Science.gov

Sample records for p450-dependent toxic effects

  1. Detection of toxic effects of Cd2+ on different fish species via liver cytochrome P450-dependent monooxygenase activities and FTIR spectroscopy.

    PubMed

    Henczová, Mária; Deér, Aranka Kiss; Komlósi, Viktória; Mink, János

    2006-06-01

    The in vivo and in vitro effects of Cd2+ and the CYP1A inductor beta-naphthoflavone(beta-NF) on the hepatic cytochrome P450 (Cyt 450) monooxygenases were studied in silver carp (Hypophthalmichtys molitrix V.), wels (Silurus glanis L.), and carp (Cyprinus carpio). In vivo treatment of carp with a high dose of Cd2+ (10 mg kg(-1), for 3 days) caused a strong inhibition of 7-ethoxyresorufin-O-deethylase (EROD) and a lower inhibition of 7-ethoxycoumarin-O-deethylase (ECOD) activity. The low-dose cadmium treatment (2 mg kg(-1) Cd2+, for 6+3 days) resulted in 4-fold increase in EROD and a 3-fold increase in ECOD activity. The combined treatment with Cd2+ and beta-NF in both cases led to a loss of EROD inducibility. The silver carp and wels were treated with 10 mg L(-1) Cd2+ for 72 h in water. The Cyt P450 content in the wels liver microsomes was increased significantly after treatment for 48 h, whereas there was only a slight, not significant increase in Cyt P450 content in the silver carp microsomes. While the Cd2+ treatment resulted in inhibition of the CYP1A isoenzymes (EROD and ECOD), the APND (aminopyrene-N-demethylase, CYP2B or CYP3A isoenzyme) activity was increased 3- to 4-fold in both fish species. In vitro experiments of the effect of Cd2+ led to a concentration-dependent inhibition in all three investigated fish species. The ECOD isoenzyme of silver carp was the most sensitive to Cd2+. The lowest concentration of Cd2+ resulted in 50% inhibition. The APND isoenzyme was similarly sensitive to Cd2+ in all three investigated fish species. The most sensitive species was the wels, and the least sensitive were the carp isoenzyme. FTIR spectroscopy confirmed that cadmium caused damage to the protein structure. These results support the enzyme activity measurements measured in vivo and in vitro.

  2. Effect of swimming exercise and ethanol on rat liver P450-dependent monooxygenases.

    PubMed

    Ardies, C M; Zachman, E K; Koehn, B J

    1994-12-01

    The interactive effects of 6 wk of repeated swimming exercise and chronic ethanol consumption (36% of total calories) on the hepatic cytochrome P450-dependent monooxygenase system were studied utilizing four groups of male rats in a 2 x 2 factorial design. The sedentary-control (S/C), sedentary-ethanol (S/E), and swim-control (SW/C) groups received the same amount of food that the swim-ethanol (SW/E) group consumed. The swimming groups were trained to swim for 2 h.d-1, 5 d.wk-1. Significant main effects due to ethanol (P < 0.002) and exercise (P < 0.02) were observed for the enhanced cytochrome P450 content and cytochrome P450 reductase activity, respectively. In addition, significant main effects for ethanol (P < 0.001), exercise (P < 0.0001), and significant interaction effects (P < 0.005) on aniline p-hydroxylase activity and significant main effects for ethanol (P < 0.01), exercise (P < 0.01), and interaction effects (P < 0.04) on 7-ethoxycoumarin o-deethylase activity were observed. Because the SW/C treatment had no effect on any of the measured cytochrome P450 activities and the SW/E treatment enhanced P450 activities much more than the S/E treatment, the main effects observed for exercise are accounted for by the alterations produced by combining swimming with the ethanol treatment. Based on these results, repeated exercise combined with ethanol consumption produces a synergistic increase in ethanol-inducible cytochrome P450-dependent activities. PMID:7869878

  3. Cytochrome P-450 dependent ethanol oxidation. Kinetic isotope effects and absence of stereoselectivity

    SciTech Connect

    Ekstroem, G.; Norsten, C.; Cronholm, T.; Ingelman-Sundberg, M.

    1987-11-17

    Deuterium isotope effects (/sup D/(V/K)) and stereoselectivity of ethanol oxidation in cytochrome P-450 containing systems and in the xanthine-xanthine oxidase system were compared with those of yeast alcohol dehydrogenase. The isotope effects were determined by using both a noncompetitive method, including incubation of unlabeled of (1,1-/sup 2/H/sub 2/) ethanol at various concentrations, and a competitive method, where 1:1 mixtures of (1-/sup 13/C)- and (/sup 2/H/sub 6/) ethanol or (2,2,2-/sup 2/H/sub 3/)- and (1,1-/sup 2/H/sub 2/) ethanol were incubated and the acetaldehyde formed was analyzed by gas chromatography/mass spectrometry. The /sup D/(V/K) isotope effects of the cytochrome P-450 dependent ethanol oxidation were about 4 with liver microsomes from imidazole-, phenobarbital- or acetone-treated rabbits or with microsomes from acetone- or ethanol-treated rats. Similar isotope effects were reached with reconstituted membranes containing the rabbit ethanol-inducible cytochrome P-450 (LMeb), whereas control rat microsomes and membranes containing rabbit phenobarbital-inducible P-450 LM/sub 2/ oxidized the alcohol with /sup D/(V/K) of about 2.8 and 1.8, respectively. Addition of Fe/sup III/EDTA either to microsomes from phenobarbital-treated rabbits or to membranes containing P-450 LMeb significantly lowered the isotope effect. Incubations of all cytochrome P-450 containing systems of the xanthine-xanthine oxidase systems with (1R)- and (1S)-(1-/sup 2/H) ethanol, revealed, taking the isotope effects into account, that 44-66% of the ethanol oxidized had lost the 1-pro-R hydrogen. The data indicate that cytochrome P-450 dependent ethanol oxidation is not stereospecific and that cleavage of the C/sub 1/-H bond appears to be a rate-determining step in the catalysis by the ethanol-inducible form of P-450. The contribution of hydroxyl radicals in ethanol oxidation by the various enzymic systems is discussed.

  4. Mechanism of chloroform-induced renal toxicity: Non-involvement of hepatic cytochrome P450-dependent metabolism

    SciTech Connect

    Fang Cheng; Behr, Melissa; Xie Fang; Lu Shijun; Doret, Meghan; Luo Hongxiu; Yang Weizhu; Aldous, Kenneth; Ding Xinxin; Gu Jun

    2008-02-15

    Chloroform causes hepatic and renal toxicity in a number of species. In vitro studies have indicated that chloroform can be metabolized by P450 enzymes in the kidney to nephrotoxic intermediate, although direct in vivo evidence for the role of renal P450 in the nephrotoxicity has not been reported. This study was to determine whether chloroform renal toxicity persists in a mouse model with a liver-specific deletion of the P450 reductase (Cpr) gene (liver-Cpr-null). Chloroform-induced renal toxicity and chloroform tissue levels were compared between the liver-Cpr-null and wild-type mice at 24 h following differing doses of chloroform. At a chloroform dose of 150 mg/kg, the levels of blood urea nitrogen (BUN) were five times higher in the exposed group than in the vehicle-treated one for the liver-Cpr-null mice, but they were only slightly higher in the exposed group than in the vehicle-treated group for the wild-type mice. Severe lesions were found in the kidney of the liver-Cpr-null mice, while only mild lesions were found in the wild-type mice. At a chloroform dose of 300 mg/kg, severe kidney lesions were observed in both strains, yet the BUN levels were still higher in the liver-Cpr-null than in the wild-type mice. Higher chloroform levels were found in the tissues of the liver-Cpr-null mice. These findings indicated that loss of hepatic P450-dependent chloroform metabolism does not protect against chloroform-induced renal toxicity, suggesting that renal P450 enzymes play an essential role in chloroform renal toxicity.

  5. Effects of the adenylate cyclase activator forskolin and its inactive derivative 1,9-dideoxyforskolin on insect cytochrome P-450 dependent steroid hydroxylase activity.

    PubMed

    Keogh, D P; Mitchell, M J; Crooks, J R; Smith, S L

    1992-01-15

    The adenylate cyclase activator forskolin and its pharmacologically inactive derivative 1,9-dideoxyforskolin were found to inhibit in a dose-dependent fashion the ecdysone 20-monooxygenase activity associated with wandering stage larvae of Drosophila melanogaster and fat body and midgut from last instar larvae of the tobacco hornworm, Manduca sexta. The concentrations of these labdane diterpenes required to elicit a 50% inhibition of the cytochrome P-450 dependent steroid hydroxylase activity in the insect tissues ranged from approximately 5 x 10(-6) to 5 x 10(-4) M.

  6. The effect of propylene glycol on the P450-dependent metabolism of acetaminophen and other chemicals in subcellular fractions of mouse liver

    SciTech Connect

    Snawder, J.E.; Benson, R.W.; Leakey, J.E.A.; Roberts, D.W. )

    1993-01-01

    Propylene glycol (PG) decreases the hepatotoxicity of acetominophen (APAP). To elucidate the mechanism for this response, the authors measured the effect of PG on the in vitro metabolism of APAP by subcellular liver fractions from 6-10 week-old male B6C3F1 mice. The fractions were assayed for their ability to bioactivate APAP to N-acetyl-p-benzoquinone imine, which was trapped as APAP-glutathione conjugates or APAP-protein adducts, and for dimethyl-nitrosamine-N-demethylase (DMN), 4-nitrophenol hydroxylase (4-NPOH), and phenacetin-O-deethylase (PAD) activities. Activity in the crude mitochondrial-rich (10,000 [times] g pellet) fraction was low and PG had no effect. PG inhibited DMN and 4-NPOH, indicators of IIE1-dependent activity, and the formation of APAP-glutathione conjugates and APAP-protein adducts in both heavy (15,000 [times] g pellet) and light (100,000 [times] g pellet) microsomes. PAD, a measure of IA2-dependent activity, was not inhibited. These data demonstrate that PG selectively inhibits IIE1 activity, including the bioactivation of APAP, and implicates this as the mechanism for PG-mediated protection of APAP hepatotoxicity in mice. 27 refs., 1 fig., 1 tab.

  7. Effect of human glutathione S-transferases on glutathione-dependent inactivation of cytochrome P450-dependent reactive intermediates of diclofenac.

    PubMed

    Dragovic, Sanja; Boerma, Jan Simon; Vermeulen, Nico P E; Commandeur, Jan N M

    2013-11-18

    Idiosyncratic adverse drug reactions due to the anti-inflammatory drug diclofenac have been proposed to be caused by the generation of reactive acyl glucuronides and oxidative metabolites. For the oxidative metabolism of diclofenac by cytochromes P450 at least five different reactive intermediates have been proposed previously based on structural identification of their corresponding GSH-conjugates. In the present study, the ability of four human glutathione S-transferases (hGSTs) to catalyze the GSH-conjugation of the different reactive intermediates formed by P450s was investigated. Addition of pooled human liver cytosol and recombinant hGSTA1-1, hGSTM1-1, and hGSTP1-1 to incubations of diclofenac with human liver microsomes or purified CYP102A1M11 L437N as a model system significantly increased total GSH-conjugation. The strongest increase of total GSH-conjugation was observed by adding hGSTP1-1, whereas hGSTM1-1 and hGSTA1-1 showed lower activity. Addition of hGSTT1-1 only showed a minor effect. When considering the effects of hGSTs on GSH-conjugation of the different quinoneimines of diclofenac, it was found that hGSTP1-1 showed the highest activity in GSH-conjugation of the quinoneimine derived from 5-hydroxydiclofenac (5-OH-DF). hGSTM1-1 showed the highest activity in inactivation of the quinoneimine derived from 4'-hydroxydiclofenac (4'-OH-DF). Separate incubations with 5-OH-DF and 4'-OH-DF as substrates confirmed these results. hGSTs also catalyzed GSH-conjugation of the o-iminemethide formed by oxidative decarboxylation of diclofenac as well as the substitution of one of the chlorine atoms of DF by GSH. hGSTP1-1 showed the highest activity for the formation of these minor GSH-conjugates. These results suggest that hGSTs may play an important role in the inactivation of DF quinoneimines and its minor reactive intermediates especially in stress conditions when tissue levels of GSH are decreased.

  8. Cytochrome P450-Dependent Metabolism of Caffeine in Drosophila melanogaster

    PubMed Central

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone—an inhibitor of CYP enzymes—showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects. PMID:25671424

  9. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.

    PubMed

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects. PMID:25671424

  10. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.

    PubMed

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects.

  11. Challenges and pitfalls of P450-dependent (+)-valencene bioconversion by Saccharomyces cerevisiae.

    PubMed

    Gavira, Carole; Höfer, René; Lesot, Agnès; Lambert, Fanny; Zucca, Joseph; Werck-Reichhart, Danièle

    2013-07-01

    Natural nootkatone is a high value ingredient for the flavor and fragrance industry because of its grapefruit flavor/odor, low sensorial threshold and low availability. Valencene conversion into nootkatol and nootkatone is known to be catalyzed by cytochrome P450 enzymes from both prokaryotic and eukaryotic organisms, but so far development of a viable bioconversion process using either native microorganisms or recombinant enzymes was not successful. Using an in silico gene-mining approach, we selected 4 potential candidate P450 enzymes from higher plants and identified two of them that selectively converted (+)-valencene into β-nootkatol with high efficiency when tested using recombinant yeast microsomes in vitro. Recombinant yeast expressing CYP71D51v2 from tobacco and a P450 reductase from arabidopsis was used for optimization of a bioconversion process. Bioconversion assays led to production of β-nootkatol and nootkatone, but with low yields that decreased upon increase of the substrate concentration. The reasons for this low bioconversion efficiency were further investigated and several factors potentially hampering industry-compatible valencene bioconversion were identified. One is the toxicity of the products for yeast at concentrations exceeding 100 mg L⁻¹. The second is the accumulation of β-nootkatol in yeast endomembranes. The third is the inhibition of the CYP71D51v2 hydroxylation reaction by the products. Furthermore, we observed that the formation of nootkatone from β-nootkatol is not P450-dependent but catalyzed by a yeast component. Based on these data, we propose new strategies for implementation of a viable P450-based bioconversion process. PMID:23518241

  12. Certain tryptophan photoproducts are inhibitors of cytochrome P450-dependent mutagenicity

    SciTech Connect

    Rannug, U.; Agurell, E.; Cederberg, H. ); Rannug, A. )

    1992-01-01

    Two photoproducts, derived from UV-irradiation of the amino acid L-tryptophan and with high Ah (TCDD) receptor binding affinity, were tested for genotoxic and antimutagenic effects. The two indolo[3,2-b]carbazole derivatives, with the molecular weights of 284 and 312, respectively, were tested in Saccharomyces cerevisiae strain D7 for mitotic gene conversion and reverse mutation and in strain RS112 for sister chromatid conversion and gene conversion. No significant (P > 0.05) genotoxic effects were found in strain D7, while strain RS112 showed a small but significant increase in the frequency of sister chromatid conversions. In Chinese hamster ovary (CHO) cells the two compounds induced a statistically significant but less than twofold increase in the frequency of sister chromatid exchanges (SCE). No mutations were detected when the compounds were tested in Salmonella tphimurium strains TA98 and TA100. However, both 284 and 312 acted as antimutagens on strain TA100+S9 in the presence of benzo(a)pyrene. The decrease in mutagenicity by the most potent compound 284 was 20 revertants/nmol. This effect could be explained by an inhibitory effect on the cytochrome P450-dependent ethoxyresorufin O-deethylase (EROD) activity as seen in rat hepatocytes. The two compounds were also tested with hamster cells expressing rat cytochrome P-4501A1. The results support the conclusion that this cytochrome P-450 isozyme is inhibited by the tryptophan photoproducts. Similar results were also seen with two other high affinity Ah receptor ligands the quinazolinocarboline alkaloids rutaecapine and dehydrorutaecarpine. 20 refs., 3 figs., 4 tabs.

  13. Phenobarbital induction of a soluble cytochrome P-450-dependent fatty acid monooxygenase in Bacillus megaterium.

    PubMed

    Narhi, L O; Fulco, A J

    1982-03-10

    A soluble, cytochrome P-450-dependent fatty acid hydroxylase-epoxidase isolated from Bacillus megaterium ATCC 14581 can be induced about 28-fold by the addition of phenobarbital (8 mM) to the growth medium. Phenobarbital is not a substrate for the enzyme nor does it activate the monooxygenase in the cell-free system. The level of the P-450-dependent monooxygenase activity in cultures harvested during the early stationary phase of growth increased linearly with phenobarbital concentration up to its solubility limit (8 mM) at 35 degrees C. The time course of induction during culture growth in the presence of 4 mM phenobarbital showed an interesting dichotomy. The specific content of cytochrome P-450 increased until the early stationary phase of growth and then leveled off. P-450-dependent monooxygenase activity, however, continued to increase rapidly to midstationary phase and then decreased just as rapidly after this time. At maximum specific activity, a turnover number of about 2,450 was obtained for palmitoleate hydroxylation-epoxidation by the cytochrome P-450 system. PMID:6801029

  14. Mechanism-based inactivation of cytochrome P-450 dependent benzo(a)pyrene hydroxylase activity by acetylenic and olefinic polycyclic arylhydrocarbons

    SciTech Connect

    Gan, L.S.

    1986-01-01

    A series of aryl acetylenes and aryl olefins have been examined as substrates and inhibitors of cytochrome P-450 dependent monooxygenases in liver microsomes from 5,6-benzoflavone or phenobarbital pretreated rats. 1-Ethynylpyrene (EP), 3-ethynylperylene (EPL), cis- and trans-1-(2-bromo-vinyl)pyrene (c-BVP and t-BVP), and 1-allylpyrene (AP) serve as mechanism-based irreversible inactivators (suicide inhibitors) of benzo(a)pyrene (BP) hydroxylase, while 1-vinyl-pyrene (VP) and phenyl 1-pyrenyl acetylene (PPA) do not cause a detectable suicide inhibition of the BP hydroxylase. The mechanism-based loss of BP hydroxylase activity caused by the aryl acetylenes is not accompanied by a corresponding loss of the P-450 content of the microsomes. In the presence of NADPH, /sup 3/H-labeled EP covalently attached to P-450 isozymes with a measured stoichiometry of one mole of EP per mole of the P-450 heme. The results of the effects of these aryl derivatives in the mammalian cell-mediated mutagenesis assay and toxicity assay show that none of the compounds examined nor any of the their metabolites produced in the incubation system are cytotoxic to V79 cells.

  15. Genetic variation in cytochrome P-450-dependent demethylation in Drosophila melanogaster.

    PubMed

    Hällström, I

    1987-07-15

    The genetic variation in the basal capacity to N-demethylate aminopyrine, d-benzphetamine and ethylmorphine was studied in microsomes from adult Drosophila of 9 different strains. Ethylmorphine and d-benzphetamine N-demethylase activity varied about fourfold between the strains, with the highest capacity for both reactions in the Aflatoxin B1-sensitive Florida 9 and the lowest in the insecticide-resistant Hikone R. The two activities were closely correlated with each other but not with aminopyrine demethylation or any previously studied cytochrome P-450-dependent reaction, indicating a common determination by a separate cytochrome P-450 form(s). Aminopyrine N-demethylase activity was more than fourfold higher in the DDT-resistant Oregon R than in Berlin K. A genetic analysis of aminopyrine N-demethylation revealed that the high activity in the Oregon R(R) strain was inherited as an apparently semidominant second chromosome trait. The similar mode of inheritance as well as the close correlation between aminopyrine demethylase and the previously analysed biphenyl 4-hydroxylase activity suggests that these activities are under the same genetic control. PMID:3111479

  16. Metabolic engineering of light-driven cytochrome P450 dependent pathways into Synechocystis sp. PCC 6803.

    PubMed

    Wlodarczyk, Artur; Gnanasekaran, Thiyagarajan; Nielsen, Agnieszka Zygadlo; Zulu, Nodumo Nokolunga; Mellor, Silas Busck; Luckner, Manja; Thøfner, Jens Frederik Bang; Olsen, Carl Erik; Mottawie, Mohammed Saddik; Burow, Meike; Pribil, Mathias; Feussner, Ivo; Møller, Birger Lindberg; Jensen, Poul Erik

    2016-01-01

    Solar energy provides the energy input for the biosynthesis of primary and secondary metabolites in plants and other photosynthetic organisms. Some secondary metabolites are high value compounds, and typically their biosynthesis requires the involvement of cytochromes P450s. In this proof of concept work, we demonstrate that the cyanobacterium Synechocystis sp. PCC 6803 is an eminent heterologous host for expression of metabolically engineered cytochrome P450-dependent pathways exemplified by the dhurrin pathway from Sorghum bicolor comprising two membrane bound cytochromes P450s (CYP79A1 and CYP71E1) and a soluble glycosyltransferase (UGT85B1). We show that it is possible to express multiple genes incorporated into a bacterial-like operon by using a self-replicating expression vector in cyanobacteria. We demonstrate that eukaryotic P450s that typically reside in the endoplasmic reticulum membranes can be inserted in the prokaryotic membranes without affecting thylakoid membrane integrity. Photosystem I and ferredoxin replaces the native P450 oxidoreductase enzyme as an efficient electron donor for the P450s both in vitro and in vivo. The engineered strains produced up to 66mg/L of p-hydroxyphenylacetaldoxime and 5mg/L of dhurrin in lab-scale cultures after 3 days of cultivation and 3mg/L of dhurrin in V-shaped photobioreactors under greenhouse conditions after 9 days cultivation. All the metabolites were found to be excreted to the growth media facilitating product isolation.

  17. Genetic variation in cytochrome P-450-dependent demethylation in Drosophila melanogaster.

    PubMed

    Hällström, I

    1987-07-15

    The genetic variation in the basal capacity to N-demethylate aminopyrine, d-benzphetamine and ethylmorphine was studied in microsomes from adult Drosophila of 9 different strains. Ethylmorphine and d-benzphetamine N-demethylase activity varied about fourfold between the strains, with the highest capacity for both reactions in the Aflatoxin B1-sensitive Florida 9 and the lowest in the insecticide-resistant Hikone R. The two activities were closely correlated with each other but not with aminopyrine demethylation or any previously studied cytochrome P-450-dependent reaction, indicating a common determination by a separate cytochrome P-450 form(s). Aminopyrine N-demethylase activity was more than fourfold higher in the DDT-resistant Oregon R than in Berlin K. A genetic analysis of aminopyrine N-demethylation revealed that the high activity in the Oregon R(R) strain was inherited as an apparently semidominant second chromosome trait. The similar mode of inheritance as well as the close correlation between aminopyrine demethylase and the previously analysed biphenyl 4-hydroxylase activity suggests that these activities are under the same genetic control.

  18. Downregulation of Mouse Hepatic CYP3A Protein by 3-Methylcholanthrene Does Not Require Cytochrome P450-Dependent Metabolism

    PubMed Central

    Lee, Chunja; Ding, Xinxin

    2013-01-01

    The aryl hydrocarbon receptor (AHR)–dependent induction of cytochromes P450 (P450) such as CYP1A1 by 3-methylcholanthrene (MC) and related polycyclic aromatic hydrocarbons is well characterized. We reported previously that MC treatment triggers a pronounced downregulation, particularly at the protein level, of mouse hepatic Cyp3a11, a counterpart of the key human drug-metabolizing enzyme CYP3A4. To determine whether this effect of MC requires hepatic microsomal P450 activity, we studied liver Cpr-null (LCN) mice with hepatocyte-specific conditional deletion of the NADPH-cytochrome P450 oxidoreductase gene. In vehicle-treated animals, basal levels of CYP3A11 mRNA and CYP3A protein immunoreactivity were elevated by approximately 9-fold in LCN mice compared with wild-type (WT) mice, whereas CYP3A catalytic activity was profoundly compromised in LCN mice. MC treatment caused suppression of CYP3A11 mRNA, CYP3A protein immunoreactivity, and CYP3A catalytic activity in WT mice, and the MC effects at the mRNA and protein levels were maintained in LCN mice. Flavin-containing monooxygenase-3 (Fmo3) induction by MC was suggested previously to occur via an AHR-dependent mechanism requiring conversion of the parent compound to DNA-damaging reactive metabolites; however, hepatic FMO3 mRNA levels were dramatically increased by MC in both WT and LCN mice. MC did not function as a mechanism-based inactivator of CYP3A enzymes in hepatic microsomes prepared from untreated WT mice, under conditions in which 1-aminobenzotriazole caused marked NADPH-dependent loss of total P450 content and CYP3A catalytic activity. These results indicate that MC downregulates mouse hepatic CYP3A protein via a pretranslational mechanism that does not require hepatic microsomal P450-dependent activity. PMID:23846873

  19. Qualitative and quantitative changes in cytochrome P-450-dependent xenobiotic metabolism in pulmonary microsomes and isolated Clara cell populations derived from ozone-exposed rats

    SciTech Connect

    Rietjens, I.M.C.M.; Dormans, J.A.M.A.; Rombout, P.J.A.; van Bree, L.

    1988-01-01

    The effect of a prolonged ozone exposure (1.6 mg ozone/m/sup 3/; 7 d; 24 h/d) on pulmonary cytochrome P-450-dependent xenobiotic metabolism was studied both in whole rat lung as well as in isolated bronchiolar Clara cell preparations. Ozone exposure was demonstrated to result in significant quantitative but also qualitative changes. All components of the pulmonary microsomal electron transport system appeared to be significantly increased in the lungs of exposed animals both per lung and per gram lung, although increases were no longer observed when expressed per milligram microsomal lung protein. Remarkably, it was demonstrated that the increases in the components of the pulmonary cytochrome P-450 system were not accompanied by a concomitant increase in all cytochrome P-450-dependent substrate conversions. In whole-lung microsomes ethoxycoumarin O-deethylase and ethoxyresorufin O-deethylase activities were unchanged or even significantly reduced when expressed per lung, per gram lung, per milligram microsomal protein, or per picomole cytochrome P-450. In contrast to these observations, pentoxyresorufin O-dealkylation appeared to be significantly increased upon ozone exposure when expressed per lung, per gram lung, and even per picomole cytochrome P-450.

  20. Induction of a cytochrome P-450-dependent fatty acid monooxygenase in Bacillus megaterium by a barbiturate analog, 1-[2-phenylbutyryl]-3-methylurea.

    PubMed

    Wen, L P; Fulco, A J

    1985-05-01

    In previous publications from our laboratory, we reported that a soluble, cytochrome P-450-dependent fatty acid monooxygenase from Bacillus megaterium ATCC 14581 can be induced by phenobarbital and a variety of other barbiturates. The tested barbiturates showed an excellent correlation between increasing lipophilicity and increasing inducer potency (Kim BH, Fulco AJ; Biochem Biophys Res Commun 116: 843-850, 1983). The only exception proved to be mephobarbital (N-methylphenobarbital) which, although more lipophilic than phenobarbital, is not an inducer of fatty acid monooxygenase activity. We have now found that 1-[2-phenylbutyryl]-3-methylurea (PBMU), an acylurea that can be derived from mephobarbital by hydrolytic cleavage of the barbiturate ring, is an excellent inducer of this activity. Paradoxically, the addition of mephobarbital to the bacterial growth medium containing PBMU significantly enhances the apparent potency of the acylurea to induce fatty acid monooxygenase activity as measured in cell-free extracts. When cell-free extracts of cells grown separately in PBMU or mephobarbital are mixed no enhancement of activity is seen. This finding suggests that the effect of mephobarbital is to somehow increase the efficiency of PBMU as an inducer of the P-450-dependent fatty acid monooxygenase rather than to induce an activator of this enzyme or a rate-limiting component of the monooxygenase system. Finally, both mephobarbital and PBMU induce the synthesis of total cytochrome P-450 in B. megaterium although PBMU is a much more potent P-450 inducer. For cytochrome P-450 induction, however, there is no synergistic or even additive effect when mephobarbital and PBMU are used together in the bacterial growth medium. PMID:3927150

  1. Partial characterization of a barbiturate-induced cytochrome P-450-dependent fatty acid monooxygenase from Bacillus megaterium.

    PubMed

    Narhi, L O; Kim, B H; Stevenson, P M; Fulco, A J

    1983-11-15

    A soluble cytochrome P-450-dependent fatty acid monooxygenase activity obtained from Bacillus megaterium ATCC 14581 can be induced by at least 13 different barbiturates. In general, the potency of these compounds as inducers increases with their increasing lipophilicity. We have now shown that at least 4 of these barbiturates (phenobarbital, secobarbital, pentobarbital and methohexital) seem to induce the same active cytochrome P-450-containing enzyme by a non-substrate type mechanism. The partially purified enzymes obtained from cultures induced with each of the 4 barbiturates tested were all of similar molecular size (Mr = 130,000 +/- 10,000) and had similar turnover numbers (1400-1800 +/- 300) with either palmitoleate or myristate as substrates. None of the tested barbiturates served as substrates, activators or inhibitors of any of the monooxygenase preparations, nor did they appear to interact in any way with the monooxygenase enzyme or the P-450 component. PMID:6418173

  2. Cytochrome P-450 dependent binding of methapyrilene to DNA in vitro.

    PubMed

    Lampe, M A; Kammerer, R C

    1987-10-01

    Methapyrilene ([14C]MPH) was found to bind to calf thymus DNA only after activation by both rat liver microsomes and NADPH. The cytochrome P-450 inhibitors 2,4-dichloro-6-phenylphenoxyethylamine, 2-diethylaminoethyl-2,2-diphenylvalerate and metyrapone inhibited binding, but methimazole, a flavin-dependent monooxygenase inhibitor, had no effect. However, 1,2-epoxy-3,3,3-trichloropropane, an epoxide hydrolase inhibitor, decreased binding by 30%. Pre-treatment of rats with isosafrole, pregnenolone-16 alpha-carbonitrile or phenobarbital had little or no effect on binding while 3-methylcholanthrene pretreatment decreased binding by 37%. Incubations in the presence of either N-acetylcysteine, glutathione, catalase or glutathione-peroxidase decreased binding to DNA while superoxide dismutase had no effect. These data suggest that MPH is metabolically activated to a species which binds to DNA and that this activation may be mediated by cytochrome P-450 isozymes. PMID:3115619

  3. Ethylbenzene exposure produces unique sex-related differences in cytochrome P-450 dependent activities

    SciTech Connect

    Sequeira, D.J.; Eyer, C.S.; Causey, K.M.; Backes, W.L. )

    1991-03-11

    Male and female Holtzman rats were given 3 daily i.p. injections of ethylbenzene (EB) and the effect on liver microsomal drug and hydrocarbon metabolism was examined. Hydrocarbon metabolism was examined using toluene as a substrate, since it can be metabolized by aliphatic hydroxylation to benzyl alcohol (BzOH) or aromatic hydroxylation to cresols. Formation of each of these products may be potentially sensitive to parameters such as sex and induction status. In untreated females BzOH was the major metabolite. Benzyl alcohol was also the major metabolite in untreated males, but was about five fold higher than in females. EB pretreatment increased the rate of BzOH formation in both sexes, producing a 3.8 fold increase in females compared to only a 1.8 fold increase in males. The only aromatic hydroxylation product found in untreated females was o-cresol (o-Cr). For male rats o-Cr formation was about twice that of females. Again, the females showed the greatest change in o-Cr formation following hydrocarbon exposure, with males exhibiting a 6 fold increase. P-cresol (p-Cr) was undetectable in untreated females but was produced at a rate of 0.07 nmol/min/mg protein in untreated males. Following EB pretreatment dramatic increases in p-Cr formation were found in both sexes. For females the rate increased to 0.5 nmol/min/mg protein. EB pretreatment caused an 18 fold increase in p-Cr formation in males.

  4. Induction and Characterization of a Cytochrome P-450-Dependent Camphor Hydroxylase in Tissue Cultures of Common Sage (Salvia officinalis).

    PubMed Central

    Funk, C.; Croteau, R.

    1993-01-01

    (+)-Camphor, a major monoterpene of the essential oil of common sage (Salvia officinalis), is catabolized in senescent tissue, and the pathway for the breakdown of this bicyclic ketone has been previously elucidated in sage cell-suspension cultures. In the initial step of catabolism, camphor is oxidized to 6-exo-hydroxycamphor, and the corresponding NADPH- and O2-dependent hydroxylase activity was demonstrated in microsomal preparations of sage cells. Several well-established inhibitors of cytochrome P-450-dependent reactions, including cytochrome c, clotrimazole, and CO, inhibited the hydroxylation of camphor, and CO-dependent inhibition was partially reversed by blue light. Upon treatment of sage suspension cultures with 30 mM MnCl2, camphor-6-hydroxylase activity was induced up to 7-fold. A polypeptide with estimated molecular mass of 58 kD from sage microsomal membranes exhibited antigenic cross-reactivity in western blot experiments with two heterologous polyclonal antibodies raised against cytochrome P-450 camphor-5-exo-hydroxylase from Pseudomonas putida and cytochrome P-450 limonene-6S-hydroxylase from spearmint (Mentha spicata). Dot blotting indicated that the concentration of this polypeptide increased with camphor hydroxylase activity in microsomes of Mn2+-induced sage cells. These results suggest that camphor-6-exo-hydroxylase from sage is a microsomal cytochrome P-450 monooxygenase that may share common properties and epitopes with bacterial and other plant monoterpene hydroxylases. PMID:12231778

  5. Induction and characterization of a cytochrome P-450-dependent camphor hydroxylase in tissue cultures of common sage (Salvia officinalis)

    SciTech Connect

    Funk, C.; Croteau, R. )

    1993-04-01

    (+)-Camphor, a major monoterpene of the essential oil of common sage (Salvia officinalis), is catabolized in senescent tissue, and the pathway for the breakdown of this bicyclic ketone has been previously elucidated in sage cell-suspension cultures. In the initial step of catabolism, camphor is oxidized to 6-exo-hydroxycamphor, and the corresponding NADPH- and O[sub 2]-dependent hydroxylase activity was demonstrated in microsomal preparations of sage cells. Several well-established inhibitors of cytochrome P-450-dependent reactions, including cytochrome c, clotrimazole, and CO, inhibited the hydroxylation of camphor, and CO-dependent inhibition was partially reversed by blue light. Upon treatment of sage suspension cultures with 30 mM MnCl[sub 2], camphor-6-hydroxylase activity was induced up to 7-fold. A polypeptide with estimated molecular mass of 58 kD from sage microsomal membranes exhibited antigenic cross-reactivity in western blot experiments with two heterologous polyclonal antibodies raised against cytochrome P-450 camphor-5-exo-hydroxylase from Pseudomonas putida and cytochrome P-450 limonene-6S-hydroxylase from spearmint (Mentha spicata). Dot blotting indicated that the concentration of this polypeptide increased with camphor hydroxylase activity in microsomes of Mn[sup 2+]-induced sage cells. These results suggest that camphor-6-exo-hydroxylase from sage is a microsomal cytochrome P-450 monooxygenase that may share common properties and epitopes with bacterial and other plant monoterpene hydroxylases. 44 refs., 6 figs., 2 tabs.

  6. Transplantation of fetal liver tissue suspension into the spleens of adult syngenic rats: inducibility of cytochrome P450 dependent monooxygenase functions by beta-naphthoflavone, phenobarbital and dexamethasone.

    PubMed

    Lupp, A; Lau, K; Trautmann, A K; Krausse, T; Klinger, W

    1999-01-01

    In the present study the effects of beta-naphthoflavone (BNF), phenobarbital (PB) and dexamethasone (DEX) on cytochrome P450 (P450) dependent monooxygenase functions were investigated in intrasplenic liver cell explants in comparison to adult liver. Fetal liver tissue suspensions were transplanted into the spleens of 60-90 days old adult male syngenic Fisher 344 inbred rats. 2, 4 or 6 months after surgery, transplant recipients and age matched controls were orally treated with BNF (1x50 mg/kg body weight (b.wt.)), PB (1x50 mg/kg b.wt.), DEX (for 3 days 4 mg/kg b.wt. per day), or the respective solvents (dimethylsulfoxide or 0.9% NaCl). The animals were sacrificed 24 (BNF, DEX) or 48 (PB) hours after the last treatment. P450 mediated monooxygenase functions were measured in spleen and liver 9000 g supernatants by three model reactions for different P450 subtypes: ethoxyresorufin O-deethylation (EROD; 1A), ethoxycoumarin O-deethylation (ECOD; 1A, 2A, 2B), and ethylmorphine N-demethylation (END; 3A). Spleen weights were significantly higher in transplanted rats, compared to controls, at all three time points after surgery. Induction with PB or DEX, and in some cases also with BNF, lead to a significant increase in liver weights of transplant recipients and control rats independent of the time after transplantation. In contrast, there was no influence on spleen weights due to BNF or PB. At all time points after surgery, with DEX a marked decrease in body weights, weights of adrenal glands and of lymphatic organs like thymus glands and spleens was observed, with the weights of the transplant containing spleens being still higher in comparison to control organs. Spleens of control animals displayed nearly no P450 mediated monooxygenase functions neither without nor with induction. After transplantation, however, significant EROD and ECOD, but hardly any END activities were seen in the host organs at all three time points after surgery. In transplant containing spleens

  7. Kupffer cell stimulation with Corynebacterium parvum reduces some cytochrome P450-dependent activities and diminishes acetaminophen and carbon tetrachloride-induced liver injury in the rat.

    PubMed

    Raiford, D S; Thigpen, M C

    1994-11-01

    Chemical activation of Kupffer cells in vivo by vitamin A or latex beads is associated with a worsening of hepatic injury induced by the P450-dependent hepatotoxins acetaminophen (ACET) and carbon tetrachloride (CCl4) and by the P450-independent toxin galactosamine (GLN). Immunostimulants such as Corynebacterium parvum (CP) also activate Kupffer cells, but do so while prompting release of soluble mediators which depress microsomal oxidative activities in cultured hepatocytes. Therefore, we sought to characterize the effects of CP on hepatic injury in vivo due to ACET and CCl4 while employing GLN as a control. Hepatic microsomal oxidative activity and glutathione (GSH) disposition were examined since each influences susceptibility to injury from ACET or CCl4. Rats were given CP 28 mg/kg i.v. 5 days before challenge with hepatotoxicant. Hepatic injury was assessed 24 hr after hepatotoxicant administration by measurement of serum alanine aminotransferase (ALT) activity and review of histological sections. Livers from parallel groups of rats were used to prepare microsomal and cytosolic fractions, to measure tissue GSH, or for perfusion to assess GSH efflux. Significant reductions in injury due to ACET or CCl4 were observed while injury due to GLN was potentiated. Serum ALT levels after ACET were 3000 +/- 620 in controls vs 170 +/- 45 IU/liter in the CP-treated group and ALT levels after CCl4 were 3100 +/- 500 in controls vs 1700 + 450 IU/liter in the CP-treated group. In contrast, serum ALT levels after GLN were 920 +/- 230 in controls vs 1700 +/- 370 in the CP-treated group. Patterns of hepatic injury observed on histological sections were those characteristic for each toxin and the severity of injury correlated well with alterations in serum ALT levels for each agent. Hepatic microsomal fractions from rats pretreated with CP showed significantly diminished total cytochrome P450 content as well as reduced activity for two P450IIE1 substrates, p-nitrophenol and 7

  8. Developmental changes of cytochrome P450 dependent monooxygenase functions after transplantation of fetal liver tissue suspension into spleens of adult syngenic rats.

    PubMed

    Lupp, A; Trautmann, A K; Krausse, T; Klinger, W

    1998-06-01

    Fetal liver tissue suspensions were transplanted into the spleens of adult male syngenic Fisher 344 inbred rats. Animals were sacrificed at 3 days, 1, 2, 4 weeks, and 2, 4 and 6 months after transplantation and cytochrome P450 (P450) dependent monooxygenase functions in spleen and liver 9000 g supernatants were assessed by measuring three model reactions for different P450 subtypes: ethoxyresorufin O-deethylation (EROD; mainly 1A), ethoxycoumarin O-deethylation (ECOD; predominantly 1A, 2A, 2B) and ethylmorphine N-demethylation (END; mainly 3A). Values of transplant recipients were compared to those of sham operated and age matched control rats. Spleen weights were significantly higher in transplanted rats, compared to controls or sham operated animals, but there was no influence of the transplants within the spleens on liver weights. With fetal livers at the 21st day of gestation, the day of transplantation, a weak EROD and ECOD, but no END activity was seen. Spleens of controls or sham operated animals displayed nearly no P450 mediated monooxygenase functions. In the explant containing spleens a significant and increasing EROD activity was found from 4 weeks after surgery on and an ECOD activity already 2 weeks after transplantation. END was only slightly enhanced at 6 months after surgery. The livers of all three groups of rats displayed normal EROD, ECOD and END activities. Transplantation of fetal liver tissue suspensions into the spleens did not influence the P450 dependent monooxygenase functions within the livers of the animals. From these results it can be concluded that intrasplenically transplanted liver cells originating from syngenic fetal liver tissue suspensions proliferate and differentiate within the host organs. They display P450 dependent monooxygenase functions with some developmental changes during the observed time period of 6 months.

  9. Inducing effect of oxfendazole on cytochrome P450IA2 in rabbit liver. Consequences on cytochrome P450 dependent monooxygenases.

    PubMed

    Gleizes, C; Eeckhoutte, C; Pineau, T; Alvinerie, M; Galtier, P

    1991-06-15

    Male New Zealand rabbits were dosed with either 0.9, 4.5 or 22.5 mg/kg/day of oxfendazole by gastric intubation for 10 days. Oxfendazole administered at the therapeutic dose (4.5 mg/kg) and at the highest dose (22.5 mg/kg) increased 1.54- and 2.36-fold the total liver microsomal cytochrome P450 and more particularly the isoenzyme P450IA2 (95 and 184% increases) as demonstrated by western blotting. Increases in ethoxyresorufin O-deethylation and hydroxylations of benzopyrene and acetanilide occurred in livers of the same animals without any change in N-demethylation of aminopyrine, benzphetamine or erythromycin. Because of the unchanged level of mRNA specific to cytochrome P450IA2, as shown by northern blot analysis of poly mRNA, an enzyme stabilization rather than a transcriptional activation of IA2 genes should be involved in the P450IA2 regulation mechanisms. Oxfendazole bound strongly to cytochrome P450, giving rise to a type II spectrum, and inhibited noncompetitively the ethoxyresorufin O-deethylase and acetanilide hydroxylase activities, this confirmed that oxfendazole interacts only with the P450IA2 family. On the basis of a comparison of the enzymatic activities induced by various imidazole drugs, it was concluded that oxfendazole, like omeprazole and albendazole, behaved as a 3-methylcholanthrene-type inducer. These three benzimidazoles did not all belong to the same category of cytochrome P450 inducers as the antifungal drugs miconazole, clotrimazole and ketoconazole.

  10. Induction by barbiturates of a cytochrome P-450-dependent fatty acid monooxygenase in Bacillus megaterium: relationship between barbiturate structure and inducer activity.

    PubMed

    Kim, B H; Fulco, A J

    1983-11-15

    In a recent communication (Narhi, L. and Fulco, A.J. [1982] J. Biol. Chem. 257, 2147-2150) we found that a soluble cytochrome P-450-dependent fatty acid monooxygenase isolated from Bacillus megaterium ATCC 14581 could be induced about 28-fold by phenobarbital. We have now examined 19 barbiturates and found that 13 significantly induce the specific monooxygenase activity. Of these, 11 are more active than phenobarbital and three (secobarbital, thiamylal and methohexital) are more than 30 times as active on a molar basis. The dialkyl barbiturates without exception show an excellent correlation between increasing lipophilicity and increasing potency as inducers as do most of the barbiturates containing an aromatic substituent. Nevertheless, it is apparent that certain structural features involving factors other than lipophilicity are also necessary for induction. Our finding that barbiturates can cause the non-substrate induction of a cytochrome P-450-dependent monooxygenase in a prokaryote represents a unique discovery that may provide a relatively simple model for apparently similar induction systems in higher animals. PMID:6418172

  11. Properties and structural requirements for substrate specificity of cytochrome P-450-dependent obtusifoliol 14 alpha-demethylase from maize (Zea mays) seedlings.

    PubMed Central

    Taton, M; Rahier, A

    1991-01-01

    The biochemical properties of cytochrome P-450-dependent obtusifoliol 14 alpha-demthylase (P-450OBT.14DM) from maize (Zea mays) seedlings were defined. In particular, the enzyme was shown by differential centrifugation to be localized in the endoplasmic reticulum. P-450OBT.14DM had an apparent Km of 160 +/- 5 microM and an apparent Vmax of 65 +/- 5 pmol/min per mg of protein for its best substrate, obtusifoliol. The substrate specificity of P-450OBT.14DM was thoroughly investigated by comparing the demethylation of obtusifoliol with that of a series of 15 natural or novel synthetic analogues of obtusifoliol. The results obtained clearly indicate that three distinct domains of the sterol substrate are governing obtusifoliol demethylation by P-450OBT.14DM. They revealed that (i) P-450OBT.14DM has probably a specific apolar binding site for the side chain, (ii) the delta 8-double bond is an absolute requirement for substrate demethylation and (iii) the 3-hydroxy group plays a critical role in the enzyme-substrate interaction. Interestingly the binding site, beyond the C-3 position, contains a cleft which cannot accommodate a 4 beta-methyl substituent present in lanosterol or eburicol, the precursors of 14-desmethylsterols respectively in mammals and yeast. This result indicates that P-450OBT.14DM is a novel constitutive cytochrome P-450 with a high degree of substrate and product specificity. PMID:1859375

  12. Formaldehyde production promoted by rat nasal cytochrome P-450-dependent monooxygenases with nasal decongestants, essences, solvents, air pollutants, nicotine, and cocaine as substrates

    SciTech Connect

    Dahl, A.R.; Hadley, W.M.

    1983-02-01

    To identify compounds which might be metabolized to formaldehyde in the nasal cavity, 32 potential substrates for cytochrome P-450-dependent monooxygenases were screened with rat nasal and, for comparison, liver microsomes. Tested substrates included 6 nasal decongestants, cocaine, nicotine, 9 essences, 3 potential air pollutants, and 12 solvents. Each test substrate, with the possible exception of the air pollutants, contained one or more N-methyl, O-methyl, or S-methyl groups. Eighteen of the tested materials were metabolized to produce formaldehyde by nasal microsomes. Five substrates, namely, the solvents HMPA and dimethylaniline, cocaine, and the essences dimethyl anthranilate and p-methoxyacetophenone, were metabolized to produce formaldehyde at rates exceeding 1000 pmol/mg microsomal protein/min by nasal microsomes. Eight substrates, including four nasal decongestants, nicotine, and an extract of diesel exhaust particles, were metabolized to produce formaldehyde at rates of 200 to 1000 pmol/mg microsomal protein/min. Five other substrates were metabolized to formaldehyde at detectable rates. The results indicate that a variety of materials which often come in contact with the nasal mucosa can be metabolized to formaldehyde by nasal enzymes. The released formaldehyde may influence the irritancy of inhaled compounds and has been suggested to play a role in the tumorigenicity of some compounds.

  13. Characterization of two methylenedioxy bridge-forming cytochrome P450-dependent enzymes of alkaloid formation in the Mexican prickly poppy Argemone mexicana.

    PubMed

    Díaz Chávez, Maria Luisa; Rolf, Megan; Gesell, Andreas; Kutchan, Toni M

    2011-03-01

    Formation of the methylenedioxy bridge is an integral step in the biosynthesis of benzo[c]phenanthridine and protoberberine alkaloids in the Papaveraceae family of plants. This reaction in plants is catalyzed by cytochrome P450-dependent enzymes. Two cDNAs that encode cytochrome P450 enzymes belonging to the CYP719 family were identified upon interrogation of an EST dataset prepared from 2-month-old plantlets of the Mexican prickly poppy Argemone mexicana that accumulated the benzo[c]phenanthridine alkaloid sanguinarine and the protoberberine alkaloid berberine. CYP719A13 and CYP719A14 are 58% identical to each other and 77% and 60% identical, respectively, to stylopine synthase CYP719A2 of benzo[c]phenanthridine biosynthesis in Eschscholzia californica. Functional heterologous expression of CYP719A14 and CYP719A13 in Spodoptera frugiperda Sf9 cells produced recombinant enzymes that catalyzed the formation of the methylenedioxy bridge of (S)-cheilanthifoline from (S)-scoulerine and of (S)-stylopine from (S)-cheilanthifoline, respectively. Twenty-seven potential substrates were tested with each enzyme. Whereas CYP719A14 transformed only (S)-scoulerine to (S)-cheilanthifoline (K(m) 1.9±0.3; k(cat)/K(m) 1.7), CYP719A13 converted (S)-tetrahydrocolumbamine to (S)-canadine (K(m) 2.7±1.3; k(cat)/K(m) 12.8), (S)-cheilanthifoline to (S)-stylopine (K(m) 5.2±3.0; k(cat)/K(m) 2.6) and (S)-scoulerine to (S)-nandinine (K(m) 8.1±1.9; k(cat)/K(m) 0.7). These results indicate that although CYP719A14 participates in only sanguinarine biosynthesis, CYP719A13 can be involved in both sanguinarine and berberine formation in A. mexicana.

  14. Identification of a CYP84 family of cytochrome P450-dependent mono-oxygenase genes in Brassica napus and perturbation of their expression for engineering sinapine reduction in the seeds.

    PubMed

    Nair, R B; Joy, R W; Kurylo, E; Shi, X; Schnaider, J; Datla, R S; Keller, W A; Selvaraj, G

    2000-08-01

    CYP84 is a recently identified family of cytochrome P450-dependent mono-oxygenases defined by a putative ferulate-5-hydroxylase (F5H) from Arabidopsis. Until recently F5H has been thought to catalyze the hydroxylation of ferulate to 5-OH ferulate en route to sinapic acid. Sinapine, a sinapate-derived ester in the seeds, is antinutritional and a target for elimination in canola meal. We have isolated three F5H-like genes (BNF5H1-3) from a cultivated Brassica napus, whose amphidiploid progenitor is considered to have arisen from a fusion of the diploids Brassica rapa and Brassica oleracea. Two cultivated varieties of the diploids were also found to contain BNF5H3 and additionally either BNF5H1 or BNF5H2, respectively. Whereas all three are >90% identical in their coding sequence, BNF5H1 and BNF5H2 are closer to each other than to BNF5H3. This and additional data suggest that the two groups of genes have diverged in an ancestor of the diploids. B. napus showed maximal F5H expression in the stems, least in the seeds, and subtle differences among the expression profiles of the three genes elsewhere. Transgenic B. napus with cauliflower mosaic virus 35S-antisense BNF5H contained up to 40% less sinapine, from 9.0 +/- 0.3 mg in the controls to 5.3 +/- 0.3 mg g(-1) seed. F5H from Arabidopsis and a similar enzyme from sweetgum (Liquidamber styraciflua) has recently been shown to have coniferaldehyde hydroxylase activity instead of F5H activity. Thus the supply of 5-OH coniferaldehyde or 5-OH ferulate has a bearing on sinapine accumulation in canola seeds.

  15. IMPROVING STRUCTURE-LINKED ACCESS TO PUBLICLY AVAILABLE CHEMICAL TOXICITY INFORMATION

    EPA Science Inventory

    Hepatotoxicity of the Herbicide Alachlor Associated with Glutathione Depletion, Oxidative Damage and Protein S-Cysteinyl Adduction.

    Toxicity of the herbicide alachlor (2-chloro-2',6'-diethtl-N-[methoxtmethtl]-acetanilide) has been attributed to cytochrome P450-dependent me...

  16. Aluminum toxicity. Hematological effects.

    PubMed

    Mahieu, S; del Carmen Contini, M; Gonzalez, M; Millen, N; Elias, M M

    2000-01-01

    Sequential effects of intoxication with aluminum hydroxide (Al) (80 mg/Kg body weight, i.p., three times a week), were studied on rats from weaning and up to 28 weeks. The study was carried out on hematological and iron metabolism-related parameters on peripheral blood, at the end of the 1st, 2nd, 3rd, 4th, 5th and 6th months of exposure. As it was described that hematotoxic effects of Al are mainly seen together with high levels of uremia, renal function was measured at the same periods. The animals treated developed a microcytosis and was accompanied by a decrease in mean corpuscular hemoglobin (MCH). Significantly lower red blood cell counts (RBC million/microl) were found in rats treated during the 1st month. These values matched those obtained for control rats during the 2nd month. From the 3rd month onwards, a significant increase was observed as compared to control groups, and the following values were obtained by the 6th month: (T) 10.0 +/- 0.3 versus (C) 8.7 +/- 0.2 (million/microl). Both MCH and mean corpuscular volume (MCV) were found to be significantly lower in groups treated from the 2nd month. At the end of the 6th month the following values were found: MCH (T) 13.3 +/- 0.1 versus (C) 16.9 +/- 0.3 (pg); MCV (T) 42.1 +/- 0.7 versus (C) 51.8 +/- 0.9 (fl). Al was found responsible for lower serum iron concentration levels and in the percentage of transferrin saturation. Thus, although microcytic anemia constitutes an evidence of chronic aluminum exposure, prolonged exposure could lead to a recovery of hematocrit and hemoglobin concentration values with an increase in red cell number. Nevertheless, both microcytosis and the decrease of MCH would persist. These modifications took place without changes being observed in the renal function during the observation period. PMID:10643868

  17. Aluminum toxicity. Hematological effects.

    PubMed

    Mahieu, S; del Carmen Contini, M; Gonzalez, M; Millen, N; Elias, M M

    2000-01-01

    Sequential effects of intoxication with aluminum hydroxide (Al) (80 mg/Kg body weight, i.p., three times a week), were studied on rats from weaning and up to 28 weeks. The study was carried out on hematological and iron metabolism-related parameters on peripheral blood, at the end of the 1st, 2nd, 3rd, 4th, 5th and 6th months of exposure. As it was described that hematotoxic effects of Al are mainly seen together with high levels of uremia, renal function was measured at the same periods. The animals treated developed a microcytosis and was accompanied by a decrease in mean corpuscular hemoglobin (MCH). Significantly lower red blood cell counts (RBC million/microl) were found in rats treated during the 1st month. These values matched those obtained for control rats during the 2nd month. From the 3rd month onwards, a significant increase was observed as compared to control groups, and the following values were obtained by the 6th month: (T) 10.0 +/- 0.3 versus (C) 8.7 +/- 0.2 (million/microl). Both MCH and mean corpuscular volume (MCV) were found to be significantly lower in groups treated from the 2nd month. At the end of the 6th month the following values were found: MCH (T) 13.3 +/- 0.1 versus (C) 16.9 +/- 0.3 (pg); MCV (T) 42.1 +/- 0.7 versus (C) 51.8 +/- 0.9 (fl). Al was found responsible for lower serum iron concentration levels and in the percentage of transferrin saturation. Thus, although microcytic anemia constitutes an evidence of chronic aluminum exposure, prolonged exposure could lead to a recovery of hematocrit and hemoglobin concentration values with an increase in red cell number. Nevertheless, both microcytosis and the decrease of MCH would persist. These modifications took place without changes being observed in the renal function during the observation period.

  18. Effects of micronutrients on metal toxicity.

    PubMed Central

    Peraza, M A; Ayala-Fierro, F; Barber, D S; Casarez, E; Rael, L T

    1998-01-01

    There is growing evidence that micronutrient intake has a significant effect on the toxicity and carcinogenesis caused by various chemicals. This paper examines the effect of micronutrient status on the toxicity of four nonessential metals: cadmium, lead, mercury, and arsenic. Unfortunately, few studies have directly examined the effect of dietary deficiency or supplementation on metal toxicity. More commonly, the effect of dietary alteration must be deduced from the results of mechanistic studies. We have chosen to separate the effect of micronutrients on toxic metals into three classes: interaction between essential micronutrients and toxic metals during uptake, binding, and excretion; influence of micronutrients on the metabolism of toxic metals; and effect of micronutrients on secondary toxic effects of metals. Based on data from mechanistic studies, the ability of micronutrients to modulate the toxicity of metals is indisputable. Micronutrients interact with toxic metals at several points in the body: absorption and excretion of toxic metals; transport of metals in the body; binding to target proteins; metabolism and sequestration of toxic metals; and finally, in secondary mechanisms of toxicity such as oxidative stress. Therefore, people eating a diet deficient in micronutrients will be predisposed to toxicity from nonessential metals. PMID:9539014

  19. Potential Toxic Effects of Nano-Oxides

    NASA Astrophysics Data System (ADS)

    Xu, Mingsheng; Chen, Hongzheng; Shi, Minmin; Wu, Gang; Fujita, Daisuke; Hanagata, Nobutaka

    2013-09-01

    The increasing use of nanomaterials in industrial and consumer products has aroused global concern regarding their potential impact on environment and human health. A number of studies on the effects of nanomaterials in in vitro and in vivo systems have been shown that some nanomaterials are potentially toxic. We address the understanding of the link of physicochemical characteristics of some nano-oxides including SiO2, TiO2, and ZnO to the observed toxic effects. Understanding the contribution of physicochemical characteristics of nanomaterials to toxic effects would allow safety to be built into the design of nanomaterials and their applications, to allow their safe integration into products.

  20. Environmental toxicant effects on neuroendocrine function.

    PubMed

    Gore, A C

    2001-03-01

    Exposure to environmental toxicants can have profound effects on normal growth and development. However, the mechanisms by which these toxicants exert these effects are not well understood. Many environmental toxicants alter reproductive function and have effects on the central nervous system and behavior, yet the link between these reproductive and neurologic phenomena has not been systematically investigated. The neuroendocrine (hypothalamic-pituitary-gonadal) axis, which integrates inputs to and outputs from the nervous and reproductive systems, is functionally and anatomically situated to mediate effects of environmental toxicants, particularly those that are endocrine-disrupting chemicals (EDCs), on developmental processes. This article reviews the current literature on EDC effects on the neuroendocrine system, particularly at the level of hypothalamic gonadotropin-releasing hormone (GnRH) neurons, the key cells involved in the regulation of reproductive function. The focus of this article is on two polychlorinated biphenyl mixtures (Aroclor 1221, Aroclor 1254) and two organochlorine pesticides (methoxychlor and chlorpyrifos). Some experimental data are presented for each of the four urban environmental toxicants on GnRH cells in vitro and in vivo. The results of in vitro experiments indicate that all four of the toxicants profoundly affect hypothalamic GnRH gene expression, cell survival, and neurite outgrowth, demonstrating direct effects of EDCs on a GnRH cell line. In in vivo experiments, three of the toxicants (Aroclor 1221, methoxychlor, and chlorpyrifos) caused significant alterations in GnRH mRNA levels in female rats. Both the in vitro and in vivo findings support the novel concept of chlorpyrifos as an EDC. The results, taken together with the literature, support the hypothesis that the neuroendocrine axis, and specifically GnRH neurons, are sensitive to urban environmental toxicants, and that reproductive and neurologic effects of EDCs may be

  1. Mercury toxicity and neurodegenerative effects.

    PubMed

    Carocci, Alessia; Rovito, Nicola; Sinicropi, Maria Stefania; Genchi, Giuseppe

    2014-01-01

    Mercury is among the most toxic heavy metals and has no known physiological role in humans. Three forms of mercury exist: elemental, inorganic and organic. Mercury has been used by man since ancient times. Among the earliest were the Chinese and Romans, who employed cinnabar (mercury sulfide) as a red dye in ink (Clarkson et al. 2007). Mercury has also been used to purify gold and silver minerals by forming amalgams. This is a hazardous practice, but is still widespread in Brazil's Amazon basin, in Laos and in Venezuela, where tens of thousands of miners are engaged in local mining activities to find and purify gold or silver. Mercury compounds were long used to treat syphilis and the element is still used as an antiseptic,as a medicinal preservative and as a fungicide. Dental amalgams, which contain about 50% mercury, have been used to repair dental caries in the U.S. since 1856.Mercury still exists in many common household products around the world.Examples are: thermometers, barometers, batteries, and light bulbs (Swain et al.2007). In small amounts, some organo mercury-compounds (e.g., ethylmercury tiosalicylate(thimerosal) and phenylmercury nitrate) are used as preservatives in some medicines and vaccines (Ballet al. 2001).Each mercury form has its own toxicity profile. Exposure to Hg0 vapor and MeHg produce symptoms in CNS, whereas, the kidney is the target organ when exposures to the mono- and di-valent salts of mercury (Hg+ and Hg++, respectively)occur. Chronic exposure to inorganic mercury produces stomatitis, erethism and tremors. Chronic MeHg exposure induced symptoms similar to those observed in ALS, such as the early onset of hind limb weakness (Johnson and Atchison 2009).Among the organic mercury compounds, MeHg is the most biologically available and toxic (Scheuhammer et a!. 2007). MeHg is neurotoxic, reaching high levels of accumulation in the CNS; it can impair physiological function by disrupting endocrine glands (Tan et a!. 2009).The most

  2. Mercury toxicity and neurodegenerative effects.

    PubMed

    Carocci, Alessia; Rovito, Nicola; Sinicropi, Maria Stefania; Genchi, Giuseppe

    2014-01-01

    Mercury is among the most toxic heavy metals and has no known physiological role in humans. Three forms of mercury exist: elemental, inorganic and organic. Mercury has been used by man since ancient times. Among the earliest were the Chinese and Romans, who employed cinnabar (mercury sulfide) as a red dye in ink (Clarkson et al. 2007). Mercury has also been used to purify gold and silver minerals by forming amalgams. This is a hazardous practice, but is still widespread in Brazil's Amazon basin, in Laos and in Venezuela, where tens of thousands of miners are engaged in local mining activities to find and purify gold or silver. Mercury compounds were long used to treat syphilis and the element is still used as an antiseptic,as a medicinal preservative and as a fungicide. Dental amalgams, which contain about 50% mercury, have been used to repair dental caries in the U.S. since 1856.Mercury still exists in many common household products around the world.Examples are: thermometers, barometers, batteries, and light bulbs (Swain et al.2007). In small amounts, some organo mercury-compounds (e.g., ethylmercury tiosalicylate(thimerosal) and phenylmercury nitrate) are used as preservatives in some medicines and vaccines (Ballet al. 2001).Each mercury form has its own toxicity profile. Exposure to Hg0 vapor and MeHg produce symptoms in CNS, whereas, the kidney is the target organ when exposures to the mono- and di-valent salts of mercury (Hg+ and Hg++, respectively)occur. Chronic exposure to inorganic mercury produces stomatitis, erethism and tremors. Chronic MeHg exposure induced symptoms similar to those observed in ALS, such as the early onset of hind limb weakness (Johnson and Atchison 2009).Among the organic mercury compounds, MeHg is the most biologically available and toxic (Scheuhammer et a!. 2007). MeHg is neurotoxic, reaching high levels of accumulation in the CNS; it can impair physiological function by disrupting endocrine glands (Tan et a!. 2009).The most

  3. Toxic effects of chromium and its compounds.

    PubMed

    Baruthio, F

    1992-01-01

    Chromium was discovered in 1797 by Vauquelin. Numerous industrial applications raised chromium to a very important economic element. At the same time, with the development of its uses, the adverse effects of chromium compounds in human health were being defined. Trivalent chromium is an essential trace element in humans and in animals. Chromium as pure metal has no adverse effect. Little toxic effect is attributed to trivalent chromium when present in very large quantities. Both acute and chronic toxicity of chromium are mainly caused by hexavalent compounds. The most important toxic effects, after contact, inhalation, or ingestion of hexavalent chromium compounds are the following: dermatitis, allergic and eczematous skin reactions, skin and mucous membrane ulcerations, perforation of the nasal septum, allergic asthmatic reactions, bronchial carcinomas, gastro-enteritis, hepatocellular deficiency, and renal oligo anuric deficiency. Prevention of occupational risks, biological monitoring of workers, and treatment of poisoning are also reported.

  4. Linking Arsenic Metabolism and Toxic Effects

    EPA Science Inventory

    Although arsenic has been long recognized as a toxicant and a carcinogen, the molecular basis for few of its adverse effects are well understood. Like other metalloids, arsenic undergoes extensive metabolism involving oxidation state changes and formation of methyl-arsenic bonds ...

  5. Importance of endogenous prostaglandins for the toxicity of cyclosporin A to rat endocrine and exocrine pancreas?

    PubMed Central

    Rünzi, M; Peskar, B M; von Schönfeld, J; Müller, M K

    1992-01-01

    Previous work has shown that cyclosporin A is toxic to the endocrine and exocrine pancreas. The aim of this study was to examine whether endogenous eicosanoids play a role in controlling cyclosporin A induced toxicity. Rats were treated for eight days with indomethacin (2 mg/kg, twice daily) in addition to cyclosporin A (5 or 10 mg/kg daily). Effects of drug treatments on exocrine (as assessed by amylase and protein secretion into the pancreatic juice) and endocrine (as assessed by the glucose dependent insulin release) pancreatic functions, and pancreatic formation of prostaglandins and thromboxane were evaluated. Treatment with cyclosporin A in the doses used did not inhibit eicosanoid formation by the pancreatic tissue ex vivo. Indomethacin caused significant inhibition of pancreatic formation of prostaglandin E2, 6k prostaglandin F1 alpha and thromboxane B2. Combined treatment with indomethacin and cyclosporin A (5 or 10 mg/kg) augmented cyclosporin A induced pancreatic toxicity with further impairment of insulin release, amylase secretion, and pancreatic juice protein content, but did not result in more pronounced inhibition of pancreatic eicosanoid formation. The increased toxicity of the combined treatment was, however, associated with raised cyclosporin A whole blood concentrations. The data suggest that the potentiation of pancreatic toxicity of cyclosporin A observed during coadministration of indomethacin is not the result of suppression of endogenous pancreatic eicosanoid biosynthesis, but more likely results from altered cyclosporin A pharmacokinetic which may be caused by an interference of indomethacin with the hepatic cytochrome P-450 dependent monooxygenase involved in cyclosporin A metabolism. The possibility that coadministration of non-steroidal antiinflammatory drugs aggravates toxic effects in cyclosporin A treated patients should be considered. PMID:1280611

  6. Toxic effects of air freshener emissions.

    PubMed

    Anderson, R C; Anderson, J H

    1997-01-01

    To evaluate whether emissions of a commercial air freshener produced acute toxic effects in a mammalian species, the authors allowed male Swiss-Webster mice to breathe the emissions of one commercial-brand solid air freshener for 1 h. Sensory irritation and pulmonary irritation were evaluated with the ASTM-E-981 test. A computerized version of this test measured the duration of the break at the end of inspiration and the duration of the pause at the end of expiration--two parameters subject to alteration via respiratory effects of airborne toxins. Measurements of expiratory flow velocity indicated changes in airflow limitation. The authors then subjected mice to a functional observational battery, the purpose of which was to probe for changes in nervous system function. Emissions of this air freshener at several concentrations (including concentrations to which many individuals are actually exposed) caused increases in sensory and pulmonary irritation, decreases in airflow velocity, and abnormalities of behavior measured by the functional observational battery score. The test atmosphere was subjected to gas chromatography/mass spectroscopy, and the authors noted the presence of chemicals with known irritant and neurotoxic properties. The Material Safety Data Sheet for the air freshener indicated that there was a potential for toxic effects in humans. The air freshener used in the study did not diminish the effect of other pollutants tested in combination. The results demonstrated that the air freshener may have actually exacerbated indoor air pollution via addition of toxic chemicals to the atmosphere.

  7. Persistent toxic substances: sources, fates and effects.

    PubMed

    Wong, Ming H; Armour, Margaret-Ann; Naidu, Ravi; Man, Ming

    2012-01-01

    Persistent toxic substances (PTS) include the Stockholm persistent organic pollutants, like dichlorodiphenyltrichloroethane, polychlorinated biphenyls, dioxin/furan, etc., and organometallic compounds, like organomercury, organotin, and organolead, which all share the same characteristics of being persistent, toxic, bioaccumulative, and able to travel long distances through different media. The adverse health effects of some of the emerging chemicals like pentabromodiphenyl ether, bisphenol A, and di(2-ethylhexyl)phthalate, which are widely used in daily appliances (e.g., TVs, computers, mobile phones, plastic baby bottles), have become a public health concern due to more evidence now available showing their adverse effects like disturbance of the endocrine system and cancer. This article is an attempt to review the current status of PTS in our environment, citing case studies in China and North America, and whether our existing drinking water treatment and wastewater treatment processes are adequate in removing them from water. Some management issues of these emerging chemicals of concern are also discussed.

  8. Human Health Effects Associated with Exposure to Toxic Cyanobacteria

    EPA Science Inventory

    Reports of toxic cyanobacteria blooms are increasing worldwide. Warming and eutrophic surface water systems support the development of blooms. We examine the evidence for adverse human health effects associated with exposure to toxic blooms in drinking water, recreational water a...

  9. Nickel species: analysis and toxic effects.

    PubMed

    Schaumlöffel, Dirk

    2012-01-01

    This review gives an overview on the analysis of inorganic nickel species and their toxic effects. Based on the analytical procedure applied inorganic nickel species are usually classified in soluble, sulfidic, metallic and oxidic nickel fractions. Only few works were attempting a chemical characterization of the different nickel compounds in each fraction. This general classification in four nickel species groups is widely used in toxicological studies dealing with nickel particulate matter in workplace air. Compared to the general population, occupationally exposed people have a higher risk of respiratory tract cancer due to inhalation of nickel at their workplace in the nickel-producing or using industries. High cancer risk is related to less soluble oxidic and especially sulfidic nickel species in refinery dust. In contrast, within the general population the most harmful health effect related to nickel exposure is allergic contact dermatitis due to prolonged skin contact with nickel. Absorption processes of nickel species and molecular mechanisms of nickel toxicity are briefly outlined. PMID:22366237

  10. Environmental mercury and its toxic effects.

    PubMed

    Rice, Kevin M; Walker, Ernest M; Wu, Miaozong; Gillette, Chris; Blough, Eric R

    2014-03-01

    Mercury exists naturally and as a man-made contaminant. The release of processed mercury can lead to a progressive increase in the amount of atmospheric mercury, which enters the atmospheric-soil-water distribution cycles where it can remain in circulation for years. Mercury poisoning is the result of exposure to mercury or mercury compounds resulting in various toxic effects depend on its chemical form and route of exposure. The major route of human exposure to methylmercury (MeHg) is largely through eating contaminated fish, seafood, and wildlife which have been exposed to mercury through ingestion of contaminated lower organisms. MeHg toxicity is associated with nervous system damage in adults and impaired neurological development in infants and children. Ingested mercury may undergo bioaccumulation leading to progressive increases in body burdens. This review addresses the systemic pathophysiology of individual organ systems associated with mercury poisoning. Mercury has profound cellular, cardiovascular, hematological, pulmonary, renal, immunological, neurological, endocrine, reproductive, and embryonic toxicological effects. PMID:24744824

  11. Environmental Mercury and Its Toxic Effects

    PubMed Central

    Rice, Kevin M.; Walker, Ernest M.; Wu, Miaozong; Gillette, Chris

    2014-01-01

    Mercury exists naturally and as a man-made contaminant. The release of processed mercury can lead to a progressive increase in the amount of atmospheric mercury, which enters the atmospheric-soil-water distribution cycles where it can remain in circulation for years. Mercury poisoning is the result of exposure to mercury or mercury compounds resulting in various toxic effects depend on its chemical form and route of exposure. The major route of human exposure to methylmercury (MeHg) is largely through eating contaminated fish, seafood, and wildlife which have been exposed to mercury through ingestion of contaminated lower organisms. MeHg toxicity is associated with nervous system damage in adults and impaired neurological development in infants and children. Ingested mercury may undergo bioaccumulation leading to progressive increases in body burdens. This review addresses the systemic pathophysiology of individual organ systems associated with mercury poisoning. Mercury has profound cellular, cardiovascular, hematological, pulmonary, renal, immunological, neurological, endocrine, reproductive, and embryonic toxicological effects. PMID:24744824

  12. Environmental mercury and its toxic effects.

    PubMed

    Rice, Kevin M; Walker, Ernest M; Wu, Miaozong; Gillette, Chris; Blough, Eric R

    2014-03-01

    Mercury exists naturally and as a man-made contaminant. The release of processed mercury can lead to a progressive increase in the amount of atmospheric mercury, which enters the atmospheric-soil-water distribution cycles where it can remain in circulation for years. Mercury poisoning is the result of exposure to mercury or mercury compounds resulting in various toxic effects depend on its chemical form and route of exposure. The major route of human exposure to methylmercury (MeHg) is largely through eating contaminated fish, seafood, and wildlife which have been exposed to mercury through ingestion of contaminated lower organisms. MeHg toxicity is associated with nervous system damage in adults and impaired neurological development in infants and children. Ingested mercury may undergo bioaccumulation leading to progressive increases in body burdens. This review addresses the systemic pathophysiology of individual organ systems associated with mercury poisoning. Mercury has profound cellular, cardiovascular, hematological, pulmonary, renal, immunological, neurological, endocrine, reproductive, and embryonic toxicological effects.

  13. Assessing the toxic effects of ethylene glycol ethers using Quantitative Structure Toxicity Relationship models

    SciTech Connect

    Ruiz, Patricia; Mumtaz, Moiz; Gombar, Vijay

    2011-07-15

    Experimental determination of toxicity profiles consumes a great deal of time, money, and other resources. Consequently, businesses, societies, and regulators strive for reliable alternatives such as Quantitative Structure Toxicity Relationship (QSTR) models to fill gaps in toxicity profiles of compounds of concern to human health. The use of glycol ethers and their health effects have recently attracted the attention of international organizations such as the World Health Organization (WHO). The board members of Concise International Chemical Assessment Documents (CICAD) recently identified inadequate testing as well as gaps in toxicity profiles of ethylene glycol mono-n-alkyl ethers (EGEs). The CICAD board requested the ATSDR Computational Toxicology and Methods Development Laboratory to conduct QSTR assessments of certain specific toxicity endpoints for these chemicals. In order to evaluate the potential health effects of EGEs, CICAD proposed a critical QSTR analysis of the mutagenicity, carcinogenicity, and developmental effects of EGEs and other selected chemicals. We report here results of the application of QSTRs to assess rodent carcinogenicity, mutagenicity, and developmental toxicity of four EGEs: 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol and their metabolites. Neither mutagenicity nor carcinogenicity is indicated for the parent compounds, but these compounds are predicted to be developmental toxicants. The predicted toxicity effects were subjected to reverse QSTR (rQSTR) analysis to identify structural attributes that may be the main drivers of the developmental toxicity potential of these compounds.

  14. [Cytochrome P-450-dependent reactions during intensified biosynthesis of coenzyme A in hepatocytes].

    PubMed

    Sushko, L I; Sheĭbak, V M; Abakumov, G Z; Moĭseenok, A K

    1986-01-01

    After subcutaneous administration into male rats of 4-phosphopantothenic acid and pantethine during 10 days at a dose equivalent to 30 mg/kg of calcium pantothenate total content of CoA was increased in liver tissue. Both these preparations activated the liver endoplasmic reticulum monooxygenase system mainly at the step of substrate hydroxylation. The phenomenon observed appears to occur due to activation of cytochrome P-450 biosynthesis and/or to alterations in phospholipid composition of microsomal membranes. PMID:3765494

  15. Characteristics of a cytochrome P-450-dependent fatty acid omega-2 hydroxylase from bacillus megaterium.

    PubMed

    Matson, R S; Hare, R S; Fulco, A J

    1977-06-22

    The fatty acid (omega-2) hydroxylase from Bacillus megaterium ATCC 14581 was examined with respect to some general enzymatic properties attributed to an intact complex isolated in a partially purified state. Hydroxylase specific activity was found to increase with increasing protein concentration in a manner consistent with a reversible association of the components in the complex. There was a substantial kinetic lag phase for palmitate hydroxylation which was abolished by a substrate preincubation in the absence of NADPH. The substrate bound and presumably activated the hydroxylase complex without the formation of a substrate-derived intermediated. The oxidation of NADPH and the hydroxylation of palmitate were found to occur in a one to one molar ration, independent of the protein concentration. Finally, a cytochrome P-450 component of the complex was identified on the basis of its CO-binding difference spectrum. It appears, that this cytochrome P-450 component is not identical to P-450 meg of the steroid hydroxylase system of B. megaterium ATCC 13368, since progesterone, an active substrate for the latter, is not hydroxylated by the preparation from B. megaterium ATCC 14581. PMID:18202

  16. Modulation of P450-dependent ifosfamide pharmacokinetics: a better understanding of drug activation in vivo.

    PubMed Central

    Brain, E. G.; Yu, L. J.; Gustafsson, K.; Drewes, P.; Waxman, D. J.

