Science.gov

Sample records for p53 p21 waf

  1. Suppression of p53 and p21CIP1/WAF1 reduces arsenite-induced aneuploidy

    PubMed Central

    Salazar, Ana María; Miller, Heather L.; McNeely, Samuel C.; Sordo, Monserrat; Ostrosky-Wegman, Patricia; States, J. Christopher

    2009-01-01

    Aneuploidy and extensive chromosomal rearrangements are common in human tumors. The role of DNA damage response proteins p53 and p21CIP1/WAF1 in aneugenesis and clastogenesis was investigated in telomerase immortalized diploid human fibroblasts using siRNA suppression of p53 and p21CIP1/WAF1. Cells were exposed to the environmental carcinogen sodium arsenite (15 and 20 µM), and the induction of micronuclei (MN) was evaluated in binucleated cells using the cytokinesis-block assay. To determine whether MN resulted from missegregation of chromosomes or from chromosomal fragments, we used a fluorescent in situ hybridization with a centromeric DNA probe. Micronuclei were predominantly of clastogenic origin in control cells regardless of p53 or p21CIP1/WAF1 expression. MN with centromere signals in cells transfected with NSC siRNA or Mock increased 30% after arsenite exposure, indicating that arsenite induced aneuploidy in the tGM24 cells. Although suppression of p53 increased the fraction of arsenite-treated cells with MN, it caused a decrease in the fraction of with centeromeric DNA. Suppression of p21CIP1/WAF1 like p53 suppression decreased the fraction of with centromeric DNA. Our results suggest that cells lacking normal p53 function cannot become aneuploid because they die by mitotic arrest-associated apoptosis, whereas cells with normal p53 function that are able to exit from mitotic arrest can become aneuploid. Furthermore our current results support this role for p21CIP1/WAF1. Since suppression of p21CIP1/WAF1 caused a decrease in aneuploidy induced by arsenite suggesting that p21CIP1/WAF1 plays a role in mitotic exit. PMID:20000476

  2. Analysis of p53 mutations and the expression of p53 and p21WAF1/CIP1 protein in 15 cases of sebaceous carcinoma of the eyelid.

    PubMed

    Kiyosaki, Kunihiro; Nakada, Chisato; Hijiya, Naoki; Tsukamoto, Yoshiyuki; Matsuura, Keiko; Nakatsuka, Kazuo; Daa, Tsutomu; Yokoyama, Shigeo; Imaizumi, Masamoto; Moriyama, Masatsugu

    2010-01-01

    The purpose of this study was to detect mutation of the p53 gene, to assess its relationship with p53 or p21(WAF1/CIP1) expression, and to evaluate the correlation between p53 mutation or p21(WAF1/CIP1) expression and clinicopathologic findings in sebaceous carcinoma of the eyelid. Fifteen conventional paraffin-embedded samples of sebaceous carcinoma of the eyelid were analyzed. Using the single-strand conformation polymorphism technique, the authors sequenced coding exons 5-8 of the p53 gene. The expression of p53 and p21(WAF1/CIP1) protein was analyzed by immunohistochemistry. In 10 of the 15 cases (66.7%), point mutations were detected in the p53 gene. CC to TT double-base changes (tandem mutations), which are known to be induced only by UV, were not detected in any of the mutations. Correlations between p53 mutation and expression were found to be statistically significant (P = 0.007). There was no significant correlation between p53 mutation and clinicopathologic findings or p21(WAF1/CIP1) expression. However, there was a significant inverse correlation between p21(WAF1/CIP1) expression and presence of lymph node metastasis (P = 0.007). Among human cancers, sebaceous carcinoma of the eyelid may be one of those showing most frequent mutation of the p53 gene, which may not be caused by exposure to UV. p21(WAF1/CIP1) downregulation may be associated with lymph node metastasis.

  3. Arecoline-induced growth arrest and p21WAF1 expression are dependent on p53 in rat hepatocytes.

    PubMed

    Chou, Wen-Wen; Guh, Jinn-Yuh; Tsai, Jung-Fa; Hwang, Chi-Ching; Chen, Hung-Chun; Huang, Jau-Shyang; Yang, Yu-Lin; Hung, Wen-Chun; Chuang, Lea-Yea

    2008-01-14

    Betel-quid use is associated with the risk of liver cirrhosis and hepatocellular carcinoma and arecoline, the major alkaloid of betel-quid, is hepatotoxic in mice. Therefore, we studied the cytotoxic and genotoxic effects of arecoline in normal rat hepatocytes (Clone-9 cells). Arecoline dose-dependently (0.1-1mM) decreased cell cycle-dependent proliferation while inducing DNA damage at 24h. Moreover, arecoline (1mM)-induced apoptosis and necrosis at 24h. Arecoline dose-dependently (0.1-0.5mM) increased transforming growth factor-beta (TGF-beta) mRNA, gene transcription and bioactivity and neutralizing TGF-beta antibody attenuated arecoline (0.5mM)-inhibited cell proliferation at 24h. Arecoline (0.5mM) also increased p21(WAF1) protein expression and p21(WAF1) gene transcription. Moreover, arecoline (0.5mM) time-dependently (8-24h) increased p53 serine 15 phosphorylation. Pifithrin-alpha (p53 inhibitor) and the loss of the two p53-binding elements in the p21(WAF1) gene promoter attenuated arecoline-induced p21(WAF1) gene transcription at 24h. Pifithrin-alpha also attenuated arecoline (0.5mM)-inhibited cell proliferation at 24h. We concluded that arecoline induces cytotoxicity, DNA damage, G(0)/G(1) cell cycle arrest, TGF-beta1, p21(WAF1) and activates p53 in Clone-9 cells. Moreover, arecoline-induced p21(WAF1) is dependent on p53 while arecoline-inhibited growth is dependent on both TGF-beta and p53.

  4. Mitomycin C and decarbamoyl mitomycin C induce p53-independent p21WAF1/CIP1 activation

    PubMed Central

    Cheng, Shu-Yuan; Seo, Jiwon; Huang, Bik Tzu; Napolitano, Tanya; Champeil, Elise

    2016-01-01

    Mitomycin C (MC), a commonly used anticancer drug, induces DNA damage via DNA alkylation. Decarbamoyl mitomycin C (DMC), another mitomycin lacking the carbamate at C10, generates similar lesions as MC. Interstrand cross-links (ICLs) are believed to be the lesions primarily responsible for the cytotoxicity of MC and DMC. The major ICL generated by MC (α-ICL) has a trans stereochemistry at the guanine-drug linkage whereas the major ICL from DMC (β-ICL) has the opposite, cis, stereochemistry. In addition, DMC can provoke strong p53-independent cell death. Our hypothesis is that the stereochemistry of the major unique β-ICL generated by DMC is responsible for this p53-independent cell death signaling. p53 gene is inactively mutated in more than half of human cancers. p21WAF1/CIP1 known as a major effector of p53 is involved in p53-dependent and -independent control of cell proliferation and death. This study revealed the role of p21WAF1/CIP1 on MC and DMC triggered cell damage. MCF-7 (p53-proficient) and K562 (p53-deficient) cells were used. Cell cycle distributions were shifted to the G1/S phase in MCF-7 treated with MC and DMC, but were shifted to the S phase in K562. p21WAF1/CIP1 activation was observed in both cells treated with MC and DMC, and DMC triggered more significant activation. Knocking down p53 in MCF-7 did not attenuate MC and DMC induced p21WAF1/CIP1 activation. The α-ICL itself was enough to cause p21WAF1/CIP1 activation. PMID:27666201

  5. p53-Dependent Elevation of p21Waf1 Expression by UV Light Is Mediated through mRNA Stabilization and Involves a Vanadate-Sensitive Regulatory System

    PubMed Central

    Gorospe, Myriam; Wang, Xiantao; Holbrook, Nikki J.

    1998-01-01

    Exposure of mammalian cells to adverse stimuli triggers the expression of numerous stress response genes, many of which are presumed to enhance cell survival. In this study, we examined the mechanisms contributing to the induction of p21Waf1 by stress and its influence on the survival of cells subjected to short-wavelength UVC irradiation. UVC was found to elevate p21Waf1 mRNA expression in mouse embryonal fibroblasts (MEFs) and human colorectal carcinoma (RKO) cells in a p53-dependent manner. The lack of p21Waf1 induction in p53-deficient MEFs and RKO cells correlated with diminished cell survival following UVC irradiation. Unexpectedly, UVC treatment was also found to block the induction of p21Waf1 by various stress-inducing agents such as mimosine in the p53-deficient cells. Additional studies indicated that induction of p21Waf1 by UVC occurs primarily through enhanced mRNA stability rather than increased transcription; in p53−/− MEFs, failure to elevate p21Waf1 after treatment with UVC appears to be due to their inability to stabilize the p21Waf1 transcripts. Treatment of the p53−/− MEFs with the protein tyrosine phosphatase inhibitor vanadate reversed the UVC-induced block on p21Waf1 induction and resulted in their enhanced survival following irradiation. Thus, in cells bearing normal p53, UVC augments p21Waf1 expression by increasing the half-life of p21Waf1 mRNA; without p53, p21Waf1 mRNA remains unstable after UVC, apparently due to a pathway involving tyrosine phosphatase activity. PMID:9488455

  6. p53 missense but not truncation mutations are associated with low levels of p21CIP1/WAF1 mRNA expression in primary human sarcomas

    PubMed Central

    Mousses, S; Gokgoz, N; Wunder, J S; Ozcelik, H; Bull, S; Bell, R S; Andrulis, I L

    2001-01-01

    Many growth-suppressing signals converge to control the levels of the CDK inhibitor p21CIP1/WAF1. Some human cancers exhibit low levels of expression of p21CIP1/WAF1and mutations in p53 have been implicated in this down-regulation. To evaluate whether the presence of p53 mutations was related to the in vivo expression of p21CIP1/WAF1 mRNA in sarcomas we measured the p21CIP1/WAF1 mRNA levels for a group of 71 primary bone and soft tissue tumours with known p53 status. As expected, most tumours with p53 mutations expressed low levels of p21CIP1/WAF1 mRNA. However, we identified a group of tumours with p53 gene mutations that exhibited normal or higher levels of p21CIP1/WAF1 mRNA. The p53 mutations in the latter group were not the common missense mutations in exons 4–9, but were predominantly nonsense mutations predicted to result in truncation of the p53 protein. The results of this study suggest that different types of p53 mutations can have different effects on the expression of downstream genes such as p21CIP1/WAF1 in human sarcomas. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11401317

  7. Diabetes-Induced Oxidative DNA Damage Alters p53-p21CIP1/Waf1 Signaling in the Rat Testis

    PubMed Central

    Al-Bader, Maie M.

    2015-01-01

    Diabetes is increasingly becoming a major cause of large-scale morbidity and mortality. Diabetes-induced oxidative stress alters numerous intracellular signaling pathways. Although testicular dysfunction is a major concern in diabetic men, the mechanistic alterations in the testes that lead to hypogonadism are not yet clear. Oxidative mitochondrial DNA damage, as indicated by 7,8-dihydro-8-oxo-2′-deoxyguanosine, and phosphorylation of p53 at ser315 residue (p-p53ser315) increased in a stage- and cell-specific manner in the testes of rats that were diabetic for 1 month (DM1). Prolongation of diabetes for 3 months (DM3) led to an increase in nuclear oxidative DNA damage in conjunction with a decrease in the expression of p-p53ser315. The nuclei of pachytene and preleptotene spermatocytes, steps 1, 11, and 12 spermatids, secondary spermatocytes and the Sertoli cells, and the meiotic figures showed an increase in the expression of p-p53ser315. An increase in the expression of a downstream target of p53 and protein 21cyclin-dependent kinase interacting protein 1/wild-type p53-activated factor 1 (p21CIP1/Waf1) in both diabetic groups did not show any time-dependent effects but occurred concurrent with an upregulation of p-p53ser315 in DM1 and a downregulation of the protein in DM3. In diabetic groups, the expression of p21CIP1/Waf1 was mainly cytoplasmic but also perinuclear in pachytene spermatocytes and round spermatids. The cytoplasmic localization of p21CIP1/Waf1 may be suggestive of an antiapoptotic role for the protein. The perinuclear localization is probably related to the cell cycle arrest meant for DNA damage repair. Diabetes upregulates p21CIP1/Waf1 signaling in testicular germ cells in association with alteration in p-p53ser315 expression, probably to counteract DNA damage-induced cell death. PMID:24828139

  8. p21WAF1/Cip1 expression is associated with cell differentiation but not with p53 mutations in squamous cell carcinomas of the larynx.

    PubMed

    Nadal, A; Jares, P; Cazorla, M; Fernández, P L; Sanjuan, X; Hernandez, L; Pinyol, M; Aldea, M; Mallofré, C; Muntané, J; Traserra, J; Campo, E; Cardesa, A

    1997-10-01

    p21WAF1/Cip1 is a recently identified gene involved in cell cycle regulation through cyclin-CDK-complex inhibition. The expression of this gene in several cell lines seems to be induced by wild-type, but not mutant, p53. p21WAF1/Cip1 expression has been studied at both mRNA and protein levels in a series of 49 normal mucosae and squamous cell carcinomas of the larynx. A significant association was found between mRNA and protein expression in tumours (P < 0.0001). p21WAF1/Cip1 expression was strongly associated with squamous cell differentiation of carcinomas, because six of seven (86 per cent) undifferentiated carcinomas (grade 4) showed very low levels of p21WAF1/Cip1 expression, whereas 41 out of 42 (98 per cent) carcinomas with squamous cell differentiation (grades 1-3) had normal or high levels of p21WAF1/Cip1 expression (P < 0.0001). In addition, p21WAF1/Cip1 expression was topologically related to the squamous differentiation of tumour cells with a distribution similar to that seen in normal squamous epithelium. No correlation was found between p21WAF1/Cip1 expression and the global S-phase of the carcinomas. p53 mutations (exons 5-9) were found in ten carcinomas with p21WAF1/Cip1 expression, but no p53 mutations were detected in three p21WAF1/Cip1-negative tumours. In conclusion, p21WAF1/Cip1 expression is frequently upregulated in squamous cell carcinomas of the larynx and is associated with tumour cell differentiation. p21WAF1/Cip1 expression in these tumours is independent of p53 gene mutations.

  9. Arecoline-induced phosphorylated p53 and p21(WAF1) protein expression is dependent on ATM/ATR and phosphatidylinositol-3-kinase in clone-9 cells.

    PubMed

    Chou, Wen-Wen; Guh, Jinn-Yuh; Tsai, Jung-Fa; Hwang, Chi-Ching; Chiou, Shean-Jaw; Chuang, Lea-Yea

    2009-06-01

    Betel-quid use is associated with liver cancer whereas its constituent arecoline is cytotoxic, genotoxic, and induces p53-dependent p21(WAF1) protein expression in Clone-9 cells (rat hepatocytes). The ataxia telangiectasia mutated (ATM)/rad3-related (ATR)-p53-p21(WAF1) and the phosphatidylinositol-3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathways are involved in the DNA damage response and the pathogenesis of cancers. Thus, we studied the role of ATM/ATR and PI3K in arecoline-induced p53 and p21(WAF1) protein expression in Clone-9 cells. We found that arecoline (0.5 mM) activated the ATM/ATR kinase at 30 min. The arecoline-activated ATM/ATR substrate contained p-p53Ser15. Moreover, arecoline only increased the levels of the p-p53Ser6, p-p53Ser15, and p-p53Ser392 phosphorylated p53 isoforms among the known isoforms. ATM shRNA attenuated arecoline-induced p-p53Ser15 and p21(WAF1) at 24 h. Arecoline (0.5 mM) increased phosphorylation levels of p-AktSer473 and p-mTORSer2448 at 30-60 min. Dominant-negative PI3K plasmids attenuated arecoline-induced p21(WAF1), but not p-p53Ser15, at 24 h. Rapamycin attenuated arecoline-induced phosphrylated p-p53Ser15, but not p21(WAF1), at 24 h. ATM shRNA, but not dominant-negative PI3K plasmids, attenuated arecoline-induced p21(WAF1) gene transcription. We conclude that arecoline activates the ATM/ATR-p53-p21(WAF1) and the PI3K/Akt-mTOR-p53 pathways in Clone-9 cells. Arecoline-induced phosphorylated p-p53Ser15 expression is dependent on ATM whereas arecoline-induced p21(WAF1) protein expression is dependent on ATM and PI3K. Moreover, p21(WAF1) gene is transcriptionally induced by arecoline-activated ATM. (c) 2009 Wiley-Liss, Inc.

  10. Differential regulation of p21 (waf1) protein half-life by DNA damage and Nutlin-3 in p53 wild-type tumors and its therapeutic implications.

    PubMed

    Chang, Li-Ju; Eastman, Alan

    2012-09-01

    DNA damage induces the canonical p53 pathway including elevation of p21 (waf1) resulting in arrest of cell cycle progression. This can protect cells from subsequent Chk1 inhibition. Some p53 wild-type cancer cells such as HCT116 and U2OS exhibit attenuated p21 (waf1) induction upon DNA damage due to translational inhibition, and are incapable of maintaining arrest upon Chk1 inhibition. The purpose of this study was to determine whether this attenuated p21 (waf1) induction also occurred with the non-DNA damaging agent Nutlin-3 which induces p53 by disrupting binding to its negative regulator MDM2. We find that Nutlin-3 circumvented the attenuated induction of p21 (waf1) protein by increasing its half-life which led to G 1 and G 2 arrest in both cell lines. Interestingly, the p21 (waf1) protein half-life remained short on Nutlin-3 in p53 wild-type MCF10A cells; these cells achieve high p21 (waf1) levels through transcriptional upregulation. Consequently, all three p53 wild-type cells but not p53 mutant MDA-MB-231 cancer cells were protected from subsequent incubation with a combination of DNA damage plus a checkpoint inhibitor.

  11. Cholesterol Retards Senescence in Bone Marrow Mesenchymal Stem Cells by Modulating Autophagy and ROS/p53/p21(Cip1/Waf1) Pathway.

    PubMed

    Zhang, Mingyu; Du, Yue; Lu, Renzhong; Shu, You; Zhao, Wei; Li, Zhuoyun; Zhang, Yu; Liu, Ruixue; Yang, Ti; Luo, Shenjian; Gao, Ming; Zhang, Yue; Zhang, Guiye; Liu, Jiaqi; Lu, Yanjie

    2016-01-01

    In the present study, we demonstrated that bone marrow mesenchymal stem cells (BMSCs) of the 3rd passage displayed the senescence-associated phenotypes characterized with increased activity of SA-β-gal, altered autophagy, and increased G1 cell cycle arrest, ROS production, and expression of p53 and p21(Cip1/Waf1) compared with BMSCs of the 1st passage. Cholesterol (CH) reduced the number of SA-β-gal positive cells in a dose-dependent manner in aging BMSCs induced by H2O2 and the 3rd passage BMSCs. Moreover, CH inhibited the production of ROS and expression of p53 and p21(Cip1/Waf1) in both cellular senescence models and decreased the percentage of BMSCs in G1 cell cycle in the 3rd passage BMSCs. CH prevented the increase in SA-β-gal positive cells induced by RITA (reactivation of p53 and induction of tumor cell apoptosis, a p53 activator) or 3-MA (3-methyladenine, an autophagy inhibitor). Our results indicate that CH not only is a structural component of cell membrane but also functionally contributes to regulating cellular senescence by modulating cell cycle, autophagy, and the ROS/p53/p21(Cip1/Waf1) signaling pathway.

  12. p53 and p21waf-1 expression correlates with apoptosis or cell survival in poorly differentiated, but not well-differentiated, retinoblastomas.

    PubMed

    Divan, A; Lawry, J; Dunsmore, I R; Parsons, M A; Royds, J A

    2001-04-01

    In human retinoblastomas, rare genetic mutations of the retinoblastoma gene cause massive cell proliferation, altered differentiation, and tumor formation; but paradoxically, this is accompanied by extensive apoptotic cell loss. We quantified the immunohistochemical distribution of p53, its downstream effector p21 (WAF-1), and apoptotic cells in 50 human retinoblastomas, within three concentric zones of sleeves of tumor cells surrounding blood vessels. In poorly differentiated retinoblastomas, both p53 expression and apoptosis increase toward the outer zone of tumor sleeves, whereas p21 expression occurs primarily within the inner zone. This staining pattern of p53 expression is reversed in well-differentiated tumors, whereas p21 staining and apoptotic cell distributions are unchanged. We detected no p53 mutations in four retinoblastomas and two retinoblastoma cell lines. We postulate that oxygen and cell "survival/growth factors" delivered via blood vessels protect retinoblastoma cells from apoptosis. In poorly differentiated tumors, apoptosis is spatially associated with increased p53 expression and may be p53 mediated, but in well-differentiated tumors, apoptosis does not colocalize with p53 and may be p53 independent. In retinoblastomas, p21 is involved not in cell death by apoptosis but in cell survival. Thus, p53 varies its expression (and by implication its function) with altered differentiation in retinoblastomas.

  13. Induction of p21(Waf1/Cip1) by garcinol via downregulation of p38-MAPK signaling in p53-independent H1299 lung cancer.

    PubMed

    Yu, Sheng-Yung; Liao, Chiung-Ho; Chien, Ming-Hsien; Tsai, Tsung-Yu; Lin, Jen-Kun; Weng, Meng-Shih

    2014-03-05

    Garcinol, a polyisoprenylated benzophenone, from Garcinia indica fruit rind has possessed anti-inflammatory, antioxidant, antiproliferation, and anticancer activities. However, the anticancer mechanisms of garcinol in lung cancer were still unclear. Therefore, we examine the effects of garcinol on antiproliferation in human lung cancer cells. Treatments with garcinol for 24 h exhibited morphological changes and inhibited the proliferation of H460 (p53-wild type) and H1299 (p53-null) cells in dose- and time-dependent manners. Furthermore, a significant G1 cell cycle arrest was observed in a dose-dependent treatment after H1299 cells were exposed in garcinol, whereas garcinol induced apoptosis rather than cell cycle arrest in H460 cells. Moreover, cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), cyclin D1, and cyclin D3 were decreased, although cyclin E and cyclin-dependent kinase 6 (CDK6) were increased in garcinol-treated H1299 cells. Meanwhile, the protein levels of CDK inhibitors p21(Waf1/Cip1) and p27(KIP1) also exhibited upregulation after garcinol treatments. The enhanced protein-associated level between p21(Waf1/Cip1) and CDK4/2 rather than p27(KIP1) and CDK4/2 was demonstrated in garcinol-treated cells. Additionally, knock-down p21(Waf1/Cip1) by specific siRNA competently prevented garcinol-induced G1 arrest. Besides, garcinol also inhibited ERK and p38-MAPK activations in time-dependent mode. The pretreatment with p38-MAPK inhibitor but not ERK inhibitor raised garcinol-induced G1 population cells. Co-treatment with p38-MAPK inhibitor and garcinol synergistically elevated cyclin E, p21(Waf1/Cip1), and p27(Kip1) expressions. Meanwhile, overexpression dominant negative p38-MAPK also enhanced garcinol-induced p21(Waf1/Cip1) expression in H1299 cells. Accordingly, our data suggested that garcinol induced G1 cell cycle arrest and apoptosis in lung cancer cells under different p53 statuses. The p53-independent G1 cell cycle arrest induced by

  14. Expression of p21(WAF1/CIP1/SDI1) and p53 in apoptotic cells in the adrenal cortex and induction by ischemia/reperfusion injury.

    PubMed Central

    Didenko, V V; Wang, X; Yang, L; Hornsby, P J

    1996-01-01

    p21(WAF1/CIP1/SDI1), an inhibitor of cyclin-dependent kinases, is expressed at varying levels in human adrenal glands removed during surgery or organ recovery. In glands with p21 mRNA, nuclear p21 immunoreactivity, which was occasionally extensive, colocalized with p53 immunoreactivity and DNA damage, as evidenced by in situ end-labeling. Many cells showed morphological features of apoptosis when observed by fluorescent DNA dye staining and electron microscopy. This pattern was also associated with high levels of cytoplasmic heat shock protein 70. To address the question of the origin of p21 expression in some human adrenal glands, rat adrenal glands were subjected to 30 min of ischemia followed by 8 h of reperfusion. Cells with nuclear p21 and p53 appeared in the adrenal cortex together with DNA damage detected by in situ end-labeling. Nuclear p21 immunoreactivity was also produced in adrenal tissue fragments incubated at 37 degrees C in vitro. However, in this case, p21 expression was confined to the cut edge of the tissue. In contrast, p21 in human adrenal glands, as in ischemic rat glands, was within the inner regions of the cortex, supporting an origin of the protein in vivo rather than postmortem. The p53/p21 pathway of reaction to cellular injury, potentially leading to apoptosis, may play a role in tissue damage such as that resulting from ischemia/reperfusion. In the human adrenal cortex this process may be a precursor of adrenal failure. PMID:8601638

  15. Multiparameter immunohistochemical analysis of the cell cycle proteins cyclin D1, Ki-67, p21WAF1, p27KIP1, and p53 in mantle cell lymphoma.

    PubMed

    Izban, K F; Alkan, S; Singleton, T P; Hsi, E D

    2000-10-01

    Mantle cell lymphoma (MCL) is characterized by overexpression of cyclin D1, a G1 cyclin that participates in the control of cell cycle progression at the G1 to S phase transition. In addition to cyclin D1, other cell cycle regulatory molecules may be involved in the proliferation and progression of MCL. Mutation of p53, deletion of p16(INK4a), and loss of p21(WAF1) expression have been reported in some cases of blastoid MCL. We sought to examine levels of expression of these proteins in typical and blastoid MCL and to determine whether differences were present between these subtypes of lymphomas. A retrospective series of typical and blastoid MCLs was evaluated for expression of the cell cycle-related proteins cyclin D1, p21(WAF1), p27(KIP1), Ki-67, and p53, as well as mitotic index. Paraffin-embedded archival tissues from 24 MCL specimens (17 typical, 7 blastoid) were immunostained with antibodies to p21(WAF1), p27(KIP1), p53, Ki-67, and cyclin D1. The percentage of positive cells for each specimen was estimated by counting 1500 cells under oil immersion microscopy. Levels of antigen expression were compared for the typical and blastoid MCLs. The mitotic index was estimated using twenty 100x oil immersion fields (OIFs) for each specimen. Cyclin D1 expression was seen in 22/24 specimens (92%). Blastoid MCLs were characterized by a significantly higher mean mitotic index (>20 mitoses/20 OIFs) and Ki-67 index (>45%) when compared with typical MCLs (P <.001 and P <.008, respectively; Fisher's exact test). High expression of p27(KIP1) (>25% staining) was seen more frequently in typical MCLs than in the blastoid variants (P =.03; Fisher's exact test). No significant differences were found between typical and blastoid MCLs for the expression of p21(WAF1) or p53. A significantly higher mitotic index and Ki-67 index were found in blastoid MCLs as compared with typical MCLs. Low p27(KIP1) expression was associated with the blastoid MCL variant. These findings confirm the

  16. Lenalidomide inhibits the proliferation of CLL cells via a cereblon/p21WAF1/Cip1-dependent mechanism independent of functional p53

    PubMed Central

    Fecteau, Jessie-F.; Corral, Laura G.; Ghia, Emanuela M.; Gaidarova, Svetlana; Futalan, Diahnn; Bharati, Ila Sri; Cathers, Brian; Schwaederlé, Maria; Cui, Bing; Lopez-Girona, Antonia; Messmer, Davorka

    2014-01-01

    Lenalidomide has demonstrated clinical activity in patients with chronic lymphocytic leukemia (CLL), even though it is not cytotoxic for primary CLL cells in vitro. We examined the direct effect of lenalidomide on CLL-cell proliferation induced by CD154-expressing accessory cells in media containing interleukin-4 and -10. Treatment with lenalidomide significantly inhibited CLL-cell proliferation, an effect that was associated with the p53-independent upregulation of the cyclin-dependent kinase inhibitor, p21WAF1/Cip1 (p21). Silencing p21 with small interfering RNA impaired the capacity of lenalidomide to inhibit CLL-cell proliferation. Silencing cereblon, a known molecular target of lenalidomide, impaired the capacity of lenalidomide to induce expression of p21, inhibit CD154-induced CLL-cell proliferation, or enhance the degradation of Ikaros family zinc finger proteins 1 and 3. We isolated CLL cells from the blood of patients before and after short-term treatment with low-dose lenalidomide (5 mg per day) and found the leukemia cells were also induced to express p21 in vivo. These results indicate that lenalidomide can directly inhibit proliferation of CLL cells in a cereblon/p21-dependent but p53-independent manner, at concentrations achievable in vivo, potentially contributing to the capacity of this drug to inhibit disease-progression in patients with CLL. PMID:24990888

  17. Lenalidomide inhibits the proliferation of CLL cells via a cereblon/p21(WAF1/Cip1)-dependent mechanism independent of functional p53.

    PubMed

    Fecteau, Jessie-F; Corral, Laura G; Ghia, Emanuela M; Gaidarova, Svetlana; Futalan, Diahnn; Bharati, Ila Sri; Cathers, Brian; Schwaederlé, Maria; Cui, Bing; Lopez-Girona, Antonia; Messmer, Davorka; Kipps, Thomas J

    2014-09-04

    Lenalidomide has demonstrated clinical activity in patients with chronic lymphocytic leukemia (CLL), even though it is not cytotoxic for primary CLL cells in vitro. We examined the direct effect of lenalidomide on CLL-cell proliferation induced by CD154-expressing accessory cells in media containing interleukin-4 and -10. Treatment with lenalidomide significantly inhibited CLL-cell proliferation, an effect that was associated with the p53-independent upregulation of the cyclin-dependent kinase inhibitor, p21(WAF1/Cip1) (p21). Silencing p21 with small interfering RNA impaired the capacity of lenalidomide to inhibit CLL-cell proliferation. Silencing cereblon, a known molecular target of lenalidomide, impaired the capacity of lenalidomide to induce expression of p21, inhibit CD154-induced CLL-cell proliferation, or enhance the degradation of Ikaros family zinc finger proteins 1 and 3. We isolated CLL cells from the blood of patients before and after short-term treatment with low-dose lenalidomide (5 mg per day) and found the leukemia cells were also induced to express p21 in vivo. These results indicate that lenalidomide can directly inhibit proliferation of CLL cells in a cereblon/p21-dependent but p53-independent manner, at concentrations achievable in vivo, potentially contributing to the capacity of this drug to inhibit disease-progression in patients with CLL.

  18. Transcriptional inhibition of p21{sup WAF1/CIP1} gene (CDKN1) expression by survivin is at least partially p53-dependent: Evidence for survivin acting as a transcription factor or co-factor

    SciTech Connect

    Tang, Lei; Ling, Xiang; Liu, Wensheng; Das, Gokul M.; Li, Fengzhi

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Survivin inhibits the expression of p21 protein, mRNA and promoter activity. Black-Right-Pointing-Pointer Survivin neutralizes p53-induced p21 expression and promoter activity. Black-Right-Pointing-Pointer Survivin physically interacts with p53 in cancer cells. Black-Right-Pointing-Pointer Genetic silencing of endogenous survivin upregulates p21 in p53 wild type cancer cells. Black-Right-Pointing-Pointer Both p53 and survivin interacts on the two p53-binding sites in the p21 promoter. -- Abstract: Growing evidence suggests a role for the antiapoptotic protein survivin in promotion of cancer cell G1/S transition and proliferation. However, the underlying mechanism is unclear. Further, although upregulation of p21{sup WAF1/CIP1} by p53 plays an important role in p53-mediated cell G1 arrests in response to various distresses, it is unknown whether survivin plays a role in the regulation of p21{sup WAF1/CIP1} expression. Here, we report that exogenous expression of survivin in p53-wild type MCF-7 breast cancer cells inhibits the expression of p21{sup WAF1/CIP1} protein, mRNA and promoter activity, while the survivin C84A mutant and antisense failed to do so. Cotransfection experiments in the p53 mutant H1650 lung cancer cell line showed that survivin neutralizes p53-induced p21{sup WAF1/CIP1} expression and promoter activity. Importantly, genetically silencing of endogenous survivin using lentiviral survivin shRNA also enhances endogenous p21 in p53 wild type cancer cells, suggesting the physiological relevance of the fining. We further demonstrated that both p53 and survivin interacts on the two p53-binding sites in the p21{sup WAF1/CIP1} promoter (-2313 to -2212; -1452 to -1310), and survivin physically interacts with p53 in cancer cells. Together, we propose that survivin may act as a transcription factor or cofactor to interact with p53 on the p21{sup WAF1/CIP1} promoter leading to the inhibition of p21{sup WAF1/CIP1

  19. KR-POK interacts with p53 and represses its ability to activate transcription of p21WAF1/CDKN1A.

    PubMed

    Jeon, Bu-Nam; Kim, Min-Kyeong; Choi, Won-Il; Koh, Dong-In; Hong, Sung-Yi; Kim, Kyung-Sup; Kim, Minjung; Yun, Chae-Ok; Yoon, Juyong; Choi, Kang-Yell; Lee, Kyung-Ryul; Nephew, Kenneth P; Hur, Man-Wook

    2012-03-01

    Transcriptional regulation by p53 is thought to play a role in its ability to suppress tumorigenesis. However, there remain gaps in understanding about how p53 regulates transcription and how disrupting this function may promote cancer. Here we report a role in these processes for the kidney cancer-related gene KR-POK (ZBTB7C), a POZ domain and Krüppel-like zinc finger transcription factor that we found to physically interact with p53. Murine embryonic fibroblasts isolated from genetically deficient mice (Kr-pok(-/-) MEFs) exhibited a proliferative defect relative to wild-type mouse embryonic fibroblasts (MEF). The zinc finger domain of Kr-pok interacted directly with the DNA binding and oligomerization domains of p53. This interaction was essential for Kr-pok to bind the distal promoter region of the CDKN1A gene, an important p53 target gene encoding the cell-cycle regulator p21WAF1, and to inhibit p53-mediated transcriptional activation of CDKN1A. Kr-pok also interacted with the transcriptional corepressors NCoR and BCoR, acting to repress histone H3 and H4 deacetylation at the proximal promoter region of the CDKN1A gene. Importantly, Kr-pok(-/-) MEFs displayed an enhancement in CDKN1A transactivation by p53 during the DNA damage response, without any parallel changes in transcription of either the p53 or Kr-pok genes themselves. Furthermore, Kr-pok promoted cell proliferation in vitro and in vivo, and its expression was increased in more than 50% of the malignant human kidney cancer cases analyzed. Together, our findings define KR-POK as a transcriptional repressor with a pro-oncogenic role that relies upon binding to p53 and inhibition of its transactivation function.

  20. Expression of cell-cycle proteins p53, p21 (WAF-1), PCNA and Ki-67 in benign, premalignant and malignant skin lesions with implicated HPV involvement.

    PubMed

    Lu, S; Tiekso, J; Hietanen, S; Syrjänen, K; Havu, V K; Syrjänen, S

    1999-07-01

    A series of 120 biopsies from benign (verruca vulgaris and keratoacanthoma), premalignant (actinic keratosis and extragenital Bowen's disease) and malignant (squamous cell carcinoma) skin lesions were studied immunohistochemically for the expression of cell-cycle proteins p53, p21 (WAF-1), PCNA and Ki-67. The presence of human papillomavirus (HPV) DNA in these samples had been analysed previously using in situ hybridization (ISH) and PCR. Moderate to intense expression of both PCNA and Ki-67 was present in most of the lesions studied. PCNA staining was extensive in the epidermis underneath the layers where abundant HPV DNA staining was shown in HPV DNA-positive verrucas. In keratoacanthomas, p21 and PCNA expression remained low, despite intense p53 expression. In actinic keratosis, only half of the specimens showed overexpression of p53 associated with moderate or intense expression of PCNA. In extragenital Bowen's lesions, all these cell-cycle markers were overexpressed, but in squamous cell carcinomas, they were heterogeneously expressed and showed no correlation with tumour differentiation. Our results suggest a mechanism by which HPV can reactivate the host genes (leading to cell proliferation) to support its own DNA replication. Also p21 might start keratinocyte differentiation in areas where HPV DNA replication starts. Cell proliferation remained active in actinic keratosis and Bowen's lesions, emphasizing the precancer character of these lesions in contrast with the benign nature of keratoacanthoma and verruca vulgaris.

  1. Apoptotic effect of ethyl-4-isothiocyanatobutanoate is associated with DNA damage, proteasomal activity and induction of p53 and p21cip1/waf1.

    PubMed

    Bodo, Juraj; Jakubikova, Jana; Chalupa, Ivan; Bartosova, Zdena; Horakova, Katarina; Floch, Lubomir; Sedlak, Jan

    2006-08-01

    The effect of synthetic isothiocyanate ethyl-4-isothiocyanatobutanoate (E-4IB) on survival of mismatch repair-proficient TK6 and -deficient MT1 cell lines as well as the influence of proteasomal inhibitor MG132, caspase inhibitor Z-VAD-fmk, and ATM inhibitor caffeine on E-4IB modulation of cell cycle and apoptosis was evaluated. Flow cytometric analyses of DNA double strand breaks (gamma-H2AX), mitotic fraction (phospho-histone H3), cell cycle modulation, apoptosis induction (sub-G(0) fraction and fluorescein diacetate staining), and dissipation of transmembrane mitochondrial potential (JC-1 staining) were performed. Western blotting was used for the evaluation of ERK activation, expression of p53, p21(cip1/waf1) and GADD45alpha proteins, as well as PARP fragmentation. Analysis of mitotic nuclei was performed for chromosomal aberrations assessment. MT1 cells were more resistant to E-4IB treatment then TK6 cells (IC(50) 8 muM vs. 4 muM). In both cell lines E-4IB treatment induced phosphorylation of H2AX, increase of p53 protein level, phospho-histone H3 staining, and G(2)/M arrest. The sub-G(0) fragmentation was accompanied by PARP degradation, decreased mitochondrial transmembrane potential, and diminished p21(cip1/waf1) protein expression in TK6 cells. Caspase inhibitor Z-VAD-fmk decreased E-4IB induced sub-G(0) fragmentation and extent of apoptosis in TK6 cells, while proteasome inhibitor MG132 increased number of apoptotic cells in both cell lines tested. A number of aberrant metaphases and clastogenic effect of high E-4IB concentration was observed. The synthetic isothiocyanate E-4IB induced DNA strand breaks, increased mitotic fraction and apoptosis potentiated by MG132 inhibitor in both mismatch repair-proficient and -deficient cell lines.

  2. No Influence of bcl-2, p53, and p21waf1 protein expression on the outcome of pediatric Hodgkin lymphomas.

    PubMed

    Chabay, Paola; Pesce, Pablo; De Matteo, Elena; Lombardi, Mercedes García; Rey, Guadalupe; Preciado, María Victoria

    2006-09-01

    In Argentina, lymphomas account for 13.6% of all pediatric tumors and 47% of them are Hodgkin lymphoma. Previous studies of lymphoma series have reported the expression of apoptotic and cell cycle proteins. Our aim was to study these markers in our pediatric patients and correlate them with their outcome. Immunohistochemical staining with monoclonal antibodies anti-p53, bcl-2, p21, and mdm2 were performed on formalin-fixed paraffin-embedded Hodgkin lymphoma lymph node biopsies from 54 pediatric patients. The analyzed oncogenes p53, bcl-2, p21, and mdm2 exhibited 81%, 44%, 76%, and 90% positive staining, respectively. The most prevalent p53/p21 expression pattern was p53+/p21+, in 57% of cases, whereas concerning p53/mdm2 expression pattern p53+/mdm2+ was observed in 61% of cases. We failed to find any statistically significant correlation between oncogene expression and patient's survival. It seems that p53 plays an important role in lymphomagenesis in our studied population, because it is overexpressed in 81% of Hodgkin lymphoma cases and in more than 50% of cases, it might be able to activate its cellular effectors. Bcl-2 staining observed in 44% of our cases could represent a failure in bcl-2 down-regulation that leads to a rescue event in defective germinal center B-cells, that allows them to develop into Reed-Sternberg and Hodgkin cells.

  3. p53 can repress transcription of cell cycle genes through a p21(WAF1/CIP1)-dependent switch from MMB to DREAM protein complex binding at CHR promoter elements.

    PubMed

    Quaas, Marianne; Müller, Gerd A; Engeland, Kurt

    2012-12-15

    The tumor suppressor p53 plays an important role in cell cycle arrest by downregulating transcription. Many genes repressed by p53 code for proteins with functions in G₂/M. A large portion of these genes is controlled by cell cycle-dependent elements (CDE) and cell cycle genes homology regions (CHR) in their promoters. Cyclin B2 is an example of such a gene, with a function at the transition from G₂ to mitosis. We find that p53-dependent downregulation of cyclin B2 promoter activity is dependent on an intact CHR element. In the presence of high levels of p53 or p21(WAF1/CIP1), protein binding to the CHR switches from MMB to DREAM complex by shifting MuvB core-associated proteins from B-Myb to E2F4/DP1/p130. The results suggest a model for p53-dependent transcriptional repression by which p53 directly activates p21(WAF1/CIP1). The inhibitor then prevents further phosphorylation of p130 by cyclin-dependent kinases. The presence of hypophosphorylated pocket proteins shifts the equilibrium for complex formation from MMB to DREAM. In the case of promoters that do not hold CDE or E2F elements, binding of DREAM and MMB solely relies on a CHR site. Thus, p53 can repress target genes indirectly through CHR elements.

  4. Correlation Among Six Biologic Factors (p53, p21{sup WAF1}, MIB-1, EGFR, HER2, and Bcl-2) and Clinical Outcomes After Curative Chemoradiation Therapy in Squamous Cell Cervical Cancer

    SciTech Connect

    Yamashita, Hideomi; Murakami, Naoya; Asari, Takao; Okuma, Kae; Ohtomo, Kuni; Nakagawa, Keiichi

    2009-07-15

    Purpose: The expressions of six cell-cycle-associated proteins were analyzed in cervical squamous cell carcinomas in correlation in a search for prognostic correlations in tumors treated with concurrent chemoradiation therapy (cCRT). Methods and Materials: The expressions of p53, p21/waf1/cip1, molecular immunology borstel-1 (MIB-1), epidermal growth factor receptor (EGFR), human epidermal growth factor receptor type 2 (HER2), and Bcl-2 were studied using an immunohistochemical method in 57 cases of cervical squamous cell carcinoma treated with cCRT. Patients received cCRT between 1998 and 2005. The mean patient age was 61 years (range, 27-82 years). The number of patients with Stage II, III, and IVA disease was 18, 29, and 10, respectively. Results: The number of patients with tumors positive for p53, p21/waf1/cip1, MIB-1, EGFR, HER2, and Bcl-2 was 26, 24, 49, 26, 13, and 11, respectively; no significant correlation was noted. The 5-year overall survival rates of HER2-positive and -negative patients was 76% vs. 44%, which was of borderline significance (p = 0.0675). No significant correlation was noted between overall survival and expressions of p53, p21/waf1/cip1, MIB-1, EGFR, and Bcl-2. No correlation was observed between local control and expression of any of the proteins. Conclusion: Expression of HER2 protein had a weak impact of borderline significance on overall survival in squamous cell carcinoma of the uterine cervix treated with cCRT. However, no clinical associations could be established for p53, p21/waf1/cip1, MIB-1, EGFR, and Bcl-2 protein expressions.

  5. Down-regulation of dihydrofolate reductase inhibits the growth of endothelial EA.hy926 cell through induction of G1 cell cycle arrest via up-regulating p53 and p21(waf1/cip1) expression.

    PubMed

    Fei, Zhewei; Gao, Yong; Qiu, Mingke; Qi, Xianqin; Dai, Yuxin; Wang, Shuqing; Quan, Zhiwei; Liu, Yingbin; Ou, Jingmin

    2016-03-01

    Folic acid supplementation may meliorate cardiovascular disease risk by improving vascular endothelial structure and function. However, the underlying mechanisms are still lack of a global understanding. To be used, folic acid must be converted to 7,8-dihydrofolate by dihydrofolate reductase to generate one-carbon derivatives serving as important cellular cofactors in the synthesis of nucleotides and amino acids required for cell growth. Therefore, this study explored the effect of dihydrofolate reductase knockdown on endothelial EA.hy926 cell growth and the mechanism involved. We found that down-regulation of dihydrofolate reductase inhibited EA.hy926 cell proliferation, and induced G1 phase arrest. Meanwhile, the expression of regulators necessary for G1/S phase transition, such as cyclin-dependent kinases CDK2, CDK4 and CDK6, were remarkably down-regulated; by contrast, the cell cycle inhibitors p21(waf/cip1), p27(Kip1) and p53 were significantly up-regulated after dihydrofolate reductase knockdown. Furthermore, supplementation of 5-methyltetrahydrofolate to the dihydrofolate reductase knockdown cells could weaken the inhibitory effect of dihydrofolate reductase knockdown on cell proliferation, simultaneously, inducing the expression of p53 and p21(waf/cip1) falling back moderately. Our findings suggest that attenuating dihydrofolate reductase may cause imbalanced expression of cell cycle regulators, especially up-regulation of p53-p21(waf/cip1) pathway, leading to G1 cell cycle arrest, thereby inhibiting the growth of endothelial EA.hy926 cells.

  6. LYG-202 inhibits the proliferation of human colorectal carcinoma HCT-116 cells through induction of G1/S cell cycle arrest and apoptosis via p53 and p21(WAF1/Cip1) expression.

    PubMed

    Liu, Wei; Dai, Qinsheng; Lu, Na; Wei, Libin; Ha, Jun; Rong, Jingjing; Mu, Rong; You, Qidong; Li, Zhiyu; Guo, Qinglong

    2011-06-01

    We recently established that LYG-202, a new flavonoid with a piperazine substitution, exerts an anti-tumor effect in vivo and in vitro. In the present study, we demonstrate that LYG-202 induces G1/S phase arrest and apoptosis in human colorectal carcinoma HCT-116 cells. Data showed that the blockade of the cell cycle was associated with increased p21(WAF1/Cip1) and Rb levels and reduced expression of cyclin D1, cyclin E, and CDK4. Moreover, PARP cleavage, activation of caspase-3, caspase-8, and caspase-9, and an increased ratio of Bax/Bcl-2 were detected in LYG-202-induced apoptosis. Additionally, activation of p53 resulted in the up-regulation of its downstream targets PUMA and p21(WAF1/Cip1), as well as the down-regulation of its negative regulator MDM2, suggesting that the p53 pathway may play a crucial role in LYG-202-induced cell cycle arrest and apoptosis. Furthermore, siRNA knockdown of p53 attenuated the G1 cell cycle arrest and apoptosis induced by LYG-202, as the effects of LYG-202 on up-regulation of p21(WAF1/Cip1) and down-regulation of Bcl-2 and pro-caspase-3 were partly inhibited in p53 siRNA transfected cells compared with control siRNA transfected cells. Collectively, these data indicate that LYG-202 exerts its anti-tumor potency by activating the p53-p21 pathway for G1/S cell cycle arrest and apoptosis in colorectal cancer cells.

  7. Promyelocytic Leukemia Zinc Finger-Retinoic Acid Receptor α (PLZF-RARα), an Oncogenic Transcriptional Repressor of Cyclin-dependent Kinase Inhibitor 1A (p21WAF/CDKN1A) and Tumor Protein p53 (TP53) Genes*

    PubMed Central

    Choi, Won-Il; Yoon, Jae-Hyeon; Kim, Min-Young; Koh, Dong-In; Licht, Jonathan D.; Kim, Kunhong; Hur, Man-Wook

    2014-01-01

    Promyelocytic leukemia zinc finger-retinoic acid receptor α (PLZF-RARα) is an oncogene transcriptional repressor that is generated by a chromosomal translocation between the PLZF and RARα genes in acute promyelocytic leukemia (APL-type) patients. The molecular interaction between PLZF-RARα and the histone deacetylase corepressor was proposed to be important in leukemogenesis. We found that PLZF-RARα can repress transcription of the p21WAF/CDKN1A gene, which encodes the negative cell cycle regulator p21 by binding to its proximal promoter Sp1-binding GC-boxes 3, 4, 5/6, a retinoic acid response element (RARE), and distal p53-responsive elements (p53REs). PLZF-RARα also acts as a competitive transcriptional repressor of p53, RARα, and Sp1. PLZF-RARα interacts with co-repressors such as mSin3A, NCoR, and SMRT, thereby deacetylating histones Ac-H3 and Ac-H4 at the CDKN1A promoter. PLZF-RARα also interacts with the MBD3-NuRD complex, leading to epigenetic silencing of CDKN1A through DNA methylation. Furthermore, PLZF-RARα represses TP53 and increases p53 protein degradation by ubiquitination, further repressing p21 expression. Resultantly, PLZF-RARα promotes cell proliferation and significantly increases the number of cells in S-phase. PMID:24821728

  8. SIAH-1 promotes apoptosis and tumor suppression through a network involving the regulation of protein folding, unfolding, and trafficking: Identification of common effectors with p53 and p21Waf1

    PubMed Central

    Roperch, Jean-Pierre; Lethrone, Florence; Prieur, Sylvie; Piouffre, Laurence; Israeli, David; Tuynder, Marcel; Nemani, Mona; Pasturaud, Patricia; Gendron, Marie-Claude; Dausset, Jean; Oren, Moshe; Amson, Robert B.; Telerman, Adam

    1999-01-01

    We have previously described biological model systems for studying tumor suppression in which, by using H-1 parvovirus as a selective agent, cells with a strongly suppressed malignant phenotype (KS or US) were derived from malignant cell lines (K562 or U937). By using cDNA display on the K562/KS cells, 15 cDNAs were now isolated, corresponding to genes differentially regulated in tumor suppression. Of these, TSAP9 corresponds to a TCP-1 chaperonin, TSAP13 to a regulatory proteasome subunit, and TSAP21 to syntaxin 11, a vesicular trafficking molecule. The 15 cDNAs were used as a molecular fingerprint in different tumor-suppression models. We found that a similar pattern of differential regulation is shared by activation of p53, p21Waf1, and the human homologue of Drosophila seven in absentia, SIAH-1. Because SIAH-1 is differentially expressed in the various models, we characterized it at the protein and functional levels. The 32-kDa, mainly nuclear protein encoded by SIAH-1, can induce apoptosis and promote tumor suppression. These results suggest the existence of a common mechanism of tumor suppression and apoptosis shared by p53, p21Waf1, and SIAH-1 and involving regulation of the cellular machinery responsible for protein folding, unfolding, and trafficking. PMID:10393949

  9. p53-independent increase in p21WAF1 and reciprocal down-regulation of cyclin A and proliferating cell nuclear antigen in bromodeoxyuridine-mediated growth arrest of human melanoma cells.

    PubMed

    Strasberg Rieber, M; Welch, D R; Miele, M E; Rieber, M

    1996-02-01

    Differentially regulated expression of activators and inhibitors of cyclin-dependent kinases (cdks) modulate cell cycle progression. In normal fibroblasts, these complexes consist of the cdk inhibitor p21WAF1/PCNA/G1 cyclin/cdk. We now show that bromodeoxyuridine (BrdUrd), a thymidine analogue and radiation sensitizer, inhibits growth and activity of cyclin A-cdk2 kinase in metastatic C8161 and nonmetastatic neo 6.3/C8161 human melanoma cells. Inhibition is not due to altered levels of cyclin D or catalytic cdk2 but involves a decrease in cyclin A and proliferating cell nuclear antigen, paralleled by higher levels of p21WAF1 without increases in p53. In contrast to serum starvation, which prevents accumulation of cyclins A and D in normal fibroblasts, such treatment did not down-regulate either cyclin in these melanoma cells, implying an aberrant control for G1 cyclins in these tumor cells. However, cyclin A was decreased by BrdUrd, suggesting that this pyrimidine analogue arrests melanoma cells at a G1 transition point, unlike that of serum starvation. This is the first report indicating that the antitumor therapeutic action of BrdUrd may be mediated by a p53-independent reciprocal effect on activators and inhibitors of cdk kinases.

  10. Downregulation of LRRC8A protects human ovarian and alveolar carcinoma cells against Cisplatin-induced expression of p53, MDM2, p21Waf1/Cip1, and Caspase-9/-3 activation

    PubMed Central

    Sørensen, Belinda Halling; Nielsen, Dorthe; Thorsteinsdottir, Unnur Arna; Hoffmann, Else Kay

    2016-01-01

    The leucine-rich repeat containing 8A (LRRC8A) protein is an essential component of the volume-sensitive organic anion channel (VSOAC), and using pharmacological anion channel inhibitors (NS3728, DIDS) and LRRC8A siRNA we have investigated its role in development of Cisplatin resistance in human ovarian (A2780) and alveolar (A549) carcinoma cells. In Cisplatin-sensitive cells Cisplatin treatment increases p53-protein level as well as downstream signaling, e.g., expression of p21Waf1/Cip1, Bax, Noxa, MDM2, and activation of Caspase-9/-3. In contrast, Cisplatin-resistant cells do not enter apoptosis, i.e., their p53 and downstream signaling are reduced and caspase activity unaltered following Cisplatin exposure. Reduced LRRC8A expression and VSOAC activity are previously shown to correlate with Cisplatin resistance, and here we demonstrate that pharmacological inhibition and transient knockdown of LRRC8A reduce the protein level of p53, MDM2, and p21Waf1/Cip1 as well as Caspase-9/-3 activation in Cisplatin-sensitive cells. Cisplatin resistance is accompanied by reduction in total LRRC8A expression (A2780) or LRRC8A expression in the plasma membrane (A549). Activation of Caspase-3 dependent apoptosis by TNFα-exposure or hyperosmotic cell shrinkage is almost unaffected by pharmacological anion channel inhibition. Our data indicate 1) that expression/activity of LRRC8A is essential for Cisplatin-induced increase in p53 protein level and its downstream signaling, i.e., Caspase-9/-3 activation, expression of p21Waf1/Cip1 and MDM2; and 2) that downregulation of LRRC8A-dependent osmolyte transporters contributes to acquirement of Cisplatin resistance in ovarian and lung carcinoma cells. Activation of LRRC8A-containing channels is upstream to apoptotic volume decrease as hypertonic cell shrinkage induces apoptosis independent of the presence of LRRC8A. PMID:26984736

  11. Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism.

    PubMed

    Galbiati, F; Volonté, D; Liu, J; Capozza, F; Frank, P G; Zhu, L; Pestell, R G; Lisanti, M P

    2001-08-01

    Caveolin-1 is a principal component of caveolae membranes in vivo. Caveolin-1 mRNA and protein expression are lost or reduced during cell transformation by activated oncogenes. Interestingly, the human caveolin-1 gene is localized to a suspected tumor suppressor locus (7q31.1). However, it remains unknown whether caveolin-1 plays any role in regulating cell cycle progression. Here, we directly demonstrate that caveolin-1 expression arrests cells in the G(0)/G(1) phase of the cell cycle. We show that serum starvation induces up-regulation of endogenous caveolin-1 and arrests cells in the G(0)/G(1) phase of the cell cycle. Moreover, targeted down-regulation of caveolin-1 induces cells to exit the G(0)/G(1) phase. Next, we constructed a green fluorescent protein-tagged caveolin-1 (Cav-1-GFP) to examine the effect of caveolin-1 expression on cell cycle regulation. We directly demonstrate that recombinant expression of Cav-1-GFP induces arrest in the G(0)/G(1) phase of the cell cycle. To examine whether caveolin-1 expression is important for modulating cell cycle progression in vivo, we expressed wild-type caveolin-1 as a transgene in mice. Analysis of primary cultures of mouse embryonic fibroblasts from caveolin-1 transgenic mice reveals that caveolin-1 induces 1) cells to exit the S phase of the cell cycle with a concomitant increase in the G(0)/G(1) population, 2) a reduction in cellular proliferation, and 3) a reduction in the DNA replication rate. Finally, we demonstrate that caveolin-1-mediated cell cycle arrest occurs through a p53/p21-dependent pathway. Taken together, our results provide the first evidence that caveolin-1 expression plays a critical role in the modulation of cell cycle progression in vivo.

  12. Caveolin-1 Expression Negatively Regulates Cell Cycle Progression by Inducing G0/G1 Arrest via a p53/p21WAF1/Cip1-dependent Mechanism

    PubMed Central

    Galbiati, Ferruccio; Volonte', Daniela; Liu, Jun; Capozza, Franco; Frank, Philippe G.; Zhu, Liang; Pestell, Richard G.; Lisanti, Michael P.

    2001-01-01

    Caveolin-1 is a principal component of caveolae membranes in vivo. Caveolin-1 mRNA and protein expression are lost or reduced during cell transformation by activated oncogenes. Interestingly, the human caveolin-1 gene is localized to a suspected tumor suppressor locus (7q31.1). However, it remains unknown whether caveolin-1 plays any role in regulating cell cycle progression. Here, we directly demonstrate that caveolin-1 expression arrests cells in the G0/G1 phase of the cell cycle. We show that serum starvation induces up-regulation of endogenous caveolin-1 and arrests cells in the G0/G1 phase of the cell cycle. Moreover, targeted down-regulation of caveolin-1 induces cells to exit the G0/G1 phase. Next, we constructed a green fluorescent protein-tagged caveolin-1 (Cav-1-GFP) to examine the effect of caveolin-1 expression on cell cycle regulation. We directly demonstrate that recombinant expression of Cav-1-GFP induces arrest in the G0/G1 phase of the cell cycle. To examine whether caveolin-1 expression is important for modulating cell cycle progression in vivo, we expressed wild-type caveolin-1 as a transgene in mice. Analysis of primary cultures of mouse embryonic fibroblasts from caveolin-1 transgenic mice reveals that caveolin-1 induces 1) cells to exit the S phase of the cell cycle with a concomitant increase in the G0/G1 population, 2) a reduction in cellular proliferation, and 3) a reduction in the DNA replication rate. Finally, we demonstrate that caveolin-1-mediated cell cycle arrest occurs through a p53/p21-dependent pathway. Taken together, our results provide the first evidence that caveolin-1 expression plays a critical role in the modulation of cell cycle progression in vivo. PMID:11514613

  13. Activation of the BRCA1/Chk1/p53/p21(Cip1/Waf1) pathway by nitric oxide and cell cycle arrest in human neuroblastoma NB69 cells.

    PubMed

    Van de Wouwer, Marlies; Couzinié, Célia; Serrano-Palero, Miguel; González-Fernández, Oscar; Galmés-Varela, Clara; Menéndez-Antolí, Paula; Grau, Laura; Villalobo, Antonio

    2012-03-31

    Nitric oxide (NO) works as a bi-modal effector of cell proliferation, inducing either the increase or decrease of cell growth when cells are exposed, respectively, to low or high NO concentrations. To get further insight into the action of NO, we tested the effect of short- and long-lived NO donors on the control of the cell cycle in human neuroblastoma NB69 cells. We demonstrated that long-time exposure of cells to NO not only decreased the expression and/or the phosphorylation of elements involved in the control of the G(1)/S transition, such as the transcriptional repressor pRb and cyclin D1, but also down-regulated systems controlling the S and G(2)/M phases, such as the phosphorylation of Cdk1(cdc2) and the expression of cyclins A and B1. Increasing concentrations of NO also induced a biphasic effect on the expression of cyclins D1, A and B1, while this effect was less pronounced for cyclin E expression, but the levels of mRNAs of those cyclins changed in a distinct and complex manner. NO also changed the phosphorylation pattern of cyclin E and decreased the levels of phospho-cyclins D1 and B1. Moreover, NO decreased the expression of the Cdk inhibitors p16(Ink4a) and p19(Ink4d), without affecting p27(Kip1). In contrast, NO induced a biphasic effect on p21(Cip1/Waf1) expression. The BRCA1/Chk1/p53 pathway mediated the upregulation of p21(Cip1/Waf1). We also demonstrated that the NO-mediated up-regulation of p21(Cip1/Waf1) was inversely correlated with the activation status of the p38MAPK pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Nucleostemin knocking-down causes cell cycle arrest and apoptosis in human T-cell acute lymphoblastic leukemia MOLT-4 cells via p53 and p21Waf1/Cip1 up-regulation.

    PubMed

    Rahmati, Marveh; Moosavi, Mohammad Amin; Zarghami, Nosratollah

    2014-12-01

    Nucleostemin (NS), a recently discovered nucleolar protein, is essential for maintaining self-renewal and proliferation of embryonic and adult stem cells as well as cancerous cells. The aim of this study was to determine biological function of NS in MOLT-4 cells as a human T-cell acute lymphocytic leukemia (T-ALL) model. Efficacy of a specific small interference RNA on NS depletion was studied by quantitative polymerase chain reaction and western blotting. The growth rate and viability were analyzed by trypan blue exclusion test. Fluorescent microscopy was used for detecting apoptosis. Cell cycle and apoptosis were mechanistically studied by flow cytometry and western blotting. Knockdown of NS inhibited proliferation, arrested the cell cycle, and induced apoptosis through p53 and p21(Waf1/Cip1) pathways in MOLT-4 cells. These findings demonstrate critical roles of NS in MOLT-4 cells and may implicate on its therapeutic potential in this human T-ALL model.

  15. Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/ p21WAF1/CIP1 and p27KIP1 pathway.

    PubMed

    Singh, Santosh Kumar; Banerjee, Saswati; Acosta, Edward P; Lillard, James W; Singh, Rajesh

    2017-02-13

    Resveratrol (RES) is the most effective natural products used for the treatment of a variety of cancers. In this study, we tested the effect of RES in enhancing the efficacy of docetaxel (DTX) treatment in prostate cancer (PCa) cells. The C4-2B and DU-145 cell lines were treated with RES, DTX and combination followed by evaluating the apoptosis and cell cycle progression. The combined drug treatment up-regulates the pro-apoptotic genes (BAX, BID, and BAK), cleaved PARP and down regulates the anti-apoptotic genes (MCL-1, BCL-2, BCL-XL) promoting apoptosis. In C4-2B cells the combination up regulated the expression of p53, and cell cycle inhibitors (p21WAF1/CIP1, p27KIP), which, in turn, inhibited the expression of CDK4, cyclin D1, cyclin E1 and induced hypo-phosphorylation of Rb thus blocking the transition of cells in the G0/G1 to S phase. In contrast, the synergistic effect was not profound in DU145 due to its lesser sensitivity to DTX. The suppression of cyclin B1 and CDK1 expression in both cell lines inhibits the further progression of cells in G2/M phase. The current study demonstrates that combination treatment blocks the cell cycle arrest by modulation of key regulators and promotes apoptosis via p53 dependent and independent mechanism in PCa.

  16. Thrombin inhibits tumor cell growth in association with up-regulation of p21(waf/cip1) and caspases via a p53-independent, STAT-1-dependent pathway.

    PubMed

    Huang, Y Q; Li, J J; Karpatkin, S

    2000-03-03

    Thrombin, a multifunctional protein, has been found to be involved in cellular mitogenesis, tumor growth, and metastasis, in addition to its well known effects on the initiation of platelet aggregation and secretion and the conversion of fibrinogen to fibrin to form blood clots. These properties of thrombin rely on its action as a serine protease, which cleaves the N-terminal region of a 7-transmembrane G protein receptor (protease-activated receptor, PAR-1), thus exposing a tethered end hexapeptide sequence capable of activating its receptor. Little is known about its effect on genes that regulate the cell cycle. This study was undertaken to investigate the possible mechanisms by which thrombin regulates tumor cell growth in several tumor cell lines: human CHRF megakaryocyte, DU145 prostate, MDAMB231 and MCF7 breast, U3A fibrosarcoma, and 2 murine fibroblast cell lines, MEFp53(-/-) and CD STAT(-/-). We have found that thrombin under the conditions of culture employed inhibits cell growth by both up-regulation of p21(waf/cip1) and induction of caspases via its PAR-1 receptor. The increased expression of p21(waf/cip1) by thrombin was p53 independent, STAT1 dependent, and protein synthesis independent. This was associated with tyrosine phosphorylation of JAK2 and STAT1, and nuclear translocation of STAT1. Induction of apoptosis is also PAR-1-specific, STAT1-dependent, and associated with up-regulation of caspases 1, 2, and 3. Our study establishes, for the first time, a link between PAR-1 receptor activation with the STAT signal pathway, which leads to cell cycle control and apoptosis. This observation broadens our understanding of the mechanism of PAR-1 activation and its effect on cell growth, and could possibly lead to therapeutic approaches for the treatment of cancer.

  17. Resveratrol increases nitric oxide synthase, induces accumulation of p53 and p21(WAF1/CIP1), and suppresses cultured bovine pulmonary artery endothelial cell proliferation by perturbing progression through S and G2.

    PubMed

    Hsieh, T C; Juan, G; Darzynkiewicz, Z; Wu, J M

    1999-06-01

    Epidemiological studies have shown that the regular consumption of red wine may in part account for the apparent compatibility of a high fat diet with a low incidence of coronary atherosclerosis. This phenomenon, commonly referred to as the French paradox, may be associated with red wine constituents that exhibit tumor-preventive properties as well as inhibit reactions that increase the risk of coronary heart disease. Here we show that resveratrol, a polyphenol in red wine, induces nitric oxide synthase, the enzyme responsible for the biosynthesis of NO, in cultured pulmonary artery endothelial cells, suggesting that resveratrol could afford cardioprotection by affecting the expression of nitric oxide synthase. We also show that resveratrol inhibits the proliferation of pulmonary artery endothelial cells, which, based on flow cytometric analysis, correlates with the suppression of cell progression through S and G2 phases of the cell cycle. Western blot analysis and immunocytochemical protein detection combined with multiparameter flow cytometry further demonstrate that the perturbed progression through S and G2 phases is accompanied by an increase in the expression of tumor suppressor gene protein p53 and elevation of the level of cyclin-dependent kinase inhibitor p21(WAF1/CIP1). All of the observed effects of resveratrol, including induction of apoptosis at its higher concentration, are also compatible with its putative chemopreventive and/or antitumor activity.

  18. p21WAF1 immunohistochemical expression in breast carcinoma: correlations with clinicopathological data, oestrogen receptor status, MIB1 expression, p53 gene and protein alterations and relapse-free survival.

    PubMed Central

    Barbareschi, M.; Caffo, O.; Doglioni, C.; Fina, P.; Marchetti, A.; Buttitta, F.; Leek, R.; Morelli, L.; Leonardi, E.; Bevilacqua, G.; Dalla Palma, P.; Harris, A. L.

    1996-01-01

    p21 protein (p21) inhibitor of cyclin-dependent kinases is a critical downstream effector in the p53-specific pathway of growth control. p21 can also be induced by p53-independent pathways in relation to terminal differentiation. We investigated p21 immunoreactivity in normal breast and in 91 breast carcinomas [three in situ ductal carcinomas (DCIS) with microinfiltration and 88 infiltrating carcinomas, 17 of which with an associated DCIS; 57 node negative and 34 node positive] with long-term follow-up (median = 58 months). Seven additional breast carcinomas with known p53 gene mutations were investigated. In normal breast p21 expression was seen in the nuclei of rare luminal cells of acinar structures, and in occasional myoepithelial cells. Poorly differentiated DCIS showed high p21 expression, whereas well-differentiated DCIS tumours showed few p21-reactive cells. p21 was seen in 82 (90%) infiltrating tumours; staining was heterogeneous; the percentage of reactive nuclei ranged from 1% to 35%. High p21 expression (more than 10% of reactive cells) was seen in 24 (26%) cases, and was associated with high tumour grade (P = 0.032); no associations were seen with tumour size, metastases, oestrogen receptor status, MIB1 expression and p53 expression. p21 expression in cases with p53 gene mutations was low in six cases and high in one. High p21 expression was associated with short relapse-free survival (P = 0.003). Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8688323

  19. Immunohistochemical expression of the p53, mdm2, p21/Waf-1, Rb, p16, Ki67, cyclin D1, cyclin A and cyclin B1 proteins and apoptotic index in T-cell lymphomas.

    PubMed

    Kanavaros, P; Bai, M; Stefanaki, K; Poussias, G; Rontogianni, D; Zioga, E; Gorgoulis, V; Agnantis, N J

    2001-04-01

    Fifty-seven cases of T-cell lymphomas (TCL) including 5 lymphoblastic (T-LBL) and 52 peripheral TCL (PTCL) were analyzed by immunohistochemistry for the expression of p53, mdm2, p21, Rb, cyclin D1, cyclin A, cyclin B1, and Ki67/MIB1 proteins and 39/52 PTCL were also analyzed for the expression of p16 protein and for the presence of apoptotic cells by the TUNEL method. The aim was to search for abnormal immunoprofiles of p53 and Rb growth control pathways and to determine the proliferative activity and the apoptotic index of TCL. Abnormal overexpression of p53, p21 and mdm2, in comparison to normal lymph nodes, was found in 12/57, 10/57 and 2/57 cases of TCL, respectively. Abnormal loss of Rb and p16 expression was found in 1/57 and 2/39 cases, respectively, whereas abnormal overexpression of cyclin D1 was not detected in any of the 57 cases. Our data revealed entity-related p53/p21/mdm2 phenotypes. Indeed, most nodal and cutaneous CD30+ anaplastic large cell lymphomas (ALCL) showed concomitant overexpression of p53 and p21 proteins (7/8 cases), and mdm2 was overexpressed in 2 p53-positive nodal ALCL. In contrast, overexpression of p53 was found in 3/17 cases of nodal peripheral TCL unspecified (PTCL-UC) and 2/7 non-ALCL cutaneous pleomorphic TCL. Overexpression of p21 protein was detected in 2/3 p53-positive PTCL-UC and in 1/2 p53-positive non-ALCL cutaneous pleomorphic TCL. Finally, all the remaining 25 cases of TCL did not show p53 and p21 overexpression. Overall, the p53+/p21+ phenotype in 10/57 TCL suggests wild-type p53 capable of inducing p21 expression. The highest apoptotic index (AI) was found in ALCL and a positive correlation between apoptotic index and Ki67 index (p<0.001) was detected. Ki67, cyclin A and cyclin B1 expression was found in all 57 TCL and on the basis of the combined use of these 3 variables, 3 groups of proliferative activity could be determined: a) high in ALCL and T-LBL, b) low in mycosis fungoides (MF) and gammadelta hepatosplenic TCL

  20. Expression of the the cyclin-kinase inhibitors p21(WAF1) and p27(Kip1) and the p53 tumor suppressor genes in adult-onset laryngeal papillomas.

    PubMed

    Erdamar, Burak; Keles, Nesil; Kaur, Ahmet; Suoglu, Yusufhan; Kiyak, Erkan

    2002-11-01

    Different types of human papilloma virus are known to be closely associated with laryngeal papillomas. On the other hand, the proliferation of epithelial cells is associated with various abnormalities in the mechanisms of cellular regulation. In this study, we detected the expressions of p53, p21 and p27 proteins in adult-onset laryngeal papillomas by immunohistochemical techniques. The objective of this study is to evaluate the expression of these factors in adult-onset laryngeal papillomas and to determine whether such expression is correlated with the existence of dysplastic epithelium covering the papillomas. Eighteen patients with adult-onset papillomas who were surgically treated at the Department of Otolaryngology at the University of Istanbul between January 1994 and December 1999 were included in this study. Anti-p21, -p27 and -p53 antibodies were used to perform immunostaining. Positive nuclear staining for p21 was detected in 14 of the 18 (78%) cases, especially in the parabasal layer. Also, in 78% of the cases, weak to strong immunoreactivity was observed for p27. In all cases, negative immunoreactivity was observed for p53 throughout the epithelium except for the basal and parabasal cells. A negative correlation was observed between the existence of dysplastic epithelium and p21 expression (P=0.02). In conclusion, variable p21 and p27 expression was detected by immunohistochemistry in our series of 18 cases of adult-onset laryngeal papillomatosis, and a statistically significant inverse correlation was detected between p21 expression and the existence of dysplastic epithelium covering the papillomas. Further prospective studies are warranted to determine the prognostic values of these variables and to evaluate their role in the pathogenesis of adult-onset laryngeal papillomas.

  1. p53-independent p21 induction by MELK inhibition

    PubMed Central

    Matsuda, Tatsuo; Kato, Taigo; Kiyotani, Kazuma; Tarhan, Yunus Emre; Saloura, Vassiliki; Chung, Suyoun; Ueda, Koji; Nakamura, Yusuke; Park, Jae-Hyun

    2017-01-01

    MELK play critical roles in human carcinogenesis through activation of cell proliferation, inhibition of apoptosis and maintenance of stemness. Therefore, MELK is a promising therapeutic target for a wide range of cancers. Although p21 is a well-known p53-downstream gene, we found that treatment with a potent MELK inhibitor, OTS167, could induce p21 protein expression in cancer cell lines harboring loss-of-function TP53 mutations. We also confirmed that MELK knockdown by siRNA induced the p21 expression in p53-deficient cancer cell lines and caused the cell cycle arrest at G1 phase. Further analysis indicated that FOXO1 and FOXO3, two known transcriptional regulators of p21, were phosphorylated by MELK and thus be involved in the induction of p21 after MELK inhibition. Collectively, our herein findings suggest that MELK inhibition may be effective for human cancers even if TP53 is mutated. PMID:28938528

  2. c-Abl inhibits breast cancer tumorigenesis through reactivation of p53-mediated p21 expression

    PubMed Central

    Thompson, Cheryl L.; Gilmore, Hannah L.; Chang, Jenny C.; Keri, Ruth A.; Schiemann, William P.

    2016-01-01

    We previously reported that constitutive c-Abl activity (CST-Abl) abrogates the tumorigenicity of triple-negative breast cancer cells through the combined actions of two cellular events: downregulated matrix metalloproteinase (MMP) and upregulated p21Waf1/Cip1 expression. We now find decreased c-Abl expression to be significantly associated with diminished relapse-fee survival in breast cancer patients, particularly those exhibiting invasive and basal phenotypes. Moreover, CST-Abl expression enabled 4T1 cells to persist innocuously in the mammary glands of mice, doing so by exhausting their supply of cancer stem cells. Restoring MMP-9 expression and activity in CST-Abl-expressing 4T1 cells failed to rescue their malignant phenotypes; however, rendering these same cells deficient in p21 expression not only delayed their acquisition of senescent phenotypes, but also partially restored their tumorigenicity in mice. Although 4T1 cells lacked detectable expression of p53, those engineered to express CST-Abl exhibited robust production and secretion of TGF-β1 that engendered the reactivated expression of p53. Mechanistically, TGF-β-mediated p53 expression transpired through the combined actions of Smad1/5/8 and Smad2, leading to the dramatic upregulation of p21 and its stimulation of TNBC senescence. Collectively, we identified a novel c-Abl:p53:p21 signaling axis that functions as a powerful suppressor of mammary tumorigenesis and metastatic progression. PMID:27626309

  3. Patterns of p21waf1/cip1 expression in non-papillomatous nasal mucosa, endophytic sinonasal papillomas, and associated carcinomas

    PubMed Central

    Schwerer, M; Sailer, A; Kraft, K; Baczako, K; Maier, H

    2001-01-01

    Aims—To clarify p21waf1/cip1 expression in sinonasal lesions. Methods—Archived surgical specimens from 38 patients were investigated by means of immunohistochemistry. p21waf1/cip1 staining was evaluated in the different layers of the epithelium. In addition, human papillomavirus (HPV) infection and p53 protein overexpression were assessed and correlated with p21waf1/cip1 expression. Results—p21waf1/cip1 staining was negative in non-papillomatous nasal mucosa. HPV infection and p53 protein overexpression were not seen. Sixteen of 20 inverted papillomas showed p21waf1/cip1 expression. HPV infection was found in 16 cases and p53 protein overexpression was present in 13 specimens. Expression of p21waf1/cip1 was restricted to surface cells in five cases, but involved basal/parabasal cells in 11 specimens. Immunoreactivity for p21waf1/cip1 in basal/parabasal cells colocalised with p53 protein overexpression. Enhanced expression rates for p21waf1/cip1 were seen in transitional and squamous epithelium compared with columnar epithelium. p21waf1/cip1 expression involved only surface cells in cylindrical cell papillomas. HPV infection and p53 protein overexpression were detected in all specimens. One of five squamous cell carcinomas showed p21waf1/cip1 expression. HPV infection was seen in two cases, and all carcinomas showed p53 protein overexpression. Conclusions—Expression of p21waf1/cip1 is associated with terminal differentiation in surface cells in inverted papillomas and cylindrical cell papillomas, but not in non-papillomatous nasal mucosa. Overexpression of p53 protein colocalises with p21waf1/cip1 expression in basal/parabasal cells in inverted papillomas but not in cylindrical cell papillomas. Expression of p21waf1/cip1 in squamous cell carcinomas involves a subset of tumours with p53 protein overexpression. Key Words: p21waf1/cip1 • nasal mucosa • sinonasal papillomas • squamous cell carcinomas PMID:11684723

  4. The RNA-binding protein Musashi-1 regulates neural development through the translational repression of p21WAF-1.

    PubMed

    Battelli, Chiara; Nikopoulos, George N; Mitchell, Jane G; Verdi, Joseph M

    2006-01-01

    RNA-binding proteins regulate cell fate decisions during nervous system development. The Msi family of RNA-binding proteins is expressed in multipotential neural progenitors, and is required for maintaining cells in a proliferative state. We demonstrate that Msi-1's ability to regulate progenitor maintenance is through the translational inhibition of the cyclin-dependent kinase inhibitor p21WAF-1. Msi-1 ectopic expression increases the proliferation rate and the capacity to regulate p21WAF-1 protein expression, independent of p53. The 3' untranslated region (UTR) of the native p21(WAF-1) mRNA contains a Msi-1 consensus-binding site that permits Msi-1 to directly repress the translation of p21WAF-1 protein. Reduction of Msi-1 through antisense leads to aberrant p21WAF-1 expression, which significantly impairs neural differentiation. A double knockdown for p21WAF-1 and Msi-1 rescues the production of mature MAP+ neurons. Our results further elucidate the symbiotic relationship between cell cycle withdrawal and the onset of differentiation in the developing nervous system, as well as increasing the understanding of the influence that RNA-binding proteins serve in regulating these processes.

