Science.gov

Sample records for p450 enzymes involved

  1. Identification of the main human cytochrome P450 enzymes involved in safrole 1'-hydroxylation.

    PubMed

    Ueng, Yune-Fang; Hsieh, Chih-Hang; Don, Ming-Jaw; Chi, Chin-Wen; Ho, Li-Kang

    2004-08-01

    Safrole is a natural plant constituent, found in sassafras oil and certain other essential oils. The carcinogenicity of safrole is mediated through 1'-hydroxysafrole formation, followed by sulfonation to an unstable sulfate that reacts to form DNA adducts. To identify the main cytochrome P450 (P450) involved in human hepatic safrole 1'-hydroxylation (SOH), we determined the SOH activities of human liver microsomes and Escherichia coli membranes expressing bicistronic human P450s. Human liver (n = 18) microsomal SOH activities were in the range of 3.5-16.9 nmol/min/mg protein with a mean value of 8.7 +/- 0.7 nmol/min/mg protein. In human liver (n = 3) microsomes, the mean K(m) and V(max) values of SOH were 5.7 +/- 1.2 mM and 0.14 +/- 0.03 micromol/min/nmol P450, respectively. The mean intrinsic clearance (V(max)/K(m)) was 25.3 +/- 2.3 microL/min/nmol P450. SOH was sensitive to the inhibition by a CYP2C9 inhibitor, sulfaphenazole, and CYP2E1 inhibitors, 4-methylpyrazole and diethyldithiocarbamate. The liver microsomal SOH activity showed significant correlations with tolbutamide hydroxylation (r = 0.569) and chlorzoxazone hydroxylation (r = 0.770) activities, which were the model reactions catalyzed by CYP2C9 and CYP2E1, respectively. Human CYP2C9 and CYP2E1 showed SOH activities at least 2-fold higher than the other P450s. CYP2E1 showed an intrinsic clearance 3-fold greater than CYP2C9. These results demonstrated that CYP2C9 and CYP2E1 were the main P450s involved in human hepatic SOH.

  2. Involvement of multiple cytochrome P450 and UDP-glucuronosyltransferase enzymes in the in vitro metabolism of muraglitazar.

    PubMed

    Zhang, Donglu; Wang, Lifei; Chandrasena, Gamini; Ma, Li; Zhu, Mingshe; Zhang, Hongjian; Davis, Carl D; Humphreys, W Griffith

    2007-01-01

    Muraglitazar (Pargluva), a dual alpha/gamma peroxisome proliferator-activated receptor activator, has both glucose- and lipid-lowering effects in animal models and in patients with diabetes. The human major primary metabolic pathways of muraglitazar include acylglucuronidation, aliphatic/aryl hydroxylation, and O-demethylation. This study describes the identification of human cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) enzymes involved in the in vitro metabolism of muraglitazar. [(14)C]Muraglitazar was metabolized by cDNA-expressed CYP2C8, 2C9, 2C19, 2D6, and 3A4, but to a very minimal extent by CYP1A2, 2A6, 2B6, 2C18, 2E1, and 3A5. Inhibition of the in vitro metabolism of muraglitazar in human liver microsomes, at a clinically efficacious concentration, by chemical inhibitors and monoclonal antibodies further supported involvement of CYP2C8, 2C9, 2C19, 2D6, and 3A4 in its oxidation. A combination of intrinsic clearance (V(max)/K(m)) and relative concentrations of each P450 enzyme in the human liver was used to predict the contribution of CYP2C8, 2C9, 2C19, 2D6, and 3A4 to the formation of each primary oxidative metabolite and to the overall oxidative metabolism of muraglitazar. Glucuronidation of [(14)C]muraglitazar was catalyzed by cDNA-expressed UGT1A1, 1A3, and 1A9, but not by UGT1A6, 1A8, 1A10, 2B4, 2B7, and 2B15. The K(m) values for muraglitazar glucuronidation by the three active UGT enzymes were similar (2-4 muM). In summary, muraglitazar was metabolized by multiple P450 and UGT enzymes to form multiple metabolites. This characteristic predicts a low potential for the alteration of the pharmacokinetic parameters of muraglitazar via polymorphic drug metabolism enzymes responsible for clearance of the compound or by coadministration of drugs that inhibit or induce relevant metabolic enzymes. PMID:17062778

  3. [Cytochrome P450 enzymes and microbial drug development - A review].

    PubMed

    Li, Zhong; Zhang, Wei; Li, Shengying

    2016-03-01

    Cytochrome P450 enzymes broadly exist in animals, plants and microorganisms. This superfamily of monooxygenases holds the greatest diversity of substrate structures and catalytic reaction types among all enzymes. P450 enzymes play important roles in natural product biosynthesis. In particular, P450 enzymes are capable of catalyzing the regio- and stereospecific oxidation of non-activated C-H bonds in complex organic compounds under mild conditions, which overrides many chemical catalysts. This advantage thus warrants their great potential in microbial drug development. In this review, we introduce a variety of P450 enzymes involved in natural product biosynthesis; provide a brief overview on protein engineering, biotransformation and practical application of P450 enzymes; and discuss the limits, challenges and prospects of industrial application of P450 enzymes.

  4. [Cytochrome P450 enzymes and microbial drug development - A review].

    PubMed

    Li, Zhong; Zhang, Wei; Li, Shengying

    2016-03-01

    Cytochrome P450 enzymes broadly exist in animals, plants and microorganisms. This superfamily of monooxygenases holds the greatest diversity of substrate structures and catalytic reaction types among all enzymes. P450 enzymes play important roles in natural product biosynthesis. In particular, P450 enzymes are capable of catalyzing the regio- and stereospecific oxidation of non-activated C-H bonds in complex organic compounds under mild conditions, which overrides many chemical catalysts. This advantage thus warrants their great potential in microbial drug development. In this review, we introduce a variety of P450 enzymes involved in natural product biosynthesis; provide a brief overview on protein engineering, biotransformation and practical application of P450 enzymes; and discuss the limits, challenges and prospects of industrial application of P450 enzymes. PMID:27382792

  5. Identification of the rat liver cytochrome P450 enzymes involved in the metabolism of the calcium channel blocker dipfluzine hydrochloride.

    PubMed

    Guo, Wei; Shi, Xiaowei; Wang, Wei; Zhang, Weili; Li, Junxia

    2014-11-01

    This study aimed to identify the specific cytochrome P450 (CYP450) enzymes involved in the metabolism of dipfluzine hydrochloride using the combination of a chemical inhibition study, a correlation analysis and a panel of recombinant rat CYP450 enzymes. The incubation of Dip with rat liver microsomes yielded four metabolites, which were identified by liquid chromatography-coupled tandem mass spectrometry (LC/MS/MS). The results from the assays involving eight selective inhibitors indicated that CYP3A and CYP2A1 contributed most to the metabolism of Dip, followed by CYP2C11, CYP2E1 and CYP1A2; however, CYP2B1, CYP2C6 and CYP2D1 did not contribute to the formation of the metabolites. The results of the correlation analysis and the assays involving the recombinant CYP450 enzymes further confirmed the above results and concluded that CYP3A2 contributed more than CYP3A1. The results will be valuable in understanding drug-drug interactions when Dip is coadministered with other drugs.

  6. Characterization of the cytochrome P450 enzymes involved in the metabolism of a new cardioprotective agent KR-33028.

    PubMed

    Kim, Hyojin; Yoon, Yune-Jung; Kim, Hyunmi; Kang, Suil; Cheon, Hyae Gyeong; Yoo, Sung-Eun; Shin, Jae-Gook; Liu, Kwang-Hyeon

    2006-10-10

    KR-33028 (N-[4-cyano-benzo[b]thiophene-2-carbonyl]guanidine) is a new cardioprotective agent for preventing ischemia-reperfusion injury. This study was performed to characterize the cytochrome P450 (CYP) enzymes that are involved in the metabolism of KR-33028. Hydroxylation (5-hydroxy- and 7-hydroxy-KR-33028) is major pathways for the metabolism of KR-33028 in human liver microsomes. Among the nine c-DNA expressed CYP isoforms tested, KR-33028 was 5-hydroxylated by CYP3A4 and 7-hydroxylated by CYP1A2, CYP3A4, and CYP2C19. These findings were supported by the combination of chemical inhibition studies in human liver microsomes and correlation analysis. Furafylline and ketoconazole potently inhibited hydroxylation of KR-33028 in human liver microsomes. Correlation analysis between the known CYP enzyme activities and the rates of the formation of 5-hydroxy- and 7-hydroxy-KR-33028 in the 16 human liver microsomes has showed significant correlations with CYP3A4-mediated midazolam 1'-hydroxylation and CYP1A2-mediated phenacetin O-deethylation, respectively. A 7-hydroxy-KR-33028 formation is also weakly correlated with CYP3A4-mediated midazolam 1'-hydroxylation. The kinetics of the major biotransformation of KR-33028 were studied: CYP3A4 mediated the formation of 5-hydroxy-KR-33028 from KR-33028 with Cl(int)=0.22microl/min/pmol CYP. The intrinsic clearance for 7-hydroxy-KR-33028 formation by CYP1A2, CYP2C19, and CYP3A4 were 0.26, 0.19, and 0.03microl/min/pmol CYP, respectively. Taken together, these results provide evidence that CYP3A4 and CYP1A2 are the major isoforms responsible for the hydroxy metabolites formation from KR-33028.

  7. Expression, function and regulation of mouse cytochrome P450 enzymes: comparison with human P450 enzymes.

    PubMed

    Hrycay, E G; Bandiera, S M

    2009-12-01

    The present review focuses on the expression, function and regulation of mouse cytochrome P450 (Cyp) enzymes. Information compiled for mouse Cyp enzymes is compared with data collected for human CYP enzymes. To date, approximately 40 pairs of orthologous mouse-human CYP genes have been identified that encode enzymes performing similar metabolic functions. Recent knowledge concerning the tissue expression of mouse Cyp enzymes from families 1 to 51 is summarized. The catalytic activities of microsomal, mitochondrial and recombinant mouse Cyp enzymes are discussed and their involvement in the metabolism of exogenous and endogenous compounds is highlighted. The role of nuclear receptors, such as the aryl hydrocarbon receptor, constitutive androstane receptor and pregnane X receptor, in regulating the expression of mouse Cyp enzymes is examined. Targeted disruption of selected Cyp genes has generated numerous Cyp null mouse lines used to decipher the role of Cyp enzymes in metabolic, toxicological and biological processes. In conclusion, the laboratory mouse is an indispensable model for exploring human CYP-mediated activities.

  8. Identification of human liver cytochrome P450 enzymes involved in the metabolism of SCH 530348 (Vorapaxar), a potent oral thrombin protease-activated receptor 1 antagonist.

    PubMed

    Ghosal, Anima; Lu, Xiaowen; Penner, Natalia; Gao, Lan; Ramanathan, Ragu; Chowdhury, Swapan K; Kishnani, Narendra S; Alton, Kevin B

    2011-01-01

    Vorapaxar (SCH 530348), a potent oral thrombin protease-activated receptor 1 antagonist, is being developed as an antiplatelet agent for patients with established vascular disease. The objective of this study was to identify the human liver cytochrome P450 (P450) enzyme(s) responsible for the metabolism of SCH 530348. Human liver microsomes metabolized SCH 530348 to M19, an amine metabolite formed via carbamate cleavage, and M20 (monohydroxy-SCH 530348). Recombinant human CYP3A4 exhibited the most activity (11.5% profiled radioactivity) for the formation of M19, followed by markedly less substrate conversion with CYP1A1 and CYP2C19. Trace levels of M19, a major excreted human metabolite, were detected with CYP1A2, CYP3A5, and CYP4F3A. Formation of M19 by human liver microsomes was inhibited 89% by ketoconazole (IC(50), 0.73 μM), 34% by tranylcypromine, and 89% by anti-CYP3A4 monoclonal antibody. There was a significant correlation between the rate of M19 formation and midazolam 1'-hydroxylation (r = 0.75) or M19 formation and testosterone 6β-hydroxylation (r = 0.92). The results of screening, inhibition, and correlation studies confirmed that CYP3A4 is the major P450 enzyme responsible for M19 formation from SCH 530348. In contrast, formation of M20, a major circulating human metabolite at steady state, was primarily catalyzed by CYP3A4 and CYP2J2. M20 is pharmacologically equipotent to SCH 530348, whereas M19 is an inactive metabolite. Formation of M20 by human liver microsomes was inhibited 89% by ketoconazole, 75% by astemizole (a CYP2J2 inhibitor), and 43% by CYP3A4 monoclonal antibody. These results suggest that CYP3A4 and CYP2J2 are both involved in the formation of M20 metabolite. PMID:20926621

  9. Two herbivore-induced cytochrome P450 enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense.

    PubMed

    Irmisch, Sandra; McCormick, Andrea Clavijo; Boeckler, G Andreas; Schmidt, Axel; Reichelt, Michael; Schneider, Bernd; Block, Katja; Schnitzler, Jörg-Peter; Gershenzon, Jonathan; Unsicker, Sybille B; Köllner, Tobias G

    2013-11-01

    Aldoximes are known as floral and vegetative plant volatiles but also as biosynthetic intermediates for other plant defense compounds. While the cytochrome P450 monooxygenases (CYP) from the CYP79 family forming aldoximes as biosynthetic intermediates have been intensively studied, little is known about the enzymology of volatile aldoxime formation. We characterized two P450 enzymes, CYP79D6v3 and CYP79D7v2, which are involved in herbivore-induced aldoxime formation in western balsam poplar (Populus trichocarpa). Heterologous expression in Saccharomyces cerevisiae revealed that both enzymes produce a mixture of different aldoximes. Knockdown lines of CYP79D6/7 in gray poplar (Populus × canescens) exhibited a decreased emission of aldoximes, nitriles, and alcohols, emphasizing that the CYP79s catalyze the first step in the formation of a complex volatile blend. Aldoxime emission was found to be restricted to herbivore-damaged leaves and is closely correlated with CYP79D6 and CYP79D7 gene expression. The semi-volatile phenylacetaldoxime decreased survival and weight gain of gypsy moth (Lymantria dispar) caterpillars, suggesting that aldoximes may be involved in direct defense. The wide distribution of volatile aldoximes throughout the plant kingdom and the presence of CYP79 genes in all sequenced genomes of angiosperms suggest that volatile formation mediated by CYP79s is a general phenomenon in the plant kingdom. PMID:24220631

  10. Two herbivore-induced cytochrome P450 enzymes CYP79D6 and CYP79D7 catalyze the formation of volatile aldoximes involved in poplar defense.

    PubMed

    Irmisch, Sandra; McCormick, Andrea Clavijo; Boeckler, G Andreas; Schmidt, Axel; Reichelt, Michael; Schneider, Bernd; Block, Katja; Schnitzler, Jörg-Peter; Gershenzon, Jonathan; Unsicker, Sybille B; Köllner, Tobias G

    2013-11-01

    Aldoximes are known as floral and vegetative plant volatiles but also as biosynthetic intermediates for other plant defense compounds. While the cytochrome P450 monooxygenases (CYP) from the CYP79 family forming aldoximes as biosynthetic intermediates have been intensively studied, little is known about the enzymology of volatile aldoxime formation. We characterized two P450 enzymes, CYP79D6v3 and CYP79D7v2, which are involved in herbivore-induced aldoxime formation in western balsam poplar (Populus trichocarpa). Heterologous expression in Saccharomyces cerevisiae revealed that both enzymes produce a mixture of different aldoximes. Knockdown lines of CYP79D6/7 in gray poplar (Populus × canescens) exhibited a decreased emission of aldoximes, nitriles, and alcohols, emphasizing that the CYP79s catalyze the first step in the formation of a complex volatile blend. Aldoxime emission was found to be restricted to herbivore-damaged leaves and is closely correlated with CYP79D6 and CYP79D7 gene expression. The semi-volatile phenylacetaldoxime decreased survival and weight gain of gypsy moth (Lymantria dispar) caterpillars, suggesting that aldoximes may be involved in direct defense. The wide distribution of volatile aldoximes throughout the plant kingdom and the presence of CYP79 genes in all sequenced genomes of angiosperms suggest that volatile formation mediated by CYP79s is a general phenomenon in the plant kingdom.

  11. Human cytochrome p450 enzyme specificity for the bioactivation of estragole and related alkenylbenzenes.

    PubMed

    Jeurissen, Suzanne M F; Punt, Ans; Boersma, Marelle G; Bogaards, Jan J P; Fiamegos, Yiannis C; Schilter, Benoit; van Bladeren, Peter J; Cnubben, Nicole H P; Rietjens, Ivonne M C M

    2007-05-01

    Human cytochrome P450 enzymes involved in the bioactivation of estragole to its proximate carcinogen 1'-hydroxyestragole were identified and compared to the enzymes of importance for 1'-hydroxylation of the related alkenylbenzenes methyleugenol and safrole. Incubations with Supersomes revealed that all enzymes tested, except P450 2C8, are intrinsically able to 1'-hydroxylate estragole. Experiments with Gentest microsomes, expressing P450 enzymes to roughly average liver levels, indicated that P450 1A2, 2A6, 2C19, 2D6, and 2E1 might contribute to estragole 1'-hydroxylation in the human liver. Especially P450 1A2 is an important enzyme based on the correlation between P450 1A2 activity and estragole 1'-hydroxylation in human liver microsomal samples and inhibition of estragole 1'-hydroxylation by the P450 1A2 inhibitor alpha-naphthoflavone. Kinetic studies revealed that, at physiologically relevant concentrations of estragole, P450 1A2 and 2A6 are the most important enzymes for bioactivation in the human liver showing enzyme efficiencies (kcat/Km) of, respectively, 59 and 341 min-1 mM-1. Only at relatively high estragole concentrations, P450 2C19, 2D6, and 2E1 might contribute to some extent. Comparison to results from similar studies for safrole and methyleugenol revealed that competitive interactions between estragole and methyleugenol 1'-hydroxylation and between estragole and safrole 1'-hydroxylation are to be expected because of the involvement of, respectively, P450 1A2 and P450 2A6 in the bioactivation of these compounds. Furthermore, poor metabolizer phenotypes in P450 2A6 might diminish the chances on bioactivation of estragole and safrole, whereas lifestyle factors increasing P450 1A2 activities such as cigarette smoking and consumption of charbroiled food might increase those chances for estragole and methyleugenol.

  12. Cytochrome P450-Mediated Phytoremediation using Transgenic Plants: A Need for Engineered Cytochrome P450 Enzymes

    PubMed Central

    Kumar, Santosh; Jin, Mengyao; Weemhoff, James L

    2013-01-01

    There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression. On the other hand, bacterial CYP enzymes show limited substrate diversity and usually do not metabolize herbicides and industrial contaminants. Therefore, there has been a considerable interest for biotechnological industries and the scientific community to design CYP enzymes to improve their catalytic efficiency, stability, expression, substrate diversity, and the suitability of P450-CPR fusion enzymes. Engineered CYP enzymes have potential for transgenic plants-mediated phytoremediation of herbicides and environmental contaminants. In this review we discuss: 1) the role of CYP enzymes in phytoremediation using transgenic plants, 2) problems associated with wild-type CYP enzymes in phytoremediation, and 3) examples of engineered CYP enzymes and their potential role in transgenic plant-mediated phytoremediation. PMID:25298920

  13. Crystallization and preliminary x-ray diffraction analysis of P450terp and the hemoprotein domain of P450BM-3, enzymes belonging to two distinct classes of the cytochrome P450 superfamily.

    PubMed Central

    Boddupalli, S S; Hasemann, C A; Ravichandran, K G; Lu, J Y; Goldsmith, E J; Deisenhofer, J; Peterson, J A

    1992-01-01

    Cytochromes P450 are members of a superfamily of hemoproteins that are involved in the metabolism of various physiologic and xenobiotic organic compounds. This superfamily of proteins can be divided into two classes based on the electron donor proximal to the P450: an iron-sulfur protein for class I P450s or a flavoprotein for class II. The only known tertiary structure of any of the cytochromes P450 is that of P450cam, a class I soluble enzyme isolated from Pseudomonas putida (product of the CYP101 gene). To understand the details of the structure-function relationships within and between the two classes, structural studies on additional cytochromes P450 are crucial. We report here characterization of the crystal forms of two soluble, bacterial enzymes: cytochrome P450terp [class I enzyme from a Pseudomonas species (product of CYP108 gene)] and the hemoprotein domain of cytochrome P450BM-3 [class II enzyme from Bacillus megaterium (product of the CYP102 gene)]. The crystals of cytochrome P450terp are hexagonal and belong to the space group P6(1)22 (or its enantiomorph, P6(5)22) with unit cell dimensions a = b = 68.9 A and c = 458.7 A. The crystals of the hemoprotein domain of cytochrome P450BM-3 are monoclinic and belong to the space group P2(1) with unit cell dimensions a = 59.4 A, b = 154.0 A, c = 62.2 A, and beta = 94.7 degrees. Diffraction data for the crystals of these two proteins were obtained to a resolution better than 2.2 A. Assuming the presence of two molecules in the asymmetric unit for the hemoprotein domain of P450BM-3 and one molecule for P450terp, the calculated values of Vm are 2.6 and 3.3 A3/Da, respectively. Images PMID:1608967

  14. Measurement of Cytochrome P450 Enzyme Induction and Inhibition in Human Hepatoma Cells.

    PubMed

    Rodrigues, Robim M; De Kock, Joery; Doktorova, Tatyana Y; Rogiers, Vera; Vanhaecke, Tamara

    2015-01-01

    Cytochrome P450 enzymes are a diverse group of catalytic enzymes in the liver that are mainly responsible for the biotransformation of organic substances. Cytochrome P450 activity as well as both its induction and inhibition are key factors in drug biotransformation and can be involved in deactivation, activation, detoxification and toxification processes. Thus, the modulation of cytochrome P450 activity is an important parameter when evaluating the potential toxicity of chemical compounds using an in vitro system. The cytochrome P450 3A subfamily proteins are among the most important drug-metabolizing enzymes in human liver and are responsible for about half of all cytochrome P450-dependent drug oxidations. In vitro, these enzymes are active not only in primary human hepatocyte cultures, but also in differentiated human hepatoma HepaRG cells. The present protocol describes the culture of cryopreserved differentiated HepaRG cells and the evaluation of its cytochrome P450 activity upon exposure to a chemical compound using a commercially available luminogenic cytochrome P450 assay. This in vitro model can be used to monitor the induction and inhibition of cytochrome P450 3A following exposure to a particular test compound.

  15. Rational redesign of the biodegradative enzyme cytochrome P450 cam:

    SciTech Connect

    Ornstein, R.; Paulsen, M.; Bass, M.; Arnold, G.

    1991-03-01

    Cytochromes P450, a superfamily of monooxygenase enzymes present in all kingdoms of living organisms, are very versatile with respect to substrate range and catalytic functionality. Many recalcitrant halogenated hydrocarbons, on DOE sites and throughout the nation, result in serious environmental impact. Cytochromes P450 have been shown to be catalytically capable of, at least partial, dehalogenation of some such compounds. Clearly, however, their active site stereochemistry and related functional components are not well suited for this role because the rates of dehalogenation are generally rather modest. The evolution of modified active site and access channel structures may proceed very slowly if multiple genetic changes are simultaneously required for enzyme adaptation. Since each mutational event is by itself a rare event, a basic premise of our research is that designing multiple changes into an enzyme may be more timely than waiting for them to occur biologically either via natural selection or under laboratory-controlled conditions. Starting with available high-resolution x-ray crystal structures, molecular modeling and molecular dynamics simulations have been used to probe the basic structure/function principles and conformational fluctuations of the biodegradative enzyme, cytochrome P450cam (camphor hydroxylase from Pseudomonas putida) and active site mutants, to provide the fundamental understanding necessary for rational engineering of the enzyme for modified substrate specificity. In the present paper, we review our progress to data, in the area of molecular dynamics simulations and active site redesign of P450cam. 36 refs., 2 figs.

  16. Inhibition of cytochrome p450 enzymes by quinones and anthraquinones.

    PubMed

    Sridhar, Jayalakshmi; Liu, Jiawang; Foroozesh, Maryam; Klein Stevens, Cheryl L

    2012-02-20

    In silico docking studies and quantitative structure-activity relationship analysis of a number of in-house cytochrome P450 inhibitors have revealed important structural characteristics that are required for a molecule to function as a good inhibitor of P450 enzymes 1A1, 1A2, 2B1, and/or 2A6. These insights were incorporated into the design of pharmacophores used for a 2D search of the Chinese medicine database. Emodin, a natural anthraquinone isolated from Rheum emodi and known to be metabolized by cytochrome P450 enzymes, was one of the hits and was used as the lead compound. Emodin was found to inhibit P450s 1A1, 1A2, and 2B1 with IC(50) values of 12.25, 3.73, and 14.89 μM, respectively. On the basis of the emodin molecular structure, further similarity searches of the PubChem and ZINC chemical databases were conducted resulting in the identification of 12 emodin analogues for testing against P450s 1A1-, 1A2-, 2B1-, and 2A6-dependent activities. 1-Amino-4-chloro-2-methylanthracene-9,10-dione (compound 1) showed the best inhibition potency for P450 1A1 with an IC(50) value of 0.40 μM. 1-Amino-4-chloro-2-methylanthracene-9,10-dione (compound 1) and 1-amino-4-hydroxyanthracene-9,10-dione (compound 2) both inhibited P450 1A2 with the same IC(50) value of 0.53 μM. In addition, compound 1 acted as a mechanism-based inhibitor of cytochrome P450s 1A1 and 1A2 with K(I) and K(inactivation) values of 5.38 μM and 1.57 min(-1) for P450 1A1 and 0.50 μM and 0.08 min(-1) for P450 1A2. 2,6-Di-tert-butyl-5-hydroxynaphthalene-1,4-dione (compound 8) directly inhibited P450 2B1 with good selectivity and inhibition potency (IC(50) = 5.66 μM). Docking studies using the 3D structures of the enzymes were carried out on all of the compounds. The binding modes of these compounds revealed the structural characteristics responsible for their potency and selectivity. Compound 1, which is structurally similar to compound 2 with the presence of an amino group at position 1, showed a

  17. A Multiscale Approach to Modelling Drug Metabolism by Membrane-Bound Cytochrome P450 Enzymes

    PubMed Central

    Sansom, Mark S. P.; Mulholland, Adrian J.

    2014-01-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes. PMID:25033460

  18. Cytochrome P450 enzyme mediated herbal drug interactions (Part 1)

    PubMed Central

    Wanwimolruk, Sompon; Prachayasittikul, Virapong

    2014-01-01

    It is well recognized that herbal supplements or herbal medicines are now commonly used. As many patients taking prescription medications are concomitantly using herbal supplements, there is considerable risk for adverse herbal drug interactions. Such interactions can enhance the risk for an individual patient, especially with regard to drugs with a narrow therapeutic index such as warfarin, cyclosporine A and digoxin. Herbal drug interactions can alter pharmacokinetic or/and pharmacodynamic properties of administered drugs. The most common pharmacokinetic interactions usually involve either the inhibition or induction of the metabolism of drugs catalyzed by the important enzymes, cytochrome P450 (CYP). The aim of the present article is to provide an updated review of clinically relevant metabolic CYP-mediated drug interactions between selected herbal supplements and prescription drugs. The commonly used herbal supplements selected include Echinacea, Ginkgo biloba, garlic, St. John's wort, goldenseal, and milk thistle. To date, several significant herbal drug interactions have their origins in the alteration of CYP enzyme activity by various phytochemicals. Numerous herbal drug interactions have been reported. Although the significance of many interactions is uncertain but several interactions, especially those with St. John’s wort, may have critical clinical consequences. St. John’s wort is a source of hyperforin, an active ingredient that has a strong affinity for the pregnane xenobiotic receptor (PXR). As a PXR ligand, hyperforin promotes expression of CYP3A4 enzymes in the small intestine and liver. This in turn causes induction of CYP3A4 and can reduce the oral bioavailability of many drugs making them less effective. The available evidence indicates that, at commonly recommended doses, other selected herbs including Echinacea, Ginkgo biloba, garlic, goldenseal and milk thistle do not act as potent or moderate inhibitors or inducers of CYP enzymes. A good

  19. The stress response of human proximal tubule cells to cadmium involves up-regulation of haemoxygenase 1 and metallothionein but not cytochrome P450 enzymes.

    PubMed

    Boonprasert, Kanyarat; Satarug, Soisungwan; Morais, Christudas; Gobe, Glenda C; Johnson, David W; Na-Bangchang, Kesara; Vesey, David A

    2016-05-13

    Enzymes of the cytochrome P450 (CYP) super-family are implicated in cadmium (Cd) -induced nephrotoxicity, however, direct evidence is lacking. This study investigated the endogenous expression of various CYP proteins together with the stress-response proteins, heme oxygenase-1 (HO-1) and metallothionein (MT) in human kidney sections and in cadmium-exposed primary cultures of human proximal tubular epithelial cells (PTC). By immunohistochemistry, the CYP members 2B6, 4A11 and 4F2 were prominently expressed in the cortical proximal tubular cells and to a lesser extent in distal tubular cells. Low levels of CYPs 2E1 and 3A4 were also detected. In PTC, in the absence of Cd, CYP2E1, CYP3A4, CYP4F2 and MT were expressed, but HO-1, CYP2B6 and CYP4A11 were not detected. A range of cadmium concentrations (0-100μM) were utilized to induce stress conditions. MT protein was further induced by as little as 0.5μM cadmium, reaching a 6-fold induction at 20μM, whereas for HO-1, a 5μM cadmium concentration was required for initial induction and at 20μM cadmium reached a 15-fold induction. The expression of CYP2E1, CYP3A4, and CYP4F2 were not altered by any cadmium concentrations tested at 48h. Cadmium caused a reduction in cell viability at concentrations above 10μM. In conclusion although cultured PTC, do express CYP proteins, (CYP2E1, CYP3A4, and CYP4F2), Cd-induced cell stress as indicted by induction of HO-1 and MT does not alter expression of these CYP proteins at 48h.

  20. P450 aromatase: a key enzyme in the spermatogenesis of the Italian wall lizard, Podarcis sicula.

    PubMed

    Rosati, Luigi; Agnese, Marisa; Di Fiore, Maria Maddalena; Andreuccetti, Piero; Prisco, Marina

    2016-08-01

    P450 aromatase is a key enzyme in steroidogenesis involved in the conversion of testosterone into 17β-estradiol. We investigated the localization and the expression of P450 aromatase in Podarcis sicula testes during the different phases of the reproductive cycle: summer stasis (July-August), early autumnal resumption (September), middle autumnal resumption (October-November), winter stasis (December-February), spring resumption (March-April) and the reproductive period (May-June). Using immunohistochemistry, we demonstrated that the P450 aromatase is always present in somatic and germ cells of P. sicula testis, particularly in spermatids and spermatozoa, except in early autumnal resumption, when P450 aromatase is evident only within Leydig cells. Using real-time PCR and semi-quantitative blot investigations, we also demonstrated that both mRNA and protein were expressed in all phases, with two peaks of expression occurring in summer and in winter stasis. These highest levels of P450 aromatase are in line with the increase of 17β-estradiol, responsible for the spermatogenesis block typical of this species. Differently, in autumnal resumption, the level of P450 aromatase dramatically decreased, along with 17β-estradiol levels, and testosterone titres increased, responsible for the subsequent renewal of spermatogenesis not followed by spermiation. In spring resumption and in the reproductive period we found intermediate P450 aromatase amounts, low levels of 17β-estradiol and the highest testosterone levels determining the resumption of spermatogenesis needed for reproduction. Our results, the first collected in a non-mammalian vertebrate, indicate a role of P450 aromatase in the control of steroidogenesis and spermatogenesis, particularly in spermiogenesis. PMID:27489219

  1. Cytochrome P450 enzyme mediated herbal drug interactions (Part 2)

    PubMed Central

    Wanwimolruk, Sompon; Phopin, Kamonrat; Prachayasittikul, Virapong

    2014-01-01

    To date, a number of significant herbal drug interactions have their origins in the alteration of cytochrome P450 (CYP) activity by various phytochemicals. Among the most noteworthy are those involving St. John's wort and drugs metabolized by human CYP3A4 enzyme. This review article is the continued work from our previous article (Part 1) published in this journal (Wanwimolruk and Prachayasittikul, 2014[ref:133]). This article extends the scope of the review to six more herbs and updates information on herbal drug interactions. These include black cohosh, ginseng, grape seed extract, green tea, kava, saw palmetto and some important Chinese medicines are also presented. Even though there have been many studies to determine the effects of herbs and herbal medicines on the activity of CYP, most of them were in vitro and in animal studies. Therefore, the studies are limited in predicting the clinical relevance of herbal drug interactions. It appeared that the majority of the herbal medicines have no clear effects on most of the CYPs examined. For example, the existing clinical trial data imply that black cohosh, ginseng and saw palmetto are unlikely to affect the pharmacokinetics of conventional drugs metabolized by human CYPs. For grape seed extract and green tea, adverse herbal drug interactions are unlikely when they are concomitantly taken with prescription drugs that are CYP substrates. Although there were few clinical studies on potential CYP-mediated interactions produced by kava, present data suggest that kava supplements have the ability to inhibit CYP1A2 and CYP2E1 significantly. Therefore, caution should be taken when patients take kava with CYP1A2 or CYP2E1 substrate drugs as it may enhance their therapeutic and adverse effects. Despite the long use of traditional Chinese herbal medicines, little is known about the potential drug interactions with these herbs. Many popularly used Chinese medicines have been shown in vitro to significantly change the

  2. Effect of natamycin on cytochrome P450 enzymes in rats.

    PubMed

    Martínez, María Aránzazu; Martínez-Larrañaga, María Rosa; Castellano, Victor; Martínez, Marta; Ares, Irma; Romero, Alejandro; Anadón, Arturo

    2013-12-01

    Natamycin is a polyene macrolide antibiotic widely used in the food industry as a feed additive to prevent mold contamination of foods. There are many contradictory results on the genotoxic effects of macrolides which could suggest a potential risk for humans. In the present study, the effects of natamycin on the activities of some drug metabolizing enzymes in rat liver microsomes were determined in vivo. Rats were treated orally with natamycin at doses of 0.3, 1, 3 and 10 mg/kg body weight (bw)/day for 6 days. Determinations of cytochrome P450 (CYP) enzyme activities were carried out in hepatic microsomes isolated from rats treated. The activities of CYP2E1, CYP1A1/2 CYP2B1/2 and CYP4A1/2 enzymes significantly decreased after treatment with 1, 3 and 10 mg/kg bw/day, in a dose-dependent manner as compared to control. This effect was not observed after natamycin treatment at dose of 0.3 mg/kg bw/day. Our results suggest that natamycin may not potentiate the toxicity of many xenobiotics via metabolic activation and/or accumulation of reactive metabolites but also might affect the clearance of other xenobiotics detoxified by the studied CYP enzymes.

  3. Two Herbivore-Induced Cytochrome P450 Enzymes CYP79D6 and CYP79D7 Catalyze the Formation of Volatile Aldoximes Involved in Poplar Defense[C][W

    PubMed Central

    Irmisch, Sandra; Clavijo McCormick, Andrea; Boeckler, G. Andreas; Schmidt, Axel; Reichelt, Michael; Schneider, Bernd; Block, Katja; Schnitzler, Jörg-Peter; Gershenzon, Jonathan; Unsicker, Sybille B.; Köllner, Tobias G.

    2013-01-01

    Aldoximes are known as floral and vegetative plant volatiles but also as biosynthetic intermediates for other plant defense compounds. While the cytochrome P450 monooxygenases (CYP) from the CYP79 family forming aldoximes as biosynthetic intermediates have been intensively studied, little is known about the enzymology of volatile aldoxime formation. We characterized two P450 enzymes, CYP79D6v3 and CYP79D7v2, which are involved in herbivore-induced aldoxime formation in western balsam poplar (Populus trichocarpa). Heterologous expression in Saccharomyces cerevisiae revealed that both enzymes produce a mixture of different aldoximes. Knockdown lines of CYP79D6/7 in gray poplar (Populus × canescens) exhibited a decreased emission of aldoximes, nitriles, and alcohols, emphasizing that the CYP79s catalyze the first step in the formation of a complex volatile blend. Aldoxime emission was found to be restricted to herbivore-damaged leaves and is closely correlated with CYP79D6 and CYP79D7 gene expression. The semi-volatile phenylacetaldoxime decreased survival and weight gain of gypsy moth (Lymantria dispar) caterpillars, suggesting that aldoximes may be involved in direct defense. The wide distribution of volatile aldoximes throughout the plant kingdom and the presence of CYP79 genes in all sequenced genomes of angiosperms suggest that volatile formation mediated by CYP79s is a general phenomenon in the plant kingdom. PMID:24220631

  4. Effects of icaritin on cytochrome P450 enzymes in rats.

    PubMed

    Liang, Dong-Lou; Zheng, Shuang-Li

    2014-04-01

    The purpose of this study was to find out whether icaritin influences the effect on rat cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C9, CYP2E1 and CYP3A4) using cocktail probe drugs in vivo. A cocktail solution at a dose of 5 mL/kg, which contained phenacetin (20 mg/kg), tolbutamide (5 mg/kg), chlorzoxazone (20 mg/kg) and midazolam (10 mg/kg), was orally administered to rats treated with multiple doses of icaritin. Blood samples were collected at a series of time-points and the concentrations of probe drugs in plasma were determined by HPLC-MS/MS. The corresponding pharmacokinetic parameters were calculated by the software of DAS 2.0. Treatment with multiple doses of icaritin had inhibitive effects on rat CYP1A2, CYP2C9 and CYP3A4 enzyme activities. However, icaritin has no inductive or inhibitory effect on the activity of CYP2E1. Therefore, caution is needed when icaritin is co-administered with some CYP1A2, CYP2C9 or CYP3A4 substrates, which may result in treatment failure and herb-drug interactions.

  5. Cytochrome P450: taming a wild type enzyme

    PubMed Central

    Jung, Sang Taek; Lauchli, Ryan; Arnold, Frances H

    2011-01-01

    Protein engineering of cytochrome P450 monooxygenases (P450s) has been very successful in generating valuable non-natural activities and properties, allowing these powerful catalysts to be used for the synthesis of drug metabolites and in biosynthetic pathways for the production of precursors of artemisinin and paclitaxel. Collected experience indicates that the P450s are highly 'evolvable'--they are particularly robust to mutation in their active sites and readily accept new substrates and exhibit new selectivities. Their ability to adapt to new challenges upon mutation may reflect the nonpolar nature of their active sites as well as their high degree of conformational variability. PMID:21411308

  6. Repellents Inhibit P450 Enzymes in Stegomyia (Aedes) aegypti

    PubMed Central

    Jaramillo Ramirez, Gloria Isabel; Logan, James G.; Loza-Reyes, Elisa; Stashenko, Elena; Moores, Graham D.

    2012-01-01

    The primary defence against mosquitoes and other disease vectors is often the application of a repellent. Despite their common use, the mechanism(s) underlying the activity of repellents is not fully understood, with even the mode of action of DEET having been reported to be via different mechanisms; e.g. interference with olfactory receptor neurones or actively detected by olfactory receptor neurones on the antennae or maxillary palps. In this study, we discuss a novel mechanism for repellence, one of P450 inhibition. Thirteen essential oil extracts from Colombian plants were assayed for potency as P450 inhibitors, using a kinetic fluorometric assay, and for repellency using a modified World Health Organisation Pesticide Evaluations Scheme (WHOPES) arm-in cage assay with Stegomyia (Aedes) aegypti mosquitoes. Bootstrap analysis on the inhibition analysis revealed a significant correlation between P450-inhibition and repellent activity of the oils. PMID:23152795

  7. Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver

    PubMed Central

    Yang, Xia; Zhang, Bin; Molony, Cliona; Chudin, Eugene; Hao, Ke; Zhu, Jun; Gaedigk, Andrea; Suver, Christine; Zhong, Hua; Leeder, J. Steven; Guengerich, F. Peter; Strom, Stephen C.; Schuetz, Erin; Rushmore, Thomas H.; Ulrich, Roger G.; Slatter, J. Greg; Schadt, Eric E.; Kasarskis, Andrew; Lum, Pek Yee

    2010-01-01

    Liver cytochrome P450s (P450s) play critical roles in drug metabolism, toxicology, and metabolic processes. Despite rapid progress in the understanding of these enzymes, a systematic investigation of the full spectrum of functionality of individual P450s, the interrelationship or networks connecting them, and the genetic control of each gene/enzyme is lacking. To this end, we genotyped, expression-profiled, and measured P450 activities of 466 human liver samples and applied a systems biology approach via the integration of genetics, gene expression, and enzyme activity measurements. We found that most P450s were positively correlated among themselves and were highly correlated with known regulators as well as thousands of other genes enriched for pathways relevant to the metabolism of drugs, fatty acids, amino acids, and steroids. Genome-wide association analyses between genetic polymorphisms and P450 expression or enzyme activities revealed sets of SNPs associated with P450 traits, and suggested the existence of both cis-regulation of P450 expression (especially for CYP2D6) and more complex trans-regulation of P450 activity. Several novel SNPs associated with CYP2D6 expression and enzyme activity were validated in an independent human cohort. By constructing a weighted coexpression network and a Bayesian regulatory network, we defined the human liver transcriptional network structure, uncovered subnetworks representative of the P450 regulatory system, and identified novel candidate regulatory genes, namely, EHHADH, SLC10A1, and AKR1D1. The P450 subnetworks were then validated using gene signatures responsive to ligands of known P450 regulators in mouse and rat. This systematic survey provides a comprehensive view of the functionality, genetic control, and interactions of P450s. PMID:20538623

  8. Degradation of Morpholine by an Environmental Mycobacterium Strain Involves a Cytochrome P-450

    PubMed Central

    Poupin, P.; Truffaut, N.; Combourieu, B.; Besse, P.; Sancelme, M.; Veschambre, H.; Delort, A. M.

    1998-01-01

    A Mycobacterium strain (RP1) was isolated from a contaminated activated sludge collected in a wastewater treatment unit of a chemical plant. It was capable of utilizing morpholine and other heterocyclic compounds, such as pyrrolidine and piperidine, as the sole source of carbon, nitrogen, and energy. The use of in situ 1H nuclear magnetic resonance (1H NMR) spectroscopy allowed the determination of two intermediates in the biodegradative pathway, 2-(2-aminoethoxy)acetate and glycolate. The inhibitory effects of metyrapone on the degradative abilities of strain RP1 indicated the involvement of a cytochrome P-450 in the biodegradation of morpholine. This observation was confirmed by spectrophotometric analysis and 1H NMR. Reduced cell extracts from morpholine-grown cultures, but not succinate-grown cultures, gave rise to a carbon monoxide difference spectrum with a peak near 450 nm, which indicated the presence of a soluble cytochrome P-450. 1H NMR allowed the direct analysis of the incubation medium containing metyrapone, a specific inhibitor of cytochrome P-450. The inhibition of morpholine degradation was dependent on the morpholine/metyrapone ratio. The heme-containing monooxygenase was also detected in pyrrolidine- and piperidine-grown cultures. The abilities of different compounds to support strain growth or the induction of a soluble cytochrome P-450 were assayed. The results suggest that this enzyme catalyzes the cleavage of the C—N bond of the morpholine ring. PMID:9435074

  9. Cytochrome p450nor, a novel class of mitochondrial cytochrome P450 involved in nitrate respiration in the fungus Fusarium oxysporum.

    PubMed

    Takaya, N; Suzuki, S; Kuwazaki, S; Shoun, H; Maruo, F; Yamaguchi, M; Takeo, K

    1999-12-15

    Fusarium oxysporum, an imperfect filamentous fungus performs nitrate respiration under limited oxygen. In the respiratory system, Cytochrome P450nor (P450nor) is thought to catalyze the last step; reduction of nitric oxide to nitrous oxide. We examined its intracellular localization using enzymatic, spectroscopic, and immunological analyses to show that P450nor is found in both the mitochondria and the cytosol. Translational fusions between the putative mitochondrial targeting signal on the amino terminus of P450nor and Escherichia coli beta-galactosidase resulted in significant beta-galactosidase activity in the mitochondrial fraction of nitrate-respiring cells, suggesting that one of the isoforms of P450nor (P450norA) is in anaerobic mitochondrion of F. oxysporum and acts as nitric oxide reductase. Furthermore, these findings suggest the involvement of P450nor in nitrate respiration in mitochondria.

  10. Involvement of Cytochrome P450 in Pentachlorophenol Transformation in a White Rot Fungus Phanerochaete chrysosporium

    PubMed Central

    Ning, Daliang; Wang, Hui

    2012-01-01

    The occurrence of cytochrome P450 and P450-mediated pentachlorophenol oxidation in a white rot fungus Phanerochaete chrysosporium was demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (103±13 pmol P450 per mg protein in the microsomal fraction) by pentachlorophenol. The pentachlorophenol oxidation by the microsomal P450 was NADPH-dependent at a rate of 19.0±1.2 pmol min−1 (mg protein)−1, which led to formation of tetrachlorohydroquinone and was significantly inhibited by piperonyl butoxide (a P450 inhibitor). Tetrachlorohydroquinone was also found in the cultures, while the extracellular ligninases which were reported to be involved in tetrachlorohydroquinone formation were undetectable. The formation of tetrachlorohydroquinone was not detectable in the cultures added with either piperonyl butoxide or cycloheximide (an inhibitor of de novo protein synthesis). These results revealed the pentachlorophenol oxidation by induced P450 in the fungus, and it should be the first time that P450-mediated pentachlorophenol oxidation was demonstrated in a microorganism. Furthermore, the addition of the P450 inhibitor to the cultures led to obvious increase of pentachlorophenol, suggesting that the relationship between P450 and pentachlorophenol methylation is worthy of further research. PMID:23029295

  11. Use of Human Plasma Samples to Identify Circulating Drug Metabolites that Inhibit Cytochrome P450 Enzymes.

    PubMed

    Eng, Heather; Obach, R Scott

    2016-08-01

    Drug interactions elicited through inhibition of cytochrome P450 (P450) enzymes are important in pharmacotherapy. Recently, greater attention has been focused on not only parent drugs inhibiting P450 enzymes but also on possible inhibition of these enzymes by circulating metabolites. In this report, an ex vivo method whereby the potential for circulating metabolites to be inhibitors of P450 enzymes is described. To test this method, seven drugs and their known plasma metabolites were added to control human plasma at concentrations previously reported to occur in humans after administration of the parent drug. A volume of plasma for each drug based on the known inhibitory potency and time-averaged concentration of the parent drug was extracted and fractionated by high-pressure liquid chromatography-mass spectrometry, and the fractions were tested for inhibition of six human P450 enzyme activities (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4). Observation of inhibition in fractions that correspond to the retention times of metabolites indicates that the metabolite has the potential to contribute to P450 inhibition in vivo. Using this approach, norfluoxetine, hydroxyitraconazole, desmethyldiltiazem, desacetyldiltiazem, desethylamiodarone, hydroxybupropion, erythro-dihydrobupropion, and threo-dihydrobupropion were identified as circulating metabolites that inhibit P450 activities at a similar or greater extent as the parent drug. A decision tree is presented outlining how this method can be used to determine when a deeper investigation of the P450 inhibition properties of a drug metabolite is warranted. PMID:27271369

  12. Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes

    PubMed Central

    Brash, Alan R.

    2009-01-01

    The existence of CYP5, CYP8A, and the CYP74 enzymes specialized for reaction with fatty acid peroxide substrates presents opportunities for a “different look” at the catalytic cycle of the cytochrome P450s. This review considers how the properties of the peroxide-metabolizing enzymes are distinctive, and how they tie in with those of the conventional monooxygenase enzymes. Some unusual reactions of each class have parallels in the other. As new enzyme reactions and new P450 structures emerge there will be possibilities for finding their special properties and edging this knowledge into the big picture. PMID:19747698

  13. Inhibition of human P450 enzymes by natural extracts used in traditional medicine.

    PubMed

    Rodeiro, Idania; Donato, María T; Jimenez, Nuria; Garrido, Gabino; Molina-Torres, Jorge; Menendez, Roberto; Castell, José V; Gómez-Lechón, María J

    2009-02-01

    Different medicinal plants are widely used in Cuba and Mexico to treat several disorders. This paper reports in vitro inhibitory effects on the P450 system of herbal products commonly used by people in Cuba and Mexico in traditional medicine for decades. Experiments were conducted in human liver microsomes. The catalytic activities of CYP1A1/2, 2D6, and 3A4 were measured using specific probe substrates. The Heliopsis longipes extract exhibited a concentration-dependent inhibition of the three enzymes, and similar effects were produced by affinin (an alkamide isolated from the H. longipes extract) and two catalytically reduced alkamides. Mangifera indica L. and Thalassia testudinum extracts, two natural polyphenol-rich extracts, diminished CYP1A1/2 and 3A4 activities, but not the CYP2D6 activity. These results suggest that these herbs inhibit the major human P450 enzymes involved in drug metabolism and could induce potential herbal-drug interactions.

  14. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    SciTech Connect

    Liu, Senyan; Yao, Yunyi; Lu, Shijun; Aldous, Kenneth; Ding, Xinxin; Mei, Changlin; Gu, Jun

    2013-10-01

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity with the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.

  15. Improving the cytochrome P450 enzyme system for electrode-driven biocatalysis of styrene epoxidation.

    PubMed

    Mayhew, M P; Reipa, V; Holden, M J; Vilker, V L

    2000-01-01

    Cytochrome P450 enzymes catalyze a vast array of oxidative and reductive biotransformations that are potentially useful for industrial and pharmaceutical syntheses. Factors such as cofactor utilization and slow reaction rates for nonnatural substrates limit their large-scale usefulness. This paper reports several improvements that make the cytochrome P450cam enzyme system more practical for the epoxidation of styrene. NADH coupling was increased from 14 to 54 mol %, and product turnover rate was increased from 8 to 70 min(-1) by introducing the Y96F mutation to P450cam. Styrene and styrene oxide mass balance determinations showed different product profiles at low and high styrene conversion levels. For styrene conversion less than about 25 mol %, the stoichiometry between styrene consumption and styrene oxide formation was 1:1. At high styrene conversion, a second doubly oxidized product, alpha-hydroxyacetophenone, was formed. This was also the exclusive product when Y96F P450cam acted on racemic, commercially available styrene oxide. The alpha-hydroxyacetophenone product was suppressed in reactions where styrene was present at saturating concentrations. Finally, styrene epoxidation was carried out in an electroenzymatic reactor. In this scheme, the costly NADH cofactor and one of the three proteins (putidaredoxin reductase) are eliminated from the Y96F P450cam enzyme system. PMID:10933836

  16. Inhalation of butanols: changes in the cytochrome P-450 enzyme system.

    PubMed

    Aarstad, K; Zahlsen, K; Nilsen, O G

    1985-01-01

    After inhalation of different butanol isomers for 3 days (2000 ppm) and 5 days (500 ppm), liver and kidney parameters of the microsomal cytochrome P-450 enzyme system were increased. sec-Butanol caused the highest increase in cytochrome P-450 concentration with a 47% rise in the kidneys (500 ppm for 5 days) and 33% in the liver (2000 ppm for 3 days). A concomitant increase of the in vitro n-hexane metabolism in liver microsomes was observed with a 77% increased formation of the preneurotoxic metabolite 2-hexanol compared with control. iso-Butanol did not alter total cytochrome P-450 concentration but caused a significant 30% decrease in the formation of 2-hexanol. Inhalation of all butanols slightly decreased the enzyme levels in the lung. Changes in microsomal enzymes did not correlate with measured serum concentrations of the different butanols showing different inducing capacities among the butanol isomers themselves or the participation of metabolites in the inducing process. As a conclusion sec-butanol, probably through its metabolite methyl-ethyl-ketone, is the most potent inducer of microsomal cytochrome P-450 in liver and kidney while iso-butanol does not alter total cytochrome P-450.

  17. Use of chemical auxiliaries to control p450 enzymes for predictable oxidations at unactivated C-h bonds of substrates.

    PubMed

    Auclair, Karine; Polic, Vanja

    2015-01-01

    Cytochrome P450 enzymes (P450s) have the ability to oxidize unactivated C-H bonds of substrates with remarkable regio- and stereoselectivity. Comparable selectivity for chemical oxidizing agents is typically difficult to achieve. Hence, there is an interest in exploiting P450s as potential biocatalysts. Despite their impressive attributes, the current use of P450s as biocatalysts is limited. While bacterial P450 enzymes typically show higher activity, they tend to be highly selective for one or a few substrates. On the other hand, mammalian P450s, especially the drug-metabolizing enzymes, display astonishing substrate promiscuity. However, product prediction continues to be challenging. This review discusses the use of small molecules for controlling P450 substrate specificity and product selectivity. The focus will be on two approaches in the area: (1) the use of decoy molecules, and (2) the application of substrate engineering to control oxidation by the enzyme.

  18. Cytochrome P450 enzymes from the metabolically diverse bacterium Rhodopseudomonas palustris

    SciTech Connect

    Bell, Stephen G. . E-mail: stephen.bell@chem.ox.ac.uk; Hoskins, Nicola; Xu Feng; Caprotti, Domenico; Rao Zihe; Wong, L.-L. . E-mail: luet.wong@chem.ox.ac.uk

    2006-03-31

    Four (CYP195A2, CYP199A2, CYP203A1, and CYP153A5) of the seven P450 enzymes, and palustrisredoxin A, a ferredoxin associated with CYP199A2, from the metabolically diverse bacterium Rhodopseudomonas palustris have been expressed and purified. A range of substituted benzenes, phenols, benzaldehydes, and benzoic acids was shown to bind to the four P450 enzymes. Monooxygenase activity of CYP199A2 was reconstituted with palustrisredoxin A and putidaredoxin reductase of the P450cam system from Pseudomonas putida. We found that 4-ethylbenzoate and 4-methoxybenzoate were oxidized to single products, and 4-methoxybenzoate was demethylated to form 4-hydroxybenzoate. Crystals of substrate-free CYP199A2 which diffracted to {approx}2.0 A have been obtained.

  19. New reactions and products resulting from alternative interactions between the P450 enzyme and redox partners.

    PubMed

    Zhang, Wei; Liu, Yi; Yan, Jinyong; Cao, Shaona; Bai, Fali; Yang, Ying; Huang, Shaohua; Yao, Lishan; Anzai, Yojiro; Kato, Fumio; Podust, Larissa M; Sherman, David H; Li, Shengying

    2014-03-01

    Cytochrome P450 enzymes are capable of catalyzing a great variety of synthetically useful reactions such as selective C-H functionalization. Surrogate redox partners are widely used for reconstitution of P450 activity based on the assumption that the choice of these auxiliary proteins or their mode of action does not affect the type and selectivity of reactions catalyzed by P450s. Herein, we present an exceptional example to challenge this postulate. MycG, a multifunctional biosynthetic P450 monooxygenase responsible for hydroxylation and epoxidation of 16-membered ring macrolide mycinamicins, is shown to catalyze the unnatural N-demethylation(s) of a range of mycinamicin substrates when partnered with the free Rhodococcus reductase domain RhFRED or the engineered Rhodococcus-spinach hybrid reductase RhFRED-Fdx. By contrast, MycG fused with the RhFRED or RhFRED-Fdx reductase domain mediates only physiological oxidations. This finding highlights the larger potential role of variant redox partner protein-protein interactions in modulating the catalytic activity of P450 enzymes.

  20. Immunochemical detection of cytochrome P450 enzymes in liver microsomes of 27 cynomolgus monkeys.

    PubMed

    Uehara, Shotaro; Murayama, Norie; Nakanishi, Yasuharu; Zeldin, Darryl C; Yamazaki, Hiroshi; Uno, Yasuhiro

    2011-11-01

    The cynomolgus monkey is widely used as a primate model in preclinical studies because of its evolutionary closeness to humans. Despite their importance in drug metabolism, the content of each cytochrome P450 (P450) enzyme has not been systematically determined in cynomolgus monkey livers. In this study, liver microsomes of 27 cynomolgus monkeys were analyzed by immunoblotting using selective P450 antibodies. The specificity of each antibody was confirmed by analyzing the cross-reactivity against 19 CYP1-3 subfamily enzymes using recombinant proteins. CYP2A, CYP2B6, CYP2C9/19, CYP2C76, CYP2D, CYP2E, CYP3A4, and CYP3A5 were detected in all 27 animals. In contrast, CYP1A, CYP1D, and CYP2J were below detectable levels in all liver samples. The average content of each P450 showed that among the P450s analyzed CYP3A (3A4 and 3A5) was the most abundant (40% of total immunoquantified P450), followed by CYP2A (25%), CYP2C (14%), CYP2B6 (13%), CYP2E1 (11%), and CYP2D (3%). No apparent sex differences were found for any P450. Interanimal variations ranged from 2.6-fold (CYP3A) to 11-fold (CYP2C9/19), and most P450s (CYP2A, CYP2D, CYP2E, CYP3A4, and CYP3A5) varied 3- to 4-fold. To examine the correlations of P450 content with enzyme activities, metabolic assays were performed in 27 cynomolgus monkey livers using 7-ethoxyresorufin, coumarin, pentoxyresorufin, flurbiprofen, bufuralol, dextromethorphan, and midazolam. CYP2D and CYP3A4 contents were significantly correlated with typical reactions of human CYP2D (bufuralol 1'-hydroxylation and dextromethorphan O-deethylation) and CYP3A (midazolam 1'-hydroxylation and 4-hydroxylation). The results presented in this study provide useful information for drug metabolism studies using cynomolgus monkeys.

  1. Targeting Cytochrome P450 Enzymes: A New Approach in Anti-cancer Drug Development

    PubMed Central

    Bruno, Robert D.; Njar, Vincent C.O.

    2007-01-01

    Cytochrome P450s (CYPs) represent a large class of heme-containing enzymes that catalyze the metabolism of multitudes of substrates both endogenous and exogenous. Until recently, however, CYPs have been largely overlooked in cancer drug development, acknowledged only for their role in Phase I metabolism of chemotherapeutics. The first successful strategy targeting CYP enzymes in cancer therapy was the development of potent inhibitors of CYP19 (aromatase) for the treatment of breast cancer. Aromatase inhibitors ushered in a new era in hormone ablation therapy for estrogen dependent cancers, and have paved the way for similar strategies (i.e. inhibition of CYP17) that combat androgen dependent prostate cancer. Identification of CYPs involved in the inactivation of anti-cancer metabolites of Vitamin D3 and Vitamin A has triggered development of agents that target these enzymes as well. The discovery of the over-expression of exogenous metabolizing CYPs, such as CYP1B1, in cancer cells has roused interest in the development of inhibitors for chemoprevention and of prodrugs designed to be activated by CYPs only in cancer cells. Finally, the expression of CYPs within tumors has been utilized in the development of bioreductive molecules that are activated by CYPs only under hypoxic conditions. This review offers the first comprehensive analysis of strategies in drug development that either inhibit or exploit CYP enzymes for the treatment of cancer. PMID:17544277

  2. Thalidomide increases human hepatic cytochrome P450 3A enzymes by direct activation of the pregnane X receptor.

    PubMed

    Murayama, Norie; van Beuningen, Rinie; Suemizu, Hiroshi; Guguen-Guillouzo, Christiane; Shibata, Norio; Yajima, Kanako; Utoh, Masahiro; Shimizu, Makiko; Chesné, Christophe; Nakamura, Masato; Guengerich, F Peter; Houtman, René; Yamazaki, Hiroshi

    2014-02-17

    Heterotropic cooperativity of human cytochrome P450 (P450) 3A4/3A5 by the teratogen thalidomide was recently demonstrated by H. Yamazaki et al. ( ( 2013 ) Chem. Res. Toxicol. 26 , 486 - 489 ) using the model substrate midazolam in various in vitro and in vivo models. Chimeric mice with humanized liver also displayed enhanced midazolam clearance upon pretreatment with orally administered thalidomide, presumably because of human P450 3A induction. In the current study, we further investigated the regulation of human hepatic drug metabolizing enzymes. Thalidomide enhanced levels of P450 3A4 and 2B6 mRNA, protein expression, and/or oxidation activity in human hepatocytes, indirectly suggesting the activation of upstream transcription factors involved in detoxication, e.g., the nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR). A key event after ligand binding is an alteration of nuclear receptor conformation and recruitment of coregulator proteins that alter chromatin accessibility of target genes. To investigate direct engagement and functional alteration of PXR and CAR by thalidomide, we utilized a peptide microarray with 154 coregulator-derived nuclear receptor-interaction motifs and coregulator and nuclear receptor boxes, which serves as a sensor for nuclear receptor conformation and activity status as a function of ligand. Thalidomide and its human proximate metabolite 5-hydroxythalidomide displayed significant modulation of coregulator interaction with PXR and CAR ligand-binding domains, similar to established agonists for these receptors. These results collectively suggest that thalidomide acts as a ligand for PXR and CAR and causes enzyme induction leading to increased P450 enzyme activity. The possibilities of drug interactions during thalidomide therapy in humans require further evaluation.

  3. Statistical methods for analysis of time-dependent inhibition of cytochrome p450 enzymes.

    PubMed

    Yates, Phillip; Eng, Heather; Di, Li; Obach, R Scott

    2012-12-01

    Time-dependent inhibition (TDI) of cytochrome P450 (P450) enzymes, especially CYP3A4, is an important attribute of drugs in evaluating the potential for pharmacokinetic drug-drug interactions. The analysis of TDI data for P450 enzymes can be challenging, yet it is important to be able to reliably evaluate whether a drug is a TDI or not, and if so, how best to derive the inactivation kinetic parameters K(I) and k(inact). In the present investigation a two-step statistical evaluation was developed to evaluate CYP3A4 TDI data. In the first step, a two-sided two-sample z-test is used to compare the k(obs) values measured in the absence and presence of the test compound to answer the question of whether the test compound is a TDI or not. In the second step, k(obs) values are plotted versus both [I] and ln[I] to determine whether a significant correlation exists, which can then inform the investigator of whether the inactivation kinetic parameters, K(I) and k(inact), can be reliably estimated. Use of this two-step statistical evaluation is illustrated with the examination of five drugs of varying capabilities to inactivate CYP3A4: ketoconazole, erythromycin, raloxifene, rosiglitazone, and pioglitazone. The use of a set statistical algorithm offers a more robust and objective approach to the analysis of P450 TDI data than frequently employed empirically derived or heuristic approaches.

  4. Pungent ginger components modulates human cytochrome P450 enzymes in vitro

    PubMed Central

    Li, Mian; Chen, Pei-zhan; Yue, Qing-xi; Li, Jing-quan; Chu, Rui-ai; Zhang, Wei; Wang, Hui

    2013-01-01

    Aim: Ginger rhizome is used worldwide as a spicy flavor agent. This study was designed to explore the potential effects of pungent ginger components, 6-, 8-, and 10-gingerol, on human cytochrome P450 (CYP450) enzymes that are responsible for the metabolism of many prescription drugs. Methods: The activities of human CYP2C9, CYP2C19, CYP2D6, and CYP3A4 were analyzed using Vivid P450 assay kits. The mRNA expression of CYP3A4 in human hepatocellular carcinoma cell line HepG2 was measured using quantitative real-time PCR assay. Results: All three gingerols potently inhibited CYP2C9 activity, exerted moderate inhibition on CYP2C19 and CYP3A4, and weak inhibion on CYP2D6. 8-Gingerol was the most potent in inhibition of P450 enzymes with IC50 values of 6.8, 12.5, 8.7, and 42.7 μmol/L for CYP2C9, CYP2C19, CYP3A4, and CYP2D6, respectively. By comparing the effects of gingerols on CYP3A4 with three different fluorescent substrate probes, it was demonstrated that the inhibition of gingerols on CYP3A4 had no substrate-dependence. In HepG2 cells, 8-gingerol and 10-gingerol inhibited, but 6-gingerol induced mRNA expression of CYP3A4. Conclusion: 6-, 8-, and 10-gingerol suppress human cytochrome P450 activity, while 8- and 10-gingerol inhibit CYP3A4 expression. The results may have an implication for the use of ginger or ginger products when combined with therapeutic drugs that are metabolized by cytochrome P450 enzymes. PMID:23770984

  5. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1992-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  6. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1993-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  7. Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer.

    PubMed

    Hrycay, Eugene G; Bandiera, Stelvio M

    2015-01-01

    This review examines the involvement of cytochrome P450 (CYP) enzymes in the formation of reactive oxygen species in biological systems and discusses the possible involvement of reactive oxygen species and CYP enzymes in cancer. Reactive oxygen species are formed in biological systems as byproducts of the reduction of molecular oxygen and include the superoxide radical anion (∙O2-), hydrogen peroxide (H2O2), hydroxyl radical (∙OH), hydroperoxyl radical (HOO∙), singlet oxygen ((1)O2), and peroxyl radical (ROO∙). Two endogenous sources of reactive oxygen species are the mammalian CYP-dependent microsomal electron transport system and the mitochondrial electron transport chain. CYP enzymes catalyze the oxygenation of an organic substrate and the simultaneous reduction of molecular oxygen. If the transfer of oxygen to a substrate is not tightly controlled, uncoupling occurs and leads to the formation of reactive oxygen species. Reactive oxygen species are capable of causing oxidative damage to cellular membranes and macromolecules that can lead to the development of human diseases such as cancer. In normal cells, intracellular levels of reactive oxygen species are maintained in balance with intracellular biochemical antioxidants to prevent cellular damage. Oxidative stress occurs when this critical balance is disrupted. Topics covered in this review include the role of reactive oxygen species in intracellular cell signaling and the relationship between CYP enzymes and cancer. Outlines of CYP expression in neoplastic tissues, CYP enzyme polymorphism and cancer risk, CYP enzymes in cancer therapy and the metabolic activation of chemical procarcinogens by CYP enzymes are also provided.

  8. Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer.

    PubMed

    Hrycay, Eugene G; Bandiera, Stelvio M

    2015-01-01

    This review examines the involvement of cytochrome P450 (CYP) enzymes in the formation of reactive oxygen species in biological systems and discusses the possible involvement of reactive oxygen species and CYP enzymes in cancer. Reactive oxygen species are formed in biological systems as byproducts of the reduction of molecular oxygen and include the superoxide radical anion (∙O2-), hydrogen peroxide (H2O2), hydroxyl radical (∙OH), hydroperoxyl radical (HOO∙), singlet oxygen ((1)O2), and peroxyl radical (ROO∙). Two endogenous sources of reactive oxygen species are the mammalian CYP-dependent microsomal electron transport system and the mitochondrial electron transport chain. CYP enzymes catalyze the oxygenation of an organic substrate and the simultaneous reduction of molecular oxygen. If the transfer of oxygen to a substrate is not tightly controlled, uncoupling occurs and leads to the formation of reactive oxygen species. Reactive oxygen species are capable of causing oxidative damage to cellular membranes and macromolecules that can lead to the development of human diseases such as cancer. In normal cells, intracellular levels of reactive oxygen species are maintained in balance with intracellular biochemical antioxidants to prevent cellular damage. Oxidative stress occurs when this critical balance is disrupted. Topics covered in this review include the role of reactive oxygen species in intracellular cell signaling and the relationship between CYP enzymes and cancer. Outlines of CYP expression in neoplastic tissues, CYP enzyme polymorphism and cancer risk, CYP enzymes in cancer therapy and the metabolic activation of chemical procarcinogens by CYP enzymes are also provided. PMID:26233903

  9. Roles of different cytochrome P-450 enzymes in bioactivation of the hepatocarcinogen 3-methoxy-4-aminoazobenzene by rat and human liver microsomes

    SciTech Connect

    Shimada, T.; Yamazaki, H.; Degawa, M.; Funae, Y.; Imaoka, S.; Inui, Y.; Guengerich, F.P. Tohoku Univ., Aobayama Osaka City Univ., Abenoku Center for Adult Diseases, Nakamichi, Higashinariku, Osaka Vanderbilt Univ., Nashville, TN )

    1991-03-11

    The potent hepatocarcinogen 3-methoxy-4-aminoazobenzene (3-MeO-AAB) has been reported to be bioactivated to mutagenic intermediates by rat liver microsomal cytochrome P-450 (P-450) and to be a selective inducer of rat P-450IA2. 3-MeO-AAB was found to be bioactivated by liver microsomal enzymes from rats and humans in a Salmonella typhimurium TA1535/pSK1002 system where umu response is indicative of DNA damage. The liver microsomal activities are increased by pretreatment of rats with various P-450 inducers. Evidence has also been obtained that specific antibodies raised against P-4502B1, P-4501A1 or 1A2, P-4502E1, and P4503A inhibited the activation in rat liver microsomes suggesting the possible roles of several P-450 enzymes in the bioactivation of 3-MeO-AAB, and results obtained with various purified rat P-450 enzymes support this view. Human liver microsomal activation of 3-MeO-AAB was also inhibited to various extents by antibodies raised against P-4501A, P-4502C, P-4502E1, and P-4503A enzymes. Purified P-4501A2 was the most active human P-450 in oxidizing 3-MeO-AAB, followed by P-4503A4 and P-450{sub MP} (P4502C). From these results it is concluded that multiple P-450 enzymes in rat and human liver microsomes are involved in the bioactivation of 3-MeO-AAB, regardless of its selective induction of the P4501A2 gene.

  10. A New Marmoset P450 4F12 Enzyme Expressed in Small Intestines and Livers Efficiently Metabolizes Antihistaminic Drug Ebastine.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Yuki, Yukako; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2016-06-01

    Common marmosets (Callithrix jacchus) are attracting attention as animal models in preclinical studies for drug development. However, cytochrome P450s (P450s), major drug-metabolizing enzymes, have not been fully identified and characterized in marmosets. In this study, based on the four novel P450 4F genes found on the marmoset genome, we successfully isolated P450 4F2, 4F3B, 4F11, and 4F12 cDNAs in marmoset livers. Deduced amino acid sequences of the four marmoset P450 4F forms exhibited high sequence identities (87%-93%) to the human and cynomolgus monkey P450 4F homologs. Marmoset P450 4F3B and 4F11 mRNAs were predominantly expressed in livers, whereas marmoset P450 4F2 and 4F12 mRNAs were highly expressed in small intestines and livers. Four marmoset P450 4F proteins heterologously expressed in Escherichia coli catalyzed the ω-hydroxylation of leukotriene B4 In addition, marmoset P450 4F12 effectively catalyzed the hydroxylation of antiallergy drug ebastine, a human P450 2J/4F probe substrate. Ebastine hydroxylation activities by small intestine and liver microsomes from marmosets and cynomolgus monkeys showed greatly higher values than those of humans. Ebastine hydroxylation activities by marmoset and cynomolgus monkey small intestine microsomes were inhibited (approximately 60%) by anti-P450 4F antibodies, unlike human small intestine microsomes, suggesting that contribution of P450 4F enzymes for ebastine hydroxylation in the small intestine might be different between marmosets/cynomolgus monkeys and humans. These results indicated that marmoset P450 4F2, 4F3B, 4F11, and 4F12 were expressed in livers and/or small intestines and were functional in the metabolism of endogenous and exogenous compounds, similar to those of cynomolgus monkeys and humans.

  11. A New Marmoset P450 4F12 Enzyme Expressed in Small Intestines and Livers Efficiently Metabolizes Antihistaminic Drug Ebastine.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Yuki, Yukako; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2016-06-01

    Common marmosets (Callithrix jacchus) are attracting attention as animal models in preclinical studies for drug development. However, cytochrome P450s (P450s), major drug-metabolizing enzymes, have not been fully identified and characterized in marmosets. In this study, based on the four novel P450 4F genes found on the marmoset genome, we successfully isolated P450 4F2, 4F3B, 4F11, and 4F12 cDNAs in marmoset livers. Deduced amino acid sequences of the four marmoset P450 4F forms exhibited high sequence identities (87%-93%) to the human and cynomolgus monkey P450 4F homologs. Marmoset P450 4F3B and 4F11 mRNAs were predominantly expressed in livers, whereas marmoset P450 4F2 and 4F12 mRNAs were highly expressed in small intestines and livers. Four marmoset P450 4F proteins heterologously expressed in Escherichia coli catalyzed the ω-hydroxylation of leukotriene B4 In addition, marmoset P450 4F12 effectively catalyzed the hydroxylation of antiallergy drug ebastine, a human P450 2J/4F probe substrate. Ebastine hydroxylation activities by small intestine and liver microsomes from marmosets and cynomolgus monkeys showed greatly higher values than those of humans. Ebastine hydroxylation activities by marmoset and cynomolgus monkey small intestine microsomes were inhibited (approximately 60%) by anti-P450 4F antibodies, unlike human small intestine microsomes, suggesting that contribution of P450 4F enzymes for ebastine hydroxylation in the small intestine might be different between marmosets/cynomolgus monkeys and humans. These results indicated that marmoset P450 4F2, 4F3B, 4F11, and 4F12 were expressed in livers and/or small intestines and were functional in the metabolism of endogenous and exogenous compounds, similar to those of cynomolgus monkeys and humans. PMID:27044800

  12. Interactions between phytochemicals from traditional Chinese medicines and human cytochrome P450 enzymes.

    PubMed

    Wu, Jing-Jing; Ai, Chun-Zhi; Liu, Yong; Zhang, Yan-Yan; Jiang, Miao; Fan, Xu-Ran; Lv, Ai-Ping; Yang, Ling

    2012-06-01

    Traditional Chinese medicine (TCM) formulas with fixed combinations rely on "sovereign, minister, assistant and guide" and fuzzy mathematical quantitative law, leading to greater challenges for the identification of active ingredients. Transformation and metabolic studies involving the Phase I drug-metabolizing enzyme cytochrome P450 (CYP) might potentially solve some of these challenges. The pharmacological effects can not be attributed to one active ingredient in TCMs, but integrated effects resulting from the combined actions of multiple ingredients. However, it is only after long-term administration that most ingredients exert their actions, which can result in prolonged exposure to herbs in vivo. Therefore, interactions between herbal compounds and CYPs appear to be inevitable. Yet unlike Western drugs, experimental determination of the absorption and disposition properties is not commonly carried out for TCMs. Moreover, the use of TCM as injections is an innovation aimed to improve efficiency in extensive clinical use in Mainland China. Therefore, in recent years, cases of adverse drug reactions (ADR) mainly concerning allergic reactions involving TCMs such as ShenMai injection and QingKaiLing injection have been reported, which have attracted attention with regard to the legal responsibilities for TCM approval. The lack of information on the ADME characteristics, especially the metabolic stability and interaction potential between CYPs and herbs, increases ADR occurrence due to TCMs. In this article, we review the most common herbs used in TCM prescriptions and fixed combinations of their usable frequency, and summarize the current understanding of the ability of phytochemical ingredients to act as substrates, inhibitors or inducers of human CYP enzymes, through which the key role of CYP enzymes on the herb disposition and toxicity is highlighted. The potential interaction between herbal phytochemicals and CYP enzymes dominates the target exposure, which

  13. Interactions between phytochemicals from traditional Chinese medicines and human cytochrome P450 enzymes.

    PubMed

    Wu, Jing-Jing; Ai, Chun-Zhi; Liu, Yong; Zhang, Yan-Yan; Jiang, Miao; Fan, Xu-Ran; Lv, Ai-Ping; Yang, Ling

    2012-06-01

    Traditional Chinese medicine (TCM) formulas with fixed combinations rely on "sovereign, minister, assistant and guide" and fuzzy mathematical quantitative law, leading to greater challenges for the identification of active ingredients. Transformation and metabolic studies involving the Phase I drug-metabolizing enzyme cytochrome P450 (CYP) might potentially solve some of these challenges. The pharmacological effects can not be attributed to one active ingredient in TCMs, but integrated effects resulting from the combined actions of multiple ingredients. However, it is only after long-term administration that most ingredients exert their actions, which can result in prolonged exposure to herbs in vivo. Therefore, interactions between herbal compounds and CYPs appear to be inevitable. Yet unlike Western drugs, experimental determination of the absorption and disposition properties is not commonly carried out for TCMs. Moreover, the use of TCM as injections is an innovation aimed to improve efficiency in extensive clinical use in Mainland China. Therefore, in recent years, cases of adverse drug reactions (ADR) mainly concerning allergic reactions involving TCMs such as ShenMai injection and QingKaiLing injection have been reported, which have attracted attention with regard to the legal responsibilities for TCM approval. The lack of information on the ADME characteristics, especially the metabolic stability and interaction potential between CYPs and herbs, increases ADR occurrence due to TCMs. In this article, we review the most common herbs used in TCM prescriptions and fixed combinations of their usable frequency, and summarize the current understanding of the ability of phytochemical ingredients to act as substrates, inhibitors or inducers of human CYP enzymes, through which the key role of CYP enzymes on the herb disposition and toxicity is highlighted. The potential interaction between herbal phytochemicals and CYP enzymes dominates the target exposure, which

  14. Inhibition of human cytochrome P450 enzymes by the natural hepatotoxin safrole.

    PubMed

    Ueng, Yune-Fang; Hsieh, Chih-Hang; Don, Ming-Jaw

    2005-05-01

    The hepatotoxin, safrole is a methylenedioxy phenyl compound, found in sassafras oil and certain other essential oils. Recombinant cytochrome P450 (CYP, P450) and human liver microsomes were studied to investigate the selective inhibitory effects of safrole on human P450 enzymes and the mechanisms of action. Using Escherichia coli-expressed human P450, our results demonstrated that safrole was a non-selective inhibitor of CYP1A2, CYP2A6, CYP2D6, CYP2E1, and CYP3A4 in the IC(50) order CYP2E1 < CYP1A2 < CYP2A6 < CYP3A4 < CYP2D6. Safrole strongly inhibited CYP1A2, CYP2A6, and CYP2E1 activities with IC(50) values less than 20 microM. Safrole caused competitive, non-competitive, and non-competitive inhibition of CYP1A2, CYP2A6 and CYP2E1 activities, respectively. The inhibitor constants were in the order CYP1A2 < CYP2E1 < CYP2A6. In human liver microsomes, 50 microM safrole strongly inhibited 7-ethoxyresorufin O-deethylation, coumarin hydroxylation, and chlorzoxazone hydroxylation activities. These results revealed that safrole was a potent inhibitor of human CYP1A2, CYP2A6, and CYP2E1. With relatively less potency, CYP2D6 and CYP3A4 were also inhibited.

  15. Induction and inhibition of mouse cytochrome P-450 2B enzymes by musk xylene.

    PubMed

    Lehman-McKeeman, L D; Johnson, D R; Caudill, D

    1997-01-01

    that were dosed orally with a regimen of broad spectrum antibiotics (neomycin, tetracyline, and bacitracin) to reduce gut flora prior to administration of MX. In these animals, MX (200 mg/kg) did not inhibit PB-induced PROD activity. In summary, MX treatment produced general hepatic changes consistent with induction of CYP2B enzymes in mice and caused a large increase in CYP2B protein and mRNA levels. These data indicate that MX is a PB-like inducer of cytochrome P-450 enzymes and may cause liver tumors in a manner analogous to PB. However, no increase in CYP2B enzyme activity was observed, suggesting that MX or metabolites of MX also inhibit this enzyme. When the intestinal flora was eliminated by antibiotic treatment, MX no longer inhibited the CYP2B enzyme, indicating that anaerobic bacteria are capable of metabolizing MX, and suggesting that amine metabolites formed by nitroreduction are involved in the inhibition of mouse CYP2B enzymes.

  16. Synergy between rhinacanthins from Rhinacanthus nasutus in inhibition against mosquito cytochrome P450 enzymes.

    PubMed

    Kotewong, Rattanawadee; Pouyfung, Phisit; Duangkaew, Panida; Prasopthum, Aruna; Rongnoparut, Pornpimol

    2015-07-01

    The cytochrome P450 monooxygenases play a major role in insecticide detoxification and become a target for development of insecticide synergists. In this study, a collection of rhinacanthins (rhinacanthin-D, -E, -G, -N, -Q, and -H/I) purified from Rhinacanthus nasutus, in addition to previously purified rhinacanthin-B and -C, were isolated. These compounds displayed various degrees of inhibition against benzyloxyresorufin-O-debenzylation mediated by CYP6AA3 and CYP6P7 which were implicated in pyrethroid resistance in Anopheles minimus malaria vector. Inhibition modes and kinetics were determined for each of rhinacanthins. Cell-based inhibition assays by rhinacanthins employing 3-(4, 5-dimethylthiazol-2-y-l)-2, 5-diphenyltetrazolium bromide (MTT) cytotoxicity test were explored their synergistic effects with cypermethrin toxicity on CYP6AA3- and CYP6P7-expressing Spodoptera frugiperda (Sf9) cells. Rhinacanthin-B, -D, -E, -G, and -N exhibited mechanism-based inhibition against CYP6AA3, an indication of irreversible inhibition, while rhinacanthin-B, -D, -G, and -N were mechanism-based inhibitors of CYP6P7. There was structure-function relationship of these rhinacanthins in inhibition effects against both enzymes. In vitro enzymatic inhibition assays revealed that there were synergistic interactions among rhinacanthins, except rhinacanthin-B and -Q, in inhibition against both enzymes. These rhinacanthins exerted synergism with cypermethrin toxicity on Sf9 cells expressing each of the two P450 enzymes via P450 inhibition and in addition could interact in synergy to further increase cypermethrin toxicity. The inhibition potentials, synergy among rhinacanthins in inhibition against the P450 detoxification enzymes, and synergism with cypermethrin toxicity of the R. nasutus constituents of reported herein could be beneficial to implement effective resistance management of mosquito vector control.

