Sample records for p59 oligoadenylate synthetase-like

  1. 2'-5'-Oligoadenylate Synthetase-Like Protein Inhibits Respiratory Syncytial Virus Replication and Is Targeted by the Viral Nonstructural Protein 1.

    PubMed

    Dhar, Jayeeta; Cuevas, Rolando A; Goswami, Ramansu; Zhu, Jianzhong; Sarkar, Saumendra N; Barik, Sailen

    2015-10-01

    2'-5'-Oligoadenylate synthetase-like protein (OASL) is an interferon-inducible antiviral protein. Here we describe differential inhibitory activities of human OASL and the two mouse OASL homologs against respiratory syncytial virus (RSV) replication. Interestingly, nonstructural protein 1 (NS1) of RSV promoted proteasome-dependent degradation of specific OASL isoforms. We conclude that OASL acts as a cellular antiviral protein and that RSV NS1 suppresses this function to evade cellular innate immunity and allow virus growth. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. 2′-5′-Oligoadenylate Synthetase-Like Protein Inhibits Respiratory Syncytial Virus Replication and Is Targeted by the Viral Nonstructural Protein 1

    PubMed Central

    Dhar, Jayeeta; Cuevas, Rolando A.; Goswami, Ramansu; Zhu, Jianzhong

    2015-01-01

    2′-5′-Oligoadenylate synthetase-like protein (OASL) is an interferon-inducible antiviral protein. Here we describe differential inhibitory activities of human OASL and the two mouse OASL homologs against respiratory syncytial virus (RSV) replication. Interestingly, nonstructural protein 1 (NS1) of RSV promoted proteasome-dependent degradation of specific OASL isoforms. We conclude that OASL acts as a cellular antiviral protein and that RSV NS1 suppresses this function to evade cellular innate immunity and allow virus growth. PMID:26178980

  3. Interferon-Inducible Oligoadenylate Synthetase-Like Protein Acts as an Antiviral Effector against Classical Swine Fever Virus via the MDA5-Mediated Type I Interferon-Signaling Pathway.

    PubMed

    Li, Lian-Feng; Yu, Jiahui; Zhang, Yuexiu; Yang, Qian; Li, Yongfeng; Zhang, Lingkai; Wang, Jinghan; Li, Su; Luo, Yuzi; Sun, Yuan; Qiu, Hua-Ji

    2017-06-01

    Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), which poses a serious threat to the global pig industry. Interferons (IFNs) and IFN-stimulated genes (ISGs) play a key role in host antiviral defense. We have previously screened the porcine 2'-5'-oligoadenylate synthetase-like protein (pOASL) as a potential anti-CSFV ISG using a reporter CSFV. This study aimed to clarify the underlying antiviral mechanism of pOASL against CSFV. We confirmed that CSFV replication was significantly suppressed in lentivirus-delivered, pOASL-overexpressing PK-15 cells, whereas silencing the expression of endogenous pOASL by small interfering RNAs markedly enhanced CSFV growth. In addition, the transcriptional level of pOASL was upregulated both in vitro and in vivo upon CSFV infection. Interestingly, the anti-CSFV effects of pOASL are independent of the canonical RNase L pathway but depend on the activation of the type I IFN response. Glutathione S -transferase pulldown and coimmunoprecipitation assays revealed that pOASL interacts with MDA5, a double-stranded RNA sensor, and further enhances MDA5-mediated type I IFN signaling. Moreover, we showed that pOASL exerts anti-CSFV effects in an MDA5-dependent manner. In conclusion, pOASL suppresses CSFV replication via the MDA5-mediated type I IFN-signaling pathway. IMPORTANCE The host innate immune response plays an important role in mounting the initial resistance to viral infection. Here, we identify the porcine 2'-5'-oligoadenylate synthetase-like protein (pOASL) as an interferon (IFN)-stimulated gene (ISG) against classical swine fever virus (CSFV). We demonstrate that the anti-CSFV effects of pOASL depend on the activation of type I IFN response. In addition, we show that pOASL, as an MDA5-interacting protein, is a coactivator of MDA5-mediated IFN induction to exert anti-CSFV actions. This work will be beneficial to the development of novel anti-CSFV strategies by targeting pOASL. Copyright

  4. The chicken 2'-5' oligoadenylate synthetase A inhibits the replication of West Nile virus.

    PubMed

    Tag-El-Din-Hassan, Hassan T; Sasaki, Nobuya; Moritoh, Kanako; Torigoe, Daisuke; Maeda, Akihiko; Agui, Takashi

    2012-08-01

    West Nile virus (WNV) is a pathogen to cause West Nile encephalitis when the infection occurs in the brain. Previous studies in mice identified the 2'-5' oligoadenylate synthetase 1b (Oas1b) gene as a determining factor for resistance to WNV infection. In addition, it has been suggested that human OAS1 and OASL are associated with the resistance to the WNV infection. WNV is maintained in nature through a complex life cycle involving wildbirds and mosquitoes. Birds are not only susceptible to the WNV, but also act as reservoir hosts, thus participating in the spread of the disease. It has previously been reported that chicken OASL possesses the oligoadenylate synthetase activity. However, until now the antiviral activity of chicken OASL has not been determined. In this study, we investigated the putative antiviral activity of chicken OASL by ectopic expression of this enzyme in mammalian cells and then infecting these cells with WNV replicon. We demonstrate that chicken OASL has an antiviral activity against the WNV. This is the first report to show that chicken OASL is associated with the resistance to the WNV infection.

  5. STING-Dependent 2'-5' Oligoadenylate Synthetase-Like Production Is Required for Intracellular Mycobacterium leprae Survival.

    PubMed

    de Toledo-Pinto, Thiago Gomes; Ferreira, Anna Beatriz Robottom; Ribeiro-Alves, Marcelo; Rodrigues, Luciana Silva; Batista-Silva, Leonardo Ribeiro; Silva, Bruno Jorge de Andrade; Lemes, Robertha Mariana Rodrigues; Martinez, Alejandra Nóbrega; Sandoval, Felipe Galvan; Alvarado-Arnez, Lucia Elena; Rosa, Patrícia Sammarco; Shannon, Edward Joseph; Pessolani, Maria Cristina Vidal; Pinheiro, Roberta Olmo; Antunes, Sérgio Luís Gomes; Sarno, Euzenir Nunes; Lara, Flávio Alves; Williams, Diana Lynn; Ozório Moraes, Milton

    2016-07-15

    Cytosolic detection of nucleic acids elicits a type I interferon (IFN) response and plays a critical role in host defense against intracellular pathogens. Herein, a global gene expression profile of Mycobacterium leprae-infected primary human Schwann cells identified the genes differentially expressed in the type I IFN pathway. Among them, the gene encoding 2'-5' oligoadenylate synthetase-like (OASL) underwent the greatest upregulation and was also shown to be upregulated in M. leprae-infected human macrophage cell lineages, primary monocytes, and skin lesion specimens from patients with a disseminated form of leprosy. OASL knock down was associated with decreased viability of M. leprae that was concomitant with upregulation of either antimicrobial peptide expression or autophagy levels. Downregulation of MCP-1/CCL2 release was also observed during OASL knock down. M. leprae-mediated OASL expression was dependent on cytosolic DNA sensing mediated by stimulator of IFN genes signaling. The addition of M. leprae DNA enhanced nonpathogenic Mycobacterium bovis bacillus Calmette-Guerin intracellular survival, downregulated antimicrobial peptide expression, and increased MCP-1/CCL2 secretion. Thus, our data uncover a promycobacterial role for OASL during M. leprae infection that directs the host immune response toward a niche that permits survival of the pathogen. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  6. Antiviral activity of human oligoadenylate synthetases-like (OASL) is mediated by enhancing retinoic acid-inducible gene I (RIG-I) signaling

    PubMed Central

    Zhu, Jianzhong; Zhang, Yugen; Ghosh, Arundhati; Cuevas, Rolando A.; Forero, Adriana; Dhar, Jayeeta; Ibsen, Mikkel Søes; Schmid-Burgk, Jonathan Leo; Schmidt, Tobias; Ganapathiraju, Madhavi K.; Fujita, Takashi; Hartmann, Rune; Barik, Sailen; Hornung, Veit; Coyne, Carolyn B.; Sarkar, Saumendra N.

    2014-01-01

    SUMMARY Virus infection is sensed in the cytoplasm by retinoic acid-inducible gene I (RIG-I, also known as DDX58), which requires RNA and polyubiquitin binding to induce type I interferon (IFN), and activate cellular innate immunity. We show that the human IFN-inducible oligoadenylate synthetases-like (OASL) protein had antiviral activity and mediated RIG-I activation by mimicking polyubiquitin. Loss of OASL expression reduced RIG-I signaling and enhanced virus replication in human cells. Conversely, OASL expression suppressed replication of a number of viruses in a RIG-I-dependent manner and enhanced RIG-I-mediated IFN induction. OASL interacted and colocalized with RIG-I, and through its C-terminal ubiquitin-like domain specifically enhanced RIG-I signaling. Bone marrow derived macrophages from mice deficient for Oasl2 showed that among the two mouse orthologs of human OASL; Oasl2 is functionally similar to human OASL. Our findings show a mechanism by which human OASL contributes to host antiviral responses by enhancing RIG-I activation. PMID:24931123

  7. 2'-phosphodiesterase and 2',5'-oligoadenylate synthetase activities in the lowest metazoans, sponge [porifera].

    PubMed

    Saby, Emilie; Poulsen, Jesper Buchhave; Justesen, Just; Kelve, Merike; Uriz, Maria Jesus

    2009-01-01

    Sponges [porifera], the most ancient metazoans, contain modules related to the vertebrate immune system, including the 2',5'-oligoadenylate synthetase (OAS). The components of the antiviral 2',5'-oligoadenylate (2-5A) system (OAS, 2'-Phosphodiesterase (2'-PDE) and RNAse L) of vertebrates have not all been identified in sponges. Here, we demonstrate for the first time that in addition to the OAS activity, sponges possess a 2'-PDE activity, which highlights the probable existence of a premature 2-5A system. Indeed, Suberites domuncula and Crella elegans exhibited this 2-5A degrading activity. Upon this finding, two out of three elements forming the 2-5A system have been found in sponges, only a endoribonuclease, RNAse L or similar, has to be found. We suspect the existence of a complex immune system in sponges, besides the self/non-self recognition system and the use of phagocytosis and secondary metabolites against pathogens.

  8. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons.

    PubMed

    Sim, Chan Kyu; Cho, Yeon Sook; Kim, Byung Soo; Baek, In-Jeoung; Kim, Young-Joon; Lee, Myeong Sup

    2016-06-01

    Type I interferon (IFN-I) plays a critical role in antiviral and antitumor defense. In our previous studies, we showed that IFN-I-inducible 2'-5' oligoadenylate synthetase-like 1 (OASL1) negatively regulates IFN-I production upon viral infection by specifically inhibiting translation of the IFN-I-regulating master transcription factor, interferon regulatory factor 7 (IRF7). In this study, we investigated whether OASL1 plays a negative role in the anti-tumor immune response by using OASL1-deficient (Oasl1 (-/-)) mice and transplantable syngeneic tumor cell models. We found that Oasl1 (-/-) mice demonstrate enhanced resistance to lung metastatic tumors and subcutaneously implanted tumors compared to wild-type (WT) mice. Additionally, we found that cytotoxic effector cells such as CD8(+) T cells (including tumor antigen-specific CD8(+) T cells) and NK cells as well as CD8α(+) DCs (the major antigen cross-presenting cells) were much more frequent (>fivefold) in the Oasl1 (-/-) mouse tumors. Furthermore, the cytotoxic effector cells in Oasl1 (-/-) mouse tumors seemed to be more functionally active. However, the proportion of immunosuppressive myeloid-derived suppressor cells within hematopoietic cells and of regulatory T cells within CD4(+) T cells in Oasl1 (-/-) mouse tumors did not differ significantly from that of WT mice. Tumor-challenged Oasl1 (-/-) mice expressed increased levels of IFN-I and IRF7 protein in the growing tumor, indicating that the enhanced antitumor immune response observed in Oasl1 (-/-) mice was caused by higher IFN-I production in Oasl1 (-/-) mice. Collectively, these results show that OASL1 deficiency promotes the antitumor immune response, and thus, OASL1 could be a good therapeutic target for treating tumors.

  9. Template-directed synthesis and selective adsorption of oligoadenylates in hydroxyapatite

    NASA Technical Reports Server (NTRS)

    Gibbs, D.; Lohrmann, R.; Orgel, L. E.

    1980-01-01

    Polyuridylic acid is adsorbed completely from aqueous solution by hydroxyapatite under conditions that permit template-directed synthesis of oligoadenylates in free solution. The yield of oligoadenylates is enhanced to almost the same extent by poly(U) in the presence or the absence of hydroxyapatite. Under very similar conditions small quantities of hydroxyapatite adsorb higher-molecular-weight oligoadenylates selectively from a mixture of oligomers. On the basis of these results a mechanism for prebiotic oligonucleotide formation is proposed in which selective adsorption on hydroxyapatite or some other immobilized anion-exchanging material plays a major role. Monomers are released from the surface for reactivation, while oligomers are retained in a protected environment by adsorption to the apatite surface.

