1, resulting in the accumulation of several p-hydroxyphenylacetaldoxime-derived products in the addition to those derived from p-hydroxymandelonitrile. Transgenic tobacco and Arabidopsis plants expressing only CYP79A1 accumulate the same p-hydroxyphenylacetaldoxime-derived products as transgenic plants expressing both sorghum cytochrome P450 enzymes. In addition, the transgenic CYP79A1 Arabidopsis plants accumulate large amounts of p-hydroxybenzylglucosinolate. In transgenic Arabidopsis expressing CYP71E1, this enzyme and the enzymes of the pre-existing glucosinolate pathway compete for the p-hydroxyphenylacetaldoxime as substrate, resulting in the formation of small amounts of p-hydroxybenzylglucosinolate. Cyanogenic glucosides are phytoanticipins, and the present study demonstrates the feasibility of expressing cyanogenic compounds in new plant species by gene transfer technology to improve pest and disease resistance.

  11. Subzero-temperature stabilization and spectroscopic characterization of homogeneous oxyferrous complexes of the cytochrome P450 BM3 (CYP102) oxygenase domain and holoenzyme

    SciTech Connect

    Perera, Roshan; Sono, Masanori; Raner, Gregory M.; Dawson, John H. . E-mail: dawson@sc.edu

    2005-12-09

    We describe herein for the first time the formation and spectroscopic characterization of homogeneous oxyferrous complexes of the cytochrome P450 BM3 (CYP102) holoenzyme and heme domain (BMP) at -55 {sup o}C using a 70/30 (v/v) glycerol/buffer cryosolvent. The choice of buffer is a crucial factor with Tris [tris(hydroxymethyl)aminomethane] buffer being significantly more effective than phosphate. The oxyferrous complexes have been characterized with magnetic circular dichroism spectroscopy and the resulting spectra compared to those of the more well-characterized oxyferrous cytochrome P450-CAM. The formation of a stable substrate-bound oxyferrous CYP BM3 holoenzyme, despite the fact that it has the necessary reducing equivalents for turnover, indicates that electron transfer from the flavin domain to the oxyferrous center is very slow at this temperature. The ability to prepare stable homogeneous oxyferrous derivatives of both BMP and the CYP BM3 holoenzyme will enable these species to be used as starting materials for mechanistic investigation of dioxygen activation.

  12. Cytochrome P450 1A2 (CYP1A2) activity and risk factors for breast cancer: a cross-sectional study

    PubMed Central

    Hong, Chi-Chen; Tang, Bing-Kou; Hammond, Geoffrey L; Tritchler, David; Yaffe, Martin; Boyd, Norman F

    2004-01-01

    Introduction Breast cancer risk may be determined by various genetic, metabolic, and lifestyle factors that alter sex hormone metabolism. Cytochrome P450 1A2 (CYP1A2) is responsible for the metabolism of estrogens and many exogenous compounds, including caffeine. Methods In a cross-sectional study of 146 premenopausal and 149 postmenopausal women, we examined the relationships between CYP1A2 activity and known or suspected risk factors for breast cancer. Blood levels of sex hormones, lipids, and growth factors were measured. In vivo CYP1A2 activity was assessed by measuring caffeine metabolites in urine. Stepwise and maximum R regression analyses were used to identify covariates related to CYP1A2 activity after adjustment for ethnicity. Results In both menopausal groups CYP1A2 activity was positively related to smoking and levels of sex hormone binding globulin. In premenopausal women, CYP1A2 activity was also positively related to insulin levels, caffeine intake, age, and plasma triglyceride levels, and negatively related with total cholesterol levels and body mass index. In postmenopausal women CYP1A2 activity was positively associated with insulin-like growth factor-1, and negatively associated with plasma triglyceride, high-density lipoprotein cholesterol, and age at menarche. Conclusion These results suggest that CYP1A2 activity is correlated with hormones, blood lipids, and lifestyle factors associated with breast cancer risk, although some of the observed associations were contrary to hypothesized directions and suggest that increased CYP1A2 function may be associated with increased risk for breast cancer. PMID:15217502

  13. An investigation of cytochrome p450 (CYP) and glutathione S-transferase (GST) isoenzyme protein expression and related interactions with phototherapy in patients with psoriasis vulgaris.

    PubMed

    Karadag, Ayse S; Uzunçakmak, Tuğba K; Ozkanli, Seyma; Oguztuzun, Serpil; Moran, Busra; Akbulak, Ozge; Ozlu, Emin; Zemheri, Itir E; Bilgili, Serap G; Akdeniz, Necmettin

    2017-02-01

    Oxidative stress may play an important role in the pathogenesis of psoriasis. Glutathione S-transferases (GSTs) make up a group of antioxidant enzymes. Cytochrome p450 (CYP) enzymes can influence oxidation and reduction reactions. We investigated the potential effects of GST and CYP enzymes in the pathogenesis of psoriasis. The study included 32 psoriasis patients and 22 healthy subjects. Psoriasis patients were administered 20 sessions of narrowband ultraviolet B phototherapy. Expressions of GST and CYP enzymes were assessed by immunohistochemical staining. Expression levels of GSTK1, GSTM1, and GSTT1 were significantly higher in psoriasis than in control tissues (P = 0.022, P = 0.001, and P = 0.006, respectively). Pre- and post-treatment expression was similar. Expression of CYP1A1 and CYP2E1 was significantly higher in pre- (P = 0.003 and P = 0.001, respectively) and post-treatment (P = 0.003 and P = 0.001, respectively) psoriatic tissues than in control tissues. No significant differences in CYP1B1 levels between the study and control groups were detected before treatment (P > 0.05). However, CYP1B1 levels were higher in post-treatment psoriatic tissue than in control tissue (P = 0.045). The significant increases in expression of GSTK1, GSTM1, and GSTT1 in psoriasis may reflect the increased activation of GST in response to excessive free radical formation from activated neutrophils or ultraviolet exposure to maintain antioxidant capacity in psoriasis. Furthermore, expressions of CYP1A1 and CYP2E1 represent important enzymatic systems in psoriasis. These findings suggest that psoriasis is an oxidative stress condition, although phototherapy does not affect these enzymatic systems. Further investigation is required. © 2016 The International Society of Dermatology.

  14. Oxidized linoleic acid metabolite-cytochrome P450 system (OLAM-CYP) is active in biopsy samples from patients with inflammatory dental pain.

    PubMed

    Ruparel, Shivani; Hargreaves, Kenneth M; Eskander, Michael; Rowan, Spencer; de Almeida, Jose F A; Roman, Linda; Henry, Michael A

    2013-11-01

    Endogenous TRPV1 agonists such as oxidized linoleic acid metabolites (OLAMs) and the enzymes releasing them [eg, cytochrome P450 (CYP)] are up-regulated after inflammation in the rat. However, it is not known whether such agonists are elevated in human inflammatory pain conditions. Because TRPV1 is expressed in human dental pulp nociceptors, we hypothesized that OLAM-CYP machinery is active in this tissue type and is increased under painful inflammatory conditions such as irreversible pulpitis (IP). The aim of this study was to compare CYP expression and linoleic acid (LA) metabolism in normal vs inflamed human dental pulp. Our data showed that exogenous LA metabolism was significantly increased in IP tissues compared to normal tissues and that pretreatment with a CYP inhibitor, ketoconazole, significantly inhibited LA metabolism. Additionally, extracts obtained from LA-treated inflamed tissues evoked significant inward currents in trigeminal ganglia neurons and were blocked by pretreatment with the TRPV1 antagonist IRTX. Moreover, extracts obtained from ketoconazole-pretreated inflamed tissues significantly reduced inward currents in trigeminal ganglia neurons. These data suggest that LA metabolites produced in human inflamed tissues act as TRPV1 agonists and that the metabolite production can be targeted by CYP inhibition. In addition, immunohistochemical analysis of 2 CYP isoforms, CYP2J and CYP3A1, were shown to be predominately expressed in immune cells infiltrating the inflamed dental pulp, emphasizing the paracrine role of CYP enzymes in OLAM regulation. Collectively, our data indicate that the machinery responsible for OLAM production is up-regulated during inflammation and can be targeted to develop potential analgesics for inflammatory-induced dental pain.

  15. Disruption of Mouse Cytochrome P450 4f14 (Cyp4f14 Gene) Causes Severe Perturbations in Vitamin E Metabolism*

    PubMed Central

    Bardowell, Sabrina A.; Duan, Faping; Manor, Danny; Swanson, Joy E.; Parker, Robert S.

    2012-01-01

    Vitamin E is a family of naturally occurring and structurally related lipophilic antioxidants, one of which, α-tocopherol (α-TOH), selectively accumulates in vertebrate tissues. The ω-hydroxylase cytochrome P450–4F2 (CYP4F2) is the only human enzyme shown to metabolize vitamin E. Using cDNA cloning, cell culture expression, and activity assays, we identified Cyp4f14 as a functional murine ortholog of CYP4F2. We then investigated the effect of Cyp4f14 deletion on vitamin E metabolism and status in vivo. Cyp4f14-null mice exhibited substrate-specific reductions in liver microsomal vitamin E-ω-hydroxylase activity ranging from 93% (γ-TOH) to 48% (γ-tocotrienol). In vivo data obtained from metabolic cage studies showed whole-body reductions in metabolism of γ-TOH of 90% and of 68% for δ- and α-TOH. This metabolic deficit in Cyp4f14−/− mice was partially offset by increased fecal excretion of nonmetabolized tocopherols and of novel ω-1- and ω-2-hydroxytocopherols. 12′-OH-γ-TOH represented 41% of whole-body production of γ-TOH metabolites in Cyp4f14−/− mice fed a soybean oil diet. Despite these counterbalancing mechanisms, Cyp4f14-null mice fed this diet for 6 weeks hyper-accumulated γ-TOH (2-fold increase over wild-type littermates) in all tissues and appeared normal. We conclude that CYP4F14 is the major but not the only vitamin E-ω-hydroxylase in mice. Its disruption significantly impairs whole-body vitamin E metabolism and alters the widely conserved phenotype of preferential tissue deposition of α-TOH. This model animal and its derivatives will be valuable in determining the biological actions of specific tocopherols and tocotrienols in vivo. PMID:22665481

  16. Polymorphic variants of cytochrome P450 2B6 (CYP2B6.4-CYP2B6.9) exhibit altered rates of metabolism for bupropion and efavirenz: a charge-reversal mutation in the K139E variant (CYP2B6.8) impairs formation of a functional cytochrome p450-reductase complex.