  5. Expression of Smad4, TGF-βRII, and p21waf1 in esophageal squamous cell carcinoma tissue

    PubMed Central

    CHENG, HUI; CHEN, CHENG; LIU, LU; ZHAN, NA; LI, BENHUI

    2015-01-01

    Esophageal squamous cell carcinoma (SCC) possesses one of the worst prognoses out of the digestive carcinomas. Several studies have suggested that transforming growth factor β receptor type II (TGF-βRII), Smad family member 4 (Smad4) and p21 wild-type p53-activated factor 1 (p21waf1) are associated with esophageal SCC. The aim of the present study was to evaluate the effect of Smad4, TGF-βRII and p21waf1 in esophageal squamous cancer tissue and the pathological significance of the effect. An immunohistochemical method was used to evaluate the expression levels of Smad4, TGF-βRII and p21waf1 in specimens of esophageal SCC lesions obtained from 80 patients. It was found that the expression of Smad4, TGF-βRII and p21waf1 in histologically-classified grade I esophageal SCC, without invasion or lymph node metastasis, was markedly higher compared with grade III esophageal SCC that had invaded into the deep muscular or serous layer and metastasized to the lymph nodes (P<0.05). Analysis of the expression level of Smad4, TGF-βRII and p21waf1, as well as the clinical and pathological characteristics of esophageal SCC, revealed that the three proteins may be associated with the carcinogenesis, biological behavior and prognosis of esophageal SCC, parallel to the pathological stage and cell grade. PMID:26137158

  6. Ubiquitination of p53 and p21 is differentially affected by ionizing and UV radiation.

    PubMed Central

    Maki, C G; Howley, P M

    1997-01-01

    Levels of the tumor suppressor protein p53 are normally quite low due in part to its short half-life. p53 levels increase in cells exposed to DNA-damaging agents, such as radiation, and this increase is thought to be responsible for the radiation-induced G1 cell cycle arrest or delay. The mechanisms by which radiation causes an increase in p53 are currently unknown. The purpose of this study was to compare the effects of gamma and UV radiation on the stability and ubiquitination of p53 in vivo. Ubiquitin-p53 conjugates could be detected in nonirradiated and gamma-irradiated cells but not in cells which were UV treated, despite the fact that both treatments resulted in the stabilization of the p53 protein. These results demonstrate that UV and gamma radiation have different effects on ubiquitinated p53 and suggest that the UV-induced stabilization of p53 results from a loss of p53 ubiquitination. Ubiquitinated forms of p21, an inhibitor of cyclin-dependent kinases, were detected in vivo, demonstrating that p21 is also a target for degradation by the ubiquitin-dependent proteolytic pathway. However, UV and gamma radiation had no effect on the stability or in vivo ubiquitination of p21, indicating that the radiation effects on p53 are specific. PMID:8972216

  7. ZNF307, a novel zinc finger gene suppresses p53 and p21 pathway

    SciTech Connect

    Li Jing; Wang Yuequn; Fan Xiongwei; Mo Xiaoyang; Wang Zequn; Li Yongqing; Yin Zhaochu; Deng Yun; Luo Na; Zhu Chuanbing; Liu Mingyao; Ma Qian; Ocorr, Karen Yuan Wuzhou Wu Xiushan

    2007-11-30

    We have cloned a novel KRAB-related zinc finger gene, ZNF307, encoding a protein of 545 aa. ZNF307 is conserved across species in evolution and is differentially expressed in human adult and fetal tissues. The fusion protein of EGFP-ZNF307 localizes in the nucleus. Transcriptional activity assays show ZNF307 suppresses transcriptional activity of L8G5-luciferase. Overexpressing ZNF307 in different cell lines also inhibits the transcriptional activities of p53 and p21. Moreover, ZNF307 works by reducing the p53 protein level and p53 protein reduction is achieved by increasing transcription of MDM2 and EP300. ZNF307 might suppress p53-p21 pathway through activating MDM2 and EP300 expression and inducing p53 degradation.

  8. Association of p53 and p21 polymorphisms with prostate cancer

    PubMed Central

    SIVOŇOVÁ, MONIKA KMEŤOVÁ; VILČKOVÁ, MARTA; KLIMENT, JÁN; MAHMOOD, SILVIA; JUREČEKOVÁ, JANA; DUŠENKOVÁ, SVETLANA; WACZULÍKOVÁ, IVETA; SLEZÁK, PETER; DOBROTA, DUŠAN

    2015-01-01

    Cell cycle deregulation is common in human cancer. Alterations of the tumor-suppressor gene p53 and its downstream effector p21 have been indicated in the development of numerous human malignancies. Therefore, we hypothesize that the p53 codon 72 polymorphism, either on its own or in combination with p21 (C98A and C70T) polymorphisms, modifies the risk of prostate cancer within the Slovak population, and no previous studies have investigated these gene-gene interactions in the pathogenesis of prostate cancer in the Slovak population. Polymerase chain reaction-restriction fragment length polymorphism was used to determine the p53 and p21 genotypes in subjects comprising 300 prostate cancer patients and 446 healthy individuals. These 3 polymorphisms individually did not correlate with the prostate cancer risk. Conversely, the interaction between the p53 and p21 polymorphisms significantly decreased the risk of prostate cancer, with the odds ratio (OR) being 0.49 [95% confidence interval (CI), 0.27–0.86; P<0.05] for subjects carrying the p53 codon 72 arginine (Arg)/proline (Pro)+Pro/Pro and p21 C98A CA genotypes compared to the combined reference genotypes p53 codon 72 Arg/Arg and p21 C98A CC. Neither the p53 genotypes nor the p21 genotypes showed statistically significant differences in Gleason score or serum prostate-specific antigen levels (P>0.05). A decreased risk of prostate cancer association with the p21 C98A CA genotype (OR=0.58; 95% CI, 0.36–0.93; P<0.05) in non-smokers compared to the non-smokers with the p21 C98A CC genotype was observed. Smokers carrying the p53 codon 72 Pro/Pro genotype were not at any significant risk of prostate cancer (OR=2.97; 95% CI, 0.51–17.15) compared to the non-smokers with the Arg/Arg genotype. Taken together, to the best of our knowledge this is the first study to show that a combination of the variant genotypes of p53 codon 72 and p21 C98A may modify the prostate cancer risk within the Slovak population. PMID:26405550

  9. Correlation among 16 biological factors [p53, p21(waf1), MIB-1 (Ki-67), p16(INK4A), cyclin D1, E-cadherin, Bcl-2, TNF-α, NF-κB, TGF-β, MMP-7, COX-2, EGFR, HER2/neu, ER, and HIF-1α] and clinical outcomes following curative chemoradiation therapy in 10 patients with esophageal squamous cell carcinoma.

    PubMed

    Shibata-Kobayashi, Shino; Yamashita, Hideomi; Okuma, Kae; Shiraishi, Kenshiro; Igaki, Hiroshi; Ohtomo, Kuni; Nakagawa, Keiichi

    2013-03-01

    The expression levels of 16 proteins were analyzed to identify prognostic correlations in esophageal squamous cell carcinoma (ESCC) treated with concurrent chemoradiation therapy (CCRT). The immunohistochemical expression levels of p53, p21(waf1), molecular immunology borstel-1 (MIB-1, Ki-67), p16(INK4A), cyclin D1, E-cadherin, Bcl-2, tumor necrosis factor (TNF)-α, nuclear factor (NF)-κB, transforming growth factor (TGF)-β, matrix metalloproteinase (MMP)-7, cyclooxygenase (COX)-2, epidermal growth factor receptor (EGFR), human EGFR type 2 (HER2/neu), estrogen receptor (ER) and hypoxia-inducible factor (HIF)-1α were studied in 10 cases of ESCC treated with CCRT. The patients underwent CCRT between 2000 and 2010. The mean patient age was 68.1 years (range, 46-80 years). The numbers of patients in stages I, II, III and IV of the disease were 2, 2, 3 and 3, respectively. Of the tumors, 8 were positive for p53, 6 for p21(waf1, 7) for MIB-1 (Ki-67), 7 for p16(INK4A), 7 for cyclin D1, 8 for E-cadherin, 3 for Bcl-2, 0 for TNF-α, 5 for NF-κB, 7 for TGF-β, 9 for MMP-7, 7 for COX-2, 5 for EGFR, 1 for HER2/neu, 1 for ER and 7 for HIF-1α. The 2-year overall survival rate of patients expressing high levels of MIB-1 was 71% (±17%) compared with 0% (P=0.019) for those expressing low levels. For NF-κB, the rate was 0% for patients with high levels compared with 100% (P<0.018) for those with low levels. The 2-year local control rates of HER2/neu were 0% in patients expressing high levels and 88% (±12%) in patients expressing low levels (P=0.027). The 2-year disease-free survival rates of HER2/neu and ER were 0% for patients expressing high levels compared with 56% (±17%) for those with low levels (P=0.027). There were no significant correlations between the expression levels of the other proteins and clinical outcomes. In the present study, high levels of MIB-1 and low levels of NF-κB, HER2 and ER were shown to be good prognostic factors following definitive CCRT for

  10. Methionine sulfoxide reductase A regulates cell growth through the p53-p21 pathway

    SciTech Connect

    Choi, Seung Hee; Kim, Hwa-Young

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Down-regulation of MsrA inhibits normal cell proliferation. Black-Right-Pointing-Pointer MsrA deficiency leads to an increase in p21 by enhanced p53 acetylation. Black-Right-Pointing-Pointer Down-regulation of MsrA causes cell cycle arrest at the G{sub 2}/M stage. Black-Right-Pointing-Pointer MsrA is a regulator of cell growth that mediates the p53-p21 pathway. -- Abstract: MsrA is an oxidoreductase that catalyzes the stereospecific reduction of methionine-S-sulfoxide to methionine. Although MsrA is well-characterized as an antioxidant and has been implicated in the aging process and cellular senescence, its roles in cell proliferation are poorly understood. Here, we report a critical role of MsrA in normal cell proliferation and describe the regulation mechanism of cell growth by this protein. Down-regulation of MsrA inhibited cell proliferation, but MsrA overexpression did not promote it. MsrA deficiency led to an increase in p21, a major cyclin-dependent kinase inhibitor, thereby causing cell cycle arrest at the G{sub 2}/M stage. While protein levels of p53 were not altered upon MsrA deficiency, its acetylation level was significantly elevated, which subsequently activated p21 transcription. The data suggest that MsrA is a regulator of cell growth that mediates the p53-p21 pathway.

  11. Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation.

    PubMed Central

    Asada, M; Yamada, T; Ichijo, H; Delia, D; Miyazono, K; Fukumuro, K; Mizutani, S

    1999-01-01

    p21(Cip1/WAF1) inhibits cell-cycle progression by binding to G1 cyclin/CDK complexes and proliferating cell nuclear antigen (PCNA) through its N- and C-terminal domains, respectively. The cell-cycle inhibitory activity of p21(Cip1/WAF1) is correlated with its nuclear localization. Here, we report a novel cytoplasmic localization of p21(Cip1/WAF1) in peripheral blood monocytes (PBMs) and in U937 cells undergoing monocytic differentiation by in vitro treatment with vitamin D3 or ectopic expression of p21(Cip1/WAF1), and analyze the biological consequences of this cytoplasmic expression. U937 cells which exhibit nuclear p21(Cip1/WAF1) demonstrated G1 cell-cycle arrest and subsequently differentiated into monocytes. The latter event was associated with a cytoplasmic expression of nuclear p21(Cip1/WAF1), concomitantly with a resistance to various apoptogenic stimuli. Biochemical analysis showed that cytoplasmic p21(Cip1/WAF1) forms a complex with the apoptosis signal-regulating kinase 1 (ASK1) and inhibits stress-activated MAP kinase cascade. Expression of a deletion mutant of p21(Cip1/WAF1) lacking the nuclear localization signal (DeltaNLS-p21) did not induce cell cycle arrest nor monocytic differentiation, but led to an apoptosis-resistant phenotype, mediated by binding to and inhibition of the stress-activated ASK1 activity. Thus, cytoplasmic p21(Cip1/WAF1) itself acted as an inhibitor of apoptosis. Our findings highlight the different functional roles of p21(Cip1/WAF1), which are determined by its intracellular distribution and are dependent on the stage of differentiation. PMID:10064589

  12. Cristacarpin promotes ER stress-mediated ROS generation leading to premature senescence by activation of p21(waf-1).

    PubMed

    Chakraborty, Souneek; Rasool, Reyaz Ur; Kumar, Sunil; Nayak, Debasis; Rah, Bilal; Katoch, Archana; Amin, Hina; Ali, Asif; Goswami, Anindya

    2016-06-01

    Stress-induced premature senescence (SIPS) is quite similar to replicative senescence that is committed by cells exposed to various stress conditions viz. ultraviolet radiation (DNA damage), hydrogen peroxide (oxidative stress), chemotherapeutic agents (cytotoxic threat), etc. Here, we report that cristacarpin, a natural product obtained from the stem bark of Erythrina suberosa, promotes endoplasmic reticulum (ER) stress, leading to sub-lethal reactive oxygen species (ROS) generation and which eventually terminates by triggering senescence in pancreatic and breast cancer cells through blocking the cell cycle in the G1 phase. The majority of cristacarpin-treated cells responded to conventional SA-β-gal stains; showed characteristic p21(waf1) upregulation along with enlarged and flattened morphology; and increased volume, granularity, and formation of heterochromatin foci-all of these features are the hallmarks of senescence. Inhibition of ROS generation by N-acetyl-L-cysteine (NAC) significantly reduced the expression of p21(waf1), confirming that the modulation in p21(waf1) by anti-proliferative cristacarpin was ROS dependent. Further, the elevation in p21(waf1) expression in PANC-1 and MCF-7 cells was consistent with the decrease in the expression of Cdk-2 and cyclinD1. Here, we provide evidence that cristacarpin promotes senescence in a p53-independent manner. Moreover, cristacarpin treatment induced p38MAPK, indicating the ROS-dependent activation of the MAP kinase pathway, and thus abrogates the tumor growth in mouse allograft tumor model.

  13. Chlorpromazine activates p21Waf1/Cip1 gene transcription via early growth response-1 (Egr-1) in C6 glioma cells

    PubMed Central

    Shin, Soon Young; Kim, Chang Gun; Kim, Se Hyun; Kim, Yong Sik; Lim, Yoongho

    2010-01-01

    2-Chloro-10-[3(-dimethylamino)propyl]phenothiazinemonohydrochloride (chlorpromazine) is a phenothiazine derivative used clinically to control psychotic disorders. It also exhibits an anticancer activity. Treatment with chlorpromazine (CPZ) results in cell-cycle arrest at the G2/M phase in rat C6 glioma cells. CPZ reduces the expression of cell cycle-related proteins, such as cyclin D1, cyclin A, and cyclin B1, but causes an increase in the p21Waf1/Cip1 level. The molecular mechanism by which CPZ regulates p21Waf1/Cip1 expression is unknown. Here, we provide evidence that CPZ activates the p21Waf1/Cip1 gene promoter via induction of the transcription factor early growth response-1 (Egr-1) independently of p53 in C6 cells. A point mutation in the Egr-1-binding motif within the p21Waf1/Cip1 promoter abrogated promoter inducibility due to CPZ. Forced expression of Egr-1 enhanced p21Waf1/Cip1 promoter activity. In contrast, knockdown of endogenous Egr-1 by small interference RNA attenuated CPZ-induced p21Waf1/Cip1 promoter activity. A chromatin immunoprecipitation assay demonstrated that Egr-1 binds to the p21Waf1/Cip1 gene promoter. Further analysis showed that the ERK and JNK MAP kinases are required for induction of Egr-1 by CPZ. Finally, stable silencing of Egr-1 expression lead to attenuated CPZ-inducible p21Waf1/Cip1 expression and inhibited G2/M phase cell-cycle arrest. These results demonstrate that a functional link between ERK and JNK MAP kinase pathways and p21Waf1/Cip1 induction via Egr-1 contributes to CPZ-induced anticancer activity in C6 glioma cells. PMID:20368687

  14. Alteration of p53 and p21 during hepatocarcinogenesis in tree shrews

    PubMed Central

    Su, Jian-Jia; Ban, Ke-Chen; Li, Yuan; Qin, Liu-Liang; Wang, Hui-Yun; Yang, Chun; Ou, Chao; Duan, Xiao-Xian; Lee, Young-Lk; Yang, Rui-Qi

    2004-01-01

    AIM: To investigate p53 mutation and p21 expression in hepatocarcinogenesis induced by hepatitis B virus (HBV) and aflatoxin B1 (AFB1) in tree shrews, and to reveal the role of these genes in hepatocarcinogenesis. METHODS: Tree shrews were divided into four groups: group A, those infected with HBV and fed with AFB1 (n = 39); group B, those infected with HBV alone (n = 28); group C, those fed with AFB1 alone (n = 29); and group D, normal controls (n = 20). The tree shrews underwent liver biopsies once every 15 wk. Expression of p53 and p21 proteins and genes in the biopsies and tumor tissues of the experimental tree shrews was detected, respectively, by immunohistochemistry, and by Southern blotting and reverse transcription-polymerase chain reaction and sequencing. RESULTS: The incidence of hepatocellular carcinomas (HCC) was higher in group A (66.7%) than that in group B (3.57%) and C (30%). The time of HCC occurrence was also earlier in group A than that in group C (120.0 ± 16.6 wk vs 153.3 ± 5.8 wk, respectively, P < 0.01). p53 protein was not detected by immunohistochemistry in all groups before the 75th wk of the experiment. At the 105th wk, the positive rates fo p53 were 78.6%, 60% and 71.4% in groups A, B and C, respectively, which were significantly higher than that in group D (10%) (all P < 0.05). An abnormal band of p53 gene was observed in groups A and C. The mutation points of p53 gene in tree shrews with HCC were at codons 275, 78 and 13. The nucleotide sequence and amino acid sequence of tree shrew’s wild-type p53 showed 91.7% and 93.4% homologies with those of human p53, respectively. The immunopositivity for p21 was found before HCC development. The incidence of HCC was significantly higher in tree shrews that were positive for p21 than those negative for p21 (80.0% vs 11.0%, P < 0.001). The incidence of HCC in p21 positive animals in group A was significantly higher than those positive for p21 in group C (P < 0.05). CONCLUSION: A remarkable

  15. Expression of a novel form of p21Cip1/Waf1 in UV-irradiated and transformed cells.

    PubMed

    Poon, R Y; Hunter, T

    1998-03-12

    The tumor suppressor p53 and its target the CDK inhibitor p21 (Cip1/Waf1) are key components of the cellular response to DNA damage. Insight into how p21 is regulated in normal cells, and how it may be deregulated in tumor cells is important for the understanding of tumorigenesis. p21 was induced in normal human diploid fibroblasts after UV irradiation-induced DNA damage, but, at a high dose of UV irradiation, a faster mobility form of p21 on SDS-PAGE (designated p21delta) was expressed. Surprisingly, in a variety of growing transformed cell lines, the level of p21 was low but p21delta was prominent. We found that p21delta appeared to be derived through a loss of around 10 amino acids from the C-terminus of p21, which theoretically would remove the PCNA binding domain, a second cyclin binding domain and the nuclear localization signal sequence. Several characteristics distinguish p21 from p21delta. Both the full length p21 and p21delta could be stabilized by a proteasome inhibitor, but only the full length p21 was associated with Cdk2 and PCNA. Consistent with this, gel filtration chromatography revealed that all the full length p21 in the cell was complexed to other proteins, whereas a significant portion of p21delta was in monomeric form. Moreover, p21 was mainly localized to the nucleus, but p21delta was mainly localized to the cytoplasm. We propose that the decrease in p21 and increase in p21delta could contribute to the deregulation of the cell cycle, and could be a mechanism involved in cellular transformation.

  16. p21WAF1 expression during spermatogenesis of the normal and X-irradiated rat.

    PubMed

    West, A; Lähdetie, J

    1997-03-01

    The cyclin dependent kinase inhibitor p21WAF1 has been shown to be upregulated during differentiation and after DNA damage in somatic cells. We examined the expression of p21WAF1 mRNA during the differentiation of germ cells in normal and X-irradiated rat testis by in situ hybridization and Northern blotting. p21WAF1 was normally expressed in primary spermatocytes of the pachytene phase, but could also be detected in round spermatids. In preparations of defined segments of the seminiferous tubules, the strongest hybridization signals were detected in the segments containing stages VII VIII and IX XII of the seminiferous epithelium. Ionizing radiation (1-12 Gy) induced the expression of p21WAF1 in a dose-dependent manner and the lowest dose that showed a clear increase in mRNA levels was 3 Gy. The p21WAF1 mRNA levels peaked after 3-4 hours, but remained high compared with the control levels during the 24-h follow-up. No change in the in situ hybridization pattern was seen when comparing unirradiated and irradiated tissue. Thus, it appears that X-irradiation induces p21WAF1 in the pachytene spermatocytes. Since p21WAF1 mRNA was found in pachytene spermatocytes and in round spermatids in normal testis, the protein may take part in the regulation of meiosis and in the 'terminal' differentiation of the male germ cells.

  17. p21-LacZ reporter mice reflect p53-dependent toxic insult

    SciTech Connect

    Vasey, Douglas B. Wolf, C. Roland; MacArtney, Thomas; Brown, Ken; Whitelaw, C. Bruce A.

    2008-03-15

    There is an urgent need to discover less toxic and more selective drugs to treat disease. The use of transgenic mice that report on toxic insult-induced transcription can provide a valuable tool in this regard. To exemplify this strategy, we have generated transgenic mice carrying a p21-LacZ transgene. Transgene activity reflected endogenous p21 gene activation in various tissues, displayed compound-specific spatial expression signatures in the brain and immune tissues and enabled p53-dependent and p53-independent responses to be identified. We discuss the application of these mice in delineating the molecular events in normal cellular growth and disease and for the evaluation of drug toxicity.

  18. LASS5 Interacts with SDHB and Synergistically Represses p53 and p21 Activity

    PubMed Central

    Jiang, Z.; Li, F.; Wan, Y.; Han, Z.; Yuan, W.; Cao, L.; Deng, Y.; Peng, X.; Chen, F.; Fan, X.; Liu, X.; Dai, G.; Wang, Y.; Zeng, Q.; Shi, Y.; Zhou, Z.; Chen, Y.; Xu, W.; Luo, S.; Chen, S.; Ye, X.; Mo, X.; Wu, X.; Li, Y.

    2017-01-01

    Longevity Assurance 5 (LASS5), a member of the LASS/Ceramide Synthases family, synthesizes C16-ceramide and is implicated in tumor biology. However, its precise role is not yet well understood. A yeast two-hybrid screen was performed using a human cDNA library to identify potential LASS5-interaction partners. One identified clone encodes succinate dehydrogenase subunit B (SDHB). Mammalian two-hybrid assays showed that LASS5 interacts with SDHB, and the result was also confirmed by GST pull-down and co-immunoprecipitation assays. The C-terminal fragment of SDHB was required for the interaction. LASS5 and SDHB were co-localized in COS-7 cells. LASS5 and SDHB expressions were found to be up-regulated in neuroglioma tissue. Transfection assays showed that LASS5 or SDHB expression repressed p53 or p21 reporter activity, respectively. Simultaneous LASS5 and SDHB expression resulted in stronger repression of p53 and p21 reporter activity, suggesting that LASS5 and SDHB interaction may synergistically affect transcriptional regulation of p53 and p21. Our data provide new molecular insights into potential roles of LASS5 and SDHB in tumor biology. PMID:27280497

  19. p53 and p21 determine the sensitivity of noscapine-induced apoptosis in colon cancer cells.

    PubMed

    Aneja, Ritu; Ghaleb, Amr M; Zhou, Jun; Yang, Vincent W; Joshi, Harish C

    2007-04-15

    We have previously discovered the naturally occurring antitussive alkaloid noscapine as a tubulin-binding agent that attenuates microtubule dynamics and arrests mammalian cells at mitosis via activation of the c-Jun NH(2)-terminal kinase pathway. It is well established that the p53 protein plays a crucial role in the control of tumor cell response to chemotherapeutic agents and DNA-damaging agents; however, the relationship between p53-driven genes and drug sensitivity remains controversial. In this study, we compared chemosensitivity, cell cycle distribution, and apoptosis on noscapine treatment in four cell lines derived from the colorectal carcinoma HCT116 cells: p53(+/+) (p53-wt), p53(-/-) (p53-null), p21(-/-) (p21-null), and BAX(-/-) (BAX-null). Using these isogenic variants, we investigated the roles of p53, BAX, and p21 in the cellular response to treatment with noscapine. Our results show that noscapine treatment increases the expression of p53 over time in cells with wild-type p53 status. This increase in p53 is associated with an increased apoptotic BAX/Bcl-2 ratio consistent with increased sensitivity of these cells to apoptotic stimuli. Conversely, loss of p53 and p21 alleles had a counter effect on both BAX and Bcl-2 expression and the p53-null and p21-null cells were significantly resistant to the antiproliferative and apoptotic effects of noscapine. All but the p53-null cells displayed p53 protein accumulation in a time-dependent manner on noscapine treatment. Interestingly, despite increased levels of p53, p21-null cells were resistant to apoptosis, suggesting a proapoptotic role of p21 and implying that p53 is a necessary but not sufficient condition for noscapine-mediated apoptosis.

  20. p21WAF1 modulates drug-induced apoptosis and cell cycle arrest in B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    Davies, Carwyn; Hogarth, Linda A; Mackenzie, Karen L; Hall, Andrew G; Lock, Richard B

    2015-01-01

    p21WAF1 is a well-characterized mediator of cell cycle arrest and may also modulate chemotherapy-induced cell death. The role of p21WAF1 in drug-induced cell cycle arrest and apoptosis of acute lymphoblastic leukemia (ALL) cells was investigated using p53-functional patient-derived xenografts (PDXs), in which p21WAF1 was epigenetically silenced in T-cell ALL (T-ALL), but not in B-cell precursor (BCP)-ALL PDXs. Upon exposure to diverse cytotoxic drugs, T-ALL PDX cells exhibited markedly increased caspase-3/7 activity and phosphatidylserine (PS) externalization on the plasma membrane compared with BCP-ALL cells. Despite dramatic differences in apoptotic characteristics between T-ALL and BCP-ALL PDXs, both ALL subtypes exhibited similar cell death kinetics and were equally sensitive to p53-inducing drugs in vitro, although T-ALL PDXs were significantly more sensitive to the histone deacetylase inhibitor vorinostat. Transient siRNA suppression of p21WAF1 in the BCP-ALL 697 cell line resulted in a moderate depletion of the cell fraction in G1 phase and marked increase in PS externalization following exposure to etoposide. Furthermore, stable lentiviral p21WAF1 silencing in the BCP-ALL Nalm-6 cell line accelerated PS externalization and cell death following exposure to etoposide and vorinostat, supporting previous findings. Finally, the Sp1 inhibitor, terameprocol, inhibited p21WAF1 expression in Nalm-6 cells exposed to vorinostat and also partially augmented vorinostat-induced cell death. Taken together, these findings demonstrate that p21WAF1 regulates the early stages of drug-induced apoptosis in ALL cells and significantly modulates their sensitivity to vorinostat. PMID:26506264

  1. Evidence of gene deletion of p21 (WAF1/CIP1), a cyclin-dependent protein kinase inhibitor, in thyroid carcinomas.

    PubMed Central

    Shi, Y.; Zou, M.; Farid, N. R.; al-Sedairy, S. T.

    1996-01-01

    Eukaryotic cell cycle progression is controlled by a host of cyclin/cyclin-dependent kinases (Cdks), that are themselves regulated by multiple factors, including a group of small cyclin-Cdk inhibitor proteins (p15, p16, p21 and p27). The involvement of Cdk inhibitors in carcinogenesis has been demonstrated by the studies of p16. p53 is frequently mutated in thyroid carcinomas and p21/Waf1 is a downstream effector of p53. It is conceivable that genetic defects of genes downstream in the p53 pathway could also be oncogenic. We, therefore, examined a series of 57 thyroid tumour specimens (eight follicular adenomas and 49 carcinomas) for deletion and point mutation of the p21/Waf1 gene. Three different kinds of deletions ranging from 349 to 450 bp were detected in five papillary carcinoma specimens by reverse transcription-polymerase chain reaction (RT-PCR). All the deletions were involved in the second exon of the p21/Waf1 gene. RT-PCR single strand conformational polymorphism (SSCP) analysis of remaining samples failed to reveal any point mutations in the coding region of the gene, except for a polymorphism at codon 31 (Ser to Arg). Genomic Southern blot analysis did not demonstrate any gene deletion or rearrangement in these samples, indicating abnormal RNA splicing may be involved. Analysis of intron-exon boundary and the coding region of the second exon did not reveal any mutation except for a point mutation (C to G) located 16 bp downstream from the splice donor site of the second intron in three out of five samples with p21/Waf1 deletions. Whether the mutation plays any role in aberrant RNA splicing remains to be determined. Among the five samples with p21/Waf1 gene deletions, none of them simultaneously carried a p53 or retinoblastoma (Rb) gene mutation. No p21/Waf1 abnormality was found in the benign adenomas. Thus, 12.5% (5/40) of thyroid papillary carcinoma specimens harboured p21/Waf1 gene deletions. Our data suggest that p21/Waf1 gene deletion is involved

  2. p53 Pre- and post-binding event theories revisited: stresses reveal specific and dynamic p53-binding patterns on the p21 gene promoter.

    PubMed

    Millau, Jean-François; Bastien, Nathalie; Bouchard, Eric F; Drouin, Régen

    2009-11-01

    p53 is a master transcription factor that prevents neoplasia and genomic instability. It is an important target for anticancer drug design. Understanding the molecular mechanisms behind its transcriptional activities in normal cells is a prerequisite to further understand the deregulation effected by mutant p53 in cancerous cells. Currently, how p53 coordinates transcription programs in response to stress remains unclear. One theory proposes that stresses induce pre-binding events that direct p53 to bind to specific response elements, whereas a second posits that, in response to stress, p53 binds most response elements and post-binding events then regulate transcription initiation. It is critical to establish the relevance of both theories and investigate whether stresses induce specific p53-binding patterns correlated with effector gene induction. Using unique in cellulo genomic footprinting experiments, we studied p53 binding to the five response elements of p21 in response to stresses and monitored p21 mRNA variant transcription. We show clear footprints of p53 bound to response elements in living cells and reveal that the binding of p53 to response elements is transient, subject to dynamic changes during stress responses, and influenced by response element pentamer orientations. We show further that stresses lead to specific p53-binding patterns correlated with particular p21 mRNA variant transcription profiles and that p53 binding is necessary but not sufficient to induce p21 transcription. Our results indicate that pre- and post-binding events act together to regulate adapted stress responses; this paves the way to the unification of pre- and post-binding event theories.

  3. M-ds-P21 induces cell apoptosis in bladder cancer T24 cells through P53 independent pathway.

    PubMed

    Wang, Haifeng; Liu, Wujiang; Jin, Jie; Zhou, Liqun; Liang, Lili; Guo, Yinglu

    2013-01-01

    To investigate the effect of M-ds-P21 on the apoptosis of bladder cancer T24 cells and its potential mechanism. Effect of M-ds-P21 on T24 cells were assessed by cell morphology and Western blot. Apoptosis was quantified by Annexin-V flow-cytometry analysis. To uncover the role of P53 in M-ds-P21-mediated apoptosis of T24 cells, we knocked down P53 before treating cells with M-ds-P21, and then assayed P21 and apoptosis-related protein by Western blot. To uncover the mechanism by which M-ds-P21 played stronger effect than ds-P21, we performed confocal microscope analyses. Both M-ds-P21 and ds-P21 treatment changed the cell morphology, leading to cell apoptosis after 3 days. Apoptosis induced by M-ds-P21 and ds-P21 treatment is not P53-dependent but caspase-dependent. Compared with ds-P21, M-ds-P21 significantly increased the bioavailability of ds-RNA in T24 cells. M-ds-P21 treatment induces more apoptotic population than ds-P21 does. The mechanism for stronger effect of M-ds-P21 is partly due to the enhanced bioavailability of ds-RNA in human bladder cancer T24 cells, and not P53-dependent but caspase-dependent.

  4. p53 binding to nucleosomes within the p21 promoter in vivo leads to nucleosome loss and transcriptional activation.

    PubMed

    Laptenko, Oleg; Beckerman, Rachel; Freulich, Ella; Prives, Carol

    2011-06-28

    It is well established that p53 contacts DNA in a sequence-dependent manner in order to transactivate its myriad target genes. Yet little is known about how p53 interacts with its binding site/response element (RE) within such genes in vivo in the context of nucleosomal DNA. In this study we demonstrate that both distal (5') and proximal (3') p53 REs within the promoter of the p21 gene in unstressed HCT116 colon carcinoma cells are localized within a region of relatively high nucleosome occupancy. In the absence of cellular stress, p53 is prebound to both p21 REs within nucleosomal DNA in these cells. Treatment of cells with the DNA-damaging drug doxorubicin or the p53 stabilizing agent Nutlin-3, however, is accompanied by p53-dependent subsequent loss of nucleosomes associated with such p53 REs. We show that in vitro p53 can bind to mononucleosomal DNA containing the distal p21 RE, provided the binding site is not close to the diad center of the nucleosome. In line with this, our data indicate that the p53 distal RE within the p21 gene is located close to the end of the nucleosome. Thus, low- and high-resolution mapping of nucleosome boundaries around p53 REs within the p21 promoter have provided insight into the mechanism of p53 binding to its sites in cells and the consequent changes in nucleosome occupancy at such sites.

  5. Cyclin-dependent kinase inhibitor, p21Waf1, regulates vascular smooth muscle cell hypertrophy.

    PubMed

    Okamoto, Kenichi; Kato, Seiya; Arima, Nobuyuki; Fujii, Teruhiko; Morimatsu, Minoru; Imaizumi, Tsutomu

    2004-04-01

    In the process of vascular diseases, smooth muscle cells (SMC) undergo not only hyperplasia but also hypertrophy, resulting in vascular remodeling. A cyclin-dependent kinase inhibitor (CDKI), p21Waf1, has been shown to play an important role in SMC hyperplasia. Here we investigated a potential role of p21Waf1 in SMC hypertrophy. An exposure of cultured rat SMC to serum drove the cell cycle progression with up-regulation of various cell cycle markers and increased activities of cyclin-dependent kinases, but did not cause SMC hypertrophy. In contrast, incubation of SMC for 48 h with angiotensin II (AII, 100 nmol/l) resulted in a significant increase in the cell size measured by flowcytometric forward-angle light scatter assay, in association with an increase in the ratio of [3H]leucine/[3H]thymidine uptake, indicating SMC hypertrophy. At 48 h, p21Waf1 expression was up-regulated in SMC exposed to AII but not in those exposed to serum. These results suggest that p21Waf1 may be involved in hypertrophy. To further investigate this issue, two manipulations of the p21Waf1 gene were performed. Adenovirus-mediated over-expression of p21Waf1 not only reduced S-phasic cells but also caused hypertrophy, despite the exposure to serum. Antisense oligodeoxynucleotide for p21Waf1 inhibited the hypertrophy of SMC exposed to AII. Our data suggest that p21Waf1 may play a role in SMC hypertrophy as well.

  6. Both p53-PUMA/NOXA-Bax-mitochondrion and p53-p21cip1 pathways are involved in the CDglyTK-mediated tumor cell suppression

    SciTech Connect

    Yu, Zhendong; Wang, Hao; Zhang, Libin; Tang, Aifa; Zhai, Qinna; Wen, Jianxiang; Yao, Li; Li, Pengfei

    2009-09-04

    CDglyTK fusion suicide gene has been well characterized to effectively kill tumor cells. However, the exact mechanism and downstream target genes are not fully understood. In our study, we found that CDglyTK/prodrug treatment works more efficiently in p53 wild-type (HONE1) cells than in p53 mutant (CNE1) cells. We then used adenovirus-mediated gene delivery system to either knockdown or overexpress p53 and its target genes in these cells. Consistent results showed that both p53-PUMA/NOXA/Bcl2-Bax and p53-p21 pathways contribute to the CDglyTK induced tumor cell suppression. Our work for the first time addressed the role of p53 related genes in the CDglyTK/prodrug system.

  7. p21 Protects “Super p53” Mice from the Radiation-Induced Gastrointestinal Syndrome

    PubMed Central

    Sullivan, Julie M.; Jeffords, Laura B.; Lee, Chang-Lung; Rodrigues, Rafaela; Ma, Yan; Kirsch, David G.

    2012-01-01

    Exposure of the gastrointestinal (GI) tract to high doses of radiation can lead to lethality from the GI syndrome. Although the molecular mechanism regulating the GI syndrome remains to be fully defined, we have recently demonstrated that p53 within the GI epithelial cells controls the radiation-induced GI syndrome. Mice lacking p53 in the GI epithelium were sensitized to the GI syndrome, while transgenic mice with one additional copy of p53 called “Super p53” mice were protected from the GI syndrome. Here, we cross “Super p53” mice to p21−/− mice that lack the cyclin-dependent kinase inhibitor p21. Super p53; p21−/− mice are sensitized to the GI syndrome compared to Super p53 mice that retain one p21 allele. In addition, mice lacking p21 are not protected from the GI syndrome with one extra copy of p53. These results suggest that p21 protects “Super p53” mice from the GI syndrome. PMID:22165824

  8. Ribonucleotide reductase small subunit p53R2 facilitates p21 induction of G1 arrest under UV irradiation.

    PubMed

    Xue, Lijun; Zhou, Bingsen; Liu, Xiyong; Heung, Yvonne; Chau, Jennifer; Chu, Emilie; Li, Shan; Jiang, Chunglin; Un, Frank; Yen, Yun

    2007-01-01

    p53R2, which is one of the two known ribonucleotide reductase small subunits (the other being M2), is suggested to play an important role in supplying deoxynucleotide triphosphates (dNTP) for DNA repair during the G(1) or G(2) phase of the cell cycle. The ability of p53R2 to supply dNTPs for repairing DNA damages requires the presence of a functional p53 tumor suppressor. Here, we report in vivo physical interaction and colocalization of p53R2 and p21 before DNA damage. Mammalian two-hybrid assay further indicates that the amino acids 1 to 113 of p53R2 are critical for interacting with the NH(2)-terminal region (amino acids 1-93) of p21. The binding between p21 and p53R2 decreases inside the nucleus in response to UV, the time point of which corresponds to the increased binding of p21 with cyclin-dependent kinase-2 (Cdk2), and the decreased Cdk2 activity in the nucleus at G(1). Interestingly, p53R2 dissociates from p21 but facilitates the accumulation of p21 in the nucleus in response to UV. On the other hand, the ribonucleotide reductase activity increases at the corresponding time in response to UV. These data suggest a new function of p53R2 of cooperating with p21 during DNA repair at G(1) arrest.

  9. p21{sup WAF1/CIP1} deficiency induces mitochondrial dysfunction in HCT116 colon cancer cells

    SciTech Connect

    Kim, Ae Jeong; Jee, Hye Jin; Song, Naree; Kim, Minjee; Jeong, Seon-Young; Yun, Jeanho

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer p21{sup -/-} HCT116 cells exhibited an increase in mitochondrial mass. Black-Right-Pointing-Pointer The expression levels of PGC-1{alpha} and AMPK were upregulated in p21{sup -/-} HCT116 cells. Black-Right-Pointing-Pointer The proliferation of p21{sup -/-} HCT116 cells in galactose medium was significantly impaired. Black-Right-Pointing-Pointer p21 may play a role in maintaining proper mitochondrial mass and respiratory function. -- Abstract: p21{sup WAF1/CIP1} is a critical regulator of cell cycle progression. However, the role of p21 in mitochondrial function remains poorly understood. In this study, we examined the effect of p21 deficiency on mitochondrial function in HCT116 human colon cancer cells. We found that there was a significant increase in the mitochondrial mass of p21{sup -/-} HCT116 cells, as measured by 10-N-nonyl-acridine orange staining, as well as an increase in the mitochondrial DNA content. In contrast, p53{sup -/-} cells had a mitochondrial mass comparable to that of wild-type HCT116 cells. In addition, the expression levels of the mitochondrial biogenesis regulators PGC-1{alpha} and TFAM and AMPK activity were also elevated in p21{sup -/-} cells, indicating that p21 deficiency induces the rate of mitochondrial biogenesis through the AMPK-PGC-1{alpha} axis. However, the increase in mitochondrial biogenesis in p21{sup -/-} cells did not accompany an increase in the cellular steady-state level of ATP. Furthermore, p21{sup -/-} cells exhibited significant proliferation impairment in galactose medium, suggesting that p21 deficiency induces a defect in the mitochondrial respiratory chain in HCT116 cells. Taken together, our results suggest that the loss of p21 results in an aberrant increase in the mitochondrial mass and in mitochondrial dysfunction in HCT116 cells, indicating that p21 is required to maintain proper mitochondrial mass and respiratory function.

  10. Senescence Process in Primary Wilms' Tumor Cell Culture Induced by p53 Independent p21 Expression.

    PubMed

    Theerakitthanakul, Korkiat; Khrueathong, Jeerasak; Kruatong, Jirasak; Graidist, Potchanapond; Raungrut, Pritsana; Kayasut, Kanita; Sangkhathat, Surasak

    2016-01-01

    Wilms tumor (WT) is an embryonal tumor occurring in developing kidney tissue. WT cells showing invasive cancer characteristics, also retain renal stem cell behaviours. In-vitro culture of WT is hampered by limited replicative potential. This study aimed to establish a longterm culture of WT cells to enable the study of molecular events to attempt to explain its cellular senescence. Primary cell cultures from fresh WT tumor specimen were established. Of 5 cultures tried, only 1 could be propagated for more than 7 passages. One culture, identified as PSU-SK-1, could be maintained > 35 passages and was then subjected to molecular characterization and evaluation for cancer characteristics. The cells consistently harbored concomitant mutations of CTNNB1 (Ser45Pro) and WT1 (Arg413Stop) thorough the cultivation. On Transwell invasion assays, the cells exhibited migration and invasion at 55% and 27% capability of the lung cancer cells, A549. On gelatin zymography, PSU-SK-1 showed high expression of the matrix metaloproteinase. The cells exhibited continuous proliferation with 24-hour doubling time until passages 28-30 when the growth slowed, showing increased cell size, retention of cells in G1/S proportion and positive β-galactosidase staining. As with those evidence of senescence in advanced cell passages, expression of p21 and cyclin D1 increased when the expression of β-catenin and its downstream protein, TCF, declined. There was also loss-of-expression of p53 in this cell line. In conclusion, cellular senescence was responsible for limited proliferation in the primary culture of WT, which was also associated with increased expression of p21 and was independent of p53 expression. Decreased activation of the Wnt signalling might explain the induction of p21 expression.

  11. Senescence Process in Primary Wilms' Tumor Cell Culture Induced by p53 Independent p21 Expression

    PubMed Central

    Theerakitthanakul, Korkiat; Saetang, Jirakrit; Kruatong, Jirasak; Graidist, Potchanapond; Raungrut, Pritsana; Kayasut, Kanita; Sangkhathat, Surasak

    2016-01-01

    Wilms tumor (WT) is an embryonal tumor occurring in developing kidney tissue. WT cells showing invasive cancer characteristics, also retain renal stem cell behaviours. In-vitro culture of WT is hampered by limited replicative potential. This study aimed to establish a longterm culture of WT cells to enable the study of molecular events to attempt to explain its cellular senescence. Methods: Primary cell cultures from fresh WT tumor specimen were established. Of 5 cultures tried, only 1 could be propagated for more than 7 passages. One culture, identified as PSU-SK-1, could be maintained > 35 passages and was then subjected to molecular characterization and evaluation for cancer characteristics. The cells consistently harbored concomitant mutations of CTNNB1 (Ser45Pro) and WT1 (Arg413Stop) thorough the cultivation. On Transwell invasion assays, the cells exhibited migration and invasion at 55% and 27% capability of the lung cancer cells, A549. On gelatin zymography, PSU-SK-1 showed high expression of the matrix metaloproteinase. The cells exhibited continuous proliferation with 24-hour doubling time until passages 28-30 when the growth slowed, showing increased cell size, retention of cells in G1/S proportion and positive β-galactosidase staining. As with those evidence of senescence in advanced cell passages, expression of p21 and cyclin D1 increased when the expression of β-catenin and its downstream protein, TCF, declined. There was also loss-of-expression of p53 in this cell line. In conclusion, cellular senescence was responsible for limited proliferation in the primary culture of WT, which was also associated with increased expression of p21 and was independent of p53 expression. Decreased activation of the Wnt signalling might explain the induction of p21 expression. PMID:27698927

  12. Selenoprotein W depletion induces a p53- and p21-dependent delay in cell cycle progression in RWPE-1 prostate epithelial cells.

    PubMed

    Hawkes, Wayne Chris; Printsev, Ignat; Alkan, Zeynep

    2012-01-01

    The anticancer activity of selenium (Se) has been demonstrated in myriad animal and in vitro studies, yet the mechanisms remain obscure. The main form of Se in animal tissues is selenocysteine in selenoproteins, but the relative importance of selenoproteins versus smaller Se compounds in cancer protection is unresolved. Selenoprotein W (SEPW1) is a highly conserved protein ubiquitously expressed in animals, bacteria, and archaea. SEPW1 depletion causes a delay in cell cycle progression at the G1/S transition of the cell cycle in breast and prostate epithelial cells. Tumor suppressor protein p53 is a master regulator of cell cycle progression and is the most frequently mutated gene in human cancers. p53 was increased in SEPW1 silenced cells and was inversely correlated with SEPW1 mRNA in cell lines with altered SEPW1 expression. Silencing SEPW1 decreased ubiquitination of p53 and increased p53 half-life. SEPW1 silencing increased p21(Cip1/WAF1/CDKN1A), while p27 (Kip1/CDKN1B) levels were unaffected. G1-phase arrest from SEPW1 knockdown was abolished by silencing p53 or p21. Cell cycle arrest from SEPW1 silencing was not associated with activation of ATM or phosphorylation of Ser-15 in p53, suggesting the DNA damage response pathway was not involved. Silencing GPX1 had no effect on cell cycle, suggesting that G1-phase arrest from SEPW1 silencing was not due to loss of antioxidant protection. More research is required to identify the function of SEPW1 and how it affects stability of p53.

  13. Suppression of c-Myc enhances p21(WAF1/CIP1) -mediated G1 cell cycle arrest through the modulation of ERK phosphorylation by ascochlorin.

    PubMed

    Jeong, Yun-Jeong; Hoe, Hyang-Sook; Cho, Hyun-Ji; Park, Kwan-Kyu; Kim, Dae-Dong; Kim, Cheorl-Ho; Magae, Junji; Kang, Dong Wook; Lee, Sang-Rae; Chang, Young-Chae

    2017-08-18

    Numerous anti-cancer agents inhibit cell cycle progression via a p53-dependent mechanism; however, other genes such as the proto-oncogene c-Myc are promising targets for anticancer therapy. In the present study, we provide evidence that ascochlorin, an isoprenoid antibiotic, is a non-toxic anti-cancer agent that induces G1 cell cycle arrest and p21(WAF1/CIP1) expression by downregulating of c-Myc protein expression. Ascochlorin promoted the G1 arrest, upregulated p53 and p21(WAF1/CIP1) , and downregulated c-Myc in HCT116 cells. In p53-deficient cells, ascochlorin enhanced the expression of G1 arrest-related genes except p53. Small interfering RNA (siRNA) mediated c-Myc silencing indicated that the transcriptional repression of c-Myc was related to ascochlorin-mediated modulation of p21(WAF1/CIP1) expression. Ascochlorin suppressed the stabilization of the c-Myc protein by inhibiting ERK and P70S6K/4EBP1 phosphorylation, whereas it had no effect on c-Myc degradation mediated by PI3K/Akt/GSK3β. The ERK inhibitor PD98059 and siRNA-mediated ERK silencing induced G1 arrest and p21(WAF1/CIP1) expression by downregulating c-Myc in p53-deficient cells. These results indicated that ascochlorin-induced G1 arrest is associated with the repression of ERK phosphorylation and c-Myc expression. Thus, we reveal a role for ascochlorin in inhibiting tumor growth via G1 arrest, and identify a novel regulatory mechanism for ERK /c-Myc. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway

    SciTech Connect

    Han, Seula; Woo, Jong Kyu; Jung, Yuchae; Jeong, Dawoon; Kang, Minsook; Yoo, Young-Ji; Lee, Hani; Oh, Seung Hyun; Ryu, Jae-Ha; Kim, Woo-Young

    2016-01-22

    In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulk cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.

  15. p53, p21, pRB, and p16 expression predict clinical outcome in cystectomy with bladder cancer.

    PubMed

    Shariat, Shahrokh F; Tokunaga, Hideo; Zhou, JainHua; Kim, JaHong; Ayala, Gustavo E; Benedict, William F; Lerner, Seth P

    2004-03-15

    To determine whether p53, p21, pRB, and/or p16 expression is associated with bladder cancer stage, progression, and prognosis. Immunohistochemical staining for p53, p21, pRB, and p16 was carried out on serial sections from archival specimens of 80 patients who underwent bilateral pelvic lymphadenectomy and radical cystectomy for bladder cancer (median follow-up, 101 months). p53, p21, and pRB or p16 expression was altered in 45 (56%), 39 (49%), and 43 (54%) tumors, respectively. Sixty-six patients (83%) had at least one marker altered, and 21 patients (26%) had all three altered. Abnormal expressions of p53, p21, and pRB/p16 expression were associated with muscle-invasive disease (P=.007, P=.003, and P=.003, respectively). The alteration of each marker was independently associated with disease progression (P< or =.038) and disease-specific survival (P< or =.039). In multivariable models that included standard pathologic features and p53 with p21 or p53 with pRB/p16, only p53 and lymph node metastases were associated with bladder cancer progression (P< or =.026) and death (P< or =.028). In models that included p21 and pRB/p16, only p21 and lymph node metastases were associated with bladder cancer progression (P< or =.022) and death (P< or =.028). In a model that included the combined variables p53/p21 and pRB/p16, only p53/p21 and lymph node status were associated with bladder cancer progression (P< or =.047) and death (P< or =.036). The incremental number of altered markers was independently associated with an increased risk of bladder cancer progression (P=.005) and mortality (P=.007). Although altered expression of each of the four cell cycle regulators is associated with bladder cancer outcome in patients undergoing radical cystectomy, p53 is the strongest predictor, followed by p21, suggesting a more pivotal role of the p53/p21 pathway in bladder cancer progression.

  16. The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes.

    PubMed

    Fischer, Martin; Quaas, Marianne; Steiner, Lydia; Engeland, Kurt

    2016-01-08

    The tumor suppressor p53 functions predominantly as a transcription factor by activating and downregulating gene expression, leading to cell cycle arrest or apoptosis. p53 was shown to indirectly repress transcription of the CCNB2, KIF23 and PLK4 cell cycle genes through the recently discovered p53-p21-DREAM-CDE/CHR pathway. However, it remained unclear whether this pathway is commonly used. Here, we identify genes regulated by p53 through this pathway in a genome-wide computational approach. The bioinformatic analysis is based on genome-wide DREAM complex binding data, p53-depedent mRNA expression data and a genome-wide definition of phylogenetically conserved CHR promoter elements. We find 210 target genes that are expected to be regulated by the p53-p21-DREAM-CDE/CHR pathway. The target gene list was verified by detailed analysis of p53-dependent repression of the cell cycle genes B-MYB (MYBL2), BUB1, CCNA2, CCNB1, CHEK2, MELK, POLD1, RAD18 and RAD54L. Most of the 210 target genes are essential regulators of G2 phase and mitosis. Thus, downregulation of these genes through the p53-p21-DREAM-CDE/CHR pathway appears to be a principal mechanism for G2/M cell cycle arrest by p53. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Characterization of p21Cip1/Waf1 peptide domains required for cyclin E/Cdk2 and PCNA interaction.

    PubMed

    Chen, I T; Akamatsu, M; Smith, M L; Lung, F D; Duba, D; Roller, P P; Fornace, A J; O'Connor, P M

    1996-02-01

    The cyclin-dependent kinase inhibitor p21Cip1/Waf1 is responsible for the p53-dependent growth arrest of cells in G1 phase following DNA damage. In the present study we investigated regions of p21 involved in inhibition of the G1/S phase cyclin-dependent kinase, cyclin E/Cdk2, as well as regions of p21 important for binding to this kinase and recombinant PCNA. To perform these studies we synthesized a series of overlapping peptides spanning the entire p21 sequence and used them in in vitro assays with cyclin E/Cdk2-immune complexes and with recombinant p21 and PCNA proteins. One amino-terminal p21 peptide spanning amino acids 15-40, antagonized p21 binding and inhibition of cyclin E/Cdk2 kinase. Antagonism of p21 binding was, however, lost in a similar peptide lacking amino acids 15-20, or in a peptide in which cysteine-18 was substituted for a serine. These results suggest that this peptide region is important for p21 interaction with cyclin E/Cdk2. A second peptide (amino acids 58-77) also antagonized p21-activity, but this peptide did not affect the ability of p21 to interact with cyclin E/Cdk2. A region of p21 larger than 26 amino acids is presumably required for Cdk-inhibition because none of the peptides we tested inhibited cyclin E/Cdk2. We also found that a peptide spanning amino acids 21-45 bound recombinant p21 in ELISA assays, and additional studies revealed a requirement for amino acids 26 through 45 for this interaction. A p21 peptide spanning amino acids 139-164 was found to bind PCNA in a filter binding assay and this peptide suppressed recombinant p21-PCNA interaction. Conformational analysis revealed that peptides spanning amino acids 21-45 and 139-164 tended towards an alpha-helical conformation in trifluoroethanol buffer, indicating that these regions are probably in a coiled conformation in the native protein. Taken together, our results provide an insight into domains of p21 that are involved in cyclin E/Cdk2 and PCNA interaction. Our results

  18. Phage-peptide display identifies the interferon-responsive, death-activated protein kinase family as a novel modifier of MDM2 and p21WAF1.

    PubMed

    Burch, Lindsay R; Scott, Mary; Pohler, Elizabeth; Meek, David; Hupp, Ted

    2004-03-12

    Phage-peptide display is a versatile tool for identifying novel protein-protein interfaces. Our previous work highlighted the selection of phage-peptides that bind to specific isoforms of MDM2 protein and in this work we subjected the putative MDM2-binding proteins to phage-peptide display to expand further on putative protein interaction maps. One peptide that bound MDM2 had significant homology to members of the death-activated protein kinase (DAPK) family, an enzyme family of no known direct link to the p53 pathway. We examined whether a nuclear member of the DAPK family named DAPK3 or ZIP kinase had direct links to the p53 pathway. ZIP kinase was cloned, purified, and the enzyme was able to phosphorylate MDM2 at Ser166, a site previously reported to be modified by Akt kinase, thus demonstrating that ZIP kinase is a bona fide MDM2-binding protein. Native ZIP kinase fractions were then subjected to phage-peptide display and one ZIP kinase consensus peptide motif was identified in p21(WAF1). ZIP kinase phosphorylates p21(WAF1) at Thr145 and alanine-substituted mutations in the p21(WAF1) phosphorylation site alter its ability to be phosphorylated by ZIP kinase. Thus, although ZIP kinase consensus sites were then defined as containing a minimal RKKx(T/S) consensus motif, alternate contacts in ZIP kinase binding are implicated, since amino acid residues surrounding the phospho-acceptor site can effect the specific activity of the kinase. Transfected ZIPK can promote the phosphorylation of p21(WAF1) at Thr145 in vivo and can increase the half-life of p21(WAF1), while the half-life of p21(WAF1[T145A]) is not effected by ZIP kinase. Thus, phage-peptide display identified an interferon-responsive protein kinase family as a novel modifier of two components of the p53 pathway, MDM2 and p21(WAF1), and underscores the utility of phage-peptide display for gaining novel insights into biochemical pathways.

  19. MicroRNA-296 is enriched in cancer cells and downregulates p21WAF1 mRNA expression via interaction with its 3' untranslated region.

    PubMed

    Yoon, A-rum; Gao, Ran; Kaul, Zeenia; Choi, Il-Kyu; Ryu, Jihoon; Noble, Jane R; Kato, Yoshio; Saito, Soichiro; Hirano, Takashi; Ishii, Tetsuro; Reddel, Roger R; Yun, Chae-Ok; Kaul, Sunil C; Wadhwa, Renu

    2011-10-01

    MicroRNAs (miRNAs) are a class of noncoding small RNAs that act as negative regulators of gene expression. To identify miRNAs that may regulate human cell immortalization and carcinogenesis, we performed comparative miRNA array profiling of human normal and SV40-T antigen immortalized cells. We found that miR-296 was upregulated in immortalized cells that also had activation of telomerase. By an independent experiment on genomic analysis of cancer cells we found that chromosome region (20q13.32), where miR-296 is located, was amplified in 28/36 cell lines, and most of these showed enriched miR-296 expression. Overexpression of miR-296 in human cancer cells, with and without telomerase activity, had no effect on their telomerase function. Instead, it suppressed p53 function that is frequently downregulated during human cell immortalization and carcinogenesis. By monitoring the activity of a luciferase reporter connected to p53 and p21(WAF1) (p21) untranslated regions (UTRs), we demonstrate that miR-296 interacts with the p21-3'UTR, and the Hu binding site of p21-3'UTR was identified as a potential miR-296 target site. We demonstrate for the first time that miR-296 is frequently upregulated during immortalization of human cells and contributes to carcinogenesis by downregulation of p53-p21(WAF1) pathway.

  20. Gene and protein expression of p53 and p21 in fibroadenomas and adjacent normal mammary tissue.

    PubMed

    Schneider, Lolita; Branchini, Gisele; Cericatto, Rodrigo; Capp, Edison; Brum, Ilma Simoni

    2009-02-01

    The aim of this study was to compare p53 and p21 mRNA, and proteins levels between fibroadenomas and adjacent normal mammary tissue of women in reproductive age. A transversal study was performed. Fourteen patients who attended the Breast Service of the Hospital de Clínicas de Porto Alegre were assessed and submitted to surgical resection of fibroadenomas. Fragments of the central area of the fibroadenoma and adjacent normal mammary tissue were obtained. mRNA expression for genes p53 and p21 was evaluated by RT-PCR, and protein expression by the western blot. Paired analyses showed higher gene expression of p53 (P = 0.017) and p21 (P = 0.003), and a higher protein expression of p53 (P = 0.001) in fibroadenomas as compared to normal breast tissue. p21 protein expression was not different (P = 0.97) between the fibroadenoma and the adjacent normal mammary tissue samples. These results suggest the participation of p53 in the formation of fibroadenomas. The role of p21 in fibroadenomas remains to be defined.

  1. [The mechanisms of p21WAF1/Cip-1 expression in MOLT-4 cell line induced by TSA].

    PubMed

    Song, Yi; Liu, Mei-Ju; Zhao, Guo-Wei; Qian, Jun-Jie; Dong, Yan; Liu, Hua; Sun, Guo-Jing; Mei, Zhu-Zhong; Liu, Bin; Tian, Bao-Lei; Sun, Zhi-Xian

    2005-04-01

    To investigate the function and molecular mechanism of p21(WAF1/Cip-1) expression in MOLT-4 cells induced by HDAC inhibitor TSA, the expression pattern of p21(WAF1/Cip-1) and the distribution of cell cycle in TSA treated cells were analyzed. The results showed that TSA could effectively induce G(2)/M arrest and apoptosis of MOLT-4 cells. Kinetic experiments demonstrated that p21(WAF1/Cip-1) were upregulated quickly before cell arrested in G(2)/M and began decreasing at the early stage of apoptosis. Meanwhile, the proteasome inhibitor MG-132 could inhibit the decrease of p21(WAF1/Cip-1) at the early stage of apoptosis, which showed that proteasome pathway involved in p21(WAF1/Cip-1) degradation during the TSA induced G(2)/M arrest and apoptosis responses. This study also identified that the protein level of p21(WAF1/Cip-1) was highly associated with the cell cycle change induced by TSA. Compared to cells treated by TSA only, exposure MOLT-4 cells to TSA meanwhile treatment with MG-132 increased the protein level of p21(WAF1/Cip-1) and increased the numbers of cell in G(2)/M-phase, whereas the cell apoptosis were delayed. It is concluded that p21(WAF1/Cip-1) plays a significant role in G(2)/M arrest and apoptosis signaling induced by TSA in MOLT-4 cells.

  2. Nucleolar GTP-binding Protein-1 (NGP-1) Promotes G1 to S Phase Transition by Activating Cyclin-dependent Kinase Inhibitor p21Cip1/Waf1*

    PubMed Central

    Datta, Debduti; Anbarasu, Kumaraswamy; Rajabather, Suryaraja; Priya, Rangasamy Sneha; Desai, Pavitra; Mahalingam, Sundarasamy

    2015-01-01

    Nucleolar GTP-binding protein (NGP-1) is overexpressed in various cancers and proliferating cells, but the functional significance remains unknown. In this study, we show that NGP-1 promotes G1 to S phase transition of cells by enhancing CDK inhibitor p21Cip-1/Waf1 expression through p53. In addition, our results suggest that activation of the cyclin D1-CDK4 complex by NGP-1 via maintaining the stoichiometry between cyclin D1-CDK4 complex and p21 resulted in hyperphosphorylation of retinoblastoma protein at serine 780 (p-RBSer-780) followed by the up-regulation of E2F1 target genes required to promote G1 to S phase transition. Furthermore, our data suggest that ribosomal protein RPL23A interacts with NGP-1 and abolishes NGP-1-induced p53 activity by enhancing Mdm2-mediated p53 polyubiquitination. Finally, reduction of p-RBSer-780 levels and E2F1 target gene expression upon ectopic expression of RPL23a resulted in arrest at the G1 phase of the cell cycle. Collectively, this investigation provides evidence that NGP-1 promotes cell cycle progression through the activation of the p53/p21Cip-1/Waf1 pathway. PMID:26203195

  3. Immunohistochemical markers of cell cycle control applied to ovarian and primary peritoneal surface epithelial neoplasms: p21(WAF1/CIP1) predicts survival and good response to platinin-based chemotherapy.

    PubMed

    Costa, M J; Hansen, C L; Walls, J E; Scudder, S A

    1999-06-01

    Immunohistochemistry for p53, p21(WAF1/CIP1), and Ki-67 provides insight into the molecular events controlling the cell cycle. We tested the hypothesis that these cell cycle markers will aid in the clinical evaluation of ovarian and primary peritoneal surface epithelial neoplasms (SENs). Paraffin sections from a retrospective surgical series of 117 SENs were immunostained with anti-p53 (clone DO7, Novacastra Laboratories, UK), anti-p21(WAF1/CIP1) (clone EA10, Oncogene Science, Cambridge, MA), and anti-Ki-67 (clone MIB-1, Immunotech, Westbrook, ME). The Ki-67 proliferation index (Ki-67PI) and immunoreactivity were evaluated. One hundred seventeen SENs reacted as follows: p53 50%+ and p21(WAF1/CIP1) 65%+. Ki-67PI ranged from 4% to 88% (mean/median = 44/46%). p53 reactivity associated with transitional cell histology, decreased p21(WAF1/CIP1) staining, increased Ki-67PI, architectural/nuclear grade, and stage (P < .05, 1 x 10(-7), .01, .05/.0001, .001,). p21(WAF1/CIP1) staining was associated with endometrioid/clear cell histology, decreased Ki-67PI, architectural/nuclear grade, and stage (P < 05/.05, .05, .01/1 x 10(-8), 1 x 10(-5)). Ki-67PI associated with increased architectural/nuclear grade but not mucinous histology (P < 1 x 10(-5)/1 x 10(-6), .01). Sixty-seven patients had disease at last follow-up; 53 were dead of disease at 0 to 67 months (mean/median, 21/18), and 14 were alive with disease at 12 to 224 months (mean/median, 56/40). Fifty patients were disease free at 5 to 214 months (mean/median, 59/41). Predictors of survival include decreased Ki-67PI, stage, architectural/nuclear grade (P < 1 x 10(-6), 1 x 10(-10), 1 x 10(-10)/.005) and p21(WAF1/CIP1) IMS (multivariate P < 1 x 10(-6)). p21(WAF1/CIP1), a potent inhibitor of cyclin-dependent kinases necessary for cell cycle progression, functions as a key checkpoint in cell cycle control. Immunoreactivity for p21(WAF1/CIP1) provides prognostic information independent of other histological and clinical

  4. Accumulation of p21 proteins at DNA damage sites independent of p53 and core NHEJ factors following irradiation

    SciTech Connect

    Koike, Manabu; Yutoku, Yasutomo; Koike, Aki

    2011-08-19

    Highlights: {yields} p21 accumulated rapidly at laser-irradiated sites via its C-terminal region. {yields} p21 colocalized with the DSB marker {gamma}-H2AX and the DSB sensor Ku80. {yields} Accumulation of p21 is dependent on PCNA, but not p53 and the NHEJ core factors. {yields} Accumulation activity of p21 was conserved among human and animal cells. {yields} p21 is a useful tool as a detection marker of DNA damaged sites. -- Abstract: The cyclin-dependent kinase (CDK) inhibitor p21 plays key roles in p53-dependent DNA-damage responses, i.e., cell cycle checkpoints, senescence, or apoptosis. p21 might also play a role in DNA repair. p21 foci arise at heavy-ion-irradiated DNA-double-strand break (DSB) sites, which are mainly repaired by nonhomologous DNA-end-joining (NHEJ). However, no mechanisms of p21 accumulation at double-strand break (DSB) sites have been clarified in detail. Recent works indicate that Ku70 and Ku80 are essential for the accumulation of other NHEJ core factors, e.g., DNA-PKcs, XRCC4 and XLF, and other DNA damage response factors, e.g., BRCA1. Here, we show that p21 foci arise at laser-irradiated sites in cells from various tissues from various species. The accumulation of EGFP-p21 was detected in not only normal cells, but also transformed or cancer cells. Our results also showed that EGFP-p21 accumulated rapidly at irradiated sites, and colocalized with the DSB marker {gamma}-H2AX and with the DSB sensor protein Ku80. On the other hand, the accumulation occurred in Ku70-, Ku80-, or DNA-PKcs-deficient cell lines and in human papillomavirus 18-positive cells, whereas the p21 mutant without the PCNA-binding region (EGFP-p21(1-146)) failed to accumulate at the irradiated sites. These findings suggest that the accumulation of p21, but not functional p53 and the NHEJ core factors, is dependent on PCNA. These findings also suggest that the accumulation activity of p21 at DNA damaged sites is conserved among human and animal cells, and p21 is a useful

  5. Zinc Induced G2/M Blockage is p53 and p21 Dependent in Normal Human Bronchial Epithelial Cells

    USDA-ARS?s Scientific Manuscript database

    The involvement of the p53 and p21 signal pathway in the G2/M cell cycle progression of zinc supplemented normal human bronchial epithelial (NHBE) cells was examined using the siRNA approach. Cells were cultured for one passage in different concentrations of zinc: <0.4 microM (ZD) as zinc-deficient;...

  6. Action of the p53 Effector, p21, on its Targets: Cyclin-cdk and PCNA

    DTIC Science & Technology

    2001-10-01

    Lineweaver - Burke analysis of the inhibition of cyclin E-cdk2 by intact p21 and by p21 without the cyclin binding site. Task 2: Months 24-36: Determination...the peptide sequence was the critical feature of a Cy motif. Task 1: Months 1-24: Lineweaver - Burke analysis of the inhibition of cyclin E-cdk2 by...intact p21 and by p21 without the cyclin binding site. p21 without a Cy motif was ineffective in inhibiting cyclin E-cdk2 [2]. Lineweaver - Burke analysis

  7. Cloning and characterization of a novel p21(Cip1/Waf1)-interacting zinc finger protein, ciz1.

    PubMed

    Mitsui, K; Matsumoto, A; Ohtsuka, S; Ohtsubo, M; Yoshimura, A

    1999-10-22

    p21(Cip1/Waf1) inhibits cell-cycle progression by binding to G1 cyclin/CDK complexes and proliferating cell nuclear antigen (PCNA) through its N- and C-terminal domains, respectively. Here, we report a novel p21(Cip1/Waf1)-interacting protein, Ciz1 (for Cip1 interacting zinc finger protein), which contains polyglutamine repeats and glutamine-rich region in the N-terminus as well as three zinc-finger motifs and one MH3 (matrin 3-homologous domain 3) in the C-terminal region. Ciz1 bound to the N-terminal, the CDK2-interacting part of p21(Cip1/Waf1), and the interaction was disrupted by the overexpression of CDK2. A region of about 150 amino acids containing the first zinc-finger motif in Ciz1 was the binding site for p21(Cip1/Waf1). When Ciz1 and p21(Cip1/Waf1) were individually overexpressed in U2-OS cells, they mostly localized in the nucleus. However, coexpression of Ciz1 induced cytoplasmic distribution of p21(Cip1/Waf1). These data indicate that Ciz1 is a unique nuclear protein that regulates the cellular localization of p21(Cip1/Waf1).

  8. p21Waf1/Cip1 deficiency causes multiple mitotic defects in tumor cells.

    PubMed

    Kreis, N-N; Sanhaji, M; Rieger, M A; Louwen, F; Yuan, J

    2014-12-11

    As a multifaceted molecule, p21 plays multiple critical roles in cell cycle regulation, differentiation, apoptosis, DNA repair, senescence, aging and stem cell reprogramming. The important roles of p21 in the interphase of the cell cycle have been intensively investigated. The function of p21 in mitosis has been proposed but not systematically studied. We show here that p21 is abundant in mitosis and binds to and inhibits the activity of Cdk1/cyclin B1. Deficiency of p21 prolongs the duration of mitosis by extending metaphase, anaphase and cytokinesis. The activity of Aurora B is reduced and the localization of Aurora B on the central spindle is disturbed in anaphase cells without p21. Moreover, HCT116 p21-/-, HeLa and Saos-2 cells depleted of p21 encounter problems in chromosome segregation and cytokinesis. Gently inhibiting the mitotic Cdk1 or add-back of p21 rescues segregation defect in HCT116 p21-/- cells. Our data demonstrate that p21 is important for a fine-tuned control of the Cdk1 activity in mitosis, and its proper function facilitates a smooth mitotic progression. Given that p21 is downregulated in the majority of tumors, either by the loss of tumor suppressors like p53 or by hyperactive oncogenes such as c-myc, this finding also sheds new light on the molecular mechanisms by which p21 functions as a tumor suppressor.

  9. Protective role of p21(Waf1/Cip1) against prostaglandin A2-mediated apoptosis of human colorectal carcinoma cells.

    PubMed Central

    Gorospe, M; Wang, X; Guyton, K Z; Holbrook, N J

    1996-01-01

    Prostaglandin A2 (PGA2) suppresses tumor growth in vivo, is potently antiproliferative in vitro, and is a model drug for the study of the mammalian stress response. Our previous studies using breast carcinoma MCF-7 cells suggested that p21(Waf1/Cip1) induction enabled cells to survive PGA2 exposure. Indeed, the marked sensitivity of human colorectal carcinoma RKO cells to the cytotoxicity of PGA2 is known to be associated with a lack of a PGA2-mediated increase in p21(Waf1/Cip1) expression, inhibition of cyclin-dependent kinase activity, and growth arrest. To determine if cell death following exposure to PGA2 could be prevented by forcing the expression of p21(Waf1/Cip1) in RKO cells, we utilized an adenoviral vector-based expression system. We demonstrate that ectopic expression of p21(Waf1/Cip1) largely rescued RKO cells from PGA2-induced apoptotic cell death, directly implicating p21(Waf1/Cip1) as a determinant of the cellular outcome (survival versus death) following exposure to PGA2. To discern whether p21(Waf1/Cip1)-mediated protection operates through the implementation of cellular growth arrest, other growth-inhibitory treatments were studied for the ability to attenuate PGA2-induced cell death. Neither serum depletion nor suramin (a growth factor receptor antagonist) protected RKO cells against PGA2 cytotoxicity, and neither induced p21(Waf1/Cip1) expression. Mimosine, however, enhanced p21(Waf1/Cip1) expression, completely inhibited RKO cell proliferation, and exerted marked protection against a subsequent PGA2 challenge. Taken together, our results directly demonstrate a protective role for p21(Waf1/Cip1) during PGA2 cellular stress and provide strong evidence that the implementation of cellular growth arrest contributes to this protective influence. PMID:8943319

  10. Identification of the active region of the DNA synthesis inhibitory gene p21Sdi1/CIP1/WAF1.

    PubMed

    Nakanishi, M; Robetorye, R S; Adami, G R; Pereira-Smith, O M; Smith, J R

    1995-02-01

    The cloning of the negative growth regulatory gene, p21Sdi1, has led to the convergence of the fields of cellular senescence, cell cycle regulation and tumor suppression. This gene was first cloned as an inhibitor of DNA synthesis that was overexpressed in terminally non-dividing senescent human fibroblasts (SD11) and later as a p53 transactivated gene (WAF1) and a Cdk-interacting protein (CIP1, p21) that inhibited cyclin-dependent kinase activity. To identify the active region(s) of p21Sdi1, cDNA constructs encoding various deleted forms of the protein were analyzed. Amino acids 22-71 were found to be the minimal region required for DNA synthesis inhibition. Amino acids 49-71 were involved in binding to Cdk2, and constructs deleted in this region expressed proteins that were unable to inhibit Cdk2 kinase activity in vitro. The latter stretch of amino acids shared sequence similarity with amino acids 60-76 of the p27Kip1 protein, another Cdk inhibitor. Point mutations made in p21Sdi1 in this region confirmed that amino acids common to both proteins were involved in DNA synthesis inhibition. Additionally, a chimeric protein, in which amino acids 49-65 of p21Sdi1 were substituted with amino acids 60-76 of p27Kip1, had almost the same DNA synthesis inhibitory activity as the wild-type protein. The results indicate that the region of sequence similarity between p21Sdi1 and p27Kip1 encodes an inhibitory motif characteristic of this family of Cdk inhibitors.