  10. Rational design of aminoacyl-tRNA synthetase specific for p-acetyl-L-phenylalanine.

    PubMed

    Sun, Renhua; Zheng, Heng; Fang, Zhengzhi; Yao, Wenbing

    2010-01-01

    The Methanococcus jannaschii tRNA(Tyr)/tyrosyl-tRNA synthetase pair has been engineered to incorporate unnatural amino acids into proteins in Escherichia coli site-specifically. In order to add other unnatural amino acids into proteins by this approach, the amino acid binding site of M. jannaschii tyrosyl-tRNA synthetase need to be mutated. The crystal structures of M. jannaschii tyrosyl-tRNA synthetase and its mutations were determined, which provided an opportunity to design aminoacyl-tRNA synthetases specific for other unnatural amino acids. In our study, we attempted to design aminoacyl-tRNA synthetases being able to deliver p-acetyl-L-phenylalanine into proteins. p-Acetyl-L-phenylalanine was superimposed on tyrosyl in M. jannaschii tyrosyl-tRNA synthetase-tyrosine complex. Tyr32 needed to be changed to non-polar amino acid with shorter side chain, Val, Leu, Ile, Gly or Ala, in order to reduce steric clash and provide hydrophobic environment to acetyl on p-acetyl-L-phenylalanine. Asp158 and Ile159 would be changed to specific amino acids for the same reason. So we designed 60 aminoacyl-tRNA synthetases. Binding of these aminoacyl-tRNA synthetases with p-acetyl-L-phenylalanine indicated that only 15 of them turned out to be able to bind p-acetyl-L-phenylalanine with reasonable poses. Binding affinity computation proved that the mutation of Tyr32Leu and Asp158Gly benefited p-acetyl-L-phenylalanine binding. And two of the designed aminoacyl-tRNA synthetases had considerable binding affinities. They seemed to be very promising to be able to incorporate p-acetyl-L-phenylalanine into proteins in E. coli. The results show that the combination of homology modeling and molecular docking is a feasible method to filter inappropriate mutations in molecular design and point out beneficial mutations. Copyright 2009 Elsevier Inc. All rights reserved.

  11. MS_RHII-RSD, a Dual-Function RNase HII-(p)ppGpp Synthetase from Mycobacterium smegmatis

    PubMed Central

    Murdeshwar, Maya S.

    2012-01-01

    In the noninfectious soil saprophyte Mycobacterium smegmatis, intracellular levels of the stress alarmones guanosine tetraphosphate and guanosine pentaphosphate, together termed (p)ppGpp, are regulated by the enzyme RelMsm. This enzyme consists of a single, bifunctional polypeptide chain that is capable of both synthesizing and hydrolyzing (p)ppGpp. The relMsm knockout strain of M. smegmatis (ΔrelMsm) is expected to show a (p)ppGpp null [(p)ppGpp0] phenotype. Contrary to this expectation, the strain is capable of synthesizing (p)ppGpp in vivo. In this study, we identify and functionally characterize the open reading frame (ORF), MSMEG_5849, that encodes a second functional (p)ppGpp synthetase in M. smegmatis. In addition to (p)ppGpp synthesis, the 567-amino-acid-long protein encoded by this gene is capable of hydrolyzing RNA·DNA hybrids and bears similarity to the conventional RNase HII enzymes. We have classified this protein as actRelMsm in accordance with the recent nomenclature proposed and have named it MS_RHII-RSD, indicating the two enzymatic activities present [RHII, RNase HII domain, originally identified as domain of unknown function 429 (DUF429), and RSD, RelA_SpoT nucleotidyl transferase domain, the SYNTH domain responsible for (p)ppGpp synthesis activity]. MS_RHII-RSD is expressed and is constitutively active in vivo and behaves like a monofunctional (p)ppGpp synthetase in vitro. The occurrence of the RNase HII and (p)ppGpp synthetase domains together on the same polypeptide chain is suggestive of an in vivo role for this novel protein as a link connecting the essential life processes of DNA replication, repair, and transcription to the highly conserved stress survival pathway, the stringent response. PMID:22636779

  12. MS_RHII-RSD, a dual-function RNase HII-(p)ppGpp synthetase from Mycobacterium smegmatis.

    PubMed

    Murdeshwar, Maya S; Chatterji, Dipankar

    2012-08-01

    In the noninfectious soil saprophyte Mycobacterium smegmatis, intracellular levels of the stress alarmones guanosine tetraphosphate and guanosine pentaphosphate, together termed (p)ppGpp, are regulated by the enzyme Rel(Msm). This enzyme consists of a single, bifunctional polypeptide chain that is capable of both synthesizing and hydrolyzing (p)ppGpp. The rel(Msm) knockout strain of M. smegmatis (Δrel(Msm)) is expected to show a (p)ppGpp null [(p)ppGpp(0)] phenotype. Contrary to this expectation, the strain is capable of synthesizing (p)ppGpp in vivo. In this study, we identify and functionally characterize the open reading frame (ORF), MSMEG_5849, that encodes a second functional (p)ppGpp synthetase in M. smegmatis. In addition to (p)ppGpp synthesis, the 567-amino-acid-long protein encoded by this gene is capable of hydrolyzing RNA·DNA hybrids and bears similarity to the conventional RNase HII enzymes. We have classified this protein as actRel(Msm) in accordance with the recent nomenclature proposed and have named it MS_RHII-RSD, indicating the two enzymatic activities present [RHII, RNase HII domain, originally identified as domain of unknown function 429 (DUF429), and RSD, RelA_SpoT nucleotidyl transferase domain, the SYNTH domain responsible for (p)ppGpp synthesis activity]. MS_RHII-RSD is expressed and is constitutively active in vivo and behaves like a monofunctional (p)ppGpp synthetase in vitro. The occurrence of the RNase HII and (p)ppGpp synthetase domains together on the same polypeptide chain is suggestive of an in vivo role for this novel protein as a link connecting the essential life processes of DNA replication, repair, and transcription to the highly conserved stress survival pathway, the stringent response.

  13. Arc1p is required for cytoplasmic confinement of synthetases and tRNA.

    PubMed

    Golinelli-Cohen, Marie-Pierre; Mirande, Marc

    2007-06-01

    In yeast, Arc1p interacts with ScMetRS and ScGluRS and operates as a tRNA-Interacting Factor (tIF) in trans of these two synthetases. Its N-terminal domain (N-Arc1p) binds the two synthetases and its C-terminal domain is an EMAPII-like domain organized around an OB-fold-based tIF. ARC1 is not an essential gene but its deletion (arc1- cells) is accompanied by a growth retardation phenotype. Here, we show that expression of N-Arc1p or of C-Arc1p alone palliates the growth defect of arc1- cells, and that bacterial Trbp111 or human p43, two proteins containing EMAPII-like domains, also improve the growth of an arc1- strain. The synthetic lethality of an arc1-los1- strain can be complemented with either ARC1 or LOS1. Expression of N-Arc1p or C-Arc1p alone does not complement an arc1-los1- phenotype, but coexpression of the two domains does. Our data demonstrate that Trbp111 or p43 may replace C-Arc1p to complement an arc1-los1- strain. The two functional domains of Arc1p (N-Arc1p and C-Arc1p) are required to get rid of the synthetic lethal phenotype but do not need to be physically linked. To get some clues to the discrete functions of N-Arc1p and C-Arc1p, we targeted ScMetRS or tIF domains to the nuclear compartment and analyzed their cellular localization by using GFP fusions, and their ability to sustain growth. Our results are consistent with a model according to which Arc1p is a bifunctional protein involved in the subcellular localization of ScMetRS and ScGluRS via its N-terminal domain and of tRNA via its C-terminal domain.

  14. New Aminoacyl-tRNA Synthetase-like Protein in Insecta with an Essential Mitochondrial Function*♦

    PubMed Central

    Guitart, Tanit; Leon Bernardo, Teresa; Sagalés, Jessica; Stratmann, Thomas; Bernués, Jordi; Ribas de Pouplana, Lluís

    2010-01-01

    Aminoacyl-tRNA synthetases (ARS) are modular enzymes that aminoacylate transfer RNAs (tRNA) for their use by the ribosome during protein synthesis. ARS are essential and universal components of the genetic code that were almost completely established before the appearance of the last common ancestor of all living species. This long evolutionary history explains the growing number of functions being discovered for ARS, and for ARS homologues, beyond their canonical role in gene translation. Here we present a previously uncharacterized paralogue of seryl-tRNA synthetase named SLIMP (seryl-tRNA synthetase-like insect mitochondrial protein). SLIMP is the result of a duplication of a mitochondrial seryl-tRNA synthetase (SRS) gene that took place in early metazoans and was fixed in Insecta. Here we show that SLIMP is localized in the mitochondria, where it carries out an essential function that is unrelated to the aminoacylation of tRNA. The knockdown of SLIMP by RNA interference (RNAi) causes a decrease in respiration capacity and an increase in mitochondrial mass in the form of aberrant mitochondria. PMID:20870726

  15. Molecular genetic analysis reveals that a nonribosomal peptide synthetase-like (NRPS-like) gene in Aspergillus nidulans is responsible for microperfuranone biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Hsu-Hua; Chiang, Yi Ming; Entwistle, Ruth

    2012-04-10

    Genome sequencing of Aspergillus species including A. nidulans has revealed that there are far more secondary metabolite biosynthetic gene clusters than secondary metabolites isolated from these organisms. This implies that these organisms can produce additional secondary metabolites have not yet been elucidated. The A. nidulans genome contains twelve nonribosomal peptide synthetase (NRPS), one hybrid polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS), and fourteen NRPS-like genes. The only NRPS-like gene in A. nidulans with a known product is tdiA which is involved in terrequinone A biosynthesis. To attempt to identify the products of these NRPS-like genes, we replaced the native promoters of themore » NRPS-like genes with the inducible alcohol dehydrogenase (alcA) promoter. Our results demonstrated that induction of the single NRPS-like gene AN3396.4 led to the enhanced production of microperfuranone. Furthermore, heterologous expression of AN3396.4 in A. niger confirmed that only one NRPS-like gene, AN3396.4, is necessary for the production of microperfuranone.« less

  16. Retinoic acid induces signal transducer and activator of transcription (STAT) 1, STAT2, and p48 expression in myeloid leukemia cells and enhances their responsiveness to interferons.

    PubMed

    Matikainen, S; Ronni, T; Lehtonen, A; Sareneva, T; Melén, K; Nordling, S; Levy, D E; Julkunen, I

    1997-06-01

    IFNs are antiproliferative cytokines that have growth-inhibitory effects on various normal and malignant cells. Therefore, they have been used in the treatment of certain forms of cancer, such as chronic myelogenous leukemia and hairy cell leukemia. However, there is little evidence that IFNs would be effective in the treatment of acute myelogenous leukemia, and molecular mechanisms underlying IFN unresponsiveness have not been clarified. Here we have studied the activation and induction of IFN-specific transcription factors signal transducer and activator of transcription (STAT) 1, STAT2, and p48 in all-trans-retinoic acid (ATRA)-differentiated myeloid leukemia cells using promyelocytic NB4, myeloblastic HL-60, and monoblastic U937 cells as model systems. These cells respond to ATRA by growth inhibition and differentiation. We show that in undifferentiated NB4 cells, 2',5'-oligoadenylate synthetase and MxB gene expression is not activated by IFN-alpha, possibly due to a relative lack of signaling molecules, especially p48 protein. However, during ATRA-induced differentiation, steady-state STAT1, STAT2, and especially p48 mRNA and corresponding protein levels were elevated both in NB4 and U937 cells, apparently correlating to an enhanced responsiveness of these cells to IFNs. ATRA treatment of NB4 cells sensitized them to IFN action as seen by increased IFN-gamma activation site DNA-binding activity or by efficient formation of IFN-alpha-specific ISGF3 complex and subsequent oligoadenylate synthetase and MxB gene expression. Lack of p48 expression could be one of the mechanisms of promyelocytic leukemia cell escape from growth-inhibitory effects of IFN-alpha.

  17. Assembly of the novel five-component apicomplexan multi-aminoacyl-tRNA synthetase complex is driven by the hybrid scaffold protein Tg-p43.

    PubMed

    van Rooyen, Jason M; Murat, Jean-Benjamin; Hammoudi, Pierre-Mehdi; Kieffer-Jaquinod, Sylvie; Coute, Yohann; Sharma, Amit; Pelloux, Hervé; Belrhali, Hassan; Hakimi, Mohamed-Ali

    2014-01-01

    In Toxoplasma gondii, as in other eukaryotes, a subset of the amino-acyl-tRNA synthetases are arranged into an abundant cytoplasmic multi-aminoacyl-tRNA synthetase (MARS) complex. Through a series of genetic pull-down assays, we have identified the enzymes of this complex as: methionyl-, glutaminyl-, glutamyl-, and tyrosyl-tRNA synthetases, and we show that the N-terminal GST-like domain of a partially disordered hybrid scaffold protein, Tg-p43, is sufficient for assembly of the intact complex. Our gel filtration studies revealed significant heterogeneity in the size and composition of isolated MARS complexes. By targeting the tyrosyl-tRNA synthetases subunit, which was found exclusively in the complete 1 MDa complex, we were able to directly visualize MARS particles in the electron microscope. Image analyses of the negative stain data revealed the observed heterogeneity and instability of these complexes to be driven by the intrinsic flexibility of the domain arrangements within the MARS complex. These studies provide unique insights into the assembly of these ubiquitous but poorly understood eukaryotic complexes.