    PubMed

    Zhang, Haoming; Sridar, Chitra; Kenaan, Cesar; Amunugama, Hemali; Ballou, David P; Hollenberg, Paul F

    2011-09-01

    In this study, metabolism of bupropion, efavirenz, and 7-ethoxy-4-trifluoromethylcoumarin (7-EFC) by CYP2B6 wild type (CYP2B6.1) and six polymorphic variants (CYP2B6.4 to CYP2B6.9) was investigated in a reconstituted system to gain a better understanding of the effects of the mutations on the catalytic properties of these naturally occurring variants. All six variants were successfully overexpressed in Escherichia coli, including CYP2B6.8 (the K139E variant), which previously could not be overexpressed in mammalian COS-1 cells (J Pharmacol Exp Ther 311:34-43, 2004). The steady-state turnover rates for the hydroxylation of bupropion and efavirenz and the O-deethylation of 7-EFC showed that these mutations significantly alter the catalytic activities of CYP2B6. It was found that CYP2B6.6 exhibits 4- and 27-fold increases in the K(m) values for the hydroxylation of bupropion and efavirenz, respectively, and CYP2B6.8 completely loses its ability to metabolize any of the substrates under normal turnover conditions. However, compared with CYP2B6.1, CYP2B6.8 retains 77% of its 7-EFC O-deethylase activity in the presence of tert-butyl hydroperoxide as an alternative oxidant, indicating that the heme and the active site are catalytically competent. Presteady-state measurements of the rate of electron transfer from NADPH-dependent cytochrome P450 reductase (CPR) to CYP2B6.8 using stopped-flow spectrophotometry revealed that CYP2B6.8 is incapable of accepting electrons from CPR. These observations provide conclusive evidence suggesting that the charge-reversal mutation in the K139E variant prevents CYP2B6.8 from forming a functional complex with CPR. Results from this work provide further insights to better understand the genotype-phenotype correlation regarding CYP2B6 polymorphisms and drug metabolism.

  17. Krüppel-like factor 9 promotes hepatic cytochrome P450 2D6 expression during pregnancy in CYP2D6-humanized mice.

    PubMed

    Koh, Kwi Hye; Pan, Xian; Zhang, Wei; McLachlan, Alan; Urrutia, Raul; Jeong, Hyunyoung

    2014-12-01

    Cytochrome P450 2D6 (CYP2D6), a major drug-metabolizing enzyme, is responsible for metabolism of approximately 25% of marketed drugs. Clinical evidence indicates that metabolism of CYP2D6 substrates is increased during pregnancy, but the underlying mechanisms remain unclear. To identify transcription factors potentially responsible for CYP2D6 induction during pregnancy, a panel of genes differentially expressed in the livers of pregnant versus nonpregnant CYP2D6-humanized (tg-CYP2D6) mice was compiled via microarray experiments followed by real-time quantitative reverse-transcription polymerase chain reaction(qRT-PCR) verification. As a result, seven transcription factors-activating transcription factor 5 (ATF5), early growth response 1 (EGR1), forkhead box protein A3 (FOXA3), JUNB, Krüppel-like factor 9 (KLF9), KLF10, and REV-ERBα-were found to be up-regulated in liver during pregnancy. Results from transient transfection and promoter reporter gene assays indicate that KLF9 itself is a weak transactivator of CYP2D6 promoter but significantly enhances CYP2D6 promoter transactivation by hepatocyte nuclear factor 4 (HNF4α), a known transcriptional activator of CYP2D6 expression. The results from deletion and mutation analysis of CYP2D6 promoter activity identified a KLF9 putative binding motif at -22/-14 region to be critical in the potentiation of HNF4α-induced transactivation of CYP2D6. Electrophoretic mobility shift assays revealed a direct binding of KLF9 to the putative KLF binding motif. Results from chromatin immunoprecipitation assay showed increased recruitment of KLF9 to CYP2D6 promoter in the livers of tg-CYP2D6 mice during pregnancy. Taken together, our data suggest that increased KLF9 expression is in part responsible for CYP2D6 induction during pregnancy via the potentiation of HNF4α transactivation of CYP2D6.

  18. P450 (Cytochrome) Oxidoreductase Gene (POR) Common Variant (POR*28) Significantly Alters CYP2C9 Activity in Swedish, But Not in Korean Healthy Subjects.

    PubMed

    Hatta, Fazleen H M; Aklillu, Eleni

    2015-12-01

    CYP2C9 enzyme contributes to the metabolism of several pharmaceuticals and xenobiotics and yet displays large person-to-person and interethnic variation. Understanding the mechanisms of CYP2C9 variation is thus of immense importance for personalized medicine and rational therapeutics. A genetic variant of P450 (cytochrome) oxidoreductase (POR), a CYP450 redox partner, is reported to influence CYP2C9 metabolic activity in vitro. We investigated the impact of a common variant, POR*28, on CYP2C9 metabolic activity in humans. 148 healthy Swedish and 146 healthy Korean volunteers were genotyped for known CYP2C9 defective variant alleles (CYP2C9*2, *3). The CYP2C9 phenotype was determined using a single oral dose of 50 mg losartan. Excluding oral contraceptive (OC) users and carriers of 2C9*2 and *3 alleles, 117 Korean and 65 Swedish were genotyped for POR*5, *13 and *28 using Taqman assays. The urinary losartan to its metabolite E-3174 metabolic ratio (MR) was used as an index of CYP2C9 metabolic activity. The allele frequency of the POR*28 variant allele in Swedes and Koreans was 29% and 44%, respectively. POR*5 and *13 were absent in both study populations. Considering the CYP2C9*1/*1 genotypes only, the CYP2C9 metabolic activity was 1.40-fold higher in carriers of POR*28 allele than non-carriers among Swedes (p = 0.02). By contrast, no influence of the POR*28 on CYP2C9 activity was found in Koreans (p = 0.68). The multivariate analysis showed that ethnicity, POR genotype, and smoking were strong predictors of CYP2C9 MR (p < 0.05). This is the first report to implicate the importance of POR*28 genetic variation for CYP2C9 metabolic activity in humans. These findings contribute to current efforts for global personalized medicine and using medicines by taking into account pharmacogenetic and phenotypic variations.

  19. Inhibition of Cytochrome P450 (CYP3A4) Activity by Extracts from 57 Plants Used in Traditional Chinese Medicine (TCM).

    PubMed

    Ashour, Mohamed L; Youssef, Fadia S; Gad, Haidy A; Wink, Michael

    2017-01-01

    Herbal medicine is widely used all over the world for treating various health disorders. It is employed either alone or in combination with synthetic drugs or plants to be more effective. The assessment of the effect of both water and methanol extracts of 57 widely used plants from Traditional Chinese Medicine (TCM) against the main phase I metabolizing enzyme CYP3A4 in vitro for the first time. The inhibition of cytochrome P450 activity was evaluated using a luminescence assay. The principal component analysis (PCA) was used to correlate the inhibitory activity with the main secondary metabolites present in the plant extracts. Molecular modeling studies on CYP3A4 (PDB ID 4NY4) were carried out with 38 major compounds present in the most active plant extracts to validate the observed inhibitory effect. Aqueous extracts of Acacia catechu, Andrographis paniculata, Arctium lappa, Areca catechu, Bupleurum marginatum, Chrysanthemum indicum, Dysosma versipellis, and Spatholobus suberectus inhibited CYP3A4 is more than 85% (at a dose of 100 μg/mL). The corresponding methanol extracts of A. catechu, A. paniculata, A. catechu, Mahonia bealei, and Sanguisorba officinalis inhibited the enzyme by more than 50%. Molecular modeling studies revealed that two polyphenols, namely hesperidin and rutin, revealed the highest fitting scores in the active sites of the CYP3A4 with binding energies equal to -74.09 and -71.34 kcal/mol, respectively. These results provide evidence that many TCM plants can inhibit CYP3A4, which might cause a potential interference with the metabolism of other concomitantly administered herbs or drugs. In this study, the inhibitory activity of the aqueous and methanol extracts of 57 widely used plants from Traditional Chinese Medicine (TCM) against the main phase I metabolizing enzyme CYP3A4 was tested in vitro for the first time.Aqueous extracts of Acacia catechu, Andrographis paniculata, Arctium lappa, Areca catechu, Bupleurum marginatum, Dysosma

  20. Inhibition of Cytochrome P450 (CYP3A4) Activity by Extracts from 57 Plants Used in Traditional Chinese Medicine (TCM)

    PubMed Central

    Ashour, Mohamed L; Youssef, Fadia S; Gad, Haidy A; Wink, Michael

    2017-01-01

    Background: Herbal medicine is widely used all over the world for treating various health disorders. It is employed either alone or in combination with synthetic drugs or plants to be more effective. Objective: The assessment of the effect of both water and methanol extracts of 57 widely used plants from Traditional Chinese Medicine (TCM) against the main phase I metabolizing enzyme CYP3A4 in vitro for the first time. Materials and Methods: The inhibition of cytochrome P450 activity was evaluated using a luminescence assay. The principal component analysis (PCA) was used to correlate the inhibitory activity with the main secondary metabolites present in the plant extracts. Molecular modeling studies on CYP3A4 (PDB ID 4NY4) were carried out with 38 major compounds present in the most active plant extracts to validate the observed inhibitory effect. Results: Aqueous extracts of Acacia catechu, Andrographis paniculata, Arctium lappa, Areca catechu, Bupleurum marginatum, Chrysanthemum indicum, Dysosma versipellis, and Spatholobus suberectus inhibited CYP3A4 is more than 85% (at a dose of 100 μg/mL). The corresponding methanol extracts of A. catechu, A. paniculata, A. catechu, Mahonia bealei, and Sanguisorba officinalis inhibited the enzyme by more than 50%. Molecular modeling studies revealed that two polyphenols, namely hesperidin and rutin, revealed the highest fitting scores in the active sites of the CYP3A4 with binding energies equal to -74.09 and -71.34 kcal/mol, respectively. Conclusion: These results provide evidence that many TCM plants can inhibit CYP3A4, which might cause a potential interference with the metabolism of other concomitantly administered herbs or drugs. SUMMARY In this study, the inhibitory activity of the aqueous and methanol extracts of 57 widely used plants from Traditional Chinese Medicine (TCM) against the main phase I metabolizing enzyme CYP3A4 was tested in vitro for the first time.Aqueous extracts of Acacia catechu, Andrographis

  1. The effect of premature and delayed birth on the development of UDP-glucuronosyltransferase activities towards bilirubin, morphine and testosterone in the rat.

    PubMed Central

    Campbell, M T; Wishart, G J

    1980-01-01

    In the rat, UDP-glucuronosyltransferase activities towards bilirubin, morphine and testosterone increase markedly after normal or premature birth. This rapid development is superimposed upon a much slower maturation of activity which occurs in utero during the last 2 days of normal gestation and gestation when birth is delayed. Development of all three activities is similar under these different conditions, suggesting a common developmenpal regulatory mechanism. PMID:6769435

  2. A Kidney-specific genetic control module in mice governs endocrine regulation of the cytochrome P450 gene Cyp27b1 essential for vitamin D3 activation.