    1998-01-01

    The anti-cancer prodrug ifosfamide (IF) is metabolized by liver P450 enzymes by two alternative pathways. IF is activated to 4-hydroxy IF (4-OH-IF), which ultimately yields the alkylating mustard isophosphoramide, whereas IF N-dechlororethylation inactivates the drug and produces the neurotoxic metabolite chloroacetaldehyde (CA). Both reactions are catalysed by multiple liver P450 enzymes in vitro in isolated rat liver microsomes. The present pharmacokinetic study investigates the potential for modulation of these alternative pathways of IF metabolism in vivo using the adult male Fischer 344 rat model. Rats were treated with IF alone or in conjunction with various P450 inducers and inhibitors in an effort to improve the balance between drug activation and drug inactivation. Plasma concentrations, areas under the curve (AUC) and half-lives were calculated for 4-OH-IF and CA, allowing estimations of the extent of IF activation and deactivation/toxification. Induction of liver P450 2B enzymes by 4-day high-dose phenobarbital (PB) pretreatment significantly decreased the fraction of IF undergoing 4-hydroxylation (AUC(4-OH-IF)/AUC(4-OH-IF)+AUC(CA)), from 37% to 22% of total metabolism (P < 0.05), consistent with in vitro findings that the PB-inducible P450 enzyme 2B1 plays a major role in IF N-dechloroethylation. Pretreatment with the P450 3A inducer dexamethasone proportionally decreased the AUC for both IF metabolites, without any net impact on the fraction of IF undergoing metabolic activation. By contrast, the P450 2B1 inhibitor metyrapone preferentially increased the AUC for the 4-hydroxylation pathway in 3-day low-dose PB-induced rats, thereby increasing the total fraction of IF metabolized via the activation pathway from 36% to 54% (P < 0.05), whereas the P450 inhibitors orphenadrine and troleandomycin had no significant affect on AUC values. These findings demonstrate specific roles for P450 2B and 3A enzymes in catalysing these pathways of IF metabolism in vivo, and demonstrate the potential for modulation of IF's alternative metabolic pathways in a therapeutically useful manner. These studies also highlight several clinically relevant drug interactions that may occur during concomitant administration of IF with drugs and other compounds that modulate hepatic P450 enzyme levels. PMID:9667645

  17. Acute toxic effects of fragrance products.

    PubMed

    Anderson, R C; Anderson, J H

    1998-01-01

    To evaluate whether fragrance products can produce acute toxic effects in mammals, we allowed groups of male Swiss-Webster mice to breathe the emissions of five commercial colognes or toilet water for 1 h. We used the ASTM-E-981 test method to evaluate sensory irritation and pulmonary irritation. We used a computerized version of this test to measure the duration of the break at the end of inspiration and the duration of the pause at the end of expiration. Decreases in expiratory flow velocity indicated airflow limitation. We subjected the mice to a functional observational battery to probe for changes in nervous system function. The emissions of these fragrance products caused various combinations of sensory irritation, pulmonary irritation, decreases in expiratory airflow velocity, as well as alterations of the functional observational battery indicative of neurotoxicity. Neurotoxicity was more severe after mice were repeatedly exposed to the fragrance products. Evaluation of one of the test atmospheres with gas chromatography/mass spectrometry revealed the presence of chemicals for which irritant and neurotoxic properties had been documented previously. In summary, some fragrance products emitted chemicals that caused a variety of acute toxicities in mice.

  18. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    SciTech Connect

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-11-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. The authors investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by {ge}70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  19. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    USGS Publications Warehouse

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-01-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. We investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by ???70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  20. Temporal and spatial scales of effects of toxic and non-toxic stressors

    SciTech Connect

    Lee, H. II; Specht, D.

    1995-12-31

    Estuarine ecosystems are potentially subjected to over 25 types of non-toxic stressors, including sedimentation, nutrients, exotic species, and habitat loss. Many non-toxic stressors operate over entire estuaries. For example, spread of exotics such as Spartina in Willapa Bay, WA may impact much of the intertidal area. Alterations due to toxic pollutants tend to be localized near their inputs. However, trophic transport can spread DDT and PCBs throughout a much wider area. Toxic pollutants are often introduced into the environment rapidly through discharges and spills, and then affect organisms fairly rapidly (within minutes to over a life cycle). The time course for non-toxic stressors is more variable. Some non-toxic alterations are very rapid, such as physical manipulation of habitats (e.g., filling). Alterations to habitats or watershed inputs are gradual, and thus difficult to detect in standard studies. For example, a slight increase in segmentation is difficult to quantify over a few years, but over decades could have major effects on estuarine ecosystems. The duration of effects of toxic pollutants depends upon their dilution, degradation and burial rates, and range from minutes for rapidly diluted soluble pollutants to decades or centuries for recalcitrant pollutants such as DDT. Duration of effects for non-toxic stressors are often ``permanent`` over ecological time for two reasons. Firstly, many non-toxic alterations are due to changes in watersheds, which recover slowly if logged or not at all if native habitat is transformed for development or farming. Secondly, several of the non-toxic stressors, such as invasions of exotics, result in a new, ``stable`` ecological system, so there is no recovery in the sense that pollutants degrade.

  1. Toxicity and Neuropharmacological Effects of Elenine

    PubMed Central

    Navarro, Eduardo; Alonso, S. J.; Navarro, R.

    2011-01-01

    Elenine is the aglycone of elenoside, a cytotoxic arylnaphthalene lignan (NSC 644013-W/1) derived from Justicia hyssopifolia. (Family: Acanthaceae). Elenoside is a β-D-glucoside, with a similar chemical structure to etoposide, exhibiting central depressant activity. In the present study, elenine was given to mice and rats at doses of 10, 20, and 40 mg/kg. Acute toxicity (24 h) and general behaviour in mice was studied as well as its effects on muscular relaxant activity, locomotor activity (Varimex test), and the open-field test and were compared with 10 mg/kg of chlorpromazine. Elenine produced a reduction in the permanence time in muscular relaxant activity (traction test). Spontaneous activity was lower in the Varimex test. The ambulation and rearing were lower compared with the control group, and an increase in boluses was observed in the open-field test. Thus, it can be concluded that elenine has central sedative effects at lower doses than those used with elenoside and has a possible application in conditions of anxiety. PMID:21716687

  2. Modulatory influence of rarely repeated of immobilization episodes on the interleukin-1β-dependent reaction of blood leukocytes and hepatoprotective effect of restraint stress.

    PubMed

    Tseilikman, O B; Tseilikman, V E; Linin, A V; Gubkin, D A; Rudina, E A; Trubetskoy, S A; Ivanov, P V; Pozdnyakov, E A

    2011-02-01

    Repeated episodes of 1-h restraint stress were accompanied by a decrease in the sensitivity of blood leukocytes and cytochrome P450-dependent monooxygenases of the liver to recombinant IL-1β. These changes are associated with the anti-inflammatory hepatoprotective effect of chronic stress.

  3. Sublethal toxicant effects with dynamic energy budget theory: model formulation.

    PubMed

    Muller, Erik B; Nisbet, Roger M; Berkley, Heather A

    2010-01-01

    We develop and test a general modeling framework to describe the sublethal effects of pollutants by adding toxicity modules to an established dynamic energy budget (DEB) model. The DEB model describes the rates of energy acquisition and expenditure by individual organisms; the toxicity modules describe how toxicants affect these rates by changing the value of one or more DEB parameters, notably the parameters quantifying the rates of feeding and maintenance. We investigate four toxicity modules that assume: (1) effects on feeding only; (2) effects on maintenance only; (3) effects on feeding and maintenance with similar values for the toxicity parameters; and (4) effects on feeding and maintenance with different values for the toxicity parameters. We test the toxicity modules by fitting each to published data on feeding, respiration, growth and reproduction. Among the pollutants tested are metals (mercury and copper) and various organic compounds (chlorophenols, toluene, polycyclic aromatic hydrocarbons, tetradifon and pyridine); organisms include mussels, oysters, earthworms, water fleas and zebrafish. In most cases, the data sets could be adequately described with any of the toxicity modules, and no single module gave superior fits to all data sets. We therefore propose that for many applications, it is reasonable to use the most general and parameter sparse module, i.e. module 3 that assumes similar effects on feeding and maintenance, as a default. For one example (water fleas), we use parameter estimates to calculate the impact of food availability and toxicant levels on the long term population growth rate. PMID:19633955

  4. The Air Toxics Health Effects Database (ATHED)

    SciTech Connect

    Woodall, George M. Smith, Roy L.

    2008-11-15

    The Air Toxics Health Effects Database (ATHED) is currently used by the EPA's Office of Air Quality Planning and Standards (OAQPS) to support risk assessments for the Residual Risk Program. An assessment of the residual risk is required to be performed at a specified time (typically 8years) following the promulgation of a technology-based Maximum Achievable Control Technologies (MACT) standard. The goal of the Residual Risk Program is to assure that the risk that remains after MACT standards are implemented (i.e., the 'residual risk') is acceptable, and if not, to propose additional regulations to mitigate those risks. ATHED maintains all available reference values for each chemical as separate data records, and includes values for all exposure durations (acute, short-term, subchronic and chronic). These values are used as benchmarks to determine acceptable exposure levels to the hazardous air pollutants (HAPs) listed in Section 112 of the Clean Air Act. ATHED also provides useful background information on the uncertainty and/or modifying factors that were applied in the derivation of each reference value, as well as the point of departure and the critical study/studies. To facilitate comparisons across durations for a specific chemical, ATHED data can be graphically presented.

  5. Effects of brine addition on effluent toxicity and marine toxicity identification evaluation (TIE) manipulations

    SciTech Connect

    Ho, K.T.; Burgess, R.M. ); Mitchell, K. . Biology Dept.); Zappala, M. )

    1995-02-01

    Little information is available concerning the effect of salinity adjustment on effluent storage and toxicity identification evaluation (TIE) performance. These factors are important for accurate assessments of potential toxicity to marine organisms. The objective of this study was to determine (a) the effect of salinity adjustment using hypersaline brine on the toxicity of effluents stored up to 40 d, and (b) to determine the effect of salinity adjustment on TIE manipulations. Changes in effluent toxicity over time were examined by using a municipal and an industrial effluent. A toxicity time series was performed for 16 d for the industrial effluent and 40 d for the municipal effluent. Toxicity was measured with modified 48-h acute Mysidopsis bahia and Menidia beryllina tests. Results indicate that, compared to day 0 test results, effluent stored with brine had fewer significant changes in toxicity than did effluent stored without brine. To determine the effects of brine addition on TIE manipulations, the authors conducted a series of manipulations in which one aliquot of an effluent had brine added prior to the TIE manipulations and the other aliquot had brine added after the TIE manipulation. The manipulations conducted were EDTA addition, sodium thiosulfate addition, C[sub 18] extraction, aeration, filtration, and graduated pH manipulations. Toxicity was measured with the modified 48-h acute mysid test. Addition of brine had no effect on the outcome of TIE manipulations. They have concluded that it is operationally easier to add brine as soon as possible after sampling and that effluent tests should be conducted as soon as practical.

  6. [Toxic effect of benzalkonium chloride on animals and humans].

    PubMed

    Swiercz, Radosław; Hałatek, Tadeusz; Majcherek, Wanda; Grzelińiska, Zofia; Wasowicz, Wojciech

    2007-01-01

    Benzalkonium chloride (BAC) exerts toxic effects on microorganisms. This property has been utilized in the cosmetic industry and medicine, where it is used as effective germicide and preservative agents. Various BAC-containing preparations used by people may induce a number of adverse effects on the human body. Bearing in mind that BAC is widely used in different branches of the national economy, its toxic effect may cause a health problem of significant importance to humans. The authors describe BAC toxic effects exerted on humans and laboratory animals as well as relevant hazards resulting from the use of BAC-contained preparations. PMID:17926503

  7. The another toxic effect of carbamate insecticides.

    PubMed

    Sobeková, Anna; Holovská, Katarína; Lenártová, Viera; Flesárová, Slávka; Javorský, P

    2009-03-01

    The activities of the antioxidant and detoxifying enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx), glutathione reductase (GR), glutathione-S-transferase (GST), and the content of thiobarbituric acid reactive substances (TBARS) were determined in the liver and kidney of rabbits after exposure to bendiocarb. In the liver, the activities of SOD, CAT and GR were not affected by bendiocarb. The induction or inhibition of isoenzymes of SOD (mainly MnSOD) were observed in the experimental groups. The activities of GSHPx-cum and GSHPx-H2O2 significantly decreased on the days 3 and 10 of the experiment. The activity of GST significantly increased on the day 9 of the experiment. In the kidney, the activity of SOD was significantly increased and the new MnSOD isoenzymes were detected. The activities of CAT and GSHPx-H2O2 were significantly decreased in the experimental groups. The activity of GR significantly increased on days 3 and 10, and the activity of GST was significantly increased on days 3, 10, and 30. Exposure of rabbit to bendiocarb did not affect the content of TBARS in the kidney. In the liver, the content of TBARS was significantly increased in the experimental groups as compared to the control. Our results showed that the response of organs to bendiocarb is different and may depend on the specific organ damage and their protective abilities. The alterations in the activities of the antioxidant defence system, increased TBARS values, and changes in the SOD isoenzyme pattern showed that the toxic effect of bendiocarb is not only in the acetylcholine esterase inhibition, but also in ROS production.

  8. On toxic effects of scientific journals.

    PubMed

    Molinie, Antoinette; Bodenhausen, Geoffrey

    2013-06-01

    The advent of online publishing greatly facilitates the dissemination of scientific results. This revolution might have led to the untimely death of many traditional publishing companies, since today’s scientists are perfectly capable of writing, formatting and uploading files to appropriate websites that can be consulted by colleagues and the general public alike. They also have the intellectual resources to criticize each other and organize an anonymous peer review system. The Open Access approach appears promising in this respect, but we cannot ignore that it is fraught with editorial and economic problems. A few powerful publishing companies not only managed to survive, but also rake up considerable profits. Moreover, they succeeded in becoming influential ‘trendsetters’ since they decide which papers deserve to be published. To make money, one must set novel trends, like Christian Dior or Levi’s in fashion, and open new markets, for example in Asia. In doing so, the publishers tend to supplant both national and transnational funding agencies in defining science policy. In many cases, these agencies tend simply to adopt the commercial criteria defined by the journals, forever eager to improve their impact factors. It is not obvious that the publishers of scientific journals, the editorial boards that they appoint, or the people who sift through the vast numbers of papers submitted to a handful of ‘top’ journals are endowed with sufficient insight to set the trends of future science. It seems even less obvious that funding agencies should blindly follow the fashion trends set by the publishers. The perverse relationships between private publishers and public funding agencies may have a toxic effect on science policy.

  9. Groundwater air stripping: Effect on water toxicity

    SciTech Connect

    Eldridge, R.B.; Simpson, C.W.; Elliott, D.J.

    1995-02-01

    An air stripping unit was designed to reduce groundwater hydrocarbon content and biotoxicity to acceptable levels. A pilot plant study was conducted to determine the water treatability and to optimize the commercial unit design conditions. A measurement of the pilot plant effluent toxicity was obtained from {open_quotes}Microtox{close_quotes} analysis and rigorous bio-assays. These results indicated that reduction of the water hydrocarbon content to permitted discharge limits was accompanied by the elimination of water toxicity. The Onda mass transfer model was used to prepare the commercial unit design. A post-installation evaluation indicated that the model gave a good representation of the commercial unit performance. Toxicity reductions observed in the pilot plant were also observed in the commercial unit. 3 refs., 5 figs., 3 tabs.

  10. Tannery wastewater characterization and toxicity effects on Daphnia spp.

    PubMed

    Cooman, K; Gajardo, M; Nieto, J; Bornhardt, C; Vidal, G

    2003-02-01

    Tannery wastewater contains large quantities of organic and inorganic compounds, including toxic substances such as sulfides and chromium salts. The evaluation of wastewater quality in Chile nowadays is based on chemical specific measurements and toxicity tests. The goal of this research was to characterize tannery wastewater and to relate its physical/chemical parameters with its acute toxicity effect on Daphnia pulex. To distinguish the most important toxic compounds, physical/chemical techniques were applied to a grab sample of a final effluent based on the Phase I toxicity identification evaluation (TIE) procedure. In addition, the toxicity of a beamhouse effluent after an activated sludge reactor treatment was investigated on Daphnia magna (introduced species) and D. pulex (native species). Effluent from different tannery processes (soaking, beamhouse, tanning and final) demonstrated high values of chemical organic demand (COD; 2840-27,600 mg L(-1)), chloride (1813-16,500 mg L(-1)), sulfate (230-35,200 mg L(-1)), and total solids (8600-87,100 mg L(-1)). All effluents showed extremely toxic effects on D. pulex, with 24-h mean lethal values (LC(50)) ranging from 0.36% to 3.61%. The Phase I TIE profile showed that toxicity was significantly reduced by air stripping, filtration, and a cationic exchange resin, with toxicity reductions ranging between 46% and 76%. The aerobically treated beamhouse effluent showed significantly less toxicity for both species (43%-74%). The chemical parameters demonstrated that the remaining toxicity of the treated beamhouse effluent was associated with its ammonia (120 mg N-NH(3) L(-1)) and chloride (11,300 mg Cl(-) L(-1)) contents.

  11. Isolation of bacteria from toxic dinoflagellate Alexandrium minutum and their effects on algae toxicity.

    PubMed

    Lu, Y H; Chai, T J; Hwang, D F

    2000-11-01

    Attempts were made to isolate the bacteria from toxic dinoflagellate Alexandrium minutum T1 and to study the effect of these bacteria on the growth and toxicity of A. minutum T1. It was found that intracellular bacterial species including Pasteurella haemolytica, Pseudomonas vesicularis, and Sphingomonas sp., and extracellular bacterial species including Pasteurolla pneumotropica, Morganella wisconsensis, Flavobacterium oryzihabitans, Pseudomonas pseudomallei, and Sphingomonas sp. All of them were cultured and determined to have non-PSP-producing ability. The maximum cell number of A. minutum cultured without isolated bacteria was higher than that cultured with isolated bacteria. The total toxicity of A. minutum cultured with bacteria was similar to that of A. minutum T1 cultured without bacteria from lag phase to stationary phase, but it was lower after stationary phase. The growth of A. minutum T1 cultured without antibiotics was also better than that cultured with antibiotics. The total toxicity of A. minutum cultured without antibiotics was higher than that of A. minutum cultured with antibiotics. However, the cell toxicity of A. minutum did not decrease even if the culture medium was added with antibiotics.

  12. Isolation of bacteria from toxic dinoflagellate Alexandrium minutum and their effects on algae toxicity.

    PubMed

    Lu, Y H; Chai, T J; Hwang, D F

    2000-11-01

    Attempts were made to isolate the bacteria from toxic dinoflagellate Alexandrium minutum T1 and to study the effect of these bacteria on the growth and toxicity of A. minutum T1. It was found that intracellular bacterial species including Pasteurella haemolytica, Pseudomonas vesicularis, and Sphingomonas sp., and extracellular bacterial species including Pasteurolla pneumotropica, Morganella wisconsensis, Flavobacterium oryzihabitans, Pseudomonas pseudomallei, and Sphingomonas sp. All of them were cultured and determined to have non-PSP-producing ability. The maximum cell number of A. minutum cultured without isolated bacteria was higher than that cultured with isolated bacteria. The total toxicity of A. minutum cultured with bacteria was similar to that of A. minutum T1 cultured without bacteria from lag phase to stationary phase, but it was lower after stationary phase. The growth of A. minutum T1 cultured without antibiotics was also better than that cultured with antibiotics. The total toxicity of A. minutum cultured without antibiotics was higher than that of A. minutum cultured with antibiotics. However, the cell toxicity of A. minutum did not decrease even if the culture medium was added with antibiotics. PMID:11126517

  13. Toxic shock syndrome Staphylococcus aureus: effect of tampons on toxic shock syndrome toxin 1 production.

    PubMed

    Schlievert, P M; Blomster, D A; Kelly, J A

    1984-11-01

    Tampons were tested for effect on growth and production of toxic shock syndrome toxin 1 by Staphylococcus aureus. Under good growth conditions, regular absorbency tampons had little effect on bacterial growth and inhibited toxin production two- to fourfold. In contrast, higher absorbency tampons had three different effects: 1) some tampons had no effect on bacterial growth but inhibited toxin production; 2) many tampons inhibited both growth and toxin production; 3) one tampon inhibited growth but increased exotoxin per cell. These effects were independent of degree of saturation of the tampons and were observed at incubation times of six, 12, and 18 hours. In no instance was the production of toxic shock syndrome toxin 1 per milliliter increased in the presence of tampons when compared with control.

  14. Toxic effects of colloidal nanosilver in zebrafish embryos.

    PubMed

    Olasagasti, Maider; Gatti, Antonietta M; Capitani, Federico; Barranco, Alejandro; Pardo, Miguel Angel; Escuredo, Kepa; Rainieri, Sandra

    2014-05-01

    A variety of consumer products containing silver nanoparticles (Ag NPs) are currently marketed. However, their safety for humans and for the environment has not yet been established and no standard method to assess their toxicity is currently available. The objective of this work was to develop an effective method to test Ag NP toxicity and to evaluate the effects of ion release and Ag NP size on a vertebrate model. To this aim, the zebrafish animal model was exposed to a solution of commercial nanosilver. While the exposure of embryos still surrounded by the chorion did not allow a definite estimation of the toxic effects exerted by the compound, the exposure for 48 h of 3-day-old zebrafish hatched embryos afforded a reliable evaluation of the effects of Ag NPs. The effects of the exposure were detected especially at molecular level; in fact, some selected genes expressed differentially after the exposure. The Ag NP toxic performance was due to the combined effect of Ag(+) ion release and Ag NP size. However, the effect of NP size was particularly detectable at the lowest concentration of nanosilver tested (0.01 mg l(-1)) and depended on the solubilization media. The results obtained indicate that in vivo toxicity studies of nanosilver should be performed with ad hoc methods (in this case using hatched embryos) that might be different depending on the type of nanosilver. Moreover, the addition of this compound to commercial products should take into consideration the Ag NP solubilization media.

  15. Toxic effects on survival and reproduction, a process oriented approach

    SciTech Connect

    Bedaux, J.J.M.; Kooijman, S.A.L.M.

    1995-12-31

    The authors present a new analysis of survival and reproduction data from toxicity tests. The analysis is based on the Dynamic Energy Budget theory for feeding, growth and reproduction, and a one-compartment kinetics for the toxic compound. The toxic effect size depends on the internal concentration. Effects on survival occur via the hazard rate, which is set equal to the killing rate times the internal concentration that exceeds a threshold value. Effects on reproduction depend on the mode of action of the toxicant: direct effects (mortality during oogenesis or energy costs per egg), or indirect effects (via growth, maintenance or assimilation). The effects on energetic parameters are quantified by the ratio between the internal concentration that exceeds a threshold value, and the tolerance concentration. The process-based models quantify effects as functions of exposure time and (external) concentration on a mechanistic basis. The parameters (no effect concentration, killing rate, tolerance concentration and elimination rate) are independent from the chosen exposure time of the toxicity test. The standard log-logistic models are purely descriptive, have more parameters and are sensitive to the chosen exposure time. The estimation of no-effect concentrations (NOEC`s as well as parametric NEC`S) in standard statistical analyses is problematic. Application to ring test data for chronic tests on Daphnia magna and other toxicity data reveals that these problems do not occur with the analysis, due to the absence of free gradient parameters. It is possible to obtain estimates for the standard model parameters from the new parameters, but not vice versa. The authors believe that the analysis provides a better basis for risk assessment and QSAR studies than the standard one.

  16. Effect of polymer grafting density on silica nanoparticle toxicity.

    PubMed

    Lin, I-Chun; Liang, Mingtao; Liu, Tzu-Yu; Jia, Zhongfan; Monteiro, Michael J; Toth, Istvan

    2012-12-01

    Nanoparticles are commonly engineered with a layer of polymers on the surface used to increase their stability and biocompatibility, as well as providing multifunctional properties. Formulating the nanoparticle size and surface properties with polymers directly affects the way these nanoparticles interact with a biological system. Many previous studies have emphasized the importance of nanoparticle size and surface charge in affecting their toxicity in cells. However, the potential weakness in many of these studies is that the polymer grafting densities on nanoparticles have been disregarded during toxicity evaluation. In the current study, we hypothesized that the density of polymers on nanoparticles will affect their toxicity to cells, especially for nanoparticle cores that are toxic themselves. To address this issue, we synthesized a range of RAFT (reversible addition fragmentation chain transfer) polymers bearing different surface charges and coated them onto silica nanoparticles (SiNPs) with different grafting densities. The in vitro cytotoxicity of these SiNPs was evaluated using the MTT (thiazolyl blue tetrazolium bromide) assay with Caco-2 cells. We found that neutral (biocompatible) polymers with a high grafting density on SiNPs were effective at protecting the cells from the toxicity of the silica core. High cellular toxicity was only observed for cationic polymer-SiNPs, while all other neutral and anionic polymer-SiNPs induced limited cellular toxicity. In contrast, the toxic effects induced by low density polymer-coated SiNPs were mostly attributed to the silica core, while the polymer coatings had a limited contribution. These findings are important indicators for the future evaluation of the toxicological profile of polymer-coated nanoparticles.

  17. Arsenic Toxicity: The Effects on Plant Metabolism

    PubMed Central

    Finnegan, Patrick M.; Chen, Weihua

    2012-01-01

    The two forms of inorganic arsenic, arsenate (AsV) and arsenite (AsIII), are easily taken up by the cells of the plant root. Once in the cell, AsV can be readily converted to AsIII, the more toxic of the two forms. AsV and AsIII both disrupt plant metabolism, but through distinct mechanisms. AsV is a chemical analog of phosphate that can disrupt at least some phosphate-dependent aspects of metabolism. AsV can be translocated across cellular membranes by phosphate transport proteins, leading to imbalances in phosphate supply. It can compete with phosphate during phosphorylation reactions, leading to the formation of AsV adducts that are often unstable and short-lived. As an example, the formation and rapid autohydrolysis of AsV-ADP sets in place a futile cycle that uncouples photophosphorylation and oxidative phosphorylation, decreasing the ability of cells to produce ATP and carry out normal metabolism. AsIII is a dithiol reactive compound that binds to and potentially inactivates enzymes containing closely spaced cysteine residues or dithiol co-factors. Arsenic exposure generally induces the production of reactive oxygen species that can lead to the production of antioxidant metabolites and numerous enzymes involved in antioxidant defense. Oxidative carbon metabolism, amino acid and protein relationships, and nitrogen and sulfur assimilation pathways are also impacted by As exposure. Readjustment of several metabolic pathways, such as glutathione production, has been shown to lead to increased arsenic tolerance in plants. Species- and cultivar-dependent variation in arsenic sensitivity and the remodeling of metabolite pools that occurs in response to As exposure gives hope that additional metabolic pathways associated with As tolerance will be identified. PMID:22685440

  18. Beneficial effect of sesame oil on heavy metal toxicity.

    PubMed

    Chandrasekaran, Victor Raj Mohan; Hsu, Dur-Zong; Liu, Ming-Yie

    2014-02-01

    Heavy metals become toxic when they are not metabolized by the body and accumulate in the soft tissue. Chelation therapy is mainly for the management of heavy metal-induced toxicity; however, it usually causes adverse effects or completely blocks the vital function of the particular metal chelated. Much attention has been paid to the development of chelating agents from natural sources to counteract lead- and iron-induced hepatic and renal damage. Sesame oil (a natural edible oil) and sesamol (an active antioxidant) are potently beneficial for treating lead- and iron-induced hepatic and renal toxicity and have no adverse effects. Sesame oil and sesamol significantly inhibit iron-induced lipid peroxidation by inhibiting the xanthine oxidase, nitric oxide, superoxide anion, and hydroxyl radical generation. In addition, sesame oil is a potent inhibitor of proinflammatory mediators, and it attenuates lead-induced hepatic damage by inhibiting nitric oxide, tumor necrosis factor-α, and interleukin-1β levels. Because metal chelating therapy is associated with adverse effects, treating heavy metal toxicity in addition with sesame oil and sesamol may be better alternatives. This review deals with the possible use and beneficial effects of sesame oil and sesamol during heavy metal toxicity treatment. PMID:23744838

  19. Toxic effects of Cadmium on the garden snail (Helix aspersa)

    SciTech Connect

    Russell, L.K.; DeHaven, J.I.; Botts, R.P.

    1981-05-01

    Spreading treated municipal wastes on agricultural and forest lands is becoming an established method of disposal. However, there is concern about the deleterious effects of toxicants, particularly cadmium, in the sludges. Cadmium concentrations in sewage sludge have been reported as high as 1500 ppM. The work reported here is a part of a larger project to investigate the ecological effects of municipal wastes on forest lands. Snails, Helix aspersa, were chosen to examine the entrance of cadmium into terrestrial food chains. This experiment was designed to determine cadmium accumulation, acute toxicity, and behavioral, reproductive and growth responses with increasing levels of cadmium.

  20. Synergetic toxic effect of an explosive material mixture in soil.

    PubMed

    Panz, Katarzyna; Miksch, Korneliusz; Sójka, Tadeusz

    2013-11-01

    Explosives materials are stable in soil and recalcitrant to biodegradation. Different authors report that TNT (2,4,6-trinitrotoluene), RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) are toxic, but most investigations have been performed in artificial soil with individual substances. The aim of the presented research was to assess the toxicity of forest soil contaminated with these substances both individually as well in combinations of these substances. TNT was the most toxic substance. Although RDX and HMX did not have adverse effects on plants, these compounds did cause earthworm mortality, which has not been reported in earlier research. Synergistic effects of explosives mixture were observed.

  1. Toxicity, mechanism and health effects of some heavy metals

    PubMed Central

    Jaishankar, Monisha; Tseten, Tenzin; Anbalagan, Naresh; Beeregowda, Krishnamurthy N.

    2014-01-01

    Heavy metal toxicity has proven to be a major threat and there are several health risks associated with it. The toxic effects of these metals, even though they do not have any biological role, remain present in some or the other form harmful for the human body and its proper functioning. They sometimes act as a pseudo element of the body while at certain times they may even interfere with metabolic processes. Few metals, such as aluminium, can be removed through elimination activities, while some metals get accumulated in the body and food chain, exhibiting a chronic nature. Various public health measures have been undertaken to control, prevent and treat metal toxicity occurring at various levels, such as occupational exposure, accidents and environmental factors. Metal toxicity depends upon the absorbed dose, the route of exposure and duration of exposure, i.e. acute or chronic. This can lead to various disorders and can also result in excessive damage due to oxidative stress induced by free radical formation. This review gives details about some heavy metals and their toxicity mechanisms, along with their health effects. PMID:26109881

  2. Effectiveness of bioremediation in reducing toxicity in oiled intertidal sediments

    SciTech Connect

    Lee, K.; Tremblay, G.H.; Siron, R.

    1995-12-31

    A 123-day field study was conducted with in situ enclosures to compare the effectiveness of bioremediation strategies based in inorganic and organic fertilizer additions to accelerate the biodegradation rates and reduce the toxicity of Venture{trademark} condensate stranded within sand-beach sediments. Comparison of the two fertilizer formulations with identical nitrogen and phosphorus concentrations showed that the organic fertilizer stimulated bacterial productivity within the oiled sediments to the greatest extent. However, detailed chemical analysis indicated that inorganic fertilizer additions were the most effective in enhancing condensate biodegradation rates. The Microtox{reg_sign} Solid-Phase Test (SPT) bioassay was determined to be sensitive to Venture Condensate in laboratory tests. Subsequent application of this procedure to oiled sediment in the field showed a reduction in sediment toxicity over time. However, the Microtox{reg_sign} bioassay procedure did not identify significant reductions in sediment toxicity following bioremediation treatment. An observed increase in toxicity following periodic additions of the organic fertilizer was attributed to rapid biodegradation rates of the fertilizer, which resulted in the production of toxic metabolic products.

  3. Effects of sample homogenization on solid phase sediment toxicity

    SciTech Connect

    Anderson, B.S.; Hunt, J.W.; Newman, J.W.; Tjeerdema, R.S.; Fairey, W.R.; Stephenson, M.D.; Puckett, H.M.; Taberski, K.M.

    1995-12-31

    Sediment toxicity is typically assessed using homogenized surficial sediment samples. It has been recognized that homogenization alters sediment integrity and may result in changes in chemical bioavailability through oxidation-reduction or other chemical processes. In this study, intact (unhomogenized) sediment cores were taken from a Van Veen grab sampler and tested concurrently with sediment homogenate from the same sample in order to investigate the effect of homogenization on toxicity. Two different solid-phase toxicity test protocols were used for these comparisons. Results of amphipod exposures to samples from San Francisco Bay indicated minimal difference between intact and homogenized samples. Mean amphipod survival in intact cores relative to homogenates was similar at two contaminated sites. Mean survival was 34 and 33% in intact and homogenized samples, respectively, at Castro Cove. Mean survival was 41% and 57%, respectively, in intact and homogenized samples from Islais Creek. Studies using the sea urchin development protocol, modified for testing at the sediment/water interface, indicated considerably more toxicity in intact samples relative to homogenized samples from San Diego Bay. Measures of metal flux into the overlying water demonstrated greater flux of metals from the intact samples. Zinc flux was five times greater, and copper flux was twice as great in some intact samples relative to homogenates. Future experiments will compare flux of metals and organic compounds in intact and homogenized sediments to further evaluate the efficacy of using intact cores for solid phase toxicity assessment.

  4. Synergistic Effects of Toxic Elements on Heat Shock Proteins

    PubMed Central

    Mahmood, Khalid; Mahmood, Qaisar; Irshad, Muhammad; Hussain, Jamshaid

    2014-01-01

    Heat shock proteins show remarkable variations in their expression levels under a variety of toxic conditions. A research span expanded over five decades has revealed their molecular characterization, gene regulation, expression patterns, vast similarity in diverse groups, and broad range of functional capabilities. Their functions include protection and tolerance against cytotoxic conditions through their molecular chaperoning activity, maintaining cytoskeleton stability, and assisting in cell signaling. However, their role as biomarkers for monitoring the environmental risk assessment is controversial due to a number of conflicting, validating, and nonvalidating reports. The current knowledge regarding the interpretation of HSPs expression levels has been discussed in the present review. The candidature of heat shock proteins as biomarkers of toxicity is thus far unreliable due to synergistic effects of toxicants and other environmental factors. The adoption of heat shock proteins as “suit of biomarkers in a set of organisms” requires further investigation. PMID:25136596

  5. Health effects of toxicants: Online knowledge support.

    PubMed

    Wexler, Philip; Judson, Richard; de Marcellus, Sally; de Knecht, Joop; Leinala, Eeva

    2016-01-15

    Research in toxicology generates vast quantities of data which reside on the Web and are subsequently appropriated and utilized to support further research. This data includes a broad spectrum of information about chemical, biological and radiological agents which can affect health, the nature of the effects, treatment, regulatory measures, and more. Information is structured in a variety of formats, including traditional databases, portals, prediction models, and decision making support tools. Online resources are created and housed by a variety of institutions, including libraries and government agencies. This paper focuses on three such institutions and the tools they offer to the public: the National Library of Medicine (NLM) and its Toxicology and Environmental Health Information Program, the United States Environmental Protection Agency (EPA), and the Organisation for Economic Co-operation and Development (OECD). Reference is also made to other relevant organizations. PMID:26506572

  6. Health effects of toxicants: Online knowledge support.

    PubMed

    Wexler, Philip; Judson, Richard; de Marcellus, Sally; de Knecht, Joop; Leinala, Eeva

    2016-01-15

    Research in toxicology generates vast quantities of data which reside on the Web and are subsequently appropriated and utilized to support further research. This data includes a broad spectrum of information about chemical, biological and radiological agents which can affect health, the nature of the effects, treatment, regulatory measures, and more. Information is structured in a variety of formats, including traditional databases, portals, prediction models, and decision making support tools. Online resources are created and housed by a variety of institutions, including libraries and government agencies. This paper focuses on three such institutions and the tools they offer to the public: the National Library of Medicine (NLM) and its Toxicology and Environmental Health Information Program, the United States Environmental Protection Agency (EPA), and the Organisation for Economic Co-operation and Development (OECD). Reference is also made to other relevant organizations.

  7. Toxic effect of lithium in mouse brain

    SciTech Connect

    Dixit, P.K.; Smithberg, M.

    1988-01-01

    The effect of lithium ion on glucose oxidation in the cerebrum and cerebellum of mice was measured in vitro by the conversion of isotopic glucose into /sup 14/CO/sub 2//mg wet weight. Glucose utilization is unaffected by lowest lithium dosage but is inhibited by high lithium concentrations (197-295 mM). Chronic administration of lithium to adult mice decreased the DNA content of the cerebrum and cerebellum at concentrations of 80 and 108 mM. The DNA content of selected postnatal stages of cerebrum and cerebellum was measured starting on Day 1 or 2. This served as another parameter to evaluate glucose oxidation studies at these ages. On the basis of wet weight, both brain parts of neonates of ages 1 and 10 days were approximately one-half that of the adult counterparts. On the basis of DNA content, the cerebrum enhanced its glucose utilization twofold from Day 1 to Day 10 and tripled its utilization from Day 10 to Day 20. The glucose utilization by cerebrum at Day 20 is similar to adult values. In contrast, glucose oxidation in the cerebellum remained relatively constant throughout the postnatal growth. The relative susceptibility of the two brain parts is discussed.

  8. The fungicide mancozeb induces toxic effects on mammalian granulosa cells.

    PubMed

    Paro, Rita; Tiboni, Gian Mario; Buccione, Roberto; Rossi, Gianna; Cellini, Valerio; Canipari, Rita; Cecconi, Sandra

    2012-04-15

    The ethylene-bis-dithiocarbamate mancozeb is a widely used fungicide with low reported toxicity in mammals. In mice, mancozeb induces embryo apoptosis, affects oocyte meiotic spindle morphology and impairs fertilization rate even when used at very low concentrations. We evaluated the toxic effects of mancozeb on the mouse and human ovarian somatic granulosa cells. We examined parameters such as cell morphology, induction of apoptosis, and p53 expression levels. Mouse granulosa cells exposed to mancozeb underwent a time- and dose-dependent modification of their morphology, and acquired the ability to migrate but not to proliferate. The expression level of p53, in terms of mRNA and protein content, decreased significantly in comparison with unexposed cells, but no change in apoptosis was recorded. Toxic effects could be attributed, at least in part, to the presence of ethylenthiourea (ETU), the main mancozeb catabolite, which was found in culture medium. Human granulosa cells also showed dose-dependent morphological changes and reduced p53 expression levels after exposure to mancozeb. Altogether, these results indicate that mancozeb affects the somatic cells of the mammalian ovarian follicles by inducing a premalignant-like status, and that such damage occurs to the same extent in both mouse and human GC. These results further substantiate the concept that mancozeb should be regarded as a reproductive toxicant. PMID:22369882

  9. Effect of malachite green toxicity on non target soil organisms.

    PubMed

    Gopinathan, R; Kanhere, J; Banerjee, J

    2015-02-01

    Although malachite green (MG), is banned in Europe and US for its carcinogenic and teratogenic effect, the dye being cheap, is persistently used in various countries for fish farming, silk, dye, leather and textile industries. Current research, however, fails to elucidate adequate knowledge concerning the effects of MG in our ecosystem. In the present investigation, for the first time, an attempt has been made to study the effects of MG on soil biota by testing Bacillus subtilis, Azotobacter chroococcum, Saccharomyces cerevisiae, Penicillium roqueforti, Eisenia fetida and seeds of three crop plants of different families. Various tests were conducted for determining cytotoxicity, genotoxicity, acute toxicity, morphological and germination effect. Our data confirmed MG toxicity on fungi and bacteria (gram positive and gram negative organisms) showing elevated level of ROS. Genotoxicity caused in the microorganisms was detected by DNA polymorphism and fragmentation. Also, scanning electron microscopy data suggests that the inhibitory effect of MG to these beneficial microbes in the ecosystem might be due to pore formation in the cell and its eventual disruption. Filter paper and artificial soil test conducted on earthworms demonstrated a LC 50 of 2.6 mg cm(-2) and 1.45 mg kg(-1) respectively with severe morphological damage. However, seed germination of Mung bean, Wheat and Mustard was found to be unaffected in presence of MG up to 100 mL(-1) concentration. Thus, understanding MG toxicity in non target soil organisms and emphasis on its toxicological effects would potentially explicate its role as an environmental contaminant. PMID:25462308

  10. Effect of malachite green toxicity on non target soil organisms.

    PubMed

    Gopinathan, R; Kanhere, J; Banerjee, J

    2015-02-01

    Although malachite green (MG), is banned in Europe and US for its carcinogenic and teratogenic effect, the dye being cheap, is persistently used in various countries for fish farming, silk, dye, leather and textile industries. Current research, however, fails to elucidate adequate knowledge concerning the effects of MG in our ecosystem. In the present investigation, for the first time, an attempt has been made to study the effects of MG on soil biota by testing Bacillus subtilis, Azotobacter chroococcum, Saccharomyces cerevisiae, Penicillium roqueforti, Eisenia fetida and seeds of three crop plants of different families. Various tests were conducted for determining cytotoxicity, genotoxicity, acute toxicity, morphological and germination effect. Our data confirmed MG toxicity on fungi and bacteria (gram positive and gram negative organisms) showing elevated level of ROS. Genotoxicity caused in the microorganisms was detected by DNA polymorphism and fragmentation. Also, scanning electron microscopy data suggests that the inhibitory effect of MG to these beneficial microbes in the ecosystem might be due to pore formation in the cell and its eventual disruption. Filter paper and artificial soil test conducted on earthworms demonstrated a LC 50 of 2.6 mg cm(-2) and 1.45 mg kg(-1) respectively with severe morphological damage. However, seed germination of Mung bean, Wheat and Mustard was found to be unaffected in presence of MG up to 100 mL(-1) concentration. Thus, understanding MG toxicity in non target soil organisms and emphasis on its toxicological effects would potentially explicate its role as an environmental contaminant.

  11. The fungicide mancozeb induces toxic effects on mammalian granulosa cells

    SciTech Connect

    Paro, Rita; Tiboni, Gian Mario; Buccione, Roberto; Rossi, Gianna; Cellini, Valerio; Canipari, Rita; Cecconi, Sandra

    2012-04-15

    The ethylene-bis-dithiocarbamate mancozeb is a widely used fungicide with low reported toxicity in mammals. In mice, mancozeb induces embryo apoptosis, affects oocyte meiotic spindle morphology and impairs fertilization rate even when used at very low concentrations. We evaluated the toxic effects of mancozeb on the mouse and human ovarian somatic granulosa cells. We examined parameters such as cell morphology, induction of apoptosis, and p53 expression levels. Mouse granulosa cells exposed to mancozeb underwent a time- and dose-dependent modification of their morphology, and acquired the ability to migrate but not to proliferate. The expression level of p53, in terms of mRNA and protein content, decreased significantly in comparison with unexposed cells, but no change in apoptosis was recorded. Toxic effects could be attributed, at least in part, to the presence of ethylenthiourea (ETU), the main mancozeb catabolite, which was found in culture medium. Human granulosa cells also showed dose-dependent morphological changes and reduced p53 expression levels after exposure to mancozeb. Altogether, these results indicate that mancozeb affects the somatic cells of the mammalian ovarian follicles by inducing a premalignant-like status, and that such damage occurs to the same extent in both mouse and human GC. These results further substantiate the concept that mancozeb should be regarded as a reproductive toxicant. Highlights: ► The fungicide mancozeb affects oocyte spindle morphology and fertilization rate. ► We investigated the toxic effects of mancozeb on mouse and human granulosa cells. ► Granulosa cells modify their morphology and expression level of p53. ► Mancozeb induces a premalignant-like status in exposed cells.

  12. [Acute Toxic Effects of Bromate on Aquatic Organisms].

    PubMed

    Wang, Zhi-wei; Liu, Dong-mei; Zhang, Wen-juan; Cui, Fu-yi

    2016-02-15

    Acute toxic effects of potassium bromate, sodium bromate and potassium bromide on luminescent bacteria, water flea, green alga and zebrafish were studied using standard toxic testing methods. The results showed that the pollutants had no effect on the luminous intensity of luminescent bacteria. The 96 h EC5. of potassium bromate on Scenedesmus obliquus was 738.18 mg x L(-1), 48 h EC50 on Daphnia magna and Moina was 154.01 mg x L(-1) was 161.80 mg x L(-1), while 48 h LC50 was 198 52 mg x L(-1), 175.68 mg x L(-1), and 96 h LC50 on zebrafish was 931.4 mg x L(-1). The 96 h EC50 of sodium bromate on Scenedesmus obliquus was 540.26 mg x L(-1), 48 h EC50 Daphnia magna and Moina was 127.90 mg x L(-1), 111.07 mg x L(-1), while 48 h LC50 was 161.80 mg x L(-1), 123.47 mg x L(-1), and 96 h LC50 on zebrafish was 1065.6 mg x L(-1). But the effects of potassium bromide on the above several kinds of aquatic organisms were far smaller than those of potassium bromate and sodium bromate. The toxic effects on test organisms were due to the impacts of bromate after the comparison of different pollutants, and the effects were more obvious with the increase of exposure time. The order of sensitivity to the toxic effects of bromate was Daphnia magna, Moina > Scenedesmus obliquus > zebrafish > Chlorella vulgaris, luminescent bacteria. PMID:27363170

  13. Glutathione depletion by valproic acid in sandwich-cultured rat hepatocytes: Role of biotransformation and temporal relationship with onset of toxicity

    SciTech Connect

    Kiang, Tony K.L.; Teng Xiaowei; Surendradoss, Jayakumar; Karagiozov, Stoyan; Abbott, Frank S.; Chang, Thomas K.H.

    2011-05-01

    The present study was conducted in sandwich-cultured rat hepatocytes to investigate the chemical basis of glutathione (GSH) depletion by valproic acid (VPA) and evaluate the role of GSH depletion in VPA toxicity. Among the synthetic metabolites of VPA investigated, 4-ene-VPA and (E)-2,4-diene-VPA decreased cellular levels of total GSH, but only (E)-2,4-diene-VPA was more effective and more potent than the parent drug. The in situ generated, cytochrome P450-dependent 4-ene-VPA did not contribute to GSH depletion by VPA, as suggested by the experiment with a cytochrome P450 inhibitor, 1-aminobenzotriazole, to decrease the formation of this metabolite. In support of a role for metabolites, alpha-F-VPA and octanoic acid, which do not undergo biotransformation to form a 2,4-diene metabolite, CoA ester, or glucuronide, did not deplete GSH. A time course experiment showed that GSH depletion did not occur prior to the increase in 2',7'-dichlorofluorescein (a marker of oxidative stress), the decrease in [2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium] (WST-1) product formation (a marker of cell viability), or the increase in lactate dehydrogenase (LDH) release (a marker of necrosis) in VPA-treated hepatocytes. In conclusion, the cytochrome P450-mediated 4-ene-VPA pathway does not play a role in the in situ depletion of GSH by VPA, and GSH depletion is not an initiating event in VPA toxicity in sandwich-cultured rat hepatocytes.

  14. Effect of light on toxicity of nanosilver to Tetrahymena pyriformis.

    PubMed

    Shi, Jun-Peng; Ma, Chun-Yan; Xu, Bin; Zhang, Hong-Wu; Yu, Chang-Ping

    2012-07-01

    More and more silver nanoparticles (AgNPs) have been released into the aquatic environment due to their widespread use, which may result in harmful effects on aquatic organisms. Environmental risk assessments of AgNPs on aquatic organisms in the natural environment (including light, sound, etc.) are indispensable. The aim of the present study was to elucidate the influence of light on the toxicity of AgNPs to Tetrahymena pyriformis. Silver nanoparticles, which were synthesized by reduction of silver nitrate with sodium borohydride, ranged in size from 5 to 20 nm with most particles approximately 10 nm. The authors performed AgNPs toxicity assays under a simulated natural environment with sunlight. The results indicated that the toxicity of AgNPs is higher than silver ion in the environment without light, but under the light condition, the toxicity of AgNPs decreased greatly. After 24 h of incubation with AgNPs, the inhibition ratio was 69.2 ± 7% in the dark and 35.5 ± 2% in the light, and the degree of inhibition was reduced by 33.7%. However, the effect of light on Ag(+) could be negligible. Further investigation indicated that the light irradiation could induce the growth of AgNPs and sequentially form bulk agglomeration. This decreased the surface area and the number of bare Ag atoms, resulting in a slower release rate and less Ag(+) ions released from AgNPs. At the same time, bulk agglomeration induced the deposition of part of the AgNPs to the aquatic bottom, which decreased the amount of AgNPs existing in water. All these phenomena led to the weakened toxicity of AgNPs in a light irradiation environment.

  15. Protective effect of selenium on methylmercury toxicity: a possible mechanism

    SciTech Connect

    Chang, L.W.; Suber, R.

    1982-09-01

    Young adult male Charles River rats were injected (i.p.) with 2.0 mg/kg b.w. methylmercury chloride (MeHg), with 2.0 mg/kg b.w. sodium selenite (Se), or with 2.0 mg/kg b.w. MeHg and 2.0 mg/kg b.w. Se. Erythrocytic glutathione peroxidase activity was determined and the rate of oxidation of NADPH with t-butyl-hydroperoxide as a substrate was followed at 340 nm and 25/sup 0/C. Toxic signs (crossing reflex of the hind limbs) were displayed by MeHg-treated animals by the 6th week of intoxication. By 8 weeks of the experiment, overt neurological signs (crossing reflex, ataxic gait, and weight loss) were observed in MeHg-treated animals. No observable toxic signs or symptoms were evident in the control animals (saline or Se-treated) and in the MeHg/Se treated rats. Results have confirmed that exposure to methyl-mercury suppresses the activity of glutathione peroxidase. Furthermore, it was demonstrated that with co-administration of selenium (sodium selenite), the inhibitory effect of MeHg on GSH-Px was totally alleviated. These findings suggest that the level of GSH-Px level is important in influencing the toxic consequences in MeHg-intoxicated animals and may be useful as a predictive indicator for methylmercury toxic conditions of the animals. (JMT)

  16. Toxic effects of acid rain on aquatic and terrestrial ecosystems.

    PubMed

    Rutherford, G K

    1984-08-01

    The historical perspective as well as the nature and causes of acid precipitation are presented. The toxicological effects of acid precipitation on lakes, other water bodies, fish, and invertebrate fauna are reviewed. In addition, the effects of this phenomenon on soil productivity and forest growth are examined. It appears that grave toxic effects have been and are being experienced by aquatic systems, but there is little reliable evidence of economic damage to crops, natural vegetation, and soil and biological processes. There may be insidious long-term effects on terrestrial ecosystems, particularly in the more susceptible areas.

  17. Toxic effects of decomposing red algae on littoral organisms

    NASA Astrophysics Data System (ADS)

    Eklund, Britta; Svensson, Andreas P.; Jonsson, Conny; Malm, Torleif

    2005-03-01

    Large masses of filamentous red algae of the genera Polysiphonia, Rhodomela, and Ceramium are regularly washed up on beaches of the central Baltic Sea. As the algal masses start to decay, red coloured effluents leak into the water, and this tinge may be traced several hundred meters off shore. In this study, possible toxic effects of these effluents were tested on littoral organisms from different trophic levels. Effects on fertilisation, germination and juvenile survival of the brown seaweed Fucus vesiculosus were investigated, and mortality tests were performed on the crustaceans Artemia salina and Idotea baltica, as well as on larvae and adults of the fish Pomatoschistus microps. Fucus vesiculosus was the most sensitive species of the tested organisms to the red algal extract. The survival of F. vesiculosus recruits was reduced with 50% (LC50) when exposed to a concentration corresponding to 1.7 g l -1 dw red algae. The lethal concentration for I. baltica, A. salina and P. microps were approximately ten times higher. The toxicity to A. salina was reduced if the algal extract was left to decompose during two weeks but the decline in toxicity was not affected by different light or temperature conditions. This study indicates that the filamentous red algae in the central Baltic Sea may produce and release compounds with negative effects on the littoral ecosystem. The effects may be particularly serious for the key species F. vesiculosus, which reproduce in autumn when filamentous red algal blooms are most severe.

  18. Toxic effects of formaldehyde on the urinary system.

    PubMed

    İnci, Mehmet; Zararsız, İsmail; Davarcı, Mürsel; Görür, Sadık

    2013-03-01

    Formaldehyde is a chemical substance with a pungent odor that is highly soluble in water and occurs naturally in organisms. Formaldehyde, when taken into organisms, is metabolized into formic acid in the liver and erythrocytes and is then excreted, either with the urine and feces or via the respiratory system. Form-aldehyde is widely used in the industrial and medical fields, and employees in these sectors are frequently exposed to it. Anatomists and medical students are affected by formaldehyde gas during dissection lessons. Because full protection from formaldehyde is impossible for employees in industrial plants using this chemical and for workers in laboratory conditions, several measures can be implemented to prevent and/or reduce the toxic effects of formaldehyde. In this review, we aimed to identify the toxic effects of formaldehyde on the urinary system.

  19. Toxic effects of formaldehyde on the urinary system

    PubMed Central

    İnci, Mehmet; Zararsız, İsmail; Davarcı, Mürsel; Görür, Sadık

    2013-01-01

    Formaldehyde is a chemical substance with a pungent odor that is highly soluble in water and occurs naturally in organisms. Formaldehyde, when taken into organisms, is metabolized into formic acid in the liver and erythrocytes and is then excreted, either with the urine and feces or via the respiratory system. Form-aldehyde is widely used in the industrial and medical fields, and employees in these sectors are frequently exposed to it. Anatomists and medical students are affected by formaldehyde gas during dissection lessons. Because full protection from formaldehyde is impossible for employees in industrial plants using this chemical and for workers in laboratory conditions, several measures can be implemented to prevent and/or reduce the toxic effects of formaldehyde. In this review, we aimed to identify the toxic effects of formaldehyde on the urinary system. PMID:26328078

  20. Estimating the effects of toxicants on ecosystem services.

    PubMed Central

    Cairns, J; Niederlehner, B R

    1994-01-01

    Numerous functions of ecosystems are essential to the quality of human life, including the provision of food, the decomposition of sewage, the provision of portable water, and the replacement of breathable air. Although attributes of ecosystems directly of use to human societies are not the only ones worth protecting, emphasizing their services may be the most effective means of communicating risks of toxicants to the general public. However, although spatial and temporal scales of experiments to assess risk vary relatively little, actual spatial scales vary considerably, from local environments to global ecosystems. Generally, models are used to bridge these gaps in scale. In this paper, we examine ways in which toxicity test endpoints have been developed to describe effects of pollutants on essential ecosystem functions and the ways in which results are then extrapolated to scales that risk managers can use. Images p936-a PMID:9738207

  1. Ameliorative effect of sesame lignans on nicotine toxicity in rats.

    PubMed

    Chattopadhyay, Krishna; Mondal, Srinath; Chattopadhyay, Brajadulal; Ghosh, Santinath

    2010-11-01

    Nicotine causes oxidative and genotoxic damages in the tissues leading to several diseases. Any strategy through natural diet that prevents or slows the progression and severity of nicotine toxicity has a significant health impact. This work is designed to investigate natural antioxidants that play effective protective role against nicotine-induced toxicity. Experiments were conducted on male albino rats by injecting nicotine tartrate (3.5 mg/kg body wt./day for 15 days) subcutaneously and thereby supplementing sesame lignans (0.1 g/100g diet and 0.2 g/100g diet) orally to them. Significant (P<0.01) increase of total cholesterol, triglyceride, LDL-cholesterol, VLDL-cholesterol, decrease of HDL-cholesterol, decrease in antioxidant enzymes and increase in concentration of lipid peroxidative product has been observed in plasma due to nicotine toxicity. Significant (P<0.01) decrease of total DNA contents and highly significant (P<0.001) DNA damage of liver tissue is also observed on nicotine treatment. Sesame lignans minimizes the above mentioned effects. The nicotine-induced oxidative and genotoxic damages on the tissues can be effectively attenuated by sesame lignans supplemented diet. PMID:20804815

  2. Toxic effects of Karenia mikimotoi extracts on mammalian cells

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Yan, Tian; Yu, Rencheng; Zhou, Mingjiang

    2011-07-01

    Karenia is one of the most harmful and representative red tide genus in a temperate zone. Blooms caused by this genus have resulted in massive fish death in the South China Sea and the East China Sea. However, the potential effects of this dinoflagellate on human health through the transfer of toxins via marine food webs, and the mechanisms of toxicity, are still unknown. Therefore, we examined the toxic effects of a strain of K. mikimotoi (isolated from the South China Sea) on the proliferation and morphology of four mammalian cell lines (two normal cell lines and two cancer cell lines). In addition, we carried out a preliminary investigation on the mechanism of toxicity of the alga. The results show that the polar lipid-soluble component of K. mikimotoi significantly inhibited proliferation of the four cell lines, and resulted in the cells becoming spherical, swollen and damaged. The result of Annexin V and PI double-staining confirmed that cell membranes were disrupted. The malonaldehyde (MDA) contents in the medium of the four cell lines treated with the polar-lipid extracts all increased significantly, which indicates that the polar-lipid toxins produced by K. mikimotoi could adversely affect mammalian cells by inducing lipid peroxidation. We conclude that K. mikimotoi is a potential threat to human health, and the comprehensive effect of this dinoflagellate and its mechanisms should be investigated further.

  3. Effects-Directed Analysis (EDA) and Toxicity Identification Evaluation (TIE): Complementary but Different Approaches for Diagnosing Causes of Environmental Toxicity

    EPA Science Inventory

    Currently, two approaches are available for performing environmental diagnostics on samples like municipal and industrial effluents, interstitial waters and whole sediments in order to identify anthropogenic contaminants causing toxicological effects. One approach is Toxicity Id...

  4. Toxic effects of selenium and copper on the planarian, Dugesia dorotocephala

    SciTech Connect

    Rauscher, J.D.

    1988-01-01

    Aquatic toxicologists have become increasingly concerned with the effects of sublethal concentrations of toxicants on aquatic organisms. Sublethal effects of toxicants on freshwater invertebrates were reviewed. Selenium (Se) and copper (Cu) are both essential trace elements and toxicants. Se has been reported to alter the toxicity of heavy metals. Planarians, Dugesia dorotocephala, were used as test animals. The objectives of this study were to determine: (1) acute toxicity of Se on planarians and the effect of the number of planarians per test chamber, (2) interaction of the acute toxicity of Se and Cu on planarians, and (3) sublethal effects of Se and Cu on planarians.

  5. Cytochrome P450-dependent metabolism of midazolam in hepatic microsomes from chickens, turkeys, pheasant and bobwhite quail.

    PubMed

    Cortright, K A; Craigmill, A L

    2006-12-01

    In vitro putative cytochrome P450 3A mediated activity, and inhibition thereof, were measured in four avian species using midazolam (MDZ) as a substrate and ketoconazole as an inhibitor. All species produced 1-hydroxymidazolam (1-OH MDZ) to a much greater extent than 4-hydroxymidazolam (4-OH MDZ). Calculated Vmaxapparent values for formation of 1-OH MDZ were 117+/-17, 239+/-108, 437+/-168, and 201+/-55 pmol/mg protein*min and Kmapparent values were 2.1+/-0.8, 2.4+/-1.6, 6.7+/-5.1 and 3.2+/-2.1 microm for chicken, turkey, pheasant and bobwhite quail, respectively. For the formation of 4-OH MDZ the Vmaxapparent values were 21+/-10, 94+/-46, 144+/-112, and 68+/-30 pmol/mg protein*min and Kmapparent values for 4-OH MDZ formation were 12.4+/-10.1, 18.0+/-10.8, 38.6+/-34.7 and 29.1+/-10.1 microm for chicken, turkey, pheasant and bobwhite quail, respectively. In all four species, ketoconazole inhibited the production of both major metabolites of MDZ, with 4-OH MDZ formation more sensitive to inhibition than 1-OH MDZ. Pheasant and bobwhite quail appeared most sensitive to ketoconazole inhibition.

  6. Monoclonal antibody-directed phenotyping of cytochrome P-450-dependent aryl hydrocarbon hydroxylase and 7-ethoxycoumarin deethylase in mammalian tissues

    SciTech Connect

    Fujino, T.; West, D.; Park, S.S.; Gelboin, H.V.

    1984-07-25

    The distribution of cytochromes P-450 that catalyze aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase were studied with monoclonal antibody (MAb) 1-7-1 which completely inhibits these activities of a purified 3-methylcholanthrene-induced rat liver cytochrome P-450. The degree of inhibition by MAb 1-7-1 quantitatively assesses the contribution of different cytochromes P-450 in the liver, lung, and kidney microsomes from untreated, 3-methylcholanthrene- and phenobarbital (PB)-treated rats, mice, guinea pigs, and hamsters. Enzyme sensitivity to MAb 1-7-1 inhibition defines two types of cytochrome P-450 contributing to aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase. The MAb 1-7-1 sensitive cytochrome P-450 is a major contributor to aryl hydrocarbonhydroxylase in rat liver, lung, and kidney of 3-methylcholanthrene-treated rats, C57BL/6 mice, guinea pigs, and hamsters. 7-Ethoxycoumarin 0-deethylase is also a function of both the MAb 1-7-1-sensitive and insensitive classes of cytochromeP-450. The ratio of the classes contributing to aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase differs in the various tissues and species and after inducer treatment. All of the 7-ethoxycoumarin O-deethylase activity in guinea pigs and hamsters is a function of cytochromes P-450 different than the MAb 1-7-1-sensitive cytochrome P-450 responsible for aryl hydrocarbon hydroxylase activity. Thus, the MAb 1-7-1 antigenically defines the type of cytochromes P-450 contributing to each reaction.

  7. Neoplastic lesions of the human liver in relation to the activity of the cytochrome P-450 dependent monooxygenase system.

    PubMed

    Plewka, D; Plewka, A; Nowaczyk, G; Kamiński, M; Rutkowski, T; Ludyga, T; Ziaja, K

    2000-01-01

    We studied the activity of Mixed function oxidase (MFO) in human livers affected by cancer. We determined the content of cytochrome P-450 and b5, as well as the activity of their corresponding reductases, according to generally accepted methods. Liver fragments corresponding with a) healthy tissue, b) tissue at the cancer border and, c) cancerous tissue were collected during surgery from patients with liver cancer. We noted that the developing liver cancer decreased the level of cytochrome P-450, even by a magnitude order. The activity of its corresponding reductase was higher in cancerous than in healthy tissues. Cytochrome b5 behaved in an analogous manner, although the decrease in its content was less significant. NADH-cytochrome b5 reductase activity changes were insignificant.

  8. Toxic effects of lead on neuronal development and function.

    PubMed Central

    Freedman, R; Olson, L; Hoffer, B J

    1990-01-01

    The effects of lead on the development of the nervous system are of immediate concern to human health. While it is clear that lead can affect neuronal development at levels of exposure within the range found in the environment, the particular mechanism of the disruption is not readily ascertained. Lack of knowledge of the mechanisms of lead-induced damaged hampers its treatment and prevention. The goal of our research is to develop a model system in which the effects of lead on central nervous system development can be demonstrated. The complexity of the brain hampers such investigations because often it is not clear if apparent toxic effects represents changes secondary to somatic changes, such as endocrine or hematological defects, that could alter brain development, or even transneuronal effects caused by toxicity at a distal site that deprives a brain area of a synaptic input needed for its proper development. A related problem is the redundancy of compensatory systems in the brain. Such system may disguise the severity of the initial toxic insult and themselves can cause functional disturbances. To study neuronal development in a system that minimizes such difficulties, we have grafted discrete brain regions derived from rat fetuses into the anterior chamber of the eye of adult hosts. The brain pieces continue organotypic development of the eye, but are isolated from possible secondary changes due to alterations in the development of the endocrine and other somatic systems because the adult host has these systems already fully developed. Similarly, effects mediated by connecting brain areas are minimized since the transplant is isolated in the anterior chamber of the eye.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2088752

  9. Protective effects of hydrogen sulfide anions against acetaminophen-induced hepatotoxicity in mice.

    PubMed

    Ishii, Isao; Kamata, Shotaro; Hagiya, Yoshifumi; Abiko, Yumi; Kasahara, Tadashi; Kumagai, Yoshito

    2015-12-01

    The key mechanism for hepatotoxicity resulting from acetaminophen (APAP) overdose is cytochrome P450-dependent formation of N-acetyl-p-benzoquinone imine (NAPQI), a potent electrophilic metabolite that forms protein adducts. The fundamental roles of glutathione in the effective conjugation/clearance of NAPQI have been established, giving a molecular basis for the clinical use of N-acetylcysteine as a sole antidote. Recent evidence from in vitro experiments suggested that sulfide anions (S(2-)) to yield hydrogen sulfide anions (HS(-)) under physiological pH could effectively react with NAPQI. This study evaluated the protective roles of HS(-) against APAP-induced hepatotoxicity in mice. We utilized cystathionine γ-lyase-deficient (Cth(-/-)) mice that are highly sensitive to acetaminophen toxicity. Intraperitoneal injection of acetaminophen (150 mg/kg) into Cth(-/-) mice resulted in highly elevated levels of serum alanine/aspartate aminotransferases and lactate dehydrogenase associated with marked increases in oncotic hepatocytes; all of which were significantly inhibited by intraperitoneal preadministration of sodium hydrosulfide (NaHS). NaHS preadministration significantly suppressed APAP-induced serum malondialdehyde level increases without abrogating APAP-induced rapid depletion of hepatic glutathione. These results suggest that exogenous HS(-) protects hepatocytes by directly scavenging reactive NAPQI rather than by increasing cystine uptake and thereby elevating intracellular glutathione levels, which provides a novel therapeutic approach against acute APAP poisoning. PMID:26558465

  10. Protective effects of hydrogen sulfide anions against acetaminophen-induced hepatotoxicity in mice.

    PubMed

    Ishii, Isao; Kamata, Shotaro; Hagiya, Yoshifumi; Abiko, Yumi; Kasahara, Tadashi; Kumagai, Yoshito

    2015-12-01

    The key mechanism for hepatotoxicity resulting from acetaminophen (APAP) overdose is cytochrome P450-dependent formation of N-acetyl-p-benzoquinone imine (NAPQI), a potent electrophilic metabolite that forms protein adducts. The fundamental roles of glutathione in the effective conjugation/clearance of NAPQI have been established, giving a molecular basis for the clinical use of N-acetylcysteine as a sole antidote. Recent evidence from in vitro experiments suggested that sulfide anions (S(2-)) to yield hydrogen sulfide anions (HS(-)) under physiological pH could effectively react with NAPQI. This study evaluated the protective roles of HS(-) against APAP-induced hepatotoxicity in mice. We utilized cystathionine γ-lyase-deficient (Cth(-/-)) mice that are highly sensitive to acetaminophen toxicity. Intraperitoneal injection of acetaminophen (150 mg/kg) into Cth(-/-) mice resulted in highly elevated levels of serum alanine/aspartate aminotransferases and lactate dehydrogenase associated with marked increases in oncotic hepatocytes; all of which were significantly inhibited by intraperitoneal preadministration of sodium hydrosulfide (NaHS). NaHS preadministration significantly suppressed APAP-induced serum malondialdehyde level increases without abrogating APAP-induced rapid depletion of hepatic glutathione. These results suggest that exogenous HS(-) protects hepatocytes by directly scavenging reactive NAPQI rather than by increasing cystine uptake and thereby elevating intracellular glutathione levels, which provides a novel therapeutic approach against acute APAP poisoning.

  11. Mechanistically Probing Lipid-siRNA Nanoparticle-associated Toxicities Identifies Jak Inhibitors Effective in Mitigating Multifaceted Toxic Responses

    PubMed Central

    Tao, Weikang; Mao, Xianzhi; Davide, Joseph P; Ng, Bruce; Cai, Mingmei; Burke, Paul A; Sachs, Alan B; Sepp-Lorenzino, Laura

    2011-01-01

    A major hurdle for harnessing small interfering RNA (siRNA) for therapeutic application is an effective and safe delivery of siRNA to target tissues and cells via systemic administration. While lipid nanoparticles (LNPs) composed of a cationic lipid, poly-(ethylene glycol) lipid and cholesterol, are effective in delivering siRNA to hepatocytes via systemic administration, they may induce multi-faceted toxicities in a dose-dependent manner, independently of target silencing. To understand the underlying mechanism of toxicities, pharmacological probes including anti-inflammation drugs and specific inhibitors blocking different pathways of innate immunity were evaluated for their abilities to mitigate LNP-siRNA-induced toxicities in rodents. Three categories of rescue effects were observed: (i) pretreatment with a Janus kinase (Jak) inhibitor or dexamethasone abrogated LNP-siRNA-mediated lethality and toxicities including cytokine induction, organ impairments, thrombocytopenia and coagulopathy without affecting siRNA-mediated gene silencing; (ii) inhibitors of PI3K, mammalian target of rapamycin (mTOR), p38 and IκB kinase (IKK)1/2 exhibited a partial alleviative effect; (iii) FK506 and etoricoxib displayed no protection. Furthermore, knockout of Jak3, tumor necrosis factor receptors (Tnfr)p55/p75, interleukin 6 (IL-6) or interferon (IFN)-γ alone was insufficient to alleviate LNP-siRNA-associated toxicities in mice. These indicate that activation of innate immune response is a primary trigger of systemic toxicities and that multiple innate immune pathways and cytokines can mediate toxic responses. Jak inhibitors are effective in mitigating LNP-siRNA-induced toxicities. PMID:21179008

  12. Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria

    PubMed Central

    Wang, Shuguang; Lawson, Rasheeda; Ray, Paresh C; Yu, Hongtao

    2013-01-01

    Nanometer-sized gold, due to its beautiful and bountiful color and unique optical properties, is a versatile material for many industrial and societal applications. We have studied the effect of gold nanoparticles on Salmonella typhimurium strain TA 102. The gold nanoparticles in solution prepared using the citrate reduction method is found not to be toxic or mutagenic but photomutagenic to the bacteria; however, careful control experiments indicate that the photomutagenicity is due to the co-existing citrate and Au3+ ions, not due to the gold nanoparticle itself. Au3+ is also found to be photomutagenic to the bacteria at concentrations lower than 1 µM, but toxic at higher concentrations. The toxicity of Au3+ is enhanced by light irradiation. The photomutagenicity of both citrate and Au3+ is likely due to the formation of free radicals, as a result of light-induced citrate decarboxylation or Au3+ oxidation of co-existing molecules. Both processes can generate free radicals that may cause DNA damage and mutation. Studies of the interaction of gold nanoparticles with the bacteria indicate that gold nanoparticles can be absorbed onto the bacteria surface but not able to penetrate the bacteria wall to enter the bacteria. PMID:21415096

  13. Mechanistic overview of immune modulatory effects of environmental toxicants.

    PubMed

    Bahadar, Haji; Abdollahi, Mohammad; Maqbool, Faheem; Baeeri, Maryam; Niaz, Kamal

    2015-01-01

    The immune system is an integrated organization, comprising of specific organs, cells and molecules playing a crucial role in the maintenance of health. The purpose of this paper is to give a mechanistic overview of toxic effects of various chemicals and pharmacological agents, and their interaction with the various components of the immune system that leads to modulation of the immune responses. Studies suggest that many chemical agents present in the environment like; heavy metals, agrochemicals, and various types of hydrocarbons possess immune toxicity and cause either structural, functional or compositional changes in various components of the immune system that alters immune response. There is present a complex bidirectional relationship between central nervous system (CNS) and the immune system. And receptors for neuropeptides, neurotransmitters, and hormones are located on lymphoid organs. Therefore, we are of the opinion that Endocrine Disrupting Chemicals (EDCs) present in our environment may be indirectly involved in causing immune toxicity via neuroendocrine channels, and vice versa many neurological disorders may be associated with environmental pollutants utilizing immuno-neuroendocrine pathways.

  14. Adsorption effects of activated charcoal on metaldehyde toxicity in rats.

    PubMed

    Shintani, S; Goto, K; Endo, Y; Iwamoto, C; Ohata, K

    1999-02-01

    Metaldehyde has been widely used as a main ingredient of solid fuel for making fire and slug baits in Japan. It is also marketed as a color flame tablet for party goods (ENGELFIRE). Consequently, children have been poisoned by eating such tablets which they mistook for candy. As a result, poison information center calls are increasing. According to POISINDEX, the treatment for metaldehyde poisoning consists in prevention of adsorption by activated charcoal, seizure control and airway protection. However, the optimum dose of charcoal is not established. We studied the quantitative adsorption capacity of activated charcoal for acute oral toxicity of metaldehyde in rats. In vivo toxicity and absorption tests for metaldehyde in Wister rats were done. The detoxifying effect of activated charcoal on metaldehyde toxicity and inhibition of metaldehyde absorption were investigated. Ratios used of po activated charcoal given 30 min after dosing to 400 mg metaldehyde/kg po were 5:1, 2:1, 1:1, 0.5:1. Serum metaldehyde was determined by gas chromatography in the control group (no charcoal) and the various experimental groups. Metaldehyde mortality was completely prevented at the ratio of 5:1. Gastrointestinal absorption of metaldehyde was reduced significantly by 45.3% in comparison to the control rats. There was no acetaldehyde detected in the serum of the metaldehyde-dosed rats. Metaldehyde poisoning may be prevented by early po administration of activated charcoal in a ratio of > 5:1 compared to metaldehyde. The theory that acetaldehyde is the primary toxic agent in metaldehyde poisoning should be re-evaluated.

  15. Effect of dietary vitamin C and E supplementation on toxicity of methyl oleate hydroperoxide (MOHP), a proposed toxic ozone intermediate

    SciTech Connect

    Calabrese, E.J.; Victor, J.; Stoddard, M.A.

    1985-01-01

    This study assessed the effects of vitamin E (600 mg/day) and/or vitamin C (one gram/day) supplementation for 4 weeks in adult human male volunteers on the in vitro erythrocyte toxicity of a proposed toxic ozone (O/sub 3/) intermediate (i.e. methyl oleate hydroperoxide (MOHP)). The results indicated that neither antioxidant vitamin provided significant protection against MOHP-induced changes in methemoglobin (METHB) and reduced glutathione (GSH) over a wide range of MOHP concentrations.

  16. Discrimination of excess toxicity from narcotic effect: comparison of toxicity of class-based organic chemicals to Daphnia magna and Tetrahymena pyriformis.

    PubMed

    Zhang, Xujia; Qin, Weichao; He, Jia; Wen, Yang; Su, Limin; Sheng, Lianxi; Zhao, Yuanhui

    2013-09-01

    The discrimination of excess toxicity from narcotic effect plays a crucial role in the study of modes of toxic action for organic compounds. In this paper, the toxicity data of 758 chemicals to Daphnia magna and 993 chemicals to Tetrahymena pyriformis were used to investigate the excess toxicity. The result showed that mode of toxic action of chemicals is species dependent. The toxic ratio (TR) calculated from baseline model over the experimentally determined values showed that some classes (e.g. alkanes, alcohols, ethers, aldehydes, esters and benzenes) shared same modes of toxic action to both D. magna and T. pyriformis. However, some classes may share different modes of toxic action to T. pyriformis and D. magna (e.g. anilines and their derivatives). For the interspecies comparison, same reference threshold need to be used between species toxicity. The excess toxicity indicates that toxicity enhancement is driven by reactive or specific toxicity. However, not all the reactive compounds exhibit excess toxicity. In theory, the TR threshold should not be related with the experimental uncertainty. The experimental uncertainty only brings the difficulty for discriminating the toxic category of chemicals. The real threshold of excess toxicity which is used to identify baseline from reactive chemicals should be based on the critical concentration difference inside body, rather than critical concentration outside body (i.e. EC50 or IGC50). The experimental bioconcentration factors can be greatly different from predicted bioconcentration factors, resulting in different toxic ratios and leading to mis-classification of toxic category and outliers.

  17. [THE TOXIC EFFECTS OF CHEMOTHERAPY ON THE GASTROINTESTINAL TRACT].

    PubMed

    Sivak, L A; Maidanevich, N N; Lyalkin, S A; Aleksik, E M; Askolskiy, A V; Klimanov, M Y; Kasap, N V

    2015-01-01

    Chemotherapy in modern oncology is one of the main methods of treatment, along with surgery and radiotherapy techniques. More than 60% of patients receiving chemotherapy at different stages of treatment. Recently, modern chemotherapy has become more urgent personal approach to the choice of drugs and their doses, aimed at reducing the toxicity of chemotherapy. Complications of chemotherapy significantly degrade the effectiveness of the treatment of patients with malignant tumors, because they require lower doses of anticancer drug, or lengthening the intervals between cycles of chemotherapy, which affects treatment outcomes and quality of life. PMID:26118038

  18. Toxic waste: behavioral effects of an environmental stressor.

    PubMed

    Horowitz, J; Stefanko, M

    1989-01-01

    This study examines the stress-related behavioral effects that may be associated with living near an ambient stressor: a toxic-waste landfill. Results are based on a telephone survey of 426 persons living in three distance strata from the landfill (within 1 1/2 miles, 1 1/2 to 5 miles, and 5 to 10 miles). The instrument was adapted from the Hopkins Life Checklist (SCL-90) and from surveys used by researchers studying the effects of the Three Mile Island nuclear accident. No significant differences were found across area or amount of stimuli exposure on the dependent variables of bodily effects, anger-hostility, and demoralization. Scattered effects across age, sex, educational level, and home ownership (v rental) occurred; however, these could not be attributed solely to the landfill. PMID:2923989

  19. Physiological effects of toxic substances on wildlife species

    USGS Publications Warehouse

    Haseltine, S.D.; Kacmar, Peter; Legath, J.

    1983-01-01

    Study of the physiological effects of contaminants on wildlife species has expanded as more sophisticated medical techniques are adapted to wildlife and as the mode of action of new classes of pesticides increase the number of organ systems which may be sublethally or lethally impacted. This paper summarizes some of the latest data published on toxicant affects on organ systems of warm-blooded vertebrates. Reporting on effects with enzyme systems concentrates on cholinesterase in blood and plasma after sublethal and lethal exposure to organophosphate end carbamate pesticides, but also covers, recent work with Na+, k+-ATPases, AST, AAT, and AL.AD. A discussion of recent work on hormones, biogenlc amines, and other compounds which indicate alteration of specific organ systems, is followed by examples of histopathological lesions associated both pathognomically and non-specifically with widely-used and/or severely toxic contaminants. All these specific effects and lesions are then discussed in terms of their potential for use diagnostically in field problems and their practical and possible impact on wildlife populations.