  18. Monoclonal Antibodies Against Tyrosyl-tRNA Synthetase and Its Isolated Cytokine-Like Domain

    PubMed Central

    Khoruzenko, Antonina; Cherednyk, Olga; Filonenko, Valeriy; Kornelyuk, Aleksander

    2013-01-01

    Tyrosyl-tRNA synthetase (TyrRS) is one of the key enzymes of protein biosynthesis. In addition to its basic role, this enzyme reveals some important non-canonical functions. Under apoptotic conditions, the full-length enzyme splits into two fragments having distinct cytokine activities, thereby linking protein synthesis to cytokine signaling pathways. The NH2-terminal catalytic fragment, known as miniTyrRS, binds strongly to the CXC-chemokine receptor CXCR1 and, like interleukin 8, functions as a chemoattractant for polymorphonuclear leukocytes. On the other hand, an extra COOH-terminal domain of human TyrRS has cytokine activities like those of a mature human endothelial monocyte-activating polypeptide II (EMAP II). Moreover, the etiology of specific diseases (cancer, neuronal pathologies, autoimmune disorders, and disrupted metabolic conditions) is connected to specific aminoacyl-tRNA synthetases. Here we report the generation and characterization of monoclonal antibodies specific to N- and C-terminal domains of TyrRS. Recombinant TyrRS and its N- and C-terminal domains were expressed as His-tag fusion proteins in bacteria. Affinity purified proteins have been used as antigens for immunization and hybridoma cell screening. Monoclonal antibodies specific to catalytic N-terminal module and C-terminal EMAP II-like domain of TyrRS may be useful as tools in various aspects of TyrRS function and cellular localization. PMID:23750478

  19. Enzymatic Production of Glutathione by Bifunctional γ-Glutamylcysteine Synthetase/Glutathione Synthetase Coupled with In Vitro Acetate Kinase-Based ATP Generation.

    PubMed

    Jiang, Yu; Tao, Rongsheng; Shen, Zhengquan; Sun, Liangdong; Zhu, Fuyun; Yang, Sheng

    2016-12-01

    Glutathione (γ-glutamyl-L-cysteinylglycine, GSH) is a pharmaceutical compound often used in food additives and the cosmetics industry. GSH can be produced biologically from L-glutamic acid, L-cysteine, and glycine through an enzymatic process traditionally involving two sequential adenosine triphosphate (ATP)-dependent reactions catalyzed by γ-glutamylcysteine synthetase (γ-GCS or GSHI, EC 6.3.2.2) and GSH synthetase (GS or GSHII, EC 6.3.2.3). Here, we report the enzymatic production of GSH by recombinant cell-free bifunctional γ-glutamylcysteine synthetase/glutathione synthetase (γ-GCS-GS or GshF) coupled with in vitro acetate kinase-based ATP generation. GSH production by an acetate kinase-integrated Escherichia coli Rosetta(DE3) mutant expressing Streptococcus thermophilus GshF reached 18.3 ± 0.1 g l -1 (59.5 ± 0.3 mM) within 3 h, with a molar yield of 0.75 ± 0.00 mol mol -1 added cysteine and a productivity of 6.1 ± 0.0 g l -1  h -1 . This is the highest GSH titer reported to date. This newly developed biocatalytic process offers a promising approach for meeting the industrial requirements for GSH production.

  20. Computational modeling-based discovery of novel classes of anti-inflammatory drugs that target lanthionine synthetase C-like protein 2.

    PubMed

    Lu, Pinyi; Hontecillas, Raquel; Horne, William T; Carbo, Adria; Viladomiu, Monica; Pedragosa, Mireia; Bevan, David R; Lewis, Stephanie N; Bassaganya-Riera, Josep

    2012-01-01

    Lanthionine synthetase component C-like protein 2 (LANCL2) is a member of the eukaryotic lanthionine synthetase component C-Like protein family involved in signal transduction and insulin sensitization. Recently, LANCL2 is a target for the binding and signaling of abscisic acid (ABA), a plant hormone with anti-diabetic and anti-inflammatory effects. The goal of this study was to determine the role of LANCL2 as a potential therapeutic target for developing novel drugs and nutraceuticals against inflammatory diseases. Previously, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of lanthionine synthetase component C-like protein 1 (LANCL1) as a template. Using this model, structure-based virtual screening was performed using compounds from NCI (National Cancer Institute) Diversity Set II, ChemBridge, ZINC natural products, and FDA-approved drugs databases. Several potential ligands were identified using molecular docking. In order to validate the anti-inflammatory efficacy of the top ranked compound (NSC61610) in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the lead compound, NSC61610, activated peroxisome proliferator-activated receptor gamma in a LANCL2- and adenylate cyclase/cAMP dependent manner in vitro and ameliorated experimental colitis by down-modulating colonic inflammatory gene expression and favoring regulatory T cell responses. LANCL2 is a novel therapeutic target for inflammatory diseases. High-throughput, structure-based virtual screening is an effective computational-based drug design method for discovering anti-inflammatory LANCL2-based drug candidates.

  1. Computational Modeling-Based Discovery of Novel Classes of Anti-Inflammatory Drugs That Target Lanthionine Synthetase C-Like Protein 2

    PubMed Central

    Lu, Pinyi; Hontecillas, Raquel; Horne, William T.; Carbo, Adria; Viladomiu, Monica; Pedragosa, Mireia; Bevan, David R.; Lewis, Stephanie N.; Bassaganya-Riera, Josep

    2012-01-01

    Background Lanthionine synthetase component C-like protein 2 (LANCL2) is a member of the eukaryotic lanthionine synthetase component C-Like protein family involved in signal transduction and insulin sensitization. Recently, LANCL2 is a target for the binding and signaling of abscisic acid (ABA), a plant hormone with anti-diabetic and anti-inflammatory effects. Methodology/Principal Findings The goal of this study was to determine the role of LANCL2 as a potential therapeutic target for developing novel drugs and nutraceuticals against inflammatory diseases. Previously, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of lanthionine synthetase component C-like protein 1 (LANCL1) as a template. Using this model, structure-based virtual screening was performed using compounds from NCI (National Cancer Institute) Diversity Set II, ChemBridge, ZINC natural products, and FDA-approved drugs databases. Several potential ligands were identified using molecular docking. In order to validate the anti-inflammatory efficacy of the top ranked compound (NSC61610) in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the lead compound, NSC61610, activated peroxisome proliferator-activated receptor gamma in a LANCL2- and adenylate cyclase/cAMP dependent manner in vitro and ameliorated experimental colitis by down-modulating colonic inflammatory gene expression and favoring regulatory T cell responses. Conclusions/Significance LANCL2 is a novel therapeutic target for inflammatory diseases. High-throughput, structure-based virtual screening is an effective computational-based drug design method for discovering anti-inflammatory LANCL2-based drug candidates. PMID:22509338

  2. Intrinsically disordered inhibitor of glutamine synthetase is a functional protein with random-coil-like pKa values.

    PubMed

    Cozza, Concetta; Neira, José L; Florencio, Francisco J; Muro-Pastor, M Isabel; Rizzuti, Bruno

    2017-06-01

    The sequential action of glutamine synthetase (GS) and glutamate synthase (GOGAT) in cyanobacteria allows the incorporation of ammonium into carbon skeletons. In the cyanobacterium Synechocystis sp. PCC 6803, the activity of GS is modulated by the interaction with proteins, which include a 65-residue-long intrinsically disordered protein (IDP), the inactivating factor IF7. This interaction is regulated by the presence of charged residues in both IF7 and GS. To understand how charged amino acids can affect the binding of an IDP with its target and to provide clues on electrostatic interactions in disordered states of proteins, we measured the pK a values of all IF7 acidic groups (Glu32, Glu36, Glu38, Asp40, Asp58, and Ser65, the backbone C-terminus) at 100 mM NaCl concentration, by using NMR spectroscopy. We also obtained solution structures of IF7 through molecular dynamics simulation, validated them on the basis of previous experiments, and used them to obtain theoretical estimates of the pK a values. Titration values for the two Asp and three Glu residues of IF7 were similar to those reported for random-coil models, suggesting the lack of electrostatic interactions around these residues. Furthermore, our results suggest the presence of helical structure at the N-terminus of the protein and of conformational changes at acidic pH values. The overall experimental and in silico findings suggest that local interactions and conformational equilibria do not play a role in determining the electrostatic features of the acidic residues of IF7. © 2017 The Protein Society.

  3. Effect of phosphate activating group on oligonucleotide formation on montmorillonite: the regioselective formation of 3',5'-linked oligoadenylates

    NASA Technical Reports Server (NTRS)

    Prabahar, K. J.; Cole, T. D.; Ferris, J. P.

    1994-01-01

    The effects of amine structure on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidates of adenosine are investigated. 4-Aminopyridine derivatives yielded oligoadenylates as long as dodecamers with a regioselectivity for 3',5'-phosphodiester bond formation averaging 88%. Linear and cyclic oligomers are obtained and no A5'ppA-containing products are detected. Oligomers as long as the hexanucleotide are obtained using 2-aminobenzimidazole as the activating group. A predominance of pA2'pA is detected in the dimer fraction along with cyclic 3',5'-trimer; no A5'ppA-containing oligomers were detected. Little or no oligomer formation was observed when morpholine, piperidine, pyrazole, 1,2,4-triazole, and 2-pyridone are used as phosphate-activating groups. The effects of the structure of the phosphate activating group on the oligomer structure and chain lengths are discussed.

  4. p97/VCP promotes degradation of CRBN substrate glutamine synthetase and neosubstrates

    PubMed Central

    Nguyen, Thang Van; Li, Jing; Lu, Chin-Chun (Jean); Mamrosh, Jennifer L.; Lu, Gang; Cathers, Brian E.; Deshaies, Raymond J.

    2017-01-01

    Glutamine synthetase (GS) plays an essential role in metabolism by catalyzing the synthesis of glutamine from glutamate and ammonia. Our recent study showed that CRBN, a direct protein target for the teratogenic and antitumor activities of immunomodulatory drugs such as thalidomide, lenalidomide, and pomalidomide, recognizes an acetyl degron of GS, resulting in ubiquitylation and degradation of GS in response to glutamine. Here, we report that valosin-containing protein (VCP)/p97 promotes the degradation of ubiquitylated GS, resulting in its accumulation in cells with compromised p97 function. Notably, p97 is also required for the degradation of all four known CRBN neo-substrates [Ikaros family zinc finger proteins 1 (IKZF1) and 3 (IKZF3), casein kinase 1α (CK1α), and the translation termination factor GSPT1] whose ubiquitylation is induced by immunomodulatory drugs. Together, these data point to an unexpectedly intimate relationship between the E3 ubiquitin ligase CRL4CRBN and p97 pathways. PMID:28320958

  5. Bioinformatics analysis of differentially expressed gene profiles associated with systemic lupus erythematosus

    PubMed Central

    Wu, Chengjiang; Zhao, Yangjing; Lin, Yu; Yang, Xinxin; Yan, Meina; Min, Yujiao; Pan, Zihui; Xia, Sheng; Shao, Qixiang

    2018-01-01

    DNA microarray and high-throughput sequencing have been widely used to identify the differentially expressed genes (DEGs) in systemic lupus erythematosus (SLE). However, the big data from gene microarrays are also challenging to work with in terms of analysis and processing. The presents study combined data from the microarray expression profile (GSE65391) and bioinformatics analysis to identify the key genes and cellular pathways in SLE. Gene ontology (GO) and cellular pathway enrichment analyses of DEGs were performed to investigate significantly enriched pathways. A protein-protein interaction network was constructed to determine the key genes in the occurrence and development of SLE. A total of 310 DEGs were identified in SLE, including 193 upregulated genes and 117 downregulated genes. GO analysis revealed that the most significant biological process of DEGs was immune system process. Kyoto Encyclopedia of Genes and Genome pathway analysis showed that these DEGs were enriched in signaling pathways associated with the immune system, including the RIG-I-like receptor signaling pathway, intestinal immune network for IgA production, antigen processing and presentation and the toll-like receptor signaling pathway. The current study screened the top 10 genes with higher degrees as hub genes, which included 2′-5′-oligoadenylate synthetase 1, MX dynamin like GTPase 2, interferon induced protein with tetratricopeptide repeats 1, interferon regulatory factor 7, interferon induced with helicase C domain 1, signal transducer and activator of transcription 1, ISG15 ubiquitin-like modifier, DExD/H-box helicase 58, interferon induced protein with tetratricopeptide repeats 3 and 2′-5′-oligoadenylate synthetase 2. Module analysis revealed that these hub genes were also involved in the RIG-I-like receptor signaling, cytosolic DNA-sensing, toll-like receptor signaling and ribosome biogenesis pathways. In addition, these hub genes, from different probe sets, exhibited

  6. Continuous directed evolution of aminoacyl-tRNA synthetases

    PubMed Central

    Bryson, David I.; Fan, Chenguang; Guo, Li-Tao; Miller, Corwin; Söll, Dieter; Liu, David R.