    PubMed

    Meyer, Mark B; Benkusky, Nancy A; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J Wesley

    2017-08-14

    The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D3 to its hormonal form, 1,25(OH)2D3, occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1, are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH)2D3-mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH)2D3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1 We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by local factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH)2D3 can fulfill separate functional roles: first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  3. The inhibitory effect of tannic acid on cytochrome P450 enzymes and NADPH-CYP reductase in rat and human liver microsomes.

    PubMed

    Yao, Hsien-Tsung; Chang, Yi-Wei; Lan, Shih-Jung; Yeh, Teng-Kuang

    2008-02-01

    Tannic acid has been shown to decrease mutagenicity and/or carcinogenicity of several amine derivatives and polycyclic aromatic hydrocarbons in rodents. The purpose of this study was to evaluate the effect of tannic acid on cytochrome P450 (CYP)-catalyzed oxidations using rat liver microsomes (RLM) and human liver microsomes (HLM) as the enzyme sources. In RLM, tannic acid showed a non-selective inhibitory effect on 7-methoxyresorufin O-demethylation (MROD), 7-ethoxyresorufin O-deethylation (EROD), tolbutamide hydroxylation, p-nitrophenol hydroxylation and testosterone 6beta-hydroxylation activities with IC(50) values ranged from 14.9 to 27.4 microM. In HLM, tannic acid inhibited EROD, MROD and phenacetin O-deethylation activities with IC(50) values ranged from 5.1 to 7.5 microM, and diclofenac 4-hydroxylation, dextromethorphan O-demethylation, chlorzoxazone 6-hydroxylation and testosterone 6beta-hydroxylation with IC(50) values ranged from 20 to 77 microM. In baculovirus-insect cell-expressed human CYP 1A1 and 1A2, the IC(50) values of tannic acid for CYP 1A1- and 1A2-catalyzed EROD activities were 23.1 and 2.3 microM, respectively, indicating that tannic acid preferably inhibited the activity of CYP1A2. Tannic acid inhibited human CYP1A2 non-competitively with a Ki value of 4.8 microM. Tannic acid was also found to inhibit NADPH-CYP reductase in RLM and HLM with IC(50) values of 11.8 and 17.4 microM, respectively. These results suggested that the inhibition of CYP enzyme activities by tannic acid may be partially attributed to its inhibition of NADPH-CYP reductase activity.

  4. Crystal Structure of a Putative Cytochrome P450 Alkane Hydroxylase (CYP153D17) from Sphingomonas sp. PAMC 26605 and Its Conformational Substrate Binding

    PubMed Central

    Lee, Chang Woo; Yu, Sang-Cheol; Lee, Joo-Ho; Park, Sun-Ha; Park, Hyun; Oh, Tae-Jin; Lee, Jun Hyuck

    2016-01-01

    Enzymatic alkane hydroxylation reactions are useful for producing pharmaceutical and agricultural chemical intermediates from hydrocarbons. Several cytochrome P450 enzymes catalyze the regio- and stereo-specific hydroxylation of alkanes. We evaluated the substrate binding of a putative CYP alkane hydroxylase (CYP153D17) from the bacterium Sphingomonas sp. PAMC 26605. Substrate affinities to C10–C12 n-alkanes and C10–C14 fatty acids with Kd values varied from 0.42 to 0.59 μM. A longer alkane (C12) bound more strongly than a shorter alkane (C10), while shorter fatty acids (C10, capric acid; C12, lauric acid) bound more strongly than a longer fatty acid (C14, myristic acid). These data displayed a broad substrate specificity of CYP153D17, hence it was named as a putative CYP alkane hydroxylase. Moreover, the crystal structure of CYP153D17 was determined at 3.1 Å resolution. This is the first study to provide structural information for the CYP153D family. Structural analysis showed that a co-purified alkane-like compound bound near the active-site heme group. The alkane-like substrate is in the hydrophobic pocket containing Thr74, Met90, Ala175, Ile240, Leu241, Val244, Leu292, Met295, and Phe393. Comparison with other CYP structures suggested that conformational changes in the β1–β2, α3–α4, and α6–α7 connecting loop are important for incorporating the long hydrophobic alkane-like substrate. These results improve the understanding of the catalytic mechanism of CYP153D17 and provide valuable information for future protein engineering studies. PMID:27941697

  5. Cyp15F1: a novel cytochrome P450 gene linked to juvenile hormone-dependent caste differention in the termite Reticulitermes flavipes.

    PubMed

    Tarver, Matthew R; Coy, Monique R; Scharf, Michael E

    2012-07-01

    Termites are eusocial insects that jointly utilize juvenile hormone (JH), pheromones, and other semiochemicals to regulate caste differentiation and achieve caste homeostasis. Prior EST sequencing from the symbiont-free gut transcriptome of Reticulitermes flavipes unexpectedly revealed a number of unique cytochrome P450 (Cyp) transcripts, including fragments of a Cyp15 family gene (Cyp15F1) with homology to other insect Cyp15s that participate in JH biosynthesis. The present study investigated the role of Cyp15F1 in termite caste polyphenism and specifically tested the hypothesis that it plays a role in JH-dependent caste differentiation. After assembling the full-length Cyp15F1 cDNA sequence, we (i) determined its mRNA tissue expression profile, (ii) investigated mRNA expression changes in response to JH and the caste-regulatory primer pheromones γ-cadinene (CAD) and γ-cadinenal (ALD), and (iii) used RNA interference (RNAi) in combination with caste differentiation bioassays to investigate gene function at the phenotype level. Cyp15F1 has ubiquitous whole-body expression (including gut tissue); is rapidly and sustainably induced from 3 h to 48 h by JH, CAD, and ALD; and functions at least in part by facilitating JH-dependent soldier caste differentiation. These findings provide the second example of a termite caste regulatory gene identified through the use of RNAi, and significantly build upon our understanding of termite caste homeostatic mechanisms. These results also reinforce the concept of environmental caste determination in termites by revealing how primer pheromones, as socioenvironmental factors, can directly influence Cyp15 expression and caste differentiation.

  6. Enzymatic characterization of in vitro-expressed Baikal seal cytochrome P450 (CYP) 1A1, 1A2, and 1B1: implication of low metabolic potential of CYP1A2 uniquely evolved in aquatic mammals.

    PubMed

    Iwata, Hisato; Yamaguchi, Keisuke; Takeshita, Yoko; Kubota, Akira; Hirakawa, Shusaku; Isobe, Tomohiko; Hirano, Masashi; Kim, Eun-Young

    2015-05-01

    This study aimed to elucidate the catalytic function of cytochrome P450 (CYP) 1 enzymes in aquatic mammals. Alkoxyresorufin O-dealkylation (AROD) activities including methoxy- (MROD), ethoxy- (EROD), pentoxy- (PROD), and benzyloxyresorufin O-dealkylation (BROD), and 2- and 4-hydroxylation activities of 17β-estradiol (E2) were measured by using yeast-expressed Baikal seal (Pusa sibirica) CYP1A1, 1A2, and 1B1 proteins. Heterologous protein expression of the Baikal seal CYP1s (bsCYP1s) in yeast microsomes was confirmed by reduced CO-difference spectra and immunoblotting. Heterologously expressed human CYP1 enzyme (hCYP1) activities were simultaneously measured and compared with those of bsCYP1 isozymes. Recombinant bsCYP1A1 protein showed the highest Vmax of EROD, followed by MROD, PROD, and BROD, similar to that of hCYP1A1. Vmax/Km ratios of all AROD activities catalyzed by bsCYP1A1 were lower than those catalyzed by hCYP1A1, suggesting less potential for AROD by bsCYP1A1. Enzymatic assays for bsCYP1A2 showed no or minimal AROD activities, while hCYP1A2 displayed MROD and EROD activities. bsCYP1B1 showed an AROD profile (EROD>BROD>MROD>PROD) similar to that of hCYP1B1; however, Vmax/Km ratios of all AROD activities by bsCYP1B1 were higher. Yeast microsomes containing bsCYP1A1 and 1B1 and hCYP1A1, 1A2, and 1B1 metabolized E2 to 2-OHE2 and 4-OHE2, whereas bsCYP1A2 showed no such activity. Comparison of 4- and 2-hydroxylations of E2 by CYP1As suggests that bsCYP1A1, hCYP1A1, and 1A2 preferentially catalyze 2- rather than 4-hydroxylation. As for CYP1B1, the Vmax/Km ratios suggest that both Baikal seal and human CYPs catalyze 4- rather than 2-hydroxylation. Interspecies comparison showed that bsCYP1B1 has higher metabolic potencies for both E2 hydroxylations than does hCYP1B1, whereas the activity of bsCYP1A1 was lower than that of hCYP1A1. Messenger RNA expression levels of bsCYP1s in the liver of Baikal seals indicated that bsCYP1A1 and 1A2 enzymes contributed to 16

  7. Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)

    ClinicalTrials.gov

    2017-08-15

    Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  8. Development of a lateral flow test to detect metabolic resistance in Bemisia tabaci mediated by CYP6CM1, a cytochrome P450 with broad spectrum catalytic efficiency.

    PubMed

    Nauen, Ralf; Wölfel, Katharina; Lueke, Bettina; Myridakis, Antonis; Tsakireli, Dimitra; Roditakis, Emmanouil; Tsagkarakou, Anastasia; Stephanou, Euripides; Vontas, John

    2015-06-01

    Cotton whitefly, Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae) is a major sucking pest in many agricultural and horticultural cropping systems globally. The frequent use of insecticides of different mode of action classes resulted in populations resisting treatments used to keep numbers under economic damage thresholds. Recently it was shown that resistance to neonicotinoids such as imidacloprid is linked to the over-expression of CYP6CM1, a cytochrome P450 monooxygenase detoxifying imidacloprid and other neonicotinoid insecticides when recombinantly expressed in insect cells. However over-expression of CYP6CM1 is also known to confer cross-resistance to pymetrozine, an insecticide not belonging to the chemical class of neonicotinoids. In addition we were able to demonstrate by LC-MS/MS analysis the metabolisation of pyriproxyfen by recombinantly expressed CYP6CM1. Based on our results CYP6CM1 is one of the most versatile detoxification enzymes yet identified in a pest of agricultural importance, as it detoxifies a diverse range of chemical classes used to control whiteflies. Therefore we developed a field-diagnostic antibody-based lateral flow assay which detects CYP6CM1 protein at levels providing resistance to neonicotinoids and other insecticides. The ELISA based test kit can be used as a diagnostic tool to support resistance management strategies based on the alternation of different modes of action of insecticides. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Induced overexpression of cytochrome P450 sterol 14α-demethylase gene (CYP51) correlates with sensitivity to demethylation inhibitors (DMIs) in Sclerotinia homoeocarpa.