  17. Effects of musk xylene and musk ketone on rat hepatic cytochrome P450 enzymes.

    PubMed

    Lehman-McKeeman, L D; Caudill, D; Vassallo, J D; Pearce, R E; Madan, A; Parkinson, A

    1999-12-20

    The purpose of the present work was to characterize the effect of musk xylene (MX) and musk ketone (MK) treatment on rat hepatic cytochrome P450 enzymes. Male F344 rats were dosed orally with MX (10, 50 or 200 mg/kg) or MK (20, 100 or 200 mg/kg) for 7 days, after which CYP1A, 2B and 3A enzyme activities and protein levels were determined. MX treatment resulted in a two- to four-fold increase in the activity of CYP1A, 2B and 3A enzymes. For CYP1A and 3A, these changes were consistent with small increases in immunoreactive proteins. However, for CYP2B, despite only a three-fold increase in enzyme activity, protein levels were increased nearly 50-fold relative to control. This induction occurred by transcriptional activation of the CYP2B1 gene as evidenced by increased steady state CYP2B1 mRNA levels. In contrast to MX, MK treatment increased CYP2B activity, protein and mRNA levels. However MK treatment also increased CYP1A enzyme activity nearly 30-fold higher than control rats, a profile that was markedly different from MX, and very different from its effects in mice (Stuard, S.B., Caudill, D., Lehman-Mc-Keeman, L.D., 1997. Characterization of the effects of musk ketone on mouse cytochrome P450 enzymes. Fund. Appl. Toxicol. 40, 264-271). These results indicate that in rats, MX is an inducer of CYP2B enzymes, but these enzymes are not functionally active. In contrast, MK also induces CYP2B enzymes, with no concurrent inactivation. MK also exhibits a unique pattern of cytochrome P450 induction by increasing both CYP1A and CYP2B in rats.

  18. Reactive intermediates produced from the metabolism of the vanilloid ring of capsaicinoids by p450 enzymes.

    PubMed

    Reilly, Christopher A; Henion, Fred; Bugni, Tim S; Ethirajan, Manivannan; Stockmann, Chris; Pramanik, Kartick C; Srivastava, Sanjay K; Yost, Garold S

    2013-01-18

    This study characterized electrophilic and radical products derived from the metabolism of capsaicin by cytochrome P450 and peroxidase enzymes. Multiple glutathione and β-mercaptoethanol conjugates (a.k.a., adducts), derived from the trapping of quinone methide and quinone intermediates of capsaicin, its analogue nonivamide, and O-demethylated and aromatic hydroxylated metabolites thereof, were produced by human liver microsomes and individual recombinant human P450 enzymes. Conjugates derived from concomitant dehydrogenation of the alkyl terminus of capsaicin were also characterized. Modifications to the 4-OH substituent of the vanilloid ring of capsaicinoids largely prevented the formation of electrophilic intermediates, consistent with the proposed structures and mechanisms of formation for the various conjugates. 5,5'-Dicapsaicin, presumably arising from the bimolecular coupling of free radical intermediates was also characterized. Finally, the analysis of hepatic glutathione conjugates and urinary N-acetylcysteine conjugates from mice dosed with capsaicin confirmed the formation of glutathione conjugates of O-demethylated quinone methide and 5-OH-capsaicin in vivo. These data demonstrated that capsaicin and structurally similar analogues are converted to reactive intermediates by certain P450 enzymes, which may partially explain conflicting reports related to the cytotoxic, pro-carcinogenic, and chemoprotective effects of capsaicinoids in different cells and/or organ systems. PMID:23088752

  19. Reactive Intermediates Produced from Metabolism of the Vanilloid Ring of Capsaicinoids by P450 Enzymes

    PubMed Central

    Reilly, Christopher A.; Henion, Fred; Bugni, Tim S.; Ethirajan, Manivannan; Stockmann, Chris; Pramanik, Kartick C.; Srivastava, Sanjay K.; Yost, Garold S.

    2012-01-01

    This study characterized electrophilic and radical products derived from metabolism of capsaicin by cytochrome P450 and peroxidase enzymes. Multiple glutathione and β-mercaptoethanol conjugates (a.k.a., adducts), derived from trapping of quinone methide and quinone intermediates of capsaicin, its analogue nonivamide, and O-demethylated and aromatic hydroxylated metabolites thereof, were produced by human liver microsomes and individual recombinant human P450 enzymes. Conjugates derived from concomitant dehydrogenation of the alkyl terminus of capsaicin, were also characterized. Modifications to the 4-OH substituent of the vanilloid ring of capsaicinoids largely prevented the formation of electrophilic intermediates, consistent with the proposed structures and mechanisms of formation for the various conjugates. 5,5’-Dicapsaicin, presumably arising from bi-molecular coupling of free radical intermediates, was also characterized. Finally, the analysis of hepatic glutathione conjugates and urinary N-acetylcysteine conjugates from mice dosed with capsaicin confirmed the formation of glutathione conjugates of O-demethylated, quinone methide, and 5-OH-capsaicin in vivo. These data demonstrated that capsaicin and structurally similar analogues are converted to reactive intermediates by certain P450 enzymes, which may partially explain conflicting reports related to the cytotoxic, pro-carcinogenic, and chemoprotective effects of capsaicinoids in different cells and/or organ systems. PMID:23088752

  20. Phyllanthus urinaria extract attenuates acetaminophen induced hepatotoxicity: involvement of cytochrome P450 CYP2E1.

    PubMed

    Hau, Desmond Kwok Po; Gambari, Roberto; Wong, Raymond Siu Ming; Yuen, Marcus Chun Wah; Cheng, Gregory Yin Ming; Tong, Cindy Sze Wai; Zhu, Guo Yuan; Leung, Alexander Kai Man; Lai, Paul Bo San; Lau, Fung Yi; Chan, Andrew Kit Wah; Wong, Wai Yeung; Kok, Stanton Hon Lung; Cheng, Chor Hing; Kan, Chi Wai; Chan, Albert Sun Chi; Chui, Chung Hin; Tang, Johnny Cheuk On; Fong, David Wang Fun

    2009-08-01

    Acetaminophen is a commonly used drug for the treatment of patients with common cold and influenza. However, an overdose of acetaminophen may be fatal. In this study we investigated whether mice, administered intraperitoneally with a lethal dose of acetaminophen, when followed by oral administration of Phyllanthus urinaria extract, may be prevented from death. Histopathological analysis of mouse liver sections showed that Phyllanthus urinaria extract may protect the hepatocytes from acetaminophen-induced necrosis. Therapeutic dose of Phyllanthus urinaria extract did not show any toxicological phenomenon on mice. Immunohistochemical staining with the cytochrome P450 CYP2E1 antibody revealed that Phyllanthus urinaria extract reduced the cytochrome P450 CYP2E1 protein level in mice pre-treated with a lethal dose of acetaminophen. Phyllanthus urinaria extract also inhibited the cytochrome P450 CYP2E1 enzymatic activity in vitro. Heavy metals, including arsenic, cadmium, mercury and lead, as well as herbicide residues were not found above their detection limits. High performance liquid chromatography identified corilagin and gallic acid as the major components of the Phyllanthus urinaria extract. We conclude that Phyllanthus urinaria extract is effective in attenuating the acetaminophen induced hepatotoxicity, and inhibition of cytochrome P450 CYP2E1 enzyme may be an important factor for its therapeutic mechanism.

  1. The Halloween genes code for cytochrome P450 enzymes mediating synthesis of the insect moulting hormone.

    PubMed

    Rewitz, K F; Rybczynski, R; Warren, J T; Gilbert, L I

    2006-12-01

    The developmental events occurring during moulting and metamorphosis of insects are controlled by precisely timed changes in levels of ecdysteroids, the moulting hormones. The final four sequential hydroxylations of steroid precursors into the active ecdysteroid of insects, 20E (20-hydroxyecdysone), are mediated by four cytochrome P450 (P450) enzymes, encoded by genes in the Halloween family. Orthologues of the Drosophila Halloween genes phantom (phm; CYP306A1), disembodied (dib; CYP302A1), shadow (sad; CYP315A1) and shade (shd; CYP314A1) were obtained from the endocrinological model insect, the tobacco hornworm Manduca sexta. Expression of these genes was studied and compared with changes in the ecdysteroid titre that controls transition from the larval to pupal stage. phm, dib and sad, which encode P450s that mediate the final hydroxylations in the biosynthesis of ecdysone, were selectively expressed in the prothoracic gland, the primary source of ecdysone during larval and pupal development. Changes in their expression correlate with the haemolymph ecdysteroid titre during the fifth (final) larval instar. Shd, the 20-hydroxylase, which converts ecdysone into the more active 20E, is expressed in tissues peripheral to the prothoracic glands during the fifth instar. Transcript levels of shd in the fat body and midgut closely parallel the enzyme activity measured in vitro. The results indicate that these Halloween genes are transcriptionally regulated to support the high biosynthetic activity that produces the cyclic ecdysteroid pulses triggering moulting. PMID:17073797

  2. The Halloween genes code for cytochrome P450 enzymes mediating synthesis of the insect moulting hormone.

    PubMed

    Rewitz, K F; Rybczynski, R; Warren, J T; Gilbert, L I

    2006-12-01

    The developmental events occurring during moulting and metamorphosis of insects are controlled by precisely timed changes in levels of ecdysteroids, the moulting hormones. The final four sequential hydroxylations of steroid precursors into the active ecdysteroid of insects, 20E (20-hydroxyecdysone), are mediated by four cytochrome P450 (P450) enzymes, encoded by genes in the Halloween family. Orthologues of the Drosophila Halloween genes phantom (phm; CYP306A1), disembodied (dib; CYP302A1), shadow (sad; CYP315A1) and shade (shd; CYP314A1) were obtained from the endocrinological model insect, the tobacco hornworm Manduca sexta. Expression of these genes was studied and compared with changes in the ecdysteroid titre that controls transition from the larval to pupal stage. phm, dib and sad, which encode P450s that mediate the final hydroxylations in the biosynthesis of ecdysone, were selectively expressed in the prothoracic gland, the primary source of ecdysone during larval and pupal development. Changes in their expression correlate with the haemolymph ecdysteroid titre during the fifth (final) larval instar. Shd, the 20-hydroxylase, which converts ecdysone into the more active 20E, is expressed in tissues peripheral to the prothoracic glands during the fifth instar. Transcript levels of shd in the fat body and midgut closely parallel the enzyme activity measured in vitro. The results indicate that these Halloween genes are transcriptionally regulated to support the high biosynthetic activity that produces the cyclic ecdysteroid pulses triggering moulting.

  3. Monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 enzymes.

    PubMed

    Hrycay, Eugene G; Bandiera, Stelvio M

    2015-01-01

    This review examines the monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 (CYP) enzymes in bacterial, archaeal and mammalian systems. CYP enzymes catalyze monooxygenation reactions by inserting one oxygen atom from O2 into an enormous number and variety of substrates. The catalytic versatility of CYP stems from its ability to functionalize unactivated carbon-hydrogen (C-H) bonds of substrates through monooxygenation. The oxidative prowess of CYP in catalyzing monooxygenation reactions is attributed primarily to a porphyrin π radical ferryl intermediate known as Compound I (CpdI) (Por•+FeIV=O), or its ferryl radical resonance form (FeIV-O•). CYP-mediated hydroxylations occur via a consensus H atom abstraction/oxygen rebound mechanism involving an initial abstraction by CpdI of a H atom from the substrate, generating a highly-reactive protonated Compound II (CpdII) intermediate (FeIV-OH) and a carbon-centered alkyl radical that rebounds onto the ferryl hydroxyl moiety to yield the hydroxylated substrate. CYP enzymes utilize hydroperoxides, peracids, perborate, percarbonate, periodate, chlorite, iodosobenzene and N-oxides as surrogate oxygen atom donors to oxygenate substrates via the shunt pathway in the absence of NAD(P)H/O2 and reduction-oxidation (redox) auxiliary proteins. It has been difficult to isolate the historically elusive CpdI intermediate in the native NAD(P)H/O2-supported monooxygenase pathway and to determine its precise electronic structure and kinetic and physicochemical properties because of its high reactivity, unstable nature (t½~2 ms) and short life cycle, prompting suggestions for participation in monooxygenation reactions of alternative CYP iron-oxygen intermediates such as the ferric-peroxo anion species (FeIII-OO-), ferric-hydroperoxo species (FeIII-OOH) and FeIII-(H2O2) complex.

  4. Characterization of the effects of musk ketone on mouse hepatic cytochrome P450 enzymes.

    PubMed

    Stuard, S B; Caudill, D; Lehman-McKeeman, L D

    1997-12-01

    Nitroaromatic musks, including musk ketone (MK; 2,6-dimethyl-3,5-dinitro-4-t-butylacetophenone), are chemicals used as perfume ingredients in household products, cosmetics, and toiletries. Musk xylene (MX; 1,3,5-trinitro-2-t-butylxylene), another nitromusk, is not genotoxic but has been reported to produce mouse liver tumors in a chronic bioassay. In addition, MX has been shown to both induce and inhibit mouse liver cytochrome P450 2B (CYP2B) isozymes. The ability of MX to inhibit CYP2B enzyme activity is attributable to inactivation of the enzyme by a specific amine metabolite. MK is structurally similar to MX, but lacks the nitro substitution that is reduced to the inactivating amine metabolite. Therefore, we hypothesized that MK would induce, but not inhibit, CYP2B isozymes. To test this hypothesis, and to evaluate the effects of MK on mouse liver cytochrome P450 enzymes, two sets of experiments were performed. To evaluate the ability of MK to induce cytochromes P450, mice were dosed daily by oral gavage at dosages ranging from 5 to 500 mg/ kg MK for 7 days. This treatment resulted in a pleiotropic response in mouse liver, including increased liver weight, increased total microsomal protein, and centrilobular hepatocellular hypertrophy. At the highest dose tested, MK caused a 28-fold increase in CYP2B enzyme activity and a small (approximately 2-fold) increase in both cytochromes P450 1A and 3A (CYP1A and CYP3A) enzyme activities over control levels. Protein and mRNA analyses confirmed the relative levels of induction for CYP2B, CYP1A, and CYP3A. In addition, the no-observable-effect level (NOEL) for CYP2B induction by MK was 20 mg/kg. To evaluate the ability of MK to inhibit phenobarbital-induced CYP2B activity, mice were given 500 ppm phenobarbital (PB) in the drinking water for 5 days to induce CYP2B isozymes, followed by a single equimolar (0.67 mmol/kg) oral gavage dose of either MK (198 mg/kg) or MX (200 mg/kg), and microsomes were prepared 18 h later

  5. Monkey liver cytochrome P450 2C19 is involved in R- and S-warfarin 7-hydroxylation.

    PubMed

    Hosoi, Yoshio; Uno, Yasuhiro; Murayama, Norie; Fujino, Hideki; Shukuya, Mitsunori; Iwasaki, Kazuhide; Shimizu, Makiko; Utoh, Masahiro; Yamazaki, Hiroshi

    2012-12-15

    Cynomolgus monkeys are widely used as primate models in preclinical studies. However, some differences are occasionally seen between monkeys and humans in the activities of cytochrome P450 enzymes. R- and S-warfarin are model substrates for stereoselective oxidation in humans. In this current research, the activities of monkey liver microsomes and 14 recombinantly expressed monkey cytochrome P450 enzymes were analyzed with respect to R- and S-warfarin 6- and 7-hydroxylation. Monkey liver microsomes efficiently mediated both R- and S-warfarin 7-hydroxylation, in contrast to human liver microsomes, which preferentially catalyzed S-warfarin 7-hydroxylation. R-Warfarin 7-hydroxylation activities in monkey liver microsomes were not inhibited by α-naphthoflavone or ketoconazole, and were roughly correlated with P450 2C19 levels and flurbiprofen 4-hydroxylation activities in microsomes from 20 monkey livers. In contrast, S-warfarin 7-hydroxylation activities were not correlated with the four marker drug oxidation activities used. Among the 14 recombinantly expressed monkey P450 enzymes tested, P450 2C19 had the highest activities for R- and S-warfarin 7-hydroxylations. Monkey P450 3A4 and 3A5 slowly mediated R- and S-warfarin 6-hydroxylations. Kinetic analysis revealed that monkey P450 2C19 had high V(max) and low K(m) values for R-warfarin 7-hydroxylation, comparable to those for monkey liver microsomes. Monkey P450 2C19 also mediated S-warfarin 7-hydroxylation with V(max) and V(max)/K(m) values comparable to those for recombinant human P450 2C9. R-warfarin could dock favorably into monkey P450 2C19 modeled. These results collectively suggest high activities for monkey liver P450 2C19 toward R- and S-warfarin 6- and 7-hydroxylation in contrast to the saturation kinetics of human P450 2C9-mediated S-warfarin 7-hydroxylation.

  6. Involvement of cytochrome P450 monooxygenases in the response of mosquito larvae to dietary plant xenobiotics.

    PubMed

    David, J P; Boyer, S; Mesneau, A; Ball, A; Ranson, H; Dauphin-Villemant, C

    2006-05-01

    The response of mosquito larvae to plant toxins found in their breeding sites was investigated by using Aedes aegypti larvae and toxic arborescent leaf litter as experimental models. The relation between larval tolerance to toxic leaf litter and cytochrome P450 monooxygenases (P450s) was examined at the toxicological, biochemical and molecular levels. Larvae pre-exposed to toxic leaf litter show a higher tolerance to those xenobiotics together with a strong increase in P450 activity levels. This enzymatic response is both time- and dose-dependent. The use of degenerate primers from various P450 genes (CYPs) allowed us to isolate 16 new CYP genes belonging to CYP4, CYP6 and CYP9 families. Expression studies revealed a 2.3-fold over-expression of 1 CYP gene (CYP6AL1) after larval pre-exposure to toxic leaf litter, this gene being expressed at a high level in late larval and pupal stages and in fat bodies and midgut. The CYP6AL1 protein has a high level of identity with other insect's CYPs involved in xenobiotic detoxification. The role of CYP genes in tolerance to natural xenobiotics and the importance of such adaptive responses in the capacity of mosquitoes to colonize new habitats and to develop insecticide resistance mechanisms are discussed.

  7. Metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by inducible and constitutive cytochrome P450 enzymes in rats.

    PubMed

    Guo, Z; Smith, T J; Thomas, P E; Yang, C S

    1992-10-01

    The tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces tumor formation in the liver, lung, nasal cavity, and pancreas of rats. Metabolic activation is required for the tumorigenicity of this compound. The involvement of cytochrome P450 enzymes in NNK bioactivation was investigated in rats by studies with chemical inducers and antibodies against P450s. Liver microsomal enzymes catalyzed the formation of 4-oxo-1-(3-pyridyl)-1-butanone (keto aldehyde), 4-hydroxy-1-(3-pyridyl)-1-butanone (keto alcohol), 4-(methylnitrosamino)-1-(3-pyridyl-N-oxide)-1-butanone (NNK-N-oxide), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) from NNK. When the activity was expressed on a per nanomole P450 basis, treatments of rats with 3-methylcholanthrene (MC), phenobarbital (PB), pregnenolone 16-alpha-carbonitrile (PCN), Aroclor 1254 (AR), safrole (SA), and isosafrole (ISA) increased the keto aldehyde formation in liver microsomes 2.0-, 2.4-, 3.8-, 2.5-, 2.1-, and 1.8-fold, respectively; PB, AR, SA, and ISA increased the keto alcohol formation 1.7-, 1.3-, 2.0-, and 1.3-fold, respectively. The extents of induction were more pronounced when expressed on a per milligram protein basis, due to the higher microsomal P450 contents in the induced microsomes. The formation of NNK-N-oxide was markedly increased by PB and PCN and slightly increased by AR, SA, and ISA. However, the formation of NNAL, the major metabolite due to carbonyl reduction, was not increased by the treatments but was decreased by AR, ISA, and acetone (AC). The kinetic parameters of NNK metabolism by control, MC-, PB-, and PCN-induced liver microsomes were obtained. A panel of monoclonal (anti-1A1, -2B1, -2C11, and -2E1) and polyclonal (anti-1A2, -2A1, and -3A) antibodies were used to assess the involvement of constitutive hepatic P450 enzymes in NNK metabolism. Keto aldehyde formation was inhibited by anti-1A2 and anti-3A (about 15%) but not by others; the formation of keto

  8. Cytochrome P450 CYP78A9 is involved in Arabidopsis reproductive development.

    PubMed

    Sotelo-Silveira, Mariana; Cucinotta, Mara; Chauvin, Anne-Laure; Chávez Montes, Ricardo A; Colombo, Lucia; Marsch-Martínez, Nayelli; de Folter, Stefan

    2013-06-01

    Synchronized communication between gametophytic and sporophytic tissue is crucial for successful reproduction, and hormones seem to have a prominent role in it. Here, we studied the role of the Arabidopsis (Arabidopsis thaliana) cytochrome P450 CYP78A9 enzyme during reproductive development. First, controlled pollination experiments indicate that CYP78A9 responds to fertilization. Second, while CYP78A9 overexpression can uncouple fruit development from fertilization, the cyp78a8 cyp78a9 loss-of-function mutant has reduced seed set due to outer ovule integument development arrest, leading to female sterility. Moreover, CYP78A9 has a specific expression pattern in inner integuments in early steps of ovule development as well as in the funiculus, embryo, and integuments of developing seeds. CYP78A9 overexpression did not change the response to the known hormones involved in flower development and fruit set, and it did not seem to have much effect on the major known hormonal pathways. Furthermore, according to previous predictions, perturbations in the flavonol biosynthesis pathway were detected in cyp78a9, cyp78a8 cyp78a9, and empty siliques (es1-D) mutants. However, it appeared that they do not cause the observed phenotypes. In summary, these results add new insights into the role of CYP78A9 in plant reproduction and present, to our knowledge, the first characterization of metabolite differences between mutants in this gene family. PMID:23610218

  9. Induction and mitochondrial localization of cytochrome P450scc system enzymes in normal and transformed ovarian granulosa cells

    PubMed Central

    1990-01-01

    After ovulation of an oocyte, granulosa cells of the ovarian follicle differentiate into luteal cells and become a major factor dedicated to the synthesis of the steroid hormone progesterone. We recently established granulosa cell lines by cotransfection of granulosa cells with SV-40 and Ha-ras oncogene. In these cells progesterone secretion can be induced by cAMP as in normal rat granulosa cells. The induction of progesterone secretion is observed only after approximately 24 h and closely follows the delayed but quantitatively dramatic induction of the mitochondrial cytochrome P450scc which catalyzes the first step in steroid hormone biosynthesis. The mitochondrial P450 system electron transport proteins, adrenodoxin and adrenodoxin reductase, are also induced but adrenodoxin shows a faster induction. Immunofluorescence studies show that the three enzymes are induced in all cells and incorporated into all mitochondria uniformly. Electron microscopic examination using immunogold technique further confirms this and reveals that adrenodoxin is predominantly located on the matrix side of the inner mitochondrial membrane. Thus, adrenodoxin, which is a small highly charged protein, shows a distribution similar to P450scc which is an integral membrane protein. The uniformity of the response of the cells provides further evidence for the homogeneity of the cell line and makes this new granulosa cell line a highly promising system for the study of the molecular mechanisms involved in changes in gene expression during the process of granulosa cell differentiation. PMID:2170421

  10. Monkey liver cytochrome P450 2C9 is involved in caffeine 7-N-demethylation to form theophylline.

    PubMed

    Utoh, Masahiro; Murayama, Norie; Uno, Yasuhiro; Onose, Yui; Hosaka, Shinya; Fujino, Hideki; Shimizu, Makiko; Iwasaki, Kazuhide; Yamazaki, Hiroshi

    2013-12-01

    Caffeine (1,3,7-trimethylxanthine) is a phenotyping substrate for human cytochrome P450 1A2. 3-N-Demethylation of caffeine is the main human metabolic pathway, whereas monkeys extensively mediate the 7-N-demethylation of caffeine to form pharmacological active theophylline. Roles of monkey P450 enzymes in theophylline formation from caffeine were investigated using individual monkey liver microsomes and 14 recombinantly expressed monkey P450 enzymes, and the results were compared with those for human P450 enzymes. Caffeine 7-N-demethylation activity in microsomes from 20 monkey livers was not strongly inhibited by α-naphthoflavone, quinidine or ketoconazole, and was roughly correlated with diclofenac 4'-hydroxylation activities. Monkey P450 2C9 had the highest activity for caffeine 7-N-demethylation. Kinetic analysis revealed that monkey P450 2C9 had a high Vmax/Km value for caffeine 7-N-demethylation, comparable to low Km value for monkey liver microsomes. Caffeine could dock favorably with monkey P450 2C9 modeled for 7-N-demethylation and with human P450 1A2 for 3-N-demethylation. The primary metabolite theophylline was oxidized to 8-hydroxytheophylline in similar ways by liver microsomes and by recombinant P450s in both humans and monkeys. These results collectively suggest a high activity for monkey liver P450 2C9 toward caffeine 7-N-demethylation, whereas, in humans, P450 1A2-mediated caffeine 3-N-demethylation is dominant.

  11. Effects of soy containing diet and isoflavones on cytochrome P450 enzyme expression and activity.

    PubMed

    Ronis, Martin J J

    2016-08-01

    Cytochromes P450 (CYPs) play an important role in metabolism and clearance of most clinically utilized drugs and other xenobiotics. They are important in metabolism of endogenous compounds including fatty acids, sterols, steroids and lipid-soluble vitamins. Dietary factors such as phytochemicals are capable of affecting CYP expression and activity, which may be important in diet-drug interactions and in the development of fatty liver disease, cardiovascular disease and cancer. One important diet-CYP interaction is with diets containing plant proteins, particularly soy protein. Soy diets are traditionally consumed in Asian countries and are linked to lower incidence of several cancers and of cardiovascular disease in Asian populations. Soy is also an important protein source in vegetarian and vegan diets and the sole protein source in soy infant formulas. Recent studies suggest that consumption of soy can inhibit induction of CY1 enzymes by polycyclic aromatic hydrocarbons (PAHs) which may contribute to cancer prevention. In addition, there are data to suggest that soy components promiscuously activate several nuclear receptors including PXR, PPAR and LXR resulting in increased expression of CYP3As, CYP4As and CYPs involved in metabolism of cholesterol to bile acids. Such soy-CYP interactions may alter drug pharmacokinetics and therapeutic efficacy and are associated with improved lipid homeostasis and reduced risk of cardiovascular disease. The current review summarizes results from in vitro; in vivo and clinical studies of soy-CYP interactions and examines the evidence linking the effects of soy diets on CYP expression to isoflavone phytoestrogens, particularly, genistein and daidzein that are associated with soy protein.

  12. Differential expression of cytochrome P450 enzymes in normal and tumor tissues from childhood rhabdomyosarcoma.

    PubMed

    Molina-Ortiz, Dora; Camacho-Carranza, Rafael; González-Zamora, José Francisco; Shalkow-Kalincovstein, Jaime; Cárdenas-Cardós, Rocío; Ností-Palacios, Rosario; Vences-Mejía, Araceli

    2014-01-01

    Intratumoral expression of genes encoding Cytochrome P450 enzymes (CYP) might play a critical role not only in cancer development but also in the metabolism of anticancer drugs. The purpose of this study was to compare the mRNA expression patterns of seven representative CYPs in paired tumor and normal tissue of child patients with rabdomyosarcoma (RMS). Using real time quantitative RT-PCR, the gene expression pattern of CYP1A1, CYP1A2, CYP1B1, CYP2E1, CYP2W1, CYP3A4, and CYP3A5 were analyzed in tumor and adjacent non-tumor tissues from 13 child RMS patients. Protein concentration of CYPs was determined using Western blot. The expression levels were tested for correlation with the clinical and pathological data of the patients. Our data showed that the expression levels of CYP1A1 and CYP1A2 were negligible. Elevated expression of CYP1B1 mRNA and protein was detected in most RMS tumors and adjacent normal tissues. Most cancerous samples exhibit higher levels of both CYP3A4 and CYP3A5 compared with normal tissue samples. Expression of CYP2E1 mRNA was found to be significantly higher in tumor tissue, however no relation was found with protein levels. CYP2W1 mRNA and/or protein are mainly expressed in tumors. In conclusion, we defined the CYP gene expression profile in tumor and paired normal tissue of child patients with RMS. The overexpression of CYP2W1, CYP3A4 and CYP3A5 in tumor tissues suggests that they may be involved in RMS chemoresistance; furthermore, they may be exploited for the localized activation of anticancer prodrugs.

  13. Differential expression of cytochrome P450 enzymes in normal and tumor tissues from childhood rhabdomyosarcoma.

    PubMed

    Molina-Ortiz, Dora; Camacho-Carranza, Rafael; González-Zamora, José Francisco; Shalkow-Kalincovstein, Jaime; Cárdenas-Cardós, Rocío; Ností-Palacios, Rosario; Vences-Mejía, Araceli

    2014-01-01

    Intratumoral expression of genes encoding Cytochrome P450 enzymes (CYP) might play a critical role not only in cancer development but also in the metabolism of anticancer drugs. The purpose of this study was to compare the mRNA expression patterns of seven representative CYPs in paired tumor and normal tissue of child patients with rabdomyosarcoma (RMS). Using real time quantitative RT-PCR, the gene expression pattern of CYP1A1, CYP1A2, CYP1B1, CYP2E1, CYP2W1, CYP3A4, and CYP3A5 were analyzed in tumor and adjacent non-tumor tissues from 13 child RMS patients. Protein concentration of CYPs was determined using Western blot. The expression levels were tested for correlation with the clinical and pathological data of the patients. Our data showed that the expression levels of CYP1A1 and CYP1A2 were negligible. Elevated expression of CYP1B1 mRNA and protein was detected in most RMS tumors and adjacent normal tissues. Most cancerous samples exhibit higher levels of both CYP3A4 and CYP3A5 compared with normal tissue samples. Expression of CYP2E1 mRNA was found to be significantly higher in tumor tissue, however no relation was found with protein levels. CYP2W1 mRNA and/or protein are mainly expressed in tumors. In conclusion, we defined the CYP gene expression profile in tumor and paired normal tissue of child patients with RMS. The overexpression of CYP2W1, CYP3A4 and CYP3A5 in tumor tissues suggests that they may be involved in RMS chemoresistance; furthermore, they may be exploited for the localized activation of anticancer prodrugs. PMID:24699256

  14. Effects of soy containing diet and isoflavones on cytochrome P450 enzyme expression and activity.

    PubMed

    Ronis, Martin J J

    2016-08-01

    Cytochromes P450 (CYPs) play an important role in metabolism and clearance of most clinically utilized drugs and other xenobiotics. They are important in metabolism of endogenous compounds including fatty acids, sterols, steroids and lipid-soluble vitamins. Dietary factors such as phytochemicals are capable of affecting CYP expression and activity, which may be important in diet-drug interactions and in the development of fatty liver disease, cardiovascular disease and cancer. One important diet-CYP interaction is with diets containing plant proteins, particularly soy protein. Soy diets are traditionally consumed in Asian countries and are linked to lower incidence of several cancers and of cardiovascular disease in Asian populations. Soy is also an important protein source in vegetarian and vegan diets and the sole protein source in soy infant formulas. Recent studies suggest that consumption of soy can inhibit induction of CY1 enzymes by polycyclic aromatic hydrocarbons (PAHs) which may contribute to cancer prevention. In addition, there are data to suggest that soy components promiscuously activate several nuclear receptors including PXR, PPAR and LXR resulting in increased expression of CYP3As, CYP4As and CYPs involved in metabolism of cholesterol to bile acids. Such soy-CYP interactions may alter drug pharmacokinetics and therapeutic efficacy and are associated with improved lipid homeostasis and reduced risk of cardiovascular disease. The current review summarizes results from in vitro; in vivo and clinical studies of soy-CYP interactions and examines the evidence linking the effects of soy diets on CYP expression to isoflavone phytoestrogens, particularly, genistein and daidzein that are associated with soy protein. PMID:27440109

  15. Covalent linkage of prosthetic heme to CYP4 family P450 enzymes.

    PubMed

    Henne, K R; Kunze, K L; Zheng, Y M; Christmas, P; Soberman, R J; Rettie, A E

    2001-10-30

    An extensive body of research on the structural properties of cytochrome P450 enzymes has established that these proteins possess a b-type heme prosthetic group which is noncovalently bound at the active site. Coordinate, electrostatic, and hydrogen bond interactions between the protein backbone and heme functional groups are readily overcome upon mild acid treatment of the enzyme, which releases free heme from the protein. In the present study, we have used a combination of HPLC, LC/ESI-MS, and SDS-PAGE techniques to demonstrate that members of the mammalian CYP4B, CYP4F, and CYP4A subfamilies bind their heme in an unusually tight manner. HPLC chromatography of CYP4B1 on a POROS R2 column under mild acidic conditions caused dissociation of less than one-third of the heme from the protein. Moreover, heme was not substantially removed from CYP4B1 under electrospray or electrophoresis conditions that readily release the prosthetic group from other non-CYP4 P450 isoforms. This was evidenced by an intact protein mass value of 59,217 +/- 3 amu for CYP4B1 (i.e., apoprotein plus heme) and extensive staining of this approximately 60 kDa protein with tetramethylbenzidine/H(2)O(2) following SDS-PAGE. In addition, treatment of CYP4B1, CYP4F3, and CYP4A5/7 with strong base generated a new, chromatographically distinct, polar heme species with a mass of 632.3 amu rather than 616.2 amu. This mass shift is indicative of the incorporation of an oxygen atom into the heme nucleus and is consistent with the presence of a novel covalent ester linkage between the protein backbone of the CYP4 family of mammalian P450s and their heme catalytic center.

  16. Crystal structure of a phenol-coupling P450 monooxygenase involved in teicoplanin biosynthesis

    SciTech Connect

    Li, Zhi; Rupasinghe, Sanjeewa G.; Schuler, Mary A.; Nair, Satish K.

    2012-02-08

    The lipoglycopeptide antibiotic teicoplanin has proven efficacy against gram-positive pathogens. Teicoplanin is distinguished from the vancomycin-type glycopeptide antibiotics, by the presence of an additional cross-link between the aromatic amino acids 1 and 3 that is catalyzed by the cytochrome P450 monooxygenase Orf6* (CYP165D3). As a goal towards understanding the mechanism of this phenol-coupling reaction, we have characterized recombinant Orf6* and determined its crystal structure to 2.2-{angstrom} resolution. Although the structure of Orf6* reveals the core fold common to other P450 monooxygenases, there are subtle differences in the disposition of secondary structure elements near the active site cavity necessary to accommodate its complex heptapeptide substrate. Specifically, the orientation of the F and G helices in Orf6* results in a more closed active site than found in the vancomycin oxidative enzymes OxyB and OxyC. In addition, Met226 in the I helix replaces the more typical Gly/Ala residue that is positioned above the heme porphyrin ring, where it forms a hydrogen bond with a heme iron-bound water molecule. Sequence comparisons with other phenol-coupling P450 monooxygenases suggest that Met226 plays a role in determining the substrate regiospecificity of Orf6*. These features provide further insights into the mechanism of the cross-linking mechanisms that occur during glycopeptide antibiotics biosynthesis.

  17. Selective Filling of Nanowells in Nanowell Arrays Fabricated Using Polystyrene Nanosphere Lithography with Cytochrome P450 Enzymes

    PubMed Central

    Wollenberg, Lance A.; Jett, John E.; Wu, Yueting; Flora, Darcy R.; Wu, Nianqiang; Tracy, Timothy S.; Gannett, Peter M.

    2012-01-01

    This work describes an original and simple technique for protein immobilization into nanowells, fabricated using nanopatterned-array fabrication methods, while ensuring the protein retains the normal biological activity. Nanosphere-lithography was used to fabricate a nanowell array with nanowells that were 100 nm in diameter and a periodicity of 500 nm. The base of the nanowells was gold and the surrounding material was silicon dioxide. The different surface chemistries of these materials were used to attach two different self-assembled monolayers (SAM) with different affinities for the protein used here, cytochrome P450 (P450). The nanowell SAM, a methyl terminated thiol, had high affinity for the P450. The surrounding SAM, a polyethylene glycol silane, displayed very little affinity toward the P450 isozyme CYP2C9, as demonstrated by x-ray photoelectron spectroscopy and surface plasmon resonance. The regularity of the nanopatterned array was examined by scanning electron microscopy and atomic force microscopy. P450-mediated metabolism experiments of known substrates demonstrated that the nanowell bound P450 enzyme exceeded its normal activity, as compared to P450 solutions, when bound to the methyl terminated self-assembled monolayer. The nanopatterned array chips bearing P450 display long term stability and give reproducible results making them potentially useful for high throughput screening assays or as nanoelectrode arrays. PMID:22947619

  18. Identification of Mechanism-Based Inactivation in P450-Catalyzed Cyclopropanation Facilitates Engineering of Improved Enzymes.

    PubMed

    Renata, Hans; Lewis, Russell D; Sweredoski, Michael J; Moradian, Annie; Hess, Sonja; Wang, Z Jane; Arnold, Frances H

    2016-09-28

    Following the recent discovery that heme proteins can catalyze the cyclopropanation of styrenyl olefins with high efficiency and selectivity, interest in developing new enzymes for a variety of non-natural carbene transfer reactions has burgeoned. The fact that diazo compounds and other carbene precursors are known mechanism-based inhibitors of P450s, however, led us to investigate if they also interfere with this new enzyme function. We present evidence for two inactivation pathways that are operative during cytochrome P450-catalyzed cyclopropanation. Using a combination of UV-vis, mass spectrometry, and proteomic analyses, we show that the heme cofactor and several nucleophilic side chains undergo covalent modification by ethyl diazoacetate (EDA). Substitution of two of the affected residues with less-nucleophilic amino acids led to a more than twofold improvement in cyclopropanation performance (total TTN). Elucidating the inactivation pathways of heme protein-based carbene transfer catalysts should aid in the optimization of this new biocatalytic function. PMID:27573353

  19. Hydroxylation of phenol to catechol by Candida tropicalis: involvement of cytochrome P450.

    PubMed

    Stiborová, M; Suchá, V; Miksanová, M; Páca, J; Páca, J

    2003-06-01

    Microsomal preparations isolated from yeast Candida tropicalis (C. tropicalis) grown on three different media with or without phenol were isolated and characterized for the content of cytochrome P450 (CYP) (EC 1.14.15.1). While no CYP was detected in microsomes of C. tropicalis grown on glucose as the carbon source, evidence was obtained for the presence of the enzyme in the microsomes of C. tropicalis grown on media containing phenol. Furthermore, the activity of NADPH: CYP reductase, another enzyme of the microsomal CYP-dependent system, was markedly higher in cells grown on phenol. Microsomes of these cells oxidized phenol. The major metabolite formed from phenol by microsomes of C. tropicalis was characterized by UV/vis absorbance and mass spectroscopy as well as by the chromatographic properties on HPLC. The characteristics are identical to those of catechol. The formation of catechol was inhibited by CO, the inhibitor of CYP, and correlated with the content of cytochrome P450 in microsomes. These results, the first report showing the ring hydroxylation of phenol to catechol with the microsomal enzyme system of C. tropicalis, strongly suggest that CYP-catalyzed reactions are responsible for this hydroxylation. The data demonstrate the progress in resolving the enzymes responsible for the first step of phenol degradation by the C. tropicalis strain.

  20. Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders

    PubMed Central

    Kubota, Akira; O'Meara, Conor M.; Lamb, David C.; Tanguay, Robert L.; Goldstone, Jared V.

    2016-01-01

    Cytochrome P450 (CYP) enzymes for which there is no functional information are considered “orphan” CYPs. Previous studies showed that CYP20A1, an orphan, is expressed in human hippocampus and substantia nigra, and in zebrafish (Danio rerio) CYP20A1 maternal transcript occurs in eggs, suggesting involvement in brain and in early development. Moreover, hyperactivity is reported in humans with chromosome 2 microdeletions including CYP20A1. We examined CYP20A1 in zebrafish, including impacts of chemical exposure on expression. Zebrafish CYP20A1 cDNA was cloned, sequenced, and aligned with cloned human CYP20A1 and predicted vertebrate orthologs. CYP20A1s share a highly conserved N-terminal region and unusual sequences in the I-helix and the heme-binding CYP signature motifs. CYP20A1 mRNA expression was observed in adult zebrafish organs including liver, heart, gonads, spleen and brain, as well as eye and optic nerve. Putative binding sites in proximal promoter regions of CYP20A1s, and response of zebrafish CYP20A1 to selected nuclear and xenobiotic receptor agonists, point to up-regulation by agents involved in steroid hormone response, cholesterol and lipid metabolism. There also was a dose-dependent reduction of CYP20A1 expression in embryos exposed to environmentally relevant levels of methylmercury. Morpholino knockdown of CYP20A1 in developing zebrafish resulted in behavioral effects, including hyperactivity and a slowing of the optomotor response in larvae. The results suggest that altered expression of CYP20A1 might be part of a mechanism linking methylmercury exposure to neurobehavioral deficits. The expanded information on CYP20A1 brings us closer to “deorphanization”, that is, identifying CYP20A1 functions and its roles in health and disease. PMID:26853319

  1. Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders.

    PubMed

    Lemaire, Benjamin; Kubota, Akira; O'Meara, Conor M; Lamb, David C; Tanguay, Robert L; Goldstone, Jared V; Stegeman, John J

    2016-04-01

    Cytochrome P450 (CYP) enzymes for which there is no functional information are considered "orphan" CYPs. Previous studies showed that CYP20A1, an orphan, is expressed in human hippocampus and substantia nigra, and in zebrafish (Danio rerio) CYP20A1 maternal transcript occurs in eggs, suggesting involvement in brain and in early development. Moreover, hyperactivity is reported in humans with chromosome 2 microdeletions including CYP20A1. We examined CYP20A1 in zebrafish, including impacts of chemical exposure on expression. Zebrafish CYP20A1 cDNA was cloned, sequenced, and aligned with cloned human CYP20A1 and predicted vertebrate orthologs. CYP20A1s share a highly conserved N-terminal region and unusual sequences in the I-helix and the heme-binding CYP signature motifs. CYP20A1 mRNA expression was observed in adult zebrafish organs including the liver, heart, gonads, spleen and brain, as well as the eye and optic nerve. Putative binding sites in proximal promoter regions of CYP20A1s, and response of zebrafish CYP20A1 to selected nuclear and xenobiotic receptor agonists, point to up-regulation by agents involved in steroid hormone response, cholesterol and lipid metabolism. There also was a dose-dependent reduction of CYP20A1 expression in embryos exposed to environmentally relevant levels of methylmercury. Morpholino knockdown of CYP20A1 in developing zebrafish resulted in behavioral effects, including hyperactivity and a slowing of the optomotor response in larvae. The results suggest that altered expression of CYP20A1 might be part of a mechanism linking methylmercury exposure to neurobehavioral deficits. The expanded information on CYP20A1 brings us closer to "deorphanization", that is, identifying CYP20A1 functions and its roles in health and disease. PMID:26853319

  2. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar.

    PubMed

    Irmisch, Sandra; Clavijo McCormick, Andrea; Günther, Jan; Schmidt, Axel; Boeckler, Gerhard Andreas; Gershenzon, Jonathan; Unsicker, Sybille B; Köllner, Tobias G

    2014-12-01

    Numerous plant species emit volatile nitriles upon herbivory, but the biosynthesis as well as the relevance of these nitrogenous compounds in plant-insect interactions remains unknown. Populus trichocarpa has been shown to produce a complex blend of nitrogenous volatiles, including aldoximes and nitriles, after herbivore attack. The aldoximes were previously reported to be derived from amino acids by the action of cytochrome P450 enzymes of the CYP79 family. Here we show that nitriles are derived from aldoximes by another type of P450 enzyme in P. trichocarpa. First, feeding of deuterium-labeled phenylacetaldoxime to poplar leaves resulted in incorporation of the label into benzyl cyanide, demonstrating that poplar volatile nitriles are derived from aldoximes. Then two P450 enzymes, CYP71B40v3 and CYP71B41v2, were characterized that produce aliphatic and aromatic nitriles from their respective aldoxime precursors. Both possess typical P450 sequence motifs but do not require added NADPH or cytochrome P450 reductase for catalysis. Since both enzymes are expressed after feeding by gypsy moth caterpillars, they are likely to be involved in herbivore-induced volatile nitrile emission in P. trichocarpa. Olfactometer experiments showed that these volatile nitriles have a strong repellent activity against gypsy moth caterpillars, suggesting they play a role in induced direct defense against poplar herbivores.

  3. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar.

    PubMed

    Irmisch, Sandra; Clavijo McCormick, Andrea; Günther, Jan; Schmidt, Axel; Boeckler, Gerhard Andreas; Gershenzon, Jonathan; Unsicker, Sybille B; Köllner, Tobias G

    2014-12-01

    Numerous plant species emit volatile nitriles upon herbivory, but the biosynthesis as well as the relevance of these nitrogenous compounds in plant-insect interactions remains unknown. Populus trichocarpa has been shown to produce a complex blend of nitrogenous volatiles, including aldoximes and nitriles, after herbivore attack. The aldoximes were previously reported to be derived from amino acids by the action of cytochrome P450 enzymes of the CYP79 family. Here we show that nitriles are derived from aldoximes by another type of P450 enzyme in P. trichocarpa. First, feeding of deuterium-labeled phenylacetaldoxime to poplar leaves resulted in incorporation of the label into benzyl cyanide, demonstrating that poplar volatile nitriles are derived from aldoximes. Then two P450 enzymes, CYP71B40v3 and CYP71B41v2, were characterized that produce aliphatic and aromatic nitriles from their respective aldoxime precursors. Both possess typical P450 sequence motifs but do not require added NADPH or cytochrome P450 reductase for catalysis. Since both enzymes are expressed after feeding by gypsy moth caterpillars, they are likely to be involved in herbivore-induced volatile nitrile emission in P. trichocarpa. Olfactometer experiments showed that these volatile nitriles have a strong repellent activity against gypsy moth caterpillars, suggesting they play a role in induced direct defense against poplar herbivores. PMID:25335755

  4. The mitochondrial environment is required for activity of the cholesterol side-chain cleavage enzyme, cytochrome P450scc.

    PubMed Central

    Black, S M; Harikrishna, J A; Szklarz, G D; Miller, W L

    1994-01-01

    Steroidogenesis is initiated by the conversion of cholesterol to pregnenolone by mitochondrial cytochrome P450scc [cholesterol, reduced-adrenal-ferredoxin:oxygen oxidoreductase (side-chain-cleaving); EC 1.14.15.6]. Several subsequent steroidal conversions occur in the endoplasmic reticulum (ER), but the last step in the production of glucocorticoids and mineralocorticoids again occurs in the mitochondria. Although cellular compartmentalization of steroidogenic enzymes appears to be a feature of all steroidogenic pathways, some reports indicate that cholesterol can be converted to pregnenolone outside the mitochondria. To investigate whether P450scc can function outside the mitochondria, we constructed vectors producing P450scc and various fusion enzymes of P450scc with electron-transport proteins and directed their expression to either the ER or the mitochondria. Whether targeted to mitochondria or to the ER, plasmid vectors encoding P450scc and fusion proteins of P450scc with either mitochondrial or microsomal electron-transport proteins produced immunodetectable protein. When expressed in mitochondria, all of these constructions converted 22-hydroxycholesterol to pregnenolone, but when expressed in the ER none of them produced pregnenolone. These results show that P450scc can function only in the mitochondria. Furthermore, it appears to be the mitochondrial environment that is required, rather than the specific mitochondrial electron-transport intermediates. Images PMID:8041774

  5. Application of Osmotic Pumps for Sustained Release of 1-Aminobenzotriazole and Inhibition of Cytochrome P450 Enzymes in Mice: Model Comparison with the Hepatic P450 Reductase Null Mouse.

    PubMed

    Stringer, Rowan A; Ferreira, Suzie; Rose, Jonathan; Ronseaux, Sebastien

    2016-08-01

    The effectiveness of controlled release 1-aminobenzotriazole (ABT) administration to inhibit cytochrome P450 (P450) enzymes has been evaluated in mice. To maximize the duration of P450 inhibition in vivo, ABT was administered via an osmotic pump. The degree of P450 inhibition was compared with that achieved with a single bolus dose of ABT. Two-hour prior subcutaneous treatment of mice with ABT (50 mg/kg) inhibited antipyrine clearance by 88%. A less pronounced inhibitory effect (29% reduction in clearance) was observed when ABT was administered 24-hours before antipyrine administration, indicating partial restoration of P450 activity during this longer pretreatment time. The duration of ABT in mice was very short (mean residence time = 1.7 hours) after subcutaneous bolus administration. When the inhibitor was delivered by an osmotic pump, maximum blood concentrations of the inhibitor were observed 24 hours after device implantation and were maintained at steady state for 6 days. Inhibition of P450 activity, as measured by antipyrine clearance, was confirmed at 24 hours and 120 hours after pump implantation, highlighting the utility of this method as a longer-term model for P450 inhibition in mice. The magnitude of P450 inhibition in ABT-treated mice was compared with that in hepatic P450 reductase null mice and both models were comparable. In vivo ABT administration by an osmotic pump offers an effective approach for longer-term P450 inhibition in mice and avoids the necessity for multiple dosing of the inhibitor.

  6. In vivo cytochrome P450 drug metabolizing enzyme characterization using surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Yanfang; Bachmann, Kenneth A.; Cameron, Brent D.

    2003-07-01

    The development of a rapid, inexpensive, and accurate in vivo phenotyping methodology for characterizing drug-metabolizing phenotypes with reference to the cytochrome P450 (CYP450) enzymes would be very beneficial. In terms of application, in the wake of the human genome project, considerable interest is focused on the development of new drugs whose uses will be tailored to specific genetic polymorphisms, and on the individualization of dosing regimens that are also tailored to meet individual patient needs depending upon genotype. In this investigation, chemical probes for CYP450 enzymes were characterized and identified with Raman spectroscopy. Furthermore, gold-based metal colloid clusters were utilized to generate surface enhanced Raman spectra for each of the chemical probes. Results will be presented demonstrating the ability of SERS to identify minute quantities of these probes on the order needed for in vivo application.

  7. Ethylbenzene induces microsomal oxygen free radical generation: antibody-directed characterization of the responsible cytochrome P450 enzymes.

    PubMed

    Serron, S C; Dwivedi, N; Backes, W L

    2000-05-01

    Small aromatic hydrocarbons cause changes in oxidative metabolism by modulating the levels of cytochrome P450 enzymes, with the changes in these enzymes being responsible for qualitative changes in aromatic hydrocarbon metabolism. The goal of this study was to determine if exposure to the small alkylbenzene ethylbenzene (EB) leads to an increase in hepatic free radical production. Male F344 rats were treated with ip injections of EB (10 mmol/kg) and compared to corn oil controls. Hepatic free radical production was examined by measuring the conversion of 2',7'-dichlorofluorescin diacetate (DCFH-DA) to its fluorescent product 2',7'-dichlorofluorescein (DCF). A significant elevation of fluorescent DCF production was observed after treatment with EB, despite the lack of effect on overall cytochrome P450 levels. This process was shown to be inhibitable by metyrapone, an inhibitor of P450. DCF production was also inhibited by catalase, suggesting that hydrogen peroxide (H(2)O(2)) is one of the reactive oxygen intermediates involved in EB-mediated reactive oxygen species (ROS) formation. Interestingly, superoxide dismutase (SOD) did not inhibit DCF production in corn oil-treated rats but was an effective inhibitor in the EB-treated groups. In an effort to determine if the increase in ROS production was related to changes in specific P450 enzymes, DCF production was measured in the presence of anti-CYP2B, anti-CYP2C11, anti-CYP2E1, and anti-CYP3A2 inhibitory antibodies. Anti-CYP2B antibodies inhibited DCF production in EB-treated, but not corn oil groups, which is consistent with the low constitutive levels of this enzyme and its induction by EB. The data also demonstrate that CYP2B contributes to ROS production. Anti-CYP2C11 did not influence DCF production in either group. ROS formation in corn oil-treated rats as well as in ethylbenzene-treated rats was also inhibited with antibodies to anti-CYP2E1 and anti-CYP3A2. These results suggest that CYP2C11 does not appear to

  8. The valence bond way: reactivity patterns of cytochrome P450 enzymes and synthetic analogs.

    PubMed

    Shaik, Sason; Lai, Wenzhen; Chen, Hui; Wang, Yong

    2010-08-17

    The preceding decade has witnessed an immense surge of activity in the bioinorganic chemistry of transition metal enzymes and synthetic analogs that model their operation. The wide range of research covers both experimental and theoretical investigations of structure and reactivity patterns. Theory, and especially density functional theory (DFT), has become a very useful tool, an important partner of experiment in resolving structural and mechanistic issues. This flare of activity has generated a great deal of knowledge on intermediates, transition states, barriers, rate constants, rate-equilibrium relationships, stereoselectivity, and so forth. This abundance of acquired knowledge has created the need for establishing order, namely, the outlining of broad generalizations, as well as the creation of a more-intuitive interface between experimental and theoretical data. The valence bond (VB) diagram model, originally developed for organic reactions, is such a theoretical framework that has the potential to guide the requisite generalizations in the field of bioinorganic chemical reactivity. In this Account, we briefly describe the principles of construction of VB diagrams for bioinorganic reactions, detailing applications in the booming research area of heme enzyme (specifically cytochrome P450) reactivity, and particularly two archetypal reactions of these enzymes, alkane hydroxylation and thioether sulfoxidation. For congruence with the lingua franca of bioinorganic chemistry, the VB model is formulated to create bridges to (i) the molecular orbital (MO) description, (ii) the oxidation state formulation of transition metal complexes, and (iii) widely used concepts such as the Bell-Evans-Polanyi (BEP) principle. The VB diagram model reveals the origins of the barrier, describes the formation of transition states and reaction intermediates, and allows the prediction of barrier heights and structure-reactivity relationships. Thus, from the VB diagram model, we can

  9. The valence bond way: reactivity patterns of cytochrome P450 enzymes and synthetic analogs.

    PubMed

    Shaik, Sason; Lai, Wenzhen; Chen, Hui; Wang, Yong

    2010-08-17

    The preceding decade has witnessed an immense surge of activity in the bioinorganic chemistry of transition metal enzymes and synthetic analogs that model their operation. The wide range of research covers both experimental and theoretical investigations of structure and reactivity patterns. Theory, and especially density functional theory (DFT), has become a very useful tool, an important partner of experiment in resolving structural and mechanistic issues. This flare of activity has generated a great deal of knowledge on intermediates, transition states, barriers, rate constants, rate-equilibrium relationships, stereoselectivity, and so forth. This abundance of acquired knowledge has created the need for establishing order, namely, the outlining of broad generalizations, as well as the creation of a more-intuitive interface between experimental and theoretical data. The valence bond (VB) diagram model, originally developed for organic reactions, is such a theoretical framework that has the potential to guide the requisite generalizations in the field of bioinorganic chemical reactivity. In this Account, we briefly describe the principles of construction of VB diagrams for bioinorganic reactions, detailing applications in the booming research area of heme enzyme (specifically cytochrome P450) reactivity, and particularly two archetypal reactions of these enzymes, alkane hydroxylation and thioether sulfoxidation. For congruence with the lingua franca of bioinorganic chemistry, the VB model is formulated to create bridges to (i) the molecular orbital (MO) description, (ii) the oxidation state formulation of transition metal complexes, and (iii) widely used concepts such as the Bell-Evans-Polanyi (BEP) principle. The VB diagram model reveals the origins of the barrier, describes the formation of transition states and reaction intermediates, and allows the prediction of barrier heights and structure-reactivity relationships. Thus, from the VB diagram model, we can

  10. Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster.

    PubMed

    Gilbert, Lawrence I

    2004-02-27

    Mutation of members of the Halloween gene family results in embryonic lethality. We have shown that two of these genes code for enzymes responsible for specific steps in the synthesis of ecdysone, a polyhydroxylated sterol that is the precursor of the major molting hormone of all arthropods, 20-hydroxyecdysone. These two mitochondrial P450 enzymes, coded for by disembodied (dib) (CYP302A1) and shadow (sad) (CYP315A1), are the C22 and C2 hydroxylases, respectively, as shown by transfection of the gene into S2 cells and subsequent biochemical analysis. These are the last two enzymes in the ecdysone biosynthetic pathway. A third enzyme, necessary for the critical conversion of ecdysone to 20-hydroxyecdysone, the 20-monooxygenase, is encoded by shade (shd) (CYP314A1). All three enzymes are mitochondrial although shade has motifs suggesting both mitochondrial and microsomal locations. By tagging these enzymes, their subcellular location has been confirmed by confocal microscopy. Shade is present in several tissues as expected while disembodied and shadow are restricted to the ring gland. The paradigm used should allow us to define the enzymes mediating the entire ecdysteroid biosynthetic pathway. PMID:15026169

  11. Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster.

    PubMed

    Gilbert, Lawrence I

    2004-02-27

    Mutation of members of the Halloween gene family results in embryonic lethality. We have shown that two of these genes code for enzymes responsible for specific steps in the synthesis of ecdysone, a polyhydroxylated sterol that is the precursor of the major molting hormone of all arthropods, 20-hydroxyecdysone. These two mitochondrial P450 enzymes, coded for by disembodied (dib) (CYP302A1) and shadow (sad) (CYP315A1), are the C22 and C2 hydroxylases, respectively, as shown by transfection of the gene into S2 cells and subsequent biochemical analysis. These are the last two enzymes in the ecdysone biosynthetic pathway. A third enzyme, necessary for the critical conversion of ecdysone to 20-hydroxyecdysone, the 20-monooxygenase, is encoded by shade (shd) (CYP314A1). All three enzymes are mitochondrial although shade has motifs suggesting both mitochondrial and microsomal locations. By tagging these enzymes, their subcellular location has been confirmed by confocal microscopy. Shade is present in several tissues as expected while disembodied and shadow are restricted to the ring gland. The paradigm used should allow us to define the enzymes mediating the entire ecdysteroid biosynthetic pathway.

  12. Classification Models for Predicting Cytochrome P450 Enzyme-Substrate Selectivity.

    PubMed

    Zhang, Tao; Dai, Hao; Liu, Limin Angela; Lewis, David F V; Wei, Dongqing

    2012-01-01

    Cytochrome P450 (CYP) is an important drug-metabolizing enzyme family. Different CYPs often have different substrate preferences. In addition, one drug molecule may be preferentially metabolized by one or more CYP enzymes. Therefore, the classification and prediction of substrate specificity of CYP enzymes are of importance to the understanding of drug metabolisms and may help guide the development of new drugs. In this study, we used three different machine learning methods to classify CYP substrates for predicting CYP-substrate specificity based solely on structural and physicochemical properties of the substrates. We first built a simple decision tree model to classify substrates of four CYP enzymes, 1A2, 2C9, 2D6 and 3A4 with more than 78 % classification accuracy. We then built a single-label eight-class model and a multilabel five-class model to classify substrates of eight CYP enzymes and to classify substrates that can be metabolized by more than one CYP enzymes, respectively. Above 90 % and >80 % prediction accuracy was achieved for the single-label and multilabel models, respectively. The main improvement of our models over existing ones is the automated and unbiased selection of descriptors by genetic algorithms, which makes our methods applicable for larger data sets and increased number of CYP enzymes.

  13. Comparative use of isolated hepatocytes and hepatic microsomes for cytochrome P450 inhibition studies: transporter-enzyme interplay.

    PubMed

    Brown, Hayley S; Wilby, Alison J; Alder, Jane; Houston, J Brian

    2010-12-01

    Accurate assignment of the concentration of victim drug/inhibitor available at the enzyme active site, both in vivo and within an in vitro incubation, is an essential requirement in rationalizing and predicting drug-drug interactions. Inhibitor accumulation within the liver, whether as a result of active transport processes or intracellular binding, may best be accounted for using hepatocytes rather than hepatic microsomes to estimate in vitro inhibitory potency. The aims of this study were to compare K(i) values determined in rat liver microsomes and freshly isolated rat hepatocytes of four cytochrome P450 (P450) inhibitors (clarithromycin, enoxacin, nelfinavir, and saquinavir) with known hepatic transporter involvement and a range of uptake (cell/medium concentration ratios 20-3000) and clearance (10-1200 μl/min/10(6) cells) properties. Inhibition studies were performed using two well established P450 probe substrates (theophylline and midazolam). Comparison of unbound K(i) values showed marked differences between the two in vitro systems for inhibition of metabolism. In two cases (clarithromycin and enoxacin, both low-clearance drugs), inhibitory potency in hepatocytes markedly exceeded that in microsomes (10- to 20-fold), and this result was consistent with their high cell/medium concentration ratios. For nelfinavir and saquinavir (high-clearance, extensively metabolized drugs), the opposite trend was seen in the K(i) values: despite very high cell/medium concentration ratios, stronger inhibition was evident within microsomal preparations. Hence, the consequences of hepatic accumulation resulting from uptake transporters vary according to the clearance of the inhibitor. This study demonstrates that transporter-enzyme interplay can result in differences in inhibitory potency between microsomes and hepatocytes and hence drug-drug interaction predictions that are not always intuitive.

  14. Insights on Cytochrome P450 Enzymes and Inhibitors Obtained Through QSAR Studies

    PubMed Central

    Sridhar, Jayalakshmi; Liu, Jiawang; Foroozesh, Maryam; Stevens, Cheryl L. Klein

    2013-01-01

    The cytochrome P450 (CYP) superfamily of heme enzymes play an important role in the metabolism of a large number of endogenous and exogenous compounds, including most of the drugs currently on the market. Inhibitors of CYP enzymes have important roles in the treatment of several disease conditions such as numerous cancers and fungal infections in addition to their critical role in drug-drug interactions. Structure activity relationships (SAR), and three-dimensional quantitative structure activity relationships (3D-QSAR) represent important tools in understanding the interactions of the inhibitors with the active sites of the CYP enzymes. A comprehensive account of the QSAR studies on the major human CYPs 1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4 and a few other CYPs are detailed in this review which will provide us with an insight into the individual/common characteristics of the active sites of these enzymes and the enzyme-inhibitor interactions. PMID:22864238

  15. Evaluation on activity of cytochrome p450 enzymes in turbot via a probe drug cocktail.

    PubMed

    Chang, Zhi-Qiang; Li, Jian; Zhai, Qian-Qian

    2014-12-01

    Cytochrome P450s (CYPs) are the main catalytic enzymes for metabolism by a variety of endogenous and exogenous substrates in mammals, fish, insects, etc. We evaluated the application of a multidrug cocktail on changes in CYP1, CYP2, and CYP3 activity in Turbot Scophthalmus maximus. The probe drugs were a combination of caffeine (5 mg/kg body weight), dapsone (5 mg/kg), and chlorzoxazone (10 mg/kg). After a single intraperitoneal injection of the cocktail, the concentration of all three probe drugs in the plasma increased quickly to a peak and then decreased gradually over 24 h. Pharmacokinetic profiles of the three probe drugs were determined using a noncompartmental analysis, and the typical parameters were calculated. In the assay for CYP induction, pretreatment with rifampicin significantly reduced the typical pharmacokinetic metrics for caffeine and chlorzoxazone, but not dapsone, indicating that the activity of CYP1 and CYP2 in turbot were induced by rifampicin. PMID:25369285

  16. Inhibition of human cytochrome P450 enzymes by hops (Humulus lupulus) and hop prenylphenols

    PubMed Central

    Nikolić, Dejan; Chen, Shao-Nong; Huang, Ke; Li, Guannan; Pauli, Guido F.; van Breemen, Richard B.

    2014-01-01

    As hops (Humulus lupulus L.) are used in the brewing of beer and by menopausal women as estrogenic dietary supplements, the potential for hop extracts and hop constituents to cause drug-botanical interactions by inhibiting human cytochrome P450 enzymes was investigated. Inhibition of major human cytochrome P450 enzymes by a standardized hop extract and isolated hop prenylated phenols was evaluated using a fast and efficient assay based on ultrahigh pressure liquid chromatography-tandem mass spectrometry. The hop extract at 5 μg/mL inhibited CYP2C8 (93%), CYP2C9 (88%), CYP2C19 (70%), and CYP1A2 (27%) with IC50 values of 0.8, 0.9, 3.3, and 9.4 μg/mL, respectively, but time-dependent inactivation was observed only for CYP1A2. Isoxanthohumol from hops was the most potent inhibitor of CYP2C8 with an IC50 of 0.2 μM, whereas 8-prenylnaringenin was the most potent inhibitor of CYP1A2, CYP2C9 and CYP2C19 with IC50 values of 1.1 μM, 1.1 μM and 0.4 μM, respectively. Extracts of hops contain prenylated compounds such as the flavanones isoxanthohumol and 8-prenylnaringenin and the chalcone xanthohumol that can inhibit CYP450s, especially the CYP2C family, which may affect the efficacy and safety of some CYP2C substrate drugs when co-administered. PMID:24342125

  17. Effect of crude extract of Eugenia jambolana Lam. on human cytochrome P450 enzymes.

    PubMed

    Chinni, Santhivardhan; Dubala, Anil; Kosaraju, Jayasankar; Khatwal, Rizwan Basha; Satish Kumar, M N; Kannan, Elango

    2014-11-01

    The fruit of Eugenia jambolana Lam. is very popular for its anti-diabetic property. Previous studies on the crude extract of E. jambolana (EJE) have successfully explored the scientific basis for some of its traditional medicinal uses. Considering its wide use and consumption as a seasonal fruit, the present study investigates the ability of E. jambolana to interact with cytochrome P450 enzymes. The standardized EJE was incubated with pooled human liver microsomes to assess the CYP2C9-, CYP2D6-, and CYP3A4-mediated metabolism of diclofenac, dextromethorphan, and testosterone, respectively. The metabolites formed after the enzymatic reactions were quantified by high performance liquid chromatography. EJE showed differential effect on cytochrome P450 activities with an order of inhibitory potential as CYP2C9 > CYP3A4 > CYP2D6 having IC50 of 76.69, 359.02, and 493.05 µg/mL, respectively. The selectivity of EJE for CYP2C9 rather than CYP3A4 and CYP2D6 led to perform the enzyme kinetics to explicate the mechanism underlying the inhibition of CYP2C9-mediated diclofenac 4'-hydroxylation. EJE was notably potent in inhibiting the reaction in a non-competitive manner with Ki of 84.85 ± 5.27 µg/mL. The results revealed the CYP2C9 inhibitory potential of EJE with lower Ki value suggesting that EJE should be examined for its potential pharmacokinetic and pharmacodynamic interactions when concomitantly administered with other drugs. PMID:24590863

  18. Oxidation of Acenaphthene and Acenaphthylene by Human Cytochrome P450 Enzymes

    PubMed Central

    Shimada, Tsutomu; Takenaka, Shigeo; Murayama, Norie; Yamazaki, Hiroshi; Kim, Joo-Hwan; Kim, Donghak; Yoshimoto, Francis K.; Guengerich, F. Peter; Komori, Masayuki

    2016-01-01

    Acenaphthene and acenaphthylene, two known environmental polycyclic aromatic hydrocarbon (PAH) pollutants, were incubated at 50 µM concentrations in a standard reaction mixture with human P450s 2A6, 2A13, 1B1, 1A2, 2C9, and 3A4 and the oxidation products were determined using HPLC and LC-MS. HPLC analysis showed that P450 2A6 converted acenaphthene and acenaphthylene to several mono- and di-oxygenated products. LC-MS analysis of acenaphthene oxidation by P450s indicated the formation of 1-acenaphthenol as a major product, with turnover rates of 6.7, 4.5, and 3.6 nmol product formed/min/nmol P450 for P450 2A6, 2A13, and 1B1, respectively. Acenaphthylene oxidation by P450 2A6 showed the formation of 1,2-epoxyacenaphthene as a major product (4.4 nmol epoxide formed/min/nmol P450) and also several mono- and di-oxygenated products. P450 2A13, 1B1, 1A2, 2C9, and 3A4 formed 1,2-epoxyacenaphthene at rates of 0.18, 5.3 2.4, 0.16, and 3.8 nmol/min nmol P450, respectively. 1-Acenaphthenol, which induced Type I binding spectra with P450 2A13, was further oxidized by P450 2A13 but not P450 2A6. 1,2-Epoxyacenaphthene induced Type I binding spectra with P450 2A6 and 2A13 (Ks 1.8 and 0.16 µM, respectively) and was also oxidized to several oxidation products by these P450s. Molecular docking analysis suggested different orientations of acenaphthene, acenaphthylene, 1-acenaphthenol, and 1,2-epoxyacenaphthene in their interactions with P450 2A6 and 2A13. Neither these four PAHs induced umu gene expression in a Salmonella typhimurium NM tester strain. These results suggest, for the first time, that acenaphthene and acenaphthylene are oxidized by human P450s 2A6 and 2A13 and other P450s to form several mono- and di-oxygenated products. The results are of use in considering the biological and toxicological significance of these environmental PAHs in humans. PMID:25642975

  19. Highly miniaturized formats for in vitro drug metabolism assays using vivid fluorescent substrates and recombinant human cytochrome P450 enzymes.

    PubMed

    Trubetskoy, Olga V; Gibson, Jasmin R; Marks, Bryan D

    2005-02-01

    Highly miniaturized P450 screening assays designed to enable facile analysis of P450 drug interactions in a 1536-well plate format with the principal human cytochrome P450 enzymes (CYP3A4, 2D6, 2C9, 2C19, and 1A2) and Vivid fluorogenic substrates were developed. The detailed characterization of the assays included stability, homogeneity, and reproducibility of the recombinant P450 enzymes and the kinetic parameters of their reactions with Vivid fluorogenic substrates, with a focus on the specific characteristics of each component that enable screening in a low-volume 1536-well plate assay format. The screening assays were applied for the assessment of individual cytochrome P450 inhibition profiles with a panel of selected assay modifiers, including isozyme-specific substrates and inhibitors. IC(50) values obtained for the modifiers in 96- and 1536-well plate formats were similar and comparable with values obtained in assays with conventional substrates. An overall examination of the 1536-well assay statistics, such as signal-to-background ratio and Z' factor, demonstrated that these assays are a robust, successful, and reliable tool to screen for cytochrome P450 metabolism and inhibition in an ultra-high-throughput screening format.

  20. Elucidation of catalytic specificities of human cytochrome P450 and glutathione S-transferase enzymes and relevance to molecular epidemiology.

    PubMed

    Guengerich, F P; Shimada, T; Raney, K D; Yun, C H; Meyer, D J; Ketterer, B; Harris, T M; Groopman, J D; Kadlubar, F F

    1992-11-01

    A number of different approaches have been used to determine the catalytic selectivity of individual human enzymes toward procarcinogens. Studies with cytochrome P450 (P450) enzymes and glutathione S-transferases are summarized here, and recent work with pyrrolizidine alkaloids, aflatoxins, 4,4'-methylenebis(2-chloroaniline), and ethyl carbamate is discussed. In some cases a single enzyme can catalyze both activation and detoxication reactions of a chemical. The purification and characterization of human lung P4501A1 and the development of a noninvasive assay for human P4502E1 are also described. PMID:1486866

  1. Key Residues Controlling Phenacetin Metabolism By Human Cytochrome P450 2A Enzymes

    SciTech Connect

    DeVore, N.M.; Smith, B.D.; Urban, M.J.; Scott, E.E.

    2009-05-14

    Although the human lung cytochrome P450 2A13 (CYP2A13) and its liver counterpart cytochrome P450 2A6 (CYP2A6) are 94% identical in amino acid sequence, they metabolize a number of substrates with substantially different efficiencies. To determine differences in binding for a diverse set of cytochrome P450 2A ligands, we have measured the spectral binding affinities (K{sub D}) for nicotine, phenethyl isothiocyanate (PEITC), coumarin, 2{prime}-methoxyacetophenone (MAP), and 8-methoxypsoralen. The differences in the K{sub D} values for CYP2A6 versus CYP2A13 ranged from 74-fold for 2{prime}-methoxyacetophenone to 1.1-fold for coumarin, with CYP2A13 demonstrating the higher affinity. To identify active site amino acids responsible for the differences in binding of MAP, PEITC, and coumarin, 10 CYP2A13 mutant proteins were generated in which individual amino acids from the CYP2A6 active site were substituted into CYP2A13 at the corresponding position. Titrations revealed that substitutions at positions 208, 300, and 301 individually had the largest effects on ligand binding. The collective relevance of these amino acids to differential ligand selectivity was verified by evaluating binding to CYP2A6 mutant enzymes that incorporate several of the CYP2A13 amino acids at these positions. Inclusion of four CYP2A13 amino acids resulted in a CYP2A6 mutant protein (I208S/I300F/G301A/S369G) with binding affinities for MAP and PEITC much more similar to those observed for CYP2A13 than to those for CYP2A6 without altering coumarin binding. The structure-based quantitative structure-activity relationship analysis using COMBINE successfully modeled the observed mutant-ligand trends and emphasized steric roles for active site residues including four substituted amino acids and an adjacent conserved Leu{sup 370}.

  2. Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster.

    PubMed

    Warren, James T; Petryk, Anna; Marques, Guillermo; Jarcho, Michael; Parvy, Jean-Philippe; Dauphin-Villemant, Chantal; O'Connor, Michael B; Gilbert, Lawrence I

    2002-08-20

    Five different enzymatic activities, catalyzed by both microsomal and mitochondrial cytochrome P450 monooxygenases (CYPs), are strongly implicated in the biosynthesis of ecdysone (E) from cholesterol. However, none of these enzymes have been characterized completely. The present data show that the wild-type genes of two members of the Halloween family of embryonic lethals, disembodied (dib) and shadow (sad), code for mitochondrial cytochromes P450 that mediate the last two hydroxylation reactions in the ecdysteroidogenic pathway in Drosophila, namely the C22- and C2-hydroxylases. When sad (CYP315A1) is transfected into Drosophila S2 cells, the cells metabolize 2-deoxyecdysone (2dE) to E and the [3H]ketotriol (2,22-dideoxyecdysone) to 22-deoxyecdysone. In contrast, dib (CYP302A1) is responsible for the conversion of the [3H]ketotriol to [3H]2dE. When cells are transfected with both dib and sad, they metabolize the [3H]ketotriol to [3H]E in high yield. The expression of sad and dib is concentrated within the individual segments of the developing epidermis when there is a surge of ecdysteroid midway through embryogenesis. This result occurs before the ring gland has developed and suggests that the embryonic epidermis is a site of ecdysteroid biosynthesis. This pattern then diminishes, and, during late embryogenesis, expression of both genes is concentrated in the prothoracic gland cells of the developing ring gland. Expression of dib and sad continues to be localized in this endocrine compartment during larval development, being maximal in both the late second and third instar larvae, about the time of the premolt peaks in the ecdysteroid titer. PMID:12177427

  3. Molecular and biochemical characterization of two P450 enzymes in the ecdysteroidogenic pathway of Drosophila melanogaster.

    PubMed

    Warren, James T; Petryk, Anna; Marques, Guillermo; Jarcho, Michael; Parvy, Jean-Philippe; Dauphin-Villemant, Chantal; O'Connor, Michael B; Gilbert, Lawrence I

    2002-08-20

    Five different enzymatic activities, catalyzed by both microsomal and mitochondrial cytochrome P450 monooxygenases (CYPs), are strongly implicated in the biosynthesis of ecdysone (E) from cholesterol. However, none of these enzymes have been characterized completely. The present data show that the wild-type genes of two members of the Halloween family of embryonic lethals, disembodied (dib) and shadow (sad), code for mitochondrial cytochromes P450 that mediate the last two hydroxylation reactions in the ecdysteroidogenic pathway in Drosophila, namely the C22- and C2-hydroxylases. When sad (CYP315A1) is transfected into Drosophila S2 cells, the cells metabolize 2-deoxyecdysone (2dE) to E and the [3H]ketotriol (2,22-dideoxyecdysone) to 22-deoxyecdysone. In contrast, dib (CYP302A1) is responsible for the conversion of the [3H]ketotriol to [3H]2dE. When cells are transfected with both dib and sad, they metabolize the [3H]ketotriol to [3H]E in high yield. The expression of sad and dib is concentrated within the individual segments of the developing epidermis when there is a surge of ecdysteroid midway through embryogenesis. This result occurs before the ring gland has developed and suggests that the embryonic epidermis is a site of ecdysteroid biosynthesis. This pattern then diminishes, and, during late embryogenesis, expression of both genes is concentrated in the prothoracic gland cells of the developing ring gland. Expression of dib and sad continues to be localized in this endocrine compartment during larval development, being maximal in both the late second and third instar larvae, about the time of the premolt peaks in the ecdysteroid titer.

  4. Gravity persistent signal 1 reveals a novel cytochrome P450 involved in gravitropic signal transduction

    NASA Astrophysics Data System (ADS)

    Wyatt, Sarah

    Understanding gene expression that occurs during gravitopism is important for studying the processes that link the perception of gravity to the growth response. Arabidopsis plants with a mutation in the GRAVITY PERSISTENT SIGNAL (GPS)1 locus show a "no response" phenotype during gravistimulation experiments. Basepital auxin transport in gps1 mutant was unaffected by the mutation, but auxin was not laterally redistributed after gravistimulation. GPS1 encodes CYP705A22, a cytochrome P450 protein (P450) of unknown function. The wild type CYP705A22 gene was transformed into the gps1 mutant background and successfully rescued the mutant phenotype. Data mining of microarray data collected from gravistimulated root tips of Arabidopsis indicated that although CYP705A22 was not expressed in roots, a family member CYP705A5 was up-regulated within 3 minutes after gravistimulation. Expression profiling of CYP705A5, using real-time quantitative PCR, showed that CYP705A5 was up-regulated nearly five fold within minutes of gravity stimulation. And reporter gene fusions that link the CYP705A5 gene to the green fluorescent protein showed that CYP705A5 was expressed in the root zones of elongation and maturation. Computer modeling of the catalytic domain of CYP705A22 and CYP705A5 and in silico substrate docking simulations generated a list of 130 compounds that are potential substrates of the P450s. Many of the compounds are phenylpropanoid derivatives. Heterologous expression of CYP705A5 in baculovirus and Type 1 binding studies indicate the substrate of the P450 may be quercitin or myricetin. A mutation affecting CYP705A5 expression resulted in a delayed gravity response in roots. The mutant phenotype could be chemically complemented, and DPBA staining in the CYP705A5 mutant indicated a 1.5 fold accumulation of quercetin in mutant roots as compared to WT. These data, taken together, may indicate that we have identified a flavonoid pathway that regulates auxin distribution and thus

  5. Human bone marrow niche chemoprotection mediated by cytochrome p450 enzymes

    PubMed Central

    Alonso, Salvador; Su, Meng; Jones, Jace W.; Ganguly, Sudipto; Kane, Maureen A.; Jones, Richard J.; Ghiaur, Gabriel

    2015-01-01

    Substantial evidence now demonstrates that interactions between the tumor microenvironment and malignant cells are a critical component of clinical drug resistance. However, the mechanisms responsible for microenvironment-mediated chemoprotection remain unclear. We showed that bone marrow (BM) stromal cytochrome P450 (CYP)26 enzymes protect normal hematopoietic stem cells (HSCs) from the pro-differentiation effects of retinoic acid. Here, we investigated if stromal expression of CYPs is a general mechanism of chemoprotection. We found that similar to human hepatocytes, human BM-derived stromal cells expressed a variety of drug-metabolizing enzymes. CYP3A4, the liver's major drug-metabolizing enzyme, was at least partially responsible for BM stroma's ability to protect multiple myeloma (MM) and leukemia cells from bortezomib and etoposide, respectively, both in vitro and in vivo. Moreover, clarithromycin overcame stromal-mediated MM resistance to dexamethasone, suggesting that CYP3A4 inhibition plays a role in its ability to augment the activity of lenalidomide and dexamethasone as part of the BiRd regimen. We uncovered a novel mechanism of microenvironment-mediated drug resistance, whereby the BM niche creates a sanctuary site from drugs. Targeting these sanctuaries holds promise for eliminating minimal residual tumor and improving cancer outcomes. PMID:25915157

  6. Development of NanoART for HIV Treatment: Minding the Cytochrome P450 (CYP) Enzymes

    PubMed Central

    Midde, Narasimha M.; Kumar, Santosh

    2015-01-01

    Sustained suppression of HIV viral load is the primary objective for HIV treatment, which successfully achieved by the use of a wide array of antiretroviral therapies (ART). Despite this enormous success low level of virus persists in the anatomical and cellular reservoirs of the body causing a multitude of immunological and neurocognitive deficits. Towards this, nano-formulations are gaining attention to solve these problems by delivering ART to the targeted locations such as brain, lymphoid tissues, and monocytes/macrophages. As cytochrome P450 (CYP) enzymes play a critical role in the metabolism of drugs and other xenobiotics, it is expected that the interaction of nanoparticles with CYP enzymes may result in adverse drug reactions, cellular toxicity, and alterations in CYP-mediated metabolism of other drug molecules. Considering these potential adverse outcomes it is imperative to design the nano-carriers that will have minimal impact on CYP enzymes. Therefore, developing a long-acting nanoART regimen with minimal side effects is an essential step to improve patient’s adherence to the treatment paradigm, effective treatment strategy, and to combat the HIV infection & AIDS. PMID:26635972

  7. Relationship between hydrocarbon structure and induction of P450: effects on protein levels and enzyme activities.

    PubMed

    Backes, W L; Sequeira, D J; Cawley, G F; Eyer, C S

    1993-12-01

    1. Treatment of male rat with the small aromatic hydrocarbons, benzene, toluene, ethylbenzene, n-propylbenzene, m-xylene, and p-xylene increased several P450-dependent activities, with ethylbenzene, m-xylene, and n-propylbenzene producing the greatest response. Hydrocarbon treatment differentially affected toluene metabolism, producing a response dependent on the metabolite monitored. In untreated rats, benzyl alcohol was the major hydroxylation product of toluene metabolism, comprising > 99% of the total metabolites formed. Hydrocarbon treatment increased the overall rate of toluene metabolism by dramatically increasing the amount of aromatic hydroxylation. Ethylbenzene, n-propylbenzene and m-xylene were the most effective inducers of aromatic hydroxylation of toluene. In contrast, production of the major toluene metabolite benzyl alcohol was increased only after treatment with m-xylene. 2. P450 2B1/2B2 levels were induced by each of the hydrocarbons examined, with the magnitude of induction increasing with increasing hydrocarbon size. P450 1A1 was also induced after hydrocarbon exposure; however, the degree of induction was smaller than that observed for P450 2B1/2B2. P450 2C11 levels were suppressed after treatment with benzene, ethylbenzene and n-propylbenzene. 3. Taken together these results display two induction patterns. The first generally corresponds to changes in the P450 2B subfamily, where activities (e.g. the aromatic hydroxylations of toluene) were most effectively induced by ethylbenzene, n-propylbenzene and m-xylene. In the second, induction was observed only after m-xylene treatment, a pattern that was found when the metabolism of the substrate was catalysed by both the P450 2B subfamily and P450 2C11. Hydrocarbons that both induced P450 2B1/2B2 and suppressed P450 2C11 (such as ethylbenzene and n-propylbenzene) showed little change in activities catalysed by both isozymes (e.g. aliphatic hydroxylation of toluene, and aniline hydroxylation

  8. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    NASA Astrophysics Data System (ADS)

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-02-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification.