  20. Toxic effects of silica nanoparticles on zebrafish embryos and larvae.

    PubMed

    Duan, Junchao; Yu, Yongbo; Shi, Huiqin; Tian, Linwei; Guo, Caixia; Huang, Peili; Zhou, Xianqing; Peng, Shuangqing; Sun, Zhiwei

    2013-01-01

    Silica nanoparticles (SiNPs) have been widely used in biomedical and biotechnological applications. Environmental exposure to nanomaterials is inevitable as they become part of our daily life. Therefore, it is necessary to investigate the possible toxic effects of SiNPs exposure. In this study, zebrafish embryos were treated with SiNPs (25, 50, 100, 200 µg/mL) during 4-96 hours post fertilization (hpf). Mortality, hatching rate, malformation and whole-embryo cellular death were detected. We also measured the larval behavior to analyze whether SiNPs had adverse effects on larvae locomotor activity. The results showed that as the exposure dosages increasing, the hatching rate of zebrafish embryos was decreased while the mortality and cell death were increased. Exposure to SiNPs caused embryonic malformations, including pericardial edema, yolk sac edema, tail and head malformation. The larval behavior testing showed that the total swimming distance was decreased in a dose-dependent manner. The lower dose (25 and 50 µg/mL SiNPs) produced substantial hyperactivity while the higher doses (100 and 200 µg/mL SiNPs) elicited remarkably hypoactivity in dark periods. In summary, our data indicated that SiNPs caused embryonic developmental toxicity, resulted in persistent effects on larval behavior. PMID:24058598

  1. Toxic effects of mercury, lead and gadolinium on vascular reactivity.

    PubMed

    Vassallo, D V; Simões, M R; Furieri, L B; Fioresi, M; Fiorim, J; Almeida, E A S; Angeli, J K; Wiggers, G A; Peçanha, F M; Salaices, M

    2011-09-01

    Heavy metals have been used in a wide variety of human activities that have significantly increased both professional and environmental exposure. Unfortunately, disasters have highlighted the toxic effects of metals on different organs and systems. Over the last 50 years, the adverse effects of chronic lead, mercury and gadolinium exposure have been underscored. Mercury and lead induce hypertension in humans and animals, affecting endothelial function in addition to their other effects. Increased cardiovascular risk after exposure to metals has been reported, but the underlying mechanisms, mainly for short periods of time and at low concentrations, have not been well explored. The presence of other metals such as gadolinium has raised concerns about contrast-induced nephropathy and, interestingly, despite this negative action, gadolinium has not been defined as a toxic agent. The main actions of these metals, demonstrated in animal and human studies, are an increase of free radical production and oxidative stress and stimulation of angiotensin I-converting enzyme activity, among others. Increased vascular reactivity, highlighted in the present review, resulting from these actions might be an important mechanism underlying increased cardiovascular risk. Finally, the results described in this review suggest that mercury, lead and gadolinium, even at low doses or concentrations, affect vascular reactivity. Acting via the endothelium, by continuous exposure followed by their absorption, they can increase the production of free radicals and of angiotensin II, representing a hazard for cardiovascular function. In addition, the actual reference values, considered to pose no risk, need to be reduced.

  2. Topical nitrogen mustard exposure causes systemic toxic effects in mice

    PubMed Central

    Goswami, Dinesh G.; Kumar, Dileep; Tewari-Singh, Neera; Orlicky, David J.; Jain, Anil K.; Kant, Rama; Rancourt, Raymond C.; Dhar, Deepanshi; Inturi, Swetha; Agarwal, Chapla; White, Carl W.; Agarwal, Rajesh

    2014-01-01

    Vesicating agents sulfur mustard (SM) and nitrogen mustard (NM) are reported to be easily absorbed by skin upon exposure causing severe cutaneous injury and blistering. Our studies show that topical exposure of NM (3.2 mg) onto SKH-1 hairless mouse skin, not only caused skin injury, but also led to significant body weight loss and 40–80 % mortality (120 h post-exposure), suggesting its systemic effects. Accordingly, further studies herein show that NM exposure initiated an increase in circulating white blood cells by 24 h (neutrophils, eosinophils and basophils) and thereafter a decrease (neutrophils, lymphocytes and monocytes). NM exposure also reduced both white and red pulp areas of the spleen. In the small intestine, NM exposure caused loss of membrane integrity of the surface epithelium, abnormal structure of glands and degeneration of villi. NM exposure also resulted in the dilation of glomerular capillaries of kidneys, and an increase in blood urea nitrogen/creatinine ratio. Our results here with NM are consistent with earlier reports that exposure to higher SM levels can cause damage to the hematopoietic system, and kidney, spleen and gastrointestinal tract toxicity. These outcomes will add to our understanding of the toxic effects of topical vesicant exposure, which might be helpful towards developing effective countermeasures against injuries from acute topical exposures. PMID:25481215

  3. Toxicity Effect of Silver Nanoparticles in Brine Shrimp Artemia

    PubMed Central

    Arulvasu, Chinnasamy; Jennifer, Samou Michael; Prabhu, Durai; Chandhirasekar, Devakumar

    2014-01-01

    The present study revealed the toxic effect of silver nanoparticles (AgNPs) in Artemia nauplii and evaluated the mortality rate, hatching percentage, and genotoxic effect in Artemia nauplii/cysts. The AgNPs were commercially purchased and characterized using field emission scanning electron microscope with energy dispersive X-ray spectroscopy. Nanoparticles were spherical in nature and with size range of 30–40 nm. Artemia cysts were collected from salt pan, processed, and hatched in sea water. Artemia nauplii (II instar) were treated using silver nanoparticles of various nanomolar concentrations and LC50 value (10 nM) and mortality rate (24 and 48 hours) was evaluated. Hatching percentage of decapsulated cysts treated with AgNPs was examined. Aggregation of AgNPs in the gut region of nauplii was studied using phase contrast microscope and apoptotic cells in nauplii stained with acridine orange were observed using fluorescence microscope. DNA damage of single cell of nauplii was determined by comet assay. This study showed that as the concentration of AgNPs increased, the mortality rate, aggregation in gut region, apoptotic cells, and DNA damage increased in nauplii, whereas the percentage of hatching in Artemia cysts decreased. Thus this study revealed that the nanomolar concentrations of AgNPs have toxic effect on both Artemia nauplii and cysts. PMID:24516361

  4. Effect of biphenyl ether herbicides on the formation of mutagenic intermediates from procarcinogens by rainbow trout

    SciTech Connect

    Miyauchi, M.; Uematsu, T.

    1987-08-01

    Increasing frequencies of tumors among aquatic animals in polluted waters have been reported. Experiments have also shown that exposure of fish to certain well-known and widely distributed xenobiotics causes them to develop tumors in a relatively short time. Formation of mutagenic intermediates from procarcinogens by fish liver homogenates had been reported. It is well established that fish have the ability to biotransform xenobiotics in a manner similar to that of mammalian species. These biotransformation include cytochrome P-450-dependent monooxygenase systems. In fish as well as mammals, cyt. P-450 systems are known to be induced by environmental pollutants. These inducers of cyt. P-450 systems are thought to influence the appearance of toxicity of chemicals. Biphenyl ether herbicides have been widely used all over the world, and particularly in Japan, they are indicated as environmental pollutants. Judging from their structures like as PCB, they are suspected to induce cyt. P-450 systems in fish. In this study, the effects of biphenyl ether herbicides and related compounds on the formation of mutagenic intermediates from procarcinogens by the S-9 fractions from rainbow trout were examined by using the Salmonella/microsome test.

  5. Fish embryo toxicity test: identification of compounds with weak toxicity and analysis of behavioral effects to improve prediction of acute toxicity for neurotoxic compounds.

    PubMed

    Klüver, Nils; König, Maria; Ortmann, Julia; Massei, Riccardo; Paschke, Albrecht; Kühne, Ralph; Scholz, Stefan

    2015-06-01

    The fish embryo toxicity test has been proposed as an alternative for the acute fish toxicity test, but concerns have been raised for its predictivity given that a few compounds have been shown to exhibit a weak acute toxicity in the fish embryo. In order to better define the applicability domain and improve the predictive capacity of the fish embryo test, we performed a systematic analysis of existing fish embryo and acute fish toxicity data. A correlation analysis of a total of 153 compounds identified 28 compounds with a weaker or no toxicity in the fish embryo test. Eleven of these compounds exhibited a neurotoxic mode of action. We selected a subset of eight compounds with weaker or no embryo toxicity (cyanazine, picloram, aldicarb, azinphos-methyl, dieldrin, diquat dibromide, endosulfan, and esfenvalerate) to study toxicokinetics and a neurotoxic mode of action as potential reasons for the deviating fish embryo toxicity. Published fish embryo LC50 values were confirmed by experimental analysis of zebrafish embryo LC50 according to OECD guideline 236. Except for diquat dibromide, internal concentration analysis did not indicate a potential relation of the low sensitivity of fish embryos to a limited uptake of the compounds. Analysis of locomotor activity of diquat dibromide and the neurotoxic compounds in 98 hpf embryos (exposed for 96 h) indicated a specific effect on behavior (embryonic movement) for the neurotoxic compounds. The EC50s of behavior for neurotoxic compounds were close to the acute fish toxicity LC50. Our data provided the first evidence that the applicability domain of the fish embryo test (LC50s determination) may exclude neurotoxic compounds. However, neurotoxic compounds could be identified by changes in embryonic locomotion. Although a quantitative prediction of acute fish toxicity LC50 using behavioral assays in fish embryos may not yet be possible, the identification of neurotoxicity could trigger the conduction of a conventional fish

  6. Effect of trifluoperazine on toxicity, HIF-1α induction and hepatocyte regeneration in acetaminophen toxicity in mice

    SciTech Connect

    Chaudhuri, Shubhra; McCullough, Sandra S.; Hennings, Leah; Brown, Aliza T.; Li, Shun-Hwa; Simpson, Pippa M.; Hinson, Jack A.; James, Laura P.

    2012-10-15

    Oxidative stress and mitochondrial permeability transition (MPT) are important mechanisms in acetaminophen (APAP) toxicity. The MPT inhibitor trifluoperazine (TFP) reduced MPT, oxidative stress, and toxicity in freshly isolated hepatocytes treated with APAP. Since hypoxia inducible factor-one alpha (HIF-1α) is induced very early in APAP toxicity, a role for oxidative stress in the induction has been postulated. In the present study, the effect of TFP on toxicity and HIF-1α induction in B6C3F1 male mice treated with APAP was examined. Mice received TFP (10 mg/kg, oral gavage) prior to APAP (200 mg/kg IP) and at 7 and 36 h after APAP. Measures of metabolism (hepatic glutathione and APAP protein adducts) were comparable in the two groups of mice. Toxicity was decreased in the APAP/TFP mice at 2, 4, and 8 h, compared to the APAP mice. At 24 and 48 h, there were no significant differences in toxicity between the two groups. TFP lowered HIF-1α induction but also reduced the expression of proliferating cell nuclear antigen, a marker of hepatocyte regeneration. TFP can also inhibit phospholipase A{sub 2}, and cytosolic and secretory PLA{sub 2} activity levels were reduced in the APAP/TFP mice compared to the APAP mice. TFP also lowered prostaglandin E{sub 2} expression, a known mechanism of cytoprotection. In summary, the MPT inhibitor TFP delayed the onset of toxicity and lowered HIF-1α induction in APAP treated mice. TFP also reduced PGE{sub 2} expression and hepatocyte regeneration, likely through a mechanism involving PLA{sub 2}. -- Highlights: ► Trifluoperazine reduced acetaminophen toxicity and lowered HIF-1α induction. ► Trifluoperazine had no effect on the metabolism of acetaminophen. ► Trifluoperazine reduced hepatocyte regeneration. ► Trifluoperazine reduced phospholipase A{sub 2} activity and prostaglandin E{sub 2} levels.

  7. Contaminated marine sediments: Water column and interstitial toxic effects

    SciTech Connect

    Burgess, R.M.; Schweitzer, K.A.; McKinney, R.A.; Phelps, D.K.

    1993-01-01

    The toxicity that contaminated sediments may introduce into the water column has not been measured extensively. In order to quantify this potential toxicity, the seawater overlying two uncontaminated and three contaminated marine sediments was evaluated in the laboratory with the sea urchin Arbacia punctulata fertilization test. Concentrations of polychlorinated biphenyls (PCBs) and copper, as representative contaminants, were also measured. To characterize sources of toxicity, samples were chemically manipulated using reversed-phase chromatography, cation exchange, and chelation. Water column toxicity and contaminant concentrations were higher in the suspended exposures than in bedded exposures. Interstitial water toxicity and contaminant concentrations were generally greater than either bedded or suspended exposures. Chemical manipulation indicated that the observed toxicity in water column exposures was probably caused by metallic and/or nonionic organic contaminants. Conversely, manipulation of interstitial waters did not result in significantly reduced toxicity, suggesting that other toxicants such as ammonia and hydrogen sulfide may be active.

  8. Contaminated marine sediments: Water column and interstitial toxic effects

    SciTech Connect

    Burgess, R.M.; McKinney, R.A. ); Schweitzer, K.A. ); Phelps, D.K. )

    1993-01-01

    The toxicity that contaminated sediments may introduce into the water column has not been measured extensively. In order to quantify this potential toxicity, the seawater overlying two uncontaminated and three contaminated marine sediments was evaluated in the laboratory with the sea urchin Arbacia punctulata fertilization test. Concentration of polychlorinated biphenyls (PCBs) and copper, as representative contaminants, were also measured. To characterize sources of toxicity, samples were chemically manipulated using reversed-phase chromatography, cation exchange, and chelation. Water column toxicity and contaminant concentrations were higher in the suspended exposures than in bedded exposures. Interstitial water toxicity and contaminant concentrations were generally greater than either bedded or suspended exposures. Chemical manipulation indicated that the observed toxicity in water column exposures was probably caused by metallic and/or nonionic organic contaminants. Conversely, manipulation of interstitial water did not result in significantly reduced toxicity, suggesting that other toxicants such as ammonia and hydrogen sulfide may be active.

  9. Thymoquinone therapy abrogates toxic effect of cadmium on rat testes.

    PubMed

    Fouad, A A; Jresat, I

    2015-05-01

    The protective effect of thymoquinone was investigated against cadmium-induced testicular toxicity in rats. Testicular toxicity was induced by a single intraperitoneal (i.p.) injection of cadmium chloride (2 mg kg(-1) ). Thymoquinone treatment (10 mg kg(-1)  day(-1) , i.p.) was applied for five consecutive days, starting 3 days before cadmium administration. Thymoquinone significantly attenuated the cadmium-induced decreases in serum testosterone, and testicular reduced glutathione and superoxide dismutase activity and significantly decreased the elevations of testicular malondialdehyde, nitric oxide and cadmium ion levels resulted from cadmium chloride administration. Also, thymoquinone ameliorated the cadmium-induced testicular tissue injury observed by histopathological examination. In addition, thymoquinone significantly decreased the cadmium-induced expression of inducible nitric oxide synthase, tumour necrosis factor-α, cyclooxygenase-2, nuclear factor-κB and caspase-3 in testicular tissue. It was concluded that thymoquinone, through its antioxidant and anti-inflammatory activities, may represent a potential candidate to protect the testes against the detrimental effect of cadmium exposure. PMID:24735446

  10. Effects of cadmium on Drosophila: toxicity, proteins, and transfer RNAs

    SciTech Connect

    Jacobson, K.B.; Opresko, L.; Owenby, R.K.; Christie, N.T.

    1981-01-01

    An animal model with well-defined genetic and biochemical characteristics is needed for a detailed understanding of the mechanism of toxicity by metal ions. Drosophila melanogaster was used in the present study to demonstrate a number of responses to Cd/sup 2 +/, including lethality, age-related changes in resistance, alterations of the normal developmental changes in proteins, and alterations in specific transfer RNAs. Genotype-specific differences in resistance to Cd/sup 2 +/ were found: the v; bw strain was 5-10 times more resistant than su(s)/sup 2/v; bw for developmental exposure; upon treatment of the young adults the differences were in the same direction, but the sensitivities differed by only two- to three-fold. The adult fly became more sensitive to Cd/sup 2 +/ as it aged through 2 weeks, but changed little thereafter.The electrophoretic patterns of proteins of adult flies underwent changes during aging from 1 to 8 days; these changes were markedly altered by 0.55 mM CdCl/sub 2/ but not by 0.74 mM ZnCl/sub 2/ in the medium on which the flies were maintained. The appearance of queuosine-containing tRNA was stimulated by CdCl/sub 2/ (0.05-0.8 mM) in the growth medium, but not by ZnCl/sub 2/ (0.07-1.1 mM).Further studies involving D. melanogaster should be useful in defining specific interactions of toxic metal ions with macromolecules to enhance the understanding of the toxic effects of these and similar pollutants.

  11. Toxicity of nanosilver in intragastric studies: Biodistribution and metabolic effects.

    PubMed

    Hendrickson, Olga D; Klochkov, Sergey G; Novikova, Oksana V; Bravova, Irina M; Shevtsova, Elena F; Safenkova, Irina V; Zherdev, Anatoly V; Bachurin, Sergey O; Dzantiev, Boris B

    2016-01-22

    The unique physicochemical properties of silver nanoparticles explain their extensive application in consumer goods, food, and medicinal products. However, the biological effects of nanosilver after peroral exposure of mammals are still debatable. This study describes the biodistribution and biological action of 12nm non-coated silver nanoparticles intragastrically administered to male rats after acute (single exposure) and sub-acute (multiple exposures over 30 days) toxicity experiments. The daily doses were 2000 and 250mg/kg of body weight for single and multiple administrations, respectively. Silver tissue detection was conducted by elemental analysis with the help of atomic absorption spectroscopy. An estimation of the state of exposed animals was made and the dynamics of hematological and biochemical parameters of rats was studied. It was demonstrated that single and multiple administrations resulted in silver accumulation in the liver, kidneys, spleen, stomach, and small intestine. After both one- and repeated-dose exposures, the highest Ag contents were detected in the liver (0.87±0.37μg/g of organ) and kidneys (0.24±0.02μg/g of organ). The concentrations of silver detected in tissues were far smaller than the administered doses (<99%), indicating its efficient excretion from the organism. Acute and sub-acute exposures caused no animal mortality or signs of toxicity, manifested as changes in outward appearance or notable deviations in behavior or locomotor activity. Postmortem study revealed no visible pathomorphological abnormalities of internal organs. Hematological indices and biochemical parameters of the treated rats did not differ from those of the vehicle control animals. Overall, it can be concluded that nanosilver is able to be absorbed from the gastrointestinal tract into the bloodstream and accumulate in the secondary organs of rats. It showed no distinct toxicity under the experimental conditions of this study.

  12. Selenium toxicity: cause and effects in aquatic birds

    USGS Publications Warehouse

    Spallholz, J.E.; Hoffman, D.J.

    2002-01-01

    There are several manners in which selenium may express its toxicity: (1) an important mechanism appears to involve the formation of CH3Se- which either enters a redox cycle and generates superoxide and oxidative stress, or forms free radicals that bind to and inhibit important enzymes and proteins. (2) Excess selenium as selenocysteine results in inhibition of selenium methylation metabolism. As a consequence, concentrations of hydrogen selenide, an intermediate metabolite, accumulate in animals and are hepatotoxic, possibly causing other selenium-related adverse effects. (3) It is also possible that the presence of excess selenium analogs of sulfur-containing enzymes and structural proteins play a role in avian teratogenesis. l-selenomethionine is the most likely major dietary form of selenium encountered by aquatic birds, with lesser amounts of l-selenocysteine ingested from aquatic animal foods. The literature is suggestive that l-selenomethionine is not any more toxic to adult birds than other animals. l-Selenomethionine accumulates in tissue protein of adult birds and in the protein of egg white as would be expected to occur in animals. There is no suggestion from the literature that the levels of l-selenomethionine that would be expected to accumulate in eggs in the absence of environmental concentration of selenium pose harm to the developing embryo. For several species of aquatic birds, levels of Se as selenomethionine in the egg above 3 ppm on a wet weight basis result in reduced hatchability and deformed embryos. The toxicity of l-selenomethionine injected directly into eggs is greater than that found from the entry of l-selenomethionine into the egg from the normal adult diet. This suggests that there is unusual if not abnormal metabolism of l-selenomethionine in the embryo not seen when l-selenomethionine is present in egg white protein where it likely serves as a source of selenium for glutathione peroxidase synthesis in the developing aquatic chick.

  13. Aloe vera: A review of toxicity and adverse clinical effects.

    PubMed

    Guo, Xiaoqing; Mei, Nan

    2016-04-01

    The Aloe plant is employed as a dietary supplement in a variety of foods and as an ingredient in cosmetic products. The widespread human exposure and its potential toxic and carcinogenic activities raise safety concerns. Chemical analysis reveals that the Aloe plant contains various polysaccharides and phenolic chemicals, notably anthraquinones. Ingestion of Aloe preparations is associated with diarrhea, hypokalemia, pseudomelanosis coli, kidney failure, as well as phototoxicity and hypersensitive reactions. Recently, Aloe vera whole leaf extract showed clear evidence of carcinogenic activity in rats, and was classified by the International Agency for Research on Cancer as a possible human carcinogen (Group 2B). This review presents updated information on the toxicological effects, including the cytotoxicity, genotoxicity, carcinogenicity, and adverse clinical effects of Aloe vera whole leaf extract, gel, and latex.

  14. Aloe vera: A review of toxicity and adverse clinical effects.

    PubMed

    Guo, Xiaoqing; Mei, Nan

    2016-04-01

    The Aloe plant is employed as a dietary supplement in a variety of foods and as an ingredient in cosmetic products. The widespread human exposure and its potential toxic and carcinogenic activities raise safety concerns. Chemical analysis reveals that the Aloe plant contains various polysaccharides and phenolic chemicals, notably anthraquinones. Ingestion of Aloe preparations is associated with diarrhea, hypokalemia, pseudomelanosis coli, kidney failure, as well as phototoxicity and hypersensitive reactions. Recently, Aloe vera whole leaf extract showed clear evidence of carcinogenic activity in rats, and was classified by the International Agency for Research on Cancer as a possible human carcinogen (Group 2B). This review presents updated information on the toxicological effects, including the cytotoxicity, genotoxicity, carcinogenicity, and adverse clinical effects of Aloe vera whole leaf extract, gel, and latex. PMID:26986231

  15. Toxic effects of phenol on grey mullet, Mugil auratus Risso

    SciTech Connect

    Krajnovic-Ozretic, M.; Ozretic, B.

    1988-01-01

    Phenolic compounds are frequently found as contaminants in surface waters, including marine coastal waters. Phenols are generally classified as nonspecific metabolic inhibitors, and the main toxic effects are manifested on the nervous system due to the dissolution of lipids, whereas in the circulatory system phenols act as hemolysing agents of the erythrocytes. Data about sublethal effects of phenol, particularly to marine organisms are rather scarce. In several fresh water fish species exposed to phenol, the number of erythrocytes and the amount of serum proteins were decreased while lesion of gill filaments with edema and blood infiltration with degenerative changes in liver were also observed. These investigations concerned the identification of some physiological and biochemical changes in mullet blood as a consequence of exposure to phenol and some observations about the behavior and gross pathology of poisoned fish were also made.

  16. Toxic effects of hexaflumuron on the development of Coccinella septempunctata.

    PubMed

    Yu, Caihong; Fu, Maoran; Lin, Ronghua; Zhang, Yan; Yongquan, Liu; Jiang, Hui; Brock, Theo C M

    2014-01-01

    Studying the toxic risk of pesticide exposure to ladybird beetles is important from an agronomical and ecological perspective since larval and adult ladybirds are dominant predators of herbivorous pest insects (e.g., aphids) in various crops in China. This article mainly deals with the long-term effects of a single application of the insect growth regulator hexaflumuron on Coccinella septempunctata. A 72-h and a 33-day toxicity test with hexaflumuron (single application) were performed, starting with the second instar larvae of C. septempunctata. Exposure doses in the long-term experiment were based on the estimated 72-h acute LR50 (application rate causing 50% mortality) value of 304 g active ingredient (a.i.) ha(-1) for second instar larvae of C. septempunctata. The long-term test used five hexaflumuron doses as treatment levels (1/50, 1/100, 1/200, 1/400, and 1/800 of the 72-h acute LR50), as well as a solvent control and blank control treatment. The measurement endpoints used to calculate no observed effect application rates (NOERs) included development time, hatching, pupation, adult emergence, survival, and number of eggs produced. Analyzing the experimental data with one-way analysis of variance showed that the single hexaflumuron application had significant effects on C. septempunctata endpoints in the 33-day test, including effects on development duration (NOER 1.52 g a.i. ha(-1)), hatching (NOER 3.04 g a.i. ha(-1)), pupation (NOER 3.04 g a.i. ha(-1)), and survival (NOER 1.52 g a.i. ha(-1)). These NOERs are lower than the reported maximum field application rate of hexaflumuron (135 g a.i. ha(-1)) in cotton cultivation, suggesting potential risks to beneficial arthropods. PMID:23917742

  17. Evaluation of MWNT toxic effects on daphnia and zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Olasagasti, Maider; Alvarez, Noelia; Vera, Carolina; Rainieri, Sandra

    2009-05-01

    Organisms of daphnia (Daphnia magna) and zebrafish (Danio rerio) embryos were exposed to a range of different concentrations of COOH-functionalized MWCNT suspended in an aqueous solution of Tween 20. Immobilization of daphnia and growth retardation, inhibition and malformation of zebrafish embryos were the endpoints tested after 24 and 48 hours. Immobilization of daphnia could be observed from 3 to 16 ppm and an increasing mortality of zebrafish embryo was detected at all the concentration tested. To identify more subtle toxic effects, we took advantage of the extensive information available on the zebrafish genome and monitored by RT-PCR the expression patterns of different zebrafish genes that could act as toxicity bio-markers. At some of the concentrations tested, changes in the expression profiles of the genes examined were detected. Our results suggest that MWCNT could potentially represent a risk to human health and environment, therefore a wider range of concentrations and further testing of this molecules should be carried out to define possible limitations in their use.

  18. Toxic effects of the fungicide benomyl on cell membranes.

    PubMed

    Suwalsky, M; Benites, M; Norris, B; Sotomayor, P

    2000-01-01

    This paper examines the toxicity of the fungicide benomyl towards cell membranes. Approaches to this aim were the study of its acute effects on the stimulatory response of a frog neuroepithelial synapse and on membrane models. The latter consisted of large unilamellar vesicles of dimyristoylphosphatidylcholine (DMPC) and phospholipid multilayers built-up of DMPC and dimyristoylphosphatidylethanolamine (DMPE). Results showed that benomyl at concentrations as low as 10 microM decreased the stimulatory response of the potential difference (PD) and the short-circuit current (SCC) of the frog sympathetic junction. It is concluded that benomyl caused a dose-dependent reduction in the response of a sympathetic junction of the frog to stimulation leading to Cl(-) channel perturbation. This finding might be explained from those obtained from fluorescence spectroscopy and X-ray diffraction studies on membrane models. In fact, similar (0.01-1.0 mM) concentrations induced structural perturbations in DMPC large unilamellar vesicles and multilayers, respectively. Although it is still premature to define the precise molecular mechanism of benomyl toxicity, the experimental results confirm the important role played by the phospholipid bilayers in the interaction of the pesticide with cell membranes. PMID:11790335

  19. Toxic effects of chromium on tannery workers at Sialkot (Pakistan).

    PubMed

    Khan, Dilshad Ahmed; Mushtaq, Shahida; Khan, Farooq Ahmad; Khan, Muhammad Qaiser Alam

    2013-03-01

    Chromium is widely used in the leather industry, and tannery workers are under constant threat of adverse health effects due to its excessive exposure. Our objective was to find out the toxic effects of chromium on tannery workers at Sialkot, Pakistan. A total of 240 males consisting of 120 workers from tanneries at Sialkot and equal number of controls were included. Blood complete counts, high-sensitive C-reactive protein, malondialdehyde and routine biochemical tests were carried out by routine procedures. Chromium levels in blood (BCr) and urine were analyzed using graphite furnace atomic absorption spectrophotometer Perkin Elmer analyst-200. Results revealed that all the workers were male with average age of 33 years and 15 (13%) had skin rashes, 14 (12%) had chronic bronchitis, 10 (8%) had gastritis and 4 (3%) conjunctivitis. The tannery workers had significantly raised median (interquartile range) of BCr 569 (377-726) nmol/L as compared to 318 (245-397) nmol/L in the control (p < 0.001). Sixty-five (54%) workers had BCr levels above the upper limit set by Agency for Toxic Substance and Drug Registry. The urinary chromium excretion was significantly high in workers 131 (46-312) nmol/L as compared to 13 (3-26) nmol/L in controls (p < 0.01). The workers had hematological, hepatic and renal function impairment because of oxidative stress on body systems. It is concluded that about half of the workers had excessive exposure to chromium in the tanneries at Sialkot. They had significantly raised chromium levels in their biological fluids and adverse health effects due to enhanced oxidative stress and inflammatory changes.

  20. Effect of trifluoperazine on toxicity, HIF-1α induction and hepatocyte regeneration in acetaminophen toxicity in mice.

    PubMed

    Chaudhuri, Shubhra; McCullough, Sandra S; Hennings, Leah; Brown, Aliza T; Li, Shun-Hwa; Simpson, Pippa M; Hinson, Jack A; James, Laura P

    2012-10-15

    Oxidative stress and mitochondrial permeability transition (MPT) are important mechanisms in acetaminophen (APAP) toxicity. The MPT inhibitor trifluoperazine (TFP) reduced MPT, oxidative stress, and toxicity in freshly isolated hepatocytes treated with APAP. Since hypoxia inducible factor-one alpha (HIF-1α) is induced very early in APAP toxicity, a role for oxidative stress in the induction has been postulated. In the present study, the effect of TFP on toxicity and HIF-1α induction in B6C3F1 male mice treated with APAP was examined. Mice received TFP (10mg/kg, oral gavage) prior to APAP (200mg/kg IP) and at 7 and 36h after APAP. Measures of metabolism (hepatic glutathione and APAP protein adducts) were comparable in the two groups of mice. Toxicity was decreased in the APAP/TFP mice at 2, 4, and 8h, compared to the APAP mice. At 24 and 48h, there were no significant differences in toxicity between the two groups. TFP lowered HIF-1α induction but also reduced the expression of proliferating cell nuclear antigen, a marker of hepatocyte regeneration. TFP can also inhibit phospholipase A(2), and cytosolic and secretory PLA(2) activity levels were reduced in the APAP/TFP mice compared to the APAP mice. TFP also lowered prostaglandin E(2) expression, a known mechanism of cytoprotection. In summary, the MPT inhibitor TFP delayed the onset of toxicity and lowered HIF-1α induction in APAP treated mice. TFP also reduced PGE(2) expression and hepatocyte regeneration, likely through a mechanism involving PLA(2).

  1. [Chronic toxic effects of aluminum on nervous system in rabbits].

    PubMed

    Zhang, W Q; Xu, G S; Huang, G W

    1994-05-01

    Twenty-one male rabbits were administered with alum (aluminum potassium sulfate) for 32 weeks to study the accumulative toxic effects of aluminum in food additives on central nervous system. Results showed aluminum levels in blood and brain tissue of the animals increased significantly with intake of alum (P < 0.01). Blood zinc levels, and activities of superoxide dismutase (SOD) and monoamine oxidase B (MAO-B) correlated negatively with aluminum levels in blood and brain, and SOD activity correlated negatively to accumulative aluminum deposit and positively to lipid oxide level in brain. Pathological examinations showed lesions in gyrus centralis anterior, gyrus hippocampi and spinal cord of the animals got more severely and extensively with aluminum intake and brain aluminum content, with disarrangement of neurofilaments and neurotubule, and deformation of synaptic structures.

  2. Toxic effects of oil and dispersant on marine microalgae.

    PubMed

    Garr, Amber L; Laramore, Susan; Krebs, William

    2014-12-01

    To better understand the potential impacts of the deepwater horizon oil spill on lower trophic level food sources, a series of toxicological laboratory experiments were conducted with two microalgae species. The acute toxicity of oil (tar mat and MC252 crude oil), dispersant (Corexit 9500A), and dispersed oil on growth inhibition (IC50) and motility of Isochrysis galbana and Chaetoceros sp. were determined. There was no impact on cell division (growth) for microalgae exposed to both oil types and mean motility of I. galbana never dropped below 79 %. However, the addition of dispersant inhibited cell division and motility within 24 h, with Chaetoceros sp. being more susceptible to sublethal effects than I. galbana. These results highlight microalgae sensitivity to the use of dispersants in bioremediation processes, which may be a concern for long-term impacts on fisheries recruitment. PMID:25283369

  3. Toxic effects of chlorinated cake flour in rats.

    PubMed

    Cunningham, H M; Lawrence, G A; Tryphonas, L

    1977-05-01

    Four experiments were conducted using weanling Wistar rats to determine whether chlorinated cake flour or its constituents were toxic. Levels of 0.2 and 1.0% chlorine added to unbleached cake flour significantly (p less than 0.01) reduced growth rate by 20.7 and 85.2% and increased liver weight relative to body weight by 16.7 and 25.3%, respectively. Lipids extracted from flour chlorinated at the same levels had similar effects. Rat chow diets containing 0.2 and 0.6% chlorine in the form of chlorinated wheat gluten reduced growth rate and increased liver weight as a percentage of body weight. A rat chow diet containing 0.2% chlorine as chlorinated flour lipids increased absolute liver weight by 40%, kidney by 20%, and heart by 10% compared to pair-fed controls. PMID:864787

  4. Discrimination of excess toxicity from baseline level for ionizable compounds: Effect of pH.

    PubMed

    Li, Jin J; Zhang, Xu J; Wang, Xiao H; Wang, Shuo; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H

    2016-03-01

    The toxic effect can be affected by pH in water through affecting the degree of ionization of ionizable compounds. Wrong classification of mode of action can be made from the apparent toxicities. In this paper, the toxicity data of 61 compounds to Daphnia magna determined at three pH values were used to investigate the effect of pH on the discrimination of excess toxicity. The results show that the apparent toxicities are significantly less than the baseline level. Analysis on the effect of pH on bioconcentration factor (BCF) shows that the log BCF values are significantly over-estimated for the strongly ionizable compounds, leading to the apparent toxicities greatly less than the baseline toxicities and the toxic ratios greatly less than zero. A theoretical equation between the apparent toxicities and pH has been developed basing on the critical body residue (CBR). The apparent toxicities are non-linearly related to pH, but linearly to fraction of unionized form. The determined apparent toxicities are well fitted with the toxicities predicted by the equation. The toxicities in the unionized form calculated from the equation are close to, or greater than the baseline level for almost all the strongly ionizable compounds, which are very different from the apparent toxicities. The studied ionizable compounds can be either classified as baseline, less inert or reactive compounds in D. magna toxicity. Some ionizable compounds do not exhibit excess toxicity at a certain pH, due not to their poor reactivity with target molecules, but because of the ionization in water.

  5. Effect of species on relative toxicity of pyrolysis products

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Marcussen, W. H.; Furst, A.; Leon, H. A.

    1976-01-01

    One of the principal factors in animal toxicity studies is the choice of animal species. A limited study of the relative toxicity of the pyrolysis products from cotton and wool indicated that values of concentrations and doses required to produce death in 50% of the test animals obtained with Swiss albino mice were approximately one-half the values obtained with Sprague-Dawley rats. The toxicity of cotton relative to that of wool was the same using Swiss albino mice or Sprague-Dawley rats. Rankings of relative toxicity appear to be more sensitive to differences in apparatus and procedure than to interspecies differences.

  6. Toxic effects of butyl elastomers on aerobic methane oxidation

    NASA Astrophysics Data System (ADS)

    Niemann, Helge; Steinle, Lea I.; Blees, Jan H.; Krause, Stefan; Bussmann, Ingeborg; Lehmann, Moritz F.; Treude, Tina

    2013-04-01

    Large quantities of the potent greenhouse gas methane are liberated into the water column of marine and lacustrine environments where it may be consumed by aerobic methane oxidising bacteria before reaching the atmosphere.The reliable quantification of aerobic methane oxidation (MOx) rates is consequently of paramount importance for estimating methane budgets and to understand the controls on water column methane cycling. A widely used set of methods for measuring MOx rates is based on the incubation of water samples during which the consumption of methane is monitored, for instance with radio-tracer assays. Typically, incubation vessels are sealed with butyl rubber stoppers because these elastomers are essentially impermeable for gases at the relevant time scales. We tested the effect of different stopper materials (unmodified- and halogenated butyl rubber) on MOx activity in environmental samples and in cultures of methane oxidising bacteria. MOx rates in samples sealed with unmodified butyl rubber were > 75% lower compared to parallel incubations with halogenated butyl rubber seals, suggesting inhibiting/toxic effects associated with the use of unmodified butyl elastomers. To further explore the cause of these effects, we analysed aqueous extracts of the different stoppers. Halogenated butyl rubber stoppers appeared to bleed off comparably little amounts of organics. In stark contrast, extracts of unmodified butyl rubber were contaminated with various organic compounds including potential bactericides such as benzyltoluenes, phenylalkanes and benzuothiazoles. We also found tetramethylthiourea, a scavenger of active oxygen species, which may inhibit the MOx pathway.

  7. Effects of synergists on the metabolism and toxicity of anticholinesterases*

    PubMed Central

    Wilkinson, C. F.

    1971-01-01

    Insecticide synergists enhance insecticidal action through their ability to block the enzymatic detoxification of insecticides with which they are combined. The structure of the synergist is therefore determined by the nature of the insecticide and the critical biochemical pathway responsible for its degradation. Synergists can be broadly classified as either analogue synergists, whose structure closely resembles that of the insecticide they synergize, or inhibitors of microsomal oxidation. Metabolism of the phenyl methylcarbamates is effected largely by the microsomal enzymes. Consequently microsomal enzyme inhibitors, such as the methylenedioxyphenyl compounds, the aryloxyalkylamines, the thiocyanates, the propynyl aryl ethers, and the 1,2,3-benzothiadiazoles, are all effective carbamate synergists. The detoxification pathways of the organophosphates, however, are more complex and include hydrolysis, dealkylation, and carboxylesterase pathways as well as oxidation. Because phosphorothioates are activated by oxidation, their toxicity is often antagonized by oxidase inhibitors. The effectiveness of different synergists towards resistant strains of insects is likely to vary in a manner that reflects the critical metabolic pathway on which resistance depends. PMID:4398521

  8. Protective effect of crocin on liver toxicity induced by morphine.

    PubMed

    Salahshoor, Mohammad Reza; Khashiadeh, Mojtaba; Roshankhah, Shiva; Kakabaraei, Seyran; Jalili, Cyrus

    2016-01-01

    Crocin, a bioactive molecule of saffron can be purely isolated from the saffron extract. It has different pharmacological effects such as antioxidant and anticancer activities. Morphine is an opioid analgesic drug. It is mainly metabolized in liver and causes devastating effects. It can increase the generation of free radicals. This study was designed to evaluate the protective role of crocin against morphine-induced toxicity in the mouse liver. In this study, various doses of crocin (12.5, 25 and 50 mg/kg) and crocin plus morphine were administered interaperitoneally once daily to 48 male mice for 20 consecutive days. These mice were randomly assigned to 8 groups of 6 each. The liver weight and histology, aspartate amino transferase, alanine aminotransferase, alkaline phosphatase (ALP) and serum nitric oxide levels were studied. The results indicated that morphine administration significantly decreased liver weight and increased the mean diameter of hepatocyte, central hepatic vein diameters, liver enzyme levels, and blood serum nitric oxide level compared to saline group (P<0.05). However, crocin administration significantly boosted liver weight and decreased the mean diameter of hepatocyte, central hepatic vein, liver enzymes and nitric oxide levels in all groups compared to the group received morphine alone (P<0.05). It seems that crocin administration could protect the liver damage induced by morphine. The antioxidant effect of crocin may be a major reason for its positive impact on liver parameters. PMID:27168751

  9. Protective effect of crocin on liver toxicity induced by morphine

    PubMed Central

    Salahshoor, Mohammad Reza; khashiadeh, Mojtaba; Roshankhah, Shiva; Kakabaraei, Seyran; Jalili, Cyrus

    2016-01-01

    Crocin, a bioactive molecule of saffron can be purely isolated from the saffron extract. It has different pharmacological effects such as antioxidant and anticancer activities. Morphine is an opioid analgesic drug. It is mainly metabolized in liver and causes devastating effects. It can increase the generation of free radicals. This study was designed to evaluate the protective role of crocin against morphine-induced toxicity in the mouse liver. In this study, various doses of crocin (12.5, 25 and 50 mg/kg) and crocin plus morphine were administered interaperitoneally once daily to 48 male mice for 20 consecutive days. These mice were randomly assigned to 8 groups of 6 each. The liver weight and histology, aspartate amino transferase, alanine aminotransferase, alkaline phosphatase (ALP) and serum nitric oxide levels were studied. The results indicated that morphine administration significantly decreased liver weight and increased the mean diameter of hepatocyte, central hepatic vein diameters, liver enzyme levels, and blood serum nitric oxide level compared to saline group (P<0.05). However, crocin administration significantly boosted liver weight and decreased the mean diameter of hepatocyte, central hepatic vein, liver enzymes and nitric oxide levels in all groups compared to the group received morphine alone (P<0.05). It seems that crocin administration could protect the liver damage induced by morphine. The antioxidant effect of crocin may be a major reason for its positive impact on liver parameters. PMID:27168751

  10. Toxic effects of occupational and environmental chemicals on the testes

    SciTech Connect

    Sever, L.E.; Hessol, N.A.

    1983-01-01

    This paper examines evidence for effects of occupational chemicals on male reproduction. We consider primarily human data, and much of that from epidemiologic studies. We use animal studies to illustrate points, but the theme is the human experience. The approach is based on examining reproductive function as an indicator of toxic effects. Testicular structure and function is briefly discussed. We provide a brief review of relevant structure, function and hormonal control. We describe the anatomy of the testis and its histological structure. We then discuss the testis from the point of view of exocrine and endocrine function and the relationship of the testis to other endocrinological organs. This is followed by a review of methods for assessing human testicular function, including reproductive histories, sperm analysis, assessment of hormonal status, and histological studies. Although the primary focus is on human studies, we consider briefly general categories of chemicals shown to have a testicular effect in animal studies and also animal evidence of mechanisms of action associated with testicular toxicology. Specific chemicals shown to affect reproduction in the human male are reviewed and directions for future research in this area discussed.

  11. A brief study of toxic effects of some medicinal herbs on kidney

    PubMed Central

    Asif, Mohammad

    2012-01-01

    Increased use of complementary and alternative herbal medicines in the treatment of various diseases.Some herbal therapies may be causes of potential toxicity that may be renal toxicity caused by the ingestion of herbs. The goal of this study is the toxic and beneficial effects of medicinal herbs on renal health by which evidence for benefit or toxicity has been found. Included are nephrotoxicity from aristolochic acid and other components within herbs, herb-drug interactions, heavy metal toxicity in herbs and adulterants during careless preparation of herbal medicine, resulting in adverse renal effects and renal toxicity from contaminants within the extracts. The review aims to provide knowledge and guide to encourage future toxicity studies on the kidney by medicinal herbs. PMID:23326775

  12. Fate and toxic effects of environmental stressors: environmental control.

    PubMed

    Zhuang, Jie; Yu, Han-Qing; Henry, Theodore B; Sayler, Gary S

    2015-12-01

    The potential for toxicants to harm organisms in the environment is influenced by the physicochemistry of the substances and their environmental behaviors and transformation within ecosystems. This special issue is composed of 20 papers that report on studies which have investigated the fate and toxicity of various toxicants including engineered nanoparticles, pharmaceuticals and personal care products, antibiotics, pathogens, heavy metals, and agricultural nutrients. The environmental transformations of these substances and how these processes affect their toxicity are emphasized. This paper highlights the important findings and perspectives of the selected papers in this special edition, with an aim of providing insights into full-scale evaluation on the toxicity of various contaminants that exist in ecosystems. General suggestions are provided for the future directions of toxicological research. PMID:26497020

  13. Impact of effects of acid precipitation on toxicity of metals.

    PubMed

    Nordberg, G F; Goyer, R A; Clarkson, T W

    1985-11-01

    Acid precipitation may increase human exposure to several potentially toxic metals by increasing metal concentrations in major pathways to man, particularly food and water, and in some instances by enhancing the conversion of metal species to more toxic forms. Human exposures to methylmercury are almost entirely by way of consumption of fish and seafood. In some countries, intakes by this route may approach the levels that can give rise to adverse health effects for population groups with a high consumption of these food items. A possible increase in methylmercury concentrations in fish from lakes affected by acid precipitation may thus be of concern to selected population groups. Human exposures to lead reach levels that are near those associated with adverse health effects in certain sensitive segments of the general population in several countries. The possibility exists that increased exposures to lead may be caused by acid precipitation through a mobilization of lead from soils into crops. A route of exposure to lead that may possibly be influenced by acid precipitation is an increased deterioration of surface materials containing lead and a subsequent ingestion by small children. A similar situation with regard to uptake from food exists for cadmium (at least in some countries). Human metal exposures via drinking water may be increased by acid precipitation. Decreasing pH increases corrosiveness of water enhancing the mobilization of metal salts from soil; metallic compounds may be mobilized from minerals, which may eventually reach drinking water. Also, the dissolution of metals (Pb, Cd, Cu) from piping systems for drinking water by soft acidic waters of high corrosivity may increase metal concentrations in drinking water. Exposures have occasionally reached concentrations which are in the range where adverse health effects may be expected in otherwise healthy persons. Dissolution from piping systems can be prevented by neutralizing the water before

  14. [Toxic effects of high concentrations of ammonia on Euglena gracilis].

    PubMed

    Liu, Yan; Shi, Xiao-Rong; Cui, Yi-Bin; Li, Mei

    2013-11-01

    Ammonia is among the common contaminants in aquatic environments. The present study aimed at evaluation of the toxicity of ammonia at high concentration by detecting its effects on the growth, pigment contents, antioxidant enzyme activities, and DNA damage (comet assay) of a unicellular microalga, Euglena gracilis. Ammonia restrained the growth of E. gracilis, while at higher concentrations, ammonia showed notable inhibition effect, the growth at 2 000 mg x L(-1) was restrained to 55.7% compared with that of the control; The contents of photosynthetic pigments and protein went up with increasing ammonia dosage and decreased when the ammonia concentration was above 1000 mg x L(-1); In addition, there was an obvious increase in SOD and POD activities, at higher concentration (2 000 mg x L(-1)), activities of SOD and POD increased by 30.7% and 49.4% compared with those of the control, indicating that ammonia could promote activities of antioxidant enzymes in E. gracilis; The degree of DNA damage observed in the comet assay increased with increasing ammonia concentration, which suggested that high dose of ammonia may have potential mutagenicity on E. gracilis.

  15. Mustard gas toxicity: the acute and chronic pathological effects.

    PubMed

    Ghabili, Kamyar; Agutter, Paul S; Ghanei, Mostafa; Ansarin, Khalil; Shoja, Mohammadali M

    2010-10-01

    Ever since it was first used in armed conflict, mustard gas (sulfur mustard, MG) has been known to cause a wide range of acute and chronic injuries to exposure victims. The earliest descriptions of these injuries were published during and in the immediate aftermath of the First World War, and a further series of accounts followed the Second World War. More recently, MG has been deployed in warfare in the Middle East and this resulted in large numbers of victims, whose conditions have been studied in detail at hospitals in the region. In this review, we bring together the older and more recent clinical studies on MG toxicity and summarize what is now known about the acute and chronic effects of the agent on the eyes, skin, respiratory tract and other physiological systems. In the majority of patients, the most clinically serious long-term consequences of MG poisoning are on the respiratory system, but the effects on the skin and other systems also have a significant impact on quality of life. Aspects of the management of these patients are discussed.

  16. Nutraceutical strategies for ameliorating the toxic effects of alcohol.

    PubMed

    McCarty, Mark F

    2013-04-01

    Rodent studies reveal that oxidative stress, much of it generated via induction/activation of NADPH oxidase, is a key mediator of a number of the pathogenic effects of chronic ethanol overconsumption. The highly reactive ethanol metabolite acetaldehyde is a key driver of this oxidative stress, and doubtless works in other ways to promote alcohol-induced pathology. Effective antioxidant measure may therefore be useful for mitigating the adverse health consequences of alcohol consumption; spirulina may have particular utility in this regard, as its chief phycochemical phycocyanobilin has recently been shown to function as an inhibitor of certain NADPH oxidase complexes, mimicking the physiological role of its chemical relatives biliverdin/bilirubin in this respect. Moreover, certain nutraceuticals, including taurine, pantethine, and lipoic acid, may have the potential to boost the activity of the mitochondrial isoform of aldehyde dehydrogenase, ALDH-2, accelerating conversion of acetaldehyde to acetate (which arguably has protective health effects). Little noticed clinical studies conducted nearly three decades ago reported that pre-ingestion of either taurine or pantethine could blunt the rise in blood acetaldehyde following ethanol consumption. Other evidence suggests that lipoic acid may function within mitochondria to maintain aldehyde dehydrogenase in a reduced active conformation; the impact of this agent on ethanol metabolism has however received little or no study. Studies evaluating the impact of nutracetical strategies on prevention of hangovers - which likely are mediated by acetaldehyde - may represent a quick, low-cost way to identify nutraceutical regimens that merit further attention for their potential impact on alcohol-induced pathology. Measures which boost or preserve ALDH-2 activity may also have important antioxidant potential, as this enzyme functions physiologically to protect cells from toxic aldehydes generated by oxidant stress. PMID

  17. Effects of nanomaterial physicochemical properties on in vivo toxicity

    PubMed Central

    Aillon, Kristin L.; Xie, Yumei; El-Gendy, Nashwa; Berkland, Cory J.; Forrest, M. Laird

    2009-01-01

    It is well recognized that physical and chemical properties of materials can alter dramatically at nanoscopic scale, and the growing use of nanotechnologies requires careful assessment of unexpected toxicities and biological interactions. However, most in vivo toxicity concerns focus primarily on pulmonary, oral, and dermal exposure to ultrafine particles. As nanomaterials expand as therapeutics and as diagnostic tools, parenteral administration of engineered nanomaterials should also be recognized as a critical aspect for toxicity consideration. Due to the complex nature of nanomaterials, conflicting studies have led to different views of their safety. Here, the physicochemical properties of four representative nanomaterials (dendrimers, carbon nanotubes, quantum dots, and gold nanoparticles) as it relates to their toxicity after systemic exposure is discussed. PMID:19386275

  18. Toxic effects of the easily avoidable phthalates and parabens.

    PubMed

    Crinnion, Walter J

    2010-09-01

    Some environmental toxins like DDT and other chlorinated compounds accumulate in the body because of their fat-soluble nature. Other compounds do not stay long in the body, but still cause toxic effects during the time they are present. For serious health problems to arise, exposure to these rapidly-clearing compounds must occur on a daily basis. Two such classes of compounds are the phthalate plasticizers and parabens, both of which are used in many personal care products, some medications, and even foods and food preservation. The phthalates are commonly found in foods and household dust. Even though they have relatively short half-lives in humans, phthalates have been associated with a number of serious health problems, including infertility, testicular dysgenesis, obesity, asthma, and allergies, as well as leiomyomas and breast cancer. Parabens, which can be dermally absorbed, are present in many cosmetic products, including antiperspirants. Their estrogenicity and tissue presence are a cause for concern regarding breast cancer. Fortunately, these compounds are relatively easy to avoid and such steps can result in dramatic reductions of urinary levels of these compounds.

  19. Effects of storage time on the toxicity of sediments to freshwater benthic invertebrates

    SciTech Connect

    DeFoe, D.L.; Ankley, G.T.

    1995-12-31

    The objective of this study was to define the effects of storage time on the toxicity of a series of freshwater sediments. Sixteen sediments with varying types of contaminants (metals, pesticides, PCBs, ammonia) were collected, held at 4 C, and periodically tested for toxicity to the amphipod Hyalella azteca and the midge Chironomus tentans for storage times ranging from 8.5 to 25 months. The sediments ranged from nontoxic to extremely toxic (100% mortality) in 10-d assays with both species, with the majority of samples displaying an intermediate degree of toxicity (e.g., partial kills, reduced growth). Toxicity of sediments causing total mortality of organisms in 10-d was quantified through the determination of LT50 (lethal time to 50% mortality) assays, in addition to the standard 10-d tests. Toxicity of nearly all the samples did not vary significantly with storage time; in those instances when toxicity did change, the same relative conclusions concerning sample toxicity generally would have been made regardless of when they were tested (e.g., toxic samples did not become non-toxic). This data suggests that current guidelines concerning sediment storage times (e.g., 0--8 weeks) may be overly restrictive, at least with respect to toxicity testing. The results also suggested that some test variability inherent in whole sediment assays can actually be reduced by short term storage. That is, among replicates, variability appeared to decrease with increasing storage time.

  20. Species Differences in Microsomal Oxidation and Glucuronidation of 4-Ipomeanol: Relationship to Target Organ Toxicity.

    PubMed

    Parkinson, Oliver T; Teitelbaum, Aaron M; Whittington, Dale; Kelly, Edward J; Rettie, Allan E

    2016-10-01

    4-Ipomeanol (IPO) is a model pulmonary toxicant that undergoes P450-mediated metabolism to reactive electrophilic intermediates that bind to tissue macromolecules and can be trapped in vitro as the NAC/NAL adduct. Pronounced species and tissue differences in IPO toxicity are well documented, as is the enzymological component of phase I bioactivation. However, IPO also undergoes phase II glucuronidation, which may compete with bioactivation in target tissues. To better understand the organ toxicity of IPO, we synthesized IPO-glucuronide and developed a new quantitative mass spectrometry-based assay for IPO glucuronidation. Microsomal rates of glucuronidation and P450-dependent NAC/NAL adduct formation were compared in lung, kidney, and liver microsomes from seven species with different target organ toxicities to IPO. Bioactivation rates were highest in pulmonary and renal microsomes from all animal species (except dog) known to be highly susceptible to the extrahepatic toxicities induced by IPO. In a complementary fashion, pulmonary and renal IPO glucuronidation rates were uniformly low in all experimental animals and primates, but hepatic glucuronidation rates were high, as expected. Therefore, with the exception of the dog, the balance between microsomal NAC/NAL adduct and glucuronide formation correlate well with the risk for IPO-induced pulmonary, renal, and hepatic toxicities across species. PMID:27468999

  1. Species Differences in Microsomal Oxidation and Glucuronidation of 4-Ipomeanol: Relationship to Target Organ Toxicity.

    PubMed

    Parkinson, Oliver T; Teitelbaum, Aaron M; Whittington, Dale; Kelly, Edward J; Rettie, Allan E

    2016-10-01

    4-Ipomeanol (IPO) is a model pulmonary toxicant that undergoes P450-mediated metabolism to reactive electrophilic intermediates that bind to tissue macromolecules and can be trapped in vitro as the NAC/NAL adduct. Pronounced species and tissue differences in IPO toxicity are well documented, as is the enzymological component of phase I bioactivation. However, IPO also undergoes phase II glucuronidation, which may compete with bioactivation in target tissues. To better understand the organ toxicity of IPO, we synthesized IPO-glucuronide and developed a new quantitative mass spectrometry-based assay for IPO glucuronidation. Microsomal rates of glucuronidation and P450-dependent NAC/NAL adduct formation were compared in lung, kidney, and liver microsomes from seven species with different target organ toxicities to IPO. Bioactivation rates were highest in pulmonary and renal microsomes from all animal species (except dog) known to be highly susceptible to the extrahepatic toxicities induced by IPO. In a complementary fashion, pulmonary and renal IPO glucuronidation rates were uniformly low in all experimental animals and primates, but hepatic glucuronidation rates were high, as expected. Therefore, with the exception of the dog, the balance between microsomal NAC/NAL adduct and glucuronide formation correlate well with the risk for IPO-induced pulmonary, renal, and hepatic toxicities across species.

  2. Effects of chronic toxicity on threshold food concentrations

    SciTech Connect

    Cecchine, G.A.; Snell, T.W.

    1995-12-31

    Food shortage and toxicant stress have been proposed separately as structuring factors for zooplankton communities. How these factors interact to affect zooplankton remains poorly understood. The amount of food ingested by filter feeders depends upon food concentration, and a threshold concentration exists below which population growth is zero. A standard 2-d population growth test was used to determine whether toxicant stress altered the food threshold of the freshwater rotifer Brachionus calyciflorus. Threshold toxicant concentrations resulting in zero population growth rate and the NOEC were also compared at starving and abundant food conditions. Nutritional requirements were related to toxic exposure. For example, the threshold concentration of sodium pentachlorophenate (PCP) was 1.5 times lower at low food concentrations (0.3 million Nannochloris cells per milliliter) than at high food concentrations (3 million cells/ml). These results indicate that both factors must be considered in the validation of standard toxicity tests and their extrapolation to field conditions for ecologically meaningful predictions of toxicity.

  3. Developmental Toxicity

    EPA Science Inventory

    This chapter provides an overview the developmental toxicity resulting from exposure to perfluorinated alkyl acids (PFAAs). The majority of studies of PFAA-induced developmental toxicity have examined effects of perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) a...

  4. Toxic effect of the roasted and unroasted beans of Cassia occidentalis in goats.

    PubMed

    Suliman, H B; Shommein, A M

    1986-02-01

    The toxic effects of roasted and unroasted beans of the wild coffee, C occidentalis were compared. Both types of beans intoxicated goats in varying degrees, but roasting partially reduced the toxic effects of the beans. Histopathological, biochemical and enzyme histochemical studies showed that the toxin of C occidentalis damages the liver, vascular system, heart, and lungs.

  5. Toxic substances: Effects on fish. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning the biochemical and physiological effects of toxic substances on fish populations. Particular emphasis is placed upon using fish as an indicator of pollution in aquatic ecosystems. Toxicity effects of mercury, zinc, calcium chloride, sodium chloride, lead, cadmium, copper, and aluminum in freshwater and seawater fish are included. (Contains 250 citations and includes a subject term index and title list.)

  6. Effects of a Community Toxic Release on the Psychological Status of Children

    ERIC Educational Resources Information Center

    Greve, Kevin W.; Bianchini, Kevin J.; Stickle, Timothy R.; Love, Jeffrey M.; Doane, Bridget M.; Thompson, Matthew D.

    2007-01-01

    This study sought to determine the emotional effects of a major community toxic release on children in the exposed community while controlling for the potential effects of response bias. Controlling for the response bias inherent in litigated contexts is an advance over previous studies of toxic exposure in children. A randomly selected…

  7. Effect of heating rate on toxicity of pyrolysis gases from some synthetic polymers

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Soriano, J. A.; Kosola, K. L.

    1977-01-01

    The effect of heating rate on the toxicity of the pyrolysis gases from some synthetic polymers was investigate, using a screening test method. The synthetic polymers were polyethylene, polystyrene, polymethyl methacrylate, polycarbonate, ABS, polyaryl sulfone, polyether sulfone, and polyphenylene sulfide. The toxicants from the sulfur-containing polymers appeared to act more rapidly than the toxicants from the other polymers. It is not known whether this effect is due primarily to differences in concentration or in the nature of the toxicants. The carbon monoxide concentrations found do not account for the observed results.

  8. Effects of Diphenyl Diselenide on Methylmercury Toxicity in Rats

    PubMed Central

    Dalla Corte, Cristiane L.; Wagner, Caroline; Sudati, Jéssie H.; Comparsi, Bruna; Leite, Gerlania O.; Busanello, Alcindo; Soares, Félix A. A.; Aschner, Michael; Rocha, João B. T.

    2013-01-01

    This study investigates the efficacy of diphenyl diselenide [(PhSe)2] in attenuating methylmercury- (MeHg-)induced toxicity in rats. Adult rats were treated with MeHg [5 mg/kg/day, intragastrically (i.g.)] and/ or (PhSe)2 [1 mg/kg/day, intraperitoneally (i.p.)] for 21 days. Body weight gain and motor deficits were evaluated prior to treatment, on treatment days 11 and 21. In addition, hepatic and cerebral mitochondrial function (reactive oxygen species (ROS) formation, total and nonprotein thiol levels, membrane potential (ΔΨm), metabolic function, and swelling), hepatic, cerebral, and muscular mercury levels, and hepatic, cerebral, and renal thioredoxin reductase (TrxR) activity were evaluated. MeHg caused hepatic and cerebral mitochondrial dysfunction and inhibited TrxR activity in liver (38,9%), brain (64,3%), and kidney (73,8%). Cotreatment with (PhSe)2 protected hepatic and cerebral mitochondrial thiols from depletion by MeHg but failed to completely reverse MeHg's effect on hepatic and cerebral mitochondrial dysfunction or hepatic, cerebral, and renal inhibition of TrxR activity. Additionally, the cotreatment with (PhSe)2 increased Hg accumulation in the liver (50,5%) and brain (49,4%) and increased the MeHg-induced motor deficits and body-weight loss. In conclusion, these results indicate that (PhSe)2 can increase Hg body burden as well as the neurotoxic effects induced by MeHg exposure in rats. PMID:24459674

  9. Effects of sulfur nutritional level on cadmium toxicity in barley

    SciTech Connect

    Chen, Yichang; Huerta, A.J. )

    1993-05-01

    The effects of S levels on Cd toxicity were studied in barley (Hordeum vulgare L.cv.UC 476). Barley was grown hydroponically in half-strength Hoagland's solution containing either 100% or 10% S in a growth chamber at constant 20 C, 290 umole M[sup [minus]2] s[sup [minus]1] light intensity, and a 16/18 hour light/dark period. Five days after the first true leaf appeared, 15 uM Cd was added to the nutrient solutions where appropriate. At 14 days after beginning of Cd treatment, plants were analyzed for photosynthetic characteristics. The photosynthetic characteristics measured were CO[sub 2] response curves (measured with a LICOR 6200 portable photosynthesis system), and fluorescence measurement system. At 21 days they were analyzed for morphological and biomass measurements. The CO[sub 2] response curves for leaves of plants treated with 10% S did not significantly differ from those of plants treated with 100% S. Treatment with Cd significantly reduced the CO[sup 2] saturated rates of photosynthesis and the reduction was more significant in the 10% S than in the 100% S plants. Photochemical efficiency of PSII (FV/FM) and fluorescence quenching capacity (FQ) were not affected by 10% S as compared to 100% S treatment. Interestingly, treatment with Cd significantly increased both FV/FM and FQ as compared to control., However, S level had no effect on the fluorescence parameters of Cd-treated plants. Leaf and root length, leaf area, root and shoot dry weight were only slightly affected (increased or decreased) by 10% S as compared to 100% S but very significantly reduced by treatment with Cd. Our results agree with the previous reports which show that S (an important component of glutathione and phytochelatins which are low molecular weight Cd binding proteins), is important in regulating Cd detoxification in plants. However, we are continuing to conduct experiments as even lower S concentrations and different Cd concentrations.

  10. Effect of pyrolysis temperature and air flow on toxicity of gases from a polycarbonate polymer

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brick, V. E.; Brauer, D. P.

    1978-01-01

    A polycarbonate polymer was evaluated for toxicity of pyrolysis gases generated at various temperatures without forced air flow and with 1 L/min air flow, using the toxicity screening test method developed at the University of San Francisco. Time to various animal responses decreased with increasing pyrolysis temperature over the range from 500 C to 800 C. There appeared to be no significant toxic effects at 400 C and lower temperatures.

  11. Towards the prevention of potential aluminum toxic effects and an effective treatment for Alzheimer's disease.

    PubMed

    Percy, Maire E; Kruck, Theo P A; Pogue, Aileen I; Lukiw, Walter J

    2011-11-01

    In 1991, treatment with low dose intramuscular desferrioxamine (DFO), a trivalent chelator that can remove excessive iron and/or aluminum from the body, was reported to slow the progression of Alzheimer's disease (AD) by a factor of two. Twenty years later this promising trial has not been followed up and why this treatment worked still is not clear. In this critical interdisciplinary review, we provide an overview of the complexities of AD and involvement of metal ions, and revisit the neglected DFO trial. We discuss research done by us and others that is helping to explain involvement of metal ion catalyzed production of reactive oxygen species in the pathogenesis of AD, and emerging strategies for inhibition of metal-ion toxicity. Highlighted are insights to be considered in the quests to prevent potentially toxic effects of aluminum toxicity and prevention and intervention in AD.

  12. Effects of storage time on the toxicity of sediments to freshwater benthic invertebrates

    SciTech Connect

    DeFoe, D.L.; Ankley, G.T.

    1994-12-31

    Current guidance concerning recommended storage times for sediments to be subjected to toxicity tests has been based largely on limited studies with a small number of samples. The objective of this study was to better define the effects of storage time on the toxicity of a series of freshwater sediments. Eighteen sediments with varying types of contaminants (metals, pesticides, PCBs, ammonia) were collected, held at 4 C, and periodically tested for toxicity to the amphipod Hyalella azteca and the midge Chironomus tentans for storage times ranging from 4 to 16 months. The sediments ranged from non-toxic to, extremely toxic (100% mortality) in 10-d assays with both species, with the majority of samples displaying an intermediate degree of toxicity. Toxicity of most of the samples did not vary significantly with storage time; in those instances when toxicity did change, the same relative conclusions concerning sample toxicity generally would have been made regardless of when they were tested. Their data suggest that current guidelines concerning sediment storage times may be overly restrictive, at least with respect toxicity testing.

  13. Effects-driven chemical fractionation of heavy fuel oil to isolate compounds toxic to trout embryos.

    PubMed

    Bornstein, Jason M; Adams, Julie; Hollebone, Bruce; King, Thomas; Hodson, Peter V; Brown, R Stephen

    2014-04-01

    Heavy fuel oil (HFO) spills account for approximately 60% of ship-source oil spills and are up to 50 times more toxic than medium and light crude oils. Heavy fuel oils contain elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and alkyl-PAHs, known to be toxic to fish; however, little direct characterization of HFO toxicity has been reported. An effects-driven chemical fractionation was conducted on HFO 7102 to separate compounds with similar chemical and physical properties, including toxicity, to isolate the groups of compounds most toxic to trout embryos. After each separation, toxicity tests directed the next phase of fractionation, and gas chromatography-mass spectrometry analysis correlated composition with toxicity, with a focus on PAHs. Low-temperature vacuum distillation permitted the separation of HFO into 3 fractions based on boiling point ranges. The most toxic of these fractions underwent wax precipitation to remove long-chain n-alkanes. The remaining PAH-rich extract was further separated using open column chromatography, which provided distinct fractions that were grouped according to increasing aromatic ring count. The most toxic of these fractions was richest in PAHs and alkyl-PAHs. The results of the present study were consistent with previous crude oil studies that identified PAH-rich fractions as the most toxic. PMID:24375845

  14. Effects-driven chemical fractionation of heavy fuel oil to isolate compounds toxic to trout embryos.

    PubMed

    Bornstein, Jason M; Adams, Julie; Hollebone, Bruce; King, Thomas; Hodson, Peter V; Brown, R Stephen

    2014-04-01

    Heavy fuel oil (HFO) spills account for approximately 60% of ship-source oil spills and are up to 50 times more toxic than medium and light crude oils. Heavy fuel oils contain elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and alkyl-PAHs, known to be toxic to fish; however, little direct characterization of HFO toxicity has been reported. An effects-driven chemical fractionation was conducted on HFO 7102 to separate compounds with similar chemical and physical properties, including toxicity, to isolate the groups of compounds most toxic to trout embryos. After each separation, toxicity tests directed the next phase of fractionation, and gas chromatography-mass spectrometry analysis correlated composition with toxicity, with a focus on PAHs. Low-temperature vacuum distillation permitted the separation of HFO into 3 fractions based on boiling point ranges. The most toxic of these fractions underwent wax precipitation to remove long-chain n-alkanes. The remaining PAH-rich extract was further separated using open column chromatography, which provided distinct fractions that were grouped according to increasing aromatic ring count. The most toxic of these fractions was richest in PAHs and alkyl-PAHs. The results of the present study were consistent with previous crude oil studies that identified PAH-rich fractions as the most toxic.

  15. Effects of toxic metals and chemicals on biofilm and biocorrosion.

    PubMed

    Fang, Herbert H P; Xu, Li-Chong; Chan, Kwong-Yu

    2002-11-01

    Microbes in marine biofilms aggregated into clusters and increased the production of extracellular polymeric substances (EPS), by over 100% in some cases, when the seawater media containing toxic metals and chemicals, such as Cd(II), Cu(II), Pb(II), Zn(II), AI(III), Cr(III), glutaraldehyde, and phenol. The formation of microbial cluster and the increased production of EPS, which contained 84-92% proteins and 8-16% polysaccharides, accelerated the corrosion of the mild steel. However, there was no quantitative relationship between the degree of increased corrosion and the toxicity of metals/chemicals towards sulfate-reducing bacteria, or the increased EPS production.

  16. Toxicity assessment in marine sediment for the Terra Nova environmental effects monitoring program (1997-2010)

    NASA Astrophysics Data System (ADS)

    Whiteway, Sandra A.; Paine, Michael D.; Wells, Trudy A.; DeBlois, Elisabeth M.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Janes, G. Gregory

    2014-12-01

    This paper discusses toxicity test results on sediments from the Terra Nova offshore oil development. The Terra Nova Field is located on the Grand Banks approximately 350 km southeast of Newfoundland (Canada). The amphipod (Rhepoxynius abronius) survival and solid phase luminescent bacteria (Vibrio fischeri, or Microtox) assays were conducted on sediment samples collected from approximately 50 stations per program year around Terra Nova during baseline (1997), prior to drilling, and in 2000, 2001, 2002, 2004, 2006, 2008 and 2010 after drilling began. The frequency of toxic responses in the amphipod toxicity test was low. Of the ten stations that were toxic in environmental effects monitoring (EEM) years, only one (station 30(FE)) was toxic in more than one year and could be directly attributed to Terra Nova project activities. In contrast, 65 (18%) of 364 EEM samples were toxic to Microtox. Microtox toxicity in EEM years was not related to distance from Terra Nova drill centres or concentrations of >C10-C21 hydrocarbons or barium, the primary constituents of the synthetic-based drill muds used at Terra Nova. Of the variables tested, fines and strontium levels showed the strongest (positive) correlations with toxicity. Neither fines nor strontium levels were affected by drill cuttings discharge at Terra Nova, except at station 30(FE) (and that station was not toxic to Microtox). Benthic macro-invertebrate abundance, richness and diversity were greater in toxic than in non-toxic sediments. Therefore, Microtox responses indicating toxicity were associated with positive biological responses in the field. This result may have been an indirect function of the increased abundance of most invertebrate taxa in less sandy sediments with higher gravel content, where fines and strontium levels and, consequently, toxicity to Microtox were high; or chemical substances released by biodegradation of organic matter, where invertebrates are abundant, may be toxic to Microtox. Given

  17. How might selenium moderate the toxic effects of mercury in stream fish of the Western USA?

    EPA Science Inventory

    The ability of selenium (Se) to moderate mercury (Hg) toxicity is well established in the literature. Mercury exposures that might otherwise produce toxic effects are counteracted by Se, particularly when Se:Hg molar ratios approach or exceed 1. We analyzed whole body Se and Hg c...

  18. Considerations for Incorporating Bioavailability in Effect-Directed Analysis and Toxicity Identification Evaluation.

    EPA Science Inventory

    In order to avoid a bias toward highly toxic but poorly bioavailable compounds in the effect-directed analysis (EDA) of soils and sediments, approaches are discussed to consider bioavailability in EDA procedures. In parallel, complimentary approaches for making toxicity identific...

  19. Photocatalytic degradation of the antibiotic chloramphenicol and effluent toxicity effects.

    PubMed

    Lofrano, Giusy; Libralato, Giovanni; Adinolfi, Roberta; Siciliano, Antonietta; Iannece, Patrizia; Guida, Marco; Giugni, Maurizio; Volpi Ghirardini, Annamaria; Carotenuto, Maurizio

    2016-01-01

    Chloramphenicol sodium succinate (CAP, C15H15Cl2N2 Na2O8) is a broad-spectrum antibiotic exhibiting activity against both Gram-positive and Gram-negative bacteria as well as other groups of microorganisms only partially removed by conventional activated sludge wastewater treatment plants. Thus, CAP and its metabolites can be found in effluents. The present work deals with the photocatalytic degradation of CAP using TiO2 as photocatalyst. We investigated the optimization of reaction contact time and concentration of TiO2 considering CAP and its by-products removal as well as effluent ecotoxicity elimination. Considering a CAP real concentration of 25mgL(-1), kinetic degradation curves were determined at 0.1, 0.2, 0.4, 0.8, 1.6 and 3.2gL(-1) TiO2 after 5, 10, 30, 60 and 120min reaction time. Treated samples were checked for the presence of by-products and residual toxicity (V. fischeri, P. subcapitata, L. sativum and D. magna). Results evidenced that the best combination for CAP and its by-products removal could be set at 1.6gL(-1) of TiO2 for 120min with an average residual toxicity of approximately 10%, that is the threshold set for negative controls in most toxicity tests for blank and general toxicity test acceptability.

  20. POREWATER CHEMISTRY: EFFECTS OF SAMPLING, STORAGE, HANDLING, AND TOXICITY TESTING

    EPA Science Inventory

    As a general principle, it is nearly impossible to remove a porewater sample from sediment, use it in a toxicity testing vessel with test organisms, and prevent changes in the chemistry of the natural and anthropogenic organic and inorganic constituents. The degree of change in t...

  1. Individual and combined toxic effects of herbicide atrazine and three insecticides on the earthworm, Eisenia fetida.

    PubMed

    Wang, Yanhua; An, Xuehua; Shen, Weifeng; Chen, Liezhong; Jiang, Jinhua; Wang, Qiang; Cai, Leiming

    2016-07-01

    In the present study, we evaluated the individual and combined toxic effects of herbicide atrazine and three insecticides (chlorpyrifos, lambda-cyhalothrin and imidacloprid) on the earthworm, Eisenia fetida. Results from 48-h filter paper test indicated that imidacloprid had the highest toxicity to E. fetida with an LC50 of 0.05 (0.041-0.058) μg a.i. cm(-2), followed by lambda-cyhalothrin and atrazine with LC50 values ranging from 4.89 (3.52-6.38) to 4.93 (3.76-6.35) μg a.i. cm(-2), while chlorpyrifos had the least toxicity to the worms with an LC50 of 31.18 (16.22-52.85) μg a.i. cm(-2). Results from 14-days soil toxicity test showed a different pattern of toxicity except that imidacloprid was the most toxic even under the soil toxicity bioassay system. The acute toxicity of atrazine was significantly higher than that of chlorpyrifos. In contrast, lambda-cyhalothrin was the least toxic to the animals under the soil toxicity bioassay system. The binary mixture of atrazine-lambda-cyhalothrin and ternary mixture of atrazine-chlorpyrifos-lambda-cyhalothrin displayed a significant synergistic effect on the earthworms under the soil toxicity bioassay. Our findings would help regulatory authorities understand the complexity of effects from pesticide mixtures on non-target organisms and provide useful information of the interaction of various pesticide classes detected in natural environment. PMID:27068296

  2. Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: a Delphi consensus.

    PubMed

    Schmiegelow, Kjeld; Attarbaschi, Andishe; Barzilai, Shlomit; Escherich, Gabriele; Frandsen, Thomas Leth; Halsey, Christina; Hough, Rachael; Jeha, Sima; Kato, Motohiro; Liang, Der-Cherng; Mikkelsen, Torben Stamm; Möricke, Anja; Niinimäki, Riitta; Piette, Caroline; Putti, Maria Caterina; Raetz, Elizabeth; Silverman, Lewis B; Skinner, Roderick; Tuckuviene, Ruta; van der Sluis, Inge; Zapotocka, Ester

    2016-06-01

    Although there are high survival rates for children with acute lymphoblastic leukaemia, their outcome is often counterbalanced by the burden of toxic effects. This is because reported frequencies vary widely across studies, partly because of diverse definitions of toxic effects. Using the Delphi method, 15 international childhood acute lymphoblastic leukaemia study groups assessed acute lymphoblastic leukaemia protocols to address toxic effects that were to be considered by the Ponte di Legno working group. 14 acute toxic effects (hypersensitivity to asparaginase, hyperlipidaemia, osteonecrosis, asparaginase-associated pancreatitis, arterial hypertension, posterior reversible encephalopathy syndrome, seizures, depressed level of consciousness, methotrexate-related stroke-like syndrome, peripheral neuropathy, high-dose methotrexate-related nephrotoxicity, sinusoidal obstructive syndrome, thromboembolism, and Pneumocystis jirovecii pneumonia) that are serious but too rare to be addressed comprehensively within any single group, or are deemed to need consensus definitions for reliable incidence comparisons, were selected for assessment. Our results showed that none of the protocols addressed all 14 toxic effects, that no two protocols shared identical definitions of all toxic effects, and that no toxic effect definition was shared by all protocols. Using the Delphi method over three face-to-face plenary meetings, consensus definitions were obtained for all 14 toxic effects. In the overall assessment of outcome of acute lymphoblastic leukaemia treatment, these expert opinion-based definitions will allow reliable comparisons of frequencies and severities of acute toxic effects across treatment protocols, and facilitate international research on cause, guidelines for treatment adaptation, preventive strategies, and development of consensus algorithms for reporting on acute lymphoblastic leukaemia treatment. PMID:27299279

  3. Effects of dissolved organic matter on toxicity and bioavailability of copper for lettuce sprouts.

    PubMed

    Inaba, Shoko; Takenaka, Chisato

    2005-05-01

    It is well known that dissolved organic matter in soil solution may affect the toxicity or bioavailability of heavy metals to plants, but existing information on various organic substances is insufficient for treating problems with heavy metal-contaminated soils. To clarify how dissolved organic matter alters the toxicity and bioavailability of metals, we germinated lettuce seeds exposed to solutions containing Cu and several kinds of dissolved organic matters. Low molecular weight organic acids (citric, malic, and oxalic acids) increased the toxicity and bioavailability of Cu, but low concentrations of the synthetic chelators ethylenediamine tetra-acetic acid (EDTA) and diethylenetriamine penta-acetic acid (DTPA) decreased the toxicity and bioavailability of Cu. In contrast, humic acid appeared to be the most effective organic substance for detoxifying Cu, even though it did not significantly decrease the bioavailability of Cu. Consequently, the bioavailability and toxic effects of Cu in soil depend on the nature of coexisting organic substances in the soil solution.