  11. Genistein inhibits proliferation similarly in estrogen receptor-positive and negative human breast carcinoma cell lines characterized by P21WAF1/CIP1 induction, G2/M arrest, and apoptosis.

    PubMed

    Shao, Z M; Alpaugh, M L; Fontana, J A; Barsky, S H

    1998-04-01

    Genistein has been proposed to be responsible for lowering the rate of breast cancer in Asian women but the mechanism for this chemopreventive effect in vivo is unknown. In this study, we present in vitro evidence that genistein inhibits cell proliferation similarly in ER-positive and ER-negative human breast carcinoma cell lines. This inhibition is associated with specific G2/M arrest and induction of p21WAF1/CIP1 expression. Genistein results in a five-to six-fold increase in p21WAF1/CIP1 mRNA levels and a three- to four-fold increase in protein levels, only a 1.5-fold increase in p21WAF1/CIP1 transcription but a three- to six-fold increase in p21WAF1/CIP1 mRNA stability. The increase in p21WAF1/CIP1 is followed by increased apoptosis. The similar effects of genistein on a number of breast carcinoma cell lines with different ER and p53 status suggest that the actions of genistein reported here are mediated through ER and p53 independent mechanisms. The chemopreventive effects of genistein in vivo could be mediated along an identical or similar anti-proliferative pathway.

  12. Increased p53 and decreased p21 accompany apoptosis induced by ultraviolet radiation in the nervous system of a crustacean.

    PubMed

    Hollmann, Gabriela; Linden, Rafael; Giangrande, Angela; Allodi, Silvana

    2016-04-01

    Ultraviolet (UV) radiation can produce biological damage, leading the cell to apoptosis by the p53 pathway. This study evaluated some molecular markers of the apoptosis pathway induced by UVA, UVB and UVA+ UVB (Solar Simulator, SIM) in environmental doses, during five consecutive days of exposure, in the brain of the crab Ucides cordatus. We evaluated the central nervous system (CNS) by immunoblotting the content of proteins p53, p21, phosphorylated AKT, BDNF, GDNF, activated caspase-3 (C3) and phosphohistone H3 (PH3); and by immunohistochemical tests of the cells labeled for PH3 and C3. After the fifth day of exposure, UVB radiation and SIM increased the protein content of p53, increasing the content of AKT and, somehow, blocking p21, increasing the content of activated caspase-3, which led the cells to apoptosis. The signs of death affected the increase in neurotrophins, such as BDNF and GDNF, stimulating the apoptotic cascade of events. Immunohistochemical assays and immunoblotting showed that apoptosis was present in the brains of all UV groups, while the number of mitotic cells in the same groups decreased. In conclusion, environmental doses of UV can cause apoptosis by increasing p53 and decreasing p21, revealing an UV-damage pathway for U. cordatus. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. HSP72 depletion suppresses gammaH2AX activation by genotoxic stresses via p53/p21 signaling.

    PubMed

    Gabai, V L; Sherman, M Y; Yaglom, J A

    2010-04-01

    Knockout of heat shock protein Hsp72 was shown to promote chromosomal instability and increase radiation sensitivity of mouse fibroblasts. Here, we report that downregulation of Hsp72 in human tumor cells leads to suppression of a specific branch of the DNA damage response (DDR) that facilitates DNA repair following genotoxic insults, that is, reduced accumulation of the phosphorylated form of histone H2AX (gammaH2AX). This inhibition was due to decreased expression of H2AX as well as higher rate of gammaH2AX dephosphorylation. Formation of gammaH2AX and MDC1 radiation-induced foci was impaired in Hsp72-depleted cells, which in turn enhanced DNA damage, resulting in sensitization of cells to gamma-radiation and doxorubicin. These effects of Hsp72 knockdown were dependent on activation of the p53/p21-signaling pathway. Overall, permanent activation of the p53/p21 signaling in Hsp72-depleted cells specifically impaired the gammaH2AX pathway of the DDR, enhanced DNA damage following genotoxic insults, and led to further stimulation of the p53/p21 pathway, thus creating a positive feedback loop. The resulting strong induction of p21 precipitated senescence following exposure to DNA-damaging agents, thus accounting for higher sensitivity of cells to genotoxic stresses.

  14. Expression of p21 is dependent on or independent of p53 in carcinoma ex pleomorphic adenoma (undifferentiated and adenocarcinoma types).

    PubMed

    Tarakji, Bassel; Baroudi, Kusai; Hanouneh, Salah; Nassani, Mohammad Z; Alotaibi, Abdullah M; Kharma, M Yaser; Azzeghaiby, Saleh N

    2012-12-01

    Our study is aimed to characterize alteration in the immunohistochemical expression of p21 and p53 in normal tissue of the salivary gland surrounding carcinoma arising in pleomorphic adenoma, and the tumor cells of carcinoma arising in pleomorphic adenoma as well as to identify whether the induction of expression p21 is dependent on or independent of p53 in carcinoma arising in pleomorphic adenoma. A selected series of 27 cases of carcinoma ex pleomorphic adenoma (undifferentiated and adenocarcinoma types) was examined. The results showed that p21 and p53 expression was negative in the most components of normal tissue of the salivary gland surrounding carcinoma arising in pleomorphic adenoma. p21 was strongly expressed in carcinoma cells in 9 (33.3%) cases out of 27. p53 was strongly expressed in carcinoma cells in 10 (37%) cases out of 27. Also a co-expression of p21 and p53 showed negative nuclear staining in 9 cases, while 8 cases expressed positive staining. p21 expressed negative nuclear staining in 4 cases but p53 expressed positive staining in the same cases. p21 expressed positive nuclear staining in 6 cases but p53 expressed negative nuclear staining in the same cases. Our data suggest that inactivation of p53 and p21 may play an important role in the evolution of carcinoma ex pleomorphic adenoma. Also p21 behaves as dependent on or independent of p53 in carcinoma arising in pleomorphic adenoma.

  15. Zac1, an Sp1-like protein, regulates human p21{sup WAF1/Cip1} gene expression in HeLa cells

    SciTech Connect

    Liu, Pei-Yao; Hsieh, Tsai-Yuan; Liu, Shu-Ting; Chang, Yung-Lung; Lin, Wei-Shiang; Wang, Wei-Ming; Huang, Shih-Ming

    2011-12-10

    Zac1 functions as both a transcription factor and a transcriptional cofactor for p53, nuclear receptors (NRs) and NR coactivators. Zac1 might also act as a transcriptional repressor via the recruitment of histone deacetylase 1 (HDAC1). The ability of Zac1 to interact directly with GC-specific elements indicates that Zac1 possibly binds to Sp1-responsive elements. In the present study, our data show that Zac1 is able to interact directly with the Sp1-responsive element in the p21{sup WAF1/Cip1} gene promoter and enhance the transactivation activity of Sp1 through direct physical interaction. Our data further demonstrate that Zac1 might enhance Sp1-specific promoter activity by interacting with the Sp1-responsive element, affecting the transactivation activity of Sp1 via a protein-protein interaction, or competing the HDAC1 protein away from the pre-existing Sp1/HDAC1 complex. Finally, the synergistic regulation of p21{sup WAF1/Cip1} gene expression by Zac1 and Sp1 is mediated by endogenous p53 protein and p53-responsive elements in HeLa cells. Our work suggests that Zac1 might serve as an Sp1-like protein that directly interacts with the Sp1-responsive element to oligomerize with and/or to coactivate Sp1.

  16. IL-12-dependent innate immunity arrests endothelial cells in G0-G1 phase by a p21(Cip1/Waf1)-mediated mechanism.

    PubMed

    Napione, Lucia; Strasly, Marina; Meda, Claudia; Mitola, Stefania; Alvaro, Maria; Doronzo, Gabriella; Marchiò, Serena; Giraudo, Enrico; Primo, Luca; Arese, Marco; Bussolino, Federico

    2012-12-01

    Innate immunity may activate paracrine circuits able to entail vascular system in the onset and progression of several chronic degenerative diseases. In particular, interleukin (IL)-12 triggers a genetic program in lymphomononuclear cells characterized by the production of interferon-γ and specific chemokines resulting in an angiostatic activity. The aim of this study is to identify molecules involved in the regulation of cell cycle in endothelial cells co-cultured with IL-12-stimulated lymphomonuclear cells. By using a transwell mediated co-culture system we demonstrated that IL-12-stimulated lymphomonuclear cells induce an arrest of endothelial cells cycle in G1, which is mainly mediated by the up-regulation of p21(Cip1/Waf1), an inhibitor of cyclin kinases. This effect requires the activation of STAT1, PKCδ and p38 MAPK, while p53 is ineffective. In accordance, siRNA-dependent silencing of these molecules in endothelial cells inhibited the increase of p21(Cip1/Waf1) and the modification in cell cycle promoted by IL-12-stimulated lymphomonuclear cells. These results indicate that the angiostatic action of IL-12-stimulated lymphomononuclear cells may lie in the capability to arrest endothelial cells in G1 phase through a mechanisms mainly based on the specific up-regulation of p21(Cip1/Waf1) induced by the combined activity of STAT1, PKCδ and p38 MAPK.

  17. Disruption of the p53-p21 pathway inhibits efficiency of the lytic-replication cycle of herpes simplex virus type 2 (HSV-2).

    PubMed

    Zhou, Qi; Zhu, Meng; Zhang, Hao; Yi, Ting; Klena, John D; Peng, Yihong

    2012-10-01

    Cellular p53 and its downstream mediator p21, the major cellular growth suppression and DNA repair markers, have recently been implicated in viral amplification. Here, we show that herpes simplex virus type 2 (HSV-2) infection of both HCT116 p53(+/+)and NIH3T3 cells resulted in sustained increases of p21. HSV-2 infection did not increase cellular p53 expression, but led to phosphorylation of this protein at Ser20. This phosphorylation was accompanied by the increase of p21 protein levels. Furthermore, specific knockdown of endogenous p21 by siRNAs severely impaired virus production represented by HSV envelope glycoprotein B (gB) expression and progeny virus titers. Disruption of the p53-p21 pathway by either knocking down p53 in HCT116 p53(+/+) and NIH3T3 cells or using p53-deficient HCT116 p53(-/-) cells, led to a significant reduction of HSV-2 production. Together, these results suggest that the p53-p21 pathway is required for efficient HSV-2 lytic replication cycle. Because HSV infection induces the G0/G1 phase arrest at the early step of lytic-replication cycle, we propose that HSV-2 might hijack the cellular p53-p21 pathway to arrest the host cell cycle at G0/G1 phase, blocking cellular DNA synthesis, for its own benefit, i.e., to favor its own viral replication by avoiding competition in generating viral nucleotide pools.

  18. Correlations between p21 expression and clinicopathological findings, p53 gene and protein alterations, and survival in patients with endometrial carcinoma.

    PubMed

    Ito, K; Sasano, H; Matsunaga, G; Sato, S; Yajima, A; Nasim, S; Garret, C T

    1997-11-01

    The p21 protein inhibits cyclin-dependent kinases and mediates cell-cycle arrest and cell differentiation. It is induced by wild-type p53, but not by mutant p53. This study of 75 patients with endometrial carcinoma investigates the relationship between p21 expression and the functional status of p53, and the usefulness of p21 as a prognostic marker. Correlations were determined between p21 immunoreactivity, p53 overexpression as examined by immunohistochemistry, p53 DNA mutations as examined by polymerase chain reaction-single-stranded conformation polymorphism (PCR-SSCP) analysis, and clinicopathological features, including the clinical outcome. Immunoreactivity for p21 and p53 mutations were detected in 47 (62.7 per cent), 37 (49 per cent), and 23 (31 per cent) patients, respectively. There were no significant correlations between the presence or absence of p21 immunoreactivity and p53 overexpression and DNA mutations. Survival curves revealed that patients with p53 overexpression tended to have a poorer prognosis than those without p53 overexpression (P = 0.104), that patients with p53 mutations had a significantly worse prognosis than those without mutations (P = 0.035), and that patients with p21 expression tended to have a better prognosis than those without p21 expression (P = 0.074). Immunohistochemical analysis of p21 was not useful for evaluating the functional status of p53 in patients with endometrial carcinoma. Both p21 expression and p53 abnormalities were considered as prognostic indicators in patients with endometrioid endometrial carcinoma.

  19. The metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), upregulates p21 via p53-independent mechanisms.

    PubMed

    Kovacevic, Zaklina; Sivagurunathan, Sutharshani; Mangs, Helena; Chikhani, Sherin; Zhang, Daohai; Richardson, Des R

    2011-05-01

    The metastasis suppressor, N-myc downstream regulated gene-1 (NDRG1), has been shown to markedly reduce metastasis of numerous tumors. The current study was focused on further elucidating the molecular mechanisms behind the antitumor function of NDRG1. We have identified for the first time that NDRG1 upregulates the potent cyclin-dependent kinase inhibitor, p21. This effect was observed in three different cancer cell types, including PC3MM and DU145 prostate cancer cells and H1299 lung carcinoma cells, and occurred independently of p53. In addition, reducing NDRG1 expression using short hairpin RNA in PC3MM and DU145 cells resulted in significantly reduced p21 protein levels. Hence, p21 is closely correlated with NDRG1 expression in these latter cell types. Examining the mechanisms behind the effect of NDRG1 on p21 expression, we found that NDRG1 upregulated p21 via transcriptional and posttranscriptional mechanisms in prostate cancer cells, although its effect on H1299 cells was posttranscriptional only. Further studies identified two additional NDRG1 protein targets. The dominant-negative p63 isoform, ΔNp63, which has been found to inhibit p21 transcription, was downregulated by NDRG1. On the other hand, a truncated 50 kDa MDM2 isoform (p50(MDM2)), which may protect p21 from proteasomal degradation, was upregulated by NDRG1. The downregulation of ΔNp63 and upregulation of p50(MDM2) are potential mechanisms by which NDRG1 increases p21 expression in these cells. Additional functional studies identified that NDRG1 inhibits cancer cell migration, suggesting that p21 is a molecular player in its antimetastatic activity.

  20. Requirement for Ras/Raf/ERK pathway in naringin-induced G1-cell-cycle arrest via p21WAF1 expression.

    PubMed

    Kim, Dong-Il; Lee, Se-Jung; Lee, Soo-Bok; Park, Keerang; Kim, Wun-Jae; Moon, Sung-Kwon

    2008-09-01

    Naringin, an active flavonoid found in citrus fruit extracts, has pharmacological utility. The present study identified a novel mechanism of the anticancer effects of naringin in urinary bladder cancer cells. Naringin treatment resulted in significant dose-dependent growth inhibition together with G(1)-phase cell-cycle arrest at a dose of 100 microM (the half maximal inhibitory concentration) in 5637 cells. In addition, naringin treatment strongly induced p21WAF1 expression, independent of the p53 pathway, and downregulated expression of cyclins and cyclin dependent kinases (CDKs). Moreover, treatment with naringin induced phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase and c-Jun N-terminal kinase. Among the pathways examined, only PD98059, an ERK-specific inhibitor, blocked naringin-dependent p21WAF1 expression. Consistently, blockade of ERK function reversed naringin-mediated inhibition of cell proliferation and decreased cell-cycle proteins. Furthermore, naringin treatment increased both Ras and Raf activation. Transfection of cells with dominant-negative Ras (RasN17) and Raf (RafS621A) mutant genes suppressed naringin-induced ERK activity and p21WAF1 expression. Finally, the naringin-induced reduction in cell proliferation and cell-cycle proteins also was abolished in the presence of RasN17 and RafS621A mutant genes. These data demonstrate that the Ras/Raf/ERK pathway participates in p21WAF1 induction, subsequently leading to a decrease in the levels of cyclin D1/CDK4 and cyclin E-CDK2 complexes and naringin-dependent inhibition of cell growth. Overall, these unexpected findings concerning the molecular mechanisms of naringin in 5637 cancer cells provide a theoretical basis for the therapeutic use of flavonoids to treat malignancies.

  1. Cooperative role between p21cip1/waf1 and p27kip1 in premature senescence in glandular proliferative lesions in mice.

    PubMed

    García-Fernández, R A; García-Palencia, P; Suarez, C; Sánchez, M A; Gil-Gómez, G; Sánchez, B; Rollán, E; Martín-Caballero, J; Flores, J M

    2014-03-01

    Cellular senescence has been considered a novel target for cancer therapy. It has also been pointed out that p21(cip1/waf1) and p27(kip1) cyclin-dependent kinase inhibitors (CKIs) play a role in cellular senescence in some tumor types. Therefore, in order to address the possibility of a cooperative role between p21 and p27 proteins in senescence in vivo we analyzed cellular senescence in spontaneous glandular proliferative lesions (adrenal, thyroid and pituitary glands) in a double-KO mice model, using γH2AX, p53, p16, PTEN and Ki67 as senescence markers. The results obtained showed that p21p27 double-null mice had the lowest number of γH2AX positive cells in glandular hyperplasias and benign tumors. Also, in this group, Ki67 proliferation index correlated with a lower immunohistochemical expression of γH2AX and p53. The expression of p16 and PTEN do not seem to cause synergism of senescence in the benign lesions analyzed in p21p27 double-KO mice. These observations suggest an intrinsic cooperation between p21 and p27 CKIs in the activation of stress-induced cellular senescence and tumor progression in vivo, which would be a physiological mechanism to prevent tumor cell proliferation.

  2. Statins inhibit pulmonary artery smooth muscle cell proliferation by upregulation of HO-1 and p21WAF1.

    PubMed

    Li, Manxiang; Liu, Yuan; Shi, Hongyang; Zhang, Yonghong; Wang, Guizuo; Xu, Jing; Lu, Jiamei; Zhang, Dexin; Xie, Xinming; Han, Dong; Wu, Yuanyuan; Li, Shaojun

    2012-10-01

    Simvastatin is a 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, which has been shown to ameliorate the development of pulmonary hypertension in animal model by suppression of pulmonary artery smooth muscle cells (PASMCs) proliferation, yet its underlying molecular mechanisms are not completely understood. In this study, we show that simvastatin dose-dependently inhibited serotonin-stimulated PASMCs proliferation. This was accompanied with the parallel induction of heme oxyganase-1 (HO-1) and upregulation of p21(WAF1). More importantly, we found that Tin-protoporphyrin (SnPP), a selective inhibitor of HO-1, could block the effect of simvastatin on inhibition of cell proliferation in response to serotonin and abolish simvastatin-induced p21(WAF1) expression. The inhibitive effect of simvastatin on cell proliferation was also significantly suppressed by silencing p21(WAF1) with siRNA transfection. The extent of effect of SnPP on inhibition of cell proliferation was similar to that of lack of p21(WAF1) by siRNA transfection. Taken together, our study suggests that simvastatin inhibits PASMCs proliferation by sequential upregulation of HO-1 and p21(WAF1) to benefit pulmonary hypertension.

  3. Association of p53/p21 expression and cigarette smoking with tumor progression and poor prognosis in non-small cell lung cancer patients.

    PubMed

    Xie, Deyao; Lan, Linhua; Huang, Kate; Chen, Lin; Xu, Cuicui; Wang, Rongrong; Shi, Yang; Wu, Xiaoyi; Wang, Lu; Liu, Yongzhang; Lu, Bin

    2014-12-01

    Non-small cell lung cancer (NSCLC) accounts for approximately 80-85% of all lung cancer cases. Cigarette smoking is the number one risk factor which is attributed to more than four out of five cases of lung cancers. The prognostic impact of cell cycle regulation-associated tumor suppressors including p53 and p21 for NSCLC is still controversial. In the present study, we examined p53 and p21 expression using immunoblotting in tumor and adjacent non-cancerous tissues from NSCLC patients. Moreover, tissue microarrays (TMAs) including 150 specimens was used to examine p53 and p21 expression by immunohistochemical staining (IHC). The association between p53/p21 and various clinicopathological characteristics was evaluated. Kaplan-Meier overall survival was used to analyze the association between p53/p21 expression and prognosis of NSCLC patients, as well as the association of cigarette smoking with p53/p21 expression and prognosis. The results of the immunoblotting showed that expression of p53 and p21 in tumor tissues was significantly higher than that in the matched adjacent non-cancerous tissues (P<0.001 and P<0.05, respectively). The IHC results showed that 50.67% of the cases had high expression of p21; however, the percentage of patients having high expression of p53 was 31.3%. Univariate and Cox regression models were used to evaluate the factors related to prognosis with p53 and p21 expression. Multivariate analysis indicated that p53 expression was an independent prognostic factor for NSCLC (P=0.005), while p21 could not serve as an independent prognostic factor (P=0.123). In addition, smoking history was closely related to lung cancer risk (P=0.041), but could not be an independent assessment factor (P=0.740). In this study, we further demonstrated the association of p53/p21 expression and cigarette smoking. Our results suggest that cigarette smoking and overexpression of p53 or p21 are associated with poor prognosis. The combination of p53/p21 expression and

  4. The matricellular protein CCN1 suppresses lung cancer cell growth by inducing senescence via the p53/p21 pathway.

    PubMed

    Jim Leu, Shr-Jeng; Sung, Jung-Sung; Chen, Mei-Yu; Chen, Chih-Wei; Cheng, Jian-Yu; Wang, Tse-Yen; Wang, Jeng-Jung

    2013-09-01

    CCN1, a secreted matrix-associated molecule, is involved in multiple cellular processes. Previous studies have indicated that expression of CCN1 correlates inversely with the aggressiveness of non-small-cell lung carcinoma (NSCLC); however, the underlying mechanisms remain elusive. Using three NSCLC cell line systems, here we show that long-term treatment of cells with the recombinant CCN1 protein led to a permanent cell cycle arrest in G1 phase; cells remained viable as judged by apoptotic assays. CCN1-treated NSCLC cells acquired a phenotype characteristic of senescent cells, including an enlarged and flattened cell shape and expression of the senescence-associated β-galactosidase. Immunoblot analysis showed that addition of CCN1 increased the abundance of hypo-phosphorylated Rb, as well as accumulation of p53 and p21. Silencing the expression of p53 or p21 by lentivirus-mediated shRNA production in cells blocked the CCN1-induced senescence. Furthermore, a CCN1 mutant defective for binding integrin α6β1 and co-receptor heparan sulfate proteoglycans was incapable of senescence induction. Our finding that direct addition of CCN1 induces senescence in NSCLC cells provides a potential novel strategy for therapeutic intervention of lung cancers.

  5. p21(WAF1) gene promoter is epigenetically silenced by CTIP2 and SUV39H1.

    PubMed

    Cherrier, T; Suzanne, S; Redel, L; Calao, M; Marban, C; Samah, B; Mukerjee, R; Schwartz, C; Gras, G; Sawaya, B E; Zeichner, S L; Aunis, D; Van Lint, C; Rohr, O

    2009-09-24

    Mainly regulated at the transcriptional level, the cellular cyclin-dependent kinase inhibitor, CDKN1A/p21(WAF1) (p21), is a major cell cycle regulator of the response to DNA damage, senescence and tumor suppression. Here, we report that COUP-TF-interacting protein 2 (CTIP2), recruited to the p21 gene promoter, silenced p21 gene transcription through interactions with histone deacetylases and methyltransferases. Importantly, treatment with the specific SUV39H1 inhibitor, chaetocin, repressed histone H3 lysine 9 trimethylation at the p21 gene promoter, stimulated p21 gene expression and induced cell cycle arrest. In addition, CTIP2 and SUV39H1 were recruited to the silenced p21 gene promoter to cooperatively inhibit p21 gene transcription. Induction of p21(WAF1) gene upon human immunodeficiency virus 1 (HIV-1) infection benefits viral expression in macrophages. Here, we report that CTIP2 further abolishes Vpr-mediated stimulation of p21, thereby indirectly contributing to HIV-1 latency. Altogether, our results suggest that CTIP2 is a constitutive p21 gene suppressor that cooperates with SUV39H1 and histone methylation to silence the p21 gene transcription.

  6. Spontaneous γH2AX Foci in Human Solid Tumor-Derived Cell Lines in Relation to p21WAF1 and WIP1 Expression

    PubMed Central

    Mirzayans, Razmik; Andrais, Bonnie; Scott, April; Wang, Ying W.; Weiss, Robert H.; Murray, David

    2015-01-01

    Phosphorylation of H2AX on Ser139 (γH2AX) after exposure to ionizing radiation produces nuclear foci that are detectable by immunofluorescence microscopy. These so-called γH2AX foci have been adopted as quantitative markers for DNA double-strand breaks. High numbers of spontaneous γH2AX foci have also been reported for some human solid tumor-derived cell lines, but the molecular mechanism(s) for this response remains elusive. Here we show that cancer cells (e.g., HCT116; MCF7) that constitutively express detectable levels of p21WAF1 (p21) exhibit low numbers of γH2AX foci (<3/nucleus), whereas p21 knockout cells (HCT116p21−/−) and constitutively low p21-expressing cells (e.g., MDA-MB-231) exhibit high numbers of foci (e.g., >50/nucleus), and that these foci are not associated with apoptosis. The majority (>95%) of cells within HCT116p21−/− and MDA-MB-231 cultures contain high levels of phosphorylated p53, which is localized in the nucleus. We further show an inverse relationship between γH2AX foci and nuclear accumulation of WIP1, an oncogenic phosphatase. Our studies suggest that: (i) p21 deficiency might provide a selective pressure for the emergence of apoptosis-resistant progeny exhibiting genomic instability, manifested as spontaneous γH2AX foci coupled with phosphorylation and nuclear accumulation of p53; and (ii) p21 might contribute to positive regulation of WIP1, resulting in dephosphorylation of γH2AX. PMID:26006237

  7. CCAAT/enhancer-binding protein alpha (C/EBP alpha) inhibits cell proliferation through the p21 (WAF-1/CIP-1/SDI-1) protein.

    PubMed

    Timchenko, N A; Wilde, M; Nakanishi, M; Smith, J R; Darlington, G J

    1996-04-01

    C/EBPalpha has a role in growth arrest and differentiation of mouse preadipocytes. To study the mechanism of C/EBPalpha-induced growth arrest, we developed a cell line, HT1, that contained the human C/EBPalpha gene under Lac repressor control. IPTG-induced C/EBPalpha caused inhibition of cell proliferation and DNA synthesis as measured by colony growth assays, cell counting, and BrdU uptake. A number of proteins that are known to be involved in the regulation of the cell cycle, such as cyclin-dependent kinase (CDK)2 and CDK4, proliferating cell nuclear antigen (PCNA), p53, c-fos, and the CDK inhibitor p16 and p27 were investigated by Western analysis. No change in their expression was observed. However, the p21 (WAF-1/CIP-1/SDI-1) protein was significantly elevated in growth-arrested HT1 cells. Elevation of p21/SDI-1 mRNA (threefold) and activation of the p21/SDI-1 promoter by C/EBPalpha did not account for the 12- to 20-fold increase in p21/SDI-1 protein. Protein synthesis inhibition by cycloheximide (CHX) treatment indicated that the half-life of p21/SDI-1 in dividing HT1 cells was approximately 30 min. However, in C/EBPalpha growth-arrested cells, the level of the p21/SDI-1 did not change for > 80 min after CHX addition. Our studies demonstrate that C/EBPalpha activates p21/SDI-1 by increasing p21/SDI-1 gene expression and by post-translational stabilization of p21/SDI-1 protein. Furthermore, induction of p21/SDI-1 is responsible for the ability of C/EBPalpha to inhibit proliferation because transcription of antisense p21/SDI-1 mRNA eliminated growth inhibition by C/EBPalpha.

  8. Dimethylfumarate inhibits melanoma cell proliferation via p21 and p53 induction and bcl-2 and cyclin B1 downregulation.

    PubMed

    Kaluzki, Irina; Hrgovic, Igor; Hailemariam-Jahn, Tsige; Doll, Monika; Kleemann, Johannes; Valesky, Eva Maria; Kippenberger, Stefan; Kaufmann, Roland; Zoeller, Nadja; Meissner, Markus

    2016-10-01

    Recent evidence suggests that dimethylfumarate (DMF), known as a highly potent anti-psoriatic agent, might have anti-tumorigenic properties in melanoma. It has recently been demonstrated that DMF inhibits melanoma proliferation by apoptosis and cell cycle inhibition and therefore inhibits melanoma metastasis. Nonetheless, the underlying mechanisms remain to be evaluated. To elucidate the effects of DMF on melanoma cell lines (A375, SK-Mel), we first performed cytotoxicity assays. No significant lactatedehydogenase (LDH) release could be found. In further analysis, we showed that DMF suppresses melanoma cell proliferation in a concentration-dependent manner. To examine whether these effects are conveyed by apoptotic mechanisms, we studied the amount of apoptotic nucleosomes and caspase 3/7 activity using ELISA analysis. Significant apoptosis was induced by DMF in both cell lines, and this could be paralleled with bcl-2 downregulation and PARP-1 cleavage. We also performed cell cycle analysis and found that DMF induced concentration-dependent arrests of G0/G1 as well as G2/M. To examine the underlying mechanisms of cell cycle arrest, we analyzed the expression profiles of important cell cycle regulator proteins such as p53, p21, cyclins A, B1, and D1, and CDKs 3, 4, and 6. Interestingly, DMF induced p53 and p21 yet inhibited cyclin B1 expression in a concentration-dependent manner. Other cell cycle regulators were not influenced by DMF. The knockdown of DMF induced p53 via siRNA led to significantly reduced apoptosis but had no influence on cell cycle arrest. We examined the adhesion of melanoma cells on lymphendothelial cells during DMF treatment and found a significant reduction in interaction. These data provide evidence that DMF inhibits melanoma proliferation by reinduction of important cell cycle inhibitors leading to a concentration-dependent G0/G1 or G2/M cell cycle arrest and induction of apoptosis via downregulation of bcl-2 and induction of p53 and PARP-1

  9. Long Noncoding RNA Highly Upregulated in Liver Cancer Activates p53-p21 Pathway and Promotes Nasopharyngeal Carcinoma Cell Growth.

    PubMed

    Jiang, Xue; Liu, Weiwei

    2017-07-01

    Dysfunction of lncRNA has been found in the nasopharyngeal carcinoma (NPC); however, the effect of lncRNA expression on NPC tumorigenesis as well as the molecular mechanism of lncRNA in the pathogenesis of NPC remain largely unknown. In this study, we showed that highly upregulated in liver cancer (HULC), the first identified lncRNA in hepatocellular carcinoma, is highly expressed in NPC patients and correlated with a poor prognosis of cancer patients. Overexpressed HULC promotes NPC cell growth. Downregulation of HULC activated p53 and induced the increased expression of p21, which finally caused cell cycle arrest and cell apoptosis. These results suggested that HULC acts as an oncogenic lncRNA in NPC and a potential therapeutic target in NPC treatment.

  10. Novel peptides from the RAS-p21 and p53 proteins for the treatment of cancer.

    PubMed

    Bowne, Wilbur B; Michl, Josef; Bluth, Martin H; Zenilman, Michael E; Pincus, Matthew R

    2007-01-01

    We have employed a novel computer-based molecular modeling method to design peptides from the ras-p21 and p53 proteins that block proliferation of cancer cells. The rationale of our approach is to identify peptide domains from each protein that alter conformation in response to oncogenic amino acid substitutions in their polypeptide chain. We accomplish this by first generating and comparing low energy average structures for oncogenic and wild-type proteins using conformational energy calculations. Peptides are then synthesized corresponding to these domains. These domains are then linked to a trans-membrane-penetrating sequence (called penetratin) and tested against cancer and untransformed cell lines. Remarkably, we have found that two ras-p21 peptides, 35-47 and 96-110, called PNC-7 and PNC-2, respectively, can induce phenotypic reversion of ras-transformed TUC-3 pancreatic cancer cells and ras-transformed HT1080 human fibrosarcoma cells to their untransformed phenotypes. Moreover, both peptides were found to be cytotoxic to ras-transformed human MIA-PaCa-2 pancreatic carcinoma cells and human U-251 astrocytoma cells. Importantly, these peptides have no effect on the growth of their normal cellular counterparts. We have also synthesized peptides from the p53 protein corresponding to its hdm-2-binding domain sequences (residues 12-26), also linked to the penetratin sequence. Surprisingly, we have found that these peptides induce 100 percent tumor cell necrosis, not apoptosis, in 13 different human cancer cell lines but have no effect on normal pancreatic acinar cells, breast epithelial cells, and human stem cells. Moreover, these peptides are cytotoxic to TUC-3 pancreatic tumor cells in nude mice plus eradicate these tumor cells when administered at sites near these tumors. These novel peptides appear to hold much promise as new, non-toxic anti-cancer agents.

  11. Molecular targets of apigenin in colorectal cancer cells: Involvement of p21, NAG-1 and p53

    PubMed Central

    Zhong, Yi; Krisanapun, Chutwadee; Lee, Seong-Ho; Nualsanit, Thararat; Sams, Carl; Peungvicha, Penchom; Baek, Seung Joon

    2010-01-01

    Persuasive epidemiological and experimental evidence suggests that dietary flavonoids have anti-cancer activity. Since conventional therapeutic and surgical approaches have not been able to fully control the incidence and outcome of most cancer types, including colorectal neoplasia, there is an urgent need to develop alternative approaches for the management of cancer. We sought to develop the best flavonoids for the inhibition of cell growth, and apigenin (flavone) proved the most promising compound in colorectal cancer cell growth arrest. Subsequently, we found that pro-apoptotic proteins (NAG-1 and p53) and cell cycle inhibitor (p21) were induced in the presence of apigenin, and kinase pathways, including PKCδ and ataxia telangiectasia mutated (ATM), play an important role in activating these proteins. The data generated by in vitro experiments were confirmed in an animal study using APCMIN+ mice. Apigenin is able to reduce polyp numbers, accompanied by increasing p53 activation through phosphorylation in animal models. Our data suggest apparent beneficial effects of apigenin on colon cancer. PMID:20709524

  12. Epigallocatechin-3-Gallate Prevents Autoimmune-Associated Down-Regulation of p21 in Salivary Gland Cells Through a p53-Independent Pathway

    PubMed Central

    Dickinson, Douglas; Yu, Hongfang; Ohno, Seiji; Thomas, Cristina; DeRossi, Scott; Ma, Yat-Ho; Yates, Nicole; Hahn, Emily; Bisch, Frederick; Yamamoto, Tetsuya; Hsu, Stephen

    2015-01-01

    The submandibular salivary glands of non-obese diabetic (NOD) mice, a model for Sjogren’s syndrome and type-1 diabetes, show an elevated level of proliferating cell nuclear antigen (PCNA), a protein involved in cell proliferation and repair of DNA damage. We reported previously that epigallocatechin-3-gallate (EGCG), the most abundant green tea catechin, normalizes the PCNA level. PCNA’s activity can be regulated by the cyclin-dependent kinase inhibitor p21, which is also important for epithelial cell differentiation. In turn, expression of p21 and PCNA are partially regulated by Rb phosphorylation levels. EGCG was found to modulate p21 expression in epithelial cells, suggesting that EGCG-induced p21 could be associated with down-regulation of PCNA in vivo. The current study examined the protein levels of p21 and p53 (which can up-regulate p21) in NOD mice fed with either water or EGCG, and the effect of EGCG on p21 and p53 in cell line models with either normal or defective Rb. In NOD mice, the p21 level was low, and EGCG normalized it. In contrast to HSG cells with functional Rb, negligible expression of p21 in NS-SV-AC cells that lack Rb was not altered by EGCG treatment. Inhibition of p53 by siRNA demonstrated that p21 and p53 were induced independently in HSG cells by a physiological concentration range of EGCG, suggesting p53 could be an important but not conditional factor associated with p21 expression. In conclusion, PCNA and p21 levels are altered inversely in the NOD model for SS and in HSG cells, and warrant further study as candidate new markers for salivary dysfunction associated with xerostomia. Induction of p21 by EGCG could provide clinically useful normalization of salivary glands by promoting differentiation and reducing PCNA levels. PMID:24329914

  13. Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes

    PubMed Central

    Hall, J R; Messenger, Z J; Tam, H W; Phillips, S L; Recio, L; Smart, R C

    2015-01-01

    LincRNA-p21 is a long noncoding RNA and a transcriptional target of p53 and HIF-1α. LincRNA-p21 regulates gene expression in cis and trans, mRNA translation, protein stability, the Warburg effect, and p53-dependent apoptosis and cell cycle arrest in doxorubicin-treated mouse embryo fibroblasts. p53 plays a key role in the response of skin keratinocytes to UVB-induced DNA damage by inducing cell cycle arrest and apoptosis. In skin cancer development, UVB-induced mutation of p53 allows keratinocytes upon successive UVB exposures to evade apoptosis and cell cycle arrest. We hypothesized that lincRNA-p21 has a key functional role in UVB-induced apoptosis and/or cell cycle arrest in keratinocytes and loss of lincRNA-p21 function results in the evasion of apoptosis and/or cell cycle arrest. We observed that lincRNA-p21 transcripts are highly inducible by UVB in mouse and human keratinocytes in culture and in mouse skin in vivo. LincRNA-p21 is regulated at the transcriptional level in response to UVB, and the UVB induction of lincRNA-p21 in keratinocytes and in vivo in mouse epidermis is primarily through a p53-dependent pathway. Knockdown of lincRNA-p21 blocked UVB-induced apoptosis in mouse and human keratinocytes, and lincRNA-p21 was responsible for the majority of UVB-induced and p53-mediated apoptosis in keratinocytes. Knockdown of lincRNA-p21 had no effect on cell proliferation in untreated or UVB-treated keratinocytes. An early event in skin cancer is the mutation of a single p53 allele. We observed that a mutant p53+/R172H allele expressed in mouse epidermis (K5Cre+/tg;LSLp53+/R172H) showed a significant dominant-negative inhibitory effect on UVB-induced lincRNA-p21 transcription and apoptosis in epidermis. We conclude lincRNA-p21 is highly inducible by UVB and has a key role in triggering UVB-induced apoptotic death. We propose that the mutation of a single p53 allele provides a pro-oncogenic function early in skin cancer development through a dominant

  14. The expression of p21 is upregulated by forkhead box A1/2 in p53-null H1299 cells.

    PubMed

    An, Joo-Hee; Jang, Sang-Min; Kim, Jung-Woong; Kim, Chul-Hong; Song, Peter I; Choi, Kyung-Hee

    2014-11-03

    The expression of the cell cycle inhibitor p21 is increased in response to various stimuli and stress signals through p53-dependent and independent pathways. We demonstrate in this study that forkhead box A1/2 (FOXA1/2) is a crucial transcription factor in the activation of p21 transcription via direct binding to the p21 promoter in p53-null H1299 lung carcinoma cells. In addition, histone deacetylase inhibitor trichostatin A (TSA)-mediated upregulation of p21 expression was repressed by knockdown of FOXA1/2 in H1299 cells. Consequently, these results suggest that FOXA1/2 is required for p53-independent p21 expression.

  15. Proto-oncogene FBI-1 represses transcription of p21CIP1 by inhibition of transcription activation by p53 and Sp1.

    PubMed

    Choi, Won-Il; Jeon, Bu-Nam; Yun, Chae-Ok; Kim, Pyung-Hwan; Kim, Sung-Eun; Choi, Kang-Yell; Kim, Se Hoon; Hur, Man-Wook

    2009-05-08

    Aberrant transcriptional repression through chromatin remodeling and histone deacetylation has been postulated as the driving force for tumorigenesis. FBI-1 (formerly called Pokemon) is a member of the POK family of transcriptional repressors. Recently, FBI-1 was characterized as a critical oncogenic factor that specifically represses transcription of the tumor suppressor gene ARF, potentially leading indirectly to p53 inactivation. Our investigations on transcriptional repression of the p53 pathway revealed that FBI-1 represses transcription of ARF, Hdm2 (human analogue of mouse double minute oncogene), and p21CIP1 (hereafter indicated as p21) but not of p53. FBI-1 showed a more potent repressive effect on p21 than on p53. Our data suggested that FBI-1 is a master controller of the ARF-Hdm2-p53-p21 pathway, ultimately impinging on cell cycle arrest factor p21, by inhibiting upstream regulators at the transcriptional and protein levels. FBI-1 acted as a competitive transcriptional repressor of p53 and Sp1 and was shown to bind the proximal Sp1-3 GC-box and the distal p53-responsive elements of p21. Repression involved direct binding competition of FBI-1 with Sp1 and p53. FBI-1 also interacted with corepressors, such as mSin3A, NCoR, and SMRT, thereby deacetylating Ac-H3 and Ac-H4 histones at the promoter. FBI-1 caused cellular transformation, promoted cell cycle proliferation, and significantly increased the number of cells in S phase. FBI-1 is aberrantly overexpressed in many human solid tumors, particularly in adenocarcinomas and squamous carcinomas. The role of FBI-1 as a master controller of the p53 pathway therefore makes it an attractive therapeutic target.

  16. Characterization of cells resistant to the potent histone deacetylase inhibitor spiruchostatin B (SP-B) and effect of overexpressed p21waf1/cip1 on the SP-B resistance or susceptibility of human leukemia cells.

    PubMed

    Kanno, Syu-Ichi; Maeda, Naoyuki; Tomizawa, Ayako; Yomogida, Shin; Katoh, Tadashi; Ishikawa, Masaaki

    2012-09-01

    We previously showed that the B cell leukemia cell line NALM-6 had the highest susceptibility among a number of leukemia cell lines to spiruchostatin B (SP-B), a potent histone deacetylase (HDAC) inhibitor. We also showed that SP-B-induced cytotoxicity depended on induction of apoptosis that was mediated by p21waf1/cip1 expression. In the present study, we generated and characterized a stable, SP-B-resistant NALM-6 cell line (NALM-6/SP-B) by continuous exposure to SP-B, starting with a low SP-B concentration. NALM-6/SP-B cells were also more resistant to FK228, which has a similar chemical structure to SP-B, and were slightly more resistant to the P-gp substrates doxorubicin and vincristine than parental cells, but displayed similar susceptibility to other HDAC inhibitors and to paclitaxel as the parental cells. There was little change in the basal mRNA expression of HDAC1, p53, Bax, Bcl-2, Fas, caspase-3, c-Myc and MDR1 in NALM-6/SP-B compared to parental cells, but the mRNA expression of p21waf1/cip1 was decreased. The introduction of an exogenous p21waf1/cip1 expression vector restored SP-B induction of NALM-6/SP-B cell apoptosis. Moreover, overexpressed p21waf1/cip1 enhanced SP-B induction of the apoptosis of the human erythroleukemia leukemia cell line K562 which is less susceptible to SP-B than NALM-6 cells. These results suggest that downregulation of p21waf1/cip1, which is a characteristic feature of NALM-6/SP-B cells, was important for their resistance to SP-B, and that this SP-B resistance could be overcome by the introduction of exogenous p21waf1/cip1. Furthermore, introduction of p21waf1/cip1 to other leukemia cells such as K562 may enhance their susceptibility to SP-B. This is the first report of the characterization of SP-B-resistant cells and of the effect of overexpressed p21waf1/cip1 on the resistance or susceptibility of human leukemia cells to SP-B.

  17. Naringin-induced p21WAF1-mediated G(1)-phase cell cycle arrest via activation of the Ras/Raf/ERK signaling pathway in vascular smooth muscle cells.

    PubMed

    Lee, Eo-Jin; Moon, Gi-Seong; Choi, Won-Seok; Kim, Wun-Jae; Moon, Sung-Kwon

    2008-12-01

    The flavonoid naringin has been shown to play a role in preventing the development of cardiovascular disease. However, the exact molecular mechanisms underlying the roles of integrated cell cycle regulation and MAPK signaling pathways in the regulation of naringin-induced inhibition of cell proliferation in vascular smooth muscle cells (VSMCs) remain to be identified. Naringin treatment resulted in significant growth inhibition and G(1)-phase cell cycle arrest mediated by induction of p53-independent p21WAF1 expression; expression of cyclins and CDKs in VSMCs was also down-regulated. In addition, among the pathways examined, blockade of ERK function inhibited naringin-dependent p21WAF1 expression, reversed naringin-mediated inhibition of cell proliferation and decreased cell cycle proteins. Moreover, naringin treatment increased both Ras and Raf activations. Transfection of cells with dominant negative Ras (RasN17) and Raf (RafS621A) mutant genes suppressed naringin-induced ERK activity and p21WAF1 expression. Finally, naringin-induced reduction in cell proliferation and cell cycle protein was abolished in the presence of RasN17 and RafS621A mutant genes. The Ras/Raf/ERK pathway participates in p21WAF1 induction, leading to a decrease in cyclin D1/CDK4 and cyclin E/CDK2 complexes and in naringin-dependent inhibition of cell growth. These novel and unexpected findings provide a theoretical basis for preventive use of flavonoids to the atherosclerosis disease.

  18. Expression Profile of p53 and p21 in Large Bowel Mucosa as Biomarkers of Inflammatory-Related Carcinogenesis in Ulcerative Colitis

    PubMed Central

    Nichita, Luciana; Voiosu, Theodor; Bastian, Alexandra; Cioplea, Mirela; Micu, Gianina; Sticlaru, Liana; Bengus, Andreea; Voiosu, Andrei; Mateescu, Radu Bogdan

    2016-01-01

    Ulcerative colitis (UC) is a chronic, relapsing inflammatory bowel disease that slightly increases the risk of colorectal cancer in patients with long-standing extended disease. Overexpression of p53 and p21 in colonic epithelia is usually detected in UC patients when no dysplasia is histologically seen and it is used by pathologists as a discriminator between regenerative changes and intraepithelial neoplasia, as well as a tissue biomarker useful to predict the risk of evolution toward malignancy. We present a one-year prospective observational study including a cohort of 45 patients with UC; p53 and p21 were evaluated in epithelial cells. p53 was positive in 74 samples revealed in 5% to 90% of epithelial cells, while 63 biopsies had strong positivity for p21 in 5% to 50% of epithelial cells. Architectural distortion was significantly correlated with p53 overexpression in epithelial cells. Thus, we consider that architectural distortion is a good substitute for p53 and p21 expression. We recommend use of p53 as the most valuable tissue biomarker in surveillance of UC patients, identifying the patients with higher risk for dysplasia. Association of p21 is also recommended for a better quantification of risk and for diminishing the false-negative results. PMID:27578918

  19. Status of p53, p21, mdm2, pRb proteins, and DNA methylation in gonocytes of control and gamma-irradiated rats during testicular development.

    PubMed

    Moréno, S G; Dutrillaux, B; Coffigny, H

    2001-05-01

    In fetal and newborn rat testes, gonocytes, which stop cycling for about 8 days, become highly radiosensitive. The presence of p53, p21, mdm2, and pRb, which are involved in cell cycle, apoptosis control, or both, were studied by immunohistochemistry to determine if their expression is related to this radiosensitivity. A strong cytoplasmic expression of p53 and p21 was detected. Cytoplasmic expression of p53 occurred only in arrested gonocytes, whereas that of p21 was observed before and after the block. P21 was found to colocalize with mitochondria. No expression of mdm2 was detected and pRb was present only when the gonocytes started cycling again. In animals exposed to 1.5 Gy of gamma-irradiation at Day 19 postcoitum, p53 expression was prolonged in time, whereas no change was observed in p21 amounts and localization, compared with controls. Using antibodies against 5-methyl cytosine, it was shown that gonocyte DNA passed from a hypomethylated to a methylated status 1 day after gonocytes stopped cycling. A prolonged survival of gonocytes after exposure to radiation was followed by their progressive apoptosis, which finally involved the entire gonocyte population between Days 6 and 12 postpartum. The elevated but delayed sensitivity of gonocytes to genotoxic stress may be related to the unusual expression of p53 and p21, which may itself be related to the large DNA methylation changes.

  20. Combined loss of PUMA and p21 accelerates c-MYC-driven lymphoma development considerably less than loss of one allele of p53.

    PubMed

    Valente, L J; Grabow, S; Vandenberg, C J; Strasser, A; Janic, A

    2016-07-21

    The tumor suppressor p53 is mutated in ~50% of human cancers. P53 is activated by a range of stimuli and regulates several cellular processes, including apoptotic cell death, cell cycle arrest, senescence and DNA repair. P53 induces apoptosis via transcriptional induction of the BH3-only proteins PUMA (p53-upregulated modulator of apoptosis) and NOXA, and cell cycle arrest via p21. Induction of these processes was proposed to be critical for p53-mediated tumor suppression. It is therefore surprising that mice lacking PUMA, NOXA and p21, as well as mice bearing mutations in p53 that impair the transcriptional activation of these genes, are not tumor prone, unlike mice lacking p53 function, which spontaneously develop tumors with 100% incidence. These p53 target genes and the processes they regulate may, however, impact differently on tumor development depending on the oncogenic drivers. For example, loss of PUMA enhances c-MYC-driven lymphoma development in mice, but, interestingly, the acceleration was less impressive compared with that caused by the loss of even a single p53 allele. Different studies have reported that loss of p21 can accelerate, delay or have no impact on tumorigenesis. In an attempt to resolve this controversy, we examined whether loss of p21-mediated cell cycle arrest cooperates with PUMA deficiency in accelerating lymphoma development in Eμ-Myc mice (overexpressing c-MYC in B-lymphoid cells). We found that Eμ-Myc mice lacking both p21 and PUMA (Eμ-Myc;Puma(-/-);p21(-/-)) developed lymphoma at a rate comparable to Eμ-Myc;Puma(-/-) animals, notably with considerably longer latency than Eμ-Myc;p53(+/-)mice. Loss of p21 had no impact on the numbers, cycling or survival of pre-leukemic Eμ-Myc B-lymphoid cells, even when PUMA was lost concomitantly. These results demonstrate that even in the context of deregulated c-MYC expression, p53 must suppress tumor development by activating processes apart from, or in addition to, PUMA

  1. Induction of p21WAF1/CIP1 and Inhibition of Cdk2 Mediated by the Tumor Suppressor p16INK4a

    PubMed Central

    Mitra, Jayashree; Dai, Charlotte Y.; Somasundaram, Kumaravel; El-Deiry, Wafik S.; Satyamoorthy, Kapaettu; Herlyn, Meenhard; Enders, Greg H.

    1999-01-01

    The tumor suppressor p16INK4a inhibits cyclin-dependent kinases 4 and 6. This activates the retinoblastoma protein (pRB) and, through incompletely understood events, arrests the cell division cycle. To permit biochemical analysis of the arrest, we generated U2-OS osteogenic sarcoma cell clones in which p16 transcription could be induced. In these clones, binding of p16 to cdk4 and cdk6 abrogated binding of cyclin D1, p27KIP1, and p21WAF1/CIP1. Concomitantly, the total cellular level of p21 increased severalfold via a posttranscriptional mechanism. Most cyclin E-cdk2 complexes associated with p21 and became inactive, expression of cyclin A was curtailed, and DNA synthesis was strongly inhibited. Induction of p21 alone, in a sibling clone, to the level observed during p16 induction substantially reproduced these effects. Overexpression of either cyclin E or A prevented p16 from mediating arrest. We then extended these studies to HCT 116 colorectal carcinoma cells and a p21-null clone derived by homologous recombination. In the parental cells, p16 expression also augmented total cellular and cdk2-bound p21. Moreover, p16 strongly inhibited DNA synthesis in the parental cells but not in the p21-null derivative. These findings indicate that p21-mediated inhibition of cdk2 contributes to the cell cycle arrest imposed by p16 and is a potential point of cooperation between the p16/pRB and p14ARF/p53 tumor suppressor pathways. PMID:10207115

  2. Functional analysis of the ATM-p53-p21 pathway in the LRF CLL4 trial: blockade at the level of p21 is associated with short response duration.

    PubMed

    Lin, Ke; Adamson, Janet; Johnson, Gillian G; Carter, Anthony; Oates, Melanie; Wade, Rachel; Richards, Sue; Gonzalez, David; Matutes, Estella; Dearden, Claire; Oscier, David G; Catovsky, Daniel; Pettitt, Andrew R

    2012-08-01

    This study sought to establish whether functional analysis of the ATM-p53-p21 pathway adds to the information provided by currently available prognostic factors in patients with chronic lymphocytic leukemia (CLL) requiring frontline chemotherapy. Cryopreserved blood mononuclear cells from 278 patients entering the LRF CLL4 trial comparing chlorambucil, fludarabine, and fludarabine plus cyclophosphamide were analyzed for ATM-p53-p21 pathway defects using an ex vivo functional assay that uses ionizing radiation to activate ATM and flow cytometry to measure upregulation of p53 and p21 proteins. Clinical endpoints were compared between groups of patients defined by their pathway status. ATM-p53-p21 pathway defects of four different types (A, B, C, and D) were identified in 194 of 278 (70%) samples. The type A defect (high constitutive p53 expression combined with impaired p21 upregulation) and the type C defect (impaired p21 upregulation despite an intact p53 response) were each associated with short progression-free survival. The type A defect was associated with chemoresistance, whereas the type C defect was associated with early relapse. As expected, the type A defect was strongly associated with TP53 deletion/mutation. In contrast, the type C defect was not associated with any of the other prognostic factors examined, including TP53/ATM deletion, TP53 mutation, and IGHV mutational status. Detection of the type C defect added to the prognostic information provided by TP53/ATM deletion, TP53 mutation, and IGHV status. Our findings implicate blockade of the ATM-p53-p21 pathway at the level of p21 as a hitherto unrecognized determinant of early disease recurrence following successful cytoreduction.

  3. Homeodomain interacting protein kinase 2 activation compromises endothelial cell response to laminar flow: protective role of p21(waf1,cip1,sdi1).

    PubMed

    Mattiussi, Stefania; Lazzari, Chiara; Truffa, Silvia; Antonini, Annalisa; Soddu, Silvia; Capogrossi, Maurizio C; Gaetano, Carlo

    2009-08-11

    In the cardiovascular system, laminar shear stress (SS) is one of the most important source of endothelial protecting signals. Physical and chemical agents, however, including ionising radiations and anticancer drugs, may injure endothelial cells determining an increase in oxidative stress and genotoxic damage. Whether the SS protective function remains intact in the presence of strong oxidants or DNA damage is currently unclear. To investigate this aspect a series of experiments were performed in which HUVEC were exposed to sub-lethal doses of the radio-mimetic compound Bleomycin (Bleo; 10 microg/ml) which generated free radicals (ROS) without significantly compromising cell survival. Remarkably, the application of a SS of 12 dyne/cm(2) did not protect endothelial cells but markedly accelerated apoptosis compared to controls kept in static culture and in the presence of Bleo. Experiments with the inducible nitric oxide synthase (iNOS) inhibitor GW274150 significantly reduced the SS-dependent apoptosis indicating that the production of NO was relevant for this effect. At molecular level, the ataxia-telangectasia-mutated (ATM) kinase, the homeodomain-interacting protein kinase-2 (HIPK2) and p53 were found activated along a pro-apoptotic signalling pathway while p21(waf1,cip1,sdi1) was prevented from its protective action. RNA interference experiments revealed that HIPK2 and p53 were both important for this process, however, only the forced expression p21(waf1,cip1,sdi1) fully restored the SS-dependent pro-survival function. This study provides the first evidence that, in the presence of genotoxic damage, laminar flow contributes to endothelial toxicity and death and identifies molecular targets potentially relevant in endothelial dysfunction and cardiovascular disease pathogenesis.

  4. NS1- and Minute Virus of Mice-Induced Cell Cycle Arrest: Involvement of p53 and p21cip1

    PubMed Central

    Op De Beeck, Anne; Sobczak-Thepot, Joelle; Sirma, Huseyin; Bourgain, Florence; Brechot, Christian; Caillet-Fauquet, Perrine

    2001-01-01

    The nonstructural protein NS1 of the autonomous parvovirus minute virus of mice (MVMp) is cytolytic when expressed in transformed cells. Before causing extensive cell lysis, NS1 induces a multistep cell cycle arrest in G1, S, and G2, well reproducing the arrest in S and G2 observed upon MVMp infection. In this work we investigated the molecular mechanisms of growth inhibition mediated by NS1 and MVMp. We show that NS1-mediated cell cycle arrest correlates with the accumulation of the cyclin-dependent kinase (Cdk) inhibitor p21cip1 associated with both the cyclin A/Cdk and cyclin E/Cdk2 complexes but in the absence of accumulation of p53, a potent transcriptional activator of p21cip1. By comparison, MVMp infection induced the accumulation of both p53 and p21cip1. We demonstrate that p53 plays an essential role in the MVMp-induced cell cycle arrest in both S and G2 by using p53 wild-type (+/+) and null (−/−) cells. Furthermore, only the G2 arrest was abrogated in p21cip1 null (−/−) cells. Together these results show that the MVMp-induced cell cycle arrest in S is p53 dependent but p21cip1 independent, whereas the arrest in G2 depends on both p53 and its downstream effector p21cip1. They also suggest that induction of p21cip1 by the viral protein NS1 arrests cells in G2 through inhibition of cyclin A-dependent kinase activity. PMID:11602746

  5. Negative Regulation of p21Waf1/Cip1 by Human INO80 Chromatin Remodeling Complex Is Implicated in Cell Cycle Phase G2/M Arrest and Abnormal Chromosome Stability.

    PubMed

    Cao, Lingling; Ding, Jian; Dong, Liguo; Zhao, Jiayao; Su, Jiaming; Wang, Lingyao; Sui, Yi; Zhao, Tong; Wang, Fei; Jin, Jingji; Cai, Yong

    2015-01-01

    We previously identified an ATP-dependent human Ino80 (INO80) chromatin remodeling complex which shares a set of core subunits with yeast Ino80 complex. Although research evidence has suggested that INO80 complex functions in gene transcription and genome stability, the precise mechanism remains unclear. Herein, based on gene expression profiles from the INO80 complex-knockdown in HeLa cells, we first demonstrate that INO80 complex negatively regulates the p21Waf1/Cip1 (p21) expression in a p53-mediated mechanism. In chromatin immunoprecipitation (ChIP) and a sequential ChIP (Re-ChIP) assays, we determined that the INO80 complex and p53 can bind to the same promoter region of p21 gene (-2.2 kb and -1.0 kb upstream of the p21 promoter region), and p53 is required for the recruitment of the INO80 complex to the p21 promoter. RNAi knockdown strategies of INO80 not only led to prolonged progression of cell cycle phase G2/M to G1, but it also resulted in abnormal chromosome stability. Interestingly, high expression of p21 was observed in most morphologically-changed cells, suggesting that negative regulation of p21 by INO80 complex might be implicated in maintaining the cell cycle process and chromosome stability. Together, our findings will provide a theoretical basis to further elucidate the cellular mechanisms of the INO80 complex.

  6. Negative Regulation of p21Waf1/Cip1 by Human INO80 Chromatin Remodeling Complex Is Implicated in Cell Cycle Phase G2/M Arrest and Abnormal Chromosome Stability

    PubMed Central

    Cao, Lingling; Ding, Jian; Dong, Liguo; Zhao, Jiayao; Su, Jiaming; Wang, Lingyao; Sui, Yi; Zhao, Tong; Wang, Fei; Jin, Jingji; Cai, Yong

    2015-01-01

    We previously identified an ATP-dependent human Ino80 (INO80) chromatin remodeling complex which shares a set of core subunits with yeast Ino80 complex. Although research evidence has suggested that INO80 complex functions in gene transcription and genome stability, the precise mechanism remains unclear. Herein, based on gene expression profiles from the INO80 complex-knockdown in HeLa cells, we first demonstrate that INO80 complex negatively regulates the p21Waf1/Cip1 (p21) expression in a p53-mediated mechanism. In chromatin immunoprecipitation (ChIP) and a sequential ChIP (Re-ChIP) assays, we determined that the INO80 complex and p53 can bind to the same promoter region of p21 gene (-2.2kb and -1.0kb upstream of the p21 promoter region), and p53 is required for the recruitment of the INO80 complex to the p21 promoter. RNAi knockdown strategies of INO80 not only led to prolonged progression of cell cycle phase G2/M to G1, but it also resulted in abnormal chromosome stability. Interestingly, high expression of p21 was observed in most morphologically-changed cells, suggesting that negative regulation of p21 by INO80 complex might be implicated in maintaining the cell cycle process and chromosome stability. Together, our findings will provide a theoretical basis to further elucidate the cellular mechanisms of the INO80 complex. PMID:26340092

  7. Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity.

    PubMed

    Kriwacki, R W; Hengst, L; Tennant, L; Reed, S I; Wright, P E

    1996-10-15

    The cyclin-dependent kinase (Cdk) inhibitor p21Waf1/Cip1/Sdi1, important for p53-dependent cell cycle control, mediates G1/S arrest through inhibition of Cdks and possibly through inhibition of DNA replication. Cdk inhibition requires a sequence of approximately 60 amino acids within the p21 NH2 terminus. We show, using proteolytic mapping, circular dichroism spectropolarimetry, and nuclear magnetic resonance spectroscopy, that p21 and NH2-terminal fragments that are active as Cdk inhibitors lack stable secondary or tertiary structure in the free solution state. In sharp contrast to the disordered free state, however, the p21 NH2 terminus adopts an ordered stable conformation when bound to Cdk2, as shown directly by NMR spectroscopy. We have, thus, identified a striking disorder-order transition for p21 upon binding to one of its biological targets, Cdk2. This structural transition has profound implications in light of the ability of p21 to bind and inhibit a diverse family of cyclin-Cdk complexes, including cyclin A-Cdk2, cyclin E-Cdk2, and cyclin D-Cdk4. Our findings suggest that the flexibility, or disorder, of free p21 is associated with binding diversity and offer insights into the role for structural disorder in mediating binding specificity in biological systems. Further, these observations challenge the generally accepted view of proteins that stable secondary and tertiary structure are prerequisites for biological activity and suggest that a broader view of protein structure should be considered in the context of structure-activity relationships.

  8. p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts.

    PubMed

    Jackson, James G; Pereira-Smith, Olivia M

    2006-09-01

    Replicative senescence is the terminal growth arrest that most normal human cells enter into after a fixed number of divisions in vitro, limiting the proliferative potential of a cell and preventing genomic instability caused by critically short telomeres. Thus, senescence presents a tumor-suppressive mechanism and a barrier to tumor formation. However, senescent cells are inherently resistant to apoptosis and, as they accumulate in aging tissues, may contribute to organ dysfunction and promote tumor progression as part of the stromal environment. Replicative life span in normal human cells can be extended by inactivation of the tumor suppressor gene p53 or its direct target, the cyclin-dependent kinase inhibitor p21, suggesting a direct role for this pathway in senescence. However, p53 recruitment to promoters of target genes during replicative senescence has not been shown in live cells. In this study, we used chromatin immunoprecipitation to determine that p53 preferentially occupied the promoters of growth arrest genes p21 and GADD45 in senescent normal human diploid fibroblasts but not the promoters of other target genes that recruited p53 following doxorubicin-induced DNA damage, such as apoptosis regulators TNFRSF10b, TNFRSF6, and PUMA. This differential recruitment of p53 in senescent versus doxorubicin-treated fibroblasts was accompanied by differences in post-translational modification of p53. These data provide mechanisms for both the growth arrest mediated by p53 and the resistant nature of senescent cells to apoptosis despite p53 activity.

  9. A novel chalcone derivative, LQFM064, induces breast cancer cells death via p53, p21, KIT and PDGFRA.

    PubMed

    Cabral, Bruna Lannuce Silva; da Silva, Artur Christian Garcia; de Ávila, Renato Ivan; Cortez, Alane Pereira; Luzin, Rangel Magalhães; Lião, Luciano Morais; de Souza Gil, Eric; Sanz, Gérman; Vaz, Boniek G; Sabino, José R; Menegatti, Ricardo; Valadares, Marize Campos

    2017-09-30

    This study shows the design, synthesis and antitumoral potential evaluation of a novel chalcone-like compound, (E)-3- (3, 5-di-ter-butyl-4-hydroxyphenyl)-1- (4-hydroxy-3-methoxyphenyl) prop-2-en-1-one [LQFM064) (4)], against human breast adenocarcinoma MCF7 cells. Some toxicological parameters were also investigated. LQFM064) (4) exhibited cytotoxic activity against MCF7 cells (IC50=21μM), in a concentration dependent-manner, and triggered significant changes in cell morphology and biochemical/molecular parameters, which are suggestive of an apoptosis inductor. LQFM064) (4) (21μM) induced cell cycle arrest at G0/G1 phase with increased p53 and p21 expressions. It was also shown that the compound (4) did not interfere directly in p53/MDM2 complexation of MCF7 cells. In these cells, externalization of phosphatidylserine, cytochrome c release, increased expression of caspases-7, -8 and -9, reduced mitochondrial membrane potential and ROS overgeneration were also detected following LQFM064 (4) treatment. Further analysis revealed the activation of both apoptotic pathways via modulation of the proteins involved in the extrinsic and intrinsic pathways with an increase in TNF-R1, Fas-L and Bax levels and a reduction in Bcl-2 expression. Furthermore, KIT proto-oncogene receptor tyrosine kinase, insulin-like growth factor (IGF1) and platelet-derived growth factor receptor A (PDGFRA) were downregulated, while glutathione S-transferase P1 (GSTP1) and interferon regulatory factor 5 (IRF5) expressions were increased by LQFM064 (4)-triggered cytotoxic effects in MCF7 cells. Moreover, it can be inferred that compound (4) has a moderate acute oral systemic toxicity hazard, since its estimated LD50 was 452.50mg/kg, which classifies it as UN GHS Category 4 (300mg/kg>LD50<2000mg/kg). Furthermore, LQFM064 (4) showed a reduced potential myelotoxicity (IC50=150μM for mouse bone marrow hematopoietic progenitors). In conclusion, LQFM064 (4) was capable of inducing breast cancer cells

  10. p21{sup WAF1} modulates NF-{kappa}B signaling and induces anti-apoptotic protein Bcl-2 in Tax-expressing rat fibroblast

    SciTech Connect

    Akita, Kazumasa; Kawata, Sanae; Shimotohno, Kunitada . E-mail: kshimoto@virus.kyoto-u.ac.jp

    2005-02-05

    Of the cell cycle-associated genes regulated by human T-cell leukemia virus type-1 (HTLV-1) Tax, cyclin-dependent kinase (CDK) inhibitor p21{sup WAF1} is upregulated in HTLV-1-infected cells. Previously, we reported that p21{sup WAF1} stimulated Tax-dependent NF-{kappa}B activation which influences a variety of cellular processes, including proliferation, differentiation, and apoptosis. In HTLV-1-infected cells, Tax is primarily involved in the constitutive activation of NF-{kappa}B signaling. Here, we demonstrate that p21{sup WAF1} affects Tax-dependent NF-{kappa}B signaling by inducing p100/52, an NF-{kappa}B-related protein. W4, a Tax-transformed rat fibroblast cell line, exhibits the constitutive activation of NF-{kappa}B signaling, potentially mediated by overexpression of RelB. Ectopic expression of p21{sup WAF1} in W4 cells, which lack endogenous expression due to methylation of the p21{sup WAF1} promoter, induces the expression of p100/52. Bcl-2 expression was also upregulated by ectopic p21{sup WAF1} in this cell line, suggesting that p21{sup WAF1} plays an important role in the regulation of apoptosis by modulating NF-{kappa}B signaling in Tax-expressing rat fibroblasts. We also address the expression of NF-{kappa}B-related proteins in HTLV-1-infected cells.

  11. p21waf1/cip1 deficiency does not perturb the intestinal crypt stem cell population after massive small bowel resection

    PubMed Central

    Longshore, Shannon W.; Nair, Rajalakshmi; Perrone, Erin E.; Erwin, Christopher R.; Guo, Jun; Warner, Brad W.

    2009-01-01

    Background After small bowel resection (SBR), adaptation is initiated in intestinal crypts where stem cells reside. Prior studies revealed SBR induced enterocyte proliferation requires the expression of p21waf1/cip1. Since deficient expression of p21waf1/cip1 has been shown to result in reduced numbers of hematopoietic stem cells, we sought to test the hypothesis that p21waf1/cip1 deficiency similarly perturbs the intestinal stem cell population after SBR. Methods Control (n=21; C57Bl/6) and p21waf1/cip1-null mice (n=30) underwent 50% proximal SBR or sham operation. After 3 days, the ileum was harvested and the crypt stem cell population evaluated by counting crypt base columnar (CBC) cells on histological sections, determining the expression of Musashi-1 and Lgr5, and profiling the transcriptional expression of 84 known stem cell genes. Results There were no significant differences in CBC cells, expression of Musashi-1 or Lgr5, or in stem cell gene expression after SBR in control mice. Further, there were no differences in these markers between controls and p21waf1/cip1-null mice. Conclusion In contrast with bone marrow stem cells, the stem cell population of the gut is unaffected by deficient expression of p21waf1/cip1. Additional mechanisms for the role of p21waf1/cip1 in small bowel proliferation and adaptation following massive SBR must be considered. PMID:19524718

  12. Cordycepin causes p21WAF1-mediated G2/M cell-cycle arrest by regulating c-Jun N-terminal kinase activation in human bladder cancer cells.

    PubMed

    Lee, Se-Jung; Kim, Si-Kwan; Choi, Won-Seok; Kim, Wun-Jae; Moon, Sung-Kwon

    2009-10-15

    Cordycepin (3'-deoxyadenosine), a bioactive compound of Cordyceps militaris, has many pharmacological activities. The present study reveals novel molecular mechanisms for the anti-tumor effects of cordycepin in two different bladder cancer cell lines, 5637 and T-24 cells. Cordycepin treatment, at a dose of 200 microM (IC(50)) during cell-cycle progression resulted in significant and dose-dependent growth inhibition, which was largely due to G2/M-phase arrest, and resulted in an up-regulation of p21WAF1 expression, independent of the p53 pathway. Moreover, treatment with cordycepin-induced phosphorylation of JNK (c-Jun N-terminal kinases). Blockade of JNK function using SP6001259 (JNK-specific inhibitor) and small interfering RNA (si-JNK1) rescued cordycepin-dependent p21WAF1 expression, inhibited cell growth, and decreased cell cycle proteins. These results suggest that cordycepin could be an effective treatment for bladder cancer.

  13. Infiltrating mast cells increase prostate cancer chemotherapy and radiotherapy resistances via modulation of p38/p53/p21 and ATM signals.

    PubMed

    Xie, Hongjun; Li, Chong; Dang, Qiang; Chang, Luke S; Li, Lei

    2016-01-12

    Early studies indicated that mast cells in prostate tumor microenvironment might influence prostate cancer (PCa) progression. Their impacts to PCa therapy, however, remained unclear. Here we found PCa could recruit more mast cells than normal prostate epithelial cells then alter PCa chemotherapy and radiotherapy sensitivity, leading to PCa more resistant to these therapies. Mechanism dissection revealed that infiltrated mast cells could increase p21 expression via modulation of p38/p53 signals, and interrupting p38-p53 signals via siRNAs of p53 or p21 could reverse mast cell-induced docetaxel chemotherapy resistance of PCa. Furthermore, recruited mast cells could also increase the phosphorylation of ATM at ser-1981 site, and inhibition of ATM activity could reverse mast cell-induced radiotherapy resistance. The in vivo mouse model with xenografted PCa C4-2 cells co-cultured with mast cells also confirmed that mast cells could increase PCa chemotherapy resistance via activating p38/p53/p21 signaling. Together, our results provide a new mechanism showing infiltrated mast cells could alter PCa chemotherapy and radiotherapy sensitivity via modulating the p38/p53/p21 signaling and phosphorylation of ATM. Targeting this newly identified signaling may help us better suppress PCa chemotherapy and radiotherapy resistance.

  14. Photodynamic therapy results in induction of WAF1/CIP1/P21 leading to cell cycle arrest and apoptosis.

    PubMed

    Ahmad, N; Feyes, D K; Agarwal, R; Mukhtar, H

    1998-06-09

    Photodynamic therapy (PDT) is a promising new modality that utilizes a combination of a photosensitizing chemical and visible light for the management of a variety of solid malignancies. The mechanism of PDT-mediated cell killing is not well defined. We investigated the involvement of cell cycle regulatory events during silicon phthalocyanine (Pc4)-PDT-mediated apoptosis in human epidermoid carcinoma cells A431. PDT resulted in apoptosis, inhibition of cell growth, and G0-G1 phase arrest of the cell cycle, in a time-dependent fashion. Western blot analysis revealed that PDT results in an induction of the cyclin kinase inhibitor WAF1/CIP1/p21, and a down-regulation of cyclin D1 and cyclin E, and their catalytic subunits cyclin-dependent kinase (cdk) 2 and cdk6. The treatment also resulted in a decrease in kinase activities associated with all the cdks and cyclins examined. PDT also resulted in (i) an increase in the binding of cyclin D1 and cdk6 toward WAF1/CIP1/p21, and (ii) a decrease in the binding of cyclin D1 toward cdk2 and cdk6. The binding of cyclin E and cdk2 toward WAF1/CIP1/p21, and of cyclin E toward cdk2 did not change by the treatment. These data suggest that PDT-mediated induction of WAF1/CIP1/p21 results in an imposition of artificial checkpoint at G1 --> S transition thereby resulting in an arrest of cells in G0-G1 phase of the cell cycle through inhibition in the cdk2, cdk6, cyclin D1, and cyclin E. We suggest that this arrest is an irreversible process and the cells, unable to repair the damages, ultimately undergo apoptosis.

  15. Cigarette smoke extract inhibits the proliferation of alveolar epithelial cells and augments the expression of P21WAF1.

    PubMed

    Jiao, Zongxian; Ao, Qilin; Ge, Xiaona; Xiong, Mi

    2008-02-01

    Cigarette smoking is intimately related with the development of chronic obstructive pulmonary diseases, and alveolar epithelium is a major target for the exposure of cigarette smoke extract. In order to investigate the effect of cigarette smoke extract on the proliferation of alveolar epithelial cell type II and its relationship with P21WAF1, the alveolar epithelial type II cell line (A549) cells were chosen as surrogate cells to represent alveolar epithelial type II cells. MTT assay was used to detect cell viability after interfered with different concentrations of cigarette smoke extract. It was observed cigarette smoke extract inhibited the growth of A549 cells in a dose-and time-dependent manner. The morphological changes, involving the condensation and margination of nuclear chromatin, even karyorrhexis, were observed by both Hoechst staining and electronic microscopy. Flow cytometry analysis demonstrated the increased cell percentages in G1 and subG1 phases after the cells were incubated with cigarette smoke extract. The expression of p21WAF1 protein and mRNA was also significantly increased as detected by the methods of Western blot or reverse transcription-polymerase chain reaction respectively. In conclusion, cigarette smoke extract inhibits the proliferation of alveolar epithelial cell type II and blocks them in G1/S phase. The intracellular accumulation of P21WAF1 may be one of the mechanisms which contribute to cigarette smoke extract-induced inhibition of cell proliferation.

  16. Phenylbutyric acid induces the cellular senescence through an Akt/p21{sup WAF1} signaling pathway

    SciTech Connect

    Kim, Hag Dong; Jang, Chang-Young; Choe, Jeong Min; Sohn, Jeongwon; Kim, Joon

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Phenylbutyric acid induces cellular senescence. Black-Right-Pointing-Pointer Phenylbutyric acid activates Akt kinase. Black-Right-Pointing-Pointer The knockdown of PERK also can induce cellular senescence. Black-Right-Pointing-Pointer Akt/p21{sup WAF1} pathway activates in PERK knockdown induced cellular senescence. -- Abstract: It has been well known that three sentinel proteins - PERK, ATF6 and IRE1 - initiate the unfolded protein response (UPR) in the presence of misfolded or unfolded proteins in the ER. Recent studies have demonstrated that upregulation of UPR in cancer cells is required to survive and proliferate. Here, we showed that long exposure to 4-phenylbutyric acid (PBA), a chemical chaperone that can reduce retention of unfolded and misfolded proteins in ER, induced cellular senescence in cancer cells such as MCF7 and HT1080. In addition, we found that treatment with PBA activates Akt, which results in p21{sup WAF1} induction. Interestingly, the depletion of PERK but not ATF6 and IRE1 also induces cellular senescence, which was rescued by additional depletion of Akt. This suggests that Akt pathway is downstream of PERK in PBA induced cellular senescence. Taken together, these results show that PBA induces cellular senescence via activation of the Akt/p21{sup WAF1} pathway by PERK inhibition.