    2017-01-01

    Directed evolution of orthogonal aminoacyl-tRNA synthetases (AARSs) enables site-specific installation of non-canonical amino acids (ncAAs) into proteins. Traditional evolution techniques typically produce AARSs with greatly reduced activity and selectivity compared to their wild-type counterparts. We designed phage-assisted continuous evolution (PACE) selections to rapidly produce highly active and selective orthogonal AARSs through hundreds of generations of evolution. PACE of a chimeric Methanosarcina spp. pyrrolysyl-tRNA synthetase (PylRS) improved its enzymatic efficiency (kcat/KMtRNA) 45-fold compared to the parent enzyme. Transplantation of the evolved mutations into other PylRS-derived synthetases improved yields of proteins containing non-canonical residues up to 9.7-fold. Simultaneous positive and negative selection PACE over 48 h greatly improved the selectivity of a promiscuous Methanocaldococcus jannaschii tyrosyl-tRNA synthetase variant for site-specific incorporation of p-iodo-L-phenylalanine. These findings offer new AARSs that increase the utility of orthogonal translation systems and establish the capability of PACE to efficiently evolve orthogonal AARSs with high activity and amino acid specificity. PMID:29035361

  7. Drug repurposing of minocycline against dengue virus infection.

    PubMed

    Leela, Shilpa Lekshmi; Srisawat, Chatchawan; Sreekanth, Gopinathan Pillai; Noisakran, Sansanee; Yenchitsomanus, Pa-Thai; Limjindaporn, Thawornchai

    2016-09-09

    Dengue virus infection is one of the most common arthropod-borne viral diseases. A complex interplay between host and viral factors contributes to the severity of infection. The antiviral effects of three antibiotics, lomefloxacin, netilmicin, and minocycline, were examined in this study, and minocycline was found to be a promising drug. This antiviral effect was confirmed in all four serotypes of the virus. The effects of minocycline at various stages of the viral life cycle, such as during viral RNA synthesis, intracellular envelope protein expression, and the production of infectious virions, were examined and found to be significantly reduced by minocycline treatment. Minocycline also modulated host factors, including the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2). The transcription of antiviral genes, including 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase 3 (OAS3), and interferon α (IFNA), was upregulated by minocycline treatment. Therefore, the antiviral activity of minocycline may have a potential clinical use against Dengue virus infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Identification of protein interfaces within the multi-aminoacyl-tRNA synthetase complex: the case of lysyl-tRNA synthetase and the scaffold protein p38.

    PubMed

    Rémion, Azaria; Khoder-Agha, Fawzi; Cornu, David; Argentini, Manuela; Redeker, Virginie; Mirande, Marc

    2016-07-01

    Human cytoplasmic lysyl-tRNA synthetase (LysRS) is associated within a multi-aminoacyl-tRNA synthetase complex (MSC). Within this complex, the p38 component is the scaffold protein that binds the catalytic domain of LysRS via its N-terminal region. In addition to its translational function when associated to the MSC, LysRS is also recruited in nontranslational roles after dissociation from the MSC. The balance between its MSC-associated and MSC-dissociated states is essential to regulate the functions of LysRS in cellular homeostasis. With the aim of understanding the rules that govern association of LysRS in the MSC, we analyzed the protein interfaces between LysRS and the full-length version of p38, the scaffold protein of the MSC. In a previous study, the cocrystal structure of LysRS with a N-terminal peptide of p38 was reported [Ofir-Birin Y et al. (2013) Mol Cell 49, 30-42]. In order to identify amino acid residues involved in interaction of the two proteins, the non-natural, photo-cross-linkable amino acid p-benzoyl-l-phenylalanine (Bpa) was incorporated at 27 discrete positions within the catalytic domain of LysRS. Among the 27 distinct LysRS mutants, only those with Bpa inserted in place of Lys356 or His364 were cross-linked with p38. Using mass spectrometry, we unambiguously identified the protein interface of the cross-linked complex and showed that Lys356 and His364 of LysRS interact with the peptide from Pro8 to Arg26 in native p38, in agreement with the published cocrystal structure. This interface, which in LysRS is located on the opposite side of the dimer to the site of interaction with its tRNA substrate, defines the core region of the MSC. The residues identified herein in human LysRS are not conserved in yeast LysRS, an enzyme that does not associate within the MSC, and contrast with the residues proposed to be essential for LysRS:p38 association in the earlier work.

  9. Bell P-59B Airacomet at the Lewis Flight Propulsion Laboratory

    NASA Image and Video Library

    1947-03-21

    A Bell P-59B Airacomet sits beside the hangar at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. In 1942 the Bell XP-59A Airacomet became the first jet aircraft in the US. The Airacomet incorporated centrifugal turbojet engines that were based on British plans secretly brought to the US in 1941. A Bell test pilot flew the XP-59A for the first time at Muroc Lake, California in October 1942. The General Electric I-16 engines proved to be problematic. In an effort to increase the engine performance, an Airacomet was secretly brought to Cleveland in early 1944 for testing in the Altitude Wind Tunnel. A series of tunnel investigations in February and March resulted in a 25-percent increase in the I-16 engine’s performance. Nonetheless, Bell’s 66 Airacomets never made it into combat. A second, slightly improved Airacomet, a P-59B, was transferred to NACA Lewis just after the war in September 1945. The P-59B was used over the next three years to study general jet thrust performance and thrust augmentation devices such as afterburners and water/alcohol injection. The P-59B flights determined the proper alcohol and water mixture and injection rate to produce a 21-percent increase in thrust. Since the extra boost would be most useful for takeoffs, a series of ground-based tests with the aircraft ensued. It was determined that the runway length for takeoffs could be reduced by as much as 15 percent. The P-59B used for the tests is now on display at the Air Force Museum at Wright Patterson.

  10. Dexamethasone regulates glutamine synthetase expression in rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Konagaya, Masaaki; Konagaya, Yoko; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa

    1986-01-01

    The regulation of glutamine synthetase by glucocorticoids in rat skeletal muscles was studied. Administration of dexamethasone strikingly enhanced glutamine synthetase activity in plantaris and soleus muscles. The dexamethasone-mediated induction of glutamine synthetase activity was blocked to a significant extent by orally administered RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves dramatically increased levels of glutamine synthetase mRNA. The induction of glutamine synthetase was selective in that glutaminase activity of soleus and plantaris muscles was not increased by dexamethasone. Furthermore, dexamethasone treatment resulted in only a small increase in glutamine synthetase activity in the heart. Accordingly, there was only a slight change in glutamine synthetase mRNA level in this tissue. Thus, glucocorticoids regulate glutamine synthetase gene expression in rat muscles at the transcriptional level via interaction with intracellular glutamine production by muscle and to mechanisms underlying glucocorticoid-induced muscle atrophy.

  11. Characterization of the product of a nonribosomal peptide synthetase-like (NRPS-like) gene using the doxycycline dependent Tet-on system in Aspergillus terreus.

    PubMed

    Sun, Wei-Wen; Guo, Chun-Jun; Wang, Clay C C

    2016-04-01

    Genome sequencing of the fungus Aspergillus terreus uncovered a number of silent core structural biosynthetic genes encoding enzymes presumed to be involved in the production of cryptic secondary metabolites. There are five nonribosomal peptide synthetase (NRPS)-like genes with the predicted A-T-TE domain architecture within the A. terreus genome. Among the five genes, only the product of pgnA remains unknown. The Tet-on system is an inducible, tunable and metabolism-independent expression system originally developed for Aspergillus niger. Here we report the adoption of the Tet-on system as an effective gene activation tool in A. terreus. Application of this system in A. terreus allowed us to uncover the product of the cryptic NRPS-like gene, pgnA. Furthermore expression of pgnA in the heterologous Aspergillus nidulans host suggested that the pgnA gene alone is necessary for phenguignardic acid (1) biosynthesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Genetic Validation of Aminoacyl-tRNA Synthetases as Drug Targets in Trypanosoma brucei

    PubMed Central

    Kalidas, Savitha; Cestari, Igor; Monnerat, Severine; Li, Qiong; Regmi, Sandesh; Hasle, Nicholas; Labaied, Mehdi; Parsons, Marilyn; Stuart, Kenneth

    2014-01-01

    Human African trypanosomiasis (HAT) is an important public health threat in sub-Saharan Africa. Current drugs are unsatisfactory, and new drugs are being sought. Few validated enzyme targets are available to support drug discovery efforts, so our goal was to obtain essentiality data on genes with proven utility as drug targets. Aminoacyl-tRNA synthetases (aaRSs) are known drug targets for bacterial and fungal pathogens and are required for protein synthesis. Here we survey the essentiality of eight Trypanosoma brucei aaRSs by RNA interference (RNAi) gene expression knockdown, covering an enzyme from each major aaRS class: valyl-tRNA synthetase (ValRS) (class Ia), tryptophanyl-tRNA synthetase (TrpRS-1) (class Ib), arginyl-tRNA synthetase (ArgRS) (class Ic), glutamyl-tRNA synthetase (GluRS) (class 1c), threonyl-tRNA synthetase (ThrRS) (class IIa), asparaginyl-tRNA synthetase (AsnRS) (class IIb), and phenylalanyl-tRNA synthetase (α and β) (PheRS) (class IIc). Knockdown of mRNA encoding these enzymes in T. brucei mammalian stage parasites showed that all were essential for parasite growth and survival in vitro. The reduced expression resulted in growth, morphological, cell cycle, and DNA content abnormalities. ThrRS was characterized in greater detail, showing that the purified recombinant enzyme displayed ThrRS activity and that the protein localized to both the cytosol and mitochondrion. Borrelidin, a known inhibitor of ThrRS, was an inhibitor of T. brucei ThrRS and showed antitrypanosomal activity. The data show that aaRSs are essential for T. brucei survival and are likely to be excellent targets for drug discovery efforts. PMID:24562907

  13. Structural control of caspase-generated glutamyl-tRNA synthetase by appended noncatalytic WHEP domains.

    PubMed

    Halawani, Dalia; Gogonea, Valentin; DiDonato, Joseph A; Pipich, Vitaliy; Yao, Peng; China, Arnab; Topbas, Celalettin; Vasu, Kommireddy; Arif, Abul; Hazen, Stanley L; Fox, Paul L

    2018-06-08

    Aminoacyl-tRNA synthetases are ubiquitous, evolutionarily conserved enzymes catalyzing the conjugation of amino acids onto cognate tRNAs. During eukaryotic evolution, tRNA synthetases have been the targets of persistent structural modifications. These modifications can be additive, as in the evolutionary acquisition of noncatalytic domains, or subtractive, as in the generation of truncated variants through regulated mechanisms such as proteolytic processing, alternative splicing, or coding region polyadenylation. A unique variant is the human glutamyl-prolyl-tRNA synthetase (EPRS) consisting of two fused synthetases joined by a linker containing three copies of the WHEP domain (termed by its presence in tryptophanyl-, histidyl-, and glutamyl-prolyl-tRNA synthetases). Here, we identify site-selective proteolysis as a mechanism that severs the linkage between the EPRS synthetases in vitro and in vivo Caspase action targeted Asp-929 in the third WHEP domain, thereby separating the two synthetases. Using a neoepitope antibody directed against the newly exposed C terminus, we demonstrate EPRS cleavage at Asp-929 in vitro and in vivo Biochemical and biophysical characterizations of the N-terminally generated EPRS proteoform containing the glutamyl-tRNA synthetase and most of the linker, including two WHEP domains, combined with structural analysis by small-angle neutron scattering, revealed a role for the WHEP domains in modulating conformations of the catalytic core and GSH- S -transferase-C-terminal-like (GST-C) domain. WHEP-driven conformational rearrangement altered GST-C domain interactions and conferred distinct oligomeric states in solution. Collectively, our results reveal long-range conformational changes imposed by the WHEP domains and illustrate how noncatalytic domains can modulate the global structure of tRNA synthetases in complex eukaryotic systems. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Inhibition of recombinant Pneumocystis carinii dihydropteroate synthetase by sulfa drugs.

    PubMed Central

    Hong, Y L; Hossler, P A; Calhoun, D H; Meshnick, S R

    1995-01-01

    Forty-four sulfa drugs were screened against crude preparations of recombinant Pneumocystis carinii dihydropteroate synthetase. The apparent Michaelis-Menten constants (Km) for p-aminobenzoic acid and 7,8-dihydro-6-hydroxymethylpterin pyrophosphate were 0.34 +/- 0.02 and 2.50 +/- 0.71 microM, respectively. Several sulfa drugs, including sulfathiazole, sulfachlorpyridazine, sulfamethoxypyridazine, and sulfathiourea, inhibited dihydropteroate synthetase approximately as well as sulfamethoxazole, as determined by the concentrations which cause 50% inhibition and/or by Ki. For all sulfones and sulfonamides tested, unsubstituted p-amino groups were necessary for activity, and sulfonamides containing an N1-heterocyclic substituent were found to be the most effective inhibitors. Folate biosynthesis in isolated intact P. carinii was approximately equally sensitive to inhibition by sulfamethoxazole, sulfachlorpyridazine, sulfamethoxypyridazine, sulfisoxazole, and sulfathiazole. Two of these drugs, sulfamethoxypyridazine and sulfisoxazole, are known to be less toxic than sulfamethoxazole and should be further evaluated for the treatment of P. carinii pneumonia. PMID:7486915

  15. Homology of aspartyl- and lysyl-tRNA synthetases.

    PubMed Central

    Gampel, A; Tzagoloff, A

    1989-01-01

    The yeast nuclear gene MSD1 coding for mitochondrial aspartyl-tRNA synthetase has been cloned and sequenced. The identity of the gene is confirmed by the following evidence. (i) The primary structure of the protein derived from the gene sequence is similar to that of the yeast cytoplasmic aspartyl-tRNA synthetase. (ii) In situ disruption of MSD1 in a respiratory-competent haploid strain of yeast induces a pleiotropic phenotype consistent with a lesion in mitochondrial protein synthesis. (iii) Mitochondria from a mutant with a disrupted chromosomal copy of MSD1 are unable to acylate mitochondrial aspartyl-tRNA. The primary structures of the cytoplasmic and mitochondrial aspartyl-tRNA synthetases are similar to the yeast cytoplasmic lysyl-tRNA synthetase, suggesting that the two types of synthetases may have a common evolutionary origin. Searches of the current protein banks also have revealed a high degree of sequence similarity of the lysyl-tRNA synthetase to the product of the Escherichia coli herC gene and to the partial sequence of a protein encoded by an unidentified reading frame located adjacent to the E. coli frdA gene. Based on the sequence similarities and the map positions of the herC and frdA loci, we propose herC to be the structural gene of the constitutively expressed lysyl-tRNA synthetase of E. coli and the unidentified reading frame to be the structural gene of the heat-inducible lysyl-tRNA synthetase. Images PMID:2668951

  16. Site-directed mutagenesis reveals transition-state stabilization as a general catalytic mechanism for aminoacyl-tRNA synthetases.