  4. Methods for nanoparticle labeling of ricin and effect on toxicity

    NASA Astrophysics Data System (ADS)

    Wark, Alastair W.; Yu, Jun; Lindsay, Christopher D.; Nativo, Paola; Graham, Duncan

    2009-09-01

    The unique optical properties associated with nanostructured materials that support the excitation of surface plasmons offer many new opportunities for the enhanced optical investigation of biological materials that pose a security threat. In particular, ricin is considered a significant bioterrorism risk due to its high toxicity combined with its ready availability as a byproduct in castor oil production. Therefore, the development of optical techniques capable of rapid on-site toxin detection with high molecular specificity and sensitivity continues to be of significant importance. Furthermore, understanding of the ricin cell entry and intracellular pathways remains poor due to a lack of suitable bioanalytical techniques. Initial work aimed at simultaneously tackling both these issues is described where different approaches for the nanoparticle labeling of ricin are investigated along with changes in ricin toxicity associated with the labeling process.

  5. Effects of toxicants on community metabolism in pools

    USGS Publications Warehouse

    Whitworth, Walter R.; Lane, Thomas H.

    1969-01-01

    Estimates of community metabolism of simulated natural environments were dcrivcd by diel oxygen techniques over a period of nine months. During this time, toxicants were added to some of the pools. "Natural" environmental factors and toxicants that did not affect the communities (0.02 mg/liter p,p' DDT; 0.1 mg/liter antimycin A; and 9.2 mg/liter KMnO,I) usually resulted in simultaneous changes, up or down, in both community photosynthesis and respiration. Concentrations (mg/liter) of 0.9 and 2.6 formalin, 10.0 nigrosine black, 10.0 and 2.0 malachite green, 0.1 Diquat, and 0,.5 and 5.0 CUSO.~ usually tlcprcsscd community oxygen production and increased community respiration for periods of 1 to 20 weeks.

  6. Effect of culture medium on toxic effect of ZnO nanoparticles to freshwater microalgae

    NASA Astrophysics Data System (ADS)

    Aravantinou, Andriana F.; Tsarpali, Vasiliki; Dailianis, Stefanos; Manariotis, Ioannis D.

    2014-05-01

    The widely use of nanoparticles (NPs) in many products, is increasing over time. The release of NPs into the environment may affect ecosystems, and therefore it is essential to study their impact on aquatic organisms. The aim of this work was to investigate the effect of zinc oxide (ZnO) NPs on microalgae, cultured in different mediums. Chlorococcum sp. and Scenedesmus rubescens were used as freshwater microalgae model species in order to investigate the toxic effects of ZnO NPs. Microalgae species exposed to ZnO NPs concentrations varying from 0.081 to 810 mg/L for different periods of time (24 to 96 h) and two different culture mediums. The aggregation level and particle size distribution of NPs were also determined during the experiments. The experimental results revealed significant differences on algae growth rates depending on the selected culture medium. Specifically, the toxic effect of ZnO NPs in Chlorococcum sp. was higher in cultures with 1/3N BG-11 medium than in BBM medium, despite the fact that the dissolved zinc concentration was higher in BBM medium. On the other hand, Scenedesmus rubescens exhibited the exact opposite behavior, with the highest toxic effect in cultures with BBM medium. Both species growth was significantly affected by the exposure time, the NPs concentrations, and mainly the culture medium.

  7. Periphyton photosynthesis as an indicator of effluent toxicity: Relationship to effects on animal test species

    SciTech Connect

    Lewis, M.A.

    1992-01-01

    The use of freshwater and marine plants in effluent toxicity evaluations is uncommon despite the presence of test methods and recommendations for their use. It has been assumed that aquatic plants are less sensitive than animal test species and consequently, results from toxicity tests with invertebrates and fish have been used often as a surrogate data base. The study evaluated the ability of these animal toxicity tests to provide safe concentrations for in-stream periphyton. The toxicity of several samples of a treated municipal effluent were determined during a five-month period by monitoring short-term changes in periphyton photosynthesis (carbon-14 uptake) and by observing the effects on young production and survival of cultured daphnids and the fathead minnow. The effect levels from the various tests were compared. The effluent was seldom acutely toxic to Daphnia magna and the fathead minnow (Pimephales promelas) but it was consistently acutely and chronically toxic to Ceriodaphnia dubia. Chronic effect levels ranged between 17 and 71% effluent. Significant inhibition and stimulation of periphyton photosynthesis occurred at concentrations of 6 to 39% effluent. Periphyton photosynthesis was a more sensitive effect parameter than animal survival and in some cases than Ceriodaphnia reproductive performance. The results indicate that effluent toxicity tests conducted routinely with daphnids and fish may not be sufficient to predict effects on indigenous flora in receiving waters.

  8. Methods for estimating cleaning effectiveness, dispersion, and toxicity of shoreline cleaning agents at oil spills

    SciTech Connect

    Stransky, B.C.; Clayton, J.R. Jr.; Schwartz, M.J.; Snyder, B.J.; Lees, D.C.; Adkins, A.C.; Reilly, T.J.; Michel, J.

    1995-12-31

    Chemical shoreline cleaning agents (SCAs) are designed to enhance removal of stranded oil from shoreline surfaces. However, difficulties associated with estimating cleaning effectiveness and toxicity of SCAs for site-specific conditions make it desirable to perform measurements in the field with onsite oil, substrates, and resident or otherwise appropriate test organisms. Information for onsite testing should address the following questions: (1) does use of an SCA promote removal of oil from substate surfaces; (2) does use of an SCA increase the amount of dispersed oil in the water column; (3) does toxicity for resident organisms indicate a likelihood for adverse effects; (4) does toxicity with a portable test organism indicate a likelihood for adverse effects? Methodologies are described for use in a portable kit to estimate quantitative and qualitative information for cleaning effectiveness, dispersion of oil, and toxicity of SCAs in the field. Toxicity methodologies for resident organisms include echinoderm fertilization, byssal thread attachment for mussels, and righting/water-escaping ability for periwinkle snails. Microtox{trademark} is used for toxicity measurements as a portable test organism/assay. Use of portable methodologies for assessing cleaning effectiveness, dispersion of oil, and toxicity of SCAs in the field can assist onsite evaluations for cleaning performance and relative risk to biological resources, which are important for supporting use-no use decisions for SCAs.

  9. Effects of storage on sediment toxicity, bioaccumulation potential, and chemistry. Final report

    SciTech Connect

    Tatem, H.E.; Brandon, D.L.; Lee, C.R.; Jarvis, A.S.; Rhett, R.G.

    1991-01-01

    Current guidance on storage of sediments for bioassay/bioaccumulation tests requires that samples be held at 4 C and used within 2 weeks of collection. The objective of this study was to determine the effects of sediment storage for 40 weeks on sediment toxicity, bioaccumulation potential, and chemical analyses. Toxicity and bioaccumulation tests were conducted five times during 40 weeks of storage. Chemical analyses were performed three times during this period. The data indicate that sediments can be held for longer than 2 to 4 weeks, in many cases, without significant effect on test results. However, results of the study also show that tests performed at different times can produce different results. This study showed that a sediment that was toxic to mysids remained toxic during 16 weeks of sediment storage. Two sediments that were toxic initially continued to show significant toxicity after 8 and 16 weeks of sediment storage. One sediment, not toxic initially or at 4 weeks, changed during storage, becoming significantly toxic compared to the Atlantic Ocean (Ref) sediment. The bioaccumulation results showed that certain sediment contaminants (lead, mercury, polychlorinated biphenyls, and some polycyclic aromatic hydrocarbons, PAHs), generally do not reveal a statistical change in bioaccumulation, relative to Ref animals, during 16 weeks of sediment storage. Other PAHs, including phenanthrene, anthracene, benzo (a) anthracene, and chrysene, did change in bioaccumulation potential during storage.

  10. Effects of water temperature on the toxicity of chemicals to aquatic organisms

    SciTech Connect

    Mayer, F.; Brecken-Folse, J.; Howe, G.; Linton, T.

    1995-12-31

    Water temperatures fluctuate regularly in aquatic environments, producing physiological and ecological changes in resident biota. Temperature has been recognized as a critical factor affecting the toxicity of chemicals by altering the physiological condition of the biota and the interactions between organisms and toxicants. Temperature significantly affects respiration rates, chemical absorption, and chemical detoxification and excretion. Acute toxicity of most chemicals to aquatic organisms is positively correlated with temperature; however, the toxicity of some chemicals is negatively correlated with or not affected by temperature. Regression slopes of toxicity appear consistent among species within a chemical for temperature, indicating chemical rather than biological differences in toxicity. Temperature may not affect acute toxicity per se, but does affect bioavailability and, therefore, exposure. Octanol/water partition coefficients are altered by temperature and could replace some biological testing since the partition coefficient-acute toxicity relationship has been well established. Temperature may only alter the rate of intoxication in chronic exposures no-effect concentrations do not appear to be affected by temperature; only the time required to attain the same no-effect concentration varies.

  11. Toxicity of CeO2 nanoparticles - the effect of nanoparticle properties.

    PubMed

    Leung, Yu Hang; Yung, Mana M N; Ng, Alan M C; Ma, Angel P Y; Wong, Stella W Y; Chan, Charis M N; Ng, Yip Hang; Djurišić, Aleksandra B; Guo, Muyao; Wong, Mabel Ting; Leung, Frederick C C; Chan, Wai Kin; Leung, Kenneth M Y; Lee, Hung Kay

    2015-04-01

    Conflicting reports on the toxicity of CeO2 nanomaterials have been published in recent years, with some studies finding CeO2 nanoparticles to be toxic, while others found it to have protective effects against oxidative stress. To investigate the possible reasons for this, we have performed a comprehensive study on the physical and chemical properties of nanosized CeO2 from three different suppliers as well as CeO2 synthesized by us, and tested their toxicity. For toxicity tests, we have studied the effects of CeO2 nanoparticles on a Gram-negative bacterium Escherichia coli in the dark, under ambient and UV illuminations. We have also performed toxicity tests on the marine diatom Skeletonema costatum under ambient and UV illuminations. We found that the CeO2 nanoparticle samples exhibited significantly different toxicity, which could likely be attributed to the differences in interactions with cells, and possibly to differences in nanoparticle compositions. Our results also suggest that toxicity tests on bacteria may not be suitable for predicting the ecotoxicity of nanomaterials. The relationship between the toxicity and physicochemical properties of the nanoparticles is explicitly discussed in the light of the current results. PMID:25768267

  12. Temperature and salinity effects on the toxicity of common pesticides to the grass shrimp, Palaemonetes pugio.

    PubMed

    DeLorenzo, Marie E; Wallace, Sarah C; Danese, Loren E; Baird, Thomas D

    2009-06-01

    This study investigated the effects of increased temperature and salinity, two potential impacts of global climate change, on the toxicity of two common pesticides to the estuarine grass shrimp, Palaemonetes pugio. Larval and adult grass shrimp were exposed to the fungicide chlorothalonil and the insecticide Scourge under standard toxicity test conditions, a 10 degrees C increase in temperature, a 10 ppt increase in salinity, and a combined increased temperature and salinity exposure. Toxicity of the fungicide chlorothalonil increased with temperature and salinity. Toxicity of the insecticide Scourge also increased with temperature; while increased salinity reduced Scourge toxicity, but only in adult shrimp. These findings suggest that changes in temperature and salinity may alter the toxicity of certain pesticides, and that the nature of the effect will depend on both the organism's life stage and the chemical contaminant. Standard toxicity bioassays may not be predictive of actual pesticide toxicity under variable environmental conditions, and testing under a wider range of exposure conditions could improve the accuracy of chemical risk assessments.

  13. Temperature and salinity effects on the toxicity of common pesticides to the grass shrimp, Palaemonetes pugio.

    PubMed

    DeLorenzo, Marie E; Wallace, Sarah C; Danese, Loren E; Baird, Thomas D

    2009-06-01

    This study investigated the effects of increased temperature and salinity, two potential impacts of global climate change, on the toxicity of two common pesticides to the estuarine grass shrimp, Palaemonetes pugio. Larval and adult grass shrimp were exposed to the fungicide chlorothalonil and the insecticide Scourge under standard toxicity test conditions, a 10 degrees C increase in temperature, a 10 ppt increase in salinity, and a combined increased temperature and salinity exposure. Toxicity of the fungicide chlorothalonil increased with temperature and salinity. Toxicity of the insecticide Scourge also increased with temperature; while increased salinity reduced Scourge toxicity, but only in adult shrimp. These findings suggest that changes in temperature and salinity may alter the toxicity of certain pesticides, and that the nature of the effect will depend on both the organism's life stage and the chemical contaminant. Standard toxicity bioassays may not be predictive of actual pesticide toxicity under variable environmental conditions, and testing under a wider range of exposure conditions could improve the accuracy of chemical risk assessments. PMID:20183050

  14. Toxic effect of metal cation binary mixtures to the seaweed Gracilaria domingensis (Gracilariales, Rhodophyta).

    PubMed

    Mendes, Luiz Fernando; Stevani, Cassius Vinicius; Zambotti-Villela, Leonardo; Yokoya, Nair Sumie; Colepicolo, Pio

    2014-01-01

    The macroalga Gracilaria domingensis is an important resource for the food, pharmaceutical, cosmetic, and biotechnology industries. G. domingensis is at a part of the food web foundation, providing nutrients and microelements to upper levels. As seaweed storage metals in the vacuoles, they are considered the main vectors to magnify these toxic elements. This work describes the evaluation of the toxicity of binary mixtures of available metal cations based on the growth rates of G. domingensis over a 48-h exposure. The interactive effects of each binary mixture were determined using a toxic unit (TU) concept that was the sum of the relative contribution of each toxicant and calculated using the ratio between the toxicant concentration and its endpoint. Mixtures of Cd(II)/Cu(II) and Zn(II)/Ca(II) demonstrated to be additive; Cu(II)/Zn(II), Cu(II)/Mg(II), Cu(II)/Ca(II), Zn(II)/Mg(II), and Ca(II)/Mg(II) mixtures were synergistic, and all interactions studied with Cd(II) were antagonistic. Hypotheses that explain the toxicity of binary mixtures at the molecular level are also suggested. These results represent the first effort to characterize the combined effect of available metal cations, based on the TU concept on seaweed in a total controlled medium. The results presented here are invaluable to the understanding of seaweed metal cation toxicity in the marine environment, the mechanism of toxicity action and how the tolerance of the organism.

  15. Toxicity of CeO2 nanoparticles - the effect of nanoparticle properties.

    PubMed

    Leung, Yu Hang; Yung, Mana M N; Ng, Alan M C; Ma, Angel P Y; Wong, Stella W Y; Chan, Charis M N; Ng, Yip Hang; Djurišić, Aleksandra B; Guo, Muyao; Wong, Mabel Ting; Leung, Frederick C C; Chan, Wai Kin; Leung, Kenneth M Y; Lee, Hung Kay

    2015-04-01

    Conflicting reports on the toxicity of CeO2 nanomaterials have been published in recent years, with some studies finding CeO2 nanoparticles to be toxic, while others found it to have protective effects against oxidative stress. To investigate the possible reasons for this, we have performed a comprehensive study on the physical and chemical properties of nanosized CeO2 from three different suppliers as well as CeO2 synthesized by us, and tested their toxicity. For toxicity tests, we have studied the effects of CeO2 nanoparticles on a Gram-negative bacterium Escherichia coli in the dark, under ambient and UV illuminations. We have also performed toxicity tests on the marine diatom Skeletonema costatum under ambient and UV illuminations. We found that the CeO2 nanoparticle samples exhibited significantly different toxicity, which could likely be attributed to the differences in interactions with cells, and possibly to differences in nanoparticle compositions. Our results also suggest that toxicity tests on bacteria may not be suitable for predicting the ecotoxicity of nanomaterials. The relationship between the toxicity and physicochemical properties of the nanoparticles is explicitly discussed in the light of the current results.

  16. The Effect of Digestive Capacity on the Intake Rate of Toxic and Non-Toxic Prey in an Ecological Context

    PubMed Central

    Oudman, Thomas; Hin, Vincent; Dekinga, Anne; van Gils, Jan A.

    2015-01-01

    Digestive capacity often limits food intake rate in animals. Many species can flexibly adjust digestive organ mass, enabling them to increase intake rate in times of increased energy requirement and/or scarcity of high-quality prey. However, some prey species are defended by secondary compounds, thereby forcing a toxin limitation on the forager’s intake rate, a constraint that potentially cannot be alleviated by enlarging digestive capacity. Hence, physiological flexibility may have a differential effect on intake of different prey types, and consequently on dietary preferences. We tested this effect in red knots (Calidris canutus canutus), medium-sized migratory shorebirds that feed on hard-shelled, usually mollusc, prey. Because they ingest their prey whole and crush the shell in their gizzard, the intake rate of red knots is generally constrained by digestive capacity. However, one of their main prey, the bivalve Loripes lucinalis, imposes a toxin constraint due to its symbiosis with sulphide-oxidizing bacteria. We manipulated gizzard sizes of red knots through prolonged exposure to hard-shelled or soft foods. We then measured maximum intake rates of toxic Loripes versus a non-toxic bivalve, Dosinia isocardia. We found that intake of Dosinia exponentially increased with gizzard mass, confirming earlier results with non-toxic prey, whereas intake of Loripes was independent of gizzard mass. Using linear programming, we show that this leads to markedly different expected diet preferences in red knots that try to maximize energy intake rate with a small versus a large gizzard. Intra- and inter-individual variation in digestive capacity is found in many animal species. Hence, the here proposed functional link with individual differences in foraging decisions may be general. We emphasize the potential relevance of individual variation in physiology when studying trophic interactions. PMID:26287951

  17. Toxicity and health effects of vehicle emissions in Shanghai

    NASA Astrophysics Data System (ADS)

    Ye, Shun-Hua; Zhou, Wei; Song, Jian; Peng, Bao-Cheng; Yuan, Dong; Lu, Yuan-Ming; Qi, Ping-Ping

    In China, the number of vehicles is increasing rapidly with the continuous development of economy, and vehicle emission pollution in major cities is more serious than ever. In this article, we summarized the results of a series of short-term assays, animal experiments and epidemiology investigations on the genotoxicity, immunotoxicity, respiratory toxicity and health effects of vehicle emissions in Shanghai, including gasoline exhausts (gas condensate and particles), diesel exhaust particles (DEP) and scooter exhaust particles (SEP). The results showed that: (1) Both gases and particulate phases of the exhausts of different kinds of vehicles showed strong mutagenicity in Ames test (TA98 and TA100 strains), rat hepatocyte unscheduled DNA synthesis (UDS) assay, and mouse micronucleus assay, and vehicle emissions could induce the transformation of Syrian hamster embryo (SHE) cells. DEP and SEP could induce the transformation of human diploid cell strain (KMB-13) cells, immunohistochemistry assay showed that c-myc and p21 proteins were highly expressed in the transformed cells. DEP and SEP could also inhibit the gap junctional intercellular communication (GJIC) of BALB/C3T3 cells (2) Vehicle emissions could decrease the number of macrophages in the lung (bronchial alveolar lavage fluid) (BALF) of male SD rats. Vehicle emissions could also increase the proportion of polymorphonuclear leukocytes (PMN), the content of cetyneuraminic acid (NA), the activity of lactate dehydrogenase (LDH), alkali phosphate (AKP), acid phosphate (ACP) in the lung BALF of the animals. (3) In epidemiology investigation, the proportion of those who have respiratory symptoms and chronic obstructive pulmonary diseases (COPD) in the workers who were exposed to DEP ( n=806) were much higher than those of the controls ( n=413). The OR (odd ratio) values of angina, nasal obstruction, phlegm, short of breath and COPD were 2.27, 3.08, 3.00, 3.19 and 2.32, respectively, and the proportion of those who

  18. Toxic effects of the administration of Mikania glomerata Sprengel during the gestational period of hypertensive rats

    PubMed Central

    Fulanetti, F.B.; Camargo, G.G.R.; Ferro, M.C.; Randazzo-Moura, P.

    2016-01-01

    Herbal medicine is an ancient practice that has been gaining acceptance of the medical class through scientific studies that prove its effectiveness. However, its use should still be cautious. Medicinal plants have potential toxic effects not yet discovered, and may have unproven interactions with other medications. The use of drugs during pregnancy is still very dangerous and vigorously studied; however, there are few studies of herbal medicines in pregnant women. Existing studies prioritize on teratogenic or abortifacient effects. The aim of this study was to analyze the toxic effects of Mikania glomerata Sprengel administration, popularly known as “guaco” during the gestational period of hypertensive rats. For this experimental groups consisting of pregnant Wistar rats received treatments with guaco extract (1 to 2 mL). In order to analyze the possible toxic effects of guaco during pregnancy, weight gain of rats was assessed during pregnancy; reproductive performance of rats, morphological parameters, and fetal placental histology were compared. Although some parameters presented significant differences, we can conclude that changes prioritized by literature, such as toxicity, vasodilation and hypotension, have not been caused by guaco. The only fetal changes observed were due to the maternal hypertension. Some studies have reported vasodilator and hypotensive effects of guaco. However, only a few studies exist, and its actual effects remain unknown. Specific studies should be developed with higher doses of guaco for a definitive conclusion of its toxic and non-toxic effects. PMID:26894037

  19. National Particle Component Toxicity (NPACT) initiative report on cardiovascular effects.

    PubMed

    Vedal, Sverre; Campen, Matthew J; McDonald, Jacob D; Larson, Timothy V; Sampson, Paul D; Sheppard, Lianne; Simpson, Christopher D; Szpiro, Adam A

    2013-10-01

    endpoints, with much weaker evidence for EC and silicon. Both OC and sulfate reflected a large secondary aerosol component. Results from the toxicologic study indicated, for the most part, that MVE and mixtures of MVE and MVEG with other PM pollutants were important in producing the toxic cardiovascular effects found in the study. Further work on the effects of pollutant mixtures and secondary aerosols should allow better understanding of the pollution components and sources most responsible for the adverse cardiovascular effects of air pollution exposure. PMID:24377210

  20. Effects of water quality parameters on boron toxicity to Ceriodaphnia dubia.

    PubMed

    Dethloff, Gail M; Stubblefield, William A; Schlekat, Christian E

    2009-07-01

    The potential modifying effects of certain water quality parameters (e.g., hardness, alkalinity, pH) on the acute toxicity of boron were tested using a freshwater cladoceran, Ceriodaphnia dubia. By comparison, boron acute toxicity was less affected by water quality characteristics than some metals (e.g., copper and silver). Increases in alkalinity over the range tested did not alter toxicity. Increases in water hardness appeared to have an effect with very hard waters (>500 mg/L as CaCO(3)). Decreased pH had a limited influence on boron acute toxicity in laboratory waters. Increasing chloride concentration did not provide a protective effect. Boron acute toxicity was unaffected by sodium concentrations. Median acute lethal concentrations (LC(50)) in natural water samples collected from three field sites were all greater than in reconstituted laboratory waters that matched natural waters in all respects except for dissolved organic carbon. Water effect ratios in these waters ranged from 1.4 to 1.8. In subsequent studies using a commercially available source of natural organic matter, acute toxicity decreased with increased dissolved organic carbon, suggesting, along with the natural water studies, that dissolved organic carbon should be considered further as a modifier of boron toxicity in natural waters where it exceeds 2 mg/L.

  1. Effect of amino acids on the toxicity of heavy metals to phytoplankton

    SciTech Connect

    Kosakowska, A.; Falkowski, L.; Lewandowska, J. )

    1988-05-01

    Heavy metals distribution in the sea water can be indispensable or delitorious for the organisms living in that environment depending on their concentration and speciation. The bioavailability as well as toxicity of the elements are strongly influenced by the organic matter dissolved in water. The effect of a number of organic compounds, including amino acids, on the toxicity of heavy metals was tested, but there were no reports elucidating compounds representing various types of structure. This paper deals with the effect of amino acids representing various structure groups on the toxicity of copper, cadmium and mercury against to Chlorella vulgaris and Anabeana variabilis.

  2. Cardiovascular and Hepatic Toxicity of Cocaine: Potential Beneficial Effects of Modulators of Oxidative Stress

    PubMed Central

    Graziani, Manuela; Antonilli, Letizia; Togna, Anna Rita; Grassi, Maria Caterina; Badiani, Aldo; Saso, Luciano

    2016-01-01

    Oxidative stress (OS) is thought to play an important role in the pharmacological and toxic effects of various drugs of abuse. Herein we review the literature on the mechanisms responsible for the cardiovascular and hepatic toxicity of cocaine with special focus on OS-related mechanisms. We also review the preclinical and clinical literature concerning the putative therapeutic effects of OS modulators (such as N-acetylcysteine, superoxide dismutase mimetics, nitroxides and nitrones, NADPH oxidase inhibitors, xanthine oxidase inhibitors, and mitochondriotropic antioxidants) for the treatment of cocaine toxicity. We conclude that available OS modulators do not appear to have clinical efficacy. PMID:26823954

  3. TOXICITY APPROACHES TO ASSESSING MINING IMPACTS AND MINE WASTE TREATMENT EFFECTIVENESS

    EPA Science Inventory

    The USEPA Office of Research and Development's National Exposure Research Laboratory and National Risk Management Research Laboratory have been evaluating the impact of mining sites on receiving streams and the effectiveness of waste treatment technologies in removing toxicity fo...

  4. Effects of Environmental Toxicants on Metabolic Activity of Natural Microbial Communities

    PubMed Central

    Barnhart, Carole L. H.; Vestal, J. Robie

    1983-01-01

    Two methods of measuring microbial activity were used to study the effects of toxicants on natural microbial communities. The methods were compared for suitability for toxicity testing, sensitivity, and adaptability to field applications. This study included measurements of the incorporation of 14C-labeled acetate into microbial lipids and microbial glucosidase activity. Activities were measured per unit biomass, determined as lipid phosphate. The effects of various organic and inorganic toxicants on various natural microbial communities were studied. Both methods were useful in detecting toxicity, and their comparative sensitivities varied with the system studied. In one system, the methods showed approximately the same sensitivities in testing the effects of metals, but the acetate incorporation method was more sensitive in detecting the toxicity of organic compounds. The incorporation method was used to study the effects of a point source of pollution on the microbiota of a receiving stream. Toxic doses were found to be two orders of magnitude higher in sediments than in water taken from the same site, indicating chelation or adsorption of the toxicant by the sediment. The microbiota taken from below a point source outfall was 2 to 100 times more resistant to the toxicants tested than was that taken from above the outfall. Downstream filtrates in most cases had an inhibitory effect on the natural microbiota taken from above the pollution source. The microbial methods were compared with commonly used bioassay methods, using higher organisms, and were found to be similar in ability to detect comparative toxicities of compounds, but were less sensitive than methods which use standard media because of the influences of environmental factors. PMID:16346432

  5. Effects of sediment bioturbation by Chironomus tentans on toxicity of heavy metals to Ceriodaphnia dubia

    SciTech Connect

    Pearson, M.S.; Clements, W.H.

    1994-12-31

    A laboratory study was conducted to examine the toxicological significance of bioturbation by Chironomus tentans (Diptera: Chironomidae) exposed to mixtures of heavy metals (Cd, Cu, Pb and Zn) in sediment. Overlying water was collected from beakers with and without chironomids. Overlying water samples from beakers with chironomids showed significantly higher levels of total zinc (p = 0.0088), copper (p < 0.0001) and lead (p = 0.0485) compared to beakers without chironomids. Ceriodaphnia dubia chronic toxicity tests were used to evaluate toxicity of the overlying water. Overlying water from beakers without chironomids was not toxic to C. dubia. In contrast, overlying water from beakers with chironomids was acutely toxic to C. dubia at dilutions > 50%. Dilutions of 6.25%, 12.5% and 25% had a reproductive effect on C. dubia. Results of this laboratory experiment indicate that benthic invertebrates may be responsible for increased toxicity of overlying waters.

  6. Use of passive samplers for improving oil toxicity and spill effects assessment.

    PubMed

    Letinski, Daniel; Parkerton, Thomas; Redman, Aaron; Manning, Ryan; Bragin, Gail; Febbo, Eric; Palandro, David; Nedwed, Tim

    2014-09-15

    Methods that quantify dissolved hydrocarbons are needed to link oil exposures to toxicity. Solid phase microextraction (SPME) fibers can serve this purpose. If fibers are equilibrated with oiled water, dissolved hydrocarbons partition to and are concentrated on the fiber. The absorbed concentration (Cpolymer) can be quantified by thermal desorption using GC/FID. Further, given that the site of toxic action is hypothesized as biota lipid and partitioning of hydrocarbons to lipid and fibers is well correlated, Cpolymer is hypothesized to be a surrogate for toxicity prediction. To test this method, toxicity data for physically and chemically dispersed oils were generated for shrimp, Americamysis bahia, and compared to test exposures characterized by Cpolymer. Results indicated that Cpolymer reliably predicted toxicity across oils and dispersions. To illustrate field application, SPME results are reported for oil spills at the Ohmsett facility. SPME fibers provide a practical tool to improve characterization of oil exposures and predict effects in future lab and field studies. PMID:25096583

  7. Use of passive samplers for improving oil toxicity and spill effects assessment.

    PubMed

    Letinski, Daniel; Parkerton, Thomas; Redman, Aaron; Manning, Ryan; Bragin, Gail; Febbo, Eric; Palandro, David; Nedwed, Tim

    2014-09-15

    Methods that quantify dissolved hydrocarbons are needed to link oil exposures to toxicity. Solid phase microextraction (SPME) fibers can serve this purpose. If fibers are equilibrated with oiled water, dissolved hydrocarbons partition to and are concentrated on the fiber. The absorbed concentration (Cpolymer) can be quantified by thermal desorption using GC/FID. Further, given that the site of toxic action is hypothesized as biota lipid and partitioning of hydrocarbons to lipid and fibers is well correlated, Cpolymer is hypothesized to be a surrogate for toxicity prediction. To test this method, toxicity data for physically and chemically dispersed oils were generated for shrimp, Americamysis bahia, and compared to test exposures characterized by Cpolymer. Results indicated that Cpolymer reliably predicted toxicity across oils and dispersions. To illustrate field application, SPME results are reported for oil spills at the Ohmsett facility. SPME fibers provide a practical tool to improve characterization of oil exposures and predict effects in future lab and field studies.

  8. Potential toxic effects of glyphosate and its commercial formulations below regulatory limits.

    PubMed

    Mesnage, R; Defarge, N; Spiroux de Vendômois, J; Séralini, G E

    2015-10-01

    Glyphosate-based herbicides (GlyBH), including Roundup, are the most widely used pesticides worldwide. Their uses have increased exponentially since their introduction on the market. Residue levels in food or water, as well as human exposures, are escalating. We have reviewed the toxic effects of GlyBH measured below regulatory limits by evaluating the published literature and regulatory reports. We reveal a coherent body of evidence indicating that GlyBH could be toxic below the regulatory lowest observed adverse effect level for chronic toxic effects. It includes teratogenic, tumorigenic and hepatorenal effects. They could be explained by endocrine disruption and oxidative stress, causing metabolic alterations, depending on dose and exposure time. Some effects were detected in the range of the recommended acceptable daily intake. Toxic effects of commercial formulations can also be explained by GlyBH adjuvants, which have their own toxicity, but also enhance glyphosate toxicity. These challenge the assumption of safety of GlyBH at the levels at which they contaminate food and the environment, albeit these levels may fall below regulatory thresholds. Neurodevelopmental, reproductive, and transgenerational effects of GlyBH must be revisited, since a growing body of knowledge suggests the predominance of endocrine disrupting mechanisms caused by environmentally relevant levels of exposure.

  9. Potential toxic effects of glyphosate and its commercial formulations below regulatory limits.

    PubMed

    Mesnage, R; Defarge, N; Spiroux de Vendômois, J; Séralini, G E

    2015-10-01

    Glyphosate-based herbicides (GlyBH), including Roundup, are the most widely used pesticides worldwide. Their uses have increased exponentially since their introduction on the market. Residue levels in food or water, as well as human exposures, are escalating. We have reviewed the toxic effects of GlyBH measured below regulatory limits by evaluating the published literature and regulatory reports. We reveal a coherent body of evidence indicating that GlyBH could be toxic below the regulatory lowest observed adverse effect level for chronic toxic effects. It includes teratogenic, tumorigenic and hepatorenal effects. They could be explained by endocrine disruption and oxidative stress, causing metabolic alterations, depending on dose and exposure time. Some effects were detected in the range of the recommended acceptable daily intake. Toxic effects of commercial formulations can also be explained by GlyBH adjuvants, which have their own toxicity, but also enhance glyphosate toxicity. These challenge the assumption of safety of GlyBH at the levels at which they contaminate food and the environment, albeit these levels may fall below regulatory thresholds. Neurodevelopmental, reproductive, and transgenerational effects of GlyBH must be revisited, since a growing body of knowledge suggests the predominance of endocrine disrupting mechanisms caused by environmentally relevant levels of exposure. PMID:26282372

  10. Toxic substances: Effects on fish. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    1995-11-01

    The bibliography contains citations concerning the biochemical and physiological effects of toxic substances on fish populations. Particular emphasis is placed upon using fish as an indicator of pollution in aquatic ecosystems. Toxicity effects of mercury, zinc, calcium chloride, sodium chloride, lead, cadmium, copper, and aluminum in freshwater and seawater fish are included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Effect of the test media and toxicity of LAS on the growth of Isochrysis galbana.

    PubMed

    Garrido-Perez, M C; Perales-VargasMachuca, J A; Nebot-Sanz, E; Sales-Márquez, D

    2008-11-01

    In this paper, the toxicity of linear alkylbenzene sulfonate (LAS) was evaluated in the marine microalga Isochrysis galbana using data of growth inhibition toxicity tests at 96-h exposure time. Toxicity was examined in standard conditions and by means of the modification of two variables of the test media: (1) the dilution water and (2) the content of nutrients in the test medium. For this purpose, a total of 10 toxicity test were designed: five dilution waters, four natural marine waters and one synthetic seawater; each in two different nutritive conditions, saturated nutrient concentration (SC) by the addition of modified f/2 nutritive medium, and natural nutrient concentration (NC), i.e., without the addition of f/2. At threshold toxicity levels, the dilution waters used in the test and the nutrient concentrations did not affect the toxicity of LAS. At IC50 concentrations, the toxicity of LAS is influenced by both variables: under SC conditions, the toxic effect of LAS diminishes, obtaining in all the tests IC50 > 10 mg/L LAS. Under NC conditions, IC50 concentrations ranging between 3.15 and 9.26 mg/L LAS have been obtained.

  12. Acute and chronic toxicity of endosulfan to crab: Effect on lipid metabolism

    SciTech Connect

    Rafi, G.Md.; Srinivas, T.; Reddy, S.J.; Reddy, D.C.; Ramamurthi, R. )

    1991-12-01

    Endosulfan is toxic to fish and its toxic effects have been studied in several freshwater fish. However, information regarding toxicity of endosulfan to many freshwater invertebrates is fragmentary. Few reports are available on the toxic effect of endosulfan on carbohydrate and protein metabolisms of freshwater field crab, Oziotelphusa senex senex, another nontarget organism of aquatic ecosystem. The work on lipid metabolism under organochloride insecticide (OCI) stress is scant. The OCI tend to accumulate in the lipid rich tissues of the biosystem due to their lipophilic nature. The changes in lipid profiles under OCI stress reported to cause profound changes in the metabolism and physiology of animals. Therefore, this paper presents the effects of endosulfan on lipid metabolism in O. senex senex.

  13. Effect of circadian rhythm on CNS oxygen toxicity.

    NASA Technical Reports Server (NTRS)

    Hof, D. G.; Dexter, J. D.; Mengel, C. E.

    1971-01-01

    The circadian rhythm in susceptibility to oxygen toxicity seizures was investigated by using six groups of 20 male Sprague-Dawley rats (101-196 gm.). The animals were given standard chow, exposed to standard diurnal conditions of light (0700-1900 hr) and dark (1900-0700 hr), and fasted for 15-16 hr prior to exposure to hyperbaric oxygen. The animals were placed in a previously oxygen flushed chamber and raised to 60 psi (gauge) oxygen at a rate of 3 psi/min. Time of exposure started with attainment of 60 psi. End point was first convulsion. The animals' weights were equally distributed within the groups, and the groups were defined by hour of exposure. Time of exposure in minutes prior to seizure was significantly longer in those exposed at 0700-0800 hr and 1000-1100 hr than in four other groups. There was no relationship between animals' weights and time of exposure to seizures. All R values were negative, and the highest R value was -035. These data suggest a definite circadian rhythm in susceptibility to oxygen toxicity seizures.

  14. Glioprotective effects of Ashwagandha leaf extract against lead induced toxicity.

    PubMed

    Kumar, Praveen; Singh, Raghavendra; Nazmi, Arshed; Lakhanpal, Dinesh; Kataria, Hardeep; Kaur, Gurcharan

    2014-01-01

    Withania somnifera (Ashwagandha), also known as Indian Ginseng, is a well-known Indian medicinal plant due to its antioxidative, antistress, antigenotoxic, and immunomodulatory properties. The present study was designed to assess and establish the cytoprotective potential of Ashwagandha leaf aqueous extract against lead induced toxicity. Pretreatment of C6 cells with 0.1% Ashwagandha extract showed cytoprotection against 25  μM to 400 μM concentration of lead nitrate. Further pretreatment with Ashwagandha extract to lead nitrate exposed cells (200  μM) resulted in normalization of glial fibrillary acidic protein (GFAP) expression as well as heat shock protein (HSP70), mortalin, and neural cell adhesion molecule (NCAM) expression. Further, the cytoprotective efficacy of Ashwagandha extract was studied in vivo. Administration of Ashwagandha extract provided significant protection to lead induced altered antioxidant defense that may significantly compromise normal cellular function. Ashwagandha also provided a significant protection to lipid peroxidation (LPx) levels, catalase, and superoxide dismutase (SOD) but not reduced glutathione (GSH) contents in brain tissue as well as peripheral organs, liver and kidney, suggesting its ability to act as a free radical scavenger protecting cells against toxic insult. These results, thus, suggest that Ashwagandha water extract may have the potential therapeutic implication against lead poisoning. PMID:24987671

  15. Inflammatory effects of the toxic cyanobacterium Geitlerinema amphibium.

    PubMed

    Dogo, Camila Ranzatto; Bruni, Fernanda Miriane; Elias, Fabiana; Rangel, Marisa; Pantoja, Patricia Araujo; Sant'anna, Célia Leite; Lima, Carla; Lopes-Ferreira, Monica; de Carvalho, Luciana Retz

    2011-11-01

    Toxic cyanobacteria in public water reservoirs may cause severe health issues for livestock and human beings. Geitlerinema amphibium, which is frequently found in São Paulo City's drinking water supplies, showed toxicity in the standard mouse bioassay, while displaying signs of intoxication and post-mortem findings different from those showed by animals intoxicated by known cyanotoxins. We report here the alterations caused by G. amphibium methanolic extract on mouse microcirculatory network, as seen by in vivo intravital microscopy, besides observations on leukocyte migration, cytokine quantitation, and results of toxicological essays. Our data showed that G. amphibium methanolic extract displayed time- and dose-dependent pro-inflammatory activity, and that at lower doses [125 and 250 mg/kg body weight (b.w.)] increased the leukocyte rolling, caused partial venular stasis, as well as induced an increase in leukocyte counts in the peripheral blood and peritoneal washings. At higher doses (500 and 1000 mg/kg b.w.), the extract caused ischemic injury leading to animal death. As confirmed by mass spectrometric studies and polymyxin B test, the G. amphibium methanolic extract did not contain lipopolysaccharides.

  16. Effects of atrazine and cyanazine on chlorpyrifos toxicity in Chironomus tentans (Diptera: Chironomidae).

    PubMed

    Jin-Clark, Ying; Lydy, Michael J; Zhu, Kun Yan

    2002-03-01

    Toxicities of two triazine herbicides (atrazine and cyanazine) and an organophosphate insecticide (chlorpyrifos) were evaluated individually and with each herbicide in binary combination with chlorpyrifos using fourth-instar larvae of the aquatic midge, Chironomus tentans. Chlorpyrifos at 0.25 microg/L resulted in an effect in less than 10% of midges in 48-h acute toxicity bioassays. Neither atrazine nor cyanazine alone at relatively high concentrations (up to 1,000 microg/L) caused significant acute toxicity to C. tentans. However, atrazine and cyanazine caused significant synergistic effects on the toxicity of chlorpyrifos when midges were exposed to mixtures of atrazine or cyanazine (10, 100, 1,000 microg/L) with chlorpyrifos (0.25 microg/L). At fixed concentrations (200 microg/L) of the herbicides, toxicity of chlorpyrifos was enhanced by 1.8- and 2.2-fold by atrazine and cyanazine, respectively, at the 50% effective concentration levels. Although atrazine and cyanazine are not effective inhibitors of acetylcholinesterase (AChE) in vitro, the synergism of the two triazine herbicides with chlorpyrifos was associated with increased in vivo inhibition of AChE in midges. We observed a positive correlation between the degree of inhibition of AChE and the concentration of atrazine or cyanazine in the presence of a fixed concentration of chlorpyrifos. It is possible that these herbicides may affect cytochrome P450 enzymes to confer synergistic effects on the toxicity of chlorpyrifos.

  17. Development of QSARs for predicting the joint effects between cyanogenic toxicants and aldehydes.

    PubMed

    Lin, Zhifen; Yin, Kedong; Shi, Ping; Wang, Liansheng; Yu, Hongxia

    2003-10-01

    Quantitative structure-activity relationship (QSAR) approaches are proposed in this study to predict the joint effects of mixture toxicity. The initial investigation studies the joint effects between cyanogenic toxicants and aldehydes to Photobacterium phosphoreum. Joint effects are found to result from the formation of a carbanion intermediate produced through the chemical interactions between cyanogenic toxicants and aldehydes. Further research indicates that the formation of carbanion intermediate is highly correlated with not only the charge of the carbon atom in the -CHO of aldehydes but also the charge of the carbon atom (C) in the carbochain of cyanogenic toxicants. The charge of the carbon atom in the -CHO of aldehydes is quantified by using the Hammett constant (sigma(p)), and then, sigma(p)-based QSAR models are proposed to describe the relationships between the joint effects and the chemical structures of the aldehydes. By using the charge of carbon atom (C) in the carbochain of cyanogenic toxicants, another QSAR model is proposed to describe the relationship between the joint effects and the chemical structures of cyanogenic toxicants.

  18. Effects of deionized water on sensitivity of zebra mussels (Dreissena polymorpha) to toxic chemicals.

    PubMed

    Walker, J U; Ram, J L

    1994-03-01

    Previous studies showed that zebra mussels begin to die within a few days of immersion in deionized water and that potassium was about 10 times more toxic to zebra mussels when applied in deionized than in normal aquarium water. This study investigated whether deionized water enhanced the sensitivity of zebra mussels to other toxic substances, by comparing viability of mussels after 24 hr exposure to various substances applied in aquarium water and deionized water. Toxicity of sodium hypochlorite was enhanced approximately two orders of magnitude in deionized water: in aquarium water, 10 mg/l < LD50 < 100 mg/l; in deionized water, 0.1 mg/l < LD50 < 1 mg/l. A shift of two orders of magnitude in toxicity was also observed for ouabain: in aquarium water, 10(-4) M < LD50 < 10(-3) M; in deionized water, 10(-6) M < LD50 < 10(-5) M. The toxicity of ouabain was unchanged by the addition of 37 mg KCl/l aquarium water. Virtually no shift in toxicity due to deionized water was observed for niclosamide and for Endod. For niclosamide, LD50 in deionized water was slightly less than 10(-5) mg/l and in aquarium water slightly above 10(-5) mg/l. For Endod, the LD50 was between 5 and 10 mg/l in both media. The largest shift in toxicity in deionized water occurred for Noxfish (rotenone), for which LD50 shifted from approximately 1 mg/l in aquarium water to less than 10(-4) mg/l in deionized water. Enhancement of toxicity due to deionized water is thus not an additive effect, but varies with the toxic substance, probably according to the mechanism of toxicity.

  19. Radiolysis of selected antibiotics and their toxic effects on various aquatic organisms

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Y.; Yu, Seung H.; Lee, Myun J.; Kim, Tae H.; Kim, Sang D.

    2009-04-01

    This study was conducted to investigate the decomposition of three γ-irradiated antibiotics (e.g., tetracycline, sulfamethazine, and lincomycin) and to compare the toxic effects on Daphnia magna, Vibrio fischeri, and Pseudokirchneriella subcapitata. The median cell growth inhibition concentrations (IC 50) of tetracycline, lincomycin, and sulfamethazine for P. subcapitata dramatically increased (e.g., toxicity decreased) after radiolysis. The results demonstrated that γ-radiation treatment was efficient to decompose antibiotics and thereby their toxicity on P. subcaptitata remarkably decreased due to reduced parent compounds.

  20. Toxic Effects of Rhamnus alaternus: A Rare Case Report.

    PubMed

    Ben Ghezala, H; Chaouali, N; Gana, I; Snouda, S; Nouioui, A; Belwaer, I; Ouali, J; Kaddour, M; Masri, W; Ben Salah, D; Amira, D; Ghorbal, H; Hedhili, A

    2015-01-01

    In Tunisia, there are about 478 species of plants commonly used in folk medicine. Medicinal plants and herbal remedies used are responsible for 2% of intoxications listed by Tunisian National Poison Center. Most cases are related to confusion between edible plants and toxic plants lookalikes or to an excessive consumption of therapeutic plants. We report the case of a 58-year-old man admitted to the Emergency Department of the Regional Hospital of Zaghouan (Tunisia), with renal failure and rhabdomyolysis. The patient reported having daily consumption of a homemade tea based on Mediterranean Buckthorn roots, during the last 6 months to treat type 2 diabetes. The aim of this work was to establish an association between the consumption of the herbal remedy and the occurrence of both renal failure and rhabdomyolysis. No similar cases have been reported in recent literature. PMID:26229696

  1. Sublethal toxic effects of nonylphenol ethoxylate and nonylphenol to Moina macrocopa.

    PubMed

    Hu, Xue-lei; Sun, Zhi-wei; Wang, Jing-jing; An, Min; Duan, Shun-shan

    2014-08-01

    The aim of this paper was to examine the sublethal toxic effects of nonylphenol ethoxylate (NP10EO), its primary degradation product nonylphenol (NP), and their mixture on Moina macrocopa. Chronic toxicity tests were carried out by using sublethal chemical concentrations. Results showed that all treatments reduced the survivorship, body length, and reproduction of M. macrocopa with NP being 10 %-20 % more toxic to M. macrocopa than NP10EO. Results also indicated that the toxic effects of NP10EO and NP mixture on M. macrocopa were more severe than that of any single chemical alone. At the highest concentration in this experiment, 0.337 mg L(-1) NP10EO plus 0.0154 mg L(-1) NP treatment caused the survivorship of M. macrocopa to zero, neonates number of reproductions to zero, 45.5 % reduction in the body length, and 88 % reduction in the total neonates number. PMID:24891144

  2. Marked resistance of RAR gamma-deficient mice to the toxic effects of retinoic acid.

    PubMed

    Look, J; Landwehr, J; Bauer, F; Hoffmann, A S; Bluethmann, H; LeMotte, P

    1995-07-01

    Excessive intake of retinol or of retinoic acid causes a syndrome of characteristic toxic effects known as hypervitaminosis A. To test the role of the nuclear retinoic acid receptor (RAR gamma) in this process we produced mice with a targeted disruption of the RAR gamma gene and examined toxic effects of repeated doses of retinoic acid and two other synthetic retinoids, Ro 15-1570 and Ro 40-6055. Surprisingly, homozygous mutant mice were resistant to fourfold higher doses of retinoic acid than wild-type mice as well as to elevated doses of the synthetic retinoids, indicating that RAR gamma may have a major role in mediating retinoid toxicity, a finding that possibly has practical implications for reducing the toxicity of synthetic retinoids in clinical use.

  3. Interactive effects of temperature and drought on cassava growth and toxicity: implications for food security?

    PubMed

    Brown, Alicia L; Cavagnaro, Timothy R; Gleadow, Ros; Miller, Rebecca E

    2016-10-01

    Cassava is an important dietary component for over 1 billion people, and its ability to yield under drought has led to it being promoted as an important crop for food security under climate change. Despite its known photosynthetic plasticity in response to temperature, little is known about how temperature affects plant toxicity or about interactions between temperature and drought, which is important because cassava tissues contain high levels of toxic cyanogenic glucosides, a major health and food safety concern. In a controlled glasshouse experiment, plants were grown at 2 daytime temperatures (23 °C and 34 °C), and either well-watered or subject to a 1 month drought prior to harvest at 6 months. The objective was to determine the separate and interactive effects of temperature and drought on growth and toxicity. Both temperature and drought affected cassava physiology and chemistry. While temperature alone drove differences in plant height and above-ground biomass, drought and temperature × drought interactions most affected tuber yield, as well as foliar and tuber chemistry, including C : N, nitrogen and cyanide potential (CNp; total cyanide released from cyanogenic glucosides). Conditions that most stimulated growth and yield (well-watered × high temperature) effected a reduction in tuber toxicity, whereas drought inhibited growth and yield, and was associated with increased foliar and tuber toxicity. The magnitude of drought effects on tuber yield and toxicity were greater at high temperature; thus, increases in tuber CNp were not merely a consequence of reduced tuber biomass. Findings confirm that cassava is adaptable to forecast temperature increases, particularly in areas of adequate or increasing rainfall; however, in regions forecast for increased incidence of drought, the effects of drought on both food quality (tuber toxicity) and yield are a greater threat to future food security and indicate an increasing necessity for processing of

  4. Occupational diseases associated with toxic substances and their effects upon the energy industry

    SciTech Connect

    Hurd, C.W.

    1984-02-01

    In recent years the concept of ''toxic substances'' and the potential effects therefrom have attracted the attention and concern of the nation. Asbestosis put both society and industry on alert of the potential hazards inherent in the continued development of new chemicals and substances being employed in the work environment. Asbestosis is not the only causative element of occupational diseases. Other toxic substances currently raising concern include Agent Orange, DES (diethylstilbesterol), cotton dust, silicon and, of particular concern to the petroleum industry, benzene.

  5. Interactive effects of temperature and drought on cassava growth and toxicity: implications for food security?

    PubMed

    Brown, Alicia L; Cavagnaro, Timothy R; Gleadow, Ros; Miller, Rebecca E

    2016-10-01

    Cassava is an important dietary component for over 1 billion people, and its ability to yield under drought has led to it being promoted as an important crop for food security under climate change. Despite its known photosynthetic plasticity in response to temperature, little is known about how temperature affects plant toxicity or about interactions between temperature and drought, which is important because cassava tissues contain high levels of toxic cyanogenic glucosides, a major health and food safety concern. In a controlled glasshouse experiment, plants were grown at 2 daytime temperatures (23 °C and 34 °C), and either well-watered or subject to a 1 month drought prior to harvest at 6 months. The objective was to determine the separate and interactive effects of temperature and drought on growth and toxicity. Both temperature and drought affected cassava physiology and chemistry. While temperature alone drove differences in plant height and above-ground biomass, drought and temperature × drought interactions most affected tuber yield, as well as foliar and tuber chemistry, including C : N, nitrogen and cyanide potential (CNp; total cyanide released from cyanogenic glucosides). Conditions that most stimulated growth and yield (well-watered × high temperature) effected a reduction in tuber toxicity, whereas drought inhibited growth and yield, and was associated with increased foliar and tuber toxicity. The magnitude of drought effects on tuber yield and toxicity were greater at high temperature; thus, increases in tuber CNp were not merely a consequence of reduced tuber biomass. Findings confirm that cassava is adaptable to forecast temperature increases, particularly in areas of adequate or increasing rainfall; however, in regions forecast for increased incidence of drought, the effects of drought on both food quality (tuber toxicity) and yield are a greater threat to future food security and indicate an increasing necessity for processing of

  6. What are the differences between aerobic and anaerobic toxic effects of sulfonamides on Escherichia coli?

    PubMed

    Qin, Mengnan; Lin, Zhifen; Wang, Dali; Long, Xi; Zheng, Min; Qiu, Yanling

    2016-01-01

    Bacteria in the environment face the threat of antibiotics. However, most studies investigating the toxicity and toxicity mechanisms of antibiotics have been conducted on microorganisms in aerobic conditions, while studies examining the anaerobic toxicity and toxicity mechanisms of antibiotics are still limited. In this study, we determined the aerobic and anaerobic toxicities of sulfonamides (SAs) on Escherichia coli. Next, a comparison of the aerobic and anaerobic toxicities indicated that the SAs could be divided into three groups: Group I: log(1/EC50-anaerobic)>log(1/EC50-aerobic) (EC50-anaerobic/EC50-aerobic, the median effective concentration under anaerobic/aerobic conditions), Group II: log(1/EC50-anaerobic)≈log(1/EC50-aerobic), and Group III: log(1/EC50-anaerobic)toxicities will benefit environmental science, and the results of this study will serve as a reference for the risk assessment of chemicals in the environment.

  7. Paralytic shellfish poisoning toxins accumulation in purple clam Hiatula rostrata and toxic effect on milkfish Chanos chanos larval fish.

    PubMed

    Chen, C Y

    2001-11-01

    In an attempt to feed purple clams (Hiatula rostrata) with dinoglagellate Alexandrium minutum, the maximal accumulation toxicity of paralytic shellfish poisoning (PSP) toxins reached 40.6 MU/g on day 5 of feeding. Subsequently, the toxicity increased no further, although purple clams ingested more toxic algae. Furthermore, when milkfish (Chanos chanos) larvae were treated with toxic, nontoxic A. minutum or PSP toxin-containing extract in the water medium, it was found that the mortality of fish increased with the increasing concentrations of toxic algae. PSP toxin-containing extract did not show any toxic effect on milkfish larvae.

  8. Toxic effects of individual and combined effects of BTEX on Euglena gracilis.

    PubMed

    Peng, Cheng; Lee, Jong-Wha; Sichani, Homa Teimouri; Ng, Jack C

    2015-03-01

    BTEX is a group of volatile organic compounds consisting of benzene, toluene, ethylbenzene and xylenes. Environmental contamination of BTEX can occur in the groundwater with their effects on the aquatic organisms and ecosystem being sparsely studied. The aim of this study was to evaluate the toxic effects of individual and mixed BTEX on Euglena gracilis (E. gracilis). We examined the growth rate, morphological changes and chlorophyll contents in E. gracilis Z and its mutant SMZ cells treated with single and mixture of BTEX. BTEX induced morphological change, formation of lipofuscin, and decreased chlorophyll content of E. gracilis Z in a dose response manner. The toxicity of individual BTEX on cell growth and chlorophyll inhibition is in the order of xylenes>ethylbenzene>toluene>benzene. SMZ was found more sensitive to BTEX than Z at much lower concentrations between 0.005 and 5 μM. The combined effect of mixed BTEX on chlorophyll contents was shown to be concentration addition (CA). Results from this study suggested that E. gracilis could be a suitable model for monitoring BTEX in the groundwater and predicting the combined effects on aqueous ecosystem.

  9. Effects of protein-calorie malnutrition and refeeding on fluorouracil toxicity

    SciTech Connect

    Gamelli, R.L.; Foster, R.S. Jr.

    1983-10-01

    Mice were used to study the effects of protein-calorie malnutrition and its reversal on granulocyte-macrophage production and fluorouracil's toxic effect on bone marrow. An in vitro quantitative clonal culture technique for bone marrow granulocyte-macrophage progenitor cells (GM-CFC) was used. Animals on a protein-free but otherwise complete diet for ten days had a significant contraction in total marrow cellularity and GM-CFC numbers paralleling the animal's weight loss. The acute toxic effect of fluorouracil on bone marrow was not increased in protein-deprived animals. On refeeding, there was a biphasic response in the degree of toxic effect on marrow. Animals refed for one day had significantly increased fluorouracil-related marrow abnormalities. However, animals refed for four days, when marrows were repleted, were partially protected from the drug's cytotoxic effects. The increased sensitivity in mice refed for one day was related to more GM-CFC in active DNA synthesis.

  10. Toxicity of parathion to captive European starlings (Sturnus vulgaris)-absence of seasonal effects

    USGS Publications Warehouse

    Rattner, B.A.; Grue, C.E.

    1990-01-01

    The effects of season on the toxicity of the prototypic organophosphorus insecticide parathion was evaluated using adult European starlings (Sturnus vulgaris) housed in outdoor pens. Groups of birds received oral doses of parathion in the fall, winter, spring and summer. Median lethal dosage, and brain and plasma cholinesterase inhibition, were found to be quite similar among seasons. Parathion may have been more toxic during hot weather (winter vs. summer LD50 estimate: 160 vs. 118 mg/kg; p < 0.1). In view of previous reports in which ambient temperature extremes and harsh weather have enhanced organophosphorus insecticide toxicity to birds, it is concluded that circannual toxicity studies should include measures of sensitivity (acute oral exposure) and vulnerability (dietary exposure) to better predict responses of free-ranging birds.

  11. Effect of soil properties on the toxicity of Pb: assessment of the appropriateness of guideline values.

    PubMed

    Romero-Freire, A; Martin Peinado, F J; van Gestel, C A M

    2015-05-30

    Soil contamination with lead is a worldwide problem. Pb can cause adverse effects, but its mobility and availability in the terrestrial environment are strongly controlled by soil properties. The present study investigated the influence of different soil properties on the solubility of lead in laboratory spiked soils, and its toxicity in three bioassays, including Lactuca sativa root elongation and Vibrio fischeri illumination tests applied to aqueous extracts and basal soil respiration assays. Final aim was to compare soil-dependent toxicity with guideline values. The L. sativa bioassay proved to be more sensitive to Pb toxicity than the V. fischeri and soil respiration tests. Toxicity was significantly correlated with soil properties, with soil pH, carbonate and organic carbon content being the most important factors. Therefore, these variables should be considered when defining guideline values. PMID:25704434

  12. Toxic effects of antimalarial drugs in Paramecium: role of calcium channels.

    PubMed

    Nori, V S; Barry, S R

    1997-05-01

    The antimalarial drugs, quinacrine, quinine and mefloquine, as well as the structurally-similar compound, W-7, inhibit calcium-dependent backward swimming and calcium currents in Paramecium calkinsi. These drugs are also toxic to paramecia at high concentrations. Therefore, one site of toxic action of the drugs may be the calcium channel. To test this hypothesis, the toxicity of the antimalarials and W-7 was compared in paramecia with and without calcium channels. Since calcium channels are located on the cilia, calcium channels were removed from the paramecia by deciliating the cells. Deciliated cells were found to be less susceptible to the lethal effects of the antimalarials and W-7 than their ciliated counterparts. Moreover, Pawns, mutants of P. tetraurelia that possess cilia but lack functional calcium channels, were also less susceptible to the antimalarials than wild-type cells. Thus, calcium channels may be one site of toxic action of the antimalarial drugs in paramecia and perhaps in other protists.

  13. Evaluation of acute toxicity and teratogenic effects of plant growth regulators by Daphnia magna embryo assay.

    PubMed

    Wang, Kai-Sung; Lu, Chi-Yuan; Chang, Shih-Hsien

    2011-06-15

    This study selected common plant growth regulators (Atonik, Cytokinin, Ethephon, Gibberellic acid and Paclobutrazol) to investigate their biological toxicity to the waters of the important biological indicator Daphnia magna. The methods used in this study included traditional neonate acute toxicity test, new Daphnia embryo toxicity test, and teratogenic embryo test. The study concluded that the acute toxicity of the five PGRs to Daphnia neonate had EC(50) value range of 1.9-130.5 mg l(-1), while acute toxicity of PGRs on Daphnia embryo had EC(50) value range of 0.2-125 mg l(-1); the Daphnia embryos' LOEC values (0.05-48 mg l(-1)) for the five PGRs were lower than embryo EC(50) values. The toxic ratios of 48 h EC(50) (neonate)/48 h LOEC (embryo) for 5 PGRs were 19-512 times. The study found that teratogenic effects of Paclobutrazol and Cytokinin induced in embryo were higher than those of most other PGRs. Microscopic observation of the teratogenic effects showed that all 5 PGRs induced malformations of the second antenna, rostrum, Malpighian tube, sensory bristles, and tail spine as well as function loss and death.

  14. Effects of storage on the toxicity of sediments spiked with fluoranthene to the amphipod, Rhepoxynius abronius

    SciTech Connect

    Cole, F.A.; Boese, B.L.; Swartz, R.C.; Lamberson, J.O.; DeWitt, T.H.

    2000-03-01

    To determine the effect of storage on contaminant bioavailability and toxicity, two sediment types, a fine sand and a silty sand, were spiked with nine concentrations of fluoranthene, then stored at 4 C for up to 170 d. Toxicity of the stored sediment was determined eight times during this storage interval using standard 10-d toxicity tests with the marine infaunal amphipod Rhepoxynius abronius. The concentrations of fluoranthene in the sediment and interstitial water were determined on samples taken on each test date. The toxicity of fluoranthene in the silty sand was similar for all storage times with LC50s ranging from 5.3 to 6.6 mg/g organic carbon (OC). The LC50 in the fine sand was 7.4 mg/g OC after 13 d of storage, ranged from 10.2 to 11.8 mg/g OC during 27 to 83 d of storage, and increased to 24.2 and 27.6 mg/g OC after 121 and 170 d of storage, respectively. These data indicate that the toxicity of both the fine and the silty sand remained essentially constant during storage from days 27 to 83. Toxicity tests conducted before or after that period may give misleading results because of disequilibrium or unknown storage effects.

  15. COMBINED AND INTERACTIVE EFFECTS OF GLOBAL CLIMATE CHANGE AND TOXICANTS ON POPULATIONS AND COMMUNITIES

    PubMed Central

    Moe, S Jannicke; De Schamphelaere, Karel; Clements, William H; Sorensen, Mary T; Van den Brink, Paul J; Liess, Matthias

    2013-01-01

    Increased temperature and other environmental effects of global climate change (GCC) have documented impacts on many species (e.g., polar bears, amphibians, coral reefs) as well as on ecosystem processes and species interactions (e.g., the timing of predator–prey interactions). A challenge for ecotoxicologists is to predict how joint effects of climatic stress and toxicants measured at the individual level (e.g., reduced survival and reproduction) will be manifested at the population level (e.g., population growth rate, extinction risk) and community level (e.g., species richness, food-web structure). The authors discuss how population- and community-level responses to toxicants under GCC are likely to be influenced by various ecological mechanisms. Stress due to GCC may reduce the potential for resistance to and recovery from toxicant exposure. Long-term toxicant exposure can result in acquired tolerance to this stressor at the population or community level, but an associated cost of tolerance may be the reduced potential for tolerance to subsequent climatic stress (or vice versa). Moreover, GCC can induce large-scale shifts in community composition, which may affect the vulnerability of communities to other stressors. Ecological modeling based on species traits (representing life-history traits, population vulnerability, sensitivity to toxicants, and sensitivity to climate change) can be a promising approach for predicting combined impacts of GCC and toxicants on populations and communities. Environ. Toxicol. Chem. 2013;32:49–61. © 2012 SETAC PMID:23147390

  16. Combined and interactive effects of global climate change and toxicants on populations and communities.

    PubMed

    Moe, S Jannicke; De Schamphelaere, Karel; Clements, William H; Sorensen, Mary T; Van den Brink, Paul J; Liess, Matthias

    2013-01-01

    Increased temperature and other environmental effects of global climate change (GCC) have documented impacts on many species (e.g., polar bears, amphibians, coral reefs) as well as on ecosystem processes and species interactions (e.g., the timing of predator-prey interactions). A challenge for ecotoxicologists is to predict how joint effects of climatic stress and toxicants measured at the individual level (e.g., reduced survival and reproduction) will be manifested at the population level (e.g., population growth rate, extinction risk) and community level (e.g., species richness, food-web structure). The authors discuss how population- and community-level responses to toxicants under GCC are likely to be influenced by various ecological mechanisms. Stress due to GCC may reduce the potential for resistance to and recovery from toxicant exposure. Long-term toxicant exposure can result in acquired tolerance to this stressor at the population or community level, but an associated cost of tolerance may be the reduced potential for tolerance to subsequent climatic stress (or vice versa). Moreover, GCC can induce large-scale shifts in community composition, which may affect the vulnerability of communities to other stressors. Ecological modeling based on species traits (representing life-history traits, population vulnerability, sensitivity to toxicants, and sensitivity to climate change) can be a promising approach for predicting combined impacts of GCC and toxicants on populations and communities.

  17. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, JooHwa

    2015-04-01

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism.

  18. Uptake and toxic effects of surface modified nanomaterials in freshwater aquatic organisms

    NASA Astrophysics Data System (ADS)

    Seda, Brandon Casey

    Nanomaterials are a class of materials with unique properties due to their size, and the association of these properties with the toxicity of nanomaterials is poorly understood. The present study assessed the toxic effects of stable aqueous colloidal suspensions of three distinctly different classes of nanomaterials in aquatic organisms. The fullerene, C70, was stabilized through non-covalent surface modification with gallic acid. Toxicity of C70-gallic acid was confirmed to exhibit similar toxic effects as C60-fullerene, including changes in antioxidative processes in Daphnia magna. Daphnia magna fecundity was significantly reduced in 21d bioassays at C70-gallic concentrations below quantifiable limits (0.03 mg/L C70). Antioxidant enzyme activities of glutathione peroxidase and superoxide dismutase as well as lipid peroxidation suggested that exposed organisms experienced oxidative stress. Carbon dots are a class of nanomaterials proposed for use as nontoxic alternatives to semiconductor quantum dots for photoluminescent applications, because of the difference in toxicity of their core components: carbon as opposed to heavy metals. In vivo analysis of treated organisms by confocal fluorescence microscopy revealed carbon dots were absorbed and systemically distributed regardless of particle size. The present study did not find any evidence of acute toxicity at concentrations up to 10mg/L carbon dots. These concentrations also failed to produce negative effects in Ceriodaphnia dubia bioassays to predict chronic toxicity. Carbon dots also failed to elicit developmental toxic effects in zebrafish. The toxic effects of semiconductor quantum dots have been partially attributed to the release of heavy metals with their degradation, particularly cadmium. Laser ablation inductively coupled mass spectrometry was used to compare the uptake of cadmium, selenium and zinc in Daphnia magna treated to CdSe/ZnS quantum dots or CdCl2. These quantum dots were observed to accumulate

  19. Effect of low-dose ionizing radiation on luminous marine bacteria: radiation hormesis and toxicity.

    PubMed

    Kudryasheva, N S; Rozhko, T V

    2015-04-01

    The paper summarizes studies of effects of alpha- and beta-emitting radionuclides (americium-241, uranium-235+238, and tritium) on marine microorganisms under conditions of chronic low-dose irradiation in aqueous media. Luminous marine bacteria were chosen as an example of these microorganisms; bioluminescent intensity was used as a tested physiological parameter. Non-linear dose-effect dependence was demonstrated. Three successive stages in the bioluminescent response to americium-241 and tritium were found: 1--absence of effects (stress recognition), 2--activation (adaptive response), and 3--inhibition (suppression of physiological function, i.e. radiation toxicity). The effects were attributed to radiation hormesis phenomenon. Biological role of reactive oxygen species, secondary products of the radioactive decay, is discussed. The study suggests an approach to evaluation of non-toxic and toxic stages under conditions of chronic radioactive exposure. PMID:25644753

  20. The toxic effect of oxytetracycline and trimethoprim in the aquatic environment.

    PubMed

    Kolar, Boris; Arnuš, Lovro; Jeretin, Bogdana; Gutmaher, Aleš; Drobne, Damjana; Durjava, Mojca Kos

    2014-11-01

    The objective of our study was the investigation of the toxic properties of two antimicrobial drugs: oxytetracycline (OTC) and trimethoprim (TMP) in the aquatic environment. The toxic effects were tested according to the OECD guidelines for the testing of chemicals, on the cyanobacteria Anabaena flos-aque, on the alga Pseudokirchneriella subcapitata, on the daphnid Daphnia magna as well as on the activated sludge. We discussed the short term and long term results of tests on cyanobacteria and microalgae. Both experiments were concluded in 72h allowing direct comparison of sensitivity of the two tested species. The results of our study showed toxic effect in the same range for both groups. In the test on the toxicity of OTC to P. subcapitata we obtained the 72hErC50 of 1.04mgL(-1) (72hErC10 0.47mgL(-1)) which are lower in comparison to the results on the toxicity to A. flos-aque of ErC50 of 2.7mgL(-1) (72hErC101.5mgL(-1)). TMP is less toxic to both photosynthetic plankton species. Similar to the test results on OTC, the P. subcapitata is more sensitive to TMP (ErC50129mgL(-1); ErC1065mgL(-1)) than A. flos-aque (72hErC50253mgL(-1); 72hErC1026mgL(-1)). OTC is toxic to the activated sludge (3hEC50 17.9mgL(-1)), while the calculated 3hEC50 value for TMP exceeded solubility for the compound. In comparison to other species, both tested antimicrobials showed low toxicity to daphnids. PMID:24703011

  1. Histopathological study into side-effect toxicity of some drugs used in treatment of cancer.

    PubMed

    el-Shazly, M O; Afify, M M; el-Dieb, M K

    1989-03-01

    The effect of cis-chlorodiamine platinum (cisplatin) on different tissues of rat was studied. Nephrotoxicity and neurotoxicity were clearly observed both clinically and histologically. The minimising action of penicillamine as a chelating agent and/or lasix as a diuretic on the toxic side-effect of cisplatin was also studied. Both agents succeeded in reducing the toxic side-effect of cisplatin to some extent but failed to reduce mortality among the experimental animals. The study has also manifested liver and heart to be additional organs susceptible to damage, following cisplatin treatment.

  2. [Toxic effect of formaldehyde on mouse different brain regions].

    PubMed

    Cao, Feng-Hua; Cai, Jie; Liu, Zhi-Min; Li, Hui; You, Hui-Hui; Mei, Yu-Fei; Yang, Xu; Ding, Shu-Mao

    2015-10-25

    The aim of this study was to explore the mechanism of the nervous system lesions induced by formaldehyde (FA). Male Balb/c mice were exposed to gaseous formaldehyde for 7 days (8 h/d) with three different concentrations (0, 0.5 and 3.0 mg/m(3)). A group of animals injected with the nitric oxide synthase inhibitor L-NMMA (0.01 mL/g) was also set and exposed to 3.0 mg/m(3) FA. The concentrations of cAMP, cGMP, NO and the activity of NOS in cerebral cortex, hippocampus and brain stem were determined by corresponding assay kits. The results showed that, compared with the control (0 mg/m(3) FA) group, the cAMP contents in cerebral cortex and brain stem were significantly increased in 0.5 mg/m(3) FA group (P < 0.05), but decreased in 3.0 mg/m(3) FA group (P < 0.05); The concentration of cAMP in hippocampus was significantly decreased in 3.0 mg/m(3) FA group (P < 0.05). In comparison with the control group, L-NMMA group showed unchanged cAMP contents and NOS activities in different brain regions, but showed increased cGMP contents in hippocampus and NO contents in cerebral cortex (P < 0.05). In addition, compared with 3.0 mg/m(3) FA group, L-NMMA group showed increased contents of cAMP and reduced NOS activities in different brain regions, as well as significantly decreased cGMP contents in cerebral cortex and brain stem and NO content in brain stem. These results suggest that the toxicity of FA on mouse nervous system is related to NO/cGMP and cAMP signaling pathways. PMID:26490067

  3. [Toxic effect of formaldehyde on mouse different brain regions].

    PubMed

    Cao, Feng-Hua; Cai, Jie; Liu, Zhi-Min; Li, Hui; You, Hui-Hui; Mei, Yu-Fei; Yang, Xu; Ding, Shu-Mao

    2015-10-25

    The aim of this study was to explore the mechanism of the nervous system lesions induced by formaldehyde (FA). Male Balb/c mice were exposed to gaseous formaldehyde for 7 days (8 h/d) with three different concentrations (0, 0.5 and 3.0 mg/m(3)). A group of animals injected with the nitric oxide synthase inhibitor L-NMMA (0.01 mL/g) was also set and exposed to 3.0 mg/m(3) FA. The concentrations of cAMP, cGMP, NO and the activity of NOS in cerebral cortex, hippocampus and brain stem were determined by corresponding assay kits. The results showed that, compared with the control (0 mg/m(3) FA) group, the cAMP contents in cerebral cortex and brain stem were significantly increased in 0.5 mg/m(3) FA group (P < 0.05), but decreased in 3.0 mg/m(3) FA group (P < 0.05); The concentration of cAMP in hippocampus was significantly decreased in 3.0 mg/m(3) FA group (P < 0.05). In comparison with the control group, L-NMMA group showed unchanged cAMP contents and NOS activities in different brain regions, but showed increased cGMP contents in hippocampus and NO contents in cerebral cortex (P < 0.05). In addition, compared with 3.0 mg/m(3) FA group, L-NMMA group showed increased contents of cAMP and reduced NOS activities in different brain regions, as well as significantly decreased cGMP contents in cerebral cortex and brain stem and NO content in brain stem. These results suggest that the toxicity of FA on mouse nervous system is related to NO/cGMP and cAMP signaling pathways.

  4. Guidance on health effects of toxic chemicals. Safety Analysis Report Update Program

    SciTech Connect

    Foust, C.B.; Griffin, G.D.; Munro, N.B.; Socolof, M.L.

    1994-02-01

    Martin Marietta Energy Systems, Inc. (MMES), and Martin Marietta Utility Services, Inc. (MMUS), are engaged in phased programs to update the safety documentation for the existing US Department of Energy (DOE)-owned facilities. The safety analysis of potential toxic hazards requires a methodology for evaluating human health effects of predicted toxic exposures. This report provides a consistent set of health effects and documents toxicity estimates corresponding to these health effects for some of the more important chemicals found within MMES and MMUS. The estimates are based on published toxicity information and apply to acute exposures for an ``average`` individual. The health effects (toxicological endpoints) used in this report are (1) the detection threshold; (2) the no-observed adverse effect level; (3) the onset of irritation/reversible effects; (4) the onset of irreversible effects; and (5) a lethal exposure, defined to be the 50% lethal level. An irreversible effect is defined as a significant effect on a person`s quality of life, e.g., serious injury. Predicted consequences are evaluated on the basis of concentration and exposure time.

  5. Protective effect of allicin against glycidamide-induced toxicity in male and female mice.

    PubMed

    Wang, En-Ting; Chen, Dong-Yan; Liu, Huang-You; Yan, Hai-Yang; Yuan, Yuan

    2015-04-01

    Acrylamide is known to be a neurotoxic, genotoxic, and carcinogenic compound. Glycidamide has a close relationship to the toxic mechanism of acrylamide. In order to explore the toxic mechanism of acrylamide, we further discussed the effects of oral administration of allicin on glycidamide-induced toxicity by determining the hematological parameters like AST, ALT, LDH, BUN, creatinine, ROS, and 8-OHdG, and biochemical parameters such as MDA, MPO, SOD, GST and GSH in the kidney, liver, brain and lung of male and female mice for the first time. We found that the same dose of glycidamide had more toxic effects and damage effects to the mice compared to the previous study of acrylamide. It could markedly increase the level of AST, ALT, LDH, BUN, ROS, 8-OHdG, MDA, MPO while decrease the SOD, GST and GSH. However, our data showed the oral administered allicin with a concentration of 5, 10, and 20 mg/kg b.w./day could significantly decrease the damage indexes of AST, ALT, LDH, BUN, ROS, 8-OHdG, MDA, and MPO, while increase the antioxidant indicators of SOD, GST and GSH. Thus allicin could be used as an effective dietary supplement for the chemoprevention of glycidamide genotoxicity internally, and to prevent the tissue damage and toxicity induced by glycidamide. PMID:25730897

  6. Surfactants present complex joint effects on the toxicities of metal oxide nanoparticles.

    PubMed

    Wang, Dali; Lin, Zhifen; Yao, Zhifeng; Yu, Hongxia

    2014-08-01

    The potential toxicities of nanoparticles (NPs) have been intensively discussed over the past decade. In addition to their single toxicities, NPs can interact with other environmental chemicals and thereby exert joint effects on biological systems and the environment. The present study investigated the combined toxicities of NPs and surfactants, which are among the chemicals that most likely coexist with NPs. Photobacterium phosphoreum was employed as the model organism. The results indicate that surfactants with different ion types can alter the properties of NPs (i.e., particle size and surface charge) in different ways and present complex joint effects on NP toxicities. Mixtures of different NPs and surfactants exhibited antagonistic, synergistic, and additive effects. In particular, the toxicity of ZnO was observed to result from its dissolved Zn(2+); thus, the joint effects of the ZnO NPs and surfactants can be explained by the interactions between the Zn ions and the surfactants. Our study suggests that the potential hazards caused by mixtures of NPs and surfactants are different from those caused by single NPs. Because surfactants are extensively used in the field of nanotechnology and are likely to coexist with NPs in natural waters, the ecological risk assessments of NPs should consider the impacts of surfactants.