    PubMed

    Ma, Bangya; Tredway, Lane P

    2013-12-01

    The fungus Sclerotinia homoeocarpa causes dollar spot, the most important turfgrass disease worldwide. Demethylation inhibitor (DMI) fungicides have been relied upon heavily to manage this disease. Presently, populations of S. homoeocarpa with reduced sensitivity or resistance to DMIs are widespread in the United States. Cytochrome P450 sterol 14α-demethylase (ShCYP51) and its flanking regions were identified and sequenced in 29 isolates of S. homoeocarpa with a range of DMI sensitivities. No modifications were found in the gene coding and upstream regions that were consistently related to DMI sensitivity. In the absence of propiconazole, ShCYP51 was expressed at a similar low level among DMI baseline and resistant isolates. In the presence of propiconazole, DMI-resistant isolates were induced to express ShCYP51 at significantly higher levels than baseline isolates by propiconazole at 5 mg L(-1) for 5 h or at 0.5 mg L(-1) for 72 h. The ShCYP51 expression level after 72 h exposure to 0.5 mg L(-1) of propiconazole was linearly related to EC50 values and ΔRG (the change in relative growth rate over time), with R(2) values equal to 83.7 and 90.0% respectively. Induced overexpression of ShCYP51 in resistant isolates following DMI exposure is an important factor determining DMI sensitivity in S. homoeocarpa. © 2013 Society of Chemical Industry.

  10. A DNA methylation site in the male-specific P450 (Cyp 2d-9) promoter and binding of the heteromeric transcription factor GABP.

    PubMed Central

    Yokomori, N; Kobayashi, R; Moore, R; Sueyoshi, T; Negishi, M

    1995-01-01

    The Cyp 2d-9 gene encodes the male-specific steroid 16 alpha-hydroxylase in mouse liver and shares a conserved regulatory element (-100TTCCGGGC-93) with another male-specific Slp promoter. As shown with the Slp promoter (N. Yokomori, R. Moore, and M. Negishi, Proc. Natl. Acad. Sci. USA 92:1302-1306, 1995), the male-preferential demethylation also occurs at CpG/-97 in the Cyp 2d-9 promoter. The transcription factor which specifically binds to the demethylated element has been purified. The peptide sequences reveal that the factor consists of GABP alpha and GABP beta 1 with Ets and Notch motifs, respectively. Both DNase I footprinting and gel shift assays indicate that the bacterially expressed glutathione S-transferase-GABP fusion proteins bind to the regulatory element only when CpG/-97 is demethylated. Moreover, Cyp 2d-9 promoter is trans-activated by coexpression of GABP proteins in HepG2 cells. Given the additional results that CpG/-50 of the female-specific steroid 15 alpha-hydroxylase (Cyp 2a-4) promoter is preferentially demethylated in the females, the sex-specific expressions of the P450 genes correlate very well with DNA demethylation. We also conclude that GABP is a methylation-sensitive transcription factor and is a potential transcription activator of the male-specific Cyp 2d-9 promoter. PMID:7565685

  11. Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions

    PubMed Central

    Ismail, Hanafy M.; O’Neill, Paul M.; Hong, David W.; Finn, Robert D.; Henderson, Colin J.; Wright, Aaron T.; Cravatt, Benjamin F.; Hemingway, Janet; Paine, Mark J. I.

    2013-01-01

    Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b5 knockout mouse livers to validate P450 activation and establish the role for b5 in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or “pyrethrome.” Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450–insecticide interactions and aiding the development of unique tools for disease control. PMID:24248381

  12. Cytochrome P450 CYP2D6 genotypes: association with hair colour, Breslow thickness and melanocyte stimulating hormone receptor alleles in patients with malignant melanoma.

    PubMed

    Strange, R C; Ellison, T; Ichii-Jones, F; Bath, J; Hoban, P; Lear, J T; Smith, A G; Hutchinson, P E; Osborne, J; Bowers, B; Jones, P W; Fryer, A A

    1999-06-01

    We previously identified associations between polymorphism in the cytochrome P450 CYP2D6 gene and outcome in several cancers. We have now examined the hypothesis that homozygosity for the mutant alleles, CYP2D6*4 and CYP2D6*3, is associated with susceptibility and outcome in malignant melanoma. Outcome was assessed by Breslow thickness. We first confirmed previous reports that these mutant alleles are associated with increased susceptibility to malignant melanoma. For example, the frequency of homozygosity for CYP2D6*4 was significantly greater (P = 0.006, chi-squared 1 d.f. = 7.4, odds ratio 2.2, 95% confidence interval 1.2, 3.9) in cases (9.1%) than in control individuals (4.3%). The frequency of homozygosity for the mutant alleles was next examined in the malignant melanoma cases grouped on the basis of characteristics associated with malignant melanoma risk. Homozygosity was significantly more common (P = 0.038) in cases with red/blonde hair than in those with brown/black hair. We found no associations between the CYP2D6 genotype and sex, skin type or eye colour. The possible association of CYP2D6 with outcome was assessed by comparing genotype frequencies in patients with tumours of Breslow thickness < 1.5 mm with those whose tumours were > or = 1.5 mm. In patients with red/blonde, but not brown or black hair, homozygosity for CYP2D6*4 was significantly associated with thicker lesions in a multivariate model (P = 0.036). We further examined the association of CYP2D6*4 homozygosity with red/blonde hair by classifying patients on the basis of homo- or heterozygosity for wild-type or val92met, asp294his or asp84glu melanocyte stimulating hormone receptor (MC1R) alleles. None of the nine patients with brown/black hair with the asp294his allele were homozygotes for CYP2D6*4. By contrast, in the patients with red/blonde hair, three of five cases with asp294his were homozygotes for the mutant CYP2D6 allele. The difference in the frequency of CYP2D6*4 homozygotes in

  13. The cytochrome P450 CYP6P4 is responsible for the high pyrethroid resistance in knockdown resistance-free Anopheles arabiensis

    PubMed Central

    Ibrahim, Sulaiman S.; Riveron, Jacob M.; Stott, Robert; Irving, Helen; Wondji, Charles S.

    2016-01-01

    Pyrethroid insecticides are the front line vector control tools used in bed nets to reduce malaria transmission and its burden. However, resistance in major vectors such as Anopheles arabiensis is posing a serious challenge to the success of malaria control. Herein, we elucidated the molecular and biochemical basis of pyrethroid resistance in a knockdown resistance-free Anopheles arabiensis population from Chad, Central Africa. Using heterologous expression of P450s in Escherichia coli coupled with metabolism assays we established that the over-expressed P450 CYP6P4, located in the major pyrethroid resistance (rp1) quantitative trait locus (QTL), is responsible for resistance to Type I and Type II pyrethroid insecticides, with the exception of deltamethrin, in correlation with field resistance profile. However, CYP6P4 exhibited no metabolic activity towards non-pyrethroid insecticides, including DDT, bendiocarb, propoxur and malathion. Combining fluorescent probes inhibition assays with molecular docking simulation, we established that CYP6P4 can bind deltamethrin but cannot metabolise it. This is possibly due to steric hindrance because of the large vdW radius of bromine atoms of the dihalovinyl group of deltamethrin which docks into the heme catalytic centre. The establishment of CYP6P4 as a partial pyrethroid resistance gene explained the observed field resistance to permethrin, and its inability to metabolise deltamethrin probably explained the high mortality from deltamethrin exposure in the field populations of this Sudano-Sahelian An. arabiensis. These findings describe the heterogeneity in resistance towards insecticides, even from the same class, highlighting the need to thoroughly understand the molecular basis of resistance before implementing resistance management/control tools. PMID:26548743

  14. Structure and Biochemical Properties of the Alkene Producing Cytochrome P450 OleTJE (CYP152L1) from the Jeotgalicoccus sp. 8456 Bacterium*

    PubMed Central

    Belcher, James; McLean, Kirsty J.; Matthews, Sarah; Woodward, Laura S.; Fisher, Karl; Rigby, Stephen E. J.; Nelson, David R.; Potts, Donna; Baynham, Michael T.; Parker, David A.; Leys, David; Munro, Andrew W.

    2014-01-01

    The production of hydrocarbons in nature has been documented for only a limited set of organisms, with many of the molecular components underpinning these processes only recently identified. There is an obvious scope for application of these catalysts and engineered variants thereof in the future production of biofuels. Here we present biochemical characterization and crystal structures of a cytochrome P450 fatty acid peroxygenase: the terminal alkene forming OleTJE (CYP152L1) from Jeotgalicoccus sp. 8456. OleTJE is stabilized at high ionic strength, but aggregation and precipitation of OleTJE in low salt buffer can be turned to advantage for purification, because resolubilized OleTJE is fully active and extensively dissociated from lipids. OleTJE binds avidly to a range of long chain fatty acids, and structures of both ligand-free and arachidic acid-bound OleTJE reveal that the P450 active site is preformed for fatty acid binding. OleTJE heme iron has an unusually positive redox potential (−103 mV versus normal hydrogen electrode), which is not significantly affected by substrate binding, despite extensive conversion of the heme iron to a high spin ferric state. Terminal alkenes are produced from a range of saturated fatty acids (C12–C20), and stopped-flow spectroscopy indicates a rapid reaction between peroxide and fatty acid-bound OleTJE (167 s−1 at 200 μm H2O2). Surprisingly, the active site is highly similar in structure to the related P450BSβ, which catalyzes hydroxylation of fatty acids as opposed to decarboxylation. Our data provide new insights into structural and mechanistic properties of a robust P450 with potential industrial applications. PMID:24443585

  15. Structure and biochemical properties of the alkene producing cytochrome P450 OleTJE (CYP152L1) from the Jeotgalicoccus sp. 8456 bacterium.

    PubMed

    Belcher, James; McLean, Kirsty J; Matthews, Sarah; Woodward, Laura S; Fisher, Karl; Rigby, Stephen E J; Nelson, David R; Potts, Donna; Baynham, Michael T; Parker, David A; Leys, David; Munro, Andrew W

    2014-03-07

    The production of hydrocarbons in nature has been documented for only a limited set of organisms, with many of the molecular components underpinning these processes only recently identified. There is an obvious scope for application of these catalysts and engineered variants thereof in the future production of biofuels. Here we present biochemical characterization and crystal structures of a cytochrome P450 fatty acid peroxygenase: the terminal alkene forming OleTJE (CYP152L1) from Jeotgalicoccus sp. 8456. OleTJE is stabilized at high ionic strength, but aggregation and precipitation of OleTJE in low salt buffer can be turned to advantage for purification, because resolubilized OleTJE is fully active and extensively dissociated from lipids. OleTJE binds avidly to a range of long chain fatty acids, and structures of both ligand-free and arachidic acid-bound OleTJE reveal that the P450 active site is preformed for fatty acid binding. OleTJE heme iron has an unusually positive redox potential (-103 mV versus normal hydrogen electrode), which is not significantly affected by substrate binding, despite extensive conversion of the heme iron to a high spin ferric state. Terminal alkenes are produced from a range of saturated fatty acids (C12-C20), and stopped-flow spectroscopy indicates a rapid reaction between peroxide and fatty acid-bound OleTJE (167 s(-1) at 200 μm H2O2). Surprisingly, the active site is highly similar in structure to the related P450BSβ, which catalyzes hydroxylation of fatty acids as opposed to decarboxylation. Our data provide new insights into structural and mechanistic properties of a robust P450 with potential industrial applications.