    PubMed

    Borgford, T J; Gray, T E; Brand, N J; Fersht, A R

    1987-11-17

    Some aminoacyl-tRNA synthetases of almost negligible homology do have a small region of similarity around four-residue sequence His-Ile(or Leu or Met)-Gly-His(or Asn), the HIGH sequence. The first histidine in this sequence in the tyrosyl-tRNA synthetase, His-45, has been shown to form part of a binding site for the gamma-phosphate of ATP in the transition state for the reaction as does Thr-40. Residue His-56 in the valyl-tRNA synthetase begins a HIGH sequence, and there is a threonine at position 52, one position closer to the histidine than in the tyrosyl-tRNA synthetase. The mutants Thr----Ala-52 and His----Asn-56 have been made and their complete free energy profiles for the formation of valyl adenylate determined. Difference energy diagrams have been constructed by comparison with the reaction of wild-type enzyme. The difference energy profiles are very similar to those for the mutants Thr----Ala-40 and His----Asn-45 of the tyrosyl-tRNA synthetase. Thr-52 and His-56 of the valyl-tRNA synthetase contribute little binding energy to valine, ATP, and Val-AMP. Instead, the wild-type enzyme binds the transition state and pyrophosphate some 6 kcal/mol more tightly than do the mutants. Preferential transition-state stabilization is thus an important component of catalysis by the valyl-tRNA synthetase. Further, by analogy to the tyrosyl-tRNA synthetase, the valyl-tRNA synthetase has a binding site for the gamma-phosphate of ATP in the transition state, and this is likely to be a general feature of aminoacyl-tRNA synthetases that have a HIGH region.

  17. A 4'-phosphopantetheinyl transferase mediates non-ribosomal peptide synthetase activation in Aspergillus fumigatus.

    PubMed

    Neville, Claire; Murphy, Alan; Kavanagh, Kevin; Doyle, Sean

    2005-04-01

    Aspergillus fumigatus is a significant human pathogen. Non-ribosomal peptide (NRP) synthesis is thought to be responsible for a significant proportion of toxin and siderophore production in the organism. Furthermore, it has been shown that 4'-phosphopantetheinylation is required for the activation of key enzymes involved in non-ribosomal peptide synthesis in other species. Here we report the cloning, recombinant expression and functional characterisation of a 4'-phosphopantetheinyl transferase from A. fumigatus and the identification of an atypical NRP synthetase (Afpes1), spanning 14.3 kb. Phylogenetic analysis has shown that the NRP synthetase exhibits greatest identity to NRP synthetases from Metarhizium anisolpiae (PesA) and Alternaria brassicae (AbrePsy1). Northern hybridisation and RT-PCR analysis have confirmed that both genes are expressed in A. fumigatus. A 120 kDa fragment of the A. fumigatus NRP synthetase, containing a putative thiolation domain, was cloned and expressed in the baculovirus expression system. Detection of a 4'-phosphopantetheinylated peptide (SFSAMK) from this protein, by MALDI-TOF mass spectrometric analysis after coincubation of the 4'-phosphopantetheinyl transferase with the recombinant NRP synthetase fragment and acetyl CoA, confirms that it is competent to play a role in NRP synthetase activation in A. fumigatus. The 4'-phosphopantetheinyl transferase also activates, by 4'-phosphopantetheinylation, recombinant alpha-aminoadipate reductase (Lys2p) from Candida albicans, a key enzyme involved in lysine biosynthesis.

  18. The Aminoacyl-tRNA Synthetase Complex.

    PubMed

    Mirande, Marc

    2017-01-01

    Aminoacyl-tRNA synthetases (AARSs) are essential enzymes that specifically aminoacylate one tRNA molecule by the cognate amino acid. They are a family of twenty enzymes, one for each amino acid. By coupling an amino acid to a specific RNA triplet, the anticodon, they are responsible for interpretation of the genetic code. In addition to this translational, canonical role, several aminoacyl-tRNA synthetases also fulfill nontranslational, moonlighting functions. In mammals, nine synthetases, those specific for amino acids Arg, Asp, Gln, Glu, Ile, Leu, Lys, Met and Pro, associate into a multi-aminoacyl-tRNA synthetase complex, an association which is believed to play a key role in the cellular organization of translation, but also in the regulation of the translational and nontranslational functions of these enzymes. Because the balance between their alternative functions rests on the assembly and disassembly of this supramolecular entity, it is essential to get precise insight into the structural organization of this complex. The high-resolution 3D-structure of the native particle, with a molecular weight of about 1.5 MDa, is not yet known. Low-resolution structures of the multi-aminoacyl-tRNA synthetase complex, as determined by cryo-EM or SAXS, have been reported. High-resolution data have been reported for individual enzymes of the complex, or for small subcomplexes. This review aims to present a critical view of our present knowledge of the aminoacyl-tRNA synthetase complex in 3D. These preliminary data shed some light on the mechanisms responsible for the balance between the translational and nontranslational functions of some of its components.

  19. Diagnostic utility and limitations of glutamine synthetase and serum amyloid-associated protein immunohistochemistry in the distinction of focal nodular hyperplasia and inflammatory hepatocellular adenoma.

    PubMed

    Joseph, Nancy M; Ferrell, Linda D; Jain, Dhanpat; Torbenson, Michael S; Wu, Tsung-Teh; Yeh, Matthew M; Kakar, Sanjay

    2014-01-01

    Inflammatory hepatocellular adenoma can show overlapping histological features with focal nodular hyperplasia, including inflammation, fibrous stroma, and ductular reaction. Expression of serum amyloid-associated protein in inflammatory hepatocellular adenoma and map-like pattern of glutamine synthetase in focal nodular hyperplasia can be helpful in this distinction, but the pitfalls and limitations of these markers have not been established. Morphology and immunohistochemistry were analyzed in 54 inflammatory hepatocellular adenomas, 40 focal nodular hyperplasia, and 3 indeterminate lesions. Morphological analysis demonstrated that nodularity, fibrous stroma, dystrophic blood vessels, and ductular reaction were more common in focal nodular hyperplasia, while telangiectasia, hemorrhage, and steatosis were more common in inflammatory hepatocellular adenoma, but there was frequent overlap of morphological features. The majority of inflammatory hepatocellular adenomas demonstrated perivascular and/or patchy glutamine synthetase staining (73.6%), while the remaining cases had diffuse (7.5%), negative (3.8%), or patchy pattern of staining (15%) that showed subtle differences from the classic map-like staining pattern and was designated as pseudo map-like staining. Positive staining for serum amyloid-associated protein was seen in the majority of inflammatory hepatocellular adenomas (92.6%) and in the minority of focal nodular hyperplasia (17.5%). The glutamine synthetase staining pattern was map-like in 90% of focal nodular hyperplasia cases, with the remaining 10% of cases showing pseudo map-like staining. Three cases were labeled as indeterminate and showed focal nodular hyperplasia-like morphology but lacked map-like glutamine synthetase staining pattern; these cases demonstrated a patchy pseudo map-like glutamine synthetase pattern along with the expression of serum amyloid-associated protein. Our results highlight the diagnostic errors that can be caused by variant

  20. TRYPTOPHANASE-TRYPTOPHAN SYNTHETASE SYSTEMS IN ESCHERICHIA COLI I.

    PubMed Central

    Freundlich, Martin; Lichstein, Herman C.

    1962-01-01

    Freundlich, Martin (University of Minnesota, Minneapolis) and Herman C. Lichstein. Tryptophanase-tryptophan synthetase systems in Escherichia coli. I. Effect of tryptophan and related compounds. J. Bacteriol. 84:979–987. 1962.—The effect of tryptophan and related compounds on tryptophanase and tryptophan synthetase formation in Escherichia coli was determined. Several of these compounds stimulated the formation of tryptophanase while concomitantly decreasing the production of synthetase. A number of tryptophan analogues were found to inhibit growth. The possible mode of action of these substances was examined further. 5-Hydroxytryptophan greatly inhibited the formation of synthetase and also reduced growth. Its inhibitory action on growth was attributed, at least partially, to the false feedback inhibition of anthranilic acid formation. Tryptamine was found to be a potent inhibitor of the activity of synthetase, as well as of the enzyme(s) involved in the synthesis of anthranilic acid from shikimic acid. However, growth reduction was only partially reversed by tryptophan. Indole-3-acetic acid and indole-3-propionic acid decreased growth and increased the formation of synthetase six- to eightfold. The action of these compounds was ascribed to their ability to block the endogenous formation of tryptophan. PMID:13959621

  1. Properties and substrate specificity of the leucyl-, the threonyl- and the valyl-transfer-ribonucleic acid synthetases from Aesculus species

    PubMed Central

    Anderson, J. W.; Fowden, L.

    1970-01-01

    1. Leucyl- and threonyl-tRNA synthetases were partially purified up to 100-fold and 30-fold respectively from cotyledons of Aesculus hippocastanum and were largely separated from the other aminoacyl-tRNA synthetases. Valyl-tRNA synthetase was purified 25-fold from cotyledons of Aesculus californica. 2. Some properties are reported for the three enzymes when assayed by the [32P]pyrophosphate-ATP exchange technique. 3. β-(Methylenecyclopropyl)alanine, isoleucine, azaleucine, norleucine and γ-hydroxynorvaline acted as alternative substrates for the leucyl-tRNA synthetase; the enzyme's affinity for β-(methylenecyclopropyl)-alanine and for isoleucine was about 80-fold less than that exhibited for leucine. 4. α-Cyclopropylglycine and α-cyclobutylglycine acted as alternative substrates for the valyl-tRNA synthetase. PMID:5493505

  2. Glutathione synthetase deficiency: a family report.

    PubMed Central

    Pejaver, R K; Watson, A H

    1994-01-01

    Glutathione synthetase deficiency is a rare inborn error of metabolism. Low levels of and at times unstable molecules of glutathione synthetase leads to glutathione deficiency affecting various systems of the body. The inheritance is thought to be of autosomal recessive variety. We diagnosed the condition in a neonate and proceeded to investigate the family. The results are discussed below. PMID:8158601

  3. Role of Nuclear Pools of Aminoacyl-tRNA Synthetases in tRNA Nuclear Export

    PubMed Central

    Azad, Abul K.; Stanford, David R.; Sarkar, Srimonti; Hopper, Anita K.

    2001-01-01

    Reports of nuclear tRNA aminoacylation and its role in tRNA nuclear export (Lund and Dahlberg, 1998; Sarkar et al., 1999; Grosshans et al., 2000a) have led to the prediction that there should be nuclear pools of aminoacyl-tRNA synthetases. We report that in budding yeast there are nuclear pools of tyrosyl-tRNA synthetase, Tys1p. By sequence alignments we predicted a Tys1p nuclear localization sequence and showed it to be sufficient for nuclear location of a passenger protein. Mutations of this nuclear localization sequence in endogenous Tys1p reduce nuclear Tys1p pools, indicating that the motif is also important for nucleus location. The mutations do not significantly affect catalytic activity, but they do cause defects in export of tRNAs to the cytosol. Despite export defects, the cells are viable, indicating that nuclear tRNA aminoacylation is not required for all tRNA nuclear export paths. Because the tRNA nuclear exportin, Los1p, is also unessential, we tested whether tRNA aminoacylation and Los1p operate in alternative tRNA nuclear export paths. No genetic interactions between aminoacyl-tRNA synthetases and Los1p were detected, indicating that tRNA nuclear aminoacylation and Los1p operate in the same export pathway or there are more than two pathways for tRNA nuclear export. PMID:11359929

  4. Role of nuclear pools of aminoacyl-tRNA synthetases in tRNA nuclear export.

    PubMed

    Azad, A K; Stanford, D R; Sarkar, S; Hopper, A K

    2001-05-01

    Reports of nuclear tRNA aminoacylation and its role in tRNA nuclear export (Lund and Dahlberg, 1998; Sarkar et al., 1999; Grosshans et al., 20001) have led to the prediction that there should be nuclear pools of aminoacyl-tRNA synthetases. We report that in budding yeast there are nuclear pools of tyrosyl-tRNA synthetase, Tys1p. By sequence alignments we predicted a Tys1p nuclear localization sequence and showed it to be sufficient for nuclear location of a passenger protein. Mutations of this nuclear localization sequence in endogenous Tys1p reduce nuclear Tys1p pools, indicating that the motif is also important for nucleus location. The mutations do not significantly affect catalytic activity, but they do cause defects in export of tRNAs to the cytosol. Despite export defects, the cells are viable, indicating that nuclear tRNA aminoacylation is not required for all tRNA nuclear export paths. Because the tRNA nuclear exportin, Los1p, is also unessential, we tested whether tRNA aminoacylation and Los1p operate in alternative tRNA nuclear export paths. No genetic interactions between aminoacyl-tRNA synthetases and Los1p were detected, indicating that tRNA nuclear aminoacylation and Los1p operate in the same export pathway or there are more than two pathways for tRNA nuclear export.