  9. Single-Walled Carbon Nanotubes Inhibit the Cytochrome P450 Enzyme, CYP3A4

    PubMed Central

    El-Sayed, Ramy; Bhattacharya, Kunal; Gu, Zonglin; Yang, Zaixing; Weber, Jeffrey K.; Li, Hu; Leifer, Klaus; Zhao, Yichen; Toprak, Muhammet S.; Zhou, Ruhong; Fadeel, Bengt

    2016-01-01

    We report a detailed computational and experimental study of the interaction of single-walled carbon nanotubes (SWCNTs) with the drug-metabolizing cytochrome P450 enzyme, CYP3A4. Dose-dependent inhibition of CYP3A4-mediated conversion of the model compound, testosterone, to its major metabolite, 6β-hydroxy testosterone was noted. Evidence for a direct interaction between SWCNTs and CYP3A4 was also provided. The inhibition of enzyme activity was alleviated when SWCNTs were pre-coated with bovine serum albumin. Furthermore, covalent functionalization of SWCNTs with polyethylene glycol (PEG) chains mitigated the inhibition of CYP3A4 enzymatic activity. Molecular dynamics simulations suggested that inhibition of the catalytic activity of CYP3A4 is mainly due to blocking of the exit channel for substrates/products through a complex binding mechanism. This work suggests that SWCNTs could interfere with metabolism of drugs and other xenobiotics and provides a molecular mechanism for this toxicity. Our study also suggests means to reduce this toxicity, eg., by surface modification. PMID:26899743

  10. Modeling of interactions between xenobiotics and cytochrome P450 (CYP) enzymes

    PubMed Central

    Raunio, Hannu; Kuusisto, Mira; Juvonen, Risto O.; Pentikäinen, Olli T.

    2015-01-01

    The adverse effects to humans and environment of only few chemicals are well known. Absorption, distribution, metabolism, and excretion (ADME) are the steps of pharmaco/toxicokinetics that determine the internal dose of chemicals to which the organism is exposed. Of all the xenobiotic-metabolizing enzymes, the cytochrome P450 (CYP) enzymes are the most important due to their abundance and versatility. Reactions catalyzed by CYPs usually turn xenobiotics to harmless and excretable metabolites, but sometimes an innocuous xenobiotic is transformed into a toxic metabolite. Data on ADME and toxicity properties of compounds are increasingly generated using in vitro and modeling (in silico) tools. Both physics-based and empirical modeling approaches are used. Numerous ligand-based and target-based as well as combined modeling methods have been employed to evaluate determinants of CYP ligand binding as well as predicting sites of metabolism and inhibition characteristics of test molecules. In silico prediction of CYP–ligand interactions have made crucial contributions in understanding (1) determinants of CYP ligand binding recognition and affinity; (2) prediction of likely metabolites from substrates; (3) prediction of inhibitors and their inhibition potency. Truly predictive models of toxic outcomes cannot be created without incorporating metabolic characteristics; in silico methods help producing such information and filling gaps in experimentally derived data. Currently modeling methods are not mature enough to replace standard in vitro and in vivo approaches, but they are already used as an important component in risk assessment of drugs and other chemicals. PMID:26124721

  11. Polymorphic Cytochrome P450 Enzymes (CYPs) and Their Role in Personalized Therapy

    PubMed Central

    Preissner, Robert; Dunkel, Mathias; Gewiess, Andreas; Preissner, Saskia

    2013-01-01

    The cytochrome P450 (CYP) enzymes are major players in drug metabolism. More than 2,000 mutations have been described, and certain single nucleotide polymorphisms (SNPs) have been shown to have a large impact on CYP activity. Therefore, CYPs play an important role in inter-individual drug response and their genetic variability should be factored into personalized medicine. To identify the most relevant polymorphisms in human CYPs, a text mining approach was used. We investigated their frequencies in different ethnic groups, the number of drugs that are metabolized by each CYP, the impact of CYP SNPs, as well as CYP expression patterns in different tissues. The most important polymorphic CYPs were found to be 1A2, 2D6, 2C9 and 2C19. Thirty-four common allele variants in Caucasians led to altered enzyme activity. To compare the relevant Caucasian SNPs with those of other ethnicities a search in 1,000 individual genomes was undertaken. We found 199 non-synonymous SNPs with frequencies over one percent in the 1,000 genomes, many of them not described so far. With knowledge of frequent mutations and their impact on CYP activities, it may be possible to predict patient response to certain drugs, as well as adverse side effects. With improved availability of genotyping, our data may provide a resource for an understanding of the effects of specific SNPs in CYPs, enabling the selection of a more personalized treatment regimen. PMID:24340040

  12. Assessment of inhibition of porcine hepatic cytochrome P450 enzymes by 48 commercial drugs.

    PubMed

    Hu, Steven X; Mazur, Chase A; Feenstra, Kenneth L; Lorenz, Julie K; Merritt, Dawn A

    2016-05-01

    Drug interactions due to inhibition of hepatic cytochrome P450 (CYP450) enzymes are not well understood in veterinary medicine. Forty-eight commercial porcine medicines were selected to evaluate their potential inhibition on porcine hepatic CYP450 enzymes at their commercial doses and administration routes. Those drugs were first assessed through a single point inhibitory assay at 3 µM in porcine liver microsomes for six specific CYP450 metabolisms (phenacetin o-deethylation, coumarin 7-hydroxylation, tolbutamide 4-hydroxylation, bufuralol 1-hydroxylation, chlorozoxazone 6-hydroxylation and midazolam 1'-hydroxylation). When the inhibition was > 10% in the single point inhibitory assay, IC50 values (inhibitory concentrations that decrease biotransformation of selected substrate by 50%) were determined. Overall, 17 drugs showed in vitro inhibition on one or more porcine hepatic CYP450 metabolisms with different IC50 values. The potential in vivo porcine hepatic CYP450 inhibition by those drugs was assessed by combining the in vitro data and in vivo Cmax (maximum plasma concentrations from pharmacokinetic studies of the porcine medicines at their commercial doses and administration routes). Three drugs showed high potential inhibition to one or two porcine hepatic CYP450 isoforms at their commercial doses and administration routes, while seven drugs had medium risk and seven had low risk of such in vivo inhibition. These data are useful to prevent potential drug interactions in veterinary medical practice.

  13. Inhibitory effect of mitragynine on human cytochrome P450 enzyme activities

    PubMed Central

    Hanapi, N. A.; Ismail, S.; Mansor, S. M.

    2013-01-01

    Context: To date, many findings reveal that most of the modern drugs have the ability to interact with herbal drugs. Aims: This study was conducted to determine the inhibitory effects of mitragynine on cytochrome P450 2C9, 2D6 and 3A4 activities. Methods and Material: The in vitro study was conducted using a high-throughput luminescence assay. Statistical Analysis: Statistical analysis was conducted using one-way ANOVA and Dunnett's test with P < 0.05 vs. control. The IC50 values were calculated using the GraphPad Prism® 5 (Version 5.01, GraphPad Software, Inc., USA). Results: Assessment using recombinant enzymes showed that mitragynine gave the strongest inhibitory effect on CYP2D6 with an IC50 value of 0.45±0.33 mM, followed by CYP2C9 and CYP3A4 with IC50 values of 9.70±4.80 and 41.32±6.74 μM respectively. Positive inhibitors appropriate for CYP2C9, CYP2D6, and CYP3A4 which are sulfaphenazole, quinidine and ketoconazole were used respectively. Vmax values of CYP2C9, CYP2D6 and CYP3A4 were 0.0005, 0.01155 and 0.0137 μM luciferin formed/pmol/min respectively. Km values of CYP2C9, CYP2D6, and CYP3A4 were 32.65, 56.01, and 103.30 μM respectively. Mitragynine noncompetitively inhibits CYP2C9 and CYP2D6 activities with the Ki values of 61.48 and 12.86 μM respectively. On the other hand, mitragynine inhibits CYP3A4 competitively with a Ki value of 379.18 μM. Conclusions: The findings of this study reveal that mitragynine might inhibit cytochrome P450 enzyme activities, specifically CYP2D6. Therefore, administration of mitragynine together with herbal or modern drugs which follow the same metabolic pathway may contribute to herb-drug interactions. PMID:24174816

  14. Effects of phenol on metabolic activities and transcription profiles of cytochrome P450 enzymes in Chironomus kiinensis larvae.

    PubMed

    Cao, C W; Sun, L L; Niu, F; Liu, P; Chu, D; Wang, Z Y

    2016-02-01

    Phenol, also known as carbolic acid or phenic acid, is a priority pollutant in aquatic ecosystems. The present study has investigated metabolic activities and transcription profiles of cytochrome P450 enzymes in Chironomus kiinensis under phenol stress. Exposure of C. kiinensis larvae to three sublethal doses of phenol (1, 10 and 100 µM) inhibited cytochrome P450 enzyme activity during the 96 h exposure period. The P450 activity measured after the 24 h exposure to phenol stress could be used to assess the level (low or high) of phenol contamination in the environment. To investigate the potential of cytochrome P450 genes as molecular biomarkers to monitor phenol contamination, the cDNA of ten CYP6 genes from the transcriptome of C. kiinensis were identified and sequenced. The open reading frames of the CYP6 genes ranged from 1266 to 1587 bp, encoding deduced polypeptides composed of between 421 and 528 amino acids, with predicted molecular masses from 49.01 to 61.94 kDa and isoelectric points (PI) from 6.01 to 8.89. Among the CYP6 genes, the mRNA expression levels of the CYP6EW3, CYP6EV9, CYP6FV1 and CYP6FV2 genes significantly altered in response to phenol exposure; therefore, these genes could potentially serve as biomarkers in the environment. This study shows that P450 activity combined with one or multiple CYP6 genes could be used to monitor phenol pollution.

  15. In Vitro Effects of Concomitant Use of Herbal Preparations on Cytochrome P450s Involved in Clozapine Metabolism.

    PubMed

    Wang, Wei; Tian, Dan-Dan; Zhang, Zhang-Jin

    2016-01-01

    Herbal supplements are increasingly used in psychiatric practice. Our epidemiological study has identified several herbal preparations associated with adverse outcomes of antipsychotic therapy. In this study, we evaluated the in vitro effects of four herbal preparations-Radix Rehmanniae (RR), Fructus Schisandrae (FS), Radix Bupleuri (RB) and Fructus Gardeniae (FG)-on cytochrome P450s (CYPs) involved in the metabolism of clozapine in human liver microsomes (HLMs) and recombinant human cytochrome P450 enzymes (rCYPs). N-desmethylclozapine and clozapine N-oxide, two major metabolites of clozapine, were measured using high-performance liquid chromatography (HPLC). FG, RR and RB showed negligible inhibitory effects in both in vitro systems, with estimated half-maximal inhibitory concentrations (IC50) and apparent inhibitory constant values (Ki) greater than 1 mg/mL (raw material), suggesting that minimal metabolic interaction occurs when these preparations are used concomitantly with clozapine. The FS extract affected CYP activity with varying potency; its effect on CYP 3A4-catalyzed clozapine oxidation was relatively strong (Ki: 0.11 mg/mL). Overall, the weak-to-moderate inhibitory effect of FS on in vitro clozapine metabolism indicated its potential role in herb-drug interaction in practice. PMID:27164071

  16. Computational Prediction of Metabolism: Sites, Products, SAR, P450 Enzyme Dynamics, and Mechanisms

    PubMed Central

    2012-01-01

    Metabolism of xenobiotics remains a central challenge for the discovery and development of drugs, cosmetics, nutritional supplements, and agrochemicals. Metabolic transformations are frequently related to the incidence of toxic effects that may result from the emergence of reactive species, the systemic accumulation of metabolites, or by induction of metabolic pathways. Experimental investigation of the metabolism of small organic molecules is particularly resource demanding; hence, computational methods are of considerable interest to complement experimental approaches. This review provides a broad overview of structure- and ligand-based computational methods for the prediction of xenobiotic metabolism. Current computational approaches to address xenobiotic metabolism are discussed from three major perspectives: (i) prediction of sites of metabolism (SOMs), (ii) elucidation of potential metabolites and their chemical structures, and (iii) prediction of direct and indirect effects of xenobiotics on metabolizing enzymes, where the focus is on the cytochrome P450 (CYP) superfamily of enzymes, the cardinal xenobiotics metabolizing enzymes. For each of these domains, a variety of approaches and their applications are systematically reviewed, including expert systems, data mining approaches, quantitative structure–activity relationships (QSARs), and machine learning-based methods, pharmacophore-based algorithms, shape-focused techniques, molecular interaction fields (MIFs), reactivity-focused techniques, protein–ligand docking, molecular dynamics (MD) simulations, and combinations of methods. Predictive metabolism is a developing area, and there is still enormous potential for improvement. However, it is clear that the combination of rapidly increasing amounts of available ligand- and structure-related experimental data (in particular, quantitative data) with novel and diverse simulation and modeling approaches is accelerating the development of effective tools for

  17. Inhibitory effects of kale ingestion on metabolism by cytochrome P450 enzymes in rats.

    PubMed

    Yamasaki, Izumi; Yamada, Masayoshi; Uotsu, Nobuo; Teramoto, Sachiyuki; Takayanagi, Risa; Yamada, Yasuhiko

    2012-01-01

    Kale (Brassica oleracea L. var acephala DC) is a leafy green vegetable belonging to the cabbage family (Brassicaceae) that contains a large amount of health-promoting phytochemicals. There are any reports about the effects of kale ingestion on the chemoprevention function and mechanism, but the interactions between kale and drugs have not been researched. We investigated the effects of kale intake on cytochrome P450 (CYP) metabolism by using cocktail probe drugs, including midazolam (for CYP3A4), caffeine (for CYP1A2), dextromethorphan (for CYP2D6), tolbutamide (for CYP2C9), omeprazole (for CYP2C19), and chlorzoxazone (for CYP2E1). Cocktail drugs were administered into rats treated with kale and cabbage (2000 mg/kg) for a week. The results showed that kale intake induced a significant increase in plasma levels and the AUC of midazolam, caffeine, and dextromethorphan. In addition, the plasma concentration and AUC of omeprazole tended to increase. Additionally, no almost differences in the mRNA expression levels of CYP enzymes in the liver were observed. In conclusion, kale ingestion was considered to have an inhibitory effect on the activities of CYP3A4, 1A2, 2D6, and 2C19 for a reason competitive inhibition than inhibitory changes in the mRNA expressions.

  18. Degradation of Diuron by Phanerochaete chrysosporium: Role of Ligninolytic Enzymes and Cytochrome P450

    PubMed Central

    Coelho-Moreira, Jaqueline da Silva; de Souza, Aline Cristine da Silva; Oliveira, Roselene Ferreira; de Sá-Nakanishi, Anacharis Babeto; de Souza, Cristina Giatti Marques; Peralta, Rosane Marina

    2013-01-01

    The white-rot fungus Phanerochaete chrysosporium was investigated for its capacity to degrade the herbicide diuron in liquid stationary cultures. The presence of diuron increased the production of lignin peroxidase in relation to control cultures but only barely affected the production of manganese peroxidase. The herbicide at the concentration of 7 μg/mL did not cause any reduction in the biomass production and it was almost completely removed after 10 days. Concomitantly with the removal of diuron, two metabolites, DCPMU [1-(3,4-dichlorophenyl)-3-methylurea] and DCPU [(3,4-dichlorophenyl)urea], were detected in the culture medium at the concentrations of 0.74 μg/mL and 0.06 μg/mL, respectively. Crude extracellular ligninolytic enzymes were not efficient in the in vitro degradation of diuron. In addition, 1-aminobenzotriazole (ABT), a cytochrome P450 inhibitor, significantly inhibited both diuron degradation and metabolites production. Significant reduction in the toxicity evaluated by the Lactuca sativa L. bioassay was observed in the cultures after 10 days of cultivation. In conclusion, P. chrysosporium can efficiently metabolize diuron without the accumulation of toxic products. PMID:24490150

  19. Normal genes for the cholesterol side chain cleavage enzyme, P450scc, in congenital lipoid adrenal hyperplasia.

    PubMed Central

    Lin, D; Gitelman, S E; Saenger, P; Miller, W L

    1991-01-01

    Congenital lipoid adrenal hyperplasia is the most severe form of congenital adrenal hyperplasia. Affected individuals can synthesize no steroid hormones, and hence are all phenotypic females with a severe salt-losing syndrome that is fatal if not treated in early infancy. All previous studies have suggested that the disorder is in the cholesterol side chain cleavage enzyme (P450scc), which converts cholesterol to pregnenolone. A newborn patient was diagnosed by the lack of significant concentrations of adrenal or gonadal steroids either before or after stimulation with corticotropin (ACTH) or gonadotropin (hCG). The P450scc gene in this patient and in a previously described patient were grossly intact, as evidenced by Southern blotting patterns. Enzymatic (polymerase chain reaction) amplification and sequencing of the coding regions of their P450scc genes showed these were identical to the previously cloned human P450scc cDNA and gene sequences. Undetected compound heterozygosity was ruled out in the new patient by sequencing P450scc cDNA enzymatically amplified from gonadal RNA. Northern blots of gonadal RNA from this patient contained normal sized mRNAs for P450scc and also for adrenodoxin reductase, adrenodoxin, sterol carrier protein 2, endozepine, and GRP-78 (the precursor to steroidogenesis activator peptide). These studies show that lipoid CAH is not caused by lesions in the P450scc gene, and suggest that another unidentified factor is required for the conversion of cholesterol to pregnenolone, and is disordered in congenital lipoid adrenal hyperplasia. Images PMID:1661294

  20. Approaches to Deorphanization of Human and Microbial Cytochrome P450 Enzymes

    PubMed Central

    Guengerich, F. Peter; Tang, Zhongmei; Cheng, Qian; Salamanca-Pinzón, S. Giovanna

    2010-01-01

    One of the general problems in biology today is that we are characterizing genomic sequences much faster than identifying the functions of the gene products, and the same problem exists with cytochromes P450 (P450). One-fourth of the human P450s are not well-characterized and therefore considered “orphans.” A number of approaches to deorphanization are discussed generally. Several liquid chromatography-mass spectrometry approaches have been applied to some of the human and Streptomyces coelicolor P450s. One current limitation is that too many fatty acid oxidations have been identified and we are probably missing more relevant substrates, possibly due to limits of sensitivity. PMID:20493973

  1. Autoantibodies against Cytochrome P450 Side-Chain Cleavage Enzyme in Dogs (Canis lupus familiaris) Affected with Hypoadrenocorticism (Addison's Disease).

    PubMed

    Boag, Alisdair M; Christie, Michael R; McLaughlin, Kerry A; Syme, Harriet M; Graham, Peter; Catchpole, Brian

    2015-01-01

    Canine hypoadrenocorticism likely arises from immune-mediated destruction of adrenocortical tissue, leading to glucocorticoid and mineralocorticoid deficiency. In humans with autoimmune Addison's disease (AAD) or autoimmune polyendocrine syndrome (APS), circulating autoantibodies have been demonstrated against enzymes associated with adrenal steroid synthesis. The current study investigates autoantibodies against steroid synthesis enzymes in dogs with spontaneous hypoadrenocorticism. Coding regions of canine CYP21A2 (21-hydroxylase; 21-OH), CYP17A1 (17-hydroxylase; 17-OH), CYP11A1 (P450 side-chain cleavage enzyme; P450scc) and HSD3B2 (3β hydroxysteroid dehydrogenase; 3βHSD) were amplified, cloned and expressed as 35S-methionine radiolabelled recombinant protein. In a pilot study, serum samples from 20 dogs with hypoadrenocorticism and four unaffected control dogs were screened by radio-immunoprecipitation assay. There was no evidence of reactivity against 21-OH, 17-OH or 3βHSD, but five dogs with hypoadrenocorticism showed immunoreactivity to P450scc compared with controls. Serum samples were subsequently obtained from 213 dogs diagnosed with hypoadrenocorticism and 110 dogs from a hospital control population. Thirty control dogs were randomly selected to establish a threshold for antibody positivity (mean + 3 × standard deviation). Dogs with hypoadrenocorticism were more likely to be P450scc autoantibody positive than hospital controls (24% vs. 1.2%, respectively; p = 0.0016). Sex was significantly associated with the presence of P450scc autoantibodies in the case population, with 30% of females testing positive compared with 17% of males (p = 0.037). Significant associations with breed (p = 0.015) and DLA-type (DQA1*006:01 allele; p = 0.017) were also found. This cross-sectional study indicates that P450scc autoantibodies are present in a proportion of dogs affected with hypoadrenocorticism.

  2. Autoantibodies against Cytochrome P450 Side-Chain Cleavage Enzyme in Dogs (Canis lupus familiaris) Affected with Hypoadrenocorticism (Addison's Disease).

    PubMed

    Boag, Alisdair M; Christie, Michael R; McLaughlin, Kerry A; Syme, Harriet M; Graham, Peter; Catchpole, Brian

    2015-01-01

    Canine hypoadrenocorticism likely arises from immune-mediated destruction of adrenocortical tissue, leading to glucocorticoid and mineralocorticoid deficiency. In humans with autoimmune Addison's disease (AAD) or autoimmune polyendocrine syndrome (APS), circulating autoantibodies have been demonstrated against enzymes associated with adrenal steroid synthesis. The current study investigates autoantibodies against steroid synthesis enzymes in dogs with spontaneous hypoadrenocorticism. Coding regions of canine CYP21A2 (21-hydroxylase; 21-OH), CYP17A1 (17-hydroxylase; 17-OH), CYP11A1 (P450 side-chain cleavage enzyme; P450scc) and HSD3B2 (3β hydroxysteroid dehydrogenase; 3βHSD) were amplified, cloned and expressed as 35S-methionine radiolabelled recombinant protein. In a pilot study, serum samples from 20 dogs with hypoadrenocorticism and four unaffected control dogs were screened by radio-immunoprecipitation assay. There was no evidence of reactivity against 21-OH, 17-OH or 3βHSD, but five dogs with hypoadrenocorticism showed immunoreactivity to P450scc compared with controls. Serum samples were subsequently obtained from 213 dogs diagnosed with hypoadrenocorticism and 110 dogs from a hospital control population. Thirty control dogs were randomly selected to establish a threshold for antibody positivity (mean + 3 × standard deviation). Dogs with hypoadrenocorticism were more likely to be P450scc autoantibody positive than hospital controls (24% vs. 1.2%, respectively; p = 0.0016). Sex was significantly associated with the presence of P450scc autoantibodies in the case population, with 30% of females testing positive compared with 17% of males (p = 0.037). Significant associations with breed (p = 0.015) and DLA-type (DQA1*006:01 allele; p = 0.017) were also found. This cross-sectional study indicates that P450scc autoantibodies are present in a proportion of dogs affected with hypoadrenocorticism. PMID:26618927

  3. Structural and enzymatic parameters that determine alkyl dehydrogenation/hydroxylation of capsaicinoids by cytochrome p450 enzymes.

    PubMed

    Reilly, Christopher A; Yost, Garold S

    2005-04-01

    Previous studies on the metabolism of capsaicinoids, natural products isolated from chili peppers, demonstrated the production of unique macrocyclic, alkyl dehydrogenated, omega-, and omega-1-hydroxylated products. This study investigated the structural and enzymatic parameters that direct selective alkyl dehydrogenation and hydroxylation of capsaicinoids, using a variety of structurally related capsaicinoid analogs and cytochrome P450 (P450) enzymes. CYP2C9 preferentially catalyzed alkyl dehydrogenation, whereas CYP2E1 and 3A4 catalyzed omega- and omega-1-hydroxylation, respectively. Analysis of incubations containing various P450s and structural variants of capsaicin by liquid chromatography-tandem mass spectrometry demonstrated similarities in the rate of capsaicinoid metabolism, but marked differences in the metabolite profiles. Production of macrocyclic and omega-1-hydroxylated metabolites from the various capsaicinoids was dependent on the structure of the alkyl terminus and P450 enzyme. A tertiary carbon at the omega-1 position, coupled to an adjacent unsaturated bond at the omega-2,3 position, enhanced the formation of the macrocyclic and dehydrogenated metabolites and were requisite structural features for omega-1-hydroxylated product formation. Conversely, substrates lacking these structural features were efficiently oxidized to the omega-hydroxylated metabolite. These data were consistent with our hypothesis that metabolism of the alkyl portion of capsaicinoids was governed, in part, by the stability and propensity to form an intermediate radical and a carbocation, and a direct interaction between the alkyl terminus and the heme of many P450 enzymes. These results provided valuable insights into potential mechanisms by which P450s metabolize capsaicinoids and highlight critical chemical features that may also govern the metabolism of structurally related compounds including fatty acids, monoter-penes, and isoprenoids. PMID:15640380

  4. Side chain hydroxylation of C27-steroids and vitamin D3 by a cytochrome P-450 enzyme system isolated from human liver mitochondria

    SciTech Connect

    Oftebro, H.; Saarem, K.; Bjoerkhem, I.; Pedersen, J.I.

    1981-11-01

    The present study was undertaken to obtain information on the involvement of cytochrome P-450 in the 26-hydroxylation on bile acid intermediates and in the 25-hydroxylation of vitamin D3 in human liver mitochondria. Cytochrome P-450 was solubilized from human liver mitochondria and purified two times to a specific content of 0.125 nmol per mg protein. Furthermore, a ferredoxin was isolated from the mitochondria and partly purified. This iron-sulfur protein had properties similar to bovine adrenal ferredoxin. A mitochondrial NADPH-ferredoxin reductase was also isolated and purified to homogeneity. This enzyme was a flavoprotein with properties very similar to the bovine adrenal NADPH-ferredoxin reductase. The cytochrome P-450 preparation catalyzed 26-hydroxylation of C27-steroids and 25-hydroxylation of vitamin D3 when reconstructed with NADPH, the ferredoxin and the ferredoxin reductase. With different substrates the following turnover numbers (nmol product X nmol P-450(-1) X min-1) were found: cholesterol, 8; 5-cholestene-3 beta, 7 alpha-diol, 10; 7 alpha-hydroxy-4-cholesten-3-one, 23; 7 alpha, 12 alpha-dihydroxy-4-cholesten-3-one, 27; 5 beta-cholestane-3 alpha, 7 alpha-diol, 28; 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol, 41; and vitamin D3, 0.16. The hydroxylation reactions were inhibited by CO and metyrapone. The human liver mitochondrial ferredoxin and ferredoxin reductase could be replaced by adrenal ferredoxin and adrenal ferredoxin reductase without reduction of activity, but they could not be replaced by microsomal NADPH-cytochrome P-450 reductase. It is concluded that human liver mitochondria contain cytochrome P-450 involved in the oxidation of the side chain of C27-steroids and vitamin D3.

  5. Inhibition of human cytochrome P450 enzymes by Bacopa monnieri standardized extract and constituents.

    PubMed

    Ramasamy, Seetha; Kiew, Lik Voon; Chung, Lip Yong

    2014-02-24

    Bacopa monnieri and the constituents of this plant, especially bacosides, possess various neuropharmacological properties. Like drugs, some herbal extracts and the constituents of their extracts alter cytochrome P450 (CYP) enzymes, causing potential herb-drug interactions. The effects of Bacopa monnieri standardized extract and the bacosides from the extract on five major CYP isoforms in vitro were analyzed using a luminescent CYP recombinant human enzyme assay. B. monnieri extract exhibited non-competitive inhibition of CYP2C19 (IC50/Ki = 23.67/9.5 µg/mL), CYP2C9 (36.49/12.5 µg/mL), CYP1A2 (52.20/25.1 µg/mL); competitive inhibition of CYP3A4 (83.95/14.5 µg/mL) and weak inhibition of CYP2D6 (IC50 = 2061.50 µg/mL). However, the bacosides showed negligible inhibition of the same isoforms. B. monnieri, which is orally administered, has a higher concentration in the gut than the liver; therefore, this herb could exhibit stronger inhibition of intestinal CYPs than hepatic CYPs. At an estimated gut concentration of 600 µg/mL (based on a daily dosage of 300 mg/day), B. monnieri reduced the catalytic activities of CYP3A4, CYP2C9 and CYP2C19 to less than 10% compared to the total activity (without inhibitor = 100%). These findings suggest that B. monnieri extract could contribute to herb-drug interactions when orally co-administered with drugs metabolized by CYP1A2, CYP3A4, CYP2C9 and CYP2C19.

  6. Renal drug metabolism in humans: the potential for drug–endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT)

    PubMed Central

    Knights, Kathleen M; Rowland, Andrew; Miners, John O

    2013-01-01

    Although knowledge of human renal cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes and their role in xenobiotic and endobiotic metabolism is limited compared with hepatic drug and chemical metabolism, accumulating evidence indicates that human kidney has significant metabolic capacity. Of the drug metabolizing P450s in families 1 to 3, there is definitive evidence for only CYP 2B6 and 3A5 expression in human kidney. CYP 1A1, 1A2, 1B1, 2A6, 2C19, 2D6 and 2E1 are not expressed in human kidney, while data for CYP 2C8, 2C9 and 3A4 expression are equivocal. It is further known that several P450 enzymes involved in the metabolism of arachidonic acid and eicosanoids are expressed in human kidney, CYP 4A11, 4F2, 4F8, 4F11 and 4F12. With the current limited evidence of drug substrates for human renal P450s drug–endobiotic interactions arising from inhibition of renal P450s, particularly effects on arachidonic acid metabolism, appear unlikely. With respect to the UGTs, 1A5, 1A6, 1A7, 1A9, 2B4, 2B7 and 2B17 are expressed in human kidney, whereas UGT 1A1, 1A3, 1A4, 1A8, 1A10, 2B10, 2B11 and 2B15 are not. The most abundantly expressed renal UGTs are 1A9 and 2B7, which play a significant role in the glucuronidation of drugs, arachidonic acid, prostaglandins, leukotrienes and P450 derived arachidonic acid metabolites. Modulation by drug substrates (e.g. NSAIDs) of the intrarenal activity of UGT1A9 and UGT2B7 has the potential to perturb the metabolism of renal mediators including aldosterone, prostaglandins and 20-hydroxyeicosatetraenoic acid, thus disrupting renal homeostasis. PMID:23362865

  7. Renal drug metabolism in humans: the potential for drug-endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT).

    PubMed

    Knights, Kathleen M; Rowland, Andrew; Miners, John O

    2013-10-01

    Although knowledge of human renal cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes and their role in xenobiotic and endobiotic metabolism is limited compared with hepatic drug and chemical metabolism, accumulating evidence indicates that human kidney has significant metabolic capacity. Of the drug metabolizing P450s in families 1 to 3, there is definitive evidence for only CYP 2B6 and 3A5 expression in human kidney. CYP 1A1, 1A2, 1B1, 2A6, 2C19, 2D6 and 2E1 are not expressed in human kidney, while data for CYP 2C8, 2C9 and 3A4 expression are equivocal. It is further known that several P450 enzymes involved in the metabolism of arachidonic acid and eicosanoids are expressed in human kidney, CYP 4A11, 4F2, 4F8, 4F11 and 4F12. With the current limited evidence of drug substrates for human renal P450s drug-endobiotic interactions arising from inhibition of renal P450s, particularly effects on arachidonic acid metabolism, appear unlikely. With respect to the UGTs, 1A5, 1A6, 1A7, 1A9, 2B4, 2B7 and 2B17 are expressed in human kidney, whereas UGT 1A1, 1A3, 1A4, 1A8, 1A10, 2B10, 2B11 and 2B15 are not. The most abundantly expressed renal UGTs are 1A9 and 2B7, which play a significant role in the glucuronidation of drugs, arachidonic acid, prostaglandins, leukotrienes and P450 derived arachidonic acid metabolites. Modulation by drug substrates (e.g. NSAIDs) of the intrarenal activity of UGT1A9 and UGT2B7 has the potential to perturb the metabolism of renal mediators including aldosterone, prostaglandins and 20-hydroxyeicosatetraenoic acid, thus disrupting renal homeostasis. PMID:23362865

  8. In vivo effect of triptolide combined with glycyrrhetinic acid on rat cytochrome P450 enzymes.

    PubMed

    Han, Feng-Mei; Peng, Zhi-Hong; Wang, Jun-Jun; Chen, Yong

    2013-07-01

    Triptolide (TP) is a major active component in Tripterygium root, but its therapeutic window was very narrow due to its severe multi-organ toxicity. In this work, the effect of TP combined with glycyrrhetic acid (GA) on mRNA expression and activity of four cytochrome P450 (CYP) enzymes in rat liver was studied after intragastric administration of TP (0.05, 0.3 and 0.6 mg x kg(-1) x day(-1)) and TP (0.6 mg x kg(-1) x day(-1)) combined with GA (30 mg x kg(-1) x day(-1)) for 7 consecutive days. Compared with the control, the high dose of TP significantly up-regulated the mRNA expression levels of CYP2E1, 1A2, 3A1 and 2C11, the co-administration of TP and GA further up-regulated the mRNA expression levels of CYP3A1, 2C11 and 2E1 as compared with the high dose of TP. Meanwhile, TP at high dose and combined with GA significantly increased CYP3A-associated testosterone 6beta-hydroxylation activity (2.2-fold and 4.1-fold, respectively) as compared with the control. Because TP is mainly metabolized by CYP3A2 in male rats, the present work indicated that TP-induced increase of CYP3A activity might be an important reason for the rapidly metabolic clearance of TP in rat liver, and GA can reduce the hepatotoxicity of TP by promoting its hepatic metabolic clearance. Furthermore, the results also suggest that the drug interactions might be occurred when TP and GA were co-administered with other CYP3A substrate drug.

  9. Reversible inhibition of three important human liver cytochrome p450 enzymes by tiliroside.

    PubMed

    Sun, Dong-Xue; Lu, Jin-Cai; Fang, Zhong-Ze; Zhang, Yan-Yan; Cao, Yun-Feng; Mao, Yu-Xi; Zhu, Liang-Liang; Yin, Jun; Yang, Ling

    2010-11-01

    Tiliroside, an active flavonoid extensively found in many medicinal plants including Helichrysum italicum, Geranium mexicanum and Helianthemum glomeratum, has been demonstrated to exert multiple biological effects including antiinflammatory, antimicrobial, antioxidant and antitumor activities. Cytochrome P450 (CYP) enzymes play an important role in the Phase I oxidation metabolism of a wide range of xenobiotics and inhibition of CYP isoforms might influence the elimination of drugs and induce serious adverse drug response. The inhibition of seven CYP isoforms (CYP3A4, CYP1A2, CYP2A6, CYP2D6, CYP2C9, CYP2C8 and CYP2E1) by tiliroside was investigated using in vitro human liver microsomal incubation assays. The results showed that tiliroside strongly inhibited the activity of CYP3A4 (IC(50) = 9.0 ± 1.7 μm), CYP2C8 (IC(50) = 12.1 ± 0.9 μm) and CYP2C9 (IC(50) = 10.2 ± 0.9 μm) with other CYP isoforms negligibly influenced. Further kinetic analysis showed that inhibition of these three CYP isoforms by tiliroside is best fit to a competitive way. The K(i) value was calculated to be 5.5 μm, 3.3 μm, 9.4 μm for CYP3A4, CYP2C9 and CYP2C8, respectively. The relatively low K(i) values suggested that tiliroside might induce drug-drug interactions with many clinically used drugs which are mainly metabolized by these three CYP isoforms. Therefore, attention should be given to the probable drug-drug interaction between tiliroside-containing herbs and substrates of CYP3A4, CYP2C9 and CYP2C8.

  10. Inhibition of human cytochrome P450 enzymes by licochalcone A, a naturally occurring constituent of licorice.

    PubMed

    He, Wei; Wu, Jing-Jing; Ning, Jing; Hou, Jie; Xin, Hong; He, Yu-Qi; Ge, Guang-Bo; Xu, Wei

    2015-10-01

    Licochalcone A (LCA) is a major bioactive compound in traditional Chinese herbal liquorice that possesses multiple pharmacological activities. However, the effects of the potential herb-drug interactions (HDIs) between LCA and therapeutic drugs on the inhibition of human cytochrome P450 (CYP) enzymes remain unclear. In the present study, the inhibitory effects of LCA on seven major human CYP isoforms, including CYP1A2, 2D6, 2E1, 2C19, 2C8, 2C9 and 3A4, were investigated in human liver microsomes (HLMs). The results demonstrated that LCA significantly inhibited the activities of CYP1A2, 2C19, 2C8, 2C9 and 3A4 and exhibited weak inhibitory effects on CYP2E1 and CYP2D6. Dixon and Lineweaver-Burk plots revealed that the inhibition types of LCA against CYP1A2, 2C9, 2C19 and 2C8 were best fit as mixed-type inhibitions, while LCA was a competitive inhibitor towards CYP3A4. The inhibition kinetic parameters (K(i)) were calculated to be 1.02 μM, 0.17 μM, 3.89 μM 0.89 μM, and 2.29 μM, for CYP1A2, 2C9, 2C19, 2C8, and 3A4, respectively. Furthermore, the areas under the plasma concentration-time curves (AUCs) of several drugs that are primarily metabolized by CYPs were estimated to increase by 2-398% in the presence of LCA, which suggested that LCA exhibited high HDI potentials via CYP inhibition. These data are significant for the clinical applications of LCA-containing herbs.

  11. A molecular model for the enzyme cytochrome P450(17 alpha), a major target for the chemotherapy of prostatic cancer.

    PubMed

    Laughton, C A; Neidle, S; Zvelebil, M J; Sternberg, M J

    1990-09-28

    The enzyme cytochrome P450(17 alpha) catalyses two key steps in the biosynthesis of the androgens from pregnanes: the 17 alpha hydroxylation step and the subsequent 17-20 lyase reaction. Using a variety of techniques, including sequence alignment, secondary structure prediction, molecular mechanics and molecular dynamics, we have constructed a model for the three-dimensional structure of P450(17 alpha) based on that of P450cam, the only cytochrome P450 enzyme for which the crystal structure is known. The model suggests the possibility of two modes of binding of steroid substrates at the active site, perhaps reflecting the dual functionality of the enzyme.

  12. Purification and immunochemical detections of ?-naphthoflavone- and phenobarbital-induced avian cytochrome P450 enzymes

    USGS Publications Warehouse

    Brown, R.L.; Levi, P.E.; Hodgson, E.; Melancon, M.J.

    1996-01-01

    Livers from mallards (Anas platyrhynchos) were treated with either -naphthoflavone (50 mg/kg) or phenobarbital (70 mg/kg). Purification of induced hepatic cytochrome P450 was accomplished using both DEAE and hydroxyapatite columns, as well as sodium dodecyl sulfate polyacrylamide gel electrophoresis separation. Polyclonal antibodies to these proteins were then produced in young male New Zealand White rabbits. ?-naphthoflavone (?NF)- and phenobarbital(PB)-treated red-winged blackbird, screech owl, European starling and lesser scaup liver microsomes were analyzed in western blots for species cross-reactivity. Although all four of these avian species exhibited cross-reactivity with antibodies to ?NF-induced mallard P450, all but the lesser scaup revealed a protein of higher molecular weight than that of the ?NF-induced mallard. In addition, only the lesser scaup exhibited cross-reactivity with the anti-PB-induced mallard P450 antibodies.

  13. Regulation of Transcript Levels of the Arabidopsis Cytochrome P450 Genes Involved in Brassinosteroid Biosynthesis1

    PubMed Central

    Bancoş, Simona; Nomura, Takahito; Sato, Tatsuro; Molnár, Gergely; Bishop, Gerard J.; Koncz, Csaba; Yokota, Takao; Nagy, Ferenc; Szekeres, Miklós

    2002-01-01

    Cytochrome P450 enzymes of the closely related CYP90 and CYP85 families catalyze essential oxidative reactions in the biosynthesis of brassinosteroid (BR) hormones. Arabidopsis CYP90B1/DWF4 and CYP90A1/CPD are responsible for respective C-22 and C-23 hydroxylation of the steroid side chain and CYP85A1 catalyzes C-6 oxidation of 6-deoxo intermediates, whereas the functions of CYP90C1/ROT3, CYP90D1, and CYP85A2 are still unknown. Semiquantitative reverse transcriptase-polymerase chain reaction analyses show that transcript levels of CYP85 and CYP90 genes are down-regulated by brassinolide, the end product of the BR biosynthesis pathway. Feedback control of the CYP90C1, CYP90D1, and CYP85A2 genes by brassinolide suggests that the corresponding enzymes might also participate in BR synthesis. CYP85 and CYP90 mRNAs show strong and transient accumulation during the 1st week of seedling development, as well as characteristic organ-specific distribution. Transcripts of CYP90A1 and CYP85A2 are preferentially represented in shoots and CYP90C1, CYP90D1, and CYP85A1 mRNAs are more abundant in roots, whereas CYP90B1 is ubiquitously expressed. Remarkably, the spatial pattern of CYP90A1 expression is maintained in the BR-insensitive cbb2 mutant, indicating the independence of organ-specific and BR-dependent regulation. Quantitative gas chromatography-mass spectrometry analysis of endogenous BRs in shoots and roots of Arabidopsis, pea (Pisum sativum), and tomato (Lycopersicon esculentum) reveal similar partitioning patterns of BR intermediates in these species. Inverse correlation between CYP90A1/CPD transcript levels and the amounts of the CYP90A1 substrate 6-deoxocathasterone in shoots and roots suggests that transcriptional regulation plays an important role in controlling BR biosynthesis. PMID:12226529

  14. Regulation of transcript levels of the Arabidopsis cytochrome p450 genes involved in brassinosteroid biosynthesis.

    PubMed

    Bancoş, Simona; Nomura, Takahito; Sato, Tatsuro; Molnár, Gergely; Bishop, Gerard J; Koncz, Csaba; Yokota, Takao; Nagy, Ferenc; Szekeres, Miklós

    2002-09-01

    Cytochrome P450 enzymes of the closely related CYP90 and CYP85 families catalyze essential oxidative reactions in the biosynthesis of brassinosteroid (BR) hormones. Arabidopsis CYP90B1/DWF4 and CYP90A1/CPD are responsible for respective C-22 and C-23 hydroxylation of the steroid side chain and CYP85A1 catalyzes C-6 oxidation of 6-deoxo intermediates, whereas the functions of CYP90C1/ROT3, CYP90D1, and CYP85A2 are still unknown. Semiquantitative reverse transcriptase-polymerase chain reaction analyses show that transcript levels of CYP85 and CYP90 genes are down-regulated by brassinolide, the end product of the BR biosynthesis pathway. Feedback control of the CYP90C1, CYP90D1, and CYP85A2 genes by brassinolide suggests that the corresponding enzymes might also participate in BR synthesis. CYP85 and CYP90 mRNAs show strong and transient accumulation during the 1st week of seedling development, as well as characteristic organ-specific distribution. Transcripts of CYP90A1 and CYP85A2 are preferentially represented in shoots and CYP90C1, CYP90D1, and CYP85A1 mRNAs are more abundant in roots, whereas CYP90B1 is ubiquitously expressed. Remarkably, the spatial pattern of CYP90A1 expression is maintained in the BR-insensitive cbb2 mutant, indicating the independence of organ-specific and BR-dependent regulation. Quantitative gas chromatography-mass spectrometry analysis of endogenous BRs in shoots and roots of Arabidopsis, pea (Pisum sativum), and tomato (Lycopersicon esculentum) reveal similar partitioning patterns of BR intermediates in these species. Inverse correlation between CYP90A1/CPD transcript levels and the amounts of the CYP90A1 substrate 6-deoxocathasterone in shoots and roots suggests that transcriptional regulation plays an important role in controlling BR biosynthesis.

  15. METABOLISM OF MYCLOBUTANIL AND TRIADIMEFON BY HUMAN AND RAT CYTOCHROME P450 ENZYMES AND LIVER MICROSOMES.

    EPA Science Inventory

    Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil wa...

  16. Immunohistochemical localization and biological activity of the steroidogenic enzyme cytochrome P450 17alpha-hydroxylase/C17, 20-lyase (P450C17) in the frog brain and pituitary.

    PubMed

    Do Rego, Jean Luc; Tremblay, Yves; Luu-The, Van; Repetto, Emanuela; Castel, Hélène; Vallarino, Mauro; Bélanger, Alain; Pelletier, Georges; Vaudry, Hubert

    2007-01-01

    It is now clearly established that the brain has the capability of synthesizing various biologically active steroids including 17-hydroxypregnenolone (17OH-Delta(5)P), 17-hydroxyprogesterone (17OH-P), dehydroepiandrosterone (DHEA) and androstenedione (Delta(4)). However, the presence, distribution and activity of cytochrome P450 17alpha-hydroxylase/C17, 20-lyase (P450(C17)), a key enzyme required for the conversion of pregnenolone (Delta(5)P) and progesterone (P) into these steroids, are poorly documented. Here, we show that P450(C17)-like immunoreactivity is widely distributed in the frog brain and pituitary. Prominent populations of P450(C17)-containing cells were observed in a number nuclei of the telencephalon, diencephalon, mesencephalon and metencephalon, as well as in the pars distalis and pars intermedia of the pituitary. In the brain, P450(C17)-like immunoreactivity was almost exclusively located in neurons. In several hypothalamic nuclei, P450(C17)-positive cell bodies also contained 3beta-hydroxysteroid dehydrogenase-like immunoreactivity. Incubation of telencephalon, diencephalon, mesencephalon, metencephalon or pituitary explants with [(3)H]Delta(5)P resulted in the formation of several tritiated steroids including 17OH-Delta(5)P, 17OH-P, DHEA and Delta(4). De novo synthesis of C(21) 17-hydroxysteroids and C(19) ketosteroids was reduced in a concentration-dependent manner by ketoconazole, a P450(C17) inhibitor. This is the first detailed immunohistochemical mapping of P450(C17) in the brain and pituitary of any vertebrate. Altogether, the present data provide evidence that CNS neurons and pituitary cells can synthesize androgens.

  17. Porcine Hypothalamic Aromatase Cytochrome P450: Isoform Characterization, Sex-Dependent Activity, Regional Expression, and Regulation by Enzyme Inhibition in Neonatal Boars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic pigs have three CYP19 genes encoding functional paralogues of the enzyme aromatase cytochrome P450 (P450arom) that are expressed in the gonads, placenta and pre-implantation blastocyst. All catalyze estrogen synthesis, but the “gonadal” type enzyme is unique in also synthesizing a nonaromat...

  18. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.

    PubMed

    Andre, Christelle M; Legay, Sylvain; Deleruelle, Amélie; Nieuwenhuizen, Niels; Punter, Matthew; Brendolise, Cyril; Cooney, Janine M; Lateur, Marc; Hausman, Jean-François; Larondelle, Yvan; Laing, William A

    2016-09-01

    Apple (Malus × domestica) accumulates bioactive ursane-, oleanane-, and lupane-type triterpenes in its fruit cuticle, but their biosynthetic pathway is still poorly understood. We used a homology-based approach to identify and functionally characterize two new oxidosqualene cyclases (MdOSC4 and MdOSC5) and one cytochrome P450 (CYP716A175). The gene expression patterns of these enzymes and of previously described oxidosqualene cyclases were further studied in 20 apple cultivars with contrasting triterpene profiles. MdOSC4 encodes a multifunctional oxidosqualene cyclase producing an oleanane-type triterpene, putatively identified as germanicol, as well as β-amyrin and lupeol, in the proportion 82 : 14 : 4. MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and β-amyrin at a ratio of 95 : 5. CYP716A175 catalyses the C-28 oxidation of α-amyrin, β-amyrin, lupeol and germanicol, producing ursolic acid, oleanolic acid, betulinic acid, and putatively morolic acid. The gene expression of MdOSC1 was linked to the concentrations of ursolic and oleanolic acid, whereas the expression of MdOSC5 was correlated with the concentrations of betulinic acid and its caffeate derivatives. Two new multifuntional triterpene synthases as well as a multifunctional triterpene C-28 oxidase were identified in Malus × domestica. This study also suggests that MdOSC1 and MdOSC5 are key genes in apple fruit triterpene biosynthesis. PMID:27214242

  19. Effect of methoxychlor and estradiol on cytochrome p450 enzymes in the mouse ovarian surface epithelium.

    PubMed

    Symonds, Daniel A; Miller, Kimberly P; Tomic, Dragana; Flaws, Jodi A

    2006-02-01

    Although the ovarian surface epithelium (OSE) is responsive to hormones and endocrine-disrupting chemicals, little information is available on the metabolizing capabilities of the OSE. Thus, we tested the hypothesis that the OSE is capable of expressing genes regulating phase I metabolism of estrogen and the estrogenic endocrine disruptor methoxychlor (MXC). To test this hypothesis, we isolated mouse OSE cells and cultured them with vehicle (dimethylsulfoxide; DMSO), 3 microM MXC, or 0.1 microM 17beta-estradiol (E2) +/- the anti-estrogen ICI 182,780 (1 microM) for 14 days. After culture, the cells were subjected to quantitative real-time polymerase chain reaction for cytochrome P450s (CYPs) 1A1, 1B1, 2C29, and 1A2, and estrogen receptor alpha (ERalpha). Our results indicate that E2 and MXC did not alter the expression of CYP1A1 or CYP1A2. In contrast, E2 significantly increased expression of CYP1B1 compared to controls (DMSO = 0.93 +/- 0.1, E2 = 3.12 +/- 0.64 genomic equivalents (GE), n = 4, p < or = 0.01). The E2-induced increase in CYP1B1 was abolished by co-treatment with ICI 182,780 (0.41 +/- 0.17 GE). MXC treatment did not affect CYP1B1 expression. Both MXC and E2 increased expression of CYP2C29 (DMSO = 0.02 +/- 0.003; MXC = 0.04 +/- 0.008; E2 = 0.46 +/- 0.03 GE, n = 4, p < or = 0.05). MXC- and E2-induced elevations in CYP2C29 were abolished by co-treatment with ICI 182,780 (0.02 +/- 0.005; 0.02 +/- 0.07 GE). In addition, E2 increased ERalpha expression 15-fold compared to controls (DMSO = 1.10 +/- 0.09, E2 = 15.0 +/- 3.60 GE, n = 3, p < or = 0.05), and ICI 182,780 abolished the E2-induced increase in ERalpha expression (1.85 +/- 1.09 GE). MXC treatment did not affect ERalpha expression. These data indicate that the OSE expresses enzymes known to metabolize native and xenoestrogens and that MXC and E2 modulate expression of some of them through ER-linked mechanisms.

  20. The role of human cytochrome P450 enzymes in the formation of 2-hydroxymetronidazole: CYP2A6 is the high affinity (low Km) catalyst.

    PubMed

    Pearce, Robin E; Cohen-Wolkowiez, Michael; Sampson, Mario R; Kearns, Gregory L

    2013-09-01

    Despite metronidazole's widespread clinical use since the 1960s, the specific enzymes involved in its biotransformation have not been previously identified. Hence, in vitro studies were conducted to identify and characterize the cytochrome P450 enzymes involved in the formation of the major metabolite, 2-hydroxymetronidazole. Formation of 2-hydroxymetronidazole in human liver microsomes was consistent with biphasic, Michaelis-Menten kinetics. Although several cDNA-expressed P450 enzymes catalyzed 2-hydroxymetronidazole formation at a supratherapeutic concentration of metronidazole (2000 μM), at a "therapeutic concentration" of 100 μM only CYPs 2A6, 3A4, 3A5, and 3A7 catalyzed metronidazole 2-hydroxylation at rates substantially greater than control vector, and CYP2A6 catalyzed 2-hydroxymetronidazole formation at rates 6-fold higher than the next most active enzyme. Kinetic studies with these recombinant enzymes revealed that CYP2A6 has a Km = 289 μM which is comparable to the Km for the high-affinity (low-Km) enzyme in human liver microsomes, whereas the Km values for the CYP3A enzymes corresponded with the low-affinity (high-Km) component. The sample-to-sample variation in 2-hydroxymetronidazole formation correlated significantly with CYP2A6 activity (r ≥ 0.970, P < 0.001) at substrate concentrations of 100 and 300 μM. Selective chemical inhibitors of CYP2A6 inhibited metronidazole 2-hydroxylation in a concentration-dependent manner and inhibitory antibodies against CYP2A6 virtually eliminated metronidazole 2-hydroxylation (>99%). Chemical and antibody inhibitors of other P450 enzymes had little or no effect on metronidazole 2-hydroxylation. These results suggest that CYP2A6 is the primary catalyst responsible for the 2-hydroxylation of metronidazole, a reaction that may function as a marker of CYP2A6 activity both in vitro and in vivo.

  1. Induction of mouse cytochrome P450 2B enzymes by amine metabolites of musk xylene: contribution of microsomal enzyme induction to the hepatocarcinogenicity of musk xylene.

    PubMed

    Lehman-McKeeman, L D; Stuard, S B; Caudill, D; Johnson, D R

    1997-11-01

    Musk xylene (MX) is a synthetic nitromusk perfume ingredient that, although uniformly negative in genotoxicity testing, causes liver tumors in B6C3F1 mice. MX is also capable of inducing cytochrome P450 enzymes in a manner similar to that of phenobarbital (PB), which suggests that epigenetic mechanisms may be involved in the carcinogenic response. At the same time, MX is metabolized in vivo by nitroreduction, a reaction catalyzed by intestinal flora that yields aromatic amine metabolites. These amine metabolites are also capable of inactivating CYP2B10, the major cytochrome P450 enzyme induced by MX treatment. In the study reported here, the monoamine metabolites of MX, o- and p-NH2-MX, were evaluated for their potential to induce CYP2B10 and CYP1A2 mRNAs. Northern blot analyses indicated that both amines markedly induced CYP2B10 mRNA, whereas CYP1A2 mRNA, the enzyme implicated in the bioactivation of aromatic amines and frequently induced by aromatic amines, was induced only slightly, a response that was not different from that seen with PB. Induction of CYP2B10 mRNA suggested that the amine metabolites may contribute to the enzyme induction profile seen with MX treatment. To test this hypothesis, mice were treated with broad-spectrum antibiotics (neomycin, tetracycline, and bacitracin) to eliminate the intestinal flora and prevent formation of o- and p-NH2-MX. In antibiotic-treated mice treated with MX (200 mg/kg) for 4 d, no evidence of microsomal enzyme induction was observed, including no increases in liver weight, total cytochrome P450 content, or CYP2B protein levels. These results indicate that the amine metabolites of MX are responsible for the enzyme induction seen after MX administration. Thus, the biochemical and molecular effects of amine metabolites of MX are markedly different from those of other aromatic amines but very similar to those of PB. Therefore, it appears that MX is a non-genotoxic chemical that may cause mouse liver tumors in a manner

  2. Mechanism of chloroform-induced renal toxicity: Non-involvement of hepatic cytochrome P450-dependent metabolism

    SciTech Connect

    Fang Cheng; Behr, Melissa; Xie Fang; Lu Shijun; Doret, Meghan; Luo Hongxiu; Yang Weizhu; Aldous, Kenneth; Ding Xinxin; Gu Jun

    2008-02-15

    Chloroform causes hepatic and renal toxicity in a number of species. In vitro studies have indicated that chloroform can be metabolized by P450 enzymes in the kidney to nephrotoxic intermediate, although direct in vivo evidence for the role of renal P450 in the nephrotoxicity has not been reported. This study was to determine whether chloroform renal toxicity persists in a mouse model with a liver-specific deletion of the P450 reductase (Cpr) gene (liver-Cpr-null). Chloroform-induced renal toxicity and chloroform tissue levels were compared between the liver-Cpr-null and wild-type mice at 24 h following differing doses of chloroform. At a chloroform dose of 150 mg/kg, the levels of blood urea nitrogen (BUN) were five times higher in the exposed group than in the vehicle-treated one for the liver-Cpr-null mice, but they were only slightly higher in the exposed group than in the vehicle-treated group for the wild-type mice. Severe lesions were found in the kidney of the liver-Cpr-null mice, while only mild lesions were found in the wild-type mice. At a chloroform dose of 300 mg/kg, severe kidney lesions were observed in both strains, yet the BUN levels were still higher in the liver-Cpr-null than in the wild-type mice. Higher chloroform levels were found in the tissues of the liver-Cpr-null mice. These findings indicated that loss of hepatic P450-dependent chloroform metabolism does not protect against chloroform-induced renal toxicity, suggesting that renal P450 enzymes play an essential role in chloroform renal toxicity.

  3. Evidence for involvement of multiple forms of cytochrome P-450 in aflatoxin B sup 1 metabolism in human liver

    SciTech Connect

    Forrester, L.M.; Wolf, C.R. ); Neal, G.E.; Judah, D.J. )

    1990-11-01

    Liver cancer is a major cause of premature death in many areas of Africa and Asia and its incidence is strongly correlated with exposure to aflatoxin B{sub 1} (AFB{sub 1}). Because AFB{sub 1} requires metabolic activation to achieve a biological response, there is a need for detailed knowledge of the mechanism of activation to assess individual risk. The authors carried out an extensive study using a total of 19 human liver samples to determine the individual variability in the metabolism of the toxin to mutagenic or detoxification products and to identify the specific cytochrome P-450 forms involved in these processes. Metabolism to the toxic 8,9-epoxide or to products mutagenic in the Ames test was found to exhibit very large individual variation. These data demonstrate that, although P450IIIA probably plays an important role in AFB{sub 1} activation, several other cytochrome P-450 forms have the capacity to activate the toxin. Similar considerations apply to detoxifying metabolism to aflatoxin Q{sub 1} and aflatoxin M{sub 1}. The levels of expression of many of the forms of cytochrome P-450 involved in AFB{sub 1} metabolism are known to be highly sensitive to environmental factors. This indicates that such factors will be an important determinant in individual susceptibility to the tumorigenic action of AFB{sub 1}.

  4. Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants

    PubMed Central

    Geisler, Katrin; Hughes, Richard K.; Sainsbury, Frank; Lomonossoff, George P.; Rejzek, Martin; Fairhurst, Shirley; Olsen, Carl-Erik; Motawia, Mohammed Saddik; Melton, Rachel E.; Hemmings, Andrew M.; Bak, Søren; Osbourn, Anne

    2013-01-01

    Members of the cytochromes P450 superfamily (P450s) catalyze a huge variety of oxidation reactions in microbes and higher organisms. Most P450 families are highly divergent, but in contrast the cytochrome P450 14α-sterol demethylase (CYP51) family is one of the most ancient and conserved, catalyzing sterol 14α-demethylase reactions required for essential sterol synthesis across the fungal, animal, and plant kingdoms. Oats (Avena spp.) produce antimicrobial compounds, avenacins, that provide protection against disease. Avenacins are synthesized from the simple triterpene, β-amyrin. Previously we identified a gene encoding a member of the CYP51 family of cytochromes P450, AsCyp51H10 (also known as Saponin-deficient 2, Sad2), that is required for avenacin synthesis in a forward screen for avenacin-deficient oat mutants. sad2 mutants accumulate β-amyrin, suggesting that they are blocked early in the pathway. Here, using a transient plant expression system, we show that AsCYP51H10 is a multifunctional P450 capable of modifying both the C and D rings of the pentacyclic triterpene scaffold to give 12,13β-epoxy-3β,16β-dihydroxy-oleanane (12,13β-epoxy-16β-hydroxy-β-amyrin). Molecular modeling and docking experiments indicate that C16 hydroxylation is likely to precede C12,13 epoxidation. Our computational modeling, in combination with analysis of a suite of sad2 mutants, provides insights into the unusual catalytic behavior of AsCYP51H10 and its active site mutants. Fungal bioassays show that the C12,13 epoxy group is an important determinant of antifungal activity. Accordingly, the oat AsCYP51H10 enzyme has been recruited from primary metabolism and has acquired a different function compared to other characterized members of the plant CYP51 family—as a multifunctional stereo- and regio-specific hydroxylase in plant specialized metabolism. PMID:23940321

  5. Similar substrate specificity of cynomolgus monkey cytochrome P450 2C19 to reported human P450 2C counterpart enzymes by evaluation of 89 drug clearances.

    PubMed

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2015-12-01

    Cynomolgus monkeys are used widely in preclinical studies as non-human primate species. The amino acid sequence of cynomolgus monkey cytochrome P450 (P450 or CYP) 2C19 is reportedly highly correlated to that of human CYP2C19 (92%) and CYP2C9 (93%). In the present study, 89 commercially available compounds were screened to find potential substrates for cynomolgus monkey CYP2C19. Of 89 drugs, 34 were metabolically depleted by cynomolgus monkey CYP2C19 with relatively high rates. Among them, 30 compounds have been reported as substrates or inhibitors of, either or both, human CYP2C19 and CYP2C9. Several compounds, including loratadine, showed high selectivity to cynomolgus monkey CYP2C19, and all of these have been reported as human CYP2C19 and/or CYP2C9 substrates. In addition, cynomolgus monkey CYP2C19 formed the same loratadine metabolite as human CYP2C19, descarboethoxyloratadine. These results suggest that cynomolgus monkey CYP2C19 is generally similar to human CYP2C19 and CYP2C9 in its substrate recognition functionality.

  6. In Silico Docking of Ligands to Drug Oxidation Enzymes Cytochrome P450 3A4 and Cytochrome P450 1A2.

    NASA Astrophysics Data System (ADS)

    Smith, David; Guglielmon, Jonathan; Glenn, Marsch; Peter, Guengerich F.

    2009-03-01

    Cytochrome P450 3A4 (CYP3A4) and Cytochrome P450 1A2 (CYP1A2) oxidize most drugs in humans. Protein modeling toolkits from OpenEye Scientific Software were used to examine the interaction of drug substrates with CYP3A4 and CYP1A2. Conformers and partial atomic charges were generated for each drug molecule. User-defined volumes were defined around CYP3A4 and CYP1A2 active sites. Ligands were docked assuming protein and substrates as rigid bodies. To assess rigid docking accuracy, x-ray diffraction coordinates of CYP3A4-erythromycin and CYP3A4-metyrapone complexes were obtained. Rigid re-docking of erythromycin and metyrapone into CYP3A4 yielded poses similar to the crystal structures. Rigid docking revealed two other energetically-favorable CYP3A4-metyrapone poses. The best poses were obtained by using all the Open Eye scoring functions. Optimization of protein-ligand interactions within 5-10 Angstroms of the docked ligand was then performed using the Merck Molecular Force Field in which the protein was assumed to be flexible and the ligand to be rigid. Nearby protein residues pulled slightly closer to the substrate, reducing the volume of the active site.

  7. The revised human liver cytochrome P450 "Pie": absolute protein quantification of CYP4F and CYP3A enzymes using targeted quantitative proteomics.

    PubMed

    Michaels, Scott; Wang, Michael Zhuo

    2014-08-01

    The CYP4F subfamily of enzymes has been identified recently to be involved in the metabolism of endogenous compounds (arachidonic acid and leukotriene B4), nutrients (vitamins K1 and E), and xenobiotics (pafuramidine and fingolimod). CYP4F2 and CYP4F3B are reported to be expressed in the human liver. However, absolute concentrations of these enzymes in human liver microsomes (HLMs) and their interindividual variability have yet to be determined because of the lack of specific antibodies. Here, an liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based targeted quantitative proteomic approach was employed to determine the absolute protein concentrations of CYP4F2 and CYP4F3B compared with CYP3A in two panels of HLMs (n = 31). As a result, the human hepatic cytochrome P450 (P450) "pie" has been revised to include the contribution of CYP4F enzymes, which amounts to 15% of the total hepatic cytochrome P450 enzymes. CYP4F3B displayed low interindividual variability (3.3-fold) in the HLM panels whereas CYP4F2 displayed large variability (21-fold). However, CYP4F2 variability decreased to 3.4-fold if the two donors with the lowest expression were excluded. In contrast, CYP3A exhibited 29-fold interindividual variability in the same HLM panels. The proposed marker reaction for CYP4F enzymes pafuramidine/DB289 M1 formation did not correlate with CYP4F protein content, suggesting alternate metabolic pathways for DB289 M1 formation in HLMs. In conclusion, CYP4F enzymes are highly expressed in the human liver and their physiologic and pharmacologic roles warrant further investigation.

  8. Cytochrome P450 CYP78A9 Is Involved in Arabidopsis Reproductive Development1[W][OA

    PubMed Central

    Sotelo-Silveira, Mariana; Cucinotta, Mara; Chauvin, Anne-Laure; Chávez Montes, Ricardo A.; Colombo, Lucia; Marsch-Martínez, Nayelli; de Folter, Stefan

    2013-01-01

    Synchronized communication between gametophytic and sporophytic tissue is crucial for successful reproduction, and hormones seem to have a prominent role in it. Here, we studied the role of the Arabidopsis (Arabidopsis thaliana) cytochrome P450 CYP78A9 enzyme during reproductive development. First, controlled pollination experiments indicate that CYP78A9 responds to fertilization. Second, while CYP78A9 overexpression can uncouple fruit development from fertilization, the cyp78a8 cyp78a9 loss-of-function mutant has reduced seed set due to outer ovule integument development arrest, leading to female sterility. Moreover, CYP78A9 has a specific expression pattern in inner integuments in early steps of ovule development as well as in the funiculus, embryo, and integuments of developing seeds. CYP78A9 overexpression did not change the response to the known hormones involved in flower development and fruit set, and it did not seem to have much effect on the major known hormonal pathways. Furthermore, according to previous predictions, perturbations in the flavonol biosynthesis pathway were detected in cyp78a9, cyp78a8 cyp78a9, and empty siliques (es1-D) mutants. However, it appeared that they do not cause the observed phenotypes. In summary, these results add new insights into the role of CYP78A9 in plant reproduction and present, to our knowledge, the first characterization of metabolite differences between mutants in this gene family. PMID:23610218

  9. Unusual Spectroscopic and Ligand Binding Properties of the Cytochrome P450-Flavodoxin Fusion Enzyme XplA*

    PubMed Central

    Bui, Soi H.; McLean, Kirsty J.; Cheesman, Myles R.; Bradley, Justin M.; Rigby, Stephen E. J.; Levy, Colin W.; Leys, David; Munro, Andrew W.

    2012-01-01

    The Rhodococcus rhodochrous strain 11Y XplA enzyme is an unusual cytochrome P450-flavodoxin fusion enzyme that catalyzes reductive denitration of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazene (RDX). We show by light scattering that XplA is a monomeric enzyme. XplA has high affinity for imidazole (Kd = 1.6 μm), explaining previous reports of a red-shifted XplA Soret band in pure enzyme. The true Soret maximum of XplA is at 417 nm. Similarly, unusually weak XplA flavodoxin FMN binding (Kd = 1.09 μm) necessitates its purification in the presence of the cofactor to produce hallmark flavin contributions absent in previously reported spectra. Structural and ligand-binding data reveal a constricted active site able to accommodate RDX and small inhibitory ligands (e.g. 4-phenylimidazole and morpholine) while discriminating against larger azole drugs. The crystal structure also identifies a high affinity imidazole binding site, consistent with its low Kd, and shows active site penetration by PEG, perhaps indicative of an evolutionary lipid-metabolizing function for XplA. EPR studies indicate heterogeneity in binding mode for RDX and other ligands. The substrate analog trinitrobenzene does not induce a substrate-like type I optical shift but creates a unique low spin EPR spectrum due to influence on structure around the distal water heme ligand. The substrate-free heme iron potential (−268 mV versus NHE) is positive for a low spin P450, and the elevated potential of the FMN semiquinone/hydroquinone couple (−172 mV) is also an adaptation that may reflect (along with the absence of a key Thr/Ser residue conserved in oxygen-activating P450s) the evolution of XplA as a specialized RDX reductase catalyst. PMID:22500029

  10. Regiochemical variations in reactions of methylcubane with tert-butoxyl radical, cytochrome P-450 enzymes, and a methane monooxygenase system

    SciTech Connect

    Choi, S.Y.; Hollenberg, P.F.; Newcomb, M.; Putt, D.A.; Eaton, P.E.; Upadhyaya, S.P.; Xiong, Y.; Liu, K.E.; Lippard, S.J.

    1996-07-17

    Reactions of methylcubane (1) with the tert-butoxyl radical (t-BuO{sup .}), with cytochrome P-450 enzymes, and with a methane monooxygenase (MMO) system have been studied. 2-Methylcubanecarboxylic acid (9b) is a new compound prepared from cubanecarboxylic acid. The key synthetic reactions were (1) metalation and subsequent iodination of the 2-position of (diisopropylcarbamoyl)cubane to effect the initial functionalization, (2) lithium-for-iodine exchange and methylation followed by reduction to give 2-methyl-l-[(diisopropylamino)methyl]-cubane, and (3) dimethyldioxirane oxidation of this amine to give 9b. Reaction of 1 with t-BuO{sup .} in the presence of 2,2,5,5-tetramethylisoindole-N-oxyl radical (TMIO{sup .}) at 40-55{degree}C gave mainly cube-substituted products in confirmation of the report that hydrogen atom abstraction by the electrophilic alkoxyl radical at low temperature occurs at the cubyl C-H positions. In a competition experiment at 42{degree}C, methylcubane was at least 3.5 times more reactive toward t-BuO{sup .} than cyclohexane, indicating that the cubyl positions in 1 are >= 40 times more reactive than the methyl positions in 1 (per hydrogen) toward the alkoxyl radical. Oxidation of 1 by enzymes gave alcohol products that were converted to their acetate derivatives for identification and quantitation. Microsomal cytochrome P-450 enzymes from rat and the rat purified P-450 isozyme CYP2B1 hydroxylated 1 at all positions, whereas the reconstituted MMO system from Methylococcus capsulatus (Bath) hydroxylated l only at the methyl position. 78 refs., 1 tab.

  11. Metabolism of (-)-cis- and (-)-trans-rose oxide by cytochrome P450 enzymes in human liver microsomes.

    PubMed

    Nakahashi, Hiroshi; Yamamura, Yuuki; Usami, Atsushi; Rangsunvigit, Pramoch; Malakul, Pomthong; Miyazawa, Mitsuo

    2015-12-01

    The in vitro metabolism of (-)-cis- and (-)-trans-rose oxide was investigated using human liver microsomes and recombinant cytochrome P450 (P450 or CYP) enzymes for the first time. Both isomers of rose oxide were incubated with human liver microsomes, and the formation of the respective 9-oxidized metabolite were determined using gas chromatography-mass spectrometry (GC-MS). Of 11 different recombinant human P450 enzymes used, CYP2B6 and CYP2C19 were the primary enzymes catalysing the metabolism of (-)-cis- and (-)-trans-rose oxide. CYP1A2 also efficiently oxidized (-)-cis-rose oxide at the 9-position but not (-)-trans-rose oxide. α-Naphthoflavone (a selective CYP1A2 inhibitor), thioTEPA (a CYP2B6 inhibitor) and anti-CYP2B6 antibody inhibited (-)-cis-rose oxide 9-hydroxylation catalysed by human liver microsomes. On the other hand, the metabolism of (-)-trans-rose oxide was suppressed by thioTEPA and anti-CYP2B6 at a significant level in human liver microsomes. However, omeprazole (a CYP2C19 inhibitor) had no significant effects on the metabolism of both isomers of rose oxide. Using microsomal preparations from nine different human liver samples, (-)-9-hydroxy-cis- and (-)-9-hydroxy-trans-rose oxide formations correlated with (S)-mephenytoin N-demethylase activity (CYP2B6 marker activity). These results suggest that CYP2B6 plays important roles in the metabolism of (-)-cis- and (-)-trans-rose oxide in human liver microsomes.

  12. Cytochromes P450 in Nanodiscs

    PubMed Central

    Denisov, Ilia G.; Sligar, Stephen G.

    2010-01-01

    Nanodiscs have proven to be a versatile tool for the study all types of membrane proteins, including receptors, transporters, enzymes and viral antigens. The self-assembled Nanodisc system provides a robust and common means for rendering these targets soluble in aqueous media while providing a native like bilayer environment that maintains functional activity. This system has thus provided a means for studying the extensive collection of membrane bound cytochromes P450 with the same biochemical and biophysical tools that have been previously limited to use with the soluble P450s. These include a plethora of spectroscopic, kinetic and surface based methods. Significant improvements in homogeneity and stability of these preparations open new possibilities for detailed analysis of equilibrium and steady-state kinetic characteristics of catalytic mechanisms of human cytochromes P450 involved in xenobiotic metabolism and in steroid biosynthesis. The experimental methods developed for physico-chemical and functional studies of membrane cytochromes P450 incorporated in Nanodiscs allow for more detailed understanding of the scientific questions along the lines pioneered by Professor Klaus Ruckpaul and his array of colleagues and collaborators. PMID:20685623

  13. Suppressive effect of accumulated aluminum trichloride on the hepatic microsomal cytochrome P450 enzyme system in rats.

    PubMed

    Zhu, Yanzhu; Han, Yanfei; Zhao, Hansong; Li, Jing; Hu, Chongwei; Li, Yanfei; Zhang, Zhigang

    2013-01-01

    Aluminum (Al) is a low toxicological metal and can accumulate in the liver. The hepatic microsomal cytochrome P450 enzyme system (CYPS) plays important role in the transformation of the toxic materials. It is not clear if the CYPS is affected by Al exposure. Thus, the aim of this study is to investigate the effects of aluminum trichloride (AlCl(3)) on CYPS in rats. Forty male Wistar rats (5weeks old) weighing 110-120g were randomly allocated and orally exposed to 0, 64.18, 128.36 and 256.72mg/kg body weight (BW) AlCl(3) in drinking water for 120days. The body weight (BW) of rats, hepatosomatic index (HSI), hepatic Al content, the concentrations of cytochrome P450 (CYP450), cytochrome B5 (B5), microsomal protein and the activities of NADPH-cytochrome c reductase (CR), aminopyrin N-demethylase (AND), erythromycin N-demethylase (ERND) and aniline-4-hydeoxylase (AH) were assessed at the end of the experiment. The results showed that the increase in Al concentration decreased BW, HIS, concentrations of CYP450, B5, microsomal protein and the activity of CR, AND, ERND and AH in hepatic microsomes. The results revealed that exposure to AlCl(3) inhibited the microsomal CYP450 dependent enzyme system of liver. Our findings suggest that long term daily exposure of AlCl(3) exerts the suppressive effects and thus may cause dysfunction of hepatic CYP450 dependent enzyme system of rat.

  14. Coleus forskohlii extract induces hepatic cytochrome P450 enzymes in mice.

    PubMed

    Virgona, Nantiga; Yokotani, Kaori; Yamazaki, Yuko; Shimura, Fumio; Chiba, Tsuyoshi; Taki, Yuko; Yamada, Shizuo; Shinozuka, Kazumasa; Murata, Masatsune; Umegaki, Keizo

    2012-03-01

    Coleus forskohlii root extract (CFE) is popular for use as a weight loss dietary supplement. In this study, the influence of standardized CFE containing 10% active component forskolin on the hepatic drug metabolizing system was investigated to evaluate the safety through its drug interaction potential. Male ICR mice were fed AIN93G-based diets containing 0-5% CFE or 0.05% pure forskolin for 2-3 weeks. Intake of two different sources of 0.5% CFE significantly increased the relative liver weight, total content of hepatic cytochrome P450 (CYP) and induced CYPs (especially 2B, 2C, 3A types) and glutathione S-transferase (GST) activities. CFE significantly increased mRNA expression of CYPs and GST with dose related responses. However, unlike the CFE, intake of 0.05% pure forskolin was found to be associated with only weak induction in CYP3A and GST activities with no significant increases in relative liver weight, total hepatic content or other CYPs activities. The inductions of CYPs and GST by CFE were observed at 1 week of feeding and rapidly recovered by discontinuation of CFE. These results indicated the induction potential of CFE on CYPs, and that this effect was predominantly due to other, as yet unidentified constituents, and not forskolin contained in CFE. PMID:22178802

  15. Genetic and mass spectrometric tools for elucidating the physiological function(s) of cytochrome P450 enzymes from Mycobacterium tuberculosis.

    PubMed

    Ouellet, Hugues; Chow, Eric D; Guan, Shenheng; Cox, Jeffery S; Burlingame, Alma L; de Montellano, Paul R Ortiz

    2013-01-01

    Tuberculosis remains a leading cause of human mortality. The emergence of strains of Mycobacterium tuberculosis (Mtb), the causative agent, that are resistant to first- and second-line antitubercular drugs urges the development of new therapeutics. The genome of Mtb encodes 20 cytochrome P450 enzymes, at least some of which are potential candidates (CYP121, CYP125, and CYP128) for drug targeting. In this regard, we examined the specific role of CYP125 in the cholesterol degradation pathway, using genetic and mass spectrometric approaches. The analysis of lipid profiles from Mtb cells grown on cholesterol revealed that CYP125, by virtue of its C26-monooxygenase activity, is essential for cholesterol degradation, and, consequently, for the incorporation of side-chain carbon atoms into cellular lipids, as evidenced by an increase in the mass of the methyl-branched phthiocerol dimycocerosates (PDIM). Moreover, this work also led to the identification of cholest-4-en-3-one as a source of cellular toxicity. Herein, we describe the experimental procedures that led to elucidation of the physiological function of CYP125. A similar approach can be used to study other important Mtb P450 enzymes.

  16. Oxidation of reduced haloperidol to haloperidol: involvement of human P450IID6 (sparteine/debrisoquine monooxygenase).