  16. Caged and wild fish: Induction of hepatic cytochrome P-450 (CYP1A1) as an environmental biomonitor

    SciTech Connect

    Haasch, M.L.; Lech, J.J. ); Prince, R.; Cooper, K.R. ); Wejksnora, P.J. )

    1993-05-01

    Hepatic monooxygenase activity can be induced by many different environmental chemical contaminants, and measurement of this activity has been proposed as an environmental biomonitor. Using in situ caged catfish and largemouth bass, and collected wild killifish, environmental induction of hepatic CYP1A1 was investigated using catalytic enzyme assays, regiospecific metabolism, immunodetection, and nucleic acid hybridization. The purpose of these studies was to evaluate these techniques for detection of CYP1A1 induction as a potential environmental biomonitor of environmental chemical contamination. Exposure of catfish in cages to polyaromatic hydrocarbon- (PAH-) and polychlorinated biphenyl- (PCB-) contaminated river water for two, four, or six weeks resulted in fourfold increases in ethoxyresorufin-O-deethylase (EROD) activity and three- and fivefold increases in immunoreactive CYP1A1 protein and hybridizable CYP1A1 mRNA, respectively, when compared to laboratory water control values. Hybridizable CYP1A1 mRNA in caged largemouth bass increased 5.1-fold at 1 d of exposure. Caged largemouth bass had 5-, 1.4-, and 0.8-fold increases at 3 d and 6-, 2.4-, 0.4-fold increases at 7 d of river water exposure in EROD, immunoreactive CYP1A1 protein, and CYP1A1 mRNA, respectively, when compared to laboratory water control values. Liver of killifish from a 2,3,7,8-tetrachlorodibenzo-p-dioxin-contaminated area had threefold higher EROD activity and similarly elevated immunoreactive CYP1A1 protein, a two- to fourfold increase in CYP1A1 mRNA, and a four- to eightfold increase in 6[beta]-hydroxyprogesterone activity, when compared to killifish livers sampled from a clean site.

  17. Crystallization and preliminary X-ray analysis of allene oxide synthase, cytochrome P450 CYP74A2, from Parthenium argentatum

    SciTech Connect

    Chang, Zhenzhan; Li, Lenong; Pan, Zhiqiang; Wang, Xiaoqiang

    2008-07-01

    Allene oxide synthase, an atypical cytochrome P450 from Parthenium argentatum, was crystallized and diffraction data were collected to 2.4 Å resolution. Oxylipins are oxygenated derivatives of fatty acids and pivotal signaling molecules in plants and animals. Allene oxide synthase (AOS) is a key cytochrome P450 CYP74 enzyme involved in the biosynthesis of plant oxylipin jasmonates to convert 13(S)-hydroperoxide to allene oxide. Guayule (Parthenium argentatum) AOS, CYP74A2, was expressed in Escherichia coli. Protein was purified using affinity chromatography and size exclusion chromatography, and then crystallized. Two different crystal forms were obtained from 0.2 M (NH{sub 4})H{sub 2}PO{sub 4}, 50% MPD, 0.1 M Tris, pH 8.5 at 277 K using the hanging-drop vapor-diffusion method. Preliminary X-ray analysis was carried out, and the crystals were found to belong to the tetragonal space group I422 with cell parameters a = b = 126.5, c = 163.9 Å, and the monoclinic space group C2 with cell parameters a = 336.5, b = 184.2, c = 159.0 Å, β = 118.6°. Diffraction data were collected to 2.4 Å resolution from a tetragonal form of crystal using a home X-ray source.

  18. Unexpected contribution of cytochrome P450 enzymes CYP11B2 and CYP21, as well as CYP3A4 in xenobiotic androgen elimination - insights from metandienone metabolism.

    PubMed

    Parr, Maria Kristina; Zöllner, Andy; Fusshöller, Gregor; Opfermann, Georg; Schlörer, Nils; Zorio, Mirela; Bureik, Matthias; Schänzer, Wilhelm

    2012-09-18

    The metabolism of a variety of anabolic steroids frequently misused for doping purposes has been investigated in the last years. This research mainly focused on main and long-term metabolites suitable for detection, but detailed clearance mechanisms have rarely been elucidated. Recent studies on metandienone focused on the identification of 17β-hydroxymethyl-17α-methyl-18-norandrosta-1,4,13-trien-3-one (20βOH-NorMD) as long-term metabolite, however, the metabolic pathway of its generation remained unclear. Metandienone and its Wagner-Meerwein rearrangement product 17,17-dimethyl-18-norandrosta-1,4,13-trien-3-one (NorMD) were hydroxylated by different human cytochrome P450 enzymes (CYPs). Some of their hydroxylation products were chemically synthesized and characterized by mass spectrometry to allow for their trace detection in urine samples. Following oral administration of metandienone or NorMD in one human volunteer each the post administration urines were checked for the presence of those hydroxylated metabolites using GC-MS/MS analysis. The human mitochondrial steroid hydroxylating enzymes CYP11B1 and CYP11B2 were capable to metabolize metandienone leading to the formation of 11β-hydroxymetandienone and 18-hydroxymetandienone. Following Wagner-Meerwein rearrangement, the resulting products could be assigned to 20βOH-NorMD and 11βOH-NorMD. The contribution of CYP11B1 and CYP11B2 in human metabolism of metandienone was confirmed by analysis of post-administration samples of metandienone and NorMD. Combined with the results from a previous study, enzymatic pathways were identified that involve CYP21 and CYP3A4 in the hydroxylation of NorMD, while CYP21, CYP3A4 and CYP11B2 take part in 20βOH-NorMD generation from MD. The current study represents a valuable contribution to the elucidation of clearance mechanisms of anabolic steroids and also indicates that mainly non-liver CYPs seem to be involved in these processes.

  19. Enantioselective inhibition of Cytochrome P450-mediated drug metabolism by a novel antithrombotic agent, S002-333: Major effect on CYP2B6.

    PubMed

    Bhateria, Manisha; Ramakrishna, Rachumallu; Puttrevu, Santosh Kumar; Saxena, Anil K; Bhatta, Rabi Sankar

    2016-08-25

    A significant number of new chemical entities (NCEs) fail in drug discovery due to inhibition of Cytochrome P450 (CYP) enzymes. Therefore, to avert costly drug failure at the clinical phase it becomes indispensable to evaluate the CYP inhibition profile of NCEs early in drug discovery. In light of these concerns, we envisioned to investigate the inhibitory effects of S002-333 [2-(4-methoxy-benzenesulfonyl)-2,3,4,9-tetrahydro-1H-b-carboxylic acid amide], a novel and potent antithrombotic agent, on nine major CYP enzymes (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4) of human liver microsomes (HLM). S002-333 exists as racemic mixture of S004-1032 (R-isomer) and S007-1558 (S-isomer), consequently, we further examined the enantioselective differences of S002-333 in the inhibition of human CYP enzymes. Of the CYP enzymes tested, CYP2B6-catalyzed bupropion 6-hydroxylation was inhibited by S002-333 (IC50 ∼ 9.25 ± 2.46 μM) in a stereoselective manner with (S)-isomer showing potent inhibition (IC50 ∼ 5.28 ± 1.25 μM) in contrast to (R)-isomer which showed negligible inhibition on CYP2B6 activity (IC50 > 50 μM). S002-333 and its (S)-isomer inhibited CYP2B6 activity in a non-competitive fashion with estimated Ki values of 10.1 ± 3.4 μM and 5.09 ± 1.05 μM, respectively. No shift in the IC50 value was observed for S002-333 and its isomers when preincubated for 30 min in the presence of NADPH suggesting that neither S002-333 nor its enantiomers are time-dependent inhibitors. Thus, the present findings signified that S002-333 is a potent stereoselective inhibitor of CYP2B6, whereas, inhibition for other CYPs was substantially negligible. These in vitro findings would be useful in deciding the development of S002-333 as a single-enantiomer or as a racemic mixture.

  20. Identification of a novel cytochrome P450 gene, CYP321E1 from the diamondback moth, Plutella xylostella (L.) and RNA interference to evaluate its role in chlorantraniliprole resistance.

    PubMed

    Hu, Z; Lin, Q; Chen, H; Li, Z; Yin, F; Feng, X

    2014-12-01

    Insect cytochrome P450 monooxygenases (P450s) play an important role in catalysis of many reactions leading to insecticides resistance. Our previous studies on transcriptome analysis of chlorantraniliprole-resistant development in the diamondback moth, Plutella xylostella revealed that up-regulation of cytochrome P450s are one of the main factors leading to the development of chlorantraniliprole resistance. Here, we report for the first time a novel cytochrome P450 gene CYP321E1, which belongs to the cytochrome P450 gene family CYP321. Real-time quantitative PCR (RT-qPCR) analyses indicated that CYP321E1 was expressed at all developmental stages of P. xylostella but was highest in the fourth-instar larvae; furthermore, the relatively high expression was observed in the midgut of the fourth-instar larvae, followed by fat bodies and epidermis. The expression of CYP321E1 in P. xylostella was differentially affected by three representative insecticides, including alphamethrin, abamectin and chlorantraniliprole. Among them, the exposure to chlorantraniliprole resulted in the largest transcript level of this cytochrome P450 gene. The findings suggested potential involvement of CYP321E1 in chlorantraniliprole resistance of P. xylostella. To assess the functional link of CYP321E1 to chlorantraniliprole resistance, RNA interference (RNAi)-mediated gene silencing by double stranded RNA (dsRNA) injecting was used. Results revealed that injection delivery of dsRNA can greatly reduce gene expression after 24 h. As a consequence of RNAi, a significant increment in mortality of larvae injected CYP321E1 dsRNA was observed after 24 h of exposure to chlorantraniliprole. These results strongly support our notion that this novel cytochrome P450 gene plays an important role in chlorantraniliprole detoxification in the diamondback moth and is partly responsible for its resistance.

  1. Cytochrome P450 genes from the aquatic midge Chironomus tentans: Atrazine-induced up-regulation of CtCYP6EX3 contributing to oxidative activation of chlorpyrifos

    USDA-ARS?s Scientific Manuscript database

    The open reading frames of 19 cytochrome P450 monooxygenase (CYP) genes were sequenced from Chironomus tentans, a commonly used freshwater invertebrate model. Functional analysis of CtCYP6EX3 confirmed its atrazine-induced oxidative activation for chlorpyrifos by using a nanoparticle-based RNA inter...

  2. Building Structure Feature-based Models for Predicting Isoform-specific Human Cytochrome P-450 (hCYP 3A4, 2D6 and 2C9) Inhibition Assay Results in ToxCast

    EPA Science Inventory

    EPA’s ToxCast project is using high-throughput screening (HTS) to profile and prioritize chemicals for further testing. ToxCast Phase I evaluated 309 unique chemicals, the majority pesticide actives, in over 500 HTS assays. These included 3 human cytochrome P450 (hCYP3A4, hCYP2...