  5. Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites☆

    PubMed Central

    Pham, James S.; Dawson, Karen L.; Jackson, Katherine E.; Lim, Erin E.; Pasaje, Charisse Flerida A.; Turner, Kelsey E.C.; Ralph, Stuart A.

    2013-01-01

    Aminoacyl-tRNA synthetases are central enzymes in protein translation, providing the charged tRNAs needed for appropriate construction of peptide chains. These enzymes have long been pursued as drug targets in bacteria and fungi, but the past decade has seen considerable research on aminoacyl-tRNA synthetases in eukaryotic parasites. Existing inhibitors of bacterial tRNA synthetases have been adapted for parasite use, novel inhibitors have been developed against parasite enzymes, and tRNA synthetases have been identified as the targets for compounds in use or development as antiparasitic drugs. Crystal structures have now been solved for many parasite tRNA synthetases, and opportunities for selective inhibition are becoming apparent. For different biological reasons, tRNA synthetases appear to be promising drug targets against parasites as diverse as Plasmodium (causative agent of malaria), Brugia (causative agent of lymphatic filariasis), and Trypanosoma (causative agents of Chagas disease and human African trypanosomiasis). Here we review recent developments in drug discovery and target characterisation for parasite aminoacyl-tRNA synthetases. PMID:24596663

  6. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulationmore » of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.« less

  7. Two non-redundant fragments in the N-terminal peptide of human cytosolic methionyl-tRNA synthetase were indispensable for the multi-synthetase complex incorporation and enzyme activity.

    PubMed

    He, Ran; Zu, Li-Dong; Yao, Peng; Chen, Xin; Wang, En-Duo

    2009-02-01

    In human cytoplasm, nine aminoacyl-tRNA synthetases (aaRSs) and three protein factors form a multi-synthetase complex (MSC). Human cytosolic methionyl-tRNA synthetase (hcMetRS) is a component of the MSC. Sequence alignment revealed that hcMetRS has an N-terminal extension of 267 amino acid residues. This extension can be divided into three sub-domains: GST-like, GN, and GC sub-domains. The effect of each sub-domain in the N-terminal extension of hcMetRS on enzymatic activity and incorporation into the MSC was studied. The results of cellular assay showed that the GST-like sub-domain was responsible for the incorporation of hcMetRS into the MSC. The entire N-terminal extension of hcMetRS is indispensable for the enzymatic activity. Deletion mutagenesis revealed that a seven-amino acid motif within the sub-domain GC was important for the activity of amino acid activation. A conserved proline residue within the seven-amino acid motif was crucial, while the other six residues were moderately important for the amino acid activation activity. Thus, the last 15 residues of previously defined N-terminal extension of hcMetRS was a part of the catalytic domain; whereas the first 252 residues of hcMetRS constitute the N-terminal extended domain of hcMetRS. The formerly defined N-terminal extension of hcMetRS possesses two functions of two different domains.

  8. Function of a Glutamine Synthetase-Like Protein in Bacterial Aniline Oxidation via γ-Glutamylanilide

    PubMed Central

    Ohara, Akira; Sakae, Shinji; Okamoto, Yasuhiro; Kitamura, Chitoshi; Kato, Dai-ichiro; Negoro, Seiji

    2013-01-01

    Acinetobacter sp. strain YAA has five genes (atdA1 to atdA5) involved in aniline oxidation as a part of the aniline degradation gene cluster. From sequence analysis, the five genes were expected to encode a glutamine synthetase (GS)-like protein (AtdA1), a glutamine amidotransferase-like protein (AtdA2), and an aromatic compound dioxygenase (AtdA3, AtdA4, and AtdA5) (M. Takeo, T. Fujii, and Y. Maeda, J. Ferment. Bioeng. 85:17-24, 1998). A recombinant Pseudomonas strain harboring these five genes quantitatively converted aniline into catechol, demonstrating that catechol is the major oxidation product from aniline. To elucidate the function of the GS-like protein AtdA1 in aniline oxidation, we purified it from recombinant Escherichia coli harboring atdA1. The purified AtdA1 protein produced gamma-glutamylanilide (γ-GA) quantitatively from aniline and l-glutamate in the presence of ATP and MgCl2. This reaction was identical to glutamine synthesis by GS, except for the use of aniline instead of ammonia as the substrate. Recombinant Pseudomonas strains harboring the dioxygenase genes (atdA3 to atdA5) were unable to degrade aniline but converted γ-GA into catechol, indicating that γ-GA is an intermediate to catechol and a direct substrate for the dioxygenase. Unexpectedly, a recombinant Pseudomonas strain harboring only atdA2 hydrolyzed γ-GA into aniline, reversing the γ-GA formation by AtdA1. Deletion of atdA2 from atdA1 to atdA5 caused γ-GA accumulation from aniline in recombinant Pseudomonas cells and inhibited the growth of a recombinant Acinetobacter strain on aniline, suggesting that AtdA2 prevents γ-GA accumulation that is harmful to the host cell. PMID:23893114

  9. Function of a glutamine synthetase-like protein in bacterial aniline oxidation via γ-glutamylanilide.

    PubMed

    Takeo, Masahiro; Ohara, Akira; Sakae, Shinji; Okamoto, Yasuhiro; Kitamura, Chitoshi; Kato, Dai-ichiro; Negoro, Seiji

    2013-10-01

    Acinetobacter sp. strain YAA has five genes (atdA1 to atdA5) involved in aniline oxidation as a part of the aniline degradation gene cluster. From sequence analysis, the five genes were expected to encode a glutamine synthetase (GS)-like protein (AtdA1), a glutamine amidotransferase-like protein (AtdA2), and an aromatic compound dioxygenase (AtdA3, AtdA4, and AtdA5) (M. Takeo, T. Fujii, and Y. Maeda, J. Ferment. Bioeng. 85:17-24, 1998). A recombinant Pseudomonas strain harboring these five genes quantitatively converted aniline into catechol, demonstrating that catechol is the major oxidation product from aniline. To elucidate the function of the GS-like protein AtdA1 in aniline oxidation, we purified it from recombinant Escherichia coli harboring atdA1. The purified AtdA1 protein produced gamma-glutamylanilide (γ-GA) quantitatively from aniline and l-glutamate in the presence of ATP and MgCl2. This reaction was identical to glutamine synthesis by GS, except for the use of aniline instead of ammonia as the substrate. Recombinant Pseudomonas strains harboring the dioxygenase genes (atdA3 to atdA5) were unable to degrade aniline but converted γ-GA into catechol, indicating that γ-GA is an intermediate to catechol and a direct substrate for the dioxygenase. Unexpectedly, a recombinant Pseudomonas strain harboring only atdA2 hydrolyzed γ-GA into aniline, reversing the γ-GA formation by AtdA1. Deletion of atdA2 from atdA1 to atdA5 caused γ-GA accumulation from aniline in recombinant Pseudomonas cells and inhibited the growth of a recombinant Acinetobacter strain on aniline, suggesting that AtdA2 prevents γ-GA accumulation that is harmful to the host cell.

  10. Mutations of the aminoacyl-tRNA-synthetases SARS and WARS2 are implicated in the etiology of autosomal recessive intellectual disability.

    PubMed

    Musante, Luciana; Püttmann, Lucia; Kahrizi, Kimia; Garshasbi, Masoud; Hu, Hao; Stehr, Henning; Lipkowitz, Bettina; Otto, Sabine; Jensen, Lars R; Tzschach, Andreas; Jamali, Payman; Wienker, Thomas; Najmabadi, Hossein; Ropers, Hans Hilger; Kuss, Andreas W

    2017-06-01

    Intellectual disability (ID) is the hallmark of an extremely heterogeneous group of disorders that comprises a wide variety of syndromic and non-syndromic phenotypes. Here, we report on mutations in two aminoacyl-tRNA synthetases that are associated with ID in two unrelated Iranian families. In the first family, we identified a homozygous missense mutation (c.514G>A, p.Asp172Asn) in the cytoplasmic seryl-tRNA synthetase (SARS) gene. The mutation affects the enzymatic core domain of the protein and impairs its enzymatic activity, probably leading to reduced cytoplasmic tRNA Ser concentrations. The mutant protein was predicted to be unstable, which could be substantiated by investigating ectopic mutant SARS in transfected HEK293T cells. In the second family, we found a compound heterozygous genotype of the mitochondrial tryptophanyl-tRNA synthetase (WARS2) gene, comprising a nonsense mutation (c.325delA, p.Ser109Alafs*15), which very likely entails nonsense-mediated mRNA decay and a missense mutation (c.37T>G, p.Trp13Gly). The latter affects the mitochondrial localization signal of WARS2, causing protein mislocalization. Including AIMP1, which we have recently implicated in the etiology of ID, three genes with a role in tRNA-aminoacylation are now associated with this condition. We therefore suggest that the functional integrity of tRNAs in general is an important factor in the development and maintenance of human cognitive functions. © 2017 Wiley Periodicals, Inc.

  11. The microsomal dicarboxylyl-CoA synthetase.

    PubMed Central

    Vamecq, J; de Hoffmann, E; Van Hoof, F

    1985-01-01

    Dicarboxylic acids are products of the omega-oxidation of monocarboxylic acids. We demonstrate that in rat liver dicarboxylic acids (C5-C16) can be converted into their CoA esters by a dicarboxylyl-CoA synthetase. During this activation ATP, which cannot be replaced by GTP, is converted into AMP and PPi, both acting as feedback inhibitors of the reaction. Thermolabile at 37 degrees C, and optimally active at pH 6.5, dicarboxylyl-CoA synthetase displays the highest activity on dodecanedioic acid (2 micromol/min per g of liver). Cell-fractionation studies indicate that this enzyme belongs to the hepatic microsomal fraction. Investigations about the fate of dicarboxylyl-CoA esters disclosed the existence of an oxidase, which could be measured by monitoring the production of H2O2. In our assay conditions this H2O2 production is dependent on and closely follows the CoA consumption. It appears that the chain-length specificity of the handling of dicarboxylic acids by this catabolic pathway (activation to acyl-CoA and oxidation with H2O2 production) parallels the pattern of the degradation of exogenous dicarboxylic acids in vivo. PMID:4062873

  12. Cyclopiazonic acid biosynthesis in Aspergillus sp.: characterization of a reductase-like R* domain in cyclopiazonate synthetase that forms and releases cyclo-acetoacetyl-L-tryptophan.

    PubMed

    Liu, Xinyu; Walsh, Christopher T

    2009-09-15

    The fungal neurotoxin alpha-cyclopiazonic acid (CPA), a nanomolar inhibitor of Ca2+-ATPase, has a pentacyclic indole tetramic acid scaffold that arises from one molecule of tryptophan, acetyl-CoA, malonyl-CoA, and dimethylallyl pyrophosphate by consecutive action of three enzymes, CpaS, CpaD, and CpaO. CpaS is a hybrid, two module polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) that makes and releases cyclo-acetoacetyl-L-tryptophan (cAATrp), the tetramic acid that serves as substrate for subsequent prenylation and oxidative cyclization to the five ring CPA scaffold. The NRPS module in CpaS has a predicted four-domain organization of condensation, adenylation, thiolation, and reductase* (C-A-T-R*), where R* lacks the critical Ser-Tyr-Lys catalytic triad of the short chain dehydrogenase/reductase (SDR) superfamily. By heterologous overproduction in Escherichia coli of the 56 kDa Aspergillus flavus CpaS TR* didomain and the single T and R* domains, we demonstrate that CpaS catalyzes a Dieckmann-type cyclization on the N-acetoacetyl-Trp intermediate bound in thioester linkage to the phosphopantetheinyl arm of the T domain to form and release cAATrp. This occurs without any participation of NAD(P)H, so R* does not function as a canonical SDR family member. Use of the T and R* domains in in trans assays enabled multiple turnovers and evaluation of specific mutants. Mutation of the D3803 residue in the R* domain, conserved in other fungal tetramate synthetases, abolished activity both in in trans and in cis (TR*) activity assays. It is likely that cyclization of beta-ketoacylaminoacyl-S-pantetheinyl intermediates to released tetramates represents a default cyclization/release route for redox-incompetent R* domains embedded in NRPS assembly lines.

  13. Downregulation of acetyl-CoA synthetase 2 is a metabolic hallmark of tumor progression and aggressiveness in colorectal carcinoma.