  17. Forkhead Box O1 (FOXO1) Protein, but Not p53, Contributes to Robust Induction of p21 Expression in Fasted Mice*

    PubMed Central

    Tinkum, Kelsey L.; White, Lynn S.; Marpegan, Luciano; Herzog, Erik; Piwnica-Worms, David; Piwnica-Worms, Helen

    2013-01-01

    Reporter mice that enable the activity of the endogenous p21 promoter to be dynamically monitored in real time in vivo and under a variety of experimental conditions revealed ubiquitous p21 expression in mouse organs including the brain. Low light bioluminescence microscopy was employed to localize p21 expression to specific regions of the brain. Interestingly, p21 expression was observed in the paraventricular, arcuate, and dorsomedial nuclei of the hypothalamus, regions that detect nutrient levels in the blood stream and signal metabolic actions throughout the body. These results suggested a link between p21 expression and metabolic regulation. We found that short-term food deprivation (fasting) potently induced p21 expression in tissues involved in metabolic regulation including liver, pancreas and hypothalamic nuclei. Conditional reporter mice were generated that enabled hepatocyte-specific expression of p21 to be monitored in vivo. Bioluminescence imaging demonstrated that fasting induced a 7-fold increase in p21 expression in livers of reporter mice and Western blotting demonstrated an increase in protein levels as well. The ability of fasting to induce p21 expression was found to be independent of p53 but dependent on FOXO1. Finally, occupancy of the endogenous p21 promoter by FOXO1 was observed in the livers of fasted but not fed mice. Thus, fasting promotes loading of FOXO1 onto the p21 promoter to induce p21 expression in hepatocytes. PMID:23918930

  18. Forkhead box O1 (FOXO1) protein, but not p53, contributes to robust induction of p21 expression in fasted mice.

    PubMed

    Tinkum, Kelsey L; White, Lynn S; Marpegan, Luciano; Herzog, Erik; Piwnica-Worms, David; Piwnica-Worms, Helen

    2013-09-27

    Reporter mice that enable the activity of the endogenous p21 promoter to be dynamically monitored in real time in vivo and under a variety of experimental conditions revealed ubiquitous p21 expression in mouse organs including the brain. Low light bioluminescence microscopy was employed to localize p21 expression to specific regions of the brain. Interestingly, p21 expression was observed in the paraventricular, arcuate, and dorsomedial nuclei of the hypothalamus, regions that detect nutrient levels in the blood stream and signal metabolic actions throughout the body. These results suggested a link between p21 expression and metabolic regulation. We found that short-term food deprivation (fasting) potently induced p21 expression in tissues involved in metabolic regulation including liver, pancreas and hypothalamic nuclei. Conditional reporter mice were generated that enabled hepatocyte-specific expression of p21 to be monitored in vivo. Bioluminescence imaging demonstrated that fasting induced a 7-fold increase in p21 expression in livers of reporter mice and Western blotting demonstrated an increase in protein levels as well. The ability of fasting to induce p21 expression was found to be independent of p53 but dependent on FOXO1. Finally, occupancy of the endogenous p21 promoter by FOXO1 was observed in the livers of fasted but not fed mice. Thus, fasting promotes loading of FOXO1 onto the p21 promoter to induce p21 expression in hepatocytes.

  19. p21{sup WAF1/Cip1/Sdi1} knockout mice respond to doxorubicin with reduced cardiotoxicity

    SciTech Connect

    Terrand, Jerome; Xu, Beibei; Morrissy, Steve; Dinh, Thai Nho; Williams, Stuart; Chen, Qin M.

    2011-11-15

    Doxorubicin (Dox) is an antineoplastic agent that can cause cardiomyopathy in humans and experimental animals. As an inducer of reactive oxygen species and a DNA damaging agent, Dox causes elevated expression of p21{sup WAF1/Cip1/Sdi1} (p21) gene. Elevated levels of p21 mRNA and p21 protein have been detected in the myocardium of mice following Dox treatment. With chronic treatment of Dox, wild type (WT) animals develop cardiomyopathy evidenced by elongated nuclei, mitochondrial swelling, myofilamental disarray, reduced cardiac output, reduced ejection fraction, reduced left ventricular contractility, and elevated expression of ANF gene. In contrast, p21 knockout (p21KO) mice did not show significant changes in the same parameters in response to Dox treatment. In an effort to understand the mechanism of the resistance against Dox induced cardiomyopathy, we measured levels of antioxidant enzymes and found that p21KO mice did not contain elevated basal or inducible levels of glutathione peroxidase and catalase. Measurements of 6 circulating cytokines indicated elevation of IL-6, IL-12, IFN{gamma} and TNF{alpha} in Dox treated WT mice but not p21KO mice. Dox induced elevation of IL-6 mRNA was detected in the myocardium of WT mice but not p21KO mice. While the mechanism of the resistance against Dox induced cardiomyopathy remains unclear, lack of inflammatory response may contribute to the observed cardiac protection in p21KO mice. -- Highlights: Black-Right-Pointing-Pointer Doxorubicin induces p21 elevation in the myocardium. Black-Right-Pointing-Pointer Doxorubicin causes dilated cardiomyopathy in wild type mice. Black-Right-Pointing-Pointer p21 Knockout mice are resistant against doxorubicin induced cardiomyopathy. Black-Right-Pointing-Pointer Lack of inflammatory response correlates with the resistance in p21 knockout mice.

  20. Soluble egg antigens of Schistosoma japonicum induce senescence in activated hepatic stellate cells by activation of the STAT3/p53/p21 pathway

    PubMed Central

    Chen, Jinling; Pan, Jing; Wang, Jianxin; Song, Ke; Zhu, Dandan; Huang, Caiqun; Duan, Yinong

    2016-01-01

    Liver fibrosis is characterized by the activation of hepatic stellate cells (HSCs). Recent findings suggest that senescence of activated HSCs might limit the development of liver fibrosis. Based on previously observed anti-fibrotic effects of soluble egg antigens from Schistosoma japonicum in vitro, we hypothesized that SEA might play a crucial role in alleviating liver fibrosis through promoting senescence of activated HSCs. We show here that SEA inhibited expression of α-SMA and pro-collagen I and promoted senescence of activated HSCs in vitro. In addition, SEA induced an increased expression of P-p53 and p21. Knockdown of p53 inhibited the expression of p21 and failed to induce senescence of activated-HSCs. Phosphorylated STAT3 was elevated upon SEA stimulation, while loss of STAT3 decreased the level of p53 and senescence of HSCs. Results from immunoprecipitation analysis demonstrated that SOCS3 might be involved in the SEA-induced senescence in HSCs through its interaction with p53. This study demonstrates the potential capacity of SEA in restricting liver fibrosis through promoting senescence in HSCs. Furthermore, a novel STAT3-p53-p21 pathway might participate in the observed SEA-mediated senescence of HSCs. Our results suggest that SEA might carry potential therapeutic effects of restraining liver fibrosis through promoting senescence. PMID:27489164

  1. [Effect of Glycyrrhizae Radix et Rhizoma combined with Atractylodis Macrocephalae Rhizoma on p53 and p21 gene expression of IEC-6 cells].

    PubMed

    Zheng, Fang; Jiang, Ze-bo; Zhang, Xian; Hu, Jin-ping; Li, Si-ming; Zhao, Jin; Zeng, Xing

    2015-05-01

    To study the effect of the combined administration of different doses of Glycyrrhizae Radix et Rhizoma and Atractylodis Macrocephalae Rhizoma on the proliferation of DFMO-treated intestinal epithelial cells (IEC-6) and p53, p21 mRNA and protein expressions, in order to define the molecular basis for the effect of the combined administration of different doses of Glycyrrhizae Radix et Rhizoma and Atractylodis Macrocephalae Rhizoma on the cell proliferation. The effect of the drugs on the cell division rate and cell cycle of IEC-6 cells was detected by FCM. Quantitative Real-time PCR (qRT-PCR) was used to analyze the effect of the drugs on mRNA of p2l and p53 related to IEC-6 proliferation. Western blot was used to analyze the effect of the drugs on p2l and p53 protein expressions of IEC-6 cells. Atractylodis Macrocephalae Rhizoma could increase p53, p21 mRNA and proteins expression in DFMO-treated IEC-6 cells. The combined administration of different ratios of Atractylodis Macrocephalae Rhizoma and Glycyrrhizae Radix et Rhizoma could significantly down-regulate Atractylodis Macrocephalae Rhizoma's effect on p53, p21 mRNA and proteins expression in DFMO-treated IEC-6 cells and promote the proliferation of IEC-6 cells. The combined administration of Atractylodis Macrocephalae Rhizoma and Glycyrrhizae Radix et Rhizoma could down-regulate Atractylodis Macrocephalae Rhizoma's effect on DFMO-treated intestinal epithelial cells (IEC-6).

  2. The role of cyclin D2 and p21/waf1 in human T-cell leukemia virus type 1 infected cells

    PubMed Central

    Kehn, Kylene; Deng, Longwen; de la Fuente, Cynthia; Strouss, Katharine; Wu, Kaili; Maddukuri, Anil; Baylor, Shanese; Rufner, Robyn; Pumfery, Anne; Bottazzi, Maria Elena; Kashanchi, Fatah

    2004-01-01

    Background The human T-cell leukemia virus type 1 (HTLV-1) Tax protein indirectly influences transcriptional activation, signal transduction, cell cycle control, and apoptosis. The function of Tax primarily relies on protein-protein interactions. We have previously shown that Tax upregulates the cell cycle checkpoint proteins p21/waf1 and cyclin D2. Here we describe the consequences of upregulating these G1/S checkpoint regulators in HTLV-1 infected cells. Results To further decipher any physical and functional interactions between cyclin D2 and p21/waf1, we used a series of biochemical assays from HTLV-1 infected and uninfected cells. Immunoprecipitations from HTLV-1 infected cells showed p21/waf1 in a stable complex with cyclin D2/cdk4. This complex is active as it phosphorylates the Rb protein in kinase assays. Confocal fluorescent microscopy indicated that p21/waf1 and cyclin D2 colocalize in HTLV-1 infected, but not in uninfected cells. Furthermore, in vitro kinase assays using purified proteins demonstrated that the addition of p21/waf1 to cyclin D2/cdk4 increased the kinase activity of cdk4. Conclusion These data suggest that the p21/cyclin D2/cdk4 complex is not an inhibitory complex and that p21/waf1 could potentially function as an assembly factor for the cyclin D2/cdk4 complex in HTLV-1 infected cells. A by-product of this assembly with cyclin D2/cdk4 is the sequestration of p21/waf1 away from the cyclin E/cdk2 complex, allowing this active cyclin-cdk complex to phosphorylate Rb pocket proteins efficiently and push cells through the G1/S checkpoint. These two distinct functional and physical activities of p21/waf1 suggest that RNA tumor viruses manipulate the G1/S checkpoint by deregulating cyclin and cdk complexes. PMID:15169570

  3. Taxol-induced growth arrest and apoptosis is associated with the upregulation of the Cdk inhibitor, p21WAF1/CIP1, in human breast cancer cells.

    PubMed

    Choi, Yung Hyun; Yoo, Young Hyun

    2012-12-01

    The anticancer agent, taxol, stabilizes tubulin polymerization, resulting in arrest at the G2/M phase of the cell cycle and apoptotic cell death. However, the molecular mechanism of this growth inhibition and apoptosis is poorly understood. In this study, we used MCF-7 and MDA-MB-231 human breast carcinoma cells which have different estrogen receptor (ER) and tumor suppressor p53 statuses to examine the mechanisms of taxol-induced growth inhibition and apoptosis. Treatment of the cells with taxol resulted in a time-dependent inhibition of cell viability, which was accompanied by an accumulation of cells at G2/M and the sub-G1 apoptotic region, determined by flow cytometric analysis. Furthermore, chromatin condensation, DNA ladder formation and proteolytic cleavage of poly(ADP-ribose) polymerase (PARP) in both cell lines were observed following treatment with taxol, indicating the occurrence of apoptotic cell death. Western blot analysis using whole cell lysates from MCF-7 and MDA-MB-231 cells treated with taxol demonstrated that taxol treatment inhibited expression of cyclin A and cyclin B1 proteins in a time-dependent manner. The inhibitory effects of taxol on cell growth and apoptosis induced by taxol were also associated with the downregulation of Wee1 kinase expression and a marked induction in the activity of the cyclin-dependent kinase inhibitor, p21WAF/CIP1. Furthermore, taxol elevated p21 promoter activity in both cell lines. These findings suggest that taxol-induced G2/M arrest and apoptosis in human breast carcinoma cells is mediated through the ER- and p53-independent upregulation of p21.

  4. Expression of p21WAF1 in Astler-Coller stage B2 colorectal cancer is associated with survival benefit from 5FU-based adjuvant chemotherapy.

    PubMed

    Sulzyc-Bielicka, Violetta; Domagala, Pawel; Urasinska, Elzbieta; Bielicki, Dariusz; Safranow, Krzysztof; Domagala, Wenancjusz

    2011-04-01

    In several, but not all, previous studies, positive p21(WAF1) expression has been suggested as an indicator of a good prognosis in patients with stage III/IV colorectal cancer. However, it is not known whether the same is true for stage B2 patients. The purpose of this study is to assess the influence of p21(WAF1) expression in tumor cells on disease-free survival (DFS) and overall survival (OS) of Astler-Coller stage B2 and C patients with colorectal cancer who underwent 5-fluorouracil-based adjuvant chemotherapy. Nuclear p21(WAF1) was detected by immunohistochemistry in tissue microarrays from 275 colorectal cancers. The expression of p21(WAF1) was associated with DFS (p = 0.025) and OS (p = 0.008) in the subgroup of stage B2 patients that was treated with adjuvant chemotherapy. In multivariate analysis, it remained the only independent prognostic parameter in relation to DFS and OS (p = 0.035 and p = 0.02, respectively). In the subgroup of 72 stage B2 patients with positive p21(WAF1) expression but not in the subgroup of 61 stage B2 patients with negative p21(WAF1) expression, adjuvant chemotherapy was associated with better DFS (85% 5-year survival versus 65% without chemotherapy, p = 0.03) and OS (96% versus 82%, p = 0.014). In the combined stage B2 and C group of patients treated with adjuvant chemotherapy, positive p21(WAF1) expression was also associated with better DFS and OS (p = 0.03, p = 0.002, respectively). Expression of p21(WAF1) in colorectal tumor cells identifies a subgroup of Astler-Coller stage B2 patients who could benefit significantly from 5FU-based chemotherapy and may improve the selection of patients for adjuvant chemotherapy.

  5. PBK/TOPK interacts with the DBD domain of tumor suppressor p53 and modulates expression of transcriptional targets including p21.

    PubMed

    Hu, F; Gartenhaus, R B; Eichberg, D; Liu, Z; Fang, H-B; Rapoport, A P

    2010-10-07

    PBK/TOPK (PDZ-binding kinase, T-LAK-cell-originated protein kinase) is a serine-threonine kinase that is overexpressed in a variety of tumor cells but its role in oncogenesis remains unclear. Here we show, by co-immunoprecipitation experiments and yeast two-hybrid analysis, that PBK/TOPK physically interacts with the tumor suppressor p53 through its DNA-binding (DBD) domain in HCT116 colorectal carcinoma cells that express wild-type p53. PBK also binds to p53 mutants carrying five common point mutations in the DBD domain. The PBK-p53 interaction appears to downmodulate p53 transactivation function as indicated by PBK/TOPK knockdown experiments, which show upregulated expression of the key p53 target gene and cyclin-dependent kinase inhibitor p21 in HCT116 cells, particularly after genotoxic damage from doxorubicin. Furthermore, stable PBK/TOPK knockdown cell lines (derived from HCT116 and MCF-7 cells) showed increased apoptosis, G(2)/M arrest and slower growth as compared to stable empty vector-transfected control cell lines. Gene microarray studies identified additional p53 target genes involved in apoptosis or cell cycling, which were differentially regulated by PBK knockdown. Together, these data suggest that increased levels of PBK/TOPK may contribute to tumor cell development and progression through suppression of p53 function and consequent reductions in the cell-cycle regulatory proteins such as p21. PBK/TOPK may therefore be a valid target for antineoplastic kinase inhibitors to sensitize tumor cells to chemotherapy-induced apoptosis and growth suppression.

  6. Cladosporol a stimulates G1-phase arrest of the cell cycle by up-regulation of p21(waf1/cip1) expression in human colon carcinoma HT-29 cells.

    PubMed

    Zurlo, Diana; Leone, Cinzia; Assante, Gemma; Salzano, Salvatore; Renzone, Giovanni; Scaloni, Andrea; Foresta, Caterina; Colantuoni, Vittorio; Lupo, Angelo

    2013-01-01

    Cladosporols, purified and characterized as secondary metabolites from Cladosporium tenuissimum, display an antifungal activity. In this study, we tested the antiproliferative properties of cladosporol A, the main isoform of this metabolite family, against human cancer cell lines. By assessing cell viability, we found that cladosporol A inhibits the growth of various human colon cancers derived cell lines (HT-29, SW480, and CaCo-2) in a time- and concentration-dependent manner, specifically of HT-29  cells. The reduced cell proliferation was due to a G1-phase arrest, as assessed by fluorescence activated cell sorting analysis on synchronized HT-29  cells, and was associated with an early and robust over-expression of p21(waf1/cip1) , the well-known cyclin-dependent kinases inhibitor. This suggests that the drug may play a role in the control of cancer cell proliferation. Consistently, cyclin D1, cyclin E, CDK2, and CDK4 proteins were reduced and histone H1-associated CDK2 kinase activity inhibited. In addition to p21(waf1/cip1) , exposure to 20 µM cladosporol A caused a simultaneous increase of pERK and pJNK, suggesting that this drug activates a circuit that integrates cell cycle regulation and the signaling pathways both involved in the inhibition of cell proliferation. Finally, we showed that the increase of p21(waf1/cip1) expression was generated by a Sp1-dependent p53-independent stimulation of its gene transcription as mutagenesis of the Sp1 binding sites located in the p21 proximal promoter abolished induction. To our knowledge, this is the first report showing that cladosporol A inhibits colon cancer cell proliferation by modulating p21(waf1/cip1) expression. Copyright © 2011 Wiley Periodicals, Inc.

  7. The p21Waf1 pathway is involved in blocking leukemogenesis by the t(8;21) fusion protein AML1-ETO

    PubMed Central

    Peterson, Luke F.; Yan, Ming

    2007-01-01

    The 8;21 translocation is a major contributor to acute myeloid leukemia (AML) of the M2 classification occurring in approximately 40% of these cases. Multiple mouse models using this fusion protein demonstrate that AML1-ETO requires secondary mutagenic events to promote leukemogenesis. Here, we show that the negative cell cycle regulator p21WAF1 gene is up-regulated by AML1-ETO at the protein, RNA, and promoter levels. Retroviral transduction and hematopoietic cell transplantation experiments with p21WAF1-deficient cells show that AML1-ETO is able to promote leukemogenesis in the absence of p21WAF1. Thus, loss of p21WAF1 facilitates AML1-ETO–induced leukemogenesis, suggesting that mutagenic events in the p21WAF1 pathway to bypass the growth inhibitory effect from AML1-ETO–induced p21WAF1 expression can be a significant factor in AML1-ETO–associated acute myeloid leukemia. PMID:17284535

  8. Unliganded estrogen receptor alpha inhibits breast cancer cell growth through interaction with a cyclin-dependent kinase inhibitor (p21(WAF1)).

    PubMed

    Maynadier, Marie; Ramirez, Jean-Marie; Cathiard, Anne-Marie; Platet, Nadine; Gras, Delphine; Gleizes, Michel; Sheikh, M Saeed; Nirde, Philippe; Garcia, Marcel

    2008-03-01

    Estrogens are mitogenic in human breast cancer cells, but the presence of estrogen receptor alpha (ER alpha) is associated with a favorable prognosis in primary tumors and the molecular basis for this paradoxical relationship remains unknown. Here we show that ER alpha and ER alpha mutants devoid of ligand and DNA-binding domains inhibit cell growth in three-dimensional matrix as well as tumor formation in nude mice. Using in vitro and intracellular approaches, we have found that ER alpha, via its amino acids 184-283, interacts with cyclin-dependent kinase inhibitor p21(WAF1). Both proteins exhibit mutual interactions in the absence of estrogens or in the presence of pure antiestrogen ICI(182,780), whereas estradiol treatment disrupts their interactions. Cross-linking experiments reveal that these proteins are present in a larger complex of approximately 200 kDa that also contains cdk2 and cyclin E. We further demonstrate that the unliganded full-length ER alpha or the variant having the p21(WAF1) interaction region significantly increases p21(WAF1) expression, whereas ER alpha silencing reduces p21(WAF1) levels and silencing of p21(WAF1) is sufficient to prevent ER alpha-induced growth inhibition. Taken together, our results point to an antiproliferative function of the unliganded ER alpha through its physical interactions with p21(WAF1) that may also explain the favorable prognosis of ER alpha-positive breast cancers.

  9. Involvement of p21cip1/waf1 in the anti-proliferative effects of polyethylene glycol in colon carcinogenesis.

    PubMed

    Roy, Hemant K; Koetsier, Jennifer L; Tiwari, Ashish K; Joshi, Suhasini; Kunte, Dhananjay P; Ward, Tina P; Gandhi, Seema R; Wali, Ramesh K

    2011-02-01

    Polyethylene glycol (PEG) is a safe and effective chemopreventive agent against colorectal carcinogenesis in cell culture, animal models and human subjects. Although the precise molecular mechanism is unclear, we previously reported that PEG suppresses colonic epithelial proliferation. As cellular proliferation is driven by complex G1-S phase transition, we now characterize the role of PEG on cell cycle regulation. We focused our attention on the effect of PEG on the CDK inhibitor p21cip1/waf1, which is implicated in early colon carcinogenesis and is upregulated by non-steroidal anti-inflammatory drugs. These studies were done in the azoxymethane-treated (AOM) rat model as well as in HT-29 colon cancer cells. Immunohistochemical analysis revealed that while AOM decreased the p21 expression (75%, p<0.01) in the premalignant colonic mucosa, PEG induced p21 levels back to normal. These findings paralleled a decreased BrdUrd incorporation (78%, p<0.001) and hypophosphorylated retinoblastoma protein (Rb; by 47%) signifying PEG's antiproliferative activity. Furthermore, in HT-29 cells, PEG decreased proliferation as measured by PCNA (68% reduction), increased p21 expression (2.3-fold), induced cell cycle arrest during G0/G1 phase (45% reduction in S phase cells) and inhibited the phosphorylation of Rb (by 52% compared to untreated). PEG caused greater than a 2-fold induction of protein and mRNA level of p21cip1/waf1 in HT-29 cells. These results demonstrate for the first time that PEG is involved in p21 regulation concomitant with G1S phase cell cycle arrest and it is through these effects that it can exert its anti-proliferative and hence chemopreventive role.

  10. Tumor-associated mutant p53 promotes cancer cell survival upon glutamine deprivation through p21 induction.

    PubMed

    Tran, T Q; Lowman, X H; Reid, M A; Mendez-Dorantes, C; Pan, M; Yang, Y; Kong, M

    2017-04-06

    Cancer cells depend on glutamine to sustain their increased proliferation and manage oxidative stress, yet glutamine is often depleted at tumor sites owing to excessive cellular consumption and poor vascularization. We have previously reported that p53 protein, although a well-known tumor suppressor, can contribute to cancer cell survival and adaptation to low-glutamine conditions. However, the TP53 gene is frequently mutated in tumors, and the role of mutant p53 (mutp53) in response to metabolic stress remains unclear. Here, we demonstrate that tumor-associated mutp53 promotes cancer cell survival upon glutamine deprivation both in vitro and in vivo. Interestingly, cancer cells expressing mutp53 proteins are more resistant to glutamine deprivation than cells with wild-type p53. Depletion of endogenous mutp53 protein in human lymphoma cells leads to cell sensitivity to glutamine withdrawal, whereas expression of mutp53 in p53 null cells results in resistance to glutamine deprivation. Furthermore, we found that mutp53 proteins hyper-transactivate p53-target gene CDKN1A upon glutamine deprivation, thus triggering cell cycle arrest and promoting cell survival. Together, our results reveal an unidentified mechanism by which mutp53 confers oncogenic functions by promoting cancer cell adaptation to metabolic stress.

  11. c-Jun N-terminal kinase 1 is required for cordycepin-mediated induction of G2/M cell-cycle arrest via p21WAF1 expression in human colon cancer cells.

    PubMed

    Lee, Se-Jung; Moon, Gi-Seong; Jung, Kyung-Hwan; Kim, Wun-Jae; Moon, Sung-Kwon

    2010-01-01

    Cordycepin (3'-deoxyadenosine) has many anti-cancer properties. However, neither its molecular mechanism nor its molecular targets are well understood. In the present study, we investigated novel molecular mechanisms for the anti-tumor effects of cordycepin in human colon cancer HCT116 cells. After treatment of cells with cordycepin, dose-dependent cell growth inhibition was observed at an IC(50) value of 200muM. Cordycepin treatment resulted in G2/M-phase cell-cycle arrest, which was associated with increased p21WAF1 levels and reduced amounts of cyclin B1, Cdc2, and Cdc25c in a p53-independent pathway. Moreover, cordycepin treatment induced activation of JNK (c-Jun N-terminal kinases). Pretreatment with SP600125, a JNK-specific inhibitor, abrogated cordycepin-mediated p21WAF1 expression, cell growth inhibition, and reduced cell-cycle proteins. Furthermore, JNK1 inhibition by small interfering RNA (siRNA) produced similar results: suppression of cordycepin-induced p21WAF1 expression, decreased cell growth, and reduced cell-cycle proteins. Together, these results suggest a critical role for JNK1 activation in cordycepin-induced inhibition of cell growth and G2/M-phase arrest in human colon cancer cells. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Loss of p21{sup Sdi1} expression in senescent cells after DNA damage accompanied with increase of miR-93 expression and reduced p53 interaction with p21{sup Sdi1} gene promoter

    SciTech Connect

    Choi, Ok Ran; Lim, In Kyoung

    2011-04-08

    Highlights: {yields} Reduced p21 expression in senescent cells treated with DNA damaging agents. {yields} Increase of [{sup 3}H]thymidine and BrdU incorporations in DNA damaged-senescent cells. {yields} Upregulation of miR-93 expression in senescent cells in response to DSB. {yields} Failure of p53 binding to p21 promoter in senescent cells in response to DSB. {yields} Molecular mechanism of increased cancer development in aged than young individuals. -- Abstract: To answer what is a critical event for higher incidence of tumor development in old than young individuals, primary culture of human diploid fibroblasts were employed and DNA damage was induced by doxorubicin or X-ray irradiation. Response to the damage was different between young and old cells; loss of p21{sup sdi1} expression in spite of p53{sup S15} activation in old cells along with [{sup 3}H]thymidine and BrdU incorporation, but not in young cells. The phenomenon was confirmed by other tissue fibroblasts obtained from different donor ages. Induction of miR-93 expression and reduced p53 binding to p21 gene promoter account for loss of p21{sup sdi1} expression in senescent cells after DNA damage, suggesting a mechanism of in vivo carcinogenesis in aged tissue without repair arrest.

  13. SCFFbl12 Increases p21Waf1/Cip1 Expression Level through Atypical Ubiquitin Chain Synthesis

    PubMed Central

    Takebe, Ai; Haratake, Kousuke; Kanemori, Yoshinori; Kim, Jaehyun; Endo, Tomoyuki; Kigoshi, Yu; Fukuda, Tomomi; Miyahara, Hatsumi; Ebina, Manato; Baba, Tadashi

    2016-01-01

    The cyclin-dependent kinase (CDK) inhibitor p21 is an unstructured protein regulated by multiple turnover pathways. p21 abundance is tightly regulated, and its defect causes tumor development. However, the mechanisms that underlie the control of p21 level are not fully understood. Here, we report a novel mechanism by which a component of the SCF ubiquitin ligase, Fbl12, augments p21 via the formation of atypical ubiquitin chains. We found that Fbl12 binds and ubiquitinates p21. Unexpectedly, Fbl12 increases the expression level of p21 by enhancing the mixed-type ubiquitination, including not only K48- but also K63-linked ubiquitin chains, followed by promotion of binding between p21 and CDK2. We also found that proteasome activator PA28γ attenuates p21 ubiquitination by interacting with Fbl12. In addition, UV irradiation induces a dissociation of p21 from Fbl12 and decreases K63-linked ubiquitination, leading to p21 degradation. These data suggest that Fbl12 is a key factor that maintains adequate intracellular concentration of p21 under normal conditions. Our finding may provide a novel possibility that p21's fate is governed by diverse ubiquitin chains. PMID:27215384

  14. Assessment of p21, p53 expression, and Ki-67 proliferative activities in the gastric mucosa of children with Helicobacter pylori gastritis.

    PubMed

    Saf, Coskun; Gulcan, Enver Mahir; Ozkan, Ferda; Cobanoglu Saf, Seyhan Perihan; Vitrinel, Ayca

    2015-02-01

    Helicobacter pylori that is generally acquired in childhood and infects the gastric mucosa is considered to be responsible for many pathobiological changes that are linked to the pathogenesis of gastric cancer. Although the majority of studies on the subject have been carried out in adults, there are a limited number of studies on children that reflect the early period of infection and may be of greater significance. We aimed to determine the role of H. pylori infection and/or gastritis in several histopathological changes, p53, p21, and cell proliferation-associated Ki-67 antigen expression in the gastric mucosa. We studied 60 patients with a mean age of 7.5 ± 4.5 years at referral. On the basis of endoscopic appearance and the evaluation of the gastric antral specimens, the patients were divided into three groups: patients without gastritis, patients with H. pylori-positive gastritis, and patients with H. pylori-negative gastritis. To determine the expression of p53, Ki-67, and p21 in gastric biopsy specimens, immunohistochemical stains were performed. The incidence of neutrophil activity, which was one of our histopathologic parameters, was significantly higher in the H. pylori-positive gastritis group than the other two groups. The presence of lymphoid aggregate was more frequent in H. pylori ± gastritis groups than the nongastritis group. p53 expression was found to be significantly higher in the H. pylori-positive gastritis group than the nongastritis group. Ki-67 and p21 expressions were significantly more frequent in the H. pylori-positive gastritis group than the other two groups. When we evaluated the density of H. pylori, as the density of bacteria increases, we found that the expressions of p53, p21, and Ki-67 increased significantly. Expression of the studied precancerous markers in significant amounts indicates the importance of childhood H. pylori infection in the constitution of gastric cancer in adulthood.

  15. Methotrexate induces apoptosis through p53/p21-dependent pathway and increases E-cadherin expression through downregulation of HDAC/EZH2.

    PubMed

    Huang, Wen-Yu; Yang, Pei-Ming; Chang, Yu-Fan; Marquez, Victor E; Chen, Ching-Chow

    2011-02-15

    Methotrexate (MTX) is a dihydrofolate reductase (DHFR) inhibitor widely used as an anticancer drug in different kinds of human cancers. Here we investigated the anti-tumor mechanism of MTX against non-small cell lung cancer (NSCLC) A549 cells. MTX not only inhibited in vitro cell growth via induction of apoptosis, but also inhibited tumor formation in animal xenograft model. RNase protection assay (RPA) and RT-PCR demonstrated its induction of p53 target genes including DR5, p21, Puma and Noxa. Moreover, MTX promoted p53 phosphorylation at Ser15 and acetylaion at Lys373/382, which increase its stability and expression. The apoptosis and inhibition of cell viability induced by MTX were dependent on p53 and, partially, on p21. In addition, MTX also increased E-cadherin expression through inhibition of histone deacetylase (HDAC) activity and downregulation of polycomb group protein enhancer of zeste homologue 2 (EZH2). Therefore, the anticancer mechanism of MTX acts through initiation of p53-dependent apoptosis and restoration of E-cadherin expression by downregulation of HDAC/EZH2.

  16. miR-24-3p Suppresses Malignant Behavior of Lacrimal Adenoid Cystic Carcinoma by Targeting PRKCH to Regulate p53/p21 Pathway

    PubMed Central

    Zhang, Hong; Tang, Hua

    2016-01-01

    MicroRNA (miRNA) may function as an oncogene or a tumor suppressor in tumorigenesis. However, the mechanism of miRNAs in adenoid cystic carcinoma (ACC) is unclear. Here, we provide evidence that miR-24-3p was downreglated and functions as a tumor suppressor in human lacrimal adenoid cystic carcinoma by suppressing proliferation and migration/invasion while promoting apoptosis. miR-24-3p down-regulated protein kinase C eta (PRKCH) by binding to its untranslated region (3’UTR). PRKCH increased the of the cell growth and migration/invasion in ACC cells and suppressed the expression of p53 and p21 in both mRNA and protein level. The overexpression of miR-24-3p decreased its malignant phenotype. Ectopic expression of PRKCH counteracted the suppression of malignancy induced by miR-24-3p, as well as ectopic expression of miR-24-3p rescued the suppression of PRKCH in the p53/p21 pathway. These results suggest that miR-24-3p promotes the p53/p21 pathway by down-regulating PRKCH expression in lacrimal adenoid cystic carcinoma cells. PMID:27351203

  17. Transient mitochondrial DNA double strand breaks in mice cause accelerated aging phenotypes in a ROS-dependent but p53/p21-independent manner.

    PubMed

    Pinto, Milena; Pickrell, Alicia M; Wang, Xiao; Bacman, Sandra R; Yu, Aixin; Hida, Aline; Dillon, Lloye M; Morton, Paul D; Malek, Thomas R; Williams, Siôn L; Moraes, Carlos T

    2017-02-01

    We observed that the transient induction of mtDNA double strand breaks (DSBs) in cultured cells led to activation of cell cycle arrest proteins (p21/p53 pathway) and decreased cell growth, mediated through reactive oxygen species (ROS). To investigate this process in vivo we developed a mouse model where we could transiently induce mtDNA DSBs ubiquitously. This transient mtDNA damage in mice caused an accelerated aging phenotype, preferentially affecting proliferating tissues. One of the earliest phenotypes was accelerated thymus shrinkage by apoptosis and differentiation into adipose tissue, mimicking age-related thymic involution. This phenotype was accompanied by increased ROS and activation of cell cycle arrest proteins. Treatment with antioxidants improved the phenotype but the knocking out of p21 or p53 did not. Our results demonstrate that transient mtDNA DSBs can accelerate aging of certain tissues by increasing ROS. Surprisingly, this mtDNA DSB-associated senescence phenotype does not require p21/p53, even if this pathway is activated in the process.

  18. Cell cycle arrest and apoptosis induced by aspidin PB through the p53/p21 and mitochondria-dependent pathways in human osteosarcoma cells.

    PubMed

    Wan, Daqian; Jiang, Chaoyin; Hua, Xin; Wang, Ting; Chai, Yimin

    2015-10-01

    Aspidin PB is a natural product extracted from Dryopteris fragrans (L.) Schott, which has been characterized for its various biological activities. We reported that aspidin PB induced cell cycle arrest and apoptosis through the p53/p21 and mitochondria-dependent pathways in human osteosarcoma cells. Aspidin PB inhibited the proliferation of Saos-2, U2OS, and HOS cells in a dose-dependent and time-dependent manner. Aspidin PB induced changes in the cell cycle regulators (cyclin A, pRb, CDK2, p53, and p21), which caused cell cycle arrest in the S phase. We also explored the role of siRNA targeted to p53; it led to a dose-dependent attenuation of aspidin PB-induced apoptosis signaling. Moreover, after treatment with aspidin PB, the p21-silenced cells decreased significantly at the S phase. Aspidin PB increased the percentage of cells with mitochondrial membrane potential disruption. Western blot analysis showed that aspidin PB inhibited Bcl-2 expression and induced Bax expression to disintegrate the outer mitochondrial membrane and caused cytochrome C release. Mitochondrial cytochrome C release was associated with the activation of caspase-9 and caspase-3 cascades. Furthermore, the double-stranded DNA breaks and reactive oxygen species signaling were both involved in aspidin PB-induced DNA damage. In addition, aspidin PB inhibited tumor growth significantly in U2OS xenografts. Above all, we conclude that aspidin PB represents a valuable natural source and may potentially be applicable in osteosarcoma therapy.

  19. [Effect of coking oven emissions on level of serum oxidation-reduction and peripheral white blood cellular ras P21 and P53 in coke oven workers].

    PubMed

    Zhang, Qiao; Zhou, Fang; Yao, Wu; Zhao, Yi-bo; Li, Zhi-yuan; Xu, Yu-bao; Wu, Yi-ming

    2008-04-01

    To explore the adverse effects of coking oven emissions (COE) on the serum oxidation-reduction and relevant genes in the exposed workers. Fifty-six coke oven workers and forty controls were investigated. Serum Malondialdehyde (MDA) levels and the activities of total superoxide dismutases (T-SOD) were measured by spectrophotometrical method. Immunohistochemical method was used to assess the P21 and P53 levels in peripheral white blood cells. Compared with controls, the individuals exposed to COE had significantly increased levels of serum MDA [(5.30 +/- 2.29) nmol/mL, P < 0.01] and markedly decreased levels of T-SOD [(100.04 +/- 10.75) NU/mL]. Additionally, the median levels of P53 and P21 were markedly increased in the exposed individuals compared with the controls (21.4% and 23.2%, respectively, all P < 0.05). The findings indicate that occupational exposure to COE causes the rise of serum oxidation-reduction MDA and the fall of T-SOD, and increasing expression levels of P21 and P53 proteins before the occurrence of apparent clinical symptoms.

  20. Okadaic acid mediates p53 hyperphosphorylation and growth arrest in cells with wild-type p53 but increases aberrant mitoses in cells with non-functional p53.

    PubMed

    Milczarek, G J; Chen, W; Gupta, A; Martinez, J D; Bowden, G T

    1999-06-01

    The protein phosphatase inhibitor and tumor promoting agent okadaic acid (OA), has been shown previously to induce hyperphosphorylation of p53 protein, which in turn correlated with increased transactivation or apoptotic function. However, how the tumor promotion effects of OA relate to p53 tumor supressor function (or dysfunction) remain unclear. Rat embryonic fibroblasts harboring a temperature-sensitive mouse p53 transgene were treated with 50 nM doses of OA. At the wild-type permissive temperature this treatment resulted in: (i) the hyperphosphorylation of sites within tryptic peptides of the transactivation domain of p53; (ii) an increase in p53 affinity for a p21(waf1) promotor oligonucleotide; (iii) an increase in cellular steady state levels of p21(waf1) message; (iv) a G2/M cell cycle blockage in addition to the G1/S arrest previously associated with p53; and (v) no increased incidence of apoptosis. On the other hand, OA treatment at the mutated p53 permissive temperature resulted in a relatively high incidence of aberrant mitosis with no upregulation of p21(waf1) message. These results suggest that while wild-type p53 blocks the proliferative effects of OA through p21(waf1)-mediated growth arrest, cells with non-functional p53 cannot arrest and suffer relatively high levels of OA-mediated aberrant mitoses.

  1. IκB kinase β Mediating the Downregulation of p53 and p21 by Lipopolysaccharide in Human Papillomavirus 16+ Cervical Cancer Cells

    PubMed Central

    Tan, Zhi-Hui; Zhang, Yu; Tian, Yan; Tan, Wei; Li, Ying-Hua

    2016-01-01

    Background: Cervical cancer is the second most common cancer of woman in the world, and human papillomavirus (HPV) infection plays an important role in the development of most of the cases. IκB kinase β (IKKβ) is a kinase-mediating nuclear factor kappa B (NF-κB) activation by phosphorylating the inhibitor of NF-κB (IκB) and is related by some diseases caused by virus infection. However, there is little known about the correlation between IKKβ and HPV infection in cervical cancer. This study aimed to investigate the expression of IKKβ protein in cervical cancer tissues and effects of inflammation on HPV positive or negative cervical cancer cells through detecting the expression of IKKβ, IκBα, p53, and p21 proteins after treated with lipopolysaccharide (LPS) to mimic bacterial infection. We also examined the effects of LPS on cervical cancer cells after blocking IKKβ with pharmacological inhibitor. Methods: Thirty-six matched specimens of cervical cancer and adjacent normal tissues were collected and analyzed in the study. The expression of IKKβ in the tissue specimens was determined by immunohistochemical staining. In addition, Western blot was used to detect the expression level changes of IKKβ, IκBα, p53, and p21 after LPS stimulated in the HPV16+ (SiHa) and HPV16− (C33A) cervical cancer cell lines. Furthermore, the effects of IKKβ inhibitor SC-514 on LPS-induced expression change of these proteins were investigated. Results: The expression of IKKβ was higher in cervical cancer than adjacent normal tissues, and there was no significant difference between tumor differentiation, size, and invasive depth with IKKβ expression. The LPS, which increased the expression level of IKKβ protein but decreased in the IκBα, p53 and p21 proteins, was illustrated in HPV16+ (SiHa) but not in HPV16− (C33A) cells. Moreover, IKKβ inhibitor SC-514 totally reversed the upregulation of IKKβ and downregulation of p53 and p21 by LPS in SiHa cells. Conclusions

  2. RNA-Binding Protein FXR1 Regulates p21 and TERC RNA to Bypass p53-Mediated Cellular Senescence in OSCC

    PubMed Central

    Majumder, Mrinmoyee; House, Reniqua; Palanisamy, Nallasivam; Qie, Shuo; Day, Terrence A.; Neskey, David; Diehl, J. Alan

    2016-01-01

    RNA-binding proteins (RBP) regulate numerous aspects of co- and post-transcriptional gene expression in cancer cells. Here, we demonstrate that RBP, fragile X-related protein 1 (FXR1), plays an essential role in cellular senescence by utilizing mRNA turnover pathway. We report that overexpressed FXR1 in head and neck squamous cell carcinoma targets (G-quadruplex (G4) RNA structure within) both mRNA encoding p21 (Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A, Cip1) and the non-coding RNA Telomerase RNA Component (TERC), and regulates their turnover to avoid senescence. Silencing of FXR1 in cancer cells triggers the activation of Cyclin-Dependent Kinase Inhibitors, p53, increases DNA damage, and ultimately, cellular senescence. Overexpressed FXR1 binds and destabilizes p21 mRNA, subsequently reduces p21 protein expression in oral cancer cells. In addition, FXR1 also binds and stabilizes TERC RNA and suppresses the cellular senescence possibly through telomerase activity. Finally, we report that FXR1-regulated senescence is irreversible and FXR1-depleted cells fail to form colonies to re-enter cellular proliferation. Collectively, FXR1 displays a novel mechanism of controlling the expression of p21 through p53-dependent manner to bypass cellular senescence in oral cancer cells. PMID:27606879

  3. Histone deacetylase 3 represses p15{sup INK4b} and p21{sup WAF1/cip1} transcription by interacting with Sp1

    SciTech Connect

    Huang Weifeng; Tan Dapeng; Wang Xiuli; Han Songyan; Tan Jiang; Zhao Yanmei; Lu Jun . E-mail: ycsuo@nenu.edu.cn; Huang Baiqu

    2006-01-06

    Histone deacetylase 3 (HDAC3) has been implicated to play roles in governing cell proliferation. Here we demonstrated that the overexpression of HDAC3 repressed transcription of p15{sup INK4b} and p21{sup WAF1/cip1} genes in 293T cells, and that the recruitment of HDAC3 to the promoter regions of these genes was critical to this repression. We also showed that HDAC3 repressed GAL4-Sp1 transcriptional activity, and that Sp1 was co-immunoprecipitated with FLAG-tagged HDAC3. We conclude that HDAC3 can repress p15{sup INK4b} and p21{sup WAF1/cip1} transcription by interacting with Sp1. Furthermore, knockdown of HDAC3 by RNAi up-regulated the transcriptional expression of p15{sup INK4b}, but not that of p21{sup WAF1/cip1}, implicating the different roles of HDAC3 in repression of p15{sup INK4b} and p21{sup WAF1/cip1} transcription. Data from this study indicate that the inhibition of p15{sup INK4b} and p21{sup WAF1/cip1} may be one of the mechanisms by which HDAC3 participates in cell cycle regulation and oncogenesis.

  4. p21Waf1 is required for complete oncogenic transformation of mouse embryo fibroblasts by E1Aad5 and c-Ha-ras oncogenes.

    PubMed

    Romanov, Vasily S; Bardin, Alexander A; Zubova, Svetlana G; Bykova, Tatiana V; Pospelov, Valery A; Pospelova, Tatiana V

    2011-09-01

    Cyclin-dependent kinase inhibitor p21(Waf1) is known to have alternative functions associated with positive regulation of proliferation, actin cytoskeleton remodeling and suppression of apoptosis. The goal of the present study was to assess the role of p21(Waf1) in the establishment of the transformed phenotype of mouse embryo fibroblasts with stable expression of E1Aad5 and c-Ha-ras complementary oncogenes. Herein, we demonstrate that E1A/c-Ha-Ras-transformed p21(Waf1)-null fibroblasts possess some characteristic features of transformed cells, such as loss of contact inhibition, high saturation density, shortened cell cycle, inability to undergo cell-cycle arrest after DNA damage and serum deprivation, but, at the same time, they are not completely transformed in that they are unable to proliferate at clonal density, are anchorage-dependent, retain a fibroblast-like morphology with pronounced actin cytoskeleton and show reduced migration and invasion. Our data support the concept of p21(Waf1) "tumor suppressor" having alternative oncogenic functions in the cytoplasm and for the first time indicate that p21(Waf1) can be indispensable for complete oncogenic transformation.

  5. NSPc1 is a cell growth regulator that acts as a transcriptional repressor of p21Waf1/Cip1 via the RARE element

    PubMed Central

    Gong, Yanhua; Yue, Jiping; Wu, Xudong; Wang, Xu; Wen, Jianyan; Lu, Lifang; Peng, Xiaozhong; Qiang, Boqin; Yuan, Jiangang

    2006-01-01

    The mammalian polycomb group proteins play an important role in cell cycle control and tumorigenesis. Nervous system polycomb 1 (NSPc1) is a newly identified transcription repressor, highly homologous with PcG protein Bmi-1. In this article, we showed that NSPc1 could promote tumor cell cycle progression and cell proliferation. Semi-quantitative RT–PCR showed that NSPc1 did not affect the expression levels of most Cyclin-depentent kinases (CDK) inhibitors except for p21Waf1/Cip1. Repression activity assays, chromatin immunoprecipitation (ChIP) and DNA pulldown assays all verified that NSPc1 represses the expression of p21Waf1/Cip1 by binding to the (−1357 to −1083) region of the p21Waf1/Cip1 promoter in vivo, and the repression effect is dependent on the retinoid acid response element (RARE element) within the above region of the p21Waf1/Cip1 promoter. Further analysis showed that NSPc1 could compete the RARE element site with RA receptors both in vitro and in vivo. Taken together, our results support the hypothesis that NSPc1 has a positive role in tumor cell growth by down-regulating p21Waf1/Cip1 via the RARE element, which directly connects transcriptional repression of PcGs to CDKIs and RA signaling pathways. PMID:17088287

  6. Cigarette smoke triggers code red: p21CIP1/WAF1/SDI1 switches on danger responses in the lung.

    PubMed

    Tuder, Rubin M; Yun, Jeong H; Graham, Brian B

    2008-07-01

    The article by Yao and coworkers in this issue (Am. J. Respir. Cell Mol. Biol. 2008;39:7-18) reveals that the cyclin-dependent kinase inhibitor p21CIP1/WAF1/SDI1 (designated hereafter as p21), which has been linked to cell cycle growth arrest due to stress or danger cell responses, may modulate alveolar inflammation and alveolar destruction, and thus enlightens our present understanding of how the lung senses injury due to cigarette smoke and integrates these responses with those that activate inflammatory pathways potentially harmful to the lung. Furthermore, the interplay of p21 and cellular processes involving cell senescence and the imbalance of cell proliferation/apoptosis may provide us with a more logical explanation of how p21, acting as a sensor of cellular stress, might have such potent and wide roles in lung responses triggered by cigarette smoke. Molecular switches, ontologically designed for the protection of the host, are now hijacked by injurious stresses (such as cigarette smoke), leading to organ damage.

  7. RXR antagonism induces G0 /G1 cell cycle arrest and ameliorates obesity by up-regulating the p53-p21(Cip1) pathway in adipocytes.

    PubMed

    Nakatsuka, Atsuko; Wada, Jun; Hida, Kazuyuki; Hida, Aya; Eguchi, Jun; Teshigawara, Sanae; Murakami, Kazutoshi; Kanzaki, Motoko; Inoue, Kentaro; Terami, Takahiro; Katayama, Akihiro; Ogawa, Daisuke; Kagechika, Hiroyuki; Makino, Hirofumi

    2012-04-01

    The peroxisome proliferator activated receptor-γ (PPARγ) agonist, pioglitazone (PIO), exerts anti-diabetic properties associated with increased fat mass, whereas the retinoid X receptor (RXR) antagonist HX531 demonstrates anti-obesity and anti-diabetic effects with reduced body weight and fat pad mass. The cell cycle abnormality in adipocytes has not been well-investigated in obesity or during treatment with modulators of nuclear receptors. We therefore investigated cell size and cell cycle distributions of adipocytes in vivo and examined the expression of cell cycle regulators in cultured human visceral preadipocytes. The cell size distribution and cell cycle analyses of in vivo adipocytes derived from OLETF rats demonstrated that HX531 brought about G0/G1 cell cycle arrest associated with the inhibition of cellular hypertrophy, which resulted in the reduction of fat pad mass. In contrast, PIO promoted proliferation activities associated with the increase in M + late M:G0 + G1 ratio and the appearance of both small and hypertrophied adipocytes. In cultured human visceral preadipocytes HX531 up-regulated cell cycle regulators, p53, p21(Cip1), cyclin D1, Fbxw7 and Skp2, which are known contributors towards G0 /G1 cell cycle arrest. The knockdown of p53 with a shRNA lentivirus reversed the HX531-induced up-regulation of p21(Cip1), which is one of the major p53-effector molecules. We conclude that HX531 exerts anti-obesity and anti-diabetes properties by up-regulating the p53-p21(Cip1) pathway, resulting in G0/G1 cell cycle arrest and the inhibition of cellular hypertrophy of adipocytes. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  8. The ETS Family Transcription Factor ELK-1 Regulates Induction of the Cell Cycle-regulatory Gene p21Waf1/Cip1 and the BAX Gene in Sodium Arsenite-exposed Human Keratinocyte HaCaT Cells*

    PubMed Central

    Shin, Soon Young; Kim, Chang Gun; Lim, Yoongho; Lee, Young Han

    2011-01-01

    Cyclin-dependent kinase inhibitor (CDKN1A), often referred to as p21Waf1/Cip1 (p21), is induced by a variety of environmental stresses. Transcription factor ELK-1 is a member of the ETS oncogene superfamily. Here, we show that ELK-1 directly trans-activates the p21 gene, independently of p53 and EGR-1, in sodium arsenite (NaASO2)-exposed HaCaT cells. Promoter deletion analysis and site-directed mutagenesis identified the presence of an ELK-1-binding core motif between −190 and −170 bp of the p21 promoter that confers inducibility by NaASO2. Chromatin immunoprecipitation and electrophoretic mobility shift analyses confirmed the specific binding of ELK-1 to its putative binding sequence within the p21 promoter. In addition, NaASO2-induced p21 promoter activity was enhanced by exogenous expression of ELK-1 and reduced by expression of siRNA targeted to ELK-1 mRNA. The importance of ELK-1 in response to NaASO2 was further confirmed by the observation that stable expression of ELK-1 siRNA in HaCaT cells resulted in the attenuation of NaASO2-induced p21 expression. Although ELK-1 was activated by ERK, JNK, and p38 MAPK in response to NaASO2, ELK-1-mediated activation of the p21 promoter was largely dependent on ERK. In addition, EGR-1 induced by ELK-1 seemed to be involved in NaASO2-induced expression of BAX. This supports the view that the ERK/ELK-1 cascade is involved in p53-independent induction of p21 and BAX gene expression. PMID:21642427

  9. The ETS family transcription factor ELK-1 regulates induction of the cell cycle-regulatory gene p21(Waf1/Cip1) and the BAX gene in sodium arsenite-exposed human keratinocyte HaCaT cells.

    PubMed

    Shin, Soon Young; Kim, Chang Gun; Lim, Yoongho; Lee, Young Han

    2011-07-29

    Cyclin-dependent kinase inhibitor (CDKN1A), often referred to as p21(Waf1/Cip1) (p21), is induced by a variety of environmental stresses. Transcription factor ELK-1 is a member of the ETS oncogene superfamily. Here, we show that ELK-1 directly trans-activates the p21 gene, independently of p53 and EGR-1, in sodium arsenite (NaASO(2))-exposed HaCaT cells. Promoter deletion analysis and site-directed mutagenesis identified the presence of an ELK-1-binding core motif between -190 and -170 bp of the p21 promoter that confers inducibility by NaASO(2). Chromatin immunoprecipitation and electrophoretic mobility shift analyses confirmed the specific binding of ELK-1 to its putative binding sequence within the p21 promoter. In addition, NaASO(2)-induced p21 promoter activity was enhanced by exogenous expression of ELK-1 and reduced by expression of siRNA targeted to ELK-1 mRNA. The importance of ELK-1 in response to NaASO(2) was further confirmed by the observation that stable expression of ELK-1 siRNA in HaCaT cells resulted in the attenuation of NaASO(2)-induced p21 expression. Although ELK-1 was activated by ERK, JNK, and p38 MAPK in response to NaASO(2), ELK-1-mediated activation of the p21 promoter was largely dependent on ERK. In addition, EGR-1 induced by ELK-1 seemed to be involved in NaASO(2)-induced expression of BAX. This supports the view that the ERK/ELK-1 cascade is involved in p53-independent induction of p21 and BAX gene expression.

  10. Tetrahydroanthraquinone Derivative (±)-4-Deoxyaustrocortilutein Induces Cell Cycle Arrest and Apoptosis in Melanoma Cells via Upregulation of p21 and p53 and Downregulation of NF-kappaB

    PubMed Central

    Genov, Miroslav; Kreiseder, Birgit; Nagl, Michael; Drucker, Elisabeth; Wiederstein, Martina; Muellauer, Barbara; Krebs, Julia; Grohmann, Teresa; Pretsch, Dagmar; Baumann, Karl; Bacher, Markus; Pretsch, Alexander; Wiesner, Christoph

    2016-01-01

    Background: Malignant melanoma is an aggressive type of skin cancer with high risk for metastasis and chemoresistance. Disruption of tightly regulated processes such as cell cycle, cell adhesion, cell differentiation and cell death are predominant in melanoma development. So far, conventional treatment options have been insufficient to treat metastatic melanoma and survival rates are poor. Anthraquinone compounds have been reported to have anti-tumorigenic potential by DNA-interaction, promotion of apoptosis and suppression of proliferation in various cancer cells. Methods: In the current study, the racemic tetrahydroanthraquinone derivative (±)-4-deoxyaustrocortilutein (4-DACL) was synthesized and the cytotoxic activity against melanoma cells and melanoma spheroids determined by CellTiter-Blue viability Assay and phase contrast microscopy. Generation of reactive oxygen species (ROS) was determined with CellROX Green and Deep Red Reagent kit and microplate-based fluorometry. Luciferase reporter gene assays for nuclear factor kappa B (NF-κB) and p53 activities and western blotting analysis were carried out to detect the expression of anti-proliferative or pro-apoptotic (p53, p21, p27, MDM2, and GADD45M) and anti-apoptotic (p65, IκB-α, IKK) proteins. Cell cycle distribution and apoptosis rate were detected by flow cytometry, the morphological changes visualized by fluorescence microscopy and the activation of different caspase cascades distinguished by Caspase Glo 3/7, 8 and 9 Assays. Results: We demonstrated that 4-DACL displayed high activity against different malignant melanoma cells and melanoma spheroids and only low toxicity to melanocytes and other primary cells. In particular, 4-DACL treatment induced mitochondrial ROS, reduced NF-κB signaling activity and increased up-regulation of the cell cycle inhibitors cyclin-dependent kinase inhibitor p21 (p21WAF1/Cip1) and the tumor suppressor protein p53 in a dose-dependent manner, which was accompanied by

  11. Tetrahydroanthraquinone Derivative (±)-4-Deoxyaustrocortilutein Induces Cell Cycle Arrest and Apoptosis in Melanoma Cells via Upregulation of p21 and p53 and Downregulation of NF-kappaB.

    PubMed

    Genov, Miroslav; Kreiseder, Birgit; Nagl, Michael; Drucker, Elisabeth; Wiederstein, Martina; Muellauer, Barbara; Krebs, Julia; Grohmann, Teresa; Pretsch, Dagmar; Baumann, Karl; Bacher, Markus; Pretsch, Alexander; Wiesner, Christoph

    2016-01-01

    Malignant melanoma is an aggressive type of skin cancer with high risk for metastasis and chemoresistance. Disruption of tightly regulated processes such as cell cycle, cell adhesion, cell differentiation and cell death are predominant in melanoma development. So far, conventional treatment options have been insufficient to treat metastatic melanoma and survival rates are poor. Anthraquinone compounds have been reported to have anti-tumorigenic potential by DNA-interaction, promotion of apoptosis and suppression of proliferation in various cancer cells. In the current study, the racemic tetrahydroanthraquinone derivative (±)-4-deoxyaustrocortilutein (4-DACL) was synthesized and the cytotoxic activity against melanoma cells and melanoma spheroids determined by CellTiter-Blue viability Assay and phase contrast microscopy. Generation of reactive oxygen species (ROS) was determined with CellROX Green and Deep Red Reagent kit and microplate-based fluorometry. Luciferase reporter gene assays for nuclear factor kappa B (NF-κB) and p53 activities and western blotting analysis were carried out to detect the expression of anti-proliferative or pro-apoptotic (p53, p21, p27, MDM2, and GADD45M) and anti-apoptotic (p65, IκB-α, IKK) proteins. Cell cycle distribution and apoptosis rate were detected by flow cytometry, the morphological changes visualized by fluorescence microscopy and the activation of different caspase cascades distinguished by Caspase Glo 3/7, 8 and 9 Assays. We demonstrated that 4-DACL displayed high activity against different malignant melanoma cells and melanoma spheroids and only low toxicity to melanocytes and other primary cells. In particular, 4-DACL treatment induced mitochondrial ROS, reduced NF-κB signaling activity and increased up-regulation of the cell cycle inhibitors cyclin-dependent kinase inhibitor p21 (p21(WAF1/Cip1)) and the tumor suppressor protein p53 in a dose-dependent manner, which was accompanied by decreased cell proliferation and

  12. Enhanced antitumor therapy by inhibition of p21waf1 in human malignant mesothelioma.

    PubMed

    Lazzarini, Raffaella; Moretti, Simona; Orecchia, Sara; Betta, Pier-Giacomo; Procopio, Antonio; Catalano, Alfonso

    2008-08-15

    The p21 cyclin-dependent kinase inhibitor was frequently expressed in human malignant pleural mesothelioma (MPM) tissues as well as cell lines. Recent data indicate that p21 keeps tumor cells alive after DNA damage, favoring a survival advantage. In this study, we assessed the possibility of p21 suppression as a therapeutic target for MPM. We established two different MPM-derived (from H28 and H2052 cells) subclones using vector-based short hairpin RNA (shRNA). Then, chemosensitivity against low doses of antineoplastic DNA-damaging agents was investigated by colony formation assays, and furthermore, the type of cell response induced by these drugs was analyzed. To examine the effect of p21 shRNA on chemosensitivity in vivo, tumor formation assays in nude mice were done. In colony formation assay, the IC50 of doxorubicin was 33 +/- 3.0 nmol/L in p21 shRNA-transfected cells with respect to 125 +/- 10 nmol/L of control vector-transfected cells. This enhancement of growth inhibition was achieved by converting a senescence-like growth arrest to apoptosis in response to doxorubicin, etoposide, and CPT11. In the in vivo assays, CPT11 and loss-of-expression of p21 in combination led to considerable suppression of tumor growth associated with a substantially enhanced apoptotic response, whereas CPT11 alone was ineffective at inducing these responses. These results indicated that p21 might play an important role in chemosensitivity to anticancer agents, and the suppression of its expression might be a potential therapeutic target for MPM.

  13. Expression of p53, MDM2, p21, heat shock protein 70, and HPV 16/18 E6 proteins in oral verrucous carcinoma and oral verrucous hyperplasia.

    PubMed

    Lin, Hung-Pin; Wang, Yi-Ping; Chiang, Chun-Pin

    2011-03-01

    Oral verrucous hyperplasia is a precancerous lesion of oral verrucous carcinoma. This study used immunohistochemistry to examine the expression of p53, murine double minute 2 (MDM2), p21, heat shock protein 70 (HSP 70), and human papillomavirus (HPV) 16/18 E6 proteins in 48 oral verrucous carcinoma and 30 oral verrucous hyperplasia samples. The mean labeling indices of p53, MDM2, p21, HSP 70, and HPV 16/18 E6 proteins in oral verrucous carcinoma samples were 21%, 31%, 7%, 17%, and 0.5%, respectively, and those in oral verrucous hyperplasia samples were 19%, 35%, 11%, 14%, and 0.3%, respectively. Immunohistochemistry with the above-cited 5 biomarkers could not help differentiate oral verrucous hyperplasia from oral verrucous carcinoma. The low expression of p21 may partially explain abnormal epithelial overgrowth in both verrucous lesions. The pathogenesis of both verrucous lesions may be at least partially attributed to the overexpression of MDM2 protein and moderate expression of HSP 70 protein in both lesions. Copyright © 2010 Wiley Periodicals, Inc.

  14. Prolonged induction of p21Cip1/WAF1/CDK2/PCNA complex by epidermal growth factor receptor activation mediates ligand-induced A431 cell growth inhibition

    PubMed Central

    1995-01-01

    Proliferation of some cultured human tumor cell lines bearing high numbers of epidermal growth factor (EGF) receptors is paradoxically inhibited by EGF in nanomolar concentrations. In the present study, we have investigated the biochemical mechanism of growth inhibition in A431 human squamous carcinoma cells exposed to exogenous EGF. In parallel, we studied a selected subpopulation, A431-F, which is resistant to EGF-mediated growth inhibition. We observed a marked reduction in cyclin-dependent kinase-2 (CDK2) activity when A431 and A431-F cells were cultured with 20 nM EGF for 4 h. After further continuous exposure of A431 cells to EGF, the CDK2 activity remained at a low level and was accompanied by persistent G1 arrest. In contrast, the early reduced CDK2 activity and G1 accumulation in A431-F cells was only transient. We found that, at early time points (4-8 h), EGF induces p21Cip1/WAF1 mRNA and protein expression in both EGF-sensitive A431 cells and EGF-resistant A431-F cells. But only in A431 cells, was p21Cip1/WAF1 expression sustained at a significantly increased level for up to 5 d after addition of EGF. Induction of p21Cip1/WAF1 by EGF could be inhibited by a specific EGF receptor tyrosine kinase inhibitor, tyrphostin AG1478, suggesting that p21Cip1/WAF1 induction was a consequence of receptor tyrosine kinase activation by EGF. We also demonstrated that the increased p21Cip1/WAF1 was associated with both CDK2 and proliferating cell nuclear antigen (PCNA). Taken together, our results demonstrate that p21Cip1/WAF1 is an important mediator of EGF-induced G1 arrest and growth inhibition in A431 cells. PMID:7559780

  15. Alphavirus M1 induces apoptosis of malignant glioma cells via downregulation and nucleolar translocation of p21WAF1/CIP1 protein.

    PubMed

    Hu, Jun; Cai, Xiao-Feng; Yan, Guangmei

    2009-10-15

    Alphavirus, a genus of arthropod-borne togavirus, is well-known for its pro-apoptotic capability. However, the underlying mechanism remains to be further clarified. Here, we have identified that M1, an alphavirus isolated in 1960s, targeted C6 malignant glioma cells for apoptosis. Flow cytometry analysis showed that more cells enter S-phase post M1 infection, and subsequently undergo a classic apoptosis. To elucidate the mechanism of S-phase arrest and its relationship to apoptosis, we tested the expression of several critical cell cycle regulatory proteins and found elevated phosphorylation of cyclin-dependent kinase 2 (CDK2), decreased expression of cyclin A and proliferating cell nuclear antigen (PCNA). Notably, the protein level of p21(WAF1/CIP1) was downregulated earliest and most effectively among all tested changes of cell cycle regulators, though its mRNA level was strongly upregulated. To evaluate the role of p21(WAF1/CIP1) in S-phase accumulation and subsequent apoptosis, we confirmed that exogenous p21(WAF1/CIP1) overexpression or treatment with roscovitine (a selective chemical inhibitor of CDK2) efficiently protected against apoptosis with a reduced S-phase accumulation. Thus, it is indicated that the downregulation of p21(WAF1/CIP1) mediated C6 apoptosis via overactivation of CDK2. In addition, confocal microscopy showed that p21(WAF1/CIP1) totally translocated to nucleolus during M1-induced C6 apoptosis. Altogether, downregulation and nucleolar translocation of the p21(WAF1/CIP1) protein played an active role in M1-induced C6 apoptosis.

  16. BRG1 controls the activity of the retinoblastoma protein via regulation of p21CIP1/WAF1/SDI.

    PubMed

    Kang, Hyeog; Cui, Kairong; Zhao, Keji

    2004-02-01

    The ubiquitous mammalian chromatin-remodeling SWI/SNF-like BAF complexes play critical roles in tumorigenesis. It was suggested that the direct interaction of BRG1 with the retinoblastoma protein pRB is required for regulation of cell cycle progression by pRB. We present evidence that the BRG1-containing complexes regulate the expression of the cdk inhibitor p21(CIP1/WAF1/SDI). Furthermore, we show that the physical interaction between BRG1 and pRB is not required for induction of cell growth arrest and transcriptional repression of E2F target genes by pRB. Instead, BRG1 activates pRB by inducing its hypophosphorylation through up-regulation of the cdk inhibitor p21. The hypophosphorylation of pRB is reinforced by down-regulation of critical components, including cdk2, cyclin E, and cyclin D, in the pRB regulatory network. We demonstrate that up-regulation of p21 by BRG1 is necessary to induce formation of flat cells, growth arrest, and finally, cell senescence. Our results suggest that the BRG1-containing complexes control cellular proliferation and senescence by modulating the pRB pathway via multiple mechanisms.

  17. Acyl-CoA thioesterase 7 is involved in cell cycle progression via regulation of PKCζ-p53-p21 signaling pathway.

    PubMed

    Jung, Seung Hee; Lee, Hyung Chul; Hwang, Hyun Jung; Park, Hyun A; Moon, Young-Ah; Kim, Bong Cho; Lee, Hyeong Min; Kim, Kwang Pyo; Kim, Yong-Nyun; Lee, Byung Lan; Lee, Jae Cheol; Ko, Young-Gyu; Park, Heon Joo; Lee, Jae-Seon

    2017-05-18

    Acyl-CoA thioesterase 7 (ACOT7) is a major isoform of the ACOT family that catalyzes hydrolysis of fatty acyl-CoAs to free fatty acids and CoA-SH. However, canonical and non-canonical functions of ACOT7 remain to be discovered. In this study, for the first time, ACOT7 was shown to be responsive to genotoxic stresses such as ionizing radiation (IR) and the anti-cancer drug doxorubicin in time- and dose-dependent manners. ACOT7 knockdown induced cytostasis via activation of the p53-p21 signaling pathway without a DNA damage response. PKCζ was specifically involved in ACOT7 depletion-mediated cell cycle arrest as an upstream molecule of the p53-p21 signaling pathway in MCF7 human breast carcinoma and A549 human lung carcinoma cells. Of the other members of the ACOT family, including ACOT1, 4, 8, 9, 11, 12, and 13 that were expressed in human, ACOT4, 8, and 12 were responsive to genotoxic stresses. However, none of those had a role in cytostasis via activation of the PKCζ-p53-p21 signaling pathway. Analysis of the ACOT7 prognostic value revealed that low ACOT7 levels prolonged overall survival periods in breast and lung cancer patients. Furthermore, ACOT7 mRNA levels were higher in lung cancer patient tissues compared to normal tissues. We also observed a synergistic effect of ACOT7 depletion in combination with either IR or doxorubicin on cell proliferation in breast and lung cancer cells. Together, our data suggest that a low level of ACOT7 may be involved, at least in part, in the prevention of human breast and lung cancer development via regulation of cell cycle progression.

  18. Simvastatin rises reactive oxygen species levels and induces senescence in human melanoma cells by activation of p53/p21 pathway

    SciTech Connect

    Guterres, Fernanda Augusta de Lima Barbosa; Martinez, Glaucia Regina; Rocha, Maria Eliane Merlin; Winnischofer, Sheila Maria Brochado

    2013-11-15

    Recent studies demonstrated that simvastatin has antitumor properties in several types of cancer cells, mainly by inducing apoptosis and inhibiting growth. The arrest of proliferation is a feature of cellular senescence; however, the occurrence of senescence in melanoma cells upon simvastatin treatment has not been investigated until now. Our results demonstrated that exposure of human metastatic melanoma cells (WM9) to simvastatin induces a senescent phenotype, characterized by G1 arrest, positive staining for senescence-associated β-galactosidase assay, and morphological changes. Also, the main pathways leading to cell senescence were examined in simvastatin-treated human melanoma cells, and the expression levels of phospho-p53 and p21 were upregulated by simvastatin, suggesting that cell cycle regulators and DNA damage pathways are involved in the onset of senescence. Since simvastatin can act as a pro-oxidant agent, and oxidative stress may be related to senescence, we measured the intracellular ROS levels in WM9 cells upon simvastatin treatment. Interestingly, we found an increased amount of intracellular ROS in these cells, which was accompanied by elevated expression of catalase and peroxiredoxin-1. Collectively, our results demonstrated that simvastatin can induce senescence in human melanoma cells by activation of p53/p21 pathway, and that oxidative stress may be related to this process. - Highlights: • Lower concentrations of simvastatin can induce senescent phenotype in melanoma cells. • Simvastatin induces senescence in human melanoma cells via p53/p21 pathway. • Senescent phenotype is related with increased intracellular ROS. • Partial detoxification of ROS by catalase/peroxiredoxin-1 could lead cells to senescence rather than apoptosis.

  19. Acyl-CoA thioesterase 7 is involved in cell cycle progression via regulation of PKCζ–p53p21 signaling pathway

    PubMed Central

    Jung, Seung Hee; Lee, Hyung Chul; Hwang, Hyun Jung; Park, Hyun A; Moon, Young-Ah; Kim, Bong Cho; Lee, Hyeong Min; Kim, Kwang Pyo; Kim, Yong-Nyun; Lee, Byung Lan; Lee, Jae Cheol; Ko, Young-Gyu; Park, Heon Joo; Lee, Jae-Seon

    2017-01-01

    Acyl-CoA thioesterase 7 (ACOT7) is a major isoform of the ACOT family that catalyzes hydrolysis of fatty acyl-CoAs to free fatty acids and CoA-SH. However, canonical and non-canonical functions of ACOT7 remain to be discovered. In this study, for the first time, ACOT7 was shown to be responsive to genotoxic stresses such as ionizing radiation (IR) and the anti-cancer drug doxorubicin in time- and dose-dependent manners. ACOT7 knockdown induced cytostasis via activation of the p53p21 signaling pathway without a DNA damage response. PKCζ was specifically involved in ACOT7 depletion-mediated cell cycle arrest as an upstream molecule of the p53p21 signaling pathway in MCF7 human breast carcinoma and A549 human lung carcinoma cells. Of the other members of the ACOT family, including ACOT1, 4, 8, 9, 11, 12, and 13 that were expressed in human, ACOT4, 8, and 12 were responsive to genotoxic stresses. However, none of those had a role in cytostasis via activation of the PKCζ–p53p21 signaling pathway. Analysis of the ACOT7 prognostic value revealed that low ACOT7 levels prolonged overall survival periods in breast and lung cancer patients. Furthermore, ACOT7 mRNA levels were higher in lung cancer patient tissues compared to normal tissues. We also observed a synergistic effect of ACOT7 depletion in combination with either IR or doxorubicin on cell proliferation in breast and lung cancer cells. Together, our data suggest that a low level of ACOT7 may be involved, at least in part, in the prevention of human breast and lung cancer development via regulation of cell cycle progression. PMID:28518146

  20. Metformin and Resveratrol Inhibited High Glucose-Induced Metabolic Memory of Endothelial Senescence through SIRT1/p300/p53/p21 Pathway

    PubMed Central

    Gao, Haiyang; Xu, Ruixia; Teng, Siyong; Wu, Yongjian

    2015-01-01

    Endothelial senescence plays crucial roles in diabetic vascular complication. Recent evidence indicated that transient hyperglycaemia could potentiate persistent diabetic vascular complications, a phenomenon known as “metabolic memory.” Although SIRT1 has been demonstrated to mediate high glucose-induced endothelial senescence, whether and how “metabolic memory” would affect endothelial senescence through SIRT1 signaling remains largely unknown. In this study, we investigated the involvement of SIRT1 axis as well as the protective effects of resveratrol (RSV) and metformin (MET), two potent SIRT1 activators, during the occurrence of “metabolic memory” of cellular senescence (senescent “memory”). Human umbilical vascular endothelial cells (HUVECs) were cultured in either normal glucose (NG)/high glucose (HG) media for 6 days, or 3 days of HG followed by 3 days of NG (HN), with or without RSV or MET treatment. It was shown that HN incubation triggered persistent downregulation of deacetylase SIRT1 and upregulation of acetyltransferase p300, leading to sustained hyperacetylation (at K382) and activation of p53, and subsequent p53/p21-mediated senescent “memory.” In contrast, senescent “memory” was abrogated by overexpression of SIRT1 or knockdown of p300. Interestingly, we found that SIRT1 and p300 could regulate each other in response to HN stimulation, suggesting that a delicate balance between acetyltransferases and deacetylases may be particularly important for sustained acetylation and activation of non-histone proteins (such as p53), and eventually the occurrence of “metabolic memory.” Furthermore, we found that RSV or MET treatment prevented senescent “memory” by modulating SIRT1/p300/p53/p21 pathway. Notably, early and continuous treatment of MET, but not RSV, was particularly important for preventing senescent “memory.” In conclusion, short-term high glucose stimulation could induce sustained endothelial senescence via SIRT

  1. SIRT1 alleviates senescence of degenerative human intervertebral disc cartilage endo-plate cells via the p53/p21 pathway

    PubMed Central

    Zhou, Nian; Lin, Xin; Dong, Wen; Huang, Wei; Jiang, Wei; Lin, Liangbo; Qiu, Quanhe; Zhang, Xiaojun; Shen, Jieliang; Song, Zhaojun; Liang, Xi; Hao, Jie; Wang, Dawu; Hu, Zhenming

    2016-01-01

    Cartilage end plates (CEP) degeneration plays an integral role in intervertebral disc (IVD) degeneration resulting from nutrient diffusion disorders. Although cell senescence resulting from oxidative stress is known to contribute to degeneration, no studies concerning the role of senescence in CEP degeneration have been conducted. SIRT1 is a longevity gene that plays a pivotal role in many cellular functions, including cell senescence. Therefore, the aim of this study was to investigate whether senescence is more prominent in human degenerative CEP and whether SIRT1-regulated CEP cells senescence in degenerative IVD as well as identify the signaling pathways that control that cell fate decision. In this study, the cell senescence phenotype was found to be more prominent in the CEP cells obtained from disc degenerative disease (DDD) patients than in the CEP cells obtained from age-matched lumbar vertebral fractures (LVF) patients. In addition, the results indicated that p53/p21 pathway plays an important role in the senescence of CEP cells in vivo and vitro. Furthermore, SIRT1 was found to be capable of alleviating the oxidative stress-induced senescence of CEP cells in humans via p53/p21 pathway. Thus, the information presented in this study could be used to further investigate the underlying mechanisms of CEP. PMID:26940203

  2. Expression of E6, p53 and p21 proteins and physical state of HPV16 in cervical cytologies with and without low grade lesions

    PubMed Central

    Tagle, Diana K Jiménez; Sotelo, Daniel Hernández; Illades-Aguiar, Berenice; Leyva-Vazquez, Marco A; Alfaro, Eugenia Flores; Coronel, Yaneth Castro; Hernández, Oscar del Moral; Romero, Luz del Carmen Alarcón

    2014-01-01

    The aim of this study was to determine the correlation between expression of HPV16 E6, p53 and p21 proteins and the physical state of HPV16 in cervical cytologies without squamous intraepithelial lesions (Non-SIL) and with low grade squamous intraepithelial lesions (LSIL), both with HPV16 infection. 101 liquid-based cytological samples were analyzed. 50 samples were without squamous intraepithelial lesions (Non-IL) and 51 samples of low grade squamous intraepithelial lesions (LSIL), both with HPV16 infection. HPV16 infection was determined by PCR-RFLP, and the physical state of HPV16 by in situ hybridization with tyramide-amplification. The expression of E6, p53 and p21 proteins was evaluated by immunocytochemistry. The expression of HPV16 E6 protein was significantly higher in LSIL that in Non-SIL samples (p=0.006). We found a significant correlation between E6 expression and the physical state of HPV16 in Non-SIL (p=0.049). Our results suggest that high expression of E6 in LSIL is an early event of cervical carcinogenesis and perhaps can be used as an early marker. PMID:24482706

  3. The antiproliferative activity of aloe-emodin is through p53-dependent and p21-dependent apoptotic pathway in human hepatoma cell lines.