  3. Building Structure Feature-based Models for Predicting Isoform-specific Human Cytochrome P-450 (hCYP 3A4, 2D6 and 2C9) Inhibition Assay Results in ToxCast

    EPA Science Inventory

    EPA’s ToxCast project is using high-throughput screening (HTS) to profile and prioritize chemicals for further testing. ToxCast Phase I evaluated 309 unique chemicals, the majority pesticide actives, in over 500 HTS assays. These included 3 human cytochrome P450 (hCYP3A4, hCYP2...

  4. Production in vitro by the cytochrome P450 CYP94A1 of major C18 cutin monomers and potential messengers in plant-pathogen interactions: enantioselectivity studies.

    PubMed

    Pinot, F; Benveniste, I; Salaün, J P; Loreau, O; Noël, J P; Schreiber, L; Durst, F

    1999-08-15

    The major C(18) cutin monomers are 18-hydroxy-9,10-epoxystearic and 9,10,18-trihydroxystearic acids. These compounds are also known messengers in plant-pathogen interactions. We have previously shown that their common precursor 9,10-epoxystearic acid was formed by the epoxidation of oleic acid in Vicia sativa microsomes (Pinot, Salaün, Bosch, Lesot, Mioskowski and Durst (1992) Biochem. Biophys. Res. Commun. 184, 183-193). Here we determine the chirality of the epoxide produced as (9R,10S) and (9S,10R) in the ratio 90:10 respectively. We further show that microsomes from yeast expressing the cytochrome P450 CYP94A1 are capable of hydroxylating the methyl terminus of 9,10-epoxystearic and 9,10-dihydroxystearic acids in the presence of NADPH to form the corresponding 18-hydroxy derivatives. The reactions were not catalysed by microsomes from yeast transformed with a void plasmid or in absence of NADPH. After incubation of a synthetic racemic mixture of 9,10-epoxystearic acid with microsomes of yeast expressing CYP94A1, the chirality of the residual epoxide was shifted to 66:34 in favour of the (9S,10R) enantiomer. Both enantiomers were incubated separately and V(max)/K(m) values of 16 and 3.42 ml/min per nmol of P450 for (9R, 10S) and (9S,10R) respectively were determined, demonstrating that CYP94A1 is enantioselective for the (9R,10S) enantiomer, which is preferentially formed in V. sativa microsomes. Compared with the epoxide, the diol 9,10-dihydroxystearic acid was a much poorer substrate for the omega-hydroxylase, with a measured V(max)/K(m) of 0.33 ml/min per nmol of P450. Our results indicate that the activity of CYP94A1 is strongly influenced by the stereochemistry of the 9, 10-epoxide and the nature of substituents on carbons 9 and 10, with V(max)/K(m) values for epoxide>oleic acid>diol.

  5. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1

    PubMed Central

    Potter, G A; Patterson, L H; Wanogho, E; Perry, P J; Butler, P C; Ijaz, T; Ruparelia, K C; Lamb, J H; Farmer, P B; Stanley, L A; Burke, M D

    2002-01-01

    Resveratrol is a cancer preventative agent that is found in red wine. Piceatannol is a closely related stilbene that has antileukaemic activity and is also a tyrosine kinase inhibitor. Piceatannol differs from resveratrol by having an additional aromatic hydroxy group. The enzyme CYP1B1 is overexpressed in a wide variety of human tumours and catalyses aromatic hydroxylation reactions. We report here that the cancer preventative agent resveratrol undergoes metabolism by the cytochrome P450 enzyme CYP1B1 to give a metabolite which has been identified as the known antileukaemic agent piceatannol. The metabolite was identified by high performance liquid chromatography analysis using fluorescence detection and the identity of the metabolite was further confirmed by derivatisation followed by gas chromatography–mass spectrometry studies using authentic piceatannol for comparison. This observation provides a novel explanation for the cancer preventative properties of resveratrol. It demonstrates that a natural dietary cancer preventative agent can be converted to a compound with known anticancer activity by an enzyme that is found in human tumours. Importantly this result gives insight into the functional role of CYP1B1 and provides evidence for the concept that CYP1B1 in tumours may be functioning as a growth suppressor enzyme. British Journal of Cancer (2002) 86, 774–778. DOI: 10.1038/sj/bjc/6600197 www.bjcancer.com © 2002 Cancer Research UK PMID:11875742

  6. The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid ω-hydroxylase involved in suberin monomer biosynthesis

    PubMed Central

    Höfer, Rene; Briesen, Isabel; Beck, Martina; Pinot, Franck; Schreiber, Lukas; Franke, Rochus

    2008-01-01

    The lipophilic biopolyester suberin forms important boundaries to protect the plant from its surrounding environment or to separate different tissues within the plant. In roots, suberin can be found in the cell walls of the endodermis and the hypodermis or periderm. Apoplastic barriers composed of suberin accomplish the challenge to restrict water and nutrient loss and prevent the invasion of pathogens. Despite the physiological importance of suberin and the knowledge of the suberin composition of many plants, very little is known about its biosynthesis and the genes involved. Here, a detailed analysis of the Arabidopsis aliphatic suberin in roots at different developmental stages is presented. This study demonstrates some variability in suberin amount and composition along the root axis and indicates the importance of ω-hydroxylation for suberin biosynthesis. Using reverse genetics, the cytochrome P450 fatty acid ω-hydroxylase CYP86A1 (At5g58860) has been identified as a key enzyme for aliphatic root suberin biosynthesis in Arabidopsis. The corresponding horst mutants show a substantial reduction in ω-hydroxyacids with a chain length CYP86A1 functions as a hydroxylase of root suberized tissue. Detailed expression studies revealed a strong root specificity and a localized expression in the root endodermis. Transgenic expression of CYP86A1 fused to GFP distributed CYP86A1 to the endoplasmic reticulum, indicating that suberin monomer biosynthesis takes place in this sub-cellular compartment before intermediates are exported in the apoplast. PMID:18544608

  7. Metabolic Disposition of Luteolin Is Mediated by the Interplay of UDP-Glucuronosyltransferases and Catechol-O-Methyltransferases in Rats.

    PubMed

    Wang, Liping; Chen, Qingwei; Zhu, Lijun; Li, Qiang; Zeng, Xuejun; Lu, Linlin; Hu, Ming; Wang, Xinchun; Liu, Zhongqiu

    2017-03-01

    Luteolin partially exerts its biologic effects via its metabolites catalyzed by UDP-glucuronosyltransferases (UGTs) and catechol-O-methyltransferases (COMTs). However, the interplay of UGTs and COMTs in mediating luteolin disposition has not been well clarified. In this study, we investigated the glucuronidation and methylation pathways of luteolin mediated by the interplay of UGTs and COMTs in vivo and in vitro. A total of nine luteolin metabolites was detected in rat plasma and bile by liquid chromatography-tandem mass spectrometry, namely, three glucuronides, two methylated metabolites, and four methylated glucuronides. Luteolin-3'-glucuronide (Lut-3'-G) exhibited the highest systemic exposure among these metabolites. Kinetics studies in rat liver S9 fractions suggested two pathways, as follows: 1) Luteolin was glucuronidated to luteolin-7-glucuronide, luteolin-4'-glucuronide, and Lut-3'-G by UGTs, and then Lut-7-G was methylated to chrysoeriol-7-glucuronide and diosmetin-7-glucuronide by COMTs. 2) Alternatively, luteolin was methylated to chrysoeriol and diosmetin by COMTs, and then chrysoeriol and diosmetin were glucuronidated by UGTs to their respective glucuronides. The methylation rate of luteolin was significantly increased by the absence of glucuronidation, whereas the glucuronidation rate was increased by the absence of methylation, but to a lesser extent. In conclusion, two pathways mediated by the interplay of UGTs and COMTs are probably involved in the metabolic disposition of luteolin. The glucuronidation and methylation of luteolin compensate for each other, although glucuronidation is the predominant pathway.

  8. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication

    PubMed Central

    Ouzzine, Mohamed; Gulberti, Sandrine; Ramalanjaona, Nick; Magdalou, Jacques; Fournel-Gigleux, Sylvie

    2014-01-01

    UDP-glucuronosyltransferases (UGTs) form a multigenic family of membrane-bound enzymes expressed in various tissues, including brain. They catalyze the formation of β-D-glucuronides from structurally unrelated substances (drugs, other xenobiotics, as well as endogenous compounds) by the linkage of glucuronic acid from the high energy donor, UDP-α-D-glucuronic acid. In brain, UGTs actively participate to the overall protection of the tissue against the intrusion of potentially harmful lipophilic substances that are metabolized as hydrophilic glucuronides. These metabolites are generally inactive, except for important pharmacologically glucuronides such as morphine-6-glucuronide. UGTs are mainly expressed in endothelial cells and astrocytes of the blood brain barrier (BBB). They are also associated to brain interfaces devoid of BBB, such as circumventricular organ, pineal gland, pituitary gland and neuro-olfactory tissues. Beside their key-role as a detoxication barrier, UGTs play a role in the steady-state of endogenous compounds, like steroids or dopamine (DA) that participate to the function of the brain. UGT isoforms of family 1A, 2A, 2B and 3A are expressed in brain tissues to various levels and are known to present distinct but overlapping substrate specificity. The importance of these enzyme species with regard to the formation of toxic, pharmacologically or physiologically relevant glucuronides in the brain will be discussed. PMID:25389387

  9. A model of in vitro UDP-glucuronosyltransferase inhibition by bile acids predicts possible metabolic disorders[S

    PubMed Central

    Fang, Zhong-Ze; He, Rong-Rong; Cao, Yun-Feng; Tanaka, Naoki; Jiang, Changtao; Krausz, Kristopher W.; Qi, Yunpeng; Dong, Pei-Pei; Ai, Chun-Zhi; Sun, Xiao-Yu; Hong, Mo; Ge, Guang-Bo; Gonzalez, Frank J.; Ma, Xiao-Chi; Sun, Hong-Zhi

    2013-01-01

    Increased levels of bile acids (BAs) due to the various hepatic diseases could interfere with the metabolism of xenobiotics, such as drugs, and endobiotics including steroid hormones. UDP-glucuronosyltransferases (UGTs) are involved in the conjugation and elimination of many xenobiotics and endogenous compounds. The present study sought to investigate the potential for inhibition of UGT enzymes by BAs. The results showed that taurolithocholic acid (TLCA) exhibited the strongest inhibition toward UGTs, followed by lithocholic acid. Structure-UGT inhibition relationships of BAs were examined and in vitro-in vivo extrapolation performed by using in vitro inhibition kinetic parameters (Ki) in combination with calculated in vivo levels of TLCA. Substitution of a hydrogen with a hydroxyl group in the R1, R3, R4, R5 sites of BAs significantly weakens their inhibition ability toward most UGTs. The in vivo inhibition by TLCA toward UGT forms was determined with following orders of potency: UGT1A4 > UGT2B7 > UGT1A3 > UGT1A1 ∼ UGT1A7 ∼ UGT1A10 ∼ UGT2B15. In conclusion, these studies suggest that disrupted homeostasis of BAs, notably taurolithocholic acid, found in various diseases such as cholestasis, could lead to altered metabolism of xenobiotics and endobiotics through inhibition of UGT enzymes. PMID:24115227