    PubMed

    Bae, Jeong Mo; Kim, Jung Ho; Oh, Hyeon Jeong; Park, Hye Eun; Lee, Tae Hun; Cho, Nam-Yun; Kang, Gyeong Hoon

    2017-02-01

    Acetyl-CoA synthetase-2 is an emerging key enzyme for cancer metabolism, which supplies acetyl-CoA for tumor cells by capturing acetate as a carbon source under stressed conditions. However, implications of acetyl-CoA synthetase-2 in colorectal carcinoma may differ from other malignancies, because normal colonocytes use short-chain fatty acids as an energy source, which are supplied by fermentation of the intestinal flora. Here we analyzed acetyl-CoA synthetase-2 mRNA expression by reverse-transcription quantitative PCR in paired normal mucosa and tumor tissues of 12 colorectal carcinomas, and subsequently evaluated acetyl-CoA synthetase-2 protein expression by immunohistochemistry in 157 premalignant colorectal lesions, including 60 conventional adenomas and 97 serrated polyps, 1,106 surgically resected primary colorectal carcinomas, and 23 metastatic colorectal carcinomas in the liver. In reverse-transcription quantitative PCR analysis, acetyl-CoA synthetase-2 mRNA expression was significantly decreased in tumor tissues compared with corresponding normal mucosa tissues. In acetyl-CoA synthetase-2 immunohistochemistry analysis, all 157 colorectal polyps showed moderate-to-strong expression of acetyl-CoA synthetase-2. However, cytoplasmic acetyl-CoA synthetase-2 expression was downregulated (acetyl-CoA synthetase-2 low expression) in 771 (69.7%) of 1,106 colorectal carcinomas and 21 (91.3%) of 23 metastatic lesions. The colorectal carcinomas with acetyl-CoA synthetase-2-low expression were significantly associated with advanced TNM stage, poor differentiation, and frequent tumor budding. Regarding the molecular aspect, acetyl-CoA synthetase-2-low expression exhibited a tendency of frequent KRT7 expression and decreased KRT20 and CDX2 expression. In survival analysis, acetyl-CoA synthetase-2-low expression was an independent prognostic factor for poor 5-year progression-free survival (hazard ratio, 1.39; 95% confidence interval, 1.08-1.79; P=0.01). In conclusion

  14. Regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 by the nitrogen source: effect of ammonium.

    PubMed Central

    Mérida, A; Candau, P; Florencio, F J

    1991-01-01

    Glutamine synthetase activity from Synechocystis sp. strain PCC 6803 is regulated as a function of the nitrogen source available in the medium. Addition of 0.25 mM NH4Cl to nitrate-grown cells promotes a clear short-term inactivation of glutamine synthetase, whose enzyme activity decreases to 5 to 10% of the initial value in 25 min. The intracellular levels of glutamine, determined under various conditions, taken together with the results obtained with azaserine (an inhibitor of transamidases), rule out the possibility that glutamine per se is responsible for glutamine synthetase inactivation. Nitrogen starvation attenuates the ammonium-mediated glutamine synthetase inactivation, indicating that glutamine synthetase regulation is modulated through the internal balance between carbon-nitrogen compounds and carbon compounds. The parallelism observed between the glutamine synthetase activity and the internal concentration of alpha-ketoglutarate suggests that this metabolite could play a role as a positive effector of glutamine synthetase activity in Synechocystis sp. Despite the similarities of this physiological system to that described for enterobacteria, the lack of in vivo 32P labeling of glutamine synthetase during the inactivation process excludes the existence of an adenylylation-deadenylylation system in this cyanobacterium. Images PMID:1676397

  15. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications.

    PubMed

    Brown, J R; Doolittle, W F

    1995-03-28

    Universal trees based on sequences of single gene homologs cannot be rooted. Iwabe et al. [Iwabe, N., Kuma, K.-I., Hasegawa, M., Osawa, S. & Miyata, T. (1989) Proc. Natl. Acad. Sci. USA 86, 9355-9359] circumvented this problem by using ancient gene duplications that predated the last common ancestor of all living things. Their separate, reciprocally rooted gene trees for elongation factors and ATPase subunits showed Bacteria (eubacteria) as branching first from the universal tree with Archaea (archaebacteria) and Eucarya (eukaryotes) as sister groups. Given its topical importance to evolutionary biology and concerns about the appropriateness of the ATPase data set, an evaluation of the universal tree root using other ancient gene duplications is essential. In this study, we derive a rooting for the universal tree using aminoacyl-tRNA synthetase genes, an extensive multigene family whose divergence likely preceded that of prokaryotes and eukaryotes. An approximately 1600-bp conserved region was sequenced from the isoleucyl-tRNA synthetases of several species representing deep evolutionary branches of eukaryotes (Nosema locustae), Bacteria (Aquifex pyrophilus and Thermotoga maritima) and Archaea (Pyrococcus furiosus and Sulfolobus acidocaldarius). In addition, a new valyl-tRNA synthetase was characterized from the protist Trichomonas vaginalis. Different phylogenetic methods were used to generate trees of isoleucyl-tRNA synthetases rooted by valyl- and leucyl-tRNA synthetases. All isoleucyl-tRNA synthetase trees showed Archaea and Eucarya as sister groups, providing strong confirmation for the universal tree rooting reported by Iwabe et al. As well, there was strong support for the monophyly (sensu Hennig) of Archaea. The valyl-tRNA synthetase gene from Tr. vaginalis clustered with other eukaryotic ValRS genes, which may have been transferred from the mitochondrial genome to the nuclear genome, suggesting that this amitochondrial trichomonad once harbored an

  16. Increased PRPP synthetase activity in cultured rat hepatoma cells containing mutations in the hypoxanthine-guanine phosphoribosyltransferase gene.

    PubMed

    Graf, L H; McRoberts, J A; Harrison, T M; Martin, D W

    1976-07-01

    Nine independently derived clones of mutagenized rat hepatoma cells selected for resistance to 6-mercaptopurine (6-MP) or 6-thioguanine (6-ThioG) have been isolated. Each has severely reduced catalytic activity of hypoxanthine-guanine phosphoribosyltransferase (HPRT) and seven of them possess significantly increased activities of phosphoribosylpyrophosphate (PRPP) synthetase. The degrees of elevations of PRPP synthetase activities do not correlate with the degrees of deficiencies of HPRT activities. The cells from one of these clones, 1020/12, posses 40% of the normal HPRT catalytic activity and overproduce purines. We have extensively examined the cells from this clone. Immunotration studies of 1020/12 cells indicate that there is a mutation in the structural gene for HPRT. Although they possess increased specific catalytic activities of the enzyme. PRPP synthetase, the catalytic parameters, heat stability, and isoelectric pH of PRPP synthetase from 1020/12 cells are indistinguishable from those of the enzyme from wild-type cells. The cause of purine overproduction by 1020/12 cells appears to be the elevated PRPP synthetase activity, rather than a PRPP "sparing" effect stemming from reduced HPRT activity. Support for this idea is provided by the observation that the complete loss of HPRT activity in a clone derived from 1020/12 cells does not further enhance the levels of PRPP synthetase or purine overproduction. We propose that the elevated levels of PRPP synthetase activity in these HPRT deficient cells result from a mutational event in the structural gene for HPRT, and that this causes the disruption of a previously undescribed regulatory function of this gene on the expression of the PRPP synthetase gene.

  17. Properties of 5-aminolaevulinate synthetase and its relationship to microsomal mixed-function oxidation in the southern armyworm (Spodoptera eridania).

    PubMed Central

    Brattsten, L B; Wilkinson, C F

    1975-01-01

    1. Activity of 5-aminolaevulinate synthetase was measured in the midgut and other tissues of the last larval instar of the southern armyworm (Spodoptera eridania Cramer, formerly Prodenia eridania Cramer). 2. Optimum conditions for measuring the activity were established with respect to all variables involved and considerable differences from those reported for mammalian enzyme preparations were found. 3. Maximum activity (20 nmol/h per mg of protein) occurs 18-24 h after the fifth moult and thereafter decreases to trace amounts as the larvae age and approach pupation. 4. Synthetase activity was rapidly induced by oral administration (in the diet) of pentamethylbenzene, phenobarbital, diethyl 1,4-dihydro-2,4,6-trimethylpyridine-3, 5-dicarboxylate, and 2-allyl-2-isopropylacetamide. 5. Puromycin inhibited the induction of synthetase by pentamethylbenzene. 6. Induction of 5-aminolaevulinate synthetase correlated well with the induction of microsomal N-demethylation of p-chloro-N-methylaniline, except for phenobarbital, which induced the microsomal oxidase relatively more than the synthetase. PMID:1004

  18. Properties of 5-aminolaevulinate synthetase and its relationship to microsomal mixed-function oxidation in the southern armyworm (Spodoptera eridania).

    PubMed

    Brattsten, L B; Wilkinson, C F

    1975-07-01

    1. Activity of 5-aminolaevulinate synthetase was measured in the midgut and other tissues of the last larval instar of the southern armyworm (Spodoptera eridania Cramer, formerly Prodenia eridania Cramer). 2. Optimum conditions for measuring the activity were established with respect to all variables involved and considerable differences from those reported for mammalian enzyme preparations were found. 3. Maximum activity (20 nmol/h per mg of protein) occurs 18-24 h after the fifth moult and thereafter decreases to trace amounts as the larvae age and approach pupation. 4. Synthetase activity was rapidly induced by oral administration (in the diet) of pentamethylbenzene, phenobarbital, diethyl 1,4-dihydro-2,4,6-trimethylpyridine-3, 5-dicarboxylate, and 2-allyl-2-isopropylacetamide. 5. Puromycin inhibited the induction of synthetase by pentamethylbenzene. 6. Induction of 5-aminolaevulinate synthetase correlated well with the induction of microsomal N-demethylation of p-chloro-N-methylaniline, except for phenobarbital, which induced the microsomal oxidase relatively more than the synthetase.

  19. Adenylosuccinate synthetase: recent developments.

    PubMed

    Honzatko, R B; Stayton, M M; Fromm, H J

    1999-01-01

    By exerting strategic control on purine nucleotide biosynthesis, and by engaging GTP-dependent transphosphorylation of IMP to activate loss of an oxygen atom during catalysis, adenylosuccinate synthetase remains as enzyme that justifiably fascinates students of enzyme catalysis. This review describes how the balanced application of X-ray crystallography and enzyme kinetics has advanced the comprehension of the catalytic and regulatory properties of adenylosuccinate synthetase. Detailed analysis has demonstrated the formation of 6-phosphoryl-IMP, an intermediate originally postulated over 40 years ago on the basis of oxygen-18 exchange experiments showing that position-6 oxygen of IMP becomes incorporated into phosphate. Inferences about the participation of amino acid side-chains that stabilize 6-P-IMP during catalysis have also been confirmed by site-directed mutagenesis and examination of such mutations on various kinetic parameters. Moreover, the action of certain regulatory ligands have also been viewed at atomic level resolution. For example, magnesium ion and GDP can induce conformational changes linked to the stabilization of one of two known conformations of the so-called 40s loop. Another significant finding is that two magnesium ions play fundamental roles: one binding with high affinity to the substrate GTP, and a second binding with lower affinity to the co-substrate aspartate. These structural and kinetic studies have also formed the basis for clarifying the action of various inhibitors and potentially important pharmacologic agents with this key regulatory enzyme. Finally, this review explores the current status of investigations on gene structure and gene expression in a number of organisms.

  20. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  1. Adenine derivatives as phosphate-activating groups for the regioselective formation of 3',5'-linked oligoadenylates on montmorillonite: possible phosphate-activating groups for the prebiotic synthesis of RNA

    NASA Technical Reports Server (NTRS)

    Prabahar, K. J.; Ferris, J. P.

    1997-01-01

    Methyladenine and adenine N-phosphoryl derivatives of adenosine 5'-monophosphate (5'-AMP) and uridine 5'-monophosphate (5'-UMP) are synthesized, and their structures are elucidated. The oligomerization reactions of the adenine derivatives of 5'-phosphoramidates of adenosine on montmorillonite are investigated. 1-Methyladenine and 3-methyladenine derivatives on montmorillonite yielded oligoadenylates as long as undecamer, and the 2-methyladenine and adenine derivatives on montmorillonite yielded oligomers up to hexamers and pentamers, respectively. The 1-methyladenine derivative yielded linear, cyclic, and A5'ppA-derived oligonucleotides with a regioselectivity for the 3',5'-phosphodiester linkages averaging 84%. The effect of pKa and amine structure of phosphate-activating groups on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidate of adenosine are discussed. The binding and reaction of methyladenine and adenine N-phosphoryl derivatives of adenosine are described.

  2. Expression of Human CTP Synthetase in Saccharomyces cerevisiae Reveals Phosphorylation by Protein Kinase A*

    PubMed Central

    Han, Gil-Soo; Sreenivas, Avula; Choi, Mal-Gi; Chang, Yu-Fang; Martin, Shelley S.; Baldwin, Enoch P.; Carman, George M.