    PubMed

    Kuo, Po-Lin; Lin, Ta-Chen; Lin, Chun-Ching

    2002-09-06

    The aim of this study is to investigate the anticancer effect of aloe-emodin in two human liver cancer cell lines, Hep G2 and Hep 3B. We observed that aloe-emodin inhibited cell proliferation and induced apoptosis in both examined cell lines, but with different the antiproliferative mechanisms. In Hep G2 cells, aloe-emodin induced p53 expression and was accompanied by induction of p21 expression that was associated with a cell cycle arrest in G1 phase. In addition, aloe-emodin had a marked increase in Fas/APO1 receptor and Bax expression. In contrast, with p53-deficient Hep 3B cells, the inhibition of cell proliferation of aloe-emodin was mediated through a p21-dependent manner that did not cause cell cycle arrest or increase the level of Fas/APO1 receptor, but rather promoted aloe-emodin induced apoptosis by enhancing expression of Bax. These findings suggest that aloe-emodin may be useful in liver cancer prevention.

  4. Damnacanthal is a potent inducer of apoptosis with anticancer activity by stimulating p53 and p21 genes in MCF-7 breast cancer cells.

    PubMed

    Aziz, Muhammad Yusran Abdul; Omar, Abdul Rahman; Subramani, Tamilselvan; Yeap, Swee Keong; Ho, Wan Yong; Ismail, Nor Hadiani; Ahmad, Syahida; Alitheen, Noorjahan Banu

    2014-05-01

    Damnacanthal, an anthraquinone compound, is isolated from the roots of Morinda citrifolia L. (noni), which has been used for traditional therapy in several chronic diseases, including cancer. Although noni has long been consumed in Asian and Polynesian countries, the molecular mechanisms by which it exerts several benefits are starting to emerge. In the present study, the effect of damnacanthal on MCF-7 cell growth regulation was investigated. Treatment of MCF-7 cells with damnacanthal for 72 h indicated an antiproliferative activity. The MTT method confirmed that damnacanthal inhibited the growth of MCF-7 cells at the concentration of 8.2 μg/ml for 72 h. In addition, the drug was found to induce cell cycle arrest at the G1 checkpoint in MCF-7 cells by cell cycle analysis. Damnacanthal induced apoptosis, determined by Annexin V-fluorescein isothiocyanate/propidium iodide (PI) dual-labeling, acridine-orange/PI dyeing and caspase-7 expression. Furthermore, damnacanthal-mediated apoptosis involves the sustained activation of p21, leading to the transcription of p53 and the Bax gene. Overall, the present study provided significant evidence demonstrating that p53-mediated damnacanthal induced apoptosis through the activation of p21 and caspase-7.

  5. Pulsed or continuous electromagnetic field induce p53/p21-mediated apoptotic signaling pathway in mouse spermatogenic cells in vitro and thus may affect male fertility.

    PubMed

    Solek, Przemyslaw; Majchrowicz, Lena; Bloniarz, Dominika; Krotoszynska, Ewelina; Koziorowski, Marek

    2017-05-01

    The impact of electromagnetic field (EMF) on the human health and surrounding environment is a common topic investigated over the years. A significant increase in the electromagnetic field concentration arouses public concern about the long-term effects of EMF on living organisms associated with many aspects. In the present study, we investigated the effects of pulsed and continuous electromagnetic field (PEMF/CEMF) on mouse spermatogenic cell lines (GC-1 spg and GC-2 spd) in terms of cellular and biochemical features in vitro. We evaluated the effect of EMF on mitochondrial metabolism, morphology, proliferation rate, viability, cell cycle progression, oxidative stress balance and regulatory proteins. Our results strongly suggest that EMF induces oxidative and nitrosative stress-mediated DNA damage, resulting in p53/p21-dependent cell cycle arrest and apoptosis. Therefore, spermatogenic cells due to the lack of antioxidant enzymes undergo oxidative and nitrosative stress-mediated cytotoxic and genotoxic events, which contribute to infertility by reduction in healthy sperm cells pool. In conclusion, electromagnetic field present in surrounding environment impairs male fertility by inducing p53/p21-mediated cell cycle arrest and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Integrated Stochastic Model of DNA Damage Repair by Non-homologous End Joining and p53/p21- Mediated Early Senescence Signalling

    PubMed Central

    Nelson, Glyn; Hall, Philip; Miwa, Satomi; Kirkwood, Thomas B. L.; Shanley, Daryl P.

    2015-01-01

    Unrepaired or inaccurately repaired DNA damage can lead to a range of cell fates, such as apoptosis, cellular senescence or cancer, depending on the efficiency and accuracy of DNA damage repair and on the downstream DNA damage signalling. DNA damage repair and signalling have been studied and modelled in detail separately, but it is not yet clear how they integrate with one another to control cell fate. In this study, we have created an integrated stochastic model of DNA damage repair by non-homologous end joining and of gamma irradiation-induced cellular senescence in human cells that are not apoptosis-prone. The integrated model successfully explains the changes that occur in the dynamics of DNA damage repair after irradiation. Simulations of p53/p21 dynamics after irradiation agree well with previously published experimental studies, further validating the model. Additionally, the model predicts, and we offer some experimental support, that low-dose fractionated irradiation of cells leads to temporal patterns in p53/p21 that lead to significant cellular senescence. The integrated model is valuable for studying the processes of DNA damage induced cell fate and predicting the effectiveness of DNA damage related medical interventions at the cellular level. PMID:26020242

  7. Integrated Stochastic Model of DNA Damage Repair by Non-homologous End Joining and p53/p21-Mediated Early Senescence Signalling.

    PubMed

    Dolan, David W P; Zupanic, Anze; Nelson, Glyn; Hall, Philip; Miwa, Satomi; Kirkwood, Thomas B L; Shanley, Daryl P

    2015-05-01

    Unrepaired or inaccurately repaired DNA damage can lead to a range of cell fates, such as apoptosis, cellular senescence or cancer, depending on the efficiency and accuracy of DNA damage repair and on the downstream DNA damage signalling. DNA damage repair and signalling have been studied and modelled in detail separately, but it is not yet clear how they integrate with one another to control cell fate. In this study, we have created an integrated stochastic model of DNA damage repair by non-homologous end joining and of gamma irradiation-induced cellular senescence in human cells that are not apoptosis-prone. The integrated model successfully explains the changes that occur in the dynamics of DNA damage repair after irradiation. Simulations of p53/p21 dynamics after irradiation agree well with previously published experimental studies, further validating the model. Additionally, the model predicts, and we offer some experimental support, that low-dose fractionated irradiation of cells leads to temporal patterns in p53/p21 that lead to significant cellular senescence. The integrated model is valuable for studying the processes of DNA damage induced cell fate and predicting the effectiveness of DNA damage related medical interventions at the cellular level.

  8. Expression of E6, p53 and p21 proteins and physical state of HPV16 in cervical cytologies with and without low grade lesions.

    PubMed

    Tagle, Diana K Jiménez; Sotelo, Daniel Hernández; Illades-Aguiar, Berenice; Leyva-Vazquez, Marco A; Alfaro, Eugenia Flores; Coronel, Yaneth Castro; Hernández, Oscar Del Moral; Romero, Luz Del Carmen Alarcón

    2014-01-01

    The aim of this study was to determine the correlation between expression of HPV16 E6, p53 and p21 proteins and the physical state of HPV16 in cervical cytologies without squamous intraepithelial lesions (Non-SIL) and with low grade squamous intraepithelial lesions (LSIL), both with HPV16 infection. 101 liquid-based cytological samples were analyzed. 50 samples were without squamous intraepithelial lesions (Non-IL) and 51 samples of low grade squamous intraepithelial lesions (LSIL), both with HPV16 infection. HPV16 infection was determined by PCR-RFLP, and the physical state of HPV16 by in situ hybridization with tyramide-amplification. The expression of E6, p53 and p21 proteins was evaluated by immunocytochemistry. The expression of HPV16 E6 protein was significantly higher in LSIL that in Non-SIL samples (p=0.006). We found a significant correlation between E6 expression and the physical state of HPV16 in Non-SIL (p=0.049). Our results suggest that high expression of E6 in LSIL is an early event of cervical carcinogenesis and perhaps can be used as an early marker.

  9. IGFBP-rP1 induces p21 expression through a p53-independent pathway, leading to cellular senescence of MCF-7 breast cancer cells.

    PubMed

    Zuo, Shuguang; Liu, Chang; Wang, Jianguo; Wang, Fuqing; Xu, Wanling; Cui, Shao; Yuan, Lei; Chen, Xudong; Fan, Wenjuan; Cui, Mingchen; Song, Guohua

    2012-06-01

    Insulin-like growth factor-binding protein (IGFBP)-related protein 1 (IGFBP-rP1), a member of the IGFBP super family, was identified as a potent tumor suppressor in several carcinomas. IGFBP-rP1 was down-regulated in primary breast cancer tissues and several breast cancer cell lines but overexpressed in senescent human mammary epithelial cells (HMECs), suggesting that IGFBP-rP1 might be a tumor suppressor in breast cancer and the tumor suppressor role of IGFBP-rP1 might be associated with cellular senescence. The aim of the study was to observe the effect of IGFBP-rP1 on cellular senescence and the molecular events mediating this biological effect in MCF-7 breast cancer cells. DNA fragment-encoding IGFBP-rP1 was cloned in-frame N-terminally to EGFP gene to generate IGFBP-rP1-EGFP fusion protein expression plasmid (pEGFP-IGFBP-rP1). The plasmid pEGFP-IGFBP-rP1 was then transfected into MCF-7 cells, and the proliferation, cell cycle distribution, cellular senescence, and cell cycle-related protein expression of MCF-7 cells were examined by trypan blue exclusion, flow cytometry, senescence-associated galactosidase (SA-β-gal) staining, and Western blot analysis, respectively. Two shRNA plasmid vectors against p21 or p53 gene were constructed and stably transfected into the MCF-7 cells to determine the involvement of p21 or p53 in cellular senescence induced by IGFBP-rP1. Transfection of IGFBP-rP1 or addition of condition medium (CM) from IGFBP-rP1-transfected cells in MCF-7 cells caused induction of a variety of senescent phenotypes, such as decrease in cell proliferation, increase in G0/G1 cell cycle arrest cells, change in cell morphology, and increase in senescence-associated galactosidase (SA-β-gal) activity. IGFBP-rP1-induced growth arrest is associated with enhanced expression of the cyclin-dependent kinase inhibitor p21 and dephosphorylation of the retinoblastoma protein (pRB). Cell proliferation block and cellular senescence induction in response to IGFBP-rP1

  10. Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: involvement of p38 mitogen-activated protein kinase.

    PubMed

    Weng, Meng-Shih; Ho, Yuan-Soon; Lin, Jen-Kun

    2005-06-15

    Flavonoids are a broadly distributed class of plant pigments, universally present in plants. They are strong anti-oxidants that can inhibit carcinogenesis in rodents. Chrysin (5,7-dihydroxyflavone) is a natural and biologically active compound extracted from many plants, honey, and propolis. It possesses potent anti-inflammatory, anti-oxidant properties, promotes cell death, and perturbing cell cycle progression. However, the mechanism by which chrysin inhibits cancer cell growth remains poorly understood. Therefore, we developed an interest in the relationship between MAPK signaling pathways and cell growth inhibition after chrysin treatment in rat C6 glioma cells. Cell viability assay and flow cytometric analysis suggested that chrysin exhibited a dose-dependent and time-dependent ability to block rat C6 glioma cell line cell cycle progression at the G1 phase. Western blotting analysis showed that the levels of Rb phosphorylation in C6 glioma cells exposed to 30 microM chrysin for 24h decreased significantly. We demonstrated the expression of cyclin-dependent kinase inhibitor, p21(Waf1/Cip1), to be significantly increased, but the p53 protein level did not change in chrysin-treated cells. Both cyclin-dependent kinase 2 (CDK2) and 4 (CDK4) kinase activities were reduced by chrysin in a dose-dependent manner. Furthermore, chrysin also inhibited proteasome activity. We further showed that chrysin induced p38-MAPK activation, and using a specific p38-MAPK inhibitor, SB203580, attenuated chrysin-induced p21(Waf1/Cip1) expression. These results suggest that chrysin exerts its growth-inhibitory effects either through activating p38-MAPK leading to the accumulation of p21(Waf1/Cip1) protein or mediating the inhibition of proteasome activity.

  11. Alterations in TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expression associated with progression in B-CLL.

    PubMed

    Halina, Antosz; Artur, Paterski; Barbara, Marzec-Kotarska; Joanna, Sajewicz; Anna, Dmoszyńska

    2010-12-01

    B-cell chronic lymphocytic leukaemia (B-CLL) originates from B lymphocytes that may differ in the activation level, maturation state or cellular subgroups in peripheral blood. Tumour progression in CLL B cells seems to result in gradual accumulation of the clone of resting B lymphocytes in the early phases (G0/G1) of the cell cycle. The G1 phase is impaired in B-CLL. We investigated the gene expression of five key cell cycle regulators: TP 53, c-Myc, cyclin D2, p21WAF1/CIP1 and p27KIP1, which primarily regulate the G1 phase of the cell cycle, or S-phase entry and ultimately control the proliferation and cell growth as well as their role in B-CLL progression. The study was conducted in peripheral blood CLL lymphocytes of 40 previously untreated patients. Statistical analysis of correlations of TP53, cyclin D2, c-Myc, p21WAF1/CIP1 and p27KIP1 expressions in B-CLL patients with different Rai stages demonstrated that the progression of disease was accompanied by increases in p53, cyclin D2 and c-Myc mRNA expression. The expression of p27KIP1 was nearly statistically significant whereas that of p21 WAF1/CIP1 showed no such correlation. Moreover, high expression levels of TP53 and c-Myc genes were found to be closely associated with more aggressive forms of the disease requiring earlier therapy.

  12. Association of p21 Ser31Arg and p53 Arg72Pro polymorphisms with lung cancer risk in CAPUA study

    PubMed Central

    Souto-García, Ana; Fernández-Somoano, Ana; Pascual, Teresa; Álvarez-Avellón, Sara M; Tardón, Adonina

    2012-01-01

    Background The aim of this study was to investigate how Ser31Arg polymorphisms in p21 may modify lung cancer susceptibility. Because p21 is the major downstream mediator of p53, we analyzed the combined effect of two polymorphisms, p21 Ser31Arg and TP53 Arg72Pro, to elucidate whether polymorphic variants determine the risk of lung cancer. Methods This was designed as a hospital-based case-control study, and included 675 cases and 675 control subjects matched by ethnicity, gender, and age. Genotypes were determined by polymerase chain reaction restriction fragment length polymorphism, and multivariate unconditional logistic regression was performed to analyze the results. Results Subjects who carried the p21 Ser31Arg allele had a higher risk of lung cancer (adjusted odds ratio [OR] 1.38; 95% confidence interval [CI] 0.99–2.03). This risk was increased in men aged younger than 55 years (adjusted OR 2.35; 95% CI 1.00–5.51). Smokers had an increased risk of lung cancer (adjusted OR 2.23; 95% CI 1.24–4.02). Men younger than 55 years carrying risk alleles for both genes (p21 Ser31Arg and TP53 Arg72Pro) had an increased risk (adjusted OR 5.78; 95% CI 1.38–24.19), as did smokers with both risk alleles (adjusted OR 4.52; 95% CI 1.52–13.50). Conclusion The presence of both variant alleles increased the risk of developing lung cancer in men, particularly in smokers younger than 55 years. PMID:28210126

  13. A Novel Interaction between FLICE-Associated Huge Protein (FLASH) and E2A Regulates Cell Proliferation and Cellular Senescence via Tumor Necrosis Factor (TNF)-Alpha-p21WAF1/CIP1 Axis

    PubMed Central

    Hirano, Takahiro; Murakami, Taichi; Ono, Hiroyuki; Sakurai, Akiko; Tominaga, Tatsuya; Takahashi, Toshikazu; Nagai, Kojiro; Doi, Toshio; Abe, Hideharu

    2015-01-01

    Dysregulation of the cell proliferation has been implicated in the pathophysiology of a number of diseases. Cellular senescence limits proliferation of cancer cells, preventing tumorigenesis and restricting tissue damage. However, the role of cellular senescence in proliferative nephritis has not been determined. The proliferative peak in experimental rat nephritis coincided with a peak in E2A expression in the glomeruli. Meanwhile, E12 (an E2A-encoded transcription factor) did not promote proliferation of Mesangial cells (MCs) by itself. We identified caspase-8-binding protein FLICE-associated huge protein (FLASH) as a novel E2A-binding partner by using a yeast two-hybrid screening. Knockdown of FLASH suppressed proliferation of MCs. This inhibitory effect was partially reversed by the knockdown of E2A. In addition, the knockdown of FLASH induced cyclin-dependent kinase inhibitor p21WAF1/CIP1 (p21) expression, but did not affect p53 expression. Furthermore, overexpression of E12 and E47 induced p21, but not p53 in MCs, in the absence of FLASH. We also demonstrated that E2A and p21 expression at the peak of proliferation was followed by significant induction of FLASH in mesangial areas in rat proliferative glomerulonephritis. Moreover, we revealed that FLASH negatively regulates cellular senescence via the interaction with E12. We also demonstrated that FLASH is involved in the TNF-α-induced p21 expressions. These results suggest that the functional interaction of E2A and FLASH play an important role in cell proliferation and cellular senescence via regulation of p21 expression in experimental glomerulonephritis. PMID:26208142

  14. A Novel Interaction between FLICE-Associated Huge Protein (FLASH) and E2A Regulates Cell Proliferation and Cellular Senescence via Tumor Necrosis Factor (TNF)-Alpha-p21WAF1/CIP1 Axis.

    PubMed

    Hirano, Takahiro; Murakami, Taichi; Ono, Hiroyuki; Sakurai, Akiko; Tominaga, Tatsuya; Takahashi, Toshikazu; Nagai, Kojiro; Doi, Toshio; Abe, Hideharu

    2015-01-01

    Dysregulation of the cell proliferation has been implicated in the pathophysiology of a number of diseases. Cellular senescence limits proliferation of cancer cells, preventing tumorigenesis and restricting tissue damage. However, the role of cellular senescence in proliferative nephritis has not been determined. The proliferative peak in experimental rat nephritis coincided with a peak in E2A expression in the glomeruli. Meanwhile, E12 (an E2A-encoded transcription factor) did not promote proliferation of Mesangial cells (MCs) by itself. We identified caspase-8-binding protein FLICE-associated huge protein (FLASH) as a novel E2A-binding partner by using a yeast two-hybrid screening. Knockdown of FLASH suppressed proliferation of MCs. This inhibitory effect was partially reversed by the knockdown of E2A. In addition, the knockdown of FLASH induced cyclin-dependent kinase inhibitor p21WAF1/CIP1 (p21) expression, but did not affect p53 expression. Furthermore, overexpression of E12 and E47 induced p21, but not p53 in MCs, in the absence of FLASH. We also demonstrated that E2A and p21 expression at the peak of proliferation was followed by significant induction of FLASH in mesangial areas in rat proliferative glomerulonephritis. Moreover, we revealed that FLASH negatively regulates cellular senescence via the interaction with E12. We also demonstrated that FLASH is involved in the TNF-α-induced p21 expressions. These results suggest that the functional interaction of E2A and FLASH play an important role in cell proliferation and cellular senescence via regulation of p21 expression in experimental glomerulonephritis.

  15. Single-cell analysis of p16(INK4a) and p21(WAF1) expression suggests distinct mechanisms of senescence in normal human and Li-Fraumeni Syndrome fibroblasts.

    PubMed

    Mirzayans, Razmik; Andrais, Bonnie; Scott, April; Paterson, Malcolm C; Murray, David

    2010-04-01

    Herein we used single-cell observation methods to gain insight into the roles of p16(INK4A) and p21(WAF1) (hereafter p16 and p21) in replicative senescence and ionizing radiation-induced accelerated senescence in human [normal, ataxia telangiectasia (AT) and Li-Fraumeni syndrome (LFS)] fibroblast strains. Cultures of all strains entered a state of replicative senescence at late passages, as evident from inhibition of growth, acquisition of flattened and enlarged cell morphology, and positive staining for senescence-associated beta-galactosidase. In addition, proliferating early-passage cultures of these strains exhibited accelerated senescence in response to ionizing radiation. Immunofluorescence microscopy revealed the heterogeneous expression of p16 in normal and AT fibroblast strains, with the majority of the cells exhibiting undetectable levels of p16 irrespective of in vitro culture age. Importantly, replicative senescence as well as accelerated senescence triggered by ionizing radiation were accompanied by sustained nuclear accumulation of p21, but did not correlate with p16 expression in p53-proficient (normal and AT) fibroblasts. In p53-deficient (LFS) fibroblasts, on the other hand, replicative senescence and ionizing radiation-triggered accelerated senescence strongly correlated with expression of p16 but not of p21. Furthermore, senescence in LFS fibroblasts was associated with genomic instability encompassing polyploidy. Our findings are compatible with a model in which p16 serves as a backup regulator of senescence, triggering this response preferentially in the absence of wild-type p53 activity. The possibility that one of the tumor-suppressor functions of p16 may be associated with genomic instability, preventing the emergence of malignant progeny from polyploid giant cells, is also supported by these results. J. Cell. Physiol. 223: 49-56, 2010. (c) 2009 Wiley-Liss, Inc.

  16. Gatifloxacin induces S and G2-phase cell cycle arrest in pancreatic cancer cells via p21/p27/p53.

    PubMed

    Yadav, Vikas; Sultana, Sarwat; Yadav, Jyoti; Saini, Neeru

    2012-01-01

    Pancreatic cancer, despite being the most dreadful among gastrointestinal cancers, is poorly diagnosed, and further, the situation has been aggravated owing to acquired drug resistance against the single known drug therapy. While previous studies have highlighted the growth inhibitory effects of older generation fluoroquinolones, the current study aims to evaluate the growth inhibitory effects of newer generation fluoroquinolone, Gatifloxacin, on pancreatic cancer cell lines MIA PaCa-2 and Panc-1 as well as to elucidate the underlying molecular mechanisms. Herein, we report that Gatifloxacin suppresses the proliferation of MIA PaCa-2 and Panc-1 cells by causing S and G(2)-phase cell cycle arrest without induction of apoptosis. Blockade in S-phase of the cell cycle was associated with increased TGF-β1 expression and translocation of Smad3-4 complex to the nucleus with subsequent activation of p21 in MIA PaCa-2 cells, whereas TGF-β signalling attenuated Panc-1 cells showed S-phase arrest by direct activation of p27. However, Gatifloxacin mediated G(2)-phase cell cycle arrest was found to be p53 dependent in both the cell lines. Our study is of interest because fluoroquinolones have the ability to penetrate pancreatic tissue which can be very effective in combating pancreatic cancers that are usually associated with loss or downregulation of CDK inhibitors p21/p27 as well as mutational inactivation of p53. Additionally, Gatifloxacin was also found to synergize the effect of Gemcitabine, the only known drug against pancreatic cancer, as well as the broad spectrum anticancer drug cisplatin. Taken together our results suggest that Gatifloxacin possesses anticancer activities against pancreatic cancer and is a promising candidate to be repositioned from broad spectrum antibiotics to anticancer agent.

  17. Decreased PM10 Exposure Attenuates Age-Related Lung Function Decline: Genetic Variants in p53, p21, and CCND1 Modify This Effect

    PubMed Central

    Imboden, Medea; Schwartz, Joel; Schindler, Christian; Curjuric, Ivan; Berger, Wolfgang; Liu, Sally L.J.; Russi, Erich W.; Ackermann-Liebrich, Ursula; Rochat, Thierry; Probst-Hensch, Nicole M.

    2009-01-01

    Background Decreasing exposure to airborne particulates was previously associated with reduced age-related decline in lung function. However, whether the benefit from improved air quality depends on genetic background is not known. Recent evidence points to the involvement of the genes p53 and p21 and of the cell cycle control gene cyclin D1 (CCND1) in the response of bronchial cells to air pollution. Objective We determined in 4,326 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) whether four single-nucleotide polymorphisms in three genes [CCND1 (rs9344 [P242P], rs667515), p53 (rs1042522 [R72P]), and p21 (rs1801270 [S31R])] modified the previously observed attenuation of the decline in the forced expiratory flow between 25% and 75% of the forced vital capacity (FEF25–75) associated with improved air quality. Methods Subjects of the prospective population-based SAPALDIA cohort were assessed in 1991 and 2002 by spirometry, questionnaires, and biological sample collection for genotyping. We assigned spatially resolved concentrations of particulate matter with aerodynamic diameter ≤ 10 μm (PM10) to each participant’s residential history 12 months before the baseline and follow-up assessments. Results The effect of diminishing PM10 exposure on FEF25–75 decline appeared to be modified by p53 R72P, CCND1 P242P, and CCND1 rs667515. For example, a 10-μg/m3 decline in aver-age PM10 exposure over an 11-year period attenuated the average annual decline in FEF25–75 by 21.33 mL/year (95% confidence interval, 10.57–32.08) among participants homozygous for the CCND1 (P242P) GG genotype, by 13.72 mL/year (5.38–22.06) among GA genotypes, and by 6.00 mL/year (−4.54 to 16.54) among AA genotypes. Conclusions Our results suggest that cell cycle control genes may modify the degree to which improved air quality may benefit respiratory function in adults. PMID:19750108

  18. Inactivation of p16INK4a, with retention of pRB and p53/p21cip1 function, in human MRC5 fibroblasts that overcome a telomere-independent crisis during immortalization.

    PubMed

    Taylor, Lisa M; James, Alexander; Schuller, Christine E; Brce, Jesena; Lock, Richard B; Mackenzie, Karen L

    2004-10-15

    Recent investigations, including our own, have shown that specific strains of fibroblasts expressing telomerase reverse transcriptase (hTERT) have an extended lifespan, but are not immortal. We previously demonstrated that hTERT-transduced MRC5 fetal lung fibroblasts (MRC5hTERTs) bypassed senescence but eventually succumbed to a second mortality barrier (crisis). In the present study, 67 MRC5hTERT clones were established by limiting dilution of a mass culture. Whereas 39/67 clones had an extended lifespan, all 39 extended lifespan clones underwent crisis. 11 of 39 clones escaped crisis and were immortalized. There was no apparent relationship between the fate of clones at crisis and the level of telomerase activity. Telomeres were hyperextended in the majority of the clones analyzed. There was no difference in telomere length of pre-crisis compared with post-crisis and immortal clones, indicating that hyperextended telomeres were conducive for immortalization and confirming that crisis was independent of telomere length. Immortalization of MRC5hTERT cells was associated with repression of the cyclin-dependent kinase inhibitor p16INK4a and up-regulation of pRB. However, the regulation of pRB phosphorylation and the response of the p53/p21cip1/waf1 pathway were normal in immortal cells subject to genotoxic stress. Overexpression of oncogenic ras failed to de-repress p16INK4a in immortal cells. Furthermore, expression of ras enforced senescent-like growth arrest in p16INK4a-positive, but not p16INK4a-negative MRC5hTERT cells. Immortal cells expressing ras formed small, infrequent colonies in soft agarose, but were non-tumorigenic. Overall, these results implicate the inactivation of p16INK4a as a critical event for overcoming telomere-independent crisis, immortalizing MRC5 fibroblasts and overcoming ras-induced premature senescence.

  19. Inducible expression of p21WAF-1/CIP-1/SDI-1 from a promoter conversion retroviral vector.

    PubMed

    Mrochen, S; Klein, D; Nikol, S; Smith, J R; Salmons, B; Günzburg, W H

    1997-01-01

    Constitutive, high-level expression of the potentially therapeutic WAF-1/CIP-1/SDI-1 gene is incompatible with cell growth. A promoter conversion retroviral vector carrying the WAF-1/CIP-1/SDI-1 gene under the transcriptional control of the glucocorticoid inducible promoter of mouse mammary tumor virus was used to infect human bladder carcinoma or feline kidney cells. Reduced cell growth due to a greater proportion of cells being in the G0/G1 phase of the cell cycle was observed when WAF-1/CIP-1/SDI-1 expression was activated by addition of glucocorticoid hormone. This system demonstrates the potential long-term therapeutic use of WAF-1/CIP-1/SDI-1 delivered by retroviral vectors for inhibiting the growth of rapidly proliferating cells. Moreover, the conditional expression of genes such as WAF-1/CIP-1/SDI-1 from such retroviral vectors may facilitate analysis of their function.

  20. Cellular senescence regulated by SWI/SNF complex subunits through p53/p21 and p16/pRB pathway.

    PubMed

    He, Ling; Chen, Ying; Feng, Jianguo; Sun, Weichao; Li, Shun; Ou, Mengting; Tang, Liling

    2017-09-01

    SWI/SNF complex is an evolutionarily well-conserved chromatin-remodeling complex, which is implicated in the nucleosomes removing or sliding, impacting on the DNA repair, replication and genes expression regulation. The SWI/SNF complex consists up to 12 protein subunits. The catalytic subunits are BRG1 or BRM, which are exclusive ATPase subunits. BRG1 has been reported to play an important role in cellular senescence. However, The function of non-catalytic subunits involved in cellular senescence is rarely investigated. Therefore, we focused on the senescence regulation roles of SWI/SNF non-catalytic subunits in cellular senescent model induced by H2O2. H2O2 treatment was used to induce cellular senescence models in vitro. Screening the candidate subunits involved in this process by comparing the expression levels of SWI/SNF subunits with/without H2O2 treatment. Over-expression and knockdown the candidate subunits were utilized to investigate the functions and mechanism of the subunits involved in senescence regulation. The expressions of BAF57, BAF60a and SNF5 were changed significantly after H2O2 treatment. Overexpression of the three subunits separately induced cell growth arrest in both HaCaT and GLL19 cells, while knockdown of the subunits separately eased the senescence induced by H2O2 treatment. Results further showed that BAF57, BAF60a and SNF5 regulated cellular senescence via both p53/p21 and p16/pRB pathways, and the three subunits all had a directly interaction with p53. These results indicated that BAF57, BAF60a and SNF5 might act as novel pro-senescence factors in both normal and tumor human skin cells. Therefore, inhibiting expression of the three factors might delay the cellular senescence process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. ZNF313 is a novel cell cycle activator with an E3 ligase activity inhibiting cellular senescence by destabilizing p21(WAF1.).

    PubMed

    Han, J; Kim, Y-L; Lee, K-W; Her, N-G; Ha, T-K; Yoon, S; Jeong, S-I; Lee, J-H; Kang, M-J; Lee, M-G; Ryu, B-K; Baik, J-H; Chi, S-G

    2013-08-01

    ZNF313 encoding a zinc-binding protein is located at chromosome 20q13.13, which exhibits a frequent genomic amplification in multiple human cancers. However, the biological function of ZNF313 remains largely undefined. Here we report that ZNF313 is an ubiquitin E3 ligase that has a critical role in the regulation of cell cycle progression, differentiation and senescence. In this study, ZNF313 is initially identified as a XIAP-associated factor 1 (XAF1)-interacting protein, which upregulates the stability and proapoptotic effect of XAF1. Intriguingly, we found that ZNF313 activates cell cycle progression and suppresses cellular senescence through the RING domain-mediated degradation of p21(WAF1). ZNF313 ubiquitinates p21(WAF1) and also destabilizes p27(KIP1) and p57(KIP2), three members of the CDK-interacting protein (CIP)/kinase inhibitor protein (KIP) family of cyclin-dependent kinase inhibitors, whereas it does not affect the stability of the inhibitor of CDK (INK4) family members, such as p16(INK4A) and p15(INK4B). ZNF313 expression is tightly controlled during the cell cycle and its elevation at the late G1 phase is crucial for the G1-to-S phase transition. ZNF313 is induced by mitogenic growth factors and its blockade profoundly delays cell cycle progression and accelerates p21(WAF1)-mediated senescence. Both replicative and stress-induced senescence are accompanied with ZNF313 reduction. ZNF313 is downregulated during cellular differentiation process in vitro and in vivo, while it is commonly upregulated in many types of cancer cells. ZNF313 shows both the nuclear and cytoplasmic localization in epithelial cells of normal tissues, but exhibits an intense cytoplasmic distribution in carcinoma cells of tumor tissues. Collectively, ZNF313 is a novel E3 ligase for p21(WAF1), whose alteration might be implicated in the pathogenesis of several human diseases, including cancers.

  2. Involvement of p21Waf1/Cip1 cleavage during roscovitine-induced apoptosis in non-small cell lung cancer cells.

    PubMed

    Zhang, Tao; Jiang, Tao; Zhang, Feng; Li, Chen; Zhou, Yong-An; Zhu, Yi-Fang; Li, Xiao-Fei

    2010-01-01

    Roscovitine, a cyclin-dependent kinases (CDKs) inhibitor, has been reported to have anti-tumor effects in some cancer cell lines by inducing apoptosis. However, the exact underlying mechanisms are not fully understood. Here, we report that roscovitine induces expression and cleavage of the universal CDK inhibitor p21Waf1/Cip1 in non-small cell lung cancer (NSCLC) A549 cells in a dose-dependent manner. Western blots of roscovitine-treated cells undergoing apoptosis consistently demonstrated a 15 kDa band that was not detected in control cultures. CDK2 activity and PCNA expression were repressed with increasing dose of roscovitine. Accompanying these molecular changes was a progressive arrest of G2 phase and decreasing of 5-bromo-2-deoxyuridine (Brdu) incorporation of S phase cells. Caspase-3 inhibitor z-DEVD-fmk almost completely abolished roscovitine-induced apoptosis, as well as the appearance of 15 kDa band, indicating that p21Waf1/Cip1 cleavage was mediated by caspase-3 activity. Furthermore, this band was predominant in the floating apoptotic cells, while weakened in the adherent cells which were vital and pre-apoptotic. We also showed that roscovitine induced an enhanced expression of gamma-H2AX, which was blocked by caspase-3 inhibition, suggesting that p21Waf1/Cip1 cleavage may interfere with DNA repair, leading to increased frequency of double strand breaks (DSBs) and enhanced apoptosis. Here we show, for the first time, that p21Waf1/Cip1 cleavage, which is mediated by caspase-3 activity, is involved in roscovitine-induced apoptosis.

  3. hERG1/Kv11.1 activation stimulates transcription of p21waf/cip in breast cancer cells via a calcineurin-dependent mechanism

    PubMed Central

    Perez-Neut, Mathew; Rao, Vidhya R.; Gentile, Saverio

    2016-01-01

    The function of Kv11.1 is emerging in breast cancer biology, as a growing body of evidence indicates that the hERG1/Kv11.1 potassium channel is aberrantly expressed in several cancer types including breast cancers. The biological effects of Kv11.1 channel blockers and their associated side effects are very well known but the potential use of Kv11.1 activators as an anticancer strategy are still unexplored. In our previous work, we have established that stimulation of the Kv11.1 potassium channel activates a senescent-like program that is characterized by a significant increase in tumor suppressor protein levels, such as p21waf/cip and p16INK4A. In this study we investigated the mechanism linking Kv11.1 stimulation to augmentation of p21waf/cip protein level. We have demonstrated that the Kv11.1 channel activator NS1643 activates a calcineurin-dependent transcription of p21waf/cip and that this event is fundamental for the inhibitory effect of NS1643 on cell proliferation. Our results reveal a novel mechanism by which stimulation of Kv11.1 channel leads to transcription of a potent tumor suppressor and suggest a potential therapeutic use for Kv11.1 channel activators. PMID:25945833

  4. High-Dose Estrogen and Clinical Selective Estrogen Receptor Modulators Induce Growth Arrest, p21, and p53 in Primate Ovarian Surface Epithelial Cells

    SciTech Connect

    Wright, Jay W.; Stouffer, Richard L.; Rodland, Karin D.

    2005-06-09

    Ovarian cancer is the most lethal gynecological cancer affecting women. Hormone-based therapies are variably successful in treating ovarian cancer, but the reasoning behind these therapies is paradoxical. Clinical reagents such as tamoxifen are considered to inhibit or reverse tumor growth by competitive inhibition of the estrogen receptor (ER); however high dose estrogen is as clinically effective as tamoxifen, and it is unlikely that estrogen is acting by blocking ER activity; however, it may be activating a unique function of the ER that is nonmitogenic. For poorly defined reasons, 90% of varian cancers derive from the ovarian surface epithelium (OSE). In vivo the ER-positive OSE is exposed to high estrogen levels, reaching micromolar concentrations in dominant ovarian follicles. Using cultured OSE cells in vitro, we show that these levels of estradiol (1 ug/ml; {approx}3um) block the actions of serum growth factors, activate the G1 phase retinoblastoma AQ:A checkpoint, and induce p21, an inhibitor of kinases that normally inactivate the retinoblastoma checkpoint. We also show that estradiol increases p53 levels, which may contribute to p21 induction. Supporting the hypothesis that clinical selective ER modulators activate this novel ER function, we find that micromolar doses of tamoxifen and the ''pure antiestrogen'' ICI 182,780 elicit the same effects as estradiol. We propose that, in the context of proliferation, these data clarify some paradoxical aspects of hormone-based therapy and suggest that fuller understanding of normal ER function is necessary to improve therapeutic strategies that target the ER. (J Clin Endocrinol Metab 90: 0000-0000, 2005)

  5. Notch1/3 and p53/p21 are a potential therapeutic target for APS-induced apoptosis in non-small cell lung carcinoma cell lines.

    PubMed

    Zhang, Jing-Xi; Han, Yi-Ping; Bai, Chong; Li, Qiang

    2015-01-01

    Previous studies have shown that Astragalus polysaccharide (APS) can be applied to anti-cancer. However, the mechanism by which APS mediate this effect is unclear. In the present study, APS-mediated NSCLC cell apoptosis was investigated through the regulation of the notch signaling pathway. The cell viability was detected by the CCK8 assay. The mRNA and protein expression of notch1/3 and tumor suppressors were analyzed by RT-PCR and western blotting, respectively. The mRNA and protein of notch1 and notch3 were significantly up-regulated in tumor tissues as compared to non-tumor adjacent tissues. Treatment of human NSCLC cells with APS induced cell death in a dose-and time-dependent manner by using CCK8 assay. The mRNA and protein expression of notch1 and notch3 were significantly lower in NSCLC cells with APS treatment than that in control group. Moreover, western blotting analysis showed that treatment of H460 cells with APS significantly increased the pro-apoptotic Bax and caspase 8 levels, decreased the anti-apoptotic Bcl-2 level. Furthermore, p53, p21 and p16 were obviously up-regulated by APS treatment in H460 cell. This study demonstrated that APS-treated could inhibit proliferation and promote cell apoptosis, at least partially, through suppressing the expression of notch1 and notch3 and up-regulating the expression of tumor suppressors in H460 NSCLC cell lines.

  6. A novel tumor-promoting role for nuclear factor IA in glioblastomas is mediated through negative regulation of p53, p21, and PAI1

    PubMed Central

    Lee, Jun Sung; Xiao, Jiping; Patel, Parita; Schade, Jake; Wang, Jinhua; Deneen, Benjamin; Erdreich-Epstein, Anat; Song, Hae-Ri

    2014-01-01

    Background Nuclear factor IA (NFIA), a transcription factor and essential regulator in embryonic glial development, is highly expressed in human glioblastoma (GBM) compared with normal brain, but its contribution to GBM and cancer pathogenesis is unknown. Here we demonstrate a novel role for NFIA in promoting growth and migration of GBM and establish the molecular mechanisms mediating these functions. Methods To determine the role of NFIA in glioma, we examined the effects of NFIA in growth, proliferation, apoptosis, and migration. We used gain-of-function (overexpression) and loss-of-function (shRNA knockdown) of NFIA in primary patient-derived GBM cells and established glioma cell lines in culture and in intracranial xenografts in mouse brains. Results Knockdown of native NFIA blocked tumor growth and induced cell death and apoptosis. Complementing this, NFIA overexpression accelerated growth, proliferation, and migration of GBM in cell culture and in mouse brains. These NFIA tumor-promoting effects were mediated via transcriptional repression of p53, p21, and plasminogen activator inhibitor 1 (PAI1) through specific NFIA-recognition sequences in their promoters. Importantly, the effects of NFIA on proliferation and apoptosis were independent of TP53 mutation status, a finding especially relevant for GBM, in which TP53 is frequently mutated. Conclusion NFIA is a modulator of GBM growth and migration, and functions by distinct regulation of critical oncogenic pathways that govern the malignant behavior of GBM. PMID:24305710

  7. Diallyl disulfide induces G2/M arrest and promotes apoptosis through the p53/p21 and MEK-ERK pathways in human esophageal squamous cell carcinoma.

    PubMed

    Yin, Xiaoran; Zhang, Rong; Feng, Cheng; Zhang, Jun; Liu, Dong; Xu, Kun; Wang, Xijing; Zhang, Shuqun; Li, Zongfang; Liu, Xinlian; Ma, Hongbing

    2014-10-01

    Esophageal squamous cell carcinoma (ESCC) is an aggressive tumor with high incidence and mortality worldwide. Diallyl disulfide (DADS) is a natural organosulfur compound, isolated from garlic. In this study, MTT assay showed that DADS significantly reduced cell viability in a dose- and time-dependent manner in ESCC cells, with lower toxicity in normal liver cells. Cell cycle analysis revealed that DADS made G2/M phase arrest. Molecular analysis suggested that this cell cycle arrest was likely made by the decrease of cyclin B1, cdc2, p-cdc2, cdc25c in concomitance with activation of the p53/p21 pathway. Apoptosis was detected by Annexin V/PI staining. The molecule markers showed that DADS induced apoptosis through activating caspases, altering the Bax/Bcl-2 balance and suppressing the MEK-ERK pathway. Our data indicated that DADS has the potential to be an effective and safe anticancer agent for ESCC therapy in the near future.

  8. Interference with p53 protein inhibits hematopoietic and muscle differentiation

    PubMed Central

    1996-01-01

    The involvement of p53 protein in cell differentiation has been recently suggested by some observations made with tumor cells and the correlation found between differentiation and increased levels of p53. However, the effect of p53 on differentiation is in apparent contrast with the normal development of p53-null mice. To test directly whether p53 has a function in cell differentiation, we interfered with the endogenous wt-p53 protein of nontransformed cells of two different murine histotypes: 32D myeloid progenitors, and C2C12 myoblasts. A drastic inhibition of terminal differentiation into granulocytes or myotubes, respectively, was observed upon expression of dominant- negative p53 proteins. This inhibition did not alter the cell cycle withdrawal typical of terminal differentiation, nor p21(WAF1/CIP1) upregulation, indicating that interference with endogenous p53 directly affects cell differentiation, independently of the p53 activity on the cell cycle. We also found that the endogenous wt-p53 protein of C2C12 cells becomes transcriptionally active during myogenesis, and this activity is inhibited by p53 dominant-negative expression. Moreover, we found that p53 DNA-binding and transcriptional activities are both required to induce differentiation in p53-negative K562 cells. Taken together, these data strongly indicate that p53 is a regulator of cell differentiation and it exerts this role, at least in part, through its transcriptional activity. PMID:8698814

  9. P21waf-1/cip-1/sdi-1 is expressed at G1 phase in primary culture of hepatocytes from old rats, presumably preventing the cells from entering the S phase of the cell cycle.

    PubMed

    Sawada, N; Kojima, T; Obata, H; Saitoh, M; Isomura, H; Kokai, Y; Satoh, M; Mori, M

    1996-11-21

    To elucidate whether p21waf-1/cip-1/sdi-1 expression is associated with loss of growth potential of hepatocytes of old rats, we determined p21waf-1/cip-1/sdi-1 expression of hepatocytes from old (30 months) rats during the cell cycle in primary culture. A high level of expression of p21waf-1/cip-1/sdi-1 was detected at the G1 phase in old-rat hepatocytes, but after the S phase in young-rat hepatocytes. Consistently, the incidence of the cells positive for p21waf-1/cip-1/sdi-1 in nuclei before entering the S phase was significantly higher in old-rat hepatocytes than in young-rat hepatocytes. These results account for the loss of growth potential of old-rat hepatocytes in vitro and the marked retardation of regeneration of liver in old rats in vivo.

  10. ERK mediates anti-apoptotic effect through phosphorylation and cytoplasmic localization of p21Waf1/Cip1/Sdi in response to DNA damage in normal human embryonic fibroblast (HEF) cells.

    PubMed

    Heo, Jee-In; Oh, Soo-Jin; Kho, Yoon-Jung; Kim, Jeong-Hyeon; Kang, Hong-Joon; Park, Seong-Hoon; Kim, Hyun-Seok; Shin, Jong-Yeon; Kim, Min-Ju; Kim, Sung Chan; Park, Jae-Bong; Kim, Jaebong; Lee, Jae-Yong

    2011-04-01

    Since anti-apoptotic effect of ERK has not been elucidated clearly in DNA-damage-induced cell death, the role of ERK was examined in normal HEF cells treated with mild DNA damage using etoposide or camptothecin. ERK was activated by DNA damage in HEF cells. PD98059 increased apoptosis and reduced DNA-damage-induced p21Waf1/Cip1/Sdi level. Depletion of p21Waf1/Cip1/Sdi induced cell death and PD98059 induced additional cell death. DNA-damage-induced increase in cytoplasmic localization and phosphorylation of threonine residues of p21Waf1/Cip1/Sdi was reversed by PD98059. Thus, the results suggest that ERK pathway mediates anti-apoptotic effects through phosphorylation and cytoplasmic localization of p21Waf1/Cip1/Sdi in response to mild DNA damage.

  11. Immunohistochemistry with apoptotic-antiapoptotic proteins (p53, p21, bax, bcl-2), c-kit, telomerase, and metallothionein as a diagnostic aid in benign, borderline, and malignant serous and mucinous ovarian tumors

    PubMed Central

    2012-01-01

    Background In many tumors including ovarian cancer, cell proliferation and apoptosis are important in pathogenesis and there are many alterations in most of the genes related to the cell cycle. This study was designed to evaluate immunohistochemistry with apoptotic-antiapoptotic proteins (p53, p21, bax, and bcl-2), c-kit, telomerase, and metallothionein as a diagnostic aid in typing of benign, borderline, and malignant serous and mucinous ovarian tumors. Methods Total of 68 ovarian tumors, 25 benign [13 (19.1%) serous and12 (17.6%) mucinous], 16 borderline [9 (13.2%) serous and 7(10.3%) mucinous], and 27 malignant ovarian tumors [24 (35.3%) serous and 3 (4.4%) mucinous tumors] were included in the study. Immunohistochemical expression of p53, p21, bax, bcl–2, telomerase, c-kit, and metallothionein were evaluated. Results When all 68 cases were evaluated as benign, borderline, and malignant ovarian tumors without considering histopathological subtypes, the p53, p21, bax and metallothionein showed significantly higher staining scores in the borderline and malignant ones (p < 0.05). After evaluation of all 68 cases, the serous tumors showed significantly higher staining scores of p53, p21, c-kit, and metallothionein compared to the mucinous ones (p < 0.05). For differentiation of benign and borderline and malignant tumors combined, p53 was not used because all benign tumors has no staining, and p21, bax, and metallothionein was determined the significant predictors for borderline and malignant tumors combined (p < 0.05). For differentiation of borderline and malignant tumors, only p53 was determined the significant predictor for malignant tumors (p < 0.05). Conclusions In conclusion, p53, p21, bax, c-kit, and metallothionein may be helpful for the typing of ovarian tumors as benign, borderline and malignant or serous and mucinous. p53, p21, bax, c-kit, and metallothionein may have different roles in the pathogenesis of ovarian tumor types. p53 and

  12. Loss of heterozygosity and mutation analysis of the p16 (9p21) and p53 (17p13) genes in squamous cell carcinoma of the head and neck.

    PubMed

    González, M V; Pello, M F; López-Larrea, C; Suárez, C; Menéndez, M J; Coto, E

    1995-09-01

    We analyzed allelic loss at the p53 gene (17p13) and at chromosome region 9p21 in 35 primary head and neck squamous cell carcinomas. Loss of heterozygosity (LOH) at p53 and 9p21 was found in 50 and 75% of informative cases, respectively. LOH at the p53 gene did not increase significantly with tumor stage, but was more frequent in moderately and poorly differentiated tumors than in well-differentiated tumors. LOH plus mutation or homozygous deletion of p53 was limited to advanced stage and poorly differentiated tumors. Allelic loss at 9p21 is frequent in early stage head and neck squamous cell carcinoma and is not significantly associated with LOH at p53. The second exon of the p16/MTS1/CDKN2 gene was found to be homozygously deleted in 1 of 19 cases showing LOH at 9p21, but direct sequencing did not show mutations in the remaining 18 cases. This suggests that p16 plays a limited role in the development of head and neck squamous cell carcinoma.

  13. Sulindac and Celecoxib regulate cell cycle progression by p53/p21 up regulation to induce apoptosis during initial stages of experimental colorectal cancer.

    PubMed

    Vaish, Vivek; Rana, Chandan; Piplani, Honit; Vaiphei, Kim; Sanyal, Sankar Nath

    2014-03-01

    In the present study we have elaborated the putative mechanisms could be followed by the non-steroidal anti-inflammatory drugs (NSAIDs) viz. Sulindac and Celecoxib in the regulation of cell cycle checkpoints along with tumor suppressor proteins to achieve their chemopreventive effects in the initial stages of experimental colorectal cancer. Male Sprague-Dawley rats were administered with 1,2-dimethylhydrazine dihydrochloride (DMH) to produce early stages of colorectal carcinogenesis. The mRNA expression profiles of various target genes were analyzed by RT-PCR and validated by quantitative real-time PCR, whereas protein expression was analyzed by Western blotting. Nuclear localization of transcription factors or other nuclear proteins was analyzed by electrophoretic mobility shift assay and immunofluorescence. Flowcytometry was performed to analyze the differential apoptotic events and cell cycle regulation. Molecular docking studies with different target proteins were also performed to deduce the various putative mechanisms of action followed by Sulindac and Celecoxib. We observed that DMH administration has abruptly increased the proliferation of colonic cells which is macroscopically visible in the form of multiple plaque lesions and co-relates with the disturbed molecular mechanisms of cell cycle regulation. However, co-administration of NSAIDs has shown regulatory effects on cell cycle checkpoints via induction of various tumor suppressor proteins. We may conclude that Sulindac and Celecoxib could possibly follow p53/p21 mediated regulation of cell proliferation, where down regulation of NF-κB signaling and activation of PPARγ might serve as important additional events in vivo.

  14. The proto-oncoprotein FBI-1 interacts with MBD3 to recruit the Mi-2/NuRD-HDAC complex and BCoR and to silence p21WAF/CDKN1A by DNA methylation.

    PubMed

    Choi, Won-Il; Jeon, Bu-Nam; Yoon, Jae-Hyeon; Koh, Dong-In; Kim, Myung-Hwa; Yu, Mi-Young; Lee, Kyung-Mi; Kim, Youngsoo; Kim, Kyunggon; Hur, Sujin Susanne; Lee, Choong-Eun; Kim, Kyung-Sup; Hur, Man-Wook

    2013-07-01

    The tumour-suppressor gene CDKN1A (encoding p21Waf/Cip1) is thought to be epigenetically repressed in cancer cells. FBI-1 (ZBTB7A) is a proto-oncogenic transcription factor repressing the alternative reading frame and p21WAF/CDKN1A genes of the p53 pathway. FBI-1 interacts directly with MBD3 (methyl-CpG-binding domain protein 3) in the nucleus. We demonstrated that FBI-1 binds both non-methylated and methylated DNA and that MBD3 is recruited to the CDKN1A promoter through its interaction with FBI-1, where it enhances transcriptional repression by FBI-1. FBI-1 also interacts with the co-repressors nuclear receptor corepressor (NCoR), silencing mediator for retinoid and thyroid receptors (SMRT) and BCL-6 corepressor (BCoR) to repress transcription. MBD3 regulates a molecular interaction between the co-repressor and FBI-1. MBD3 decreases the interaction between FBI-1 and NCoR/SMRT but increases the interaction between FBI-1 and BCoR. Because MBD3 is a subunit of the Mi-2 autoantigen (Mi-2)/nucleosome remodelling and histone deacetylase (NuRD)-HDAC complex, FBI-1 recruits the Mi-2/NuRD-HDAC complex via MBD3. BCoR interacts with the Mi-2/NuRD-HDAC complex, DNMTs and HP1. MBD3 and BCoR play a significant role in the recruitment of the Mi-2/NuRD-HDAC complex- and the NuRD complex-associated proteins, DNMTs and HP. By recruiting DNMTs and HP1, Mi-2/NuRD-HDAC complex appears to play key roles in epigenetic repression of CDKN1A by DNA methylation.

  15. Activation of p21(CIP1/WAF1) in mammary epithelium accelerates mammary tumorigenesis and promotes lung metastasis.

    PubMed

    Cheng, Xiaoyun; Xia, Weiya; Yang, Jer-Yen; Hsu, Jennifer L; Chou, Chao-Kai; Sun, Hui-Lung; Wyszomierski, Shannon L; Mills, Gordon B; Muller, William J; Yu, Dihua; Hung, Mien-Chie

    2010-12-03

    While p21 is well known to inhibit cyclin-CDK activity in the nucleus and it has also been demonstrated to have oncogenic properties in different types of human cancers. In vitro studies showed that the oncogenic function of p21is closely related to its cytoplasmic localization. However, it is unclear whether cytoplasmic p21 contributes to tumorigenesis in vivo. To address this question, we generated transgenic mice expressing the Akt-phosphorylated form of p21 (p21T145D) in the mammary epithelium. The results showed that Akt-activated p21 was expressed in the cytoplasm of mammary epithelium. Overexpression of Akt-activated p21 accelerated tumor onset and promoted lung metastasis in MMTV/neu mice, providing evidence that p21, especially cytoplasmic phosphorylated p21, has an oncogenic role in promoting mammary tumorigenesis and metastasis.

  16. Avian Reovirus Protein p17 Functions as a Nucleoporin Tpr Suppressor Leading to Activation of p53, p21 and PTEN and Inactivation of PI3K/AKT/mTOR and ERK Signaling Pathways

    PubMed Central

    Huang, Wei-Ru; Chiu, Hung-Chuan; Liao, Tsai-Ling; Chuang, Kuo-Pin; Shih, Wing-Ling; Liu, Hung-Jen

    2015-01-01

    Avian reovirus (ARV) protein p17 has been shown to regulate cell cycle and autophagy by activation of p53/PTEN pathway; nevertheless, it is still unclear how p53 and PTEN are activated by p17. Here, we report for the first time that p17 functions as a nucleoporin Tpr suppressor that leads to p53 nuclear accumulation and consequently activates p53, p21, and PTEN. The nuclear localization signal (119IAAKRGRQLD128) of p17 has been identified for Tpr binding. This study has shown that Tpr suppression occurs by p17 interacting with Tpr and by reducing the transcription level of Tpr, which together inhibit Tpr function. In addition to upregulation of PTEN by activation of p53 pathway, this study also suggests that ARV protein p17 acts as a positive regulator of PTEN. ARV p17 stabilizes PTEN by stimulating phosphorylation of cytoplasmic PTEN and by elevating Rak-PTEN association to prevent it from E3 ligase NEDD4-1 targeting. To activate PTEN, p17 is able to promote β-arrestin-mediated PTEN translocation from the cytoplasm to the plasma membrane via a Rock-1-dependent manner. The accumulation of p53 in the nucleus induces the PTEN- and p21-mediated downregulation of cyclin D1 and CDK4. Furthermore, Tpr and CDK4 knockdown increased virus production in contrast to depletion of p53, PTEN, and LC3 reducing virus yield. Taken together, our data suggest that p17-mediated Tpr suppression positively regulates p53, PTEN, and p21 and negatively regulates PI3K/AKT/mTOR and ERK signaling pathways, both of which are beneficial for virus replication. PMID:26244501

  17. The Forkhead Transcription Factor FOXP2 Is Required for Regulation of p21WAF1/CIP1 in 143B Osteosarcoma Cell Growth Arrest.

    PubMed

    Gascoyne, Duncan M; Spearman, Hayley; Lyne, Linden; Puliyadi, Rathi; Perez-Alcantara, Marta; Coulton, Les; Fisher, Simon E; Croucher, Peter I; Banham, Alison H

    2015-01-01

    Mutations of the forkhead transcription factor FOXP2 gene have been implicated in inherited speech-and-language disorders, and specific Foxp2 expression patterns in neuronal populations and neuronal phenotypes arising from Foxp2 disruption have been described. However, molecular functions of FOXP2 are not completely understood. Here we report a requirement for FOXP2 in growth arrest of the osteosarcoma cell line 143B. We observed endogenous expression of this transcription factor both transiently in normally developing murine osteoblasts and constitutively in human SAOS-2 osteosarcoma cells blocked in early osteoblast development. Critically, we demonstrate that in 143B osteosarcoma cells with minimal endogenous expression, FOXP2 induced by growth arrest is required for up-regulation of p21WAF1/CIP1. Upon growth factor withdrawal, FOXP2 induction occurs rapidly and precedes p21WAF1/CIP1 activation. Additionally, FOXP2 expression could be induced by MAPK pathway inhibition in growth-arrested 143B cells, but not in traditional cell line models of osteoblast differentiation (MG-63, C2C12, MC3T3-E1). Our data are consistent with a model in which transient upregulation of Foxp2 in pre-osteoblast mesenchymal cells regulates a p21-dependent growth arrest checkpoint, which may have implications for normal mesenchymal and osteosarcoma biology.

  18. Pim-1 kinase-dependent phosphorylation of p21Cip1/WAF1 regulates its stability and cellular localization in H1299 cells.

    PubMed

    Zhang, Yandong; Wang, Zeping; Magnuson, Nancy S

    2007-09-01

    Previous studies from our laboratory showed that p21Cip1/WAF1 can be phosphorylated by Pim-1 kinase in vitro, implying that part of the function of Pim-1 might involve influencing the cell cycle. In the present study, site-directed mutagenesis and phosphorylated-specific antibodies were used as tools to identify the sites phosphorylated by Pim-1 and the consequences of this phosphorylation. What we found was that Pim-1 can efficiently phosphorylate p21 on Thr145 in vitro using recombinant protein and in vivo in intact cells. Unexpectedly, we found that Ser146 is a second site that is phosphorylated in vivo, but this phosphorylation event seems to be an indirect result of Pim-1 expression. More importantly, the consequences of phosphorylation of either Thr145 or Ser146 are distinct. When p21 is phosphorylated on Thr145, it localizes to the nucleus and results in the disruption of the association between proliferating cell nuclear antigen and p21. Furthermore, phosphorylation of Thr145 promotes stabilization of p21. On the other hand, when p21 is phosphorylated on Ser146, it localizes primarily in the cytoplasm and the effect of phosphorylation on stability is minimal. Cotransfection of wild-type Pim-1 with p21 increases the rate of proliferation compared with cotransfection of p21 with kinase-dead Pim-1. Knocking down Pim-1 expression greatly decreases the rate of proliferation of H1299 cells and their ability to grow in soft agar. These data suggest that Pim-1 overexpression may contribute to tumorigenesis in part by influencing the cellular localization and stability of p21 and by promoting cell proliferation.

  19. The Role of p16, p21, p27, p53 and Ki-67 Expression in the Differential Diagnosis of Cutaneous Squamous Cell Carcinomas and Keratoacanthomas: An Immunohistochemical Study

    PubMed Central

    Bedir, Recep; Güçer, Hasan; Şehitoğlu, İbrahim; Yurdakul, Cüneyt; Bağcı, Pelin; Üstüner, Pelin

    2016-01-01

    Background: Distinguishing squamous cell carcinoma (SCC) from keratoacanthoma (KA) by histopathological features may not be sufficient for a differential diagnosis, as KAs may, in some cases, imitate well-differentiated SCCs. Aims: In this study, we investigated whether the expression of the p16, p21, p27, p53 genes and a Ki-67 proliferation index are useful in distinguishing between these two tumors. Study Design: Cross-sectional study. Methods: Immunohistochemistry was used to investigate the expression of the p16, p21, p27, p53 genes and the Ki-67 proliferation index was investigated in well-differentiated SCC with KA-like features (n=40) and KA (n=30). Results: The results of all of the examined markers, except for p27 (p16, p21, p53, and Ki-67) were found to be significantly different between the SCC and KA samples (p<0.05). Conclusion: In well-differentiated SCC with KA-like features and KA cases where the differential diagnosis is difficult from a histopathological perspective, the use of p16, p21, p53 expression and a Ki-67 proliferation index can be useful for the differential diagnosis of SCCs and KAs. PMID:27403379

  20. Subcellular Targeting of p33ING1b by Phosphorylation-Dependent 14-3-3 Binding Regulates p21WAF1 Expression

    PubMed Central

    Gong, Wei; Russell, Michael; Suzuki, Keiko; Riabowol, Karl

    2006-01-01

    ING1 is a type II tumor suppressor that affects cell growth, stress signaling, apoptosis, and DNA repair by altering chromatin structure and regulating transcription. Decreased ING1 expression is seen in several human cancers, and mislocalization has been noted in diverse types of cancer cells. Aberrant targeting may, therefore, functionally inactivate ING1. Bioinformatics analysis identified a sequence between the nuclear localization sequence and plant homeodomain domains of ING1 that closely matched the binding motif of 14-3-3 proteins that target cargo proteins to specific subcellular locales. We find that the widely expressed p33ING1b splicing isoform of ING1 interacts with members of the 14-3-3 family of proteins and that this interaction is regulated by the phosphorylation status of ING1. 14-3-3 binding resulted in significant amounts of p33ING1b protein being tethered in the cytoplasm. As shown previously, ectopic expression of p33ING1b increased levels of the p21Waf1 cyclin-dependent kinase inhibitor upon UV-induced DNA damage. Overexpression of 14-3-3 inhibited the up-regulation of p21Waf1 by p33ING1b, consistent with the idea that mislocalization blocks at least one of ING1's biological activities. These data support the idea that the 14-3-3 proteins play a crucial role in regulating the activity of p33ING1b by directing its subcellular localization. PMID:16581770

  1. p21Cip-1/SDI-1/WAF-1 gene is involved in chondrogenic differentiation of ATDC5 cells in vitro.

    PubMed

    Negishi, Y; Ui, N; Nakajima, M; Kawashima, K; Maruyama, K; Takizawa, T; Endo, H

    2001-08-31

    Development of skeletal cartilage is characterized with coupling growth arrest and cell differentiation. Here, to understand the cyclin-dependent kinase inhibitors involved in the progression of chondrogenic differentiation, we examined changes in the expression levels of cyclin-dependent kinase inhibitor members using mouse ATDC5 prechondrocytes as a widely used in vitro model of cartilage differentiation. Up-regulation of p21 and p27 mRNA was observed following a decrease in growth rate of prechondrocytes, and both transcripts subsequently accumulated during chondrogenic differentiation; p15, p18, and p19 mRNA, in contrast, did not change during differentiation. Only the up-regulation of p21 mRNA during differentiation was prevented by the continuous treatment of early chondrogenic inhibitor, parathyroid hormone, indicating a close correlation between differentiation and p21 induction in ATDC5 cells. Therefore, to examine the role of p21 during chondrogenesis, we established stable cell lines overexpressing full-length p21 antisense RNA in ATDC5. The reduction of endogenous p21 in these cell lines caused inhibition of early chondrogenic differentiation in ATDC5, indicating that p21 gene plays an important role in this process of the cells in vitro. Furthermore, the level of p21 protein and p21.CDK2 complexes transiently increased during differentiation, but not in undifferentiated cells, leading to a decrease in CDK2-associated kinase. However, differentiation-dependent expressed p21 protein was degraded by a proteasome-dependent pathway. Thus, the progression of chondrogenic differentiation requires down-regulation of CDK2-associated kinase with an increase in p21 protein and subsequent degradation of this protein by a proteasomal pathway.

  2. Role of Promyelocytic Leukemia Zinc Finger (PLZF) in Cell Proliferation and Cyclin-dependent Kinase Inhibitor 1A (p21WAF/CDKN1A) Gene Repression*

    PubMed Central

    Choi, Won-Il; Kim, Min-Young; Jeon, Bu-Nam; Koh, Dong-In; Yun, Chae-Ok; Li, Yan; Lee, Choong-Eun; Oh, Jiyoung; Kim, Kunhong; Hur, Man-Wook

    2014-01-01

    Promyelocytic leukemia zinc finger (PLZF) is a transcription repressor that was initially isolated as a fusion protein with retinoic acid receptor α. PLZF is aberrantly overexpressed in various human solid tumors, such as clear cell renal carcinoma, glioblastoma, and seminoma. PLZF causes cellular transformation of NIH3T3 cells and increases cell proliferation in several cell types. PLZF also increases tumor growth in the mouse xenograft tumor model. PLZF may stimulate cell proliferation by controlling expression of the genes of the p53 pathway (ARF, TP53, and CDKN1A). We found that PLZF can directly repress transcription of CDKN1A encoding p21, a negative regulator of cell cycle progression. PLZF binds to the proximal Sp1-binding GC-box 5/6 and the distal p53-responsive elements of the CDKN1A promoter to repress transcription. Interestingly, PLZF interacts with Sp1 or p53 and competes with Sp1 or p53. PLZF interacts with corepressors, such as mSin3A, NCoR, and SMRT, thereby deacetylates Ac-H3 and Ac-H4 histones at the CDKN1A promoter, which indicated the involvement of the corepressor·HDACs complex in transcription repression by PLZF. Also, PLZF represses transcription of TP53 and also decreases p53 protein stability by ubiquitination. PLZF may act as a potential proto-oncoprotein in various cell types. PMID:24821727

  3. A p21(Waf1/Cip1)carboxyl-terminal peptide exhibited cyclin-dependent kinase-inhibitory activity and cytotoxicity when introduced into human cells.

    PubMed

    Mutoh, M; Lung, F D; Long, Y Q; Roller, P P; Sikorski, R S; O'Connor, P M

    1999-07-15

    In the present study, we report the cyclin-dependent kinase (Cdk)-inhibitory activity of a series of p21waf1/cip1 (p21) peptide fragments spanning the whole protein against the cyclin D1/Cdk4 and cyclin E/Cdk2 enzymes. The most potent p21 peptide tested in our initial peptide series, designated W10, spanned amino acids 139 to 164, a region of p21 that has been found independently to bind to proliferating cell nuclear antigen and also to inhibit Cdk activity. We go on to report the importance of putative beta-strand and 3(10)-helix motifs in the W10 peptide for cyclin-dependent kinase-inhibitory activity. We also describe the cellular activity of W10 and derivatives that were chemically linked to an antennapedia peptide, the latter segment acting as a cell membrane carrier. We found that the W10AP peptide exhibited growth inhibition that resulted from necrosis in human lymphoma CA46 cells. Furthermore, regions in the W10 peptide responsible for Cdk-inhibition were also important for the degree of this cellular activity. These studies provide insights that may eventually, through further design, yield agents for the therapy of cancer.

  4. Identification of the functional domain of p21(WAF1/CIP1) that protects cells from cisplatin cytotoxicity.

    PubMed

    Yu, Fang; Megyesi, Judit; Safirstein, Robert L; Price, Peter M

    2005-09-01

    The p21 cyclin-dependent kinase (cdk) inhibitor protects cells from cisplatin cytotoxicity in vivo and in vitro. However, the mechanism of protection is not known. Separate p21 domains are known to interact with several different proteins having proapoptotic functions. To investigate the mechanism of protection by p21, we have constructed adenoviruses encoding the different domains of p21. We were able to localize the protective activity to a region of 54 amino acids containing the cyclin-cdk interacting moiety. Other protein binding domains of p21, including the NH2-terminal procaspase-3 interactive region and the COOH-terminal region containing the proliferating cell nuclear antigen binding domain and the nuclear localization signal, had little protective effect on cisplatin cytotoxicity. The dependence of cisplatin cytotoxicity on cdk2 activity was also demonstrated because 1) cisplatin caused a marked increase in cdk2 activity, which was prevented by the p21 expression adenovirus, and 2) a cdk2 dominant-negative adenovirus also protected cells from cisplatin-induced apoptosis. Thus the data suggest that the mechanism of p21 protection is by direct inhibition of cdk2 activity and that cisplatin-induced apoptosis is caused by a cdk2-dependent pathway.

  5. BRCA1 Expression is an Important Biomarker for Chemosensitivity: Suppression of BRCA1 Increases the Apoptosis via Up-regulation of p53 and p21 During Cisplatin Treatment in Ovarian Cancer Cells

    PubMed Central

    Horiuchi, Akiko; Wang, Cuiju; Kikuchi, Norihiko; Osada, Ryosuke; Nikaido, Toshio; Konishi, Ikuo

    2006-01-01

    BRCA1 is a tumor suppressor which plays a crucial role in the repair of DNA double-strand breaks, and its abnormality is responsible for hereditary ovarian cancer syndrome. It has recently been reported that reduced expression of BRCA1 is also common in sporadic ovarian carcinoma via its promoter hypermethylation, and that ovarian carcinoma patients negative for BRCA1 expression showed favorable prognosis. To address if BRCA1 expression plays a role in the chemotherapeutic response, we analyzed the effect of BRCA1 suppression on the sensitivity to cisplatin and paclitaxel in ovarian cancer cells. Specific siRNA for BRCA1 gene was transfected into 3 ovarian cancer cell lines with various p53 status. Reduced expression of BRCA1 by transfection of BRCA1-siRNA resulted in a 5.3-fold increase in sensitivity to cisplatin in p53-wild A2780 cells, but not in p53-mutated A2780/CDDP and p53-deleted SKOV3 cells. Regarding the sensitivity to paclitaxel, BRCA1 suppression caused no significant changes in all the 3 cell lines. For ionizing radiation sensitivity, BRCA1 suppression also showed a significant higher sensitivity in A2780 cells. Growth curve and cell cycle analyses showed no significant differences between BRCA1-siRNA-transfected A2780 cells and control cells. However, cisplatin treatment under suppression of BRCA1 showed a significantly increased apoptosis along with up-regulation of p53 and p21 in A2780 cells. Accordingly, reduced expression of BRCA1 enhances the cisplatin sensitivity and apoptosis via up-regulation of p53 and p21, but does not affect the paclitaxel sensitivity. Expression of BRCA1 might be an important biomarker for cisplatin resistance in ovarian carcinoma. PMID:19690636

  6. ROCK2/ras(Ha) co-operation induces malignant conversion via p53 loss, elevated NF-κB and tenascin C-associated rigidity, but p21 inhibits ROCK2/NF-κB-mediated progression.

    PubMed

    Masre, S F; Rath, N; Olson, M F; Greenhalgh, D A

    2017-05-04

    To study ROCK2 activation in carcinogenesis, mice expressing 4-hydroxytamoxifen (4HT)-activated ROCK2 (K14.ROCK(er)) were crossed with mice expressing epidermal-activated ras(Ha) (HK1.ras(1205)). At 8 weeks, 4HT-treated K14.ROCK(er)/HK1.ras(1205) cohorts exhibited papillomas similar to HK1.ras(1205) controls; however, K14.ROCK(er)/HK1.ras(1205) histotypes comprised a mixed papilloma/well-differentiated squamous cell carcinoma (wdSCC), exhibiting p53 loss, increased proliferation and novel NF-κB expression. By 12 weeks, K14.ROCK(er)/HK1.ras(1205) wdSCCs exhibited increased NF-κB and novel tenascin C, indicative of elevated rigidity; yet despite continued ROCK2 activities/p-Mypt1 inactivation, progression to SCC required loss of compensatory p21 expression. K14.ROCK(er)/HK1.ras(1205) papillomatogenesis also required a wound promotion stimulus, confirmed by breeding K14.ROCK(er) into promotion-insensitive HK1.ras(1276) mice, suggesting a permissive K14.ROCK(er)/HK1.ras(1205) papilloma context (wound-promoted/NF-κB(+)/p53(-)/p21(+)) preceded K14.ROCK(er)-mediated (p-Mypt1/tenascin C/rigidity) malignant conversion. Malignancy depended on ROCK(er)/p-Mypt1 expression, as cessation of 4HT treatment induced disorganized tissue architecture and p21-associated differentiation in wdSCCs; yet tenascin C retention in connective tissue extracellular matrix suggests the rigidity laid down for conversion persists. Novel papilloma outgrowths appeared expressing intense, basal layer p21 that confined endogenous ROCK2/p-Mypt1/NF-κB to supra-basal layers, and was paralleled by restored basal layer p53. In later SCCs, 4HT cessation became irrelevant as endogenous ROCK2 expression increased, driving progression via p21 loss, elevated NF-κB expression and tenascin C-associated rigidity, with p-Mypt1 inactivation/actinomyosin-mediated contractility to facilitate invasion. However, p21-associated inhibition of early-stage malignant progression and the intense expression in papilloma

  7. Carfilzomib induces G2/M cell cycle arrest in human endometrial cancer cells via upregulation of p21(Waf1/Cip1) and p27(Kip1).

    PubMed

    Zhou, Yuanyuan; Wang, Ke; Zhen, Shuai; Wang, Ruili; Luo, Wenjuan

    2016-12-01

    Carfilzomib is a second-generation tetrapeptide epoxyketone proteasome inhibitor used in current clinical therapy of hematologic malignancies. The mechanism of proteasome inhibition in endometrial cancer is not very clear. Carfilzomib inhibition of type I endometrial carcinoma cell proliferation by inducing cell cycle arrest at the G2/M phase was investigated in our study. HEC-1-A and Ishikawa endometrial carcinoma cell lines and three tumor cell lines were treated by different concentrations of carfilzomib. Methyl thiazolyl tetrazolium (MTT) assay was used to detect cell viability. Flow cytometry was used to analyze the cell cycle. Western blot was used to detect proteins involved in cell cycle progression. Carfilzomib impaired viability of myelogenous leukemia cell line K562, cervical cancer cell line HeLa, hepatocellular carcinoma cell line SMCC-7721, and endometrial carcinoma cell lines HEC-1-A and Ishikawa. The cell cycle was arrested at the G2/M phase in carfilzomib-treated HEC-1-A endometrial carcinoma cells, while it was arrested at both S and G2/M phases in carfilzomib-treated Ishikawa cells. Carfilzomib treatment significantly induced p21(Waf1/ Cip1) and p27, while substantially reduced cyclin D3 and cyclin-dependent kinase 1. This study showed that carfilzomib inhibited endometrial cancer proliferation by upregulating cyclin-dependent kinase inhibitors p21(Waf1/Cip1) and p27(Kip1), and reducing cyclin-dependent kinase 1 to arrest the cell cycle at the G2/M phase. Copyright © 2016. Published by Elsevier B.V.