    PubMed Central

    Tyndale, R F; Kalow, W; Inaba, T

    1991-01-01

    1. The conversion of haloperidol (HAL) to reduced haloperidol (RHAL) and then back to HAL has been established in vivo and observed in psychiatric patients. The reduction of HAL to RHAL is known to be catalysed by a ketone reductase, while the nature of oxidation back to HAL is the subject of the present study. 2. We examined the in vitro oxidation of RHAL to HAL in human livers. The activity was microsomal and evidence is presented to suggest that the sparteine/debrisoquine metabolizing isoenzyme P450IID6 contributes to this oxidation. 3. Reciprocal inhibition studies between RHAL and sparteine, a specific substrate for cytochrome P450IID6, indicated that both compounds compete for the same binding site. Quinidine, the most specific inhibitor for this cytochrome P450 potently inhibited the oxidative conversion of reduced haloperidol to haloperidol. A significant correlation (rs = 0.62, P less than 0.01) was found between RHAL oxidation and sparteine oxidation in a study involving 17 human liver samples. PMID:1867960

  17. Role of Metabolic Enzymes P450 (CYP) on Activating Procarcinogen and their Polymorphisms on the Risk of Cancers.

    PubMed

    He, Xin; Feng, Shan

    2015-01-01

    Cytochrome P450 (CYP450) enzymes are the most important metabolizing enzyme family exists among all organs. Apart from their role in the deactivation of most endogenous compounds and xenobiotics, they also mediate most procarcinogens oxidation to ultimate carcinogens. There are several modes of CYP450s activation of procarcinogens. 1) Formation of epoxide and diol-epoxides intermediates, such as CYP1A1 and CYP1B1 mediates PAHs oxidation to epoxide intermediates; 2) Formation of diazonium ions, such as CYP2A6, CYP2A13 and CYP2E1 mediates activation of most nitrosamines to unstable metabolites, which can rearrange to give diazonium ions. 3) Formation of reactive semiquinones and quinines, such as CYP1A1 and CYP1B1 transformation of estradiol to catechol estrogens, subsequently formation semiquinones; 4) Formation of toxic O-esterification, such as CYP1A1 and CYP1A2 metabolizes PhIP to N(2)-acetoxy-PhIP and N(2)-sulfonyloxy-PhIP, which are carcinogenic metabolites. 5) Formation of free radical, such as CYP2E1 is involved in activation tetrachloromethane to free radicals. While for CYP2B6 and CYP2D6, only a minor role has been found in procarcinogens activation. In addition, as the gene polymorphisms reflected, the polymorphisms of CYP1A1 (-3801T/C and -4889A/G), CYP1A2 (- 163C/A and -2467T/delT), CYP1B1 (-48G/C, -119G/T and -432G/C), CYP2E1 (-1293G/C and -1053 C/T) have been associated with an increased risk of lung cancer. The polymorphisms CYP1A1 (-3801T/C and -4889A/G), and CYP2E1 (PstI/Rsa and 9-bp insertion) have an association with higher risk colon cancers, whereas CYP1A2 (-163C/A and -3860G/A) polymorphism is found to be among the protective factors. The polymorphisms CYP1A1 (-3801T/C and -4889A/G), CYP1B1 -432G/C, CYP2B6 (-516G/T and -785A/G) may increase the risk of breast cancer. In conclusion, CYP1A1, CYP1A2, CYP1B1, CYP2A6, and CYP2E1 are responsible for most of the procarcinogens activation, and their gene polymorphisms are associated with the risk of

  18. Cytochromes P450

    PubMed Central

    Bak, Søren; Beisson, Fred; Bishop, Gerard; Hamberger, Björn; Höfer, René; Paquette, Suzanne; Werck-Reichhart, Danièle

    2011-01-01

    There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization. PMID:22303269

  19. N-Nitrosobenzylmethylamine hydroxylation and coumarin 7-hydroxylation: catalysis by rat esophageal microsomes and cytochrome P450 2A3 and 2A6 enzymes.

    PubMed

    von Weymarn, L B; Felicia, N D; Ding, X; Murphy, S E

    1999-12-01

    N-Nitrosobenzylmethylamine (NBzMA) is a potent and selective esophageal carcinogen in the rat and may be a causative agent for human esophageal cancer. This nitrosamine, like most, must be metabolically activated to exert its carcinogenic potential. NBzMA may be metabolized by P450-catalyzed methyl or methylene hydroxylation; the latter is believed to be the activation pathway. The sensitivity of the esophagus to NBzMA-induced tumorigenesis is believed to be due, at least in part, to the presence of efficient P450 catalysts in this tissue. However, while it was reported almost 20 years ago that the rat esophagus catalyzes the methylene hydroxylation of NBzMA, the P450 that catalyzes this reaction has yet to be identified. We report here that human P450 2A6 and the closely related extrahepatic rat enzyme P450 2A3 both efficiently catalyze NBzMA methylene hydroxylation, characterized as benzaldehyde formation. The catalytic efficiency of P450 2A3 in this reaction was 3-fold greater than that of P450 2A6, 7.6 (K(m) = 0.63 +/- 0.18 microM and the V(max) = 4.8 nmol min(-)(1) nmol of P450(-)(1)) versus 2.3 (K(m) = 6.7 +/- 2.9 microM and the V(max) = 15.7 nmol min(-)(1) nmol of P450(-)(1)), respectively. Both enzymes catalyzed methylene hydroxylation at least 4-fold more efficiently than methyl hydroxylation. In addition, P450 2A6, but not P450 2A3, catalyzed benzyl ring hydroxylation, generating N-(p-hydroxybenzyl)methylamine. The identity of this metabolite was confirmed by synthesis of a standard and LC/MS and LC/MS/MS analysis. P450 2A6 is an efficient coumarin 7-hydroxylase, and we report here that P450 2A3 is an equally good catalyst of this reaction (K(m) = 1. 7 +/- 0.41 microM and V(max) = 1.7 +/- 0.08 nmol min(-)(1) nmol of P450(-)(1)). Rat esophageal microsomes (REM), like P450 2A3, were efficient catalysts of NBzMA methylene hydroxylation. However, in contrast to P450 2A3, the major product of this reaction was the product of benzaldehyde oxidation, benzoic

  20. Enzyme-substrate complementarity governs access to a cationic reaction manifold in the P450(BM3)-catalysed oxidation of cyclopropyl fatty acids.

    PubMed

    Cryle, Max J; Hayes, Patricia Y; De Voss, James J

    2012-12-01

    The products of cytochrome P450(BM3)-catalysed oxidation of cyclopropyl-containing dodecanoic acids are consistent with the presence of a cationic reaction intermediate, which results in efficient dehydrogenation of the rearranged probes by the enzyme. These results highlight the importance of enzyme-substrate complementarity, with a cationic intermediate occurring only when the probes used begin to diverge from ideal substrates for this enzyme. This also aids in reconciling literature reports supporting the presence of cationic intermediates with certain cytochrome P450 enzyme/substrate pairs. PMID:23109039

  1. Hepatic P450 enzyme activity, tissue morphology and histology of mink (Mustela vison) exposed to polychlorinated dibenzofurans.

    PubMed

    Moore, Jeremy N; Newsted, John L; Hecker, Markus; Zwiernik, Matthew J; Fitzgerald, Scott D; Kay, Denise P; Zhang, Xiaowei; Higley, Eric B; Aylward, Lesa L; Beckett, Kerrie J; Budinsky, Robert A; Bursian, Steven J; Giesy, John P

    2009-08-01

    Dose- and time-dependent effects of environmentally relevant concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEQ) of 2,3,7,8-tetrachlorodibenzofuran (TCDF), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), or a mixture of these two congeners on hepatic P450 enzyme activity and tissue morphology, including jaw histology, of adult ranch mink were determined under controlled conditions. Adult female ranch mink were fed either TCDF (0.98, 3.8, or 20 ng TEQ(TCDF)/kg bw/day) or PeCDF (0.62, 2.2, or 9.5 ng TEQ(PeCDF)/kg bw/day), or a mixture of TCDF and PeCDF (4.1 ng TEQ(TCDF)/kg bw/day and 2.8 ng TEQ(PeCDF)/kg bw/day, respectively) for 180 days. Doses used in this study were approximately eight times greater than those reported in a parallel field study. Activities of the cytochrome P450 1A enzymes, ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-deethylase (MROD) were significantly greater in livers of mink exposed to TCDF, PeCDF, and a mixture of the two congeners; however, there were no significant histological or morphological effects observed. It was determined that EROD and MROD activity can be used as sensitive biomarkers of exposure to PeCDF and TCDF in adult female mink; however, under the conditions of this study, the response of EROD/MROD induction occurred at doses that were less than those required to cause histological or morphological changes. PMID:19458992

  2. Involvement of the arachidonic acid cytochrome P450 epoxygenase pathway in the proliferation and invasion of human multiple myeloma cells

    PubMed Central

    Shao, Jing; Wang, Hongxiang; Yuan, Guolin; Chen, Zhichao

    2016-01-01

    Cytochrome P450 (CYP) epoxygenases and the metabolites epoxyeicosatrienoic acids (EETs) exert multiple biological effects in various malignancies. We have previously found EETs to be secreted by multiple myeloma (MM) cells and to be involved in MM angiogenesis, but the role of the arachidonic acid cytochrome P450 epoxygenase pathway in the proliferation and mobility of MM cells remains unknown. In the present study, we found that MM cell lines generated detectable levels of 11,12-EET/14,15-EET and that increased levels of EETs were found in the serum of MM patients compared to healthy donors. The addition of exogenous EETs induced significantly enhanced proliferation of MM cells, whereas 17-octadecynoic acid (17-ODYA), an inhibitor of the CYP epoxygenase pathway, inhibited the viability and proliferation of MM cells. Moreover, this inhibitory effect could be successfully reversed by exogenous EETs. 17-ODYA also inhibited the motility of MM cells in a time-dependent manner, with a reduction of the gelatinolytic activity and protein expression of the matrix metalloproteinases (MMP)-2 and MMP-9. These results suggest the CYP epoxygenase pathway to be involved in the proliferation and invasion of MM cells, for which 17-ODYA could be a promising therapeutic drug. PMID:27077015

  3. Structural characterization of CYP144A1 – a cytochrome P450 enzyme expressed from alternative transcripts in Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Chenge, Jude; Kavanagh, Madeline E.; Driscoll, Max D.; McLean, Kirsty J.; Young, Douglas B.; Cortes, Teresa; Matak-Vinkovic, Dijana; Levy, Colin W.; Rigby, Stephen E. J.; Leys, David; Abell, Chris; Munro, Andrew W.

    2016-05-01

    Mycobacterium tuberculosis (Mtb) causes the disease tuberculosis (TB). The virulent Mtb H37Rv strain encodes 20 cytochrome P450 (CYP) enzymes, many of which are implicated in Mtb survival and pathogenicity in the human host. Bioinformatics analysis revealed that CYP144A1 is retained exclusively within the Mycobacterium genus, particularly in species causing human and animal disease. Transcriptomic annotation revealed two possible CYP144A1 start codons, leading to expression of (i) a “full-length” 434 amino acid version (CYP144A1-FLV) and (ii) a “truncated” 404 amino acid version (CYP144A1-TRV). Computational analysis predicted that the extended N-terminal region of CYP144A1-FLV is largely unstructured. CYP144A1 FLV and TRV forms were purified in heme-bound states. Mass spectrometry confirmed production of intact, His6-tagged forms of CYP144A1-FLV and -TRV, with EPR demonstrating cysteine thiolate coordination of heme iron in both cases. Hydrodynamic analysis indicated that both CYP144A1 forms are monomeric. CYP144A1-TRV was crystallized and the first structure of a CYP144 family P450 protein determined. CYP144A1-TRV has an open structure primed for substrate binding, with a large active site cavity. Our data provide the first evidence that Mtb produces two different forms of CYP144A1 from alternative transcripts, with CYP144A1-TRV generated from a leaderless transcript lacking a 5‧-untranslated region and Shine-Dalgarno ribosome binding site.

  4. Structural characterization of CYP144A1 – a cytochrome P450 enzyme expressed from alternative transcripts in Mycobacterium tuberculosis

    PubMed Central

    Chenge, Jude; Kavanagh, Madeline E.; Driscoll, Max D.; McLean, Kirsty J.; Young, Douglas B.; Cortes, Teresa; Matak-Vinkovic, Dijana; Levy, Colin W.; Rigby, Stephen E. J.; Leys, David; Abell, Chris; Munro, Andrew W.

    2016-01-01

    Mycobacterium tuberculosis (Mtb) causes the disease tuberculosis (TB). The virulent Mtb H37Rv strain encodes 20 cytochrome P450 (CYP) enzymes, many of which are implicated in Mtb survival and pathogenicity in the human host. Bioinformatics analysis revealed that CYP144A1 is retained exclusively within the Mycobacterium genus, particularly in species causing human and animal disease. Transcriptomic annotation revealed two possible CYP144A1 start codons, leading to expression of (i) a “full-length” 434 amino acid version (CYP144A1-FLV) and (ii) a “truncated” 404 amino acid version (CYP144A1-TRV). Computational analysis predicted that the extended N-terminal region of CYP144A1-FLV is largely unstructured. CYP144A1 FLV and TRV forms were purified in heme-bound states. Mass spectrometry confirmed production of intact, His6-tagged forms of CYP144A1-FLV and -TRV, with EPR demonstrating cysteine thiolate coordination of heme iron in both cases. Hydrodynamic analysis indicated that both CYP144A1 forms are monomeric. CYP144A1-TRV was crystallized and the first structure of a CYP144 family P450 protein determined. CYP144A1-TRV has an open structure primed for substrate binding, with a large active site cavity. Our data provide the first evidence that Mtb produces two different forms of CYP144A1 from alternative transcripts, with CYP144A1-TRV generated from a leaderless transcript lacking a 5′-untranslated region and Shine-Dalgarno ribosome binding site. PMID:27225995

  5. Structural characterization of CYP144A1 - a cytochrome P450 enzyme expressed from alternative transcripts in Mycobacterium tuberculosis.

    PubMed

    Chenge, Jude; Kavanagh, Madeline E; Driscoll, Max D; McLean, Kirsty J; Young, Douglas B; Cortes, Teresa; Matak-Vinkovic, Dijana; Levy, Colin W; Rigby, Stephen E J; Leys, David; Abell, Chris; Munro, Andrew W

    2016-01-01

    Mycobacterium tuberculosis (Mtb) causes the disease tuberculosis (TB). The virulent Mtb H37Rv strain encodes 20 cytochrome P450 (CYP) enzymes, many of which are implicated in Mtb survival and pathogenicity in the human host. Bioinformatics analysis revealed that CYP144A1 is retained exclusively within the Mycobacterium genus, particularly in species causing human and animal disease. Transcriptomic annotation revealed two possible CYP144A1 start codons, leading to expression of (i) a "full-length" 434 amino acid version (CYP144A1-FLV) and (ii) a "truncated" 404 amino acid version (CYP144A1-TRV). Computational analysis predicted that the extended N-terminal region of CYP144A1-FLV is largely unstructured. CYP144A1 FLV and TRV forms were purified in heme-bound states. Mass spectrometry confirmed production of intact, His6-tagged forms of CYP144A1-FLV and -TRV, with EPR demonstrating cysteine thiolate coordination of heme iron in both cases. Hydrodynamic analysis indicated that both CYP144A1 forms are monomeric. CYP144A1-TRV was crystallized and the first structure of a CYP144 family P450 protein determined. CYP144A1-TRV has an open structure primed for substrate binding, with a large active site cavity. Our data provide the first evidence that Mtb produces two different forms of CYP144A1 from alternative transcripts, with CYP144A1-TRV generated from a leaderless transcript lacking a 5'-untranslated region and Shine-Dalgarno ribosome binding site. PMID:27225995

  6. Characterization of two methylenedioxy bridge-forming cytochrome P450-dependent enzymes of alkaloid formation in the Mexican prickly poppy Argemone mexicana.

    PubMed

    Díaz Chávez, Maria Luisa; Rolf, Megan; Gesell, Andreas; Kutchan, Toni M

    2011-03-01

    Formation of the methylenedioxy bridge is an integral step in the biosynthesis of benzo[c]phenanthridine and protoberberine alkaloids in the Papaveraceae family of plants. This reaction in plants is catalyzed by cytochrome P450-dependent enzymes. Two cDNAs that encode cytochrome P450 enzymes belonging to the CYP719 family were identified upon interrogation of an EST dataset prepared from 2-month-old plantlets of the Mexican prickly poppy Argemone mexicana that accumulated the benzo[c]phenanthridine alkaloid sanguinarine and the protoberberine alkaloid berberine. CYP719A13 and CYP719A14 are 58% identical to each other and 77% and 60% identical, respectively, to stylopine synthase CYP719A2 of benzo[c]phenanthridine biosynthesis in Eschscholzia californica. Functional heterologous expression of CYP719A14 and CYP719A13 in Spodoptera frugiperda Sf9 cells produced recombinant enzymes that catalyzed the formation of the methylenedioxy bridge of (S)-cheilanthifoline from (S)-scoulerine and of (S)-stylopine from (S)-cheilanthifoline, respectively. Twenty-seven potential substrates were tested with each enzyme. Whereas CYP719A14 transformed only (S)-scoulerine to (S)-cheilanthifoline (K(m) 1.9±0.3; k(cat)/K(m) 1.7), CYP719A13 converted (S)-tetrahydrocolumbamine to (S)-canadine (K(m) 2.7±1.3; k(cat)/K(m) 12.8), (S)-cheilanthifoline to (S)-stylopine (K(m) 5.2±3.0; k(cat)/K(m) 2.6) and (S)-scoulerine to (S)-nandinine (K(m) 8.1±1.9; k(cat)/K(m) 0.7). These results indicate that although CYP719A14 participates in only sanguinarine biosynthesis, CYP719A13 can be involved in both sanguinarine and berberine formation in A. mexicana.

  7. Influenza virus-induced alterations of cytochrome P-450 enzyme activities following exposure of mice to coal and diesel particulates.

    PubMed

    Rabovsky, J; Judy, D J; Rodak, D J; Petersen, M

    1986-06-01

    We have investigated a relationship between two detoxication systems, metabolic detoxication through the cytochrome P-450 (P-450) pathway and resistance to infection through interferon (IFN), in mice infected with influenza virus following exposure to coal dust (CD) and diesel exhaust (DE) particulates. Mice were exposed by inhalation to filtered air (FA; control), CD, or DE for 1 month and then inoculated intranasally (IN) with influenza virus. During infection, 7-ethoxycoumarin deethylase (7ECdeEt'ase) and ethylmorphine demethylase (EMdeMe'ase) (monooxygenases), and NADPH cytochrome c reductase (NADPH c red'ase) were measured in liver microsomes. Temporal patterns of enzyme activities were observed with control animals. EMdeMe'ase and NADPH c red'ase exhibited peak values at Day 4 postinfection (27.6 and 482 nmole/min/mg protein, respectively), compared to initial activities (9.1 and 307 nmole/min/mg protein, respectively). 7ECdeEt'ase activity decreased between Days 1-3 postvirus infection and thereafter returned to the original value (1.7 nmole/min/mg protein). When the mice were first exposed to CD or DE particulates for 1 month prior to influenza infection, changes in enzyme temporal patterns were observed. The increased EMdeMe'ase activity at Day 4 was not observed in mice exposed to CD and was reduced in mice exposed to DE. Preexposure to either particulate resulted in the abolition of the increased Day 4 activity of NADPH c red'ase. The 7ECdeEt'ase postinfection temporal pattern was not affected by a preexposure to either particulate. Estimates of the enzyme activities after the 1-month exposure to FA, CD, or DE but before virus infection indicated no changes due to particulate exposure alone. Under these conditions of particulate exposure and virus infection, serum IFN levels in the mice used in this study peaked at Days 4-5 and were unaffected by the 1-month preexposure to CD or DE (Hahon et al., (1985). The data suggest the relationship that exists

  8. Cloning and characterization of the biosynthetic gene cluster of 16-membered macrolide antibiotic FD-891: involvement of a dual functional cytochrome P450 monooxygenase catalyzing epoxidation and hydroxylation.

    PubMed

    Kudo, Fumitaka; Motegi, Atsushi; Mizoue, Kazutoshi; Eguchi, Tadashi

    2010-07-26

    FD-891 is a 16-membered cytotoxic antibiotic macrolide that is especially active against human leukemia such as HL-60 and Jurkat cells. We identified the FD-891 biosynthetic (gfs) gene cluster from the producer Streptomyces graminofaciens A-8890 by using typical modular type I polyketide synthase (PKS) genes as probes. The gfs gene cluster contained five typical modular type I PKS genes (gfsA, B, C, D, and E), a cytochrome P450 gene (gfsF), a methyltransferase gene (gfsG), and a regulator gene (gfsR). The gene organization of PKSs agreed well with the basic polyketide skeleton of FD-891 including the oxidation states and alpha-alkyl substituent determined by the substrate specificities of the acyltransferase (AT) domains. To clarify the involvement of the gfs genes in the FD-891 biosynthesis, the P450 gfsF gene was inactivated; this resulted in the loss of FD-891 production. Instead, the gfsF gene-disrupted mutant accumulated a novel FD-891 analogue 25-O-methyl-FD-892, which lacked the epoxide and the hydroxyl group of FD-891. Furthermore, the recombinant GfsF enzyme coexpressed with putidaredoxin and putidaredoxin reductase converted 25-O-methyl-FD-892 into FD-891. In the course of the GfsF reaction, 10-deoxy-FD-891 was isolated as an enzymatic reaction intermediate, which was also converted into FD-891 by GfsF. Therefore, it was clearly found that the cytochrome P450 GfsF catalyzes epoxidation and hydroxylation in a stepwise manner in the FD-891 biosynthesis. These results clearly confirmed that the identified gfs genes are responsible for the biosynthesis of FD-891 in S. graminofaciens.

  9. A collection of cytochrome P450 monooxygenase genes involved in modification and detoxification of herbicide atrazine in rice (Oryza sativa) plants.

    PubMed

    Rong Tan, Li; Chen Lu, Yi; Jing Zhang, Jing; Luo, Fang; Yang, Hong

    2015-09-01

    Plant cytochrome P450 monooxygenases constitute one of the largest families of protein genes involved in plant growth, development and acclimation to biotic and abiotic stresses. However, whether these genes respond to organic toxic compounds and their biological functions for detoxifying toxic compounds such as herbicides in rice are poorly understood. The present study identified 201 genes encoding cytochrome P450s from an atrazine-exposed rice transcriptome through high-throughput sequencing. Of these, 69 cytochrome P450 genes were validated by microarray and some of them were confirmed by real time PCR. Activities of NADPH-cytochrome P450 reductase (CPR) and p-nitroanisole O-demethylase (PNOD) related to toxicity were determined and significantly induced by atrazine exposure. To dissect the mechanism underlying atrazine modification and detoxification by P450, metabolites (or derivatives) of atrazine in plants were analyzed by ultra performance liquid chromatography mass spectrometry (UPLC/MS). Major metabolites comprised desmethylatrazine (DMA), desethylatrazine (DEA), desisopropylatrazine (DIA), hydroxyatrazine (HA), hydroxyethylatrazine (HEA) and hydroxyisopropylatrazine (HIA). All of them were chemically modified by P450s. Furthermore, two specific inhibitors of piperonyl butoxide (PBO) and malathion (MAL) were used to assess the correlation between the P450s activity and rice responses including accumulation of atrazine in tissues, shoot and root growth and detoxification.

  10. Suppression of peroxisomal enzyme activities and cytochrome P450 4A isozyme expression by congeneric polybrominated and polychlorinated biphenyls.

    PubMed

    Robertson, Larry W; Berberian, Isabelle; Borges, Tim; Chen, Li-Chuan; Chow, Ching K; Glauert, Howard P; Filser, Johannes G; Thomas, Helmut

    2007-01-01

    The purpose of this study was to determine the effects of PCBs and PBBs on peroxisome proliferator-activated receptor-alpha-(PPARalpha-) associated enzyme activities or protein levels. Male Sprague-Dawley rats were administered a single IP injection (150 mu mol/kg) of either 3,3',4,4'-tetrabromobiphenyl, 3,3',4,4'-tetrachlorobiphenyl, 3,3',5,5'-tetrabromobiphenyl, 2',3,3',4,5-pentachlorobiphenyl, 3,3',4,4',5-pentachlorobiphenyl, 2,2',3,3',5,5'-hexachlorobiphenyl, or 3,3',4,4',5,5'-hexabromobiphenyl in corn oil (10 ml/kg). One week later, the activities of catalase, peroxisomal fatty acyl-CoA oxidase, and peroxisomal beta-oxidation as well as cytochrome P450 4A (CYP4A) protein content were determined in subcellular liver fractions. None of the peroxisomal enzyme activities were significantly increased by any of the halogenated biphenyl congeners tested. Except for minor (approx. 25%) increases in the total CYP4A content following treatment with 2,2',3,3',5,5'-hexachlorobiphenyl and 3,3',5,5'-tetrabromobiphenyl, CYP4A protein contents were not increased by any treatment. The two Ah receptor agonists, 3,3',4,4'-tetrabromobiphenyl and 3,3',4,4',5-pentachlorobiphenyl, significantly diminished the liver content of CYP4A proteins and activities of the peroxisomal enzymes studied. Since a range of congeners with different biologic and toxicologic activities were selected for this study, it may be concluded that the polyhalogenated biphenyls do not induce peroxisome proliferation in the male rat, but rather certain members of this class of compounds down regulate peroxisome-associated enzymes. Since PCBs and PBBs do not increase enzyme activities and expression of proteins associated with PPARalpha, these agents are therefore exerting their carcinogenic and promoting activities by some other mechanism. PMID:18274624

  11. Structure–function relationships of inhibition of mosquito cytochrome P450 enzymes by flavonoids of Andrographis paniculata.

    PubMed

    Kotewong, Rattanawadee; Duangkaew, Panida; Srisook, Ekaruth; Sarapusit, Songklod; Rongnoparut, Pornpimol

    2014-09-01

    The cytochrome P450 monooxygenases are known to play a major role in pyrethroid resistance, by means of increased rate of insecticide detoxification as a result of their overexpression. Inhibition of detoxification enzymes may help disrupting insect detoxifying defense system. The Anopheles minimus CYP6AA3 and CYP6P7 have shown pyrethroid degradation activity and been implicated in pyrethroid resistance. In this study inhibition of the extracts and constituents of Andrographis paniculata Nees. leaves and roots was examined against benzyloxyresorufin O-debenzylation (BROD) of CYP6AA3 and CYP6P7. Four purified flavones (5,7,4′-trihydroxyflavone, 5-hydroxy-7,8-dimethoxyflavone, 5-hydroxy-7,8,2′,3′-tetramethoxyflavone, and 5,4′-dihydroxy-7,8,2′,3′-tetramethoxyflavone), one flavanone (5-hydroxy-7,8-dimethoxyflavanone) and a diterpenoid (14-deoxy-11,12-didehydroandrographolide) containing inhibitory effects toward both enzymes were isolated from A. paniculata. Structure–function relationships were observed for modes and kinetics of inhibition among flavones, while diterpenoid and flavanone were inferior to flavones. Docking of flavones onto enzyme homology models reinforced relationships on flavone structures and inhibition modes. Cell-based inhibition assays employing 3-(4,5-dimethylthiazol-2-y-l)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assays revealed that these flavonoids efficiently increased susceptibility of CYP6AA3- and CYP6P7-expressing Spodoptera frugiperda (Sf9) cells to cypermethrin toxicity, due to inhibition effects on mosquito enzymes. Thus synergistic effects on cypermethrin toxicity of A. paniculata compounds as a result of enzyme inhibition could be useful for mosquito vector control and insecticide resistance management in the future.

  12. Vasoactive intestinal peptide-induced expression of cytochrome P450 cholesterol side-chain cleavage and 17 alpha-hydroxylase enzyme activity in hen granulosa cells.

    PubMed

    Johnson, A L; Li, Z; Gibney, J A; Malamed, S

    1994-08-01

    Experiments were conducted to determine whether vasoactive intestinal peptide (VIP) can regulate expression of cytochrome P450 side-chain cleavage (P450scc) and P450 17 alpha-hydroxylase (P450 17 alpha-OH) mRNA levels and enzyme activity in granulosa cells from nonhierarchal (6-8-mm) follicles. Initial studies demonstrated that immunoreactive VIP is localized within the theca (but not granulosa) layer of both resting (< 0.5-mm follicles) and 6-8-mm follicles, thus providing a potential paracrine mechanism of action for VIP. While short-term (3 h) incubation of granulosa cells with VIP (0.001-1.0 microM) failed to stimulate progesterone production from 6-8-mm follicle granulosa cells, a 4-h culture period in the presence of VIP resulted in increased cyclic AMP (cAMP) accumulation, and a 24-h culture period resulted in progesterone synthesis and increased P450scc mRNA levels; control levels of each endpoint measurement were not altered within the period observed. By contrast, culture with the growth factor transforming growth factor alpha (TGF alpha) in the presence of VIP (1 microM) prevented increases in P450scc mRNA levels and progesterone production. Similar effects of VIP and TGF alpha in the presence of VIP were demonstrated for P450 17 alpha-OH mRNA levels and enzyme activity. Finally, there was an additive effect of VIP (0.1 microM) plus recombinant human (rh) FSH (100 mIU) on the initiation of progesterone production in cultured 6-8-mm follicle granulosa cells compared to the addition of VIP or rhFSH alone.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Localization of cytochrome P450 and related enzymes in adult rat testis and downregulation by estradiol and bisphenol A.

    PubMed

    Gilibili, Ravindranath Reddy; Vogl, A Wayne; Chang, Thomas K H; Bandiera, Stelvio M

    2014-07-01

    There is a growing body of evidence that exposure to endocrine disrupting chemicals and to estrogenic compounds in particular can affect the testis and male fertility. In the present study, the constitutive expression of steroidogenic and non-steroidogenic cytochrome P450 (CYP) and related enzymes in adult rat testis, and their regulation by estradiol and bisphenol A, were investigated. CYP1B1, CYP2A1, NADPH-cytochrome P450 oxidoreductase (POR) and microsomal epoxide hydrolase (mEH) proteins, together with CYP17A1 and 3β-hydroxysteroid dehydrogenase (HSD3B), were detected by immunoblot analysis in testicular microsomes prepared from untreated adult Sprague Dawley rats. In contrast, CYP1A, CYP2B, CYP2E, CYP2D, CYP2C, CYP3A, and CYP4A enzymes were not detected. Immunofluorescence staining of cryosections of perfusion-fixed testes showed that CYP1B1, CYP2A1, CYP17A1, and HSD3B were expressed exclusively or mainly in interstitial cells, whereas mEH and POR protein staining was detected both in interstitial cells and in seminiferous tubules. Testicular CYP1B1 and CYP2A1 protein levels were decreased following treatment of adult rats with estradiol benzoate at 0.004, 0.04, 0.4, or 4 μmol/kg/day or bisphenol A at 400 or 800 μmol/kg/day, for 14 days, whereas expression of HSD3B was unaffected. Testicular CYP17A1, POR, and mEH protein expression was also downregulated at the three highest dosages of estradiol benzoate and at both dosages of bisphenol A. The present study is the first to establish the cellular localization of CYP1B1, mEH, and POR in rat testis and to demonstrate the suppressive effect of bisphenol A on testicular CYP1B1, CYP2A1, mEH, and POR protein levels.

  14. Involvement of the Cytochrome P450 System EthBAD in the N-Deethoxymethylation of Acetochlor by Rhodococcus sp. Strain T3-1

    PubMed Central

    Wang, Fei; Zhou, Jie; Li, Zhoukun; Dong, Weiliang; Hou, Ying; Huang, Yan

    2015-01-01

    Acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide] is a widely applied herbicide with potential carcinogenic properties. N-Deethoxymethylation is the key step in acetochlor biodegradation. N-Deethoxymethylase is a multicomponent enzyme that catalyzes the conversion of acetochlor to 2′-methyl-6′-ethyl-2-chloroacetanilide (CMEPA). Fast detection of CMEPA by a two-enzyme (N-deethoxymethylase–amide hydrolase) system was established in this research. Based on the fast detection method, a three-component enzyme was purified from Rhodococcus sp. strain T3-1 using ammonium sulfate precipitation and hydrophobic interaction chromatography. The molecular masses of the components of the purified enzyme were estimated to be 45, 43, and 11 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Based on the results of peptide mass fingerprint analysis, acetochlor N-deethoxymethylase was identified as a cytochrome P450 system, composed of a cytochrome P450 oxygenase (43-kDa component; EthB), a ferredoxin (45 kDa; EthA), and a reductase (11 kDa; EthD), that is involved in the degradation of methyl tert-butyl ether. The gene cluster ethABCD was cloned by PCR amplification and expressed in Escherichia coli BL21(DE3). Resting cells of a recombinant E. coli strain showed deethoxymethylation activity against acetochlor. Subcloning of ethABCD showed that ethABD expressed in E. coli BL21(DE3) has the activity of acetochlor N-deethoxymethylase and is capable of converting acetochlor to CMEPA. PMID:25595756

  15. The Epipolythiodiketopiperazine Gene Cluster in Claviceps purpurea: Dysfunctional Cytochrome P450 Enzyme Prevents Formation of the Previously Unknown Clapurines

    PubMed Central

    Tudzynski, Paul; Humpf, Hans-Ulrich

    2016-01-01

    Claviceps purpurea is an important food contaminant and well known for the production of the toxic ergot alkaloids. Apart from that, little is known about its secondary metabolism and not all toxic substances going along with the food contamination with Claviceps are known yet. We explored the metabolite profile of a gene cluster in C. purpurea with a high homology to gene clusters, which are responsible for the formation of epipolythiodiketopiperazine (ETP) toxins in other fungi. By overexpressing the transcription factor, we were able to activate the cluster in the standard C. purpurea strain 20.1. Although all necessary genes for the formation of the characteristic disulfide bridge were expressed in the overexpression mutants, the fungus did not produce any ETPs. Isolation of pathway intermediates showed that the common biosynthetic pathway stops after the first steps. Our results demonstrate that hydroxylation of the diketopiperazine backbone is the critical step during the ETP biosynthesis. Due to a dysfunctional enzyme, the fungus is not able to produce toxic ETPs. Instead, the pathway end-products are new unusual metabolites with a unique nitrogen-sulfur bond. By heterologous expression of the Leptosphaeria maculans cytochrome P450 encoding gene sirC, we were able to identify the end-products of the ETP cluster in C. purpurea. The thioclapurines are so far unknown ETPs, which might contribute to the toxicity of other C. purpurea strains with a potentially intact ETP cluster. PMID:27390873

  16. Tyrosine Hydroxylation in Betalain Pigment Biosynthesis Is Performed by Cytochrome P450 Enzymes in Beets (Beta vulgaris).

    PubMed

    Sunnadeniya, Rasika; Bean, Alexander; Brown, Matthew; Akhavan, Neda; Hatlestad, Gregory; Gonzalez, Antonio; Symonds, V Vaughan; Lloyd, Alan

    2016-01-01

    Yellow and red-violet betalain plant pigments are restricted to several families in the order Caryophyllales, where betacyanins play analogous biological roles to anthocyanins. The initial step in betalain biosynthesis is the hydroxylation of tyrosine to form L-DOPA. Using gene expression experiments in beets, yeast, and Arabidopsis, along with HPLC/MS analysis, the present study shows that two novel cytochrome P450 (CYP450) enzymes, CYP76AD6 and CYP76AD5, and the previously described CYP76AD1 can perform this initial step. Co-expressing these CYP450s with DOPA 4,5-dioxygenase in yeast, and overexpression of these CYP450s in yellow beets show that CYP76AD1 efficiently uses L-DOPA leading to red betacyanins while CYP76AD6 and CYP76AD5 lack this activity. Furthermore, CYP76AD1 can complement yellow beetroots to red while CYP76AD6 and CYP76AD5 cannot. Therefore CYP76AD1 uniquely performs the beet R locus function and beets appear to be genetically redundant for tyrosine hydroxylation. These new functional data and ancestral character state reconstructions indicate that tyrosine hydroxylation alone was the most likely ancestral function of the CYP76AD alpha and beta groups and the ability to convert L-DOPA to cyclo-DOPA evolved later in the alpha group.

  17. Effects of prior oral contraceptive use and soy isoflavonoids on estrogen-metabolizing cytochrome P450 enzymes

    PubMed Central

    Scott, LM; Durant, P; Leone-Kabler, S; Wood, CE; Register, TC; Townsend, A; Cline, JM

    2009-01-01

    Estrogen exposure and metabolism may play an important role in the development of estrogen-sensitive cancers in postmenopausal women. In this study we investigated whether past oral contraceptive (OC) administration or current dietary isoflavonoids (IF) affected expression and/or activity of steroid hormone-metabolizing cytochrome P450 (CYP) enzymes using complementary primate and cell culture models. One-hundred-eighty-one female cynomolgus macaques were randomized to receive OC or nothing for 26 months premenopausally, then ovariectomized and randomized to one of three diets for 36 months: an IF-depleted soy protein isolate (Soy−) diet, a Soy diet with IF (Soy+), or a Soy− diet supplemented with conjugated equine estrogens (CEE). Prior OC-treatment significantly reduced CYP gene expression in the mammary gland (≤60% of OC−). Dietary IFs had no effect on CYP expression, while CEE-treatment decreased CYP1A1 and increased CYP3A4 mRNA in a tissue-specific manner. For in vitro studies, we measured effects of the isoflavonoids genistein, daidzein and equol on CYP activity using intact V79 cells stably transfected to express CYP1A1, CYP1B1, or CYP3A4. All three IFs significantly altered CYP activity in a dose-dependent and isoform-specific manner (20–95% inhibition vs. controls). These results suggest potential mechanisms for prior OC and dietary IF effects on cancer risk in estrogen-responsive tissues. PMID:18955142

  18. Phosphorylation of cytochromes P450: First discovery of a posttranslational modification of a drug-metabolizing enzyme

    SciTech Connect

    Oesch-Bartlomowicz, B. . E-mail: oeschb@uni-mainz.de; Oesch, F.

    2005-12-09

    Cytochromes P450 (CYP) are important components of xenobiotic-metabolizing monooxygenases (CYP-dependent monooxygenases). Their regulation by induction, most commonly by transcriptional activation, mediated by xenobiotics, normally substrates of the corresponding CYP, is well known and has been widely studied. Our team has discovered an additional important regulation of xenobiotic-metabolizing CYPs pertaining to posttranslational modification by phosphorylation. Individual CYPs are phosphorylated by different protein kinases, leading to CYP isoenzyme-selective changes in the metabolism of individual substrates and consequent drastic changes in the control of genotoxic metabolites. Best studied are the CYP phosphorylations by the cAMP-dependent protein kinase A. Most recently, we discovered that cAMP not only leads to drastic changes in the activity of individual CYPs, but also to drastic changes in the nuclear localization of the CYP-related transcription factor Ah receptor (AHR). The consequences are very different from those of AHR nuclear translocation mediated by the classical ligands (enzyme inducers such as dioxin) and are likely to represent the long-sought physiological function of the AHR, its persistent disturbance by long-lived ligands such as dioxin may well be the reason for its high toxicity.

  19. Tyrosine Hydroxylation in Betalain Pigment Biosynthesis Is Performed by Cytochrome P450 Enzymes in Beets (Beta vulgaris).

    PubMed

    Sunnadeniya, Rasika; Bean, Alexander; Brown, Matthew; Akhavan, Neda; Hatlestad, Gregory; Gonzalez, Antonio; Symonds, V Vaughan; Lloyd, Alan

    2016-01-01

    Yellow and red-violet betalain plant pigments are restricted to several families in the order Caryophyllales, where betacyanins play analogous biological roles to anthocyanins. The initial step in betalain biosynthesis is the hydroxylation of tyrosine to form L-DOPA. Using gene expression experiments in beets, yeast, and Arabidopsis, along with HPLC/MS analysis, the present study shows that two novel cytochrome P450 (CYP450) enzymes, CYP76AD6 and CYP76AD5, and the previously described CYP76AD1 can perform this initial step. Co-expressing these CYP450s with DOPA 4,5-dioxygenase in yeast, and overexpression of these CYP450s in yellow beets show that CYP76AD1 efficiently uses L-DOPA leading to red betacyanins while CYP76AD6 and CYP76AD5 lack this activity. Furthermore, CYP76AD1 can complement yellow beetroots to red while CYP76AD6 and CYP76AD5 cannot. Therefore CYP76AD1 uniquely performs the beet R locus function and beets appear to be genetically redundant for tyrosine hydroxylation. These new functional data and ancestral character state reconstructions indicate that tyrosine hydroxylation alone was the most likely ancestral function of the CYP76AD alpha and beta groups and the ability to convert L-DOPA to cyclo-DOPA evolved later in the alpha group. PMID:26890886

  20. Tyrosine Hydroxylation in Betalain Pigment Biosynthesis Is Performed by Cytochrome P450 Enzymes in Beets (Beta vulgaris)

    PubMed Central

    Sunnadeniya, Rasika; Bean, Alexander; Brown, Matthew; Akhavan, Neda; Hatlestad, Gregory; Gonzalez, Antonio; Symonds, V. Vaughan; Lloyd, Alan

    2016-01-01

    Yellow and red-violet betalain plant pigments are restricted to several families in the order Caryophyllales, where betacyanins play analogous biological roles to anthocyanins. The initial step in betalain biosynthesis is the hydroxylation of tyrosine to form L-DOPA. Using gene expression experiments in beets, yeast, and Arabidopsis, along with HPLC/MS analysis, the present study shows that two novel cytochrome P450 (CYP450) enzymes, CYP76AD6 and CYP76AD5, and the previously described CYP76AD1 can perform this initial step. Co-expressing these CYP450s with DOPA 4,5-dioxygenase in yeast, and overexpression of these CYP450s in yellow beets show that CYP76AD1 efficiently uses L-DOPA leading to red betacyanins while CYP76AD6 and CYP76AD5 lack this activity. Furthermore, CYP76AD1 can complement yellow beetroots to red while CYP76AD6 and CYP76AD5 cannot. Therefore CYP76AD1 uniquely performs the beet R locus function and beets appear to be genetically redundant for tyrosine hydroxylation. These new functional data and ancestral character state reconstructions indicate that tyrosine hydroxylation alone was the most likely ancestral function of the CYP76AD alpha and beta groups and the ability to convert L-DOPA to cyclo-DOPA evolved later in the alpha group. PMID:26890886

  1. Human Cytochrome P450 Enzyme Modulation by Gymnema sylvestre: A Predictive Safety Evaluation by LC-MS/MS

    PubMed Central

    Rammohan, Bera; Samit, Karmakar; Chinmoy, Das; Arup, Saha; Amit, Kundu; Ratul, Sarkar; Sanmoy, Karmakar; Dipan, Adhikari; Tuhinadri, Sen

    2016-01-01

    Background: Traditionally GS is used to treat diabetes mellitus. Drug-herb interaction of GS via cytochrome P450 enzyme system by substrate cocktail method using HLM has not been reported. Objective: To evaluate the in-vitro modulatory effects of GS extracts (aqueous, methanol, ethyl acetate, chloroform and n-hexane) and deacylgymnemic acid (DGA) on human CYP1A2, 2C8, 2C9, 2D6 and 3A4 activities in HLM. Material and Methods: Probe substrate-based LCMS/MS method was established for all CYPs. The metabolite formations were examined after incubation of probe substrates with HLM in the presence or absence of extracts and DGA. The inhibitory effects of GS extracts and DGA were characterized with kinetic parameters IC50 and Ki values. Results: GS extracts showed differential effect on CYP activities in the following order of inhibitory potency: ethyl acetate > Chloroform > methanol > n-hexane > aqueous > DGA. This differential effect was observed against CYP1A2, 2C9 and less on CYP3A4 and 2C8 but all CYPs were unaffected by aqueous extract and DGA. The ethyl acetate and chloroform extract exhibited moderate inhibition towards CYP1A2 and 3A4. The aqueous extract and DGA however showed negligible inhibition towards all five major human CYPs with very high IC50 values (>90μg/ml). Conclusion: The results of our study revealed that phytoconstituents contained in GS, particularly in ethyl acetate and chloroform extracts, were able to inhibit CYP1A2, 3A4 and 2C9. The presence of relatively small, lipophillic yet slightly polar compounds within the GS extracts may be attributed for inhibition activities. These suggest that the herb or its extracts should be examined for potential pharmacokinetic drug interactions in vivo. Abbreviations used: GS: Gymnema sylvestre, GSE: Gymnema sylvestre extract, DGA: deacyl gymnemic acid, CYP: cytochrome P450, DMSO: dimethylsulphoxide, HLM: human liver microsomes, LC-MS/MS: liquid chromatography tandem mass spectroscopy, NADPH: reduced

  2. Autoantibodies against Cytochrome P450 Side-Chain Cleavage Enzyme in Dogs (Canis lupus familiaris) Affected with Hypoadrenocorticism (Addison’s Disease)

    PubMed Central

    Boag, Alisdair M.; Christie, Michael R.; McLaughlin, Kerry A.; Syme, Harriet M.; Graham, Peter; Catchpole, Brian

    2015-01-01

    Canine hypoadrenocorticism likely arises from immune-mediated destruction of adrenocortical tissue, leading to glucocorticoid and mineralocorticoid deficiency. In humans with autoimmune Addison’s disease (AAD) or autoimmune polyendocrine syndrome (APS), circulating autoantibodies have been demonstrated against enzymes associated with adrenal steroid synthesis. The current study investigates autoantibodies against steroid synthesis enzymes in dogs with spontaneous hypoadrenocorticism. Coding regions of canine CYP21A2 (21-hydroxylase; 21-OH), CYP17A1 (17-hydroxylase; 17-OH), CYP11A1 (P450 side-chain cleavage enzyme; P450scc) and HSD3B2 (3β hydroxysteroid dehydrogenase; 3βHSD) were amplified, cloned and expressed as 35S-methionine radiolabelled recombinant protein. In a pilot study, serum samples from 20 dogs with hypoadrenocorticism and four unaffected control dogs were screened by radio-immunoprecipitation assay. There was no evidence of reactivity against 21-OH, 17-OH or 3βHSD, but five dogs with hypoadrenocorticism showed immunoreactivity to P450scc compared with controls. Serum samples were subsequently obtained from 213 dogs diagnosed with hypoadrenocorticism and 110 dogs from a hospital control population. Thirty control dogs were randomly selected to establish a threshold for antibody positivity (mean + 3 × standard deviation). Dogs with hypoadrenocorticism were more likely to be P450scc autoantibody positive than hospital controls (24% vs. 1.2%, respectively; p = 0.0016). Sex was significantly associated with the presence of P450scc autoantibodies in the case population, with 30% of females testing positive compared with 17% of males (p = 0.037). Significant associations with breed (p = 0.015) and DLA-type (DQA1*006:01 allele; p = 0.017) were also found. This cross-sectional study indicates that P450scc autoantibodies are present in a proportion of dogs affected with hypoadrenocorticism. PMID:26618927

  3. Isotope-Labeling Studies Support the Electrophilic Compound I Iron Active Species, FeO(3+), for the Carbon-Carbon Bond Cleavage Reaction of the Cholesterol Side-Chain Cleavage Enzyme, Cytochrome P450 11A1.

    PubMed

    Yoshimoto, Francis K; Jung, I-Ji; Goyal, Sandeep; Gonzalez, Eric; Guengerich, F Peter

    2016-09-21

    The enzyme cytochrome P450 11A1 cleaves the C20-C22 carbon-carbon bond of cholesterol to form pregnenolone, the first 21-carbon precursor of all steroid hormones. Various reaction mechanisms are possible for the carbon-carbon bond cleavage step of P450 11A1, and most current proposals involve the oxoferryl active species, Compound I (FeO(3+)). Compound I can either (i) abstract an O-H hydrogen atom or (ii) be attacked by a nucleophilic hydroxy group of its substrate, 20R,22R-dihydroxycholesterol. The mechanism of this carbon-carbon bond cleavage step was tested using (18)O-labeled molecular oxygen and purified P450 11A1. P450 11A1 was incubated with 20R,22R-dihydroxycholesterol in the presence of molecular oxygen ((18)O2), and coupled assays were used to trap the labile (18)O atoms in the enzymatic products (i.e., isocaproaldehyde and pregnenolone). The resulting products were derivatized and the (18)O content was analyzed by high-resolution mass spectrometry. P450 11A1 showed no incorporation of an (18)O atom into either of its carbon-carbon bond cleavage products, pregnenolone and isocaproaldehyde . The positive control experiments established retention of the carbonyl oxygens in the enzymatic products during the trapping and derivatization processes. These results reveal a mechanism involving an electrophilic Compound I species that reacts with nucleophilic hydroxy groups in the 20R,22R-dihydroxycholesterol intermediate of the P450 11A1 reaction to produce the key steroid pregnenolone.

  4. Inhibitory Effects of Aschantin on Cytochrome P450 and Uridine 5'-diphospho-glucuronosyltransferase Enzyme Activities in Human Liver Microsomes.

    PubMed

    Kwon, Soon-Sang; Kim, Ju-Hyun; Jeong, Hyeon-Uk; Cho, Yong Yeon; Oh, Sei-Ryang; Lee, Hye Suk

    2016-01-01

    Aschantin is a bioactive neolignan found in Magnolia flos with antiplasmodial, Ca(2+)-antagonistic, platelet activating factor-antagonistic, and chemopreventive activities. We investigated its inhibitory effects on the activities of eight major human cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes of human liver microsomes to determine if mechanistic aschantin-enzyme interactions were evident. Aschantin potently inhibited CYP2C8-mediated amodiaquine N-de-ethylation, CYP2C9-mediated diclofenac 4'-hydroxylation, CYP2C19-mediated [S]-mephenytoin 4'-hydroxylation, and CYP3A4-mediated midazolam 1'-hydroxylation, with Ki values of 10.2, 3.7, 5.8, and 12.6 µM, respectively. Aschantin at 100 µM negligibly inhibited CYP1A2-mediated phenacetin O-de-ethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated bupropion hydroxylation, and CYP2D6-mediated bufuralol 1'-hydroxylation. At 200 µM, it weakly inhibited UGT1A1-catalyzed SN-38 glucuronidation, UGT1A6-catalyzed N-acetylserotonin glucuronidation, and UGT1A9-catalyzed mycophenolic acid glucuronidation, with IC50 values of 131.7, 144.1, and 71.0 µM, respectively, but did not show inhibition against UGT1A3, UGT1A4, or UGT2B7 up to 200 µM. These in vitro results indicate that aschantin should be examined in terms of potential interactions with pharmacokinetic drugs in vivo. It exhibited potent mechanism-based inhibition of CYP2C8, CYP2C9, CYP2C19, and CYP3A4. PMID:27128896

  5. Origins of P450 diversity.

    PubMed

    Sezutsu, Hideki; Le Goff, Gaëlle; Feyereisen, René

    2013-02-19

    The P450 enzymes maintain a conserved P450 fold despite a considerable variation in sequence. The P450 family even includes proteins that lack the single conserved cysteine and are therefore no longer haem-thiolate proteins. The mechanisms of successive gene duplications leading to large families in plants and animals are well established. Comparisons of P450 CYP gene clusters in related species illustrate the rapid changes in CYPome sizes. Examples of CYP copy number variation with effects on fitness are emerging, and these provide an opportunity to study the proximal causes of duplication or pseudogenization. Birth and death models can explain the proliferation of CYP genes that is amply illustrated by the sequence of every new genome. Thus, the distribution of P450 diversity within the CYPome of plants and animals, a few families with many genes (P450 blooms) and many families with few genes, follows similar power laws in both groups. A closer look at some families with few genes shows that these, often single member families, are not stable during evolution. The enzymatic prowess of P450 may predispose them to switch back and forth between metabolism of critical structural or signal molecules and metabolism dedicated to environmental response. PMID:23297351

  6. Origins of P450 diversity

    PubMed Central

    Sezutsu, Hideki; Le Goff, Gaëlle; Feyereisen, René

    2013-01-01

    The P450 enzymes maintain a conserved P450 fold despite a considerable variation in sequence. The P450 family even includes proteins that lack the single conserved cysteine and are therefore no longer haem-thiolate proteins. The mechanisms of successive gene duplications leading to large families in plants and animals are well established. Comparisons of P450 CYP gene clusters in related species illustrate the rapid changes in CYPome sizes. Examples of CYP copy number variation with effects on fitness are emerging, and these provide an opportunity to study the proximal causes of duplication or pseudogenization. Birth and death models can explain the proliferation of CYP genes that is amply illustrated by the sequence of every new genome. Thus, the distribution of P450 diversity within the CYPome of plants and animals, a few families with many genes (P450 blooms) and many families with few genes, follows similar power laws in both groups. A closer look at some families with few genes shows that these, often single member families, are not stable during evolution. The enzymatic prowess of P450 may predispose them to switch back and forth between metabolism of critical structural or signal molecules and metabolism dedicated to environmental response. PMID:23297351

  7. [Inhibitory effect of imperatorin and isoimperatorin on activity of cytochrome P450 enzyme in human and rat liver microsomes].

    PubMed

    Cao, Yan; Zhong, Yu-Huan; Yuan, Mei; Li, Hua; Zhao, Chun-Jie

    2013-04-01

    Imperatorin (IM) and isoimperatorin (ISOIM) are major active components of common herbal medicines from Umbelliferae plants, and widely used in clinic. This article studies the inhibitory effect of IM and ISOIM on the activity of cytochrome P450 (CYP) enzyme, and assesses their potential drug-drug interaction. IM and ISOIM were incubated separately with human or rat liver microsomes for 30 min, with phenacetin, bupropion, tolbutamide, S-mephenytoin, dextromethorphan and midazolam as probe substrates. Metabolites of the CYP probe substrates were determined by LC-MS/MS, and IC50 values were calculated to assess the inhibitory effect of the two drugs on human CYP1A2, 2B6, 2C9, 2C19, 2D6 and 3A4 enzymes, as well as on rat CYP1A2, 2B6, 2D2 and 3A1/2, and grade their inhibitory intensity. In human liver microsomes, IM and ISOIM showed different inhibitory effects on all of the six CYP isoenzymes. They were strong inhibitors for 1A2 and 2B6. The IC50 values were 0.05 and 0.20 micromol x L(-1) for 1A2, and 0.18 and 1.07 micromol x L(-1) for 2B6, respectively. They also showed moderate inhibitory effect on 2C19, and weak effect on 2C9, 2D6 and 3A4. In rat liver microsomes, IM and ISOIM were identified as moderate inhibitors for 1A2, with IC50 values of 1.95 and 2.98 micromol x L(-1). They were moderate and weak inhibitors for 2B6, with IC50 values of 6.22 and 21.71 micromol x L(-1), respectively. They also had weaker inhibitory effect on 2D2 and 3A1/2. The results indicated that IM and ISOIM had extensive inhibitory effects on human CYP enzymes. They are strong inhibitors of CYP1 A2 and 2B6 enzymes. However, it is worth noting the interaction arising from the inhibitory effect of CYP enzymes in clinic.

  8. Inhibition of cytochrome P-450 C17 enzyme by a GnRH agonist in ovarian follicles from gonadotropin-stimulated rats.

    PubMed

    Irusta, Griselda; Parborell, Fernanda; Tesone, Marta

    2007-05-01

    Our objective was to study the direct action of a GnRH-I agonist, leuprolide acetate (LA), on ovarian steroidogenesis in preovulatory follicles obtained from equine chorionic gonadotropin (eCG)-treated rats. Previously, we have demonstrated an inhibitory effect of LA on steroidogenesis and follicular development. In this study, we tested the hypothesis that gonadotropin-releasing hormone (GnRH) exerts its negative effect on follicular development by inhibiting thecal cytochrome P-450 C17 (P450C17) alpha-hydroxylase expression and, consequently, androgen synthesis. Studies were carried out in prepubertal female rats injected with either eCG (control) or eCG plus LA (LA) and killed at different time points. Immunohistochemical studies indicated that LA induced steroidogenic acute regulatory protein (StAR) expression mainly in theca cells of preantral and antral follicles. In addition, serum progesterone levels increased significantly (P < 0.05), whereas those of androsterone decreased (P < 0.05) after 8 h of LA treatment. This inhibition caused by LA seemed to be a consequence of the decreased expression of follicular P450C17 alpha-hydroxylase, as demonstrated by Western blot and RT-PCR techniques. In vitro studies using follicles isolated from 48-h-eCG-treated rats and cultured with LA showed a significant (P < 0.05) inhibition of FSH-induced androsterone follicular content as well as P450C17 alpha-hydroxylase protein levels, as determined by Western analysis. However, LA increased StAR protein expression in these follicles without significant changes in P450scc enzyme levels. Taking all these findings into account, we suggest that GnRH-I exerts a direct inhibitory action on gonadotropin-induced follicular development by decreasing the temporal expression of the P450C17 enzyme and, consequently, androgen production, thus reducing the supply of estrogens available to developing follicles. PMID:17468395

  9. CYP2J2 and CYP2C19 are the major enzymes responsible for metabolism of albendazole and fenbendazole in human liver microsomes and recombinant P450 assay systems.

    PubMed

    Wu, Zhexue; Lee, Doohyun; Joo, Jeongmin; Shin, Jung-Hoon; Kang, Wonku; Oh, Sangtaek; Lee, Do Yup; Lee, Su-Jun; Yea, Sung Su; Lee, Hye Suk; Lee, Taeho; Liu, Kwang-Hyeon

    2013-11-01

    Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cytochrome P450s (P450s) to characterize the enzymes involved in the formation of hydroxyalbendazole and hydroxyfenbendazole from albendazole and fenbendazole, respectively. Of the 10 recombinant P450s, CYP2J2 and/or CYP2C19 was the predominant enzyme catalyzing the hydroxylation of albendazole and fenbendazole. Albendazole hydroxylation to hydroxyalbendazole is primarily mediated by CYP2J2 (0.34 μl/min/pmol P450, which is a rate 3.9- and 8.1-fold higher than the rates for CYP2C19 and CYP2E1, respectively), whereas CYP2C19 and CYP2J2 contributed to the formation of hydroxyfenbendazole from fenbendazole (2.68 and 1.94 μl/min/pmol P450 for CYP2C19 and CYP2J2, respectively, which are rates 11.7- and 8.4-fold higher than the rate for CYP2D6). Correlation analysis between the known P450 enzyme activities and the rate of hydroxyalbendazole and hydroxyfenbendazole formation in samples from 14 human liver microsomes showed that albendazole hydroxylation correlates with CYP2J2 activity and fenbendazole hydroxylation correlates with CYP2C19 and CYP2J2 activities. These findings were supported by a P450 isoform-selective inhibition study in human liver microsomes. In conclusion, our data for the first time suggest that albendazole hydroxylation is primarily catalyzed by CYP2J2, whereas fenbendazole hydroxylation is preferentially catalyzed by CYP2C19 and CYP2J2. The present data will be useful in understanding the pharmacokinetics and drug interactions of albendazole and fenbendazole in vivo.

  10. Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat.

    PubMed

    Sattler, M; Guengerich, F P; Yun, C H; Christians, U; Sewing, K F

    1992-01-01

    The hepatic cytochrome P-450 responsible for metabolism of the structurally related macrolides FK506 and rapamycin in humans was identified using in vitro studies. FK506 and rapamycin metabolism was significantly correlated with nifedipine oxidation in human liver microsomes of eight different individuals. Immunoinhibition with anti-P450 3A4 abolished almost all FK506 and rapamycin metabolite formation. Inactivation of P450 3A4 by incubation of human liver microsomes with triacetyl oleandomycin (50 microM) or gestodene (10 microM) inhibited metabolism of FK506 and rapamycin. In liver microsomes from dexamethasone-treated rats FK506 and rapamycin metabolism was increased compared to liver microsomes from uninduced, phenobarbital-, or 3-methylcholanthrene-induced rats. FK506 and rapamycin were metabolized by reconstituted recombinant human liver P450 3A4. It is concluded that in human and rat liver FK506 and rapamycin are metabolized primarily by cytochrome P-450 3A4. PMID:1385058

  11. The cytochrome P450 genes of channel catfish: their involvement in disease defense responses as revealed by meta-analysis of RNA-Seq datasets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytochrome P450s (CYPs) encode one of the most diverse enzyme superfamily in nature. They catalyze oxidative reactions of endogenous molecules and exogenous chemicals. Methods: We identifiedCYPs genes through in silico analysis using EST, RNA-Seq and genome databases of channel catfish.Phylogenetic ...

  12. Evaluation of the effects of Mitragyna speciosa alkaloid extract on cytochrome P450 enzymes using a high throughput assay.

    PubMed

    Kong, Wai Mun; Chik, Zamri; Ramachandra, Murali; Subramaniam, Umarani; Aziddin, Raja Elina Raja; Mohamed, Zahurin

    2011-01-01

    The extract from Mitragyna speciosa has been widely used as an opium substitute, mainly due to its morphine-like pharmacological effects. This study investigated the effects of M. speciosa alkaloid extract (MSE) on human recombinant cytochrome P450 (CYP) enzyme activities using a modified Crespi method. As compared with the liquid chromatography-mass spectrometry method, this method has shown to be a fast and cost-effective way to perform CYP inhibition studies. The results indicated that MSE has the most potent inhibitory effect on CYP3A4 and CYP2D6, with apparent half-maximal inhibitory concentration (IC(50)) values of 0.78 µg/mL and 0.636 µg/mL, respectively. In addition, moderate inhibition was observed for CYP1A2, with an IC(50) of 39 µg/mL, and weak inhibition was detected for CYP2C19. The IC(50) of CYP2C19 could not be determined, however, because inhibition was <50%. Competitive inhibition was found for the MSE-treated CYP2D6 inhibition assay, whereas non-competitive inhibition was shown in inhibition assays using CYP3A4, CYP1A2 and CYP2C19. Quinidine (CYP2D6), ketoconazole (CYP3A4), tranylcypromine (CYP2C19) and furafylline (CYP1A2) were ACCESSused as positive controls throughout the experiments. This study shows that MSE may contribute to an herb-drug interaction if administered concomitantly with drugs that are substrates for CYP3A4, CYP2D6 and CYP1A2. PMID:21876481

  13. Cytochrome P450 2D6 and 3A4 enzyme inhibition by amine stimulants in dietary supplements.

    PubMed

    Liu, Yitong; Santillo, Michael F

    2016-01-01

    A number of dietary supplements used for weight loss and athletic performance enhancement have been recently shown to contain a variety of stimulants, for which there is a lack of pharmacological and toxicological information. One concern for these emerging compounds is their potential to inhibit metabolic enzymes in the liver such as cytochromes P450 (CYP), which can lead to unexpected interactions among dietary supplements, drugs, and other xenobiotics. In this study, inhibition of human recombinant CYP2D6 and CYP3A4 by 27 amine stimulants associated with dietary supplements and their analogs was evaluated by luminescence assays. The strongest CYP2D6 inhibitors were coclaurine (IC50  = 0.14 ± 0.01 μM) and N-benzylphenethylamine (IC50  = 0.7 ± 0.2 μM), followed by several other relatively strong inhibitors (IC50 , 2-12 μM) including β-methylphenethylamine, N,β-dimethylphenethylamine (phenpromethamine), 1,3-dimethylamylamine (DMAA), N,α-diethylphenethylamine, higenamine (norcoclaurine) and N,N-diethylphenethylamine. Only nine compounds inhibited CYP3A4 by 20-55% at 100 μM. Results of this study illustrate that several amine stimulants associated with dietary supplements inhibit CYP2D6 and CYP3A4 in vitro, and these compounds may participate in adverse drug-dietary supplement interactions in vivo. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Oxidative metabolism of spironolactone: Evidence for the involvement of electrophilic thiosteroid species in drug-mediated destruction of rat hepatic cytochrome P450

    SciTech Connect

    Decker, C.J.; Rashed, M.S.; Baillie, T.A.; Maltby, D.; Correia, M.A. )

    1989-06-13

    In a preliminary paper, the authors have shown that the antimineralocorticoid spironolactone (SPL) preferentially inactivates dexamethasone (DEX) inducible rat hepatic cytochrome P450p isozymes in a suicidal manner. These findings are now confirmed, and the kinetic characteristics of such a process are detailed. In an effort to elucidate the mechanism of SPL-mediated inactivation of cytochrome P450, they have examined the metabolism of SPL in vitro. Incubation of ({sup 14}C)SPL and NADPH with liver microsomes prepared from DEX-pretreated rats results in the formation of several polar metabolites separable by HPLC with UV detection. This process is found to be dependent on NADPH, O{sub 2}, SPL, and enzyme concentration, as well as temperature. Furthermore, metabolite formation was significantly attenuated by P450 inhibitors CO and n-octylamine. Mass metabolites indicated that these compounds had molecular weights that corresponded to the sulfinic and sulfonic acid derivatives of deacetyl-SPL (SPL-SH). These finding document the formation of previously unreported polar metabolites of SPL by rat liver microsomes enriched in cytochrome P450p and implicate a role for this isozyme in the oxidation of the thiol moiety of deacetyl-SPL. The detection of such metabolites also implicates a catalytic trajectory that includes the thiyl radical and/or sulfenic acid species as a plausible protagonist in drug-mediated inactivation of cytochrome P450p.

  15. Evaluation of α-cyano ethers as fluorescent substrates for assay of cytochrome P450 enzyme activity

    PubMed Central

    Kang, Kyung-Don; Jones, Paul D.; Huang, Huazhang; Zhang, Rong; Mostovich, Lyudmila A.; Wheelock, Craig E.; Watanabe, Takaho; Gulyaeva, Lyudmila F.; Hammock, Bruce D.

    2006-01-01

    We have previously reported the synthesis of four α-cyano-containing ethers based on 2-naphthaldehyde (2-NA) as cytochrome P450 (P450) fluorescent substrates. Activity detection was based on the formation of fluorescent 2-NA following substrate hydrolysis. A major limitation of these substrates was the need to remove NADPH, a required cofactor for P450 oxidation, before measuring 2-NA fluorescence. In this article, we report the synthesis of a new series of novel P450 substrates using 6-dimethylamino-2-naphthaldehyde (6-DMANA), which has a green fluorescent emission that is well separated from the NADPH spectrum. A major advantage of the 6-DMANA substrates is that NADPH removal is not required before fluorescence detection. We used eight α-cyano ether-based substrates to determine the O-dealkylation activity of human, mouse, and rat liver microsomes. In addition, substrate activities were compared with the commercial substrate 7-ethoxyresorufin (7-ER). The catalytic turnover rates of both the 6-DMANA- and 2-NA-based substrates were in some cases threefold faster than the catalytic turnover rate of 7-ER. The 2-NA-based substrates had greater turnover than did the 6-DMANA-based substrates. Murine and rat liver microsomes prepared from animals that had been treated with various P450 inducers were used to examine for isozyme-selective turnover of the substrates. The vastly improved optical properties and synthetic flexibility of the α-cyano ether compounds suggest that they are possibly good general P450 substrates. PMID:16083846

  16. Evaluation of alpha-cyano ethers as fluorescent substrates for assay of cytochrome P450 enzyme activity.

    PubMed

    Kang, Kyung-Don; Jones, Paul D; Huang, Huazhang; Zhang, Rong; Mostovich, Lyudmila A; Wheelock, Craig E; Watanabe, Takaho; Gulyaeva, Lyudmila F; Hammock, Bruce D

    2005-09-15

    We have previously reported the synthesis of four alpha-cyano-containing ethers based on 2-naphthaldehyde (2-NA) as cytochrome P450 (P450) fluorescent substrates. Activity detection was based on the formation of fluorescent 2-NA following substrate hydrolysis. A major limitation of these substrates was the need to remove NADPH, a required cofactor for P450 oxidation, before measuring 2-NA fluorescence. In this article, we report the synthesis of a new series of novel P450 substrates using 6-dimethylamino-2-naphthaldehyde (6-DMANA), which has a green fluorescent emission that is well separated from the NADPH spectrum. A major advantage of the 6-DMANA substrates is that NADPH removal is not required before fluorescence detection. We used eight alpha-cyano ether-based substrates to determine the O-dealkylation activity of human, mouse, and rat liver microsomes. In addition, substrate activities were compared with the commercial substrate 7-ethoxyresorufin (7-ER). The catalytic turnover rates of both the 6-DMANA- and 2-NA-based substrates were in some cases threefold faster than the catalytic turnover rate of 7-ER. The 2-NA-based substrates had greater turnover than did the 6-DMANA-based substrates. Murine and rat liver microsomes prepared from animals that had been treated with various P450 inducers were used to examine for isozyme-selective turnover of the substrates. The vastly improved optical properties and synthetic flexibility of the alpha-cyano ether compounds suggest that they are possibly good general P450 substrates.

  17. Molecular evolution and population genetics of two Drosophila mettleri cytochrome P450 genes involved in host plant utilization.

    PubMed

    Bono, Jeremy M; Matzkin, Luciano M; Castrezana, Sergio; Markow, Therese A

    2008-07-01

    Understanding the genetic basis of adaptation is one of the primary goals of evolutionary biology. The evolution of xenobiotic resistance in insects has proven to be an especially suitable arena for studying the genetics of adaptation, and resistant phenotypes are known to result from both coding and regulatory changes. In this study, we examine the evolutionary history and population genetics of two Drosophila mettleri cytochrome P450 genes that are putatively involved in the detoxification of alkaloids present in two of its cactus hosts: saguaro (Carnegiea gigantea) and senita (Lophocereus schottii). Previous studies demonstrated that Cyp28A1 was highly up-regulated following exposure to rotting senita tissue while Cyp4D10 was highly up-regulated following exposure to rotting saguaro tissue. Here, we show that a subset of sites in Cyp28A1 experienced adaptive evolution specifically in the D. mettleri lineage. Moreover, neutrality tests in several populations were also consistent with a history of selection on Cyp28A1. In contrast, we did not find evidence for positive selection on Cyp4D10, although this certainly does not preclude its involvement in host plant use. A surprising result that emerged from our population genetic analyses was the presence of significant genetic differentiation between flies collected from different host plant species (saguaro and senita) at Organ Pipe National Monument, Arizona, USA. This preliminary evidence suggests that D. mettleri may have evolved into distinctive host races that specialize on different hosts, a possibility that warrants further investigation. PMID:18510584

  18. Cytochrome P450 3A Enzymes Catalyze the O6-Demethylation of Thebaine, a Key Step in Endogenous Mammalian Morphine Biosynthesis*

    PubMed Central

    Kramlinger, Valerie M.; Alvarado Rojas, Mónica; Kanamori, Tatsuyuki; Guengerich, F. Peter

    2015-01-01

    Morphine, first characterized in opium from the poppy Papaver somniferum, is one of the strongest known analgesics. Endogenous morphine has been identified in several mammalian cells and tissues. The synthetic pathway of morphine in the opium poppy has been elucidated. The presence of common intermediates in plants and mammals suggests that biosynthesis occurs through similar pathways (beginning with the amino acid l-tyrosine), and the pathway has been completely delineated in plants. Some of the enzymes in the mammalian pathway have been identified and characterized. Two of the latter steps in the morphine biosynthesis pathway are demethylation of thebaine at the O3- and the O6-positions, the latter of which has been difficult to demonstrate. The plant enzymes responsible for both the O3-demethylation and the O6-demethylation are members of the FeII/α-ketoglutarate-dependent dioxygenase family. Previous studies showed that human cytochrome P450 (P450) 2D6 can catalyze thebaine O3-demethylation. We report that demethylation of thebaine at the O6-position is selectively catalyzed by human P450s 3A4 and 3A5, with the latter being more efficient, and rat P450 3A2. Our results do not support O6-demethylation of thebaine by an FeII/α-ketoglutarate-dependent dioxygenase. In rat brain microsomes, O6-demethylation was inhibited by ketoconazole, but not sulfaphenazole, suggesting that P450 3A enzymes are responsible for this activity in the brain. An alternate pathway to morphine, oripavine O6-demethylation, was not detected. The major enzymatic steps in mammalian morphine synthesis have now been identified. PMID:26157146

  19. Cytochrome P450 3A Enzymes Catalyze the O6-Demethylation of Thebaine, a Key Step in Endogenous Mammalian Morphine Biosynthesis.

    PubMed

    Kramlinger, Valerie M; Alvarado Rojas, Mónica; Kanamori, Tatsuyuki; Guengerich, F Peter

    2015-08-14

    Morphine, first characterized in opium from the poppy Papaver somniferum, is one of the strongest known analgesics. Endogenous morphine has been identified in several mammalian cells and tissues. The synthetic pathway of morphine in the opium poppy has been elucidated. The presence of common intermediates in plants and mammals suggests that biosynthesis occurs through similar pathways (beginning with the amino acid L-tyrosine), and the pathway has been completely delineated in plants. Some of the enzymes in the mammalian pathway have been identified and characterized. Two of the latter steps in the morphine biosynthesis pathway are demethylation of thebaine at the O(3)- and the O(6)-positions, the latter of which has been difficult to demonstrate. The plant enzymes responsible for both the O(3)-demethylation and the O(6)-demethylation are members of the Fe(II)/α-ketoglutarate-dependent dioxygenase family. Previous studies showed that human cytochrome P450 (P450) 2D6 can catalyze thebaine O(3)-demethylation. We report that demethylation of thebaine at the O(6)-position is selectively catalyzed by human P450s 3A4 and 3A5, with the latter being more efficient, and rat P450 3A2. Our results do not support O(6)-demethylation of thebaine by an Fe(II)/α-ketoglutarate-dependent dioxygenase. In rat brain microsomes, O(6)-demethylation was inhibited by ketoconazole, but not sulfaphenazole, suggesting that P450 3A enzymes are responsible for this activity in the brain. An alternate pathway to morphine, oripavine O(6)-demethylation, was not detected. The major enzymatic steps in mammalian morphine synthesis have now been identified.

  20. Cytochrome P450 3A Enzymes Catalyze the O6-Demethylation of Thebaine, a Key Step in Endogenous Mammalian Morphine Biosynthesis.

    PubMed

    Kramlinger, Valerie M; Alvarado Rojas, Mónica; Kanamori, Tatsuyuki; Guengerich, F Peter

    2015-08-14

    Morphine, first characterized in opium from the poppy Papaver somniferum, is one of the strongest known analgesics. Endogenous morphine has been identified in several mammalian cells and tissues. The synthetic pathway of morphine in the opium poppy has been elucidated. The presence of common intermediates in plants and mammals suggests that biosynthesis occurs through similar pathways (beginning with the amino acid L-tyrosine), and the pathway has been completely delineated in plants. Some of the enzymes in the mammalian pathway have been identified and characterized. Two of the latter steps in the morphine biosynthesis pathway are demethylation of thebaine at the O(3)- and the O(6)-positions, the latter of which has been difficult to demonstrate. The plant enzymes responsible for both the O(3)-demethylation and the O(6)-demethylation are members of the Fe(II)/α-ketoglutarate-dependent dioxygenase family. Previous studies showed that human cytochrome P450 (P450) 2D6 can catalyze thebaine O(3)-demethylation. We report that demethylation of thebaine at the O(6)-position is selectively catalyzed by human P450s 3A4 and 3A5, with the latter being more efficient, and rat P450 3A2. Our results do not support O(6)-demethylation of thebaine by an Fe(II)/α-ketoglutarate-dependent dioxygenase. In rat brain microsomes, O(6)-demethylation was inhibited by ketoconazole, but not sulfaphenazole, suggesting that P450 3A enzymes are responsible for this activity in the brain. An alternate pathway to morphine, oripavine O(6)-demethylation, was not detected. The major enzymatic steps in mammalian morphine synthesis have now been identified. PMID:26157146

  1. Metabolism of the endocrine disruptor pesticide-methoxychlor by human P450s: pathways involving a novel catechol metabolite.

    PubMed

    Hu, Yiding; Kupfer, David

    2002-09-01

    The metabolism of methoxychlor, a proestrogenic pesticide (endocrine disruptor), was investigated with cDNA expressed human cytochrome P450s and liver microsomes (HLM). In addition to 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane (mono-OH-M), 1,1,1-trichloro-2, 2-bis(4-hydroxyphenyl)ethane (bis-OH-M), and 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (tris-OH-M), a new metabolite was identified as 1,1,1-trichloro-2-(4-methoxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (catechol-M; previously assumed to be ring-OH-M) and as a key metabolic intermediate. A novel metabolic route was proposed involving methoxychlor O-demethylation to mono-OH-M, followed by bifurcation of the pathway, both leading to the same final product tris-OH-M: pathway a, mono-OH-M is demethylated to bis-OH-M, followed by ortho-hydroxylation forming tris-OH-M and pathway b, mono-OH-M is ortho-hydroxylated forming catechol-M that is O-demethylated forming tris-OH-M. Among the human cDNA-expressed P450s examined, CYP1A2, 2A6, 2C8, 2C9, 2C19, and 2D6 exhibited mainly O-demethylation, with CYP2C19 being the most catalytically competent. CYP3A4, 3A5, and rat 2B1 catalyzed primarily ortho-hydroxylation of mono-OH-M (CYP3A4 being catalytically the most active) but were weak in O-demethylation. CYP1A1, 1B1, 2E1, and 4A11 demonstrated little or no catalytic activity. CYP2B6 appeared unique, catalyzing effectively both O-demethylation and ortho-hydroxylation. Thus, CYP2B6 demethylated methoxychlor to mono-OH-M and ortho-hydroxylated the mono-OH-M forming catechol-M; however, 2B6 did not appreciably demethylate mono-OH-M or ortho-hydroxylate bis-OH-M, suggesting a narrow substrate specificity. CYP2C19-catalyzed demethylation of methoxychlor, mono-OH-M and catechol-M, demonstrating relatively good substrate affinity (K(m) = 0.23 - 0.41 microM). However, the 3A4 ortho-hydroxylation of mono-OH-M and bis-OH-M exhibited lower affinity, K(m) = 12 and 25 microM, respectively. Thus, a

  2. The impact of individual cytochrome P450 enzymes on oxidative metabolism of benzo[a]pyrene in human livers

    PubMed Central

    Šulc, Miroslav; Indra, Radek; Moserová, Michaela; Schmeiser, Heinz H.; Frei, Eva; Arlt, Volker M.; White, P.

    2016-01-01

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after metabolic activation by cytochrome P450 (CYP) enzymes. In this study human recombinant CYPs (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2E1, 3A4, and 3A5) were expressed in Supersomes™ together with their reductases, NADPH:CYP oxidoreductase, epoxide hydrolase and cytochrome b5, to investigate BaP metabolism. Human CYPs produced up to eight BaP metabolites. Among these, BaP‐7,8‐dihydrodiol and BaP‐9‐ol, which are intermediates in BaP‐derived DNA adduct formation, were mainly formed by CYP1A1 and 1B1, and to a lesser extent by CYP2C19 and 3A4. BaP‐3‐ol, a metabolite that is a ‘detoxified’ product of BaP, was formed by most human CYPs tested, although CYP1A1 and 1B1 produced it the most efficiently. Based on the amounts of the individual BaP metabolites formed by these CYPs and their expression levels in human liver, we determined their contributions to BaP metabolite formation in this organ. Our results indicate that hepatic CYP1A1 and CYP2C19 are most important in the activation of BaP to BaP‐7,8‐dihydrodiol, whereas CYP2C19, 3A4, and 1A1 are the major enzymes contributing to the formation of BaP‐9‐ol. BaP‐3‐ol is predominantly formed by hepatic CYP3A4, while CYP1A1 and 2C19 are less active. Environ. Mol. Mutagen. 57:229–235, 2016. © 2016 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc. PMID:26919089

  3. Novel extrahepatic cytochrome P450s

    SciTech Connect

    Karlgren, Maria . E-mail: Maria.Karlgren@imm.ki.se; Miura, Shin-ichi; Ingelman-Sundberg, Magnus

    2005-09-01

    The cytochrome P450 enzymes are highly expressed in the liver and are involved in the metabolism of xenobiotics. Because of the initiatives associated with the Human Genome Project, a great progress has recently been seen in the identification and characterization of novel extrahepatic P450s, including CYP2S1, CYP2R1, CYP2U1 and CYP2W1. Like the hepatic enzymes, these P450s may play a role in the tissue-specific metabolism of foreign compounds, but they may also have important endogenous functions. CYP2S1 has been shown to metabolize all-trans retinoic acid and CYP2R1 is a major vitamin D 25-hydroxylase. Regarding their metabolism of xenobiotics, much remains to be established, but CYP2S1 metabolizes naphthalene and it is likely that these P450s are responsible for metabolic activation of several different kinds of xenobiotic chemicals and contribute to extrahepatic toxicity and carcinogenesis.

  4. P450monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium

    PubMed Central

    Syed, Khajamohiddin; Yadav, Jagjit S

    2012-01-01

    Phanerochaete chrysosporium, the model white rot fungus, has been the focus of research for the past about four decades for understanding the mechanisms and processes of biodegradation of the natural aromatic polymer lignin and a broad range of environmental toxic chemicals. The ability to degrade this vast array of xenobiotic compounds was originally attributed to its lignin-degrading enzyme system (LDS), mainly the extracellular peroxidases. However, subsequent physiological, biochemical, and/or genetic studies by us and others identified the involvement of a peroxidase-independent oxidoreductase system, the cytochrome P450 monooxygenase system. The whole genome sequence revealed an extraordinarily large P450 contingent (P450ome) with an estimated 149 P450s in this organism. This review focuses on the current status of understanding on the P450 monooxygenase system of P. chrysosporium in terms of pre-genomic and post-genomic identification, structural and evolutionary analysis, transcriptional regulation, redox partners, and functional characterization for its biodegradative potential. Future research on this catalytically diverse oxidoreductase enzyme system and its major role as a newly emerged player in xenobiotic metabolism/degradation is discussed. PMID:22624627

  5. Activation of amino-alpha-carboline, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and a copper phthalocyanine cellulose extract of cigarette smoke condensate by cytochrome P-450 enzymes in rat and human liver microsomes.