  7. Trophic status of a community can alter the bioavailability and toxic effects of contaminants

    SciTech Connect

    McCarthy, J.F.; Bartell, S.M.

    1986-01-01

    Binding of hydrophobic organic and metal contaminants to particulate and dissolved organic matter (POM and DOM) in aquatic systems affects the availability of contaminants and their subsequent dose to biota. Eutrophic systems that contain high levels of organic sorbents will have lower concentrations of freely dissolved, readily available toxicant, thus reducing the exposure of the biota. In more oligotrophic systems with lower levels of sorbents, toxic exposure may be greater. These interactions suggest a relationship between the trophic state of an ecosystem and its susceptibility to toxic effects. Studies on the binding of organic contaminants to POM and DOM and its effects on toxicant accumulation are reviewed. The role of system productivity on adverse effects is explored by computer simulations, using a combined fate and effects model to evaluate the impacts of naphthalene on the production dynamics and contaminant body burden in different model populations when the concentration of POM varied from 0 to 10 mg C/L. Higher levels of POM decreased body burdens and moderated the reduction in productivity resulting from the exposure to naphthalene. Any interpretation of functional tests used to evaluate hazardous substances should consider the interaction between the trophic state of the system and the potential dose of toxicant available to biota.

  8. No-observed-effect concentrations in batch and continuous algal toxicity tests

    SciTech Connect

    Chao, M.R.; Chen, C.Y.

    2000-06-01

    In this study, the authors compare the no-observed-effect concentrations (NOECs) of Cd, Ni, Zn, Cu, and Pb based on different response parameters, using batch and continuous algal toxicity tests. For both batch and continuous tests, parameters based on total cell volume (TCV) were found to be less sensitive than those related to cell densities. The above observation mainly occurred because, under the stresses from metal toxicants evaluated in this and a previous study, the mean cell volume (MCV) of algae increased considerably. The increase of MCV compensates for the effects brought about by the reduction in cell density and eventually results in less variation in TCVs. This study shows that parameters based on cell density are quite sensitive and ideal for the estimation of NOECs. In addition, comparison of the NOEC values derived from different culture techniques shows that the continuous methods generally yields lower NOEC values than that obtained by the batch tests. The results of this study also indicate that the NOEC provides more protection to the test organism than the effective concentration at 10% growth reduction (EC10). For toxicity test methods that produce small variations among replicates, the NOEC is still a good indicator of low toxic effect. Furthermore, for the continuous algal toxicity test, a relatively simple approach is proposed to determine the NOEC values based on the algal culture's control charts. The proposed method produced identical results as those based on conventional hypothesis-testing methods.

  9. Hydroxytyrosol, a dietary phenolic compound forestalls the toxic effects of methylmercury-induced toxicity in IMR-32 human neuroblastoma cells.

    PubMed

    Mohan, Vishnu; Das, Shubhankar; Rao, Satish B S

    2016-10-01

    This study demonstrates the protective potential of hydroxytyrosol (HT), an olive oil phenol, against methylmercury (MeHg)-induced neurotoxicity using IMR-32 human neuroblastoma cell line. HT inhibited MeHg-induced cytotoxicity and genotoxicity as confirmed by MTT, micronucleus, and comet assays. Cells preconditioned with HT showed reduction of MeHg-induced cellular oxidative stress along with the maintenance of glutathione, superoxide dismutase, glutathione-S-tranferase, and catalase. Fluorescence microscopy and DNA ladder assays indicated the inhibitory effect of HT against MeHg-induced apoptosis, which was further established by Western blotting. An effective concentration of 5 µM HT caused downregulation of p53, bax, cytochrome c, and caspase 3 and upregulation of prosurvival proteins including nuclear factor erythroid 2-related factor 2 (Nrf2) and metallothionein. This work indicates the cytoprotective potential of HT against MeHg-induced toxicity primarily by the lowering of oxidative stress, which may be endorsed to its antigenotoxic and antiapoptotic potential, in addition to its free radical scavenging ability. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1264-1275, 2016.

  10. Hydroxytyrosol, a dietary phenolic compound forestalls the toxic effects of methylmercury-induced toxicity in IMR-32 human neuroblastoma cells.

    PubMed

    Mohan, Vishnu; Das, Shubhankar; Rao, Satish B S

    2016-10-01

    This study demonstrates the protective potential of hydroxytyrosol (HT), an olive oil phenol, against methylmercury (MeHg)-induced neurotoxicity using IMR-32 human neuroblastoma cell line. HT inhibited MeHg-induced cytotoxicity and genotoxicity as confirmed by MTT, micronucleus, and comet assays. Cells preconditioned with HT showed reduction of MeHg-induced cellular oxidative stress along with the maintenance of glutathione, superoxide dismutase, glutathione-S-tranferase, and catalase. Fluorescence microscopy and DNA ladder assays indicated the inhibitory effect of HT against MeHg-induced apoptosis, which was further established by Western blotting. An effective concentration of 5 µM HT caused downregulation of p53, bax, cytochrome c, and caspase 3 and upregulation of prosurvival proteins including nuclear factor erythroid 2-related factor 2 (Nrf2) and metallothionein. This work indicates the cytoprotective potential of HT against MeHg-induced toxicity primarily by the lowering of oxidative stress, which may be endorsed to its antigenotoxic and antiapoptotic potential, in addition to its free radical scavenging ability. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1264-1275, 2016. PMID:25736103

  11. Sulfonated dyes attenuate the toxic effects of beta-amyloid in a structure-specific fashion.

    PubMed

    Pollack, S J; Sadler, I I; Hawtin, S R; Tailor, V J; Shearman, M S

    1995-09-15

    We recently reported that several sulfate-containing glycosaminoglycans, a class of compounds associated with the beta-amyloid plaques of Alzheimer's disease, attenuate the toxic effects of beta-amyloid fragments beta 25-35 and beta 1-40. The amyloid-binding sulfonated dye Congo Red was shown to have a similar effect. Using two clonal cell lines, we now demonstrate that several sulfonated dyes attenuate beta-amyloid toxicity and that the protective effect appears specific for compounds whose sulfonate groups can interact with the beta-pleated structure of aggregated amyloid. These results suggest that by binding beta-amyloid these compounds may prevent toxic interactions of the peptide with cells.

  12. Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver.

    PubMed

    Lu, Yifeng; Zhang, Yan; Deng, Yongfeng; Jiang, Wei; Zhao, Yanping; Geng, Jinju; Ding, Lili; Ren, Hongqiang

    2016-04-01

    Microplastics have become emerging contaminants, causing widespread concern about their potential toxic effects. In this study, the uptake and tissue accumulation of polystyrene microplastics (PS-MPs) in zebrafish were detected, and the toxic effects in liver were investigated. The results showed that after 7 days of exposure, 5 μm diameter MPs accumulated in fish gills, liver, and gut, while 20 μm diameter MPs accumulated only in fish gills and gut. Histopathological analysis showed that both 5 μm and 70 nm PS-MPs caused inflammation and lipid accumulation in fish liver. PS-MPs also induced significantly increased activities of superoxide dismutase and catalase, indicating that oxidative stress was induced after treatment with MPs. In addition, metabolomic analysis suggested that exposure to MPs induced alterations of metabolic profiles in fish liver and disturbed the lipid and energy metabolism. These findings provide new insights into the toxic effects of MPs on fish. PMID:26950772

  13. Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver.

    PubMed

    Lu, Yifeng; Zhang, Yan; Deng, Yongfeng; Jiang, Wei; Zhao, Yanping; Geng, Jinju; Ding, Lili; Ren, Hongqiang

    2016-04-01

    Microplastics have become emerging contaminants, causing widespread concern about their potential toxic effects. In this study, the uptake and tissue accumulation of polystyrene microplastics (PS-MPs) in zebrafish were detected, and the toxic effects in liver were investigated. The results showed that after 7 days of exposure, 5 μm diameter MPs accumulated in fish gills, liver, and gut, while 20 μm diameter MPs accumulated only in fish gills and gut. Histopathological analysis showed that both 5 μm and 70 nm PS-MPs caused inflammation and lipid accumulation in fish liver. PS-MPs also induced significantly increased activities of superoxide dismutase and catalase, indicating that oxidative stress was induced after treatment with MPs. In addition, metabolomic analysis suggested that exposure to MPs induced alterations of metabolic profiles in fish liver and disturbed the lipid and energy metabolism. These findings provide new insights into the toxic effects of MPs on fish.

  14. Acute toxicity of diphacinone in Northern bobwhite: Effects on survival and blood clotting

    USGS Publications Warehouse

    Rattner, Barnett A.; Horak, Katherine E.; Warner, Sarah E.; Johnston, John J.

    2010-01-01

    The anticoagulant rodenticide diphacinone was slightly toxic (acute oral LD50 2014 mg/kg) to Northern bobwhite (Colinus virginianus) in a 14-day acute toxicity trial. Precise and sensitive assays of blood clotting (prothrombin time, Russell?s Viper venom time, and thrombin clotting time) were adapted for use in quail, and this combination of assays is recommended to measure the effects of anticoagulant rodenticides. A single oral sublethal dose of diphacinone (434 mg/kg body weight) prolonged clotting time at 48 h post-dose compared to controls. At 783 mg/kg (approximate LD02), clotting time was prolonged at both 24 and 48 h post-dose. Prolongation of in vitro clotting time reflects impaired coagulation complex activity, and was detected before overt signs of toxicity were apparent at the greatest dosages (2868 and 3666 mg/kg) in the acute toxicity trial. These clotting time assays and toxicity data will assist in the development of a pharmacodynamic model to predict toxicity, and also facilitate rodenticide hazard and risk assessments in avian species.

  15. Dispersant and salinity effects on weathering and acute toxicity of South Louisiana crude oil.

    PubMed

    Kuhl, Adam J; Nyman, J Andrew; Kaller, Michael D; Green, Christopher C

    2013-11-01

    Chemical dispersants are an important technology in the remediation of oil spills in the aquatic environment, facilitating degradation of crude oil and salinity is an important factor in dispersant effectiveness. The aim of the present study was to explore the role of salinity on the degradation chemistry of crude oil polycyclic aromatic hydrocarbons (PAHs) and acute toxicity of the water accommodated fraction (WAF) of the dispersant COREXIT 9500A and chemically dispersed crude oil on a common estuarine fish. Laboratory microcosms were designed at salinities of 4 parts per thousand (ppt), 12 ppt, or 18 ppt and spiked with crude oil, COREXIT 9500A, or a combined exposure to crude oil and COREXIT and allowed to biodegrade for 1 wk, 4 wk, and 16 wk. The WAF was harvested for analytical PAH analysis and acute toxicity testing in juvenile Fundulus grandis. Compared with undispersed oil, COREXIT exponentially increased the PAH concentrations in the WAF for up to 16 wk; hopane-normalized concentrations indicated that biodegradation was slowed for the first 4 wk. Dispersed crude oil and COREXIT were acutely toxic following 1 wk of biodegradation with no correlation between PAH concentrations and crude oil WAF mortality. Both dispersant and dispersant oil mixtures remained toxic for at least 4 wk at the lowest salinity tested, suggesting increased sensitivity or reduced biodegradation of toxic components in low-saline environments. At the lowest salinity, oil dispersed with COREXIT was more toxic than either the COREXIT alone or oil alone, even after 16 wk of biodegradation. PMID:24377102

  16. Boron Toxicity Causes Multiple Effects on Malus domestica Pollen Tube Growth.

    PubMed

    Fang, Kefeng; Zhang, Weiwei; Xing, Yu; Zhang, Qing; Yang, Liu; Cao, Qingqin; Qin, Ling

    2016-01-01

    Boron is an important micronutrient for plants. However, boron is also toxic to cells at high concentrations, although the mechanism of this toxicity is not known. This study aimed to evaluate the effect of boron toxicity on Malus domestica pollen tube growth and its possible regulatory pathway. Our results showed that a high concentration of boron inhibited pollen germination and tube growth and led to the morphological abnormality of pollen tubes. Fluorescent labeling coupled with a scanning ion-selective electrode technique detected that boron toxicity could decrease [Ca(2+)]c and induce the disappearance of the [Ca(2+)]c gradient, which are critical for pollen tube polar growth. Actin filaments were therefore altered by boron toxicity. Immuno-localization and fluorescence labeling, together with fourier-transform infrared analysis, suggested that boron toxicity influenced the accumulation and distribution of callose, de-esterified pectins, esterified pectins, and arabinogalactan proteins in pollen tubes. All of the above results provide new insights into the regulatory role of boron in pollen tube development. In summary, boron likely plays a structural and regulatory role in relation to [Ca(2+)]c, actin cytoskeleton and cell wall components and thus regulates Malus domestica pollen germination and tube polar growth. PMID:26955377

  17. Effects of soil properties on copper toxicity to earthworm Eisenia fetida in 15 Chinese soils.

    PubMed

    Duan, Xiongwei; Xu, Meng; Zhou, Youya; Yan, Zengguang; Du, Yanli; Zhang, Lu; Zhang, Chaoyan; Bai, Liping; Nie, Jing; Chen, Guikui; Li, Fasheng

    2016-02-01

    The bioavailability and toxicity of metals in soil are influenced by a variety of soil properties, and this principle should be recognized in establishing soil environmental quality criteria. In the present study, the uptake and toxicity of Cu to the earthworm Eisenia fetida in 15 Chinese soils with various soil properties were investigated, and regression models for predicting Cu toxicity across soils were developed. The results showed that earthworm survival and body weight change were less sensitive to Cu than earthworm cocoon production. The soil Cu-based median effective concentrations (EC50s) for earthworm cocoon production varied from 27.7 to 383.7 mg kg(-1) among 15 Chinese soils, representing approximately 14-fold variation. Soil cation exchange capacity and organic carbon content were identified as key factors controlling Cu toxicity to earthworm cocoon production, and simple and multiple regression models were developed for predicting Cu toxicity across soils. Tissue Cu-based EC50s for earthworm cocoon production were also calculated and varied from 15.5 to 62.5 mg kg(-1) (4-fold variation). Compared to the soil Cu-based EC50s for cocoon production, the tissue Cu-based EC50s had less variation among soils, indicating that metals in tissue were more relevant to toxicity than metals in soil and hence represented better measurements of bioavailability.

  18. Boron Toxicity Causes Multiple Effects on Malus domestica Pollen Tube Growth

    PubMed Central

    Fang, Kefeng; Zhang, Weiwei; Xing, Yu; Zhang, Qing; Yang, Liu; Cao, Qingqin; Qin, Ling

    2016-01-01

    Boron is an important micronutrient for plants. However, boron is also toxic to cells at high concentrations, although the mechanism of this toxicity is not known. This study aimed to evaluate the effect of boron toxicity on Malus domestica pollen tube growth and its possible regulatory pathway. Our results showed that a high concentration of boron inhibited pollen germination and tube growth and led to the morphological abnormality of pollen tubes. Fluorescent labeling coupled with a scanning ion-selective electrode technique detected that boron toxicity could decrease [Ca2+]c and induce the disappearance of the [Ca2+]c gradient, which are critical for pollen tube polar growth. Actin filaments were therefore altered by boron toxicity. Immuno-localization and fluorescence labeling, together with fourier-transform infrared analysis, suggested that boron toxicity influenced the accumulation and distribution of callose, de-esterified pectins, esterified pectins, and arabinogalactan proteins in pollen tubes. All of the above results provide new insights into the regulatory role of boron in pollen tube development. In summary, boron likely plays a structural and regulatory role in relation to [Ca2+]c, actin cytoskeleton and cell wall components and thus regulates Malus domestica pollen germination and tube polar growth. PMID:26955377

  19. Dispersant and salinity effects on weathering and acute toxicity of South Louisiana crude oil.

    PubMed

    Kuhl, Adam J; Nyman, J Andrew; Kaller, Michael D; Green, Christopher C

    2013-11-01

    Chemical dispersants are an important technology in the remediation of oil spills in the aquatic environment, facilitating degradation of crude oil and salinity is an important factor in dispersant effectiveness. The aim of the present study was to explore the role of salinity on the degradation chemistry of crude oil polycyclic aromatic hydrocarbons (PAHs) and acute toxicity of the water accommodated fraction (WAF) of the dispersant COREXIT 9500A and chemically dispersed crude oil on a common estuarine fish. Laboratory microcosms were designed at salinities of 4 parts per thousand (ppt), 12 ppt, or 18 ppt and spiked with crude oil, COREXIT 9500A, or a combined exposure to crude oil and COREXIT and allowed to biodegrade for 1 wk, 4 wk, and 16 wk. The WAF was harvested for analytical PAH analysis and acute toxicity testing in juvenile Fundulus grandis. Compared with undispersed oil, COREXIT exponentially increased the PAH concentrations in the WAF for up to 16 wk; hopane-normalized concentrations indicated that biodegradation was slowed for the first 4 wk. Dispersed crude oil and COREXIT were acutely toxic following 1 wk of biodegradation with no correlation between PAH concentrations and crude oil WAF mortality. Both dispersant and dispersant oil mixtures remained toxic for at least 4 wk at the lowest salinity tested, suggesting increased sensitivity or reduced biodegradation of toxic components in low-saline environments. At the lowest salinity, oil dispersed with COREXIT was more toxic than either the COREXIT alone or oil alone, even after 16 wk of biodegradation.

  20. Teratological Effects of a Panel of Sixty Water-Soluble Toxicants on Zebrafish Development

    PubMed Central

    Ali, Shaukat; Aalders, Jeffrey

    2014-01-01

    Abstract The zebrafish larva is a promising whole-animal model for safety pharmacology, environmental risk assessment, and developmental toxicity. This model has been used for the high-throughput toxicity screening of various compounds. Our aim here is to identify possible phenotypic markers of teratogenicity in zebrafish embryos that could be used for the assaying compounds for reproductive toxicity. We have screened a panel of 60 water-soluble toxicants to examine their effects on zebrafish development. A total of 22,080 wild-type zebrafish larvae were raised in 250 μL defined buffer in 96-well plates at a plating density of one embryo per well. They were exposed for a 96-h period starting at 24 h post-fertilization. A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for developmental toxicity assessment. A total of 9017 survivors were analyzed at 5 days post-fertilization for nine phenotypes, namely, (1) normal, (2) pericardial oedema, (3) yolk sac oedema, (4) melanophores dispersed, (5) bent tail tip, (6) bent body axis, (7) abnormal Meckel's cartilage, (8) abnormal branchial arches, and (9) uninflated swim bladder. For each toxicant, the EC50 (concentration required to produce one or more of these abnormalities in 50% of embryos) was also calculated. For the majority of toxicants (55/60) there was, at the population level, a statistically significant, concentration-dependent increase in the incidence of abnormal phenotypes among survivors. The commonest abnormalities were pericardial oedema, yolk sac oedema, dispersed melanophores, and uninflated swim bladder. It is possible therefore that these could prove to be general indicators of reproductive toxicity in the zebrafish embryo assay. PMID:24650241

  1. Teratological effects of a panel of sixty water-soluble toxicants on zebrafish development.

    PubMed

    Ali, Shaukat; Aalders, Jeffrey; Richardson, Michael K

    2014-04-01

    The zebrafish larva is a promising whole-animal model for safety pharmacology, environmental risk assessment, and developmental toxicity. This model has been used for the high-throughput toxicity screening of various compounds. Our aim here is to identify possible phenotypic markers of teratogenicity in zebrafish embryos that could be used for the assaying compounds for reproductive toxicity. We have screened a panel of 60 water-soluble toxicants to examine their effects on zebrafish development. A total of 22,080 wild-type zebrafish larvae were raised in 250 μL defined buffer in 96-well plates at a plating density of one embryo per well. They were exposed for a 96-h period starting at 24 h post-fertilization. A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for developmental toxicity assessment. A total of 9017 survivors were analyzed at 5 days post-fertilization for nine phenotypes, namely, (1) normal, (2) pericardial oedema, (3) yolk sac oedema, (4) melanophores dispersed, (5) bent tail tip, (6) bent body axis, (7) abnormal Meckel's cartilage, (8) abnormal branchial arches, and (9) uninflated swim bladder. For each toxicant, the EC50 (concentration required to produce one or more of these abnormalities in 50% of embryos) was also calculated. For the majority of toxicants (55/60) there was, at the population level, a statistically significant, concentration-dependent increase in the incidence of abnormal phenotypes among survivors. The commonest abnormalities were pericardial oedema, yolk sac oedema, dispersed melanophores, and uninflated swim bladder. It is possible therefore that these could prove to be general indicators of reproductive toxicity in the zebrafish embryo assay.

  2. Effects of glucose concentrations on cadmium, copper, mercury, and zinc toxicity to a Klebsiella sp

    SciTech Connect

    Brynhildsen, L.; Lundgren, B.V.; Allard, B.; Rosswall, T.

    1988-07-01

    The influence of glucose concentration on Cd, CU, Hg, and Zn toxicity to a Klebsiella sp. was studied by following the degradation of /sup 14/C-labeled glucose at pH 6.0. Uptake of /sup 14/C into the cells was also determined. The carbon concentrations ranged from 0.01 to 40 mg liter/sup -1/, which are equivalent to soluble C concentrations in natural environments. The toxicity of Cu, Cd, and Zn to a Klebsiella sp. was affected considerably by the C concentration. Copper at 10/sup -5/ M was toxic when the carbon concentration was 10 or 40 mg liter/sup -1/, while at 0.01 to 1.0 mg liter/sup -1/ no toxicity was observed. Cadmium and zinc were toxic at 10/sup -2/ M in media containing 0.01 to 1.0 mg of C liter/sup -1/. At C concentrations greater than 1.0 mg liter/sup -1/, the inhibition of glucose degradation and carbon assimilation was observed at 10/sup -3/ M Cd and Zn. The toxicity of mercury seemed to be independent of the C concentration. Results of this study showed that the nutritional state of an organism may have a profound effect on its sensitivity to metals. Metals taken up by energy-driven transport system may be less toxic under conditions of C starvation. The C concentration should be taken into account when evaluating results from toxicity studies, especially as most microorganisms in nature live under energy-limited conditions.

  3. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect.

    PubMed

    Kleandrova, Valeria V; Luan, Feng; Speck-Planche, Alejandro; Cordeiro, M Natália D S

    2015-01-01

    The assessment of acute toxicity is one of the most important stages to ensure the safety of chemicals with potential applications in pharmaceutical sciences, biomedical research, or any other industrial branch. A huge and indiscriminate number of toxicity assays have been carried out on laboratory animals. In this sense, computational approaches involving models based on quantitative-structure activity/toxicity relationships (QSAR/QSTR) can help to rationalize time and financial costs. Here, we discuss the most significant advances in the last 6 years focused on the use of QSAR/QSTR models to predict acute toxicity of drugs/chemicals in laboratory animals, employing large and heterogeneous datasets. The advantages and drawbacks of the different QSAR/QSTR models are analyzed. As a contribution to the field, we introduce the first multitasking (mtk) QSTR model for simultaneous prediction of acute toxicity of compounds by considering different routes of administration, diverse breeds of laboratory animals, and the reliability of the experimental conditions. The mtk-QSTR model was based on artificial neural networks (ANN), allowing the classification of compounds as toxic or non-toxic. This model correctly classified more than 94% of the 1646 cases present in the whole dataset, and its applicability was demonstrated by performing predictions of different chemicals such as drugs, dietary supplements, and molecules which could serve as nanocarriers for drug delivery. The predictions given by the mtk-QSTR model are in very good agreement with the experimental results. PMID:25694074

  4. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect.

    PubMed

    Kleandrova, Valeria V; Luan, Feng; Speck-Planche, Alejandro; Cordeiro, M Natália D S

    2015-01-01

    The assessment of acute toxicity is one of the most important stages to ensure the safety of chemicals with potential applications in pharmaceutical sciences, biomedical research, or any other industrial branch. A huge and indiscriminate number of toxicity assays have been carried out on laboratory animals. In this sense, computational approaches involving models based on quantitative-structure activity/toxicity relationships (QSAR/QSTR) can help to rationalize time and financial costs. Here, we discuss the most significant advances in the last 6 years focused on the use of QSAR/QSTR models to predict acute toxicity of drugs/chemicals in laboratory animals, employing large and heterogeneous datasets. The advantages and drawbacks of the different QSAR/QSTR models are analyzed. As a contribution to the field, we introduce the first multitasking (mtk) QSTR model for simultaneous prediction of acute toxicity of compounds by considering different routes of administration, diverse breeds of laboratory animals, and the reliability of the experimental conditions. The mtk-QSTR model was based on artificial neural networks (ANN), allowing the classification of compounds as toxic or non-toxic. This model correctly classified more than 94% of the 1646 cases present in the whole dataset, and its applicability was demonstrated by performing predictions of different chemicals such as drugs, dietary supplements, and molecules which could serve as nanocarriers for drug delivery. The predictions given by the mtk-QSTR model are in very good agreement with the experimental results.

  5. Toxic effects of marijuana on the cardiovascular system.

    PubMed

    Pratap, Balaji; Korniyenko, Aleksandr

    2012-06-01

    We present a case of marijuana-induced ST segment elevation mimicking Brugada syndrome in a young man. Cannabis can have a multitude of effects on the different organ systems of the body; we take a closer look at its effects on the cardiovascular system, including acute coronary syndrome, arrhythmias and congestive heart failure. PMID:22194141

  6. Lightsticks content toxicity: effects of the water soluble fraction on the oyster embryonic development.

    PubMed

    de Araujo, Milena Maria Sampaio; Menezes Filho, Adalberto; Nascimento, Iracema Andrade; Pereira, Pedro Afonso P

    2015-11-01

    Lightsticks are artifacts used as attractors in a type of commercial fishery, known as surface longline gear. Despite the excessive use, the contamination risks of these devices have not yet been properly investigated. This research aimed to fill up this gap by determining the chemical composition and the toxicity of lightsticks recently activated, compared to those one year after activation and to the ones collected on the beaches. The analyzes were carried out by Gas Chromatography coupled with Mass Spectrometry (GC-MS). Additionally, the variations in composition and the toxicity of their sea Water Soluble Fractions (WSF) were evaluated based on the WSF-effects of Crassostrea rhizophorae embryonic development. The GC-MS analysis made possible the identification of nineteen substances in the water soluble fraction of the lightsticks, such as dibutyl phthalate (DBP) and dimethyl phthalate (DMP). The value of the WSF-effective concentration (EC50) was in an average of 0.35%. After one year of the lightsticks activation, the toxicity was even higher (0.65%). Furthermore, other substances, also present in the lightsticks-WSF caused persistent toxicity even more dangerous to the environment than DBP and DMP. This essay discusses their toxicity effects and possible environment damages.

  7. Combined effects of dissolved organic material and water hardness on toxicity of cadmium to Daphnia magna

    SciTech Connect

    Penttinen, S.; Kostamo, A.; Kukkonen, J.V.K.

    1998-12-01

    The interaction between dissolved organic material (DOM) and water hardness and their effects on the acute toxicity of cadmium (Cd) to Daphnia magna was studied. At an original hardness of humic lake water, Cd was significantly less toxic in the humic than in the reference water. Furthermore, after dilution down to 10%, the humic water still decreased the lethality significantly. The results suggest that the reduced toxicity of Cd in the lake water is due to complexation with DOC. An increase in water hardness decreased the measured binding coefficient of Cd to DOM. In addition, the acute toxicity of Cd decreased, and the difference between the reference and humic water disappeared. As a conclusion, DOM in the soft lake water had a protective effect against Cd toxicity. In hard water, obviously, the added hardness cations, especially Ca{sup 2+}, effectively competed with Cd{sup 2+} for available binding sites in DOM. Simultaneously, CA{sup 2+} ions interfered also with the uptake of Cd{sup 2+} either by competing in transport through cell membranes or by reducing membrane permeability.

  8. Laboratory evaluation of Ethiopian local plant Phytolacca dodecandra extract for its toxicity effectiveness against aquatic macroinvertebrates.

    PubMed

    Karunamoorthi, K; Bishaw, D; Mulat, T

    2008-01-01

    In this study, we evaluated the toxicity effectiveness of berries crude extract of Endod [vernacular name (local native language, Amharic); Phytolacca dodecandra] against aquatic macroinvertebrates Baetidae (Mayflies) and Hydropsychidae (Caddisflies), under laboratory conditions. In Ethiopia, toxic plant, berries of Phytolacca dodecandra are being commonly used for washing clothes and to control fresh water snails. Macroinvertebrates are useful biological indicators of change in the aquatic ecosystems. The present study clearly revealed that the LC50 and LC90 values for berries crude extract of Phytolacca dodecandra against Baetidae were 181.94 and 525.78 mg/l and lethal doses (LC50 and LC90) required for Hydropsychidae were 1060.69 and 4120.4 mg/l respectively. The present investigation demonstrated that Baetidae was more susceptible than Hydropsychidae, even at shorter exposure period of 2 h. From our preliminary investigation the toxicity effectiveness of crude extracts of Phytolacca dodecandra has been clearly shown. In addition, it requires further explorations which address both the toxicity activity and the active principles that are responsible for its toxicity effectiveness. Ultimately, the release/introduction of Phytolacca dodecandra plant berries extracts into the river/streams leads to disruption of food chain in the aquatic ecosystem. Therefore, at this moment preserving the aquatic ecosystem is extremely essential and inevitable.

  9. Toxic effects of organic solvents on the growth of blue-green algae

    SciTech Connect

    Stratton, G.W.

    1987-06-01

    Relatively few reports have been published on the comparative toxicity of solvents towards test organisms, and these deal primarily with fish and aquatic invertebrates. Information for microbial systems are more limited with some data available for algae and slightly more for fungi. Aside from direct toxic effects of their own, solvents can interact synergistically and antagonistically with the toxicant in solution. This problem has been well documented with pesticides, and a procedure has been developed to identify and eliminate these effects from bioassays. The first step in choosing a solvent for use in microbial bioassays should be a detailed screening to identify solvents with inherently low toxicity to the test organism, followed by an interaction study to choose the best concentration to use. The purpose of the present study was to compare the inhibitory effects of six solvents commonly used in pesticide bioassays towards five species of blue-green algae (cyanobacteria), in order to identify solvents with low toxicity for use in bioassays.

  10. Lightsticks content toxicity: effects of the water soluble fraction on the oyster embryonic development.

    PubMed

    de Araujo, Milena Maria Sampaio; Menezes Filho, Adalberto; Nascimento, Iracema Andrade; Pereira, Pedro Afonso P

    2015-11-01

    Lightsticks are artifacts used as attractors in a type of commercial fishery, known as surface longline gear. Despite the excessive use, the contamination risks of these devices have not yet been properly investigated. This research aimed to fill up this gap by determining the chemical composition and the toxicity of lightsticks recently activated, compared to those one year after activation and to the ones collected on the beaches. The analyzes were carried out by Gas Chromatography coupled with Mass Spectrometry (GC-MS). Additionally, the variations in composition and the toxicity of their sea Water Soluble Fractions (WSF) were evaluated based on the WSF-effects of Crassostrea rhizophorae embryonic development. The GC-MS analysis made possible the identification of nineteen substances in the water soluble fraction of the lightsticks, such as dibutyl phthalate (DBP) and dimethyl phthalate (DMP). The value of the WSF-effective concentration (EC50) was in an average of 0.35%. After one year of the lightsticks activation, the toxicity was even higher (0.65%). Furthermore, other substances, also present in the lightsticks-WSF caused persistent toxicity even more dangerous to the environment than DBP and DMP. This essay discusses their toxicity effects and possible environment damages. PMID:26070145

  11. Metabolomics reveals the mechanisms for the cardiotoxicity of Pinelliae Rhizoma and the toxicity-reducing effect of processing

    NASA Astrophysics Data System (ADS)

    Su, Tao; Tan, Yong; Tsui, Man-Shan; Yi, Hua; Fu, Xiu-Qiong; Li, Ting; Chan, Chi Leung; Guo, Hui; Li, Ya-Xi; Zhu, Pei-Li; Tse, Anfernee Kai Wing; Cao, Hui; Lu, Ai-Ping; Yu, Zhi-Ling

    2016-10-01

    Pinelliae Rhizoma (PR) is a commonly used Chinese medicinal herb, but it has been frequently reported about its toxicity. According to the traditional Chinese medicine theory, processing can reduce the toxicity of the herbs. Here, we aim to determine if processing reduces the toxicity of raw PR, and to explore the underlying mechanisms of raw PR-induced toxicities and the toxicity-reducing effect of processing. Biochemical and histopathological approaches were used to evaluate the toxicities of raw and processed PR. Rat serum metabolites were analyzed by LC-TOF-MS. Ingenuity pathway analysis of the metabolomics data highlighted the biological pathways and network functions involved in raw PR-induced toxicities and the toxicity-reducing effect of processing, which were verified by molecular approaches. Results showed that raw PR caused cardiotoxicity, and processing reduced the toxicity. Inhibition of mTOR signaling and activation of the TGF-β pathway contributed to raw PR-induced cardiotoxicity, and free radical scavenging might be responsible for the toxicity-reducing effect of processing. Our data shed new light on the mechanisms of raw PR-induced cardiotoxicity and the toxicity-reducing effect of processing. This study provides scientific justifications for the traditional processing theory of PR, and should help in optimizing the processing protocol and clinical combinational application of PR.

  12. Metabolomics reveals the mechanisms for the cardiotoxicity of Pinelliae Rhizoma and the toxicity-reducing effect of processing

    PubMed Central

    Su, Tao; Tan, Yong; Tsui, Man-Shan; Yi, Hua; Fu, Xiu-Qiong; Li, Ting; Chan, Chi Leung; Guo, Hui; Li, Ya-Xi; Zhu, Pei-Li; Tse, Anfernee Kai Wing; Cao, Hui; Lu, Ai-Ping; Yu, Zhi-Ling

    2016-01-01

    Pinelliae Rhizoma (PR) is a commonly used Chinese medicinal herb, but it has been frequently reported about its toxicity. According to the traditional Chinese medicine theory, processing can reduce the toxicity of the herbs. Here, we aim to determine if processing reduces the toxicity of raw PR, and to explore the underlying mechanisms of raw PR-induced toxicities and the toxicity-reducing effect of processing. Biochemical and histopathological approaches were used to evaluate the toxicities of raw and processed PR. Rat serum metabolites were analyzed by LC-TOF-MS. Ingenuity pathway analysis of the metabolomics data highlighted the biological pathways and network functions involved in raw PR-induced toxicities and the toxicity-reducing effect of processing, which were verified by molecular approaches. Results showed that raw PR caused cardiotoxicity, and processing reduced the toxicity. Inhibition of mTOR signaling and activation of the TGF-β pathway contributed to raw PR-induced cardiotoxicity, and free radical scavenging might be responsible for the toxicity-reducing effect of processing. Our data shed new light on the mechanisms of raw PR-induced cardiotoxicity and the toxicity-reducing effect of processing. This study provides scientific justifications for the traditional processing theory of PR, and should help in optimizing the processing protocol and clinical combinational application of PR. PMID:27698376

  13. Effect of hesperidin on matrix metalloproteinases and antioxidant status during nicotine-induced toxicity.

    PubMed

    Balakrishnan, Annida; Menon, Venugopal P

    2007-09-01

    Cigarette smoking has been established as a major risk factor for atherosclerosis and also for lung cancer. Nicotine is an active substance present in tobacco. We have analyzed the effect of hesperidin, a bioflavonoid on nicotine induced toxicity. Antioxidant status and expression of MMPs (Matrix metalloproteinases) were analyzed to monitor the protective effect of hesperidin against nicotine toxicity. Our result demonstrated that nicotine significantly up regulates the expression of MMPs and depletes the antioxidant status. On treatment with hesperidin we found the down regulation of expression of MMPs and enhancement in antioxidant status. Hence it could be developed as a drug against tobacco related disease in near future. PMID:17643689

  14. [Toxic effects of cisplatin in the treatment of malignant bone and soft tissue tumors].

    PubMed

    Umeda, T; Takada, N; Hodaka, E; Endoh, F; Ishii, T

    1986-05-01

    A total of 31 patients with malignant bone and soft tissue tumors were evaluated for toxic effects after receiving cisplatin (104 courses) at doses of 2.0-3.0 mg/kg with aggressive hydration. Nausea was common and in 86% of cisplatin courses severe vomiting was observed. Nephrotoxicity was observed in less than 10% of all courses but ototoxicity, especially tinnitis, developed in 5 of 6 patients whose total doses of cisplatin were over 500mg, and one of them showed hearing disorder in the upper frequency above 5,000 Hz. There were no other toxic effects such as severe myelosuppression, allergic reaction or peripheral neuropathy. PMID:3707148

  15. Reproductive toxicity of 2,4-toluenediamine in the rat. 1. Effect on male fertility

    SciTech Connect

    Thysen, B.; Varma, S.K.; Bloch, E.

    1985-01-01

    Effects of 2,4-toluenediamine (TDA) on reproduction in adult male Sprague-Dawley rats were evaluated. Diets containing 0, 0.01 and 0.03% TDA were fed ad libitum to experimental animals for 10 wk. No signs of toxicity were found. Exposure to the high dose resulted in decreased mating frequency and an increase in infertile matings. Light-microscopic examination of the testes revealed reduced numbers of sperm in the seminiferous tubules and cauda epididymides. These results indicate that TDA is capable of reducing fertility and of exerting an inhibitory or toxic effect on spermatogenesis in the rat.

  16. The Effect of Toxic Cyanobacteria on Human and Animal Health

    EPA Science Inventory

    The study of environmental health typically focuses on human populations. However, companion animals, livestock and wildlife also experience adverse health effects from environmental pollutants. Animals may experience direct exposure to pollutants unlike people in most ambient ex...

  17. Automated swimming activity monitor for examining temporal patterns of toxicant effects on individual Daphnia magna.

    PubMed

    Bahrndorff, Simon; Michaelsen, Thomas Yssing; Jensen, Anne; Marcussen, Laurits Faarup; Nielsen, Majken Elley; Roslev, Peter

    2016-07-01

    Aquatic pollutants are often biologically active at low concentrations and impact on biota in combination with other abiotic stressors. Traditional toxicity tests may not detect these effects, and there is a need for sensitive high-throughput methods for detecting sublethal effects. We have evaluated an automated infra-red (IR) light-based monitor for recording the swimming activity of Daphnia magna to establish temporal patterns of toxicant effects on an individual level. Activity was recorded for 48 h and the sensitivity of the monitor was evaluated by exposing D. magna to the reference chemicals K2 Cr2 O7 at 15, 20 and 25 °C and 2,4-dichlorophenol at 20 °C. Significant effects (P < 0.001) of toxicant concentrations, exposure time and incubation temperatures were observed. At 15 °C, the swimming activity remained unchanged for 48 h at sublethal concentrations of K2 Cr2 O7 whereas activity at 20 and 25 °C was more biphasic with decreases in activity occurring after 12-18 h. A similar biphasic pattern was observed after 2,4-dichlorophenol exposure at 20 °C. EC50 values for 2,4-dichlorophenol and K2 Cr2 O7 determined from automated recording of swimming activity showed increasing toxicity with time corresponding to decreases in EC50 of 0.03-0.07 mg l(-1) h(-1) . EC50 values determined after 48 h were comparable or lower than EC50 values based on visual inspection according to ISO 6341. The results demonstrated that the swimming activity monitor is capable of detecting sublethal behavioural effects that are toxicant and temperature dependent. The method allows EC values to be established at different time points and can serve as a high-throughput screening tool in toxicity testing. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26198804

  18. Effect-directed analysis of Elizabeth River porewater: developmental toxicity in zebrafish (Danio rerio).

    PubMed

    Fang, Mingliang; Getzinger, Gordon J; Cooper, Ellen M; Clark, Bryan W; Garner, Lindsey V T; Di Giulio, Richard T; Ferguson, P Lee; Stapleton, Heather M

    2014-12-01

    In the present study, effect-directed analysis was used to identify teratogenic compounds in porewater collected from a Superfund site along the Elizabeth River estuary (VA, USA). Zebrafish (Danio rerio) exposed to the porewater displayed acute developmental toxicity and cardiac teratogenesis, presumably because of elevated sediment levels of polycyclic aromatic hydrocarbons (PAHs) from historical creosote use. Pretreatment of porewater with several physical and chemical particle removal methods revealed that colloid-bound chemicals constituted the bulk of the observed toxicity. Size-exclusive chromatography and normal-phase high-performance liquid chromatography were used to fractionate Elizabeth River porewater. Acute toxicity of porewater extracts and extract fractions was assessed as the pericardial area in embryonic zebrafish. The most toxic fraction contained several known aryl hydrocarbon receptor (AhR) agonists (e.g., 1,2-benzofluorene and 1,2-benzanthracene) and cytochrome P450 A1 (CPY1A) inhibitors (e.g., dibenzothiophene and fluoranthene). The second most toxic fraction contained known AhR agonists (e.g., benzo[a]pyrene and indeno[1,2,3-cd]pyrene). Addition of a CYP1A inhibitor, fluoranthene, increased toxicity in all active porewater fractions, suggesting synergism between several contaminants present in porewaters. The results indicate that the observed acute toxicity associated with Elizabeth River porewater results from high concentrations of AhR agonistic PAHs and mixture effects related to interactions between compounds co-occurring at the Elizabeth River site. However, even after extensive fractionation and chemical characterization, it remains plausible that some active compounds in Elizabeth River porewater remain unidentified.

  19. EFFECT-DIRECTED ANALYSIS OF ELIZABETH RIVER POREWATER: DEVELOPMENTAL TOXICITY IN ZEBRAFISH (DANIO RERIO)

    PubMed Central

    Fang, Mingliang; Getzinger, Gordon J.; Cooper, Ellen M.; Clark, Bryan W.; Garner, Lindsey V.T.; Di Giulio, Richard T.; Ferguson, P. Lee; Stapleton, Heather M.

    2015-01-01

    In the present study, effect-directed analysis was used to identify teratogenic compounds in porewater collected from a Superfund site along the Elizabeth River estuary (VA, USA). Zebrafish (Danio rerio) exposed to the porewater displayed acute developmental toxicity and cardiac teratogenesis, presumably because of elevated sediment levels of polycyclic aromatic hydrocarbons (PAHs) from historical creosote use. Pretreatment of porewater with several physical and chemical particle removal methods revealed that colloid-bound chemicals constituted the bulk of the observed toxicity. Size-exclusive chromatography and normal-phase high-performance liquid chromatography were used to fractionate Elizabeth River porewater. Acute toxicity of porewater extracts and extract fractions was assessed as the pericardial area in embryonic zebrafish. The most toxic fraction contained several known aryl hydrocarbon receptor (AhR) agonists (e.g., 1,2-benzofluorene and 1,2-benzanthracene) and cytochrome P450 A1 (CPY1A) inhibitors (e.g., dibenzothiophene and fluoranthene). The second most toxic fraction contained known AhR agonists (e.g., benzo[a]pyrene and indeno[1,2,3-cd]pyrene). Addition of a CYP1A inhibitor, fluoranthene, increased toxicity in all active porewater fractions, suggesting synergism between several contaminants present in porewaters. The results indicate that the observed acute toxicity associated with Elizabeth River porewater results from high concentrations of AhR agonistic PAHs and mixture effects related to interactions between compounds co-occurring at the Elizabeth River site. However, even after extensive fractionation and chemical characterization, it remains plausible that some active compounds in Elizabeth River porewater remain unidentified. PMID:25196082

  20. Toxic effect onset and evaluations of medicinal drugs--horizon for Darwinian toxicological thought.

    PubMed

    Horii, Ikuo

    2010-08-01

    The theory of Darwinian Medicine linked to an extension of Darwin's evolutionary theory is based on the approach from the aspect of "why we become ill?".This theory enables us to understand the relationship between humans and diseases by thinking from evolutional perspective, shows an important help for preventive medicine, and is meaningful to consider the future human healthcare. Toxicology has been defined as a research of adverse effect of xenobiotic substances backed up by diverse-sciences. Toxic effects are basically responses to xenobiotic substances, and expressed as triggering or additional accelerating adverse effects toward abnormal condition. Toxic effects, biological adverse responses, are interpreted as protective responses of living body, and the adverse effects caused by drugs are also considered to be protective responses. This logic can be translated as "Darwinian Toxicology" corresponding to "Darwinian Medicine", replying to "why we get into toxic condition by xenobiotics exposure". This paper refers to the meaning of toxic effects based on mechanisms underlying and comprehensive drug safety evaluation from Darwinian Medicine perspectives.

  1. The repellent and persistent toxic effects of essential oils against the poultry red mite, Dermanyssus gallinae.

    PubMed

    Nechita, I S; Poirel, M T; Cozma, V; Zenner, L

    2015-12-15

    The economic impact of the poultry red mite, Dermanyssus gallinae, the lack of new acaricides, the occurrence of resistance and tighter legislation have all led to the need to find new ways to control this pest. One promising alternative method of control focuses on employing repellent and/or toxic effects of selected plant essential oils against D. gallinae. Ten essential oils (basil, thyme, coriander, eucalyptus, lavender, lemon, fir tree, oregano, mint, and juniper) were tested for the persistence of toxic and repellent effects. In filter-paper toxicity bioassays against D. gallinae, the best results were observed for lavender (more than 97% mortality after 48 and 72 h) and thyme (84% at 72 h) at a dose of 0.12 mg/cm(2). In addition, two oils showed significant persistent toxic effects 15 and 30 days post application to filter papers. Thyme was the most effective (100% mortality at 72 h), followed by lavender (nearly 80% mortality after 72 h). Out of the ten oils tested for their repellent effect, thyme was the strongest, with nearly 80% of the tested area avoided by mites; oregano caused a 60% avoidance and lavender exhibited an effect close to 40%. All other oils exhibited a repellent effect of less than 30%. None of the experiments showed a repellent effect for HM (commercial alimentary oil) or negative controls. We found that the thyme and lavender essential oils exhibited promising results when tested in vitro for toxic and repellent effects against D. gallinae; thus, we suggest that future experiments focus on in vivo tests using these oils in farm units.

  2. The repellent and persistent toxic effects of essential oils against the poultry red mite, Dermanyssus gallinae.

    PubMed

    Nechita, I S; Poirel, M T; Cozma, V; Zenner, L

    2015-12-15

    The economic impact of the poultry red mite, Dermanyssus gallinae, the lack of new acaricides, the occurrence of resistance and tighter legislation have all led to the need to find new ways to control this pest. One promising alternative method of control focuses on employing repellent and/or toxic effects of selected plant essential oils against D. gallinae. Ten essential oils (basil, thyme, coriander, eucalyptus, lavender, lemon, fir tree, oregano, mint, and juniper) were tested for the persistence of toxic and repellent effects. In filter-paper toxicity bioassays against D. gallinae, the best results were observed for lavender (more than 97% mortality after 48 and 72 h) and thyme (84% at 72 h) at a dose of 0.12 mg/cm(2). In addition, two oils showed significant persistent toxic effects 15 and 30 days post application to filter papers. Thyme was the most effective (100% mortality at 72 h), followed by lavender (nearly 80% mortality after 72 h). Out of the ten oils tested for their repellent effect, thyme was the strongest, with nearly 80% of the tested area avoided by mites; oregano caused a 60% avoidance and lavender exhibited an effect close to 40%. All other oils exhibited a repellent effect of less than 30%. None of the experiments showed a repellent effect for HM (commercial alimentary oil) or negative controls. We found that the thyme and lavender essential oils exhibited promising results when tested in vitro for toxic and repellent effects against D. gallinae; thus, we suggest that future experiments focus on in vivo tests using these oils in farm units. PMID:26548812

  3. Effectiveness and Toxicity of Several DTPA Broadening Agents for Biological ESR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zaplatin, A. N.; Baker, Kent A.; Kleinhans, F. W.

    1996-03-01

    The effectiveness of a standard ESR broadening agent, potassium trioxalatochromiate (CrOx), for use with the spin-label tempone, was compared to that of diethylenetriaminepentaacetic acid (DTPA) containing an ion (Gd, Cr, Mn, Fe) with a large magnetic moment. Signal attenuation, line broadening, toxicity, and cell membrane permeability were compared. As a broadening agent, CrOx was most effective, followed by Fe-DTPA. CrOx proved mildly toxic while Gd-DTPA and Fe-DTPA were virtually nontoxic. The human red blood cell membrane was tested for permeability to Fe- and Gd-DTPA and found to be impermeable to both. In situations where toxicity to cells is critical, the DTPA chelates, particularly Fe-DTPA, may prove an acceptable substitute for CrOx.

  4. Toxic and teratogenic effects of chemical class fractions of a coal-gasification electrostatic precipitator tar.

    PubMed

    Schultz, T W; Dumont, J N; Buchanan, M V

    1983-12-01

    Dimethyl sulfoxide slurries of a coal gasifier electrostatic precipitator tar and its chemical class fractions were assayed for their toxicity and teratogenicity using early embryos of the frog Xenopus laevis. Of the 5 tar fractions the ether-soluble base and polyaromatic were found to be the most teratogenic and the ether-soluble acid and ether-soluble base were the most toxic. The teratogenic effects of the raw tar suggest synergism. The toxic effects to newly metamorphosed froglets is 1-2 orders of magnitude less than those observed for embryos. Chemical analysis shows dihydroxybenzenes and organonitrogen compounds to be the major components of the acid and base fractions, respectively. The neutral fractions contain mainly alkyl-substituted two-ring hydrocarbons.

  5. Xenotransplantation Models to Study the Effects of Toxicants on Human Fetal Tissues1

    PubMed Central

    Spade, Daniel J.; McDonnell, Elizabeth V.; Heger, Nicholas E.; Sanders, Jennifer A.; Saffarini, Camelia M.; Gruppuso, Philip A.; De Paepe, Monique E.; Boekelheide, Kim

    2015-01-01

    Many diseases that manifest throughout the lifetime are influenced by factors affecting fetal development. Fetal exposure to xenobiotics, in particular, may influence the development of adult diseases. Established animal models provide systems for characterizing both developmental biology and developmental toxicology. However, animal model systems do not allow researchers to assess the mechanistic effects of toxicants on developing human tissue. Human fetal tissue xenotransplantation models have recently been implemented to provide human-relevant mechanistic data on the many tissue-level functions that may be affected by fetal exposure to toxicants. This review describes the development of human fetal tissue xenotransplant models for testis, prostate, lung, liver, and adipose tissue, aimed at studying the effects of xenobiotics on tissue development, including implications for testicular dysgenesis, prostate disease, lung disease, and metabolic syndrome. The mechanistic data obtained from these models can complement data from epidemiology, traditional animal models, and in vitro studies to quantify the risks of toxicant exposures during human development. PMID:25477288

  6. Effects of environmental toxicants on development of a teleost embryo

    SciTech Connect

    Crawford, R.B.; Guarino, A.M.

    1985-11-01

    Embryos of the teleost Fundulus heteroclitus are shown to be useful model systems for monitoring the effects of xenobiotic compounds on development. Fourteen different substances were tested: malathion, aroclor, aldrin, diquat, parathion, pentachlorophenol, sevin, toxaphene, lindane, 2,4-D, DDT, paraquat, 2,4,5-T, and aminotriazole. Concentrations used for each of these was from 0.01 to 10.0 ppm in the incubation dishes. The variety of effects on development observed depended on the compound and its concentration. These effects included inhibition of gastrulation, abnormal axis formation, diminished pigmentation, slowed rate of development, reduced frequency of hatching, loss of neuromuscular control, and reduction or inhibition of heart beat. Possible modes of action of some of these compounds are discussed. It is also shown that embryogenesis is not always the most susceptible part of the organism's life cycle.

  7. Neuroprotective effect of thalidomide on MPTP-induced toxicity.

    PubMed

    Palencia, Guadalupe; Garcia, Esperanza; Osorio-Rico, Laura; Trejo-Solís, Cristina; Escamilla-Ramírez, Angel; Sotelo, Julio

    2015-03-01

    Thalidomide is a sedative with unique pharmacological properties; studies on epilepsy and brain ischemia have shown intense neuroprotective effects. We analyzed the effect of thalidomide treatment on the neurotoxicity caused by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahidropyridine (MPTP) in mice. Thalidomide was administered at two times; before and after the exposure to MPTP. In both circumstances thalidomide improved the neurotoxicity induced by MPTP as seen by a significant raise of the striatal contents of dopamine and simultaneous decrease of monoamine-oxidase-B (MAO-B). These results indicate that in the experimental model of Parkinson's disease the administration of thalidomide improves the functional damage on the nigrostriatal cell substratum as seen by the production of dopamine. This neuroprotective effect seems to be mediated by inhibition of excitotoxicity. Our results suggest that thalidomide could be investigated as potential adjuvant therapy for Parkinson's disease.

  8. The Effects of Locus Coeruleus and Norepinephrine in Methamphetamine Toxicity

    PubMed Central

    Ferrucci, Michela; Giorgi, Filippo S; Bartalucci, Alessia; Busceti, Carla L; Fornai, Francesco

    2013-01-01

    The activity of locus coeruleus (LC) neurons has been extensively investigated in a variety of behavioural states. In fact this norepinephrine (NE)-containing nucleus modulates many physiological and pathological conditions including the sleep-waking cycle, movement disorders, mood alterations, convulsive seizures, and the effects of drugs such as psychostimulants and opioids. This review focuses on the modulation exerted by central NE pathways on the behavioural and neurotoxic effects produced by the psychostimulant methamphetamine, essentially the modulation of the activity of mesencephalic dopamine (DA) neurons. In fact, although NE in itself mediates some behavioural effects induced by methamphetamine, NE modulation of DA release is pivotal for methamphetamine-induced behavioural states and neurotoxicity. These interactions are discussed on the basis of the state of the art of the functional neuroanatomy of central NE- and DA systems. Emphasis is given to those brain sites possessing a remarkable overlapping of both neurotransmitters. PMID:23814540

  9. The effect of natural organic matter on bioaccumulation and toxicity of chlorobenzenes to green algae.

    PubMed

    Zhang, Shuai; Lin, Daohui; Wu, Fengchang

    2016-07-01

    The effect of natural organic matter (NOM) on toxicity and bioavailability of hydrophobic organic contaminants (HOCs) to aquatic organisms has been investigated with conflicting results and undefined mechanisms, and few studies have been conducted on volatile HOCs. In this study, six volatile chlorobenzenes (CBs) with 1-6 chlorine substitutions were investigated for their bioaccumulation in an acute toxicity to a green alga (Chlorella pyrenoidosa) in the presence/absence of Suwannee River NOM (SRNOM). The fluorescence quenching efficiency of SRNOM increased as the number of chlorine substitutions of CBs increased. SRNOM increased the cell-surface hydrophobicity of algae and decreased the release rates of algae-accumulated CBs, thus increasing the concentration factor (CF) and accumulation of the CBs in the algae. SRNOM increased the toxicity of monochlorobenzene and 1,2-dichlorobenzene, decreased the toxicity of pentachlorobenzene and hexachlorobenzene, and had no significant effect on the toxicity of 1,2,3-trichlorobenzene and 1,2,3,4-tetrachlorobenzene. Relationships between the 96 h CF/IC50 (i.e., the CB concentration leading to a 50% algal growth reduction compared with the control) and physicochemical properties of CBs with/without SRNOM were established, providing reasonable explanations for the experimental results. These findings will help with the accurate assessment of ecological risks of organic pollutants in the presence of NOM.

  10. Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: The role of catalyst impurities and adsorption capacity.

    PubMed

    Wang, Xinghao; Qu, Ruijuan; Liu, Jiaoqin; Wei, Zhongbo; Wang, Liansheng; Yang, Shaogui; Huang, Qingguo; Wang, Zunyao

    2016-01-01

    Experiments were conducted to investigate the effect of four different carbon nanotubes single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs) and hydroxylated and carboxylated multi-walled carbon nanotubes (OH-MWCNTs and COOH-MWCNTs) on Cd toxicity to the aquatic organism Daphnia magna. The acute toxicity results indicated that all CNTs could enhance the toxicity of Cd to D. magna. Furthermore, the filtrate toxicity and adsorption tests showed that the toxicity-increasing effect of SWCNTs and MWCNTs in the overall system was mainly caused by catalysts impurities from the pristine CNTs, whereas the greater adsorption of Cd onto OH-MWCNTs (30.52 mg/g) and COOH-MWCNTs (24.93 mg/g) was the key factor contributing to the enhanced toxicity. This result raised a concern that the metal catalyst impurities, adsorption capacities, and accumulation of waterborne CNTs were responsible for the toxicity of Cd to aquatic organism.

  11. Toxic Gas Removal by Dielectric Discharge with Corona Effect

    SciTech Connect

    Moreno, H.; Pacheco, M.; Mercado, A.; Cruz, A.; Pacheco, J.; Yousfi, M.; Eichwald, O.; Benhenni, M.

    2006-12-04

    In this work, a theoretical and experimental study on SO2 and NOx removal by non-thermal plasma technology, more specifically a dielectric barrier (DBD) discharge combined with the Corona effect, is presented. Results obtained from a theoretical study describe the chemical kinetic model of SO2 and NOx removal processes; the effect of OH radicals in removal of both gases is noteworthy. Experimental results of de-SO2 process are reported. Also, optical emission spectroscopy study was applied on some atomic helium lines to obtain temperature of electrons in the non-thermal plasma.

  12. Toxic Gas Removal by Dielectric Discharge with Corona Effect

    NASA Astrophysics Data System (ADS)

    Moreno, H.; Pacheco, M.; Pacheco, J.; Mercado, A.; Cruz, A.; Yousfi, M.; Eichwald, O.; Benhenni, M.

    2006-12-01

    In this work, a theoretical and experimental study on SO2 and NOx removal by non-thermal plasma technology, more specifically a dielectric barrier (DBD) discharge combined with the Corona effect, is presented. Results obtained from a theoretical study describe the chemical kinetic model of SO2 and NOx removal processes; the effect of OH radicals in removal of both gases is noteworthy. Experimental results of de-SO2 process are reported. Also, optical emission spectroscopy study was applied on some atomic helium lines to obtain temperature of electrons in the non-thermal plasma.

  13. Evaluation on the Toxic Effects of NanoAg to Catalase.

    PubMed

    Zhang, Bin; Zhai, Wenxin; Liu, Rutao; Yu, Zehua; Shen, Hengmei; Hu, Xinxin

    2015-02-01

    Protein is the functional actor of life. Research on protein damage induced by nanomaterials may give insight into the toxicity mechanisms of nanoparticles. Studying nano silver over the impact of the structure and function of catalase (CAT) at the molecular level, is of great significance for a comprehensive evaluation of their toxic effects. The toxic effects of nanoAg on catalase were thoroughly investigated using steady state and time resolved fluorescence quenching measurements, ultraviolet-visible absorption spectroscopy, resonance light scattering spectroscopy (RLS), circular dichroism spectroscopy (CD) and transmission electron microscopy (TEM). NanoAg could decrease the amount of alpha-helix and increase the beta sheet structure, leading to loose the skeleton structure of catalase. The characteristic fluorescence of catalase was obviously quenched, which showed the exposal of internal hydrophobic amino acids enhanced, and its quenching type is dynamic quenching. The result of RLS and TEM showed that the distribution and size of nanoAg become more uniform and smaller after their interaction, resulting in a decrease of RLS intensity. NanoAg could make the activity of catalase rise. By changing the structure of catalase, nanoAg increases its enzymatic activity to a certain extent, breaking down its balance in vivo, thereby affecting the normal physiological activities. NanoAg has obvious toxic effects on catalase. This paper provided a new perspective and method for the toxic effects of nanoAg to biological macromolecules; provided basic data and reference gist for the hygienics and toxicology studies of nanoAg. It is conducive to the toxicity prevention and control work of nanoAg, promoting nano-technology applied to human production and living better.

  14. Evaluation on the Toxic Effects of NanoAg to Catalase.

    PubMed

    Zhang, Bin; Zhai, Wenxin; Liu, Rutao; Yu, Zehua; Shen, Hengmei; Hu, Xinxin

    2015-02-01

    Protein is the functional actor of life. Research on protein damage induced by nanomaterials may give insight into the toxicity mechanisms of nanoparticles. Studying nano silver over the impact of the structure and function of catalase (CAT) at the molecular level, is of great significance for a comprehensive evaluation of their toxic effects. The toxic effects of nanoAg on catalase were thoroughly investigated using steady state and time resolved fluorescence quenching measurements, ultraviolet-visible absorption spectroscopy, resonance light scattering spectroscopy (RLS), circular dichroism spectroscopy (CD) and transmission electron microscopy (TEM). NanoAg could decrease the amount of alpha-helix and increase the beta sheet structure, leading to loose the skeleton structure of catalase. The characteristic fluorescence of catalase was obviously quenched, which showed the exposal of internal hydrophobic amino acids enhanced, and its quenching type is dynamic quenching. The result of RLS and TEM showed that the distribution and size of nanoAg become more uniform and smaller after their interaction, resulting in a decrease of RLS intensity. NanoAg could make the activity of catalase rise. By changing the structure of catalase, nanoAg increases its enzymatic activity to a certain extent, breaking down its balance in vivo, thereby affecting the normal physiological activities. NanoAg has obvious toxic effects on catalase. This paper provided a new perspective and method for the toxic effects of nanoAg to biological macromolecules; provided basic data and reference gist for the hygienics and toxicology studies of nanoAg. It is conducive to the toxicity prevention and control work of nanoAg, promoting nano-technology applied to human production and living better. PMID:26353675

  15. Studies with the USF/NASA toxicity screening test method - Effect of air flow and effect of fabric dye

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Lopez, M. T.

    1976-01-01

    One sample each of commercial polyurethane and polychloroprene flexible foams were evaluated using the USF/NASA toxicity screening test method. Air flow rates of 0, 0.16, 16, and 48 ml/sec were used to determine the effect of air flow on relative toxicity. Time to first sign of incapacitation and time to death were substantially reduced with both polyurethane and polychloroprene flexible foams by the introduction of 16 to 48 ml/sec air flow. The relative toxicity rankings of these materials were not altered by changes in air flow. Under these test conditions, the polyurethane foam consistently appeared more toxic than the polychloroprene foam. Samples of six different colors from the same fabric were evaluated separately, using the USF/NASA toxicity screening test method, to determine the effect of fabric dye, if any. The material was an upholstery fabric, consisting of 46 percent cotton, 33 percent wool, and 21 percent nylon. There appeared to be no significant effect of fabric dye on relative toxicity, for this material under these test conditions.

  16. Toxic side effects of local anaesthetics on the human cornea.

    PubMed Central

    Boljka, M; Kolar, G; Vidensek, J

    1994-01-01

    The cytotoxic effects of 0.5% amethocaine (tetracaine) on the human cornea were investigated by scanning electron microscopy. The ultrastructural examination of epithelial cells showed damage of the cell membrane, rare-faction and loss of microvilli, deposits of amethocaine on the corneal surface and accelerated desquamation of superficial epithelial cells. Images PMID:8025073

  17. [Bio-toxic effect of pyrene on Vallisneria spiralis].

    PubMed

    Yin, Ying; Sun, Yuan-Yuan; Guo, Hong-Yan; Wang, Xiao-Rong

    2007-07-01

    With indoor static stimulation test, this paper studied the effects of different concentrations (0.01, 0.02, 0.05, 0.07 and 0.1 mg x L(-1)) pyrene on the pyrene accumulation, free radical, antioxidant defenses, and the contents of chlorophyll and soluble sugar in Vallisneria spiralis. The results showed that after 10 days exposure to pyrene, V. spiralis leaf could accumulate large amount of pyrene. The free radical generation, peroxidase (POD) activity and malondialdehyde (MDA) content had a persistent increase, but the increment decreased when exposed to higher concentrations (> 0.05 mg x L(-1) pyrene. Glutathione S-transferase (GST) activity and oxidized glutathione (GSSG) and soluble sugar contents increased with increasing concentration of pyrene, while reduced glutathione (GSH) and chlorophyll contents were in adverse. It was concluded that V. spiralis was sensitive to pyrene, and the stress effect would happen at 0.01 mg x L(-1) of pyrene. PMID:17886646

  18. Toxic effects of chromium on Schistosoma haematobium miracidia

    SciTech Connect

    Wolmarans, C.T.; Yssel, E.; Hamilton-Attwell, V.L.

    1988-12-01

    Various heavy metals have recently been evaluated as molluscicides for freshwater snails, which act as intermediate hosts of trematode parasites of medical or veterinary importance. Very little information, however, is available on heavy metals that may be suitable to eliminate the parasites as such. Suitable compounds should also inhibit the penetration ability of parasites as well as stunt the development of those who do not penetrate their hosts. In the light of these requirements, the present study evaluated the effect of chromium on the miracidia of Schistosoma haematobium, which causes urinary bilharzia. Attention was mainly focused on (1) the chromium concentration which resulted in 100% mortality (2) the effect of chromium on the external and internal morphology of the miracidia, and (3) the ability of the miracidia to form sporocytes in vitro and in vivo and to penetrate their intermediate host snail, Bulinus africanus.

  19. Oil and related toxicant effects on mallard immune defenses

    SciTech Connect

    Rocke, T.E.; Yuill, T.M.; Hinsdill, R.D.

    1984-04-01

    A crude oil, a petroleum distillate, and chemically dispersed oil were tested for their effects on resistance to bacterial infection and the immune response in waterfowl. Sublethal oral doses for mallards were determined for South Louisiana crude oil, Bunker C fuel oil a dispersant-Corexit 9527, and oil/Corexit combinations by gizzard intubation. Resistance to bacterial challange (Pasteurella multocida) was significantly lowered in mallards receiving 2.5 or 4.0 ml/kg of Bunker C fuel oil, 4.0 ml/kg of South Louisiana crude oil, and 4.0 ml/kg of a 50:1 Bunker C fuel oil/Corexit mixture daily for 28 days. Ingestion of oil or oil/Corexit mixtures had no effect on mallard antibody-producing capability as measured by the direct spleen plaque-forming assay.

  20. Effects of temperature on in situ toxicity testing

    SciTech Connect

    Rowland, C.D.; Burton, G.A. Jr.

    1994-12-31

    With increasing concern over the impacts and perturbations to receiving waters as a result of storm water runoff and contaminated sediments, many investigators have turned towards in situ testing for direct response data. In situ testing has been shown to be an effective assessment tool. In order to further evaluate the limitations of this method, temperature effects were evaluated. There is concern that laboratory to stream transfer of test organisms may induce significant stress if water temperatures are too cool. This study was designed to specifically address the issue of temperature tolerance and attenuation of Hyalella azteca, Ceriodaphnia dubia and Pimephales promelas in in situ conditions. Temperature tolerance is of importance in areas where receiving waters are subject to low or fluctuating temperatures as well as areas of more temperate climates. In this study, the organisms where exposed to temperatures as low as 2 C for variable lengths of time, removed and allowed to come to ambient laboratory temperatures then monitored for acute or chronic responses. No effects on survival were observed after 48 h. at 5 C; however lower temperatures increased mortality.

  1. Toxicity of lithium to three freshwater organisms and the antagonistic effect of sodium.

    PubMed

    Kszos, Lynn Adams; Beauchamp, John J; Stewart, Arthur J

    2003-10-01

    Lithium (Li) is the lightest metal and occurs primarily in stable minerals and salts. Concentrations of Li in surface water are typically <0.04 mg l(-1) but can be elevated in contaminated streams. Because of the general lack of information concerning the toxicity of Li to common toxicity test organisms, we evaluated the toxicity of Li to Pimephales promelas (fathead minnow), Ceriodaphnia dubia, and a freshwater snail (Elimia clavaeformis). In the laboratory, the concentration of Li that inhibited P. promelas growth or C. dubia reproduction by 25% (IC25) was dependant upon the dilution water. In laboratory control water containing little sodium (approximately 2.8 mg l(-1)), the IC25s were 0.38 and 0.32 mg Li l(-1) and in ambient stream water containing approximately 17 mg Na l(-1), the IC25s were 1.99 and 3.33, respectively. A Li concentration of 0.15 mg l(-1) inhibited the feeding of E. clavaeformis in laboratory tests. Toxicity tests conducted to evaluate the effect of sodium on the toxicity of Li were conducted with fathead minnows and C. dubia. The presence of sodium greatly affected the toxicity of Li. Fathead minnows and Ceriodaphnia, for example, tolerated concentrations of Li as great as 6 mg l(-1) when sufficient Na was present. The interaction of Li and Na on the reproduction of Ceriodaphnia was investigated in depth and can be described using an exponential model. The model predicts that C. dubia reproduction would not be affected when animals are exposed to combinations of lithium and sodium with a log ratio of mmol Na to mmol Li equal to at least 1.63. The results of this study indicate that for most natural waters, the presence of sodium is sufficient to prevent Li toxicity. However, in areas of historical disposal or heavy processing or use, an evaluation of Li from a water quality perspective would be warranted.

  2. Particle-specific toxic effects of differently shaped zinc oxide nanoparticles to zebrafish embryos (Danio rerio).

    PubMed

    Hua, Jing; Vijver, Martina G; Richardson, Michael K; Ahmad, Farooq; Peijnenburg, Willie J G M

    2014-12-01

    A general approach is proposed that allows for quantifying the relative toxic contribution of ions released from metallic nanoparticles and of the particles themselves, as exemplified for the case of differently shaped zinc oxide (ZnO) nanoparticles (NPs) exposed to zebrafish embryos. First of all, the toxicity of suspensions of ZnO nanoparticles (NP(total))--nanospheres, nanosticks, cuboidal submicron particles (SMPs), and Zn(NO3)2--to the embryos was assessed. The observed toxicity of ZnO NP(total) is assumed to result from the combined effect of the particles present in the suspensions (NP(particle)) and of the dissolved Zn(2+) ions released from the particles (NP(ion)). Different addition models were used to explicitly account for the toxicity of NP(particle). The median lethal concentrations (LC50) of NP(particle) of nanospheres, nanosticks, and SMPs were found to range between 7.1 mg Zn/L and 11.9 mg Zn/L (i.e., to differ by a factor of 1.7). Behavioral performance showed no significant differences among all types of the NP(particle). The median effective concentrations (EC50) of the particles were found to range between 1.0 mg Zn/L and 2.2 mg Zn/L. At the LC50 of each particle suspension, the main contribution to lethality to zebrafish embryos was from the NP(particle) (52%-72%). For hatching inhibition, the NP(particle) was responsible for 38% to 83% of the adverse effects observed. The ZnO nanosticks were more toxic than any of the other NPs with regard to the endpoints mortality and hatching inhibition. The main contribution to toxicity to zebrafish embryos was from the NP(particle) at the LC50 and EC50 of each particle suspension.

  3. A method linking the toxic effects at community-level with contaminant concentrations.

    PubMed

    Wang, Changyou; Su, Rongguo; Zhang, Yong; Liu, Gang

    2016-11-01

    In this study, we developed a method to quantify and link the toxic effects in community-level ecosystems with concentrations of petroleum hydrocarbons. The densities of Platymonas helgolandica var. tsingtaoensis, Isochrysis galbana, and Brachionus plicatilis in single-species tests and customized ecosystems were examined in response to a concentration gradient of petroleum hydrocarbons ranging from 0 to 8.0mgL(-1). A three-population ecological model with interspecies competition-grazing relationships was used to characterize population sizes with concentrations of petroleum hydrocarbons. A threshold concentration of the simplified plankton ecosystem of 0.376mgL(-1) for petroleum hydrocarbons was calculated from the proposed model, which was higher than the no-effect concentration of 0.056mgL(-1) derived from the single-species toxicity tests and the predicted no-effect concentration of 0.076mgL(-1) calculated from the species sensitivity distribution. This finding indicates that interspecies competition and grazing reduced the toxic effect of petroleum hydrocarbons at the community level. The sensitivity analysis for model parameters demonstrates that plankton population biomasses are highly sensitive to filtration rates. Antagonism between interspecies interactions and petroleum hydrocarbon toxicity was attributed to the reduced filtration rate and zooplankton grazing pressure. The proposed method is a simple means to address the concern regarding the impacts of ecological interactions on ecological risk assessments of pollutants.

  4. Effects of Body-Mind Training and Relaxation Stretching on Persons with Chronic Toxic Encephalopathy.

    ERIC Educational Resources Information Center

    Engel, Lis; Andersen, Lars Bo

    2000-01-01

    Investigates the psychological and physical effects of training of body awareness and slow stretching on persons (N=8) with chronic toxic encephalopathy. Results show that electromyography on the frontalis muscle and state anxiety decreased, but no changes were observed in trait anxiety and in the creativity score. (Author/MKA)

  5. Arsenic Toxicity to Juvenile Fish: Effects of Exposure Route, Arsenic Speciation, and Fish Species

    EPA Science Inventory

    Arsenic toxicity to juvenile rainbow trout and fathead minnows was evaluated in 28-day tests using both dietborne and waterborne exposures, both inorganic and organic arsenic species, and both a live diet and an arsenic-spiked pellet diet. Effects of inorganic arsenic on rainbow...

  6. EFFECTS ON BIRTH WEIGHT AND ADULT HEALTH IN RATS PRENATALLY EXPOSED TO TOXICANTS OR UNDERNUTRITION

    EPA Science Inventory

    Low fetal weight is a sensitive indicator of developmental toxicity in animal studies. While low birth weight may be permanent or transitory, the long-term effects of low birth weight on adult health have not been elucidated. Previous research has shown in humans an inverse rela...

  7. Alkaloids from Veratrum taliense Exert Cardiovascular Toxic Effects via Cardiac Sodium Channel Subtype 1.5

    PubMed Central

    Wang, Gan; Rong, Ming-Qiang; Li, Qiong; Liu, Ya-Ping; Long, Cheng-Bo; Meng, Ping; Yao, Hui-Ming; Lai, Ren; Luo, Xiao-Dong

    2015-01-01

    Several species of the genus Veratrum that produce steroid alkaloids are commonly used to treat pain and hypertension in China and Europe. However, Veratrum alkaloids (VAs) induce serious cardiovascular toxicity. In China, Veratrum treatment often leads to many side effects and even causes the death of patients, but the pathophysiological mechanisms under these adverse effects are not clear. Here, two solanidine-type VAs (isorubijervine and rubijervine) isolated from Veratrum taliense exhibited strong cardiovascular toxicity. A pathophysiological study indicated that these VAs blocked sodium channels NaV1.3–1.5 and exhibited the strongest ability to inhibit NaV1.5, which is specifically expressed in cardiac tissue and plays an essential role in cardiac physiological function. This result reveals that VAs exert their cardiovascular toxicity via the NaV1.5 channel. The effects of VAs on NaV1.3 and NaV1.4 may be related to their analgesic effect and skeletal muscle toxicity, respectively. PMID:26729167

  8. The Use of Paramecium to Observe the Toxic Effect of Cigarette Smoke.

    ERIC Educational Resources Information Center

    Bardell, David

    1986-01-01

    Describes a laboratory experiment in which Paramecium caudatum was used to demonstrate the toxic effect of cigarette smoke on the cilia of epithelium cells lining the trachea and bronchi of smokers. Provides background information and explains the procedure, including how to make a simple mechanical smoking device. (TW)

  9. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health.

    PubMed

    O'Brien, Peter J; Siraki, Arno G; Shangari, Nandita

    2005-08-01

    Aldehydes are organic compounds that are widespread in nature. They can be formed endogenously by lipid peroxidation (LPO), carbohydrate or metabolism ascorbate autoxidation, amine oxidases, cytochrome P-450s, or myeloperoxidase-catalyzed metabolic activation. This review compares the reactivity of many aldehydes towards biomolecules particularly macromolecules. Furthermore, it includes not only aldehydes of environmental or occupational concerns but also dietary aldehydes and aldehydes formed endogenously by intermediary metabolism. Drugs that are aldehydes or form reactive aldehyde metabolites that cause side-effect toxicity are also included. The effects of these aldehydes on biological function, their contribution to human diseases, and the role of nucleic acid and protein carbonylation/oxidation in mutagenicity and cytotoxicity mechanisms, respectively, as well as carbonyl signal transduction and gene expression, are reviewed. Aldehyde metabolic activation and detoxication by metabolizing enzymes are also reviewed, as well as the toxicological and anticancer therapeutic effects of metabolizing enzyme inhibitors. The human health risks from clinical and animal research studies are reviewed, including aldehydes as haptens in allergenic hypersensitivity diseases, respiratory allergies, and idiosyncratic drug toxicity; the potential carcinogenic risks of the carbonyl body burden; and the toxic effects of aldehydes in liver disease, embryo toxicity/teratogenicity, diabetes/hypertension, sclerosing peritonitis, cerebral ischemia/neurodegenerative diseases, and other aging-associated diseases.

  10. Assessment of toxic effects of triclosan on the terrestrial snail (Achatina fulica).

    PubMed

    Wang, Xiaonan; Liu, Zhengtao; Wang, Wanhua; Yan, Zhenguang; Zhang, Cong; Wang, Weili; Chen, Lihong

    2014-08-01

    Triclosan (TCS) is a broad-spectrum antimicrobial agent used in personal care products, and as a result, is widespread in the environment. Toxicity tests of TCS on aquatic organisms have been reported, but limited toxicity data on terrestrial species are available. In this study, the 28-d chronic toxicity of TCS on the biomass, shell diameter growth, and total food intake of the terrestrial snail Achatina fulica were tested. Moreover, biochemical responses, including changes in the activity of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and the content of malondialdehyde (MDA), were examined after 14-d and 28-d exposure. Results showed that TCS had toxic effects on the biomass, shell diameter growth, and total food intake of A. fulica with no observed effect concentration (NOEC) values of 24 mg kg(-1). As for the antioxidant enzymes, TCS caused significant oxidative stress even at the low concentration of 24 mg kg(-1). The CAT and POD activities at the high concentrations of 200 and 340 mg kg(-1), respectively, were significantly inhibited. The SOD and CAT activity in treatments below 118 mg kg(-1) and the MDA content in all treatments showed dose-effect relationships. This study demonstrated that TCS caused adverse effects on terrestrial invertebrates, and provided valuable information for the risk assessment imposed by TCS in the terrestrial environment.