  8. Caffeic acid phenethyl ester induced cell cycle arrest and growth inhibition in androgen-independent prostate cancer cells via regulation of Skp2, p53, p21Cip1 and p27Kip1.

    PubMed

    Lin, Hui-Ping; Lin, Ching-Yu; Huo, Chieh; Hsiao, Ping-Hsuan; Su, Liang-Cheng; Jiang, Shih Sheng; Chan, Tzu-Min; Chang, Chung-Ho; Chen, Li-Tzong; Kung, Hsing-Jien; Wang, Horng-Dar; Chuu, Chih-Pin

    2015-03-30

    Prostate cancer (PCa) patients receiving the androgen ablation therapy ultimately develop recurrent castration-resistant prostate cancer (CRPC) within 1-3 years. Treatment with caffeic acid phenethyl ester (CAPE) suppressed cell survival and proliferation via induction of G1 or G2/M cell cycle arrest in LNCaP 104-R1, DU-145, 22Rv1, and C4-2 CRPC cells. CAPE treatment also inhibited soft agar colony formation and retarded nude mice xenograft growth of LNCaP 104-R1 cells. We identified that CAPE treatment significantly reduced protein abundance of Skp2, Cdk2, Cdk4, Cdk7, Rb, phospho-Rb S807/811, cyclin A, cyclin D1, cyclin H, E2F1, c-Myc, SGK, phospho-p70S6kinase T421/S424, phospho-mTOR Ser2481, phospho-GSK3α Ser21, but induced p21Cip1, p27Kip1, ATF4, cyclin E, p53, TRIB3, phospho-p53 (Ser6, Ser33, Ser46, Ser392), phospho-p38 MAPK Thr180/Tyr182, Chk1, Chk2, phospho-ATM S1981, phospho-ATR S428, and phospho-p90RSK Ser380. CAPE treatment decreased Skp2 and Akt1 protein expression in LNCaP 104-R1 tumors as compared to control group. Overexpression of Skp2, or siRNA knockdown of p21Cip1, p27Kip1, or p53 blocked suppressive effect of CAPE treatment. Co-treatment of CAPE with PI3K inhibitor LY294002 or Bcl-2 inhibitor ABT737 showed synergistic suppressive effects. Our finding suggested that CAPE treatment induced cell cycle arrest and growth inhibition in CRPC cells via regulation of Skp2, p53, p21Cip1, and p27Kip1.

  9. Expression of hepaCAM is downregulated in cancers and induces senescence-like growth arrest via a p53/p21-dependent pathway in human breast cancer cells.

    PubMed

    Moh, Mei Chung; Zhang, Ting; Lee, Lay Hoon; Shen, Shali

    2008-12-01

    Previously, we reported the identification of a novel immunoglobulin-like cell adhesion molecule hepaCAM that is frequently downregulated and inhibits cell growth in hepatocellular carcinoma. In this study, we show that the expression of hepaCAM is suppressed in diverse human cancers. Aiming to evaluate the biological role of hepaCAM in breast cancer, we stably transfected the MCF7 cell line with either wild-type hepaCAM or its mutant hCAM-tailless that lacked the cytoplasmic domain. We found that hepaCAM inhibited colony formation and cell proliferation and arrested cells in the G(2)/M phase. Intriguingly, hepaCAM was capable of inducing cellular senescence as defined by the enlarged cell morphology and increased beta-galactosidase activity. Furthermore, hepaCAM elevated the expression levels of senescence-associated proteins including p53, p21 and p27. In contrast, cell growth inhibition and senescence were less apparent in cells overexpressing hCAM-tailless mutant. To determine if the p53-mediated pathway was involved in hepaCAM-induced senescence, we used the small-interfering RNA system to knock down endogenous p53 expression. In the presence of hepaCAM, downregulation of p53 resulted in a clear reduction of p21, insignificant change in p27 and alleviated senescence. Together, the results suggest that the expression of hepaCAM in MCF7 cells not only inhibits cell growth but also induces cellular senescence through the p53/21 pathway.

  10. Licorice and its active compound glycyrrhizic acid ameliorates cisplatin-induced nephrotoxicity through inactivation of p53 by scavenging ROS and overexpression of p21 in human renal proximal tubular epithelial cells.

    PubMed

    Ju, S-M; Kim, M-S; Jo, Y-S; Jeon, Y-M; Bae, J-S; Pae, H-O; Jeon, B-H

    2017-02-01

    Nephrotoxicity is one of the major side effects that limit the use of cisplatin in cancer therapy. Cisplatin-induced apoptosis in renal cells is associated with reactive oxygen species (ROS)-mediated p53 activation. Licorice (Glycyrrhiza uralensis Fischer) is one of the most widely used medicinal herbs in Korea, China and Japan. The aim of the study was to evaluate the protective effects of licorice extract (LE) and its active compound glycyrrhizic acid (GA) against cisplatin-induced nephrotoxicity in human renal proximal tubular epithelial (HK-2) cells. HK-2 cells were pretreated with LE or GA for 1 h and then treated with 40 μM of cisplatin for indicated times under the serum-free condition. Cell viability was evaluated by MTT assay. Apoptosis was evaluated by flow cytometric analysis and caspase-3 activity. The intracellular ROS levels were determined by DCFH-DA assay. The expression and phosphorylation levels of protein were evaluated by Western blot and densitometry analysis. When treating HK-2 cells with LE or GA, both of them alleviated cisplatin-induced cytotoxicity and apoptosis. LE and GA inhibited caspase-3 activity and polymerase (PARP) cleavage in cisplatin-treated cells. LE and GA also inhibited p53 expression and its phosphorylation as well as ROS production in cells exposed to cisplatin. Meanwhile, LE and GA enhanced cisplatin-induced p21 expression, which then led to S-phase arrest in cell cycle and limited cell growth. Presumably, increased p21 expression may contribute to cellular prevention from cisplatin-induced apoptosis, because p21 is the key molecule to cytoprotection during cisplatin-induced nephrotoxicity. These results suggest that LE and GA ameliorate cisplatin-induced apoptosis through reduction of ROS-mediating p53 activation and promotion of p21 expression in HK-2 cells.

  11. MDM2 expression during mouse embryogenesis and the requirement of p53.

    PubMed

    Léveillard, T; Gorry, P; Niederreither, K; Wasylyk, B

    1998-06-01

    We compared mouse embryonic expression of the MDM2 proto-oncogene, p21WAF1/CIP1 and their transcriptional regulator, p53. MDM2 expression is ubiquitous from 7.5 to 11.5 days post coitum (dpc) and more restricted from 12.5 dpc, with the highest levels in the testes and neural tube. From 14.5 to 18.5 dpc, the nasal respiratory epithelium expresses high levels of MDM2 RNA and protein and p21WAF1/CIP1 RNA, in both wild type and p53 null embryos. MDM2 expression during development is tissue-specific and, like p21WAF1/CIP1, is independent of p53. MDM2 may have a developmental role after 6.5 dpc, when MDM2 null mice die (Jones, S.N., Roe, A.E., Donehower, L.A., Bradley, A., 1995. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206-208; Montes de Oca Luna, R., Wagner, D.S., Lozano, G., 1995. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203-206).

  12. p21(Cip-1/SDI-1/WAF-1) expression via the mitogen-activated protein kinase signaling pathway in insulin-induced chondrogenic differentiation of ATDC5 cells.

    PubMed

    Nakajima, Masahiro; Negishi, Yoichi; Tanaka, Hiroyasu; Kawashima, Kohtaro

    2004-08-06

    The embryonal carcinoma-derived cell line, ATDC5, differentiates into chondrocytes in response to insulin or insulin-like growth factor-I stimulation. In this study, we investigated the roles of mitogen-activated protein (MAP) kinases in insulin-induced chondrogenic differentiation of ATDC5 cells. Insulin-induced accumulation of glycosaminoglycan and expression of chondrogenic differentiation markers, type II collagen, type X collagen, and aggrecan mRNA were inhibited by the MEK1/2 inhibitor (U0126) and the p38 MAP kinase inhibitor (SB203580). Conversely, the JNK inhibitor (SP600125) enhanced the synthesis of glycosaminoglycan and expression of chondrogenic differentiation markers. Insulin-induced phosphorylation of ERK1/2 and JNK but not that of p38 MAP kinase. We have previously clarified that the induction of the cyclin-dependent kinase inhibitor, p21(Cip-1/SDI-1/WAF-1), is essential for chondrogenic differentiation of ATDC5 cells. To assess the relationship between the induction of p21 and MAP kinase activity, we investigated the effect of these inhibitors on insulin-induced p21 expression in ATDC5 cells. Insulin-induced accumulation of p21 mRNA and protein was inhibited by the addition of U0126 and SB203580. In contrast, SP600125 enhanced it. Inhibitory effects of U0126 or stimulatory effects of SP600125 on insulin-induced chondrogenic differentiation were observed when these inhibitors exist in the early phase of differentiation, suggesting that MEK/ERK and JNK act on early phase differentiation. SB202580, however, is necessary not only for early phase but also for late phase differentiation, indicating that p38 MAP kinase stimulates differentiation by acting during the entire period of cultivation. These results for the first time demonstrate that up-regulation of p21 expression by ERK1/2 and p38 MAP kinase is required for chondrogenesis, and that JNK acts as a suppressor of chondrogenesis by down-regulating p21 expression.

  13. CGK733-induced LC3 II formation is positively associated with the expression of cyclin-dependent kinase inhibitor p21Waf1/Cip1 through modulation of the AMPK and PERK/CHOP signaling pathways.

    PubMed

    Wang, Yufeng; Kuramitsu, Yasuhiro; Baron, Byron; Kitagawa, Takao; Tokuda, Kazuhiro; Akada, Junko; Nakamura, Kazuyuki

    2015-11-24

    Microtubule-associated protein 1A/1B-light chain 3 (LC3)-II is essential for autophagosome formation and is widely used to monitor autophagic activity. We show that CGK733 induces LC3 II and LC3-puncta accumulation, which are not involved in the activation of autophagy. The treatment of CGK733 did not alter the autophagic flux and was unrelated to p62 degradation. Treatment with CGK733 activated the AMP-activated protein kinase (AMPK) and protein kinase RNA-like endoplasmic reticulum kinase/CCAAT-enhancer-binding protein homologous protein (PERK/CHOP) pathways and elevated the expression of p21Waf1/Cip1. Inhibition of both AMPK and PERK/CHOP pathways by siRNA or chemical inhibitor could block CGK733-induced p21Waf1/Cip1 expression as well as caspase-3 cleavage. Knockdown of LC3 B (but not LC3 A) abolished CGK733-triggered LC3 II accumulation and consequently diminished AMPK and PERK/CHOP activity as well as p21Waf1/Cip1 expression. Our results demonstrate that CGK733-triggered LC3 II formation is an initial event upstream of the AMPK and PERK/CHOP pathways, both of which control p21Waf1/Cip1 expression.

  14. Hepatitis C Virus Core Protein Down-Regulates p21Waf1/Cip1 and Inhibits Curcumin-Induced Apoptosis through MicroRNA-345 Targeting in Human Hepatoma Cells

    PubMed Central

    Shiu, Tzu-Yue; Huang, Shih-Ming; Shih, Yu-Lueng; Chu, Heng-Cheng; Chang, Wei-Kuo; Hsieh, Tsai-Yuan

    2013-01-01

    Background Hepatitis C virus (HCV) has been reported to regulate cellular microRNAs. The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma, but HCV core-modulated cellular microRNAs are unknown. The HCV core protein regulates p21Waf1/Cip1 expression. However, the mechanism of HCV core-associated p21Waf1/Cip1 regulation remains to be further clarified. Therefore, we attempted to determine whether HCV core-modulated cellular microRNAs play an important role in regulating p21Waf1/Cip1 expression in human hepatoma cells. Methods Cellular microRNA profiling was investigated in core-overexpressing hepatoma cells using TaqMan low density array. Array data were further confirmed by TaqMan real-time qPCR for single microRNA in core-overexpressing and full-length HCV replicon-expressing cells. The target gene of microRNA was examined by reporter assay. The gene expression was determined by real-time qPCR and Western blotting. Apoptosis was examined by annexin V-FITC apoptosis assay. Cell cycle analysis was performed by propidium iodide staining. Cell proliferation was analyzed by MTT assay. Results HCV core protein up- or down-regulated some cellular microRNAs in Huh7 cells. HCV core-induced microRNA-345 suppressed p21Waf1/Cip1 gene expression through targeting its 3′ untranslated region in human hepatoma cells. Moreover, the core protein inhibited curcumin-induced apoptosis through p21Waf1/Cip1-targeting microRNA-345 in Huh7 cells. Conclusion and Significance HCV core protein enhances the expression of microRNA-345 which then down-regulates p21Waf1/Cip1 expression. It is the first time that HCV core protein has ever been shown to suppress p21Waf1/Cip1 gene expression through miR-345 targeting. PMID:23577194

  15. Wuzhi tablet (Schisandra Sphenanthera extract) protects against acetaminophen-induced hepatotoxicity by inhibition of CYP-mediated bioactivation and regulation of NRF2-ARE and p53/p21 pathways.

    PubMed

    Fan, Xiaomei; Jiang, Yiming; Wang, Ying; Tan, Huasen; Zeng, Hang; Wang, Yongtao; Chen, Pan; Qu, Aijuan; Gonzalez, Frank J; Huang, Min; Bi, Huichang

    2014-12-01

    Schisandra sphenanthera is widely used as a tonic and restorative in many countries to enhance the function of liver and other organs. Wuzhi tablet (WZ) is a preparation of an ethanol extract of Schisandra sphenanthera. Our previous study demonstrated that WZ exerted a protective effect toward acetaminophen (APAP)-induced hepatotoxicity. However, the molecular mechanisms of this protection remain unclear. This study aimed to determine what molecular pathways contributed to the hepatoprotective effects of WZ against APAP toxicity. Administration of WZ 3 days before APAP treatment significantly attenuated APAP hepatotoxicity in a dose-dependent manner and reduced APAP-induced JNK activation. Treatment with WZ resulted in potent inhibition of CYP2E1, CYP3A11, and CYP1A2 activities and then caused significant inhibition of the formation of the oxidized APAP metabolite N-acetyl-p-benzoquinone imine-reduced glutathione. The expression of NRF2 was increased after APAP and/or WZ treatment, whereas KEAP1 levels were decreased. The protein expression of NRF2 target genes including Gclc, Gclm, Ho-1, and Nqo1 was significantly increased by WZ treatment. Furthermore, APAP increased the levels of p53 and its downstream gene p21 to trigger cell cycle arrest and apoptosis, whereas WZ pretreatment could inhibit p53/p21 signaling to induce cell proliferation-associated proteins including cyclin D1, CDK4, PCNA, and ALR to promote hepatocyte proliferation. This study demonstrated that WZ prevented APAP-induced liver injury by inhibition of cytochrome P450-mediated APAP bioactivation, activation of the NRF2-antioxidant response element pathway to induce detoxification and antioxidation, and regulation of the p53, p21, cyclin D1, CDK4, PCNA, and ALR to facilitate liver regeneration after APAP-induced liver injury.

  16. Oxygen sensing by primary cardiac fibroblasts: a key role of p21(Waf1/Cip1/Sdi1).

    PubMed

    Roy, Sashwati; Khanna, Savita; Bickerstaff, Alice A; Subramanian, Sukanya V; Atalay, Mustafa; Bierl, Michael; Pendyala, Srikanth; Levy, Dana; Sharma, Nidhi; Venojarvi, Mika; Strauch, Arthur; Orosz, Charles G; Sen, Chandan K

    2003-02-21

    In mammalian organs under normoxic conditions, O2 concentration ranges from 12% to <0.5%, with O2 approximately 14% in arterial blood and <10% in the myocardium. During mild hypoxia, myocardial O2 drops to approximately 1% to 3% or lower. In response to chronic moderate hypoxia, cells adjust their normoxia set point such that reoxygenation-dependent relative elevation of PO2 results in perceived hyperoxia. We hypothesized that O2, even in marginal relative excess of the PO2 to which cardiac cells are adjusted, results in activation of specific signal transduction pathways that alter the phenotype and function of these cells. To test this hypothesis, cardiac fibroblasts (CFs) isolated from adult murine ventricle were cultured in 10% or 21% O2 (hyperoxia relative to the PO2 to which cells are adjusted in vivo) and were compared with those cultured in 3% O2 (mild hypoxia). Compared with cells cultured in 3% O2, cells that were cultured in 10% or 21% O2 demonstrated remarkable reversible G2/M arrest and a phenotype indicative of differentiation to myofibroblasts. These effects were independent of NADPH oxidase function. CFs exposed to high O2 exhibited higher levels of reactive oxygen species production. The molecular signature response to perceived hyperoxia included (1) induction of p21, cyclin D1, cyclin D2, cyclin G1, Fos-related antigen-2, and transforming growth factor-beta1, (2) lowered telomerase activity, and (3) activation of transforming growth factor-beta1 and p38 mitogen-activated protein kinase. CFs deficient in p21 were resistant to such O2 sensitivity. This study raises the vital broad-based issue of controlling ambient O2 during the culture of primary cells isolated from organs.

  17. miR-30e controls DNA damage-induced stress responses by modulating expression of the CDK inhibitor p21WAF1/CIP1 and caspase-3

    PubMed Central

    Sohn, Dennis; Peters, Dominik; Piekorz, Roland P.; Budach, Wilfried; Jänicke, Reiner U.

    2016-01-01

    MicroRNAs (miRNAs), a class of small non-coding RNAs that usually cause gene silencing by translational repression or degradation of mRNAs, are implicated in DNA damage-induced stress responses. To identify senescence-associated miRNAs, we performed microarray analyses using wild-type and p53-deficient HCT116 colon carcinoma cells that following gamma-irradiation (γIR) are driven into senescence and apoptosis, respectively. Several miRNAs including miR-30e were found upregulated in a p53-dependent manner specifically in senescent cells, but not in apoptotic cells. Overexpression of miR-30e in HCT116 cells not only inhibited γIR-, etoposide- or miR-34a-induced caspase-3-like DEVDase activities and cell death, but greatly accelerated and augmented their senescent phenotype. Consistently, procaspase-3 protein, but not mRNA decreased in the presence of miR-30e, whereas expression of the cyclin-dependent kinase inhibitor p21 increased both at the mRNA and protein level. Performing luciferase reporter gene assays, we identified the 3′-UTR of the caspase-3 mRNA as a direct miR-30e target. In contrast, although miR-30e was unable to bind to the p21 mRNA, it increased expression of a luciferase construct containing the p21 promoter, suggesting that the miR-30e-mediated upregulation of p21 occurs indirectly at the transcriptional level. Interestingly, despite suppressing procaspase-3 expression, miR-30e was unable to protect RKO colon carcinoma cells from DNA damage-induced death or to induce senescence, as miR-30e completely fails to upregulate p21 in these cells. These data suggest that miR-30e functions in a cell type-dependent manner as an important molecular switch for DNA damage-induced stress responses and may thus represent a target of therapeutic value. PMID:26895377

  18. Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21(WAF1/CIP1) expression.

    PubMed

    Tseng, Tsui-Hwa; Chien, Ming-Hsien; Lin, Wea-Lung; Wen, Yu-Ching; Chow, Jyh-Ming; Chen, Chi-Kuan; Kuo, Tsang-Chih; Lee, Wei-Jiunn

    2017-02-01

    Apigenin (4',5,7-trihydroxyflavone), a flavonoid commonly found in fruits and vegetables, has anticancer properties in various malignant cancer cells. However, the molecular basis of the anticancer effect remains to be elucidated. In this study, we investigated the cellular mechanisms underlying the induction of cell cycle arrest by apigenin. Our results showed that apigenin at the nonapoptotic induction concentration inhibited cell proliferation and induced cell cycle arrest at the G2/M phase in the MDA-MB-231 breast cancer cell line. Immunoblot analysis indicated that apigenin suppressed the expression of cyclin A, cyclin B, and cyclin-dependent kinase-1 (CDK1), which control the G2-to-M phase transition in the cell cycle. In addition, apigenin upregulated p21(WAF1/CIP1) and increased the interaction of p21(WAF1/CIP1) with proliferating cell nuclear antigen (PCNA), which inhibits cell cycle progression. Furthermore, apigenin significantly inhibited histone deacetylase (HDAC) activity and induced histone H3 acetylation. The subsequent chromatin immunoprecipitation (ChIP) assay indicated that apigenin increased acetylation of histone H3 in the p21(WAF1/CIP1) promoter region, resulting in the increase of p21(WAF1/CIP1) transcription. In a tumor xenograft model, apigenin effectively delayed tumor growth. In these apigenin-treated tumors, we also observed reductions in the levels of cyclin A and cyclin B and increases in the levels of p21(WAF1/CIP1) and acetylated histone H3. These findings demonstrate for the first time that apigenin can be used in breast cancer prevention and treatment through epigenetic regulation. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 434-444, 2017.

  19. Epstein-Barr virus nuclear antigen 3A promotes cellular proliferation by repression of the cyclin-dependent kinase inhibitor p21WAF1/CIP1.

    PubMed

    Tursiella, Melissa L; Bowman, Emily R; Wanzeck, Keith C; Throm, Robert E; Liao, Jason; Zhu, Junjia; Sample, Clare E

    2014-10-01

    Latent infection by Epstein-Barr virus (EBV) is highly associated with the endemic form of Burkitt lymphoma (eBL), which typically limits expression of EBV proteins to EBNA-1 (Latency I). Interestingly, a subset of eBLs maintain a variant program of EBV latency - Wp-restricted latency (Wp-R) - that includes expression of the EBNA-3 proteins (3A, 3B and 3C), in addition to EBNA-1. In xenograft assays, Wp-R BL cell lines were notably more tumorigenic than their counterparts that maintain Latency I, suggesting that the additional latency-associated proteins expressed in Wp-R influence cell proliferation and/or survival. Here, we evaluated the contribution of EBNA-3A. Consistent with the enhanced tumorigenic potential of Wp-R BLs, knockdown of EBNA-3A expression resulted in abrupt cell-cycle arrest in G0/G1 that was concomitant with conversion of retinoblastoma protein (Rb) to its hypophosphorylated state, followed by a loss of Rb protein. Comparable results were seen in EBV-immortalized B lymphoblastoid cell lines (LCLs), consistent with the previous observation that EBNA-3A is essential for sustained growth of these cells. In agreement with the known ability of EBNA-3A and EBNA-3C to cooperatively repress p14(ARF) and p16(INK4a) expression, knockdown of EBNA-3A in LCLs resulted in rapid elevation of p14(ARF) and p16I(NK4a). By contrast, p16(INK4a) was not detectably expressed in Wp-R BL and the low-level expression of p14(ARF) was unchanged by EBNA-3A knockdown. Amongst other G1/S regulatory proteins, only p21(WAF1/CIP1), a potent inducer of G1 arrest, was upregulated following knockdown of EBNA-3A in Wp-R BL Sal cells and LCLs, coincident with hypophosphorylation and destabilization of Rb and growth arrest. Furthermore, knockdown of p21(WAF1/CIP1) expression in Wp-R BL correlated with an increase in cellular proliferation. This novel function of EBNA-3A is distinct from the functions previously described that are shared with EBNA-3C, and likely contributes to the

  20. A Conditional Mouse Mutant in the Tumor Suppressor SdhD Gene Unveils a Link between p21WAF1/Cip1 Induction and Mitochondrial Dysfunction

    PubMed Central

    Millán-Uclés, África; Díaz-Castro, Blanca; García-Flores, Paula; Báez, Alicia; Pérez-Simón, José Antonio; López-Barneo, José; Piruat, José I.

    2014-01-01

    Mutations in mitochondrial complex II (MCII; succinate dehydrogenase, Sdh) genes cause familiar pheochromocytoma/paraganglioma tumors. Several mechanisms have been proposed to account for Sdh-mutation-induced tumorigenesis, the most accepted of which is based on the constitutive expression of the hypoxia-inducible factor 1α (Hif1α) at normal oxygen tension, a theory referred to as “pseudo-hypoxic drive”. Other molecular processes, such as oxidative stress, apoptosis, or chromatin remodeling have been also proposed to play a causative role. Nevertheless, the actual contribution of each of these mechanisms has not been definitively established. Moreover, the biological factors that determine the tissue-specificity of these tumors have not been identified. In this work, we made use of the inducible SDHD-ESR mouse, a conditional mutant in the SdhD gene, which encodes the small subunit of MCII, and that acts as a tumor suppressor gene in humans. The analysis of the Hif1α pathway in SDHD-ESR tissues and in two newly derived cell lines after complete SdhD loss -a requirement for hereditary paraganglioma type-1 tumor formation in humans- partially recapitulated the “pseudo-hypoxic” response and rendered inconsistent results. Therefore, we performed microarray analysis of adrenal medulla and kidney in order to identify other early gene expression changes elicited by SdhD deletion. Our results revealed that each mutant tissue displayed different variations in their gene expression profiles affecting to different biological processes. However, we found that the Cdkn1a gene was up-regulated in both tissues. This gene encodes the cyclin-dependent kinase inhibitor p21WAF1/Cip1, a factor implicated in cell cycle, senescence, and cancer. The two SDHD-ESR cell lines also showed accumulation of this protein. This new and unprecedented evidence for a link between SdhD dysfunction and p21WAF1/Cip1 will open new avenues for the study of the mechanisms that cause tumors in

  1. Epstein-Barr Virus Nuclear Antigen 3A Promotes Cellular Proliferation by Repression of the Cyclin-Dependent Kinase Inhibitor p21WAF1/CIP1

    PubMed Central

    Tursiella, Melissa L.; Bowman, Emily R.; Wanzeck, Keith C.; Throm, Robert E.; Liao, Jason; Zhu, Junjia; Sample, Clare E.

    2014-01-01

    Latent infection by Epstein-Barr virus (EBV) is highly associated with the endemic form of Burkitt lymphoma (eBL), which typically limits expression of EBV proteins to EBNA-1 (Latency I). Interestingly, a subset of eBLs maintain a variant program of EBV latency - Wp-restricted latency (Wp-R) - that includes expression of the EBNA-3 proteins (3A, 3B and 3C), in addition to EBNA-1. In xenograft assays, Wp-R BL cell lines were notably more tumorigenic than their counterparts that maintain Latency I, suggesting that the additional latency-associated proteins expressed in Wp-R influence cell proliferation and/or survival. Here, we evaluated the contribution of EBNA-3A. Consistent with the enhanced tumorigenic potential of Wp-R BLs, knockdown of EBNA-3A expression resulted in abrupt cell-cycle arrest in G0/G1 that was concomitant with conversion of retinoblastoma protein (Rb) to its hypophosphorylated state, followed by a loss of Rb protein. Comparable results were seen in EBV-immortalized B lymphoblastoid cell lines (LCLs), consistent with the previous observation that EBNA-3A is essential for sustained growth of these cells. In agreement with the known ability of EBNA-3A and EBNA-3C to cooperatively repress p14ARF and p16INK4a expression, knockdown of EBNA-3A in LCLs resulted in rapid elevation of p14ARF and p16INK4a. By contrast, p16INK4a was not detectably expressed in Wp-R BL and the low-level expression of p14ARF was unchanged by EBNA-3A knockdown. Amongst other G1/S regulatory proteins, only p21WAF1/CIP1, a potent inducer of G1 arrest, was upregulated following knockdown of EBNA-3A in Wp-R BL Sal cells and LCLs, coincident with hypophosphorylation and destabilization of Rb and growth arrest. Furthermore, knockdown of p21WAF1/CIP1 expression in Wp-R BL correlated with an increase in cellular proliferation. This novel function of EBNA-3A is distinct from the functions previously described that are shared with EBNA-3C, and likely contributes to the proliferation of

  2. ABT-263 enhances sorafenib-induced apoptosis associated with Akt activity and the expression of Bax and p21(CIP1/WAF1) in human cancer cells

    PubMed Central

    Li, Jingru; Chen, Yicheng; Wan, Jiali; Liu, Xin; Yu, Chunrong; Li, Wenhua

    2014-01-01

    BACKGROUND AND PURPOSE Sorafenib, a potent inhibitor that targets several kinases associated with tumourigenesis and cell survival, has been approved for clinical treatment as a single agent. However, combining sorafenib with other agents improves its anti-tumour efficacy in various preclinical tumour models. ABT-263, a second-generation BH3 mimic, binds to the anti-apoptotic family members Bcl-2, Bcl-xL and Bcl-w, and has been demonstrated to enhance TNFSF10 (TRAIL)-induced apoptosis in human hepatocarcinoma cells. Hence, we investigated the effects of ABT-263 treatment combined with sorafenib. EXPERIMENTAL APPROACH The effects of ABT-263 combined with sorafenib were investigated in vitro, on cell viability, clone formation and apoptosis, and the mechanism examined using western blot and flow cytometry. This combination was also evaluated in vivo, in a mouse xenograft model; tumour growth, volume and weights were measured and a TUNEL assay performed. KEY RESULTS ABT-263 enhanced sorafenib-induced apoptosis while sparing non-tumourigenic cells. Although ABT-263 plus sorafenib significantly stimulated intracellular reactive oxygen species production and subsequent mitochondrial depolarization, this was not sufficient to trigger cell apoptosis. ABT-263 plus sorafenib significantly decreased Akt activity, which was, at least partly, involved in its effect on apoptosis. Bax and p21 (CIP1/WAF1) were shown to play a critical role in ABT-263 plus sorafenib-induced apoptosis. Combining sorafenib with ABT-263 dramatically increased its efficacy in vivo. CONCLUSION AND IMPLICATIONS The anti-tumour activity of ABT-263 plus sorafenib may involve the induction of intrinsic cell apoptosis via inhibition of Akt, and reduced Bax and p21 expression. Our findings offer a novel effective therapeutic strategy for tumour treatment. PMID:24571452

  3. Activation of p53/p21/PUMA alliance and disruption of PI-3/Akt in multimodal targeting of apoptotic signaling cascades in cervical cancer cells by a pentacyclic triterpenediol from Boswellia serrata.

    PubMed

    Bhushan, Shashi; Malik, Fayaz; Kumar, Ajay; Isher, Harpreet Kaur; Kaur, Indu Pal; Taneja, Subhash Chandra; Singh, Jaswant

    2009-12-01

    Cervical carcinoma is a growing menace to women health worldwide. This study reports the apoptotic cell death in human cervical cancer HeLa and SiHa cells by a pentacyclic triterpenediol (TPD) from Boswellia serrata by a mechanism different from reported in HL-60 cells. It caused oxidative stress by early generation of nitric oxide and reactive oxygen species that robustly up regulated time-dependent expression of p53/p21/PUMA while conversely abrogating phosphatidylinositol-3-kinase (PI3K)/Akt pathways in parallel. TPD also decreased the expression of PI3K/pAkt, ERK1/2, NF-kappaB/Akt signaling cascades which coordinately contribute to cancer cell survival through these distinct pathways. The tumor suppressor p53 pathway predominantly activated by TPD further up-regulated PUMA, which concomitantly decreased the Bcl-2 level, caused mitochondrial membrane potential loss with attendant translocation of Bax and drp1 to mitochondria and release of pro-apoptotic factors such as cytochrome c and Smac/Diablo to cytosol leading to caspases-3 and -9 activation. In addition both the phospho-p53 and p21 were found to accumulate heavily in the nuclear fraction with attendant decrease in topoisomarase II and survivin levels. On the contrary, TPD did not affect the extrinsic signaling transduction pathway effectively through apical death receptors. Interestingly, N-acetyl cysteine, ascorbate and s-methylisothiourea (sMIT) rescued cells significantly from TPD induced DNA damage and caspases activation. TPD may thus find usefulness in managing and treating cervical cancer.

  4. Epimorphic regeneration in mice is p53-independent.

    PubMed

    Arthur, L Matthew; Demarest, Renee M; Clark, Lise; Gourevitch, Dmitri; Bedelbaeva, Kamila; Anderson, Rhonda; Snyder, Andrew; Capobianco, Anthony J; Lieberman, Paul; Feigenbaum, Lionel; Heber-Katz, E

    2010-09-15

    The process of regeneration is most readily studied in species of sponge, hydra, planarian and salamander (i.e., newt and axolotl). The closure of MRL mouse ear pinna through-and-through holes provides a mammalian model of unusual wound healing/regeneration in which a blastema-like structure closes the ear hole and cartilage and hair follicles are replaced. Recent studies, based on a broad level of DNA damage and a cell cycle pattern of G₂/M "arrest," showed that p21(Cip1/Waf1) was missing from the MRL mouse ear and that a p21-null mouse could close its ear holes. Given the p53/p21 axis of control of DNA damage, cell cycle arrest, apoptosis and senescence, we tested the role of p53 in the ear hole regenerative response. Using backcross mice, we found that loss of p53 in MRL mice did not show reduced healing. Furthermore, cross sections of MRL. p53(-/-) mouse ears at 6 weeks post-injury showed an increased level of adipocytes and chondrocytes in the region of healing whereas MRL or p21(-/-) mice showed chondrogenesis alone in this same region, though at later time points. In addition, we also investigated other cell cycle-related mutant mice to determine how p21 was being regulated. We demonstrate that p16 and Gadd45 null mice show little healing capacity. Interestingly, a partial healing phenotype in mice with a dual Tgfβ/Rag2 knockout mutation was seen. These data demonstrate an independence of p53 signaling for mouse appendage regeneration and suggest that the role of p21 in this process is possibly through the abrogation of the Tgfβ/Smad pathway.

  5. Pharmacodynamic study of the 7,8-dihydroxy-4-methylcoumarin-induced selective cytotoxicity toward U-937 leukemic cells versus mature monocytes: cytoplasmic p21(Cip1/WAF1) as resistance factor.

    PubMed

    Vázquez, Ramiro; Riveiro, María Eugenia; Mondillo, Carolina; Perazzo, Juan Carlos; Vermeulen, Mónica; Baldi, Alberto; Davio, Carlos; Shayo, Carina

    2013-07-15

    The development of tumor-selective drugs with low systemic toxicity has always been a major challenge in cancer treatment. Our group previously identified the 7,8-dihydroxy-4-methylcoumarin (DHMC) as a potential chemotherapeutic agent due to its potent, selective anti-proliferative and apoptosis-inducing effects on several cancer cell lines over peripheral blood mononuclear cells. However, there are still no published reports that can explain such selectivity of action. Herein, we addressed this question by using the U-937 promonocytic leukemia cell line, which can be forced to differentiate into a monocyte-like phenotype in vitro. U-937 cells differentiation is dependent on the nuclear expression of p21(Cip1/WAF1), a protein that is absent in immature U-937 cells but present in both the nucleus and the cytoplasm of normal DHMC-resistant monocytes. Considering that induction of differentiation rendered U-937 cells resistant to DHMC, we evaluated the possible causal role of cytoplasmic p21(Cip1/WAF1) in the onset of such resistance by employing U-937 cells stably transfected with a ZnCl2-inducible p21(Cip1/WAF1) variant lacking the nuclear localization signal (U-937/CB6-ΔNLS-p21 cells). Expression of cytoplasmic p21(Cip1/WAF1) did not induce differentiation of the cells but turned them resistant to DHMC through inhibition of JNK, a crucial mediator of DHMC-induced apoptosis in U-937 cells. Sub-acute toxicity evaluation of DHMC in Balb/c mice indicated that DHMC administered intraperitoneally at doses up to 100mg/kg induced no systemic damage. Collectively, our results explain for the first time the selective cytotoxicity of DHMC for tumor cells over normal monocytes, and encourage further in vivo studies on this compound as potential anti-leukemic agent.

  6. The role of p21 in regulating mammalian regeneration.

    PubMed

    Arthur, Larry Matthew; Heber-Katz, Ellen

    2011-06-29

    The MRL (Murphy Roths Large) mouse has provided a unique model of adult mammalian regeneration as multiple tissues show this important phenotype. Furthermore, the healing employs a blastema-like structure similar to that seen in amphibian regenerating tissue. Cells from the MRL mouse display DNA damage, cell cycle G2/M arrest, and a reduced level of p21CIP1/WAF. A functional role for p21 was confirmed when tissue injury in an adult p21-/- mouse showed a healing phenotype that matched the MRL mouse, with the replacement of tissues, including cartilage, and with hair follicle formation and a lack of scarring. Since the major canonical function of p21 is part of the p53/p21 axis, we explored the consequences of p53 deletion. A regenerative response was not seen in a p53-/- mouse and the elimination of p53 from the MRL background had no negative effect on the regeneration of the MRL.p53-/- mouse. An exploration of other knockout mice to identify p21-dependent, p53-independent regulatory pathways involved in the regenerative response revealed another significant finding showing that elimination of transforming growth factor-β1 displayed a healing response as well. These results are discussed in terms of their effect on senescence and differentiation.

  7. The role of p21 in regulating mammalian regeneration

    PubMed Central

    2011-01-01

    The MRL (Murphy Roths Large) mouse has provided a unique model of adult mammalian regeneration as multiple tissues show this important phenotype. Furthermore, the healing employs a blastema-like structure similar to that seen in amphibian regenerating tissue. Cells from the MRL mouse display DNA damage, cell cycle G2/M arrest, and a reduced level of p21CIP1/WAF. A functional role for p21 was confirmed when tissue injury in an adult p21-/- mouse showed a healing phenotype that matched the MRL mouse, with the replacement of tissues, including cartilage, and with hair follicle formation and a lack of scarring. Since the major canonical function of p21 is part of the p53/p21 axis, we explored the consequences of p53 deletion. A regenerative response was not seen in a p53-/- mouse and the elimination of p53 from the MRL background had no negative effect on the regeneration of the MRL.p53-/- mouse. An exploration of other knockout mice to identify p21-dependent, p53-independent regulatory pathways involved in the regenerative response revealed another significant finding showing that elimination of transforming growth factor-β1 displayed a healing response as well. These results are discussed in terms of their effect on senescence and differentiation. PMID:21722344

  8. Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts.

    PubMed Central

    Chen, Q M; Liu, J; Merrett, J B

    2000-01-01

    Early-passage human diploid fibroblasts (HDFs) undergo senescence-like growth arrest in response to sublethal concentrations of H(2)O(2) [Chen and Ames (1994) Proc. Natl. Acad. Sci. USA. 95, 4130-4134]. We determine here whether H(2)O(2) can cause apoptosis in HDFs and the molecular changes that differ between apoptosis and senescence-like growth arrest. When exponentially growing early-passage IMR-90 cells were treated for 2 h with 50-200 microM (or 0.25-1 pmol/cell) H(2)O(2), a fraction of cells detached at 16-32 h after the treatment. The cells remaining attached were growth-arrested and developed features of senescence in 1 week. The detached cells showed caspase-3 activation and typical morphological changes associated with apoptosis. Caspase-3 activation was H(2)O(2) dose-dependent and preceded nuclear condensation or plasma membrane leakage. Apoptotic cells were mainly distributed in the S-phase of the cell cycle, while growth-arrested cells exhibited predominantly G1- and G2/M-phase distributions. H(2)O(2) pretreatment induced G1 arrest and prohibited induction of apoptosis by a subsequent H(2)O(2) challenge. The p53 protein showed an average 6.1-fold elevation in apoptotic cells and a 3.5-fold elevation in growth-arrested cells. Reduction of p53 levels with human papillomavirus E6 protein prohibited the activation of caspase-3 and decreased the proportion of apoptotic cells. Growth-arrested cells had elevated p21, while p21 was absent in apoptotic cells. Bcl-2 was elevated in both growth-arrested and apoptotic cells. Finally, although the overall level of bax did not change in growth-arrested or apoptotic cells, the solubility of bax protein increased in apoptotic cells. Our data suggest that in contrast with growth-arrested cells, apoptotic cells show an S-phase cell cycle distribution, a higher degree of p53 elevation, an absence of p21 protein and increased solubility of bax protein. PMID:10749685

  9. Inhibitors of histone deacetylase (HDAC) restore the p53 pathway in neuroblastoma cells

    PubMed Central

    Condorelli, F; Gnemmi, I; Vallario, A; Genazzani, A A; Canonico, P L

    2007-01-01

    Background and purpose: Inhibitors of histone deacetylase (HDAC) are emerging as a promising class of anti-cancer drugs, but a generic deregulation of transcription in neoplastic cells cannot fully explain their therapeutic effects. In this study we evaluated alternative molecular mechanisms by which HDAC inhibitors could affect neuroblastoma viability. Experimental approach: Effects of HDAC inhibitors on survival of the I-type SK-N-BE and the N-type NB SH-SY5Y neuroblastoma cell lines were assessed by the MTT assay. Molecular pathways leading to this were examined by western blot, confocal microscopy and cytofluorometry. The mRNA levels of apoptotic mediators were assessed semi-quantitatively by RT-PCR. Tumour-suppressor p53 trans activity was assessed in EMSA experiments. HDAC inhibitors were also studied in cells subjected to plasmid-based p53 interference (p53i). Key results: HDAC inhibitors induced cell death via the mitochondrial pathway of apoptosis with recruitment of Bcl-2 family members. Bcl-2 overexpression rendered neuroblastoma cells resistant to HDAC inhibitor treatment. Low concentrations of HDAC inhibitors (0.9 mM) caused a G2 cell-cycle arrest and a marked upregulation of the p21/Waf1/Cip1 protein. HDAC inhibitors also activate the p53 protein via hyper-acetylation and nuclear re-localization, without affecting its protein expression. Accordingly, HDAC inhibitor-induced cell-killing and p21/Waf1/Cip1 upregulation is impaired in p53i-cells. Conclusions and implications: In neuroblastoma cells, HDAC inhibitors may overcome the resistance to classical chemotherapeutic drugs by restoring the p53 tumour-repressor function via its hyper-acetylation and nuclear migration, events usually impaired in such tumours. In neuroblastoma cells, HDAC inhibitors are not able to induce p21/Waf1/Cip1 in the absence of a functional p53. PMID:18059320

  10. Central role of mitochondria and p53 in PUVA-induced apoptosis in human keratinocytes cell line NCTC-2544

    SciTech Connect

    Viola, Giampietro Fortunato, Elena; Cecconet, Laura; Del Giudice, Laura; Dall'Acqua, Francesco; Basso, Giuseppe

    2008-02-15

    Despite strong evidence concerning the high efficiency of PUVA therapy (psoralen plus UVA light), its mechanism of action has not yet been fully elucidated. In this study, we have evaluated in a cell line of human keratinocytes (NCTC-2544) the effects of two linear psoralen derivatives, 8-methoxypsoralen (8-MOP) and 5-methoxypsoralen (5-MOP), that are widely used in PUVA therapy and two angular derivatives, Angelicin (ANG) and 4,6,4'-trymetyl angelicin (TMA). All derivatives photoinduce cellular death, TMA being the most active compound. The cell cycle analysis showed that the four derivatives induce, 24 h after irradiation, a cell cycle arrest in G1 phase later followed by massive apoptosis. The G1 arrest is correlated to an increase in the expression of p21{sup Waf1/Cip1}, a protein associated with the cell cycle block and apoptosis. Furthermore, treatment of NCTC-2544 resulted in p53 activation by 5-MOP, 8-MOP, and ANG but not TMA and its phosphorylation at serine-15. The levels of p21{sup Waf1/Cip1} paralleled p53 protein staining pattern suggesting that p53 activation correlated with p21{sup Waf1/Cip1} induction. Simultaneous to p53 activation, psoralens induced mitochondrial depolarization, cytochrome c release, mitochondrial production of reactive oxygen species, as well as caspase-3 and -9 activation. Thus these results strongly indicate the necessity of p53 activation and the induction of the apoptotic machinery downstream of mitochondria.

  11. Effects of the kava chalcone flavokawain A differ in bladder cancer cells with wild-type versus mutant p53.

    PubMed

    Tang, Yaxiong; Simoneau, Anne R; Xie, Jun; Shahandeh, Babbak; Zi, Xiaolin

    2008-11-01

    Flavokawain A is the predominant chalcone from kava extract. We have assessed the mechanisms of flavokawain A's action on cell cycle regulation. In a p53 wild-type, low-grade, and papillary bladder cancer cell line (RT4), flavokawain A increased p21/WAF1 and p27/KIP1, which resulted in a decrease in cyclin-dependent kinase-2 (CDK2) kinase activity and subsequent G(1) arrest. The increase of p21/WAF1 protein corresponded to an increased mRNA level, whereas p27/KIP1 accumulation was associated with the down-regulation of SKP2, which then increased the stability of the p27/KIP1 protein. The accumulation of p21/WAF1 and p27/KIP1 was independent of cell cycle position and thus not a result of the cell cycle arrest. In contrast, flavokawain A induced a G(2)-M arrest in six p53 mutant-type, high-grade bladder cancer cell lines (T24, UMUC3, TCCSUP, 5637, HT1376, and HT1197). Flavokawain A significantly reduced the expression of CDK1-inhibitory kinases, Myt1 and Wee1, and caused cyclin B1 protein accumulation leading to CDK1 activation in T24 cells. Suppression of p53 expression by small interfering RNA in RT4 cells restored Cdc25C expression and down-regulated p21/WAF1 expression, which allowed Cdc25C and CDK1 activation, which then led to a G(2)-M arrest and an enhanced growth-inhibitory effect by flavokawain A. Consistently, flavokawain A also caused a pronounced CDK1 activation and G(2)-M arrest in p53 knockout but not in p53 wild-type HCT116 cells. This selectivity of flavokawain A for inducing a G(2)-M arrest in p53-defective cells deserves further investigation as a new mechanism for the prevention and treatment of bladder cancer.

  12. EPO gene expression promotes proliferation, migration and invasion via the p38MAPK/AP-1/MMP-9 pathway by p21WAF1 expression in vascular smooth muscle cells.

    PubMed

    Park, Sung Lyea; Won, Se Yeon; Song, Jun-Hui; Kambe, Taiho; Nagao, Masaya; Kim, Wun-Jae; Moon, Sung-Kwon

    2015-03-01

    The use of recombinant human erythropoietin (rHuEpo) can lead to hypertrophy and hyperplasia, and has induced the proliferation of vascular smooth muscle cells (VSMCs). The effect of the EPO gene in the migration and invasion of VSMCs remains unclear. In this study, overexpression of the EPO gene increased the DNA synthesis and phosphorylation of ERK1/2 and p38MAPK in VSMCs. In addition, EPO gene expression induced the migration and invasion of VSMCs via the expression of MMP-9 by the activation of NF-κB and AP-1 binding. A blockade of p38MAPK by specific p38MAPK inhibitor SB203580 led to a suppression of the increased DNA synthesis, migration, and invasion of VSMCs that was induced by the EPO gene. SB203580 treatment blocked the increased expression of MMP-9 through the binding activity of AP-1. Transfection of the EPO gene with VSMCs was associated with the up-regulation of cyclin D1/CDK4, cyclin E/CDK2, and p21WAF1, and with the down-regulation of p27KIP1. The specific suppression of p21WAF1 expression by siRNA rescued the enhancement of DNA synthesis via the phosphorylation of p38MAPK and the increase in migration and invasion through AP-1-mediated MMP-9 expression in EPO gene transfectants. These novel findings demonstrate that p21WAF1 regulates the proliferation, migration and invasion of VSMC induced by EPO gene.

  13. IL-1-induced ERK1/2 activation up-regulates p21{sup Waf1/Cip1} protein by inhibition of degradation via ubiquitin-independent pathway in human melanoma cells A375

    SciTech Connect

    Arakawa, Tomohiro; Hayashi, Hidetoshi; Itoh, Saotomo; Takii, Takemasa; Onozaki, Kikuo

    2010-02-12

    IL-1 inhibits the proliferation of human melanoma cells A375 by arresting the cell cycle at G0/G1 phase, which accompanies the increase of p21{sup Waf1/Cip1} (p21) protein. Here, we demonstrate that IL-1 induces the stabilization of p21 protein via ERK1/2 pathway. The degradation of p21 was inhibited by IL-1, however the ubiquitination level of p21 was not affected. In addition, the degradation of non-ubiquitinated form of lysine less mutant p21-K6R was also inhibited by IL-1, suggesting that IL-1 stabilized p21 protein via ubiquitin-independent pathway. Furthermore, the inhibition of p21 protein degradation was prevented by a selective inhibitor of ERK1/2 pathway, PD98059. These results suggest that IL-1-induced ERK1/2 activation leads to the up-regulation of p21 by inhibiting degradation via ubiquitin-independent pathway in human melanoma cells A375.

  14. Suppression of the p300-dependent mdm2 negative-feedback loop induces the p53 apoptotic function

    PubMed Central

    Thomas, Anju; White, Eileen

    1998-01-01

    The p53 tumor suppressor gene product interacts with the p300 transcriptional coactivator that regulates the transactivation of p53-inducible genes. The adenovirus E1A protein has been shown to bind to p300 and inhibit its function. E1A inhibits p53 transactivation and also promotes p53 accumulation by a p300-dependent mechanism. Murine double minute 2 (Mdm2) is a transcriptional target of p53 that binds to p53 and inhibits its transcriptional activity. E1A inhibited mdm2 transactivation without affecting the expression of p21WAF1 or Bax, which resulted in high levels of p53 accumulation and apoptosis. Ectopic expression of p300 restored Mdm2 levels and inhibited p53-dependent apoptosis, as did ectopic expression of Mdm2. Thus, p300 is required for mdm2 induction by p53 and the subsequent inhibition of p53 stabilization. Inhibition of p300 by E1A results in stabilization of p53 and causes apoptosis. Moreover, E1B 19K or Bcl-2 expression in E1A-transformed cells abrogated p53-dependent apoptosis by restoring mdm2 transactivation by p53. Hence, p300 regulation of mdm2 expression controls apoptotic activity of p53, and 19K or Bcl-2 bypass E1A inhibition of p300 transactivation of Mdm2. PMID:9649502

  15. 17p13 (p53 locus), 5q21 (APC locus) and 9p21 (p16 locus) allelic deletions are frequently found in oral exfoliative cytology cells from smoker patients with non-small-cell lung cancer.

    PubMed

    Sanz-Ortega, J; Roig, F; Al-Mousa, M M; Saez, M C; Muñoz, A; Sanz-Esponera, J; Callol, L

    2007-05-01

    Molecular cytogenetic and LOH analyses of non-small cell lung cancer (NSCLC) have shown frequent allelic deletions in a variety of chromosomes where tumour suppressor genes are located. Allelic loss at 9p21 (p16 locus), 17p13 (p53) and 5q21(APC) has been frequently described in NSCLC and has also been described in premalignant epithelial lesions of the bronchus and normal bronchial cells. These findings suggest that a tissue field of somatic genetic alterations precedes the histopathological phenotypic changes of carcinoma. Similar changes have been described in oral and laryngeal epithelial tumours associated with smoke exposure. We previously reported frequent LOH at 5q21, 9p21 and TP53 in tumor cells and peritumoral normal bronchial cells from surgically resected NSCLC. We now analyze 96 cases of normal oral exfoliative cytology in which normal epithelial cells were obtained: 43 cases from smoker patients with NSCLC diagnosis, 33 smoker patients with no evidence of malignancy and 20 non-smoker patients with no evidence of tumour. All groups had a similar age and sex distribution. PCR amplification was performed utilising the specific markers D5S346, D9S157 and TP53. In normal oral mucosae cells from patients with NSCLC, we found that 21% of the informative cases showed LOH at any of the three analyzed loci distributed as follows: 14.3% of the informative cases showed LOH at 5q21, 7.7% at 9p21 and 22.2% at TP53. Within the smoker risk group only one case (4% of the informative cases) showed LOH at TP53, while no LOH was found at 5q21 or 9p21. No LOH was found in non-smokers. In conclusion, our results show that a significant number of patients with NSCLC have LOH at TP53, 5q21 and 9p21 in normal oral mucosae, while LOH at these loci is unusual in similar cells obtained from patients with no evidence of malignancy. Our study demonstrates that LOH studies can detect smoker patients with a mutated genotype in normal epithelial cells. Further prospective studies may

  16. Expression of the p12 subunit of human DNA polymerase δ (Pol δ), CDK inhibitor p21(WAF1), Cdt1, cyclin A, PCNA and Ki-67 in relation to DNA replication in individual cells.

    PubMed

    Zhao, Hong; Zhang, Sufang; Xu, Dazhong; Lee, Marietta Ywt; Zhang, Zhongtao; Lee, Ernest Yc; Darzynkiewicz, Zbigniew

    2014-01-01

    We recently reported that the p12 subunit of human DNA polymerase δ (Pol δ4) is degraded by CRL4(Cdt2) which regulates the licensing factor Cdt1 and p21(WAF1) during the G1 to S transition. Presently, we performed multiparameter laser scanning cytometric analyses of changes in levels of p12, Cdt1 and p21(WAF1), detected immunocytochemically in individual cells, vis-à-vis the initiation and completion of DNA replication. The latter was assessed by pulse-labeling A549 cells with the DNA precursor ethynyl-2'-deoxyribose (EdU). The loss of p12 preceded the initiation of DNA replication and essentially all cells incorporating EdU were p12 negative. Completion of DNA replication and transition to G2 phase coincided with the re-appearance and rapid rise of p12 levels. Similar to p12 a decline of p21(WAF1) and Cdt1 was seen at the end of G1 phase and all DNA replicating cells were p21(WAF1) and Cdt1 negative. The loss of p21(WAF1) preceded that of Cdt1 and p12 and the disappearance of the latter coincided with the onset of DNA replication. Loss of p12 leads to conversion of Pol δ4 to its trimeric form, Pol δ3, so that the results provide strong support to the notion that Pol δ3 is engaged in DNA replication during unperturbed progression through the S phase of cell cycle. Also assessed was a correlation between EdU incorporation, likely reflecting the rate of DNA replication in individual cells, and the level of expression of positive biomarkers of replication cyclin A, PCNA and Ki-67 in these cells. Of interest was the observation of stronger correlation between EdU incorporation and expression of PCNA (r = 0.73) than expression of cyclin A (r = 0.47) or Ki-67 (r = 0.47).

  17. Resveratrol and curcumin synergistically induces apoptosis in cigarette smoke condensate transformed breast epithelial cells through a p21(Waf1/Cip1) mediated inhibition of Hh-Gli signaling.

    PubMed

    Mohapatra, Purusottam; Satapathy, Shakti Ranjan; Siddharth, Sumit; Das, Dipon; Nayak, Anmada; Kundu, Chanakya Nath

    2015-09-01

    Combination therapy using two or more small molecule inhibitors of aberrant signaling cascade in aggressive breast cancers is a promising therapeutic strategy over traditional monotherapeutic approaches. Here, we have studied the synergistic mechanism of resveratrol and curcumin induced apoptosis using in vitro (cigarette smoke condensate mediated transformed breast epithelial cell, MCF-10A-Tr) and in vivo (tumor xenograft mice) model system. Resveratrol exposure increased the intracellular uptake of curcumin in a dose dependent manner and caused apoptosis in MCF-10A-Tr cells. Approximately, ten fold lower IC50 value was noted in cells treated with the combination of resveratrol (3μM) and curcumin (3μM) in comparison to 30μM of resveratrol or curcumin alone. Resveratrol+curcumin combination caused apoptosis by increasing Bax/Bcl-xL ratio, Cytochrome C release, cleaved product of PARP and caspase 3 in cells. Interestingly, this combination unaltered the protein expressions of WNT-TCF and Notch signaling components, β-catenin and cleaved notch-1 val1744, respectively. Furthermore, the combination also significantly decreased the intermediates of Hedgehog-Gli cascade including SMO, SHH, Gli-1, c-MYC, Cyclin-D1, etc. and increased the level of p21(Waf/Cip1) in vitro and in vivo. A significant reduction of Gli- promoter activity was noted in combinational drug treated cells in comparison to individual drug treatment. Un-alteration of the expressions of the above proteins and Gli1 promoter activity in p21(Waf/Cip1) knockout cells suggests this combination caused apoptosis through p21(Waf/Cip1). Thus, our findings revealed resveratrol and curcumin synergistically caused apoptosis in cigarette smoke induced breast cancer cells through p2(Waf/Cip1) mediated inhibition of Hedgehog-Gli cascade. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Beta-escin inhibits colonic aberrant crypt foci formation in rats and regulates the cell cycle growth by inducing p21(waf1/cip1) in colon cancer cells.

    PubMed

    Patlolla, Jagan M R; Raju, Jayadev; Swamy, Malisetty V; Rao, Chinthalapally V

    2006-06-01

    Extracts of Aesculus hippocastanum (horse chestnut) seed have been used in the treatment of chronic venous insufficiency, edema, and hemorrhoids. Most of the beneficial effects of horse chestnut are attributed to its principal component beta-escin or aescin. Recent studies suggest that beta-escin may possess anti-inflammatory, anti-hyaluronidase, and anti-histamine properties. We have evaluated the chemopreventive efficacy of dietary beta-escin on azoxymethane-induced colonic aberrant crypt foci (ACF). In addition, we analyzed the cell growth inhibitory effects and the induction of apoptosis in HT-29 human colon cancer cell line. To evaluate the inhibitory properties of beta-escin on colonic ACF, 7-week-old male F344 rats were fed experimental diets containing 0%, 0.025%, or 0.05% beta-escin. After 1 week, the rats received s.c. injections of azoxymethane (15 mg/kg body weight, once weekly for 2 weeks) or an equal volume of normal saline (vehicle). Rats were continued on respective experimental diets and sacrificed 8 weeks after the azoxymethane treatment. Colons were evaluated histopathologically for ACF. Administration of dietary 0.025% and 0.05% beta-escin significantly suppressed total colonic ACF formation up to approximately 40% (P < 0.001) and approximately 50% (P < 0.0001), respectively, when compared with control diet group. Importantly, rats fed beta-escin showed dose-dependent inhibition (approximately 49% to 65%, P < 0.0001) of foci containing four or more aberrant crypts. To understand the growth inhibitory effects, HT-29 human colon carcinoma cell lines were treated with various concentrations of beta-escin and analyzed by flow cytometry for apoptosis and cell cycle progression. Beta-escin treatment in HT-29 cells induced growth arrest at the G1-S phase, which was associated with the induction of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1), and this correlated with reduced phosphorylation of retinoblastoma protein. Results also indicate that

  19. Zinc enhances CDKN2A, pRb1 expression and regulates functional apoptosis via upregulation of p53 and p21 expression in human breast cancer MCF-7 cell.

    PubMed

    Al-Saran, Nada; Subash-Babu, Pandurangan; Al-Nouri, Doha M; Alfawaz, Hanan A; Alshatwi, Ali A

    2016-10-01

    Zinc (Zn) is an essential trace elements, its deficiency is associated with increased incidence of human breast cancer. We aimed to study the effect of Zn on human breast cancer MCF-7 cells cultured in Zn depleted and Zn adequate medium. We found increased cancer cell growth in zinc depleted condition, further Zn supplementation inhibits the viability of breast cancer MCF-7 cell cultured in Zn deficient condition and the IC25, IC50 value for Zn is 6.2μM, 15μM, respectively after 48h. Zn markedly induced apoptosis through the characteristic apoptotic morphological changes and DNA fragmentation after 48h. In addition, Zn deficient cells significantly triggered intracellular ROS level and develop oxidative stress induced DNA damage; it was confirmed by elevated expression of CYP1A, GPX, GSK3β and TNF-α gene. Zinc depleted MCF-7 cells expressed significantly (p≤0.001) decreased levels of CDKN2A, pRb1, p53 and increased the level of mdm2 expression. Zn supplementation (IC50=15μM), increased significantly CDKN2A, pRB1 & p53 and markedly reduced mdm2 expression; also protein expression levels of CDKN2A and pRb1 was significantly increased. In addition, intrinsic apoptotic pathway related genes such as Bax, caspase-3, 8, 9 & p21 expression was enhanced and finally induced cell apoptosis. In conclusion, physiological level of zinc is important to prevent DNA damage and MCF-7 cell proliferation via regulation of tumor suppressor gene. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Inhibitory effect of adenoviral vector-mediated delivery of p21WAF1/CIP1 on retinal vascular endothelial cell proliferation and tube formation in cultured Rhesus monkey cells (RF/6A).

    PubMed

    Han, Jindong; Yuan, Zhigang; Yan, Hua

    2013-06-01

    To investigate the inhibitory effect(s) of adenovirus (Ad) vector-mediated delivery of p21(WAF1/CIP1) (Ad-p21) on proliferation and tube formation in Rhesus monkey choroid-retina vascular endothelial cells (RF/6A). In vitro-cultured RF/6A cells were divided into three groups: phosphate-buffered saline (PBS), Ad-p21-transfected, and negative control. Plasmid vectors were transfected via Ad-p21. The mRNA and protein expressions of p21 and cyclin-dependent kinase (CDK)2 in RF/6A cells were measured by reverse transcription-PCR (RT-PCR) and western blot analyses. Cell-cycle distributions were analyzed by flow cytometry. Matrigel was used as a matrix for endothelial cell tube formation. Expressions of p21 mRNA and protein were greater, and expressions of CDK2 mRNA and protein lower, in the Ad-p21-transfected group than in either the PBS or negative control groups. Cell-cycle distribution analysis indicated that the proportion of G0/G1 cells was significantly higher in the Ad-p21 transfected group than in either the PBS or negative control groups (p = 0.000). There were significantly fewer endothelial cell tubes in the Ad-p21-transfected group than in either the PBS or negative control groups (p = 0.004). Ad-p21 inhibits RF/6A cell proliferation and tube formation. The underlying mechanism to account for this may be that overexpression of p21 arrests the cell-cycle transition from the G1- to the S-phase via inhibition of CDK2 activity.

  1. Radiation response and cell cycle regulation of p53 rescued malignant keratinocytes

    SciTech Connect

    Niemantsverdriet, Maarten; Jongmans, Wim; Backendorf, Claude . E-mail: backendo@chem.leidenuniv.nl

    2005-10-15

    Mutations in the tumor suppressor gene p53 were found in more than 90% of all human squamous cell carcinomas (SCC). To study the function of p53 in a keratinocyte background, a tetracycline-controlled p53 transgene was introduced into a human SCC cell line (SCC15), lacking endogenous p53. Conditional expression of wild-type p53 protein upon withdrawal of tetracycline was accompanied with increased expression of p21{sup WAF1/Cip1} resulting in reduced cell proliferation. Flow-cytometric analysis revealed that these cells were transiently arrested in the G1/S phase of the cell cycle. However, when SCC15 cells expressing p53 were exposed to ionizing radiation (IR), a clear shift from a G1/S to a G2/M cell cycle arrest was observed. This effect was greatly depending on the presence of wild-type p53, as it was not observed to the same extent in SCC15 cells lacking p53. Unexpectedly, the p53- and IR-dependent G2/M cell cycle arrest in the keratinocyte background was not depending on increased expression or stabilization of 14-3-3{sigma}, a p53-regulated effector of G2/M progression in colorectal cancer cells. In keratinocytes, 14-3-3{sigma} (stratifin) is involved in terminal differentiation and its cell cycle function in this cell type might diverge from the one it fulfills in other cellular backgrounds.

  2. Interaction between mTOR pathway inhibition and autophagy induction attenuates adriamycin-induced vascular smooth muscle cell senescence through decreased expressions of p53/p21/p16.

    PubMed

    Sung, Jin Young; Lee, Kyung Young; Kim, Jae-Ryong; Choi, Hyoung Chul

    2017-08-07

    Cellular senescence is related to aging and extremely stable proliferative arrest with active metabolism. Senescent cells can activate mammalian target of rapamycin (mTOR) pathway, which plays a crucial role in the regulation of cell metabolism, cellular growth, and autophagy in senescence-associated cardiovascular diseases. Therefore, we examined whether mTOR pathway could induce cellular senescence by inhibition of autophagy in vascular smooth muscle cells (VSMCs). We found that adriamycin-induced VSMC senescence is accompanied by increased activity of mTOR, a major controller of cell growth and a negative regulator of autophagy. VSMC senescence induced by activation of mTOR pathway led to reduced levels of signal-associated autophagy proteins, and inhibition of mTOR pathway resulted in a drastic decrease in the number of senescence-associated β-galactosidase (SA-β-gal)-stained cells and increased levels of signal-associated autophagy proteins. Autophagic inhibition potentiated adriamycin-induced mTOR pathway activation as well as increase in the number of SA-β-gal-stained VSMCs. Results of further experiments showed that mTOR pathway inhibition regulates adriamycin-induced expression of senescence markers (p53/p21/p16), which plays an important role in different aspects of cellular aging. Taken together, these results support the idea that intervention to modulate the interaction between mTOR pathway and autophagy could be a potential strategy for longevity. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Oxazoloisoindolinones with in vitro antitumor activity selectively activate a p53-pathway through potential inhibition of the p53-MDM2 interaction.

    PubMed

    Soares, Joana; Pereira, Nuno A L; Monteiro, Ângelo; Leão, Mariana; Bessa, Cláudia; Dos Santos, Daniel J V A; Raimundo, Liliana; Queiroz, Glória; Bisio, Alessandra; Inga, Alberto; Pereira, Clara; Santos, Maria M M; Saraiva, Lucília

    2015-01-23

    One of the most appealing targets for anticancer treatment is the p53 tumor suppressor protein. In half of human cancers, this protein is inactivated due to endogenous negative regulators such as MDM2. Actually, restoring the p53 activity, particularly through the inhibition of its interaction with MDM2, is considered a valuable therapeutic strategy against cancers with a wild-type p53 status. In this work, we report the synthesis of nine enantiopure phenylalaninol-derived oxazolopyrrolidone lactams and the evaluation of their biological effects as p53-MDM2 interaction inhibitors. Using a yeast-based screening assay, two oxazoloisoindolinones, compounds 1b and 3a, were identified as potential p53-MDM2 interaction inhibitors. The molecular mechanism of oxazoloisoindolinone 3a was further validated in human colon adenocarcinoma HCT116 cells with wild-type p53 (HCT116 p53(+/+)) and in its isogenic derivative without p53 (HCT116 p53(-/-)). Indeed, using these cells, we demonstrated that oxazoloisoindolinone 3a exhibited a p53-dependent in vitro antitumor activity through induction of G0/G1-phase cell cycle arrest and apoptosis. The selective activation of a p53-apoptotic pathway by oxazoloisoindolinone 3a was further supported by the occurrence of PARP cleavage only in p53-expressing HCT116 cells. Moreover, oxazoloisoindolinone 3a led to p53 protein stabilization and to the up-regulation of p53 transcriptional activity with increased expression levels of several p53 target genes, as p21(WAF1/CIP1), MDM2, BAX and PUMA, in p53(+/+) but not in p53(-/-) HCT116 cells. Additionally, the ability of oxazoloisoindolinone 3a to block the p53-MDM2 interaction in HCT116 p53(+/+) cells was confirmed by co-immunoprecipitation. Finally, the molecular docking analysis of the interactions between the synthesized compounds and MDM2 revealed that oxazoloisoindolinone 3a binds to MDM2. Altogether, this work adds, for the first time, the oxazoloisoindolinone scaffold to the list of

  4. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry.

    PubMed

    Darzynkiewicz, Zbigniew; Zhao, Hong; Zhang, Sufang; Lee, Marietta Y W T; Lee, Ernest Y C; Zhang, Zhongtao

    2015-05-20

    During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21(WAF1), DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21(WAF1) and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21(WAF1), Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value.

  5. Initiation and termination of DNA replication during S phase in relation to cyclins D1, E and A, p21WAF1, Cdt1 and the p12 subunit of DNA polymerase δ revealed in individual cells by cytometry

    PubMed Central

    Darzynkiewicz, Zbigniew; Zhao, Hong; Zhang, Sufang; Marietta, Y.W.T. Lee; Ernest, Y.C. Lee; Zhang, Zhongtao

    2015-01-01

    During our recent studies on mechanism of the regulation of human DNA polymerase δ in preparation for DNA replication or repair, multiparameter imaging cytometry as exemplified by laser scanning cytometry (LSC) has been used to assess changes in expression of the following nuclear proteins associated with initiation of DNA replication: cyclin A, PCNA, Ki-67, p21WAF1, DNA replication factor Cdt1 and the smallest subunit of DNA polymerase δ, p12. In the present review, rather than focusing on Pol δ, we emphasize the application of LSC in these studies and outline possibilities offered by the concurrent differential analysis of DNA replication in conjunction with expression of the nuclear proteins. A more extensive analysis of the data on a correlation between rates of EdU incorporation, likely reporting DNA replication, and expression of these proteins, is presently provided. New data, specifically on the expression of cyclin D1 and cyclin E with respect to EdU incorporation as well as on a relationship between expression of cyclin A vs. p21WAF1 and Ki-67 vs. Cdt1, are also reported. Of particular interest is the observation that this approach makes it possible to assess the temporal sequence of degradation of cyclin D1, p21WAF1, Cdt1 and p12, each with respect to initiation of DNA replication and with respect to each other. Also the sequence or reappearance of these proteins in G2 after termination of DNA replication is assessed. The reviewed data provide a more comprehensive presentation of potential markers, whose presence or absence marks the DNA replicating cells. Discussed is also usefulness of these markers as indicators of proliferative activity in cancer tissues that may bear information on tumor progression and have a prognostic value. PMID:26059433

  6. Cytoplasmic p21(CIP1/WAF1), ERK1/2 activation, and cytoskeletal remodeling are associated with the senescence-like phenotype after airborne particulate matter (PM(10)) exposure in lung cells.

    PubMed

    Sánchez-Pérez, Yesennia; Chirino, Yolanda I; Osornio-Vargas, Álvaro Román; Herrera, Luis A; Morales-Bárcenas, Rocío; López-Saavedra, Alejandro; González-Ramírez, Imelda; Miranda, Javier; García-Cuellar, Claudia María

    2014-02-10

    The exposure to particulate matter with a mean aerodynamic diameter ≤10 μm (PM10) from urban zones is considered to be a risk factor in the development of cancer. The aim of this work was to determine if PM10 exposure induces factors related to the acquisition of a neoplastic phenotype, such as cytoskeletal remodeling, changes in the subcellular localization of p21(CIP1/WAF1), an increase in β-galactosidase activity and changes in cell cycle. To test our hypothesis, PM10 from an industrial zone (IZ) and a commercial zone (CZ) were collected, and human adenocarcinoma lung cell cultures (A549) were exposed to a sublethal PM10 concentration (10 μg/cm(2)) for 24 h and 48 h. The results showed that PM10 exposure induced an increase in F-actin stress fibers and caused the cytoplasmic stabilization of p21(CIP1/WAF1) via phosphorylation at Thr(145) and Ser(146) and the phosphorylation of ERK1/2 on Thr(202). Changes in the cell cycle or apoptosis were not observed, but an increase in β-galactosidase activity was detected. The PM10 from CZ caused more dramatic effects in lung cells. We conclude that PM10 exposure induced cytoplasmic p21(CIP1/WAF1) retention, ERK1/2 activation, cytoskeleton remodeling and the acquisition of a senescence-like phenotype in lung cells. These alterations could have mechanistic implications regarding the carcinogenic potential of PM10. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Interferon-induces expression of cyclin-dependent kinase-inhibitors p21WAF1 and p27Kip1 that prevent activation of cyclin-dependent kinase by CDK-activating kinase (CAK).

    PubMed

    Mandal, M; Bandyopadhyay, D; Goepfert, T M; Kumar, R

    1998-01-15

    To understand the mechanism of interferon (IFN)-mediated suppression of cell cycle progression, we have earlier shown that IFN-alpha enhances the expression of underphosphorylated retinoblastoma protein by inhibiting the cyclin-dependent kinase-2 (CDK-2) activity (Kumar and Atlas, Proc. Natl. Acad. Sci. 89, 6599-6603, 1992; Zhang and Kumar, Biochem. Biophysi. Res. Comm., 200, 522-528, 1994). In the studies presented here, we investigated the mechanism of inhibition of CDKs in IFN-treated cells by delineating the potential role(s) of CDK-inhibitors (CKIs) and CDK-activating kinase (CAK). We report that IFN-alpha inhibits the H-1 kinase activity associated with CDK-4 or CDK-2 due to induction of expression of CDK-inhibitor p21WAF1 (but not p27Kip1) as its immunodepletion from IFN-treated extracts restored the CDK-associated H-1 kinase activity. In addition, we also show that IFN-gamma induces expression of CDK-inhibitors p21WAF1 and p27Kip1 and inhibited the H-1 kinase activity associated with CDK-2 or CDK-4. The observed IFN-gamma-mediated inhibition of CDK-2 and CDK-4 kinase activity was due to enhanced interactions with p21WAF1 and p27Kip1, respectively. We also demonstrated that IFN-induced CKIs prevent CAK from activating the CDK-2 as immunodepletion of induced CKIs from the inhibitory extracts resulted in the restoration of CAK-mediated activation of CDK-2.

  8. Synergistic efficacy of sorafenib and genistein in growth inhibition by down regulating angiogenic and survival factors and increasing apoptosis through upregulation of p53 and p21 in malignant neuroblastoma cells having N-Myc amplification or non-amplification.

    PubMed

    Roy Choudhury, Subhasree; Karmakar, Surajit; Banik, Naren L; Ray, Swapan K

    2010-12-01

    Neuroblastoma is an extracranial, solid, and heterogeneous malignancy in children. The conventional therapeutic modalities are mostly ineffective and thus new therapeutic strategies for malignant neuroblastoma are urgently warranted. We examined the synergistic efficacy of combination of sorafenib (SF) and genistein (GST) in human malignant neuroblastoma SK-N-DZ (N-Myc amplified) and SH-SY5Y (N-Myc non-amplified) cell lines. MTT assay showed dose-dependent decrease in cell viability and the combination therapy more prominently inhibited the cell proliferation in both cell lines than either treatment alone. Apoptosis was confirmed morphologically by Wright staining. Flow cytometric analysis of cell cycle phase distribution and Annexin V-FITC/PI staining showed increase in subG1 DNA content and early apoptosis, respectively, after treatment with the combination of drugs. Apoptosis was further confirmed by scanning electron microscopy. Combination therapy showed activation of caspase-8, cleavage of Bid to tBid, increase in p53 and p21 expression, down regulation of anti-apoptotic Mcl-1, and increase in Bax:Bcl-2 ratio to trigger apoptosis. Down regulation of MDR, hTERT, N-Myc, VEGF, FGF-2, NF-κB, p-Akt, and c-IAP2 indicated suppression of angiogenic and survival pathways. Mitochondrial release of cytochrome c and Smac into cytosol indicated involvement of mitochondia in apoptosis. Increases in proteolytic activities of calpain and caspase-3 were also confirmed. Our results suggested that combination of SF and GST inhibited angiogenic and survival factors and increased apoptosis via receptor and mitochondria mediated pathways in both neuroblastoma SK-N-DZ and SH-SY5Y cell lines. Thus, this combination of drugs could be a potential therapeutic strategy against human malignant neuroblastoma cells having N-Myc amplification or non-amplification.

  9. Tangeretin, a citrus pentamethoxyflavone, exerts cytostatic effect via p53/p21 up-regulation and suppresses metastasis in 7,12-dimethylbenz(α)anthracene-induced rat mammary carcinoma.