    PubMed

    Shimada, T; Guengerich, F P

    1991-10-01

    The ability of cigarette smoke condensate to induce a genotoxic response has been measured in liver microsomal and reconstituted monooxygenase systems containing rat and human cytochrome P-450 (P-450) enzymes, as determined by umu gene expression in Salmonella typhimurium TA1535/pSK1002. The reactivities of amino-alpha-carboline and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), two compounds known to be present at considerable levels in cigarette smoke condensate, were also determined and compared with regard to genotoxicity. Amino-alpha-carboline and PhIP are activated principally by P-450 1A2 enzymes in human and rat liver microsomes: (a) activation of both compounds was catalyzed efficiently by liver microsomes prepared from rats treated with 5,6-benzoflavone, isosafrole, or the commercial polychlorinated biphenyl mixture Aroclor 1254, and the activities could be considerably inhibited by antibodies raised against P-450 1A1 or 1A2; (b) the rates of activation of these compounds were correlated with the amount of human P-450 1A2 and of phenacetin O-deethylation activity in different human liver microsomal preparations, and these activities were inhibited by anti-P-450 1A2; (c) reconstituted enzyme systems containing P-450 1A enzymes isolated from rats and humans showed the highest rates of activation of amino-alpha-carboline and PhIP. In rat liver microsomes PhIP may also be activated by P-450 3A enzymes; activity was induced in rats treated with pregnenolone 16 alpha-carbonitrile and was inhibited by anti-human P-450 3A4. However, in humans the contribution of P-450 3A enzymes could be excluded as judged by the very low effects of anti-P-450 3A4 on the microsomal activities and poor correlation with P-450 3A4-catalyzed activities in various liver samples. Cigarette smoke condensate strongly inhibited the activation of several potent procarcinogens by human liver microsomes, particularly the reactions catalyzed by P-450 1A2, but was not so inhibitory of

  6. Reactive Intermediates in Cytochrome P450 Catalysis*

    PubMed Central

    Krest, Courtney M.; Onderko, Elizabeth L.; Yosca, Timothy H.; Calixto, Julio C.; Karp, Richard F.; Livada, Jovan; Rittle, Jonathan; Green, Michael T.

    2013-01-01

    Recently, we reported the spectroscopic and kinetic characterizations of cytochrome P450 compound I in CYP119A1, effectively closing the catalytic cycle of cytochrome P450-mediated hydroxylations. In this minireview, we focus on the developments that made this breakthrough possible. We examine the importance of enzyme purification in the quest for reactive intermediates and report the preparation of compound I in a second P450 (P450ST). In an effort to bring clarity to the field, we also examine the validity of controversial reports claiming the production of P450 compound I through the use of peroxynitrite and laser flash photolysis. PMID:23632017

  7. Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity

    SciTech Connect

    Gut, I.; Nedelcheva, V.; Soucek, P.

    1996-12-01

    Cytochrome P450 (CYP) 2E1 was the most efficient CYP enzyme that oxidized benzene to soluble and covalently bound metabolites in rat and human liver microsomes. The covalent binding was due mostly to the formation of benzoquinone (BQ), the oxidation product of hydroquinone (HQ), and was inversely related to the formation of soluble metabolites. In rats, inhalation of benzene K mgAiter of air caused a rapid destruction of CYP281 previously induced by phenobarbital. The ability of benzene metabolites to destroy liver microsomal CYP in vitro decreased in the order BQ > HQ > catechol > phenol. The destruction was reversed by ascorbate and diminished by {alpha}-tocopherol, suggesting that HQ was not toxic, whereas BO and serniquinone radical (SO) caused the effect. In the presence of nicotinamide adenine clinucleoticle phosphate, reduced (NADPH) the microsomes did not oxidize HQ to BQ, while the formation of superoxide anion radical from both HQ and BQ was markedly quenched. Destruction of CYP in vitro caused by HQ or BQ was not mediated by hydroxyl radical formation or by lipid peroxiclation. On the contrary, HQ and BQ inhibited NADPH-mediated lipid peroxidation. Ascorbate induced high levels of hydroxyl radical formation and lipid peroxidation, which were differentially affected by quinones, indicating different mechanisms. Despite reducing the toxicity of HQ and BQ, ascorbate appeared to induce its own toxicity, reflected in high levels of lipid peroxiclation. Iron redox cycling played a significant role in the NADPH-induced hydroxyl radical formation but not in that caused by ascorbate; however, lipid peroxiclation induced by NADPH or ascorbate was suppressed by ethylenediaminetraacetate, indicating a crucial role of iron. Thus, the data indicate that the quinones destroyed CYP directly and not via oxygen activation or lipid peroxiclation. 35 refs., 9 figs., 3 tabs.

  8. Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity.

    PubMed

    Gut, I; Nedelcheva, V; Soucek, P; Stopka, P; Tichavská, B

    1996-12-01

    Cytochrome P450 (CYP) 2E1 was the most efficient CYP enzyme that oxidized benzene to soluble and covalently bound metabolites in rat and human liver microsomes. The covalent binding was due mostly to the formation of benzoquinone (BQ), the oxidation product of hydroquinone (HQ), and was inversely related to the formation of soluble metabolites. In rats, inhalation of benzene (4 mg/liter of air) caused a rapid destruction of CYP2B1 previously induced by phenobarbital. The ability of benzene metabolites to destroy liver microsomal CYP in vitro decreased in the order BQ > HQ > catechol > phenol. The destruction was reversed by ascorbate and diminished by alpha-tocopherol, suggesting that HQ was not toxic, whereas BQ and semiquinone radical (SQ) caused the effect. In the presence of nicotinamide adenine dinucleotide phosphate, reduced (NADPH) the microsomes did not oxidize HQ to BQ, while the formation of superoxide anion radical from both HQ and BQ was markedly quenched. Destruction of CYP in vitro caused by HQ or BQ was not mediated by hydroxyl radical formation or by lipid peroxidation. On the contrary, HQ and BQ inhibited NADPH-mediated lipid peroxidation. Ascorbate induced high levels of hydroxyl radical formation and lipid peroxidation, which were differentially affected by quinones, indicating different mechanisms. Despite reducing the toxicity of HQ and BQ, ascorbate appeared to induce its own toxicity, reflected in high levels of lipid peroxidation. Iron redox cycling played a significant role in the NADPH-induced hydroxyl radical formation but not in that caused by ascorbate; however, lipid peroxidation induced by NADPH or ascorbate was suppressed by ethylenediaminetraacetate, indicating a crucial role of iron. Thus, the data indicate that the quinones destroyed CYP directly and not via oxygen activation or lipid peroxidation.

  9. Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity.

    PubMed Central

    Gut, I; Nedelcheva, V; Soucek, P; Stopka, P; Tichavská, B

    1996-01-01

    Cytochrome P450 (CYP) 2E1 was the most efficient CYP enzyme that oxidized benzene to soluble and covalently bound metabolites in rat and human liver microsomes. The covalent binding was due mostly to the formation of benzoquinone (BQ), the oxidation product of hydroquinone (HQ), and was inversely related to the formation of soluble metabolites. In rats, inhalation of benzene (4 mg/liter of air) caused a rapid destruction of CYP2B1 previously induced by phenobarbital. The ability of benzene metabolites to destroy liver microsomal CYP in vitro decreased in the order BQ > HQ > catechol > phenol. The destruction was reversed by ascorbate and diminished by alpha-tocopherol, suggesting that HQ was not toxic, whereas BQ and semiquinone radical (SQ) caused the effect. In the presence of nicotinamide adenine dinucleotide phosphate, reduced (NADPH) the microsomes did not oxidize HQ to BQ, while the formation of superoxide anion radical from both HQ and BQ was markedly quenched. Destruction of CYP in vitro caused by HQ or BQ was not mediated by hydroxyl radical formation or by lipid peroxidation. On the contrary, HQ and BQ inhibited NADPH-mediated lipid peroxidation. Ascorbate induced high levels of hydroxyl radical formation and lipid peroxidation, which were differentially affected by quinones, indicating different mechanisms. Despite reducing the toxicity of HQ and BQ, ascorbate appeared to induce its own toxicity, reflected in high levels of lipid peroxidation. Iron redox cycling played a significant role in the NADPH-induced hydroxyl radical formation but not in that caused by ascorbate; however, lipid peroxidation induced by NADPH or ascorbate was suppressed by ethylenediaminetraacetate, indicating a crucial role of iron. Thus, the data indicate that the quinones destroyed CYP directly and not via oxygen activation or lipid peroxidation. PMID:9118895

  10. The Anticancer Drug Ellipticine Activated with Cytochrome P450 Mediates DNA Damage Determining Its Pharmacological Efficiencies: Studies with Rats, Hepatic Cytochrome P450 Reductase Null (HRN™) Mice and Pure Enzymes

    PubMed Central

    Stiborová, Marie; Černá, Věra; Moserová, Michaela; Mrízová, Iveta; Arlt, Volker M.; Frei, Eva

    2014-01-01

    Ellipticine is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP). Over the last decade we have gained extensive experience in using pure enzymes and various animal models that helped to identify CYPs metabolizing ellipticine. In this review we focus on comparison between the in vitro and in vivo studies and show a necessity of both approaches to obtain valid information on CYP enzymes contributing to ellipticine metabolism. Discrepancies were found between the CYP enzymes activating ellipticine to 13-hydroxy- and 12-hydroxyellipticine generating covalent DNA adducts and those detoxifying this drug to 9-hydroxy- and 7-hydroellipticine in vitro and in vivo. In vivo, formation of ellipticine-DNA adducts is dependent not only on expression levels of CYP3A, catalyzing ellipticine activation in vitro, but also on those of CYP1A that oxidize ellipticine in vitro mainly to the detoxification products. The finding showing that cytochrome b5 alters the ratio of ellipticine metabolites generated by CYP1A1/2 and 3A4 explained this paradox. Whereas the detoxification of ellipticine by CYP1A and 3A is either decreased or not changed by cytochrome b5, activation leading to ellipticine-DNA adducts increased considerably. We show that (I) the pharmacological effects of ellipticine mediated by covalent ellipticine-derived DNA adducts are dictated by expression levels of CYP1A, 3A and cytochrome b5, and its own potency to induce these enzymes in tumor tissues, (II) animal models, where levels of CYPs are either knocked out or induced are appropriate to identify CYPs metabolizing ellipticine in vivo, and (III) extrapolation from in vitro data to the situation in vivo is not always possible, confirming the need for these animal models. PMID:25547492

  11. High-throughput functional screening of steroid substrates with wild-type and chimeric P450 enzymes.

    PubMed

    Urban, Philippe; Truan, Gilles; Pompon, Denis

    2014-01-01

    The promiscuity of a collection of enzymes consisting of 31 wild-type and synthetic variants of CYP1A enzymes was evaluated using a series of 14 steroids and 2 steroid-like chemicals, namely, nootkatone, a terpenoid, and mifepristone, a drug. For each enzyme-substrate couple, the initial steady-state velocity of metabolite formation was determined at a substrate saturating concentration. For that, a high-throughput approach was designed involving automatized incubations in 96-well microplate with sixteen 6-point kinetics per microplate and data acquisition using LC/MS system accepting 96-well microplate for injections. The resulting dataset was used for multivariate statistics aimed at sorting out the correlations existing between tested enzyme variants and ability to metabolize steroid substrates. Functional classifications of both CYP1A enzyme variants and steroid substrate structures were obtained allowing the delineation of global structural features for both substrate recognition and regioselectivity of oxidation. PMID:25243177

  12. High-Throughput Functional Screening of Steroid Substrates with Wild-Type and Chimeric P450 Enzymes

    PubMed Central

    Truan, Gilles; Pompon, Denis

    2014-01-01

    The promiscuity of a collection of enzymes consisting of 31 wild-type and synthetic variants of CYP1A enzymes was evaluated using a series of 14 steroids and 2 steroid-like chemicals, namely, nootkatone, a terpenoid, and mifepristone, a drug. For each enzyme-substrate couple, the initial steady-state velocity of metabolite formation was determined at a substrate saturating concentration. For that, a high-throughput approach was designed involving automatized incubations in 96-well microplate with sixteen 6-point kinetics per microplate and data acquisition using LC/MS system accepting 96-well microplate for injections. The resulting dataset was used for multivariate statistics aimed at sorting out the correlations existing between tested enzyme variants and ability to metabolize steroid substrates. Functional classifications of both CYP1A enzyme variants and steroid substrate structures were obtained allowing the delineation of global structural features for both substrate recognition and regioselectivity of oxidation. PMID:25243177

  13. Biphenyl 4-Hydroxylases Involved in Aucuparin Biosynthesis in Rowan and Apple Are Cytochrome P450 736A Proteins1[OPEN

    PubMed Central

    Kaufholdt, David; Broggini, Giovanni A.L.; Flachowsky, Henryk; Hänsch, Robert

    2015-01-01

    Upon pathogen attack, fruit trees such as apple (Malus spp.) and pear (Pyrus spp.) accumulate biphenyl and dibenzofuran phytoalexins, with aucuparin as a major biphenyl compound. 4-Hydroxylation of the biphenyl scaffold, formed by biphenyl synthase (BIS), is catalyzed by a cytochrome P450 (CYP). The biphenyl 4-hydroxylase (B4H) coding sequence of rowan (Sorbus aucuparia) was isolated and functionally expressed in yeast (Saccharomyces cerevisiae). SaB4H was named CYP736A107. No catalytic function of CYP736 was known previously. SaB4H exhibited absolute specificity for 3-hydroxy-5-methoxybiphenyl. In rowan cell cultures treated with elicitor from the scab fungus, transient increases in the SaB4H, SaBIS, and phenylalanine ammonia lyase transcript levels preceded phytoalexin accumulation. Transient expression of a carboxyl-terminal reporter gene construct directed SaB4H to the endoplasmic reticulum. A construct lacking the amino-terminal leader and transmembrane domain caused cytoplasmic localization. Functional B4H coding sequences were also isolated from two apple (Malus × domestica) cultivars. The MdB4Hs were named CYP736A163. When stems of cv Golden Delicious were infected with the fire blight bacterium, highest MdB4H transcript levels were observed in the transition zone. In a phylogenetic tree, the three B4Hs were closest to coniferaldehyde 5-hydroxylases involved in lignin biosynthesis, suggesting a common ancestor. Coniferaldehyde and related compounds were not converted by SaB4H. PMID:25862456

  14. Biphenyl 4-Hydroxylases Involved in Aucuparin Biosynthesis in Rowan and Apple Are Cytochrome P450 736A Proteins.

    PubMed

    Sircar, Debabrata; Gaid, Mariam M; Chizzali, Cornelia; Reckwell, Dennis; Kaufholdt, David; Beuerle, Till; Broggini, Giovanni A L; Flachowsky, Henryk; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2015-06-01

    Upon pathogen attack, fruit trees such as apple (Malus spp.) and pear (Pyrus spp.) accumulate biphenyl and dibenzofuran phytoalexins, with aucuparin as a major biphenyl compound. 4-Hydroxylation of the biphenyl scaffold, formed by biphenyl synthase (BIS), is catalyzed by a cytochrome P450 (CYP). The biphenyl 4-hydroxylase (B4H) coding sequence of rowan (Sorbus aucuparia) was isolated and functionally expressed in yeast (Saccharomyces cerevisiae). SaB4H was named CYP736A107. No catalytic function of CYP736 was known previously. SaB4H exhibited absolute specificity for 3-hydroxy-5-methoxybiphenyl. In rowan cell cultures treated with elicitor from the scab fungus, transient increases in the SaB4H, SaBIS, and phenylalanine ammonia lyase transcript levels preceded phytoalexin accumulation. Transient expression of a carboxyl-terminal reporter gene construct directed SaB4H to the endoplasmic reticulum. A construct lacking the amino-terminal leader and transmembrane domain caused cytoplasmic localization. Functional B4H coding sequences were also isolated from two apple (Malus × domestica) cultivars. The MdB4Hs were named CYP736A163. When stems of cv Golden Delicious were infected with the fire blight bacterium, highest MdB4H transcript levels were observed in the transition zone. In a phylogenetic tree, the three B4Hs were closest to coniferaldehyde 5-hydroxylases involved in lignin biosynthesis, suggesting a common ancestor. Coniferaldehyde and related compounds were not converted by SaB4H.

  15. Metabolism of methoxychlor by the P450-monooxygenase CYP6G1 involved in insecticide resistance of Drosophila melanogaster after expression in cell cultures of Nicotiana tabacum.

    PubMed

    Joussen, Nicole; Schuphan, Ingolf; Schmidt, Burkhard

    2010-03-01

    Cytochrome P450 monooxygenase CYP6G1 of Drosophila melanogaster was heterologously expressed in a cell suspension culture of Nicotiana tabacum. This in vitro system was used to study the capability of CYP6G1 to metabolize the insecticide methoxychlor (=1,1,1-trichloro-2,2-bis(4-methoxyphenyl)ethane, 1) against the background of endogenous enzymes of the corresponding non-transgenic culture. The Cyp6g1-transgenic cell culture metabolized 96% of applied methoxychlor (45.8 microg per assay) within 24 h by demethylation and hydroxylation mainly to trishydroxy and catechol methoxychlor (16 and 17%, resp.). About 34% of the metabolism and the distinct formation of trishydroxy and catechol methoxychlor were due to foreign enzyme CYP6G1. Furthermore, methoxychlor metabolism was inhibited by 43% after simultaneous addition of piperonyl butoxide (458 microg), whereas inhibition in the non-transgenic culture amounted to 92%. Additionally, the rate of glycosylation was reduced in both cultures. These results were supported by the inhibition of the metabolism of the insecticide imidacloprid (6; 20 microg, 24 h) in the Cyp6g1-transgenic culture by 82% in the presence of piperonyl butoxide (200 microg). Due to CYP6G1 being responsible for imidacloprid resistance of Drosophila or being involved in DDT resistance, it is likely that CYP6G1 conveys resistance to methoxychlor (1). Furthermore, treating Drosophila with piperonyl butoxide could weaken the observed resistance phenomena.

  16. Retinoic acid-metabolizing enzyme cytochrome P450 26a1 (cyp26a1) is essential for implantation: functional study of its role in early pregnancy.

    PubMed

    Han, Bing-Chen; Xia, Hong-Fei; Sun, Jing; Yang, Ying; Peng, Jing-Pian

    2010-05-01

    Vitamin A (VA) is required for normal fetal development and successful pregnancy. Excessive VA intake during pregnancy may lead to adverse maternal and fetal effects. Cytochrome P450 26A1 (cyp26a1), a retinoic acid (RA)-metabolizing enzyme, is involved in VA metabolism. It has been shown that cyp26a1 is expressed in female reproductive tract, especially in uterus. In order to investigate the role of cyp26a1 during pregnancy, we constructed a recombinant plasmid DNA vaccine encoding cyp26a1 protein and immunized mice with the plasmid. Compared to control groups, the pregnancy rate of the cyp26a1 plasmid-immunized mice were significantly decreased (P < 0.01). Further results showed that both cyp26a1 mRNA and protein were specifically induced in the uterus during implantation period and localized in the uterine luminal epithelium. Importantly, the number of implantation sites was also significantly reduced (P < 0.05) after the uterine injection of cyp26a1-specific antisense oligos or anti-cyp26a1 antibody on day 3 of pregnancy. Accordingly, the expression of RA-related cellular retinoic acid binding protein 1 and tissue transglutaminase was markedly increased (P < 0.05) in the uterine luminal epithelium after intrauterine injection treatments. These data demonstrate that uterine cyp26a1 activity is important for the maintenance of pregnancy, especially during the process of blastocyst implantation.

  17. Effects of the aqueous extract from Salvia miltiorrhiza Bge on the pharmacokinetics of diazepam and on liver microsomal cytochrome P450 enzyme activity in rats.

    PubMed

    Jinping, Qiao; Peiling, Hou; Yawei, Li; Abliz, Zeper

    2003-08-01

    The aim of this study was to determine the effects of the aqueous extract of Salvia miltiorrhiza Bge (danshen in Chinese) on the pharmacokinetics of diazepam and on liver microsomal cytochrome P450 enzyme activity in rats. Rats (n = 5) were pretreated with danshen extract (100 mg kg(-1) per day, p.o.) for 15 consecutive days. Control rats (n = 5) received saline at the same time. Each rat was then administered a single oral dose of 15 mg kg(-1) diazepam. The pharmacokinetic parameters of diazepam were significantly different between the two groups. In the danshen pretreated group, the maximum concentration of diazepam and the area under the plasma concentration-time curve were reduced to about 72.7% and 44.4%, respectively, while the total body clearance was markedly increased by 2-fold. To help explain the results, liver microsomal suspensions were obtained from rats that were randomly divided into the control group (n = 10), and the low- (20 mg kg(-1) for 15 days, p.o., n = 10) and high-dose groups (100 mg kg(-1) for 15 days, p.o., n = 10) pretreated with danshen extract. Compared with the control rats, the microsomal protein content, cytochrome P450 enzyme level and erythromycin N-demethylase activity of pretreated rats were significantly increased. These results indicate that danshen extract can stimulate the activity of cytochrome P450 isoforms, and changes in the pharmacokinetics of diazepam resulting from danshen extract are related to an increase in metabolic activity of cytochrome P450. PMID:12956908

  18. Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway.

    PubMed Central

    Teutsch, H G; Hasenfratz, M P; Lesot, A; Stoltz, C; Garnier, J M; Jeltsch, J M; Durst, F; Werck-Reichhart, D

    1993-01-01

    Cinnamate 4-hydroxylase [CA4H; trans-cinnamate,NADPH:oxygen oxidoreductase (4-hydroxylating), EC 1.14.13.11] is a cytochrome P450 that catalyzes the first oxygenation step of the general phenylpropanoid metabolism in higher plants. The compounds formed are essential for lignification and defense against predators and pathogens. We recently reported the purification of this enzyme from Mn(2+)-induced Jerusalem artichoke (Helianthus tuberosus L.) tuber tissues. Highly selective polyclonal antibodies raised against the purified protein were used to screen a lambda gt11 cDNA expression library from wound-induced Jerusalem artichoke, allowing isolation of a 1130-base-pair insert. Typical P450 domains were identified in this incomplete sequence, which was used as a probe for the isolation of a 1.7-kilobase clone in a lambda gt10 library. A full-length open reading frame of 1515 base pairs, encoding a P450 protein of 505 residues (M(r) = 57,927), was sequenced. The N terminus, essentially composed of hydrophobic residues, matches perfectly the microsequenced N terminus of the purified protein. The calculated pI is 9.78, in agreement with the chromatographic behavior and two-dimensional electrophoretic analysis of CA4H. Synthesis of the corresponding mRNA is induced in wounded plant tissues, in correlation with CA4H enzymatic activity. This P450 protein exhibits the most similarity (28% amino acid identity) with avocado CYP71, but also good similarity with CYP17 and CYP21, or with CYP1 and CYP2 families. According to current criteria, it qualifies as a member of a new P450 family. Images Fig. 4 PMID:8097885

  19. Effect of mild-to-moderate smoking on viral load, cytokines, oxidative stress, and cytochrome P450 enzymes in HIV-infected individuals.

    PubMed

    Ande, Anusha; McArthur, Carole; Ayuk, Leo; Awasom, Charles; Achu, Paul Ngang; Njinda, Annette; Sinha, Namita; Rao, P S S; Agudelo, Marisela; Nookala, Anantha Ram; Simon, Stephen; Kumar, Anil; Kumar, Santosh

    2015-01-01

    Mild-to-moderate tobacco smoking is highly prevalent in HIV-infected individuals, and is known to exacerbate HIV pathogenesis. The objective of this study was to determine the specific effects of mild-to-moderate smoking on viral load, cytokine production, and oxidative stress and cytochrome P450 (CYP) pathways in HIV-infected individuals who have not yet received antiretroviral therapy (ART). Thirty-two human subjects were recruited and assigned to four different cohorts as follows: a) HIV negative non-smokers, b) HIV positive non-smokers, c) HIV negative mild-to-moderate smokers, and d) HIV positive mild-to-moderate smokers. Patients were recruited in Cameroon, Africa using strict selection criteria to exclude patients not yet eligible for ART and not receiving conventional or traditional medications. Those with active tuberculosis, hepatitis B or with a history of substance abuse were also excluded. Our results showed an increase in the viral load in the plasma of HIV positive patients who were mild-to-moderate smokers compared to individuals who did not smoke. Furthermore, although we did not observe significant changes in the levels of most pro-inflammatory cytokines, the cytokine IL-8 and MCP-1 showed a significant decrease in the plasma of HIV-infected patients and smokers compared with HIV negative non-smokers. Importantly, HIV-infected individuals and smokers showed a significant increase in oxidative stress compared with HIV negative non-smoker subjects in both plasma and monocytes. To examine the possible pathways involved in increased oxidative stress and viral load, we determined the mRNA levels of several antioxidant and cytochrome P450 enzymes in monocytes. The results showed that the levels of most antioxidants are unaltered, suggesting their inability to counter oxidative stress. While CYP2A6 was induced in smokers, CYP3A4 was induced in HIV and HIV positive smokers compared with HIV negative non-smokers. Overall, the findings suggest a possible

  20. Functional characterization of NADPH-cytochrome P450 reductase from Bactrocera dorsalis: Possible involvement in susceptibility to malathion

    PubMed Central

    Huang, Yong; Lu, Xue-Ping; Wang, Luo-Luo; Wei, Dong; Feng, Zi-Jiao; Zhang, Qi; Xiao, Lin-Fan; Dou, Wei; Wang, Jin-Jun

    2015-01-01

    NADPH cytochrome P450 reductase (CPR) is essential for cytochrome P450 catalysis, which is important in the detoxification and activation of xenobiotics. In this study, two transcripts of Bactrocera dorsalis CPR (BdCPR) were cloned, and the deduced amino-acid sequence had an N-terminus membrane anchor for BdCPR-X1 and three conserved binding domains (FMN, FAD, and NADP), as well as an FAD binding motif and catalytic residues for both BdCPR-X1 and BdCPR-X2. BdCPR-X1 was detected to have the high expression levels in adults and in Malpighian tubules, fat bodies, and midguts of adults, but BdCPR-X2 expressed lowly in B. dorsalis. The levels of BdCPRs were similar in malathion-resistant strain compared to susceptible strain. However, injecting adults with double-stranded RNA against BdCPR significantly reduced the transcript levels of the mRNA, and knockdown of BdCPR increased adult susceptibility to malathion. Expressing complete BdCPR-X1 cDNA in Sf9 cells resulted in high activity determined by cytochrome c reduction and these cells had higher viability after exposure to malathion than control. The results suggest that BdCPR could affect the susceptibility of B. dorsalis to malathion and eukaryotic expression of BdCPR would lay a solid foundation for further investigation of P450 in B. dorsalis. PMID:26681597

  1. Amino-steroids as inhibitors and probes of the active site of cytochrome P-450scc. Effects on the enzyme from different sources.

    PubMed

    Kellis, J T; Sheets, J J; Vickery, L E

    1984-02-01

    A series of analogues of cholesterol, each having a primary amine attached to a shortened side chain, were tested for their effects on cytochrome P-450scc from several different sources. Reconstituted enzyme systems using disrupted mitochondria from bovine adrenal and placenta, adult human adrenal and placenta, neonatal human adrenal, and rat adrenal and testis were used to assay for inhibitory effects on the side chain cleavage of cholesterol to pregnenolone. Two of the derivatives tested, 22-amino-23,24-bisnor-5-cholen-3 beta-ol and 23-amino-24-nor-5-cholen-3 beta-ol, were found to be potent inhibitors of this reaction; the derivatives in which the amine was attached closer to or further from the steroid ring, (20 R and S)-20-amino-5-pregnen-3 beta-ol and 24-amino-5-cholen-3 beta-ol, were much weaker inhibitors. In addition, spectral studies with rat adrenal mitochondria and a soluble preparation of human placental cytochrome P-450scc showed that binding of the 22-amine derivative to the enzyme produces difference spectra characteristic of nitrogen bonding to the heme; this indicates that the heme is positioned close to C-22 in the steroid-enzyme complex. These findings on the relative effectiveness of the amino-steroid inhibitors and the type of complex formed are similar to results obtained with purified bovine adrenocortical cytochrome P-450scc. This establishes that the proximity of the substrate binding site and the heme-iron catalytic site is a feature common to the enzyme from several sources and is therefore likely to be a necessary property of the active site structure.

  2. A series of hybrid P450 BM3 enzymes with different catalytic activity in the light-initiated hydroxylation of lauric acid

    PubMed Central

    Tran, Ngoc-Han; Huynh, Ngoc; Chavez, Garrett; Nguyen, Angelina; Dwaraknath, Sudharsan; Nguyen, Thien-Anh; Nguyen, Maxine; Cheruzel, Lionel

    2012-01-01

    We have developed a series of hybrid P450 BM3 enzymes to perform the light-activated hydroxylation of lauric acid. These enzymes contain a Ru(II)-diimine photosensitizer covalently attached to single cysteine residues of mutant P450 BM3 heme domains. The library of hybrid enzymes includes four non-native single cysteine mutants (K97C, Q397C, Q109C and L407C). In addition, mutations around the heme active site, F87A and I401P, were inserted in the Q397C mutant. Two heteroleptic Ru(II) complexes, Ru(bpy)2phenA (1) and Ru(phen)2phenA (2) (bpy=bipyridine, phen=1,10-phenanthroline, and phenA=5-acetamido-1,10-phenanthroline), are used as photosensitizers. Upon visible light irradiation, the hybrid enzymes display various total turnover numbers in the hydroxylation of lauric acid, up to 140 for the L407C-1 mutant, a 16-fold increase compared to the F87A/Q397C-1 mutant. CO binding studies confirm the ability of the photogenerated Ru(I) compound to reduce the fraction of ferric high spin species present in the mutants upon substrate binding. PMID:22922311

  3. The P450 enzyme Shade mediates the hydroxylation of ecdysone to 20-hydroxyecdysone in the Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Kong, Y; Liu, X-P; Wan, P-J; Shi, X-Q; Guo, W-C; Li, G-Q

    2014-10-01

    Ecdysone 20-monooxygenase (E20MO), a cytochrome P450 monooxygenase (CYP314A1), catalyses the conversion of ecdysone (E) to 20-hydroxyecdysone (20E). We report here the cloning and characterization of the Halloween gene Shade (Shd) encoding E20MO in the Colorado potato beetle, Leptinotarsa decemlineata. LdSHD has five conserved motifs typical of insect P450s, ie the Helix-C, Helix-I, Helix-K, PxxFxPE/DRF (PERF) and heme-binding motifs. LdShd was expressed in developing eggs, the first to fourth instars, wandering larvae, pupae and adults, with statistically significant fluctuations. Its mRNA was ubiquitously distributed in the head, thorax and abdomen. The recombinant LdSHD protein expressed in Spodoptera frugiperda 9 (Sf9) cells catalysed the conversion of E to 20E. Dietary introduction of double-stranded RNA (dsRNA) of LdShd into the second instar larvae successfully knocked down the LdShd expression level, decreased the mRNA level of the ecdysone receptor (LdEcR) gene, caused larval lethality, delayed development and affected pupation. Moreover, ingestion of LdShd-dsRNA by the fourth instars also down-regulated LdShd and LdEcR expression, reduced the 20E titre, and negatively influenced pupation. Introduction of 20E and a nonsteroidal ecdysteroid agonist halofenozide into the LdShd-dsRNA-ingested second instars, and of halofenozide into the LdShd-dsRNA-ingested fourth instars almost completely relieved the negative effects on larval performance. Thus, LdSHD functions to regulate metamorphotic processes by converting E to 20E in a coleopteran insect species Le. decemlineata. PMID:24989229

  4. The P450 enzyme Shade mediates the hydroxylation of ecdysone to 20-hydroxyecdysone in the Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Kong, Y; Liu, X-P; Wan, P-J; Shi, X-Q; Guo, W-C; Li, G-Q

    2014-10-01

    Ecdysone 20-monooxygenase (E20MO), a cytochrome P450 monooxygenase (CYP314A1), catalyses the conversion of ecdysone (E) to 20-hydroxyecdysone (20E). We report here the cloning and characterization of the Halloween gene Shade (Shd) encoding E20MO in the Colorado potato beetle, Leptinotarsa decemlineata. LdSHD has five conserved motifs typical of insect P450s, ie the Helix-C, Helix-I, Helix-K, PxxFxPE/DRF (PERF) and heme-binding motifs. LdShd was expressed in developing eggs, the first to fourth instars, wandering larvae, pupae and adults, with statistically significant fluctuations. Its mRNA was ubiquitously distributed in the head, thorax and abdomen. The recombinant LdSHD protein expressed in Spodoptera frugiperda 9 (Sf9) cells catalysed the conversion of E to 20E. Dietary introduction of double-stranded RNA (dsRNA) of LdShd into the second instar larvae successfully knocked down the LdShd expression level, decreased the mRNA level of the ecdysone receptor (LdEcR) gene, caused larval lethality, delayed development and affected pupation. Moreover, ingestion of LdShd-dsRNA by the fourth instars also down-regulated LdShd and LdEcR expression, reduced the 20E titre, and negatively influenced pupation. Introduction of 20E and a nonsteroidal ecdysteroid agonist halofenozide into the LdShd-dsRNA-ingested second instars, and of halofenozide into the LdShd-dsRNA-ingested fourth instars almost completely relieved the negative effects on larval performance. Thus, LdSHD functions to regulate metamorphotic processes by converting E to 20E in a coleopteran insect species Le. decemlineata.

  5. Alcohol metabolism's damaging effects on the cell: a focus on reactive oxygen generation by the enzyme cytochrome P450 2E1.

    PubMed

    Koop, Dennis R

    2006-01-01

    Alcohol metabolism's various processes create harmful compounds that contribute to cell and tissue damage. In particular, the enzyme cytochrome P450 2E1 (CYP2E1) plays a role in creating a harmful condition known as oxidative stress. This condition is related to oxygen's ability to accept electrons and the subsequent highly reactive and harmful byproducts created by these chemical reactions. CYP2E1's use of oxygen in alcohol metabolism generates reactive oxygen species, ultimately leading to oxidative stress and tissue damage.

  6. Induction by alkaloids and phenobarbital of Family 4 Cytochrome P450s in Drosophila: evidence for involvement in host plant utilization.

    PubMed

    Danielson, P B; Foster, J L; McMahill, M M; Smith, M K; Fogleman, J C

    1998-07-01

    In vertebrates, cytochrome P450s of the CYP2 and CYP3 families play a dominant role in drug metabolism, while in insects members of the CYP6 and CYP28 families have been implicated in metabolism of insecticides and toxic natural plant compounds. A degenerate 3' RACE strategy resulted in the identification of fifteen novel P450s from an alkaloid-resistant species of Drosophila. The strong (17.4-fold) and highly specific induction of a single gene (CYP4D10) by the toxic isoquinoline alkaloids of a commonly utilized host-plant (saguaro cactus) provides the first indication that members of the CYP4 family in insects may play an important role in the maintenance of specific insect-host plant relationships. Strong barbiturate inducibility of CYP4D10 and two other D. mettleri P450 sequences of the CYP4 family was also observed, suggesting a pattern of xenobiotic responsiveness more similar to those of several vertebrate drug-metabolizing enzymes than to putative vertebrate CYP4 homologs. PMID:9738880

  7. Effects of methoxychlor and 2,2-bis ( p -hydroxyphenyl)-1,1,1-trichloroethane on cytochrome P450 enzyme activities in human and rat livers.

    PubMed

    Chen, Bingbing; Pan, Peipei; Wang, Li; Chen, Menchun; Dong, Yaoyao; Ge, Ren-Shan; Hu, Guo-Xin

    2015-01-01

    Cytochrome P450 (CYP) enzymes are involved in the metabolism of endogenous and exogenous compounds. Human and rat liver microsomes were used to investigate the inhibitory effects of methoxychlor (MXC) and its metabolite 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE) on the activities of corresponding human and rat CYPs. Probe drugs were used to test the inhibitory effects of MXC and HPTE on human and rat CYPs. The results showed that MXC and HPTE inhibited both human CYP2C9 and rat liver CYP2C11 activity, with half-maximal inhibitory concentration (IC50) values of 15.47 ± 0.36 (MXC) and 8.87 ± 0.53 μmol/l (HPTE) for human CYP2C9, and of 22.45 ± 1.48 (MXC) and 24.63 ± 1.35 μmol/l (HPTE) for rat CYP2C11. MXC and HPTE had no effects on human CYP2C19 activity but inhibited rat CYP2C6 activity with IC50 values of 14.84 ± 0.04 (MXC) and 8.72 ± 0.25 μmol/l (HPTE). With regard to human CYP2D6 and rat CYP2D2 activity, only HPTE potently inhibited human CYP2D6 activity, with an IC50 value of 16.56 ± 0.69 μmol/l. Both chemicals had no effect on human CYP3A4 and rat CYP3A1 activity. In summary, MXC and HPTE are potent inhibitors of some human and rat CYPs.

  8. Metabolic interactions of magnolol with cytochrome P450 enzymes: uncompetitive inhibition of CYP1A and competitive inhibition of CYP2C.

    PubMed

    Kim, Sang-Bum; Kang, Hee Eun; Cho, Hyun-Jong; Kim, Yeong Shik; Chung, Suk-Jae; Yoon, In-Soo; Kim, Dae-Duk

    2016-01-01

    Magnolol (MAG; 5,5'-diallyl-2,2'-biphenyldiol) is a major bioactive component of Magnolia officinalis. We investigated the metabolic interactions of MAG with hepatic cytochrome P450 monooxygenase (CYP) through in vitro microsomal metabolism study using human (HLM) and rat liver microsomes (RLM). CYP2C and 3A subfamilies were significantly involved in the metabolism of MAG, while CYP1A subfamily was not in HLM and RLM. The relative contribution of phase I enzymes including CYP to the metabolism of MAG was comparable to that of uridine diphosphate glucuronosyltransferase (UGT) in RLM. Moreover, MAG potently inhibited the metabolic activity of CYP1A (IC50 of 1.62 μM) and 2C (IC50 of 5.56 μM), while weakly CYP3A (IC50 of 35.0 μM) in HLM and RLM. By the construction of Dixon plot, the inhibition type of MAG on CYP activity in RLM was determined as follows: uncompetitive inhibitor for CYP1A (Ki of 1.09-12.0 μM); competitive inhibitor for CYP2C (Ki of 10.0-15.2 μM) and 3A (Ki of 93.7-183 μM). Based on the comparison of the current IC50 and Ki values with a previously reported liver concentration (about 13 μM) of MAG after its seven times oral administration at a dose of 50 mg/kg in rats, it is suggested that MAG could show significant inhibition of CYP1A and 2C, but not CYP3A, in the in vivo rat system. These results could lead to further studies in clinically significant metabolism-mediated MAG-drug interactions. PMID:26133083

  9. Comparison of the in vitro metabolism of psoralidin among different species and characterization of its inhibitory effect against UDP- glucuronosyltransferase (UGT) or cytochrome p450 (CYP450) enzymes.

    PubMed

    Shi, Xianbao; Zhang, Gang; Mackie, Brianna; Yang, Shuman; Wang, Jian; Shan, Lina

    2016-09-01

    Psoralidin has shown a variety of biological and pharmacological activities such as anti-tumor anti-oxidant, anti-bacterial, anti-depressant and anti-inflammatory activities. Herein, we reported the metabolism of psoralidin among different species and its inhibitory effect against UGTs and CYP450s. Liquid chromatography was used to investigate the inhibitory activity of psoralidin against ten different UGTs and eight distinct CYP450 isoforms. In addition, we characterized the CYP450 isoforms involved in the psoralidin metabolism on the basis of chemical inhibition studies and screening assays with recombinant human cytochrome P450s. In vitro metabolic profiles and metabolites of psoralidin from varying liver microsomes obtained from human (HLMs), monkey (MLMs), rat (RLMs), dog (DLMs), minipig (PLMs) and rabbit (RAMs) were determined by LC-MS/MS. In vivo pharmacokinetic profiles were investigated by injecting psoralidin (2mg/kg) into the tail vein of Wistar rats. Molecular modeling studies were carried out in order to assess the binding profile and recognition motif between psoralidin and the enzymes. Psoralidin showed potent and noncompetitive inhibition against UGT1A1, UGT1A7, CYP1A2 and CYP2C8 with IC50 values of 6.12, 0.38, 1.81, 0.28μM, respectively. The metabolism of psoraldin exhibited significant differences among humans, monkeys, dogs, minipigs, rabbits and rats; however, monkeys showed the highest similarity to humans. Furthermore, eleven metabolites were observed among these species and their structures were characterized by LC-MS/MS. CYP2C19 played a key role in the metabolism of psorslidin in human liver microsomes. These findings could be used to advance the understanding of psoralidin. PMID:27428458

  10. Metabolic interactions of magnolol with cytochrome P450 enzymes: uncompetitive inhibition of CYP1A and competitive inhibition of CYP2C.

    PubMed

    Kim, Sang-Bum; Kang, Hee Eun; Cho, Hyun-Jong; Kim, Yeong Shik; Chung, Suk-Jae; Yoon, In-Soo; Kim, Dae-Duk

    2016-01-01

    Magnolol (MAG; 5,5'-diallyl-2,2'-biphenyldiol) is a major bioactive component of Magnolia officinalis. We investigated the metabolic interactions of MAG with hepatic cytochrome P450 monooxygenase (CYP) through in vitro microsomal metabolism study using human (HLM) and rat liver microsomes (RLM). CYP2C and 3A subfamilies were significantly involved in the metabolism of MAG, while CYP1A subfamily was not in HLM and RLM. The relative contribution of phase I enzymes including CYP to the metabolism of MAG was comparable to that of uridine diphosphate glucuronosyltransferase (UGT) in RLM. Moreover, MAG potently inhibited the metabolic activity of CYP1A (IC50 of 1.62 μM) and 2C (IC50 of 5.56 μM), while weakly CYP3A (IC50 of 35.0 μM) in HLM and RLM. By the construction of Dixon plot, the inhibition type of MAG on CYP activity in RLM was determined as follows: uncompetitive inhibitor for CYP1A (Ki of 1.09-12.0 μM); competitive inhibitor for CYP2C (Ki of 10.0-15.2 μM) and 3A (Ki of 93.7-183 μM). Based on the comparison of the current IC50 and Ki values with a previously reported liver concentration (about 13 μM) of MAG after its seven times oral administration at a dose of 50 mg/kg in rats, it is suggested that MAG could show significant inhibition of CYP1A and 2C, but not CYP3A, in the in vivo rat system. These results could lead to further studies in clinically significant metabolism-mediated MAG-drug interactions.

  11. Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone.

    PubMed

    Petryk, Anna; Warren, James T; Marqués, Guillermo; Jarcho, Michael P; Gilbert, Lawrence I; Kahler, Jonathan; Parvy, Jean-Philippe; Li, Yutai; Dauphin-Villemant, Chantal; O'Connor, Michael B

    2003-11-25

    The steroid 20-hydroxyecdysone (20E) is the primary regulatory hormone that mediates developmental transitions in insects and other arthropods. 20E is produced from ecdysone (E) by the action of a P450 monooxygenase that hydroxylates E at carbon 20. The gene coding for this key enzyme of ecdysteroidogenesis has not been identified definitively in any insect. We show here that the Drosophila E-20-monooxygenase (E20MO) is the product of the shade (shd) locus (cytochrome p450, CYP314a1). When shd is transfected into Drosophila S2 cells, extensive conversion of E to 20E is observed, whereas in sorted homozygous shd embryos, no E20MO activity is apparent either in vivo or in vitro. Mutations in shd lead to severe disruptions in late embryonic morphogenesis and exhibit phenotypes identical to those seen in disembodied (dib) and shadow (sad) mutants, two other genes of the Halloween class that code for P450 enzymes that catalyze the final two steps in the synthesis of E from 2,22-dideoxyecdysone. Unlike dib and sad, shd is not expressed in the ring gland but is expressed in peripheral tissues such as the epidermis, midgut, Malpighian tubules, and fat body, i.e., tissues known to be major sites of E20MO activity in a variety of insects. However, the tissue in which shd is expressed does not appear to be important for developmental function because misexpression of shd in the embryonic mesoderm instead of the epidermis, the normal embryonic tissue in which shd is expressed, rescues embryonic lethality. PMID:14610274

  12. CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid biosynthesis in the prothoracic glands of Bombyx and Drosophila.

    PubMed

    Niwa, Ryusuke; Matsuda, Takahiro; Yoshiyama, Takuji; Namiki, Toshiki; Mita, Kazuei; Fujimoto, Yoshinori; Kataoka, Hiroshi

    2004-08-20

    Ecdysteroids mediate a wide variety of developmental and physiological events in insects. In the postembryonic development of insects, ecdysone is synthesized in the prothoracic gland (PG). Although many studies have revealed the biochemical and physiological properties of the enzymes for ecdysteroid biosynthesis, most of the molecular identities of these enzymes have not been elucidated. Here we describe an uncharacterized cytochrome P450 gene, designated Cyp306a1, that is essential for ecdysteroid biosynthesis in the PGs of the silkworm Bombyx mori and fruit fly Drosophila melanogaster. Using the microarray technique for analyzing gene expression profiles in PG cells during Bombyx development, we identified two PG-specific P450 genes whose temporal expression patterns are correlated with changes in ecdysteroid titer during development. Amino acid sequence analysis showed that one of the Bombyx P450 genes belongs to the CYP306A1 subfamily. The temporal and spatial expression pattern of the Drosophila Cyp306a1 homolog is essentially the same as that of Bombyx Cyp306a1. We also found that Drosophila Cyp306a1 is disrupted in the phantom (phm) mutant, known also as the Halloween mutant. The morphological defects and decreased expression of ecdysone-inducible genes in phm suggest that this mutant cannot produce a high titer of ecdysone. Finally we demonstrate that S2 cells transfected with Cyp306a1 convert ketodiol to ketotriol via carbon 25 hydroxylation. These results strongly suggest that CYP306A1 functions as a carbon 25 hydroxylase and has an essential role in ecdysteroid biosynthesis during insect development. PMID:15197185

  13. Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone.

    PubMed

    Petryk, Anna; Warren, James T; Marqués, Guillermo; Jarcho, Michael P; Gilbert, Lawrence I; Kahler, Jonathan; Parvy, Jean-Philippe; Li, Yutai; Dauphin-Villemant, Chantal; O'Connor, Michael B

    2003-11-25

    The steroid 20-hydroxyecdysone (20E) is the primary regulatory hormone that mediates developmental transitions in insects and other arthropods. 20E is produced from ecdysone (E) by the action of a P450 monooxygenase that hydroxylates E at carbon 20. The gene coding for this key enzyme of ecdysteroidogenesis has not been identified definitively in any insect. We show here that the Drosophila E-20-monooxygenase (E20MO) is the product of the shade (shd) locus (cytochrome p450, CYP314a1). When shd is transfected into Drosophila S2 cells, extensive conversion of E to 20E is observed, whereas in sorted homozygous shd embryos, no E20MO activity is apparent either in vivo or in vitro. Mutations in shd lead to severe disruptions in late embryonic morphogenesis and exhibit phenotypes identical to those seen in disembodied (dib) and shadow (sad) mutants, two other genes of the Halloween class that code for P450 enzymes that catalyze the final two steps in the synthesis of E from 2,22-dideoxyecdysone. Unlike dib and sad, shd is not expressed in the ring gland but is expressed in peripheral tissues such as the epidermis, midgut, Malpighian tubules, and fat body, i.e., tissues known to be major sites of E20MO activity in a variety of insects. However, the tissue in which shd is expressed does not appear to be important for developmental function because misexpression of shd in the embryonic mesoderm instead of the epidermis, the normal embryonic tissue in which shd is expressed, rescues embryonic lethality.

  14. CYP306A1, a cytochrome P450 enzyme, is essential for ecdysteroid biosynthesis in the prothoracic glands of Bombyx and Drosophila.

    PubMed

    Niwa, Ryusuke; Matsuda, Takahiro; Yoshiyama, Takuji; Namiki, Toshiki; Mita, Kazuei; Fujimoto, Yoshinori; Kataoka, Hiroshi

    2004-08-20

    Ecdysteroids mediate a wide variety of developmental and physiological events in insects. In the postembryonic development of insects, ecdysone is synthesized in the prothoracic gland (PG). Although many studies have revealed the biochemical and physiological properties of the enzymes for ecdysteroid biosynthesis, most of the molecular identities of these enzymes have not been elucidated. Here we describe an uncharacterized cytochrome P450 gene, designated Cyp306a1, that is essential for ecdysteroid biosynthesis in the PGs of the silkworm Bombyx mori and fruit fly Drosophila melanogaster. Using the microarray technique for analyzing gene expression profiles in PG cells during Bombyx development, we identified two PG-specific P450 genes whose temporal expression patterns are correlated with changes in ecdysteroid titer during development. Amino acid sequence analysis showed that one of the Bombyx P450 genes belongs to the CYP306A1 subfamily. The temporal and spatial expression pattern of the Drosophila Cyp306a1 homolog is essentially the same as that of Bombyx Cyp306a1. We also found that Drosophila Cyp306a1 is disrupted in the phantom (phm) mutant, known also as the Halloween mutant. The morphological defects and decreased expression of ecdysone-inducible genes in phm suggest that this mutant cannot produce a high titer of ecdysone. Finally we demonstrate that S2 cells transfected with Cyp306a1 convert ketodiol to ketotriol via carbon 25 hydroxylation. These results strongly suggest that CYP306A1 functions as a carbon 25 hydroxylase and has an essential role in ecdysteroid biosynthesis during insect development.

  15. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses.

    PubMed

    Yan, Qiang; Cui, Xiaoxia; Lin, Shuai; Gan, Shuping; Xing, Han; Dou, Daolong

    2016-01-01

    The cytochrome P450 monooxygenases (P450s) represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.). Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA) or ethephon (ETH). Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA), and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes. PMID:27588421

  16. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses

    PubMed Central

    Yan, Qiang; Cui, Xiaoxia; Lin, Shuai; Gan, Shuping; Xing, Han; Dou, Daolong

    2016-01-01

    The cytochrome P450 monooxygenases (P450s) represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.). Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA) or ethephon (ETH). Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA), and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes. PMID:27588421

  17. An inhibition study of beauvericin on human and rat cytochrome P450 enzymes and its pharmacokinetics in rats.

    PubMed

    Mei, Li; Zhang, Lixin; Dai, Renke

    2009-06-01

    Beauvericin is a secondary metabolite natural product from microorganisms and has been shown to have a new potential antifungal activity. In this study, the metabolism and inhibition of beauvericin in human liver microsomes (HLM) and rat liver microsomes (RLM) were investigated. The apparent K(m) and V(max) of beauvericin in HLM were determined by substrate depletion approach and its inhibitory effects on cytochromes P450 (CYP) activities were evaluated using probe substrates, with IC(50) and the (K(i)) values were 1.2 microM (0.5 microM) and 1.3 microM (1.9 microM), respectively for CYP3A4/5 (midazolam) and CYP2C19 (mephenytoin). Similarly, beauvericin was also a potent inhibitor for CYP3A1/2 (IC(50): 1.3 microM) in RLM. Furthermore, the pharmacokinetics of beauvericin in the rat were studied after p.o administration alone and co-administration with ketoconazole, which indicated a pharmacodynamic function may play a role in the synergistic effect on antifungal activity.

  18. Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance.

    PubMed

    Liu, Simu; Bartnikas, Lisa M; Volko, Sigrid M; Ausubel, Frederick M; Tang, Dingzhong

    2016-01-01

    Small secondary metabolites, including glucosinolates and the major phytoalexin camalexin, play important roles in immunity in Arabidopsis thaliana. We isolated an Arabidopsis mutant with increased resistance to the powdery mildew fungus Golovinomyces cichoracearum and identified a mutation in the gene encoding cytochrome P450 83A1 monooxygenase (CYP83A1), which functions in glucosinolate biosynthesis. The cyp83a1-3 mutant exhibited enhanced defense responses to G. cichoracearum and double mutant analysis showed that this enhanced resistance requires NPR1, EDS1, and PAD4, but not SID2 or EDS5. In cyp83a1-3 mutants, the expression of genes related to camalexin synthesis increased upon G. cichoracearum infection. Significantly, the cyp83a1-3 mutant also accumulated higher levels of camalexin. Decreasing camalexin levels by mutation of the camalexin synthetase gene PAD3 or the camalexin synthesis regulator AtWRKY33 compromised the powdery mildew resistance in these mutants. Consistent with these observations, overexpression of PAD3 increased camalexin levels and enhanced resistance to G. cichoracearum. Taken together, our data indicate that accumulation of higher levels of camalexin contributes to increased resistance to powdery mildew.

  19. Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance

    PubMed Central

    Liu, Simu; Bartnikas, Lisa M.; Volko, Sigrid M.; Ausubel, Frederick M.; Tang, Dingzhong

    2016-01-01

    Small secondary metabolites, including glucosinolates and the major phytoalexin camalexin, play important roles in immunity in Arabidopsis thaliana. We isolated an Arabidopsis mutant with increased resistance to the powdery mildew fungus Golovinomyces cichoracearum and identified a mutation in the gene encoding cytochrome P450 83A1 monooxygenase (CYP83A1), which functions in glucosinolate biosynthesis. The cyp83a1-3 mutant exhibited enhanced defense responses to G. cichoracearum and double mutant analysis showed that this enhanced resistance requires NPR1, EDS1, and PAD4, but not SID2 or EDS5. In cyp83a1-3 mutants, the expression of genes related to camalexin synthesis increased upon G. cichoracearum infection. Significantly, the cyp83a1-3 mutant also accumulated higher levels of camalexin. Decreasing camalexin levels by mutation of the camalexin synthetase gene PAD3 or the camalexin synthesis regulator AtWRKY33 compromised the powdery mildew resistance in these mutants. Consistent with these observations, overexpression of PAD3 increased camalexin levels and enhanced resistance to G. cichoracearum. Taken together, our data indicate that accumulation of higher levels of camalexin contributes to increased resistance to powdery mildew. PMID:26973671

  20. Optimized on-line enantioselective capillary electrophoretic method for kinetic and inhibition studies of drug metabolism mediated by cytochrome P450 enzymes.

    PubMed

    Řemínek, Roman; Glatz, Zdeněk; Thormann, Wolfgang

    2015-06-01

    Pharmacokinetic and pharmacodynamic properties of a chiral drug can significantly differ between application of the racemate and single enantiomers. During drug development, the characteristics of candidate compounds have to be assessed prior to clinical testing. Since biotransformation significantly influences drug actions in an organism, metabolism studies represent a crucial part of such tests. Hence, an optimized and economical capillary electrophoretic method for on-line studies of the enantioselective drug metabolism mediated by cytochrome P450 enzymes was developed. It comprises a diffusion-based procedure, which enables mixing of the enzyme with virtually any compound inside the nanoliter-scale capillary reactor and without the need of additional optimization of mixing conditions. For CYP3A4, ketamine as probe substrate and highly sulfated γ-cyclodextrin as chiral selector, improved separation conditions for ketamine and norketamine enantiomers compared to a previously published electrophoretically mediated microanalysis method were elucidated. The new approach was thoroughly validated for the CYP3A4-mediated N-demethylation pathway of ketamine and applied to the determination of its kinetic parameters and the inhibition characteristics in presence of ketoconazole and dexmedetomidine. The determined parameters were found to be comparable to literature data obtained with different techniques. The presented method constitutes a miniaturized and cost-effective tool, which should be suitable for the assessment of the stereoselective aspects of kinetic and inhibition studies of cytochrome P450-mediated metabolic steps within early stages of the development of a new drug.

  1. Structure-Activity Relationship and Substrate-Dependent Phenomena in Effects of Ginsenosides on Activities of Drug-Metabolizing P450 Enzymes

    PubMed Central

    Hao, Miao; Zhao, Yuqing; Chen, Peizhan; Huang, He; Liu, Hong; Jiang, Hualiang; Zhang, Ruiwen; Wang, Hui

    2008-01-01

    Ginseng, a traditional herbal medicine, may interact with several co-administered drugs in clinical settings, and ginsenosides, the major active components of ginseng, may be responsible for these ginseng-drug interactions (GDIs). Results from previous studies on ginsenosides' effects on human drug-metabolizing P450 enzymes are inconsistent and confusing. Herein, we first evaluated the inhibitory effects of fifteen ginsenosides and sapogenins on human CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 enzymes by using commercially available fluorescent probes. The structure-activity relationship of their effects on the P450s was also explored and a pharmacophore model was established for CYP3A4. Moreover, substrate-dependent phenomena were found in ginsenosides' effects on CYP3A4 when another fluorescent probe was used, and were further confirmed in tests with conventional drug probes and human liver microsomes. These substrate-dependent effects of the ginsenosides may provide an explanation for the inconsistent results obtained in previous GDI reports. PMID:18628990

  2. The crystal structure of CYP24A1, a mitochondrial cytochrome P450 involved in vitamin D metabolism

    PubMed Central

    Goodin, David B.; Hong, Wen-Xu; Zhang, Qinghai; Johnson, Eric F.

    2009-01-01

    Cytochrome P450 (CYP) 24A1 catalyzes the side-chain oxidation of the hormonal form of vitamin D. Expression of CYP24A1 is up-regulated to attenuate vitamin-D signaling associated with calcium homeostasis and cellular growth processes. The development of therapeutics for disorders linked to vitamin D-insufficiency would be greatly facilitated by structural knowledge of CYP24A1. Here we report the crystal structure of rat CYP24A1 at 2.5 Å resolution. The structure exhibits an open cleft leading to the active site heme prosthetic group on the distal surface that is likely to define the path of substrate access into the active site. The entrance to the cleft is flanked by conserved hydrophobic residues on helices A′ and G′ suggesting a mode of insertion into the inner mitochondrial membrane. A docking model for 1α,25-(OH)2D3 binding in the open form of CYP24A1 is proposed that clarifies the structural determinants of secosteroid recognition and validates the predictive power of existing homology models of CYP24A1. Analysis of CYP24A1's proximal surface identifies the determinants of adrenodoxin recognition as a constellation of conserved residues from helices K, K″ and L that converge with an adjacent lysine-rich loop for binding the redox protein. Overall, the CYP24A1 structure provides the first template for understanding membrane insertion, substrate binding, and redox partner interaction in mitochondrial P450s. PMID:19961857

  3. Canine cytochrome P-450 pharmacogenetics.

    PubMed

    Court, Michael H

    2013-09-01

    The cytochrome P-450 (CYP) drug metabolizing enzymes are essential for the efficient elimination of many clinically used drugs. These enzymes typically display high interindividual variability in expression and function resulting from enzyme induction, inhibition, and genetic polymorphism thereby predisposing patients to adverse drug reactions or therapeutic failure. There are also substantial species differences in CYP substrate specificity and expression that complicate direct extrapolation of information from humans to veterinary species. This article reviews the available published data regarding the presence and impact of genetic polymorphisms on CYP-dependent drug metabolism in dogs in the context of known human-dog CYP differences.

  4. In vitro inhibition and induction of human liver cytochrome P450 enzymes by gentiopicroside: potent effect on CYP2A6.

    PubMed

    Deng, Yating; Wang, Lu; Yang, Yong; Sun, Wenji; Xie, Renming; Liu, Xueying; Wang, Qingwei

    2013-01-01

    Gentiopicroside (GE), a naturally occurring iridoid glycoside, has been developed into a Novel Traditional Chinese Drug named gentiopicroside injection, and it was approved for the treatment of acute jaundice and chronic active hepatitis by SFDA. However, the inhibitory and inducible effects of GE on the activity of cytochrome P450 (CYP450) are unclear. The purpose of this study was to evaluate the ability of GE to inhibit and induce human cytochrome P450 enzymes in vitro. In human liver microsomes, GE inhibited CYP2A6 and CYP2E1 in a concentration-dependent manner, with IC₅₀ values of 21.8 µg/ml and 594 µg/ml, respectively, and the IC₅₀ of CYP2A6 was close to the C(max) value observed clinically. GE was a non-competitive inhibitor of CYP2A6 at lower concentrations and a competitive inhibitor at higher concentrations. GE did not produce inhibition of CYP2C9, CYP2D6, CYP1A2 or CYP3A4 activities. However, a significant increase of CYP1A2 and CYP3A4 activity was observed at high concentrations. In cultured human hepatocytes no significant induction of CYP1A2, CYP3A4 or CYP2B6 was observed. Given these results, the in vivo potential inhibition of GE on CYP2A6 deserves further investigation, and it seems that the hepatoprotective effect of GE is irrelevant to its effect on P450s.

  5. In vitro inhibitory effects of scutellarin on six human/rat cytochrome P450 enzymes and P-glycoprotein.

    PubMed

    Han, Yong-Long; Li, Dan; Yang, Quan-Jun; Zhou, Zhi-Yong; Liu, Li-Ya; Li, Bin; Lu, Jin; Guo, Cheng

    2014-05-05

    Inhibition of cytochrome P450 (CYP) and P-glycoprotein (P-gp) are regarded as the most frequent and clinically important pharmacokinetic causes among the various possible factors for drug-drug interactions. Scutellarin is a flavonoid which is widely used for the treatment of cardiovascular diseases. In this study, the in vitro inhibitory effects of scutellarin on six major human CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and six rat CYPs (CYP1A2, CYP2C7, CYP2C11, CYP2C79, CYP2D4, and CYP3A2) activities were examined by using liquid chromatography-tandem mass spectrometry. Meanwhile, the inhibitory effects of scutellarin on P-gp activity were examined on a human metastatic malignant melanoma cell line WM-266-4 by calcein-AM fluorometry screening assay. Results demonstrated that scutellarin showed negligible inhibitory effects on the six major CYP isoenzymes in human/rat liver microsomes with almost all of the IC50 values exceeding 100 μM, whereas it showed values of 63.8 μM for CYP2C19 in human liver microsomes, and 63.1 and 85.6 μM for CYP2C7 and CYP2C79 in rat liver microsomes, respectively. Scutellarin also showed weak inhibitory effect on P-gp. In conclusion, this study demonstrates that scutellarin is unlikely to cause any clinically significant herb-drug interactions in humans when co-administered with substrates of the six CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and P-gp.

  6. Down-regulation of the carcinogen-metabolizing enzyme cytochrome P450 1a1 by vanadium.

    PubMed

    Anwar-Mohamed, Anwar; El-Kadi, Ayman O S

    2008-09-01

    Vanadium (V(5+)), a heavy metal contaminant with important toxicological consequences, has received considerable attention as an anticancer agent, although the mechanisms remain unknown. As a first step to investigate these mechanisms, we examined the effect of V(5+) (as ammonium metavanadate, NH(4)VO(3)) on the expression of the aryl hydrocarbon receptor (AhR)-regulated gene: cytochrome P450 1a1 (Cyp1a1) at each step of the AhR signal transduction pathway, using Hepa 1c1c7 cells. Our results showed a significant reduction in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated induction of Cyp1a1 mRNA, protein and activity levels after V(5+) treatments in a dose-dependent manner. Investigation of the effect of coexposure to V(5+) and TCDD at transcriptional levels revealed that V(5+) significantly inhibited TCDD-mediated induction of AhR-dependent luciferase reporter gene expression. Furthermore, despite not affecting the direct activation of the cytosolic AhR by TCDD and subsequently transforming it to a DNA-binding form, V(5+) inhibited the nuclear accumulation of liganded AhR and subsequent formation of the AhR/aryl hydrocarbon nuclear translocator (Arnt)/xenobiotic responsive element (XRE) complex. Importantly, the V(5+)-mediated inhibition of AhR/Arnt/XRE complex formation coincided with a significant decrease in ecto-ATPase activity. Looking at the post-transcriptional and post-translational effects of V(5+) on existing Cyp1a1 mRNA and protein levels, we showed that V(5+) did not affect Cyp1a1 mRNA or protein stability, thus eliminating possible role of V(5+) in modifying Cyp1a1 gene expression through these mechanisms. This study provides the first evidence that V(5+) down-regulates the expression of Cyp1a1 at the transcriptional level through an ATP-dependent mechanism.

  7. 1,10-phenanthroline stabilizes mRNA of the carcinogen-metabolizing enzyme, cytochrome P450 1a1.

    PubMed

    Chou, Mou-Tsy; Chu, Wen-Cheng; Hong, Wei-Fu; Huang, Min-Cong; Liu, Wen-Je; Lin, Shin-Chang; Huang, See-Chang; Chen, Fei-Yun; Hsiao, Wen-Feng; Liu, Yi-Wen; Wu, Jin-Yi; Su, Jyan-Gwo J

    2010-02-01

    1,10-phenanthroline (phen), flufenamic acid, and indomethacin are inhibitors of aldo-keto reductases 1C1 (AKR1C1), but only phen decreased the benzo[a]pyrene (BaP)-induced cytochrome P450 1a1 (Cyp1a1) protein level. Therefore the decrease in the BaP-induced Cyp1a1 protein level was not due to inhibition of Akr1c1, but to phen itself. Phen decreased the BaP-induced Cyp1a1 promoter activity and protein expression, and in contrast, it increased Cyp1a1 mRNA, resulting from an increase in mRNA stability. Phen is also known as a transition metal ion-chelator. Along with the phen study, we also found that Zn(2+), Fe(2+) and Cu(2+) increased Cyp1a1 mRNA and protein stability. Our results show that phen stabilized the mRNA of Cyp1a1, although it decreased cell viability. In addition, Zn(2+) and Fe(2+) highly neutralized phen's suppression of Cyp1a1 protein expression, but they only slightly neutralized phen's promotion of mRNA stability and suppression of cell viability, and had no effect on phen's suppression of promoter activity. Phen's effect on Cyp1a1 expression was reversible, which indicates that phen is non-covalently linked to its target. This report elucidates a new role for phen of stabilizing Cyp1a1 mRNA, and provides information for further studies on mRNA stabilization.

  8. Evaluation of the effect of apatinib (YN968D1) on cytochrome P450 enzymes with cocktail probe drugs in rats by UPLC-MS/MS.

    PubMed

    Zhou, Yunfang; Wang, Shuanghu; Ding, Ting; Chen, Mengchun; Wang, Li; Wu, Mingdong; Hu, Guoxin; Lu, Xianghong

    2014-10-22

    An accurate and validated liquid chromatography method and a triple quadrupole mass spectrometry method were developed and validated to simultaneously evaluate the cytochrome P450 (CYP) enzymes in vivo using the co-administration of these probes. Phenacetin, losartan, metoprolol and midazolam were used as the probe substrates for rat CYP1A2, CYP2C11, CYP2D4 and CYP3A1 enzymes, respectively. The purpose of the study was to investigate the effect of apatinib on these cytochrome P450 enzymes in vivo with co-administration of these probes. Plasma samples were prepared by precipitating protein with acetonitrile. The analytes were separated using a reversed-phase BEH C18 column (2.1mm×100mm, 1.7μm, Waters, USA) maintained at 40°C. The mobile phase consisted of acetonitrile and water (containing 0.1% formic acid) with a gradient elution pumped at a flow rate of 0.4mL/min. The analytes were detected with positive electrospray ionization in multiple reaction monitoring (MRM) mode for target fragment ions m/z 180.05→109.94 for phenacetin, m/z 423.1→207.2 for losartan, m/z 268.12→115.8 for metoprolol, m/z 326.02→290.99 for midazolam and m/z 285.1→193.1 for diazepam (IS). Good linearity was achieved to quantify the concentration ranges of 10-2000ng/mL for phenacetin, 10-1000ng/mL for losartan, 10-1000ng/mL for metoprolol and 1-100ng/mL for midazolam in rat plasma. The mean recoveries of phenacetin, losartan, midazolam and metoprolol from the plasma exceeded 77.07%. The intra-run and inter-run assay precisions were both less than 8.9%. This method was successfully applied to evaluate the effects of apatinib on the cytochrome P450 enzymes in rats.

  9. Cytochrome P450 monooxygenase system in echinoderms.

    PubMed

    den Besten, P J

    1998-11-01

    The results of a limited number of studies on echinoderms provide evidence for the presence of a cytochrome P450 monooxygenase system in representatives of three classes of the phylum Echinodermata: the asteroids (sea stars), holothuroids (sea cucumbers) and echinoids (sea urchins). The monooxygenase system has been demonstrated to be involved in the metabolism of xenobiotic compounds, but is assumed to have its primary function in the metabolism of endogenous substrates, such as steroids. Available data on P450 cofactor requirement, P450-dependent metabolism of benzo[a]pyrene, studies with classical inhibitors of P450, specificity of P450 induction by planar compounds, and the changes in the benzo[a]pyrene metabolite profile in induced animals suggest similarities with the MO system present in vertebrates. However, the relatively high capacity of the monooxygenase system in sea stars to catalyse reactions with organic hydroperoxide as donor for activated oxygen, and the low induceability during exposure to xenobiotics indicate also important differences between the echinoderm cytochrome P450 monooxygenase system and that of vertebrates. Some evidence was found for the existence of different forms of cytochrome P450 in sea stars. Catalytic functions of the cytochrome P450 monooxygenase system of sea stars in the metabolism of steroids may be suppressed as a result of the induction of cytochrome P450 by xenobiotics. PMID:9972455

  10. Benzyl alcohol protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes but causes mitochondrial dysfunction and cell death at higher doses.

    PubMed

    Du, Kuo; McGill, Mitchell R; Xie, Yuchao; Jaeschke, Hartmut

    2015-12-01

    Acetaminophen (APAP) hepatotoxicity is a serious public health problem in western countries. Current treatment options for APAP poisoning are limited and novel therapeutic intervention strategies are needed. A recent publication suggested that benzyl alcohol (BA) protects against APAP hepatotoxicity and could serve as a promising antidote for APAP poisoning. To assess the protective mechanisms of BA, C56Bl/6J mice were treated with 400 mg/kg APAP and/or 270 mg/kg BA. APAP alone caused extensive liver injury at 6 h and 24 h post-APAP. This injury was attenuated by BA co-treatment. Assessment of protein adduct formation demonstrated that BA inhibits APAP metabolic activation. In support of this, in vitro experiments also showed that BA dose-dependently inhibits cytochrome P450 activities. Correlating with the hepatoprotection of BA, APAP-induced oxidant stress and mitochondrial dysfunction were reduced. Similar results were obtained in primary mouse hepatocytes. Interestingly, BA alone caused mitochondrial membrane potential loss and cell toxicity at high doses, and its protective effect could not be reproduced in primary human hepatocytes (PHH). We conclude that BA protects against APAP hepatotoxicity mainly by inhibiting cytochrome P450 enzymes in mice. Considering its toxic effect and the loss of protection in PHH, BA is not a clinically useful treatment option for APAP overdose patient. PMID:26522885

  11. Inhibition of hepatic cytochrome P450 enzymes and sodium/bile acid cotransporter exacerbates leflunomide-induced hepatotoxicity

    PubMed Central

    Ma, Lei-lei; Wu, Zhi-tao; Wang, Le; Zhang, Xue-feng; Wang, Jing; Chen, Chen; Ni, Xuan; Lin, Yun-fei; Cao, Yi-yi; Luan, Yang; Pan, Guo-yu

    2016-01-01

    Aim: Leflunomide is an immunosuppressive agent marketed as a disease-modifying antirheumatic drug. But it causes severe side effects, including fatal hepatitis and liver failure. In this study we investigated the contributions of hepatic metabolism and transport of leflunomide and its major metabolite teriflunomide to leflunomide induced hepatotoxicity in vitro and in vivo. Methods: The metabolism and toxicity of leflunomide and teriflunomide were evaluated in primary rat hepatocytes in vitro. Hepatic cytochrome P450 reductase null (HRN) mice were used to examine the PK profiling and hepatotoxicity of leflunomide in vivo. The expression and function of sodium/bile acid cotransporter (NTCP) were assessed in rat and human hepatocytes and NTCP-transfected HEK293 cells. After Male Sprague-Dawley (SD) rats were administered teriflunomide (1,6, 12 mg·kg−1·d−1, ig) for 4 weeks, their blood samples were analyzed. Results: A nonspecific CYPs inhibitor aminobenzotriazole (ABT, 1 mmol/L) decreased the IC50 value of leflunomide in rat hepatocytes from 409 to 216 μmol/L, whereas another nonspecific CYPs inhibitor proadifen (SKF, 30 μmol/L) increased the cellular accumulation of leflunomide to 3.68-fold at 4 h. After oral dosing (15 mg/kg), the plasma exposure (AUC0-t) of leflunomide increased to 3-fold in HRN mice compared with wild type mice. Administration of leflunomide (25 mg·kg−1·d−1) for 7 d significantly increased serum ALT and AST levels in HRN mice; when the dose was increased to 50 mg·kg−1·d−1, all HRN mice died on d 6. Teriflunomide significantly decreased the expression of NTCP in human hepatocytes, as well as the function of NTCP in rat hepatocytes and NTCP-transfected HEK293 cells. Four-week administration of teriflunomide significantly increased serum total bilirubin and direct bilirubin levels in female rats, but not in male rats. Conclusion: Hepatic CYPs play a critical role in detoxification process of leflunomide, whereas the major

  12. Impacts of diversification of cytochrome P450 on plant metabolism.

    PubMed

    Mizutani, Masaharu

    2012-01-01

    Cytochrome P450 monooxygenases (P450s) catalyze a wide variety of monooxygenation reactions in primary and secondary metabolism in plants. The share of P450 genes in each plant genome is estimated to be up to 1%. This implies that the diversification of P450 has made a significant contribution to the ability to acquire the emergence of new metabolic pathways during land plant evolution. The P450 families conserved universally in land plants contribute to their chemical defense mechanisms. Several P450s are involved in the biosynthesis and catabolism of plant hormones. Species-specific P450 families are essential for the biosynthetic pathways of phytochemicals such as terpenoids and alkaloids. Genome wide analysis of the gene clusters including P450 genes will provide a clue to defining the metabolic roles of orphan P450s. Metabolic engineering with plant P450s is an important technology for large-scale production of valuable phytochemicals such as medicines.

  13. Metabolism of anabolic steroids by recombinant human cytochrome P450 enzymes. Gas chromatographic-mass spectrometric determination of metabolites.

    PubMed

    Rendic, S; Nolteernsting, E; Schänzer, W

    1999-11-26

    Metabolism of steroid hormones with anabolic properties was studied in vitro using human recombinant CYP3A4, CYP2C9 and 2B6 enzymes. The enzyme formats used for CYP3A4 and CYP2C9 were insect cell microsomes expressing human CYP enzymes and purified recombinant human CYP enzymes in a reconstituted system. CYP3A4 enzyme formats incubated with anabolic steroids, testosterone, 17alpha-methyltestosterone, metandienone, boldenone and 4-chloro-1,2-dehydro-17alpha-methyltestosterone, produced 6beta-hydroxyl metabolites identified as trimethylsilyl (TMS)-ethers by a gas chromatography-mass spectrometry (GC-MS) method. When the same formats of CYP2C9 were incubated with the anabolic steroids, no 6beta-hydroxyl metabolites were formed. Human lymphoblast cell microsomes expressing human CYP2B6 incubated with the steroids investigated produced traces of 6beta-hydroxyl metabolites with testosterone and 17alpha-methyltestosterone only. We suggest that the electronic effects of the 3-keto-4-ene structural moiety contribute to the selectivity within the active site of CYP3A4 enzyme resulting in selective 6beta-hydroxylation. PMID:10630892

  14. Georges Brohee Prize 1996. Major cytochrome P-450 families: implications in health and liver diseases.

    PubMed

    Horsmans, Y

    1997-01-01

    Cytochromes P-450 are a superfamily of hemoproteins which represent the main pathway for drug and chemical oxidation. This superfamily is divided into families, subfamilies and/or single enzymes. The majority of P-450s involved in drug metabolism appear to belong to three distinct families termed CYP1, CYP2 and CYP3. Numerous invasive and non-invasive methodologies have been developed to study these enzymes. Their activities are modulated by genetic and nongenetic factors as well as pathological conditions. In this work, the significance of genetic and nongenetic control of P-450s activities in normal subjects is described. Thereafter, the impact of P-450s on the apparition of liver diseases and the effects of liver disease on P-450s activities is emphasized. In conclusion, future perspectives on this field are presented.

  15. The crystal structure of the versatile cytochrome P450 enzyme CYP109B1 from Bacillus subtilis.

    PubMed

    Zhang, Aili; Zhang, Ting; Hall, Emma A; Hutchinson, Sean; Cryle, Max J; Wong, Luet-Lok; Zhou, Weihong; Bell, Stephen G

    2015-03-01

    The crystal structure of the versatile CYP109B1 enzyme from Bacillus subtilis has been solved at 1.8 Å resolution. This is the first structure of an enzyme from this CYP family, whose members are prevalent across diverse species of bacteria. In the crystal structure the enzyme has an open conformation with an access channel leading from the heme to the surface. The substrate-free structure reveals the location of the key residues in the active site that are responsible for binding the substrate in the correct orientation for regioselective oxidation. Importantly, there are significant differences among these residues in members of the CYP109 and closely related CYP106 families and these likely account for the variations in substrate binding and oxidation profiles observed with these enzymes. A whole-cell oxidation biosystem was developed, which contains CYP109B1 and a phthalate family oxygenase reductase (PFOR), from Pseudomonas putida KT24440, as the electron transfer partner. This electron transfer system is able to support CYP109B1 activity resulting in the regioselective hydroxylation of both α- and β-ionone in vivo and in vitro. The PFOR is therefore a versatile electron transfer partner that is able to support the activity of CYP enzymes from other bacterium. The crystal structure of CYP109B1 has a positively charged proximal face and this explains why it can interact with PFOR and adrenodoxin which are predominantly negatively charged around their [2Fe-2S] clusters. PMID:25587700

  16. Pivotal Role of P450-P450 Interactions in CYP3A4 Allostery: the Case of α-Naphthoflavone

    PubMed Central

    Davydov, Dmitri R.; Davydova, Nadezhda Y.; Sineva, Elena V.; Kufareva, Irina; Halpert, James R.

    2014-01-01

    SYNOPSIS We investigated the relationship between oligomerization of cytochrome P450 3A4 (CYP3A4) and its response to α-naphthoflavone (ANF), a prototypical heterotropic activator. Addition of ANF resulted in over a two-fold increase in the rate of CYP3A4-dependent debenzylation of 7-benzyloxy-4-(trifluoromethyl)coumarin (7-BFC) in human liver microsomes (HLM) but failed to produce activation in BD Supersomes™ or Baculosomes® containing recombinant CYP3A4 and NADPH-cytochrome P450 reductase (CPR). However, incorporation of purified CYP3A4 into Supersomes containing only recombinant CPR reproduced the behavior observed with HLM. The activation in this system was dependent on the surface density of the enzyme. While no activation was detectable at a lipid:P450 (L/P) ratio ≥ 750, it reached 225% at an L/P ratio of 140. To explore the relationship between this effect and CYP3A4 oligomerization we probed P450-P450 interactions with a new technique based on luminescence resonance energy transfer (LRET). The amplitude of LRET in mixed oligomers of the heme protein labeled with donor and acceptor fluorophores exhibited a sigmoidal dependence on the surface density of CYP3A4 in Supersomes. Addition of ANF eliminated this sigmoidal character and increased the degree of oligomerization at low enzyme concentrations. Therefore, the mechanisms of CYP3A4 allostery with ANF involve effector-dependent modulation of P450-P450 interactions. PMID:23651100

  17. E2 potentializes benzo(a)pyrene-induced hepatic cytochrome P450 enzyme activities in Nile tilapia at high concentrations.

    PubMed

    Rodrigues, Aline Cristina Ferreira; Moneró, Tatiana de Oliveira; Frighetto, Rosa Toyoko Shiraishi; de Almeida, Eduardo Alves

    2015-11-01

    In the aquatic environment, biotransformation enzymes are established biomarkers for assessing PAH exposure in fish, but little is known about the effect of 17β-estradiol (E2) on these enzymes during exposure to benzo(a)pyrene (BaP). In this study, Nile tilapia (Oreochromis niloticus) were exposed for 3, 5, and 10 days to BaP (300 μg L(-1)) and E2 (5 μg L(-1)). These substances were applied isolated or mixed. In the mixture experiment, fish were analyzed pre- and postexposure in order to better understand whether preexposure to the hormone masks the responses activated by PAH or vice versa. Phase I enzymes ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-O-depenthylase (PROD), and benzyloxyresorufin-O-debenzylase (BROD) activities as well as the phase II enzyme glutathione S-transferase (GST) were analyzed. Isolated E2 treatment decreased EROD activity after 3 days, but this enzyme activity returned to control values after 5 and 10 days of exposure. Isolated BaP treatment significantly induced EROD activity after 3 and 5 days, and the activity returned to control levels after ten exposure days. Combined treatment (E2 + Bap) significantly increased EROD activity, both in the pre- and postexposure. This increase was even higher than in the isolated BaP treatment, suggesting a synergism between these two compounds. When E2 and BaP were used singly, they did not change BROD and PROD activities. However, combined treatment (E2 + Bap) significantly increased PROD activity. Isolated BaP treatment increased GST activity after 10 days. However, this response was not observed in the mixture treatment, suggesting that E2 suppressed the GST induction modulated by BaP. The results put together indicated that E2 altered the biotransformation pathway regarding enzymes activated by BaP in Nile tilapia.