  11. Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms--a review.

    PubMed

    Gaillet, Sylvie; Rouanet, Jean-Max

    2015-03-01

    Because of their antimicrobial properties, the use of silver nanoparticles (AgNPs) is increasing fast in industry, food, and medicine. In the food industry, nanoparticles are used in packaging to enable better conservation products such as sensors to track their lifetime, and as food additives, such as anti-caking agents and clarifying agents for fruit juices. Nanoemulsions, used to encapsulate, protect and deliver additives are also actively developed. Nanomaterials in foods will be ingested and passed through the digestive tract. Those incorporated in food packaging may also be released unintentionally into food, ending up in the gastrointestinal tract. It is therefore important to make a risk assessment of nanomaterials to the consumer. Thus, exposure to AgNPs is increasing in quantity and it is imperative to know their adverse effects in man. However, controversies still remain with respect to their toxic effects and their mechanisms. Understanding the toxic effects and the interactions of AgNPs with biological systems is necessary to handle these nanoparticles and their use. They usually generate reactive oxygen species resulting in increased pro-inflammatory reactions and oxidative stress via intracellular signalling pathways. Here, we mainly focus on the routes of exposure of AgNPs, toxic effects and the mechanisms underlying the induced toxicity.

  12. Modelling combined effects of nutrients and toxicants in a branch of the Rhine Delta

    SciTech Connect

    Kramer, P.R.G.; Nijs, A.C.M. de; Aldenberg, T.

    1995-12-31

    A model is presented in which fate and effects of both nutrients and toxicants are combined at the level of phytoplankton and zooplankton in a river system including its sedimentation area. Within water quality modelling emphasis has been on either eutrophication or on toxic fates. Eutrophication research mainly focuses on the relationship between nutrients and water quality parameters. Ecotoxicological studies on the other hand aim either at describing fate of toxic substances or estimating biological effects on or below organism level on the basis of dose-effect experiments. However, an integrated approach linking fate and effects of nutrients and toxic substances on the ecosystem level is demanded to understand the behavior of natural systems exposed to a mix of compounds. The model describes a branch of the river Rhine, the river IJssel, with its sedimentation areas, lake Ketelmeer and lake IJsselmeer, which have suffered severely from high inputs of both nutrients and heavy metals in the past. Only from the seventies onward international sanitation programs have significantly improved the situation. Despite the improvements further actions are required because the problems of high chlorophyll levels as well as high loading of metals remain. It is shown that nutrients may induce an increase in phytoplankton biomass due to less efficient zooplankton grazing. Model results show that in order to change the present state of eutrophication also the input of xenobiotic substances affecting the zooplankton must be decreased.

  13. Dietary Arsenic Toxicity in Subadult Rainbow Trout: Growth Effects, Nutrient Absorption, and Tissue Bioaccumulation

    EPA Science Inventory

    Dietary arsenic toxicity in subadult (~200 g.) rainbow trout was evaluated in a 70 day test using arsenic-spiked pellet diets containing 50, 104 and 162 ppm arsenite. All organisms in all treatments survived the exposure. Dose dependent effects on percent weight gain, with comm...

  14. Toxic effects of lead on neuronal development and function

    SciTech Connect

    Freedman, R. ); Olson, L. ); Hoffer, B.J. )

    1990-11-01

    The effects of lead on the development of the nervous system are of immediate concern to human health. While it is clear that lead can affect neuronal development at levels of exposure within the range found in the environment, the particular mechanism of the disruption is not readily ascertained. The goal of the authors research is to develop a model system in which the effects of lead on central nervous system development can be demonstrated. To study neuronal development in a system that minimizes such difficulties, the authors have grafted discrete brain regions derived from rat fetuses into the anterior chamber of the eye of adult hosts. The brain pieces continue organotypic development in the eye, but are isolated from possible secondary changes due to alterations in the development of the endocrine and other somatic systems because the adult host has these systems already fully developed. Using this system, they have discovered that lead induces a hypernoradrenergic innervation of central nervous system tissue. The increased innervation is observed not only structurally, but also functionally. Since norepinephrine is an inhibitory neurotransmitter, this ingrowth may explain the profound slowing of discharge of cerebellar neurons recorded in grafts of lead-treated animals. Studies in other tissues suggest that increased axonal ingrowth may be a general problem of lead intoxication that encompasses many brain areas, as well as peripheral sympathetic systems.

  15. Sublethal landrin toxicity: Behavioral and physiological effects on captive vultures

    USGS Publications Warehouse

    Forthman-Quick, D.L.; Hill, E.F.

    1988-01-01

    Use of conditioned taste aversion (CTA) has been proposed to reduce consumption of California condor (Gymnogyps californianus) eggs by ravens (Corvus corax). Although landrin has induced aversions in ravens and other birds, no data were available on behavioral and physiological effects of landrin on condors, non-target birds that might consume treated eggs. Because condors are endangered, we selected taxonomically related surrogates to approximate the effects on condors of acute oral doses of landrin. Seven black vultures (Coragyps atratus), 2 turkey vultures (Cathartes aura), and 2 king vultures (Sarcoramphus papa) received landrin and placebo treatments 1 week apart. Plasma cholinesterase (ChE) activity was monitored at zero, 3, and 24 hours posttreatment, and behavioral observations were made for 2 hours posttreatment. The doses tested were nonlethal, and ChE levels approached normal within 24 hours after treatment. Only the frequency of vomiting differed statistically between the placebo and landrin treatment. We conclude that with appropriate precautions, landrin can be used in applications of CTA to discourage consumption of condor eggs by ravens, while posing no apparent risk to reintroduced condors.

  16. [Nickel - role in human organism and toxic effects].

    PubMed

    Zdrojewicz, Zygmunt; Popowicz, Ewa; Winiarski, Jacek

    2016-08-01

    The aim of this study is to familiarize the Role of nickel in the Environment and in living organisms. This metal is widely used in many fields such as electrical engineering, medicine, Jewellery or Automotive Industry. Furthermore, it's an important part of our food. As the central atom of bacterial enzymes it participates in degradation of urea.. Nickel is also an micronutritient essential for proper functioning of the human body, as it increases hormonal activity and is involved in lipid metabolism. This metal makes it's way to the human body through respiratory tract, digestive system and skin. Large doses of nickel or prolonged contact with it could cause a variety of side effects. Harmfull effects of Nickel are genotoxicity haematotoxicity, teratogenicity, immunotoxicity and carcinogenicity. The population of people allergic to nickel is growing, it occcurs much more often to the women and it can appear in many way. Hypersensitivity to nickel can also be occupational. Due to the increasing prevalence of allergies to nickel. European regulations have been introduced to reduce the content of this metal in products of everyday usage. In countries which have fulfilled the above-mentioned law, the plunge of hypersensitivities has been observed. PMID:27591452

  17. [Nickel - role in human organism and toxic effects].

    PubMed

    Zdrojewicz, Zygmunt; Popowicz, Ewa; Winiarski, Jacek

    2016-07-01

    The aim of this study is to familiarize the Role of nickel in the Environment and in living organisms. This metal is widely used in many fields such as electrical engineering, medicine, Jewellery or Automotive Industry. Furthermore, it's an important part of our food. As the central atom of bacterial enzymes it participates in degradation of urea.. Nickel is also an micronutritient essential for proper functioning of the human body, as it increases hormonal activity and is involved in lipid metabolism. This metal makes it's way to the human body through respiratory tract, digestive system and skin. Large doses of nickel or prolonged contact with it could cause a variety of side effects. Harmfull effects of Nickel are genotoxicity haematotoxicity, teratogenicity, immunotoxicity and carcinogenicity. The population of people allergic to nickel is growing, it occcurs much more often to the women and it can appear in many way. Hypersensitivity to nickel can also be occupational. Due to the increasing prevalence of allergies to nickel. European regulations have been introduced to reduce the content of this metal in products of everyday usage. In countries which have fulfilled the above-mentioned law, the plunge of hypersensitivities has been observed. PMID:27590657

  18. Triclosan: A Widespread Environmental Toxicant with Many Biological Effects.

    PubMed

    Yueh, Mei-Fei; Tukey, Robert H

    2016-01-01

    Triclosan (TCS) is a broad-spectrum antimicrobial agent that has been added to personal care products, including hand soaps and cosmetics, and impregnated in numerous different materials ranging from athletic clothing to food packaging. The constant disposal of TCS into the sewage system is creating a major environmental and public health hazard. Owing to its chemical properties of bioaccumulation and resistance to degradation, TCS is widely detected in various environmental compartments in concentrations ranging from nanograms to micrograms per liter. Epidemiology studies indicate that significant levels of TCS are detected in body fluids in all human age groups. We document here the emerging evidence--from in vitro and in vivo animal studies and environmental toxicology studies--demonstrating that TCS exerts adverse effects on different biological systems through various modes of action. Considering the fact that humans are simultaneously exposed to TCS and many TCS-like chemicals, we speculate that TCS-induced adverse effects may be relevant to human health.

  19. Triclosan: A Widespread Environmental Toxicant with Many Biological Effects.

    PubMed

    Yueh, Mei-Fei; Tukey, Robert H

    2016-01-01

    Triclosan (TCS) is a broad-spectrum antimicrobial agent that has been added to personal care products, including hand soaps and cosmetics, and impregnated in numerous different materials ranging from athletic clothing to food packaging. The constant disposal of TCS into the sewage system is creating a major environmental and public health hazard. Owing to its chemical properties of bioaccumulation and resistance to degradation, TCS is widely detected in various environmental compartments in concentrations ranging from nanograms to micrograms per liter. Epidemiology studies indicate that significant levels of TCS are detected in body fluids in all human age groups. We document here the emerging evidence--from in vitro and in vivo animal studies and environmental toxicology studies--demonstrating that TCS exerts adverse effects on different biological systems through various modes of action. Considering the fact that humans are simultaneously exposed to TCS and many TCS-like chemicals, we speculate that TCS-induced adverse effects may be relevant to human health. PMID:26738475

  20. [Antivaccine misinformation about rate of adverse effects and toxicity of vaccines].

    PubMed

    Mats, A N; Gol'dshteĭn, A V

    2010-01-01

    Two widely known antivaccine inventions are discussed: "vaccination is accompanied by adverse effects, which exceeded complications of respective infections on frequency and severity" and "vaccines represent appalling conglomerate of toxic substances, which is unnaturally to administer to children". Informational and psychological nature of dissemination of these inventions is analyzed. On the basis of recent literature data conclusion was made about the absence of real toxicity (including neurotoxicity), carcinogenicity, allergenicity and autopathogenicity of phenol, folmaldehyde, aluminium hydroxide, Twin 80, squalen (MF59) and ethylmercury in concentrations found in vaccines of national immunization schedule.

  1. Effect of heating rate on toxicity of pyrolysis gases from some elastomers

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Kosola, K. L.; Solis, A. N.

    1977-01-01

    The effect of heating rate on the toxicity of the pyrolysis gases from six elastomers was investigated, using a screening test method. The elastomers were polyisoprene (natural rubber), styrene-butadiene rubber (SBR), ethylene propylene diene terpolymer (EPDM), acrylonitrile rubber, chlorosulfonated polyethylene rubber, and polychloroprene. The rising temperature and fixed temperature programs produced exactly the same rank order of materials based on time to death. Acrylonitrile rubber exhibited the greatest toxicity under these test conditions, and carbon monoxide was not found in sufficient concentrations to be the primary cause of death.

  2. The effect of fermentation on the nutrient status and on some toxic components of Icacinia manni.

    PubMed

    Antai, S P; Obong, U S

    1992-07-01

    The effect of fermentation on the nutrient status and on some toxic components of Icacinia manni was investigated. Chemical analysis of both unfermented and fermented products revealed an increase in protein, ash and fibre content while the lipid and carbohydrate content showed a decrease. The results indicated that fermentation resulted in protein enrichment of the fermented Icacinia manni mash. Fermentation was also observed to cause a marked decrease in the level of some toxic components (oxalic acid, phytic acid and hydrocyanic acid) of the product. The possibility of incorporating Icacinia manni among the edible starchy plant tubers is discussed. PMID:1502124

  3. Strengths and limitations of using repeat-dose toxicity studies to predict effects on fertility.

    PubMed

    Dent, M P

    2007-08-01

    The upcoming European chemicals legislation REACH (Registration, Evaluation, and Authorisation of Chemicals) will require the risk assessment of many thousands of chemicals. It is therefore necessary to develop intelligent testing strategies to ensure that chemicals of concern are identified whilst minimising the testing of chemicals using animals. Xenobiotics may perturb the reproductive cycle, and for this reason several reproductive studies are recommended under REACH. One of the endpoints assessed in this battery of tests is mating performance and fertility. Animal tests that address this endpoint use a relatively large number of animals and are also costly in terms of resource, time, and money. If it can be shown that data from non-reproductive studies such as in-vitro or repeat-dose toxicity tests are capable of generating reliable alerts for effects on fertility then some animal testing may be avoided. Available rat sub-chronic and fertility data for 44 chemicals that have been classified by the European Union as toxic to fertility were therefore analysed for concordance of effects. Because it was considered appropriate to read across data for some chemicals these data sets were considered relevant for 73 of the 102 chemicals currently classified as toxic to reproduction (fertility) under this system. For all but 5 of these chemicals it was considered that a well-performed sub-chronic toxicity study would have detected pathology in the male, and in some cases, the female reproductive tract. Three showed evidence of direct interaction with oestrogen or androgen receptors (linuron, nonylphenol, and fenarimol). The remaining chemicals (quinomethionate and azafenidin) act by modes of action that do not require direct interaction with steroid receptors. However, both these materials caused in-utero deaths in pre-natal developmental toxicity studies, and the relatively low NOAELs and the nature of the hazard identified in the sub-chronic tests provides an alert

  4. Effect of pyrolysis temperature on toxicity of gases from a polyethylene polymer

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Kosola, K. L.

    1978-01-01

    A polyethylene polymer was evaluated for time of toxic effect to occur as the result of exposure to gases generated by pyrolysis at various temperatures, using the toxicity screening test method developed at the University of San Francisco. Times to various animal responses decreased with increasing pyrolysis temperature over the range from 400 C to 800 C. Responses at a pyrolysis temperature of 350 C were more rapid than would be expected from the other data, and may indicate the predominance of different pyrolysis reactions in this particular temperature region.

  5. Effect of H+ ion activity and Ca2+ on the toxicity of metals in the environment.

    PubMed Central

    Hutchinson, T C; Collins, F W

    1978-01-01

    The role of acidity in determining and restricting plant distribution and performance is discussed. In soils especially, a key effect of H+ ion concentration is on the solubility of potentially toxic heavy metals such as aluminum, managenese, zinc, iron, copper, and nickel. Al has been reported from many studies since the 1920's as the key determining toxic factor in acid soils. Some acid-tolerant species have been shown to be especially tolerant of Al, and mechanisms of tolerance have been suggested. Mn is also a commonly toxic factor at soil pH less than 5.0. Calcium has been shown to alleviate Mn toxicity. Low pH soils are also generally low in Ca, K, Na, and P; all essential major elements for plant growth. In lakes and marine situations acidic waters are uncommon as the waters are buffered. Calcium is again ameliorative of metal toxicities. The pH, redox, and valency state are critical in determining nutrient availability and metal speciation. Recent increases in the H+ ion content of precipitation have caused increased acidities of freshwater lakes in Scandinavia and eastern North America, which have depleted biota, including fish populations. PMID:31277

  6. Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Adrees, Muhammad; Rizvi, Hina; Zia-Ur-Rehman, Muhammad; Hannan, Fakhir; Qayyum, Muhammad Farooq; Hafeez, Farhan; Ok, Yong Sik

    2016-09-01

    Cadmium (Cd) is one of the main pollutants in paddy fields, and its accumulation in rice (Oryza sativa L.) and subsequent transfer to food chain is a global environmental issue. This paper reviews the toxic effects, tolerance mechanisms, and management of Cd in a rice paddy. Cadmium toxicity decreases seed germination, growth, mineral nutrients, photosynthesis, and grain yield. It also causes oxidative stress and genotoxicity in rice. Plant response to Cd toxicity varies with cultivars, growth condition, and duration of Cd exposure. Under Cd stress, stimulation of antioxidant defense system, osmoregulation, ion homeostasis, and over production of signaling molecules are important tolerance mechanisms in rice. Several strategies have been proposed for the management of Cd-contaminated paddy soils. One such approach is the exogenous application of hormones, osmolytes, and signaling molecules. Moreover, Cd uptake and toxicity in rice can be decreased by proper application of essential nutrients such as nitrogen, zinc, iron, and selenium in Cd-contaminated soils. In addition, several inorganic (liming and silicon) and organic (compost and biochar) amendments have been applied in the soils to reduce Cd stress in rice. Selection of low Cd-accumulating rice cultivars, crop rotation, water management, and exogenous application of microbes could be a reasonable approach to alleviate Cd toxicity in rice. To draw a sound conclusion, long-term field trials are still required, including risks and benefit analysis for various management strategies. PMID:26996904

  7. Toxic effects of several phthalate esters on the embryos and larvae of abalone Haliotis diversicolor supertexta

    NASA Astrophysics Data System (ADS)

    Yang, Zhihui; Zhang, Xiangjing; Cai, Zhonghua

    2009-05-01

    As the most widely used plasticizers in the world, phthalate esters (PAEs) are potential endocrine disruption compounds (EDCs). In the present study, the toxicity of dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), di (2-ethylhexyl) phthalate (DEHP) on embryogenesis and larvae development of the marine univalve Haliotis diversicolor supertexta was examined in laboratory. The results show that the malformation of embryos appeared during the experiment, such as embryos died or lysed, small transparent flocculent rings studded on the periphery of the embryo, and the larvae could failed to hatch. In embryo toxic test, embryos incubated at the highest concentration of DMP, DEP and DBP solutions showed significantly high abnormal rate compared with the control, while DEHP solutions displayed no significant difference. In larval toxic test, in all concentrations of DMP, DEP and DBP solutions, larval settlement rates were low significantly than that of the control. Similarly, DEHP solutions show nearly no effect on the larval settlement. The order of toxicity on embryos and larvae is DBP>DEP>DMP>DEHP. Being a simple and easy stimulation to indoor spawn, sensitive to environmental factors, and short culture time, the embryos of H. diversicolor supertexta can be used to indicate toxicity of the PAEs.

  8. Effect of electrochemical oxidation on biodegradability and toxicity of batik industry wastewater

    NASA Astrophysics Data System (ADS)

    Subramaniam, Devagi; Halim, Azhar A.

    2014-09-01

    This study was conducted to investigate the increase in biodegradability and reduction in toxicity level in the batik wastewater treatment. Basically, the wastewater treatment from batik industry contained chemicals especially dyes which are not biodegradable and contains higher toxicity level because of the chemical compartment which comes out during the wastewater discharge and this could lead high risk in health wise to humans and all the aquatic living organisms. Thus, this research was carried to enhance the effectiveness of the electrochemical oxidation method by using the batik wastewater. Optimal parameters such as pH, time, distance between graphite electrodes and sodium chloride (NaCl) concentration as it activates as the electrolyte was done to obtain the removal of BOD, COD and color in the batik wastewater. The research study found that the removal of COD and color was high in the acidic conditions which are pH 5 with the removal of COD, 89.71% and color 93.89%. The ratio of BOD5/ COD successfully increased from 0.015 to 0.271 which mean it increase by 94.46% and the toxicity level using Toxtrax method (10017) also successfully reduced from 1.195% to 0.129% which means the samples which were slightly toxic were reduced to non-toxic level.

  9. Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Adrees, Muhammad; Rizvi, Hina; Zia-Ur-Rehman, Muhammad; Hannan, Fakhir; Qayyum, Muhammad Farooq; Hafeez, Farhan; Ok, Yong Sik

    2016-09-01

    Cadmium (Cd) is one of the main pollutants in paddy fields, and its accumulation in rice (Oryza sativa L.) and subsequent transfer to food chain is a global environmental issue. This paper reviews the toxic effects, tolerance mechanisms, and management of Cd in a rice paddy. Cadmium toxicity decreases seed germination, growth, mineral nutrients, photosynthesis, and grain yield. It also causes oxidative stress and genotoxicity in rice. Plant response to Cd toxicity varies with cultivars, growth condition, and duration of Cd exposure. Under Cd stress, stimulation of antioxidant defense system, osmoregulation, ion homeostasis, and over production of signaling molecules are important tolerance mechanisms in rice. Several strategies have been proposed for the management of Cd-contaminated paddy soils. One such approach is the exogenous application of hormones, osmolytes, and signaling molecules. Moreover, Cd uptake and toxicity in rice can be decreased by proper application of essential nutrients such as nitrogen, zinc, iron, and selenium in Cd-contaminated soils. In addition, several inorganic (liming and silicon) and organic (compost and biochar) amendments have been applied in the soils to reduce Cd stress in rice. Selection of low Cd-accumulating rice cultivars, crop rotation, water management, and exogenous application of microbes could be a reasonable approach to alleviate Cd toxicity in rice. To draw a sound conclusion, long-term field trials are still required, including risks and benefit analysis for various management strategies.

  10. Effects of life history variation on vertical transfer of toxicants in marine mammals.

    PubMed

    Noonburg, Erik G; Nisbet, Roger M; Klanjscek, Tin

    2010-05-21

    Toxicant bioaccumulation poses a risk to many marine mammal populations. Although individual-level toxicology has been the subject of considerable research in several species, we lack a theoretical framework to generalize the results across environments and life histories. Here we formulate a dynamic energy budget model to predict the effects of intra- and interspecific life history variation on toxicant dynamics in marine mammals. Dynamic energy budget theory attempts to describe the most general processes of energy acquisition and utilization in heterotrophs. We tailor the basic model to represent the marine mammal reproductive cycle, and we add a model of toxicant uptake and partitioning to describe vertical transfer of toxicants from mother to offspring during gestation and lactation. We first show that the model predictions are consistent with qualitative patterns reported in empirical studies and previous species-specific modeling studies. Next, we use this model to examine the dependence of offspring toxicant load on birth order, food density, and interspecific life history variation.

  11. Toxic effects of some alcohol and ethylene glycol derivatives on Cladosporium resinae.

    PubMed Central

    Lee, K H; Wong, H A

    1979-01-01

    Eleven commercially available alcohol and ethylene glycol derivatives were tested for their toxicity toward a problem organism in jet fuel, Cladosporium resinae. In the presence of glucose, 20% (vol/vol) ethylene glycol monomethyl ether prevented spore germination and mycelial growth, and 10% (vol/vol) 2-ethoxybutanol, 10% 2-isopropoxyethanol, 10% 3-methoxybutanol, 5% 2-butyloxyethanol, 5% ethylene glycol dibutyl ether, and 5% diethylene glycol monobutyl ether were found to have similar effects. In a biphasic kerosene-water system, 3-methoxybutanol, 2-butyloxyethanol, and diethylene glycol monobutyl ether were again found to be more toxic than ethylene glycol monomethyl ether. Considerable potassium efflux, protein leakage, and inhibition of endogenous respiration were observed in the presence of the more toxic compounds. 2-Butyloxyethanol also caused loss of sterols from cells. PMID:573588

  12. Toxic materials, fishing, and environmental variation: simulated effects on striped bass population trends

    SciTech Connect

    Goodyear, C.P.

    1985-01-01

    Decreased survival of larval striped bass Morone saxatilis resulting from toxic chemicals in the environment and decreased survival of adults caused by fishing both are suspected as agents contributing to the decline in the Chesapeake Bay stock since the mid-1970s. The relative power of each type of mortality to cause population declines was evaluated with simulation techniques. Equivalent levels of added mortality induced qualitatively identical and quantitatively similar trends in population simulations for all conditions examined except if strong density-dependent mortality preceded the contaminant toxicity. In this case the contaminant effect caused a greater reduction in yield, but the population did not tend toward extinction. The results indicate that the observed downward trend in the Chesapeake Bay population can be halted or reversed by a reduction in fishing mortality, even if contaminant toxicity is the proximate cause for the decline. 28 references, 1 figure, 1 table.

  13. Lead toxicity in rice: effects, mechanisms, and mitigation strategies--a mini review.

    PubMed

    Ashraf, Umair; Kanu, Adam Sheka; Mo, Zhaowen; Hussain, Saddam; Anjum, Shakeel Ahmad; Khan, Imran; Abbas, Rana Nadeem; Tang, Xiangru

    2015-12-01

    Lead (Pb) is a major environmental pollutant that affects plant morpho-physiological and biochemical attributes. Its higher levels in the environment are not only toxic to human beings but also harmful for plants and soil microbes. We have reviewed the uptake, translocation, and accumulation mechanisms of Pb and its toxic effects on germination, growth, yield, nutrient relation, photosynthesis, respiration, oxidative damage, and antioxidant defense system of rice. Lead toxicity hampers rice germination, root/shoot length, growth, and final yield. It reduces nutrient uptake through roots, disrupts chloroplastic ultrastructure and cell membrane permeability, induces alterations in leaves respiratory activities, produces reactive oxygen species (ROS), and triggers some enzyme and non-enzymatic antioxidants (as defense to oxidative damage). In the end, biochar amendments and phytoremediation technologies have been proposed as soil remediation approaches for Pb tainted soils.

  14. Lead toxicity in rice: effects, mechanisms, and mitigation strategies--a mini review.

    PubMed

    Ashraf, Umair; Kanu, Adam Sheka; Mo, Zhaowen; Hussain, Saddam; Anjum, Shakeel Ahmad; Khan, Imran; Abbas, Rana Nadeem; Tang, Xiangru

    2015-12-01

    Lead (Pb) is a major environmental pollutant that affects plant morpho-physiological and biochemical attributes. Its higher levels in the environment are not only toxic to human beings but also harmful for plants and soil microbes. We have reviewed the uptake, translocation, and accumulation mechanisms of Pb and its toxic effects on germination, growth, yield, nutrient relation, photosynthesis, respiration, oxidative damage, and antioxidant defense system of rice. Lead toxicity hampers rice germination, root/shoot length, growth, and final yield. It reduces nutrient uptake through roots, disrupts chloroplastic ultrastructure and cell membrane permeability, induces alterations in leaves respiratory activities, produces reactive oxygen species (ROS), and triggers some enzyme and non-enzymatic antioxidants (as defense to oxidative damage). In the end, biochar amendments and phytoremediation technologies have been proposed as soil remediation approaches for Pb tainted soils. PMID:26432270

  15. [Toxicity of cyproheptadine. Side effects and accidental overdosage (author's transl)].

    PubMed

    von Mühlendahl, K E; Krienke, E G

    1978-03-01

    113 cases of accidental ingestion of cyproheptadine (Nuran) by children have been evaluated. Life threatening alterations have not been observed after doses ranging from 0.3-6.15 (x:1.89) mg per kg of body weight. Somnolence, excitation, hallucinations, ataxia, tachycardia, and muscle twitchings were observed frequently, and occasionally gastric pain, dry mucuous surfaces, mydriasis, and rubeosis of the face were present. Symptoms appeared rapidly after ingestion and generally did not last longer than 6-12 h. When given in therapeutic doses, cyproheptadine reduces the secretion of ACTH, cortisol, prolactin, and growth hormone, lowers blood glucose concentrations, and raises the levels of unesterified free fatty acids. Parents frequently complain about unsatisfactory eating habits of their children, but chronic lack of appetite needing therapeutical attention, in healthy children, is the rare exception. Cyproheptadine is an agent with considerable side effects, and it should be prescribed to children only after very careful deliberation.

  16. Effect of lead acetate toxicity on experimental male albino rat

    PubMed Central

    Ibrahim, Nabil M; Eweis, Esam A; El-Beltagi, Hossam S; Abdel-Mobdy, Yasmin E

    2012-01-01

    Objective To evaluate the effect of different doses of lead acetate (1/20, 1/40 and 1/60 of LD50) on body weight gain, blood picture, plasma protein profile and the function of liver, kidney and thyroid gland. Methods Male albino rats were divided into four groups, the first group represented the health control animals, while the second, third and fourth groups were ingested orally with sub lethal doses of lead acetate (1/20, 1/40 and 1/60) of the oral LD50, respectively. One dose was ingested every two days during the experimental period (14 weeks) including the adaptation time. Blood was collected and used for all analysis. Results The results showed that, the ingestion of Pb2+ induced significant stimulation in glutamic-pyruvic transaminase (ALT) and glutamic-oxalacetic transaminease (AST) activity. Also, total soluble protein and albumin contents of plasma were significantly decreased, while the content of globulin was changed by the Pb2+ treatments. The cholinesterase activity was inhibited, but the activities of alkaline and acid phosphates and lactate dehydrogenase were stimulated, while plasma glucose level was elevated as a result of lead acetate intoxication. In case of blood picture, Pb2+ ingestion reduced the contents of hemoglobin and RBCs count of intoxicated rat's blood and the plasma levels of T3, T4 and blood WBCs count were decreased. Conclusions It can be concluded that lead acetate has harmful effect on experimental male albino rats. Therefore, the present work advises people to prevent exposure to the lead compound to avoid injurious hazard risk. PMID:23569832

  17. Protective effects of proanthocyanidin and vitamin E against toxic effects of formaldehyde in kidney tissue.

    PubMed

    Bakar, E; Ulucam, E; Cerkezkayabekir, A

    2015-01-01

    We investigated possible effects of proanthocyanidin (PA) and vitamin E on damage to rat kidneys induced by formaldehyde (FA), using biochemical characteristics and light and electron microscopy. Male rats were divided into control, FA, PA and vitamin E treated groups. Kidney tissue was observed by light and electron microscopy. Bcl-2/Bax rate was measured using immunohistochemistry. Malondialdehyde (MDA) and total sialic acid (TSA) levels, superoxide dismutase (SOD), glutathione peroxidase (Gpx), catalase (CAT) and myeloperoxidase (MPO) activities were measured. We found that FA caused damage to the parietal epithelial layer of the glomerulus, mononuclear cell infiltration, membrane damage in renal tubules, pyknotic nuclei, hypertrophic cells in Henle's loop and tubules, and loss of renal tubule integrity. We also observed invagination of the nuclear membrane, irregularity of chromatin material and loss of mitochondrial cristae. We observed increased Bcl-2 and Bax immunostaining in the FA group, but the Bcl-2/Bax rate remained unchanged in FA, PA and vitamin E groups compared to controls. Tissue MDA and TSA levels, and CAT and Gpx activities were increased, and SOD and MPO activities were decreased by FA toxicity. We observed a protective effect of PA in tissue MDA and TSA levels and SOD activities, because there was no difference in the PA group compared to the control group. We investigated the antioxidant effects of PA and vitamin E and found protective effects of PA against apoptosis.

  18. Alleviative effects of quercetin and onion on male reproductive toxicity induced by diesel exhaust particles.

    PubMed

    Izawa, Hiromi; Kohara, Machiko; Aizawa, Koichi; Suganuma, Hiroyuki; Inakuma, Takahiro; Watanabe, Gen; Taya, Kazuyoshi; Sagai, Masaru

    2008-05-01

    Diesel exhaust particles (DEPs) are particulate matter from diesel exhaust that contain many toxic compounds, such as polyaromatic hydrocarbons (PAHs). Some toxicities of PAH are thought to be expressed via aryl hydrocarbon receptors (AhRs). The male reproductive toxicity of DEPs might depend on AhR activation induced by PAHs. We hypothesized that AhR antagonists protect against the male reproductive toxicity of DEPs. Quercetin is a flavonoid and a well-known AhR antagonist, while onion contains many flavonoids, including quercetin. Hence, we examined whether quercetin and onion have alleviative effects against the male reproductive toxicity induced by DEPs. BALB/c male mice were fed quercetin- or onion-containing diets and received 10 injections of DEP suspension or vehicle into the dorsal subcutaneous layer over 5 weeks. The mice were euthanized at 2 weeks, after the last treatment, and their organs were collected. Daily sperm production and total incidence of sperm abnormalities were significantly affected in the DEP groups as compared with the vehicle group, but the total incidence of sperm abnormalities in the quercetin + DEP-treated mice was significantly reduced as compared with the DEP-treated mice. The numbers of Sertoli cells were significantly decreased in DEP-treated mice as compared with the vehicle-treated mice, but, the numbers of Sertoli cells were significantly increased in the quercetin and the onion + DEP-treated mice as compared with the DEP-treated mice. These results clearly indicate alleviative effects of quercetin and onion against the male reproductive toxicity induced by DEP.

  19. Cardioprotective effect of cannabidiol in rats exposed to doxorubicin toxicity.

    PubMed

    Fouad, Amr A; Albuali, Waleed H; Al-Mulhim, Abdulruhman S; Jresat, Iyad

    2013-09-01

    The potential protective effect of cannabidiol, the major non-psychotropic Cannabis constituent, was investigated against doxorubicin cardiotoxicity in rats. Cardiotoxicity was induced by six equal doses of doxorubicin (2.5mgkg(-1) i.p., each) given at 48h intervals over two weeks to achieve a total dose of 15mgkg(-1). Cannabidiol treatment (5mgkg(-1)/day, i.p.) was started on the same day of doxorubicin administration and continued for four weeks. Cannabidiol significantly reduced the elevations of serum creatine kinase-MB and troponin T, and cardiac malondialdehyde, tumor necrosis factor-α, nitric oxide and calcium ion levels, and attenuated the decreases in cardiac reduced glutathione, selenium and zinc ions. Histopathological examination showed that cannabidiol ameliorated doxorubicin-induced cardiac injury. Immunohistochemical analysis revealed that cannabidiol significantly reduced the expression of inducible nitric oxide synthase, nuclear factor-κB, Fas ligand and caspase-3, and increased the expression of survivin in cardiac tissue of doxorubicin-treated rats. These results indicate that cannabidiol represents a potential protective agent against doxorubicin cardiac injury.

  20. Cardioprotective effect of cannabidiol in rats exposed to doxorubicin toxicity.

    PubMed

    Fouad, Amr A; Albuali, Waleed H; Al-Mulhim, Abdulruhman S; Jresat, Iyad

    2013-09-01

    The potential protective effect of cannabidiol, the major non-psychotropic Cannabis constituent, was investigated against doxorubicin cardiotoxicity in rats. Cardiotoxicity was induced by six equal doses of doxorubicin (2.5mgkg(-1) i.p., each) given at 48h intervals over two weeks to achieve a total dose of 15mgkg(-1). Cannabidiol treatment (5mgkg(-1)/day, i.p.) was started on the same day of doxorubicin administration and continued for four weeks. Cannabidiol significantly reduced the elevations of serum creatine kinase-MB and troponin T, and cardiac malondialdehyde, tumor necrosis factor-α, nitric oxide and calcium ion levels, and attenuated the decreases in cardiac reduced glutathione, selenium and zinc ions. Histopathological examination showed that cannabidiol ameliorated doxorubicin-induced cardiac injury. Immunohistochemical analysis revealed that cannabidiol significantly reduced the expression of inducible nitric oxide synthase, nuclear factor-κB, Fas ligand and caspase-3, and increased the expression of survivin in cardiac tissue of doxorubicin-treated rats. These results indicate that cannabidiol represents a potential protective agent against doxorubicin cardiac injury. PMID:23721741

  1. The effect of glycosaminoglycans (GAGs) on amyloid aggregation and toxicity.

    PubMed

    Iannuzzi, Clara; Irace, Gaetano; Sirangelo, Ivana

    2015-02-02

    Amyloidosis is a protein folding disorder in which normally soluble proteins are deposited extracellularly as insoluble fibrils, impairing tissue structure and function. Charged polyelectrolytes such as glycosaminoglycans (GAGs) are frequently found associated with the proteinaceous deposits in tissues of patients affected by amyloid diseases. Experimental evidence indicate that they can play an active role in favoring amyloid fibril formation and stabilization. Binding of GAGs to amyloid fibrils occurs mainly through electrostatic interactions involving the negative polyelectrolyte charges and positively charged side chains residues of aggregating protein. Similarly to catalyst for reactions, GAGs favor aggregation, nucleation and amyloid fibril formation functioning as a structural templates for the self-assembly of highly cytotoxic oligomeric precursors, rich in β-sheets, into harmless amyloid fibrils. Moreover, the GAGs amyloid promoting activity can be facilitated through specific interactions via consensus binding sites between amyloid polypeptide and GAGs molecules. We review the effect of GAGs on amyloid deposition as well as proteins not strictly related to diseases. In addition, we consider the potential of the GAGs therapy in amyloidosis.

  2. Corneal toxicity induced by vesicating agents and effective treatment options.

    PubMed

    Goswami, Dinesh G; Tewari-Singh, Neera; Agarwal, Rajesh

    2016-06-01

    The vesicating agents sulfur mustard (SM) and lewisite (LEW) are potent chemical warfare agents that primarily cause damage to the ocular, skin, and respiratory systems. However, ocular tissue is the most sensitive organ, and vesicant exposure results in a biphasic injury response, including photophobia, corneal lesions, corneal edema, ulceration, and neovascularization, and may cause loss of vision. There are several reports on ocular injury from exposure to SM, which has been frequently used in warfare. However, there are very few reports on ocular injury by LEW, which indicate that injury symptoms appear instantly after exposure and faster than SM. In spite of extensive research efforts, effective therapies for vesicant-induced ocular injuries, mainly to the most affected corneal tissue, are not available. Hence, we have established primary human corneal epithelial cells and rabbit corneal organ culture models with the SM analog nitrogen mustard, which have helped to test the efficacy of potential therapeutic agents. These agents will then be further evaluated against in vivo SM- and LEW-induced corneal injury models, which will assist in the development of potential broad-spectrum therapies against vesicant-induced ocular injuries. PMID:27327041

  3. Effect of progesterone pretreatment on cadmium toxicity in the male Fischer (F344/NCr) rat.

    PubMed

    Shiraishi, N; Barter, R A; Uno, H; Waalkes, M P

    1993-01-01

    A previous report has indicated that progesterone pretreatment can markedly reduce cadmium toxicity in male NAW mice. Therefore we examined the effects of progesterone pretreatment on cadmium toxicity in male Fischer (F344/NCr) rats. A single sc injection of 20 mumol CdCl2/kg proved nonlethal over 24 hr but caused the typical spectrum of testicular lesions in these rats. However, when rats were pretreated with progesterone (100 mg/kg, sc, -48, -24, and 0 hr) and then given cadmium (20 mumol CdCl2/kg, 0 hr), this dose of cadmium proved very toxic, unexpectedly causing a 53% mortality. Progesterone pretreatment had no effect on cadmium-induced testicular lesions in surviving rats. Significant elevations in serum lactate dehydrogenase (LDH) activity, indicative of hepatotoxicity, were also observed in progesterone-pretreated rats given cadmium as compared to rats given cadmium alone. Progesterone pretreatment had no effect on the distribution of cadmium to liver, kidney, or testes. Progesterone pretreatment also had no effect on the cadmium-induced increases in hepatic or renal metallothionein (MT) or hepatic or testicular MT mRNA levels. In contrast, levels of the testicular cadmium-binding protein (TCBP) in progesterone-pretreated rats were doubled. These results indicate that, contrary to previously reported data for the mouse, progesterone pretreatment increased the lethality of cadmium in male Fischer (F344/NCr) rats and had no effect on cadmium-induced testicular toxicity. The mechanism by which progesterone enhanced cadmium toxicity, especially cadmium-induced hepatotoxicity, deserves further study. PMID:8430418

  4. Using smog chambers to estimate the toxic effects of reactive atmospheric mixtures

    NASA Astrophysics Data System (ADS)

    Doyle, Melanie Lynn

    We live in a dynamic environment with atmospheric pollutants constantly transforming, interacting with one another, and generating secondary pollutants. Many of these secondary pollutants have not been identified and, because they are often more oxygenated, many are more toxic than their parent compounds. Continuous emissions from biogenic and anthropogenic sources into this reactive environment create problematic conditions for evaluating the respiratory toxicity of exposure to individual components of urban atmospheres. While previous investigations have studied individual atmospheric components of air pollution, the evaluation of "one atmosphere" effects has been limited by experimental complexities. In this work, new techniques were developed to create an air-liquid interface exposure system coupled with a controllable atmospheric reactor, or "smog chamber", and these were used to examine various reactive atmospheric mixtures using a laboratory setting that still mimicked the outdoor environment. This smog chamber-in vitro exposure system combines common techniques used in classic toxicology with an outdoor environmental chamber system that was developed to investigate chemical reaction mechanisms. This dissertation is divided into three main parts that demonstrate new methods to study reactive atmospheric pollutants utilizing the smog chamber- in vitro exposure system. In the first part, 1,3-butadiene and isoprene were used to evaluate the differences in respiratory toxicity between unreacted parent pollutants and their complete mixture of products generated during photochemical transformations. The second part applied similar techniques to differentiate the roles that specific photochemical products play in the induction of toxicity mediators; in particular, the role of ozone effects compared to the other known, first generation products. In addition to determining the effects induced by product mixtures generated during photochemical transformations

  5. Silver nanoparticle-algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects.

    PubMed

    He, Di; Dorantes-Aranda, Juan José; Waite, T David

    2012-08-21

    The short-term toxicity of citrate-stabilized silver nanoparticles (AgNPs) and ionic silver Ag(I) to the ichthyotoxic marine raphidophyte Chattonella marina has been examined using the fluorometric indicator alamarBlue. Aggregation and dissolution of AgNPs occurred after addition to GSe medium while uptake of dissolved Ag(I) occurred in the presence of C. marina. Based on total silver mass, toxicity was much higher for Ag(I) than for AgNPs. Cysteine, a strong Ag(I) ligand, completely removed the inhibitory effects of Ag(I) and AgNPs on the metabolic activity of C. marina, suggesting that the toxicity of AgNPs was due to the release of Ag(I). Synergistic toxic effects of AgNPs/Ag(I) and C. marina to fish gill cells were observed with these effects possibly attributable to enhancement in the generation of reactive oxygen species by C. marina on exposure of the organism to silver.

  6. Effect of Associated Bacteria on the Growth and Toxicity of Alexandrium catenella

    PubMed Central

    Uribe, Paulina; Espejo, Romilio T.

    2003-01-01

    Saprophytic bacteria in cultures of the marine dinoflagellate Alexandrium catenella were removed to assess their effect on growth and paralytic shellfish poisoning toxin production of this dinoflagellate. The actual axenic status was demonstrated by the lack of observable bacteria both immediately after treatment and following extended incubation in the absence of antibiotics. Bacteria were measured by counting CFU and also by epifluorescence microscopy and PCR amplification of bacterial 16S-23S spacer ribosomal DNA to detect noncultivable bacteria. Removal of bacteria did not have any effect on the growth of the dinoflagellate except for the inhibition of A. catenella disintegration after reaching the stationary phase. Toxicity was determined in dinoflagellate cell extracts by different methods: high-performance liquid chromatography (HPLC); an electrophysiological test called the Electrotest, which measures the inhibition of saxitoxin-sensitive Na+ channels expressed in a cell line; and a mouse bioassay, which measures the toxic effect on the whole mammal neuromuscular system. A lower toxicity of the dinoflagellates in axenic culture was observed by these three methods, though the difference was significant only by the mouse bioassay and HPLC methods. Altogether the results indicate that axenic cultures of A. catenella are able to produce toxin, though the total toxicity is probably diminished to about one-fifth of that in nonaxenic cultures. PMID:12514056

  7. Evaluation of Toxicity Effects of Asafetida on Biochemical, Hematological, and Histological Parameters in Male Wistar Rats

    PubMed Central

    Bagheri, Seyyed Majid; Yadegari, Maryam; Mirjalily, Aghdas; Rezvani, Mohammd Ebrahim

    2015-01-01

    Objectives: Asafetida is traditionally used in folklore medicine for the treatment of various ailments. To validate its use in traditional medicine, it is important to evaluate its toxicity in the animal system. Therefore, this study aimed to evaluate the toxicological effects of asafetida in Wistar albino rats. Materials and Methods: Acute toxicity tests were conducted by the oral administration of 250, 500, and 1,000 mg/kg body weight of the animal. In chronic study, animals were administered with various doses of asafetida (25, 50, 100, and 200 mg/kg body weight) for a period of 6 weeks. At end of experiment, the effects of asafetida on hematological, renal, and hepatic markers and histological parameters were analyzed. Results: In acute toxicity study, no mortality was seen up to 72 h of the administration of asafetida. No signs of neurological and behavioral changes were noticed within 24 h. In the chronic study, the asafetida intake has changed the hematological parameters such as red blood cell (RBC), white blood cell (WBC), hematocrit (HCT), and platelets. Aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were significantly increased in treated animals. The plasma level of urea and creatinine were not altered by the administration of asafetida throughout the study. Histopathology study indicates hepatotoxicity, but no signs of prominent pathological changes in kidney. Conclusions: Asafetida did not show any acute toxicity, but chronic administration could have undesirable effects on hepatocytes and hematological factors. PMID:26862262

  8. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis

    PubMed Central

    Gnanasekaran, Thiyagarajan; Karcher, Daniel; Nielsen, Agnieszka Zygadlo; Martens, Helle Juel; Ruf, Stephanie; Kroop, Xenia; Olsen, Carl Erik; Motawie, Mohammed Saddik; Pribil, Mathias; Møller, Birger Lindberg; Bock, Ralph; Jensen, Poul Erik

    2016-01-01

    Plant chloroplasts are light-driven cell factories that have great potential to act as a chassis for metabolic engineering applications. Using plant chloroplasts, we demonstrate how photosynthetic reducing power can drive a metabolic pathway to synthesise a bio-active natural product. For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed in the chloroplasts and converted endogenous tyrosine into dhurrin using electrons derived directly from the photosynthetic electron transport chain, without the need for the presence of an NADPH-dependent P450 oxidoreductase. The dhurrin produced in the engineered plants amounted to 0.1–0.2% of leaf dry weight compared to 6% in sorghum. The results obtained pave the way for plant P450s involved in the synthesis of economically important compounds to be engineered into the thylakoid membrane of chloroplasts, and demonstrate that their full catalytic cycle can be driven directly by photosynthesis-derived electrons. PMID:26969746

  9. In Vitro and in Silico Analyses for Predicting Hepatic Cytochrome P450-Dependent Metabolic Potencies of Polychlorinated Biphenyls in the Baikal Seal.

    PubMed

    Yoo, Jean; Hirano, Masashi; Mizukawa, Hazuki; Nomiyama, Kei; Agusa, Tetsuro; Kim, Eun-Young; Tanabe, Shinsuke; Iwata, Hisato

    2015-12-15

    The aim of this study was to understand the cytochrome P450 (CYP)-dependent metabolic pathway and potency of polychlorinated biphenyls (PCBs) in the Baikal seal (Pusa sibirica). In vitro metabolism of 62 PCB congener mixtures was investigated by using liver microsomes of this species. A decreased ratio of over 20% was observed for CB3, CB4, CB8, CB15, CB19, CB22, CB37, CB54, CB77, and CB105, suggesting the preferential metabolism of low-chlorinated PCBs by CYPs. The highly activated metabolic pathways in Baikal seals that were predicted from the decreased PCBs and detected hydroxylated PCBs (OH-PCBs) were CB22 to 4'OH-CB20 and CB77 to 4'OH-CB79. The total amount of OH-PCBs detected as identified and unidentified congeners accounted for only a 3.8 ± 1.7 mol % of loaded PCBs, indicating many unknown PCB metabolic pathways. To explore factors involved in CYP-dependent PCB metabolism, we examined the relationships among the structural and physicochemical properties of PCBs, the in silico PCB-CYP docking parameters, and the in vitro PCB decreased ratios by principal component analysis. Statistical analysis showed that the decreased PCB ratio was at least partly accounted for by the substituted chlorine number of PCBs and the distance from the Cl-unsubstituted carbon of docked PCBs to the heme Fe in CYP2A and 2B. PMID:26579933

  10. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis.

    PubMed

    Gnanasekaran, Thiyagarajan; Karcher, Daniel; Nielsen, Agnieszka Zygadlo; Martens, Helle Juel; Ruf, Stephanie; Kroop, Xenia; Olsen, Carl Erik; Motawie, Mohammed Saddik; Pribil, Mathias; Møller, Birger Lindberg; Bock, Ralph; Jensen, Poul Erik

    2016-04-01

    Plant chloroplasts are light-driven cell factories that have great potential to act as a chassis for metabolic engineering applications. Using plant chloroplasts, we demonstrate how photosynthetic reducing power can drive a metabolic pathway to synthesise a bio-active natural product. For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed in the chloroplasts and converted endogenous tyrosine into dhurrin using electrons derived directly from the photosynthetic electron transport chain, without the need for the presence of an NADPH-dependent P450 oxidoreductase. The dhurrin produced in the engineered plants amounted to 0.1-0.2% of leaf dry weight compared to 6% in sorghum. The results obtained pave the way for plant P450s involved in the synthesis of economically important compounds to be engineered into the thylakoid membrane of chloroplasts, and demonstrate that their full catalytic cycle can be driven directly by photosynthesis-derived electrons. PMID:26969746

  11. In Vitro and in Silico Analyses for Predicting Hepatic Cytochrome P450-Dependent Metabolic Potencies of Polychlorinated Biphenyls in the Baikal Seal.

    PubMed

    Yoo, Jean; Hirano, Masashi; Mizukawa, Hazuki; Nomiyama, Kei; Agusa, Tetsuro; Kim, Eun-Young; Tanabe, Shinsuke; Iwata, Hisato

    2015-12-15

    The aim of this study was to understand the cytochrome P450 (CYP)-dependent metabolic pathway and potency of polychlorinated biphenyls (PCBs) in the Baikal seal (Pusa sibirica). In vitro metabolism of 62 PCB congener mixtures was investigated by using liver microsomes of this species. A decreased ratio of over 20% was observed for CB3, CB4, CB8, CB15, CB19, CB22, CB37, CB54, CB77, and CB105, suggesting the preferential metabolism of low-chlorinated PCBs by CYPs. The highly activated metabolic pathways in Baikal seals that were predicted from the decreased PCBs and detected hydroxylated PCBs (OH-PCBs) were CB22 to 4'OH-CB20 and CB77 to 4'OH-CB79. The total amount of OH-PCBs detected as identified and unidentified congeners accounted for only a 3.8 ± 1.7 mol % of loaded PCBs, indicating many unknown PCB metabolic pathways. To explore factors involved in CYP-dependent PCB metabolism, we examined the relationships among the structural and physicochemical properties of PCBs, the in silico PCB-CYP docking parameters, and the in vitro PCB decreased ratios by principal component analysis. Statistical analysis showed that the decreased PCB ratio was at least partly accounted for by the substituted chlorine number of PCBs and the distance from the Cl-unsubstituted carbon of docked PCBs to the heme Fe in CYP2A and 2B.

  12. Cytochrome P450-dependent metabolism of oxylipins in tomato. Cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase.

    PubMed

    Howe, G A; Lee, G I; Itoh, A; Li, L; DeRocher, A E

    2000-06-01

    Allene oxide synthase (AOS) and fatty acid hydroperoxide lyase (HPL) are plant-specific cytochrome P450s that commit fatty acid hydroperoxides to different branches of oxylipin metabolism. Here we report the cloning and characterization of AOS (LeAOS) and HPL (LeHPL) cDNAs from tomato (Lycopersicon esculentum). Functional expression of the cDNAs in Escherichia coli showed that LeAOS and LeHPL encode enzymes that metabolize 13- but not 9-hydroperoxide derivatives of C(18) fatty acids. LeAOS was active against both 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid (13-HPOT) and 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid, whereas LeHPL showed a strong preference for 13-HPOT. These results suggest a role for LeAOS and LeHPL in the metabolism of 13-HPOT to jasmonic acid and hexenal/traumatin, respectively. LeAOS expression was detected in all organs of the plant. In contrast, LeHPL expression was predominant in leaves and flowers. Damage inflicted to leaves by chewing insect larvae led to an increase in the local and systemic expression of both genes, with LeAOS showing the strongest induction. Wound-induced expression of LeAOS also occurred in the def-1 mutant that is deficient in octadecanoid-based signaling of defensive proteinase inhibitor genes. These results demonstrate that tomato uses genetically distinct signaling pathways for the regulation of different classes of wound responsive genes.

  13. Predicting toxic effects of copper on aquatic biota in mineralized areas by using the Biotic Ligand Model

    USGS Publications Warehouse

    Smith, Kathleen S.; Ranville, James F.; Adams, M.; Choate, LaDonna M.; Church, Stanley E.; Fey, David L.; Wanty, Richard B.; Crock, James G.

    2006-01-01

    The chemical speciation of metals influences their biological effects. The Biotic Ligand Model (BLM) is a computational approach to predict chemical speciation and acute toxicological effects of metals on aquatic biota. Recently, the U.S. Environmental Protection Agency incorporated the BLM into their regulatory water-quality criteria for copper. Results from three different laboratory copper toxicity tests were compared with BLM predictions for simulated test-waters. This was done to evaluate the ability of the BLM to accurately predict the effects of hardness and concentrations of dissolved organic carbon (DOC) and iron on aquatic toxicity. In addition, we evaluated whether the BLM and the three toxicity tests provide consistent results. Comparison of BLM predictions with two types of Ceriodaphnia dubia toxicity tests shows that there is fairly good agreement between predicted LC50 values computed by the BLM and LC50 values determined from the two toxicity tests. Specifically, the effect of increasing calcium concentration (and hardness) on copper toxicity appears to be minimal. Also, there is fairly good agreement between the BLM and the two toxicity tests for test solutions containing elevated DOC, for which the LC50 is 3-to-5 times greater (less toxic) than the LC50 for the lower-DOC test water. This illustrates the protective effects of DOC on copper toxicity and demonstrates the ability of the BLM to predict these protective effects. In contrast, for test solutions with added iron there is a decrease in LC50 values (increase in toxicity) in results from the two C. dubia toxicity tests, and the agreement between BLM LC50 predictions and results from these toxicity tests is poor. The inability of the BLM to account for competitive iron binding to DOC or DOC fractionation may be a significant shortcoming of the BLM for predicting site- specific water-quality criteria in streams affected by iron-rich acidic drainage in mined and mineralized areas.

  14. Characterization of Combinatorial Effects of Toxic Substances by Cell Cultivation in Micro Segmented Flow

    NASA Astrophysics Data System (ADS)

    Cao, J.; Kürsten, D.; Funfak, A.; Schneider, S.; Köhler, J. M.

    This chapter reviews the application of micro segmented flow for the screening of toxic effects on bacteria, eukaryotic microorganisms, human cells and multicellular systems. Besides, the determination of complete dose/response functions of toxic substances with a minimum of cells and chemicals, it is reviewed how two- and multi-dimensional concentration spaces can be screened in order to evaluate combinatorial effects of chemicals on cells. The challenge for the development of new and miniaturized methods is derived from the increase of the number of different used substances in technique, agriculture and medicine, from the increasing release of new substances and nanomaterials into our environment and from the improvement of the insight of toxicity of natural substances and the interferences between different substances resulting in toxic effects on different organisms, cells and tissues. The application of two-dimensional toxicological screenings on selected examples of effector combinations is described. Examples for the detection of an independent, an additive and a synergistic interference between two substances are given. In addition, it is shown that the screening for toxicological effects in complete two-dimensional concentration spaces allows the detection of complex response behaviour—for example, the formation of tolerances and stimulation peaks—which thereby can be characterized. The characterization of interference of toxic organic substances with silver nanoparticles is reported as an example for the potential of micro segmented-flow technique for evaluating the toxicological impact of new materials. Finally, it is demonstrated that the technique can be applied for different organisms like simple bacteria, single cell alga such as Chlorella vulgaris and multicellular systems up to the development of complete organisms beginning from eggs.

  15. Mixture toxicity effects of sea louse control agents in Daphnia magna.

    PubMed

    Rose, Stephanie; Altenburger, Rolf; Sturm, Armin

    2016-02-01

    Caligid sea lice are ectoparasites causing major disease problems in industrial salmon farming. Sea louse control currently relies widely on parasiticides. Among non-target species, crustaceans are particularly susceptible to salmon delousing agents. Drug combinations have recently been suggested for sea louse control; however, no information is available on the non-target effects of such mixtures. To obtain first insights into combination effects of salmon parasiticides, acute toxicity tests with the crustacean model species Daphnia magna were conducted. Four compounds, including two organophosphates and two pyrethroids, were tested individually and in all pair-wise combinations at one fixed concentration ratio. For most combinations, observed toxicities were close to predictions assuming concentration additivity. However, deltamethrin and cypermethrin showed greater than predicted combination effects, while the inverse was observed for deltamethrin and malathion. The results demonstrate combination effects of anti-sea louse agents and suggest that predictions based on concentration additivity are in most cases protective.

  16. Mixture toxicity effects of sea louse control agents in Daphnia magna.

    PubMed

    Rose, Stephanie; Altenburger, Rolf; Sturm, Armin

    2016-02-01

    Caligid sea lice are ectoparasites causing major disease problems in industrial salmon farming. Sea louse control currently relies widely on parasiticides. Among non-target species, crustaceans are particularly susceptible to salmon delousing agents. Drug combinations have recently been suggested for sea louse control; however, no information is available on the non-target effects of such mixtures. To obtain first insights into combination effects of salmon parasiticides, acute toxicity tests with the crustacean model species Daphnia magna were conducted. Four compounds, including two organophosphates and two pyrethroids, were tested individually and in all pair-wise combinations at one fixed concentration ratio. For most combinations, observed toxicities were close to predictions assuming concentration additivity. However, deltamethrin and cypermethrin showed greater than predicted combination effects, while the inverse was observed for deltamethrin and malathion. The results demonstrate combination effects of anti-sea louse agents and suggest that predictions based on concentration additivity are in most cases protective. PMID:26401637

  17. Dioxin-like and non-dioxin-like toxic effects of polychlorinated biphenyls (PCBs): implications for risk assessment.

    PubMed

    Giesy, J P; Kannan, K

    1998-11-01

    Polychlorinated biphenyls (PCBs) are persistent, bioaccumulative, and toxic contaminants in the environment. Individual PCB congeners exhibit different physicochemical properties and biological activities that result in different environmental distributions and toxicity profiles. The variable composition of PCB residues in environmental matrices and their different mechanisms of toxicity complicate the development of scientifically based regulations for the risk assessment. In this article various approaches for the assessment of risks of PCBs have been critically examined. Recent developments in the toxic equivalency factor (TEF) approach for the assessment of toxic effects due to dioxin-like PCBs have been examined. PCB exposure studies that describe non-dioxin-like toxic effects, particularly neurobehavioral effects and their effective doses in animals were compiled. A comparative assessment of effective doses for dioxin-like and non-dioxin-like effects by PCBs has been made to evaluate the relative significance of non-ortho-and ortho-substituted PCBs in risk assessment. Using mink as an example, relative merits and implications of using TEF and total PCB approaches for assessing the potential for toxic effects in wildlife was examined. There are several advantages and limitations associated with each method used for PCB risk assessment. Toxic effects due to coplanar PCBs occur at relatively smaller concentrations than those due to non-dioxin-like PCBs and therefore the TEF approach derives the risk assessment of PCBs, in the environment. The need for the refinement of TEF approach for more accurate assessment of risks is discussed. PMID:9861526

  18. Effect of copper status on acute toxicity of cocaine in rats

    SciTech Connect

    Smith, J.C.; Reddy, P.P.; Seung, S.K.; Combs, G.F.; Dulin, A.M.; Danford, D.E. )

    1989-02-09

    Both copper (Cu) nutriture and cocaine (Coc) ingestion have been shown to affect cardiovascular integrity. Therefore, the purpose of these studies was to determine if Cu status affects the acute toxicity of Coc. 20 weanling male rats (45 {plus minus} 5 g) were randomly assigned to 2 groups, 1 fed a copper deficient (CuD) (<1ppmCu) and the other a copper supplemented (CuS) diet (ca.6ppm, Cu). After 7 wks, the rats, paired for Cu status, were injected (ip) with Coc-HCl at reported LD{sub 50} doses ranging from 80-90 mg/kg bw. The CuD was established by cardiac hypertrophy, depressed hematocrit, lowered serum, liver and heart Cu compared to the CuS controls. The acute toxicity resulted in tachycardia and hyperactivity followed by ataxia with isolated muscle twitchings and violent grand-mal type seizures. For those animals that died, death was apparently due to respiratory arrest followed by ventricular fibrillation; animals that survived were killed by exsanguination. The severity of toxicity was greater for the CuD rats as evidenced by 100% exhibiting seizures compared to 80% for the CuS group. In addition, the incidence of death was 60% for the CuD group compared to 20% for the CuS rats. Although these results suggest that CuD exacerbates the toxic effects of Coc, it is not established that the effects are specific for this essential nutrient.

  19. Testicular toxicity induced by dietary cadmium in cocks and ameliorative effect by selenium.

    PubMed

    Li, Jin-Long; Gao, Rui; Li, Shu; Wang, Jin-Tao; Tang, Zhao-Xin; Xu, Shi-Wen

    2010-08-01

    Cadmium (Cd) is an ubiquitous environmental pollutant that has been associated with male reproductive toxicity in animal models. However, little is known about the reproductive toxicity of Cd in birds. To investigate the toxicity of Cd on male reproduction in birds and the protective effects of selenium (Se) against subchronic exposure to dietary Cd, 100-day-old cocks received either Se (as 10 mg Na(2)SeO(3) per kg of diet), Cd (as 150 mg CdCl(2) per kg of diet) or Cd + Se in their diets for 60 days. Histological and ultrastructural changes in the testis, the concentrations of Cd and Se, amount of lipid peroxidation (LPO), the activities of the antioxidants superoxide dismutase (SOD) and glutathione peroxidase (GPx), and apoptosis and serum testosterone levels were determined. Exposure to Cd significantly lowered SOD and GPx activity, Se content in the testicular tissue, and serum testosterone levels. It increased the amount of LPO, the numbers of apoptotic cells and Cd concentration and caused obvious histopathological changes in the testes. Concurrent treatment with Se reduced the Cd-induced histopathological changes in the testis, oxidative stress, endocrine disorder and apoptosis, suggesting that the toxic effects of cadmium on the testes is ameliorated by Se. Se supplementation also modified the distribution of Cd in the testis. PMID:20372978

  20. Continuous ozonation treatment of ofloxacin: transformation products, water matrix effect and aquatic toxicity.

    PubMed

    Carbajo, Jose B; Petre, Alice L; Rosal, Roberto; Herrera, Sonia; Letón, Pedro; García-Calvo, Eloy; Fernández-Alba, Amadeo R; Perdigón-Melón, Jose A

    2015-07-15

    The continuous ozonation of the antibiotic ofloxacin (OFX) has been performed using a synthetic water matrix and in a sewage treatment plant (STP) effluent. The aim was to study the effect of the water matrix on the ozonation with particular emphasis on the aquatic toxicity of treated water. OFX was completely removed in both water matrices, although the amount of ozone consumed for its depletion was strongly matrix-dependent. The extent of mineralization was limited and a number of intermediate transformation products (TPs) appeared, twelve of which could be identified. OFX reaction pathway includes the degradation of piperazinyl and quinolone moieties. The further oxidation of TPs gave rise to the formation and accumulation of carboxylic acids, aldehydes, nitrogen-containing organic compounds and inorganic ions. Aquatic toxicity of treated mixtures was assessed using four standard species: the bacteria Vibrio fischeri and Pseudomonas putida as target organisms and the algae Pseudokirchneriella subcapitata and the protozoan Tetrahymena thermophila as non-target organisms. OFX was toxic for the bacteria and the microalgae at the spiked concentration in untreated water. However, the continuous ozonation at the upper operational limit removed its toxic effects. T. thermophila was not affected by OFX, but was sensitive to STP effluent.

  1. Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity.

    PubMed

    Gunsolus, Ian L; Mousavi, Maral P S; Hussein, Kadir; Bühlmann, Philippe; Haynes, Christy L

    2015-07-01

    The colloidal stability of silver nanoparticles (AgNPs) in natural aquatic environments influences their transport and environmental persistence, while their dissolution to Ag(+) influences their toxicity to organisms. Here, we characterize the colloidal stability, dissolution behavior, and toxicity of two industrially relevant classes of AgNPs (i.e., AgNPs stabilized by citrate or polyvinylpyrrolidone) after exposure to natural organic matter (NOM, i.e., Suwannee River Humic and Fulvic Acid Standards and Pony Lake Fulvic Acid Reference). We show that NOM interaction with the nanoparticle surface depends on (i) the NOM's chemical composition, where sulfur- and nitrogen-rich NOM more significantly increases colloidal stability, and (ii) the affinity of the capping agent for the AgNP surface, where nanoparticles with loosely bound capping agents are more effectively stabilized by NOM. Adsorption of NOM is shown to have little effect on AgNP dissolution under most experimental conditions, the exception being when the NOM is rich in sulfur and nitrogen. Similarly, the toxicity of AgNPs to a bacterial model (Shewanella oneidensis MR-1) decreases most significantly in the presence of sulfur- and nitrogen-rich NOM. Our data suggest that the rate of AgNP aggregation and dissolution in aquatic environments containing NOM will depend on the chemical composition of the NOM, and that the toxicity of AgNPs to aquatic microorganisms is controlled primarily by the extent of nanoparticle dissolution.

  2. Continuous ozonation treatment of ofloxacin: transformation products, water matrix effect and aquatic toxicity.

    PubMed

    Carbajo, Jose B; Petre, Alice L; Rosal, Roberto; Herrera, Sonia; Letón, Pedro; García-Calvo, Eloy; Fernández-Alba, Amadeo R; Perdigón-Melón, Jose A

    2015-07-15

    The continuous ozonation of the antibiotic ofloxacin (OFX) has been performed using a synthetic water matrix and in a sewage treatment plant (STP) effluent. The aim was to study the effect of the water matrix on the ozonation with particular emphasis on the aquatic toxicity of treated water. OFX was completely removed in both water matrices, although the amount of ozone consumed for its depletion was strongly matrix-dependent. The extent of mineralization was limited and a number of intermediate transformation products (TPs) appeared, twelve of which could be identified. OFX reaction pathway includes the degradation of piperazinyl and quinolone moieties. The further oxidation of TPs gave rise to the formation and accumulation of carboxylic acids, aldehydes, nitrogen-containing organic compounds and inorganic ions. Aquatic toxicity of treated mixtures was assessed using four standard species: the bacteria Vibrio fischeri and Pseudomonas putida as target organisms and the algae Pseudokirchneriella subcapitata and the protozoan Tetrahymena thermophila as non-target organisms. OFX was toxic for the bacteria and the microalgae at the spiked concentration in untreated water. However, the continuous ozonation at the upper operational limit removed its toxic effects. T. thermophila was not affected by OFX, but was sensitive to STP effluent. PMID:25796038

  3. Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity

    PubMed Central

    Gunsolus, Ian L.; Mousavi, Maral P. S.; Hussein, Kadir; Bühlmann, Philippe; Haynes, Christy L.

    2015-01-01

    The colloidal stability of silver nanoparticles (AgNPs) in natural aquatic environments influences their transport and environmental persistence, while their dissolution to Ag+ influences their toxicity to organisms. Here, we characterize the colloidal stability, dissolution behavior, and toxicity of two industrially relevant classes of AgNPs (i.e., AgNPs stabilized by citrate or polyvinylpyrrolidone) after exposure to natural organic matter (NOM, i.e., Suwannee River Humic and Fulvic Acid Standards and Pony Lake Fulvic Acid Reference). We show that NOM interaction with the nanoparticle surface depends on (i) the NOM’s chemical composition, where sulfur- and nitrogen-rich NOM more significantly increases colloidal stability, and (ii) the affinity of the capping agent for the AgNP surface, where nanoparticles with loosely bound capping agents are more effectively stabilized by NOM. Adsorption of NOM is shown to have little effect on AgNP dissolution under most experimental conditions, the exception being when the NOM is rich in sulfur and nitrogen. Similarly, the toxicity of AgNPs to a bacterial model (Shewanella oneidensis MR-1) decreases most significantly in the presence of sulfur- and nitrogen-rich NOM. Our data suggest that the rate of AgNP aggregation and dissolution in aquatic environments containing NOM will depend on the chemical composition of the NOM, and that the toxicity of AgNPs to aquatic microorganisms is controlled primarily by the extent of nanoparticle dissolution. PMID:26047330

  4. Protective effect of diallyl disulfide on cyclophosphamide-induced testicular toxicity in rats

    PubMed Central

    Kim, Sung-Hwan; Lee, In-Chul; Baek, Hyung-Seon; Moon, Changjong; Kim, Sung-Ho

    2013-01-01

    This study investigated the protective effects of diallyl disulfide (DADS) against cyclophosphamide (CP)-induced testicular toxicity in male rats. DADS was gavaged to rats once daily for 3 days at 100 mg/kg/day. One hour after the final DADS treatment, the rats were given a single intraperitoneal dose of 150 mg/kg CP. All rats were killed and necropsied on day 56 after CP treatment. Parameters of testicular toxicity included reproductive organ weight, testicular sperm head count, epididymal sperm motility and morphology, epididymal index, and histopathologic examinations. The CP treatment caused a decrease in body weight, testicular sperm head count, epididymal sperm motility, and epididymal index. The histopathological examination revealed various morphological alterations, characterized by degeneration of spermatogonia/spermatocytes, vacuolization, and decreased number of spermatids/spermatocytes in the testis, and cell debris and mild oligospermia in the ductus epididymis. In contrast, DADS pretreatment effectively attenuated the testicular toxicity caused by CP, including decreased sperm head count, epididymal sperm motility, and epididymal index and increased histopathological alterations in the testis and epididymis. These results indicate that DADS attenuates testicular toxicity induced by CP in rats. PMID:24396385

  5. Intracellular haemolytic agents of Heterocapsa circularisquama exhibit toxic effects on H. circularisquama cells themselves and suppress both cell-mediated haemolytic activity and toxicity to rotifers (Brachionus plicatilis).

    PubMed

    Nishiguchi, Tomoki; Cho, Kichul; Yasutomi, Masumi; Ueno, Mikinori; Yamaguchi, Kenichi; Basti, Leila; Yamasaki, Yasuhiro; Takeshita, Satoshi; Kim, Daekyung; Oda, Tatsuya

    2016-10-01

    A harmful dinoflagellate, Heterocapsa circularisquama, is highly toxic to shellfish and the zooplankton rotifer Brachionus plicatilis. A previous study found that H. circularisquama has both light-dependent and -independent haemolytic agents, which might be responsible for its toxicity. Detailed analysis of the haemolytic activity of H. circularisquama suggested that light-independent haemolytic activity was mediated mainly through intact cells, whereas light-dependent haemolytic activity was mediated by intracellular agents which can be discharged from ruptured cells. Because H. circularisquama showed similar toxicity to rotifers regardless of the light conditions, and because ultrasonic ruptured H. circularisquama cells showed no significant toxicity to rotifers, it was suggested that live cell-mediated light-independent haemolytic activity is a major factor responsible for the observed toxicity to rotifers. Interestingly, the ultrasonic-ruptured cells of H. circularisquama suppressed their own lethal effect on the rotifers. Analysis of samples of the cell contents (supernatant) and cell fragments (precipitate) prepared from the ruptured H. circularisquama cells indicated that the cell contents contain inhibitors for the light-independent cell-mediated haemolytic activity, toxins affecting H. circularisquama cells themselves, as well as light-dependent haemolytic agents. Ethanol extract prepared from H. circularisquama, which is supposed to contain a porphyrin derivative that displays photosensitising haemolytic activity, showed potent toxicity to Chattonella marina, Chattonella antiqua, and Karenia mikimotoi, as well as to H. circularisquama at the concentration range at which no significant toxicity to rotifers was observed. Analysis on a column of Sephadex LH-20 revealed that light-dependent haemolytic activity and inhibitory activity on cell-mediated light-independent haemolytic activity existed in two separate fractions (f-2 and f-3), suggesting that both

  6. Intracellular haemolytic agents of Heterocapsa circularisquama exhibit toxic effects on H. circularisquama cells themselves and suppress both cell-mediated haemolytic activity and toxicity to rotifers (Brachionus plicatilis).

    PubMed

    Nishiguchi, Tomoki; Cho, Kichul; Yasutomi, Masumi; Ueno, Mikinori; Yamaguchi, Kenichi; Basti, Leila; Yamasaki, Yasuhiro; Takeshita, Satoshi; Kim, Daekyung; Oda, Tatsuya

    2016-10-01

    A harmful dinoflagellate, Heterocapsa circularisquama, is highly toxic to shellfish and the zooplankton rotifer Brachionus plicatilis. A previous study found that H. circularisquama has both light-dependent and -independent haemolytic agents, which might be responsible for its toxicity. Detailed analysis of the haemolytic activity of H. circularisquama suggested that light-independent haemolytic activity was mediated mainly through intact cells, whereas light-dependent haemolytic activity was mediated by intracellular agents which can be discharged from ruptured cells. Because H. circularisquama showed similar toxicity to rotifers regardless of the light conditions, and because ultrasonic ruptured H. circularisquama cells showed no significant toxicity to rotifers, it was suggested that live cell-mediated light-independent haemolytic activity is a major factor responsible for the observed toxicity to rotifers. Interestingly, the ultrasonic-ruptured cells of H. circularisquama suppressed their own lethal effect on the rotifers. Analysis of samples of the cell contents (supernatant) and cell fragments (precipitate) prepared from the ruptured H. circularisquama cells indicated that the cell contents contain inhibitors for the light-independent cell-mediated haemolytic activity, toxins affecting H. circularisquama cells themselves, as well as light-dependent haemolytic agents. Ethanol extract prepared from H. circularisquama, which is supposed to contain a porphyrin derivative that displays photosensitising haemolytic activity, showed potent toxicity to Chattonella marina, Chattonella antiqua, and Karenia mikimotoi, as well as to H. circularisquama at the concentration range at which no significant toxicity to rotifers was observed. Analysis on a column of Sephadex LH-20 revealed that light-dependent haemolytic activity and inhibitory activity on cell-mediated light-independent haemolytic activity existed in two separate fractions (f-2 and f-3), suggesting that both

  7. Modified Whole Effluent Toxicity Test to Assess and Decouple Wastewater Effects from Environmental Gradients

    PubMed Central

    Sauco, Sebastián; Gómez, Julio; Barboza, Francisco R.; Lercari, Diego; Defeo, Omar

    2013-01-01

    Environmental gradients and wastewater discharges produce aggregated effects on marine populations, obscuring the detection of human impact. Classical assessment methods do not include environmental effects in toxicity tests designs, which could lead to incorrect conclusions. We proposed a modified Whole Effluent Toxicity test (mWET) that includes environmental gradients in addition to effluent dilutions, together with the application of Generalized Linear Mixed Models (GLMM) to assess and decouple those effects. We tested this approach, analyzing the lethal effects of wastewater on a marine sandy beach bivalve affected by an artificial canal freshwater discharge used for rice crops irrigation. To this end, we compared bivalve mortality between canal water dilutions (CWd) and salinity controls (SC: without canal water). CWd were prepared by diluting the water effluent (sampled during the pesticide application period) with artificial marine water. The salinity gradient was included in the design by achieving the same final salinities in both CWd and SC, allowing us to account for the effects of salinity by including this variable as a random factor in the GLMM. Our approach detected significantly higher mortalities in CWd, indicating potential toxic effects of the effluent discharge. mWET represents an improvement over the internationally standardized WET tests, since it considers environmental variability and uses appropriate statistical analyses. PMID:23755304

  8. [Effect of processing on the chemical contents and hepatic and renal toxicity of rhubarb studied by canonical correlation analysis].

    PubMed

    Wang, Jia-Bo; Ma, Yong-Gang; Zhang, Ping; Jin, Cheng; Sun, Yu-Qi; Xiao, Xiao-He; Zhao, Yan-Ling; Zhou, Can-Ping

    2009-08-01

    In this article, canonical correlation analysis was used to explore the relationship between the toxicity-attenuating effect and the variation of chemical contents in rhubarb caused by processing. With quasi-acute toxicity test, the difference of hepatic and renal toxicity to mice with the processed materials of rhubarb was researched. The chemical contents of anthraquinones and tannins in rhubarb were measured by UV-vis spectrophotometry and high performance liquid chromatography. The results showed that there were toxic effects to liver and kidney in mice after repeated intragastric administration of rhubarb and its processed materials for 14 days at a dosage of 76 g x kg(-1). The toxic effect of processed materials was much lower than crude drug. With canonical correlation analysis, the sequence of the hepatic and renal toxicity of chemical contents in rhubarb were found as follows: total anthraquinone glycosides (AQGs) > tannins (Tns) > total anthraquinones (AQs); aloe-emodin (AE) > physcione (Ph) > rhein (Rn) > emodin (Ed) > chrysophanol (Ch) and AEG > PhG > ChG > EdG > RnG of glycosyl-anthraquinone. It could be concluded that processing would attenuate the toxicity of crude drug of rhubarb. The toxicity-attenuating effect might be correlated to the decline of the contents of both anthraquinone glycosides and tannins, especially the aloe-emodin glycoside and physcione glycoside. The results also suggested that the serum alanine aminotransferase (ALT) and creatine (CREA) would be useful to monitor the hepatic and renal toxicity of rhubarb.

  9. Toxic effects of organic solvents on the growth of chlorella vulgaris and Selenastrum capicornutum

    SciTech Connect

    El Jay, A.