  10. Comparison of the Drug-Drug Interactions Potential of Erlotinib and Gefitinib via Inhibition of UDP-Glucuronosyltransferases

    PubMed Central

    Liu, Yong; Ramírez, Jacqueline; House, Larry

    2010-01-01

    We aimed to investigate and compare the effects of erlotinib and gefitinib on UDP-glucuronosyltransferase (UGT) activities and to quantitatively evaluate their drug-drug interaction (DDI) potential due to UGT inhibition. The inhibitory effects of erlotinib and gefitinib on UGTs were determined using high-performance liquid chromatography by measuring the formation rates for 4-methylumbelliferone (4-MU) glucuronide, imipramine N-glucuronide, and bilirubin glucuronides using recombinant human UGT isoforms and human liver microsomes (HLMs) in the absence or presence of erlotinib and gefitinib. Inhibition kinetic studies were conducted. Area under the curve (AUC) ratios were used to predict the risk of potential DDI in vivo. Erlotinib exhibited selective potent competitive inhibition against 4-MU glucuronidation by UGT1A1, and gefitinib demonstrated a wide range of inhibition against UGT-mediated 4-MU glucuronidation, particularly against UGT1A1, UGT1A7, UGT1A9, and UGT2B7. Erlotinib also exerted potent mixed inhibition against bilirubin glucuronidation in HLMs. We estimated that coadministration of erlotinib at 100 mg/day or higher doses may result in at least a 30% increase in the AUC of drugs predominantly cleared by UGT1A1. Thus, the coadministration of erlotinib with drugs primarily cleared by UGT1A1 may result in potential DDI. In contrast, gefitinib is unlikely to cause a clinically significant DDI through inhibition of glucuronidation. PMID:19850672

  11. Glycyrrhetinic acid exhibits strong inhibitory effects towards UDP-glucuronosyltransferase (UGT) 1A3 and 2B7.

    PubMed

    Huang, Yin-Peng; Cao, Yun-Feng; Fang, Zhong-Ze; Zhang, Yan-Yan; Hu, Cui-Min; Sun, Xiao-Yu; Yu, Zhen-Wen; Zhu, Xu; Hong, Mo; Yang, Lu; Sun, Hong-Zhi

    2013-09-01

    The aim of the present study is to evaluate the inhibitory effects of liver UDP-glucuronosyltransferases (UGTs) by glycyrrhizic acid and glycyrrhetinic acid, which are the bioactive ingredients isolated from licorice. The results showed that glycyrrhetinic acid exhibited stronger inhibition towards all the tested UGT isoforms, indicating that the deglycosylation process played an important role in the inhibitory potential towards UGT isoforms. Furthermore, the inhibition kinetic type and parameters were determined for the inhibition of glycyrrhetinic acid towards UGT1A3 and UGT2B7. Data fitting using Dixon and Lineweaver-Burk plots demonstrated that the inhibition of UGT1A3 and UGT2B7 by glycyrrhetinic acid was best fit to competitive and noncompetitive type, respectively. The second plot using the slopes from Lineweaver-Burk plots versus glycyrrhetinic acid concentrations was employed to calculate the inhibition kinetic parameters (K(i)), and the values were calculated to be 0.2 and 1.7 μM for UGT1A3 and UGT2B7, respectively. All these results remind us the possibility of UGT inhibition-based herb-drug interaction. However, the explanation of these in vitro parameters should be paid more caution due to complicated factors, including the probe substrate-dependent UGT inhibition behaviour, environmental factors affecting the abundance of herbs' ingredients, and individual difference of pharmacokinetic factors.

  12. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes.

    PubMed

    Ishak, Intan H; Kamgang, Basile; Ibrahim, Sulaiman S; Riveron, Jacob M; Irving, Helen; Wondji, Charles S

    2017-01-01

    Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise pyrethroids, DDT and bendiocarb. The predominant

  13. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes

    PubMed Central

    Ishak, Intan H.; Kamgang, Basile; Ibrahim, Sulaiman S.; Riveron, Jacob M.; Irving, Helen

    2017-01-01

    Background Dengue control and prevention rely heavily on insecticide-based interventions. However, insecticide resistance in the dengue vector Aedes aegypti, threatens the continued effectiveness of these tools. The molecular basis of the resistance remains uncharacterised in many endemic countries including Malaysia, preventing the design of evidence-based resistance management. Here, we investigated the underlying molecular basis of multiple insecticide resistance in Ae. aegypti populations across Malaysia detecting the major genes driving the metabolic resistance. Methodology/Principal Findings Genome-wide microarray-based transcription analysis was carried out to detect the genes associated with metabolic resistance in these populations. Comparisons of the susceptible New Orleans strain to three non-exposed multiple insecticide resistant field strains; Penang, Kuala Lumpur and Kota Bharu detected 2605, 1480 and 425 differentially expressed transcripts respectively (fold-change>2 and p-value ≤ 0.05). 204 genes were commonly over-expressed with monooxygenase P450 genes (CYP9J27, CYP6CB1, CYP9J26 and CYP9M4) consistently the most up-regulated detoxification genes in all populations, indicating that they possibly play an important role in the resistance. In addition, glutathione S-transferases, carboxylesterases and other gene families commonly associated with insecticide resistance were also over-expressed. Gene Ontology (GO) enrichment analysis indicated an over-representation of GO terms linked to resistance such as monooxygenases, carboxylesterases, glutathione S-transferases and heme-binding. Polymorphism analysis of CYP9J27 sequences revealed a high level of polymorphism (except in Joho Bharu), suggesting a limited directional selection on this gene. In silico analysis of CYP9J27 activity through modelling and docking simulations suggested that this gene is involved in the multiple resistance in Malaysian populations as it is predicted to metabolise

  14. Mitochondrial dysfunction by gamma-irradiation accompanies the induction of cytochrome P450 2E1 (CYP2E1) in rat liver.

    PubMed

    Chung, H C; Kim, S H; Lee, M G; Cho, C K; Kim, T H; Lee, D H; Kim, S G

    2001-03-21

    Multiple biological effects are induced by ionizing radiation through dysfunction of cellular organelles, direct interaction with nucleic acids and production of free radical species. The expression of cytochrome P450s was assessed in the livers of 60Co gamma-irradiated rats. Three gray (G) of gamma-irradiation caused CYP2E1 induction with a 3.6-fold increase in the mRNA at 24 h, whereas the expression of CYP1A2 and CYP3A was not changed. Pharmacokinetics of chlorzoxazone, a specific substrate of CYP2E1, was studied in 3 G-irradiated rats. The area under the plasma concentration-time curve from time zero to infinity of 6-hydroxychlorzoxazone and the amount of 6-hydroxychlorzoxazone excreted in 8 h urine were both significantly greater than those in control rats. Hepatic CYP2E1 was not induced in rats exposed to 0.5-1 G of gamma-rays. Rats irradiated at 6-9 G accumulated doses of gamma-rays exhibited smaller increases in the mRNA due to liver injury than those irradiated at a single dose of 3 G gamma-rays. The plasma glucose and insulin levels were not altered in rats with 3 G of gamma-irradiation. As the exposure level of gamma-irradiation increased, the activity of hepatic aconitase, a key enzyme in energy metabolism in mitochondria, was 30-90% decreased. The amount of mitochondrial DNA per gram of wet liver was 50% decreased in rats exposed to 3 G of gamma-rays. These results demonstrated that gamma-ray irradiation at the exposure level inducing organelle dysfunction induced CYP2E1 in the liver, which might be associated with mitochondrial damage, but not with alterations in glucose or insulin levels.

  15. Identification of the 2-tridecanone responsive region in the promoter of cytochrome P450 CYP6B6 of the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae).

    PubMed

    Li, F; Liu, X N; Zhu, Y; Ma, J; Liu, N; Yang, J H

    2014-12-01

    Eukaryote transcription is controlled by regulatory DNA sequences and transcription factors, so transcriptional control of gene plays a pivotal role in gene expression. In this study, we identified the region of the CYP6B6 gene promoter of Helicoverpa armigera which responds to the plant secondary toxicant 2-tridecanone. Transient transfection assay results from five of stepwise deletion fragments linked to the luciferase reporter gene revealed that the promoter activity of each CYP6B6 fragment was significantly higher than that of their basal activity after the Sf9 cells were treated with 2-tridecanone. Among all, the fragment spanning -373 to +405 bp of the CYP6B6 promoter showed an obviously 2-tridecanone inducibility (P<0.0001), which might have the 2-tridecanone responsive element based on promoter activity. Electrophoretic mobility shift assays revealed that the nuclear protein extracted from midgut of the 6th instar larva of H. armigera, reared on 10 mg 2-tridecanone per gram artificial diet for 48 h, could specifically bind to the active region from -373 to 21 bp of the CYP6B6 promoter. The combination feature also appeared when using a shorter fragment from -292 to -154 bp of the CYP6B6 promoter. Taken together, we found a 2-tridecanone core responsive region between -292 and -154 bp of the CYP6B6 promoter. This may lead us to a better understanding of transcriptional mechanism of P450 gene and provide very useful information for the pest control.

  16. Estimating pediatric doses of drugs metabolized by cytochrome P450 (CYP) isozymes, based on physiological liver development and serum protein levels.

    PubMed

    Suzuki, Shinya; Murayama, Yuka; Sugiyama, Erika; Hirunpanich, Vilasinee; Saito, Kiyomi; Sekiyama, Masao; Sato, Hitoshi

    2010-04-01

    We established a method for estimating pediatric doses of drugs metabolized by cytochrome P450 (CYP) isozymes, using the free fraction of drug in plasma (fu), serum protein level (P), liver volume (LV), and CYP activity (Vmax/Km) as indices of physiological and biochemical development in children up to 15 years old. This method allows the child/adult dose ratio (D(C)/D(A))=child/adult oral clearance ratio (CL((PO)(C))/CL((PO)(A))) of drugs mainly metabolized in the liver to be estimated by the following equation: [formula: see text]. Major metabolism of drugs was ascribed to CYP1A2 for theophylline and caffeine, and CYP1A2 and CYP2D6 for propranolol and mexiletine. For theophylline and caffeine, CL((PO)(C))/CL((PO)(A)) calculated from the child/adult body surface area ratio (BSA ratio) and the value calculated by our method were compared, using CL((PO)(C))/CL((PO)(A)) calculated from the clearance ratio based on population pharmacokinetics (PPK ratio) as a reference. For all drugs, pediatric doses calculated from the Crawford equation and our equation were compared, with predetermined doses as the reference. For theophylline and caffeine, the relative accuracy of our method was significantly higher than that of BSA-based estimation when the PPK ratio was used for reference. For theophylline, caffeine, and propranolol, the relative accuracy of our method was significantly higher than that of BSA-based estimation when predetermined doses were used for reference. These findings indicate the validity of our method which considers the physiological and biochemical development (i.e., fu, P, LV, and CYP activity) for pediatric dose estimation.