  18. Cytochrome P450-catalyzed dealkylation of atrazine by Rhodococcus sp. strain NI86/21 involves hydrogen atom transfer rather than single electron transfer.

    PubMed

    Meyer, Armin H; Dybala-Defratyka, Agnieszka; Alaimo, Peter J; Geronimo, Inacrist; Sanchez, Ariana D; Cramer, Christopher J; Elsner, Martin

    2014-08-28

    Cytochrome P450 enzymes are responsible for a multitude of natural transformation reactions. For oxidative N-dealkylation, single electron (SET) and hydrogen atom abstraction (HAT) have been debated as underlying mechanisms. Combined evidence from (i) product distribution and (ii) isotope effects indicate that HAT, rather than SET, initiates N-dealkylation of atrazine to desethyl- and desisopropylatrazine by the microorganism Rhodococcus sp. strain NI86/21. (i) Product analysis revealed a non-selective oxidation at both the αC and βC-atom of the alkyl chain, which is expected for a radical reaction, but not SET. (ii) Normal (13)C and (15)N as well as pronounced (2)H isotope effects (εcarbon: -4.0‰ ± 0.2‰; εnitrogen: -1.4‰ ± 0.3‰, KIEH: 3.6 ± 0.8) agree qualitatively with calculated values for HAT, whereas inverse (13)C and (15)N isotope effects are predicted for SET. Analogous results are observed with the Fe(iv)[double bond, length as m-dash]O model system [5,10,15,20-tetrakis(pentafluorophenyl)porphyrin-iron(iii)-chloride + NaIO4], but not with permanganate. These results emphasize the relevance of the HAT mechanism for N-dealkylation by P450.

  19. Modularity of Conifer Diterpene Resin Acid Biosynthesis: P450 Enzymes of Different CYP720B Clades Use Alternative Substrates and Converge on the Same Products.

    PubMed

    Geisler, Katrin; Jensen, Niels Berg; Yuen, Macaire M S; Madilao, Lina; Bohlmann, Jörg

    2016-05-01

    Cytochrome P450 enzymes of the CYP720B subfamily play a central role in the biosynthesis of diterpene resin acids (DRAs), which are a major component of the conifer oleoresin defense system. CYP720Bs exist in families of up to a dozen different members in conifer genomes and fall into four different clades (I-IV). Only two CYP720B members, loblolly pine (Pinus taeda) PtCYP720B1 and Sitka spruce (Picea sitchensis) PsCYP720B4, have been characterized previously. Both are multisubstrate and multifunctional clade III enzymes, which catalyze consecutive three-step oxidations in the conversion of diterpene olefins to DRAs. These reactions resemble the sequential diterpene oxidations affording ent-kaurenoic acid from ent-kaurene in gibberellin biosynthesis. Here, we functionally characterized the CYP720B clade I enzymes CYP720B2 and CYP720B12 in three different conifer species, Sitka spruce, lodgepole pine (Pinus contorta), and jack pine (Pinus banksiana), and compared their activities with those of the clade III enzymes CYP720B1 and CYP720B4 of the same species. Unlike the clade III enzymes, clade I enzymes were ultimately found not to be active with diterpene olefins but converted the recently discovered, unstable diterpene synthase product 13-hydroxy-8(14)-abietene. Through alternative routes, CYP720B enzymes of both clades produce some of the same profiles of conifer oleoresin DRAs (abietic acid, neoabietic acid, levopimaric acid, and palustric acid), while clade III enzymes also function in the formation of pimaric acid, isopimaric acid, and sandaracopimaric acid. These results highlight the modularity of the specialized (i.e. secondary) diterpene metabolism, which produces conifer defense metabolites through variable combinations of different diterpene synthase and CYP720B enzymes. PMID:26936895

  20. Modularity of Conifer Diterpene Resin Acid Biosynthesis: P450 Enzymes of Different CYP720B Clades Use Alternative Substrates and Converge on the Same Products.

    PubMed

    Geisler, Katrin; Jensen, Niels Berg; Yuen, Macaire M S; Madilao, Lina; Bohlmann, Jörg

    2016-05-01

    Cytochrome P450 enzymes of the CYP720B subfamily play a central role in the biosynthesis of diterpene resin acids (DRAs), which are a major component of the conifer oleoresin defense system. CYP720Bs exist in families of up to a dozen different members in conifer genomes and fall into four different clades (I-IV). Only two CYP720B members, loblolly pine (Pinus taeda) PtCYP720B1 and Sitka spruce (Picea sitchensis) PsCYP720B4, have been characterized previously. Both are multisubstrate and multifunctional clade III enzymes, which catalyze consecutive three-step oxidations in the conversion of diterpene olefins to DRAs. These reactions resemble the sequential diterpene oxidations affording ent-kaurenoic acid from ent-kaurene in gibberellin biosynthesis. Here, we functionally characterized the CYP720B clade I enzymes CYP720B2 and CYP720B12 in three different conifer species, Sitka spruce, lodgepole pine (Pinus contorta), and jack pine (Pinus banksiana), and compared their activities with those of the clade III enzymes CYP720B1 and CYP720B4 of the same species. Unlike the clade III enzymes, clade I enzymes were ultimately found not to be active with diterpene olefins but converted the recently discovered, unstable diterpene synthase product 13-hydroxy-8(14)-abietene. Through alternative routes, CYP720B enzymes of both clades produce some of the same profiles of conifer oleoresin DRAs (abietic acid, neoabietic acid, levopimaric acid, and palustric acid), while clade III enzymes also function in the formation of pimaric acid, isopimaric acid, and sandaracopimaric acid. These results highlight the modularity of the specialized (i.e. secondary) diterpene metabolism, which produces conifer defense metabolites through variable combinations of different diterpene synthase and CYP720B enzymes.

  1. Modularity of Conifer Diterpene Resin Acid Biosynthesis: P450 Enzymes of Different CYP720B Clades Use Alternative Substrates and Converge on the Same Products1[OPEN

    PubMed Central

    Yuen, Macaire M.S.; Bohlmann, Jörg

    2016-01-01

    Cytochrome P450 enzymes of the CYP720B subfamily play a central role in the biosynthesis of diterpene resin acids (DRAs), which are a major component of the conifer oleoresin defense system. CYP720Bs exist in families of up to a dozen different members in conifer genomes and fall into four different clades (I–IV). Only two CYP720B members, loblolly pine (Pinus taeda) PtCYP720B1 and Sitka spruce (Picea sitchensis) PsCYP720B4, have been characterized previously. Both are multisubstrate and multifunctional clade III enzymes, which catalyze consecutive three-step oxidations in the conversion of diterpene olefins to DRAs. These reactions resemble the sequential diterpene oxidations affording ent-kaurenoic acid from ent-kaurene in gibberellin biosynthesis. Here, we functionally characterized the CYP720B clade I enzymes CYP720B2 and CYP720B12 in three different conifer species, Sitka spruce, lodgepole pine (Pinus contorta), and jack pine (Pinus banksiana), and compared their activities with those of the clade III enzymes CYP720B1 and CYP720B4 of the same species. Unlike the clade III enzymes, clade I enzymes were ultimately found not to be active with diterpene olefins but converted the recently discovered, unstable diterpene synthase product 13-hydroxy-8(14)-abietene. Through alternative routes, CYP720B enzymes of both clades produce some of the same profiles of conifer oleoresin DRAs (abietic acid, neoabietic acid, levopimaric acid, and palustric acid), while clade III enzymes also function in the formation of pimaric acid, isopimaric acid, and sandaracopimaric acid. These results highlight the modularity of the specialized (i.e. secondary) diterpene metabolism, which produces conifer defense metabolites through variable combinations of different diterpene synthase and CYP720B enzymes. PMID:26936895

  2. Palmitoylethanolamide treatment reduces blood pressure in spontaneously hypertensive rats: involvement of cytochrome p450-derived eicosanoids and renin angiotensin system.

    PubMed

    Mattace Raso, Giuseppina; Pirozzi, Claudio; d'Emmanuele di Villa Bianca, Roberta; Simeoli, Raffaele; Santoro, Anna; Lama, Adriano; Di Guida, Francesca; Russo, Roberto; De Caro, Carmen; Sorrentino, Raffaella; Calignano, Antonio; Meli, Rosaria

    2015-01-01

    Palmitoylethanolamide (PEA), a peroxisome proliferator-activated receptor-α agonist, has been demonstrated to reduce blood pressure and kidney damage secondary to hypertension in spontaneously hypertensive rat (SHR). Currently, no information is available concerning the putative effect of PEA on modulating vascular tone. Here, we investigate the mechanisms underpinning PEA blood pressure lowering effect, exploring the contribution of epoxyeicosatrienoic acids, CYP-dependent arachidonic acid metabolites, as endothelium-derived hyperpolarizing factors (EDHF), and renin angiotensin system (RAS) modulation. To achieve this aim SHR and Wistar-Kyoto rats were treated with PEA (30 mg/kg/day) for five weeks. Functional evaluations on mesenteric bed were performed to analyze EDHF-mediated vasodilation. Moreover, mesenteric bed and carotid were harvested to measure CYP2C23 and CYP2J2, the key isoenzymes in the formation of epoxyeicosatrienoic acids, and the soluble epoxide hydrolase, which is responsible for their degradation in the corresponding diols. Effect of PEA on RAS modulation was investigated by analyzing angiotensin converting enzyme and angiotensin receptor 1 expression. Here, we showed that EDHF-mediated dilation in response to acetylcholine was increased in mesenteric beds of PEA-treated SHR. Western blot analysis revealed that the increase in CYP2C23 and CYP2J2 observed in SHR was significantly attenuated in mesenteric beds of PEA-treated SHR, but unchanged in the carotids. Interestingly, in both vascular tissues, PEA significantly decreased the soluble epoxide hydrolase protein level, accompanied by a reduced serum concentration of its metabolite 14-15 dihydroxyeicosatrienoic acid, implying a reduction in epoxyeicosatrienoic acid hydrolisis. Moreover, PEA treatment down-regulated angiotensin receptor 1 and angiotensin converting enzyme expression, indicating a reduction in angiotensin II-mediated effects. Consistently, a damping of the activation of

  3. Simultaneous Screening of Activities of Five Cytochrome P450 and Four Uridine 5'-Diphospho-glucuronosyltransferase Enzymes in Human Liver Microsomes Using Cocktail Incubation and Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Lee, Boram; Ji, Hyeon-Kyeong; Lee, Taeho; Liu, Kwang-Hyeon

    2015-07-01

    Cytochrome P450 (P450) and uridine 5'-diphospho-glucuronosyltransferase (UGT) are major metabolizing enzymes in the biotransformation of most drugs. Altered P450 and UGT activities are a potential cause of adverse drug-drug interaction. A method for the simultaneous evaluation of the activities of five P450s (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A) and four UGTs (UGT1A1, UGT1A4, UGT1A9, and UGT2B7) was developed using in vitro cocktail incubation and tandem mass spectrometry. The nine probe substrates used in this assay were phenacetin (CYP1A2), diclofenac (CYP2C9), S-mephenytoin (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), 7-ethyl-10-hydroxy-camptothecin (SN-38) (UGT1A1), trifluoperazine (UGT1A4), mycophenolic acid (UGT1A9), and naloxone (UGT2B7). This new method involves incubation of two cocktail doses and single cassette analysis. The two cocktail doses and the concentration of each probe substrate in vitro were determined to minimize mutual drug interactions among substrates. Cocktail A comprised phenacetin, diclofenac, S-mephenytoin, dextromethorphan, and midazolam, whereas cocktail B comprised SN-38, trifluoperazine, mycophenolic acid, and naloxone. In the incubation study of these cocktails, the reaction mixtures were pooled and simultaneously analyzed using liquid chromatography-tandem mass spectrometry. The method was validated by comparing inhibition data obtained from the incubation of each probe substrate alone with data from the cocktail method. The IC50 values obtained in both cocktail and individual incubations were in agreement with values previously reported in the literature. This cocktail method offers a rapid and robust way to simultaneously evaluate phase I and II enzyme inhibition profiles of many new chemical entities. This new method will also be useful in the drug discovery process and for advancing the mechanistic understanding of drug interactions. PMID:25904760

  4. The relationship between DNA adduct formation by benzo[a]pyrene and expression of its activation enzyme cytochrome P450 1A1 in rat.

    PubMed

    Hodek, Petr; Koblihová, Jitka; Kizek, René; Frei, Eva; Arlt, Volker M; Stiborová, Marie

    2013-11-01

    Benzo[a]pyrene (BaP) is a human carcinogen requiring metabolic activation prior to reaction with DNA. Cytochrome P450 (CYP) 1A1 is the most important hepatic and intestinal enzyme in both BaP activation and detoxification. CYP1A2 is also capable of oxidizing BaP, but to a lesser extent. The induction of CYP1A1/2 by BaP and/or β-naphthoflavone in liver and small intestine of rats was investigated. Both BaP and β-naphthoflavone induced CYP1A expression and increased enzyme activities in both organs. Moreover, the induction of CYP1A enzyme activities resulted in an increase in formation of BaP-DNA adducts detected by (32)P-postlabeling in rat liver and in the distal part of small intestine in vivo. The increases in CYP1A enzyme activity were also associated with bioactivation of BaP and elevated BaP-DNA adduct levels in ex vivo incubations of microsomes of both organs with DNA and BaP. These findings indicate a stimulating effect of both compounds on BaP-induced carcinogenesis.

  5. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1

    PubMed Central

    Potter, G A; Patterson, L H; Wanogho, E; Perry, P J; Butler, P C; Ijaz, T; Ruparelia, K C; Lamb, J H; Farmer, P B; Stanley, L A; Burke, M D

    2002-01-01

    Resveratrol is a cancer preventative agent that is found in red wine. Piceatannol is a closely related stilbene that has antileukaemic activity and is also a tyrosine kinase inhibitor. Piceatannol differs from resveratrol by having an additional aromatic hydroxy group. The enzyme CYP1B1 is overexpressed in a wide variety of human tumours and catalyses aromatic hydroxylation reactions. We report here that the cancer preventative agent resveratrol undergoes metabolism by the cytochrome P450 enzyme CYP1B1 to give a metabolite which has been identified as the known antileukaemic agent piceatannol. The metabolite was identified by high performance liquid chromatography analysis using fluorescence detection and the identity of the metabolite was further confirmed by derivatisation followed by gas chromatography–mass spectrometry studies using authentic piceatannol for comparison. This observation provides a novel explanation for the cancer preventative properties of resveratrol. It demonstrates that a natural dietary cancer preventative agent can be converted to a compound with known anticancer activity by an enzyme that is found in human tumours. Importantly this result gives insight into the functional role of CYP1B1 and provides evidence for the concept that CYP1B1 in tumours may be functioning as a growth suppressor enzyme. British Journal of Cancer (2002) 86, 774–778. DOI: 10.1038/sj/bjc/6600197 www.bjcancer.com © 2002 Cancer Research UK PMID:11875742

  6. Involvement of cytochrome P450, glutathione S-transferase, and epoxide hydrolase in the metabolism of aflatoxin B1 and relevance to risk of human liver cancer.

    PubMed Central

    Guengerich, F P; Johnson, W W; Ueng, Y F; Yamazaki, H; Shimada, T

    1996-01-01

    In recent years there has been considerable interest in the effect of variations in activities of xenobiotic-metabolizing enzymes on cancer incidence. This interest has accelerated with the development of methods for analyzing genetic polymorphisms. However, progress in epidemiology has been slow and the contributions of polymorphisms to risks from individual chemicals and mixtures are often controversial. A series of studies is presented to show the complexities encountered with a single chemical, aflatoxin B1 (AFB1). AFB1 is oxidized by human cytochrome P450 enzymes to several products. Only one of these, the 8,9-exo-epoxide, appears to be mutagenic and the others are detoxication products. P450 3A4, which can both activate and detoxicate AFB1, is found in the liver and the small intestine. In the small intestine, the first contact after oral exposure, epoxidation would not lead to liver cancer. The (nonenzymatic) half-life of the epoxide has been determined to be approximately 1 sec at 23 degrees C and neutral pH. Although the half-life is short, AFB1-8,9-exo-epoxide does react with DNA and glutathione S-transferase. Levels of these conjugates have been measured and combined with the rate of hydrolysis in a kinetic model to predict constants for binding of the epoxide with DNA and glutathione S-transferase. A role for epoxide hydrolase in alteration of AFB1 hepatocarcinogenesis has been proposed, although experimental evidence is lacking. Some inhibition of microsome-generated genotoxicity was observed with rat epoxide hydrolase; further information on the extent of contribution of this enzyme to AFB1 metabolism is not yet available. PMID:8781383

  7. Liver-specific cytochrome P450 CYP2C22 is a direct target of retinoic acid and a retinoic acid-metabolizing enzyme in rat liver.

    PubMed

    Qian, Linxi; Zolfaghari, Reza; Ross, A Catharine

    2010-07-01

    Several cytochrome P450 (CYP) enzymes catalyze the C4-hydroxylation of retinoic acid (RA), a potent inducer of cell differentiation and an agent in the treatment of several diseases. Here, we have characterized CYP2C22, a member of the rat CYP2C family with homology to human CYP2C8 and CYP2C9. CYP2C22 was expressed nearly exclusively in hepatocytes, where it was one of the more abundant mRNAs transcripts. In H-4-II-E rat hepatoma cells, CYP2C22 mRNA was upregulated by all-trans (at)-RA, and Am580, a nonmetabolizable analog of at-RA. In comparison, in primary human hepatocytes, at-RA increased CYP2C9 but not CYP2C8 mRNA. Analysis of the CYP2C22 promoter region revealed a RA response element (5'-GGTTCA-(n)5-AGGTCA-3') in the distal flanking region, which bound the nuclear hormone receptors RAR and RXR and which was required for transcriptional activation response of this promoter to RA in CYP2C22-luciferase-transfected RA-treated HepG2 cells. The cDNA-expressed CYP2C22 protein metabolized [3H]at-RA to more polar metabolites. While long-chain polyunsaturated fatty acids competed, 9-cis-RA was a stronger competitor. Our studies demonstrate that CYP2C22 is a high-abundance, retinoid-inducible, hepatic P450 with the potential to metabolize at-RA, providing additional insight into the role of the CYP2C gene family in retinoid homeostasis.

  8. Evaluation of the impact of Flos Daturae on rat hepatic cytochrome P450 enzymes by cocktail probe drugs.

    PubMed

    Geng, Peiwu; Wang, Shuanghu; Wang, Chunjie; Chen, Jianmiao; Zhang, Lijing; Yang, Suping; Wen, Congcong; Zhou, Yunfang; Zhang, Meiling

    2015-01-01

    Flos Daturae, known as "baimantuoluo" or "yangjinhua" in China, has been used for centuries in Traditional Chinese Medicine for the treatment of asthma, convulsions, pain, and rheumatism. To investigate the influences of Flos Daturae on the activities of rat CYP450 enzymes (CYP1A2, CYP2C9, CYP2C19, CYP2B6, CYP2D6 and CYP3A4) using cocktail probe drugs in vivo. A cocktail solution at a dose of 5 mL/kg, which contained phenacetin (10 mg/kg), tolbutamide (1 mg/kg), omeprazole (10 mg/kg), bupropion (10 mg/kg), metoprolol (10 mg/kg) and testosterone (10 mg/kg), was intragastric administered to rats treated with a single low or high dose of Flos Daturae decotion for 7days. Blood samples collected at a series of time-points in plasma were determined by UPLC-MS/MS. The corresponding pharmacokinetic parameters were calculated by the software of DAS 3.0. The results from the present in vivo study showed that Flos Daturae induce the activity of CYP2D6 enzyme with the decreased Cmax, AUC(0-∞) (P < 0.05) and the increased CL (P < 0.05). However, there were no significant differences of other probe drugs in plasma concentration and pharmacokinetic parameters. There were no significant effects on rat CYP1A2, CYP3A4, CYP2B6, CYP2C9 and CYP2C19 by Flos Daturae. Therefore, the resulting data suggested that caution was needed when Flos Daturae was co-administered with CYP2D6 substrates, which may result in treatment failure and herb-drug interactions. PMID:26885208

  9. Chlorobenzoic acid degradation by Lentinus (Panus) tigrinus: in vivo and in vitro mechanistic study-evidence for P-450 involvement in the transformation.

    PubMed

    Stella, T; Covino, S; Křesinová, Z; D'Annibale, A; Petruccioli, M; Čvančarová, M; Cajthaml, T

    2013-09-15

    Aim of this work was to investigate the ability of Lentinus (Panus) tigrinus to degrade and detoxify a chlorobenzoate (CBA) mixture composed of mono-, di- and tri-chlorinated isomers. The degradation process was investigated as a function of both the growing medium (i.e. low N Kirk's and malt extract-glucose medium) and cultivation conditions (i.e. stationary and shaken cultures). The majority of CBAs were quantitatively degraded within the early 15 d from spiking with the notable exception of the double ortho-chlorinated compounds, 2,6-di-, 2,3,6-tri- and 2,4,6-tri-CBA. Analysis of the degradation intermediates indicated the occurrence of side chain reduction, hydroxylation and methylation reactions. Although CBAs stimulated laccase production, in vitro experiments with a purified L. tigrinus laccase isoenzyme demonstrated its inability to participate in the initial attack on CBAs even in the presence of redox mediators; similar results were found with a Mn-peroxidase isoenzyme. Conversely, prompt degradation was observed upon 1h incubation of CBAs with a purified microsomal fraction containing cytochrome P-450 monooxygenase. The nature of some reaction products (i.e. hydroxylated derivatives), the dependency of the reaction on NADPH and its susceptibility to either CO or piperonyl butoxide inhibition confirmed the involvement of L. tigrinus cytochrome P-450 in the early steps of CBA degradation. PMID:23892164

  10. A High-Throughput (HTS) Assay for Enzyme Reaction Phenotyping in Human Recombinant P450 Enzymes Using LC-MS/MS.

    PubMed

    Li, Xiaofeng; Suhar, Tom; Glass, Lateca; Rajaraman, Ganesh

    2014-03-03

    Enzyme reaction phenotyping is employed extensively during the early stages of drug discovery to identify the enzymes responsible for the metabolism of new chemical entities (NCEs). Early identification of metabolic pathways facilitates prediction of potential drug-drug interactions associated with enzyme polymorphism, induction, or inhibition, and aids in the design of clinical trials. Incubation of NCEs with human recombinant enzymes is a popular method for such work because of the specificity, simplicity, and high-throughput nature of this approach for phenotyping studies. The availability of a relative abundance factor and calculated intersystem extrapolation factor for the expressed recombinant enzymes facilitates easy scaling of in vitro data, enabling in vitro-in vivo extrapolation. Described in this unit is a high-throughput screen for identifying enzymes involved in the metabolism of NCEs. Emphasis is placed on the analysis of the human recombinant enzymes CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2B6, and CYP3A4, including the calculation of the intrinsic clearance for each.

  11. Inducing effect of oxfendazole on cytochrome P450IA2 in rabbit liver. Consequences on cytochrome P450 dependent monooxygenases.

    PubMed

    Gleizes, C; Eeckhoutte, C; Pineau, T; Alvinerie, M; Galtier, P

    1991-06-15

    Male New Zealand rabbits were dosed with either 0.9, 4.5 or 22.5 mg/kg/day of oxfendazole by gastric intubation for 10 days. Oxfendazole administered at the therapeutic dose (4.5 mg/kg) and at the highest dose (22.5 mg/kg) increased 1.54- and 2.36-fold the total liver microsomal cytochrome P450 and more particularly the isoenzyme P450IA2 (95 and 184% increases) as demonstrated by western blotting. Increases in ethoxyresorufin O-deethylation and hydroxylations of benzopyrene and acetanilide occurred in livers of the same animals without any change in N-demethylation of aminopyrine, benzphetamine or erythromycin. Because of the unchanged level of mRNA specific to cytochrome P450IA2, as shown by northern blot analysis of poly mRNA, an enzyme stabilization rather than a transcriptional activation of IA2 genes should be involved in the P450IA2 regulation mechanisms. Oxfendazole bound strongly to cytochrome P450, giving rise to a type II spectrum, and inhibited noncompetitively the ethoxyresorufin O-deethylase and acetanilide hydroxylase activities, this confirmed that oxfendazole interacts only with the P450IA2 family. On the basis of a comparison of the enzymatic activities induced by various imidazole drugs, it was concluded that oxfendazole, like omeprazole and albendazole, behaved as a 3-methylcholanthrene-type inducer. These three benzimidazoles did not all belong to the same category of cytochrome P450 inducers as the antifungal drugs miconazole, clotrimazole and ketoconazole.

  12. Characterization and biological properties of NanoCUR formulation and its effect on major human cytochrome P450 enzymes.

    PubMed

    Shamsi, Suhaili; Chen, Yan; Lim, Lee Yong

    2015-11-10

    Curcumin (CUR) has been formulated into a host of nano-sized formulations in a bid to improve its in vivo solubility, stability and bioavailability. The aim of this study was to investigate whether the encapsulation of CUR in nanocarriers would impede its biological interactivity, specifically its potential anti-cancer adjuvant activity via the modulation of CYP enzymes in vitro. NanoCUR, a micellar dispersion prepared via a thin film method using only Pluronic F127 as excipient, was amenable to lyophilization, and retained its nano-sized spherical dimensions (17-33 nm) upon reconstitution with water followed by dilution to 5 μM with HBSS or EMEM. NanoCUR was a weaker cytotoxic agent compared to CUR in solution (sCUR), affecting HepG2 cell viability only when the incubation time was prolonged from 4h to 48 h. Correlation with 2h uptake data suggests this was due to a lower cellular uptake rate of CUR from NanoCUR than from sCUR. The poorer CUR accessibility might also account for NanoCUR being a weaker inhibitor of CYP2C9 and CYP2D6 than sCUR. NanoCUR was, however, 1.76-fold more potent against the CYP3A4 (IC50 5.13 ± 0.91 μM) metabolic function. The higher activity against CYP3A4 might be attributed to the synergistic action of Pluronic F127, since the blank micellar dispersion also inhibited CYP3A4 activity. Both sCUR and NanoCUR had no effect on the CYP3A4 mRNA levels in the HepG2 cells. NanoCUR therefore, maintained most of the biological activities of CUR in vitro, albeit at a lower potency and response rate. PMID:26319630

  13. Genetic polymorphisms of the drug-metabolizing enzyme cytochrome P450 3A5 in a Uyghur Chinese population.

    PubMed

    Chen, Zhengshuai; Li, Jingjie; Chen, Peng; Wang, Fengjiao; Zhang, Ning; Yang, Min; Jin, Tianbo; Chen, Chao

    2016-09-01

    1.  Detection of CYP3A5 variant alleles, and knowledge about their allelic frequency in Uyghur ethnic groups, is important to establish the clinical relevance of screening for these polymorphisms to optimize pharmacotherapy. 2. We used DNA sequencing to investigate the promoter, exons and surrounding introns, and 3'-untranslated region of the CYP3A5 gene in 96 unrelated healthy Uyghur individuals. We also used SIFT and PolyPhen-2 to predict the protein function of the novel non-synonymous mutation in CYP3A5 coding regions. 3. We found 24 different CYP3A5 polymorphisms in the Uyghur population, three of which were novel: the synonymous mutation 43C > T in exon 1, two mutations 32120C > G and 32245T > C in 3'-untranslated region, and we detected the allele frequencies of CYP3A5*1 and *3 as 64.58% and 35.42%, respectively. While no subjects with CYP3A5*6 were identified. Other identified genotypes included the heterozygous genotype 1A/3A (59.38%) and 1A/3E (11.46%), which lead to decreased enzyme activity. In addition, the frequency of haplotype "TTAGGT" was the most prevalent with 0.781. 4. Our data provide new information regarding CYP3A5 genetic polymorphisms in Uyghur individuals, which may help to improve individualization of drug therapy and offer a preliminary basis for more rational use of drugs. PMID:26739429

  14. Genetic polymorphisms of the drug-metabolizing enzyme cytochrome P450 3A5 in a Uyghur Chinese population.

    PubMed

    Chen, Zhengshuai; Li, Jingjie; Chen, Peng; Wang, Fengjiao; Zhang, Ning; Yang, Min; Jin, Tianbo; Chen, Chao

    2016-09-01

    1.  Detection of CYP3A5 variant alleles, and knowledge about their allelic frequency in Uyghur ethnic groups, is important to establish the clinical relevance of screening for these polymorphisms to optimize pharmacotherapy. 2. We used DNA sequencing to investigate the promoter, exons and surrounding introns, and 3'-untranslated region of the CYP3A5 gene in 96 unrelated healthy Uyghur individuals. We also used SIFT and PolyPhen-2 to predict the protein function of the novel non-synonymous mutation in CYP3A5 coding regions. 3. We found 24 different CYP3A5 polymorphisms in the Uyghur population, three of which were novel: the synonymous mutation 43C > T in exon 1, two mutations 32120C > G and 32245T > C in 3'-untranslated region, and we detected the allele frequencies of CYP3A5*1 and *3 as 64.58% and 35.42%, respectively. While no subjects with CYP3A5*6 were identified. Other identified genotypes included the heterozygous genotype 1A/3A (59.38%) and 1A/3E (11.46%), which lead to decreased enzyme activity. In addition, the frequency of haplotype "TTAGGT" was the most prevalent with 0.781. 4. Our data provide new information regarding CYP3A5 genetic polymorphisms in Uyghur individuals, which may help to improve individualization of drug therapy and offer a preliminary basis for more rational use of drugs.

  15. Biological diversity of cytochrome P450 redox partner systems.

    PubMed

    McLean, Kirsty J; Luciakova, Dominika; Belcher, James; Tee, Kang Lan; Munro, Andrew W

    2015-01-01

    Cytochrome P450 enzymes (P450s or CYPs) catalyze an enormous variety of oxidative reactions in organisms from all major domains of life. Their monooxygenase activity relies on the reductive scission of molecular oxygen (O2) bound to P450 heme iron, and thus on the delivery of two electrons to the heme iron at discrete points in the catalytic cycle. Early studies suggested that P450 redox partner machinery fell into only two major classes: either the eukaryotic diflavin enzyme NADPH-cytochrome P450 oxidoreductase, or bacterial/mitochondrial NAD(P)H-ferredoxin reductase and ferredoxin partners. However, more recent studies, aided by genome sequence data, reveal a much more complex scenario. Several new types of P450 redox partner systems have now been characterized, including P450s naturally linked to their redox partners, or to a component protein of their P450 electron delivery system. Other P450s have evolved to bypass requirements for redox partners, and instead react directly with hydrogen peroxide or NAD(P)H to facilitate oxidative or reductive catalysis. Further P450s are fused to non-redox partner enzymes and can catalyse consecutive reactions in a common pathway. This chapter describes the biochemistry and the enormous natural diversity of P450 redox systems, including descriptions of novel P450s fused to non-redox partner proteins.

  16. Toward reduction in animal sacrifice for drugs: molecular modeling of Macaca fascicularis P450 2C20 for virtual screening of Homo sapiens P450 2C8 substrates.

    PubMed

    Rua, Francesco; Di Nardo, Giovanna; Sadeghi, Sheila J; Gilardi, Gianfranco

    2012-01-01

    Macaca fascicularis P450 2C20 shares 92% identity with human cytochrome P450 2C8, which is involved in the metabolism of more than 8% of all prescribed drugs. To date, only paclitaxel and amodiaquine, two substrate markers of the human P450 2C8, have been experimentally confirmed as M. fascicularis P450 2C20 drugs. To bridge the lack of information on the ligands recognized by M. fascicularis P450 2C20, in this study, a three-dimensional homology model of this enzyme was generated on the basis of the available crystal structure of the human homologue P450 2C8 using YASARA. The results indicated that 90.0%, 9.0%, 0.5%, and 0.5% of the residues of the P450 2C20 model were located in the most favorable, allowed, generously allowed, and disallowed regions, respectively. The root-mean-square deviation of the C-alpha superposition of the M. fascicularis P450 2C20 model with the Homo sapiens P450 2C8 was 0.074 Å, indicating a very high similarity of the two structures. Subsequently, the 2C20 model was used for in silico screening of 58 known P450 2C8 substrates and 62 inhibitors. These were also docked in the active site of the crystal structure of the human P450 2C8. The affinity of each compound for the active site of both cytochromes proved to be very similar, meaning that the few key residues that are mutated in the active site of the M. fascicularis P450 do not prevent the P450 2C20 from recognizing the same substrates as the human P450 2C8.

  17. Differentiation of monkey embryonic stem cells to hepatocytes by feeder-free dispersion culture and expression analyses of cytochrome p450 enzymes responsible for drug metabolism.

    PubMed

    Maruyama, Junya; Matsunaga, Tamihide; Yamaori, Satoshi; Sakamoto, Sakae; Kamada, Noboru; Nakamura, Katsunori; Kikuchi, Shinji; Ohmori, Shigeru

    2013-01-01

    We reported previously that monkey embryonic stem cells (ESCs) were differentiated into hepatocytes by formation of embryoid bodies (EBs). However, this EB formation method is not always efficient for assays using a large number of samples simultaneously. A dispersion culture system, one of the differentiation methods without EB formation, is able to more efficiently provide a large number of feeder-free undifferentiated cells. A previous study demonstrated the effectiveness of the Rho-associated kinase inhibitor Y-27632 for feeder-free dispersion culture and induction of differentiation of monkey ESCs into neural cells. In the present study, the induction of differentiation of cynomolgus monkey ESCs (cmESCs) into hepatocytes was performed by the dispersion culture method, and the expression and drug inducibility of cytochrome P450 (CYP) enzymes in these hepatocytes were examined. The cmESCs were successfully differentiated into hepatocytes under feeder-free dispersion culture conditions supplemented with Y-27632. The hepatocytes differentiated from cmESCs expressed the mRNAs for three hepatocyte marker genes (α-fetoprotein, albumin, CYP7A1) and several CYP enzymes, as measured by real-time polymerase chain reaction. In particular, the basal expression of cmCYP3A4 (3A8) in these hepatocytes was detected at mRNA and enzyme activity (testosterone 6β-hydroxylation) levels. Furthermore, the expression and activity of cmCYP3A4 (3A8) were significantly upregulated by rifampicin. These results indicated the effectiveness of Y-27632 supplementation for feeder-free dispersed culture and induction of differentiation into hepatocytes, and the expression of functional CYP enzyme(s) in cmESC-derived hepatic cells.

  18. Acute and chronic toxicity, cytochrome p450 enzyme inhibition, and HERG channel blockade studies with a polyherbal, ayurvedic formulation for inflammation.

    PubMed

    Dey, Debendranath; Chaskar, Sunetra; Athavale, Nitin; Chitre, Deepa

    2015-01-01

    Ayurvedic plants are known for thousands of years to have anti-inflammatory and antiarthritic effect. We have recently shown that BV-9238, a proprietary formulation of Withania somnifera, Boswellia serrata, Zingiber officinale, and Curcuma longa, inhibits LPS-induced TNF-alpha and nitric oxide production from mouse macrophage and reduces inflammation in different animal models. To evaluate the safety parameters of BV-9238, we conducted a cytotoxicity study in RAW 264.7 cells (0.005-1 mg/mL) by MTT/formazan method, an acute single dose (2-10 g/kg bodyweight) toxicity study and a 180-day chronic study with 1 g and 2 g/kg bodyweight in Sprague Dawley rats. Some sedation, ptosis, and ataxia were observed for first 15-20 min in very high acute doses and hence not used for further chronic studies. At the end of 180 days, gross and histopathology, blood cell counts, liver and renal functions were all at normal levels. Further, a modest attempt was made to assess the effects of BV-9238 (0.5 µg/mL) on six major human cytochrome P450 enzymes and (3)H radioligand binding assay with human hERG receptors. BV-9238 did not show any significant inhibition of these enzymes at the tested dose. All these suggest that BV-9238 has potential as a safe and well tolerated anti-inflammatory formulation for future use. PMID:25893199

  19. Acute and Chronic Toxicity, Cytochrome P450 Enzyme Inhibition, and hERG Channel Blockade Studies with a Polyherbal, Ayurvedic Formulation for Inflammation

    PubMed Central

    Dey, Debendranath; Chaskar, Sunetra; Athavale, Nitin; Chitre, Deepa

    2015-01-01

    Ayurvedic plants are known for thousands of years to have anti-inflammatory and antiarthritic effect. We have recently shown that BV-9238, a proprietary formulation of Withania somnifera, Boswellia serrata, Zingiber officinale, and Curcuma longa, inhibits LPS-induced TNF-alpha and nitric oxide production from mouse macrophage and reduces inflammation in different animal models. To evaluate the safety parameters of BV-9238, we conducted a cytotoxicity study in RAW 264.7 cells (0.005–1 mg/mL) by MTT/formazan method, an acute single dose (2–10 g/kg bodyweight) toxicity study and a 180-day chronic study with 1 g and 2 g/kg bodyweight in Sprague Dawley rats. Some sedation, ptosis, and ataxia were observed for first 15–20 min in very high acute doses and hence not used for further chronic studies. At the end of 180 days, gross and histopathology, blood cell counts, liver and renal functions were all at normal levels. Further, a modest attempt was made to assess the effects of BV-9238 (0.5 µg/mL) on six major human cytochrome P450 enzymes and 3H radioligand binding assay with human hERG receptors. BV-9238 did not show any significant inhibition of these enzymes at the tested dose. All these suggest that BV-9238 has potential as a safe and well tolerated anti-inflammatory formulation for future use. PMID:25893199

  20. Luminogenic cytochrome P450 assays.

    PubMed

    Cali, James J; Ma, Dongping; Sobol, Mary; Simpson, Daniel J; Frackman, Susan; Good, Troy D; Daily, William J; Liu, David

    2006-08-01

    Luminogenic cytochrome P450 (CYP) assays couple CYP enzyme activity to firefly luciferase luminescence in a technology called P450-Glo(TM) (Promega). Luminogenic substrates are used in assays of human CYP1A1, -1A2, -1B1, -2C8, -2C9, -2C19, -2D6, -2J2, -3A4, -3A7, -4A11, -4F3B, -4F12 and -19. The assays detect dose-dependent CYP inhibition by test compounds against recombinant CYP enzymes or liver microsomes. Induction or inhibition of CYP activities in cultured hepatocytes is measured in a nonlytic approach that leaves cells intact for additional analysis. Luminogenic CYP assays offer advantages of speed and safety over HPLC and radiochemical-based methods. Compared with fluorogenic methods the approach offers advantages of improved sensitivity and decreased interference between optical properties of test compound and CYP substrate. These homogenous assays are sensitive and robust tools for high-throughput CYP screening in early drug discovery. PMID:16859410

  1. In vitro oxidative metabolism of cajaninstilbene Acid by human liver microsomes and hepatocytes: involvement of cytochrome p450 reaction phenotyping, inhibition, and induction studies.

    PubMed

    Hua, Xin; Peng, Xiao; Tan, Shengnan; Li, Chunying; Wang, Wei; Luo, Meng; Fu, Yujie; Zu, Yuangang; Smyth, Hugh

    2014-10-29

    Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid), an active constituent of pigeonpea leaves, an important tropical crop, is known for its clinical effects in the treatment of diabetes, hepatitis, and measles and its potential antitumor effect. In this study, the effect of the cytochrome P450 isozymes on the activity of CSA was investigated. Two hydroxylation metabolites were identified in the study. The reaction phenotype study showed that CYP3A4, CYP2C9, and CYP1A2 were the major cytochrome P450 isozymes in the metabolism of CSA. The metabolic food-drug interaction potential was also evaluated in vitro. The effect of CSA inhibition/induction of enzymatic activities of seven drug-metabolizing CYP450 isozymes in vitro was estimated by high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry analytical techniques. CSA showed different inhibitory effects on different isozymes. CSA reversibly inhibited CYP3A4 and CYP2C9 activities in human liver microsomes with IC50 values of 28.3 and 31.3 μM, respectively, but exhibited no inhibition activities to CYP1A2, CYP2A6, CYP2C19, CYP2D6, and CYP2E1. CSA showed a weak effect on CYP450 enzymes in a time-dependent manner. CSA did not substantially induce CYP1A2, CYP2A6, CYP2B6, CYP2E1, CYP2C9, CYP2C19, CYP2D6, or CYP3A4 at concentrations up to 30 μM in primary human hepatocytes. The results of our experiments may be helpful to predict clinically significant food-drug interactions when other drugs are administered in combination with CSA. PMID:25272989

  2. Identification and functional analysis of a cytochrome P450 gene CYP9AQ2 involved in deltamethrin detoxification from Locusta migratoria.

    PubMed

    Guo, Yanqiong; Zhang, Xueyao; Wu, Haihua; Yu, Rongrong; Zhang, Jianzhen; Zhu, Kun Yan; Guo, Yaping; Ma, Enbo

    2015-07-01

    A 1578-bp cDNA of a cytochrome P450 gene (CYP9AQ2) was sequenced from the migratory locust, Locusta migratoria. It contains an open reading frame (ORF) of 1557 bp that encodes 519 amino acid residues. As compared with other known insect cytochrome P450 enzymes, the overall structure of its deduced protein is highly conserved. The expression of CYP9AQ2 was relatively higher in nymphal stages than in egg and adult stages, and the highest expression was found in fourth-instar nymphs, which was 8.7-fold higher than that of eggs. High expression of CYP9AQ2 was observed in foregut, followed by hindgut, Malpighian tubules, brain and fat bodies, which were 75~142-fold higher than that in hemolymph. Low expression was found in midgut, gastric cecum and hemolymph. The expression of CYP9AQ2 was up-regulated by deltamethrin at the concentrations of 0.04, 0.08, and 0.12 µg/mL and the maximal up-regulation was 2.6-fold at LD10 (0.04 µg/mL). RNA interference-mediated silencing of CYP9AQ2 led to an increased mortality of 25.3% when the nymphs were exposed to deltamethrin, suggesting that CYP9AQ2 plays an important role in deltamethrin detoxification in L. migratoria. Computational docking studies suggested that hydroxylation of the phenoxybenzyl moiety might be one of the deltamethrin metabolic pathways by CYP9AQ2. PMID:26071800

  3. Recent Structural Insights into Cytochrome P450 Function.

    PubMed

    Guengerich, F Peter; Waterman, Michael R; Egli, Martin

    2016-08-01

    Cytochrome P450 (P450) enzymes are important in the metabolism of drugs, steroids, fat-soluble vitamins, carcinogens, pesticides, and many other types of chemicals. Their catalytic activities are important issues in areas such as drug-drug interactions and endocrine function. During the past 30 years, structures of P450s have been very helpful in understanding function, particularly the mammalian P450 structures available in the past 15 years. We review recent activity in this area, focusing on the past 2 years (2014-2015). Structural work with microbial P450s includes studies related to the biosynthesis of natural products and the use of parasitic and fungal P450 structures as targets for drug discovery. Studies on mammalian P450s include the utilization of information about 'drug-metabolizing' P450s to improve drug development and also to understand the molecular bases of endocrine dysfunction. PMID:27267697

  4. Aldehyde Reduction by Cytochrome P450

    PubMed Central

    Amunom, Immaculate; Srivastava, Sanjay; Prough, Russell A.

    2011-01-01

    This protocol describes the procedure for measuring the relative rates of metabolism of the α,β-unsaturated aldehydes, 9-anthracene aldehyde (9-AA) and 4-hydroxy-trans-2-nonenal (4-HNE); specifically the aldehyde reduction reactions of cytochrome P450s (CYPs). These assays can be performed using either liver microsomal or other tissue fractions, spherosome preparations of recombinant CYPs, or recombinant CYPs from other sources. The method used here to study the reduction of a model α,β-unsaturated aldehyde, 9-AA, by CYPs was adapted from the assay used to investigate 9-anthracene oxidation as reported by Marini et al. (Marini et al., 2003). For experiments measuring reduction of the endogenous aldehyde, 4-HNE, the substrate was incubated with CYP in the presence of oxygen and NADPH and the metabolites were separated by High Pressure Liquid Chromatograpy (HPLC), using an adaptation of the method of Srivastava et al. (Srivastava et al., 2010). For study of 9-AA and 4-HNE reduction, the first step involves incubation of the substrate with the CYP in appropriate media, followed by quantification of metabolites through either spectrofluorimetry or analysis by HPLC coupled with a radiometric assay, respectively. Metabolite identification can be achieved by HPLC GC-mass spectrometric analysis. Inhibitors of cytochrome P450 function can be utilized to show the role of the hemoprotein or other enzymes in these reduction reactions. The reduction reactions for CYP’s were not inhibited by either anaerobiosis or inclusion of CO in the gaseous phase of the reaction mixture. These character of these reactions are similar to those reported for some cytochrome P450-catalyzed azo reduction reactions. PMID:21553396

  5. Molecular evolutionary dynamics of cytochrome P450 monooxygenases across kingdoms: Special focus on mycobacterial P450s

    PubMed Central

    Parvez, Mohammad; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Kgosiemang, Ipeleng Kopano Rosinah; Bamal, Hans Denis; Pagadala, Nataraj Sekhar; Xie, Ting; Yang, Haoran; Chen, Hengye; Theron, Chrispian William; Monyaki, Richie; Raselemane, Seiso Caiphus; Salewe, Vuyani; Mongale, Bogadi Lorato; Matowane, Retshedisitswe Godfrey; Abdalla, Sara Mohamed Hasaan; Booi, Wool Isaac; van Wyk, Mari; Olivier, Dedré; Boucher, Charlotte E.; Nelson, David R.; Tuszynski, Jack A.; Blackburn, Jonathan Michael; Yu, Jae-Hyuk; Mashele, Samson Sitheni; Chen, Wanping; Syed, Khajamohiddin

    2016-01-01

    Since the initial identification of cytochrome P450 monooxygenases (CYPs/P450s), great progress has been made in understanding their structure-function relationship, diversity and application in producing compounds beneficial to humans. However, the molecular evolution of P450s in terms of their dynamics both at protein and DNA levels and functional conservation across kingdoms still needs investigation. In this study, we analyzed 17 598 P450s belonging to 113 P450 families (bacteria −42; fungi −19; plant −28; animal −22; plant and animal −1 and common P450 family −1) and found highly conserved and rapidly evolving P450 families. Results suggested that bacterial P450s, particularly P450s belonging to mycobacteria, are highly conserved both at protein and DNA levels. Mycobacteria possess the highest P450 diversity percentage compared to other microbes and have a high coverage of P450s (≥1%) in their genomes, as found in fungi and plants. Phylogenetic and functional analyses revealed the functional conservation of P450s despite belonging to different biological kingdoms, suggesting the adherence of P450s to their innate function such as their involvement in either generation or oxidation of steroids and structurally related molecules, fatty acids and terpenoids. This study’s results offer new understanding of the dynamic structural nature of P450s. PMID:27616185

  6. Molecular evolutionary dynamics of cytochrome P450 monooxygenases across kingdoms: Special focus on mycobacterial P450s.

    PubMed

    Parvez, Mohammad; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Kgosiemang, Ipeleng Kopano Rosinah; Bamal, Hans Denis; Pagadala, Nataraj Sekhar; Xie, Ting; Yang, Haoran; Chen, Hengye; Theron, Chrispian William; Monyaki, Richie; Raselemane, Seiso Caiphus; Salewe, Vuyani; Mongale, Bogadi Lorato; Matowane, Retshedisitswe Godfrey; Abdalla, Sara Mohamed Hasaan; Booi, Wool Isaac; van Wyk, Mari; Olivier, Dedré; Boucher, Charlotte E; Nelson, David R; Tuszynski, Jack A; Blackburn, Jonathan Michael; Yu, Jae-Hyuk; Mashele, Samson Sitheni; Chen, Wanping; Syed, Khajamohiddin

    2016-01-01

    Since the initial identification of cytochrome P450 monooxygenases (CYPs/P450s), great progress has been made in understanding their structure-function relationship, diversity and application in producing compounds beneficial to humans. However, the molecular evolution of P450s in terms of their dynamics both at protein and DNA levels and functional conservation across kingdoms still needs investigation. In this study, we analyzed 17 598 P450s belonging to 113 P450 families (bacteria -42; fungi -19; plant -28; animal -22; plant and animal -1 and common P450 family -1) and found highly conserved and rapidly evolving P450 families. Results suggested that bacterial P450s, particularly P450s belonging to mycobacteria, are highly conserved both at protein and DNA levels. Mycobacteria possess the highest P450 diversity percentage compared to other microbes and have a high coverage of P450s (≥1%) in their genomes, as found in fungi and plants. Phylogenetic and functional analyses revealed the functional conservation of P450s despite belonging to different biological kingdoms, suggesting the adherence of P450s to their innate function such as their involvement in either generation or oxidation of steroids and structurally related molecules, fatty acids and terpenoids. This study's results offer new understanding of the dynamic structural nature of P450s. PMID:27616185

  7. Loss of haem from cytochrome P-450 caused by lipid peroxidation and 2-allyl-2-isoprophylacetamide. An abnormal pathway not involving production of carbon monoxide.

    PubMed Central

    De Matteis, F; Gibbs, A H; Unseld, A

    1977-01-01

    1. Microsomal preparations undergoing lipid peroxidation produce CO and lose haem from cytochrome P-450. 2. The amount of CO produced does not correlate with the amount of haem lost and, after pre-labelling of microsomal haem in its bridges with 5-amino[5-14C]laevulinate, the radioactivity lost from haem is not recorved as CO. 3. Similarly, when pre-labelled microsomal haem is destroyed by the action of 2-allyl-2-isopropylacetamide, no radioactivity is recovered as CO. In clear contrast, on degradation of haem by the haem oxygenase system, CO is produced in an amount equimolar to the haem lost. 4. It is concluded that (a) the CO produced during lipid peroxidation originates from a source different from haem and (b) the degradations of haem caused by lipid peroxidation and 2-allyl-2-isopropylacetamide do not involve to any significant extent evolution of the methene-bridge carbon of haem as CO. PMID:606245

  8. Human cytochrome P450 oxidation of 5-hydroxythalidomide and pomalidomide, an amino analogue of thalidomide.

    PubMed

    Chowdhury, Goutam; Shibata, Norio; Yamazaki, Hiroshi; Guengerich, F Peter

    2014-01-21

    The sedative and antiemetic drug thalidomide [α-(N-phthalimido)glutarimide] was withdrawn in the early 1960s because of its potent teratogenic effects but was approved for the treatment of lesions associated with leprosy in 1998 and multiple myeloma in 2006. The mechanism of teratogenicity of thalidomide still remains unclear, but it is well-established that metabolism of thalidomide is important for both teratogenicity and cancer treatment outcome. Thalidomide is oxidized by various cytochrome P450 (P450) enzymes, the major one being P450 2C19, to 5-hydroxy-, 5'-hydroxy-, and dihydroxythalidomide. We previously reported that P450 3A4 oxidizes thalidomide to the 5-hydroxy and dihydroxy metabolites, with the second oxidation step involving a reactive intermediate, possibly an arene oxide, that can be trapped by glutathione (GSH) to GSH adducts. We now show that the dihydroxythalidomide metabolite can be further oxidized to a quinone intermediate. Human P450s 2J2, 2C18, and 4A11 were also found to oxidize 5-hydroxythalidomide to dihydroxy products. Unlike P450s 2C19 and 3A4, neither P450 2J2, 2C18, nor 4A11 oxidized thalidomide itself. A recently approved amino analogue of thalidomide, pomalidomide (CC-4047, Actimid), was also oxidized by human liver microsomes and P450s 2C19, 3A4, and 2J2 to the corresponding phthalimide ring-hydroxylated product.

  9. In vitro inhibition and induction of human cytochrome P450 enzymes by mirabegron, a potent and selective β3-adrenoceptor agonist.

    PubMed

    Takusagawa, Shin; Miyashita, Aiji; Iwatsubo, Takafumi; Usui, Takashi

    2012-12-01

    The potential for mirabegron, a β(3)-adrenoceptor agonist for the treatment of overactive bladder, to cause drug-drug interactions via inhibition or induction of cytochrome P450 (CYP) enzymes was investigated in vitro. Mirabegron was shown to be a time-dependent inhibitor of CYP2D6 in the presence of NADPH as the IC(50) value in human liver microsomes decreased from 13 to 4.3 μM after 30-min pre-incubation. Further evaluation indicated that mirabegron may act partly as an irreversible or quasi-irreversible metabolism-dependent inhibitor of CYP2D6. Therefore, the potential of mirabegron to inhibit the metabolism of CYP2D6 substrates in vivo cannot be excluded. Mirabegron was predicted not to cause clinically significant metabolic drug-drug interactions via inhibition of CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2E1, or CYP3A4/5 because the IC(50) values for these enzymes both with and without pre-incubation were >100 μM (370 times maximum human plasma concentration [C(max)]). Whereas positive controls (100 µM omeprazole and 10 µM rifampin) caused the anticipated CYP induction, the highest concentration of mirabegron (10 µM; 37 times plasma C(max)) had minimal effect on CYP1A2 and CYP3A4/5 activity, and CYP1A2 and CYP3A4 mRNA levels in freshly isolated human hepatocytes, suggesting that mirabegron is not an inducer of these enzymes.

  10. Cytochrome P450 2A13 is an efficient enzyme in metabolic activation of aflatoxin G1 in human bronchial epithelial cells.

    PubMed

    Zhang, Zhan; Yang, Xuejiao; Wang, Yun; Wang, Xichen; Lu, Huiyuan; Zhang, Xiaoming; Xiao, Xue; Li, Shushu; Wang, Xinru; Wang, Shou-Lin

    2013-09-01

    Cytochrome P450 2A13 (CYP2A13) is an extrahepatic enzyme that mainly expresses in human respiratory system, and it is reported to mediate the metabolic activation of aflatoxin B1. Due to the structural similarity, AFG1 is predicted to be metabolized by CYP2A13. However, the role of CYP2A13 in metabolic activation of AFG1 is unclear. In present study, human bronchial epithelial cells that stably express CYP2A13 (B-2A13) were used to conduct the effects of AFG1 on cytotoxicity, apoptosis, DNA damages, and their response protein expression. Low concentrations of AFG1 induced significant cytotoxicity and apoptosis, which was consistent with the increased expressions of pro-apoptotic proteins, such as C-PARP and C-caspase-3. In addition, AFG1 increased 8-OHdG and γH2AX in the nuclies and induced S phase arrest and DNA damage in B-2A13 cells, and the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and γH2AX, were activated. All the above effects were inhibited by nicotine (a substrate of CYP2A13) or 8-MOP (an inhibitor of CYP enzymes), confirming that CYP2A13 mediated the AFG1-induced cytotoxicity and DNA damages. Collectively, our findings first demonstrate that CYP2A13 might be an efficient enzyme in metabolic activation of AFG1 and helps provide a new insight into adverse effects of AFG1 in human respiratory system. PMID:23907605

  11. Expression of albumin and cytochrome P450 enzymes in HepG2 cells cultured with a nanotechnology-based culture plate with microfabricated scaffold.

    PubMed

    Nakamura, Kazuaki; Kato, Natsuko; Aizawa, Kazuko; Mizutani, Reiko; Yamauchi, Junji; Tanoue, Akito

    2011-10-01

    The Nanoculture plate (NCP) is a recently developed plate which essentially consists of a textured surface with specific characteristics that induce spheroid formation: microfabrications with a micro-square pattern on the culture surface. The NCP can be used to generate uniform adhesive spheroids of cancer cell lines using conventional techniques without the need of any animal compounds. In this study, we assessed the performance of human hepatoma cell line HepG2 cells cultured with an NCP to evaluate the effects of the NCP on their hepatocyte-specific functions. The NCP facilitated the formation of three-dimensional (3D) HepG2 cell architecture. HepG2 cells cultured with an NCP exhibited enhanced mRNA expression levels of albumin and cytochrome P450 (CYP) enzymes compared to those cultured with a two-dimensional (2D) conventional plate. The expression levels of two specific liver-enriched transcription factors, hepatocyte nuclear factor 4α (HNF4α) and CCAAT/enhancer binding protein α (C/EBPα), were higher in HepG2 cells grown with the NCP than those in HepG2 cells grown with conventional plates before albumin and CYP enzymes expression levels were increased. The inducibility of CYP1A2 and CYP3A4 mRNA following exposure to inducers in HepG2 cells cultured with an NCP was comparable to that in HepG2 cells cultured with conventional plates, while the expression levels of CYP1A2 and CYP3A4 mRNA following exposure to inducers were higher when using an NCP than when using conventional plates. These results suggest that the use of an NCP enhances the hepatocyte-specific functions of HepG2 cells, such as drug-metabolizing enzyme expression, making the NCP/HepG2 system a useful tool for evaluating drug metabolism in vitro.

  12. Identification, characterization and developmental expression of Halloween genes encoding P450 enzymes mediating ecdysone biosynthesis in the tobacco hornworm, Manduca sexta.

    PubMed

    Rewitz, Kim F; Rybczynski, Robert; Warren, James T; Gilbert, Lawrence I

    2006-03-01

    The insect molting hormone 20-hydroxyecdysone (20E) plays a central role in regulating gene expression during development and metamorphosis. In many Lepidoptera, the pro-hormone 3-dehydroecdysone (3DE), synthesized from cholesterol in the prothoracic gland, is rapidly converted to ecdysone (E) by a hemolymph reductase, and E is subsequently converted to 20E in various peripheral target tissues. Recently, four Drosophila melanogaster P450 enzymes, encoded by specific Halloween genes, were cloned and functionally characterized as mediating the last hydroxylation steps leading to 20E. We extended this work to the tobacco hornworm Manduca sexta, an established model for endocrinological and developmental studies. cDNA clones were obtained for three Manduca orthologs of CYP306A1 (phantom; phm, the 25-hydroxylase), CYP302A1 (disembodied; dib, the 22-hydroxylase) and CYP315A1 (shadow; sad, the 2-hydroxylase), expressed predominantly in the prothoracic gland during the fifth (final) larval instar and during pupal-adult development, with fifth instar mRNA levels closely paralleling the hemolymph ecdysteroid titer. The data indicate that transcriptional regulation of phm, dib and sad plays a role in the developmentally varying steroidogenic capacities of the prothoracic glands during the fifth instar. The consistent expression of the Halloween genes confirms the importance of the prothoracic glands in pupal-adult development. These studies establish Manduca as an excellent model for examining the regulation of the Halloween genes. PMID:16503480

  13. SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions

    PubMed Central

    Preissner, Saskia; Kroll, Katharina; Dunkel, Mathias; Senger, Christian; Goldsobel, Gady; Kuzman, Daniel; Guenther, Stefan; Winnenburg, Rainer; Schroeder, Michael; Preissner, Robert

    2010-01-01

    Much of the information on the Cytochrome P450 enzymes (CYPs) is spread across literature and the internet. Aggregating knowledge about CYPs into one database makes the search more efficient. Text mining on 57 CYPs and drugs led to a mass of papers, which were screened manually for facts about metabolism, SNPs and their effects on drug degradation. Information was put into a database, which enables the user not only to look up a particular CYP and all metabolized drugs, but also to check tolerability of drug-cocktails and to find alternative combinations, to use metabolic pathways more efficiently. The SuperCYP database contains 1170 drugs with more than 3800 interactions including references. Approximately 2000 SNPs and mutations are listed and ordered according to their effect on expression and/or activity. SuperCYP (http://bioinformatics.charite.de/supercyp) is a comprehensive resource focused on CYPs and drug metabolism. Homology-modeled structures of the CYPs can be downloaded in PDB format and related drugs are available as MOL-files. Within the resource, CYPs can be aligned with each other, drug-cocktails can be ‘mixed’, SNPs, protein point mutations, and their effects can be viewed and corresponding PubMed IDs are given. SuperCYP is meant to be a platform and a starting point for scientists and health professionals for furthering their research. PMID:19934256

  14. Identification, characterization and developmental expression of Halloween genes encoding P450 enzymes mediating ecdysone biosynthesis in the tobacco hornworm, Manduca sexta.

    PubMed

    Rewitz, Kim F; Rybczynski, Robert; Warren, James T; Gilbert, Lawrence I

    2006-03-01

    The insect molting hormone 20-hydroxyecdysone (20E) plays a central role in regulating gene expression during development and metamorphosis. In many Lepidoptera, the pro-hormone 3-dehydroecdysone (3DE), synthesized from cholesterol in the prothoracic gland, is rapidly converted to ecdysone (E) by a hemolymph reductase, and E is subsequently converted to 20E in various peripheral target tissues. Recently, four Drosophila melanogaster P450 enzymes, encoded by specific Halloween genes, were cloned and functionally characterized as mediating the last hydroxylation steps leading to 20E. We extended this work to the tobacco hornworm Manduca sexta, an established model for endocrinological and developmental studies. cDNA clones were obtained for three Manduca orthologs of CYP306A1 (phantom; phm, the 25-hydroxylase), CYP302A1 (disembodied; dib, the 22-hydroxylase) and CYP315A1 (shadow; sad, the 2-hydroxylase), expressed predominantly in the prothoracic gland during the fifth (final) larval instar and during pupal-adult development, with fifth instar mRNA levels closely paralleling the hemolymph ecdysteroid titer. The data indicate that transcriptional regulation of phm, dib and sad plays a role in the developmentally varying steroidogenic capacities of the prothoracic glands during the fifth instar. The consistent expression of the Halloween genes confirms the importance of the prothoracic glands in pupal-adult development. These studies establish Manduca as an excellent model for examining the regulation of the Halloween genes.

  15. Transcriptome Analysis of WHV/c-myc Transgenic Mice Implicates Cytochrome P450 Enzyme 17A1 as a Promising Biomarker for Hepatocellular Carcinoma.

    PubMed

    Wang, Feng; Huang, Jian; Zhu, Zhu; Ma, Xiao; Cao, Li; Zhang, Yongzhi; Chen, Wei; Dong, Yang

    2016-09-01

    Early detection of hepatocellular carcinoma (HCC) is critical for successful treatment and favorable prognosis. To identify novel HCC biomarkers, we used the WHV/c-myc transgenic (Tg) mice, an animal model of hepatocarcinogenesis. By analyzing their gene expression profiling, we investigated differentially expressed genes in livers of wild-type and Tg mice. The cytochrome P450, family 17, subfamily A, polypeptide 1 (CYP17A1), a hepatic P450 enzyme, was revealed to be overexpressed in the liver tissues of Tg mice at both preneoplastic and neoplastic stages. Mouse-to-human validation demonstrated that CYP17A1 mRNA and protein were also significantly increased in human HCC tissues compared with paired nontumor tissues (P = 0.00041 and 0.00011, respectively). Immunohistochemical studies showed that CYP17A1 was overexpressed in 67% (58 of 87) of HCC, and strong staining of CYP17A1 was observed in well-differentiated HCCs. Consistent with this, the median serum levels of CYP17A1 were also significantly higher in patients with HCC (140.2 ng/mL, n = 776) compared with healthy controls (31.4 ng/mL, n = 366) and to those with hepatitis B virus (57.5 ng/mL, n = 160), cirrhosis (46.1 ng/mL, n = 147), lung cancer (27.4 ng/mL, n = 109), and prostate cancer (42.1 ng/mL, n = 130; all P < 0.001). Notably, the elevations were seen in most AFP-negative HCC cases. Altogether, through mouse-to-human search and validation, we found that CYP17A1 is overexpressed in HCCs and it has great potentiality as a noninvasive marker for HCC detection. These results provide a rationale for the future development and clinical application of CYP17A1 measurement to diagnose HCC more precisely. Cancer Prev Res; 9(9); 739-49. ©2016 AACR. PMID:27339169

  16. A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa L.).

    PubMed

    Tamiru, Muluneh; Undan, Jerwin R; Takagi, Hiroki; Abe, Akira; Yoshida, Kakoto; Undan, Jesusa Q; Natsume, Satoshi; Uemura, Aiko; Saitoh, Hiromasa; Matsumura, Hideo; Urasaki, Naoya; Yokota, Takao; Terauchi, Ryohei

    2015-05-01

    Cytochrome P450s are among the largest protein coding gene families in plant genomes. However, majority of the genes remain uncharacterized. Here, we report the characterization of dss1, a rice mutant showing dwarfism and reduced grain size. The dss1 phenotype is caused by a non-synonymous point mutation we identified in DSS1, which is member of a P450 gene cluster located on rice chromosome 3 and corresponds to the previously reported CYP96B4/SD37 gene. Phenotypes of several dwarf mutants characterized in rice are associated with defects in the biosynthesis or perception of the phytohormones gibberellins (GAs) and brassinosteroids (BRs). However, both GA and BR failed to rescue the dss1 phenotype. Hormone profiling revealed the accumulation of abscisic acid (ABA) and ABA metabolites, as well as significant reductions in GA19 and GA53 levels, precursors of the bioactive GA1, in the mutant. The dss1 contents of cytokinin and auxins were not significantly different from wild-type plants. Consistent with the accumulation of ABA and metabolites, germination and early growth was delayed in dss1, which also exhibited an enhanced tolerance to drought. Additionally, expressions of members of the DSS1/CYP96B gene cluster were regulated by drought stress and exogenous ABA. RNA-seq-based transcriptome profiling revealed, among others, that cell wall-related genes and genes involved in lipid metabolism were up- and down-regulated in dss1, respectively. Taken together, these findings suggest that DSS1 mediates growth and stress responses in rice by fine-tuning GA-to-ABA balance, and might as well play a role in lipid metabolism.

  17. The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism

    PubMed Central

    Slominski, Andrzej; Semak, Igor; Zjawiony, Jordan; Wortsman, Jacobo; Li, Wei; Szczesniewski, Andre; Tuckey, Robert C.

    2008-01-01

    We show that cytochrome P450scc (CYP11A1) in either a reconstituted system or in isolated adrenal mitochondria can metabolize vitamin D3. The major products of the reaction with reconstituted enzyme were 20-hydroxycholecalciferol and 20,22-dihydroxycholecalciferol, with yields of 16 and 4%, respectively, of the original vitamin D3 substrate. Trihydroxycholecalciferol was a minor product, likely arising from further metabolism of dihydroxycholecalciferol. Based on NMR analysis and known properties of P450scc we propose that hydroxylation of vitamin D3 by P450scc occurs sequentially and stereospecifically with initial formation of 20(S)-hydroxyvitamin D3. P450scc did not metabolize 25-hydroxyvitamin D3, indicating that modification of C25 protected it against P450scc action. Adrenal mitochondria also metabolized vitamin D3 yielding 10 hydroxyderivatives, with UV spectra typical of vitamin D triene chromophores. Aminogluthimide inhibition showed that the three major metabolites, but not the others, resulted from P450scc action. It therefore appears that non-P450scc enzymes present in the adrenal cortex to some extent contribute to metabolism of vitamin D3. We conclude that purified P450scc in a reconstituted system or P450scc in adrenal mitochondria can add one hydroxyl group to vitamin D3 with subsequent hydroxylation being observed for reconstituted enzyme but not for adrenal mitochondria. Additional vitamin D3 metabolites arise from the action of other enzymes in adrenal mitochondria. These findings appear to define novel metabolic pathways involving vitamin D3 that remain to be characterized. PMID:16098191

  18. Role of Cytochrome P450s in Inflammation.

    PubMed

    Christmas, Peter

    2015-01-01

    Cytochrome P450 epoxygenases and hydroxylases play a regulatory role in the activation and suppression of inflammation by generating or metabolizing bioactive mediators. CYP2C and CYP2J epoxygenases convert arachidonic acid to anti-inflammatory epoxyeicosatrienoic acids, which have protective effects in a variety of disorders including cardiovascular disease and metabolic syndrome. CYP4A and CYP4F hydroxylases have the ability to metabolize multiple substrates related to the regulation of inflammation and lipid homeostasis, and it is a challenge to determine which substrates are physiologically relevant for each enzyme; the best-characterized activities include generation of 20-hydroxyeicosatetraenoic acid and inactivation of leukotriene B4. The expression of hepatic drug-metabolizing cytochrome P450s is modulated by cytokines during inflammation, resulting in changes to the pharmacokinetics of prescribed medications. Cytochrome P450s are therefore the focus of intersecting challenges in the pharmacology of inflammation: not only do they represent targets for development of new anti-inflammatory drugs but they also contribute to variability in drug efficacy or toxicity in inflammatory disease. Animal models and primary hepatocytes have been used extensively to study the effects of cytokines on cytochrome P450 expression and activity. However, it is difficult to predict changes in drug exposure in patients because the response to inflammation varies depending on the disease state, its time course, and the cytochrome P450 involved. In these circumstances, the development of endogenous markers of cytochrome P450 metabolism might provide a useful tool to reevaluate drug dosage and choice of therapy.

  19. Identification and characterization of CYP79D6v4, a cytochrome P450 enzyme producing aldoximes in black poplar (Populus nigra).

    PubMed

    Irmisch, Sandra; Unsicker, Sybille B; Gershenzon, Jonathan; Köllner, Tobias G

    2013-01-01

    After herbivore feeding, poplar trees produce complex volatile blends containing terpenes, green leaf volatiles, aromatics, and nitrogen-containing compounds such as aldoximes and nitriles. It has been shown recently that volatile aldoximes released from gypsy moth (Lymantria dispar) caterpillar-damaged black poplar (Populus nigra) trees attract parasitoids that are caterpillar enemies. In western balsam poplar (P. trichocarpa), volatile aldoximes are produced by 2 P450 monooxygenases, CYP79D6v3 and CYP79D7v2. A gene fragment with high similarity to CYP79D6/7 was recently shown to be upregulated in herbivore-damaged leaves of P. nigra. In the present study we report the cloning and characterization of this gene, designated as CYP79D6v4. Recombinant CYP79D6v4 was able to convert different amino acids into the corresponding aldoximes, which were also found in the volatile blend of P. nigra. Thus, CYP79D6v4 is most likely involved in herbivore-induced aldoxime formation in black poplar. PMID:24390071

  20. Identification and characterization of CYP79D6v4, a cytochrome P450 enzyme producing aldoximes in black poplar (Populus nigra).

    PubMed

    Irmisch, Sandra; Unsicker, Sybille B; Gershenzon, Jonathan; Köllner, Tobias G

    2013-01-01

    After herbivore feeding, poplar trees produce complex volatile blends containing terpenes, green leaf volatiles, aromatics, and nitrogen-containing compounds such as aldoximes and nitriles. It has been shown recently that volatile aldoximes released from gypsy moth (Lymantria dispar) caterpillar-damaged black poplar (Populus nigra) trees attract parasitoids that are caterpillar enemies. In western balsam poplar (P. trichocarpa), volatile aldoximes are produced by 2 P450 monooxygenases, CYP79D6v3 and CYP79D7v2. A gene fragment with high similarity to CYP79D6/7 was recently shown to be upregulated in herbivore-damaged leaves of P. nigra. In the present study we report the cloning and characterization of this gene, designated as CYP79D6v4. Recombinant CYP79D6v4 was able to convert different amino acids into the corresponding aldoximes, which were also found in the volatile blend of P. nigra. Thus, CYP79D6v4 is most likely involved in herbivore-induced aldoxime formation in black poplar.

  1. Bioengineering anabolic vitamin D-25-hydroxylase activity into the human vitamin D catabolic enzyme, cytochrome P450 CYP24A1, by a V391L mutation.

    PubMed

    Kaufmann, Martin; Prosser, David E; Jones, Glenville

    2011-08-19

    CYP24A1 is a mitochondrial cytochrome P450 (CYP) that catabolizes 1α,25-dihydroxyvitamin D(3) (1α,25-(OH)(2)D(3)) to different products: calcitroic acid or 1α,25-(OH)(2)D(3)-26,23-lactone via multistep pathways commencing with C24 and C23 hydroxylation, respectively. Despite the ability of CYP24A1 to catabolize a wide range of 25-hydroxylated analogs including 25-hydroxyvitamin D(3), the enzyme is unable to metabolize the synthetic prodrug, 1α-hydroxyvitamin D(3) (1α-OH-D(3)), presumably because it lacks a C25-hydroxyl. In the current study we show that a single V391L amino acid substitution in the β3a-strand of human CYP24A1 converts this enzyme from a catabolic 1α,25-(OH)(2)D(3)-24-hydroxylase into an anabolic 1α-OH-D(3)-25-hydroxylase, thereby forming the hormone, 1α,25-(OH)(2)D(3). Furthermore, because the mutant enzyme retains its basal ability to catabolize 1α,25-(OH)(2)D(3) via C24 hydroxylation, it can also make calcitroic acid. Previous work has shown that an A326G mutation is responsible for the regioselectivity differences observed between human (primarily C24-hydroxylating) and opossum (C23-hydroxylating) CYP24A1. When the V391L and A326G mutations were combined (V391L/A326G), the mutant enzyme continued to form 1α,25-(OH)(2)D(3) from 1α-OH-D(3), but this initial product was diverted via the C23 hydroxylation pathway into the 26,23-lactone. The relative position of Val-391 in the β3a-strand of a homology model and the crystal structure of rat CYP24A1 is consistent with hydrophobic contact of Val-391 and the substrate side chain near C21. We interpret that the substrate specificity of V391L-modified human CYP24A1 toward 1α-OH-D(3) is enabled by an altered contact with the substrate side chain that optimally positions C25 of the 1α-OH-D(3) above the heme for hydroxylation.

  2. Insect P450 inhibitors and insecticides: challenges and opportunities.

    PubMed

    Feyereisen, René

    2015-06-01

    P450 enzymes are encoded by a large number of genes in insects, often over a hundred. They play important roles in insecticide metabolism and resistance, and growing numbers of P450 enzymes are now known to catalyse important physiological reactions, such as hormone metabolism or cuticular hydrocarbon synthesis. Ways to inhibit P450 enzymes specifically or less specifically are well understood, as P450 inhibitors are found as drugs, as fungicides, as plant growth regulators and as insecticide synergists. Yet there are no P450 inhibitors as insecticides on the market. As new modes of action are constantly needed to support insecticide resistance management, P450 inhibitors should be considered because of their high potential for insect selectivity, their well-known mechanisms of action and the increasing ease of rational design and testing.

  3. Gene expression pattern of some classes of cytochrome P-450 and glutathione S-transferase enzymes in differentiated hepatocytes-like cells from menstrual blood stem cells.

    PubMed

    Esmaeili-Rad, Aida; Khanjani, Sayeh; Vaziri, Hamidreza; Kazemnejad, Somaieh

    2015-05-01

    Recently, valuable characteristics of menstrual blood stem cells (MenSCs) have impelled scientists to take its advantages for cell therapy of different diseases including liver disorders. In this study, we examined messenger RNA (mRNA) expression levels of phases I and II drug metabolizing enzymes including glutathione S-transferase (GST) and cytochrome P-450 (CYP) in differentiated hepatocyte-like cells from MenSCs. The isolated MenSCs were characterized and differentiated into hepatocyte-like cells using hepatocyte growth factor (HGF) and oncostatin M (OSM) in combination with other components in serum-free culture media. After primary characterization of hepatocyte markers, mRNA expression of GSTA1, GSTA2, GSTP1, CYP3A4, and CYP7A1 was assessed in differentiated cells in reference to undifferentiated cells using real-time PCR. Based on immunofluorescent staining and real-time PCR data, the differentiated MenSCs could express functional hepatocyte markers at mRNA and/or protein levels suggesting development of hepatocyte-like cells from MenSCs. Moreover, the expression levels of GSTA1, GSTA2, and CYP3A4 mRNA were upregulated in differentiated cells compared to undifferentiated cells. The expression of CYP7A1 gene was also remarkable on the last day of differentiation process. However, the expression level of GSTP1 did not exhibit statistically significant change during differentiation (P = 0.6). Based on accumulative data, MenSCs could be viewed as an accessible population of stem cells with differentiation ability into drug-metabolizing hepatocyte-like cells. PMID:25614436

  4. Total gastrectomy may result in reduced drug effectiveness due to an increase in the expression of the drug-metabolizing enzyme Cytochrome P450, in the liver.

    PubMed

    Ishii, Makoto; Toda, Takahiro; Ikarashi, Nobutomo; Kusunoki, Yoshiki; Kon, Risako; Ochiai, Wataru; Machida, Yoshiaki; Sugiyama, Kiyoshi

    2014-01-23

    In patients with gastrectomy, it is possible that drug effectiveness is reduced compared to healthy subjects due to the increased of the drug-metabolizing enzyme, Cytochrome P450 (CYP). The purpose of this study is to verify this possibility. Gastrectomy model mice were prepared to evaluate the expression level of various CYPs in the liver from 2 to 24 weeks post-operation. No significant differences were observed in the protein expression levels of CYP3A, CYP1A, CYP2C, and CYP2D between the sham operation group and the gastrectomy group up to 4 weeks after the gastrectomy. On the other hand, significant increases in the protein expression levels of any CYPs were observed in the gastrectomy group compared to the sham operation group from 12 weeks after the gastrectomy onward. These increases in expression levels were maintained until 24 weeks after the gastrectomy. The examination of metabolic activity in the liver in the gastrectomy group using triazolam revealed that the metabolic activity at 12 weeks after the gastrectomy was significantly increased in the gastrectomy group. The administration of the anticancer drug imatinib, which is a substrate of CYP3A, to mice at 12weeks after gastrectomy resulted in an increase in the metabolic rate, suggesting a possible decrease in drug effectiveness. It has been revealed that drug effectiveness may be reduced after gastrectomy because the expression levels of various CYPs in the liver were increased over a prolonged period. The results of this study can serve as valuable fundamental knowledge for drug therapy in patients with gastrectomy.

  5. Cytochrome P450 2D6 enzyme neuroprotects against 1-methyl-4-phenylpyridinium toxicity in SH-SY5Y neuronal cells.

    PubMed

    Mann, Amandeep; Tyndale, Rachel F

    2010-04-01

    Cytochrome P450 (CYP) 2D6 is an enzyme that is expressed in liver and brain. It can inactivate neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1,2,3,4-tetrahydroisoquinoline and beta-carbolines. Genetically slow CYP2D6 metabolizers are at higher risk for developing Parkinson's disease, a risk that increases with exposure to pesticides. The goal of this study was to investigate the neuroprotective role of CYP2D6 in an in-vitro neurotoxicity model. SH-SY5Y human neuroblastoma cells express CYP2D6 as determined by western blotting, immunocytochemistry and enzymatic activity. CYP2D6 metabolized 3-[2-(N,N-diethyl-N-methylammonium)ethyl]-7-methoxy-4-methylcoumarin and the CYP2D6-specific inhibitor quinidine (1 microM) blocked 96 +/- 1% of this metabolism, indicating that CYP2D6 is functional in this cell line. Treatment of cells with CYP2D6 inhibitors (quinidine, propanolol, metoprolol or timolol) at varying concentrations significantly increased the neurotoxicity caused by 1-methyl-4-phenylpyridinium (MPP+) at 10 and 25 microM by between 9 +/- 1 and 22 +/- 5% (P < 0.01). We found that CYP3A is also expressed in SH-SY5Y cells and inhibiting CYP3A with ketoconazole significantly increased the cell death caused by 10 and 25 microM of MPP+ by between 8 +/- 1 and 30 +/- 3% (P < 0.001). Inhibiting both CYP2D6 and CYP3A showed an additive effect on MPP+ neurotoxicity. These data further support a possible role for CYP2D6 in neuroprotection from Parkinson's disease-causing neurotoxins, especially in the human brain where expression of CYP2D6 is high in some regions (e.g. substantia nigra). PMID:20345925

  6. Transfer of polychlorinated biphenyls and chlorinated pesticides from mother to pup in relation to cytochrome P450 enzyme activities in harp seals (Phoca groenlandica) from the gulf of St. Lawrence, Canada.

    PubMed

    Wolkers, Hans; Burkow, Ivan C; Hammill, Mike O; Lydersen, Christian; Witkamp, Renger F

    2002-01-01

    Congener-specific transfer of polychlorinated biphenyls (PCBs) and chlorinated pesticides from female to pup was studied in harp seals from eastern Canada. Possible effects on hepatic cytochrome P450 enzymes (CYP450) due to contaminant mobilization from blubber lipids in females and ingestion of contaminated milk in pups were studied. Contaminant transfer from blubber to milk in females favored the more polar compounds (lower chlorinated PCBs, toxaphenes, hexachlorocyclohexanes, and hexachlorobenzene) relative to more lipophilic compounds (higher chlorinated PCBs, dichlorodiphenyltrichloroethane [DDT], chlordane). In spite of substantial contaminant mobilization from blubber in females and ingestion of contaminated milk by pups, CYP450 activities were low in all animals. Possibly, increased plasma estradiol concentrations, involved in breeding after lactation, suppressed CYP450 directly. Although the pups were exposed to contaminants in milk, CYP450 activities were low, resulting in low contaminant metabolism. This was confirmed by similar contaminant patterns in milk and pups. A strong positive relation between CYP1A-like activities and body weight in the pups suggested not yet fully developed CYP1A enzymes. A negative association between CYP3A and pesticides in females and pups was hypothesized to be a result of metabolic inactivation of CYP450. The CYP450 enzyme activities were considered unsuitable indicators for contaminant mobilization and transfer in harp seals.