    PubMed

    Arivazhagan, Lakshmi; Sorimuthu Pillai, Subramanian

    2014-11-01

    Breast cancer is the most commonly diagnosed cancer among women worldwide, which is characterized by unregulated cell growth and metastasis. Many bioactive compounds of plant origin such as tangeretin have been shown to possess potent antioxidant and anticancerous properties. In the present study we have investigated the chemotherapeutic effect of tangeretin against 7,12-dimethylbenz(α)anthracene (DMBA)-induced rat mammary carcinogenesis and studied its underlying mechanism of action. Breast cancer was induced by "air pouch technique" with a single dose of 25mg/kg of DMBA. Tangeretin (50 mg/kg) was administered orally for four weeks. Remarkably, tangeretin treatment controlled the growth of cancer cells which was clearly evidenced by morphological and histological analysis. Also, serum levels of estradiol, progesterone and prolactin; lipid bound sialic acid and total sialic acid and the tissue levels of nitric oxide and protein carbonyls of cancer induced animals were decreased upon tangeretin treatment. Staining of breast tissues for nucleolar organizer regions, mast cells, glycoproteins, lipids and collagen showed that tangeretin treatment to breast cancer induced rats significantly reduced tumorigenesis. Oral tangeretin treatment also effectively reduced the tumor cell proliferation markers such as PCNA, COX-2 and Ki-67. Further, tangeretin treatment arrested the cancer cell division at the G1/S phase via p53/p21 up-regulation and inhibited metastasis by suppressing matrix metalloproteinase (MMP)-2, MMP-9 and vascular endothelial growth factor. Taken together, the data provides new evidence on the mechanism of action of tangeretin in breast cancer and hence extends the hypothesis supporting its potential use in chemotherapy.

  10. Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells.

    PubMed

    Oh, Eun-Taex; Park, Moon-Taek; Choi, Bo-Hwa; Ro, Seonggu; Choi, Eun-Kyung; Jeong, Seong-Yun; Park, Heon Joo

    2012-04-01

    Histone deacetylase (HDAC) plays an important role in cancer onset and progression. Therefore, inhibition of HDAC offers potential as an effective cancer treatment regimen. CG200745, (E)-N(1)-(3-(dimethylamino)propyl)-N(8)-hydroxy-2-((naphthalene-1-loxy)methyl)oct-2-enediamide, is a novel HDAC inhibitor presently undergoing a phase I clinical trial. Enhancement of p53 acetylation by HDAC inhibitors induces cell cycle arrest, differentiation, and apoptosis in cancer cells. The purpose of the present study was to investigate the role of p53 acetylation in the cancer cell death caused by CG200745. CG200745-induced clonogenic cell death was 2-fold greater in RKO cells expressing wild-type p53 than in p53-deficient RC10.1 cells. CG200745 treatment was also cytotoxic to PC-3 human prostate cancer cells, which express wild-type p53. CG200745 increased acetylation of p53 lysine residues K320, K373, and K382. CG200745 induced the accumulation of p53, promoted p53-dependent transactivation, and enhanced the expression of MDM2 and p21(Waf1/Cip1) proteins, which are encoded by p53 target genes. An examination of CG200745 effects on p53 acetylation using cells transfected with various p53 mutants showed that cells expressing p53 K382R mutants were significantly resistant to CG200745-induced clonogenic cell death compared with wild-type p53 cells. Moreover, p53 transactivation in response to CG200745 was suppressed in all cells carrying mutant forms of p53, especially K382R. Taken together, these results suggest that acetylation of p53 at K382 plays an important role in CG200745-induced p53 transactivation and clonogenic cell death.

  11. Clinicopathological Comparison of Adenocarcinoma of Cervix and Endometrium Using Cell Cycle Markers: P16ink4a, P21waf1, and p27Kip1 on 132 Cancers

    PubMed Central

    Marican Abu Backer, Farveen; Nik Mustapha, Nik Raihan; Othman, Nor Hayati

    2011-01-01

    Objective. We studied the clinicopathological parameters of adenocarcinoma arising from endocervix (ECA) and from endometrium (EMA) based on the expression of P16ink4a, P21waf1, and p27Kip1 proteins. Study Design. Immunohistochemistry was done on sections of confirmed ECA and EMA from hysterectomy specimens which have had no prior chemotherapy/radiotherapy. Results. There were 40 ECAs and 92 EMAs. The mean age of ECA was 49.82 (SD 10.29); the youngest was 30 years old and the oldest 75 years old. The mean age of EMA was 54.45 (SD 10.92); the youngest was 30 years old and the oldest was 82 years old. For ECA, the size of the tumour is significantly associated with age and with depth of infiltration. FIGO stage is associated with histological grade. p21WAF1 expression is significantly associated with infiltration of the corpus and lymph node metastasis. p27Kip1 expression is significantly associated with lymph node invasion. The presence of lymph node metastasis is strongly associated when p16INK4a and p27Kip1 expressions are analyzed in combination. For EMA, p16INK4a expression is associated with histologic grade. Conclusion. Our study shows that we could use these cell cycle markers as predictors for more aggressive subsets of adenocarcinoma of the cervix and endometrium. PMID:22114462

  12. TSPYL5 is involved in cell growth and the resistance to radiation in A549 cells via the regulation of p21{sup WAF1/Cip1} and PTEN/AKT pathway

    SciTech Connect

    Kim, Eun Jin; Lee, So Yong; Kim, Tae Rim; Choi, Soo Im; Cho, Eun Wie; Kim, Kug Chan; Kim, In Gyu

    2010-02-12

    TSPYL5, encoding testis-specific Y-like protein, has been postulated to be a tumor suppressor gene, and its hypermethylation is often associated with human disease, especially cancer. In this study, we report that the TSPYL5 gene was less methylated (30%) in A549 lung adenocarcinoma cells, which are relatively resistant to {gamma}-radiation, than in H460 lung cancer cells, in which the TSPYL5 gene was hypermethylated (95%); thus, the expression level of TSPYL5 is much higher in A549 cells than in H460 cells. We showed that TSPYL5 suppression with silencing RNA in A549 cells up-regulated cellular PTEN, followed by down-regulation of AKT activation. Therefore, blockage of TSPYL5 sensitized A549 cells to cytotoxic agents such as {gamma}-radiation. In addition, TSPYL5 suppression also showed an increased level of p21{sup WAF1/Cip1} and subsequently induced inhibition of cell growth in A549 cells. The overexpression of TSPYL5 in H460 cells showed the opposite effects. This study provides the first demonstration that TSPYL5 modulates cell growth and sensitization of cells to the detrimental effects of damaging agents via regulation of p21{sup WAF1/Cip1} and PTEN/AKT pathway.

  13. CEP1612, a dipeptidyl proteasome inhibitor, induces p21WAF1 and p27KIP1 expression and apoptosis and inhibits the growth of the human lung adenocarcinoma A-549 in nude mice.

    PubMed

    Sun, J; Nam, S; Lee, C S; Li, B; Coppola, D; Hamilton, A D; Dou, Q P; Sebti, S M

    2001-02-15

    The ubiquitin proteasome system is responsible for the proteolysis of important cell cycle and apoptosis-regulatory proteins. In this paper we report that the dipeptidyl proteasome inhibitor, phthalimide-(CH2)8CH-(cyclopentyl) CO-Arg(NO2)-Leu-H (CEP1612), induces apoptosis and inhibits tumor growth of the human lung cancer cell line A-549 in an in vivo model. In cultured A-549 cells, CEP1612 treatment results in accumulation of two proteasome natural substrates, the cyclin-dependent kinase inhibitors p21WAF1 and p27KIP1, indicating its ability to inhibit proteasome activity in intact cells. Furthermore, CEP1612 induces apoptosis as evident by caspase-3 activation and poly(ADP-ribose) polymerase cleavage. Treatment of A-549 tumor-bearing nude mice with CEP1612 (10 mg/kg/day, i.p. for 31 days) resulted in massive induction of apoptosis and significant (68%; P < 0.05) tumor growth inhibition, as shown by terminal deoxynucleotidyltransferase-mediated UTP end labeling. Furthermore, immunostaining of tumor specimens demonstrated in vivo accumulation of p21WAF1 and p27KIP1 after CEP1612 treatment. The results suggest that CEP1612 is a promising candidate for further development as an anticancer drug and demonstrate the feasibility of using proteasome inhibitors as novel antitumor agents.

  14. Effect of poly(ADP-ribose)polymerase and DNA topoisomerase I inhibitors on the p53/p63-dependent survival of carcinoma cells.

    PubMed

    Montariello, Daniela; Troiano, Annaelena; Di Girolamo, Daniela; Beneke, Sascha; Calabrò, Viola; Quesada, Piera

    2015-04-01

    Depending on their genetic background (p53(wt) versus p53(null)), carcinoma cells are more or less sensitive to drug-induced cell cycle arrest and/or apoptosis. Among the members of the p53 family, p63 is characterized by two N-terminal isoforms, TAp63 and ΔNp63. TAp63 isoform has p53-like functions, while ΔNp63 acts as a dominant negative inhibitor of p53. We have previously published that TAp63 is involved in poly(ADP-ribose)polymerase-1 (PARP-1) signaling of DNA damage deriving from DNA topoisomerase I (TOP I) inhibition in carcinoma cells. In the present study, we treated MCF7 breast carcinoma cells (p53(+)/ΔNp63(-)) or SCC022 (p53(-)/ΔNp63(+)) squamous carcinoma cells with the TOP I inhibitor topotecan (TPT) and the PJ34 PARP inhibitor, to compare their effects in the two different cell contexts. In MCF7 cells, we found that PJ34 addition reverts TPT-dependent PARP-1 auto-modification and triggers caspase-dependent PARP-1 proteolysis. Moreover, TPT as single agent stimulates p53(ser15) phosphorylation, p53 PARylation and occupancy of the p21WAF promoter by p53 resulting in an increase of p21WAF expression. Interestingly, PJ34 in combination with TPT enhances p53 occupancy at the BAX promoter and is associated with increased BAX protein level. In SCC022 cells, instead, TPT+PJ34 combined treatment reduces the level of the anti-apoptotic ΔNp63α protein without inducing apoptosis. Remarkably, in such cells, either exogenous p53 or TAp63 can rescue the apoptotic program in response to the treatment. All together our results suggest that in cancer cells PARP inhibitor(s) can operate in the choice between growth arrest and apoptosis by modulating p53 family-dependent signal.

  15. A DNA damage signal is required for p53 to activate gadd45.

    PubMed

    Xiao, G; Chicas, A; Olivier, M; Taya, Y; Tyagi, S; Kramer, F R; Bargonetti, J

    2000-03-15

    We provide direct evidence that overexpression of p53 is not sufficient for robust p53-dependent activation of the endogenous gadd45 gene. When p53 was induced in TR9-7 cells in the absence of DNA damage, waf1/p21 and mdm2 mRNA levels were increased, but a change in gadd45 mRNA was barely detectable. Activation of the gadd45 gene was observed when camptothecin was added to cells containing p53 in the absence of a further increase in the p53 level. Phosphorylation of p53 at serine 15 and acetylation at lysine 382 were detected after drug treatment. It has been suggested that p53 posttranslational modification is critical during activation. However, inhibition of these modifications by wortmannin was not sufficient to block the transactivation of gadd45. Interestingly, after camptothecin treatment, increased DNase I sensitivity was detected at the gadd45 promoter, suggesting that an undetermined DNA damage signal is involved in inducing chromatin remodeling at the gadd45 promoter while cooperating with p53 to activate gadd45 transcription.

  16. MST kinases monitor actin cytoskeletal integrity and signal via c-Jun N-terminal kinase stress-activated kinase to regulate p21Waf1/Cip1 stability.

    PubMed

    Densham, Ruth M; O'Neill, Eric; Munro, June; König, Ireen; Anderson, Kurt; Kolch, Walter; Olson, Michael F

    2009-12-01

    As well as providing a structural framework, the actin cytoskeleton plays integral roles in cell death, survival, and proliferation. The disruption of the actin cytoskeleton results in the activation of the c-Jun N-terminal kinase (JNK) stress-activated protein kinase (SAPK) pathway; however, the sensor of actin integrity that couples to the JNK pathway has not been characterized in mammalian cells. We now report that the mammalian Ste20-like (MST) kinases mediate the activation of the JNK pathway in response to the disruption of the actin cytoskeleton. One consequence of actin disruption is the JNK-mediated stabilization of p21(Waf1/Cip1) (p21) via the phosphorylation of Thr57. The expression of MST1 or MST2 was sufficient to stabilize p21 in a JNK- and Thr57-dependent manner, while the stabilization of p21 by actin disruption required MST activity. These data indicate that, in addition to being components of the Salvador-Warts-Hippo tumor suppressor network and binding partners of c-Raf and the RASSF1A tumor suppressor, MST kinases serve to monitor cytoskeletal integrity and couple via the JNK SAPK pathway to the regulation of a key cell cycle regulatory protein.

  17. The C-terminal region of p21SDI1/WAF1/CIP1 is involved in proliferating cell nuclear antigen binding but does not appear to be required for growth inhibition.

    PubMed

    Nakanishi, M; Robetorye, R S; Pereira-Smith, O M; Smith, J R

    1995-07-21

    The cyclin-dependent kinase (Cdk) inhibitor p21SDI1/WAF1/CIP1 has been found to be involved in cell senescence, cell cycle arrest, and differentiation. p21SDI1 inhibits the activity of several Cdks, in contrast to other inhibitors such as p15INK4B and p16INK4A, which act on specific cyclin-Cdk complexes. Of interest were reports that p21SDI1 also bound proliferating cell nuclear antigen (PCNA), an auxiliary protein for DNA polymerase delta, and inhibited DNA replication but not DNA repair in vitro. To better understand the function of this interaction in vivo, we first determined the region of p21SDI1 that was needed for PCNA binding. Analysis of deletion mutants of p21SDI1, which covered the majority of the protein, revealed that deletion of either amino acids 142-147 or 149-154 resulted in loss of ability to bind a glutathione S-transferase-PCNA fusion protein. Site-directed mutagenesis in this region led to the identification of the PCNA binding motif RQXXMTXFYXXXR and demonstrated that mutation of either amino acid Met-147 or Phe-150 resulted in almost complete ablation of PCNA binding. Interestingly, when we determined DNA synthesis inhibitory activity of deletion mutants or point mutants that were unable to bind Cdk2 and/or PCNA, we found that loss of binding to PCNA did not affect inhibitory activity, whereas lack of Cdk2 binding greatly reduced the same. This result suggests that the primary mechanism for inhibition of DNA synthesis by p21SDI1 occurs via inhibition of Cdk activity.

  18. Green Tea Polyphenols Induce p53-Dependent and p53-Independent Apoptosis in Prostate Cancer Cells through Two Distinct Mechanisms

    PubMed Central

    Gupta, Karishma; Thakur, Vijay S.; Bhaskaran, Natarajan; Nawab, Akbar; Babcook, Melissa A.; Jackson, Mark W.; Gupta, Sanjay

    2012-01-01

    Inactivation of the tumor suppressor gene p53 is commonly observed in human prostate cancer and is associated with therapeutic resistance. We have previously demonstrated that green tea polyphenols (GTP) induce apoptosis in prostate cancer cells irrespective of p53 status. However, the molecular mechanisms underlying these observations remain elusive. Here we investigated the mechanisms of GTP-induced apoptosis in human prostate cancer LNCaP cells stably-transfected with short hairpin-RNA against p53 (LNCaPshp53) and control vector (LNCaPshV). GTP treatment induced p53 stabilization and activation of downstream targets p21/waf1 and Bax in a dose-dependent manner specifically in LNCaPshV cells. However, GTP-induced FAS upregulation through activation of c-jun-N-terminal kinase resulted in FADD phosphorylation, caspase-8 activation and truncation of BID, leading to apoptosis in both LNCaPshV and LNCaPshp53 cells. In parallel, treatment of cells with GTP resulted in inhibition of survival pathway, mediated by Akt deactivation and loss of BAD phosphorylation more prominently in LNCaPshp53 cells. These distinct routes of cell death converged to a common pathway, leading to loss of mitochondrial transmembrane potential, cytochrome c release and activation of terminal caspases, resulting in PARP-cleavage. GTP-induced apoptosis was attenuated with JNK inhibitor, SP600125 in both cell lines; whereas PI3K-Akt inhibitor, LY294002 resulted in increased cell death prominently in LNCaPshp53 cells, establishing the role of two distinct pathways of GTP-mediated apoptosis. Furthermore, GTP exposure resulted in inhibition of class I HDAC protein, accumulation of acetylated histone-H3 in total cellular chromatin, resulting in increased accessibility of transcription factors to bind with the promoter sequences of p21/waf1 and Bax, regardless of the p53 status of cells, consistent with effects elicited by an HDAC inhibitor, trichostatin A. These results demonstrate that GTP induces

  19. Expression of p21(Cip1/Waf1/Sdi1) and p27(Kip1) cyclin-dependent kinase inhibitors during human hematopoiesis.

    PubMed

    Taniguchi, T; Endo, H; Chikatsu, N; Uchimaru, K; Asano, S; Fujita, T; Nakahata, T; Motokura, T

    1999-06-15

    Expression of p21 and p27 cyclin-dependent kinase inhibitors is associated with induced differentiation and cell-cycle arrest in some hematopoietic cell lines. However, it is not clear how these inhibitors are expressed during normal hematopoiesis. We examined various human hematopoietic colonies derived from cord blood CD34(+) cells, bone marrow, and peripheral blood cells using a quantitative reverse transcription-polymerase chain reaction assay, immunochemistry, and/or Western blot analysis. p21 mRNA was expressed increasingly over time in all of the colonies examined (granulocytes, macrophages, megakaryocytes, and erythroblasts), whereas p27 mRNA levels remained low, except for erythroid bursts. Erythroid bursts expressed both p21 and p27 mRNAs with differentiation but expressed neither protein, whereas both proteins were expressed in megakaryocytes and peripheral blood monocytes. In bone marrow, p21 was immunostained almost exclusively in a subset of megakaryocytes and p27 protein was present in megakaryocytes, plasma cells, and endothelial cells. In megakaryocytes, reciprocal expression of p27 to Ki-67 was evident and an inverse relationship between p21 and Ki-67 positivities was also present, albeit less obvious. These observations suggest that a complex lineage-specific regulation is involved in p21 and p27 expression and that these inhibitors are involved in cell-cycle exit in megakaryocytes.

  20. Ginsenoside Rb1, Rg1 and three extracts of traditional Chinese medicine attenuate ultraviolet B-induced G1 growth arrest in HaCaT cells and dermal fibroblasts involve down-regulating the expression of p16, p21 and p53.

    PubMed

    Wang, Xiao-Yong; Wang, Yun-Gui; Wang, Yan-Fei

    2011-08-01

    The aims of this study were to confirm whether traditional Chinese medicine ginsenoside Rb1 (Rb1), ginsenoside Rg1 (Rg1), polygonum multiflorum (PM), ginkgo extract (GE) and lycium barbarum polysaccharide (LBP) can attenuate G1 growth arrest of HaCaT cells and dermal fibroblasts induced by 10 subcytotoxic ultraviolet B (UVB) exposures, and to explore the possible mechanism in terms of the expression of cell-cycle regulatory proteins p16, p21 and p53. Ten subcytotoxic exposures to UVB induced G1 growth arrest of HaCaT cells and dermal fibroblasts. Cell-cycle analysis was performed using flow cytometry, and mRNA levels of p16, p21 and p53 were detected by a reverse transcription-polymerase chain reaction (RT-PCR), and protein levels were detected using Western blot analysis. Five types of traditional Chinese medicine attenuated UVB-induced G1 growth arrest. The mRNA and protein levels of p16, p21 and p53 in HaCaT cells and dermal fibroblasts increased after UVB irradiation, but pretreatment with five types of traditional Chinese medicine decreased the expression of p16, p21 and p53. These results indicated that five types of traditional Chinese medicine can attenuate G1 growth arrest of HaCaT cells and dermal fibroblasts induced by UVB exposures, which was caused by down-regulating the expression of cell-cycle regulatory proteins p16, p21 and p53. © 2011 John Wiley & Sons A/S.

  1. Effects of adenovirus-mediated expression of p27Kip1, p21Waf1 and p16INK4A in cell lines derived from t(2;5) anaplastic large cell lymphoma and Hodgkin's disease.

    PubMed

    Turturro, Franceso; Arnold, Marilyn D; Frist, Audrey Y; Seth, Prem

    2002-06-01

    We investigated the response of SUDHL-1 and L428 cells, derived from t(2;5)-anaplastic large cell lymphoma (ALCL) and Hodgkin's disease (HD), respectively, to recombinant adenoviruses expressing cyclin-dependent kinase inhibitors (CDKIs) p27Kip1 (Adp27), p21Waf1 (Adp21) and p16INK4A (Adp16). Cell cycle analysis of SUDHL-1 cells after 24 h of infection with 200 multiplicity of infection (MOI) of Adp27, Adp21, and Adp16, showed very high levels of cell debris in the subG1 area. The magnitude of cell debris-events was Adp27/Adp21 > Adp16. Cell cycle analysis of L428 cells revealed absence of cell debris and increased G2 phase in all the groups of cells tested as compared to the controls (mock and AdNull). A minimal increase in G1 phase was also evident in cells infected with Adp27 (52%) compared to uninfected cells (43%), AdNull (45%) and to cells infected with Adp21 (37%) and Adp16 (31%). The presence of significant levels of Coxsackie-adenovirus receptor (CAR) on the cell surface of L428 cells excluded the cell membrane-barrier as responsible for the differences in cell observed in response to the recombinant adenovirus-mediated CDKIs expression as compared to SUDHL-1. We also showed that the recombinant adenovirus-mediated cytotoxicity measured as apoptosis was MOI- and vector-dependent in SUDHL-1 cells at lower MOI (100). In conclusion, the therapeutic effect induced by recombinant adenoviruses expressing p27Kip1, p21Waf1 and p16INK4A is cell-dependent in cells derived from selected lymphoid malignancies. Biochemical cellular differences more than cell surface barriers seem to be responsible for differences in response to recombinant adenovirus-mediated expression of cytotoxic genes. Moreover, the cytotoxicity of recombinant adenoviruses expressing p27Kip1, p21Waf1 and p16INK4A may be further explored as a tool for gene therapy of t(2;5)-derived ALCL.

  2. Overexpression of serum amyloid A-activating factor 1 inhibits cell proliferation by the induction of cyclin-dependent protein kinase inhibitor p21WAF-1/Cip-1/Sdi-1 expression.

    PubMed

    Ray, Alpana; Shakya, Arvind; Kumar, Deepak; Ray, Bimal K

    2004-04-15

    Inflammation-responsive transcription factor, serum amyloid A-activating factor 1 (SAF-1), has been shown to regulate several genes, including serum amyloid A, gamma-fibrinogen, and matrix metalloproteinase 1, whose abnormal expression is associated with the pathogenesis of arthritis, atherosclerosis, and amyloidosis. Prolonged high level expression of SAF-1 in cultured cells failed to produce any stable cell line that overexpresses SAF-1. To test the fate of SAF-1-overexpressing cells, the cells were monitored for growth and morphological changes over time. The cells that were programmed to overproduce SAF-1 were found to undergo growth arrest and reduce DNA synthesis within 3 days after transfection. These cells undergo marked morphological changes from typical fibroblasts to round morphology and gradually cease to exist. Microarray analysis for cell cycle-specific genes in SAF1-transfected cells identified several candidate genes whose expression levels were altered during SAF-1 overexpression. Cdk inhibitor protein p21 was significantly affected by SAF-1; its expression level was highly induced by cellular conditions where SAF-1 is abundant. The increased level of p21 in the cell drives it to a growth arrest mode, a condition previously found to be controlled by p53. In this study we provide evidence that, similar to p53, SAF-1 is able to activate p21 gene expression by promoting transcription directly via its interaction with the p21 promoter. Together these data indicate that SAF-1 controls cell cycle progression via p21 induction, and pathophysiological conditions that favor overexpression of SAF-1, such as an acute inflammatory condition, can trigger cellular growth arrest.

  3. An inhibitor of cyclin-dependent kinase, stress-induced p21Waf-1/Cip-1, mediates hepatocyte mito-inhibition during the evolution of cirrhosis.

    PubMed

    Lunz, John G; Tsuji, Hirokazu; Nozaki, Isao; Murase, Noriko; Demetris, Anthony J

    2005-06-01

    During the evolution of cirrhosis, there is a relative decrease in volume percentage of hepatocytes and a relative increase in biliary epithelial cells and myofibroblasts. This is recognized histopathologically as a ductular reaction and leads to gradual distortion of the normal hepatic architecture. The final or decompensated stage of cirrhosis is characterized by a further decline in hepatocyte proliferation and loss of functional liver mass that manifests clinically as ascites, encephalopathy, and other signs of liver failure. In this report, we tested the hypothesis that p21-mediated hepatocyte mito-inhibition accelerates the evolution of cirrhosis using an established mouse model of decompensated biliary cirrhosis, p21-deficient mice, and liver tissue from humans awaiting liver replacement. Despite the same insult of long-term (12-week) bile duct ligation, mice prone to decompensation showed significantly more oxidative stress and hepatocyte nuclear p21 expression, which resulted in less hepatocyte proliferation, an exaggerated ductular reaction, and more advanced disease compared with compensation-prone controls. Mice deficient in p21 were better able than wild-type controls to compensate for long-term bile duct ligation because of significantly greater hepatocyte proliferation, which led to a larger liver mass and less architectural distortion. Mito-inhibitory hepatocyte nuclear p21 expression in humans awaiting liver replacement directly correlated with pathological disease stage and model of end-stage liver disease scoring. In conclusion, stress-induced upregulation of hepatocyte p21 inhibits hepatocyte proliferation during the evolution of cirrhosis. These findings have implications for understanding the evolution of cirrhosis and associated carcinogenesis. Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience.wiley.com/jpages/0270-9139/suppmat/index.html).

  4. Novel small molecule induces p53-dependent apoptosis in human colon cancer cells

    SciTech Connect

    Park, Sang Eun; Min, Yong Ki; Ha, Jae Du; Kim, Bum Tae; Lee, Woo Ghil . E-mail: bigguy@krict.re.kr

    2007-07-06

    Using high-throughput screening with small-molecule libraries, we identified a compound, KCG165 [(2-(3-(2-(pyrrolidin-1-yl)ethoxy)-1,10b-dihydro-[1,2,4]triazolo[1,5-c] quinazolin-5(6H)-one)], which strongly activated p53-mediated transcriptional activity. KCG165-induced phosphorylations of p53 at Ser{sup 6}, Ser{sup 15}, and Ser{sup 20}, which are all key residues involved in the activation and stabilization of p53. Consistent with these findings, KCG165 increased level of p53 protein and led to the accumulation of transcriptionally active p53 in the nucleus with the increased occupancy of p53 in the endogenous promoter region of its downstream target gene, p21{sup WAF1/CIP}. Notably, KCG165-induced p53-dependent apoptosis in cancer cells. Furthermore, we suggested topoisomerase II as the molecular target of KCG165. Together, these results indicate that KCG165 may have potential applications as an antitumor agent.

  5. EPO gene expression induces the proliferation, migration and invasion of bladder cancer cells through the p21WAF1‑mediated ERK1/2/NF-κB/MMP-9 pathway.

    PubMed

    Park, Sung Lyea; Won, Se Yeon; Song, Jun-Hui; Kim, Wun-Jae; Moon, Sung-Kwon

    2014-11-01

    Erythropoietin (EPO) is a cytokine that modulates the production of red blood cells. Previous studies have contradicted the assumed role of EPO in tumor cell proliferation. In the present study, we investigated the effect of EPO in the proliferation, migration and invasion that is involved in the signaling pathways and cell-cycle regulation of bladder cancer 5637 cells. The results showed that an overexpression of the EPO gene has a potent stimulatory effect on DNA synthesis, migration and invasion. EPO gene expression increased the expression of matrix metalloproteinase (MMP)-9 via the binding activity of NF-κB, AP-1 and Sp-1 in 5637 cells. The transfection of 5637 cells with the EPO gene induced the phosphorylation of ERK1/2. Treatment with ERK1/2 inhibitor U0126 significantly inhibited the increased proliferation, migration and invasion of EPO gene-transfected cells. U0126 treatment suppressed the induction of MMP-9 expression through NF-κB binding activity in EPO gene transfectants. In addition, EPO gene expression was correlated with the upregulation of cyclins/CDKs and the upregulation of the CDK inhibitor p21WAF1 expression. Finally, the inhibition of p21WAF1 function by siRNA blocked the proliferation, migration, invasion and phosphorylation of ERK1/2 signaling, as well as MMP-9 expression and activation of NF-κB in EPO gene-transfected cells. These novel findings suggest that the molecular mechanisms of EPO contribute to the progression and development of bladder tumors.

  6. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence

    PubMed Central

    Macip, Salvador; Igarashi, Makoto; Fang, Li; Chen, Angus; Pan, Zhen-Qiang; Lee, Sam W.; Aaronson, Stuart A.

    2002-01-01

    The cyclin-dependent kinase (CDK) inhibitor p21Waf1/Cip1/Sdi1 was identified initially as a gene induced in senescent cells and itself has been shown to cause permanent growth arrest/senescence. Reactive oxygen species (ROS), a byproduct of oxidative processes, can also induce an irreversible growth arrest similar to senescence. Here we show that p21 increased intracellular levels of ROS both in normal fibroblasts and in p53-negative cancer cells. N-acetyl-l-cysteine, an ROS inhibitor, rescued p21-induced senescence, showing that ROS elevation is necessary for induction of the permanent growth arrest phenotype. p16Ink4a, a CDK4- and CDK6-specific inhibitor, failed to increase ROS levels, and cell cycle arrest induced by p16 was reversible following its down-regulation, demonstrating the specificity of this p21 effect. A p21 mutant that lacked the ability to bind proliferating cell nuclear antigen (PCNA) retained the ability to induce both ROS and permanent growth arrest. All of these findings establish that p21 mediates senescence by a mechanism involving ROS accumulation which does not require either its PCNA binding or the CDK inhibitory functions shared with p16. PMID:11980715

  7. Δ40p53α suppresses tumor cell proliferation and induces cellular senescence in hepatocellular carcinoma cells

    PubMed Central

    Ota, Akinobu; Sawada, Yumi; Karnan, Sivasundaram; Wahiduzzaman, Md; Inoue, Tadahisa; Kobayashi, Yuji; Yamamoto, Takaya; Ishii, Norimitsu; Ohashi, Tomohiko; Nakade, Yukiomi; Sato, Ken; Itoh, Kiyoaki; Konishi, Hiroyuki; Hosokawa, Yoshitaka; Yoneda, Masashi

    2017-01-01

    ABSTRACT Splice variants of certain genes impact on genetic biodiversity in mammals. The tumor suppressor TP53 gene (encoding p53) plays an important role in the regulation of tumorigenesis in hepatocellular carcinoma (HCC). Δ40p53α is a naturally occurring p53 isoform that lacks the N-terminal transactivation domain, yet little is known about the role of Δ40p53α in the development of HCC. Here, we first report on the role of Δ40p53α in HCC cell lines. In the TP53+/Δ40 cell clones, clonogenic activity and cell survival dramatically decreased, whereas the percentage of senescence-associated β-galactosidase (SA-β-gal)-positive cells and p21 (also known as WAF1, CIP1 and CDKN1A) expression significantly increased. These observations were clearly attenuated in the TP53+/Δ40 cell clones after Δ40p53α knockdown. In addition, exogenous Δ40p53 expression significantly suppressed cell growth in HCC cells with wild-type TP53, and in those that were mutant or null for TP53. Notably, Δ40p53α-induced tumor suppressor activity was markedly attenuated in cells expressing the hot-spot mutant Δ40p53α-R175H, which lacks the transcription factor activity of p53. Moreover, Δ40p53α expression was associated with increased full-length p53 protein expression. These findings enhance the understanding of the molecular pathogenesis of HCC and show that Δ40p53α acts as an important tumor suppressor in HCC cells. PMID:27980070

  8. Antisense oligonucleotides targeted to the p53 gene modulate liver regeneration in vivo.

    PubMed

    Arora, V; Iversen, P L

    2000-02-01

    The rapidly proliferating cells of the regenerating liver after partial hepatectomy (PH) present a reproducible in vivo model to study the functional role of the tumor suppressor gene p53. The present study uses the rat 70% PH model along with systemic administration of three different structural types of antisense oligonucleotides (ODNs) designed to suppress p53 expression. We tested the hypothesis that antisense ODNs can inhibit the expression of p53, resulting in the loss of the G(1)-S cell cycle checkpoint and an altered pattern of liver regeneration. Intraperitoneal administration of 5 mg/kg/day antisense phosphorothioate ODN after 70% PH resulted in reduced expression of the p53 protein in the regenerating liver. There were concomitant increases in weight gain of remnant-regenerating liver and expression of proliferating cell nuclear antigen and p21(waf-1) compared with either saline or 5 mg/kg/day mispaired phosphorothioate ODN treatment. Flow cytometric analysis of DNA content of isolated hepatocytes revealed a reduction in the G(0)/G(1) cell population and accumulation of cells with more than 4n DNA in antisense-treated rats. The regenerating livers had significantly diminished cytochrome P-450 (CYP) enzyme activities. Rats treated with p53 antisense ODNs, but not saline or mispair ODN controls, had significantly elevated CYP activities. These observations functionally link the expression of p53 with diminished expression of several CYP isoforms in the liver regeneration model.

  9. p21 shapes cancer evolution.

    PubMed

    Romanov, Vasily S; Rudolph, K Lenhard

    2016-06-28

    Although known to induce cellular senescence, an important tumour suppressor mechanism, mutation of CDKN1A - the gene encoding p21 (also known as WAF1 or CIP1) - is rare in human cancers. Now, a study reports a previously unappreciated oncogenic effect of p21 overexpression that shapes cancer genome evolution through induction of replication stress.

  10. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage.

    PubMed

    Karimian, Ansar; Ahmadi, Yasin; Yousefi, Bahman

    2016-06-01

    An appropriate control over cell cycle progression depends on many factors. Cyclin-dependent kinase (CDK) inhibitor p21 (also known as p21(WAF1/Cip1)) is one of these factors that promote cell cycle arrest in response to a variety of stimuli. The inhibitory effect of P21 on cell cycle progression correlates with its nuclear localization. P21 can be induced by both p53-dependent and p53-independent mechanisms. Some other important functions attributed to p21 include transcriptional regulation, modulation or inhibition of apoptosis. These functions are largely dependent on direct p21/protein interactions and also on p21 subcellular localizations. In addition, p21 can play a role in DNA repair by interacting with proliferating cell nuclear antigen (PCNA). In this review, we will focus on the multiple functions of p21 in cell cycle regulation, apoptosis and gene transcription after DNA damage and briefly discuss the pathways and factors that have critical roles in p21 expression and activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Borna Disease Virus Phosphoprotein Represses p53-Mediated Transcriptional Activity by Interference with HMGB1

    PubMed Central

    Zhang, Guoqi; Kobayashi, Takeshi; Kamitani, Wataru; Komoto, Satoshi; Yamashita, Makiko; Baba, Satoko; Yanai, Hideyuki; Ikuta, Kazuyoshi; Tomonaga, Keizo

    2003-01-01

    Borna disease virus (BDV) is a noncytolytic, neurotropic RNA virus that has a broad host range in warm-blooded animals, probably including humans. Recently, it was demonstrated that a 24-kDa phosphoprotein (P) of BDV directly binds to a multifunctional protein, amphoterin-HMGB1, and inhibits its function in cultured neural cells (W. Kamitani, Y. Shoya, T. Kobayashi, M. Watanabe, B. J. Lee, G. Zhang, K. Tomonaga, and K. Ikuta, J. Virol. 75:8742-8751, 2001). This observation suggested that expression of BDV P may cause deleterious effects in cellular functions by interference with HMGB1. In this study, we further investigated the significance of the binding between P and HMGB1. We demonstrated that P directly binds to the A-box domain on HMGB1, which is also responsible for interaction with a tumor suppression factor, p53. Recent works have demonstrated that binding between HMGB1 and p53 enhances p53-mediated transcriptional activity. Thus, we examined whether BDV P affects the transcriptional activity of p53 by interference with HMGB1. Mammalian two-hybrid analysis revealed that p53 and P competitively interfere with the binding of each protein to HMGB1 in a p53-deficient cell line, NCI-H1299. In addition, P was able to significantly decrease p53-mediated transcriptional activation of the cyclin G promoter. Furthermore, we showed that activation of p21waf1 expression was repressed in cyclosporine-treated BDV-infected cells, as well as p53-transduced NCI-H1299 cells. These results suggested that BDV P may be a unique inhibitor of p53 activity via binding to HMGB1. PMID:14581561

  12. Bioluminescence Imaging Captures the Expression and Dynamics of Endogenous p21 Promoter Activity in Living Mice and Intact Cells▿

    PubMed Central

    Tinkum, Kelsey L.; Marpegan, Luciano; White, Lynn S.; Sun, Jinwu; Herzog, Erik D.; Piwnica-Worms, David; Piwnica-Worms, Helen

    2011-01-01

    To interrogate endogenous p21WAF1/CIP1 (p21) promoter activity under basal conditions and in response to various forms of stress, knock-in imaging reporter mice in which expression of firefly luciferase (FLuc) was placed under the control of the endogenous p21 promoter within the Cdkn1a gene locus were generated. Bioluminescence imaging (BLI) of p21 promoter activity was performed noninvasively and repetitively in mice and in cells derived from these mice. We demonstrated that expression of FLuc accurately reported endogenous p21 expression at baseline and under conditions of genotoxic stress and that photon flux correlated with mRNA abundance and, therefore, bioluminescence provided a direct readout of p21 promoter activity in vivo. BLI confirmed that p53 was required for activation of the p21 promoter in vivo in response to ionizing radiation. Interestingly, imaging of reporter cells demonstrated that p53 prevents the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway from activating p21 expression when quiescent cells are stimulated with serum to reenter the cell cycle. In addition, low-light BLI identified p21 expression in specific regions of individual organs that had not been observed previously. This inducible p21FLuc knock-in reporter strain will facilitate imaging studies of p53-dependent and -independent stress responses within the physiological context of the whole animal. PMID:21791610

  13. Myeloid progenitor cells lacking p53 exhibit delayed up-regulation of Puma and prolonged survival after cytokine deprivation

    PubMed Central

    Daunt, Carmel P.; Green, Benjamin D.; Vogel, Sandra; Gordon, Lavinia; Lee, Rachel S.; Silke, Natasha; Pearson, Richard B.; Vandenberg, Cassandra J.; Kelly, Priscilla N.; Nutt, Stephen L.; Strasser, Andreas; Borner, Christoph

    2010-01-01

    Loss of p53-dependent apoptosis contributes to the development of hematologic malignancies and failure to respond to treatment. Proapoptotic Bcl-2 family member Puma is essential for apoptosis in HoxB8-immortalized interleukin-3 (IL-3)–dependent myeloid cell lines (FDM cells) provoked by IL-3 deprivation. p53 and FoxO3a can transcriptionally regulate Puma. To investigate which transcriptional regulator is responsible for IL-3 deprivation-induced Puma expression and apoptosis, we generated wild-type (WT), p53−/−, and FoxO3a−/− FDM cells and found that p53−/− but not FoxO3a−/− cells were protected against IL-3 withdrawal. Loss of p21cip/waf, which is critical for p53-mediated cell-cycle arrest, afforded no protection against IL-3 deprivation. A survival advantage was also observed in untransformed p53−/− hematopoietic progenitor cells cultured in the presence or absence of cytokines. In response to IL-3 deprivation, increased Puma protein levels in p53−/− cells were substantially delayed compared with WT cells. Increased p53 transcriptional activity was detected after cytokine deprivation. This was substantially less than that induced by DNA damage and associated not with increased p53 protein levels but with loss of the p53 regulator, MDM2. Thus, we conclude that p53 protein is activated after IL-3 deprivation by loss of MDM2. Activated p53 transcriptionally up-regulates Puma, which initiates apoptosis. PMID:19965665

  14. A Novel Sirtuin 2 (SIRT2) Inhibitor with p53-dependent Pro-apoptotic Activity in Non-small Cell Lung Cancer*

    PubMed Central

    Hoffmann, Gesine; Breitenbücher, Frank; Schuler, Martin; Ehrenhofer-Murray, Ann E.

    2014-01-01

    Sirtuin 2 (SIRT2) is an NAD+-dependent protein deacetylase whose targets include histone H4 lysine 16, p53, and α-tubulin. Because deacetylation of p53 regulates its effect on apoptosis, pharmacological inhibition of SIRT2-dependent p53 deacetylation is of great therapeutic interest for the treatment of cancer. Here, we have identified two structurally related compounds, AEM1 and AEM2, which are selective inhibitors of SIRT2 (IC50 values of 18.5 and 3.8 μm, respectively), but show only weak effects on other sirtuins such as SIRT1, SIRT3, and yeast Sir2. Interestingly, both compounds sensitized non-small cell lung cancer cell lines toward the induction of apoptosis by the DNA-damaging agent etoposide. Importantly, this sensitization was dependent on the presence of functional p53, thus establishing a link between SIRT2 inhibition by these compounds and p53 activation. Further, treatment with AEM1 and AEM2 led to elevated levels of p53 acetylation and to increased expression of CDKN1A, which encodes the cell cycle regulator p21WAF1, as well as the pro-apoptotic genes PUMA and NOXA, three transcriptional targets of p53. Altogether, our data suggest that inhibition of SIRT2 by these compounds causes increased activation of p53 by decreasing SIRT2-dependent p53 deacetylation. These compounds thus provide a good opportunity for lead optimization and drug development to target p53-proficient cancers. PMID:24379401

  15. MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing mutant p53 gain of function

    PubMed Central

    Donzelli, S; Fontemaggi, G; Fazi, F; Di Agostino, S; Padula, F; Biagioni, F; Muti, P; Strano, S; Blandino, G

    2012-01-01

    p53 mutations have profound effects on non-small-cell lung cancer (NSCLC) resistance to chemotherapeutic treatments. Mutant p53 proteins are usually expressed at high levels in tumors, where they exert oncogenic functions. Here we show that p53R175H, a hotspot p53 mutant, induces microRNA (miRNA)-128-2 expression. Mutant p53 binds to the putative promoter of miR128-2 host gene, ARPP21, determining a concomitant induction of ARPP21 mRNA and miR-128-2. miR-128-2 expression in lung cancer cells inhibits apoptosis and confers increased resistance to cisplatin, doxorubicin and 5-fluorouracyl treatments. At the molecular level, miR-128-2 post-transcriptionally targets E2F5 and leads to the abrogation of its repressive activity on p21waf1 transcription. p21waf1 protein localizes to the cytoplasmic compartment, where it exerts an anti-apoptotic effect by preventing pro-caspase-3 cleavage. This study emphasizes miRNA-128-2 role as a master regulator in NSCLC chemoresistance. PMID:22193543

  16. Pleurotus ostreatus inhibits proliferation of human breast and colon cancer cells through p53-dependent as well as p53-independent pathway

    PubMed Central

    JEDINAK, ANDREJ; SLIVA, DANIEL

    2009-01-01

    In spite of the global consumption of mushrooms, only two epidemiological studies demonstrated an inverse correlation between mushroom intake and the risk of cancer. Therefore, in the present study we evaluated whether extracts from edible mushrooms Agaricus bisporus (portabella), Flammulina velutipes (enoki), Lentinula edodes (shiitake) and Pleurotus ostreatus (oyster) affect the growth of breast and colon cancer cells. Here, we identified as the most potent, P. ostreatus (oyster mushroom) which suppressed proliferation of breast cancer (MCF-7, MDA-MB-231) and colon cancer (HT-29, HCT-116) cells, without affecting proliferation of epithelial mammary MCF-10A and normal colon FHC cells. Flow cytometry revealed that the inhibition of cell proliferation by P. ostreatus was associated with the cell cycle arrest at G0/G1 phase in MCF-7 and HT-29 cells. Moreover, P. ostreatus induced the expression of the tumor suppressor p53 and cyclin-dependent kinase inhibitor p21(CIP1/WAF1), whereas inhibited the phosphorylation of retinoblastoma Rb protein in MCF-7 cells. In addition, P. ostreatus also up-regulated expression of p21 and inhibited Rb phosphorylation in HT-29 cells, suggesting that that P. ostreatus suppresses the proliferation of breast and colon cancer cells via p53-dependent as well as p53-independent pathway. In conclusion, our results indicated that the edible oyster mushroom has potential therapeutic/preventive effects on breast and colon cancer. PMID:19020765

  17. A Single Mutant, A276S of p53 Turns the Switch to Apoptosis

    PubMed Central

    Reaz, Shams; Mossalam, Mohanad; Okal, Abood; Lim, Carol. S.

    2013-01-01

    The tumor suppressor protein p53 induces apoptosis, cell cycle arrest, and DNA repair along with other functions in a transcription-dependent manner1. The selection of these functions depends on sequence-specific recognition of p53 to a target decameric sequence of gene promoters2. Amino acid residues in p53 that directly bind to DNA were analyzed, and the replacement of A276 in p53 with selected amino acids elucidated its importance in promoter transcription. For most apoptotic and cell cycle gene promoters, position 9 of the target decameric sequence is a cytosine while for DNA repair gene promoters, thymine is found instead. Therefore, selective binding to the cytosine at the 9th position may transcribe apoptotic gene promoters and thus can induce apoptosis and cell cycle arrest. Molecular modeling with PyMOL indicated that substitution of a hydrophilic residue, A276S, would prefer binding to cytosine at the 9th position of the target decameric sequence whereas substitution of a hydrophobic residue (A276F) would fail to do so. Correspondingly, A276S demonstrated higher transcription of PUMA, PERP, and p21WAF1/CIP1gene promoters containing a cytosine at the 9th position and lower transcription of GADD45 gene promoter containing a thymine at the 9th position compared to wild-type p53. Cell cycle analysis showed that A276S maintained similar G1/G0 phase arrest as wild-type p53. Additionally, A276S induced higher apoptosis than wild-type p53 as measured by DNA segmentation and 7-AAD assay. Since the status of endogenous p53 can influence the activity of the exogenous p53, we examined the activity of A276S in HeLa cells (wild-type endogenous p53) in addition to T47D cells (mutated and mislocalized endogenous p53). The same apoptotic trend in both cell lines suggested A276S can induce cell death regardless of endogenous p53 status. Cell proliferation assay depicted that A276S efficiently reduced the viability of T47D cells more than wild-type p53 over time. We

  18. Adenovirus-mediated p53 gene transduction inhibits telomerase activity independent of its effects on cell cycle arrest and apoptosis in human pancreatic cancer cells.

    PubMed

    Kusumoto, M; Ogawa, T; Mizumoto, K; Ueno, H; Niiyama, H; Sato, N; Nakamura, M; Tanaka, M

    1999-08-01

    Evidence for a relationship between overexpression of wild-type p53 and telomerase activity remains controversial. We investigated whether p53 gene transduction could cause telomerase inhibition in pancreatic cancer cell lines, focusing on the relation of transduction to growth arrest, cell cycle arrest, and apoptotic cell death. The cells were infected with recombinant adenovirus expressing wild-type p53 or p21WAF1 at a multiplicity of infection of 100 or were continuously exposed to 10 microM VP-16, which is well known to induce apoptosis. Adenovirus-mediated p53 gene transduction caused G1 cell cycle arrest, apoptosis, and resultant growth inhibition in MIA PaCa-2 cells; the cell number 2 days after infection was 50% of preinfection value, and 13% of the cells were dead. Moreover, the transduction resulted in complete depression of telomerase activity through down-regulation of hTERT mRNA expression. In contrast, p21WAF1 gene transduction only arrested cell growth and cell cycle at G1 phase, and VP-16 treatment inhibited cell growth with G2-M arrest and apoptosis; after treatment, the cell number was 73% of pretreatment, and 12% of the cells were dead. Neither p21WAF1 gene transduction nor VP-16 treatment caused telomerase inhibition. Similar results were obtained in two other pancreatic cancer cell lines, SUIT-2 and AsPC-1. Thus, our results demonstrate that the p53 gene transduction directly inhibits telomerase activity, independent of its effects on cell growth arrest, cell cycle arrest, and apoptosis.

  19. FHL2 mediates p53-induced transcriptional activation through a direct association with HIPK2

    SciTech Connect

    Lee, Sang-Wang . E-mail: umsj@sejong.ac.kr

    2006-01-27

    To understand the molecular mechanism underlying HIPK2 regulation of the transcriptional activation by p53, we sought to identify the protein that interacts with HIPK2. From our yeast two-hybrid screen, we found that four and a half LIM domains 2 (FHL2) could bind to the C-terminal half of HIPK2. Further assays in yeast mapped the minimal interaction domain to amino acids 812-907 in HIPK2. The interaction was confirmed using a GST pull-down assay in vitro, and an immunoprecipitation (IP) assay and fluorescence microscopy in vivo. FHL2 alone spread throughout both the cytoplasm and nucleus but was redistributed to dot-like structures in the nucleus when HIPK2 was coexpressed in HEK293 cells. When tethered to the Gal4-responsive promoter through the Gal4 DBD fusion, FHL2 showed autonomous transcriptional activity that was enhanced by wild-type HIPK2, but not by the kinase-defective mutant. In addition, FHL2 increased the p53-dependent transcriptional activation and had an additive effect on the activation when coexpressed with HIPK2, which was again not observed with the kinase-defective mutant of HIPK2. Finally, we found a ternary complex of p53, HIPK2, and FHL2 using IP, and their recruitment to the p53-responsive p21Waf1 promoter in chromatin IP assays. Overall, our findings indicate that FHL2 can also regulate p53 via a direct association with HIPK2.

  20. The Ews/Fli-1 fusion gene changes the status of p53 in neuroblastoma tumor cell lines.

    PubMed

    Rorie, Checo J; Weissman, Bernard E

    2004-10-15

    One hallmark of Ewing's sarcoma/peripheral neuroectodermal tumors is the presence of the Ews/Fli-1 chimeric oncogene. Interestingly, infection of neuroblastoma tumor cell lines with Ews/Fli-1 switches the differentiation program of neuroblastomas to Ewing's sarcoma/peripheral neuroectodermal tumors. Here we examined the status of cytoplasmically sequestered wt-p53 in neuroblastomas after stable expression of Ews/Fli-1. Immunofluorescence revealed that in the neuroblastoma-Ews/Fli-1 infectant cell lines, p53 went from a punctate-pattern of cytoplasmic sequestration to increased nuclear localization. Western blot analysis revealed that PARC was down-regulated in one neuroblastoma cell line but not expressed in the second. Therefore, decreased PARC expression could not fully account for relieving p53 sequestration in the neuroblastoma tumor cells. Neuroblastoma-Ews/Fli-1 infectant cell lines showed marked increases in p53 protein expression without transcriptional up-regulation. Interestingly, p53 was primarily phosphorylated, without activation of its downstream target p21(WAF1). Western blot analysis revealed that whereas MDM2 gene expression does not change, p14(ARF), a negative protein regulator of MDM2, increases. These observations suggest that the downstream p53 pathway may be inactivated as a result of abnormal p53. We also found that p53 has an extended half-life in the neuroblastoma-Ews/Fli-1 infectants despite the retention of a wild-type sequence in neuroblastoma-Ews/Fli-1 infectant cell lines. We then tested the p53 response pathway and observed that the neuroblastoma parent cells responded to genotoxic stress, whereas the neuroblastoma-Ews/Fli-1 infectants did not. These results suggest that Ews/Fli-1 can directly abrogate the p53 pathway to promote tumorigenesis. These studies also provide additional insight into the relationship among the p53 pathway proteins.

  1. The role of tumor protein 53 mutations in common human cancers and targeting the murine double minute 2-p53 interaction for cancer therapy.

    PubMed

    Hamzehloie, Tayebeh; Mojarrad, Majid; Hasanzadeh Nazarabadi, Mohammad; Shekouhi, Sahar

    2012-03-01

    The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. The main function of P53 is to organize cell defense against cancerous transformation. P53 is a potent transcription factor that is activated in response to diverse stresses, leading to the induction of cell cycle arrest, apoptosis or senescence. The P53 tumor suppressor is negatively regulated in cells by the murine double minute 2 (MDM2) protein. Murine double minute 2 favors its nuclear export, and stimulates its degradation. Inhibitors of the P53-MDM2 interaction might be attractive new anticancer agents that could be used to activate wild-type P53 in tumors. Down regulation of MDM2 using an small interfering RNA (siRNA) approach has recently provided evidence for a new role of MDM2 in the P53 response, by modulating the inhibition of the cyclindependent kinase 2 (cdk2) by P21/WAF1 (also known as cyclin-dependent kinase inhibitor 1 or CDK-interacting protein 1).

  2. HER-2, p53, p21 and hormonal receptors proteins expression as predictive factors of response and prognosis in locally advanced breast cancer treated with neoadjuvant docetaxel plus epirubicin combination

    PubMed Central

    Tiezzi, Daniel G; Andrade, Jurandyr M; Ribeiro-Silva, Alfredo; Zola, Fábio E; Marana, Heitor RC; Tiezzi, Marcelo G

    2007-01-01

    Background Neoadjuvant chemotherapy has been considered the standard care in locally advanced breast cancer. However, about 20% of the patients do not benefit from this clinical treatment and, predictive factors of response were not defined yet. This study was designed to evaluate the importance of biological markers to predict response and prognosis in stage II and III breast cancer patients treated with taxane and anthracycline combination as neoadjuvant setting. Methods Sixty patients received preoperative docetaxel (75 mg/m2) in combination with epirubicin (50 mg/m2) in i.v. infusion in D1 every 3 weeks after incisional biopsy. They received adjuvant chemotherapy with CMF or FEC, attaining axillary status following definitive breast surgery. Clinical and pathologic response rates were measured after preoperative therapy. We evaluated the response rate to neoadjuvant chemotherapy and the prognostic significance of clinicopathological and immunohistochemical parameters (ER, PR, p51, p21 and HER-2 protein expression). The median patient age was 50.5 years with a median follow up time 48 months after the time of diagnosis. Results Preoperative treatment achieved clinical response in 76.6% of patients and complete pathologic response in 5%. The clinical, pathological and immunohistochemical parameters were not able to predict response to therapy and, only HER2 protein overexpression was associated with a decrease in disease free and overall survival (P = 0.0007 and P = 0.003) as shown by multivariate analysis. Conclusion Immunohistochemical phenotypes were not able to predict response to neoadjuvant chemotherapy. Clinical response is inversely correlated with a risk of death in patients submitted to neoadjuvant chemotherapy and HER2 overexpression is the major prognostic factor in stage II and III breast cancer patients treated with a neoadjuvant docetaxel and epirubicin combination. PMID:17324279

  3. Anti-lung cancer potential of pure esteric-glycoside condurangogenin A against nonsmall-cell lung cancer cells in vitro via p21/p53 mediated cell cycle modulation and DNA damage-induced apoptosis

    PubMed Central

    Sikdar, Sourav; Mukherjee, Avinaba; Khuda-Bukhsh, Anisur Rahman

    2015-01-01

    Background: Marsdenia condurango (condurango) is a tropical woody vine native to South America. Our earlier study was limited to evaluation of anti-cancer potentials of crude condurango extract and its glycoside-rich components in vitro on lung cancer. Objective: This study aims at evaluating the effect of the single isolated active ingredient condurangogenin A (ConA; C32H42O7) on A549, H522 and H460-nonsmall-cell lung cancer cells. Materials and Methods: ConA was isolated by column chromatography and analyzed by mass spectroscopy, Fourier transform infrared spectroscopy and proton-nuclear magnetic resonance. diphenyltetrazolium bromide assays were conducted on three cell-types using 6%-alcohol as control. Critical studies on cellular morphology, cell-cycle regulation, reactive oxygen species, mitochondrial membrane potential, and DNA-damage were made, and expressions of related signaling markers studied. Results: As IC50 doses of ConA proved to be too high and toxic to both A549 and H522 cells, all experimental studies were carried out on H460 cells with the IC50 dose (32 μg/ml − 24 h). Cellular morphology revealed typical apoptotic features after ConA treatment. At early treatment hours (2 h-12 h), maximum cells were arrested at G0/G1 phase that could be correlated with reduced level of cyclin D1-CDK with p21 up-regulation. At 18 h − 24 h, sub G0/G1 cell population was increased gradually, as revealed from cytochrome-c release and caspase-3 activation, further confirming the apoptosis-inducing ability of ConA at later phases. Gradual increase of TUNEL-positive cells with significant modulation of mitochondria-dependent apoptotic markers at longer time-points would establish apoptosis-induction property of ConA, indicating its potential as a strong candidate for anti-cancer drug formulation. Conclusion: Further studies are warranted against other types of cancer cells and animal models before its possible human use. PMID:26109778

  4. ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase.

    PubMed Central

    Vaziri, H; West, M D; Allsopp, R C; Davison, T S; Wu, Y S; Arrowsmith, C H; Poirier, G G; Benchimol, S

    1997-01-01

    Telomere loss has been proposed as a mechanism for counting cell divisions during aging in normal somatic cells. How such a mitotic clock initiates the intracellular signalling events that culminate in G1 cell cycle arrest and senescence to restrict the lifespan of normal human cells is not known. We investigated the possibility that critically short telomere length activates a DNA damage response pathway involving p53 and p21(WAF1) in aging cells. We show that the DNA binding and transcriptional activity of p53 protein increases with cell age in the absence of any marked increase in the level of p53 protein, and that p21(WAF1) promoter activity in senescent cells is dependent on both p53 and the transcriptional co-activator p300. Moreover, we detected increased specific activity of p53 protein in AT fibroblasts, which exhibit accelerated telomere loss and undergo premature senescence, compared with normal fibroblasts. We investigated the possibility that poly(ADP-ribose) polymerase is involved in the post-translational activation of p53 protein in aging cells. We show that p53 protein can associate with PARP and inhibition of PARP activity leads to abrogation of p21 and mdm2 expression in response to DNA damage. Moreover, inhibition of PARP activity leads to extension of cellular lifespan. In contrast, hyperoxia, an activator of PARP, is associated with accelerated telomere loss, activation of p53 and premature senescence. We propose that p53 is post-translationally activated not only in response to DNA damage but also in response to the critical shortening of telomeres that occurs during cellular aging. PMID:9312059

  5. Zinc induces apoptosis on cervical carcinoma cells by p53-dependent and -independent pathway.

    PubMed

    Bae, Seog Nyeon; Lee, Keun Ho; Kim, Jin Hwi; Lee, Sung Jong; Park, Lae Ok

    2017-02-26

    There is evidence that the mineral zinc is involved in the apoptotic cell death of various carcinoma cells. In this study, we aim to determine whether zinc in the form of CIZAR induces apoptosis in cervical carcinoma cells by increasing intracellular zinc concentration. CaSki and HeLa cervical carcinoma cells and HPV-16 DNA-transformed keratinocyte (CRL2404) were treated with different concentrations of CIZAR. The cell viability test was carried out, the intracellular level of zinc was determined, and apoptosis was confirmed by flow cytometry after propidium iodide (PI) staining and fluorescence microscopy under DAPI staining. The expression of cell-cycle regulators was analyzed by Western blot, including the knock down of p53 and expression of HPV E6 and E7 genes by RT-PCR. Intracellular zinc accumulation induced the down-regulation of E6/E7 proteins through targeting of the specific transcriptional factors in the upstream regulatory region. p53 was induced after CIZAR treatment and p53-dependent apoptosis did not occur after knock down by p53 siRNA. In cervical carcinoma cells, regardless of HPV-infection, CIZAR induces apoptosis by the activation of the p53-independent pathways through the up-regulation of p21waf1, the down-regulation of c-Myc, and by decreasing the Bcl-2/Bax ratio. CIZAR induces apoptosis not only through the restoration of p53/Rb-dependent pathways in HPV-positive cells, but also through the activation of p53/Rb-independent pathways and the mitochondrial death-signal pathway in cervical carcinoma cells regardless of HPV-infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Survivin safeguards chromosome numbers and protects from aneuploidy independently from p53

    PubMed Central

    2014-01-01

    Background Survivin, a member of the inhibitor of apoptosis (IAP) gene family, has a dual role in mitosis and in apoptosis. It is abundantly expressed in every human tumor, compared with normal tissues. During mitosis Survivin assembles with the chromosomal passenger complex and regulates chromosomal segregation. Here, we aim to explore whether interference with the mitotic function of Survivin is linked to p53-mediated G1 cell cycle arrest and affects chromosomal stability. Methods In this study, we used HCT116, SBC-2, and U87-MG and generated corresponding isogenic p53-deficient cells. Retroviral vectors were used to stably knockdown Survivin. The resulting phenotype, in particular the mechanisms of cell cycle arrest and of initiation of aneuploidy, were investigated by Western Blot analysis, confocal laser scan microscopy, proliferation assays, spectral karyotyping and RNAi. Results In all cell lines Survivin-RNAi did not induce instant apoptosis but caused polyplodization irrespective of p53 status. Strikingly, polyploidization after knockdown of Survivin resulted in merotelic kinetochore spindle assemblies, γH2AX-foci, and DNA damage response (DDR), which was accompanied by a transient p53-mediated G1-arrest. That p53 wild type cells specifically arrest due to DNA damage was shown by simultaneous inhibition of ATM and DNA-PK, which abolished induction of p21waf/cip. Cytogenetic analysis revealed chromosomal aberrations indicative for DNA double strand break repair by the mechanism of non-homologous end joining (NHEJ), only in Survivin-depleted cells. Conclusion Our findings suggest that Survivin plays an essential role in proper amphitelic kinetochore-spindle assembly and that constraining Survivin’s mitotic function results in polyploidy and aneuploidy which cannot be controlled by p53. Therefore, Survivin critically safeguards chromosomal stability independently from p53. PMID:24886358

  7. SET1 and p300 Act Synergistically, through Coupled Histone Modifications, in Transcriptional Activation by p53

    PubMed Central

    Tang, Zhanyun; Chen, Wei-Yi; Shimada, Miho; Nguyen, Uyen T.T.; Kim, Jaehoon; Sun, Xiao-Jian; Sengoku, Toru; McGinty, Robert K.; Fernandez, Joseph P.; Muir, Tom W.; Roeder, Robert G.

    2014-01-01

    SUMMARY The H3K4me3 mark in chromatin is closely correlated with actively transcribed genes, although the mechanisms involved in its generation and function are not fully understood. In vitro studies with recombinant chromatin and purified human factors demonstrate a robust SET1 complex (SET1C)-mediated H3K4 trimethylation that is dependent upon p53- and p300-mediated H3 acetylation, a corresponding SET1C-mediated enhancement of p53- and p300-dependent transcription that reflects a primary effect of SET1C through H3K4 trimethylation, and direct SET1C-p53 and SET1C-p300 interactions indicative of a targeted recruitment mechanism. Complementary cell-based assays demonstrate a DNA-damage-induced p53-SET1C interaction, a corresponding enrichment of SET1C and H3K4me3 on a p53 target gene (p21/WAF1), and a corresponding codependency of H3K4 trimethylation and transcription upon p300 and SET1C. These results establish a mechanism in which SET1C and p300 act cooperatively, through direct interactions and coupled histone modifications, to facilitate the function of p53. PMID:23870121

  8. p53-inducible long non-coding RNA PICART1 mediates cancer cell proliferation and migration.

    PubMed

    Cao, Yu; Lin, Minglin; Bu, Yiwen; Ling, Hongyan; He, Yingchun; Huang, Chenfei; Shen, Yi; Song, Bob; Cao, Deliang

    2017-05-01

    Long non-coding RNAs (lncRNAs) function in the development and progression of cancer, but only a small portion of lncRNAs have been characterized to date. A novel lncRNA transcript, 2.53 kb in length, was identified by transcriptome sequencing analysis, and was named p53-inducible cancer-associated RNA transcript 1 (PICART1). PICART1 was found to be upregulated by p53 through a p53-binding site at -1808 to -1783 bp. In breast and colorectal cancer cells and tissues, PICART1 expression was found to be decreased. Ectopic expression of PICART1 suppressed the growth, proliferation, migration, and invasion of MCF7, MDA-MB-231 and HCT116 cells whereas silencing of PICART1 stimulated cell growth and migration. In these cells, the expression of PICART1 suppressed levels of p-AKT (Thr308 and Ser473) and p-GSK3β (Ser9), and accordingly, β-catenin, cyclin D1 and c-Myc expression were decreased, while p21Waf/cip1 expression was increased. Together these data suggest that PICART1 is a novel p53-inducible tumor-suppressor lncRNA, functioning through the AKT/GSK3β/β-catenin signaling cascade.

  9. Effect of an hdm-2 antagonist peptide inhibitor on cell cycle progression in p53-deficient H1299 human lung carcinoma cells.

    PubMed

    VanderBorght, A; Valckx, A; Van Dun, J; Grand-Perret, T; De Schepper, S; Vialard, J; Janicot, M; Arts, J

    2006-10-26

    The hdm-2 oncogene is overexpressed in several types of malignancies including osteosarcomas, soft tissue sarcomas and gliomas and hdm-2 has been associated with accelerated tumor formation in both hereditary and sporadic cancers. Among the other key binding partners, hdm-2 forms a complex with the tumor suppressor p53, resulting in a rapid proteasome-mediated degradation of the p53 protein. This positions the hdm-2-p53 complex as an attractive target for the development of anticancer therapy and recently the first small molecule hdm-2 antagonist has been reported. Development of hdm-2 antagonists is currently focused on malignancies containing a wild-type p53 genotype, which is the case in approximately half of human cancer indications. However, hdm-2 has also been implicated in oncogenesis in the absence of p53. We therefore studied the effect of hdm-2 antagonists in p53-deficient human H1299 lung carcinoma cells. The hdm-2 antagonistic peptide caused G1 cell cycle arrest, inhibited colony growth and induced expression of G1 checkpoint regulatory proteins, such as p21(waf1,cip1). These data demonstrate that hdm-2 regulates the G1 cell cycle checkpoint in a p53-independent manner, suggesting that hdm-2 antagonists represent a novel class of anticancer therapeutics with broad applicability towards tumors with different p53 genetic backgrounds.

  10. Arsenite induced poly(ADP-ribosyl)ation of tumor suppressor P53 in human skin keratinocytes as a possible mechanism for carcinogenesis associated with arsenic exposure

    SciTech Connect

    Komissarova, Elena V.; Rossman, Toby G.

    2010-03-15

    Arsenite is an environmental pollutant. Exposure to inorganic arsenic in drinking water is associated with elevated cancer risk, especially in skin. Arsenite alone does not cause skin cancer in animals, but arsenite can enhance the carcinogenicity of solar UV. Arsenite is not a significant mutagen at non-toxic concentrations, but it enhances the mutagenicity of other carcinogens. The tumor suppressor protein P53 and nuclear enzyme PARP-1 are both key players in DNA damage response. This laboratory demonstrated earlier that in cells treated with arsenite, the P53-dependent increase in p21{sup WAF1/CIP1} expression, normally a block to cell cycle progression after DNA damage, is deficient. Here we show that although long-term exposure of human keratinocytes (HaCaT) to a nontoxic concentration (0.1 muM) of arsenite decreases the level of global protein poly(ADP-ribosyl)ation, it increases poly(ADP-ribosyl)ation of P53 protein and PARP-1 protein abundance. We also demonstrate that exposure to 0.1 muM arsenite depresses the constitutive expression of p21 mRNA and P21 protein in HaCaT cells. Poly(ADP-ribosyl)ation of P53 is reported to block its activation, DNA binding and its functioning as a transcription factor. Our results suggest that arsenite's interference with activation of P53 via poly(ADP-ribosyl)ation may play a role in the comutagenic and cocarcinogenic effects of arsenite.

  11. Estrogens decrease {gamma}-ray-induced senescence and maintain cell cycle progression in breast cancer cells independently of p53

    SciTech Connect

    Toillon, Robert-Alain . E-mail: robert.toillon@univ-lille1.fr; Magne, Nicolas; Laios, Ioanna; Castadot, Pierre; Kinnaert, Eric; Van Houtte, Paul; Desmedt, Christine B.Sc.; Leclercq, Guy; Lacroix, Marc

    2007-03-15

    Purpose: Sequential administration of radiotherapy and endocrine therapy is considered to be a standard adjuvant treatment of breast cancer. Recent clinical reports suggest that radiotherapy could be more efficient in association with endocrine therapy. The aim of this study was to evaluate the estrogen effects on irradiated breast cancer cells (IR-cells). Methods and Materials: Using functional genomic analysis, we examined the effects of 17-{beta}-estradiol (E{sub 2}, a natural estrogen) on MCF-7 breast cancer cells. Results: Our results showed that E{sub 2} sustained the growth of IR-cells. Specifically, estrogens prevented cell cycle blockade induced by {gamma}-rays, and no modification of apoptotic rate was detected. In IR-cells we observed the induction of genes involved in premature senescence and cell cycle progression and investigated the effects of E{sub 2} on the p53/p21{sup waf1/cip1}/Rb pathways. We found that E{sub 2} did not affect p53 activation but it decreased cyclin E binding to p21{sup waf1/cip1} and sustained downstream Rb hyperphosphorylation by functional inactivation of p21{sup waf1/cip1}. We suggest that Rb inactivation could decrease senescence and allow cell cycle progression in IR-cells. Conclusion: These results may help to elucidate the molecular mechanism underlying the maintenance of breast cancer cell growth by E{sub 2} after irradiation-induced damage. They also offer clinicians a rational basis for the sequential administration of ionizing radiation and endocrine therapies.

  12. Apoptosis induced by selenomethionine and methioninase is superoxide-mediated and p53-dependent in human prostate cancer cells

    PubMed Central

    Zhao, Rui; Domann, Frederick E.

    2006-01-01

    Selenomethionine (SeMet) is the chemical form or major component of selenium used for cancer chemoprevention in several clinical trials. However, evidence from experimental studies indicates that SeMet has weaker anticancer effects than most other forms of selenium. Recent studies showed that the anticancer activity of SeMet can be enhanced by methioninase (METase), indicating that SeMet metabolites are responsible for its anticancer activity. In the present study, we demonstrated that wild-type p53-expressing LNCaP human prostate cancer cells were more sensitive to co-treatment with SeMet and METase than p53-null PC3 human prostate cancer cells. SeMet and METase co-treatment significantly increased levels of superoxide and apoptosis in LNCaP cells. Co-treatment with SeMet and METase resulted in increased levels of phosphorylated p53 (serine15), total p53, Bax, and p21Waf1 proteins. LNCaP cells treated with SeMet and METase also showed p53 translocation to mitochondria, decreased mitochondrial membrane potential, cytochrome c release into the cytosol, and activation of caspase 9. The effects of SeMet and METase were suppressed by pre-treatment with a synthetic superoxide dismutase mimic or by knockdown of p53 via RNA interference. Reexpression of wild-type p53 in PC3 cells resulted in increases in superoxide production, apoptosis, and caspase 9 activity, and a decrease in mitochondrial membrane potential following co-treatment with SeMet and METase. Our study demonstrates that apoptosis induced by SeMet plus METase is superoxide-mediated and p53-dependent via mitochondrial pathway(s). These results suggest that superoxide and p53 may play a role in cancer chemoprevention by selenium. PMID:17172431

  13. Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation.

    PubMed

    Shukla, Sanjeev; Gupta, Sanjay

    2008-05-15

    Apigenin, a plant flavone, potentially activates wild-type p53 and induces apoptosis in cancer cells. We conducted detailed studies to understand its mechanism of action. Exposure of human prostate cancer 22Rv1 cells, harboring wild-type p53, to growth-suppressive concentrations (10-80 microM) of apigenin resulted in the stabilization of p53 by phosphorylation on critical serine sites, p14ARF-mediated downregulation of MDM2 protein, inhibition of NF-kappaB/p65 transcriptional activity, and induction of p21/WAF-1 in a dose- and time-dependent manner. Apigenin at these doses resulted in ROS generation, which was accompanied by rapid glutathione depletion, disruption of mitochondrial membrane potential, cytosolic release of cytochrome c, and apoptosis. Interestingly, we observed accumulation of a p53 fraction to the mitochondria, which was rapid and occurred between 1 and 3 h after apigenin treatment. All these effects were significantly blocked by pretreatment of cells with the antioxidant N-acetylcysteine, p53 inhibitor pifithrin-alpha, and enzyme catalase. Apigenin-mediated p53 activation and apoptosis were further attenuated by p53 antisense oligonucleotide treatment. Exposure of cells to apigenin led to a decrease in the levels of Bcl-XL and Bcl-2 and increase in Bax, triggering caspase activation. Treatment with the caspase inhibitors Z-VAD-FMK and DEVD-CHO partially rescued these cells from apigenin-induced apoptosis. In vivo, apigenin administration demonstrated p53-mediated induction of apoptosis in 22Rv1 tumors. These results indicate that apigenin-induced apoptosis in 22Rv1 cells is initiated by a ROS-dependent disruption of the mitochondrial membrane potential through transcriptional-dependent and -independent p53 pathways.

  14. p21 controls patterning but not homologous recombination in RPE development.

    PubMed

    Bishop, A J R; Kosaras, B; Hollander, M C; Fornace, A; Sidman, R L; Schiestl, R H

    2006-01-05

    p21/WAF1/CIP1/MDA6 is a key cell cycle regulator. Cell cycle regulation is an important part of development, differentiation, DNA repair and apoptosis. Following DNA damage, p53 dependent expression of p21 results in a rapid cell cycle arrest. p21 also appears to be important for the development of melanocytes, promoting their differentiation and melanogenesis. Here, we examine the effect of p21 deficiency on the development of another pigmented tissue, the retinal pigment epithelium. The murine mutation pink-eyed unstable (p(un)) spontaneously reverts to a wild-type allele by homologous recombination. In a retinal pigment epithelium cell this results in pigmentation, which can be observed in the adult eye. The clonal expansion of such cells during development has provided insight into the pattern of retinal pigment epithelium development. In contrast to previous results with Atm, p53 and Gadd45, p(un) reversion events in p21 deficient mice did not show any significant change. These results suggest that p21 does not play any role in maintaining overall genomic stability by regulating homologous recombination frequencies during development. However, the absence of p21 caused a distinct change in the positions of the reversion events within the retinal pigment epithelium. Those events that would normally arrest to produce single cell events continued to proliferate uncovering a cell cycle dysregulation phenotype. It is likely that p21 is involved in controlling the developmental pattern of the retinal pigment. We also found a C57BL/6J specific p21 dependent ocular defect in retinal folding, similar to those reported in the absence of p53.

  15. p53-dependent G2 arrest associated with a decrease in cyclins A2 and B1 levels in a human carcinoma cell line

    PubMed Central

    Badie, C; Bourhis, J; Sobczak-Thépot, J; Haddada, H; Chiron, M; Janicot, M; Janot, F; Tursz, T; Vassal, G

    2000-01-01

    In vivo transfer of wild-type (wt) p53 gene via a recombinant adenovirus has been proposed to induce apoptosis and increase radiosensitivity in several human carcinoma models. In the context of combining p53 gene transfer and irradiation, we investigated the consequences of adenoviral-mediated wtp53 gene transfer on the cell cycle and radiosensitivity of a human head and neck squamous cell carcinoma line (SCC97) with a p53 mutated phenotype. We showed that ectopic expression of wtp53 in SCC97 cells resulted in a prolonged G1 arrest, associated with an increased expression of the cyclin-dependent kinase inhibitor WAF1/p21 target gene. A transient arrest in G2 but not in G1 was observed after irradiation. This G2 arrest was permanent when exponentially growing cells were transduced by Ad5CMV- p53 (RPR/INGN201) immediately after irradiation with 5 or 10 Gy. Moreover, levels of cyclins A2 and B1, which are known to regulate the G2/M transition, dramatically decreased as cells arrived in G2, whereas maximal levels of expression were observed in the absence of wtp53. In conclusion, adenoviral mediated transfer of wtp53 in irradiated SCC97 cells, which are mutated for p53, appeared to increase WAF1/p21 expression and decrease levels of the mitotic cyclins A2 and B1. These observations suggest that the G2 arrest resulted from a p53-dependent premature inactivation of the mitosis promoting factor. © 2000 Cancer Research Campaign PMID:10682678

  16. WNT16B is a new marker of cellular senescence that regulates p53 activity and the phosphoinositide 3-kinase/AKT pathway.