    1996-10-01

    Organic solvents can make their way into the environment as industrial wastes and components of pesticide formulations. In laboratory bioassays, the use of organic solvents is unavoidable since many pesticides and organic pollutants have low water solubilities and need to be dissolved in organic solvents prior to addition into experimental systems. So, one area of concern with laboratory bioassays is the stress imposed on test organisms by organic solvents. Most reports on the comparative toxicity of solvents towards test organisms deals with the effects of solvents on fish and aquatic invertebrates with some data available for blue-green algae and green algae. The US Environmental Protection Agency recommends maximum allowable limits of 0.05% solvent for acute tests and 0.01% for chronic tests but, in the literature, the nature of the solvent and the final concentration used vary among the different authors and are often higher than EPA limits due to problems associated with the use of small test volumes and toxicant solubility. Organic solvents can cause toxic effects on their own, but it has been also reported that they can interact with pesticides to alter toxicity. The first step in choosing a solvent for use in bioassays should be a detailed screening to identify solvents with inherently low toxicity to the test organism, followed by an interaction study (pesticide and solvent interactions) to choose the best concentration to use. The purpose of this study is to compare the inhibitory effects of our solvents used in pesticide bioassays towards the growth of two green algae. 18 refs., 4 figs., 1 tabs.

  10. [Effects of single and co-exposure of Cu and chlorpyrifos on the toxicity of earthworm].

    PubMed

    Xu, Dong-mei; Wang, Yan-hua; Wang, Nan; Rao, Gui-wei

    2015-01-01

    Combined pollution of heavy metal and pesticide had posed a serious threat to soil ecology and human living environment. As two common types of pollutants in soil environment, the environmental effects of combined pollution of Cu and chlorpyrifos are worth for attention. The acute lethal effects and avoiding behavior of single and co-exposure of Cu and chlorpyrifos on earthworms were analyzed by using the methods of standard OECD filter paper test and artificial soil test. Results showed that the LC(50,48 h) and LC(50,14 d) of the acute toxicity of Cu on earthworm in filter paper test and in artificial soil test were 2.23 microg x cm(-2) and 496.05 mg x kg(-1), respectively. The LC(50,48 h) and LC(50,14 d) of the acute toxicity of chlorpyrifos on earthworm in filter paper test and in artificial soil test were 5.94 microg x cm(-2) and 186.07 mg x kg(-1), respectively. In filter paper test and artificial soil test, the joint acute toxicity of Cu and chlorpyrifos showed an additive effect while the concentration was 1:1. The type of combined effects of co-exposure of Cu and chlorpyrifos was synergistic effect and antagonistic effect in filter paper test and artificial soil test, respectively, while the toxicity was 1:1. The results of avoidance behavior test showed that the joint effect of Cu and chlorpyrifos on the avoidance behavior of earthworms was antagonistic. PMID:25898676

  11. Two stressors and a community: effects of hydrological disturbance and a toxicant on freshwater zooplankton.

    PubMed

    Stampfli, Nathalie C; Knillmann, Saskia; Liess, Matthias; Noskov, Yury A; Schäfer, Ralf B; Beketov, Mikhail A

    2013-02-01

    Climate change models predict an increase in the frequency and intensity of extreme fluctuations in water level in aquatic habitats. Therefore, it is necessary to understand the combined effects of hydrological fluctuations and toxicants on aquatic biological communities. We investigated the individual and combined effects of the insecticide esfenvalerate and recurring fluctuations in water level on zooplankton communities in a system of 55 outdoor pond microcosms. The communities were exposed to esfenvalerate contamination as a single pulse (at 0.03, 0.3, or 3μg/L) and gradual removal of water and its subsequent replacement over three cycles and monitored until 84 days after contamination. The results showed that the sensitivities of the community and its constituent populations to the toxicant were increased by the hydrological stress. Specifically, for both the community structure and abundance of Daphnia spp. the lowest-observed-effect concentrations (LOEC) were 0.03 and 0.3μg/L for the series with fluctuating and constant water levels, respectively. Despite these differences in sensitivity, the interactive effects of the two stressors were found to be additive for both the community structure and the abundance of the most affected species. Presumably, it was not possible to detect synergism due to the strong individual effects of the water level fluctuations. Recovery times in the series exposed to the highest pesticide concentration were 64 and 55 days under fluctuating and constant water level regimes, respectively. Competition and water quality are suggested to be the major factors that underlie the observed effects of fluctuations in the water level. For the ecological risk assessment of toxicants, the present results suggest that (i) community sensitivity may vary substantially, depending on the environmental context, and (ii) this variability can be assessed experimentally to derive safety factors (coefficients used to avoid unexpected effects and

  12. Toxicity, sublethal effects, and potential modes of action of select fungicides on freshwater fish and invertebrates

    USGS Publications Warehouse

    Elskus, Adria A.

    2012-01-01

    Despite decades of agricultural and urban use of fungicides and widespread detection of these pesticides in surface waters, relatively few data are available on the effects of fungicides on fish and invertebrates in the aquatic environment. Nine fungicides are reviewed in this report: azoxystrobin, boscalid, chlorothalonil, fludioxonil, myclobutanil, fenarimol, pyraclostrobin, pyrimethanil, and zoxamide. These fungicides were identified as emerging chemicals of concern because of their high or increasing global use rates, detection frequency in surface waters, or likely persistence in the environment. A review of the literature revealed significant sublethal effects of fungicides on fish, aquatic invertebrates, and ecosystems, including zooplankton and fish reproduction, fish immune function, zooplankton community composition, metabolic enzymes, and ecosystem processes, such as leaf decomposition in streams, among other biological effects. Some of these effects can occur at fungicide concentrations well below single-species acute lethality values (48- or 96-hour concentration that effects a response in 50 percent of the organisms, that is, effective concentration killing 50 percent of the organisms in 48 or 96 hours) and chronic sublethal values (for example, 21-day no observed adverse effects concentration), indicating that single-species toxicity values may dramatically underestimate the toxic potency of some fungicides. Fungicide modes of toxic action in fungi can sometimes reflect the biochemical and (or) physiological effects of fungicides observed in vertebrates and invertebrates; however, far more studies are needed to explore the potential to predict effects in nontarget organisms based on specific fungicide modes of toxic action. Fungicides can also have additive and (or) synergistic effects when used with other fungicides and insecticides, highlighting the need to study pesticide mixtures that occur in surface waters. For fungicides that partition to

  13. Effects of soil organic matter content on cadmium toxicity in Eisenia fetida: implications for the use of biomarkers and standard toxicity tests.

    PubMed

    Irizar, A; Rodríguez, M P; Izquierdo, A; Cancio, I; Marigómez, I; Soto, M

    2015-01-01

    Bioavailability is affected by soil physicochemical characteristics such as pH and organic matter (OM) content. In addition, OM constitutes the energy source of Eisenia fetida, a well established model species for soil toxicity assessment. The present work aimed at assessing the effects of changes in OM content on the toxicity of Cd in E. fetida through the measurement of neutral red uptake (NRU) and mortality, growth, and reproduction (Organisation for Economic Co-operation and Development [OECD] Nos. 207 and 222). Complementarily, metallothionein (MT) and catalase transcription levels were measured. To decrease variability inherent to natural soils, artificial soils (Organization for Economic Cooperation and Development 1984) with different OM content (6, 10, and 14%) and spiked with Cd solutions at increasing concentrations were used. Low OM in soil decreased soil ingestion and Cd bioaccumulation but also increased Cd toxicity causing lower NRU of coelomocytes, 100 % mortality, and stronger reproduction impairment, probably due to the lack of energy to maintain protection mechanisms (production of MT).Cd bioaccumulation did not reflect toxicity, and OM played a pivotal role in Cd toxicity. Thus, OM content should be taken into account when using E. fetida in in vivo exposures for soil health assessment. PMID:25015731

  14. Effects of soil organic matter content on cadmium toxicity in Eisenia fetida: implications for the use of biomarkers and standard toxicity tests.

    PubMed

    Irizar, A; Rodríguez, M P; Izquierdo, A; Cancio, I; Marigómez, I; Soto, M

    2015-01-01

    Bioavailability is affected by soil physicochemical characteristics such as pH and organic matter (OM) content. In addition, OM constitutes the energy source of Eisenia fetida, a well established model species for soil toxicity assessment. The present work aimed at assessing the effects of changes in OM content on the toxicity of Cd in E. fetida through the measurement of neutral red uptake (NRU) and mortality, growth, and reproduction (Organisation for Economic Co-operation and Development [OECD] Nos. 207 and 222). Complementarily, metallothionein (MT) and catalase transcription levels were measured. To decrease variability inherent to natural soils, artificial soils (Organization for Economic Cooperation and Development 1984) with different OM content (6, 10, and 14%) and spiked with Cd solutions at increasing concentrations were used. Low OM in soil decreased soil ingestion and Cd bioaccumulation but also increased Cd toxicity causing lower NRU of coelomocytes, 100 % mortality, and stronger reproduction impairment, probably due to the lack of energy to maintain protection mechanisms (production of MT).Cd bioaccumulation did not reflect toxicity, and OM played a pivotal role in Cd toxicity. Thus, OM content should be taken into account when using E. fetida in in vivo exposures for soil health assessment.

  15. Lessons from single cell organisms: insights into the antimicrobial and toxic effects of peritoneal dialysate bases.

    PubMed

    Diskin, Charles J

    2010-04-01

    Although it was first described over a quarter of a century ago, the mechanisms behind the antimicrobial activity of fresh peritoneal dialysate have been poorly understood. Recent insight into the biochemistry appears to suggest that at least part of the effect resides in the salts of the carboxylic acids. An understanding of the metabolic pathways of both sensitive and resistant organisms has not only led to an understanding of the mechanisms of the antimicrobial effect, but also may have provided the insight for future studies to reduce toxicity to the peritoneal membrane. While our knowledge base in this area is still evolving, an improved understanding of the biochemical basis of both the antibacterial effect and toxicity of the salts of carboxylic acids in peritoneal dialysate can only prove useful. PMID:20438533

  16. Linking in Vitro Effects and Detected Organic Micropollutants in Surface Water Using Mixture-Toxicity Modeling.

    PubMed

    Neale, Peta A; Ait-Aissa, Selim; Brack, Werner; Creusot, Nicolas; Denison, Michael S; Deutschmann, Björn; Hilscherová, Klára; Hollert, Henner; Krauss, Martin; Novák, Jiří; Schulze, Tobias; Seiler, Thomas-Benjamin; Serra, Helene; Shao, Ying; Escher, Beate I

    2015-12-15

    Surface water can contain countless organic micropollutants, and targeted chemical analysis alone may only detect a small fraction of the chemicals present. Consequently, bioanalytical tools can be applied complementary to chemical analysis to detect the effects of complex chemical mixtures. In this study, bioassays indicative of activation of the aryl hydrocarbon receptor (AhR), activation of the pregnane X receptor (PXR), activation of the estrogen receptor (ER), adaptive stress responses to oxidative stress (Nrf2), genotoxicity (p53) and inflammation (NF-κB) and the fish embryo toxicity test were applied along with chemical analysis to water extracts from the Danube River. Mixture-toxicity modeling was applied to determine the contribution of detected chemicals to the biological effect. Effect concentrations for between 0 to 13 detected chemicals could be found in the literature for the different bioassays. Detected chemicals explained less than 0.2% of the biological effect in the PXR activation, adaptive stress response, and fish embryo toxicity assays, while five chemicals explained up to 80% of ER activation, and three chemicals explained up to 71% of AhR activation. This study highlights the importance of fingerprinting the effects of detected chemicals.

  17. Sublethal toxicant effects with dynamic energy budget theory: application to mussel outplants.

    PubMed

    Muller, Erik B; Osenberg, Craig W; Schmitt, Russell J; Holbrook, Sally J; Nisbet, Roger M

    2010-01-01

    We investigate the effectiveness of a sublethal toxic effect model embedded in Dynamic Energy Budget (DEB) theory for the analysis of field data. We analyze the performance of two species of mussels, Mytilus galloprovincialis and M. californianus, near a diffuser discharging produced water in the Southern California Bight, California. Produced water is a byproduct of oil production consisting of fossil water together with compounds added during the extraction process, and generally contains highly elevated levels of pollutants relative to sea water. Produced water negatively affects the production of somatic and reproductive biomass in both mussel species; we show that these negative effects can be quantified with our DEB-based modeling framework through the estimation of toxic effect scaling parameters. Our analyses reveal that the toxic impact of produced water on growth and reproduction of M. californianus is substantially higher than for M. galloprovincialis. Projections of the expected lifetime production of gonad biomass indicate that the environmental impact of produced water can be as large as 100%, whereas short-term assessment without the use of DEB theory projects a maximum effect of only 30%.

  18. Linking in Vitro Effects and Detected Organic Micropollutants in Surface Water Using Mixture-Toxicity Modeling.

    PubMed

    Neale, Peta A; Ait-Aissa, Selim; Brack, Werner; Creusot, Nicolas; Denison, Michael S; Deutschmann, Björn; Hilscherová, Klára; Hollert, Henner; Krauss, Martin; Novák, Jiří; Schulze, Tobias; Seiler, Thomas-Benjamin; Serra, Helene; Shao, Ying; Escher, Beate I

    2015-12-15

    Surface water can contain countless organic micropollutants, and targeted chemical analysis alone may only detect a small fraction of the chemicals present. Consequently, bioanalytical tools can be applied complementary to chemical analysis to detect the effects of complex chemical mixtures. In this study, bioassays indicative of activation of the aryl hydrocarbon receptor (AhR), activation of the pregnane X receptor (PXR), activation of the estrogen receptor (ER), adaptive stress responses to oxidative stress (Nrf2), genotoxicity (p53) and inflammation (NF-κB) and the fish embryo toxicity test were applied along with chemical analysis to water extracts from the Danube River. Mixture-toxicity modeling was applied to determine the contribution of detected chemicals to the biological effect. Effect concentrations for between 0 to 13 detected chemicals could be found in the literature for the different bioassays. Detected chemicals explained less than 0.2% of the biological effect in the PXR activation, adaptive stress response, and fish embryo toxicity assays, while five chemicals explained up to 80% of ER activation, and three chemicals explained up to 71% of AhR activation. This study highlights the importance of fingerprinting the effects of detected chemicals. PMID:26516785

  19. Phytochemical Characteristics of Seeds and Its Effects on the Intestinal Motility and Toxicity of Joannesia princeps.

    PubMed

    Araújo, Adriano Cressoni; Guiguer, Élen Landgraf; Barbalho, Sandra Maria; Bueno, Patrícia C S; Lopes, Juliana Agostinho; da Silva, Bruna Ferreira; Girotto, Letícia Cabrini; de Paula, Marina Guirro; Zeber, Paulo Vitor; de Alvares Goulart, Ricardo

    2016-01-01

    Joannesia princeps is a plant commonly used in folk medicine as laxative for menstrual discomfort and as antihelminthic and antimicrobial to reduce edema and improve tissue healing. The seeds are used in many regions of Brazil as laxative; however, studies are needed to confirm its effectiveness and safety. Thus, the aim of this study was to evaluate the effects of using seeds of this plant on intestinal motility of Wistar rats, evaluate the effects and acute toxicity of its management, as well as determine its phytochemical profile. The evaluation of the effect on the intestinal motility was performed according to the model described by Michelin and Salgado (2004) with modifications. For the evaluation of acute toxicity, we used the model described by Craveiro et al. (2008) and Goloni et al. (2005), and for the analysis of the presence of alkaloids, flavonoids, anthraquinones, steroids, and other components, we used the method described by Carvalho et al. (2006). The results showed that J. princeps exhibits laxative effects similar to those of Senna species such as Cassia angustifolia and the phytochemical analysis of ethanol and aqueous extracts showed the presence of alkaloids, triterpenes, and/or steroids compounds. Acute toxicity showed in the first 12 h: piloerection, contortion, decreased respiratory rate, diarrhea, and weight loss. After this period, these changes were no longer observed. It was concluded that the seeds of this plant have potential laxative activity, confirming the popular use and that the dose of 5 g/kg can be considered safe for consumption.

  20. Confirmation of Stormwater Bioretention Treatment Effectiveness Using Molecular Indicators of Cardiovascular Toxicity in Developing Fish.

    PubMed

    McIntyre, Jenifer K; Edmunds, Richard C; Redig, Maria G; Mudrock, Emma M; Davis, Jay W; Incardona, John P; Stark, John D; Scholz, Nathaniel L

    2016-02-01

    Urban stormwater runoff is a globally significant threat to the ecological integrity of aquatic habitats. Green stormwater infrastructure methods such as bioretention are increasingly used to improve water quality by filtering chemical contaminants that may be harmful to fish and other species. Ubiquitous examples of toxics in runoff from highways and other impervious surfaces include polycyclic aromatic hydrocarbons (PAHs). Certain PAHs are known to cause functional and structural defects in developing fish hearts. Therefore, abnormal heart development in fish can be a sensitive measure of clean water technology effectiveness. Here we use the zebrafish experimental model to assess the effects of untreated runoff on the expression of genes that are classically responsive to contaminant exposures, as well as heart-related genes that may underpin the familiar cardiotoxicity phenotype. Further, we assess the effectiveness of soil bioretention for treating runoff, as measured by prevention of both visible cardiac toxicity and corresponding gene regulation. We find that contaminants in the dissolved phase of runoff (e.g., PAHs) are cardiotoxic and that soil bioretention protects against these harmful effects. Molecular markers were more sensitive than visible toxicity indicators, and several cardiac-related genes show promise as novel tools for evaluating the effectiveness of evolving stormwater mitigation strategies.

  1. Toxicity assessment of the herbicide metolachlor comparative effects on bacterial and mitochondrial model systems.

    PubMed

    Pereira, Susana P; Fernandes, Maria A S; Martins, João D; Santos, Maria S; Moreno, António J M; Vicente, Joaquim A F; Videira, Romeu A; Jurado, Amália S

    2009-12-01

    Metolachlor is one of the most intensively used chloroacetamide herbicides. However, its effects on the environment and on non-target animals and humans as well as its interference at a cell/molecular level have not yet been fully elucidated. The aim of this study was: firstly, to evaluate the potential toxicity of metolachlor at a cell/subcellular level by using two in vitro biological model systems (a strain of Bacillus stearothermophilus and rat liver mitochondria); secondly, to evaluate the relative sensibility of these models to xenobiotics to reinforce their suitability for pollutant toxicity assessment. Our results show that metolachlor inhibits growth and impairs the respiratory activity of B.stearothermophilus at concentrations two to three orders of magnitude higher than those at which bacterial cells are affected by other pesticides. Also at concentrations significantly higher than those of other pesticides, metolachlor depressed the respiratory control ratio, membrane potential and respiration of rat liver mitochondria when malate/glutamate or succinate were used as respiratory substrates. Moreover, metolachlor impaired the respiratory activity of rat liver mitochondria in the same concentration range at which it inhibited bacterial respiratory system (0.4-5.0 micromol/mg of protein). In conclusion, the high concentration range at which metolachlor induces toxicity in vitro suggests that this compound is safer than other pesticides previously studied in our laboratory, using the same model systems. The good parallelism between metolachlor effects on both models and the toxicity data described in the literature, together with results obtained in our laboratory with other compounds, indicate the suitability of these systems to assess toxicity in vitro. PMID:19607910

  2. Neuroprotective effects of imidazenil against chemical warfare nerve agent soman toxicity in guinea pigs.

    PubMed

    Wang, Ying; Oguntayo, Samuel; Wei, Yanling; Wood, Elisa; Brown, Ammon; Jensen, Neil; Auta, James; Guiodotti, Alessandro; Doctor, Bhupendra P; Nambiar, Madhusoodana P

    2012-03-01

    The chemical warfare nerve agent, soman irreversibly inhibits acetylcholinesterase (AChE) leading to hypercholinergy and seizures which trigger glutamate toxicity and status epilepticus ultimately resulting in neuropathology and neurobehavioral deficits. The standard emergency treatment comprising of anticholinergic, AChE reactivator and anticonvulsant does not completely protect against soman toxicity. We have evaluated imidazenil, a new anticonvulsant imidazo benzodiazepine with high affinity and intrinsic efficacy at α5-, α2-, and α3- but low intrinsic efficacy at α1-containing GABA(A) receptors and is devoid of cardiorespiratory depression, sedative/hypnoitc and amnestic actions and does not elicit tolerance and dependence liabilities unlike diazepam, for protection against soman toxicity. Guinea pigs implanted with bipotential radiotelemetry probes for recording EEG and ECG were administered with 26 μg/kg pyridostigmine bromide 30 min prior to 2× LD(50) soman exposure and 1 min later treated with a combination of 2mg/kg atropine sulfate and 25mg/kg 2-pralidoxime and various doses of imidazenil. Intramuscular administration of imidazenil, dose-dependently protected against 2× LD(50) of soman toxicity up to 1mg/kg. Further increase in the dose of imidazenil to 2.5mg/kg was less effective than 1mg/kg probably due to non-specific actions at sites other than GABA(A) receptors. Compared to vehicle group, 1mg/kg imidazenil treatment showed optimal increase in survival rate, reduction in behavioral manifestations and high power of EEG spectrum as well as neuronal necrosis. These data suggest that imidazenil is an effective anticonvulsant for medical countermeasure against soman-induced toxicity.

  3. Toxicity evaluation of petroleum blending streams: reproductive and developmental effects of hydrodesulfurized kerosine.

    PubMed

    Schreiner, C; Bui, Q; Breglia, R; Burnett, D; Koschier, F; Podhasky, P; Lapadula, L; White, R; Feuston, M; Krueger, A; Rodriquez, S

    1997-10-24

    Hydrodesulfurized kerosine (HDS kerosine), applied dermally, was tested for reproductive and developmental toxicity in Sprague-Dawley rats, using a modified OECD Guideline 421, Reproductive/Developmental Toxicity Screening Protocol. A preliminary acute dermal irritancy test demonstrated that dilution of HDS kerosine in either a light (100 Saybolt universal seconds, SUS) or moderate viscosity (340 SUS) USP mineral oil reduced irritation of the neat material comparably. Similar dermal absorption was observed in vitro for neat HDS kerosine or diluted in either of the mineral oils. HDS kerosine diluted to 494 (60%), 330 (40%), or 165 (20%) mg/kg/day in Squibb mineral oil (340 SUS) was applied daily at 1 ml/kg to the shaved backs of rats for 7 wk (premating, mating to d 19 of gestation) to females and 8 wk to males. Dams and litters were sacrificed on postpartum d 4 and males were sacrificed within the following week. HDS kerosine produced slight to moderate skin irritation at the highest dose in both sexes but no apparent maternal, reproductive, or developmental toxicity. No clinical signs of toxicity and no effects on body weight, food consumption, or absolute organ weights were observed. Relative kidney weights were heavier in male rats at the high dose. Skin changes were observed microscopically in male rats in all groups and in females at the high dose. No microscopic changes were observed in reproductive organs of parental animals. There were no differences in mean number of corpora lutea, implantation sites, and live pups per litter, and no gross anomalies were observed. Pups born from treated dams showed comparable body weights and weight gains to controls. The viability index on postpartum d 4 was > or = 93%. In conclusion, the no observable adverse effect level (NOAEL) for HDS kerosine for reproductive and developmental toxicity in rats is 494 mg/kg/d.

  4. The present status of biological effects of toxic metals in the environment: lead, cadmium, and manganese.

    PubMed

    Shukla, G S; Singhal, R L

    1984-08-01

    The number of reports concerning the chemical toxicology of metals which are released in the environment by natural as well as anthropogenic sources, have been increasing constantly. Lead, cadmium, and manganese have found a variety of uses in industry, craft, and agriculture owing to their physical and chemical properties. The environmental burden of heavy metals has been rising substantially by smelter emission in air and waste sewage in water. Further, organic compounds of lead and manganese used as antiknock substances in gasoline are emitted into the atmosphere by automobile exhaustion. Such environmental contamination of air, water, soil, and food is a serious threat to all living kinds. Although these metals are known to produce their toxic effects on a variety of body systems, much emphasis has been placed on their effects on the nervous system owing to apparent association of relatively low or "subclinical" levels of metallic exposure with behavioral and psychological disorders. Clinical and animal data on environmental exposure show that while lead and manganese are most toxic to the nervous system, cadmium exerts profound adverse effects on kidney and the male reproductive system. It appears that the consequences of exposure to lead in adults are less severe than the types of exposure associated with hyperactivity in neonates. Except for a few reports, hyperactivity has indeed been observed in animals exposed to either of these three metals. Experimental work has also shown that these metals produce behavioral changes by altering the metabolism of brain neurotransmitters, especially catecholamines. Recently, it is hypothesized that these metals exert their toxic effect by damaging biological defences which exist in the body to serve as protective mechanisms against exogenous toxins. A voluminous publication list with diverse opinions on the biological effects of metals is available and there is an urgent need to compile assessment of the existing

  5. Toxic effects of carvacrol, caryophyllene oxide, and ascaridole from essential oil of Chenopodium ambrosioides on mitochondria

    SciTech Connect

    Monzote, Lianet; Stamberg, Werner; Staniek, Katrin; Gille, Lars

    2009-11-01

    Chenopodium ambrosioides have been used for centuries in the Americas as a popular remedy for parasitic diseases. The essential oil of this plant possesses anthelmintic activity and is still used in some regions to treat parasitosis and leishmaniasis. However, the Chenopodium oil caused also some fatalities, leading to its commercial disuse. In this work, we studied the mechanism of toxicity of the essential oil and its major pure ingredients (carvacrol, caryophyllene oxide, and ascaridole, which was synthesized from alpha-terpinene) with respect to mammalian cells and mitochondria. We observed that all products, but especially caryophyllene oxide, inhibited the mitochondrial electron transport chain. This effect for carvacrol and caryophyllene oxide was mediated via direct complex I inhibition. Without Fe{sup 2+}, ascaridole was less toxic to mammalian mitochondria than other major ingredients. However, evidence on the formation of carbon-centered radicals in the presence of Fe{sup 2+} was obtained by ESR spin-trapping. Furthermore, it was shown that Fe{sup 2+} potentiated the toxicity of ascaridole on oxidative phosphorylation of rat liver mitochondria. The increase of the alpha-tocopherol quinone/alpha-tocopherol ratio under these conditions indicated the initiation of lipid peroxidation by Fe{sup 2+}-mediated ascaridole cleavage. Further ESR spin-trapping experiments demonstrated that in addition to Fe{sup 2+}, reduced hemin, but not mitochondrial cytochrome c can activate ascaridole, explaining why ascaridole in peritoneal macrophages from BALB/c mice exhibited a higher toxicity than in isolated mitochondria.

  6. Toxic effects of chromium acetate hydroxide on cells cultivated in vitro.

    PubMed

    Rudolf, E; Peychl, J; Cervinka, M

    2001-01-01

    Many human activities, particularly industrial ones, result in an ever-growing production of toxic waste materials. The dynamics of the toxic effects of chromium acetate hydroxide, which is found in high concentrations in a waste sediment produced in the Czech Republic, were assessed by using a battery of in vitro tests carried out on two cell lines: L-929 (mouse fibroblasts) and Hep 2 (human laryngeal cells). Various markers of cell damage were assessed by phase-contrast, video and fluorescence microscopy, fluorometry, and DNA analysis. Chromium acetate hydroxide, over a concentration range of 1-0.02mol/l induced immediate cell death by fixation, whereas, at 0.002mol/l, the treated cells died in a much slower, more discrete manner. All the detected markers of cell damage, whether immediate or slow, clearly demonstrated that the cells died by necrosis. On the other hand, test concentration of 0.001mol/l appeared to constitute a threshold at which no pathological changes of Hep 2 cells were observed over 96 hours. We conclude that chromium acetate hydroxide has a high toxic potential in vitro, which should be considered when studying the toxicity of waste materials containing it.

  7. Toxic effects of carvacrol, caryophyllene oxide, and ascaridole from essential oil of Chenopodium ambrosioides on mitochondria.

    PubMed

    Monzote, Lianet; Stamberg, Werner; Staniek, Katrin; Gille, Lars

    2009-11-01

    Chenopodium ambrosioides have been used for centuries in the Americas as a popular remedy for parasitic diseases. The essential oil of this plant possesses anthelmintic activity and is still used in some regions to treat parasitosis and leishmaniasis. However, the Chenopodium oil caused also some fatalities, leading to its commercial disuse. In this work, we studied the mechanism of toxicity of the essential oil and its major pure ingredients (carvacrol, caryophyllene oxide, and ascaridole, which was synthesized from alpha-terpinene) with respect to mammalian cells and mitochondria. We observed that all products, but especially caryophyllene oxide, inhibited the mitochondrial electron transport chain. This effect for carvacrol and caryophyllene oxide was mediated via direct complex I inhibition. Without Fe2+, ascaridole was less toxic to mammalian mitochondria than other major ingredients. However, evidence on the formation of carbon-centered radicals in the presence of Fe2+ was obtained by ESR spin-trapping. Furthermore, it was shown that Fe2+ potentiated the toxicity of ascaridole on oxidative phosphorylation of rat liver mitochondria. The increase of the alpha-tocopherol quinone/alpha-tocopherol ratio under these conditions indicated the initiation of lipid peroxidation by Fe2+-mediated ascaridole cleavage. Further ESR spin-trapping experiments demonstrated that in addition to Fe2+, reduced hemin, but not mitochondrial cytochrome c can activate ascaridole, explaining why ascaridole in peritoneal macrophages from BALB/c mice exhibited a higher toxicity than in isolated mitochondria.

  8. Lack of preventive effects of dietary fibers or chlorophyllin against acrylamide toxicity in rats.

    PubMed

    Woo, Gye-Hyeong; Shibutani, Makoto; Kuroiwa, Keiko; Lee, Kyoung-Youl; Takahashi, Miwa; Inoue, Kaoru; Fujimoto, Hitoshi; Hirose, Masao

    2007-08-01

    Dietary fibers and chlorophyllin have shown to exert anti-carcinogenic effects against co-administered carcinogens. To test the possibility of chemoprevention by such dietary supplements on subacutely induced acrylamide (ACR) toxicity, Sprague-Dawley male rats were administered 2.5% sodium alginate, 5% glucomannan, 5% digestion resistant maltodextrin, 2.5% chitin or 1% chlorophyllin in the diet, and starting one week later, co-administered 0.02% ACR in the drinking water for 4 weeks. For comparison, untreated control animals given basal diet and tap water were also included. Neurotoxicity was examined with reference to gait abnormalities and by quantitative assessment of histopathological changes in the sciatic and trigeminal nerves, as well as aberrant dot-like immunoreactivity for synaptophysin in the cerebellar molecular layer. Testicular toxicity was assessed by quantitation of seminiferous tubules with exfoliation of germ cells into the lumen and cell debris in the ducts of the epididymides. Development of testicular toxicity as well as neurotoxicity was evident with ACR-treatment, but was not suppressed by dietary addition of fibers or chlorophyllin, suggesting no apparent beneficial influence of these dietary supplements on experimentally induced subacute ACR toxicity.

  9. Effects of salinity and pre-exposure on acute cadmium toxicity to seabass, Lates calcarifer

    SciTech Connect

    Shazili, N.A.M.

    1995-01-01

    In recent years in Malaysia, aquaculture activities have expanded into coastal areas. One of the species gaining importance is the seabass, Lates caclarifer. It is a marine fish tolerant to a wide range of salinities down to almost freshwater, although they are normally cultured in floating cages in estuaries with a salinity range of 10 to 25 ppt. The adults spawn in the sea, and upon hatching, the young move into mangrove areas and upstream where the salinity regime fluctuates. The seabass is commonly reared in floating cages in estuaries where the salinity may approach freshwater. However, there is increasing concern for heavy metal pollution in estuaries and coastal areas in Malaysia. The toxicity of heavy metals to marine organisms increases with decreasing salinity; probably due to an increase in free ion concentration and, hence, metal accumulation. There is then the possibility that seabass cultured in estuaries where low salinities are frequently encountered, especially during rainy seasons, would be more susceptible to the effects of metal pollution. There is also a paucity of data on toxicity studies with the seabass. Due to these reasons, an investigation was carried out to establish the toxicity of cadmium to the seabass at two stages of development and the influence of salinity n its toxicity. 20 refs., 5 tabs.

  10. Extrapolating toxic effects on individuals to the population level: the role of dynamic energy budgets.

    PubMed

    Jager, Tjalling; Klok, Chris

    2010-11-12

    The interest of environmental management is in the long-term health of populations and ecosystems. However, toxicity is usually assessed in short-term experiments with individuals. Modelling based on dynamic energy budget (DEB) theory aids the extraction of mechanistic information from the data, which in turn supports educated extrapolation to the population level. To illustrate the use of DEB models in this extrapolation, we analyse a dataset for life cycle toxicity of copper in the earthworm Dendrobaena octaedra. We compare four approaches for the analysis of the toxicity data: no model, a simple DEB model without reserves and maturation (the Kooijman-Metz formulation), a more complex one with static reserves and simplified maturation (as used in the DEBtox software) and a full-scale DEB model (DEB3) with explicit calculation of reserves and maturation. For the population prediction, we compare two simple demographic approaches (discrete time matrix model and continuous time Euler-Lotka equation). In our case, the difference between DEB approaches and population models turned out to be small. However, differences between DEB models increased when extrapolating to more field-relevant conditions. The DEB3 model allows for a completely consistent assessment of toxic effects and therefore greater confidence in extrapolating, but poses greater demands on the available data. PMID:20921051

  11. [Effects of organic acids on the toxicity of cadmium during ryegrass growth].

    PubMed

    Liao, Min; Huang, Changyong

    2002-01-01

    Effects of low molecular weight organic acids(oxalic acid, citric acid, and acetic acid) and higher molecular weight organic acid(humic acid) on the toxicity of Cd during ryegrass growth were studied. The results showed that Cd toxicity enhanced gradually with increasing the concentration of low molecular weight organic acids, and led to the decreasing of chlorophyll concentration in ryegrass plant and the biomass of ryegrass. The sequence of this influence was: oxalic acid < acetic acid < citric acid. On the contrary, Cd toxicity was reduced as a result of addition of humic acid, and the concentration of chlorophyll in ryegrass shoots and the biomass of ryegrass increased consequently. The concentration of Cd in roots and shoots of the ryegrass increased with increasing the concentration of low molecular weight organic acids, and the sequence of this influence was: citric acid > acetic acid > oxalic acids. The concentration of Cd decreased gradually as a result of increasing the concentration of humic acid, which means humic acid could reduce the toxicity of Cd on ryegrass. Furthermore, the concentration of Cd was higher in roots than in shoots, which indicated that the roots of ryegrass could prevent transport of Cd from roots to shoots and reduce Cd accumulation in the shoots.

  12. [Administration Order of FEC-DOC in Breast Cancer Adjuvant Chemotherapy Has an Effect on Toxicity].

    PubMed

    Miyaki, Toshiko; Tsujimura, Hideki; Nakamura, Rikiya; Okubo, Yoshiyuki; Kumagai, Kyoya; Yamamoto, Naohito

    2015-09-01

    Sequential administration of anthracycline - and taxane-based regimens has been established as standard adjuvant chemotherapy for breast cancer. In our hospital, FEC(5-FU/EPI/CPA) followed by docetaxel therapy has been used for this indication. Recently, we changed the sequence of FEC and docetaxel to reduce skin toxicities during the docetaxel phase. Since the effect of the administration order on efficacy and toxicity is not clear, we retrospectively compared the toxicities and relative dose intensity (RDI) of the administration orders. From January to December of 2012, 46 patients received FEC followed by docetaxel (AT group), while 42 patients underwent docetaxel followed by FEC during the same period in 2013(TA group). The incidence of severe hematological and major non-hematological toxicities was similar in the two groups. There was no significant difference in RDI between groups. However, grade 2 or higher hand-foot syndrome(HFS)during the docetaxel phase, which can be a reason for dose reduction or treatment termination, was more frequently observed in the AT group than in the TA group(54% vs 33%, p<0.05). Our data shows that the risk of HFS was reduced when the taxane was administered first. Interestingly, HFS significantly increased in the winter, regardless of the administration order(p<0.01).

  13. Curcumin reduces the toxic effects of iron loading in rat liver epithelial cells

    PubMed Central

    Messner, Donald J.; Sivam, Gowsala; Kowdley, Kris V.

    2008-01-01

    Background/aims Iron overload can cause liver toxicity and increase the risk of liver failure or hepatocellular carcinoma in humans. Curcumin (diferuloylmethane), a component of the food spice turmeric, has antioxidant, iron binding, and hepatoprotective properties. The aim of this study was to quantify its effects on iron overload and resulting downstream toxic effects in cultured T51B rat liver epithelial cells. Methods T51B cells were loaded with ferric ammonium citrate (FAC) with or without the iron delivery agent 8-hydroxyquinoline. Cytotoxicity was measured by MTT assay. Iron uptake and iron bioavailability were documented by chemical assay, quench of calcein fluorescence, and ferritin induction. Reactive oxygen species (ROS) were measured by fluorescence assay using 2′,7′-dichlorodihydrofluorescein diacetate. Oxidative stress signaling to jnk, c-jun, and p38 was measured by western blot with phospho-specific antibodies. Results Curcumin bound iron, but did not block iron uptake or bioavailability in T51B cells given FAC. However, it reduced cytotoxicity, blocked generation of ROS, and eliminated signaling to cellular stress pathways caused by iron. Inhibition was observed over a wide range of FAC concentrations (50 – 500 μM), with an apparent IC50 in all cases between 5 and 10 μM curcumin. In contrast, desferoxamine blocked both iron uptake and toxic effects of iron at concentrations that depended on the FAC concentration. Effects of curcumin also differed from those of α-tocopherol, which did not bind iron and was less effective at blocking iron-stimulated ROS generation. Conclusions Curcumin reduced iron-dependent oxidative stress and iron toxicity in T51B cells without blocking iron uptake. PMID:18492020

  14. Toxic effects of endrin and toxaphene on the southern leopard frog Rana sphenocephala

    USGS Publications Warehouse

    Hall, R.J.; Swineford, D.

    1980-01-01

    Eggs, larvae and sub-adults of the southern leopard frog Rana sphenocephala were exposed to endrin and toxaphene. Exposure was in water by a continuous-flow technique, following standards that have been used successfully in the study of fish and invertebrates. R. sphenocephala is more sensitive to both pesticides than are higher vertebrates but is slightly less sensitive than fish. Eggs seem to be resistant to the effects of both pesticides and are probably poor indicators of environmental hazard. The toxic level of endrin is about equal in larvae and transformed frogs (LC50, 0?005-0?015 ppm). Toxaphene is less toxic to sub-adults (LC50, 0?37-0?790 ppm) than to larvae (LC50, 0?032-0?054 ppm). Delayed mortality, behavioural aberrations and effects on growth have been seen in toxaphene-dosed larvae observed over 30-day periods. Behavioural effects are more severe than those reported in other groups of animals. Effects on growth resulting from a 96-h exposure begin in the 0?013-0?018 ppm range. The maximum accumulation of residues observed for each chemical represented bioconcentration factors of about 100. Endrin residues are apparently lost more readily than toxaphene residues; relative depuration rates correlate well with the time course of toxic action in each chemical. Although less sensitive to these pesticides than fish, amphibians may not be protected in their natural habitats. Future studies of the effects of toxicants on amphibians should employ larvae if only one stage can be tested, should expose subjects for at least 96 h and should continue observations for a total of at least 30 days.

  15. Collateral damage: toxic effects of targeted antiangiogenic therapies in ovarian cancer

    PubMed Central

    Stone, Rebecca L; Sood, Anil K; Coleman, Robert L

    2011-01-01

    First-line chemotherapy fails in more than 20% of patients with epithelial ovarian cancer and about 40–50% of women who respond to initial treatment relapse within 2 years. In the recurrent setting, second-line chemotherapeutic agents have a 15–20% response rate with no cures. Fortunately, clinical investigations that have assessed the efficacy of new, biologically targeted therapies have reinvigorated therapeutic options for patients living with ovarian and other malignancies. In view of the fact that ovarian cancer is one of the most angiogenic neoplasms, there is great hope that implementing targeted agents with antiangiogenic properties will improve outcomes. However, as experience grows with the antitumour activity of these drugs, new toxic effects are emerging. The effects of antiangiogenic agents on molecules and processes that also have physiologically important roles in healthy tissues are at the crux of these toxic effects, or “collateral damage”. This review discusses the leading toxic effects encountered and anticipated in clinical investigation and practice with antiangiogenic agents in patients with ovarian cancer, with particular focus on potential management strategies. PMID:20226736

  16. The Combined Toxic and Genotoxic Effects of Cd and As to Plant Bioindicator Trifolium repens L

    PubMed Central

    Ghiani, Alessandra; Fumagalli, Pietro; Nguyen Van, Tho; Gentili, Rodolfo; Citterio, Sandra

    2014-01-01

    This study was undertaken to investigate combined toxic and genotoxic effects of cadmium (Cd) and arsenic (As) on white clover, a pollutant sensitive plant frequently used as environmental bioindicator. Plants were exposed to soil spiked with increasing concentrations of cadmium sulfate (20, 40 and 60 mg Kg−1) or sodium arsenite (5, 10 and 20 mg Kg−1) as well as with their combinations. Metal(loid) bioavailability was assessed after soil contamination, whereas plant growth, metal(loid) concentration in plant organs and DNA damage were measured at the end of plant exposition. Results showed that individual and joint toxicity and genotoxicity were related to the concentration of Cd and As measured in plant organs, and that As concentration was the most relevant variable. Joint effects on plant growth were additive or synergistic, whereas joint genotoxic effects were additive or antagonistic. The interaction between Cd and As occurred at both soil and plant level. In soil the presence of As limited the bioavailability of Cd, whereas the presence of Cd increased the bioavailability of As. Nevertheless only As biovailability determined the amount of As absorbed by plants. The amount of Cd absorbed by plant was not linearly correlated with the fraction of bioavailable Cd in soil suggesting the involvement of additional factors, such as plant uptake mechanisms. These results reveal that the simultaneous presence in soil of Cd and As, although producing an additive or synergistic toxic effect on Trifolium repens L. growth, generates a lower DNA damage. PMID:24914541

  17. [Alteration of the acute toxicity and various pharmacologic effects of streptomycin sulfate by calcium 4'-phosphopantothenate].

    PubMed

    Dorofeev, B F; Korablev, M V; Kopelevich, V M

    1983-10-01

    The effect of calcium 4'-phosphopantothenate (CPP) on acute toxicity of streptomycin and the decrease by the antibiotic of the muscle working capacity, "holes" reflex, body temperature and oxygen intake was studied on 258 albino mice weighing 22-26 g. Medical calcium pantothenate (CPA) was used for control purposes. CPP is an antagonist of streptomycin sulfate. In a dose of 1/10 or 1/5 of the LD50 injected intraperitoneally CPP lowered acute toxicity of streptomycin and prevented its effect in a dose of 0.11--1.1 g/kg injected subcutaneously on the muscle working capacity, "holes" reflex and body temperature. The spectrum index of the CPP antitoxic effect was equal to 22.5. By its acute toxicity CPP (LD50 1.18 +/- 0.07 g/kg) did not differ from CPA (LD50 1.25 +/- 0.08 g/kg). The efficacy of CPP, by its antitoxic spectrum, was 1.8 times higher than that of CPA. CPA lowered the streptomycin effect on the "holes" reflex and body temperature, while CPP prevented it. Both the drugs did not influence the decrease in the oxygen consumption induced by streptomycin. PMID:6651265

  18. Effects of iron oxide nanoparticles: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity.

    PubMed

    Valdiglesias, Vanessa; Kiliç, Gözde; Costa, Carla; Fernández-Bertólez, Natalia; Pásaro, Eduardo; Teixeira, João Paulo; Laffon, Blanca

    2015-03-01

    Iron oxide nanoparticles (ION) with superparamagnetic properties hold great promise for use in various biomedical applications; specific examples include use as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Increasing potential applications raise concerns over their potential effects on human health. Nevertheless, very little is currently known about the toxicity associated with exposure to these nanoparticles at different levels of biological organization. This article provides an overview of recent studies evaluating ION cytotoxicity, genotoxicity, developmental toxicity and neurotoxicity. Although the results of these studies are sometimes controversial, they generally indicate that surface coatings and particle size seem to be crucial for the observed ION-induced effects, as they are critical determinants of cellular responses and intensity of effects, and influence potential mechanisms of toxicity. The studies also suggest that some ION are safe for certain biomedical applications, while other uses need to be considered more carefully. Overall, the available studies provide insufficient evidence to fully assess the potential risks for human health related to ION exposure. Additional research in this area is required including studies on potential long-term effects. PMID:25209650

  19. Silver-doped calcium phosphate nanoparticles: synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells.

    PubMed

    Peetsch, Alexander; Greulich, Christina; Braun, Dieter; Stroetges, Christian; Rehage, Heinz; Siebers, Bettina; Köller, Manfred; Epple, Matthias

    2013-02-01

    Spherical silver-doped calcium phosphate nanoparticles were synthesized in a co-precipitation route from calcium nitrate/silver nitrate and ammonium phosphate in a continuous process and colloidally stabilized by carboxymethyl cellulose. Nanoparticles with 0.39 wt% silver content and a diameter of about 50-60 nm were obtained. The toxic effects toward mammalian and prokaryotic cells were determined by viability tests and determination of the minimal inhibitory and minimal bactericidal concentrations (MIC and MBC). Three mammalian cells lines, i.e. human mesenchymal stem cells (hMSC) and blood peripheral mononuclear cells (PBMC, monocytes and T-lymphocytes), and two prokaryotic strains, i.e. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used. Silver-doped calcium phosphate nanoparticles and silver acetate showed similar effect toward mammalian and prokaryotic cells with toxic silver concentrations in the range of 1-3 μg mL(-1).

  20. Toxicity testing of dispersed oil requires adherence to standardized protocols to assess potential real world effects.

    PubMed

    Coelho, Gina; Clark, James; Aurand, Don

    2013-06-01

    Recently, several researchers have attempted to address Deepwater Horizon incident environmental fate and effects issues using laboratory testing and extrapolation procedures that are not fully reliable measures for environmental assessments. The 2013 Rico-Martínez et al. publication utilized laboratory testing approaches that severely limit our ability to reliably extrapolate such results to meaningful real-world assessments. The authors did not adopt key methodological elements of oil and dispersed oil toxicity standards. Further, they drew real-world conclusions from static exposure tests without reporting actual exposure concentrations. Without this information, it is not possible to compare their results to other research or real spill events that measured and reported exposure concentrations. The 1990s' Chemical Response to Oil Spills: Ecological Effects Research Forum program was established to standardize and conduct exposure characterization in oil and dispersed oil aquatic toxicity testing (Aurand and Coelho, 2005). This commentary raises awareness regarding the necessity of standardized test protocols.

  1. Biological markers in environmental sentinels to establish exposure to, and effects of, atmospheric toxicants

    SciTech Connect

    McCarthy, J.F.; Tschaplinski, T.J. )

    1989-01-01

    This paper will discuss an approach that can contribute to evaluating the exposure of organisms to airborne toxicants, and can be particularly valuable as a tool to evaluate the biological significance of that exposure (NRC 1987). The approach is based on biological monitoring of animals and plants in areas impacted by airborne toxicants, and, more specifically, on measurement of molecular, biochemical, and physiological biological markers (biomarkers) in target species. In this context, the measurement of body burdens of persistent compounds (or metabolites) and of biomarkers of exposure or effects, permit the animals and plants to serve as sentinels indicating the presence of bioavailable contaminants, as surrogates to estimate the possible exposure and risk to humans, and as short-term predictors of long-term adverse effects at a population or community level. 69 refs., 5 figs., 2 tabs.

  2. Modulatory effects of curcumin on lipid peroxidation and antioxidant status during nicotine-induced toxicity.

    PubMed

    Kalpana, C; Menon, V P

    2004-01-01

    Nicotine, a pharmacologically active substance in tobacco, has been identified as a major risk factor for lung diseases. In the present study, we evaluated the protective effects of curcumin on tissue lipid peroxidation and antioxidants in nicotine-treated Wistar rats. Lung toxicity was induced by subcutaneous injection of nicotine at a dose of 2.5 mg/kg (5 days a week, for 22 weeks). Curcumin (80 mg/kg) was given simultaneously by intragastric intubation for 22 weeks. The enhanced level of tissue lipid peroxides in nicotine-treated rats was accompanied by a significant decrease in the levels of ascorbic acid, vitamin E, reduced glutathione, glutathione peroxidase, superoxide dismutase and catalase. Administration of curcumin significantly lowered the level of lipid peroxidation and enhanced the antioxidant status. The results of the present study suggest that curcumin exerts its protective effect against nicotine-induced lung toxicity by modulating the extent of lipid peroxidation and augmenting antioxidant defense system. PMID:15591646

  3. Protective value of dietary copper and iron against some toxic effects of lead in rats.

    PubMed Central

    Klauder, D S; Petering, H G

    1975-01-01

    Both dietary iron and copper were inversely related to lead absorption as indicated by erythrocyte and kidney lead levels, dietary iron having the greatest effect. Kidney copper values were depressed when dietary iron was low, a condition which was worsened by lead. Lead tended to lower heart cytochrome c oxidase especially when dietary copper was low, but also when dietary copper and zinc were high. Lead interfered with hematopoiesis when dietary copper and/or iron were low, the effect being expecially severe when both essential nutrients were low. These results show the importance of copper and iron nutriture and metabolism as factors which reduce lead toxicity, and emphasize the necessity of considering nutritional status in evaluating lead toxicity. PMID:179804

  4. Health effects and toxicity mechanisms of rare earth elements-Knowledge gaps and research prospects.

    PubMed

    Pagano, Giovanni; Guida, Marco; Tommasi, Franca; Oral, Rahime

    2015-05-01

    In the recent decades, rare earth elements (REE) have undergone a steady spread in several industrial and medical applications, and in agriculture. Relatively scarce information has been acquired to date on REE-associated biological effects, from studies of bioaccumulation and of bioassays on animal, plant and models; a few case reports have focused on human health effects following occupational REE exposures, in the present lack of epidemiological studies of occupationally exposed groups. The literature is mostly confined to reports on few REE, namely cerium and lanthanum, whereas substantial information gaps persist on the health effects of other REE. An established action mechanism in REE-associated health effects relates to modulating oxidative stress, analogous to the recognized redox mechanisms observed for other transition elements. Adverse outcomes of REE exposures include a number of endpoints, such as growth inhibition, cytogenetic effects, and organ-specific toxicity. An apparent controversy regarding REE-associated health effects relates to opposed data pointing to either favorable or adverse effects of REE exposures. Several studies have demonstrated that REE, like a number of other xenobiotics, follow hormetic concentration-related trends, implying stimulatory or protective effects at low levels, then adverse effects at higher concentrations. Another major role for REE-associated effects should be focused on pH-dependent REE speciation and hence toxicity. Few reports have demonstrated that environmental acidification enhances REE toxicity; these data may assume particular relevance in REE-polluted acidic soils and in REE mining areas characterized by concomitant REE and acid pollution. The likely environmental threats arising from REE exposures deserve a new line of research efforts.

  5. Antimony Toxicity

    PubMed Central

    Sundar, Shyam; Chakravarty, Jaya

    2010-01-01

    Antimony toxicity occurs either due to occupational exposure or during therapy. Occupational exposure may cause respiratory irritation, pneumoconiosis, antimony spots on the skin and gastrointestinal symptoms. In addition antimony trioxide is possibly carcinogenic to humans. Improvements in working conditions have remarkably decreased the incidence of antimony toxicity in the workplace. As a therapeutic, antimony has been mostly used for the treatment of leishmaniasis and schistosomiasis. The major toxic side-effects of antimonials as a result of therapy are cardiotoxicity (~9% of patients) and pancreatitis, which is seen commonly in HIV and visceral leishmaniasis co-infections. Quality control of each batch of drugs produced and regular monitoring for toxicity is required when antimonials are used therapeutically. PMID:21318007

  6. Relative toxicity of pyrolysis gases from materials - Effects of chemical composition and test conditions

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1978-01-01

    Relative toxicity test data on 270 materials are presented, based on test procedures developed at the University of San Francisco. The effects of chemical composition, using data on 13 types of synthetic polymers and eight types of fabrics, are discussed. Selected materials were evaluated using nine test conditions with the USF method, and using methods developed at the FAA Civil Aeromedical Institute, Douglas Aircraft Company and San Jose State University.

  7. Toxic effects of nanoparticles on bioluminescence activity, seed germination, and gene mutation.

    PubMed

    Ko, Kyung-Seok; Kong, In Chul

    2014-04-01

    The potential environmental toxicities of several metal oxide nanoparticles (NPs; CuO, TiO2, NiO, Fe2O3, ZnO, and Co3O4) were evaluated in the context of bioluminescence activity, seed germination, and bacterial gene mutation. The bioassays exhibited different sensitivities, i.e., each kind of NP exhibited a different level of toxicity in each of the bioassays. However, with a few exceptions, CuO and ZnO NPs had most toxic for germination of Lactuca seed (EC50 0.46 mg CuO/l) and bioluminescence (EC50 1.05 mg ZnO/l). Three NPs (Co3O4, TiO2, and Fe2O3) among all tested concentrations (max. 1,000 mg/l) showed no inhibitory effects on the tested organisms, except for Co3O4 NPs on bioluminescence activity (EC50 62.04 mg/l). The sensitivity of Lactuca seeds was greater than that of Raphanus seeds (EC50 0.46 mg CuO/l versus 26.84 mg CuO /l ). The ranking of metal toxicity levels on bioluminescence was in the order of ZnO > CuO > Co3O4 > NiO > Fe2O3, TiO2, while CuO > ZnO > NiO > Co3O4, Fe2O3, TiO2 on germination. No revertant mutagenic ratio (greater than 2.0) of Salmonella typhimurium TA 98 was observed under any tested condition. These findings demonstrate that several bioassays, as opposed to any single one, are needed for the accurate assessment of NP toxicity on ecosystems. PMID:24297479

  8. Effect of irradiance spectra on the photoinduced toxicity of three polycyclic aromatic hydrocarbons

    SciTech Connect

    Diamond, S.A.; Mount, D.R.; Burkhard, L.P.; Ankley, G.T.; Makynen, E.A.; Leonard, E.N.

    2000-05-01

    Photoinduced toxicity of polycyclic aromatic hydrocarbons (PAHs) is dependent on the concentration of compounds present and the dose of light received. Of the light present, only those wavelengths absorbed by the compound have the potential to initiate the photochemical events underlying phototoxicity. This suggests that variation in light spectra present in natural waters, arising from variation in dissolved organic carbon composition, is an important determinant of phototoxicity risk in specific, PAH-contaminated waterbodies. To quantify the effect of environmentally realistic variation in light spectra on toxicity, brine shrimp (Artemia salina) assays were conducted under various light spectra and with three PAHs (pyrene, fluoranthene, and anthracene) of known phototoxicity potential. In these spectral assays, the total ultraviolet light present was equivalent; only the spectral characteristics varied. Based on the absorbance spectra of these PAHs, it was predicted that toxicity, quantified using immobilization as the endpoint, would vary significantly among light spectra in pyrene assays, but not in anthracene assays, and that variation in toxicity in fluoranthene assays would be intermediate. The results supported these assumptions. In the pyrene exposures, the glass filter time to 50% population immobilization (IT50) (39.5 min) was 117% longer than the KCr filter IT50 (18.2 min). In the fluoranthene exposures, the glass filter IT50 (49.5 min) was 27% longer than the KCr filter IT50 (39.1 min). In the anthracene exposures, the glass filter IT50 (62.2 min) was not statistically different from the KCr filter IT50 (63.8 min). Comparison of these results with the results of assays conducted under neutral-density filters (that change intensity but not spectral distribution) demonstrate that multiplying spectral intensity by wavelength-specific absorbance accurately predicts relative photoinduced toxicity among the experimental treatments. These results indicate

  9. Toxic effects of nanoparticles on bioluminescence activity, seed germination, and gene mutation.

    PubMed

    Ko, Kyung-Seok; Kong, In Chul

    2014-04-01

    The potential environmental toxicities of several metal oxide nanoparticles (NPs; CuO, TiO2, NiO, Fe2O3, ZnO, and Co3O4) were evaluated in the context of bioluminescence activity, seed germination, and bacterial gene mutation. The bioassays exhibited different sensitivities, i.e., each kind of NP exhibited a different level of toxicity in each of the bioassays. However, with a few exceptions, CuO and ZnO NPs had most toxic for germination of Lactuca seed (EC50 0.46 mg CuO/l) and bioluminescence (EC50 1.05 mg ZnO/l). Three NPs (Co3O4, TiO2, and Fe2O3) among all tested concentrations (max. 1,000 mg/l) showed no inhibitory effects on the tested organisms, except for Co3O4 NPs on bioluminescence activity (EC50 62.04 mg/l). The sensitivity of Lactuca seeds was greater than that of Raphanus seeds (EC50 0.46 mg CuO/l versus 26.84 mg CuO /l ). The ranking of metal toxicity levels on bioluminescence was in the order of ZnO > CuO > Co3O4 > NiO > Fe2O3, TiO2, while CuO > ZnO > NiO > Co3O4, Fe2O3, TiO2 on germination. No revertant mutagenic ratio (greater than 2.0) of Salmonella typhimurium TA 98 was observed under any tested condition. These findings demonstrate that several bioassays, as opposed to any single one, are needed for the accurate assessment of NP toxicity on ecosystems.

  10. The Effect of Cerium Oxide Nanoparticle Valence State on Reactive Oxygen Species and Toxicity.

    PubMed

    Dunnick, Katherine M; Pillai, Rajalekshmi; Pisane, Kelly L; Stefaniak, Aleksandr B; Sabolsky, Edward M; Leonard, Stephen S

    2015-07-01

    Cerium oxide (CeO2) nanoparticles, which are used in a variety of products including solar cells, gas sensors, and catalysts, are expected to increase in industrial use. This will subsequently lead to additional occupational exposures, making toxicology screenings crucial. Previous toxicology studies have presented conflicting results as to the extent of CeO2 toxicity, which is hypothesized to be due to the ability of Ce to exist in both a +3 and +4 valence state. Thus, to study whether valence state and oxygen vacancy concentration are important in CeO2 toxicity, CeO2 nanoparticles were doped with gadolinium to adjust the cation (Ce, Gd) and anion (O) defect states. The hypothesis that doping would increase toxicity and decrease antioxidant abilities as a result of increased oxygen vacancies and inhibition of +3 to +4 transition was tested. Differences in toxicity and reactivity based on valence state were determined in RLE-6TN rat alveolar epithelial and NR8383 rat alveolar macrophage cells using enhanced dark field microscopy, electron paramagnetic resonance (EPR), and annexin V/propidium iodide cell viability stain. Results from EPR indicated that as doping increased, antioxidant potential decreased. Alternatively, doping had no effect on toxicity at 24 h. The present results imply that as doping increases, thus subsequently increasing the Ce(3+)/Ce(4+) ratio, antioxidant potential decreases, suggesting that differences in reactivity of CeO2 are due to the ability of Ce to transition between the two valence states and the presence of increased oxygen vacancies, rather than dependent on a specific valence state.

  11. Effects of vehicle type and fuel quality on real world toxic emissions from diesel vehicles

    NASA Astrophysics Data System (ADS)

    Nelson, Peter F.; Tibbett, Anne R.; Day, Stuart J.

    Diesel vehicles are an important source of emissions of air pollutants, particularly oxides of nitrogen (NO x), particulate matter (PM), and toxic compounds with potential health impacts including volatile organic compounds (VOCs) such as benzene and aldehydes, and polycyclic aromatic hydrocarbons (PAHs). Current developments in engine design and fuel quality are expected to reduce these emissions in the future, but many vehicles exceed 10 years of age and may make a major contribution to urban pollutant concentrations and related health impacts for many years. In this study, emissions of a range of toxic compounds are reported using in-service vehicles which were tested using urban driving cycles developed for Australian conditions. Twelve vehicles were chosen from six vehicle weight classes and, in addition, two of these vehicles were driven through the urban drive cycle using a range of diesel fuel formulations. The fuels ranged in sulphur content from 24 to 1700 ppm, and in total aromatics from 7.7 to 33 mass%. Effects of vehicle type and fuel composition on emissions are reported. The results show that emissions of these toxic species were broadly comparable to those observed in previous dynamometer and tunnel studies. Emissions of VOCs and smaller PAHs such as naphthalene, which are derived largely from the combustion process, appear to be related, and show relatively little variability when compared with the variability in emissions of aldehydes and larger PAHs. In particular, aldehyde emissions are highly variable and may be related to engine operating conditions. Fuels of lower sulphur and aromatic content did not have a significant influence on emissions of VOCs and aldehydes, but tended to result in lower emissions of PAHs. The toxicity of vehicle exhaust, as determined by inhalation risk and toxic equivalency factor (TEF)-weighted PAH emissions, was reduced with fuels of lower aromatic content.

  12. The biotic ligand model approach for addressing effects of exposure water chemistry on aquatic toxicity of metals: Genesis and challenges

    EPA Science Inventory

    A major uncertainty in many aquatic risk assessments for toxic chemicals is the aggregate effect of the physicochemical characteristics of exposure media on toxicity, and how this affects extrapolation of laboratory test results to natural systems. A notable example of this is h...

  13. How might selenium moderate the toxic effects of mercury in stream fish of the Western USA? - abstract

    EPA Science Inventory

    The ability of selenium (Se) to moderate mercury (Hg) toxicity is well established in the literature. Mercury exposures that might otherwise produce toxic effects are counteracted by Se, particularly when Se:Hg molar ratios approach or exceed 1. We analyzed whole body Se and Hg c...

  14. Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review.

    PubMed

    Bayen, Stéphane

    2012-11-01

    Although their ecological and socioeconomic importance has received recent attention, mangrove ecosystems are one of the most threatened tropical environments. Besides direct clearance, hydrological alterations, climatic changes or insect infestations, chemical pollution could be a significant contributor of mangrove degradation. The present paper reviews the current knowledge on the occurrence, bioavailability and toxic effects of trace contaminants in mangrove ecosystems. The literature confirmed that trace metals, Polycyclic Aromatic Hydrocarbons (PAHs), Persistent Organic Pollutants (POPs), Pharmaceuticals and Personal Care Products (PPCPs) and Endocrine Disrupters Compounds (EDCs) have been detected in various mangrove compartments (water, sediments and biota). In some cases, these chemicals have associated toxic effects on mangrove ecosystem species, with potential impact on populations and biodiversity in the field. However, nearly all studies about the bioavailability and toxic effects of contaminants in mangrove ecosystems focus on selected trace metals, PAHs or some "conventional" POPs, and virtually no data exist for other contaminant groups. The specificities of mangrove ecosystems (e.g. biology, physico-chemistry and hydrology) support the need for specific ecotoxicological tools. This review highlights the major data and methodological gaps which should be addressed to refine the risk assessment of trace pollutants in mangrove ecosystems. PMID:22885665

  15. Protective effect of eicosapentaenoic acid on ouabain toxicity in neonatal rat cardiac myocytes

    SciTech Connect

    Hallaq, H.; Leaf, A. ); Sellmayer, A. ); Smith, T.W. )

    1990-10-01

    Isolated neonatal cardiac myocytes have been utilized as a model for the study of cardiac arrhythmogenic factors. The myocytes respond to the toxic effects of a potent cardiac glycoside, ouabain at 0.1 mM, by an increase in their spontaneous beating rate and a reduction in amplitude of contractions resulting within minutes in a lethal state of contracture. Incubating the isolated myocytes for 3{endash}5 days in culture medium enriched with 5 {mu}M arachidonic acid had no effect on the development of lethal contracture after subsequent exposure to 0.1 mM ouabain. By contrast, incubating the myocytes for 3{endash}5 days with 5 {mu}M eicosapentaenoic acid completely prevented the toxic effects of ouabain at 0.1 mM. No differences in bumetanide-inhibitable {sup 86}Rb flux were observed between the three preparations. However, measurements with fura-2 of cytosolic free calcium levels indicated that control and arachidonic acid-enriched myocytes developed toxic cytosolic calcium concentrations of 845 {plus minus} 29 and 757 {plus minus} 64 nM, respectively, on exposure to 0.1 mM ouabain, whereas in eicosapentaenoic acid-enriched myocytes, physiologic calcium levels were preserved. Incubating the myocytes with eicosapentaenoic acid for 3{endash}5 days resulted in a small reduction of arachidonic acid and a small but significant increase of eicosapentaenoic acid in membrane phospolipids of the myocytes.

  16. Incinerator toxic emissions: a brief summary of human health effects with a note on regulatory control.

    PubMed

    Rowat, S C

    1999-05-01

    Toxic emissions from municipal solid waste (MSW) and hazardous waste incineration are discussed, with reference to recent reviews and to government standards and controls. Studies of known effects of aromatic hydrocarbons, other organics, dioxins, metals, and gases, on fish, soils, plants, and particularly humans are briefly reviewed. A summary of potential problems with existing and proposed incineration is developed, including: (1) lack of toxicity data on unidentified organic emissions; (2) unavoidability of hazardous metal emissions as particles and volatiles; (3) inefficient stack operation resulting in unknown amounts of increased emissions; (4) formation in the stack of highly toxic dioxins and furans, especially under inefficient conditions, and their build-up in the environment and in human tissue; (5) the lack of adequate disposal techniques for incinerator fly ash and wash-water; (6) the contribution of emitted gases such as NO2, SO2 and HCL to smog, acid rain, and the formation of ozone, and the deleterious effects of these on human respiratory systems; (7) the effects and build-up in human tissue of other emitted organics such as benzene, toluene, polychlorinated biphenyls (PCBs), alkanes, alcohols, and phenols; (8) lack of pollution-control and real-time efficiency-monitoring equipment in existing installations. The inability of regulatory bodies historically to ensure compliance with emission standards is discussed, and a concluding opinion is offered that it is inadvisable to engage in new incinerator construction with present knowledge and conditions. PMID:10416945

  17. The ameliorative effect of propolis against methoxychlor induced ovarian toxicity in rat.

    PubMed

    El-Sharkawy, Eman E; Kames, Amany O G; Sayed, S M; Nisr, Neveen A E L; Wahba, Nahed M; Elsherif, Walaa M; Nafady, Allam M; Abdel-Hafeez, M M; Aamer, A A

    2014-12-01

    A study was designed to evaluate ameliorative effect of propolis against methoxychlor (MXC) induced ovarian toxicity in rat. The organochlorine pesticide (MXC) is a known endocrine disruptor with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether chronic exposure to MXC could cause ovarian dysfunction, two groups of Sprague-Dawley adult female rats were exposed to MXC alone in a dose of 200mg/kg, twice/weekly, orally or MXC dose as previous plus propolis in a dose of 200mg/l/day, in drinking water for 10 months. Another two groups of rat were given corn oil (control) or propolis. Multiple reproductive parameters, ovarian weight, serum hormone levels, ovarian oxidative status and ovarian morphology were examined. In MXC-exposed group, there is a significant decrease in body and ovarian weight vs. control. MXC decreases serum estradiol and progesterone levels. A significant increase in the levels of lipid peroxidation was obtained while a significant decrease of the total antioxidant was recorded. Ovarian histopathology showed primary, secondary and vesicular follicles displaying an atretic morphology. Increase in the ovarian surface epithelium height accompanied with vacuolated, pyknotic oocytes were obtained. The previous toxic effects were neutralized by the administration of propolis in MXC+propolis group. The present results suggest that propolis may be effective in decreasing of MXC-induced ovarian toxicity in rat. PMID:25034310

  18. The ameliorative effect of propolis against methoxychlor induced ovarian toxicity in rat.

    PubMed

    El-Sharkawy, Eman E; Kames, Amany O G; Sayed, S M; Nisr, Neveen A E L; Wahba, Nahed M; Elsherif, Walaa M; Nafady, Allam M; Abdel-Hafeez, M M; Aamer, A A

    2014-12-01

    A study was designed to evaluate ameliorative effect of propolis against methoxychlor (MXC) induced ovarian toxicity in rat. The organochlorine pesticide (MXC) is a known endocrine disruptor with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether chronic exposure to MXC could cause ovarian dysfunction, two groups of Sprague-Dawley adult female rats were exposed to MXC alone in a dose of 200mg/kg, twice/weekly, orally or MXC dose as previous plus propolis in a dose of 200mg/l/day, in drinking water for 10 months. Another two groups of rat were given corn oil (control) or propolis. Multiple reproductive parameters, ovarian weight, serum hormone levels, ovarian oxidative status and ovarian morphology were examined. In MXC-exposed group, there is a significant decrease in body and ovarian weight vs. control. MXC decreases serum estradiol and progesterone levels. A significant increase in the levels of lipid peroxidation was obtained while a significant decrease of the total antioxidant was recorded. Ovarian histopathology showed primary, secondary and vesicular follicles displaying an atretic morphology. Increase in the ovarian surface epithelium height accompanied with vacuolated, pyknotic oocytes were obtained. The previous toxic effects were neutralized by the administration of propolis in MXC+propolis group. The present results suggest that propolis may be effective in decreasing of MXC-induced ovarian toxicity in rat.

  19. Incinerator toxic emissions: a brief summary of human health effects with a note on regulatory control.

    PubMed

    Rowat, S C

    1999-05-01

    Toxic emissions from municipal solid waste (MSW) and hazardous waste incineration are discussed, with reference to recent reviews and to government standards and controls. Studies of known effects of aromatic hydrocarbons, other organics, dioxins, metals, and gases, on fish, soils, plants, and particularly humans are briefly reviewed. A summary of potential problems with existing and proposed incineration is developed, including: (1) lack of toxicity data on unidentified organic emissions; (2) unavoidability of hazardous metal emissions as particles and volatiles; (3) inefficient stack operation resulting in unknown amounts of increased emissions; (4) formation in the stack of highly toxic dioxins and furans, especially under inefficient conditions, and their build-up in the environment and in human tissue; (5) the lack of adequate disposal techniques for incinerator fly ash and wash-water; (6) the contribution of emitted gases such as NO2, SO2 and HCL to smog, acid rain, and the formation of ozone, and the deleterious effects of these on human respiratory systems; (7) the effects and build-up in human tissue of other emitted organics such as benzene, toluene, polychlorinated biphenyls (PCBs), alkanes, alcohols, and phenols; (8) lack of pollution-control and real-time efficiency-monitoring equipment in existing installations. The inability of regulatory bodies historically to ensure compliance with emission standards is discussed, and a concluding opinion is offered that it is inadvisable to engage in new incinerator construction with present knowledge and conditions.

  20. The chemopreventive effects of aged garlic extract against cadmium-induced toxicity.

    PubMed

    Lawal, Akeem O; Ellis, Elizabeth M

    2011-09-01

    Garlic has been reported in many previous studies as a potent chemopreventive agent. The protective effect of garlic has been ascribed to the presence of organosulphur compounds (OSC). In this study, the efficacy of aged garlic extract (AGE) compared to diallyl disulfide (DADS) in protecting against toxicity induced by cadmium (Cd) in 1321N1 and HEK293 cells was investigated. The involvement of the transcription factor Nrf2 in this protection was also examined. The results show that AGE significantly prevented loss of cell viability in Cd-treated 1321N1 and HEK293 cells. In comparison DADS had no significant effect in protecting HEK293 cells but did protect 1321N1 cells. AGE significantly reduced Cd-induced TBARS production and LDH leakage in the two cell lines, and AGE and DADS both increased GSH levels in Cd-treated cell lines. Pre-treatment of cells with AGE or DADS increased expression of the protective enzyme NAD(P)H:quinone oxidoreductase (NQO1), and this was associated with the accumulation of the transcription factor Nrf2. These results show that AGE and DADS have beneficial effects against Cd-induced toxicity, and this protection appears to be mediated via induction of cytoprotective enzymes in an Nrf2-dependent manner. This indicates the potential for using AGE as a chemoprevention strategy for Cd toxicity. PMID:21843808

  1. Protective effects of Syzygium cumini seed extract against methylmercury-induced sistemic toxicity in neonatal rats.

    PubMed

    Abdalla, F H; Bellé, L P; Bitencourt, P E R; De Bona, K S; Zanette, R A; Boligon, A A; Athayde, M L; Pigatto, A S; Moretto, M B

    2011-04-01

    Syzygium cumini (L.) Skeels (Sc) belongs to the medicinal plants with an important source of phenolic compounds. Sc has been shown to possess antioxidant and anti-inflammatory properties. Methylmercury (MeHg), a highly toxic environmental pollutant, induces oxidative stress and dysfunction in many cell types. This study was aimed to evaluate the effect of aqueous seed extract of Sc (ASc) on MeHg-induced toxicity in rats. Two-day-old rats (P2) received a single dose of MeHg (10 mg/kg) and two doses of ASc (0.9 mg/kg) per os. After two days, the effects of the treatment were investigated in the cerebral cortex, hippocampus, kidney, liver and urine samples. Our results demonstrated that N-acetyl-β-D: -glucosaminidase (NAG) activity in the kidney and urine, the lipid peroxidation levels in the liver and kidney samples, as well as the adenosine deaminase (ADA) activity in the hippocampus, kidney and liver were higher in MeHg-group when compared to the control group. The administration of ASc reverted the toxic effects of MeHg. It is noteworthy to observe that the main compounds present in the ASc, as gallic acid (the major component), chlorogenic acid and rutin, might be the responsible for such benefit, since they were found to display antioxidant properties. PMID:21207116

  2. Biodegradation and toxicity of vegetable oils in contaminated aquatic environments: Effect of antioxidants and oil composition.

    PubMed

    Salam, Darine A; Suidan, Makram T; Venosa, Albert D

    2016-03-15

    Antioxidants may affect the oxidative rate of vegetable oils determining their fate and impact in contaminated aquatic media. In previous studies, we demonstrated the effectiveness of butylated hydroxytoluene (BHT), one of the most used antioxidants in edible oils, in enhancing the biodegradation of glyceryl trilinoleate, a pure triacylglycerol of cis,cis-9,12-octadecadienoic acid (C18:2 delta), through retarding its oxidative polymerization relatively to the oil with no added antioxidant. In this study, the effect of BHT on the biodegradation and toxicity of purified canola oil, a mixed-acid triacylglycerol with high C18:1 content, was investigated in respirometric microcosms and by use of the Microtox® assay. Investigations were carried out in the absence and presence (200 mg kg(-1)) of the antioxidant, and at an oil loading of 0.31 L m(-2) (333 gal acre(-1)). Substantial oil mineralization was achieved after 16 weeks of incubation (>77%) and was not significantly different (p>0.05) between the two BHT treatments, demonstrating an important role of the oil fatty acid composition in determining the potency of antioxidants and, consequently, the fate of spilled vegetable oils. Furthermore, for both treatments, toxicity was measured at early stages of the experiments and disappeared at a later stage of incubation. The observed transient toxicity was associated with the combined effect of toxic biodegradation intermediates and autoxidation products. These results were supported by the gradual disappearance of BHT in the microcosms initially supplemented with the antioxidant, reaching negligible amounts after only 2 weeks of incubation.

  3. Effects of reduced mitochondrial DNA content on secondary mitochondrial toxicant exposure in Caenorhabditis elegans.

    PubMed

    Luz, Anthony L; Meyer, Joel N

    2016-09-01

    The mitochondrial genome (mtDNA) is intimately linked to cellular and organismal health, as demonstrated by the fact that mutations in and depletion of mtDNA result in severe mitochondrial disease in humans. However, cells contain hundreds to thousands of copies of mtDNA, which provides genetic redundancy, and creates a threshold effect in which a large percentage of mtDNA must be lost prior to clinical pathogenesis. As certain pharmaceuticals and genetic mutations can result in depletion of mtDNA, and as many environmental toxicants target mitochondria, it is important to understand whether reduced mtDNA will sensitize an individual to toxicant exposure. Here, using ethidium bromide (EtBr), which preferentially inhibits mtDNA replication, we reduced mtDNA 35-55% in the in vivo model organism Caenorhabditis elegans. Chronic, lifelong, low-dose EtBr exposure did not disrupt nematode development or lifespan, and induced only mild alterations in mitochondrial respiration, while having no effect on steady-state ATP levels. Next, we exposed nematodes with reduced mtDNA to the known and suspected mitochondrial toxicants aflatoxin B1, arsenite, paraquat, rotenone or ultraviolet C radiation (UVC). EtBr pre-exposure resulted in mild sensitization of nematodes to UVC and arsenite, had no effect on AfB1 and paraquat, and provided some protection from rotenone toxicity. These mixed results provide a first line of evidence suggesting that reduced mtDNA content may sensitize an individual to certain environmental exposures.

  4. Effects of reduced mitochondrial DNA content on secondary mitochondrial toxicant exposure in Caenorhabditis elegans.

    PubMed

    Luz, Anthony L; Meyer, Joel N

    2016-09-01

    The mitochondrial genome (mtDNA) is intimately linked to cellular and organismal health, as demonstrated by the fact that mutations in and depletion of mtDNA result in severe mitochondrial disease in humans. However, cells contain hundreds to thousands of copies of mtDNA, which provides genetic redundancy, and creates a threshold effect in which a large percentage of mtDNA must be lost prior to clinical pathogenesis. As certain pharmaceuticals and genetic mutations can result in depletion of mtDNA, and as many environmental toxicants target mitochondria, it is important to understand whether reduced mtDNA will sensitize an individual to toxicant exposure. Here, using ethidium bromide (EtBr), which preferentially inhibits mtDNA replication, we reduced mtDNA 35-55% in the in vivo model organism Caenorhabditis elegans. Chronic, lifelong, low-dose EtBr exposure did not disrupt nematode development or lifespan, and induced only mild alterations in mitochondrial respiration, while having no effect on steady-state ATP levels. Next, we exposed nematodes with reduced mtDNA to the known and suspected mitochondrial toxicants aflatoxin B1, arsenite, paraquat, rotenone or ultraviolet C radiation (UVC). EtBr pre-exposure resulted in mild sensitization of nematodes to UVC and arsenite, had no effect on AfB1 and paraquat, and provided some protection from rotenone toxicity. These mixed results provide a first line of evidence suggesting that reduced mtDNA content may sensitize an individual to certain environmental exposures. PMID:27566481

  5. Biodegradation and toxicity of vegetable oils in contaminated aquatic environments: Effect of antioxidants and oil composition.