  7. Engineering Cytochrome P450 Biocatalysts for Biotechnology, Medicine, and Bioremediation

    PubMed Central

    Kumar, Santosh

    2009-01-01

    Importance of the field: Cytochrome P450 enzymes comprise a superfamily of heme monooxygenases that are of considerable interest for the: 1) synthesis of novel drugs and drug metabolites, 2) targeted cancer gene therapy, 3) biosensor design, and 4) bioremediation. However, their applications are limited because cytochrome P450, especially mammalian P450 enzymes, show a low turnover rate and stability, and require a complex source of electrons through cytochrome P450 reductase and NADPH. Areas covered in this review: In this review, we discuss the recent progress towards the use of P450 enzymes in a variety of above-mentioned applications. We also present alternate and cost-effective ways to perform P450-mediated reaction, especially using peroxides. Furthermore, we expand upon the current progress in P450 engineering approaches describing several recent examples that are utilized to enhance heterologous expression, stability, catalytic efficiency, and utilization of alternate oxidants. What the reader will gain: The review will provide a comprehensive knowledge in the design of P450 biocatalysts for potentially practical purposes. Finally, we provide a prospective on the future aspects of P450 engineering and its applications in biotechnology, medicine, and bioremediation. Take home message: Because of its wide applications, academic and pharmaceutical researchers, environmental scientists, and health care providers are expected to gain current knowledge and future prospects of the practical use of P450 biocatalysts. PMID:20064075

  8. The cytochrome p450 homepage.

    PubMed

    Nelson, David R

    2009-10-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 ( CYP ) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described.

  9. Ontogenic expression patterns of several nuclear receptors and cytochrome P450 aromatases in brain and gonads of the Nile tilapia Oreochromis niloticus suggests their involvement in sex differentiation.

    PubMed

    Sudhakumari, C C; Senthilkumaran, B; Kobayashi, T; Kajiura-Kobayashi, H; Wang, D S; Yoshikuni, M; Nagahama, Y

    2005-04-01

    Using semi-quantitative reverse transcriptase polymerase chain reaction we analyzed the ontogenic expression patterns of several nuclear receptors (estrogen receptors [ERalpha and beta], androgen receptors [ARalpha and beta], Ad4BP/SF-1 and Dax-1) and cytochrome P450 aromatases (brain and ovarian types) in whole brain and gonads of the Nile tilapia. ERalpha and beta transcripts were evident in both sexes with a high expression of ERalpha in females at 0 day after hatching (0 dah). ARalpha appeared early (0 dah) in males and while in females at 25 dah. Among the two types of cytochrome P450 aromatases, the expression of the brain type (bP450arom) but not the ovarian type (oP450arom) was evident from 0 to 90 dah in the whole brain of both males and females. Expression of Ad4BP/SF-1 in female brain began from 0 dah but in male brain at 5 dah. Expression of Dax-1 began at 0 dah and it was higher throughout in male brain than that of the female brain. In gonads, ERalpha and beta transcripts were evident in both sexes with slight variation. In females, both oP450arom and Ad4BP/SF-1 amplicons were evident at 15 dah. In males, although faint expressions of Ad4BP/SF-1 amplicons were evident at early duration of development, oP450arom did not appear until 90 dah. Conversely, expression of bP450arom was observed throughout in the developing testis with varied pattern while in developing ovary it was evident till 15 dah and reappeared only after 90 dah. Taken together, present results suggest that brain acts merely as a synchronizer in the sex differentiation process initiated by gonadal cues/factors in the Nile tilapia.

  10. Identification of cytochrome P450 isoform involved in the metabolism of YM992, a novel selective serotonin re-uptake inhibitor, in human liver microsomes.

    PubMed

    Noguchi, K; Mera, A; Watanabe, T; Higuchi, S; Chiba, K

    2000-05-01

    1. In vitro studies were conducted to identify the hepatic cytochrome P450 isoform involved in the metabolism of YM992, ((S)-2-[[(fluoro-4-indanyl)oxy]methyl]morpholine monohydrochloride), a novel serotonin re-uptake inhibitor, in human liver microsomes. 2. Microsomes prepared from yeast expressing CYP1A1, CYP1A2 and CYP2D6 effectively metabolized YM992. A significant correlation was observed between the rate of YM992 metabolism and 7-ethoxyresorufin O-deethylation, CYP1A1/2 specific activity, in liver microsomes from 16 individual donors (r2 = 0.628, p < 0.001). Alpha-naphtoflavone and isosafrole, CYP1A1/2 inhibitors, suppressed the metabolism of YM992 in human liver microsomes in a concentration-dependent manner. 3. The metabolism of YM992 in human liver microsomes was inhibited by approximately 95% by antibodies which recognize both CYP1A1 and CYP1A2 whereas antibodies specific for CYP1A1 did not show inhibitory effects. 4. The same major metabolites, M6 and M7, were generated from YM992 after incubation with human liver microsomes and recombinant human CYP1A2. 5. These results suggest that the metabolism of YM992 in human liver microsomes is mainly catalysed by CYP1A2, and that YM992 might increase plasma concentration of concomitant drugs metabolized by CYP1A2 due to competitive inhibition.

  11. Modes of Heme-Binding and Substrate Access for Cytochrome P450 CYP74A Revealed by Crystal Structures of Allene Oxide Synthase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytochrome P450s exist ubiquitously in all organisms and are involved in many biological processes. Allene oxide synthase (AOS) is a P450 enzyme that plays a key role in the biosynthesis of oxylipin jasmonates which are involved in signal and defense reactions in higher plants. The crystal structure...

  12. Short communication: Hepatic progesterone-metabolizing enzymes cytochrome P450 2C and 3A in lactating cows during thermoneutral and heat stress conditions.

    PubMed

    McCracken, V L; Xie, G; Deaver, S E; Baumgard, L H; Rhoads, R P; Rhoads, M L

    2015-05-01

    Two experiments were performed to determine the effects of heat stress (HS) and insulin on hepatic mRNA abundance of enzymes responsible for metabolizing progesterone [cytochrome P450 2C and 3A (CYP2C and CYP3A)]. To distinguish the direct effects of HS from decreased dry matter intake, cohorts were pair fed (PF) in thermoneutral conditions to match the intake of the HS cows during both experiments. In the first experiment, multiparous late-lactation Holstein cows (n=12, 305±33 d in milk) housed in climate-controlled chambers were subjected to 2 experimental periods: (1) thermoneutral (TN) conditions (18°C, 20% humidity) with ad libitum intake (TN and well fed) for 9 d; and (2) either HS conditions (cyclical temperature 31-40°C, 20% humidity) fed for ad libitum intake (n=6), or TN conditions and PF to match the HS animal (n=6) for 9 d. To evaluate hepatic gene expression during experiment 1, biopsies were obtained at the end of each period. In the second experiment, multiparous mid-lactation Holstein cows (n=12, 136±8 DIM) were housed and fed in conditions similar to those described for the first experiment. Liver biopsies were obtained immediately before and after an insulin tolerance test administered on d 6 of each period. No effects of exogenous insulin were observed on any of the tested variables, nor were there interactions between environment (TN/HS or well fed/PF) and insulin administration. Heat stress decreased hepatic CYP2C expression during both experiments. The relative abundance of CYP3A was not affected by environmental conditions in the late-lactation cows (first experiment), but was reduced by HS in the mid-lactation cows (second experiment). Interestingly, during experiment 2, hepatic CYP3A expression also decreased during PF. These results suggest that HS reduces the capacity of the liver to metabolize progesterone through distinct effects on CYP2C and CYP3A, and that the effects appear to vary based upon stage of lactation. Ultimately, HS

  13. Short communication: Hepatic progesterone-metabolizing enzymes cytochrome P450 2C and 3A in lactating cows during thermoneutral and heat stress conditions.

    PubMed

    McCracken, V L; Xie, G; Deaver, S E; Baumgard, L H; Rhoads, R P; Rhoads, M L

    2015-05-01

    Two experiments were performed to determine the effects of heat stress (HS) and insulin on hepatic mRNA abundance of enzymes responsible for metabolizing progesterone [cytochrome P450 2C and 3A (CYP2C and CYP3A)]. To distinguish the direct effects of HS from decreased dry matter intake, cohorts were pair fed (PF) in thermoneutral conditions to match the intake of the HS cows during both experiments. In the first experiment, multiparous late-lactation Holstein cows (n=12, 305±33 d in milk) housed in climate-controlled chambers were subjected to 2 experimental periods: (1) thermoneutral (TN) conditions (18°C, 20% humidity) with ad libitum intake (TN and well fed) for 9 d; and (2) either HS conditions (cyclical temperature 31-40°C, 20% humidity) fed for ad libitum intake (n=6), or TN conditions and PF to match the HS animal (n=6) for 9 d. To evaluate hepatic gene expression during experiment 1, biopsies were obtained at the end of each period. In the second experiment, multiparous mid-lactation Holstein cows (n=12, 136±8 DIM) were housed and fed in conditions similar to those described for the first experiment. Liver biopsies were obtained immediately before and after an insulin tolerance test administered on d 6 of each period. No effects of exogenous insulin were observed on any of the tested variables, nor were there interactions between environment (TN/HS or well fed/PF) and insulin administration. Heat stress decreased hepatic CYP2C expression during both experiments. The relative abundance of CYP3A was not affected by environmental conditions in the late-lactation cows (first experiment), but was reduced by HS in the mid-lactation cows (second experiment). Interestingly, during experiment 2, hepatic CYP3A expression also decreased during PF. These results suggest that HS reduces the capacity of the liver to metabolize progesterone through distinct effects on CYP2C and CYP3A, and that the effects appear to vary based upon stage of lactation. Ultimately, HS

  14. Cytochrome P450 107U1 is required for sporulation and antibiotic production in Streptomyces coelicolor

    PubMed Central

    Tian, Zhenghua; Cheng, Qian; Yoshimoto, Francis K.; Lei, Li; Lamb, David C.; Guengerich, F. Peter

    2013-01-01

    The filamentous bacterium Streptomyces coelicolor has a complex life cycle involving the formation of hair-like aerial mycelia on the colony surface, which differentiate into chains of spores. Genes required for the initiation of aerial mycelium formation have been termed ‘bld’ (bald), describing the smooth, undifferentiated colonies of mutant strains. We report the identification of a new bld gene designated as sco3099 and biochemical analysis of its encoded enzyme, cytochrome P450 (P450, or CYP) 107U1. Deletion of sco3099 resulted in a mutant defective in aerial hyphae sporulation and sensitive to heat shock, indicating that P450 107U1 plays a key role in growth and development of S. coelicolor. This is the first P450 reported to participate in a sporulation process in Streptomycetes. The substrate and catalytic properties of P450 107U1 were further investigated in mass spectrometry-based metabolomic studies. Glycocholic acid (from the medium) was identified as a substrate of P450 107U1 and was oxidized to glyco-7-oxo-deoxycholic acid. Although this reaction is apparently not relevant to the observed sporulation deficiency, it suggests that P450 107U1 might exert its physiological function by oxidizing other steroid-like molecules. PMID:23357279

  15. Cytochrome P450 107U1 is required for sporulation and antibiotic production in Streptomyces coelicolor.

    PubMed

    Tian, Zhenhua; Cheng, Qian; Yoshimoto, Francis K; Lei, Li; Lamb, David C; Guengerich, F Peter

    2013-02-15

    The filamentous bacterium Streptomyces coelicolor has a complex life cycle involving the formation of hair-like aerial mycelia on the colony surface, which differentiate into chains of spores. Genes required for the initiation of aerial mycelium formation have been termed 'bld' (bald), describing the smooth, undifferentiated colonies of mutant strains. We report the identification of a new bld gene designated as sco3099 and biochemical analysis of its encoded enzyme, cytochrome P450 (P450, or CYP) 107U1. Deletion of sco3099 resulted in a mutant defective in aerial hyphae sporulation and sensitive to heat shock, indicating that P450 107U1 plays a key role in growth and development of S. coelicolor. This is the first P450 reported to participate in a sporulation process in Streptomycetes. The substrate and catalytic properties of P450 107U1 were further investigated in mass spectrometry-based metabolomic studies. Glycocholic acid (from the medium) was identified as a substrate of P450 107U1 and was oxidized to glyco-7-oxo-deoxycholic acid. Although this reaction is apparently not relevant to the observed sporulation deficiency, it suggests that P450 107U1 might exert its physiological function by oxidizing other steroid-like molecules.

  16. Genomic and bioinformatic analysis of NADPH-cytochrome P450 reductase in Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Suwanchaichinda, C; Brattsten, L B

    2014-01-01

    The cytochrome P450 monooxygenase (P450) enzyme system is a major mechanism of xenobiotic biotransformation. The nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is required for transfer of electrons from NADPH to P450. One CPR gene was identified in the genome of the malaria-transmitting mosquito Anopheles stephensi Liston (Diptera: Culicidae). The gene encodes a polypeptide containing highly conserved flavin mononucleotide-, flavin adenine dinucleotide-, and NADPH-binding domains, a unique characteristic of the reductase. Phylogenetic analysis revealed that the A. stephensi and other known mosquito CPRs belong to a monophyletic group distinctly separated from other insects in the same order, Diptera. Amino acid residues of CPRs involved in binding of P450 and cytochrome c are conserved between A. stephensi and the Norway rat Rattus norvegicus Berkenhout (Rodentia: Muridae). However, gene structure particularly within the coding region is evidently different between the two organisms. Such difference might arise during the evolution process as also seen in the difference of P450 families and isoforms found in these organisms. CPR in the mosquito A. stephensi is expected to be active and serve as an essential component of the P450 system.

  17. Mechanism of induction of cytochrome p450 enzymes by the proestrogenic endocrine disruptor pesticide-methoxychlor: interactions of methoxychlor metabolites with the constitutive androstane receptor system.

    PubMed

    Blizard, D; Sueyoshi, T; Negishi, M; Dehal, S S; Kupfer, D

    2001-06-01

    Methoxychlor, a structural analog of the DDT pesticide, was previously shown to induce rat hepatic CYP2B and -3A mRNAs and the corresponding proteins [J Biochem Mol Toxicol 1998;12:315-323], Additionally, methoxychlor was found to activate the constitutive androstane receptor (CAR) system and induce CYP2B6 (J Biol Chem 1999;274:6043-6046), suggesting a mechanism for methoxychlor-mediated cytochrome P450 (P450) 2B induction. However, it has not been established whether CAR activation and P450 induction was due to methoxychlor per se and/or due to its metabolites. Also, a possible link between the estrogenic potency of methoxychlor metabolites and CAR activation or P450 induction was not investigated. The current study explores the ability of methoxychlor and its metabolites to activate CAR and whether their potency of CAR activation correlates with their respective estrogenicity. Methoxychlor and its metabolites [mono-OH-M [1,1,1-trichloro-2 (4-hydroxyphenyl)-2'-(4-methoxyphenyl)ethane]; bis-OH-M [1,1,1-trichloro-2,2'-bis(4-hydroxyphenyl)ethane]; ring-OH-M [1,1,1-trichloro-2(4-methoxyphenyl)-2'-(3-hydroxy-4-methoxyphenyl)ethane]; and tris-OH-M [1,1,1-trichloro-2(4-hydroxyphenyl)-2'-(3,4-dihydroxyphenyl)ethane

  18. A microtiterplate-based screening assay to assess diverse effects on cytochrome P450 enzyme activities in primary rat hepatocytes by various compounds.

    PubMed

    Schaeffner, I; Petters, J; Aurich, H; Frohberg, P; Christ, B

    2005-02-01

    During the development of potential drugs it is useful to identify pharmacological and/or toxicological side effects of a compound as early as possible in order to exclude them from further development for reasons of time and cost. Activation or inactivation of members of the cytochrome P450-dependent monooxygenase system (CYP450) might indicate potential undesired effects of a given compound. However, results using CYP450 assay systems are often inconsistent because of different experimental settings. Therefore, it was the goal of the present study to optimize the CYP450 assay in primary rat hepatocytes with respect to the time point of addition of and duration of exposure to alpha-naphthoflavone (ANF) and beta-naphthoflavone (BNF) as well as trans-resveratrol (RES), which have well-described stimulatory and inhibitory effects on CYP450 enzymes of the 1A and 2B family, respectively. Hepatocytes were also treated with putative lipoxygenase (LOX)/cyclooxygenase (COX) inhibitors with unknown impact on CYP450 enzyme activity in order to detect potential side effects. Cells were cultured for up to 7 days on 96-well microtiter plates, and enzyme activity was determined by a conventional fluorescence spectroscopy assay. ANF and BNF, given to the cells after 4 days of culture, stimulated CYP1A and 2B activities significantly in a concentration-dependent fashion after long-term exposure for at least 1 day. However, during short-term exposure for 1-6 h, CYP1A activity was inhibited, while CYP2B was increased weakly by ANF but not BNF. RES inhibited CYP1A activity during short- and long-term exposure without affecting CYP2B activity. From the results it was concluded that primary rat hepatocytes should be cultured for at least 3-4 days but no longer prior to the assay. The assay should be performed at two different time points of exposure, i.e., 6 h for short-term and 24 h for long-term exposure. The compounds under investigation should be applied at two different

  19. Auto-Induction Effect of Chloroxoquinoline on the Cytochrome P450 Enzymes of Rats Associated with CYP 3A and 1A.

    PubMed

    Li, Xin; Li, Ying; Gong, Wei; Yang, Mei Yan; Yang, Yang; Li, Zhi Ping; Wang, Yu Li; Zhang, Zhen Qing

    2015-01-01

    To investigate the auto-induction of cytochrome P450 (CYP450) by Chloroxoquinoline (CXL), a novel anticancer drug. Three experiments related to the induction of CYP450 were performed: a) In vitro use of the rat fresh hepatocytes model; b) In vivo 'cocktail' of CYP450 probe model; c) Pharmacokinetic (PK) study of the single and multiple doses. Some typical CYP enzyme probes and inducers were used in these experiments and were all determined by HPLC-MS/MS. The expression levels of CYP3A and CYP1A mRNA were analyzed by the real time polymerase chain reaction (RT-PCR) technique. The PK studies showed that the area under the curve (AUC0-t) and the peak concentration (Cmax) of the multiple doses were approximately 2.4-fold and 1.9-fold lower than those of the single dose, respectively (p < 0.05). Subsequent studies were conducted to study the possible induction of CXL on CYP 450. The in vivo 'cocktail' administration of CYP450 probe model indicated that 5 d pretreatment with CXL resulted in a mean 4.6 times increase in the metabolites/probe plasma ratios for CYP 3A and a 336% increase for CYP 1A than those of the negative control (p < 0.05). The induction effect of CXL on CYP450 was further evaluated on rat hepatocytes with four concentrations (1, 10, 50 and 100 μmol/L). Compared with the negative control, the mRNA levels of CYP 1A2 increased significantly in rat hepatocytes after treatment with 10, 50 and 100 μmol/L CXL (p < 0.05). While significant inductions of CYP 3A1 were observed in the entire treated groups. The results of the present study demonstrate enhanced and induced expression of CYP 3A and CYP 1A in response to CXL exposure in rats, suggesting that CXL is an auto-inducer of CYP 3A and CYP 1A.

  20. Mechanism of interactions of α-naphthoflavone with cytochrome P450 3A4 explored with an engineered enzyme bearing a fluorescent probe†

    PubMed Central

    Tsalkova, Tamara N.; Davydova, Nadezhda Y.; Halpert, James R.; Davydov, Dmitri R.

    2008-01-01

    Design of a partially cysteine-depleted C98S/C239S/C377S/C468A cytochrome P450 3A4 mutant designated CYP3A4(C58,C64) allowed site-directed incorporation of thiol-reactive fluorescent probes into α-helix A‥ The site of modification was identified as Cys-64 with the help of CYP3A4(C58) and CYP3A4(C64), each bearing only one accessible cysteine. Changes in the fluorescence of CYP3A4(C58,C64) labeled with 6-bromoacetyl-2-dimethylaminonaphthalene (BADAN), 7-diethylamino-3-(4’-maleimidylphenyl)-4-methylcoumarin (CPM), or monobromobimane (mBBr) were used to study the interactions with bromocriptine (BCT), 1-pyrenebutanol (1-PB), testosterone (TST), and α-naphthoflavone (ANF). Of these substrates only ANF has a specific effect, causing a considerable decrease in fluorescence intensity of BADAN and CPM and increasing the fluorescence of mBBr. This ANF-binding event in the case of BADAN-modified enzyme is characterized by an S50 of 18.2 ± 0.7, compared with the value of 2.2 ± 0.3 for the ANF-induced spin transition, thus revealing an additional low affinity binding site. Studies of the effect of TST, 1-PB, and BCT on the interactions of ANF monitored by changes in fluorescence of CYP3A4(C58,C64)-BADAN or by the ANF-induced spin transition revealed no competition by these substrates. Investigation of the kinetics of fluorescence increase upon H2O2-dependent heme depletion suggests that labeled CYP3A4(C58,C64) is represented by two conformers, one of which has the fluorescence of the BADAN and CPM labels completely quenched, presumably by photoinduced electron transfer from the neighboring Trp-72 and/or Tyr-68 residues. The binding of ANF to the newly discovered binding site appears to affect the interactions of the label with the above residue(s), thus modulating the fraction of the fluorescent conformer. PMID:17198380

  1. Marmoset cytochrome P450 2J2 mainly expressed in small intestines and livers effectively metabolizes human P450 2J2 probe substrates, astemizole and terfenadine.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Okamoto, Eriko; Sasaki, Erika; Yamazaki, Hiroshi

    2016-11-01

    1. Common marmoset (Callithrix jacchus), a New World Monkey, has potential to be a useful animal model in preclinical studies. However, drug metabolizing properties have not been fully understood due to insufficient information on cytochrome P450 (P450), major drug metabolizing enzymes. 2. Marmoset P450 2J2 cDNA was isolated from marmoset livers. The deduced amino acid sequence showed a high-sequence identity (91%) with cynomolgus monkey and human P450 2J2 enzymes. A phylogenetic tree revealed that marmoset P450 2J2 was evolutionarily closer to cynomolgus monkey and human P450 2J2 enzymes, than P450 2J forms in pigs, rabbits, rats or mice. 3. Marmoset P450 2J2 mRNA was abundantly expressed in the small intestine and liver, and to a lesser extent in the brain, lung and kidney. Immunoblot analysis also showed expression of marmoset P450 2J2 protein in the small intestine and liver. 4. Enzyme assays using marmoset P450 2J2 protein heterologously expressed in Escherichia coli indicated that marmoset P450 2J2 effectively catalyzed astemizole O-demethylation and terfenadine t-butyl hydroxylation, similar to human and cynomolgus monkey P450 2J2 enzymes. 5. These results suggest the functional characteristics of P450 2J2 enzymes are similar among marmosets, cynomolgus monkeys and humans.

  2. Marmoset cytochrome P450 2J2 mainly expressed in small intestines and livers effectively metabolizes human P450 2J2 probe substrates, astemizole and terfenadine.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Okamoto, Eriko; Sasaki, Erika; Yamazaki, Hiroshi

    2016-11-01

    1. Common marmoset (Callithrix jacchus), a New World Monkey, has potential to be a useful animal model in preclinical studies. However, drug metabolizing properties have not been fully understood due to insufficient information on cytochrome P450 (P450), major drug metabolizing enzymes. 2. Marmoset P450 2J2 cDNA was isolated from marmoset livers. The deduced amino acid sequence showed a high-sequence identity (91%) with cynomolgus monkey and human P450 2J2 enzymes. A phylogenetic tree revealed that marmoset P450 2J2 was evolutionarily closer to cynomolgus monkey and human P450 2J2 enzymes, than P450 2J forms in pigs, rabbits, rats or mice. 3. Marmoset P450 2J2 mRNA was abundantly expressed in the small intestine and liver, and to a lesser extent in the brain, lung and kidney. Immunoblot analysis also showed expression of marmoset P450 2J2 protein in the small intestine and liver. 4. Enzyme assays using marmoset P450 2J2 protein heterologously expressed in Escherichia coli indicated that marmoset P450 2J2 effectively catalyzed astemizole O-demethylation and terfenadine t-butyl hydroxylation, similar to human and cynomolgus monkey P450 2J2 enzymes. 5. These results suggest the functional characteristics of P450 2J2 enzymes are similar among marmosets, cynomolgus monkeys and humans. PMID:26899760

  3. Crystal structure of cindoxin, the P450cin redox partner.

    PubMed

    Madrona, Yarrow; Hollingsworth, Scott A; Tripathi, Sarvind; Fields, James B; Rwigema, Jean-Christophe N; Tobias, Douglas J; Poulos, Thomas L

    2014-03-11

    The crystal structure of the flavin mononucleotide (FMN)-containing redox partner to P450cin, cindoxin (Cdx), has been determined to 1.3 Å resolution. The overall structure is similar to that of the FMN domain of human cytochrome P450 reductase. A Brownian dynamics-molecular dynamics docking method was used to produce a model of Cdx with its redox partner, P450cin. This Cdx-P450cin model highlights the potential importance of Cdx Tyr96 in bridging the FMN and heme cofactors as well P450cin Arg102 and Arg346. Each of the single-site Ala mutants exhibits ~10% of the wild-type activity, thus demonstrating the importance of these residues for binding and/or electron transfer. In the well-studied P450cam system, redox partner binding stabilizes the open low-spin conformation of P450cam and greatly decreases the stability of the oxy complex. In sharp contrast, Cdx does not shift P450cin to a low-spin state, although the stability of oxy-P450cin is decreased 10-fold in the presence of Cdx. This indicates that Cdx may have a modest effect on the open-closed equilibrium in P450cin compared to that in P450cam. It has been postulated that part of the effector role of Pdx on P450cam is to promote a significant structural change that makes available a proton relay network involving Asp251 required for O2 activation. The structure around the corresponding Asp in P450cin, Asp241, provides a possible structural reason for why P450cin is less dependent on its redox partner for functionally important structural changes. PMID:24533927

  4. In Vitro Metabolism of Montelukast by Cytochrome P450s and UDP-Glucuronosyltransferases.

    PubMed

    Cardoso, Josiane de Oliveira; Oliveira, Regina Vincenzi; Lu, Jessica Bo Li; Desta, Zeruesenay

    2015-12-01

    Montelukast has been recommended as a selective in vitro and in vivo probe of cytochrome P450 (P450) CYP2C8 activity, but its selectivity toward this enzyme remains unclear. We performed detailed characterization of montelukast metabolism in vitro using human liver microsomes (HLMs), expressed P450s, and uridine 5'-diphospho-glucuronosyltransferases (UGTs). Kinetic and inhibition experiments performed at therapeutically relevant concentrations reveal that CYP2C8 and CYP2C9 are the principal enzymes responsible for montelukast 36-hydroxylation to 1,2-diol. CYP3A4 was the main catalyst of montelukast sulfoxidation and stereoselective 21-hydroxylation, and multiple P450s participated in montelukast 25-hydroxylation. We confirmed direct glucuronidation of montelukast to an acyl-glucuronide. We also identified a novel peak that appears consistent with an ether-glucuronide. Kinetic analysis in HLMs and experiments in expressed UGTs indicate that both metabolites were exclusively formed by UGT1A3. Comparison of in vitro intrinsic clearance in HLMs suggest that direct glucuronidation may play a greater role in the overall metabolism of montelukast than does P450-mediated oxidation, but the in vivo contribution of UGT1A3 needs further testing. In conclusion, our in vitro findings provide new insight toward montelukast metabolism. The utility of montelukast as a probe of CYP2C8 activity may be compromised owing to involvement of multiple P450s and UGT1A3 in its metabolism. PMID:26374173

  5. The Cytochrome P450 Homepage

    PubMed Central

    2009-01-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 (CYP) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described. PMID:19951895

  6. Characterization of Drosophila melanogaster cytochrome P450 genes

    PubMed Central

    Chung, Henry; Sztal, Tamar; Pasricha, Shivani; Sridhar, Mohan; Batterham, Philip; Daborn, Phillip J.

    2009-01-01

    Cytochrome P450s form a large and diverse family of heme-containing proteins capable of carrying out many different enzymatic reactions. In both mammals and plants, some P450s are known to carry out reactions essential for processes such as hormone synthesis, while other P450s are involved in the detoxification of environmental compounds. In general, functions of insect P450s are less well understood. We characterized Drosophila melanogaster P450 expression patterns in embryos and 2 stages of third instar larvae. We identified numerous P450s expressed in the fat body, Malpighian (renal) tubules, and in distinct regions of the midgut, consistent with hypothesized roles in detoxification processes, and other P450s expressed in organs such as the gonads, corpora allata, oenocytes, hindgut, and brain. Combining expression pattern data with an RNA interference lethality screen of individual P450s, we identify candidate P450s essential for developmental processes and distinguish them from P450s with potential functions in detoxification. PMID:19289821

  7. The Reliability of Estimating Ki Values for Direct, Reversible Inhibition of Cytochrome P450 Enzymes from Corresponding IC50 Values: A Retrospective Analysis of 343 Experiments.

    PubMed

    Haupt, Lois J; Kazmi, Faraz; Ogilvie, Brian W; Buckley, David B; Smith, Brian D; Leatherman, Sarah; Paris, Brandy; Parkinson, Oliver; Parkinson, Andrew

    2015-11-01

    In the present study, we conducted a retrospective analysis of 343 in vitro experiments to ascertain whether observed (experimentally determined) values of Ki for reversible cytochrome P450 (P450) inhibition could be reliably predicted by dividing the corresponding IC₅₀ values by two, based on the relationship (for competitive inhibition) in which Ki = IC₅₀/2 when [S] (substrate concentration) = Km (Michaelis-Menten constant). Values of Ki and IC₅₀ were determined under the following conditions: 1) the concentration of P450 marker substrate, [S], was equal to Km (for IC₅₀ determinations) and spanned Km (for Ki determinations); 2) the substrate incubation time was short (5 minutes) to minimize metabolism-dependent inhibition and inhibitor depletion; and 3) the concentration of human liver microsomes was low (0.1 mg/ml or less) to maximize the unbound fraction of inhibitor. Under these conditions, predicted Ki values, based on IC₅₀/2, correlated strongly with experimentally observed Ki determinations [r = 0.940; average fold error (AFE) = 1.10]. Of the 343 predicted Ki values, 316 (92%) were within a factor of 2 of the experimentally determined Ki values, and only one value fell outside a 3-fold range. In the case of noncompetitive inhibitors, Ki values predicted from IC₅₀/2 values were overestimated by a factor of nearly 2 (AFE = 1.85; n = 13), which is to be expected because, for noncompetitive inhibition, Ki = IC₅₀ (not IC₅₀/2). The results suggest that, under appropriate experimental conditions with the substrate concentration equal to Km, values of Ki for direct, reversible inhibition can be reliably estimated from values of IC₅₀/2. PMID:26354951

  8. The Reliability of Estimating Ki Values for Direct, Reversible Inhibition of Cytochrome P450 Enzymes from Corresponding IC50 Values: A Retrospective Analysis of 343 Experiments.

    PubMed

    Haupt, Lois J; Kazmi, Faraz; Ogilvie, Brian W; Buckley, David B; Smith, Brian D; Leatherman, Sarah; Paris, Brandy; Parkinson, Oliver; Parkinson, Andrew

    2015-11-01

    In the present study, we conducted a retrospective analysis of 343 in vitro experiments to ascertain whether observed (experimentally determined) values of Ki for reversible cytochrome P450 (P450) inhibition could be reliably predicted by dividing the corresponding IC₅₀ values by two, based on the relationship (for competitive inhibition) in which Ki = IC₅₀/2 when [S] (substrate concentration) = Km (Michaelis-Menten constant). Values of Ki and IC₅₀ were determined under the following conditions: 1) the concentration of P450 marker substrate, [S], was equal to Km (for IC₅₀ determinations) and spanned Km (for Ki determinations); 2) the substrate incubation time was short (5 minutes) to minimize metabolism-dependent inhibition and inhibitor depletion; and 3) the concentration of human liver microsomes was low (0.1 mg/ml or less) to maximize the unbound fraction of inhibitor. Under these conditions, predicted Ki values, based on IC₅₀/2, correlated strongly with experimentally observed Ki determinations [r = 0.940; average fold error (AFE) = 1.10]. Of the 343 predicted Ki values, 316 (92%) were within a factor of 2 of the experimentally determined Ki values, and only one value fell outside a 3-fold range. In the case of noncompetitive inhibitors, Ki values predicted from IC₅₀/2 values were overestimated by a factor of nearly 2 (AFE = 1.85; n = 13), which is to be expected because, for noncompetitive inhibition, Ki = IC₅₀ (not IC₅₀/2). The results suggest that, under appropriate experimental conditions with the substrate concentration equal to Km, values of Ki for direct, reversible inhibition can be reliably estimated from values of IC₅₀/2.

  9. Identification and characterization of NADPH-dependent cytochrome P450 reductase gene and cytochrome b₅ gene from Plutella xylostella: possible involvement in resistance to beta-cypermethrin.

    PubMed

    Chen, Xi'en; Zhang, Yalin

    2015-03-10

    NADPH-cytochrome P450 reductase (CPR) and cytochrome b5 (b5) are essential for cytochrome P450 mediated biological reactions. CPR and b5 in several insects have been found to be associated with insecticide resistance. However, CPR and b5 in the diamondback moth (DBM), Plutella xylostella, are not characterized and their roles remain undefined. A full-length cDNA of CPR encoding 678 amino acids and a full-length cDNA of b5 encoding 127 amino acids were cloned from DBM. Their deduced amino acid sequences shared high identities with those of other insects and showed characteristics of classical CPRs and b5s, respectively. The mRNAs of both genes were detectable in all developmental stages with the highest expression levels occurring in the 4th instar larvae. Tissue-specific expression analysis showed that their transcripts were most abundant in gut. Transcripts of CPR and b5 in the beta-cypermethrin resistant DBM strain were 13.2- and 2.84-fold higher than those in the beta-cypermethrin susceptible strain, respectively. The expression levels of CPR and b5 were enhanced by beta-cypermethrin at the concentration of 12 mg L(-1) (~LC10). The results indicate that CPR and b5 may play essential roles in the P450 mediated resistance of DBM to beta-cypermethrin or even other insecticides.

  10. Modeling the interfacial interactions between CrtS and CrtR from Xanthophyllomyces dendrorhous , a P450 system involved in astaxanthin production.

    PubMed

    Alcaíno, Jennifer; Fuentealba, Matías; Cabrera, Ricardo; Baeza, Marcelo; Cifuentes, Víctor

    2012-09-01

    Xanthophyllomyces dendrorhous is a natural source of astaxanthin, a carotenoid widely used in the food industry. In this yeast, astaxanthin is synthesized from β-carotene by a cytochrome P450, CrtS, which depends on CrtR, the four-domain cytochrome P450 reductase (CPR). Although Saccharomyces cerevisiae has an endogenous CPR (ScCPR), expression of CrtS does not result in astaxanthin production unless it is coexpressed with CrtR. Assuming that CrtS could interact with the FMN-binding domain of either CrtR or ScCPR (XdFMNbd and ScFMNbd, respectively), the aim of this work was to identify possible interaction differences between these alternative complexes by protein modeling and short molecular dynamics simulations. Considering the recently proposed membrane orientation of a mammalian P450, our CrtS-CrtR model predicts that both N-terminal ends stand adjacent to the membrane plane, allowing their anchoring. Compared with the possible interface between CrtS and both FMNbd, the Xanthophyllomyces system appears to be stabilized by more saline bridges. PMID:22897793

  11. Metabolic engineering of light-driven cytochrome P450 dependent pathways into Synechocystis sp. PCC 6803.

    PubMed

    Wlodarczyk, Artur; Gnanasekaran, Thiyagarajan; Nielsen, Agnieszka Zygadlo; Zulu, Nodumo Nokolunga; Mellor, Silas Busck; Luckner, Manja; Thøfner, Jens Frederik Bang; Olsen, Carl Erik; Mottawie, Mohammed Saddik; Burow, Meike; Pribil, Mathias; Feussner, Ivo; Møller, Birger Lindberg; Jensen, Poul Erik

    2016-01-01

    Solar energy provides the energy input for the biosynthesis of primary and secondary metabolites in plants and other photosynthetic organisms. Some secondary metabolites are high value compounds, and typically their biosynthesis requires the involvement of cytochromes P450s. In this proof of concept work, we demonstrate that the cyanobacterium Synechocystis sp. PCC 6803 is an eminent heterologous host for expression of metabolically engineered cytochrome P450-dependent pathways exemplified by the dhurrin pathway from Sorghum bicolor comprising two membrane bound cytochromes P450s (CYP79A1 and CYP71E1) and a soluble glycosyltransferase (UGT85B1). We show that it is possible to express multiple genes incorporated into a bacterial-like operon by using a self-replicating expression vector in cyanobacteria. We demonstrate that eukaryotic P450s that typically reside in the endoplasmic reticulum membranes can be inserted in the prokaryotic membranes without affecting thylakoid membrane integrity. Photosystem I and ferredoxin replaces the native P450 oxidoreductase enzyme as an efficient electron donor for the P450s both in vitro and in vivo. The engineered strains produced up to 66mg/L of p-hydroxyphenylacetaldoxime and 5mg/L of dhurrin in lab-scale cultures after 3 days of cultivation and 3mg/L of dhurrin in V-shaped photobioreactors under greenhouse conditions after 9 days cultivation. All the metabolites were found to be excreted to the growth media facilitating product isolation.

  12. Homology model of human retinoic acid metabolising enzyme cytochrome P450 26A1 (CYP26A1): active site architecture and ligand binding.

    PubMed

    Gomaa, Mohamed Sayed; Yee, Sook Wah; Milbourne, Ceri Elizabeth; Barbera, Maria Chiara; Simons, Claire; Brancale, Andrea

    2006-08-01

    Homology models of cytochrome P450 RA1 (CYP26A1) were constructed using three human P450 structures, CYP2C8, CYP2C9 and CYP3A4 as templates for the model building. Using MOE software the lowest energy CYP26A1 model was then assessed for stereochemical quality and side chain environment. Further active site optimisation of the CYP26A1 model built using the CYP3A4 template was performed by molecular dynamics to generate a final CYP26A1 model. The natural substrate, all-trans-retinoic acid (atRA), and inhibitor R 15866, were docked into the model allowing further validation of the active site architecture. Using the docking studies structurally and functionally important residues were identified with subsequent characterisation of secondary structure. Multiple hydrophobic interactions, including the side chains of TRP112, PHE299, PHE222, PHE84, PHE374 and PRO371, are important for binding of atRA and R115866. Additional hydrogen bonding interactions were noted as follows: atRA-- C==O of the atRA carboxylate group and ARG86; R115866--benzothiazole nitrogen and the backbone NH of SER115.

  13. Cytochrome P450 Initiates Degradation of cis-Dichloroethene by Polaromonas sp. Strain JS666

    PubMed Central

    Nishino, Shirley F.; Shin, Kwanghee A.; Gossett, James M.

    2013-01-01

    Polaromonas sp. strain JS666 grows on cis-1,2-dichoroethene (cDCE) as the sole carbon and energy source under aerobic conditions, but the degradation mechanism and the enzymes involved are unknown. In this study, we established the complete pathway for cDCE degradation through heterologous gene expression, inhibition studies, enzyme assays, and analysis of intermediates. Several lines of evidence indicate that a cytochrome P450 monooxygenase catalyzes the initial step of cDCE degradation. Both the transient accumulation of dichloroacetaldehyde in cDCE-degrading cultures and dichloroacetaldehyde dehydrogenase activities in cell extracts of JS666 support a pathway for degradation of cDCE through dichloroacetaldehyde. The mechanism minimizes the formation of cDCE epoxide. The molecular phylogeny of the cytochrome P450 gene and the organization of neighboring genes suggest that the cDCE degradation pathway recently evolved in a progenitor capable of degrading 1,2-dichloroethane either by the recruitment of the cytochrome P450 monooxygenase gene from an alkane catabolic pathway or by selection for variants of the P450 in a preexisting 1,2-dichloroethane catabolic pathway. The results presented here add yet another role to the broad array of productive reactions catalyzed by cytochrome P450 enzymes. PMID:23354711

  14. Kinetic Analysis of Lauric Acid Hydroxylation by Human Cytochrome P450 4A11

    PubMed Central

    2015-01-01

    Cytochrome P450 (P450) 4A11 is the only functionally active subfamily 4A P450 in humans. P450 4A11 catalyzes mainly ω-hydroxylation of fatty acids in liver and kidney; this process is not a major degradative pathway, but at least one product, 20-hydroxyeicosatetraenoic acid, has important signaling properties. We studied catalysis by P450 4A11 and the issue of rate-limiting steps using lauric acid ω-hydroxylation, a prototypic substrate for this enzyme. Some individual reaction steps were studied using pre-steady-state kinetic approaches. Substrate and product binding and release were much faster than overall rates of catalysis. Reduction of ferric P450 4A11 (to ferrous) was rapid and not rate-limiting. Deuterium kinetic isotope effect (KIE) experiments yielded low but reproducible values (1.2–2) for 12-hydroxylation with 12-2H-substituted lauric acid. However, considerable “metabolic switching” to 11-hydroxylation was observed with [12-2H3]lauric acid. Analysis of switching results [Jones, J. P., et al. (1986) J. Am. Chem. Soc.108, 7074–7078] and the use of tritium KIE analysis with [12-3H]lauric acid [Northrop, D. B. (1987) Methods Enzymol.87, 607–625] both indicated a high intrinsic KIE (>10). Cytochrome b5 (b5) stimulated steady-state lauric acid ω-hydroxylation ∼2-fold; the apoprotein was ineffective, indicating that electron transfer is involved in the b5 enhancement. The rate of b5 reoxidation was increased in the presence of ferrous P450 mixed with O2. Collectively, the results indicate that both the transfer of an electron to the ferrous·O2 complex and C–H bond-breaking limit the rate of P450 4A11 ω-oxidation. PMID:25203493

  15. Dietary regulation of mouse intestinal P450 expression and drug metabolism.

    PubMed

    Zhang, Peng; Jia, Kunzhi; Fang, Cheng; Zhou, Xin; Ding, Xinxin; Zhang, Qing-Yu

    2013-02-01

    The study was originally designed to test the hypothesis that the compensatory increase in intestinal P450 (cytochrome P450) expression in the intestinal epithelium-specific P450 reductase (CPR) knockout (IE-Cpr-null) mice was attributable to decreased metabolism of putative P450 inducers present in the diet. Thus, we determined the impact of a dietary change from regular rodent chow to a synthetic diet devoid of phytochemicals on the expression of P450 enzymes in the small intestine (SI) and liver of wild-type (WT) and IE-Cpr-null mice. The dietary change diminished expression of CYP1A, 2B, 2C, and 3A in SI and CYP2B, 2C, and 3A in liver of both WT and IE-Cpr-null mice. However, the compensatory increase in SI P450 expression still occurred in IE-Cpr-null, compared with WT, mice, on the synthetic diet. The diet change-induced decrease in P450 expression was accompanied by decreases in microsomal midazolam-hydroxylase activity in vitro and first-pass clearance of midazolam in vivo in WT mice. Further studies showed that the dietary change, but not Cpr deletion, caused large decreases in bile acid (BA) levels in plasma, liver, SI, and intestinal content and that treatment of WT mice on the synthetic diet with GW4064, a farnesoid-X-receptor agonist, restored the levels of CYP3A expression in both liver and SI to those seen in mice fed with regular chow. Taken together, these results highlight the vital role of diet in maintaining adequate expression of major drug-metabolizing P450s and their associated drug-metabolizing activities in the digestive tract and suggest potential involvement of BA signaling in the regulatory mechanisms.

  16. Identification of cytochrome P450 enzymes critical for lung tumorigenesis by the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK): insights from a novel Cyp2abfgs-null mouse.

    PubMed

    Li, Lei; Megaraj, Vandana; Wei, Yuan; Ding, Xinxin

    2014-11-01

    Cytochrome P450 (P450) enzymes encoded by the mouse Cyp2abfgs gene cluster are preferentially expressed in the respiratory tract. Previous studies have demonstrated that pulmonary P450-mediated bioactivation is necessary for lung tumorigenesis induced by the tobacco-specific lung procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and that CYP2A5 mediates a noteworthy fraction, but not all, of NNK bioactivation in the lung. The aim of this study was to determine whether other P450s encoded by the Cyp2abfgs gene cluster also play significant roles in NNK lung tumorigenesis. A novel Cyp2abfgs-null mouse was generated, in which all Cyp2a, 2b, 2g, 2f and 2s genes are deleted. The Cyp2abfgs-null mouse was viable, fertile and without discernible physiological abnormalities or compensatory increases in the expression of other P450s. NNK bioactivation in vitro and NNK-induced DNA adduction and lung tumorigenesis in vivo were determined for wild-type (WT) and Cyp2abfgs-null mice; the results were compared with previous findings from Cyp2a5-null mice. The Cyp2abfgs-null mice exhibited significantly lower rates of NNK bioactivation in lung and liver microsomes, compared with either WT or Cyp2a5-null mice. The levels of lung O(6)-methyl guanine DNA adduct were also substantially reduced in Cyp2abfgs-null mice, compared with either WT or Cyp2a5-null mice. Moreover, the Cyp2abfgs-null mice were largely resistant to NNK-induced lung tumorigenesis at both low (50mg/kg) and high (200mg/kg) NNK doses, in contrast to the WT or Cyp2a5-null mice. These results indicate for the first time that, collectively, the CYP2A, 2B, 2F, 2G, and 2S enzymes are indispensable for NNK-induced lung tumorigenesis.

  17. Hepatic zonation of the induction of cytochrome P450 IVA, peroxisomal lipid beta-oxidation enzymes and peroxisome proliferation in rats treated with dehydroepiandrosterone (DHEA). Evidence of distinct zonal and sex-specific differences.

    PubMed

    Beier, K; Völkl, A; Metzger, C; Mayer, D; Bannasch, P; Fahimi, H D

    1997-08-01

    Dehydroepiandrosterone (DHEA) is an intermediate product in the synthesis of male and female sex hormones in the adrenal cortex of man. In livers of rats and mice DHEA increases the levels of cytochrome P450 IVA and peroxisomal beta-oxidation enzymes associated with peroxisome proliferation. Prolonged treatment of rats with DHEA induces liver tumors that are more frequent in females arising mainly in the periportal regions of the liver lobule (Metzger et al., Toxicol. Pathol. 23, 591-605, 1995). Because of paucity of information on hepatic zonation of peroxisomal response to DHEA and controversial reports on gender-specific differences of its effects the present study was undertaken using qualitative immunohistochemical and quantitative immunoelectron microscopical techniques in addition to Western blotting. Rats were treated for 24 weeks with 0.6% DHEA supplied with diet. Immunoblot analysis revealed marked induction of peroxisomal beta-oxidation enzymes, which by quantitative analysis was equally strong in male and female animals, whilst catalase and urate-oxidase were not increased. Cytochrome P450 IVA, in contrast, was induced significantly stronger in male than in female rats. Immunohistochemistry confirmed the induction of cytochrome P450 IVA showing a marked lobular gradient in female animals with strong induction in pericentral and almost no induction in periportal regions of the liver lobule. In male animals cytochrome P450 IVA was expressed more uniformly across the liver lobule. A similar sex specific zone-dependent response was observed for peroxisomes. DHEA induced in females a significant zonal gradient with marked peroxisome proliferation and a strong induction of peroxisomal hydratase/dehydrogenase in pericentral hepatocytes and a much smaller response in periportal regions. Livers of male animals, in contrast, showed a uniform peroxisomal proliferation to DHEA with only slight zonal differences. The striking homologies of the induction patterns of

  18. Expression and Characterization of Truncated Recombinant Human Cytochrome P450 2J2

    PubMed Central

    Park, Hyoung-Goo; Lim, Young-Ran; Han, Songhee

    2014-01-01

    The human cytochrome P450 2J2 catalyzes an epoxygenase reaction to oxidize various fatty acids including arachidonic acid. In this study, three recombinant enzyme constructs of P450 2J2 were heterologously expressed in Escherichia coli and their P450 proteins were successfully purified using a Ni2+-NTA affinity column. Deletion of 34 amino acid residues in N-terminus of P450 2J2 enzyme (2J2-D) produced the soluble enzyme located in the cytosolic fraction. The enzymatic analysis of this truncated protein indicated the typical spectral characteristics and functional properties of P450 2J2 enzyme. P450 2J2-D enzymes from soluble fraction catalyzed the oxidation reaction of terfenadine to the hydroxylated product. However, P450 2J2-D enzymes from membrane fraction did not support the P450 oxidation reaction although it displayed the characteristic CO-binding spectrum of P450. Our finding of these features in the N-terminal modified P450 2J2 enzyme could help understand the biological functions and the metabolic roles of P450 2J2 enzyme and make the crystallographic analysis of the P450 2J2 structure feasible for future studies. PMID:24795797

  19. Effects in rats of maternal exposure to raspberry leaf and its constituents on the activity of cytochrome p450 enzymes in the offspring.

    PubMed

    Makaji, Emilija; Ho, Shirley H Y; Holloway, Alison C; Crankshaw, Denis J

    2011-03-01

    The goal of our study was to determine whether maternal exposure to red raspberry leaf (RRL) and its constituents can permanently alter biotransformation of fluorogenic substrates by cytochrome P450 (CYP) in the livers of male and female offspring. Nulliparous female rats received vehicle, raspberry leaf, kaempferol, quercetin, or ellagic acid orally once breeding had been confirmed until parturition. Hepatic microsomes were prepared from animals at birth (postnatal day 1 [PND1]), weaning (PND21), PND65, and PND120 to determine the biotransformation of 8 fluorogenic substrates. The pattern of biotransformation of all but 2 of the substrates was gender specific. Maternal consumption of RRL increased biotransformation of 3 substrates by female offspring at PND120 resulting in a more masculine profile. Kaempferol and quercetin had a similar effect to RRL. These results suggest that maternal consumption of either RRL or some of its constituents leads to long-term alterations of CYP activity in female offspring.

  20. An independent occurrence of the chimeric P450 enzyme CYP337B3 of Helicoverpa armigera confers cypermethrin resistance in Pakistan.

    PubMed

    Rasool, Akhtar; Joußen, Nicole; Lorenz, Sybille; Ellinger, Renate; Schneider, Bernd; Khan, Sher Afzal; Ashfaq, Muhammad; Heckel, David G

    2014-10-01

    The increasing resistance level of insect pest species is a major concern to agriculture worldwide. The cotton bollworm, Helicoverpa armigera, is one of the most important pest species due to being highly polyphagous, geographically widespread, and resistant towards many chemical classes of insecticides. We previously described the mechanism of fenvalerate resistance in Australian populations conferred by the chimeric cytochrome P450 monooxygenase CYP337B3, which arose by unequal crossing-over between CYP337B1 and CYP337B2. Here, we show that this mechanism is also present in the cypermethrin-resistant FSD strain from Pakistan. The Pakistani and the Australian CYP337B3 alleles differ by 18 synonymous and three nonsynonymous SNPs and additionally in the length and sequence of the intron. Nevertheless, the activity of both CYP337B3 proteins is comparable. We demonstrate that CYP337B3 is capable of metabolizing cypermethrin (trans- and especially cis-isomers) to the main metabolite 4'-hydroxycypermethrin, which exhibits no intrinsic toxicity towards susceptible larvae. In a bioassay, CYP337B3 confers a 7-fold resistance towards cypermethrin in FSD larvae compared to susceptible larvae from the Australian TWB strain lacking CYP337B3. Linkage analysis shows that presence of CYP337B3 accounts for most of the cypermethrin resistance in the FSD strain; up-regulation of other P450s in FSD plays no detectable role in resistance. The presence or absence of CYP337B3 can be easily detected by a simple PCR screen, providing a powerful tool to rapidly distinguish resistant from susceptible individuals in the field and to determine the geographical distribution of this resistance gene. Our results suggest that CYP337B3 evolved twice independently by unequal crossing-over between CYP337B2 and two different CYP337B1 alleles.

  1. Detoxification of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) by cytochrome P450 enzymes: A theoretical investigation.

    PubMed

    Li, Xiao-Xi; Wang, Yong; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2016-01-01

    Two types of detoxification routes, N-demethylation to form 4-phenyl-1,2,3,6-tetrahydropyridine (PTP) and aromatic hydroxylation to generate 4-(4'-hydroxyphenyl)-1-methyl-1,2,3,6-tetrahydropyridine (MPTP-OH), for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mediated by Compound I (Cpd I) of cytochrome P450 are investigated theoretically using hybrid density functional calculations. Quantum chemical results reveal that for the N-demethylation, the initial C-H bond activation is achieved via a hydrogen atom transfer (HAT) mechanism. This is followed by a subsequent O-rebound to yield the carbinolamine intermediate. Due to the nature of pericyclic reaction, the generated carbinolamine decomposes in a non-enzymatic aqueous environment with the assistance of water molecules, forming amine and hydrated formaldehyde. For the aromatic hydroxylation, an initial addition of Cpd I to the substrate occurs mainly through a side-on approach with a subsequent proton shuttle to form the phenol product. A comparison of the energy barriers for both routes indicates that the N-demethylation (7.5/5.7kcal/mol for the quartet/doublet state in solvent) is thermodynamically more favorable than the aromatic hydroxylation process (14.9/14.8kcal/mol for the quartet/doublet state in solvent). This trend is in good agreement with the experimental product distribution, viz., the N-demethylation product PTP is more than the aromatic hydroxylation product MPTP-OH. Taken together, these observations not only enrich our knowledge on the mechanistic details of the N-dealkylation and the aromatic hydroxylation by P450s, but also provide certain insights into the metabolism of other analogous toxins. PMID:26544505

  2. Metabolic Activation of Polycyclic Aromatic Hydrocarbons and Aryl and Heterocyclic Amines by Human Cytochromes P450 2A13 and 2A6

    PubMed Central

    Shimada, Tsutomu; Murayama, Norie; Yamazaki, Hiroshi; Tanaka, Katsuhiro; Takenaka, Shigeo; Komori, Masayuki; Kim, Donghak; Guengerich, F. Peter

    2013-01-01

    Human cytochrome P450 (P450) 2A13 was found to interact with several polycyclic aromatic hydrocarbons (PAHs) to produce Type I binding spectra, including acenaphthene, acenaphthylene, benzo[c]phenanthrene, fluoranthene, fluoranthene-2,3-diol, and 1-nitropyrene. P450 2A6 also interacted with acenaphthene and acenaphthylene, but not with fluoranthene, fluoranthene-2,3-diol, or 1-nitropyrene. P450 1B1 is well known to oxidize many carcinogenic PAHs, and we found that several PAHs (i.e., 7,12-dimethylbenz[a]anthracene, 7,12-dimethylbenz[a]anthracene-5,6-diol, benzo[c]phenanthrene, fluoranthene, fluoranthene-2,3-diol, 5-methylchrysene, benz[a]pyrene-4,5-diol, benzo[a]pyrene-7,8-diol, 1-nitropyrene, 2-aminoanthracene, 2-aminofluorene, and 2-acetylaminofluorene) interacted with P450 1B1, producing Reverse Type I binding spectra. Metabolic activation of PAHs and aryl- and heterocyclic amines to genotoxic products was examined in Salmonella typhimurium NM2009, and we found that P450 2A13 and 2A6 (as well as P450 1B1) were able to activate several of these procarcinogens. The former two enzymes were particularly active in catalyzing 2-aminofluorene and 2-aminoanthracene activation, and molecular docking simulations supported the results with these procarcinogens, in terms of binding in the active sites of P450 2A13 and 2A6. These results suggest that P450 2A enzymes, as well as P450 Family 1 enzymes including P450 1B1, are major enzymes involved in activating PAHs and aryl- and heterocyclic amines, as well as tobacco-related nitrosamines. PMID:23432465

  3. The effect of acute stress and opioid antagonist on the activity of NADPH-P450 reductase in rat Leydig cells.

    PubMed

    Kostić, T; Andrić, S; Marić, D; Kovacević, R

    1998-07-01

    Previous studies indicate that acute immobilization stress (IMO; 2 h) impaired testicular steroidogenesis primarily at the testicular level decreasing the activity of certain steroidogenic enzymes. In the present study unstressed rats as well as IMO rats (2 h) were treated by intratesticular injection of naltrexone methobromide (NMB; peripheral opioid receptor antagonist; 36 microg/testis) or vehicle at the beginning of and at 1 h of the IMO period. In IMO rats the activity of P450c17 was significantly reduced as well as the activity of NADPH-P450 reductase (which catalyzes the transfer of electrons from NADPH to cytochrome P450), while the activity of NADH-b5 reductase was not affected. Present data confirmed previous results that acute IMO reduced testicular P450c17 activity and implicate that decreased activity of NADPH-P450 reductase could be responsible for the inhibition of P450c17 under IMO conditions, while NADH-b5 reductase is probably not involved. NMB treatment antagonized the inhibitory effect of IMO on P450c17 and NADPH-P450 reductase activities. Such results put forward the implication that endogenous opioid peptides are involved in mediating the inhibitory effect of IMO on testicular steroidogenesis, and allow the speculation that NADPH-P450 reductase could be a possible site of such an inhibition. PMID:9712411

  4. FTIR studies of the redox partner interaction in cytochrome P450: the Pdx-P450cam couple.

    PubMed

    Karyakin, Andrey; Motiejunas, Domantas; Wade, Rebecca C; Jung, Christiane

    2007-03-01

    Recently we have developed a new approach to study protein-protein interactions using Fourier transform infrared spectroscopy in combination with titration experiments and principal component analysis (FTIR-TPCA). In the present paper we review the FTIR-TPCA results obtained for the interaction between cytochrome P450 and the redox partner protein in two P450 systems, the Pseudomonas putida P450cam (CYP101) with putidaredoxin (P450cam-Pdx), and the Bacillus megaterium P450BM-3 (CYP102) heme domain with the FMN domain (P450BMP-FMND). Both P450 systems reveal similarities in the structural changes that occur upon redox partner complex formation. These involve an increase in beta-sheets and alpha-helix content, a decrease in the population of random coil/3(10)-helix structure, a redistribution of turn structures within the interacting proteins and changes in the protonation states or hydrogen-bonding of amino acid carboxylic side chains. We discuss in detail the P450cam-Pdx interaction in comparison with literature data and conclusions drawn from experiments obtained by other spectroscopic techniques. The results are also interpreted in the context of a 3D structural model of the Pdx-P450cam complex.

  5. Molecular cloning and xenobiotic induction of seven novel cytochrome P450 monooxygenases in Aedes albopictus.

    PubMed

    Chan, Hiang Hao; Wajidi, Mustafa Fadzil Farid; Zairi, Jaal

    2014-01-01

    Cytochrome P450 monooxygenase (P450) is a superfamily of enzymes that is important in metabolism of endogenous and exogenous compounds. In insects, these enzymes confer resistance to insecticides through its metabolic activities. Members of P450 from family 6 in insects are known to play a role in such function. In this study, we have isolated seven novel family 6 P450 from Aedes albopictus (Skuse) (Diptera: Culicidae), a vector of dengue and chikungunya fever. Induction profile of these seven genes was studied using several insecticides and xenobiotics. It was found that deltamethrin and permethrin did not induce expression of any genes. Another insecticide, temephos, inhibited expression of CYP6P15 for fivefold and twofold for CYP6N29, CYP6Y7, and CYP6Z18. In addition, copper II sulfate induced expression of CYP6M17 and CYP6N28 for up to sixfold. Benzothiazole (BZT), a tire leachate induced the expression of CYP6M17 by fourfold, CYP6N28 by sevenfold, but inhibited the expression of CYP6P15 for threefold and CYP6Y7 for twofold. Meanwhile, piperonyl butoxide (PBO) induced the expression CYP6N28 (twofold), while it inhibited the expression of CYP6P15 (fivefold) and CYP6Y7 (twofold). Remarkably, all seven genes were induced two- to eightfold by acetone in larval stage, but not adult stage. Expression of CYP6N28 was twofold higher, while expression of CYP6P15 was 15-fold lower in adult than larva. The other five P450s were not differentially expressed between the larvae and adult. This finding showed that acetone can be a good inducer of P450 in Ae. albopictus. On the other hand, temephos can act as good suppressor of P450, which may affect its own bioefficacy because it needs to be bioactivated by P450. To the best of our knowledge, this is the first report on acetone-inducible P450 in insects. Further study is needed to characterize the mechanisms involved in acetone induction in P450.

  6. The effects of azole-based heme oxygenase inhibitors on rat cytochromes P450 2E1 and 3A1/2 and human cytochromes P450 3A4 and 2D6.

    PubMed

    Hum, Maaike; McLaughlin, Brian E; Roman, Gheorghe; Vlahakis, Jason Z; Szarek, Walter A; Nakatsu, Kanji

    2010-09-01

    Heme oxygenases (HOs) catalyze the degradation of heme to biliverdin, carbon monoxide (CO), and free iron. The two major isoforms, HO-1 (inducible) and HO-2 (constitutive), are involved in a variety of physiological functions, including inflammation, apoptosis, neuromodulation, and vascular regulation. Major tools used in exploring these actions have been metalloporphyrin analogs of heme that inhibit the HOs. However, these tools are limited by their lack of selectivity; they affect other heme-dependent enzymes, such as cytochromes P450 (P450s), soluble guanylyl cyclase (sGC), and nitric-oxide synthase (NOS). Our laboratory has successfully synthesized a number of nonporphyrin azole-based HO inhibitors (QC-xx) that had little or no effect on sGC and NOS activity. However, their effects on various P450 isoforms have yet to be fully elucidated. To determine the effects of the QC-xx inhibitors on P450 enzyme activity, microsomal preparations of two rat P450 isoforms (2E1 and 3A1/3A2) and two human P450 supersome isoforms (3A4 and 2D6) were incubated with varying concentrations of HO inhibitor, and the activity was determined by spectrophotometric or fluorometric analysis. Results indicated that some QC compounds demonstrated little to no inhibition of the P450s, whereas others did inhibit these P450 isoforms. Four structural regions of QC-xx were analyzed, leading to the identification of structures that confer a decreased effect on both rat and human P450 isoforms studied while maintaining an inhibitory effect on the HOs.

  7. Cytochromes P450--a family of proteins and scientists-understanding their relationships.

    PubMed

    Sue Masters, Bettie; Marohnic, Christopher C

    2006-01-01

    The unifying thread of this review involves NADPH-cytochrome P450 reductase (CYPOR), the microsomal enzyme responsible for transferring electrons to cytochromes P450, as well as several other monooxygenase systems, a lifelong interest of the corresponding author. The intersection of her research with that of Dr. David Kupfer, their resulting collaboration, and the beginning of a long-standing study of fatty acid- and eicosanoid-metabolizing cytochromes P450 (CYP4A gene subfamily), including the role of cytochrome b5, will be reported. The culmination of this interest now involves purification and characterization of the human mutants of CYPOR that have been implicated in pathologies, such as Antley-Bixler syndrome.

  8. Mapping of genes for cytochromes P-450b, P-450e, P-450g and P-450h in the rat

    SciTech Connect

    Rampersaud, A.; Walz, F.G. Jr.

    1987-05-01

    Inbred ACI, WF and RCS rats having characteristic markers for albino (c), hemoglobin ..beta..-chain (Hbb) and pink-eyed dilution (p) loci on chromosome l and expressing electrophoretic variants for hepatic cytochromes P-450b, P-450e and P-450h and a likely Cis-acting regulatory variant of P-450g were used in genetic mapping studies of these hemoproteins. Phenotypes for these microsomal cytochromes P-450 were analyzed using 2-D electrophoresis and the results of WF x (ACI x WF)fl and RCS x (WF x RCS)fl backcrosses revealed two gene clusters designated the P450-b,e and P450-g,h loci. The interval separating P450-b and P450-e was <1 centiMorgan (cM) and that separating P450-g from P450-h was, 3.7 cM at a 90% confidence level. P450-g,h is not linked with P450-b,e and the other markers tested on chromosome 1. The linkage map P450-b,e--p--c--Hbb on rat chromosome 1 was demonstrated and found to be congruent with Coh(P450-b,e)--p--c--Hbb on mouse chromosome 7. It appears that close genetic linkage, rather than common functional/regulatory properties, typify members of cytochrome P-450 subfamilies.

  9. Reduction of Aromatic and Heterocyclic Aromatic N-Hydroxylamines by Human Cytochrome P450 2S1

    PubMed Central

    Wang, Kai; Guengerich, F. Peter

    2013-01-01

    Many aromatic amines and heterocyclic aromatic amines (HAAs) are known carcinogens for animals and there is also strong evidence for some in human cancer. The activation of these compounds, including some arylamine drugs, involves N-hydroxylation, usually by cytochrome P450 enzymes (P450) in Family 1 (1A2, 1A1, and 1B1). We previously demonstrated that the bioactivation product of the anti-cancer agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203), an N-hydroxylamine, can be reduced by P450 2S1 to its amine precursor under anaerobic conditions and, to a lesser extent, under aerobic conditions (Wang, K., and Guengerich, F. P. (2012) Chem. Res. Toxicol. 25, 1740–1751). In the present study, we tested the hypothesis that P450 2S1 is involved in the reductive biotransformation of known carcinogenic aromatic amines and HAAs. The N-hydroxylamines of 4-aminobiphenyl (4-ABP), 2-naphthylamine (2-NA), and 2-aminofluorene (2-AF) were synthesized and found to be reduced by P450 2S1 under both anaerobic and aerobic conditions. The formation of amines due to P450 2S1 reduction also occurred under aerobic conditions but was less apparent because the competitive disproportionation reactions (of the N-hydroxylamines) also yielded amines. Further, some nitroso and nitro derivatives of the arylamines could also be reduced by P450 2S1. None of the amines tested were oxidized by P450 2S1. These results suggest that P450 2S1 may be involved in the reductive detoxication of several of the activated products of carcinogenic aromatic amines and HAAs. PMID:23682735

  10. Pulmonary cytochrome P450 enzymes belonging to the CYP4B subfamily from an Australian marsupial, the tammar wallaby (Macropus eugenii).

    PubMed

    Milic, Natalie L; Ngo, Suong N T; Marchant, Ceilidh L; Height, Tamara A; McKinnon, Ross A

    2011-01-01

    Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of xenobiotics and endogenous substrates. We have previously reported the cloning and characterisation of the koala CYP4A15, the first reported member of the CYP4 family from marsupials, and have demonstrated important species differences in CYP4A activity and tissue expression. In the present study, the cloning of CYP4B1 in the wallaby (Macropus eugenii) and their expression across marsupials is described. Rabbit anti-mouse CYP4B1 antibody detected immunoreactive proteins in lung and liver microsomes from all test marsupials, with relative weak signal detected from the koala, suggesting a species-specific expression. Microsomal 2-aminofluorene bio-activation (a CYP4B1 marker) in wallaby lung was comparable to that of rabbit, with significant higher activities detected in wallaby liver and kidneys compared to rabbit. A 1548bp wallaby lung CYP4B complete cDNA, designated CYP4B1, which encodes a protein of 510 amino acids and shares 72% nucleotide and 69% amino acid sequence identity to human CYP4B1, was cloned by polymerase chain reaction approaches. The results demonstrate the presence of wallaby CYP4B1 that shares several common features with other published CYP4Bs; however the wallaby CYP4B1 cDNA contains four extra amino acid residues at the NH₂-terminal, a fundamentally conserved transmembrane anchor of all eukaryote CYPs.

  11. Gene expression and enzyme function of two cytochrome P450 3A isoenzymes in rat and cattle precision cut liver slices.

    PubMed

    Maté, María Laura; Ballent, Mariana; Larsen, Karen; Lifschitz, Adrian; Lanusse, Carlos; Virkel, Guillermo

    2015-01-01

    1. Precision-cut liver slices are one of the in vitro models used in studies concerning xenobiotic metabolism. Sparse information on this field is actually available for cattle and other veterinary species. 2. The aim of the current work was to study the effect of dexamethasone (DEX) on the gene expression and function of CYP3A23 (in rat), CYP3A28 (in cattle) and the transcriptional factors involved in their regulation. 3. DEX (at 100 µM) up-regulated CYP3A23 mRNA (3.2-fold, p = 0.028) in rat liver slices after 12 h culture, whereas the gene expression profiles of transcriptional factors involved in CYP3A regulation were unaffected. A CYP3A-dependent enzyme activity (triacetyl-oleandomycin N-demethylase) increased 3.4-fold (p < 0.05) in rat liver slices cultured in the presence of DEX. 4. The protocol used for rat liver slices was used as reference to study the expression of a CYP3A isoenzyme in cattle liver slices. Oppositely, DEX did neither affect the gene expression profile of CYP3A28 nor the CYP3A activity tested in cattle liver slices. 5. The data reported here are a further contribution to demonstrate the usefulness of liver slices as an in vitro tool for studies on the expression and function of xenobiotic metabolizing enzymes in cattle and in other ruminant species. PMID:25630049

  12. Induced synthesis of P450 aromatase and 17β-estradiol by D-aspartate in frog brain.

    PubMed

    Burrone, Lavinia; Santillo, Alessandra; Pinelli, Claudia; Baccari, Gabriella Chieffi; Di Fiore, Maria Maddalena

    2012-10-15

    D-Aspartic acid is an endogenous amino acid occurring in the endocrine glands as well as in the nervous system of various animal phyla. Our previous studies have provided evidence that D-aspartate plays a role in the induction of estradiol synthesis in gonads. Recently, we have also demonstrated that D-aspartic acid induces P450 aromatase mRNA expression in the frog (Pelophylax esculentus) testis. P450 aromatase is the key enzyme in the estrogen synthetic pathway and irreversibly converts testosterone into 17β-estradiol. In this study, we firstly investigated the immunolocalisation of P450 aromatase in the brain of P. esculentus, which has never previously been described in amphibians. Therefore, to test the hypothesis that d-aspartate mediates a local synthesis of P450 aromatase in the frog brain, we administered D-aspartate in vivo to male frogs and then assessed brain aromatase expression, sex hormone levels and sex hormone receptor expression. We found that D-aspartate enhances brain aromatase expression (mRNA and protein) through the CREB pathway. Then, P450 aromatase induces 17β-estradiol production from testosterone, with a consequent increase of its receptor. Therefore, the regulation of d-aspartate-mediated P450 aromatase expression could be an important step in the control of neuroendocrine regulation of the reproductive axis. Accordingly, we found that the sites of P450 aromatase immunoreactivity in the frog brain correspond to the areas known to be involved in neurosteroid synthesis. PMID:22771744

  13. Unexpected contribution of cytochrome P450 enzymes CYP11B2 and CYP21, as well as CYP3A4 in xenobiotic androgen elimination - insights from metandienone metabolism.

    PubMed

    Parr, Maria Kristina; Zöllner, Andy; Fusshöller, Gregor; Opfermann, Georg; Schlörer, Nils; Zorio, Mirela; Bureik, Matthias; Schänzer, Wilhelm

    2012-09-18

    The metabolism of a variety of anabolic steroids frequently misused for doping purposes has been investigated in the last years. This research mainly focused on main and long-term metabolites suitable for detection, but detailed clearance mechanisms have rarely been elucidated. Recent studies on metandienone focused on the identification of 17β-hydroxymethyl-17α-methyl-18-norandrosta-1,4,13-trien-3-one (20βOH-NorMD) as long-term metabolite, however, the metabolic pathway of its generation remained unclear. Metandienone and its Wagner-Meerwein rearrangement product 17,17-dimethyl-18-norandrosta-1,4,13-trien-3-one (NorMD) were hydroxylated by different human cytochrome P450 enzymes (CYPs). Some of their hydroxylation products were chemically synthesized and characterized by mass spectrometry to allow for their trace detection in urine samples. Following oral administration of metandienone or NorMD in one human volunteer each the post administration urines were checked for the presence of those hydroxylated metabolites using GC-MS/MS analysis. The human mitochondrial steroid hydroxylating enzymes CYP11B1 and CYP11B2 were capable to metabolize metandienone leading to the formation of 11β-hydroxymetandienone and 18-hydroxymetandienone. Following Wagner-Meerwein rearrangement, the resulting products could be assigned to 20βOH-NorMD and 11βOH-NorMD. The contribution of CYP11B1 and CYP11B2 in human metabolism of metandienone was confirmed by analysis of post-administration samples of metandienone and NorMD. Combined with the results from a previous study, enzymatic pathways were identified that involve CYP21 and CYP3A4 in the hydroxylation of NorMD, while CYP21, CYP3A4 and CYP11B2 take part in 20βOH-NorMD generation from MD. The current study represents a valuable contribution to the elucidation of clearance mechanisms of anabolic steroids and also indicates that mainly non-liver CYPs seem to be involved in these processes. PMID:22885098

  14. Propiconazole increases reactive oxygen species levels in mouse hepatic cells in culture and in mouse liver by a cytochrome P450 enzyme mediated process.

    PubMed

    Nesnow, Stephen; Grindstaff, Rachel D; Lambert, Guy; Padgett, William T; Bruno, Maribel; Ge, Yue; Chen, Pei-Jen; Wood, Charles E; Murphy, Lynea

    2011-10-15

    Propiconazole induces hepatocellular carcinomas and hepatocellular adenomas in mice and promotes liver tumors in rats. Transcriptional, proteomic, metabolomic and biochemical studies of hepatic tissues from mice treated with propiconazole under the conditions of the chronic bioassay indicated that propiconazole induced oxidative stress. Here we sought to identify the source of the reactive oxygen species (ROS) induced by propiconazole using both AML12 immortalized mouse hepatocytes in culture and liver tissues from mice. We also sought to further characterize the nature and effects of ROS formation induced by propiconazole treatment in mouse liver. ROS was induced in AML12 cells by propiconazole as measured by fluorescence detection and its formation was ameliorated by N-acetylcysteine. Propiconazole induced glutathione-S-transferase (GSTα) protein levels and increased the levels of thiobarbituric acid reactive substances (TBARS) in AML12 cells. The TBARS levels were decreased by diphenylene iodonium chloride (DPIC), a cytochrome P450 (CYP) reductase inhibitor revealing the role of CYPs in ROS generation. It has been previously reported that Cyp2b and Cyp3a proteins were induced in mouse liver by propiconazole and that Cyp2b and Cyp3a proteins undergo uncoupling of their CYP catalytic cycle releasing ROS. Therefore, salicylic acid hydroxylation was used as probe for ROS formation using microsomes from mice treated with propiconazole. These studies showed that levels of 2,3-dihydroxybenzoic acid (an ROS derived metabolite) were decreased by ketoconazole, melatonin and DPIC. In vivo, propiconazole increased hepatic malondialdehyde levels and GSTα protein levels and had no effect on hepatic catalase or superoxide dismutase activities. Based on these observations we conclude that propiconazole induces ROS in mouse liver by increasing CYP protein levels leading to increased ROS levels. Our data also suggest that propiconazole induces the hydroxyl radical as a major

  15. Purification and characterization of a benzene hydroxylase: A cytochrome P-450 from rat liver mitochondria

    SciTech Connect

    Karaszkiewicz, J.W.

    1989-01-01

    This laboratory previously demonstrated that incubation of ({sup 14}C)benzene with isolated mitochondria resulted in the formation of mtDNA adducts. Since benzene is incapable of spontaneously covalently binding to nuclei acids, it was hypothesized that enzyme(s) present in the organelle metabolized benzene to reactive derivatives. We have purified, to electrophoretic homogeneity, a 52 kDa cytochrome P-450 from liver mitoplasts which metabolizes benzene to phenol. The enzyme has a K{sub M} for benzene of 0.012 mM, and a V{sub MAX} of 22.6 nmol phenol/nmol P-450/10 min, and requires NADPH, adrenodoxin, and adrenodoxin reductase for activity. Activity also can be reconstituted with microsomal cytochrome P-450 reductase. Benzene hydroxylase activity could be inhibited by carbon monoxide and SKF-525A, and by specific inhibitors of microsomal benzene metabolism. The purified enzyme oxidized phenol, forming catechol; aminopyrine N-demethylase activity was also demonstrated. These data confirm that a cytochrome P-450 of mitochondrial origin is involved in benzene metabolism, and indicate a role for the mitochondrion in xenobiotic activation.

  16. Transcription profiling of 12 asian gypsy moth (Lymantria dispar) cytochrome P450 genes in response to insecticides.

    PubMed

    Sun, Lili; Wang, Zhiying; Zou, Chuanshan; Cao, Chuanwang

    2014-04-01

    As the main group of detoxification enzymes, cytochrome P450 monoxygenases (P450s) catalyse an extremely diverse range of reactions that play an important role in the detoxification of foreign compounds. Transcription profiling of 12 Lymantria dispar P450 genes from the CYP6 subfamily believed to be involved in insecticide metabolism was performed in this study. Life-stage transcription profiling of CYP6 genes revealed significant variations between eggs, larvae, pupae, and adult males and females. Exposure of larvae to sublethal doses of deltamethrin, omethoate, and carbaryl enhanced the transcription of most of the CYP6 P450 genes, with induction peaking between 24 and 72 h after exposure. Transcription profiles were dependent on the levels of insecticide exposure and the various developmental stages. PMID:24488622

  17. Transcription profiling of 12 asian gypsy moth (Lymantria dispar) cytochrome P450 genes in response to insecticides.

    PubMed

    Sun, Lili; Wang, Zhiying; Zou, Chuanshan; Cao, Chuanwang

    2014-04-01

    As the main group of detoxification enzymes, cytochrome P450 monoxygenases (P450s) catalyse an extremely diverse range of reactions that play an important role in the detoxification of foreign compounds. Transcription profiling of 12 Lymantria dispar P450 genes from the CYP6 subfamily believed to be involved in insecticide metabolism was performed in this study. Life-stage transcription profiling of CYP6 genes revealed significant variations between eggs, larvae, pupae, and adult males and females. Exposure of larvae to sublethal doses of deltamethrin, omethoate, and carbaryl enhanced the transcription of most of the CYP6 P450 genes, with induction peaking between 24 and 72 h after exposure. Transcription profiles were dependent on the levels of insecticide exposure and the various developmental stages.

  18. Role of P450 Monooxygenases in the Degradation of the Endocrine-Disrupting Chemical Nonylphenol by the White Rot Fungus Phanerochaete chrysosporium▿

    PubMed Central

    Subramanian, Venkataramanan; Yadav, Jagjit S.

    2009-01-01

    The white rot fungus Phanerochaete chrysosporium extensively degraded the endocrine disruptor chemical nonylphenol (NP; 100% of 100 ppm) in both nutrient-limited cultures and nutrient-sufficient cultures. The P450 enzyme inhibitor piperonyl butoxide caused significant inhibition (∼75%) of the degradation activity in nutrient-rich malt extract (ME) cultures but no inhibition in defined low-nitrogen (LN) cultures, indicating an essential role of P450 monooxygenase(s) in NP degradation under nutrient-rich conditions. A genome-wide analysis using our custom-designed P450 microarray revealed significant induction of multiple P450 monooxygenase genes by NP: 18 genes were induced (2- to 195-fold) under nutrient-rich conditions, 17 genes were induced (2- to 6-fold) in LN cultures, and 3 were induced under both nutrient-rich and LN conditions. The P450 genes Pff 311b (corresponding to protein identification number [ID] 5852) and Pff 4a (protein ID 5001) showed extraordinarily high levels of induction (195- and 167-fold, respectively) in ME cultures. The P450 oxidoreductase (POR), glutathione S-transferase (gst), and cellulose metabolism genes were also induced in ME cultures. In contrast, certain metabolic genes, such as five of the peroxidase genes, showed partial downregulation by NP. This study provides the first evidence for the involvement of P450 enzymes in NP degradation by a white rot fungus and the first genome-wide identification of specific P450 genes responsive to an environmentally significant toxicant. PMID:19542331

  19. Cytochrome P450 expression in oesophageal cancer.

    PubMed Central

    Murray, G I; Shaw, D; Weaver, R J; McKay, J A; Ewen, S W; Melvin, W T; Burke, M D

    1994-01-01

    The cytochrome P450 superfamily of enzymes play a central part in the metabolism of carcinogens and anti-cancer drugs. The expression, cellular localisation, and distribution of different forms of P450 and the functionally associated enzymes epoxide hydrolase and glutathione S-transferases have been investigated in oesophageal cancer and non-neoplastic oesophageal tissue using immunohistochemistry. Expression of the different enzymes was confined to epithelial cells in both non-neoplastic samples and tumour samples except the CYP3A was also identified in mast cells and glutathione S-transferase pi was present in chronic inflammatory cells. CYP1A was present in a small percentage of non-neoplastic samples but both CYP2C and CYP3A were absent. Epoxide hydrolase was present in half of the non-neoplastic samples and the different classes of glutathione S-transferase were present in a low number of samples. In carcinomas CYP1A, CYP3A, epoxide hydrolase, and glutathione S-transferase pi were expressed in at least 60% of samples. The expression of glutathione S-transferases alpha and mu were significantly less in adenocarcinoma compared with squamous carcinoma. Images Figure 1 Figure 2 Figure 3 PMID:8200549

  20. Tomato allene oxide synthase and fatty acid hydroperoxide lyase, two cytochrome P450s involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelope.