    PubMed

    Binet, Romuald; Ythier, Damien; Robles, Ana I; Collado, Manuel; Larrieu, Delphine; Fonti, Claire; Brambilla, Elisabeth; Brambilla, Christian; Serrano, Manuel; Harris, Curtis C; Pedeux, Rémy

    2009-12-15

    Senescence is a tumor suppression mechanism that is induced by several stimuli, including oncogenic signaling and telomere shortening, and controlled by the p53/p21(WAF1) signaling pathway. Recently, a critical role for secreted factors has emerged, suggesting that extracellular signals are necessary for the onset and maintenance of senescence. Conversely, factors secreted by senescent cells may promote tumor growth. By using expression profiling techniques, we searched for secreted factors that were overexpressed in fibroblasts undergoing replicative senescence. We identified WNT16B, a member of the WNT family of secreted proteins. We found that WNT16B is overexpressed in cells undergoing stress-induced premature senescence and oncogene-induced senescence in both MRC5 cell line and the in vivo murine model of K-Ras(V12)-induced senescence. By small interfering RNA experiments, we observed that both p53 and WNT16B are necessary for the onset of replicative senescence. WNT16B expression is required for the full transcriptional activation of p21(WAF1). Moreover, WNT16B regulates activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Overall, we identified WNT16B as a new marker of senescence that regulates p53 activity and the PI3K/AKT pathway and is necessary for the onset of replicative senescence.

  17. Human thyroid cancer cells as a source of iso-genic, iso-phenotypic cell lines with or without functional p53

    PubMed Central

    Wyllie, F S; Haughton, M F; Rowson, J M; Wynford-Thomas, D

    1999-01-01

    Differentiated thyroid carcinomas (in contrast to the rarer anaplastic form) are unusual among human cancers in displaying a remarkably low frequency of p53 mutation and appear to retain wild-type (wt) p53 function as assessed by the response of derived cell lines to DNA damage. Using one such cell line, K1, we have tested the effect of experimental abrogation of p53 function by generating matched sub-clones stably expressing either a neo control gene, a dominant-negative mutant p53 (143ala) or human papilloma virus protein HPV16 E6. Loss of p53 function in the latter two groups was confirmed by abolition of p53-dependent ‘stress’ responses including induction of the cyclin/CDK inhibitor p21WAF1 and G1/S arrest following DNA-damage. In contrast, no change was detected in the phenotype of ‘unstressed’ clones, with respect to any of the following parameters: proliferation rate in monolayer, serum-dependence for proliferation or survival, tumorigenicity, cellular morphology, or tissue-specific differentiation markers. The K1 line therefore represents a ‘neutral’ background with respect to p53 function, permitting the derivation of functionally p53 + or − clones which are not only iso-genic but also iso-phenotypic. Such a panel should be an ideal tool with which to test the p53-dependence of cellular stress responses, particularly the sensitivity to potential therapeutic agents, free from the confounding additional phenotypic differences which usually accompany loss of p53 function. The results also further support the hypothesis that p53 mutation alone is not sufficient to drive progression of thyroid cancer to the aggressive anaplastic form. © 1999 Cancer Research Campaign PMID:10098744

  18. Mucin1 shifts Smad3 signaling from the tumor-suppressive pSmad3C/p21(WAF1) pathway to the oncogenic pSmad3L/c-Myc pathway by activating JNK in human hepatocellular carcinoma cells.

    PubMed

    Li, Qiongshu; Liu, Guomu; Yuan, Hongyan; Wang, Juan; Guo, Yingying; Chen, Tanxiu; Zhai, Ruiping; Shao, Dan; Ni, Weihua; Tai, Guixiang

    2015-02-28

    Mucin1 (MUC1) is a transmembrane glycoprotein that acts as an oncogene in human hepatic tumorigenesis. Hepatocellular carcinoma (HCC) cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor beta (TGF-β) together with stimulation of its oncogenic activity as in MUC1 expressing HCC cells; however, molecular mechanisms remain largely unknown. Type I TGF-β receptor (TβRI) and c-Jun NH2-terminal kinase (JNK) differentially phosphorylate Smad3 mediator to create 2 phosphorylated forms: COOH-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). Here, we report that MUC1 overexpression in HCC cell lines suppresses TβRI-mediated pSmad3C signaling which involves growth inhibition by up-regulating p21(WAF1). Instead, MUC1 directly activates JNK to stimulate oncogenic pSmad3L signaling, which fosters cell proliferation by up-regulating c-Myc. Conversely, MUC1 gene silencing in MUC1 expressing HCC cells results in preserved tumor-suppressive function via pSmad3C, while eliminating pSmad3L-mediated oncogenic activity both in vitro and in vivo. In addition, high correlation between MUC1 and pSmad3L/c-Myc but not pSmad3C/p21(WAF1) expression was observed in HCC tissues from patients. Collectively, these results indicate that MUC1 shifts Smad3 signaling from a tumor-suppressive pSmad3C/p21(WAF1) to an oncogenic pSmad3L/c-Myc pathway by directly activating JNK in HCC cells, suggesting that MUC1 is an important target for HCC therapy.

  19. Cooperative action of germ-line mutations in decorin and p53 accelerates lymphoma tumorigenesis.

    PubMed

    Iozzo, R V; Chakrani, F; Perrotti, D; McQuillan, D J; Skorski, T; Calabretta, B; Eichstetter, I

    1999-03-16

    Ectopic expression of decorin in a wide variety of transformed cells results in growth arrest and the inability to generate tumors in nude mice. This process is caused by a decorin-mediated activation of the epidermal growth factor receptor, which leads to a sustained induction of endogenous p21(WAF1/CIP1) (the cyclin-dependent kinase inhibitor p21) and growth arrest. However, mice harboring a targeted disruption of the decorin gene do not develop spontaneous tumors. To test the role of decorin in tumorigenesis, we generated mice lacking both decorin and p53, an established tumor-suppressor gene. Mice lacking both genes showed a faster rate of tumor development and succumbed almost uniformly to thymic lymphomas within 6 months [mean survival age (T50) approximately 4 months]. Mice harboring one decorin allele and no p53 gene developed the same spectrum of tumors as the double knockout animals, but had a survival rate similar to the p53 null animals (T50 approximately 6 months). Ectopic expression of decorin in thymic lymphoma cells isolated from double mutant animals markedly suppressed their colony-forming ability. When these lymphoma cells were cocultured with fibroblasts derived from either wild-type or decorin null embryos, the cells grew faster in the absence of decorin. Moreover, exogenous decorin proteoglycan or its protein core significantly retarded their growth in vitro. These results indicate that the lack of decorin is permissive for lymphoma tumorigenesis in a mouse model predisposed to cancer and suggest that germ-line mutations in decorin and p53 may cooperate in the transformation of lymphocytes and ultimately lead to a more aggressive phenotype by shortening the tumor latency.

  20. The Enigma of p53.

    PubMed

    Lozano, Guillermina

    2016-12-08

    This perspective will focus on the physiological impact of wild-type and mutant p53 activities. In particular, the tissue-specific nature of activation of p53 targets and their subsequent effects on cell behavior will be discussed. Because mutations in p53 are common in human cancers, the regulation and physiological consequences of mutant p53 proteins will also be discussed.

  1. Acquisition of p53 mutations in response to the non-genotoxic p53 activator Nutlin-3.

    PubMed

    Aziz, M H; Shen, H; Maki, C G

    2011-11-17

    Wild-type p53 is a stress-responsive tumor suppressor and potent growth inhibitor. Genotoxic stresses (for example, ionizing and ultraviolet radiation or chemotherapeutic drug treatment) can activate p53, but also induce mutations in the P53 gene, and thus select for p53-mutated cells. Nutlin-3a (Nutlin) is pre-clinical drug that activates p53 in a non-genotoxic manner. Nutlin occupies the p53-binding pocket of murine double minute 2 (MDM2), activating p53 by blocking the p53-MDM2 interaction. Because Nutlin neither binds p53 directly nor introduces DNA damage, we hypothesized Nutlin would not induce P53 mutations, and, therefore, not select for p53-mutated cells. To test this, populations of SJSA-1 (p53 wild-type) cancer cells were expanded that survived repeated Nutlin exposures, and individual clones were isolated. Group 1 clones were resistant to Nutlin-induced apoptosis, but still underwent growth arrest. Surprisingly, while some Group 1 clones retained wild-type p53, others acquired a heterozygous p53 mutation. Apoptosis resistance in Group 1 clones was associated with decreased PUMA induction and decreased caspase 3/7 activation. Group 2 clones were resistant to both apoptosis and growth arrest induced by Nutlin. Group 2 clones had acquired mutations in the p53-DNA-binding domain and expressed only mutant p53s that were induced by Nutlin treatment, but were unable to bind the P21 and PUMA gene promoters, and unable to activate transcription. These results demonstrate that non-genotoxic p53 activation (for example, by Nutlin treatment) can lead to the acquisition of somatic mutations in p53 and select for p53-mutated cells. These findings have implications for the potential clinical use of Nutlin and other small molecule MDM2 antagonists.

  2. Characterization of the molecular mechanisms for p53-mediated differentiation.

    PubMed

    Chylicki, K; Ehinger, M; Svedberg, H; Gullberg, U

    2000-11-01

    The p53 tumor suppressor protein can induce both apoptosis and cell cycle arrest. Moreover, we and others have shown previously that p53 is a potent mediator of differentiation. For example, expression of ptsp53, a temperature-inducible form of p53, induces differentiation of leukemic monoblastic U-937 cells. The functions of p53 have for long been believed to be dependent on the transactivating capacity of p53. However, recent data show that both p53-induced cell cycle arrest and apoptosis can be induced independently of p53-mediated transcriptional activation, indicating alternative pathways for p53-induced apoptosis and cell cycle arrest. The bcl-2 proto-oncogene contributes to the development of certain malignancies, probably by inhibition of apoptosis. Interestingly, Bcl-2 has been shown to inhibit p53-mediated apoptosis as well as p53-mediated transcriptional activation. Asking whether Bcl-2 would interfere with the p53-mediated differentiation of U-937 cells, we stably transfected bcl-2 to U-937 cells inducibly expressing p53. Although the established Bcl-2-expressing clones were resistant to p53-mediated apoptosis, we did not observe any interference of Bcl-2 with the p53-mediated differentiation, suggesting separable pathways for p53 in mediating apoptosis and differentiation of U-937 cells. Neither did expression of Bcl-2 interfere with p53-induced expression of endogenous p21, suggesting that p53-induced differentiation might be dependent on the transcriptional activity of p53. To further investigate whether the p53-mediated differentiation of U-937 cells depends on the transcriptional activity of p53, we overexpressed transactivation-deficient p53, a transcriptionally inactive p53 mutant in these cells. However, in contrast to the effects of wild-type p53, expression of trans-activation-deficient p53 did neither induce signs of apoptosis nor of differentiation in U-937 cells. Our results indicate that the transcriptional activity of p53 is essential

  3. Effects of HDM2 antagonism on sunitinib resistance, p53 activation, SDF-1 induction, and tumor infiltration by CD11b+/Gr-1+ myeloid derived suppressor cells

    PubMed Central

    2013-01-01

    Background The studies reported herein were undertaken to determine if the angiostatic function of p53 could be exploited as an adjunct to VEGF-targeted therapy in the treatment of renal cell carcinoma (RCC). Methods Nude/beige mice bearing human RCC xenografts were treated with various combinations of sunitinib and the HDM2 antagonist MI-319. Tumors were excised at various time points before and during treatment and analyzed by western blot and IHC for evidence of p53 activation and function. Results Sunitinib treatment increased p53 levels in RCC xenografts and transiently induced the expression of p21waf1, Noxa, and HDM2, the levels of which subsequently declined to baseline (or undetectable) with the emergence of sunitinib resistance. The development of resistance and the suppression of p53-dependent gene expression temporally correlated with the induction of the p53 antagonist HDMX. The concurrent administration of MI-319 markedly increased the antitumor and anti-angiogenic activities of sunitinib and led to sustained p53-dependent gene expression. It also suppressed the expression of the chemokine SDF-1 (CXCL12) and the influx of CD11b+/Gr-1+ myeloid-derived suppressor cells (MDSC) otherwise induced by sunitinib. Although p53 knockdown markedly reduced the production of the angiostatic peptide endostatin, the production of endostatin was not augmented by MI-319 treatment. Conclusions The evasion of p53 function (possibly through the expression of HDMX) is an essential element in the development of resistance to VEGF-targeted therapy in RCC. The maintenance of p53 function through the concurrent administration of an HDM2 antagonist is an effective means of delaying or preventing the development of resistance. PMID:23497256

  4. What's new in p53

    PubMed Central

    Maritsi, D; Stagikas, D; Charalabopoulos, K; Batistatou, A

    2006-01-01

    p53 is the main intrinsic factor inducing apoptosis by recognizing the external stimuli and activating the p53 responsive genes to an irreversible series of events. P53 activates the transcription of specific proapoptotic genes called p53 target genes. A growing number of p53 responsive genes have been identified and numerous studies have demonstrated that p53 proapoptotic factors such as Noxa, Puma and Perp play cell type specific roles in p53's mediated response to certain stimuli. Perp (p53 apoptosis effector related to PMP-22) is a direct proapoptotic target gene encoding a tetraspan protein. Perp is highly expressed in cells undergoing apoptosis compared to cells under G1 arrest and its overexpression is sufficient to cause cell death in fibroblasts. Noxa is another member of the preapoptotic p53 genes family. When expressed Noxa acts in a BH3 motif-dependent localization to mitochondria, causing structural changes, activation of caspase 9 and release of cytochrome c from mitochondria to cytosol. Puma (p53 mutant of apoptosis) is another critical mediator of p53-dependent apoptosis. P53 binds to Puma-promoter gene sites, leading to puma production. The mtCLIC, a member of intracellular chloride channels, is a cytoplasmic and mitochondrial protein positively regulated by p53. Caspase 10 is induced in p53-dependent manner leading to cellular apoptosis. Other newly announced factors are also involved in p53-regulated apoptosis such as brain-specific angiogenesis inhibitor - 1 (BSAI1), MSOD and GPX genes. A global discussion on this topic is attempted in the present review article. PMID:20351806

  5. What's new in p53?

    PubMed

    Maritsi, D; Stagikas, D; Charalabopoulos, K; Batistatou, A

    2006-07-01

    p53 is the main intrinsic factor inducing apoptosis by recognizing the external stimuli and activating the p53 responsive genes to an irreversible series of events. P53 activates the transcription of specific proapoptotic genes called p53 target genes. A growing number of p53 responsive genes have been identified and numerous studies have demonstrated that p53 proapoptotic factors such as Noxa, Puma and Perp play cell type specific roles in p53's mediated response to certain stimuli. Perp (p53 apoptosis effector related to PMP-22) is a direct proapoptotic target gene encoding a tetraspan protein. Perp is highly expressed in cells undergoing apoptosis compared to cells under G1 arrest and its overexpression is sufficient to cause cell death in fibroblasts. Noxa is another member of the preapoptotic p53 genes family. When expressed Noxa acts in a BH3 motif-dependent localization to mitochondria, causing structural changes, activation of caspase 9 and release of cytochrome c from mitochondria to cytosol. Puma (p53 mutant of apoptosis) is another critical mediator of p53-dependent apoptosis. P53 binds to Puma-promoter gene sites, leading to puma production. The mtCLIC, a member of intracellular chloride channels, is a cytoplasmic and mitochondrial protein positively regulated by p53. Caspase 10 is induced in p53-dependent manner leading to cellular apoptosis. Other newly announced factors are also involved in p53-regulated apoptosis such as brain-specific angiogenesis inhibitor-1 (BSAI1), MSOD and GPX genes. A global discussion on this topic is attempted in the present review article.

  6. Development of a Fish Cell Biosensor System for Genotoxicity Detection Based on DNA Damage-Induced Trans-Activation of p21 Gene Expression

    PubMed Central

    Geng, Deyu; Zhang, Zhixia; Guo, Huarong

    2012-01-01

    p21CIP1/WAF1 is a p53-target gene in response to cellular DNA damage. Here we report the development of a fish cell biosensor system for high throughput genotoxicity detection of new drugs, by stably integrating two reporter plasmids of pGL3-p21-luc (human p21 promoter linked to firefly luciferase) and pRL-CMV-luc (CMV promoter linked to Renilla luciferase) into marine flatfish flounder gill (FG) cells, referred to as p21FGLuc. Initial validation of this genotoxicity biosensor system showed that p21FGLuc cells had a wild-type p53 signaling pathway and responded positively to the challenge of both directly acting genotoxic agents (bleomycin and mitomycin C) and indirectly acting genotoxic agents (cyclophosphamide with metabolic activation), but negatively to cyclophosphamide without metabolic activation and the non-genotoxic agents ethanol and D-mannitol, thus confirming a high specificity and sensitivity, fast and stable response to genotoxic agents for this easily maintained fish cell biosensor system. This system was especially useful in the genotoxicity detection of Di(2-ethylhexyl) phthalate (DEHP), a rodent carcinogen, but negatively reported in most non-mammalian in vitro mutation assays, by providing a strong indication of genotoxicity for DEHP. A limitation for this biosensor system was that it might give false positive results in response to sodium butyrate and any other agents, which can trans-activate the p21 gene in a p53-independent manner. PMID:25585933

  7. Interleukin-20 Promotes Migration of Bladder Cancer Cells through Extracellular Signal-regulated Kinase (ERK)-mediated MMP-9 Protein Expression Leading to Nuclear Factor (NF-κB) Activation by Inducing the Up-regulation of p21WAF1 Protein Expression*

    PubMed Central

    Lee, Se-Jung; Cho, Seok-Cheol; Lee, Eo-Jin; Kim, Sangtae; Lee, Soo-Bok; Lim, Jung-Hyurk; Choi, Yung Hyun; Kim, Wun-Jae; Moon, Sung-Kwon

    2013-01-01

    The role of inflammatory cytokine interleukin-20 (IL-20) has not yet been studied in cancer biology. Here, we demonstrated up-regulation of both IL-20 and IL-20R1 in muscle-invasive bladder cancer patients. The expressions of IL-20 and IL-20R1 were observed in bladder cancer 5637 and T-24 cells. We found that IL-20 significantly increased the expression of matrix metalloproteinase (MMP)-9 via binding activity of NF-κB and AP-1 in bladder cancer cells and stimulated the activation of ERK1/2, JNK, p38 MAPK, and JAK-STAT signaling. Among the pathways examined, only ERK1/2 inhibitor U0126 significantly inhibited IL-20-induced migration and invasion. Moreover, siRNA knockdown of IL-20R1 suppressed migration, invasion, ERK1/2 activation, and NF-κB-mediated MMP-9 expression induced by IL-20. Unexpectedly, the cell cycle inhibitor p21WAF1 was induced by IL-20 treatment without altering cell cycle progression. Blockade of p21WAF1 function by siRNA reversed migration, invasion, activation of ERK signaling, MMP-9 expression, and activation of NF-κB in IL-20-treated cells. In addition, IL-20 induced the activation of IκB kinase, the degradation and phosphorylation of IκBα, and NF-κB p65 nuclear translocation, which was regulated by ERK1/2. IL-20 stimulated the recruitment of p65 to the MMP-9 promoter region. Finally, the IL-20-induced migration and invasion of cells was confirmed by IL-20 gene transfection and by addition of anti-IL-20 antibody. This is the first report that p21WAF1 is involved in ERK1/2-mediated MMP-9 expression via increased binding activity of NF-κB, which resulted in the induction of migration in IL-20/IL-20R1 dyad-induced bladder cancer cells. These unexpected results might provide a critical new target for the treatment of bladder cancer. PMID:23271730

  8. Resveratrol mediated cell death in cigarette smoke transformed breast epithelial cells is through induction of p21Waf1/Cip1 and inhibition of long patch base excision repair pathway

    SciTech Connect

    Mohapatra, Purusottam; Satapathy, Shakti Ranjan; Das, Dipon; Siddharth, Sumit; Choudhuri, Tathagata; Kundu, Chanakya Nath

    2014-03-15

    Cigarette smoking is a key factor for the development and progression of different cancers including mammary tumor in women. Resveratrol (Res) is a promising natural chemotherapeutic agent that regulates many cellular targets including p21, a cip/kip family of cyclin kinase inhibitors involved in DNA damage-induced cell cycle arrest and blocking of DNA replication and repair. We have recently shown that cigarette smoke condensate (CSC) prepared from commercially available Indian cigarette can cause neoplastic transformation of normal breast epithelial MCF-10A cell. Here we studied the mechanism of Res mediated apoptosis in CSC transformed (MCF-10A-Tr) cells in vitro and in vivo. Res mediated apoptosis in MCF-10A-Tr cells was a p21 dependent event. It increased the p21 protein expression in MCF-10A-Tr cells and MCF-10A-Tr cells-mediated tumors in xenograft mice. Res treatment reduced the tumor size(s) and expression of anti-apoptotic proteins (e.g. PI3K, AKT, NFκB) in solid tumor. The expressions of cell cycle regulatory (Cyclins, CDC-2, CDC-6, etc.), BER associated (Pol-β, Pol-δ, Pol-ε, Pol-η, RPA, Fen-1, DNA-Ligase-I, etc.) proteins and LP-BER activity decreased in MCF-10A-Tr cells but remain significantly unaltered in isogenic p21 null MCF-10A-Tr cells after Res treatment. Interestingly, no significant changes were noted in SP-BER activity in both the cell lines after Res exposure. Finally, it was observed that increased p21 blocks the LP-BER in MCF-10A-Tr cells by increasing its interaction with PCNA via competing with Fen-1 after Res treatment. Thus, Res caused apoptosis in CSC-induced cancer cells by reduction of LP-BER activity and this phenomenon largely depends on p21. - Highlights: • Resveratrol (Res) caused reduction of MCF-10A-Tr cell growth by inducing apoptosis. • Res caused cell cycle arrest and DNA damage in p21 dependent manner. • Res mediated LP-BER reduction in MCF-10A-Tr cells was a p21 dependent phenomenon. • Res inhibits BER and PI

  9. Regulation of neuronal P53 activity by CXCR4

    PubMed Central

    Khan, Muhammad Z.; Shimizu, Saori; Patel, Jeegar P.; Nelson, Autumn; Le, My-Thao; Mullen-Przeworski, Anna; Brandimarti, Renato; Fatatis, Alessandro; Meucci, Olimpia

    2009-01-01

    Abnormal activation of CXCR4 during inflammatory/infectious states may lead to neuronal dysfunction or damage. The major goal of this study was to determine the coupling of CXCR4 to p53-dependent survival pathways in primary neurons. Neurons were stimulated with the HIV envelope protein gp120IIIB or the endogenous CXCR4 agonist, SDF-1α. We found that gp120 stimulates p53 activity and induces expression of the p53 pro-apoptotic target Apaf-1 in cultured neurons. Inhibition of CXCR4 by AMD3100 abrogates the effect of gp120 on both p53 and Apaf-1. Moreover, gp120 neurotoxicity is markedly reduced by the p53-inhibitor, pifithrin-α. The viral protein also regulates p53 phosphorylation and expression of other p53-responsive genes, such as MDM2 and p21. Conversely, SDF-1α, which can promote neuronal survival, increases p53 acetylation and p21 expression in neurons. Thus, the stimulation of different p53 targets could be instrumental in determining the outcome of CXCR4 activation on neuronal survival in neuroinflammatory disorders. PMID:16005638

  10. Resveratrol mediated cell death in cigarette smoke transformed breast epithelial cells is through induction of p21Waf1/Cip1 and inhibition of long patch base excision repair pathway.

    PubMed

    Mohapatra, Purusottam; Satapathy, Shakti Ranjan; Das, Dipon; Siddharth, Sumit; Choudhuri, Tathagata; Kundu, Chanakya Nath

    2014-03-15

    Cigarette smoking is a key factor for the development and progression of different cancers including mammary tumor in women. Resveratrol (Res) is a promising natural chemotherapeutic agent that regulates many cellular targets including p21, a cip/kip family of cyclin kinase inhibitors involved in DNA damage-induced cell cycle arrest and blocking of DNA replication and repair. We have recently shown that cigarette smoke condensate (CSC) prepared from commercially available Indian cigarette can cause neoplastic transformation of normal breast epithelial MCF-10A cell. Here we studied the mechanism of Res mediated apoptosis in CSC transformed (MCF-10A-Tr) cells in vitro and in vivo. Res mediated apoptosis in MCF-10A-Tr cells was a p21 dependent event. It increased the p21 protein expression in MCF-10A-Tr cells and MCF-10A-Tr cells-mediated tumors in xenograft mice. Res treatment reduced the tumor size(s) and expression of anti-apoptotic proteins (e.g. PI3K, AKT, NFκB) in solid tumor. The expressions of cell cycle regulatory (Cyclins, CDC-2, CDC-6, etc.), BER associated (Pol-β, Pol-δ, Pol-ε, Pol-η, RPA, Fen-1, DNA-Ligase-I, etc.) proteins and LP-BER activity decreased in MCF-10A-Tr cells but remain significantly unaltered in isogenic p21 null MCF-10A-Tr cells after Res treatment. Interestingly, no significant changes were noted in SP-BER activity in both the cell lines after Res exposure. Finally, it was observed that increased p21 blocks the LP-BER in MCF-10A-Tr cells by increasing its interaction with PCNA via competing with Fen-1 after Res treatment. Thus, Res caused apoptosis in CSC-induced cancer cells by reduction of LP-BER activity and this phenomenon largely depends on p21.

  11. Free radical scavenger edaravone suppresses x-ray-induced apoptosis through p53 inhibition in MOLT-4 cells.

    PubMed

    Sasano, Nakashi; Enomoto, Atsushi; Hosoi, Yoshio; Katsumura, Yosuke; Matsumoto, Yoshihisa; Shiraishi, Kenshiro; Miyagawa, Kiyoshi; Igaki, Hiroshi; Nakagawa, Keiichi

    2007-11-01

    Edaravone, a clinical drug used widely for the treatment of acute cerebral infarction, is reported to scavenge free radicals. In the present study, we investigated the radioprotective effect of edaravone on X-ray-induced apoptosis in MOLT-4 cells. Apoptosis was determined by the dye exclusion test, Annexin V binding assay, cleavage of caspase, and DNA fragmentation. We found that edaravone significantly suppressed the X-ray-induced apoptosis. The amount of intracellular ROS production was determined by the chloromethyl-2',7'-dichlorodihydro-fluorescein diacetate system. We found that the intracellular ROS production by X-irradiation was completely suppressed by the addition of edaravone. The accumulation and phosphorylation of p53 and the expression of p21(WAF1), a target protein of p53, which were induced by X-irradiation, were also suppressed by adding edaravone. We conclude that the free radical scavenger edaravone suppresses X-ray-induced apoptosis in MOLT-4 cells by inhibiting p53.

  12. Phosphorylation of p53 by TAF1 inactivates p53-dependent transcription in the DNA damage response

    PubMed Central

    Wu, Yong; Lin, Joy C.; Piluso, Landon G.; Dhahbi, Joseph M.; Bobadilla, Selene; Spindler, Stephen R.; Liu, Xuan

    2014-01-01

    Summary While p53 activation has long been studied, the mechanisms by which its targets genes are restored to their pre-activation state are less clear. We report here that TAF1 phosphorylates p53 at Thr55, leading to dissociation of p53 from the p21 promoter and inactivation of transcription late in the DNA damage response. We further show that cellular ATP level might act as a molecular switch for Thr55 phosphorylation on the p21 promoter, indicating that TAF1 is a cellular ATP sensor. Upon DNA damage, cells undergo PARP-1-dependent ATP depletion, which is correlated with reduced TAF1 kinase activity and Thr55 phosphorylation, resulting in p21 activation. As cellular ATP levels recover, TAF1 is able to phosphorylate p53 on Thr55, which leads to dissociation of p53 from the p21 promoter. ChIP-sequencing analysis reveals p53 dissociates from promoters genome-wide as cells recover from DNA damage, suggesting the general nature of this mechanism. PMID:24289924

  13. p53: key conductor of all anti-acne therapies.

    PubMed

    Melnik, Bodo C

    2017-09-19

    This review based on translational research predicts that the transcription factor p53 is the key effector of all anti-acne therapies. All-trans retinoic acid (ATRA) and isotretinoin (13-cis retinoic acid) enhance p53 expression. Tetracyclines and macrolides via inhibiting p450 enzymes attenuate ATRA degradation, thereby increase p53. Benzoyl peroxide and hydrogen peroxide elicit oxidative stress, which upregulates p53. Azelaic acid leads to mitochondrial damage associated with increased release of reactive oxygen species inducing p53. p53 inhibits the expression of androgen receptor and IGF-1 receptor, and induces the expression of IGF binding protein 3. p53 induces FoxO1, FoxO3, p21 and sestrin 1, sestrin 2, and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), the key inducer of isotretinoin-mediated sebocyte apoptosis explaining isotretinoin's sebum-suppressive effect. Anti-androgens attenuate the expression of miRNA-125b, a key negative regulator of p53. It can thus be concluded that all anti-acne therapies have a common mode of action, i.e., upregulation of the guardian of the genome p53. Immortalized p53-inactivated sebocyte cultures are unfortunate models for studying acne pathogenesis and treatment.

  14. The p53 circuit board

    PubMed Central

    Sullivan, Kelly D.; Gallant-Behm, Corrie L.; Henry, Ryan E.; Fraikin, Jean-Luc; Espinosa, Joaquín M.

    2012-01-01

    The p53 tumor suppressor is embedded in a large gene network controlling diverse cellular and organismal phenotypes. Multiple signaling pathways converge onto p53 activation, mostly by relieving the inhibitory effects of its repressors, MDM2 and MDM4. In turn, signals originating from increased p53 activity diverge into distinct effector pathways to deliver a specific cellular response to the activating stimuli. Much attention has been devoted to dissecting how the various input pathways trigger p53 activation and how the activity of the p53 protein itself can be modulated by a plethora of co-factors and post-translational modifications. In this review we will focus instead on the multiple configurations of the effector pathways. We will discuss how p53-generated signals are transmitted, amplified, resisted and eventually integrated by downstream gene circuits operating at the transcriptional, post-transcriptional and post-translational level. We will also discuss how context-dependent variations in these gene circuits define the cellular response to p53 activation and how they may impact the clinical efficacy of p53-based targeted therapies. PMID:22333261

  15. MiR-17/106b seed family regulates p21 in Hodgkin's lymphoma.

    PubMed

    Gibcus, Johan H; Kroesen, Bart-Jan; Koster, Roelof; Halsema, Nancy; de Jong, Debora; de Jong, Steven; Poppema, Sibrand; Kluiver, Joost; Diepstra, Arjan; van den Berg, Anke

    2011-12-01

    Hodgkin's lymphoma (HL) is a B cell-derived lymphoma characterized by a minority of malignant Hodgkin Reed-Sternberg (HRS) cells that have lost their normal B cell phenotype. Alterations in the cell cycle and apoptosis pathways might contribute to their resistance to apoptosis and sustained cell cycle progression. A key player in both cell cycle arrest and apoptosis is CDKN1A, encoding p21$^{{\\rm{waf/cip1}}}$ (p21). P21 is regulated by p53 and can function as a cell cycle inhibitor when in the nucleus or as an apoptosis inhibitor when localized in the cytoplasm. We observed expression of p53, p21 and p-p21 in a variable number of HRS cells in 24 of 40 cases. Expression of miR-17 and miR-106a was detected in HRS cells of 10 HL cases. MiR-17/106b seed family members, CDKN1A RNA and p21 protein levels were variable in HL cell lines. We showed effective targeting of the CDKN1A 3' UTR by miR-17/106b in HL cell lines in a luciferase reporter assay and up-regulation of p21 protein levels upon anti-miR-17 treatment of KM-H2 cells. Functional studies indicated a p21-mediated G(1) arrest after miR-17/106b down-regulation in KM-H2, whereas no G(1) arrest was observed for U-HO1 and L428. This difference could not be explained by differences in the 3' UTR, the cellular location of p21 or expression variation during cell cycle progression. A strong correlation was observed for the miR-17/106b:CDKN1A ratio and the responsiveness to miR-17 inhibition, ie a low ratio in KM-H2 and an extremely high ratio in the two unresponsive HL cell lines. In conclusion, we show that miR-17/106b regulates p21 protein levels in HL and that the effect of miR-17/106b-mediated inhibition depends on the miRNA : target gene ratio. Thus, in HL high miR-17/106b expression contributes to a dysfunctional p53 pathway and thereby also to the malignant phenotype.

  16. Regulation of the activation of the Fanconi anemia pathway by the p21 cyclin-dependent kinase inhibitor.

    PubMed

    Rego, M A; Harney, J A; Mauro, M; Shen, M; Howlett, N G

    2012-01-19

    Fanconi anemia (FA) is a rare disease characterized by congenital defects, progressive bone marrow failure and heightened cancer susceptibility. The FA proteins, BRCA1 and FANCD1/BRCA2 function cooperatively in the FA-BRCA pathway to repair damaged DNA. Activation of the FA-BRCA pathway occurs via the monoubiquitination of the FANCD2 and FANCI proteins, targeting these proteins to discrete nuclear foci where they function in DNA repair. The cellular regulation of FANCD2/I monoubiquitination, however, remains poorly understood. In this study, we have examined the roles of the p53 tumor suppressor protein, as well as its downstream target, the p21(Cip1/Waf1) cyclin-dependent kinase inhibitor, in the regulation of the activation of the FA-BRCA pathway. We demonstrate that, in contrast to p53, p21 has a major role in the regulation of the activation of the FA-BRCA pathway: p21 promotes S-phase and DNA damage-inducible FANCD2/I monoubiquitination and nuclear foci formation. Several lines of evidence establish that this effect is not a consequence of a defective G1-S checkpoint or altered cell-cycle progression in the absence of p21. Instead, we demonstrate that p21 is required for the transcriptional repression of the USP1 deubiquitinating enzyme upon exposure to DNA-damaging agents. In the absence of p21, persistent USP1 expression precludes the DNA damage-inducible accumulation of monoubiquitinated FANCD2 and FANCI. Consequently, p21(-/-) cells exhibit increased levels of mitomycin C-inducible complex chromosomal aberrations and elevated γH2AX nuclear foci formation. Our results demonstrate that p21 has a critical role in the regulation of the activation of the FA-BRCA pathway and suggest a broader role for p21 in the orchestration of DNA repair processes following exposure to DNA crosslinking agents.

  17. Arecoline, a major alkaloid of areca nut, inhibits p53, represses DNA repair, and triggers DNA damage response in human epithelial cells.

    PubMed

    Tsai, Yi-Shan; Lee, Ka-Wo; Huang, Jau-Ling; Liu, Yu-Sen; Juo, Suh-Hang Hank; Kuo, Wen-Rei; Chang, Jan-Gowth; Lin, Chang-Shen; Jong, Yuh-Jyh

    2008-07-30

    The International Agency for Research on Cancer declared that areca nut was carcinogenic to human. Areca nut is the main component of betel quid (BQ), which is commonly consumed in Asia. Epidemiological studies have shown that BQ chewing is a predominant risk factor for oral and pharyngeal cancers. It has been known that areca nut is genotoxic to human epithelial cells. However, the molecular and cellular mechanisms underlying areca nut-associated genotoxicity are not fully understood. Here we showed that arecoline, a major alkaloid of areca nut, might contribute to oral carcinogenesis through inhibiting p53 and DNA repair. We found, on the biological aspect, that arecoline could induce gamma-H2AX phosphorylation, a sensitive DNA damage marker, in KB, HEp-2, and 293 cells, suggesting that DNA damages were elicited by arecoline. This phenomenon was supported by the observations of arecoline-induced hyperphosphorylation of ATM, Nbs1, Chk1/2, p53, and Cdc25C, as well as G2/M cell cycle arrest, indicating that a cellular DNA damage response was activated. To explore the possible mechanism accounting for arecoline-elicited DNA damages, we found that arecoline could inhibit p53 by its expression and transactivation function. As a result, the expression of p53-regulated p21(WAF1) and the p53-activated DNA repair were repressed by arecoline. Finally, we showed that p53 mRNA transcripts were frequently down-regulated in BQ-associated oral cancer, suggesting that arecoline-mediated p53 inhibition might play a role in BQ-associated tumorigenesis.

  18. Neisseria meningitidis causes cell cycle arrest of human brain microvascular endothelial cells at S phase via p21 and cyclin G2.

    PubMed

    Oosthuysen, Wilhelm F; Mueller, Tobias; Dittrich, Marcus T; Schubert-Unkmeir, Alexandra

    2016-01-01

    Microbial pathogens have developed several mechanisms to modulate and interfere with host cell cycle progression. In this study, we analysed the effect of the human pathogen Neisseria meningitidis on cell cycle in a brain endothelial cell line as well as in primary brain endothelial cells. We found that N.  Meningitidis causes an accumulation of cells in the S phase early at 3 and at 24 h post-infection that was paralleled by a decrease of cells in G2/M phase. Importantly, the outer membrane proteins of the colony opacity-associated (Opa) protein family as well as the Opc protein proved to trigger the accumulation of cells in the S phase. A focused cell cycle reverse transcription quantitative polymerase chain reaction-based array and integrated network analysis revealed changes in the abundance of several cell cycle regulatory mRNAs, including the cell cycle inhibitors p21(WAF1/CIP1) and cyclin G2. These alterations were reflected in changes in protein expression levels and/or relocalization in N. meningitidis-infected cells. Moreover, an increase in p21(WAF1/CIP1) expression was found to be p53 independent. Genetic ablation of p21(WAF1/CIP1) and cyclin G2 abrogated N. meningitidis-induced S phase accumulation. Finally, by measuring the levels of the biomarker 8-hydroxydeoxyguanosine and phosphorylation of the histone variant H2AX, we provide evidence that N. meningitidis induces oxidative DNA damage in infected cells.

  19. DDP-induced cytotoxicity is not influenced by p53 in nine human ovarian cancer cell lines with different p53 status.

    PubMed Central

    De Feudis, P.; Debernardis, D.; Beccaglia, P.; Valenti, M.; Graniela Siré, E.; Arzani, D.; Stanzione, S.; Parodi, S.; D'Incalci, M.; Russo, P.; Broggini, M.

    1997-01-01

    Nine human ovarian cancer cell lines that express wild-type (wt) or mutated (mut) p53 were used to evaluate the cytotoxicity induced by cisplatin (DDP). The concentrations inhibiting the growth by 50% (IC50) were calculated for each cell line, and no differences were found between cells expressing wt p53 and mut p53. Using, for each cell line, the DDP IC50, we found that these concentrations were able to induce an increase in p53 levels in all four wt-p53-expressing cell lines and in one out of five mut-p53-expressing cell lines. WAF1 and GADD45 mRNAs were also increased by DDP treatment, independently of the presence of a wt p53. Bax levels were only marginally affected by DDP, and this was observed in both wt-p53- and mut-p53-expressing cells. DDP-induced apoptosis was evident 72 h after treatment, and the percentage of cells undergoing apoptosis was slightly higher for wt-p53-expressing cells. However, at doses near the IC50, the percentage of apoptotic cells was less than 20% in all the cell lines investigated. We conclude that the presence of wt p53 is not a determinant for the cytotoxicity induced by DDP in human ovarian cancer cell lines. Images Figure 2 Figure 3 Figure 5 Figure 6 PMID:9275024

  20. p53 and RAD9, the DNA Damage Response, and Regulation of Transcription Networks.

    PubMed

    Lieberman, Howard B; Panigrahi, Sunil K; Hopkins, Kevin M; Wang, Li; Broustas, Constantinos G

    2017-04-01

    The way cells respond to DNA damage is important since inefficient repair or misrepair of lesions can have deleterious consequences, including mutation, genomic instability, neurodegenerative disorders, premature aging, cancer or death. Whether damage occurs spontaneously as a byproduct of normal metabolic processes, or after exposure to exogenous agents, cells muster a coordinated, complex DNA damage response (DDR) to mitigate potential harmful effects. A variety of activities are involved to promote cell survival, and include DNA repair, DNA damage tolerance, as well as transient cell cycle arrest to provide time for repair before entry into critical cell cycle phases, an event that could be lethal if traversal occurs while damage is present. When such damage is prolonged or not repairable, senescence, apoptosis or autophagy is induced. One major level of DDR regulation occurs via the orchestrated transcriptional control of select sets of genes encoding proteins that mediate the response. p53 is a transcription factor that transactivates specific DDR downstream genes through binding DNA consensus sequences usually in or near target gene promoter regions. The profile of p53-regulated genes activated at any given time varies, and is dependent upon type of DNA damage or stress experienced, exact composition of the consensus DNA binding sequence, presence of other DNA binding proteins, as well as cell context. RAD9 is another protein critical for the response of cells to DNA damage, and can also selectively regulate gene transcription. The limited studies addressing the role of RAD9 in transcription regulation indicate that the protein transactivates at least one of its target genes, p21/waf1/cip1, by binding to DNA sequences demonstrated to be a p53 response element. NEIL1 is also regulated by RAD9 through a similar DNA sequence, though not yet directly verified as a bonafide p53 response element. These findings suggest a novel pathway whereby p53 and RAD9 control

  1. p53: out of Africa.

    PubMed

    Lane, David

    2016-04-15

    Somatic mutations in the tumor suppressor gene p53 occur in more than half of all human cancers. Rare germline mutations result in the Li-Fraumeni cancer family syndrome. In this issue ofGenes&Development, Jennis and colleagues (pp. 918-930) use an elegant mouse model to examine the affect of a polymorphism, P47S (rs1800371), in the N terminus of p53 that is found in Africans as well as more than a million African Americans. Remarkably, the single nucleotide change causes the mice to be substantially tumor-prone compared with littermates, suggesting that this allele causes an increased risk of developing cancer. The defect in p53 function is traced to a restriction in downstream gene regulation that reduces cell death in response to stress.

  2. Heterozygous p53V172F mutation in cisplatin-resistant human tumor cells promotes MDM4 recruitment and decreases stability and transactivity of p53

    PubMed Central

    Xie, Xiaolei; Lozano, Guillermina; Siddik, Zahid H.

    2017-01-01

    Cisplatin is an important antitumor agent, but its clinical utility is often limited by multifactorial mechanism of resistance. Loss of tumor suppressor p53 function is a major mechanism, affected by either mutation in the DNA binding domain or dysregulation by overexpression of p53 inhibitors MDM2 and MDM4 that destabilize p53 by increasing its proteosomal degradation. In the present study, cisplatin-resistant 2780CP/Cl-16 ovarian tumor cells expressed a heterozygous, temperature-sensitive p53V172F mutation, which reduced p53 half-life by 2- to 3-fold compared to homozygous wild-type p53 in parental A2780 cells. Although reduced p53 stability in 2780CP/Cl-16 cells was associated with moderate cellular overexpression of MDM2 or MDM4 (<1.5-fold), their binding to p53 was substantially enhanced (5- to 8-fold). The analogous cisplatin-resistant 2780CP/Cl-24 cells, which express loss of p53 heterozygosity, retained the p53V172F mutation and high p53-MDM4 binding, but demonstrated lower p53-bound MDM2 that was associated with reduced p53 ubiquitination and enhanced p53 stability. The inference that p53 was unstable as a hetromeric p53wt/p53V172F complex was confirmed in 2780CP/Cl-24 cells transfected with wild-type (wt) p53 or multimer-inhibiting p53L344P mutant, and further supported by normalization of p53 stability in both resistant cell lines grown at the permissive temperature of 32.5°C. Surprisingly, in 2780CP/Cl-16 and 2780CP/Cl-24 models, cisplatin-induced transactivity of p53 was attenuated at 37°C, and this correlated with cisplatin resistance. However, downregulation of MDM2 or MDM4 by siRNA in either resistant cell line induced p53 and restored p21 transactivation at 37°C, as did cisplatin-induced DNA damage at 32.5°C that coincided with reduced p53-MDM4 binding and cisplatin resistance. These results demonstrate that cisplatin-mediated p53V172F mutation regulates p53 stability at the normothermic temperature, but it is the increased recruitment of MDM4

  3. The Hunger Games: p53 regulates metabolism upon serine starvation.

    PubMed

    Tavana, Omid; Gu, Wei

    2013-02-05

    Cancer cells reprogram their metabolism to support a high proliferative rate. A new study shows that, upon serine starvation, the tumor suppressor p53 activates p21 to shift metabolic flux from purine biosynthesis to glutathione production, which enhances cellular proliferation and viability by combating ROS (Maddocks et al., 2013). Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Post-transcriptional induction of p21cip1 protein in condylomata and dysplasias is inversely related to human papillomavirus activities.

    PubMed Central

    Schmidt-Grimminger, D. C.; Wu, X.; Jian, Y.; Broker, T. R.; Chow, L. T.

    1998-01-01

    Infections of the genital and oral epithelia by human papillomaviruses cause condylomata, papillomas, and squamous intraepithelial neoplasms, some of which can progress to invasive cancers. We describe an induction of p21cip1/WAF1/sdi1 protein in a fraction of the spinous cells in benign lesions and in cervical intraepithelial neoplasia grades I and II. The induction appears to be post-transcriptional and independent of p53. p21cip1 antigen-positive cells were sporadic in cervical intraepithelial neoplasia III and rare and focal in carcinomas. In contrast, p21cip1 protein was below or at the threshold of detection in the differentiated cells of normal squamous epithelia from different body sites despite an up-regulation of p21cip1 RNA. In cervical intraepithelial neoplasias from patients who were also positive for the human immunodeficiency virus, there was an additional increase in p21cip1 RNA in the upper spinous cells without concomitant p21cip1 protein induction. A consistent inverse relationship was observed between the p21cip1 protein induction and abundant human papillomavirus DNA and RNAs. We propose that p21cip1 protein induction is a novel host response that inhibits viral DNA replication and thus prevents elevated viral transcription. This hypothesis can partly account for the heterogeneity and the differentiation-dependent viral activities commonly observed in benign human papillomavirus lesions. Images Figure 1 Figure 2 Figure 3 PMID:9546362

  5. Dihydroptychantol A, a macrocyclic bisbibenzyl derivative, induces autophagy and following apoptosis associated with p53 pathway in human osteosarcoma U2OS cells

    SciTech Connect

    Li Xia; Wu, William K.K.; Sun Bin; Cui Min; Liu Shanshan; Gao Jian; Lou Hongxiang

    2011-03-01

    Dihydroptychantol A (DHA), a novel macrocyclic bisbibenzyl compound extracted from liverwort Asterella angusta, has antifungal and multi-drug resistance reversal properties. Here, the chemically synthesized DHA was employed to test its anti-cancer activities in human osteosarcoma U2OS cells. Our results demonstrated that DHA induced autophagy followed by apoptotic cell death accompanied with G{sub 2}/M-phase cell cycle arrest in U2OS cells. DHA-induced autophagy was morphologically characterized by the formation of double membrane-bound autophagic vacuoles recognizable at the ultrastructural level. DHA also increased the levels of LC3-II, a marker of autophagy. Surprisingly, DHA-mediated apoptotic cell death was potentiated by the autophagy inhibitor 3-methyladenine, suggesting that autophagy may play a protective role that impedes the eventual cell death. Furthermore, p53 was shown to be involved in DHA-meditated autophagy and apoptosis. In this connection, DHA increased nuclear expression of p53, induced p53 phosphorylation, and upregulated p53 target gene p21{sup Waf1/Cip1}. In contrast, cytoplasmic p53 was reduced by DHA, which contributed to the stimulation of autophagy. In relation to the cell cycle, DHA decreased the expression of cyclin B{sub 1}, a cyclin required for progression through the G{sub 2}/M phase. Taken together, DHA induces G{sub 2}/M-phase cell cycle arrest and apoptosis in U2OS cells. DHA-induced apoptosis was preceded by the induction of protective autophagy. DHA-mediated autophagy and apoptosis are associated with the cytoplasmic and nuclear functions of p53.

  6. The biological, clinical and prognostic implications of p53 transcriptional pathways in breast cancers.

    PubMed

    Abdel-Fatah, Tarek M; Powe, Desmond G; Agboola, Johnson; Adamowicz-Brice, Martyna; Blamey, Roger W; Lopez-Garcia, Maria A; Green, Andrew R; Reis-Filho, Jorge S; Ellis, Ian O

    2010-03-01

    We hypothesized that the functional status of p53 transcriptional pathways, rather than p53 protein expression alone, could accurately discriminate between low- and high-risk breast carcinoma (BC) and inform about individuals' tumour biological behaviour. To test this, we studied a well-characterized series of 990 BCs with long-term follow-up, immunohistochemically profiled for p53, its main regulators and downstream genes. Results were validated in an independent series of patients (n = 245) uniformly treated with adjuvant anthracycline-based chemotherapy. Eleven p53 transcriptional phenotypes were identified with just two main clinical outcomes. (a) Low risk/good prognosis group (active/partially inactive p53 pathways), defined as p53(+/-)/MDM4(+)/MDM2(+/-)/Bcl2(+/-)/p21(+/-), p53(-)/MDM4(-)/MDM2(+)/Bcl2(+)/p21(+/-) and p53(+/-)/MDM4(-)/MMD2(-)/Bcl2(+)/p21(+/-). These tumours had favourable clinicopathological characteristics, including ER(+) and long survival after systemic adjuvant-therapy (AT). (b) High risk/poor prognosis group (completely inactive p53 pathways), defined as p53(+/-)/MDM4(-) MDM2(-)/Bcl2(-)/p21(-), p53(-)/MDM4(-) MDM2(+)/Bcl2(-)/p21(-) and p53(+/-)/MDM4(-)/MDM2(-)/Bcl2(-)/p21(+). These tumours were characterized by aggressive clinicopathological characteristics and showed shortened survival when treated with AT. Completely inactive p53 pathways but intact p21 axis p53(+/-)/MDM4(-)/MDM2(-)/Bcl2(-)/p21(+) had the worst prognosis, particularly patients who received AT. Multivariate Cox regression models, including validated prognostic factors for both test and validation series, revealed that the functional status of p53 transcriptional pathways was an independent prognosticator for BC-specific survival (HR 2.64 and 4.5, p < 0.001, respectively) and disease-free survival (HR 1.93 and 2.5, p < 0.001, respectively). In conclusion, p53 functional status determined by assessment of p53 regulatory and downstream targets provides independent prognostic

  7. Adenovirus-mediated wild-type p53 transfer radiosensitizes H1299 cells to subclinical-dose carbon-ion irradiation through the restoration of p53 function.

    PubMed

    Liu, Bing; Zhang, Hong; Duan, Xin; Hao, Jifang; Xie, Yi; Zhou, Qingming; Wang, Yanling; Tian, Yuan; Wang, Tao

    2009-02-01

    To determine whether adenovirus-mediated wild-type p53 transfer after radiotherapy could radiosensitize non-small-cell lung cancer (NSCLC) cells to subclinical-dose carbon-ion beam (C-beam), H1299 cells were exposed to a C-beam or gamma-ray and then infected with 5 MOI of AdCMV-p53 or GFP (C-beam or gamma-ray with p53 or GFP). Cell cycle was detected by flow cytometric analysis. The apoptosis was examined by a fluorescent microscope with DAPI staining. DNA fragmentation was monitored by the TUNEL assay. P53 mRNA was detected by reverse-transcriptase polymerase chain reaction. The expression of p53, MDM(2), and p21 was monitored by Western blot. Survival fractions were determined by colony-forming assay. The percentages of G(1)-phase cells in C-beam with p53 increased by 8.2%-16.0%, 5.2%-7.0%, and 5.8%-18.9%, respectively, compared with C-beam only, gamma-ray with p53, or p53 only. The accumulation of G(2)-phase cells in C-beam with p53 increased by 5.7%-8.9% and 8.8%-14.8%, compared with those in gamma-ray with p53 or p53 only, respectively. The percentage of apoptosis for C-beam with p53 increased by 7.4%-19.1%, 5.8%-11.7%, and 5.2 %-19.2%, respectively, compared with C-beam only, gamma-ray with p53, or p53 only. The level of p53 mRNA in C-beam with p53 was significantly higher than that in p53 only. The expression level of p53 and p21 in C-beam with p53 was significantly higher than that in both C-beam with GFP and p53 only. The survival fractions for C-beam with p53 were significantly less than those for the other groups (p < 0.05). The data suggested that AdCMV-p53 transfer could more efficiently radiosensitize H1299 cells to subclinical-dose C-beam irradiation through the restoration of p53 function.

  8. p53-mediated differentiation of the erythroleukemia cell line K562.

    PubMed

    Chylicki, K; Ehinger, M; Svedberg, H; Bergh, G; Olsson, I; Gullberg, U

    2000-06-01

    The tumor suppressor gene p53 can mediate both apoptosis and cell cycle arrest. In addition, p53 also influences differentiation. To further characterize the differentiation inducing properties of p53, we overexpressed a temperature-inducible p53 mutant (ptsp53Val135) in the erythroleukemia cell line K562. The results show that wild-type p53 and hemin synergistically induce erythroid differentiation of K562 cells, indicating that p53 plays a role in the molecular regulation of differentiation. However, wild-type p53 did not affect phorbol 12-myristate 13-acetate-dependent appearance of the megakaryocyte-related cell surface antigens CD9 and CD61, suggesting that p53 does not generally affect phenotypic modulation. The cyclin-dependent kinase inhibitor p21, a transcriptional target of p53, halts the cell cycle in G1 and has also been implicated in the regulation of differentiation and apoptosis. However, transiently overexpressed p21 did neither induce differentiation nor affect the cell cycle distribution or viability of K562 cells, suggesting that targets downstream of p53 other than p21 are critical for the p53-mediated differentiation response.

  9. Nobiletin induces apoptosis and potentiates the effects of the anticancer drug 5-fluorouracil in p53-mutated SNU-16 human gastric cancer cells.

    PubMed

    Moon, Jeong Yong; Cho, Moonjae; Ahn, Kwang Seok; Cho, Somi Kim

    2013-01-01

    Nobiletin is a typical polymethoxyl flavone from citrus fruits that has anticancer properties, but the molecular mechanism of its inhibitory effects on the growth of p53-mutated SNU-16 human gastric cancer cells has not been explored. In this study, nobiletin was found to be effective at inhibiting the proliferation of SNU-16 cells than other flavonoids. Nobiletin induced the death of SNU-16 cells through apoptosis, as evidenced by the increased cell population in the sub-G1 phase, the appearance of fragmented nuclei, an increase in the Bax/Bcl-2 ratio, the proteolytic activation of caspase-9, an increase in caspase-3 activity, and the degradation of poly(ADP-ribose) polymerase (PARP) protein. We found that the combination of nobiletin plus the anticancer drug 5-fluorouracil (5-FU) reduced the viability of SNU-16 cells in a concentration-dependent manner and exhibited a synergistic anticancer effect (combination index = 0.38) when 5-FU was used at relatively low concentrations. The expression of p53 protein increased after treatment with 5-FU, but not nobiletin, whereas the expression of p21 (WAF1/CIP1) protein increased after treatment with nobiletin, but not 5-FU. The cellular responses to nobiletin and 5-FU occurred through different pathways. The results of this study suggest the potential application of nobiletin to the enhancement of 5-FU efficiency in p53 mutant tumors.

  10. Restoration of microRNA-214 expression reduces growth of myeloma cells through positive regulation of P53 and inhibition of DNA replication

    PubMed Central

    Misiewicz-Krzeminska, Irena; Sarasquete, María E.; Quwaider, Dalia; Krzeminski, Patryk; Ticona, Fany V.; Paíno, Teresa; Delgado, Manuel; Aires, Andreia; Ocio, Enrique M.; García-Sanz, Ramón; San Miguel, Jesús F.; Gutiérrez, Norma C.

    2013-01-01

    MicroRNA have been demonstrated to be deregulated in multiple myeloma. We have previously reported that miR-214 is down-regulated in multiple myeloma compared to in normal plasma cells. The functional role of miR-214 in myeloma pathogenesis was explored by transfecting myeloma cell lines with synthetic microRNA followed by gene expression profiling. Putative miR-214 targets were validated by luciferase reporter assay. Ectopic expression of miR-214 reduced cell growth and induced apoptosis of myeloma cells. In order to identify the potential direct target genes of miR-214 which could be involved in the biological pathways regulated by this microRNA, gene expression profiling of the H929 myeloma cell line transfected with precursor miR-214 was carried out. Functional analysis revealed significant enrichment for DNA replication, cell cycle phase and DNA binding. miR-214 directly down-regulated the expression of PSMD10, which encodes the oncoprotein gankyrin, and ASF1B, a histone chaperone required for DNA replication, by binding to their 3'-untranslated regions. In addition, gankyrin inhibition induced an increase of P53 mRNA levels and subsequent up-regulation of CDKN1A (p21Waf1/Cip1) and BAX transcripts, which are direct transcriptional targets of p53. In conclusion, MiR-214 functions as a tumor suppressor in myeloma by positive regulation of p53 and inhibition of DNA replication. PMID:23100276

  11. Caspase-3 activation downstream from reactive oxygen species in heat-induced apoptosis of pancreatic carcinoma cells carrying a mutant p53 gene.

    PubMed

    Kobayashi, D; Sasaki, M; Watanabe, N

    2001-04-01

    In the present study we investigated the intracellular signaling pathway leading to p53-independent activation of caspase-3 during heat-induced apoptosis of pancreatic carcinoma cells. Induction of mutant p53 protein, but not p21/WAF-1, was observed after heat treatment of both heat-resistant (PANC-1) and heat-sensitive (MIAPaCa-2) cells. A specific inhibitor of caspase-3 (Ac-DMQD-CHO) caused 84% and 92% inhibition of apoptosis in MIAPaCa-2 and PANC-1 cells, respectively. Caspase-3 mRNA expression was increased in both cell lines after heat treatment. Further, heat-induced caspase-3 activity detected by fluorogenic assay in MIAPaCa-2 cells was almost completely inhibited by addition of the antioxidant N-acetyl-L-cysteine. In contrast, Ac-DMQD-CHO had no inhibitory effect on amounts of reactive oxygen species in heat-treated MIAPaCa-2 cells. These results suggest a possible pathway by which reactive oxygen species lead to caspase-3 activation to cause heat-induced death of pancreatic carcinoma cells carrying mutant p53.

  12. Differential regulation of the REGγ–proteasome pathway by p53/TGF-β signalling and mutant p53 in cancer cells

    PubMed Central

    Ali, Amjad; Wang, Zhuo; Fu, Junjiang; Ji, Lei; Liu, Jiang; Li, Lei; Wang, Hui; Chen, Jiwu; Caulin, Carlos; Myers, Jeffrey N.; Zhang, Pei; Xiao, Jianru; Zhang, Bianhong; Li, Xiaotao

    2013-01-01

    Proteasome activity is frequently enhanced in cancer to accelerate metastasis and tumorigenesis. REGγ, a proteasome activator known to promote p53/p21/p16 degradation, is often overexpressed in cancer cells. Here we show that p53/TGF-β signalling inhibits the REGγ–20S proteasome pathway by repressing REGγ expression. Smad3 and p53 interact on the REGγ promoter via the p53RE/SBE region. Conversely, mutant p53 binds to the REGγ promoter and recruits p300. Importantly, mutant p53 prevents Smad3/N-CoR complex formation on the REGγ promoter, which enhances the activity of the REGγ–20S proteasome pathway and contributes to mutant p53 gain of function. Depletion of REGγ alters the cellular response to p53/TGF-β signalling in drug resistance, proliferation, cell cycle progression and proteasome activity. Moreover, p53 mutations show a positive correlation with REGγ expression in cancer samples. These findings suggest that targeting REGγ–20S proteasome for cancer therapy may be applicable to human tumours with abnormal p53/Smad protein status. Furthermore, this study demonstrates a link between p53/TGF-β signalling and the REGγ–20S proteasome pathway, and provides insight into the REGγ/p53 feedback loop. PMID:24157709

  13. p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer.

    PubMed

    Jackson, James G; Pant, Vinod; Li, Qin; Chang, Leslie L; Quintás-Cardama, Alfonso; Garza, Daniel; Tavana, Omid; Yang, Peirong; Manshouri, Taghi; Li, Yi; El-Naggar, Adel K; Lozano, Guillermina

    2012-06-12

    Studies on the role of TP53 mutation in breast cancer response to chemotherapy are conflicting. Here, we show that, contrary to dogma, MMTV-Wnt1 mammary tumors with mutant p53 exhibited a superior clinical response compared to tumors with wild-type p53. Doxorubicin-treated p53 mutant tumors failed to arrest proliferation, leading to abnormal mitoses and cell death, whereas p53 wild-type tumors arrested, avoiding mitotic catastrophe. Senescent tumor cells persisted, secreting senescence-associated cytokines exhibiting autocrine/paracrine activity and mitogenic potential. Wild-type p53 still mediated arrest and inhibited drug response even in the context of heterozygous p53 point mutations or absence of p21. Thus, we show that wild-type p53 activity hinders chemotherapy response and demonstrate the need to reassess the paradigm for p53 in cancer therapy. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. The impact of p53 on the early stage replication of retrovirus.

    PubMed

    Kinnetz, Michaela; Alghamdi, Faris; Racz, Michael; Hu, Wenwei; Shi, Binshan

    2017-08-09

    The function of p53 in cancer biology has been studied extensively, but its role in anti-retrovirus infection has been elusive for many years. The restriction of retrovirus early stage replication by p53 was investigated in this study. VSV-G pseudotyped retrovirus with GFP reporter gene was used to infect both HCT116 p53(+/+) cells and its isogenic p53 knockout HCT116 p53(-/-) cells. The infection was detected by flow cytometry. Reverse transcription products were quantified by real time PCR. Mutation analysis was performed after 1-LTR cycle and 2-LTR cycle DNA were amplified and PCR products were sequenced. Transcription and translation of cyclin-dependent kinase inhibitor 1 (p21(Cip1)) and SAM domain and HD domain-containing protein 1 (SAMHD1) were analyzed by TaqMan PCR and Western blot experiments. siRNA experiment was applied to study the role of p53 downstream gene p21(Cip1) in the restriction of retrovirus infection. It was found that the block of retrovirus infection in non-cycling cells was significantly attenuated in HCT116 p53(-/-) cells when compared to HCT116 p53(+/+) cells. It was found that both late reverse transcription products and viral 2-LTR cycle DNA were significantly increased in infected non-cycling HCT116 p53(-/-) cells. Furthermore, the mutation frequency detected in 1-LTR DNA from HCT116 p53(+/+) cells were significantly decreased in comparison to HCT116 p53(-/-) cells. A higher number of insertion and deletion mutations were detected in the joint region of 2-LTR cycle DNA in infected p53(+/+) cells. Cell cycle analysis showed retrovirus infection promoted host cell replication. Higher levels of mRNA and protein of p21(Cip1) were found in HCT116 p53(+/+) cells in comparison to the HCT116 p53(-/-) cells. Furthermore, knockdown of p21(Cip1) in non-cycling HCT116 p53(+/+) cells significantly increased the infection. The results of this study showed that p53 is an important restriction factor that interferes with retrovirus infection in its

  15. Influenza A Viruses Control Expression of Proviral Human p53 Isoforms p53β and Δ133p53α

    PubMed Central

    Marcel, Virginie; Cartet, Gaëlle; Lane, David P.; Lina, Bruno; Rosa-Calatrava, Manuel

    2012-01-01

    Previous studies have described the role of p53 isoforms, including p53β and Δ133p53α, in the modulation of the activity of full-length p53, which regulates cell fate. In the context of influenza virus infection, an interplay between influenza viruses and p53 has been described, with p53 being involved in the antiviral response. However, the role of physiological p53 isoforms has never been explored in this context. Here, we demonstrate that p53 isoforms play a role in influenza A virus infection by using silencing and transient expression strategies in human lung epithelial cells. In addition, with the help of a panel of different influenza viruses from different subtypes, we also show that infection differentially regulates the expressions of p53β and Δ133p53α. Altogether, our results highlight the role of p53 isoforms in the viral cycle of influenza A viruses, with p53β and Δ133p53α acting as regulators of viral production in a p53-dependent manner. PMID:22647703

  16. Depletion of pro-oncogenic RUNX2 enhances gemcitabine (GEM) sensitivity of p53-mutated pancreatic cancer Panc-1 cells through the induction of pro-apoptotic TAp63

    PubMed Central

    Ozaki, Toshinori; Nakamura, Mizuyo; Ogata, Takehiro; Sang, Meijie; Yoda, Hiroyuki; Hiraoka, Kiriko; Sang, Meixiang; Shimozato, Osamu

    2016-01-01

    Recently, we have described that siRNA-mediated silencing of runt-related transcription factor 2 (RUNX2) improves anti-cancer drug gemcitabine (GEM) sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the augmentation of p53 family TAp63-dependent cell death pathway. In this manuscript, we have extended our study to p53-mutated human pancreatic cancer Panc-1 cells. According to our present results, knockdown of mutant p53 alone had a marginal effect on GEM-mediated cell death of Panc-1 cells. We then sought to deplete RUNX2 using siRNA in Panc-1 cells and examined its effect on GEM sensitivity. Under our experimental conditions, RUNX2 knockdown caused a significant enhancement of GEM sensitivity of Panc-1 cells. Notably, GEM-mediated induction of TAp63 but not of TAp73 was further stimulated in RUNX2-depleted Panc-1 cells, indicating that, like AsPC-1 cells, TAp63 might play a pivotal role in the regulation of GEM sensitivity of Panc-1 cells. Consistent with this notion, forced expression of TAp63α in Panc-1 cells promoted cell cycle arrest and/or cell death, and massively increased luciferase activities driven by TAp63-target gene promoters such as p21WAF1 and NOXA. In addition, immunoprecipitation experiments indicated that RUNX2 forms a complex with TAp63 in Panc-1 cells. Taken together, our current observations strongly suggest that depletion of RUNX2 enhances the cytotoxic effect of GEM on p53-mutated Panc-1 cells through the stimulation of TAp63-dependent cell death pathway even in the presence of a large amount of pro-oncogenic mutant p53, and might provide an attractive strategy to treat pancreatic cancer patients with p53 mutations. PMID:27713122

  17. Depletion of pro-oncogenic RUNX2 enhances gemcitabine (GEM) sensitivity of p53-mutated pancreatic cancer Panc-1 cells through the induction of pro-apoptotic TAp63.

    PubMed

    Ozaki, Toshinori; Nakamura, Mizuyo; Ogata, Takehiro; Sang, Meijie; Yoda, Hiroyuki; Hiraoka, Kiriko; Sang, Meixiang; Shimozato, Osamu

    2016-11-01

    Recently, we have described that siRNA-mediated silencing of runt-related transcription factor 2 (RUNX2) improves anti-cancer drug gemcitabine (GEM) sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the augmentation of p53 family TAp63-dependent cell death pathway. In this manuscript, we have extended our study to p53-mutated human pancreatic cancer Panc-1 cells. According to our present results, knockdown of mutant p53 alone had a marginal effect on GEM-mediated cell death of Panc-1 cells. We then sought to deplete RUNX2 using siRNA in Panc-1 cells and examined its effect on GEM sensitivity. Under our experimental conditions, RUNX2 knockdown caused a significant enhancement of GEM sensitivity of Panc-1 cells. Notably, GEM-mediated induction of TAp63 but not of TAp73 was further stimulated in RUNX2-depleted Panc-1 cells, indicating that, like AsPC-1 cells, TAp63 might play a pivotal role in the regulation of GEM sensitivity of Panc-1 cells. Consistent with this notion, forced expression of TAp63α in Panc-1 cells promoted cell cycle arrest and/or cell death, and massively increased luciferase activities driven by TAp63-target gene promoters such as p21WAF1 and NOXA. In addition, immunoprecipitation experiments indicated that RUNX2 forms a complex with TAp63 in Panc-1 cells. Taken together, our current observations strongly suggest that depletion of RUNX2 enhances the cytotoxic effect of GEM on p53-mutated Panc-1 cells through the stimulation of TAp63-dependent cell death pathway even in the presence of a large amount of pro-oncogenic mutant p53, and might provide an attractive strategy to treat pancreatic cancer patients with p53 mutations.

  18. The PIDDosome activates p53 in response to supernumerary centrosomes

    PubMed Central

    Fava, Luca L.; Schuler, Fabian; Sladky, Valentina; Haschka, Manuel D.; Soratroi, Claudia; Eiterer, Lisa; Demetz, Egon; Weiss, Guenter; Geley, Stephan; Nigg, Erich A.; Villunger, Andreas

    2017-01-01

    Centrosomes, the main microtubule-organizing centers in animal cells, are replicated exactly once during the cell division cycle to form the poles of the mitotic spindle. Supernumerary centrosomes can lead to aberrant cell division and have been causally linked to chromosomal instability and cancer. Here, we report that an increase in the number of mature centrosomes, generated by disrupting cytokinesis or forcing centrosome overduplication, triggers the activation of the PIDDosome multiprotein complex, leading to Caspase-2-mediated MDM2 cleavage, p53 stabilization, and p21-dependent cell cycle arrest. This pathway also restrains the extent of developmentally scheduled polyploidization by regulating p53 levels in hepatocytes during liver organogenesis. Taken together, the PIDDosome acts as a first barrier, engaging p53 to halt the proliferation of cells carrying more than one mature centrosome to maintain genome integrity. PMID:28130345

  19. Regulation of Mutant p53 Protein Expression.

    PubMed

    Vijayakumaran, Reshma; Tan, Kah Hin; Miranda, Panimaya Jeffreena; Haupt, Sue; Haupt, Ygal

    2015-01-01

    For several decades, p53 has been detected in cancer biopsies by virtue of its high protein expression level which is considered indicative of mutation. Surprisingly, however, mouse genetic studies revealed that mutant p53 is inherently labile, similar to its wild type (wt) counterpart. Consistently, in response to stress conditions, both wt and mutant p53 accumulate in cells. While wt p53 returns to basal level following recovery from stress, mutant p53 remains stable. In part, this can be explained in mutant p53-expressing cells by the lack of an auto-regulatory loop with Mdm2 and other negative regulators, which are pivotal for wt p53 regulation. Further, additional protective mechanisms are acquired by mutant p53, largely mediated by the co-chaperones and their paralogs, the stress-induced heat shock proteins. Consequently, mutant p53 is accumulated in cancer cells in response to chronic stress and this accumulation is critical for its oncogenic gain of functions (GOF). Building on the extensive knowledge regarding wt p53, the regulation of mutant p53 is unraveling. In this review, we describe the current understanding on the major levels at which mutant p53 is regulated. These include the regulation of p53 protein levels by microRNA and by enzymes controlling p53 proteasomal degradation.

  20. Knockdown of p53 suppresses Nanog expression in embryonic stem cells

    SciTech Connect

    Abdelalim, Essam Mohamed; Tooyama, Ikuo

    2014-01-10

    Highlights: •We investigate the role of p53 in ESCs in the absence of DNA damage. •p53 knockdown suppresses ESC proliferation. •p53 knockdown downregulates Nanog expression. •p53 is essential for mouse ESC self-renewal. -- Abstract: Mouse embryonic stem cells (ESCs) express high levels of cytoplasmic p53. Exposure of mouse ESCs to DNA damage leads to activation of p53, inducing Nanog suppression. In contrast to earlier studies, we recently reported that chemical inhibition of p53 suppresses ESC proliferation. Here, we confirm that p53 signaling is involved in the maintenance of mouse ESC self-renewal. RNA interference-mediated knockdown of p53 induced downregulation of p21 and defects in ESC proliferation. Furthermore, p53 knockdown resulted in a significant downregulation in Nanog expression at 24 and 48 h post-transfection. p53 knockdown also caused a reduction in Oct4 expression at 48 h post-transfection. Conversely, exposure of ESCs to DNA damage caused a higher reduction of Nanog expression in control siRNA-treated cells than in p53 siRNA-treated cells. These data show that in the absence of DNA damage, p53 is required for the maintenance of mouse ESC self-renewal by regulating Nanog expression.

  1. Roscovitine-induced apoptosis of H1299 cells depends on functional status of p53.

    PubMed

    Slovackova, J; Smarda, J; Smardova, J

    2012-01-01

    Roscovitine, an inhibitor of cyclin-dependent kinases, is promising anticancer agent. Its antiproliferative and cytotoxic effects can be mediated by the p53 signaling pathway. To define the role of p53 in roscovitine-induced cell response, we prepared H1299/p53 cell lines inducibly expressing specific variants of p53 (p53wt and hotspot R175H, temperature-dependent P98A, A159V, S215G, Y220C, Y234C mutants). In the presence of roscovitine, each cell line variant behaved in specific way reflecting activity of the p53 protein. Roscovitine decreased production of the cell cycle inhibitor p21 and induced apoptosis. This effect was the most efficient in cells expressing p53wt protein with full activity. The cell expressing partially and conditionally active p53 mutants responded to roscovitine less efficiently. The cells expressing p53 mutants A159V and Y234C were very sensitive to roscovitine but their response was clearly temperature-dependent. The cells expressing P98A, S215G and Y220C p53 mutants exhibited only weak sensitivity to roscovitine and underwent apoptosis in low frequency. In principle, each td p53 mutant responded to roscovitine in distinct way. We showed clearly that the impact of roscovitine on H1299 cells depends on functional status of p53 they produce. This suggests that patients with tumors exhibiting specific p53 variants can benefit from the roscovitine therapy.

  2. p53 Acetylation: Regulation and Consequences

    PubMed Central

    Reed, Sara M.; Quelle, Dawn E.

    2014-01-01

    Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer. PMID:25545885

  3. Prospective therapeutic applications of p53 inhibitors

    SciTech Connect

    Gudkov, Andrei V. . E-mail: gudkov@ccf.org; Komarova, Elena A.

    2005-06-10

    p53, in addition to being a key cancer preventive factor, is also a determinant of cancer treatment side effects causing excessive apoptotic death in several normal tissues during cancer therapy. p53 inhibitory strategy has been suggested to protect normal tissues from chemo- and radiotherapy, and to treat other pathologies associated with stress-mediated activation of p53. This strategy was validated by isolation and testing of small molecule p53 inhibitor pifithrin-{alpha} that demonstrated broad tissue protecting capacity. However, in some normal tissues and tumors p53 plays protective role by inducing growth arrest and preventing cells from premature entrance into mitosis and death from mitotic catastrophe. Inhibition of this function of p53 can sensitize tumor cells to chemo- and radiotherapy, thus opening new potential application of p53 inhibitors and justifying the need in pharmacological agents targeting specifically either pro-apoptotic or growth arrest functions of p53.

  4. Tumor protein 53-induced nuclear protein 1 is a major mediator of p53 antioxidant function.

    PubMed

    Cano, Carla E; Gommeaux, Julien; Pietri, Sylvia; Culcasi, Marcel; Garcia, Stéphane; Seux, Mylène; Barelier, Sarah; Vasseur, Sophie; Spoto, Rose P; Pébusque, Marie-Josèphe; Dusetti, Nelson J; Iovanna, Juan L; Carrier, Alice

    2009-01-01

    p53 exerts its tumor suppressor function mainly through transcriptional induction of target genes involved in several processes, including cell cycle checkpoints, apoptosis, and regulation of cell redox status. p53 antioxidant function is dependent on its transcriptional activity and proceeds by sequential induction of antioxidant and proapoptotic targets. However, none of the thus far renowned p53 targets have proved able to abolish on their own the intracellular reactive oxygen species (ROS) accumulation caused by p53 deficiency, therefore pointing to the existence of other prominent and yet unknown p53 antioxidant targets. Here, we show that TP53INP1 represents such a target. Indeed, TP53INP1 transcript induction on oxidative stress is strictly dependent on p53. Mouse embryonic fibroblasts (MEF) and splenocytes derived from TP53INP1-deficient (inp1(-/-)) mice accumulate intracellular ROS, whereas overexpression of TP53INP1 in p53-deficient MEFs rescues ROS levels to those of p53-proficient cells, indicating that TP53INP1 antioxidant function is p53 independent. Furthermore, accumulation of ROS in inp1(-/-) cells on oxidant challenge is associated with decreased expression of