    PubMed

    Salam, Darine A; Suidan, Makram T; Venosa, Albert D

    2016-03-15

    Antioxidants may affect the oxidative rate of vegetable oils determining their fate and impact in contaminated aquatic media. In previous studies, we demonstrated the effectiveness of butylated hydroxytoluene (BHT), one of the most used antioxidants in edible oils, in enhancing the biodegradation of glyceryl trilinoleate, a pure triacylglycerol of cis,cis-9,12-octadecadienoic acid (C18:2 delta), through retarding its oxidative polymerization relatively to the oil with no added antioxidant. In this study, the effect of BHT on the biodegradation and toxicity of purified canola oil, a mixed-acid triacylglycerol with high C18:1 content, was investigated in respirometric microcosms and by use of the Microtox® assay. Investigations were carried out in the absence and presence (200 mg kg(-1)) of the antioxidant, and at an oil loading of 0.31 L m(-2) (333 gal acre(-1)). Substantial oil mineralization was achieved after 16 weeks of incubation (>77%) and was not significantly different (p>0.05) between the two BHT treatments, demonstrating an important role of the oil fatty acid composition in determining the potency of antioxidants and, consequently, the fate of spilled vegetable oils. Furthermore, for both treatments, toxicity was measured at early stages of the experiments and disappeared at a later stage of incubation. The observed transient toxicity was associated with the combined effect of toxic biodegradation intermediates and autoxidation products. These results were supported by the gradual disappearance of BHT in the microcosms initially supplemented with the antioxidant, reaching negligible amounts after only 2 weeks of incubation. PMID:26780134

  6. Effects of Salinity on Oil Spill Dispersant Toxicity in Estuarine Organisms

    NASA Astrophysics Data System (ADS)

    Eckmann, C. A.

    2015-12-01

    Chemical dispersants can be a useful tool to mitigate oil spills, but the potential risks to sensitive estuarine species should be carefully considered. To improve the decision making process, more information is needed regarding the effects of oil spill dispersants on the health of coastal ecosystems under variable environmental conditions such as salinity. The two oil dispersants used in this study were Corexit ® 9500 and Finasol ® OSR 52. Corexit ® 9500 was the primary dispersant used during the 2010 Deepwater Horizon oil spill event, while Finasol® OSR 52 is another dispersant approved for oil spill response in the U.S., yet considerably less is known regarding its toxicity to estuarine species. The grass shrimp, Palaemonetes pugio, was used as a model estuarine species. It is a euryhaline species that tolerates salinities from brackish to full strength seawater. Adult and larval life stages were tested with each dispersant at three salinities, 5ppt, 20ppt, and 30ppt. Median acute lethal toxicity thresholds were calculated. Lipid peroxidation assays were conducted on surviving shrimp to investigate sublethal effects. The toxicity of both dispersants was significantly influenced by salinity, with greatest toxicity observed at the lowest salinity tested. Larval shrimp were significantly more sensitive than adult shrimp to both dispersants, and both life stages were significantly more sensitive to Finasol than to Corexit. Furthermore, significant sublethal effects were seen at higher concentrations of both dispersants compared to the control. These data will enable environmental managers to make informed decisions regarding dispersant use in future oil spills.

  7. Evaluation of ameliorative effect of curcumin on imidacloprid-induced male reproductive toxicity in wistar rats.

    PubMed

    Lonare, Milindmitra; Kumar, Manoj; Raut, Sachin; More, Amar; Doltade, Sagar; Badgujar, Prarabdh; Telang, Avinash

    2016-10-01

    This study was undertaken to investigate the toxic effects of imidacloprid (IM) on male reproductive system and ameliorative effect of curcumin (CMN) in male Wistar rats. For this purpose, IM (45 and 90 mg/kg, body weight) and CMN (100 mg/kg, body weight) were administered orally to the rats either alone or in combinations for a period of 28 days. At the end of experiment, male reproductive toxicity parameters (total sperm count and sperm abnormalities), testosterone level, steroidal enzymatic activity [3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-HSD], and oxidative stress indicators were estimated in testis and plasma. IM treatments resulted in significant decrease (p < 0.05) in total epididymal sperm count, sperm motility, live sperm count, and increase (p < 0.05) in sperm abnormalities. Activities of gamma-glutamyl transpeptidase, lactate dehydrogenase-x, and sorbitol dehydrogenase were significantly increased (p < 0.05), while, 3β-HSD and 17β-HSD enzymatic activity along with testosterone concentration in testis and plasma were decreased significantly (p < 0.05) in IM-treated rats. IM exposure resulted in significant increase (p < 0.05) in LPO and decrease (p < 0.05) in GSH level along with decreased activities of CAT, SOD, GPx, and GST. IM-treated rats showed histopathological alterations in testis and epididymis. However, the reproductive toxicity parameters, oxidative stress indicators, and histopathological changes were minimized and functional restorations were noticed by co-administration of CMN in IM-treated rats. The results of this study suggest that IM-induced male reproductive toxic effects could be ameliorated by CMN supplementation. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1250-1263, 2016.

  8. How closely do acute lethal concentration estimates predict effects of toxicants on populations?

    PubMed

    Stark, John D

    2005-04-01

    Acute lethal dose/concentration estimates are the most widely used measure of toxicity and these data often are used in ecological risk assessment. However, the value of the lethal concentration (LC50) as a toxicological endpoint for use in ecological risk assessment recently has been criticized. A question that has been asked frequently is how accurate is the LC50 for prediction of longer-term effects of toxicants on populations of organisms? To answer this question, Daphnia pulex populations were exposed to nominal concentrations equal to the 48-h acute LC50 of 6 insecticides, Actara, Aphistar diazinon, pymetrozine, Neemix, and Spinosad; and 8 agricultural adjuvants, Bond, Kinetic, Plyac, R-11, Silwet, Sylgard 309, Water Maxx, and X-77; for 10 d. None of the D. pulex populations exposed to the acute LC50 of these insecticides were 50% lower than the control populations at the end of the study; exposure to diazinon resulted in populations that were higher than expected (91% of the control). Exposure to Actara and Aphistar resulted in populations that were < 1 and 29% of the control, respectively. Exposure to Fulfill, Neemix, and Spinosad resulted in extinction. Extinction occurred after exposure to all of the adjuvants, except Silwet L-77 where the population was 31% of the control. These results corroborate other studies that indicate that the LC50 is not a good predictor of effects on population growth. Although lethal concentration estimates have their place in toxicology, namely to compare intrinsic toxicity of chemicals among species or susceptibility of a species to different chemicals over short time periods, population growth and growth-rate studies are necessary to predict toxicant effects on populations.

  9. Effect of gamma irradiation on mistletoe (Viscum album) lectin-mediated toxicity and immunomodulatory activity☆

    PubMed Central

    Sung, Nak-Yun; Byun, Eui-Baek; Song, Du-Sup; Jin, Yeung-Bae; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Jung, Pil-Mun; Byun, Myung-Woo; Lee, Ju-Woon; Park, Sang-Hyun; Kim, Jae-Hun

    2013-01-01

    This study evaluated the effect of gamma irradiation on the reduction of the toxicity of mistletoe lectin using both in vitro and in vivo models. To extract the lectin from mistletoe, an (NH4)2SO4 precipitation method was employed and the precipitant purified using a Sepharose 4B column to obtain the pure lectin fraction. Purified lectin was then gamma-irradiated at doses of 0, 5, 10, 15, and 20 kGy, or heated at 100 °C for 30 min. Toxic effects of non-irradiated, irradiated, and heat-treated lectins were tested using hemagglutination assays, cytotoxicity assays, hepatotoxicity, and a mouse survival test and immunological response was tested using cytokine production activity. Hemagglutination of lectin was remarkably decreased (P < 0.05) by irradiation at doses exceeding 10 kGy and with heat treatment. However, lectin irradiated with 5 kGy maintained its hemagglutination activity. The cytotoxicity of lectin was decreased by irradiation at doses over 5 kGy and with heat treatment. In experiments using mouse model, glutamate oxaloacetate transaminase (GOT) and glutamic pyruvic transaminase (GPT) levels were decreased in the group treated with the 5 kGy irradiated and heat-treated lectins as compared to the intact lectin, and it was also shown that 5 kGy irradiated and heat-treated lectins did not cause damage in liver tissue or mortality. In the result of immunological response, tumor necrosis factor (TNF-α) and interleukin (IL-6) levels were significantly (P < 0.05) increased in the 5 kGy gamma-irradiated lectin treated group. These results indicate that 5 kGy irradiated lectin still maintained the immunological response with reduction of toxicity. Therefore, gamma-irradiation may be an effective method for reducing the toxicity of lectin maintaining the immune response. PMID:23847758

  10. Xenobiotic biotransformation in livestock: comparison to other species commonly used in toxicity testing.

    PubMed

    Watkins, J B; Klaassen, C D

    1986-09-01

    Wildlife, domesticated animals and humans are exposed daily to myriad chemicals present in our environment. The risk posed by these chemicals to one species is often determined by extrapolation from data gathered from another species. Several extensive studies have examined the capability of the liver to biotransform xenobiotics in animals commonly used in toxicity testing and in livestock. The present paper is a compilation of these data into a single source to permit comprehensive examination of inter-species variation in rates of hepatic biotransformation. Several substrates were studied for each enzyme system, including cytochrome P-450-dependent monooxygenases, epoxide hydrolases, UDP-glucuronosyltransferases, N-acetyltransferases, glutathione S-transferases and sulfotransferases. The numerous differences in substrate specificity for an individual enzymatic pathway reflect the apparent multiplicity of these enzymes in all 11 species studied. Several hundred- to several thousand-fold differences between species in enzymatic activities for certain substrates under well-defined conditions emphasize the need for caution and the risk of error in extrapolation of xenobiotic metabolism from one species to another. In spite of these uncertainties, knowledge of the rate of biotransformation may help us predict the fate of new chemicals in various species.

  11. Bacterial toxicity of oxide nanoparticles and their effects on bacterial surface biomolecules

    NASA Astrophysics Data System (ADS)

    Jiang, Wei

    Toxicity of nano-scaled Al2O3, SiO2, TiO2 and ZnO to bacteria (Bacillus subtilis, Escherichia coli and Pseudomonas fluorescens) was examined and compared to that of their respective bulk (micro-scaled) counterparts. All nanoparticles (NPs) but TiO2 showed higher toxicity than their bulk counterparts. Toxicity of released metal ions was differentiated from that of the oxide particles. ZnO was the most toxic among the three NPs, causing 100% mortality to the three tested bacteria. TEM images showed attachment of NPs to the bacteria, suggesting that the toxicity was affected by bacterial attachment. The effects of oxide NPs on bacteria cells and bacterial surface biomolecules were studied by FTIR spectroscopy to provide a better understanding of their cytotoxicity. Lipopolysaccharide (LPS) and lipoteichoic acid could bind to oxide NPs through hydrogen bonding and ligand exchange, but the cytotoxicity of NPs seemed largely related to the function-involved or structural changes to proteins and phospholipids. The three NPs decreased the intensity ratio of beta-sheets/alpha-helices, indicating protein structure change, which may affect cell physiological activities. The phosphodiester bond of L-alpha-Phosphatidyl-ethanolamine (PE) was broken by ZnO NPs, forming phosphate monoesters and resulting in the highly disordered alkyl chain. Such damage to phospholipid molecular structure may lead to membrane rupture and cell leaking, which is consistent with the fact that ZnO is the most toxic of the three NPs. LPS and PE are amphiphilic biomolecules that are major constituents of the outer membrane of Gram-negative bacteria. Their micelles and vesicles were studied as model cell membranes to evaluate NP effects on membrane construction. The adsorption of polysaccharides on Al2O3 and TiO 2 NPs dispersed LPS vesicles and micelles. LPS coated Al2O 3 NPs, while it caused the aggregation of TiO2 NPs according to atom force microscopy images. Desorption from the two NPs was slow due

  12. Effect of diet quality on chronic toxicity of aqueous lead to the amphipod Hyalella azteca

    USGS Publications Warehouse

    Besser, John M.; Ivey, Chris D.; Brumbaugh, William G.; Ingersoll, Christopher G.

    2016-01-01

    The authors investigated the chronic toxicity of aqueous Pb to the amphipod Hyalella azteca (Hyalella) in 42-d tests using 2 different diets: 1) the yeastþcereal leafþtrout pellet (YCT) diet, fed at the uniform low ration used in standard methods for sediment toxicity tests; and 2) a new diet of diatomsþTetraMin flakes (DT), fed at increasing rations over time, that has been optimized for use in Hyalella water-only tests. Test endpoints included survival, weight, biomass, fecundity, and total young. Lethal effects of Pb were similar for the DT and YCT tests (20% lethal concentration [LC20]¼13 mg/L and 15mg/L, respectively, as filterable Pb). In contrast, weight and fecundity endpoints were not significantly affected in the DT test at Pb concentrations up to 63 mg/L, but these endpoints were significantly reduced by Pb in the YCT test—and in a 2005 test in the same laboratory with a diet of conditioned Rabbit Chow (RC-2005). The fecundity and total young endpoints from the YCT and RC-2005 tests were considered unreliable because fecundity in controls did not meet test acceptability criteria, but both of these tests still produced lower Pb effect concentrations (for weight or biomass) than the test with the DT diet. The lowest biotic ligand model–normalized effect concentrations for the 3 tests ranged from 3.7mg/L (weight 20% effect concentration [EC20] for the RC-2005 test) to 8.2 mg/L (total young EC20 for the DT test), values that would rank Hyalella as the second or third most sensitive of 13 genera in a species sensitivity distribution for chronic Pb toxicity. These results demonstrate that toxicity tests with Hyalella fed optimal diets can meet more stringent test acceptability criteria for control performance, but suggest that results of these tests may underestimate sublethal toxic effects of Pb to Hyalella under suboptimal feeding regimes.

  13. Effects of simulated weathering on the toxicity of selected crude oils and their components to sea urchin embryos.

    PubMed

    Rial, Diego; Radović, Jagoš R; Bayona, Josep M; Macrae, Kenneth; Thomas, Kevin V; Beiras, Ricardo

    2013-09-15

    Artificial weathering of Angolan crude and a Heavy Fuel Oil (HFO) was performed by evaporation and photooxidation. The aliphatic, aromatic, polar and asphaltene fractions of the fresh and weathered oils were isolated. The toxicity of the water accommodated fraction or an oil/fraction dissolved in DMSO was assessed using the sea urchin embryo test. Photooxidation was observed to decrease the aromatics content and increase polar compounds. A slight reduction in the toxicity of Angolan crude was observed following weathering for the water-accommodated fraction and the extract in DMSO, but no effect was seen for the Heavy Fuel Oil. For aliphatic compounds, the toxicity decreased in the order fresh>evaporated>photooxidated for both Angolan crude and HFO. Weathering slightly increased the toxicity of the aromatic and polar fractions of the oil. The aromatic fractions were responsible for most of the toxicity and the polar compounds were the second most important toxic components, despite having less or similar abundance than the aliphatic fraction. The toxic contribution of the aromatic compounds was higher for the HFO than for the Angolan crude. A decrease in the toxicity of Angolan crude following weathering correlated with a reduction in the toxicity of the aliphatic fraction.

  14. Effect of sulfate concentration on acute toxicity of selenite and selenate to invertebrates and fish. Final report

    SciTech Connect

    McIntyre, D.O.; McCauley, D.J.; McCool, P.; Winkler, N.; DeGraeve, M.

    1998-12-01

    The effect of sulfate concentration on the acute toxicity of selenite (Se IV) and selenate (Se VI) to freshwater organisms was evaluated using toxicity test data generated from this study and toxicity data obtained from the open literature. The acute toxicity of Se IV and Se VI to fathead minnows and two amphipod species, Gammarus pseudolimnaeus and Hyalella azteca, were determined in four different sulfate concentrations. The newly generated toxicity data combined with the data obtained from the literature were evaluated using analysis of covariance to determine if there was a significant relationship between acute toxicity and sulfate concentration. The analysis of the Se IV data indicated that there was not a significant relationship between the acute toxicity of Se IV and sulfate concentration. A significant relationship was found between the acute toxicity of Se VI to freshwater organisms and sulfate concentration. Statistically significant slopes describing the relationship between Se VI toxicity and sulfate concentration were determined for individual species and for the combined data. A sulfate-based equation was constructed using the pooled slope to modify the criterion maximum concentration (CMC) for selenate: CMC = e{sup [0.4259(ln[sulfate]) + 4.6305]}.

  15. Effect of Morphology of ZnO Nanostructures on Their Toxicity to Marine Algae

    SciTech Connect

    Peng, X.; Wong, S.; Palma, S.; Fisher, N.S.

    2011-04-01

    The influence of ZnO nanoparticle morphology on its toxicity for marine diatoms was evaluated. Four ZnO nanoparticle motifs, possessing distinctive sizes and shapes, were synthesized without adding surfactants. Diameters of ZnO spheres ranged from 6.3 nm to 15.7 nm, and lengths of rod-shaped particles were 242 nm to 862 nm. Their effects on the growth of the marine diatoms, Thalassiosira pseudonana, Chaetoceros gracilis, and Phaeodactylum tricornutum, were determined in laboratory cultures. Between 4.1 and 4.9% of the Zn from all types of nanoparticles dissolved within 72 h and was neither concentration dependent nor morphology dependent. Addition of all nanoparticles at all concentrations tested stopped growth of T. pseudonana and C. gracilis, whereas P. tricornutum was the least sensitive, with its growth rate inversely proportional to nanoparticle concentration. Bioaccumulation of Zn released from nanoparticles in T. pseudonana was sufficient to kill this diatom. The toxicity of rod-shaped particles to P. triocornutum was noted to be greater than that of the spheres. The overall results suggest that toxicity studies assessing the effects of nanoparticles on aquatic organisms need to consider both the dissolution of these particles and the cellular interaction of nanoparticle aggregates.

  16. Toxic Effects of Nickel Oxide Bulk and Nanoparticles on the Aquatic Plant Lemna gibba L.

    PubMed Central

    Oukarroum, Abdallah; Barhoumi, Lotfi; Samadani, Mahshid

    2015-01-01

    The aquatic plant Lemna gibba L. was used to investigate and compare the toxicity induced by 30 nm nickel oxide nanoparticles (NiO-NPs) and nickel(II) oxide as bulk (NiO-Bulk). Plants were exposed during 24 h to 0–1000 mg/L of NiO-NPs or NiO-Bulk. Analysis of physicochemical characteristics of nanoparticles in solution indicated agglomerations of NiO-NPs in culture medium and a wide size distribution was observed. Both NiO-NPs and NiO-Bulk caused a strong increase in reactive oxygen species (ROS) formation, especially at high concentration (1000 mg/L). These results showed a strong evidence of a cellular oxidative stress induction caused by the exposure to NiO. Under this condition, NiO-NPs and NiO-Bulk induced a strong inhibitory effect on the PSII quantum yield, indicating an alteration of the photosynthetic electron transport performance. Under the experimental conditions used, it is clear that the observed toxicity impact was mainly due to NiO particles effect. Therefore, results of this study permitted determining the use of ROS production as an early biomarker of NiO exposure on the aquatic plant model L. gibba used in toxicity testing. PMID:26075242

  17. Effects of photoinduced toxicity of fluoranthene on amphibian embryos and larvae

    SciTech Connect

    Hatch, A.C.; Burton, G.A. Jr.

    1998-09-01

    Embryos and newly hatched larvae of three amphibian species, the spotted salamander (Ambystoma maculatum), the northern leopard frog (Rana pipiens), and the African clawed frog (Xenopus laevis), were exposed to fluoranthene and ultraviolet (UV) light in two scenarios. Embryos were exposed in a laboratory setting from an early developmental stage through hatching under artificial UV light, and newly hatched larvae were exposed outdoors in varying sunlight intensity levels. Outdoor exposures indicated greater sensitivity in the toxic response than did laboratory exposures. In the laboratory, mortality and malformation of X. laevis were the most sensitive indicators of exposure. Xenopus laevis was also the most sensitive species tested to the effects of UV light alone. Hatching success of R. pipiens was monitored outdoors and was not a useful predictive endpoint in the determination of photoinduced toxicity; however, newly hatched larvae were sensitive to the effects of photoinduced toxicity. Amybstoma maculatum and X. laevis larvae were affected by low ({micro}g/L) concentrations of fluoranthene in sunlight. These findings suggest that low levels of polycyclic aromatic hydrocarbons could be acting synergistically with environmental factors such as UV light to place young amphibians at risk.

  18. The Effect of Ascorbic Acid on Mancozeb-Induced Toxicity in Rat Thymocytes.

    PubMed

    Pavlovic, V; Cekic, S; Kamenov, B; Ciric, M; Krtinic, D

    2015-01-01

    Mancozeb, as a dithiocarbamate fungicide, has been found to exhibit toxicological manifestations in different cells, mainly by generation of free radicals which may alter antioxidant defence systems in cells. The effect of mancozeb on the cells of a primary lymphoid organ has not been studied. In the present study, the effects of mancozeb (0.2, 2 and 5 μg/ml) or mancozeb+ascorbic acid (100 μg/ml), or ascorbic acid alone or control medium alone on the levels of cell viability, apoptosis, intracellular reactive oxygen species production (ROS), mitochondrial membrane potential (MMP) and ATP levels in rat thymocytes were examined in vitro. Cells treated with mancozeb displayed a concentration-dependent increase of hypodiploid cells and ROS production followed by markedly decreased viability of the cells, MMP and ATP levels. Application of ascorbic acid significantly reduced cytotoxicity in cell cultures treated with 0.2 and 2 μg/ml of mancozeb, together with significantly decreased ROS levels and increased MMP and ATP levels. In cells treated with 5 μg/ml of mancozeb, ascorbic acid failed to reduce toxicity while simultaneously increasing the apoptosis rate of thymocytes. These results suggest that ROS plays a significant role in mancozeb-induced toxicity, through alteration of mitochondrial function. Ascorbic acid administration reduced the toxicity rate in cells treated with lower mancozeb concentrations, while it may have the ability to shift cells from necrosis to apoptosis in the presence of highest mancozeb concentrations. PMID:26213857

  19. Toxic effects of nickel oxide bulk and nanoparticles on the aquatic plant Lemna gibba L.

    PubMed

    Oukarroum, Abdallah; Barhoumi, Lotfi; Samadani, Mahshid; Dewez, David

    2015-01-01

    The aquatic plant Lemna gibba L. was used to investigate and compare the toxicity induced by 30 nm nickel oxide nanoparticles (NiO-NPs) and nickel(II) oxide as bulk (NiO-Bulk). Plants were exposed during 24 h to 0-1000 mg/L of NiO-NPs or NiO-Bulk. Analysis of physicochemical characteristics of nanoparticles in solution indicated agglomerations of NiO-NPs in culture medium and a wide size distribution was observed. Both NiO-NPs and NiO-Bulk caused a strong increase in reactive oxygen species (ROS) formation, especially at high concentration (1000 mg/L). These results showed a strong evidence of a cellular oxidative stress induction caused by the exposure to NiO. Under this condition, NiO-NPs and NiO-Bulk induced a strong inhibitory effect on the PSII quantum yield, indicating an alteration of the photosynthetic electron transport performance. Under the experimental conditions used, it is clear that the observed toxicity impact was mainly due to NiO particles effect. Therefore, results of this study permitted determining the use of ROS production as an early biomarker of NiO exposure on the aquatic plant model L. gibba used in toxicity testing.

  20. Toxic effects of nickel oxide bulk and nanoparticles on the aquatic plant Lemna gibba L.

    PubMed

    Oukarroum, Abdallah; Barhoumi, Lotfi; Samadani, Mahshid; Dewez, David

    2015-01-01

    The aquatic plant Lemna gibba L. was used to investigate and compare the toxicity induced by 30 nm nickel oxide nanoparticles (NiO-NPs) and nickel(II) oxide as bulk (NiO-Bulk). Plants were exposed during 24 h to 0-1000 mg/L of NiO-NPs or NiO-Bulk. Analysis of physicochemical characteristics of nanoparticles in solution indicated agglomerations of NiO-NPs in culture medium and a wide size distribution was observed. Both NiO-NPs and NiO-Bulk caused a strong increase in reactive oxygen species (ROS) formation, especially at high concentration (1000 mg/L). These results showed a strong evidence of a cellular oxidative stress induction caused by the exposure to NiO. Under this condition, NiO-NPs and NiO-Bulk induced a strong inhibitory effect on the PSII quantum yield, indicating an alteration of the photosynthetic electron transport performance. Under the experimental conditions used, it is clear that the observed toxicity impact was mainly due to NiO particles effect. Therefore, results of this study permitted determining the use of ROS production as an early biomarker of NiO exposure on the aquatic plant model L. gibba used in toxicity testing. PMID:26075242

  1. Effect of stress at dosing on organophosphate and heavy metal toxicity

    SciTech Connect

    Jortner, Bernard S.

    2008-11-15

    This paper reviews recent studies assessing the effect of well-defined, severe, transient stress at dosing on two classical models of toxicity. These are the acute (anticholinesterase) toxicity seen following exposure to the organophosphate insecticide chlorpyrifos, and the nephrotoxicity elicited by the heavy metal depleted uranium, in rats. Stress was induced by periods of restraint and forced swimming in days to weeks preceding toxicant exposure. Forced swimming was far more stressful, as measured by marked, if transient, elevation of plasma corticosterone. This form of stress was administered immediately prior to administration of chlorpyrifos or depleted uranium. Chlorpyrifos (single 60 mg/kg subcutaneously) elicited marked inhibition of brain acetylcholinesterase 4-day post-dosing. Depleted uranium (single intramuscular doses of 0.1, 0.3 or 1.0 mg/kg uranium) elicited dose-dependent increase in kidney concentration of the metal, with associated injury to proximal tubular epithelium and increases in serum blood urea nitrogen and creatinine during the 30-day post-dosing period. Stress at dosing had no effect on these toxicologic endpoints.

  2. Acute toxic effects of fenpyroximate acaricide on Guppy (Poecilia reticulata Peters, 1859).

    PubMed

    Doğan, Nesli; Yazıcı, Zehra; Şişman, Turgay; Aşkin, Hakan

    2013-09-01

    Fenpyroximate (FP), an acaricide, is widely used in the prevention of acarids (mites) in fruit plant gardens. In this study, the acute toxic effects of different concentrations of FP were investigated using adult guppy (Poecilia reticulata Peters, 1859). Guppy adults were exposed to a range of FP concentrations (25, 50, 75, 100, 125, and 150 µg/L) during 48 h. Static method, which is one of the acute toxicity experiments, has been used in this study. According to probit analysis, the 48-h median lethal concentration (LC50) value of FP at 26°C was found to be 72.821 µg/L. Sublethal exposures were predetermined based on 48-h LC50 value. Guppies were exposed to low concentrations (15, 25, and 50 µg/L) of FP for 48 h. Signs of paralysis and behavior deformations were monitored every 12 h in a number of live and dead adults. Low concentrations of FP were also responsible for erratic swimming, loss of equilibrium, and being lethargic. Liver histology revealed several pathological damages including congestion, picnotic nucleus, sinusoidal dilatation, increase in melanomacrophagic centers, and endothelial degeneration. Finally, the toxicity test results provided 48-h LC50 value for FP, and low concentrations of FP can be highly detrimental to guppy adults with clear evidence of behavioral and histologic effects.

  3. Toxic effects of traditional Ethiopian fish poisoning plant Milletia ferruginea (Hochst) seed extract on aquatic macroinvertebrates.

    PubMed

    Karunamoorthi, K; Bishaw, D; Mulat, T

    2009-01-01

    The present investigation was carried out to evaluate the toxic effects of traditional Ethiopian fish poisoning plant Birbira [vernacular name (local native language, Amharic); Milletia ferruginea] seed extract on aquatic macroinvertebrates, Baetidae (Mayflies) and Hydropsychidae (Caddisflies), under laboratory conditions. In Ethiopia, toxic plant; Milletia ferruginea pulverized seeds have been used for fish poisoning since time immemorial. Macroinvertebrates are important biological indicators of alteration in the natural water sources. Milletia ferruginea seed extract was applied at concentrations of 125, 250, 500 1000 and 2000 ppm on Hydropsychididae whereas Baetidae were exposed at various concentrations viz., 31.25, 62.5, 125, 250 & 500 ppm. Milletia ferruginea seeds crude extract of lethal doses (LCso and LC90) required for Baetidae 49.29 mg/l and 172.52 mg/l were respectively and the respective doses (LC50 and LC90) against Hydropsychidae were 679.64 mg/l and 2383.93 mg/l. The present investigation end result demonstrated that Milletia ferruginea seed extracts were extremely toxic to Baetidae than Hydropsychididae. As a result, application of Milletia ferruginea seed extracts into the rivers/streams for fish poisoning possibly leads to contamination and disruption of food chain in the aquatic ecosystem. Therefore, the concerned authorities should launch appropriate awareness campaign among the local inhabitants and fisherman about adverse effect of Birbira seed extracts. Furthermore, providing alternative ecofriendly techniques for fish harvesting may possibly bring constructive out come in the near future.

  4. Ammonia toxicity to the freshwater planarian Polycelis felina: contrasting effects of continuous versus discontinuous exposures.

    PubMed

    Alonso, Álvaro; Camargo, Julio A

    2015-05-01

    Aquatic animals can be exposed to fluctuating concentrations of toxicants. In fact, for some toxicants (i.e., pesticides, ammonia), discontinuous exposure is more environmentally relevant than constant exposure. Responses of aquatic animals to each type of exposure may be different. However, despite the high ecological relevance of behaviour, there is still scarce information on the effects of discontinuous exposure on behaviour. Our study focused on the assessment of unionized ammonia toxicity on the behaviour of a freshwater planarian under continuous exposure (3 days of exposure and 18 days of recovery) versus discontinuous exposure (3 pulses of 1 day with 6 days of recovery between pulses = total 3 days of exposure and 18 days of recovery). Behaviour was assessed as locomotion activity. Bioassays with continuous and discontinuous exposure were performed with one control and five unionized ammonia concentrations (0.14-0.35 mg N-NH3/L). Unionized ammonia in continuous exposure caused less impact on behaviour than equivalent concentrations provided in a discontinuous exposure. By contrast, continuous exposures caused more impact on survival. The discontinuous exposure may allow detoxification during recovery periods, thus increasing the probability of survival in the next pulse. Under continuous exposure, the mortality threshold could be exceeded, and animals could die in greater proportion during exposure as well as the recovery period. We conclude that behavioural activity was a sensitive endpoint to assess the contrasting effects of continuous versus discontinuous exposure and that the response of planarians to discontinuous exposure is different to its response to continuous exposure.

  5. The Effect of Ascorbic Acid on Mancozeb-Induced Toxicity in Rat Thymocytes.

    PubMed

    Pavlovic, V; Cekic, S; Kamenov, B; Ciric, M; Krtinic, D

    2015-01-01

    Mancozeb, as a dithiocarbamate fungicide, has been found to exhibit toxicological manifestations in different cells, mainly by generation of free radicals which may alter antioxidant defence systems in cells. The effect of mancozeb on the cells of a primary lymphoid organ has not been studied. In the present study, the effects of mancozeb (0.2, 2 and 5 μg/ml) or mancozeb+ascorbic acid (100 μg/ml), or ascorbic acid alone or control medium alone on the levels of cell viability, apoptosis, intracellular reactive oxygen species production (ROS), mitochondrial membrane potential (MMP) and ATP levels in rat thymocytes were examined in vitro. Cells treated with mancozeb displayed a concentration-dependent increase of hypodiploid cells and ROS production followed by markedly decreased viability of the cells, MMP and ATP levels. Application of ascorbic acid significantly reduced cytotoxicity in cell cultures treated with 0.2 and 2 μg/ml of mancozeb, together with significantly decreased ROS levels and increased MMP and ATP levels. In cells treated with 5 μg/ml of mancozeb, ascorbic acid failed to reduce toxicity while simultaneously increasing the apoptosis rate of thymocytes. These results suggest that ROS plays a significant role in mancozeb-induced toxicity, through alteration of mitochondrial function. Ascorbic acid administration reduced the toxicity rate in cells treated with lower mancozeb concentrations, while it may have the ability to shift cells from necrosis to apoptosis in the presence of highest mancozeb concentrations.

  6. Acute toxic effects of fenpyroximate acaricide on Guppy (Poecilia reticulata Peters, 1859).

    PubMed

    Doğan, Nesli; Yazıcı, Zehra; Şişman, Turgay; Aşkin, Hakan

    2013-09-01

    Fenpyroximate (FP), an acaricide, is widely used in the prevention of acarids (mites) in fruit plant gardens. In this study, the acute toxic effects of different concentrations of FP were investigated using adult guppy (Poecilia reticulata Peters, 1859). Guppy adults were exposed to a range of FP concentrations (25, 50, 75, 100, 125, and 150 µg/L) during 48 h. Static method, which is one of the acute toxicity experiments, has been used in this study. According to probit analysis, the 48-h median lethal concentration (LC50) value of FP at 26°C was found to be 72.821 µg/L. Sublethal exposures were predetermined based on 48-h LC50 value. Guppies were exposed to low concentrations (15, 25, and 50 µg/L) of FP for 48 h. Signs of paralysis and behavior deformations were monitored every 12 h in a number of live and dead adults. Low concentrations of FP were also responsible for erratic swimming, loss of equilibrium, and being lethargic. Liver histology revealed several pathological damages including congestion, picnotic nucleus, sinusoidal dilatation, increase in melanomacrophagic centers, and endothelial degeneration. Finally, the toxicity test results provided 48-h LC50 value for FP, and low concentrations of FP can be highly detrimental to guppy adults with clear evidence of behavioral and histologic effects. PMID:22508399

  7. Anesthesia Related Toxic Effects on In Vitro Fertilization Outcome: Burden of Proof.

    PubMed

    Matsota, Paraskevi; Kaminioti, Eva; Kostopanagiotou, Georgia

    2015-01-01

    Management of pain and anxiety during oocyte retrieval makes anesthesia an important part of the in vitro fertilization (IVF) procedures. There are many studies investigating the influence of anesthesia on IVF success. This review article provides an overview of published data regarding the potential toxic effects of different anesthetic techniques (Loco-regional, general anesthesia (GA), and monitored anesthesia care (MAC)), different anesthetic agents, and alternative medicine approach (principally acupuncture) on the IVF outcome. From our analysis, evidence of serious toxicity in humans is not well established. Trials regarding different anesthetic techniques ended up without clear conclusions. Studies about GA came up with conflicting results. A few trials relate GA with lower pregnancy rates, although some others failed to prove this conclusion. Furthermore, detectable amounts of some anesthetic agents are measurable in the follicular fluid but these findings are not strongly associated with toxicity. MAC and Loco-regional anesthesia appear as safe alternative choices and there is evidence of improved outcome. Whereas acupuncture may provide assistance increasing IVF success according to some trials, some others could not obtain these effects. Questions about the appropriate time of application and the underlying mechanism of action are not answered yet, so further investigation should be done. PMID:26161404

  8. Anesthesia Related Toxic Effects on In Vitro Fertilization Outcome: Burden of Proof

    PubMed Central

    Matsota, Paraskevi; Kaminioti, Eva; Kostopanagiotou, Georgia

    2015-01-01

    Management of pain and anxiety during oocyte retrieval makes anesthesia an important part of the in vitro fertilization (IVF) procedures. There are many studies investigating the influence of anesthesia on IVF success. This review article provides an overview of published data regarding the potential toxic effects of different anesthetic techniques (Loco-regional, general anesthesia (GA), and monitored anesthesia care (MAC)), different anesthetic agents, and alternative medicine approach (principally acupuncture) on the IVF outcome. From our analysis, evidence of serious toxicity in humans is not well established. Trials regarding different anesthetic techniques ended up without clear conclusions. Studies about GA came up with conflicting results. A few trials relate GA with lower pregnancy rates, although some others failed to prove this conclusion. Furthermore, detectable amounts of some anesthetic agents are measurable in the follicular fluid but these findings are not strongly associated with toxicity. MAC and Loco-regional anesthesia appear as safe alternative choices and there is evidence of improved outcome. Whereas acupuncture may provide assistance increasing IVF success according to some trials, some others could not obtain these effects. Questions about the appropriate time of application and the underlying mechanism of action are not answered yet, so further investigation should be done. PMID:26161404

  9. [Mechanisms of 232Th effects on Chlorella vulgaris Beljer and modifications of it's toxic effect with caffeine and buthionine sulfoximine].

    PubMed

    Evseeva, T I; Maĭstrenko, T A; Geras'kin, S A; Belykh, E S

    2006-01-01

    232Th effects and its modifications with caffeine and D, L-buthionine-(S, R)-sulphoximine in Chlorella vulgaris Beijer cells was studied with use an optical density measure after 24 hours growth. Was shown relationship between concentration and toxic effect that is nonlinear and characterized with three parts different in induced damages level. In the first concentration range (0.001-1.551 micromol/l) chlorella growth parameters don't significantly differ from control ones. In the second one (1.724-3.017 micromol/1) statistically significant increase of optical density is but the effect does not dependent on 232Th concentration. The 232Th concentration (>3.448 micromol/l) increase the monotonous decrease in optical density was observed. The main role in 232Th toxic effect decrease make processes of DNA reparation, but not free radical scavenging with glutathione.

  10. Toxic exposure to ethylene dibromide and mercuric chloride: effects on laboratory-reared octopuses.

    PubMed

    Adams, P M; Hanlon, R T; Forsythe, J W

    1988-01-01

    The effects of acute and chronic exposure to either ethylene dibromide (EDB) or mercuric chloride (MC) were studied in laboratory-reared Octopus joubini, O. maya and O. bimaculoides. The advantages of using octopuses were that the responses were immediate, highly visible and sensitive. All species demonstrated signs of toxicity to acute and chronic exposure to EDB and to MC. A dosage-sensitive relationship for the loss and subsequent recovery of locomotor response and of chromatophore expansion was found for each species after acute exposure. For each species the LC50 for chronic exposure occurred within 12 hr at 100 mg/l for EDB and within 3 hr at 1,000 mg/l for MC. This study demonstrated the potential usefulness of laboratory-reared octopuses in evaluating the toxicity of marine environmental pollutants.

  11. Effect of n-propylthiouracil or thyroxine on arsenic trioxide toxicity in the liver of rat.

    PubMed

    Allen, Tanu; Rana, Suresh Vir Singh

    2007-01-01

    Involvement of thyroid gland in the hepatotoxic manifestations of arsenic trioxide (As(III)) has been studied in rat. The effects of n-propylthiouracil (PTU) (a thyrotoxic compound) and L-thyroxine (a thyroid hormone) have been studied with reference to T(3) and T(4) values in the serum, arsenic concentration in the liver, Ca(2+) accumulation in the liver, aspartate transaminase, alanine transaminase and bilirubin values as the indicators of liver function, histopathological observations and finally the ultrastructural studies. It is concluded that hypothyroid condition protects against As(III) toxicity. Scavenging of reactive oxygen species (ROS) that significantly contribute in As(III) toxicity, by high intracellular concentration of reduced glutathione, as a consequence of PTU treatment is proposed as the plausible protective mechanism.

  12. Toxic effect of environmentally relevant concentration of silver nanoparticles on environmentally beneficial bacterium Pseudomonas putida.

    PubMed

    Khan, S Sudheer; Ghouse, Syed Shabin; Chandran, Preethy

    2015-07-01

    Silver nanoparticles (Ag NPs) are being increasingly used in many consumer products owing to their excellent antimicrobial properties. The continuous use of Ag NPs in consumer products will lead to environmental release. The present study evaluated the toxic effects and the possible underlying mechanism of Ag NPs on Pseudomonas putida. Ag NP exposure inhibited growth of the cells. Increased lipid peroxidation occurred coincident with suppression of the antioxidant defense system. Ag NP exposure caused reactive oxygen species (ROS) production, glutathione depletion and inactivation of the antioxidant enzyme superoxide dismutase, catalase and glutathione reductase. The addition of superoxide dismutase or pretreatment of P. putida with N-acetyl cysteine that quenches ROS reduced toxicity of the NPs. PMID:25627470

  13. Some effects of polyphenols on aquatic plants: toxicity of phenols in aquatic plants

    SciTech Connect

    Stom, D.I.; Roth R.

    1981-09-01

    Physiological parameters such as cytoplasmic streaming and motility are used to analyze the effects of chemically different phenolic compounds. Test organisms included: Cyclotella cryptica, Dunaliella salina, Chlamydomonas reinhardii strain 137, Lemna minor and Euglena graclis. It was found that phytotoxicity of phenols, meta-isomers, and methylated phenols is lower than that of ortho- and para-diphenols. Comparing ortho- and para-isomers of the same substance, the results were not uniform, as there were organisms for which para-isomers are more toxic, and others, for which ortho-isomers were more toxic. These results suggest that most compounds tested affect unspecific cell proteins, structural proteins in cell organelles as well as cytoplasmic proteins involved in cell motility and cytoplasmic streaming. (JMT)

  14. Toxic exposure to ethylene dibromide and mercuric chloride: effects on laboratory-reared octopuses.

    PubMed

    Adams, P M; Hanlon, R T; Forsythe, J W

    1988-01-01

    The effects of acute and chronic exposure to either ethylene dibromide (EDB) or mercuric chloride (MC) were studied in laboratory-reared Octopus joubini, O. maya and O. bimaculoides. The advantages of using octopuses were that the responses were immediate, highly visible and sensitive. All species demonstrated signs of toxicity to acute and chronic exposure to EDB and to MC. A dosage-sensitive relationship for the loss and subsequent recovery of locomotor response and of chromatophore expansion was found for each species after acute exposure. For each species the LC50 for chronic exposure occurred within 12 hr at 100 mg/l for EDB and within 3 hr at 1,000 mg/l for MC. This study demonstrated the potential usefulness of laboratory-reared octopuses in evaluating the toxicity of marine environmental pollutants. PMID:3072470

  15. The effect of age of exposure on lead-induced testicular toxicity.

    PubMed

    Sokol, R Z; Berman, N

    1991-01-01

    The present study was designed to assess the significance of age of exposure on the expression of lead toxicity on the male gonad. Male Wistar rats, age 42 days, 52 days and 70 days were treated with lead acetate in their water for 30 days prior to sacrifice. The lead treated groups in all cases had blood lead values significantly greater than control animals. Blood lead levels in control animal groups were less than 7 micrograms/dl. Serum testosterone and sperm concentration and production rate were significantly suppressed in those animals that were exposed to lead acetate starting at age 52 days and 70 days, but not 42 days. These data indicate that prepubertal rats may be less sensitive to the toxic effects of lead than are rats whose exposure begins after puberty has been initiated. PMID:1949051

  16. Ratios between acute aquatic toxicity and effects on population growth rates in relation to toxicant mode of action

    SciTech Connect

    Roex, E.W.M.; Gestel, C.A.M. Van; Wezel, A.P. Van; Straalen, N.M. Van

    2000-03-01

    Environmental risk assessment of chemicals is mostly based on the results of standardized toxicity tests. To obtain environmental quality criteria, extrapolation factors are used that depend on the amount and quality of available data. These extrapolation factors do not, however, take into account the mode of action of the compound tested or the life history of the test organism. In this study, the authors analyzed the variability in acute-to-chronic ratios (ACRs) for various chemicals in relation to their mode of action. Chemicals were classified as nonpolar narcotics, polar narcotics, specifically acting compounds, and heavy metals. As an acute endpoint, the LC50 was used; as a chronic endpoint, the lowest test concentration at which the natural rate of population increase (r) is affected, or LOEC(r), was used. Data were derived from the on-line literature. Nonpolar narcotic chemicals demonstrate the smallest variation in ACRs, and acute tests can be used to derive chronic endpoints for this class. For the other classes, the variation in ACRs is larger. Fish species especially show a relatively large ACR. For heavy metals, differences in the mode of action may play an important role in explaining differences in ACRs. For the other three classes, however, it is less reliable to predict chronic toxicity using the results of acute tests. In general, differences in species sensitivity rather than in mode of action for the chemical seem to determine differences in ACRs.

  17. Modulating effect of aqueous extract of Telfairia occidentalis on induced cyanide toxicity in rats.

    PubMed

    Bolaji, O M; Olabode, O O

    2011-12-20

    The effect of lyophilised aqueous extract of Telfairia occidentalis (TO) on induced cyanide toxicity in rats was investigated. Twenty 3-week old male wistar albino rats were randomly distributed into one control and three treatment groups of five rats each: control group (group1), group treated with 3mg/kg body wt of cyanide only (group2), group treated with 3mg/kg body wt. each of cyanide and extract (group3), and a group treated with 3mg/kg Body wt of extract only (group4) were used for the investigation. Cyanide toxicity reduced both food and water intake (p<0.05), while the food intake was improved in group3, this effect of the extract on food was not observed on water intake. Cyanide reduced average body weight of rats significantly (p<0.05). The reduction effect of cyanide on body weight was countered by Telfairia occidentalis extract. The extract did not have an observable effect on rats' body weight. Ocular lesion was observed in 67% of rats in group2 . This ocular effect of cyanide was mitigated significantly by Telfairia occidentalis as only 17% of the rats in group3 had ocular lesion. Cyanide toxicity produced nasal discharge in 39% of the rat population in group2 while there was a partial but considerable reduction (21%) in the severity of nasal discharge in group 3. There was no significant difference (p>0.05) in the organ/body wt.ratio between the treatments and the control groups for all the organs examined in the study. Biochemical analysis of liver enzymes showed that cyanide (group2) damaged the liver as there was significantly elevated presence (p<0.05) of Aspartate aminotransferase (AST) and Alanine aminotransferase (ALP) above those of the control group. The damaging effect of cyanide on the liver was ameliorated by Telfairia occidentalis considerably.Histopathological effect of cyanide toxicity on the organs examined included multifocal degeneration and necrosis of the liver, mild kidney congestion and congestion of the brain. These effects

  18. Beryllium metal I. experimental results on acute oral toxicity, local skin and eye effects, and genotoxicity.

    PubMed

    Strupp, Christian

    2011-01-01

    The toxicity of soluble metal compounds is often different from that of the parent metal. Since no reliable data on acute toxicity, local effects, and mutagenicity of beryllium metal have ever been generated, beryllium metal powder was tested according to the respective Organisation for Economical Co-Operation and Development (OECD) guidelines. Acute oral toxicity of beryllium metal was investigated in rats and local effects on skin and eye in rabbits. Skin-sensitizing properties were investigated in guinea pigs (maximization method). Basic knowledge about systemic bioavailability is important for the design of genotoxicity tests on poorly soluble substances. Therefore, it was necessary to experimentally compare the capacities of beryllium chloride and beryllium metal to form ions under simulated human lung conditions. Solubility of beryllium metal in artificial lung fluid was low, while solubility in artificial lysosomal fluid was moderate. Beryllium chloride dissolution kinetics were largely different, and thus, metal extracts were used in the in vitro genotoxicity tests. Genotoxicity was investigated in vitro in a bacterial reverse mutagenicity assay, a mammalian cell gene mutation assay, a mammalian cell chromosome aberration assay, and an unscheduled DNA synthesis (UDS) assay. In addition, cell transformation was tested in a Syrian hamster embryo cell assay, and potential inhibition of DNA repair was tested by modification of the UDS assay. Beryllium metal was found not to be mutagenic or clastogenic based on the experimental in vitro results. Furthermore, treatment with beryllium metal extracts did not induce DNA repair synthesis, indicative of no DNA-damaging potential of beryllium metal. A cell-transforming potential and a tendency to inhibit DNA repair when the cell is severely damaged by an external stimulus were observed. Beryllium metal was also found not to be a skin or eye irritant, not to be a skin sensitizer, and not to have relevant acute oral

  19. Beryllium Metal I. Experimental Results on Acute Oral Toxicity, Local Skin and Eye Effects, and Genotoxicity

    PubMed Central

    Strupp, Christian

    2011-01-01

    The toxicity of soluble metal compounds is often different from that of the parent metal. Since no reliable data on acute toxicity, local effects, and mutagenicity of beryllium metal have ever been generated, beryllium metal powder was tested according to the respective Organisation for Economical Co-Operation and Development (OECD) guidelines. Acute oral toxicity of beryllium metal was investigated in rats and local effects on skin and eye in rabbits. Skin-sensitizing properties were investigated in guinea pigs (maximization method). Basic knowledge about systemic bioavailability is important for the design of genotoxicity tests on poorly soluble substances. Therefore, it was necessary to experimentally compare the capacities of beryllium chloride and beryllium metal to form ions under simulated human lung conditions. Solubility of beryllium metal in artificial lung fluid was low, while solubility in artificial lysosomal fluid was moderate. Beryllium chloride dissolution kinetics were largely different, and thus, metal extracts were used in the in vitro genotoxicity tests. Genotoxicity was investigated in vitro in a bacterial reverse mutagenicity assay, a mammalian cell gene mutation assay, a mammalian cell chromosome aberration assay, and an unscheduled DNA synthesis (UDS) assay. In addition, cell transformation was tested in a Syrian hamster embryo cell assay, and potential inhibition of DNA repair was tested by modification of the UDS assay. Beryllium metal was found not to be mutagenic or clastogenic based on the experimental in vitro results. Furthermore, treatment with beryllium metal extracts did not induce DNA repair synthesis, indicative of no DNA-damaging potential of beryllium metal. A cell-transforming potential and a tendency to inhibit DNA repair when the cell is severely damaged by an external stimulus were observed. Beryllium metal was also found not to be a skin or eye irritant, not to be a skin sensitizer, and not to have relevant acute oral

  20. Protective effects of apigenin against furan-induced toxicity in mice.

    PubMed

    Wang, Enting; Chen, Fang; Hu, Xiaosong; Yuan, Yuan

    2014-08-01

    Furan, a food contaminant formed by heating, is possibly carcinogenic to humans. In this study, we discussed the effect of administration of apigenin on furan-induced toxicity by determining the ROS content, oxidative damage, cytokine levels, DNA damage, and the liver and kidney damage in a mouse model. Our data showed that apigenin administered at 5, 10, and 20 mg kg(-1) bw per day could decrease the toxicity induced by furan to different extents. On one hand, apigenin has the ability to increase the oxidative damage indexes of glutathione (GSH) and glutathione-S-transferase (GST) as well as superoxide dismutase (SOD) activities but decrease myeloperoxidase (MPO) activities and maleic dialdehyde (MDA) content in the liver and kidney of mice treated with furan. On the other hand, it could decrease cytokine levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and interleukin (IL)-6 but increase interleukin (IL)-10 in the serum of furan-treated mice. At the same time, the three concentrations of apigenin elected in this paper all could decrease the ROS content, DNA damage index of 8-hydroxy-desoxyguanosine (8-OHdG), the liver and kidney damage indexes of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactic dehydrogenase (LDH), and blood urea nitrogen (BUN) and creatinine content in furan-treated mice to different extents. The protective effects of apigenin against furan-induced toxicity damage were mainly due to its excellent ability to scavenge free radicals and inhibit lipid oxidation. This is important when considering the use of apigenin as a dietary supplement for beneficial chemoprevention of furan toxicity.

  1. Effects of toxic extracts and purified borbotoxins from Prorocentrum borbonicum (Dinophyceae) on vertebrate neuromuscular junctions.

    PubMed

    Ten-Hage, Loïc; Robillot, Cédric; Turquet, Jean; Le Gall, Frédéric; Le Caer, Jean-Pierre; Bultel, Valérie; Guyot, Michèle; Molgó, Jordi

    2002-02-01

    Benthic dinoflagellates of the genus Prorocentrum are common in tropical and subtropical water and several species produce phycotoxins potentially involved in human toxic outbreaks. The toxic dinoflagellate Prorocentrum borbonicum collected at La Réunion Island (France) was cultured in laboratory. A crude extract of the organism displayed significant toxicity in mice characterized by progressive limb paralysis, severe dyspnea, and death, and the toxicity was retained, after partition, in the extract's butanol-soluble fraction (BSF). Electrophysiological experiments characterizing the fraction's effect on isolated vertebrate neuromuscular preparations revealed that it depolarizes the muscle membrane and reduces the driving force for endplate potentials (EPPs) evoked by nerve stimulation, blocking directly- and indirectly-elicited muscle twitches. The depolarization induced by P. borbonicum BSF was not due to Na(+) influx through voltage-dependent Na(+) channels, since tetrodotoxin neither prevented nor suppressed the depolarization. However, ouabain, a specific ligand of the Na/K ATPase, reduced the depolarization. These results suggest the presence of palytoxin-like compounds in the fraction. HPLC-MS and MS/MS analysis showed the presence of several toxins having identical UV absorbance, among which two new isomeric toxins, borbotoxin-A and -B, of molecular mass of 1037.6 Da were isolated. The purified borbotoxin-A, had no effect on the resting membrane potential of muscle fibers and did not affect directly-elicited muscle twitches. However, the toxin reduced nerve-evoked muscle twitches, in a dose-dependent manner, reduced EPPs' amplitudes and completely blocked miniature endplate potentials. These observations suggest that the main action of borbotoxin-A is to block post-synaptic nicotinic ACh receptors. PMID:11689235

  2. Protective effect of quercetin on cadmium-induced oxidative toxicity on germ cells in male mice.

    PubMed

    Bu, Tongliang; Mi, Yuling; Zeng, Weidong; Zhang, Caiqiao

    2011-03-01

    Cadmium is a toxic heavy metal that is widely distributed in the environment. As a critical process, oxidative toxicity mediates the morphological and functional damages in germ cells after cadmium exposure. In this study, the protective effect of quercetin on cadmium-induced oxidative toxicity was investigated in mouse testicular germ cells. After oral administration of cadmium chloride at 4 mg/kg body weight for 2 weeks, damages in spermatozoa occurred in the early stage of spermatogenesis. Cadmium treatment significantly decreased the testicular antioxidant system, including decreases in the glutathione (GSH) level, superoxide dismutase (SOD), and GSH peroxidase (GSH-Px) activities. Moreover, exposure to cadmium resulted in an increase of hydrogen peroxide production and lipid peroxidation in testes. In addition, cadmium provoked germ cell apoptosis by upregulating expression of the proapoptotic proteins Bax and caspase-3 and downregulating expression of the antiapoptotic protein Bcl-XL. However, combined administration of a common flavonoid quercetin at 75 mg/kg body weight significantly attenuated cadmium-induced germ cell apoptosis by suppressing the hydrogen peroxide production and lipid peroxidation in testicular tissue. Simultaneous supplementation of quercetin markedly restored the decrease in GSH level and SOD and GSH-Px activities elicited by cadmium treatment. Additionally, quercetin protected germ cells from cadmium-induced apoptosis by downregulating the expression of Bax and caspase-3 and upregulating Bcl-XL expression. These results indicate that quercetin, due to its antioxidative and antiapoptotic characters, may manifest effective protective action against cadmium-induced oxidative toxicity in mouse testicular germ cells. PMID:21337715

  3. Effects of nicotine on the testicular toxicity of streptozotocin-induced diabetic rat: intervention of enalapril.

    PubMed

    Kushwaha, S; Jena, G B

    2014-06-01

    The aim of the present study is to investigate whether nicotine augmented the testicular toxicity and angiotensin converting enzyme inhibitor, enalapril, can ameliorate the effects in diabetic rat. Male Sprague Dawley rats were randomized into five groups: control, nicotine, diabetic, Diab + Nico, and Diab + Nico + Enal. Animals were made diabetic by single injection of streptozotocin (55 mg/kg/intraperitoneally). Nicotine dissolved in drinking water at a concentration of 100 µg/ml was given ad libitum and enalapril was given orally at a dose of 10 mg/kg/day for four consecutive weeks. After 4 weeks of treatment, animals were killed and biochemical parameters glucose, glycosylated hemoglobin, cotinine, and the testosterone levels were measured. Testicular toxicity was evaluated using sperm count, sperm comet assay, histology, and immunohistochemical staining of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and the proinflammatory markers (nuclear factor kappa B (NF-κB), cyclooxygenase (COX-2), and tissue necrotic factor alpha (TNF-α)) evaluated by western blotting. Results showed that nicotine did not alter the blood glucose and glycosylated hemoglobin level, significantly decreased the sperm count and increased the sperm DNA damage. These changes were accompanied by significant increases in the 8-oxo-dG, NF-κB, COX-2, and TNF-α expression. Furthermore, the intervention of enalapril in nicotine-treated diabetic rat attenuated the testicular damage and restored sperm count, sperm DNA damage, as well as reduced the expression of NF-κB, COX-2, and TNF-α. These findings clearly suggest that nicotine not only augmented the testicular toxicity in the diabetic rat but also increases the risk of germ cell toxicity effects that were attenuated by enalapril treatment. PMID:24044905

  4. Effect of temperature on heavy metal toxicity to juvenile crayfish, Orconectes immunis (Hagen).

    PubMed

    Khan, M A Q; Ahmed, S A; Catalin, Bogdon; Khodadoust, A; Ajayi, Oluwaleke; Vaughn, Mark

    2006-10-01

    The acute toxicity of four selected heavy metals to juvenile crayfish Orconectes immunis (Hagen) (1-2 g wet body wt. each) at room temperature increased in the following order: cadmium (x3) < copper (x10) < zinc (x2) < lead. The toxicity of these metals to crayfish acclimated at 17, 20, 23/24, and 27 degrees C increased with temperature (by 7-20% between 20 and 24 degrees C and 14-26% between 20 and 27 degrees C) as judged by the lowering of LT(50) (time to kill 50% of test animals at a fixed concentration) values. A 4 degrees C rise in temperature (from 20 to 24 degrees C), which increased the toxicity of copper by about 7%, increased the rate of oxygen consumption by about 34%. Heavy metals inhibited the rate of oxygen consumption at all temperatures. In 20 degrees C-acclimated crayfish, copper caused about 17% inhibition of oxygen consumption compared to about 7-12% by other metals including the most toxic cadmium. A 3-4 degrees C rise in temperature tripled the inhibitory effect of copper (20%), cadmium and zinc (26 and 18%, respectively), but not of lead, on oxygen consumption. A 7 degrees C-rise in temperature (from 20 to 27 degrees C) increased the inhibitory effect of heavy metals, including lead, on oxygen consumption by up to 54% in the case of copper. The data indicate that rising global temperatures (currently 0.60 degrees C) associated with climate change can have the potential to increase the sensitivity of aquatic animals to heavy metals in their environment.

  5. Electroencephalographic and behavioral effects of intracerebroventricular or intraperitoneal injections of toxic honey extract in adult Wistar rats and GAERS.

    PubMed

    Kuru, Pinar; Torun, Merve; Halac, Hande Melike; Temiz, Gozde; Iskender, Ece; Karamahmutoglu, Tugba; Idrizoglu, Medine Gulcebi; Onat, Filiz Yilmaz

    2014-12-01

    Toxic honey, containing grayanotoxin, is obtained from nectar and polen of rhododendron. Consumed in excess it produces seizures and convulsions. In order to investigate whether the toxic honey extract can be used as a seizure model, we examined the electroencephalographic (EEG) and motor effects of intracerebroventricular (icv) or intraperitoneal (ip) injection of toxic honey extract in Wistar rats or in genetic absence epilepsy rats from Strasbourg (GAERS). Male Wistar rats or GAERS were stereotaxically implanted with bilateral cortical recording electrodes in all ip groups and cannula in the icv groups. Based on the previous study, an extract was obtained from the non-toxic and toxic honey. After the injection of the non-toxic or toxic honey extract, seizure stages and changes in EEG were evaluated from 9 am to noon. The icv administration of toxic honey extract produced stage 4 seizures and bilateral cortical spikes within 30-60 min and these effects disappeared after 120 min in Wistar rats or GAERS. The mean of bilateral cortical spike acitivity in EEG of Wistar rats was 804.2 ± 261.0 s in the 3-h period. After the icv administration of toxic honey extract to GAERS, the mean duration of spike-and-wave discharges (SWDs) in GAERS significantly decreased during the first 60 min and then returned to baseline level. Ip injection of toxic honey extract caused no seizure and no change in EEG in either GAERS or Wistars. These results suggest that the icv administration of toxic honey extract can be used as a seizure model. PMID:25120202

  6. Electroencephalographic and behavioral effects of intracerebroventricular or intraperitoneal injections of toxic honey extract in adult Wistar rats and GAERS.

    PubMed

    Kuru, Pinar; Torun, Merve; Halac, Hande Melike; Temiz, Gozde; Iskender, Ece; Karamahmutoglu, Tugba; Idrizoglu, Medine Gulcebi; Onat, Filiz Yilmaz

    2014-12-01

    Toxic honey, containing grayanotoxin, is obtained from nectar and polen of rhododendron. Consumed in excess it produces seizures and convulsions. In order to investigate whether the toxic honey extract can be used as a seizure model, we examined the electroencephalographic (EEG) and motor effects of intracerebroventricular (icv) or intraperitoneal (ip) injection of toxic honey extract in Wistar rats or in genetic absence epilepsy rats from Strasbourg (GAERS). Male Wistar rats or GAERS were stereotaxically implanted with bilateral cortical recording electrodes in all ip groups and cannula in the icv groups. Based on the previous study, an extract was obtained from the non-toxic and toxic honey. After the injection of the non-toxic or toxic honey extract, seizure stages and changes in EEG were evaluated from 9 am to noon. The icv administration of toxic honey extract produced stage 4 seizures and bilateral cortical spikes within 30-60 min and these effects disappeared after 120 min in Wistar rats or GAERS. The mean of bilateral cortical spike acitivity in EEG of Wistar rats was 804.2 ± 261.0 s in the 3-h period. After the icv administration of toxic honey extract to GAERS, the mean duration of spike-and-wave discharges (SWDs) in GAERS significantly decreased during the first 60 min and then returned to baseline level. Ip injection of toxic honey extract caused no seizure and no change in EEG in either GAERS or Wistars. These results suggest that the icv administration of toxic honey extract can be used as a seizure model.

  7. Toxicity reference values for protecting aquatic birds in China from the effects of polychlorinated biphenyls.

    PubMed

    Su, Hailei; Wu, Fengchang; Zhang, Ruiqing; Zhao, Xiaoli; Mu, Yunsong; Feng, Chenglian; Giesy, John P

    2014-01-01

    PCBs are typical of persistent, bioaccumulative and toxic compounds (PBTs) that are widely distributed in the environment and can biomagnify through aquatic food webs, because of their stability and lipophilic properties. Fish-eating birds are top predators in the aquatic food chain and may suffer adverse effects from exposure to PCB concentrations. In this review, we address the toxicity of PCBs to birds and have derived tissue residue guidelines (TRGs) and toxic reference values (TRVs) for PCBs for protecting birds in China. In deriving these protective indices, we utilized available data and three approaches, to wit: species sensitivity distribution (SSD), critical study approach (CSA) and toxicity percentile rank method (TPRM). The TRGs and TRVs arrived at by using these methods were 42.3, I 0. 7, 4.3 pg TEQs/g diet wm and 16.7, 15.5, and 5.5 pg TEQs/g tissue wm for the CSA SSD and TPRM approaches, respectively. These criteria values were analyzed and compared with those derived by others. The following TRG and TRY, derived by SSD, were recommended as avian criteria for protecting avian species in China: 10.7 pg TEQs/g diet wm and 15.5 pg TEQs/g tissue wm, respectively. The hazard of PCBs to birds was assessed by comparing the TRVs and TRGs derived in this study with actual PCB concentrations detected in birds or fish. The criteria values derived in this study can be used to evaluate the risk of PCBs to birds in China, and to provide indices that are more reasonable for protecting Chinese avian species. However, several sources of uncertainty exists when deriving TRGs and TRVs for the PCBs in birds, such as lack of adequate toxicity data for birds and need to use uncertainty factors. Clearly, relevant work on PCBs and birds in China are needed in the future. For example, PCB toxicity data for resident avian species in China are needed. In addition, studies are needed on the actual PCB levels in birds and fish in China. Such information is needed to serve as a

  8. Experimental Dissection of Metalloproteinase Inhibition-Mediated and Toxic Effects of Phenanthroline on Zebrafish Development

    PubMed Central

    Ellis, Tonya R.; Crawford, Bryan D.

    2016-01-01

    Metalloproteinases are zinc-dependent endopeptidases that function as primary effectors of tissue remodeling, cell-signaling, and many other roles. Their regulation is ferociously complex, and is exquisitely sensitive to their molecular milieu, making in vivo studies challenging. Phenanthroline (PhN) is an inexpensive, broad-spectrum inhibitor of metalloproteinases that functions by chelating the catalytic zinc ion, however its use in vivo has been limited due to suspected off-target effects. PhN is very similar in structure to phenanthrene (PhE), a well-studied poly aromatic hydrocarbon (PAH) known to cause toxicity in aquatic animals by activating the aryl hydrocarbon receptor (AhR). We show that zebrafish are more sensitive to PhN than PhE, and that PhN causes a superset of the effects caused by PhE. Morpholino knock-down of the AhR rescues the effects of PhN that are shared with PhE, suggesting these are due to PAH toxicity. The effects of PhN that are not shared with PhE (specifically disruption of neural crest development and angiogenesis) involve processes known to depend on metalloproteinase activity. Furthermore these PhN-specific effects are not rescued by AhR knock-down, suggesting that these are bona fide effects of metalloproteinase inhibition, and that PhN can be used as a broad spectrum metalloproteinase inhibitor for studies with zebrafish in vivo. PMID:27618022

  9. Experimental Dissection of Metalloproteinase Inhibition-Mediated and Toxic Effects of Phenanthroline on Zebrafish Development.

    PubMed

    Ellis, Tonya R; Crawford, Bryan D

    2016-01-01

    Metalloproteinases are zinc-dependent endopeptidases that function as primary effectors of tissue remodeling, cell-signaling, and many other roles. Their regulation is ferociously complex, and is exquisitely sensitive to their molecular milieu, making in vivo studies challenging. Phenanthroline (PhN) is an inexpensive, broad-spectrum inhibitor of metalloproteinases that functions by chelating the catalytic zinc ion, however its use in vivo has been limited due to suspected off-target effects. PhN is very similar in structure to phenanthrene (PhE), a well-studied poly aromatic hydrocarbon (PAH) known to cause toxicity in aquatic animals by activating the aryl hydrocarbon receptor (AhR). We show that zebrafish are more sensitive to PhN than PhE, and that PhN causes a superset of the effects caused by PhE. Morpholino knock-down of the AhR rescues the effects of PhN that are shared with PhE, suggesting these are due to PAH toxicity. The effects of PhN that are not shared with PhE (specifically disruption of neural crest development and angiogenesis) involve processes known to depend on metalloproteinase activity. Furthermore these PhN-specific effects are not rescued by AhR knock-down, suggesting that these are bona fide effects of metalloproteinase inhibition, and that PhN can be used as a broad spectrum metalloproteinase inhibitor for studies with zebrafish in vivo. PMID:27618022

  10. Effects of storage temperature and duration on toxicity of sediments assessed by Crassostrea gigas oyster embryo bioassay

    SciTech Connect

    Beiras, R.; His, E.; Seaman, M.N.L.

    1998-10-01

    The effects of temperature and duration of storage on the toxicity of estuarine sediments were investigated with the Crassostrea gigas oyster embryo bioassay. Sediments ranging from unpolluted (controls) to extremely polluted with heavy metals (>100 ppm Hg, Cu, Zn, and Pb) and total hydrocarbons (>1,000 ppm) were collected from sites in southwest France and northern Spain, Control sediments were toxic only at the highest concentrations tested and after freezing in liquid nitrogen ({minus}196 C). Polluted sediments significantly reduced the success of oyster embryogenesis. Analysis of variance showed that the effect of storage temperature on toxicity increased with the prolongation of storage. Prolonged storage of fresh (4 C) sediments resulted in a loss of toxicity, which was more rapid in the less-polluted sediments. Deep-frozen sediments ({minus}196 C) were highly toxic regardless of origin and storage time, and because deep-freezing causes spurious toxicity in the control samples, it cannot be recommended for toxicological studies. In the context of the assessment of sediment toxicity by embryo-larval bioassays, fresh (4 C) storage is recommended when sediments need to be stored for no longer than a few days. The advisable duration of fresh storage to avoid false-negative results is directly related to the degree of toxicity. Should the sediments require prolonged storage, freezing at {minus}20 C appears to be the best choice.

  11. Biodegradability and aquatic toxicity of quaternary ammonium-based gemini surfactants: Effect of the spacer on their ecological properties.

    PubMed

    Garcia, M Teresa; Kaczerewska, Olga; Ribosa, Isabel; Brycki, Bogumił; Materna, Paulina; Drgas, Małgorzata

    2016-07-01

    Aerobic biodegradability and aquatic toxicity of five types of quaternary ammonium-based gemini surfactants have been examined. The effect of the spacer structure and the head group polarity on the ecological properties of a series of dimeric dodecyl ammonium surfactants has been investigated. Standard tests for ready biodegradability assessment (OECD 310) were conducted for C12 alkyl chain gemini surfactants containing oxygen, nitrogen or a benzene ring in the spacer linkage and/or a hydroxyethyl group attached to the nitrogen atom of the head groups. According to the results obtained, the gemini surfactants examined cannot be considered as readily biodegradable compounds. The negligible biotransformation of the gemini surfactants under the standard biodegradation test conditions was found to be due to their toxic effects on the microbial population responsible for aerobic biodegradation. Aquatic toxicity of gemini surfactants was evaluated against Daphnia magna. The acute toxicity values to Daphnia magna, IC50 at 48 h exposure, ranged from 0.6 to 1 mg/L. On the basis of these values, the gemini surfactants tested should be classified as toxic or very toxic to the aquatic environment. However, the dimeric quaternary ammonium-based surfactants examined result to be less toxic than their corresponding monomeric analogs. Nevertheless the aquatic toxicity of these gemini surfactants can be reduced by increasing the molecule hydrophilicity by adding a heteroatom to the spacer or a hydroxyethyl group to the polar head groups. PMID:27045632

  12. Joint toxicity of tetracycline with copper(II) and cadmium(II) to Vibrio fischeri: effect of complexation reaction.

    PubMed

    Tong, Fei; Zhao, Yanping; Gu, Xueyuan; Gu, Cheng; Lee, Charles C C

    2015-03-01

    Co-contamination of antibiotic and heavy metals commonly occurs in the environment. Tetracycline (TC), a common antibiotic, can behave as an efficient organic ligand to complex with cations. In this paper, the joint toxicity of TC with two commonly existing metals, copper(II) and cadmium(II), towards a luminescent bacteria, Vibrio fischeri, are investigated. Results showed that coexistence of TC and Cu(II) showed a significant antagonistic effect, while TC and Cd(II) showed a synergistic effect. The aqueous speciation of TC with two metal cations was calculated using a chemical equilibrium software Visual MINTEQ and results indicated that a strong complexation exist between TC and Cu(II), while much weaker interaction between TC and Cd(II). Traditional joint toxicity prediction model based on independent action failed to predict the combined toxicity of TC with metals. A new method based on speciation calculation was used to evaluate the joint toxicity of ligands and cations. It is assumed that the metal-ligand complexes are non-toxic to V. fischeri and the joint toxicity is determined by the sum of toxic unit of free metal-ions and free organic ligands. It explained the joint toxicity of the mixed systems reasonably well. Meanwhile, citric acid (CA) and fulvic acid (FA) were also introduced in this study to provide a benchmark comparison with TC. Results showed it is also valid for mixed systems of CA and FA with metals except for the Cd-CA mixture.

  13. Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects.

    PubMed

    Smith, Catherine J; Shaw, Benjamin J; Handy, Richard D

    2007-05-01

    Mammalian studies have raised concerns about the toxicity of carbon nanotubes (CNTs), but there is very limited data on ecotoxicity to aquatic life. We describe the first detailed report on the toxicity of single walled carbon nanotubes (SWCNT) to rainbow trout, using a body systems approach. Stock solutions of dispersed SWCNT were prepared using a combination of solvent (sodium dodecyl sulphate, SDS) and sonication. A semi-static test system was used to expose rainbow trout to either a freshwater control, solvent control, 0.1, 0.25 or 0.5 mgl(-1) SWCNT for up to 10 days. SWCNT exposure caused a dose-dependent rise in ventilation rate, gill pathologies (oedema, altered mucocytes, hyperplasia), and mucus secretion with SWCNT precipitation on the gill mucus. No major haematological or blood disturbances were observed in terms of red and white blood cell counts, haematocrits, whole blood haemoglobin, and plasma Na(+) or K(+). Tissue metal levels (Na(+), K(+), Ca(2+), Cu, Zn and Co) were generally unaffected. However some dose-dependent changes in brain and gill Zn or Cu were observed (but not tissue Ca(2+)), that were also partly attributed to the solvent. SWCNT exposure caused statistically significant increases in Na(+)K(+)-ATPase activity in the gills and intestine, but not in the brain. Thiobarbituric acid reactive substances (TBARS) showed dose-dependent and statistically significant decreases especially in the gill, brain and liver during SWCNT exposure compared to controls. SWCNT exposure caused statistically significant increases in the total glutathione levels in the gills (28%) and livers (18%), compared to the solvent control. Total glutathione in the brain and intestine remained stable in all treatments. Pathologies in the brain included possible aneurisms or swellings on the ventral surface of the cerebellum. Liver cells exposed to SWCNT showed condensed nuclear bodies (apoptotic bodies) and cells in abnormal nuclear division. Overt fatty change or wide

  14. The toxicity and invasive effects of QDs on mung bean development

    NASA Astrophysics Data System (ADS)

    Zhai, Peng; Wang, Xiaomei; Wang, Ruhua; Huang, Xuan; Feng, Gang; Lin, Guimiao; Chen, Qiang; Xu, Gaixia; Chen, Danni

    2014-09-01

    Objective: Nowadays, the nanomaterials have been applied in every aspects of our life, including cosmetics, fresh-keeping, antisepsis and medicines. However, we know little about the toxic effects of nanoparticles towards plants. In this thesis, we synthesized quantum dots (QDs), and then toxicity and invasive effects of QDs for mung beans were investigated. Methods: We synthesised red CdTe QDs in water sphase with L-Cystein stabilizers, then prepared different concentration of QDs solution to cultivate mung bean plant, the radical length of mung beans was measured after four days every day, after 7 days, the distribution of QDs in mung bean plant was recorded under the microscopic. Results: The result showed the QDs inhibited the growth of mung beans, the higher the concentration of QDs was, the greater the inhibition effect was. After 7 days, the radicle average lengths of mung beans in different concentrations of QDs solution - blank 0.1μmol/L 0.2μmol/L 0.5 μmol/L 1 μmol/L - were 19.350+/- 0.427, 14.050+/- 0.879, 10.525+/- 0.554, 7.250+/- 0.522, 7.650+/- 0.229. The QDs mostly adhered onto the root surface and hairs. Conclusion: In conclusion, the QDs synthesized with L-cystein have effects on the growth of mung beans. However, it is necessary to do more experiments to confirm the mechanism of the toxicity effect of QDs on plants.

  15. Toxic effects of harmful benthic dinoflagellate Ostreopsis ovata on invertebrate and vertebrate marine organisms.

    PubMed

    Faimali, Marco; Giussani, Valentina; Piazza, Veronica; Garaventa, Francesca; Corrà, Christian; Asnaghi, Valentina; Privitera, Davide; Gallus, Lorenzo; Cattaneo-Vietti, Riccardo; Mangialajo, Luisa; Chiantore, Mariachiara

    2012-05-01

    Harmful benthic microalgae blooms are an emerging phenomenon causing health and economic concern, especially in tourist areas. This is the case of the Mediterranean Sea, where Ostreopsis ovata blooms occur in summer, with increasing regularity. Ostreopsis species produce palytoxin (PTX) and analogues, and a number of deaths directly associated with the ingestion of PTX contaminated seafood have been reported. PTX is considered one of the most toxic molecules occurring in nature and can provoke severe and sometimes lethal intoxications in humans. So far in temperate areas, O. ovata blooms were reported to cause intoxications of humans by inhalation and irritations by contact. In addition, invertebrate mass mortalities have been reported, possibly linked to O. ovata blooms, although other causes cannot be ruled out, such as oxygen depletion or high seawater temperature. In order to improve our knowledge about the direct toxicity of this species on invertebrate and vertebrate marine organisms, we performed an ecotoxicological screening to investigate the toxic effects of different concentrations of O. ovata (cultured in the laboratory and sampled in the field during blooms) on crustaceans and fish as model organisms. Artemia salina, Tigriopus fulvus, and Amphibalanus amphitrite larvae and juveniles of the sea bass Dicentrarchus labrax were used as model species. Toxic effects associated with cultured O. ovata cells were investigated using a crossed design: testing two different temperatures (20 and 25 °C), four different cell concentrations, and four treatments (untreated O. ovata culture, filtered and resuspended algal cells, growth medium devoid of algal cells, and sonicated algal cells). The results indicate that the toxicity of cultured O. ovata is related to the presence of living O. ovata cells, and that this effect is amplified by temperature. Furthermore, both tests with laboratory cultured algae and field sampled cells pointed out that A. salina is the most

  16. Toxicology of the nasal passages

    SciTech Connect

    Barrow, C.S.

    1986-01-01

    Contents of this work include: Comparative Anatomy and F