    PubMed

    Froehlich, J E; Itoh, A; Howe, G A

    2001-01-01

    Allene oxide synthase (AOS) and hydroperoxide lyase (HPL) are related cytochrome P450s that metabolize a common fatty acid hydroperoxide substrate to different classes of bioactive oxylipins within chloroplasts. Here, we report the use of in vitro import assays to investigate the targeting of tomato (Lycopersicon esculentum) AOS (LeAOS) and HPL (LeHPL) to isolated chloroplasts. LeAOS, which contains a typical N-terminal transit peptide, was targeted to the inner envelope membrane by a route that requires both ATP and proteinase-sensitive components on the surface of chloroplasts. Imported LeAOS was peripherally associated with the inner envelope; the bulk of the protein facing the stroma. LeHPL, which lacks a typical chloroplast-targeting sequence, was targeted to the outer envelope by an ATP-independent and protease-insensitive pathway. Imported LeHPL was integrated into the outer envelope with most of the protein exposed to the inter-membrane space. We conclude that LeAOS and LeHPL are routed to different envelope membranes by distinct targeting pathways. Partitioning of AOS and HPL to different envelope membranes suggests differences in the spatial organization of these two branches of oxylipin metabolism.

  1. Unusual properties of the cytochrome P450 superfamily

    PubMed Central

    Lamb, David C.; Waterman, Michael R.

    2013-01-01

    During the early years of cytochrome P450 research, a picture of conserved properties arose from studies of mammalian forms of these monooxygenases. They included the protohaem prosthetic group, the cysteine residue that coordinates to the haem iron and the reduced CO difference spectrum. Alternatively, the most variable feature of P450s was the enzymatic activities, which led to the conclusion that there are a large number of these enzymes, most of which have yet to be discovered. More recently, studies of these enzymes in other eukaryotes and in prokaryotes have led to the discovery of unexpected P450 properties. Many are variations of the original properties, whereas others are difficult to explain because of their unique nature relative to the rest of the known members of the superfamily. These novel properties expand our appreciation of the broad view of P450 structure and function, and generate curiosity concerning the evolution of P450s. In some cases, structural properties, previously not found in P450s, can lead to enzymatic activities impacting the biological function of organisms containing these enzymes; whereas, in other cases, the biological reason for the variations are not easily understood. Herein, we present particularly interesting examples in detail rather than cataloguing them all. PMID:23297356

  2. The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation

    SciTech Connect

    Du, Kuo; Williams, C. David; McGill, Mitchell R.; Xie, Yuchao; Farhood, Anwar; Vinken, Mathieu; Jaeschke, Hartmut

    2013-12-15

    Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the US. Although many aspects of the mechanism are known, recent publications suggest that gap junctions composed of connexin32 function as critical intercellular communication channels which transfer cytotoxic mediators into neighboring hepatocytes and aggravate liver injury. However, these studies did not consider off-target effects of reagents used in these experiments, especially the gap junction inhibitor 2-aminoethoxy-diphenyl-borate (2-APB). In order to assess the mechanisms of protection of 2-APB in vivo, male C56Bl/6 mice were treated with 400 mg/kg APAP to cause extensive liver injury. This injury was prevented when animals were co-treated with 20 mg/kg 2-APB and was attenuated when 2-APB was administered 1.5 h after APAP. However, the protection was completely lost when 2-APB was given 4–6 h after APAP. Measurement of protein adducts and c-jun-N-terminal kinase (JNK) activation indicated that 2-APB reduced both protein binding and JNK activation, which correlated with hepatoprotection. Although some of the protection was due to the solvent dimethyl sulfoxide (DMSO), in vitro experiments clearly demonstrated that 2-APB directly inhibits cytochrome P450 activities. In addition, JNK activation induced by phorone and tert-butylhydroperoxide in vivo was inhibited by 2-APB. The effects against APAP toxicity in vivo were reproduced in primary cultured hepatocytes without use of DMSO and in the absence of functional gap junctions. We conclude that the protective effect of 2-APB was caused by inhibition of metabolic activation of APAP and inhibition of the JNK signaling pathway and not by blocking connexin32-based gap junctions. - Highlights: • 2-APB protected against APAP-induced liver injury in mice in vivo and in vitro • 2-APB protected by inhibiting APAP metabolic activation and JNK signaling pathway • DMSO inhibited APAP metabolic activation as the solvent of 2-APB

  3. Metabolism of the EGFR tyrosin kinase inhibitor gefitinib by cytochrome P450 1A1 enzyme in EGFR-wild type non small cell lung cancer cell lines

    PubMed Central

    2011-01-01

    Background Gefitinib is a tyrosine kinase inhibitor (TKI) of the epidermal growth factor receptor (EGFR) especially effective in tumors with activating EGFR gene mutations while EGFR wild-type non small cell lung cancer (NSCLC) patients at present do not benefit from this treatment. The primary site of gefitinib metabolism is the liver, nevertheless tumor cell metabolism can significantly affect treatment effectiveness. Results In this study, we investigated the intracellular metabolism of gefitinib in a panel of EGFR wild-type gefitinib-sensitive and -resistant NSCLC cell lines, assessing the role of cytochrome P450 1A1 (CYP1A1) inhibition on gefitinib efficacy. Our results indicate that there is a significant difference in drug metabolism between gefitinib-sensitive and -resistant cell lines. Unexpectedly, only sensitive cells metabolized gefitinib, producing metabolites which were detected both inside and outside the cells. As a consequence of gefitinib metabolism, the intracellular level of gefitinib was markedly reduced after 12-24 h of treatment. Consistent with this observation, RT-PCR analysis and EROD assay showed that mRNA and activity of CYP1A1 were present at significant levels and were induced by gefitinib only in sensitive cells. Gefitinib metabolism was elevated in crowded cells, stimulated by exposure to cigarette smoke extract and prevented by hypoxic condition. It is worth noting that the metabolism of gefitinib in the sensitive cells is a consequence and not the cause of drug responsiveness, indeed treatment with a CYP1A1 inhibitor increased the efficacy of the drug because it prevented the fall in intracellular gefitinib level and significantly enhanced the inhibition of EGFR autophosphorylation, MAPK and PI3K/AKT/mTOR signalling pathways and cell proliferation. Conclusion Our findings suggest that gefitinib metabolism in lung cancer cells, elicited by CYP1A1 activity, might represent an early assessment of gefitinib responsiveness in NSCLC

  4. Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development

    PubMed Central

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo; Ansong, Charles; Anderson, Lindsey N.; Smith, Jordan N.; Corley, Richard A.

    2016-01-01

    Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography–mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage–dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics. PMID:27084891

  5. Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development.

    PubMed

    Sadler, Natalie C; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo; Ansong, Charles; Anderson, Lindsey N; Smith, Jordan N; Corley, Richard A; Wright, Aaron T

    2016-07-01

    Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography-mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics. PMID:27084891

  6. Metabolism of the anthelmintic drug niclosamide by cytochrome P450 enzymes and UDP-glucuronosyltransferases: metabolite elucidation and main contributions from CYP1A2 and UGT1A1.

    PubMed

    Lu, Danyi; Ma, Zhiguo; Zhang, Tianpeng; Zhang, Xingwang; Wu, Baojian

    2016-01-01

    1. Niclosamide is an old anthelmintic drug that shows potential in fighting against cancers. Here, we characterized the metabolism of niclosamide by cytochrome P450 enzymes (CYPs) and UDP-glucuronosyltransferases (UGTs) using human liver microsomes (HLM) and expressed enzymes. 2. NADPH-supplemented HLM (and liver microsomes from various animal species) generated one hydroxylated metabolite (M1) from niclosamide; and UDPGA-supplemented liver microsomes generated one mono-O-glucuronide (M2). The chemical structures of M1 (3-hydroxy niclosamide) and M2 (niclosamide-2-O-glucuronide) were determined through LC-MS/MS and/or NMR analyses. 3. Reaction phenotyping revealed that CYP1A2 was the main enzyme responsible for M1 formation. The important role of CYP1A2 in niclosamide metabolism was further confirmed by activity correlation analyses as well as inhibition experiments using specific inhibitors. 4. Although seven UGT enzymes were able to catalyze glucuronidation of niclosamide, UGT1A1 and 1A3 were the enzymes showed the highest metabolic activities. Activity correlation analyses demonstrated that UGT1A1 played a predominant role in hepatic glucuronidation of niclosamide, whereas the role of UGT1A3 was negligible. 5. In conclusion, niclosamide was subjected to efficient metabolic reactions hydroxylation and glucuronidation, wherein CYP1A2 and UGT1A1 were the main contributing enzymes, respectively.

  7. Evolving P450pyr Monooxygenase for Regio- and Stereoselective Hydroxylations.

    PubMed

    Yang, Yi; Li, Zhi

    2015-01-01

    P450pyr monooxygenase from Sphingomonas sp. HXN-200 catalysed the regio- and stereoselective hydroxylation at a non-activated carbon atom, a useful but challenging reaction in classic chemistry, with unique substrate specificity for a number of alicyclic compounds. New P450pyr mutants were developed by directed evolution with improved catalytic performance, thus significantly extending the application of the P450pyr monooxygenase family in biohydroxylation to prepare useful and valuable chiral alcohols. Directed evolution of P450pyr created new enzymes with improved S-enantioselectivity or R-enantioselectivity for the hydroxylation of N-benzyl pyrrolidine, enhanced regioselectivity for the hydroxylation of N-benzyl pyrrolidinone, and increased enantioselectivity for the hydroxylation of N-benzyl piperidinone, respectively. Directed evolution of P450pyr generated also mutants with fully altered regioselectivity (from terminal to subterminal) and newly created excellent S-enantioselectivity for the biohydroxylation of n-octane and propylbenzene, respectively, providing new opportunities for the regio- and enantioselective alkane functionalization. New P450pyr mutants were engineered as the first catalyst for highly selective terminal hydroxylation of n-butanol to 1,4-butanediol. Several novel, accurate, sensitive, simple, and HTS assays based on colorimetric or MS detection for measuring the enantio- and/or regioselectivity of hydroxylation were developed and proven to be practical in directed evolution. The P450pyr X-ray structure was obtained and used to guide the evolution. In silico modelling and substrate docking provided some insight into the influence of several important amino acid mutations of the engineered P450pyr mutants on the altered or enhanced regio- and enantioselectivity as well as new substrate acceptance. The obtained information and knowledge is useful for further engineering of P450pyr for other hydroxylations and oxidations. PMID:26507217

  8. Evolving P450pyr Monooxygenase for Regio- and Stereoselective Hydroxylations.

    PubMed

    Yang, Yi; Li, Zhi

    2015-01-01

    P450pyr monooxygenase from Sphingomonas sp. HXN-200 catalysed the regio- and stereoselective hydroxylation at a non-activated carbon atom, a useful but challenging reaction in classic chemistry, with unique substrate specificity for a number of alicyclic compounds. New P450pyr mutants were developed by directed evolution with improved catalytic performance, thus significantly extending the application of the P450pyr monooxygenase family in biohydroxylation to prepare useful and valuable chiral alcohols. Directed evolution of P450pyr created new enzymes with improved S-enantioselectivity or R-enantioselectivity for the hydroxylation of N-benzyl pyrrolidine, enhanced regioselectivity for the hydroxylation of N-benzyl pyrrolidinone, and increased enantioselectivity for the hydroxylation of N-benzyl piperidinone, respectively. Directed evolution of P450pyr generated also mutants with fully altered regioselectivity (from terminal to subterminal) and newly created excellent S-enantioselectivity for the biohydroxylation of n-octane and propylbenzene, respectively, providing new opportunities for the regio- and enantioselective alkane functionalization. New P450pyr mutants were engineered as the first catalyst for highly selective terminal hydroxylation of n-butanol to 1,4-butanediol. Several novel, accurate, sensitive, simple, and HTS assays based on colorimetric or MS detection for measuring the enantio- and/or regioselectivity of hydroxylation were developed and proven to be practical in directed evolution. The P450pyr X-ray structure was obtained and used to guide the evolution. In silico modelling and substrate docking provided some insight into the influence of several important amino acid mutations of the engineered P450pyr mutants on the altered or enhanced regio- and enantioselectivity as well as new substrate acceptance. The obtained information and knowledge is useful for further engineering of P450pyr for other hydroxylations and oxidations.

  9. Human Cytochrome P450 21A2, the Major Steroid 21-Hydroxylase

    PubMed Central

    Pallan, Pradeep S.; Wang, Chunxue; Lei, Li; Yoshimoto, Francis K.; Auchus, Richard J.; Waterman, Michael R.; Guengerich, F. Peter; Egli, Martin

    2015-01-01

    Cytochrome P450 (P450) 21A2 is the major steroid 21-hydroxylase, and deficiency of this enzyme is involved in ∼95% of cases of human congenital adrenal hyperplasia, a disorder of adrenal steroidogenesis. A structure of the bovine enzyme that we published previously (Zhao, B., Lei, L., Kagawa, N., Sundaramoorthy, M., Banerjee, S., Nagy, L. D., Guengerich, F. P., and Waterman, M. R. (2012) Three-dimensional structure of steroid 21-hydroxylase (cytochrome P450 21A2) with two substrates reveals locations of disease-associated variants. J. Biol. Chem. 287, 10613–10622), containing two molecules of the substrate 17α-hydroxyprogesterone, has been used as a template for understanding genetic deficiencies. We have now obtained a crystal structure of human P450 21A2 in complex with progesterone, a substrate in adrenal 21-hydroxylation. Substrate binding and release were fast for human P450 21A2 with both substrates, and pre-steady-state kinetics showed a partial burst but only with progesterone as substrate and not 17α-hydroxyprogesterone. High intermolecular non-competitive kinetic deuterium isotope effects on both kcat and kcat/Km, from 5 to 11, were observed with both substrates, indicative of rate-limiting C–H bond cleavage and suggesting that the juxtaposition of the C21 carbon in the active site is critical for efficient oxidation. The estimated rate of binding of the substrate progesterone (kon 2.4 × 107 m−1 s−1) is only ∼2-fold greater than the catalytic efficiency (kcat/Km = 1.3 × 107 m−1 s−1) with this substrate, suggesting that the rate of substrate binding may also be partially rate-limiting. The structure of the human P450 21A2-substrate complex provides direct insight into mechanistic effects of genetic variants. PMID:25855791

  10. Enhancing the efficiency and regioselectivity of P450 oxidation catalysts by unnatural amino acid mutagenesis.

    PubMed

    Kolev, Joshua N; Zaengle, Jacqueline M; Ravikumar, Rajesh; Fasan, Rudi

    2014-05-01

    The development of effective strategies for modulating the reactivity and selectivity of cytochrome P450 enzymes represents a key step toward expediting the use of these biocatalysts for synthetic applications. We have investigated the potential of unnatural amino acid mutagenesis to aid efforts in this direction. Four unnatural amino acids with diverse aromatic side chains were incorporated at 11 active-site positions of a substrate-promiscuous CYP102A1 variant. The resulting "uP450s" were then tested for their catalytic activity and regioselectivity in the oxidation of two representative substrates: a small-molecule drug and a natural product. Large shifts in regioselectivity resulted from these single mutations, and in particular, for para-acetyl-Phe substitutions at positions close to the heme cofactor. Screening this mini library of uP450s enabled us to identify P450 catalysts for the selective hydroxylation of four aliphatic positions in the target substrates, including a C(sp(3))-H site not oxidized by the parent enzyme. Furthermore, we discovered a general activity-enhancing effect of active-site substitutions involving the unnatural amino acid para-amino-Phe, which resulted in P450 catalysts capable of supporting the highest total turnover number reported to date on a complex molecule (34,650). The functional changes induced by the unnatural amino acids could not be reproduced by any of the 20 natural amino acids. This study thus demonstrates that unnatural amino acid mutagenesis constitutes a promising new strategy for improving the catalytic activity and regioselectivity of P450 oxidation catalysts. PMID:24692265

  11. Enhancing the Efficiency and Regioselectivity of P450 Oxidation Catalysts via Unnatural Amino Acid Mutagenesis

    PubMed Central

    Kolev, Joshua N.; Zaengle, Jacqueline M.; Ravikumar, Rajesh

    2014-01-01

    The development of effective strategies for modulating the reactivity and selectivity of cytochrome P450 enzymes represents a key step toward expediting the use of these biocatalysts for synthetic applications. In this work, we investigated the potential of unnatural amino acid mutagenesis to aid efforts in this direction. To this end, four unnatural amino acids comprising a diverse set of aromatic side-chain groups were incorporated into eleven active site positions of a substrate-promiscuous CYP102A1 variant. The resulting ‘uP450s’ were then tested for their catalytic activity and regioselectivity in the oxidation of two representative substrates consisting of a small-molecule drug and a natural product. Large shifts in regioselectivity were obtained as a result of these single mutations and, in particular, via para-acetyl-Phe substitutions at positions in close proximity to the heme cofactor. Notably, screening of this mini library of uP450s enabled the rapid identification of P450 catalysts for the selective hydroxylation of four aliphatic positions in the target substrates, including a C(sp3)—H site not oxidized by the parent enzyme. Furthermore, our studies led to the discovery of a general activity-enhancing effect of active site substitutions involving the unnatural amino acid para-amino-Phe, resulting in P450 catalysts capable of supporting the highest total turnover number reported to date on a complex molecule (34,650 turnovers). The functional changes induced by the unnatural amino acids could not be recapitulated by any of the twenty natural amino acids. This study thus demonstrates that unnatural amino acid mutagenesis constitutes a promising, new strategy for improving the catalytic activity and regioselectivity of P450 oxidation catalysts. PMID:24692265

  12. FK506 maturation involves a cytochrome p450 protein-catalyzed four-electron C-9 oxidation in parallel with a C-31 O-methylation.

    PubMed

    Chen, Dandan; Zhang, Lihan; Pang, Bo; Chen, Jing; Xu, Zhinan; Abe, Ikuro; Liu, Wen

    2013-05-01

    FK506, structurally similar to FK520 and rapamycin, is an α-keto amide bonding-containing, macrolide natural product that exhibits potent immunosuppressive activity and moderate antifungal activity. FK506 biosynthesis requires a hybrid polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS) system to construct the skeleton of the macrolide. The mechanism for tailoring this macrolide to furnish FK506 remains poorly understood. In this study, we report a maturation paradigm common for FK506, FK520, and rapamycin, by characterizing two conserved regiospecific, post-PKS-NRPS modifications in an FK506-producing Streptomyces tsukubaensis strain. A cytochrome P450 protein, FkbD, catalyzes a less common, four-electron oxidation at C-9 to give a rarely found α-keto amide group, whereas a methyltransferase, FkbM, is responsible for O-methylation at C-31 to afford a methoxy group. Both FkbD and FkbM are highly tolerant in their substrate choice; therefore, the order of FkbD- and FkbM-catalyzed reactions is interchangeable in the FK506 biosynthetic pathway. Inactivation of fkbD produced a new intermediate, 9-deoxo-FK506, which displayed antifungal activity lower than that of FK506. Taking previously reported bioassay results regarding the intermediates 9-deoxo-31-O-demethyl-FK506 and 31-O-demethyl-FK506 into account, it is clear that the modifications catalyzed by FkbD and FkbM are of importance to reach the full biological activity of FK506 by forming a key structure motif that is necessary for interaction of the molecule with the receptor and, subsequently, the downstream intracellular responses. PMID:23435975

  13. Pyrethroid insecticides: isoform-dependent hydrolysis, induction of cytochrome P450 3A4 and evidence on the involvement of the pregnane X receptor.

    PubMed

    Yang, Dongfang; Wang, Xiliang; Chen, Yi-Tzai; Deng, Ruitang; Yan, Bingfang

    2009-05-15

    Pyrethroids account for more than one-third of the insecticides currently marketed in the world. In mammals, these insecticides undergo extensive metabolism by carboxylesterases and cytochrome P450s (CYPs). In addition, some pyrethroids are found to induce the expression of CYPs. The aim of this study was to determine whether pyrethroids induce carboxylesterases and CYP3A4, and whether the induction is correlated inversely with their hydrolysis. Human liver microsomes were pooled and tested for the hydrolysis of 11 pyrethroids. All pyrethroids were hydrolyzed by the pooled microsomes, but the hydrolytic rates varied by as many as 14 fold. Some pyrethroids such as bioresmethrin were preferably hydrolyzed by carboxylesterase HCE1, whereas others such as bifenthrin preferably by HCE2. In primary human hepatocytes, all pyrethroids except tetramethrin significantly induced CYP3A4. In contrast, insignificant changes were detected on the expression of carboxylesterases. The induction of CYP3A4 was confirmed in multiple cell lines including HepG2, Hop92 and LS180. Overall, the magnitude of the induction was correlated inversely with the rates of hydrolysis, but positively with the activation of the pregnane X receptor (PXR). Transfection of a carboxylesterase markedly decreased the activation of PXR, and the decrease was in agreement with carboxylesterase-based preference for hydrolysis. In addition, human PXR variants as well as rat PXR differed from human PXR (wild-type) in responding to certain pyrethroids (e.g., lambda-cyhalothrin), suggesting that induction of PXR target genes by these pyrethroids varies depending on polymorphic variants and the PXR species identity.

  14. Pyrethroid insecticides: Isoform-dependent hydrolysis, induction of cytochrome P450 3A4 and evidence on the involvement of the pregnane X receptor

    SciTech Connect

    Yang Dongfang; Wang Xiliang; Chen Yitzai; Deng Ruitang; Yan Bingfang

    2009-05-15

    Pyrethroids account for more than one-third of the insecticides currently marketed in the world. In mammals, these insecticides undergo extensive metabolism by carboxylesterases and cytochrome P450s (CYPs). In addition, some pyrethroids are found to induce the expression of CYPs. The aim of this study was to determine whether pyrethroids induce carboxylesterases and CYP3A4, and whether the induction is correlated inversely with their hydrolysis. Human liver microsomes were pooled and tested for the hydrolysis of 11 pyrethroids. All pyrethroids were hydrolyzed by the pooled microsomes, but the hydrolytic rates varied by as many as 14 fold. Some pyrethroids such as bioresmethrin were preferably hydrolyzed by carboxylesterase HCE1, whereas others such as bifenthrin preferably by HCE2. In primary human hepatocytes, all pyrethroids except tetramethrin significantly induced CYP3A4. In contrast, insignificant changes were detected on the expression of carboxylesterases. The induction of CYP3A4 was confirmed in multiple cell lines including HepG2, Hop92 and LS180. Overall, the magnitude of the induction was correlated inversely with the rates of hydrolysis, but positively with the activation of the pregnane X receptor (PXR). Transfection of a carboxylesterase markedly decreased the activation of PXR, and the decrease was in agreement with carboxylesterase-based preference for hydrolysis. In addition, human PXR variants as well as rat PXR differed from human PXR (wild-type) in responding to certain pyrethroids (e.g., lambda-cyhalothrin), suggesting that induction of PXR target genes by these pyrethroids varies depending on polymorphic variants and the PXR species identity.

  15. Involvement of cytochrome P-450 1B1 in renal dysfunction, injury, and inflammation associated with angiotensin II-induced hypertension in rats.

    PubMed

    Jennings, Brett L; Anderson, Larry J; Estes, Anne M; Fang, Xiao R; Song, Chi Young; Campbell, William B; Malik, Kafait U

    2012-02-15

    We investigated the contribution of cytochrome P-450 1B1 (CYP1B1) to renal dysfunction and organ damage associated with ANG II-induced hypertension in rats. ANG II (300 ng·kg(-1)·min(-1)) or vehicle were infused for 2 wk, with daily injections of a selective CYP1B1 inhibitor, 2,4,3',5'-tetramethoxystilbene (TMS; 300 μg/kg ip), or its vehicle. ANG II increased blood pressure and renal CYP1B1 activity that were prevented by TMS. ANG II also increased water intake and urine output, decreased glomerular filtration rate, increased urinary Na(+) and K(+) excretion, and caused proteinuria, all of which were prevented by TMS. ANG II infusion caused hypertrophy, endothelial dysfunction, and increased reactivity of renal and interlobar arteries to vasoconstrictor agents and renal vascular resistance and interstitial fibrosis as indicated by accumulation of α-smooth muscle actin, fibronectin, and collagen, and inflammation as indicated by increased infiltration of CD-3(+) cells; these effects were inhibited by TMS. ANG II infusion also increased production of reactive oxygen species (ROS) and activities of NADPH oxidase, ERK1/2, p38 MAPK, and c-Src that were prevented by TMS. TMS alone had no effect on any of the above parameters. These data suggest that CYP1B1 contributes to the renal pathophysiological changes associated with ANG II-induced hypertension, most likely via increased ROS production and activation of ERK1/2, p38 MAPK, and c-Src and that CYP1B1 could serve as a novel target for treating renal disease associated with hypertension.

  16. Cloning and Characterization of the Genes Encoding a Cytochrome P450 (PipA) Involved in Piperidine and Pyrrolidine Utilization and Its Regulatory Protein (PipR) in Mycobacterium smegmatis mc2155

    PubMed Central

    Poupin, Pascal; Ducrocq, Véronique; Hallier-Soulier, Sylvie; Truffaut, Nicole

    1999-01-01

    Transposon mutagenesis of Mycobacterium smegmatis mc2155 enabled the isolation of a mutant strain (called LGM1) altered in the regulation of piperidine and pyrrolidine utilization. The complete nucleotide sequence of the gene inactivated in mutant LGM1 was determined from the wild-type strain. This gene (pipR) encoded a member of the GntR family of bacterial regulatory proteins. An insertion element (IS1096), previously described for M. smegmatis, was detected downstream of the gene pipR. Three additional open reading frames were found downstream of IS1096. The first open reading frame (pipA) appeared to encode a protein identified as a cytochrome P450 enzyme. This gene is the first member of a new family, CYP151. By a gene replacement experiment, it was demonstrated that the cytochrome P450 pipA gene is required for piperidine and pyrrolidine utilization in M. smegmatis mc2155. Genes homologous to pipA were detected by hybridization in several, previously isolated, morpholine-degrading mycobacterial strains. A gene encoding a putative [3Fe-4S] ferredoxin (orf1) and a truncated gene encoding a putative glutamine synthetase (orf2′) were found downstream of pipA. PMID:10348853

  17. HPLC Determination of Caffeine and Paraxanthine in Urine: An Assay for Cytochrome P450 1A2 Activity

    ERIC Educational Resources Information Center

    Furge, Laura Lowe; Fletke, Kyle J.

    2007-01-01

    Cytochrome P450 enzymes are a family of heme-containing proteins located throughout the body with roles in metabolism of endogenous and exogenous compounds. Among exogenous compounds, clinically relevant pharmaceutical agents are nearly all metabolized by P450 enzymes. However, the activity of the different cytochrome P450 enzymes varies among…

  18. Characterization and profiling of hepatic cytochromes P450 and phase II xenobiotic-metabolizing enzymes in beluga whales (Delphinapterus leucas) from the St. Lawrence River Estuary and the Canadian Arctic.

    PubMed

    McKinney, Melissa A; Arukwe, Augustine; De Guise, Sylvain; Martineau, Daniel; Béland, Pierre; Dallaire, André; Lair, Stéphane; Lebeuf, Michel; Letcher, Robert J

    2004-07-30

    Cytochromes P450 (CYP, phase I) and conjugating (phase II) enzymes can be induced by and influence the toxicokinetics (metabolism) and toxicity of xenobiotic contaminants in exposed organisms. Beluga whale (Delphinapterus leucas) from the endangered St. Lawrence (SL) River Estuary population exhibit deleterious health effects and various severe pathologies that have been associated with contaminant exposure. In contrast, such effects (e.g. reproductive and immunological impairment) are generally less frequent in less exposed populations in the Canadian Arctic (CA). In the present study, opportunistic sampling resulted in the collection immediately after death of liver tissue from a single female neonate SL beluga (SL6) and male and female CA beluga (n=10) from the Arviat region of western Hudson Bay, in addition to sampling of stranded carcasses of male and female SL beluga (n=5) at least 12 h postmortem. We immunologically characterized cross-reactive proteins of hepatic microsomal CYP1A, CYP2B, CYP3A, CYP2E, epoxide hydrolase (EH) and uridine diphosphoglucuronosyl transferase (UDPGT) isozymes. Cross-reactive proteins were found in all SL and CA beluga using anti-rat CYP1A1, anti-rainbow trout CYP3A, anti-human CYP2E1, anti-rabbit EH and anti-human UDPGT1A1 polyclonal antibodies (Abs), whereas faintly cross-reactive CYP2B proteins were only found in SL6 and the CA samples using an anti-rabbit CYP2B1 Ab. In corresponding catalytic activity assessments, only SL6 and all CA beluga microsomal samples exhibited CYP1A-mediated 7-ethoxyresorufin O-deethylase (EROD) activity (51-260 pmol/mg/min), CYP3A-mediated activity (113-899 pmol/mg/min) based on the formation of 6beta-hydroxytestosterone using a testosterone hydroxylase assay, and UDPGT activity (830-4956 pmol/mg/min) based on 1-naphthylglucuronide formation. The marginal cross-reactivity with the anti-CYP2B1 Ab and lack of catalytically measurable hydroxytestosterone isomers associated with CYP2B-type activity in

  19. Enhanced expression of cytochrome P450 in stomach cancer.

    PubMed Central

    Murray, G. I.; Taylor, M. C.; Burke, M. D.; Melvin, W. T.

    1998-01-01

    The cytochromes P450 have a central role in the oxidative activation and detoxification of a wide range of xenobiotics, including many carcinogens and several anti-cancer drugs. Thus the cytochrome P450 enzyme system has important roles in both tumour development and influencing the response of tumours to chemotherapy. Stomach cancer is one of the commonest tumours of the alimentary tract and environmental factors, including dietary factors, have been implicated in the development of this tumour. This type of tumour has a poor prognosis and responds poorly to current therapies. In this study, the presence and cellular localization of several major forms of P450, CYP1A, CYP2E1 and CYP3A have been investigated in stomach cancer and compared with their expression in normal stomach. There was enhanced expression of CYP1A and CYP3A in stomach cancer with CYP1A present in 51% and CYP3A present in 28% of cases. In contrast, no P450 was identified in normal stomach. The presence of CYP1A and CYP3A in stomach cancer provides further evidence for the enhanced expression of specific forms of cytochrome P450 in tumours and may be important therapeutically for the development of anti-cancer drugs that are activated by these forms of P450. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9569036

  20. Gemfibrozil modulates cytochrome P450 and peroxisome proliferation-inducible enzymes in the liver of the yellow European eel (Anguilla anguilla).

    PubMed

    Lyssimachou, Angeliki; Thibaut, Rémi; Gisbert, Enric; Porte, Cinta

    2014-01-01

    The human lipid regulator gemfibrozil (GEM) has been shown to induce peroxisome proliferation in rodents leading to hepatocarcinogenesis. Since GEM is found at biological active concentrations in the aquatic environment, the present study investigates the effects of this drug on the yellow European eel (Anguilla anguilla). Eels were injected with different concentrations of GEM (0.1 to 200 μg/g) and sampled 24- and 96-h post-injection. GEM was shown to inhibit CYP1A, CYP3A and CYP2K-like catalytic activities 24-h post-injection, but at 96-h post-injection, only CYP1A was significantly altered in fish injected with the highest GEM dose. On the contrary, GEM had little effect on the phase II enzymes examined (UDP-glucuronyltransferase and glutathione-S-transferase). Peroxisome proliferation inducible enzymes (liver peroxisomal acyl-CoA oxidase and catalase) were very weakly induced. No evidence of a significant effect on the endocrine system of eels was observed in terms of plasmatic steroid levels or testosterone esterification in the liver.

  1. Kinetic analysis of electron flux in cytochrome P450 reductases reveals differences in rate-determining steps in plant and mammalian enzymes.

    PubMed

    Whitelaw, Douglas A; Tonkin, Rochelle; Meints, Carla E; Wolthers, Kirsten R

    2015-10-15

    Herein, we compare the kinetic properties of CPR from Arabidopsis thaliana (ATR2), with CPR from Artemisia annua (aaCPR) and human CPR (hCPR). While all three CPR forms elicit comparable rates for cytochrome c(3+) turnover, NADPH reduction of the FAD cofactor is ∼50-fold faster in aaCPR and ATR2 compared to hCPR, with a kobs of ∼500 s(-1) (6 °C). Stopped-flow analysis of the isolated FAD-domains reveals that NADP(+)-FADH2 charge-transfer complex formation is also significantly faster in the plant enzymes, but the rate of its decay is comparable for all three proteins. In hCPR, transfer of a hydride ion from NADPH to FAD is tightly coupled to subsequent FAD to FMN electron transfer, indicating that the former catalytic event is slow relative to the latter. In contrast, interflavin electron transfer is slower than NADPH hydride transfer in aaCPR and ATR2, occurring with an observed rate constant of ∼50 s(-1). Finally, the transfer of electrons from FMN to cytochrome c(3+) is rapid (>10(3) s(-1)) in all three enzymes and does not limit catalytic turnover. In combination, the data reveal differences in rate-determining steps between plant CPR and their mammalian equivalent in mediating the flux of reducing equivalents from NADPH to external electron acceptors. PMID:26361974

  2. Interactions among Cytochromes P450 in Microsomal Membranes

    PubMed Central

    Davydov, Dmitri R.; Davydova, Nadezhda Y.; Sineva, Elena V.; Halpert, James R.

    2015-01-01

    The body of evidence of physiologically relevant P450-P450 interactions in microsomal membranes continues to grow. Here we probe oligomerization of human CYP3A4, CYP3A5, and CYP2E1 in microsomal membranes. Using a technique based on luminescence resonance energy transfer, we demonstrate that all three proteins are subject to a concentration-dependent equilibrium between the monomeric and oligomeric states. We also observed the formation of mixed oligomers in CYP3A4/CYP3A5, CYP3A4/CYP2E1, and CYP3A5/CYP2E1 pairs and demonstrated that the association of either CYP3A4 or CYP3A5 with CYP2E1 causes activation of the latter enzyme. Earlier we hypothesized that the intersubunit interface in CYP3A4 oligomers is similar to that observed in the crystallographic dimers of some microsomal drug-metabolizing cytochromes P450 (Davydov, D. R., Davydova, N. Y., Sineva, E. V., Kufareva, I., and Halpert, J. R. (2013) Pivotal role of P450-P450 interactions in CYP3A4 allostery: the case of α-naphthoflavone. Biochem. J. 453, 219–230). Here we report the results of intermolecular cross-linking of CYP3A4 oligomers with thiol-reactive bifunctional reagents as well as the luminescence resonance energy transfer measurements of interprobe distances in the oligomers of labeled CYP3A4 single-cysteine mutants. The results provide compelling support for the physiological relevance of the dimer-specific peripheral ligand-binding site observed in certain CYP3A4 structures. According to our interpretation, these results reveal an important general mechanism that regulates the activity and substrate specificity of the cytochrome P450 ensemble through interactions between multiple P450 species. As a result of P450-P450 cross-talk, the catalytic properties of the cytochrome P450 ensemble cannot be predicted by simple summation of the properties of the individual P450 species. PMID:25533469

  3. Immobilized Cytochrome P450 2C9 (CYP2C9): Applications for Metabolite Generation, Monitoring Protein-Protein Interactions, and Improving In-vivo Predictions Using Enhanced In-vitro Models

    NASA Astrophysics Data System (ADS)

    Wollenberg, Lance A.

    Cytochrome P450 (P450) enzymes are a family of oxoferroreductase enzymes containing a heme moiety and are well known to be involved in the metabolism of a wide variety of endogenous and xenobiotic materials. It is estimated that roughly 75% of all pharmaceutical compounds are metabolized by these enzymes. Traditional reconstituted in-vitro incubation studies using recombinant P450 enzymes are often used to predict in-vivo kinetic parameters of a drug early in development. However, in many cases, these reconstituted incubations are prone to aggregation which has been shown to affect the catalytic activity of an enzyme. Moreover, the presence of other isoforms of P450 enzymes present in a metabolic incubation, as is the case with microsomal systems, may affect the catalytic activity of an enzyme through isoform-specific protein-protein interactions. Both of these effects may result in inaccurate prediction of in-vivo drug metabolism using in-vitro experiments. Here we described the development of immobilized P450 constructs designed to elucidate the effects of aggregation and protein-protein interactions between P450 isoforms on catalytic activities. The long term objective of this project is to develop a system to control the oligomeric state of Cytochrome P450 enzymes to accurately elucidate discrepancies between in vitro reconstituted systems and actual in vivo drug metabolism for the precise prediction of metabolic activity. This approach will serve as a system to better draw correlations between in-vivo and in-vitro drug metabolism data. The central hypothesis is that Cytochrome P450 enzymes catalytic activity can be altered by protein-protein interactions occurring between Cytochrome P450 enzymes involved in drug metabolism, and is dependent on varying states of protein aggregation. This dissertation explains the details of the construction and characterization of a nanostructure device designed to control the state of aggregation of a P450 enzyme. Moreover

  4. Steroidogenic impairment due to reduced ovarian transcription of cytochrome P450 side-chain-cleavage (P450scc) and steroidogenic acute regulatory protein (StAR) during experimental nephrotic syndrome.

    PubMed

    Peña-Rico, Miguel; Guadalupe Ortiz-López, María; Camacho-Castillo, Luz; Cárdenas, Mario; Pedraza-Chaverri, José; Menjívar, Marta

    2006-07-10

    The nephrotic syndrome is a renal disease characterized by proteinuria, hypoproteinemia, edema and hyperlipidemia. It has been reported that female nephrotic rats are characterized by loss of the oestrus cycle, follicle atresia, low gonadotropin and steroid concentrations; particularly, undetectable estradiol levels. Therefore, to determine the mechanisms involved in the ovarian steroidogenesis impairment, in this present study we evaluated the ovarian expression of the essential steroidogenesis components: cytochrome P450 side cholesterol chain cleavage enzyme (P450scc) and steroidogenic acute regulatory protein (StAR). The experiments were conducted in the rat experimental model of nephrosis induced by puromycin aminonucleoside (PAN) and in control groups. The evaluation of the expression of P450scc and StAR mRNA were performed during the acute phase of nephrosis as well as after the exogenous administration of 1 or 4 doses of human chorionic gonadotrophin (hCG), or a daily dose of FSH or FSH+hCG for 10 days. In addition, serum hormone concentrations, intra-ovarian steroid content, and the reproductive capacity were determined. The results revealed a decreased expression of mRNA of P450scc enzyme and StAR during nephrosis, and eventhough they increased after gonadotropins treatment, they did not conduce to a normal cycling rat period or fertility recovery. This study demonstrates that the mechanism by which ovarian steroid biosynthesis is altered during acute nephrosis involves damage at the P450scc and StAR mRNA synthesis and processing. PMID:16574160

  5. Prediction of Cytochrome P450 Profiles of Environmental Chemicals with QSAR Models Built from Drug-like Molecules

    EPA Science Inventory

    The human cytochrome P450 (CYP450) enzyme family is involved in the biotransformation of many environmental chemicals. As part of the U.S. Tox21 effort, we profiled the CYP450 activity of ~2800 chemicals predominantly of environmental concern against CYP1A2, CYP2C19, CYP2C9, CYP2...

  6. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene.

    PubMed

    Cankar, Katarina; van Houwelingen, Adèle; Bosch, Dirk; Sonke, Theo; Bouwmeester, Harro; Beekwilder, Jules

    2011-01-01

    Chicory (Cichorium intybus L.), which is known to have a variety of terpene-hydroxylating activities, was screened for a P450 mono-oxygenase to convert (+)-valencene to (+)-nootkatone. A novel P450 cDNA was identified in a chicory root EST library. Co-expression of the enzyme with a valencene synthase in yeast, led to formation of trans-nootkatol, cis-nootkatol and (+)-nootkatone. The novel enzyme was also found to catalyse a three step conversion of germacrene A to germacra-1(10),4,11(13)-trien-12-oic acid, indicating its involvement in chicory sesquiterpene lactone biosynthesis. Likewise, amorpha-4,11-diene was converted to artemisinic acid. Surprisingly, the chicory P450 has a different regio-specificity on (+)-valencene compared to germacrene A and amorpha-4,11-diene. PMID:21115006

  7. A novel class of self-sufficient cytochrome P450 monooxygenases in prokaryotes.

    PubMed

    De Mot, René; Parret, Annabel H A

    2002-11-01

    The Bacillus cytochrome P450 BM3 integrates an entire P450 system in one polypeptide and represents a convenient prokaryotic model for microsomal P450s. This self-sufficient class II P450 is also present in actinomycetes and fungi. By genome analysis we have identified additional homologues in the pathogenic species Bacillus anthracis and Bacillus cereus, and in Ralstonia metallidurans. This analysis also revealed a novel class of putative self-sufficient P450s, P450 PFOR, comprising a class I P450 that is related to Rhodococcus erythropolis CYP116, and a phthalate family oxygenase reductase (PFOR) module. P450 PFOR genes are found in a Rhodococcus strain, three pathogenic Burkholderia species and in the R. metallidurans strain that possesses a P450 BM3 homologue. Co-evolution of P450 and reductase domains is apparent in both types of self-sufficient enzymes. The new class of P450 enzymes is of potential interest for various biotechnological applications. PMID:12419614

  8. Differential inducing effect of benzo[a]pyrene on gene expression and enzyme activity of cytochromes P450 1A1 and 1A2 in Sprague-Dawley and Wistar rats.

    PubMed

    Floreani, Maura; Gabbia, Daniela; Barbierato, Massimo; DE Martin, Sara; Palatini, Pietro

    2012-01-01

    The objective of this study was to compare RT-PCR, Western blot and determination of enzyme activity in the assessment of the induction of cytochromes P450 (CYPs) 1A1 and 1A2 by benzo[a]pyrene (BaP) in Sprague-Dawley and Wistar rats. Inhibition studies and kinetic analyses confirmed literature data indicating that methoxyresorufin is a specific CYP1A2 substrate in both uninduced and BaP-treated rats, whereas ethoxyresorufin is a specific CYP1A1 substrate only in BaP-treated rats. BaP treatment increased mRNA and protein expressions of both CYP1A enzymes to a greater extent in Wistar than Sprague-Dawley rats. It consistently caused a higher increase in mRNA and protein expression of the aryl hydrocarbon receptor in the former rats. By contrast, CYP1A2 enzyme activity was much more markedly increased in Sprague-Dawley than Wistar rats and CYP1A1 activity was induced to similar levels. A BaP-induced increase in the turnover number of CYP1A enzymes in Sprague-Dawley rats, relative to Wistar rats, may provide a plausible explanation for the differential effect of BaP on gene expression and enzyme activity. These results have methodological implications, since they show that RT-PCR and Western blot may not provide a quantitative measure of induction of CYP1A activity, which is the actual measure of the change in CYP1A-mediated metabolism.

  9. Structure of a bovine gene for P-450c21 (steroid 21-hydroxylase) defines a novel cytochrome P-450 gene family.

    PubMed Central

    Chung, B C; Matteson, K J; Miller, W L

    1986-01-01

    P-450c21, a cytochrome P-450 enzyme [steroid 21-monooxygenase (steroid 21-hydroxylase), EC 1.14.99.10], mediates the 21-hydroxylation of glucocorticoid and mineralocorticoid hormones in the adrenal gland. The complete sequence of a bovine P-450c21 gene shows it is 3447 base pairs long and contains 10 exons. The intron/exon organization and encoded amino acid sequence indicate that P-450c21 represents a unique family of genes in the P-450 gene superfamily. Primer extension and S1 nuclease protection experiments identified several cap sites for initiation of transcription; the principal cap site produces mRNA with a 5' untranslated region only 11 bases long. S1 nuclease protection experiments confirm that P-450c21 is actively expressed in the adrenal and the testis, an organ not known to secrete 21-hydroxylated steroids. Images PMID:3487086

  10. N-demethylation of cocaine to norcocaine. Evidence for participation by cytochrome P-450 and FAD-containing monooxygenase.

    PubMed

    Kloss, M W; Rosen, G M; Rauckman, E J

    1983-03-01

    Experiments were conducted to determine which microsomal enzymes are involved in the in vitro hepatic oxidative N-demethylation of cocaine to norcocaine, the first step in the biotransformation of cocaine to its ultimate hepatotoxic metabolite. Cocaine was found to undergo conversion to norcocaine by two alternate pathways, one involving only cytochrome P-450 and the other requiring both cytochrome P-450 and FAD-containing monooxygenase. In the first pathway, cocaine was directly N-demethylated to norcocaine by cytochrome P-450; this reaction was enhanced by phenobarbital induction and was inhibited by both n-octylamine and metyrapone. The second route was found to be a two-step reaction involving cocaine N-oxide as an intermediate. In this pathway, cocaine is first oxidized to cocaine N-oxide by FAD-containing monooxygenase, followed by a cytochrome P-450-catalyzed N-demethylation to norcocaine. This latter step was enhanced by phenobarbital treatment and inhibited by n-octylamine. Cocaine N-oxide also exhibited a Type I binding spectrum with mouse hepatic microsomes. In addition, a model system consisting of ferrous sulfate was found to catalyze the N-demethylation of cocaine N-oxide. On the basis of these experiments, it is concluded that cytochrome P-450 and FAD-containing monooxygenase participate in the initial oxidation of cocaine to norcocaine. We also propose a mechanism to account for the conversion of cocaine N-oxide to norcocaine.

  11. Overexpression of the steroidogenic enzyme cytochrome P450 side chain cleavage in the ventral tegmental area increases 3α,5α-THP and reduces long-term operant ethanol self-administration.

    PubMed

    Cook, Jason B; Werner, David F; Maldonado-Devincci, Antoniette M; Leonard, Maggie N; Fisher, Kristen R; O'Buckley, Todd K; Porcu, Patrizia; McCown, Thomas J; Besheer, Joyce; Hodge, Clyde W; Morrow, A Leslie

    2014-04-23

    Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology.

  12. Epoxidation Activities of Human Cytochromes P450c17 and P450c21

    PubMed Central

    2015-01-01

    Some cytochrome P450 enzymes epoxidize unsaturated substrates, but this activity has not been described for the steroid hydroxylases. Physiologic steroid substrates, however, lack carbon–carbon double bonds in the parts of the pregnane molecules where steroidogenic hydroxylations occur. Limited data on the reactivity of steroidogenic P450s toward olefinic substrates exist, and the study of occult activities toward alternative substrates is a fundamental aspect of the growing field of combinatorial biosynthesis. We reasoned that human P450c17 (steroid 17-hydroxylase/17,20-lyase, CYP17A1), which 17- and 16α-hydroxylates progesterone, might catalyze the formation of the 16α,17-epoxide from 16,17-dehydroprogesterone (pregna-4,16-diene-3,20-dione). CYP17A1 catalyzed the novel 16α,17-epoxidation and the ordinarily minor 21-hydroxylation of 16,17-dehydroprogesterone in a 1:1 ratio. CYP17A1 mutation A105L, which has reduced progesterone 16α-hydroxylase activity, gave a 1:5 ratio of epoxide:21-hydroxylated products. In contrast, human P450c21 (steroid 21-hydroxylase, CYP21A2) converted 16,17-dehydroprogesterone to the 21-hydroxylated product and only a trace of epoxide. CYP21A2 mutation V359A, which has significant 16α-hydroxylase activity, likewise afforded the 21-hydroxylated product and slightly more epoxide. CYP17A1 wild-type and mutation A105L do not 21- or 16α-hydroxylate pregnenolone, but the enzymes 21-hydroxylated and 16α,17-epoxidized 16,17-dehydropregnenolone (pregna-5,16-diene-3β-ol-20-one) in 4:1 or 12:1 ratios, respectively. Catalase and superoxide dismutase did not prevent epoxide formation. The progesterone epoxide was not a time-dependent, irreversible CYP17A1 inhibitor. Our substrate modification studies have revealed occult epoxidase and 21-hydroxylase activities of CYP17A1, and the fraction of epoxide formed correlated with the 16α-hydroxylase activity of the enzymes. PMID:25386927

  13. P450 GENETIC VARIATION: IMPLICATIONS FOR ENVIRONMENTAL AND WORKPLACE EXPOSURE

    EPA Science Inventory

    The Cytochrome P450 array detoxifies many chemicals by catalyzing the conversion of mostly hydrophobic chemicals into more hydrophilic forms that can subsequently be excreted by the body. Human genetic variation in the genes for these enzymes produces wide variations in the abili...

  14. Spectroscopic features of cytochrome P450 reaction intermediates

    PubMed Central

    Luthra, Abhinav; Denisov, Ilia G.; Sligar, Stephen G.

    2010-01-01

    Preface Cytochromes P450 constitute a broad class of heme monooxygenase enzymes with more than 11,500 isozymes which have been identified in organisms from all biological kingdoms [1]. These enzymes are responsible for catalyzing dozens chemical oxidative transformations such as hydroxylation, epoxidation, N-demethylation, etc., with very broad range of substrates [2-3]. Historically these enzymes received their name from ‘pigment 450’ due to the unusual position of the Soret band in UV-Vis absorption spectra of the reduced CO-saturated state [4-5]. Despite detailed biochemical characterization of many isozymes, as well as later discoveries of other ‘P450-like heme enzymes’ such as nitric oxide synthase and chloroperoxidase, the phenomenological term ‘cytochrome P450’ is still commonly used as indicating an essential spectroscopic feature of the functionally active protein which is now known to be due to the presence of a thiolate ligand to the heme iron [6]. Heme proteins with an imidazole ligand such as myoglobin and hemoglobin as well as an inactive form of P450 are characterized by Soret maxima at 420 nm [7]. This historical perspective highlights the importance of spectroscopic methods for biochemical studies in general, and especially for heme enzymes, where the presence of the heme iron and porphyrin macrocycle provides rich variety of specific spectroscopic markers available for monitoring chemical transformations and transitions between active intermediates of catalytic cycle. PMID:21167809

  15. Oxidase uncoupling in heme monooxygenases: Human cytochrome P450 CYP3A4 in Nanodiscs

    SciTech Connect

    Grinkova, Yelena V.; Denisov, Ilia G.; McLean, Mark A.; Sligar, Stephen G.

    2013-01-25

    Highlights: ► Substantial reducing equivalents are lost in human P450 CYP3A4 via an oxidase channel. ► Substrate binding has a pronounced effect on uncoupling in cytochrome P450. ► Anionic phospholipids improve the overall coupling in CYP3A4 Nanodiscs. -- Abstract: The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons:1 dioxygen:1 product. However, three alternate unproductive pathways exist where the intermediate iron–oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involves release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen–oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed “Compound I”. This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP3A4

  16. Biosynthesis of Germacrene A Carboxylic Acid in Chicory Roots. Demonstration of a Cytochrome P450 (+)-Germacrene A Hydroxylase and NADP+-Dependent Sesquiterpenoid Dehydrogenase(s) Involved in Sesquiterpene Lactone Biosynthesis

    PubMed Central

    de Kraker, Jan-Willem; Franssen, Maurice C. R.; Dalm, Marcella C. F.; de Groot, Aede; Bouwmeester, Harro J.

    2001-01-01

    Sprouts of chicory (Cichorium intybus), a vegetable grown in the dark, have a slightly bitter taste associated with the presence of guaianolides, eudesmanolides, and germacranolides. The committed step in the biosynthesis of these compounds is catalyzed by a (+)-germacrene A synthase. Formation of the lactone ring is the postulated next step in biosynthesis of the germacrene-derived sesquiterpene lactones. The present study confirms this hypothesis by isolation of enzyme activities from chicory roots that introduce a carboxylic acid function in the germacrene A isopropenyl side chain, which is necessary for lactone ring formation. (+)-Germacrene A is hydroxylated to germacra-1(10),4,11(13)-trien-12-ol by a cytochrome P450 enzyme, and is subsequently oxidized to germacra-1(10),4,11(13)-trien-12-oic acid by NADP+-dependent dehydrogenase(s). Both oxidized germacrenes were detected as their Cope-rearrangement products elema-1,3,11(13)-trien-12-ol and elema-1,3,11(13)-trien-12-oic acid, respectively. The cyclization products of germacra-1(10),4,11(13)-trien-12-ol, i.e. costol, were also observed. The (+)-germacrene A hydroxylase is inhibited by carbon monoxide (blue-light reversible), has an optimum pH at 8.0, and hydroxylates β-elemene with a modest degree of enantioselectivity. PMID:11299372

  17. Homotropic cooperativity of monomeric cytochrome P450 3A4

    SciTech Connect

    Baas, Bradley J.; Denisov, Ilia G.; Sligar, Stephen G.

    2010-11-16

    Mechanistic studies of mammalian cytochrome P450s are often obscured by the phase heterogeneity of solubilized preparations of membrane enzymes. The various protein-protein aggregation states of microsomes, detergent solubilized cytochrome or a family of aqueous multimeric complexes can effect measured substrate binding events as well as subsequent steps in the reaction cycle. In addition, these P450 monooxygenases are normally found in a membrane environment and the bilayer composition and dynamics can also effect these catalytic steps. Here, we describe the structural and functional characterization of a homogeneous monomeric population of cytochrome P450 3A4 (CYP 3A4) in a soluble nanoscale membrane bilayer, or Nanodisc [Nano Lett. 2 (2002) 853]. Cytochrome P450 3A4:Nanodisc assemblies were formed and purified to yield a 1:1 ratio of CYP 3A4 to Nanodisc. Solution small angle X-ray scattering was used to structurally characterize this monomeric CYP 3A4 in the membrane bilayer. The purified CYP 3A4:Nanodiscs showed a heretofore undescribed high level of homotropic cooperativity in the binding of testosterone. Soluble CYP 3A4:Nanodisc retains its known function and shows prototypic hydroxylation of testosterone when driven by hydrogen peroxide. This represents the first functional characterization of a true monomeric preparation of cytochrome P450 monooxygenase in a phospholipid bilayer and elucidates new properties of the monomeric form.

  18. Electrochemical investigations on the oxygen activation by cytochrome P-450.

    PubMed

    Scheller, F; Renneberg, R; Schwarze, W; Strnad, G; Pommerening, K; Prümke, H J; Mohr, P

    1979-01-01

    The application of cytochrome P-450 in substrate conversion is complicated both due to the limited stability and the cofactor regeneration problems. To overcome the disadvantages of NADPH consumption the transfer of the reduction equivalents from an electrode into the cytochrome P-450-system was studied: 1. NADPH was cathodically reduced at a mercury pool electrode. By immobilization of NADP on dialdehyde Sephadex the reductive recycling was possible. 2. Different forms of reduced oxygen were produced by the cathode: a) The reaction of O2- with deoxycorticosterone yields a carboxylic acid derivative. In contrast the cytochrome P-450 catalyzed NADPH-dependent reaction with the same substrate gives corticosterone, O2- represents only an intermediate in the activation of oxygen and is not the "activated oxygen" species. b) Molecular oxygen was reduced to HO2- and H2O2, respectively. The interaction of adsorbed cytochrome P-450 on the electrode surface with the reduced oxygen species in the absence of NADPH was studied. The electrochemically generated peroxide seems to be more active than added H2O2. 3. In a model of electro-enzyme-reactor several substrates were hydroxylated by microsomal cytochrome P-450 with cathodically reduced oxygen which substitutes NADPH.

  19. Prenatal Exposure of Cypermethrin Induces Similar Alterations in Xenobiotic-Metabolizing Cytochrome P450s and Rate-Limiting Enzymes of Neurotransmitter Synthesis in Brain Regions of Rat Offsprings During Postnatal Development.

    PubMed

    Singh, Anshuman; Mudawal, Anubha; Maurya, Pratibha; Jain, Rajeev; Nair, Saumya; Shukla, Rajendra K; Yadav, Sanjay; Singh, Dhirendra; Khanna, Vinay Kumar; Chaturvedi, Rajnish Kumar; Mudiam, Mohana K R; Sethumadhavan, Rao; Siddiqi, Mohammad Imran; Parmar, Devendra

    2016-08-01

    Oral administration of low doses of cypermethrin to pregnant Wistar rats led to a dose-dependent differences in the induction of xenobiotic-metabolizing cytochrome P450s (CYPs) messenger RNA (mRNA) and protein in brain regions isolated from the offsprings postnatally at 3 weeks that persisted up to adulthood. Similar alterations were observed in the expression of rate-limiting enzymes of neurotransmitter synthesis in brain regions of rat offsprings. These persistent changes were associated with alterations in circulating levels of growth hormone (GH), cognitive functions, and accumulation of cypermethrin and its metabolites in brain regions of exposed offsprings. Though molecular docking studies failed to identify similarities between the docked conformations of cypermethrin with CYPs and neurotransmitter receptors, in silico analysis identified regulatory sequences of CYPs in the promoter region of rate-limiting enzymes of neurotransmitter synthesis. Further, rechallenge of the prenatally exposed offsprings at adulthood with cypermethrin (p.o. 10 mg/kg × 6 days) led to a greater magnitude of alterations in the expression of CYPs and rate-limiting enzymes of neurotransmitter synthesis in different brain regions. These alterations were associated with a greater magnitude of decrease in the circulating levels of GH and cognitive functions in rechallenged offsprings. Our data has led us to suggest that due to the immaturity of CYPs in fetus or during early development, even the low-level exposure of cypermethrin may be sufficient to interact with the CYPs, which in turn affect the neurotransmission processes and may help in explaining the developmental neurotoxicity of cypermethrin.

  20. Role of cytochrome P450 in drug interactions

    PubMed Central

    Bibi, Zakia

    2008-01-01

    Drug-drug interactions have become an important issue in health care. It is now realized that many drug-drug interactions can be explained by alterations in the metabolic enzymes that are present in the liver and other extra-hepatic tissues. Many of the major pharmacokinetic interactions between drugs are due to hepatic cytochrome P450 (P450 or CYP) enzymes being affected by previous administration of other drugs. After coadministration, some drugs act as potent enzyme inducers, whereas others are inhibitors. However, reports of enzyme inhibition are very much more common. Understanding these mechanisms of enzyme inhibition or induction is extremely important in order to give appropriate multiple-drug therapies. In future, it may help to identify individuals at greatest risk of drug interactions and adverse events. PMID:18928560

  1. Elevated glutathione level does not protect against chronic alcohol mediated apoptosis in recombinant human hepatoma cell line VL-17A over-expressing alcohol metabolizing enzymes--alcohol dehydrogenase and Cytochrome P450 2E1.

    PubMed

    Chandrasekaran, Karthikeyan; Swaminathan, Kavitha; Kumar, S Mathan; Chatterjee, Suvro; Clemens, Dahn L; Dey, Aparajita

    2011-06-01

    Chronic consumption of alcohol leads to liver injury. Ethanol-inducible Cytochrome P450 2E1 (CYP2E1) plays a critical role in alcohol mediated oxidative stress due to its ability to metabolize ethanol. In the present study, using the recombinant human hepatoma cell line VL-17A that over-expresses the alcohol metabolizing enzymes-alcohol dehydrogenase (ADH) and CYP2E1; and control HepG2 cells, the mechanism and mode of cell death due to chronic ethanol exposure were studied. Untreated VL-17A cells exhibited apoptosis and oxidative stress when compared with untreated HepG2 cells. Chronic alcohol exposure, i.e., 100 mM ethanol treatment for 72 h caused a significant decrease in viability (47%) in VL-17A cells but not in HepG2 cells. Chronic ethanol mediated cell death in VL-17A cells was predominantly apoptotic, with increased oxidative stress as the underlying mechanism. Chronic ethanol exposure of VL-17A cells resulted in 1.1- to 2.5-fold increased levels of ADH and CYP2E1. Interestingly, the level of the antioxidant GSH was found to be 3-fold upregulated in VL-17A cells treated with ethanol, which may be a metabolic adaptation to the persistent and overwhelming oxidative stress. In conclusion, the increased GSH level may not be sufficient enough to protect VL-17A cells from chronic alcohol mediated oxidative stress and resultant apoptosis. PMID:21414402

  2. Immunohistochemical localisation and molecular expression of the steroidogenic enzyme cytochrome P450 17α-hydroxylase /C(17,20)-lyase in the vestibular nuclei of adult male rats.

    PubMed

    Manca, P; Mulliri, G; Burrai, G P; Pirino, S; Mameli, O

    2011-05-01

    Many biologically active neurosteroids, including dehydroepiandrosterone (DHEA), are synthesised in the brain. DHEA is a potent endogenous modulator of several neuronal functions, and alterations of DHEA are correlated with various neurobiological deficits. The cytochrome P450 17α-hydroxylase/C(17,20)-lyase (P450C(17) ) plays a pivotal role in the synthesis of DHEA from pregnenolone and progesterone. We investigated the immunohistochemical localisation and molecular expression of P450C(17) in the superior, lateral, medial and inferior vestibular nuclei (VCN) of adult male rats by western blotting and indirect immunofluorescence analysis. Immunoreactive P450C(17) was widely distributed in all VCN and the expression of P450C(17) was confirmed by western blot analysis. The present study demonstrates, for the first time, the presence and anatomical distribution of P450C(17) in the VCN. Given that neurosteroids can modulate neuronal activities in the medial vestibular nucleus, DHEA synthesised in the VCN may play an important role in the control of specific activities at this level.

  3. Development of gold-immobilized P450 platform for exploring the effect of oligomer formation on P450-mediated metabolism for in vitro to in vivo drug metabolism predictions

    NASA Astrophysics Data System (ADS)

    Kabulski, Jarod L.

    The cytochrome P450 (P450) enzyme family is responsible for the biotransformation of a wide range of endogenous and xenobiotic compounds, as well as being the major metabolic enzyme in first pass drug metabolism. In vivo drug metabolism for P450 enzymes is predicted using in vitro data obtained from a reconstituted expressed P450 system, but these systems have not always been proven to accurately represent in vivo enzyme kinetics, due to interactions caused by oligomer formation. These in vitro systems use soluble P450 enzymes prone to oligomer formation and studies have shown that increased states of protein aggregation directly affect the P450 enzyme kinetics. We have developed an immobilized enzyme system that isolates the enzyme and can be used to elucidate the effect of P450 aggregation on metabolism kinetics. The long term goal of my research is to develop a tool that will help improve the assessment of pharmaceuticals by better predicting in vivo kinetics in an in vitro system. The central hypothesis of this research is that P450-mediated kinetics measured in vitro is dependent on oligomer formation and that the accurate prediction of in vivo P450-mediated kinetics requires elucidation of the effect of oligomer formation. The rationale is that the development of a P450 bound to a Au platform can be used to control the aggregation of enzymes and bonding to Au may also permit replacement of the natural redox partners with an electrode capable of supplying a constant flow of electrons. This dissertation explains the details of the enzyme attachment, monitoring substrate binding, and metabolism using physiological and electrochemical methods, determination of enzyme kinetics, and the development of an immobilized-P450 enzyme bioreactor. This work provides alternative approaches to studying P450-mediated kinetics, a platform for controlling enzyme aggregation, electrochemically-driven P450 metabolism, and for investigating the effect of protein

  4. Effect of adiponectin on the steroidogenic acute regulatory protein, P450 side chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase gene expression, progesterone and androstenedione production by the porcine uterus during early pregnancy.

    PubMed

    Smolinska, N; Dobrzyn, K; Kiezun, M; Szeszko, K; Maleszka, A; Kaminski, T

    2016-06-01

    Adiponectin and its receptors are expressed in the human and porcine uterus and this endocrine system has important role in the regulation of reproductive processes. The expression of steroidogenic acute regulatory protein (StAR) and 3β-hydroxysteroid dehydrogenase (HSD3B1) were observed in the human and porcine uterus during the oestrous cycle and pregnancy. The de novo synthesis of steroids in the uterus might be a crucial factor for effective implantation and maintenance of pregnancy. We hypothesized that adiponectin modulates the expression of key enzymes in the synthesis of the steroids: StAR, P450 side chain cleavage enzyme (CYP11A1) and HSD3B1, as well as progesterone (P4) and androstenedione (A4) secretion by the porcine uterus. Endometrial and myometrial explants harvested from gilts (n = 5) on days 10 to 11, 12 to 13, 15 to 16 and 27 to 28 of pregnancy and on days 10 to 11 of the oestrous cycle were cultured in vitro in the presence of adiponectin (1, 10 μg/ml), adiponectin with insulin (10 ng/ml) and insulin alone (10 ng/ml). Gene expression was examined by real-time PCR, and the secretion of the steroids was determined by radioimmunoassay. The content of StAR, CYP11A1 and HSD3B1 mRNAs and the secretion of P4 and A4 was modulated by adiponectin in endometrial and myometrial tissue explants during early pregnancy and the oestrous cycle. In this action adiponectin interacted with insulin. Insulin itself also regulated the steroidogenic activity of the porcine uterus. ere we reported, for the first time, the expression of CYP11A1 genes in the porcine endometrium and myometrium. Our novel findings indicate that adiponectin affects basal and insulin-stimulated expression of key steroidogenic genes and production of steroid hormones by the porcine uterus during maternal recognition of pregnancy and implantation. PMID:27512005

  5. Cytochromes P450: History, Classes, Catalytic Mechanism, and Industrial Application.

    PubMed

    Cook, D J; Finnigan, J D; Cook, K; Black, G W; Charnock, S J

    2016-01-01

    Cytochromes P450, a family of heme-containing monooxygenases that catalyze a diverse range of oxidative reactions, are so-called due to their maximum absorbance at 450nm, ie, "Pigment-450nm," when bound to carbon monoxide. They have appeal both academically and commercially due to their high degree of regio- and stereoselectivity, for example, in the area of active pharmaceutical ingredient synthesis. Despite this potential, they often exhibit poor stability, low turnover numbers and typically require electron transport protein(s) for catalysis. P450 systems exist in a variety of functional domain architectures, organized into 10 classes. P450s are also divided into families, each of which is based solely on amino acid sequence homology. Their catalytic mechanism employs a very complex, multistep catalytic cycle involving a range of transient intermediates. Mutagenesis is a powerful tool for the development of improved biocatalysts and has been used extensively with the archetypal Class VIII P450, BM3, from Bacillus megaterium, but with the increasing scale of genomic sequencing, a huge resource is now available for the discovery of novel P450s. PMID:27567486

  6. [Overexpression, homology modeling and coenzyme docking studies of the cytochrome P450nor2 from Cylindrocarpon tonkinense].

    PubMed

    Li, N; Zhang, Y Z; Li, D D; Niu, Y H; Liu, J; Li, S X; Yuan, Y Z; Chen, S L; Geng, H; Liu, D L

    2016-01-01

    Cytochrome P450nor catalyzes an unusual reaction that transfers electrons from NADP/NADPH to bound heme directly. To improve the expression level of P450nor2 from Cylindrocarpon tonkinense (C.P450nor2), Escherichia coli system was utilized to substitute the yeast system we constructed for expression of the P450nor2 gene, and the protein was purified in soluble form using Ni(+)-NTA affinity chromatography. In contrast to P450nor from Fusarium oxysporum (F.P450nor) and P450nor1 from Cylindrocarpon tonkinense (C.P450nor1), C.P450nor2 shows a dual specificity for using NADH or NADPH as electron donors. The present study developed a computational approach in order to illustrate the coenzyme specificity of C.P450nor2 for NADH and NADPH. This study involved homology modeling of C.P450nor2 and docking analyses of NADH and NADPH into the crystal structure of F.P450nor and the predictive model of C.P450nor2, respectively. The results suggested that C.P450nor2 and F.P450nor have different coenzyme specificity for NADH and NADPH; whilst the space around the B'-helix of the C.P450nor2, especially the Ser79 and Gly81, play a crucial role for the specificity of C.P450nor2. In the absence of the experimental structure of C.P450nor2, we hope that our model will be useful to provide rational explanation on coenzyme specificity of C.P450nor2.

  7. Preparation and characterization of monoclonal antibodies recognizing unique epitopes on sexually differentiated rat liver cytochrome P-450 isozymes.

    PubMed

    Morgan, E T; Rönnholm, M; Gustafsson, J A

    1987-07-14

    Cytochrome P-450 isozymes P-450(16 alpha), P-450(15 beta), and P-450DEa are immunochemically related, as indicated by mutual cross-reactivity with polyclonal antibody preparations. We have isolated five monoclonal antibodies to P-450(15 beta) and one antibody to P-450(16 alpha) that show selectivity for the respective antigens. High frequencies of cross-reactivity were observed, indicating a high degree of homology among P-450(16 alpha), P-450(15 beta), and P-450DEa. All of the P-450(15 beta-specific antibodies bound to the same epitope, or closely grouped epitopes, supporting this conclusion. The specificity of each monoclonal antibody was characterized by enzyme-linked immunosorbent assay. Western immunoblotting, and antibody-Sepharose immunoadsorption of solubilized rat liver microsomes. Antibodies F22 and F23, which were apparently identical, were specific for P-450(15 beta) by these criteria. However, the apparent specificities of antibodies F3 and F20 for P-450(15 beta), and of M16 for P-450(16 alpha), were highly dependent on the analytical technique used. The five anti-P-450(15 beta) antibodies all inhibited the catalytic activity of microsomal P-450(15 beta), by a maximum of 70%. However, they also produced a similar inhibition of microsomal P-450(16 alpha-specific antibody M16 and F23 have a low-affinity interaction with an epitope on P-450(16 alpha). The P-450(16 alpha)-specific antibody M16 was not inhibitory. The results indicate that the apparent specificity of a monoclonal antibody for an antigen determined by, e.g., Western blotting does not allow the conclusive identification of a protein in another system, e.g., immunoprecipitation of in vitro translation reaction products.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Classification and characterization of putative cytochrome P450 genes from Panax ginseng C. A. Meyer.

    PubMed

    Devi, Balusamy Sri Renuka; Kim, Yu-Jin; Sathiyamoorthy, Subramaniyum; Khorolragchaa, Altanzul; Gayathri, Sathiyaraj; Parvin, Shohana; Yang, Dong-Uk; Selvi, Senthil Kalai; Lee, Ok Ran; Lee, Sungyoung; Yang, Deok-Chun

    2011-12-01

    In plants heme containing cytochrome P450 (P450) is a superfamily of monooxygenases that catalyze the addition of one oxygen atom from O2 into a substrate, with a substantial reduction of the other atom to water. The function of P450 families is attributed to chemical defense mechanism under terrestrial environmental conditions; several are involved in secondary and hormone metabolism. However, the evolutionary relationships of P450 genes in Panax ginseng remain largely unknown. In the present study, data mining methods were implemented and 116 novel putative P450 genes were identified from Expressed Sequence Tags (ESTs) of a ginseng database. These genes were classified into four clans and 22 families by sequence similarity conducted at amino acid level. The representative putative P450 sequences of P. ginseng and known P450 family from other plants were used to construct a phylogenetic tree. By comparing with other genomes, we found that most of the P450 genes from P. ginseng can be found in other dicot species. Depending on P450 family functions, seven P450 genes were selected, and for that organ specific expression, abiotic, and biotic studies were performed by quantitative reverse transcriptase-polymerase chain reaction. Different genes were found to be expressed differently in different organs. Biotic stress and abiotic stress transcript level was regulated diversely, and upregulation of P450 genes indicated the involvement of certain genes under stress conditions. The upregulation of the P450 genes under methyl jasmonate and fungal stress justifies the involvement of specific genes in secondary metabolite biosynthesis. Our results provide a foundation for further elucidating the actual function and role of P450 involved in various biochemical pathways in P. ginseng.

  9. A world of cytochrome P450s.

    PubMed

    Nelson, David R

    2013-02-19

    The world we live in is a biosphere influenced by all organisms who inhabit it. It is also an ecology of genes, with some having rather startling effects. The premise put forth in this issue is cytochrome P450 is a significant player in the world around us. Life and the Earth itself would be visibly different and diminished without cytochrome P450s. The contributions to this issue range from evolution on the billion year scale to the colour of roses, from Darwin to Rachel Carson; all as seen through the lens of cytochrome P450.

  10. A world of cytochrome P450s

    PubMed Central

    Nelson, David R.

    2013-01-01

    The world we live in is a biosphere influenced by all organisms who inhabit it. It is also an ecology of genes, with some having rather startling effects. The premise put forth in this issue is cytochrome P450 is a significant player in the world around us. Life and the Earth itself would be visibly different and diminished without cytochrome P450s. The contributions to this issue range from evolution on the billion year scale to the colour of roses, from Darwin to Rachel Carson; all as seen through the lens of cytochrome P450. PMID:23297353

  11. Pharmacophore modeling and in silico screening for new P450 19 (aromatase) inhibitors.

    PubMed

    Schuster, Daniela; Laggner, Christian; Steindl, Theodora M; Palusczak, Anja; Hartmann, Rolf W; Langer, Thierry

    2006-01-01

    Cytochrome P450 19 (P450 19, aromatase) constitutes a successful target for the treatment of breast cancer. This study analyzes chemical features common to P450 19 inhibitors to develop ligand-based, selective pharmacophore models for this enzyme. The HipHop and HypoRefine algorithms implemented in the Catalyst software package were employed to create both common feature and quantitative models. The common feature model for P450 19 includes two ring aromatic features in its core and two hydrogen bond acceptors at the ends. The models were used as database search queries to identify active compounds from the NCI database. PMID:16711749

  12. Pharmacophore modeling and in silico screening for new P450 19 (aromatase) inhibitors.

    PubMed

    Schuster, Daniela; Laggner, Christian; Steindl, Theodora M; Palusczak, Anja; Hartmann, Rolf W; Langer, Thierry

    2006-01-01

    Cytochrome P450 19 (P450 19, aromatase) constitutes a successful target for the treatment of breast cancer. This study analyzes chemical features common to P450 19 inhibitors to develop ligand-based, selective pharmacophore models for this enzyme. The HipHop and HypoRefine algorithms implemented in the Catalyst software package were employed to create both common feature and quantitative models. The common feature model for P450 19 includes two ring aromatic features in its core and two hydrogen bond acceptors at the ends. The models were used as database search queries to identify active compounds from the NCI database.

  13. Cytochrome P450 monooxygenases: an update on perspectives for synthetic application.

    PubMed

    Urlacher, Vlada B; Girhard, Marco

    2012-01-01

    Cytochrome P450 monooxygenases (P450s) are versatile biocatalysts that catalyze the regio- and stereospecific oxidation of non-activated hydrocarbons under mild conditions, which is a challenging task for chemical catalysts. Over the past decade impressive advances have been achieved via protein engineering with regard to activity, stability and specificity of P450s. In addition, a large pool of newly annotated P450s has attracted much attention as a source for novel biocatalysts for oxidation. In this review we give a short up-to-date overview of recent results on P450 engineering for technical applications including aspects of whole-cell biocatalysis with engineered recombinant enzymes. Furthermore, we focus on recently identified P450s with novel biotechnologically relevant properties.

  14. Investigation of the mechanisms underlying the differential effects of the K262R mutation of P450 2B6 on catalytic activity

    PubMed Central

    Bumpus, Namandjé N.; Hollenberg, Paul F.

    2008-01-01

    Human P450 2B6 is a polymorphic enzyme involved in the oxidative metabolism of a number of clinically relevant substrates. The lysine 262 to arginine mutant of P450 2B6 (P450 2B6.4) has been shown to have differential effects on P450 2B6 catalytic activity. We previously reported that the mutant enzyme was not able to metabolize 17-α-ethynylestradiol (17EE) or become inactivated by 17EE or efavirenz, which are inactivators of the wild-type enzyme. Studies were performed to elucidate the mechanism by which this mutation affects P450 2B6 catalytic activity. Studies using phenyldiazene to investigate differences between the active site topologies of the wild-type and mutant enzymes revealed only minor differences. Similarly, Ks values for the binding of both benzphetamine and efavirenz were comparable between the two enzymes. Using the alternate oxidant tert-butyl hydroperoxide, the mutant enzyme was inactivated by both 17EE and efavirenz. The stoichiometry of 17EE and efavirenz metabolism by P450s 2B6 and 2B6.4 revealed the mutant enzyme was more uncoupled, producing hydrogen peroxide as the primary product. Interestingly, the addition of cytochrome b5 improved the coupling of the mutant, resulting in increased catalytic activity. In the presence of cytochrome b5 the variant readily metabolized 17EE and was inactivated by both 17EE and efavirenz. It is therefore proposed that the oxyferrous or iron-peroxo intermediate formed by the mutant enzyme in the presence of 17EE and efavirenz may be less stable than the same intermediates formed by the wild-type enzyme. PMID:18621926

  15. Electrochemistry of cytochromes p450: analysis of current-voltage characteristics of electrodes with immobilized cytochromes p450 for the screening of substrates and inhibitors.

    PubMed

    Shumyantseva, V V; Bulko, T V; Kuznetsova, G P; Samenkova, N F; Archakov, A I

    2009-04-01

    In the current study, an approach to elucidating the substrate specificity of cytochromes P450 based on the analysis of current-voltage characteristics of voltammograms and amperograms is proposed. Data on the electrochemical behavior of bioelectrodes with immobilized cytochromes P450 2B4, 1A2, 3A4, 11A1 (P450scc), and 51b1 (Mycobacterium tuberculosis sterol 14alpha-demethylase or CYP51 MT) in the presence of typical substrates and inhibitors for these hemoprotein forms are reported. Immobilization of the enzymes was accomplished by using graphite screen-printed electrodes modified with gold nanoparticles and with the synthetic membrane-like compound didodecyldimethylammonium bromide. The method of electro-analysis can be applied to the search of potential substrates and inhibitors of cytochromes P450 and to creation of multichannel electrochemical plates (chips, panels) with immobilized cytochromes P450.

  16. Optimization of the Bacterial Cytochrome P450 BM3 System for the Production of Human Drug Metabolites

    PubMed Central

    Di Nardo, Giovanna; Gilardi, Gianfranco

    2012-01-01

    Drug metabolism in human liver is a process involving many different enzymes. Among them, a number of cytochromes P450 isoforms catalyze the oxidation of most of the drugs commercially available. Each P450 isoform acts on more than one drug, and one drug may be oxidized by more than one enzyme. As a result, multiple products may be obtained from the same drug, and as the metabolites can be biologically active and may cause adverse drug reactions (ADRs), the metabolic profile of a new drug has to be known before this can be commercialized. Therefore, the metabolites of a certain drug must be identified, synthesized and tested for toxicity. Their synthesis must be in sufficient quantities to be used for metabolic tests. This review focuses on the progresses done in the field of the optimization of a bacterial self-sufficient and efficient cytochrome P450, P450 BM3 from Bacillus megaterium, used for the production of metabolites of human enzymes. The progress made in the improvement of its catalytic performance towards drugs, the substitution of the costly NADPH cofactor and its immobilization and scale-up of the process for industrial application are reported. PMID:23443101

  17. Structural characterization of a monoclonal antibody immunopurified pulmonary cytochrome P-450 from 3-methylcholanthrenetreated rats

    SciTech Connect

    Robinson, R.C.; Cheng, K.C.; Park, S.S.; Gelboin, H.V.; Friedman, F.K.

    1986-05-01

    Extrahepatic cytochromes P-450 have not been as extensively studied as the hepatic forms, owing to the low concentrations of these enzymes in extrahepatic tissues. A cytochrome P-450 was purified from lung microsomes of 3-methylcholanthrene (MC)-treated rats by immunoaffinity chromatography using a monoclonal antibody to the major MC-inducible form of rat liver cytochrome P-450. The lung cytochrome P-450 is related to this liver form by at least two common epitopes, recognized by monoclonal antibodies 1-7-1 and 1-31-2. The isolated pulmonary cytochrome P-450 is MC-inducible and has an apparent molecular weight of 57 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight as well as the NH/sub 2/-terminal sequence of the pulmonary cytochrome P-450 is identical to that of the major MC-inducible form of rat liver cytochrome P-450. In addition, limited proteolytic digestion of both cytochromes P-450 generates the same peptide patterns on SDS-PAGE. By several criteria, treatment of rats with MC thus induces a pulmonary cytochrome P-450 which is structurally identical to the MC-induced hepatic enzyme.

  18. Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase.

    PubMed

    Bavishi, Krutika; Laursen, Tomas; Martinez, Karen L; Møller, Birger Lindberg; Della Pia, Eduardo Antonio

    2016-01-01

    Direct electrochemistry of cytochrome P450 containing systems has primarily focused on investigating enzymes from microbes and animals for bio-sensing applications. Plant P450s receive electrons from NADPH P450 oxidoreductase (POR) to orchestrate the bio-synthesis of a plethora of commercially valuable compounds. In this report, full length CYP79A1, CYP71E1 and POR of the dhurrin pathway in Sorghum bicolor were reconstituted individually in nanoscale lipid patches, "nanodiscs", and directly immobilized on unmodified gold electrodes. Cyclic voltammograms of CYP79A1 and CYP71E1 revealed reversible redox peaks with average midpoint potentials of 80 ± 5 mV and 72 ± 5 mV vs. Ag/AgCl, respectively. POR yielded two pairs of redox peaks with midpoint potentials of 90 ± 5 mV and -300 ± 10 mV, respectively. The average heterogeneous electron transfer rate constan