  17. MiR-285 targets P450 (CYP6N23) to regulate pyrethroid resistance in Culex pipiens pallens.

    PubMed

    Tian, Mengmeng; Liu, Bingqian; Hu, Hongxia; Li, Xixi; Guo, Qin; Zou, Feifei; Liu, Xianmiao; Hu, Mengxue; Guo, Juxin; Ma, Lei; Zhou, Dan; Sun, Yan; Shen, Bo; Zhu, Changliang

    2016-12-01

    MicroRNAs play critical roles in post-transcriptional regulation of gene expression, which participate in the modulation of almost all of the cellular processes. Although emerging evidence indicates that microRNAs are related with antineoplastic drugs resistance, whether microRNAs are responsible for insecticide resistance in mosquitos is poorly understood. In this paper, we found that miR-285 was significantly upregulated in the deltamethrin-resistant strain of Culex pipiens pallens, and overexpression miR-285 through microinjection increased mosquito survival rate against deltamethrin treatement. Using bioinformatic software, quantitative reverse transcription PCR, luciferase reporter assay and microinjection approaches, we conformed that CYP6N23 was the target of miR-285. Lower expression of CYP6N23 was observed in the deltamethrin-resistant strain. While, mosquito mortality rate was decreased after downregulating expression of CYP6N23 by dsRNA against CYP6N23 or miR-285 mimic microinjection. These findings revealed that miR-285 could target CYP6N23 to regulate pyrethroid resistance, providing new insights into mosquito insecticide resistance surveillance and control.

  18. Variable inhibitory effect of herbal supplements of different brands on human P450 CYP1A2

    PubMed Central

    Wanwimolruk, Sompon; Prachayasittikul, Virapong

    2012-01-01

    Herbal supplements are not governed by the same regulations as prescription drugs, we hypothesize that the content of their active ingredients may vary largely among different manufacturers. This may produce variable therapeutic outcomes. This study aims to examine this hypothesis on commonly used herbal supplements among cancer patients. CYP1A2 has been implicated in the activation of many carcinogens and alteration in its activity may be a mechanism associated with the protective effect of herbal products. Activity of human CYP1A2 was used to determine the effect of four herbal supplements of different brands, namely, black cohosh (BC), ginseng, grape seed extract (GSE) and green tea extract (GTE). The herbal content was extracted with methanol, and extract aliquots were used to determine their effect on CYP1A2. Human liver microsomes, the CYP1A2 probe (7-ethoxyresorufin) and NADPH in buffer were incubated with and without herbal extract. Metabolite (resorufin) formation was monitored by HPLC. Seven BC products caused a mild inhibition of CYP1A2, ranging from 2.4 % by GNC Plus to 21.9 % by Nature's Resource. Among nine ginseng products tested, the inhibitory effect varied from 4.2 % by Imperial to 44.6 % by Solarays. The effect of nine GSE brands also varied, ranging from 1.7 % (Country Life) to 26.5 % (Veg Life). Of twelve GTE products, the inhibitory effect varied from 2.9 % by Henry's to 46.6 % by GNC Plus. It appears that the inhibition of selected herbal supplements on CYP1A2 activity varies considerably among different brands of the products. This may be due to variations in the herbal products' active ingredients content. PMID:27298605

  19. Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C-C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells.

    PubMed

    Ikezawa, Nobuhiro; Iwasa, Kinuko; Sato, Fumihiko

    2008-04-04

    Cytochrome P450s (P450) play a key role in oxidative reactions in plant secondary metabolism. Some of them, which catalyze unique reactions other than the standard hydroxylation, increase the structural diversity of plant secondary metabolites. In isoquinoline alkaloid biosyntheses, several unique P450 reactions have been reported, such as methylenedioxy bridge formation, intramolecular C-C phenol-coupling and intermolecular C-O phenol-coupling reactions. We report here the isolation and characterization of a C-C phenol-coupling P450 cDNA (CYP80G2) from an expressed sequence tag library of cultured Coptis japonica cells. Structural analysis showed that CYP80G2 had high amino acid sequence similarity to Berberis stolonifera CYP80A1, an intermolecular C-O phenol-coupling P450 involved in berbamunine biosynthesis. Heterologous expression in yeast indicated that CYP80G2 had intramolecular C-C phenol-coupling activity to produce (S)-corytuberine (aporphine-type) from (S)-reticuline (benzylisoquinoline type). Despite this intriguing reaction, recombinant CYP80G2 showed typical P450 properties: its C-C phenol-coupling reaction required NADPH and oxygen and was inhibited by a typical P450 inhibitor. Based on a detailed substrate-specificity analysis, this unique reaction mechanism and substrate recognition were discussed. CYP80G2 may be involved in magnoflorine biosynthesis in C. japonica, based on the fact that recombinant C. japonica S-adenosyl-L-methionine:coclaurine N-methyltransferase could convert (S)-corytuberine to magnoflorine.

  20. In vitro modulatory effects of Andrographis paniculata, Centella asiatica and Orthosiphon stamineus on cytochrome P450 2C19 (CYP2C19).

    PubMed

    Pan, Yan; Abd-Rashid, Badrul Amini; Ismail, Zakiah; Ismail, Rusli; Mak, Joon Wah; Pook, Peter C K; Er, Hui Meng; Ong, Chin Eng

    2011-01-27

    Andrographis paniculata (AP), Centella asiatica (CA) and Orthosiphon stamineus (OS) are three popular herbs traditionally used worldwide. AP is known for the treatment of infections and diabetes and CA is good for wound healing and healthy skin while OS is usually consumed as tea to treat kidney and urinary disorders. Interaction of these herbs with human cytochrome P450 2C19 (CYP2C19), a major hepatic CYP isoform involved in metabolism of many clinical drugs has not been investigated to date. In this study, the modulatory effects of various extracts and major active constituents of AP, CA and OS on CYP2C19 activities were evaluated. S-mephenytoin, the CYP2C19 substrate probe, was incubated in the presence or absence of AP, CA and OS components. The changes in the rate of metabolite (hydroxymephenytoin) formation were subsequently determined by a high-performance liquid chromatography (HPLC)-based enzyme assay to characterize the modulatory effects. Among the herbal extracts studied, AP ethanol extract and CA dichloromethane extract exhibited mixed type inhibition towards CYP2C19 with K(i) values of 67.1 and 16.4 μg/ml respectively; CA ethanol extract and OS petroleum ether extract competitively inhibited CYP2C19 activity (K(i)=39.6 and 41.5 μg/ml respectively). Eupatorin (a major active constituent of OS) was found to significantly inhibit CYP2C19 by mixed type inhibition (K(i)=7.1 μg/ml or 20.6 μM). It was observed that AP, CA and OS inhibited CYP2C19 activity with varying potency. While weak inhibitory effect was observed with AP, moderate to strong inhibition was observed with CA dichloromethane extract and eupatorin, the major OS constituent. Therefore care should be taken when these CA and OS components are co-administered with CYP2C19 substrates (such as omeprazole, proguanil, barbiturates, citalopram, and diazepam). Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Cytochrome P450 2E1 (CYP2E1) regulates the response to oxidative stress and migration of breast cancer cells

    PubMed Central

    2013-01-01

    Introduction The cytochrome P450 (CYP) enzymes are a class of heme-containing enzymes involved in phase I metabolism of a large number of xenobiotics. The CYP family member CYP2E1 metabolises many xenobiotics and pro-carcinogens, it is not just expressed in the liver but also in many other tissues such as the kidney, the lung, the brain, the gastrointestinal tract and the breast tissue. It is induced in several pathological conditions including cancer, obesity, and type II diabetes implying that this enzyme is implicated in other biological processes beyond its role in phase I metabolism. Despite the detailed description of the role of CYP2E1 in the liver, its functions in other tissues have not been extensively studied. In this study, we investigated the functional significance of CYP2E1 in breast carcinogenesis. Methods Cellular levels of reactive oxygen species (ROS) were measured by H2DCFDA (2 2.9.2 2′,7′-dichlorodihydrofluorescein diacetate) staining and autophagy was assessed by tracing the cellular levels of autophagy markers using western blot assays. The endoplasmic reticulum stress and the unfolded protein response (UPR) were detected by luciferase assays reflecting the splicing of mRNA encoding the X-box binding protein 1 (XBP1) transcription factor and cell migration was evaluated using the scratch wound assay. Gene expression was recorded with standard transcription assays including luciferase reporter and chromatin immunoprecipitation. Results Ectopic expression of CYP2E1 induced ROS generation, affected autophagy, stimulated endoplasmic reticulum stress and inhibited migration in breast cancer cells with different metastatic potential and p53 status. Furthermore, evidence is presented indicating that CYP2E1 gene expression is under the transcriptional control of the p53 tumor suppressor. Conclusions These results support the notion that CYP2E1 exerts an important role in mammary carcinogenesis, provide a potential link between ethanol metabolism

  2. Altered expression of small heterodimer partner governs cytochrome P450 (CYP) 2D6 induction during pregnancy in CYP2D6-humanized mice.

    PubMed

    Koh, Kwi Hye; Pan, Xian; Shen, Hong-Wu; Arnold, Samuel L M; Yu, Ai-Ming; Gonzalez, Frank J; Isoherranen, Nina; Jeong, Hyunyoung

    2014-02-07

    Substrates of a major drug-metabolizing enzyme CYP2D6 display increased elimination during pregnancy, but the underlying mechanisms are unknown in part due to a lack of experimental models. Here, we introduce CYP2D6-humanized (Tg-CYP2D6) mice as an animal model where hepatic CYP2D6 expression is increased during pregnancy. In the mouse livers, expression of a known positive regulator of CYP2D6, hepatocyte nuclear factor 4α (HNF4α), did not change during pregnancy. However, HNF4α recruitment to CYP2D6 promoter increased at term pregnancy, accompanied by repressed expression of small heterodimer partner (SHP). In HepG2 cells, SHP repressed HNF4α transactivation of CYP2D6 promoter. In transgenic (Tg)-CYP2D6 mice, SHP knockdown led to a significant increase in CYP2D6 expression. Retinoic acid, an endogenous compound that induces SHP, exhibited decreased hepatic levels during pregnancy in Tg-CYP2D6 mice. Administration of all-trans-retinoic acid led to a significant decrease in the expression and activity of hepatic