    2005-01-01

    CTP synthetase (EC 6.3.4.2, UTP: ammonia ligase (ADP-forming)) is an essential enzyme in all organisms; it generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work we showed that the human CTP synthetase genes, CTPS1 and CTPS2, were functional in Saccharomyces cerevisiae and complemented the lethal phenotype of the ura7Δ ura8Δ mutant lacking CTP synthetase activity. The expression of the CTPS1-and CTPS2-encoded human CTP synthetase enzymes in the ura7Δ ura8Δ mutant was shown by immunoblot analysis of CTP synthetase proteins, the measurement of CTP synthetase activity, and the synthesis of CTP in vivo. Phosphoamino acid and phosphopeptide mapping analyses of human CTP synthetase 1 isolated from 32Pi-labeled cells revealed that the enzyme was phosphorylated on multiple serine residues in vivo. Activation of protein kinase A activity in yeast resulted in transient increases (2-fold) in the phosphorylation of human CTP synthetase 1 and the cellular level of CTP. Human CTP synthetase 1 was also phosphorylated by mammalian protein kinase A in vitro. Using human CTP synthetase 1 purified from Escherichia coli as a substrate, protein kinase A activity was dose- and time-dependent, and dependent on the concentrations of CTP synthetase1 and ATP. These studies showed that S. cerevisiae was useful for the analysis of human CTP synthetase phosphorylation. PMID:16179339

  3. Plasmodium falciparum mitochondria import tRNAs along with an active phenylalanyl-tRNA synthetase.

    PubMed

    Sharma, Arvind; Sharma, Amit

    2015-02-01

    The Plasmodium falciparum protein translation enzymes aminoacyl-tRNA synthetases (aaRSs) are an emergent family of drug targets. The aaRS ensemble catalyses transfer of amino acids to cognate tRNAs, thus providing charged tRNAs for ribosomal consumption. P. falciparum proteome expression relies on a total of 36 aaRSs for the three translationally independent compartments of cytoplasm, apicoplast and mitochondria. In the present study, we show that, of this set of 36, a single genomic copy of mitochondrial phenylalanyl-tRNA synthetase (mFRS) is targeted to the parasite mitochondria, and that the mFRS gene is exclusive to malaria parasites within the apicomplexan phyla. Our protein cellular localization studies based on immunofluorescence data show that, along with mFRS, P. falciparum harbours two more phenylalanyl-tRNA synthetase (FRS) assemblies that are localized to its apicoplast and cytoplasm. The 'extra' mFRS is found in mitochondria of all asexual blood stage parasites and is competent in aminoacylation. We show further that the parasite mitochondria import tRNAs from the cytoplasmic tRNA pool. Hence drug targeting of FRSs presents a unique opportunity to potentially stall protein production in all three parasite translational compartments.

  4. Pharmacological studies on the TXA2 synthetase inhibitor (E)-3-[p-(1H-imidazol-1-ylmethyl)phenyl]-2-propenoic acid (OKY-046).

    PubMed

    Hiraku, S; Taniguchi, K; Wakitani, K; Omawari, N; Kira, H; Miyamoto, T; Okegawa, T; Kawasaki, A; Ujiie, A

    1986-07-01

    The effects of (E)-3-[p-(1H-imidazol-1-ylmethyl)phenyl]-2-propenoic acid (OKY-046) on thromboxane A2 (TXA2) synthetase in vitro and on experimental animal models of sudden death and cerebral infarction were studied. IC50 values of OKY-046 for the TXA2 synthetase of human, rabbit, dog and guinea pig washed platelets were 0.004, 0.004, 0.26 and 2.4 microM, respectively. OKY-046 at concentrations up to 1 mM, however, did not inhibit prostacyclin (PGI2) synthetase from bovine aorta microsomes or cyclooxygenase and PGE2 isomerase from sheep seminal vesicle microsomes. Similarly, platelet 12-lipoxygenase was not affected by OKY-046. Evidence for a re-direction of arachidonate metabolism from thromboxane synthesis toward PGI2 synthesis was obtained using rat peritoneal cells. Namely, OKY-046 increased PGI2 production accompanied by an inhibition of TXA2 production at a concentration of more than 1 microM. OKY-046 at a dose of 0.1 mg/kg (i.v.) in dogs inhibited the aortic and mesenteric arterial contraction of rabbit induced by the addition of arachidonate to extracorporated blood of the dogs. OKY-046 at a dose of 0.3 mg/kg (i.v.) prevented the arachidonate-induced sudden death and also decreased the incidence of cerebral infarction induced by injection of arachidonate into the internal carotid artery in rabbits. Aspirin also decreased the incidence of cerebral infarction at a dose of 30 mg/kg (i.v.). These results suggest that OKY-046 may be valuable for the treatment of cerebrovascular and cardiovascular diseases associated with vasoconstriction and thrombosis due to TXA2.

  5. Structural Basis for Specific Inhibition of tRNA Synthetase by an ATP Competitive Inhibitor.

    PubMed

    Fang, Pengfei; Han, Hongyan; Wang, Jing; Chen, Kaige; Chen, Xin; Guo, Min

    2015-06-18

    Pharmaceutical inhibitors of aminoacyl-tRNA synthetases demand high species and family specificity. The antimalarial ATP-mimetic cladosporin selectively inhibits Plasmodium falciparum LysRS (PfLysRS). How the binding to a universal ATP site achieves the specificity is unknown. Here we report three crystal structures of cladosporin with human LysRS, PfLysRS, and a Pf-like human LysRS mutant. In all three structures, cladosporin occupies the class defining ATP-binding pocket, replacing the adenosine portion of ATP. Three residues holding the methyltetrahydropyran moiety of cladosporin are critical for the specificity of cladosporin against LysRS over other class II tRNA synthetase families. The species-exclusive inhibition of PfLysRS is linked to a structural divergence beyond the active site that mounts a lysine-specific stabilizing response to binding cladosporin. These analyses reveal that inherent divergence of tRNA synthetase structural assembly may allow for highly specific inhibition even through the otherwise universal substrate binding pocket and highlight the potential for structure-driven drug development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Actinobacterial Acyl Coenzyme A Synthetases Involved in Steroid Side-Chain Catabolism

    PubMed Central

    Casabon, Israël; Swain, Kendra; Crowe, Adam M.

    2014-01-01

    Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and

  7. Functional expansion of human tRNA synthetases achieved by structural inventions

    PubMed Central

    Guo, Min; Schimmel, Paul; Yang, Xiang-Lei

    2010-01-01

    Known as an essential component of the translational apparatus, the aminoacyl-tRNA synthetase family catalyzes the first step reaction in protein synthesis, that is, to specifically attach each amino acid to its cognate tRNA. While preserving this essential role, tRNA synthetases developed other roles during evolution. Human tRNA synthetases, in particular, have diverse functions in different pathways involving angiogenesis, inflammation and apoptosis. The functional diversity is further illustrated in the association with various diseases through genetic mutations that do not affect aminoacylation or protein synthesis. Here we review the accumulated knowledge on how human tRNA synthetases used structural inventions to achieve functional expansions. PMID:19932696

  8. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.

    PubMed

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M; Wong, Margaret; Kiessling, Laura L; Steitz, Thomas A; O'Donoghue, Patrick; Söll, Dieter

    2014-11-25

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids.

  9. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution

    PubMed Central

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M.; Wong, Margaret; Kiessling, Laura L.; Steitz, Thomas A.; O’Donoghue, Patrick; Söll, Dieter

    2014-01-01

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNAPyl have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate Nε-acetyl-Lys (AcK) onto tRNAPyl. Here, we examine an Nε-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids. PMID:25385624

  10. The structures of cytosolic and plastid-located glutamine synthetases from Medicago truncatula reveal a common and dynamic architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torreira, Eva; Seabra, Ana Rita; Marriott, Hazel

    The experimental models of dicotyledonous cytoplasmic and plastid-located glutamine synthetases unveil a conserved eukaryotic-type decameric architecture, with subtle structural differences in M. truncatula isoenzymes that account for their distinct herbicide resistance. The first step of nitrogen assimilation in higher plants, the energy-driven incorporation of ammonia into glutamate, is catalyzed by glutamine synthetase. This central process yields the readily metabolizable glutamine, which in turn is at the basis of all subsequent biosynthesis of nitrogenous compounds. The essential role performed by glutamine synthetase makes it a prime target for herbicidal compounds, but also a suitable intervention point for the improvement of cropmore » yields. Although the majority of crop plants are dicotyledonous, little is known about the structural organization of glutamine synthetase in these organisms and about the functional differences between the different isoforms. Here, the structural characterization of two glutamine synthetase isoforms from the model legume Medicago truncatula is reported: the crystallographic structure of cytoplasmic GSII-1a and an electron cryomicroscopy reconstruction of plastid-located GSII-2a. Together, these structural models unveil a decameric organization of dicotyledonous glutamine synthetase, with two pentameric rings weakly connected by inter-ring loops. Moreover, rearrangement of these dynamic loops changes the relative orientation of the rings, suggesting a zipper-like mechanism for their assembly into a decameric enzyme. Finally, the atomic structure of M. truncatula GSII-1a provides important insights into the structural determinants of herbicide resistance in this family of enzymes, opening new avenues for the development of herbicide-resistant plants.« less

  11. Assembly of Multi-tRNA Synthetase Complex via Heterotetrameric Glutathione Transferase-homology Domains.

    PubMed

    Cho, Ha Yeon; Maeng, Seo Jin; Cho, Hyo Je; Choi, Yoon Seo; Chung, Jeong Min; Lee, Sangmin; Kim, Hoi Kyoung; Kim, Jong Hyun; Eom, Chi-Yong; Kim, Yeon-Gil; Guo, Min; Jung, Hyun Suk; Kang, Beom Sik; Kim, Sunghoon

    2015-12-04

    Many multicomponent protein complexes mediating diverse cellular processes are assembled through scaffolds with specialized protein interaction modules. The multi-tRNA synthetase complex (MSC), consisting of nine different aminoacyl-tRNA synthetases and three non-enzymatic factors (AIMP1-3), serves as a hub for many signaling pathways in addition to its role in protein synthesis. However, the assembly process and structural arrangement of the MSC components are not well understood. Here we show the heterotetrameric complex structure of the glutathione transferase (GST) domains shared among the four MSC components, methionyl-tRNA synthetase (MRS), glutaminyl-prolyl-tRNA synthetase (EPRS), AIMP2 and AIMP3. The MRS-AIMP3 and EPRS-AIMP2 using interface 1 are bridged via interface 2 of AIMP3 and EPRS to generate a unique linear complex of MRS-AIMP3:EPRS-AIMP2 at the molar ratio of (1:1):(1:1). Interestingly, the affinity at interface 2 of AIMP3:EPRS can be varied depending on the occupancy of interface 1, suggesting the dynamic nature of the linear GST tetramer. The four components are optimally arranged for maximal accommodation of additional domains and proteins. These characteristics suggest the GST tetramer as a unique and dynamic structural platform from which the MSC components are assembled. Considering prevalence of the GST-like domains, this tetramer can also provide a tool for the communication of the MSC with other GST-containing cellular factors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. A nonribosomal peptide synthetase (Pes1) confers protection against oxidative stress in Aspergillus fumigatus.

    PubMed

    Reeves, Emer P; Reiber, Kathrin; Neville, Claire; Scheibner, Olaf; Kavanagh, Kevin; Doyle, Sean

    2006-07-01

    Aspergillus fumigatus is an important human fungal pathogen. The Aspergillus fumigatus genome contains 14 nonribosomal peptide synthetase genes, potentially responsible for generating metabolites that contribute to organismal virulence. Differential expression of the nonribosomal peptide synthetase gene, pes1, in four strains of Aspergillus fumigatus was observed. The pattern of pes1 expression differed from that of a putative siderophore synthetase gene, sidD, and so is unlikely to be involved in iron acquisition. The Pes1 protein (expected molecular mass 698 kDa) was partially purified and identified by immunoreactivity, peptide mass fingerprinting (36% sequence coverage) and MALDI LIFT-TOF/TOF MS (four internal peptides sequenced). A pes1 disruption mutant (delta pes1) of Aspergillus fumigatus strain 293.1 was generated and confirmed by Southern and western analysis, in addition to RT-PCR. The delta pes1 mutant also showed significantly reduced virulence in the Galleria mellonella model system (P < 0.001) and increased sensitivity to oxidative stress (P = 0.002) in culture and during neutrophil-mediated phagocytosis. In addition, the mutant exhibited altered conidial surface morphology and hydrophilicity, compared to Aspergillus fumigatus 293.1. It is concluded that pes1 contributes to improved fungal tolerance against oxidative stress, mediated by the conidial phenotype, during the infection process.

  13. Structural Switch of Lysyl-tRNA Synthetase Between Translation and Transcription

    PubMed Central

    Ofir-Birin, Yifat; Fang, Pengfei; Bennett, Steven P.; Zhang, Hui-Min; Wang, Jing; Rachmin, Inbal; Shapiro, Ryan; Song, Jing; Dagan, Arie; Pozo, Jorge; Kim, Sunghoon; Marshall, Alan G.; Schimmel, Paul; Yang, Xiang-Lei; Nechushtan, Hovav; Razin, Ehud; Guo, Min

    2013-01-01

    SUMMARY Lysyl-tRNA synthetase (LysRS), a component of the translation apparatus, is released from the cytoplasmic multi-tRNA synthetase complex (MSC) to activate the transcription factor MITF in stimulated mast cells through undefined mechanisms. Here we show that Ser207-phosphorylation provokes a new conformer of LysRS that inactivates its translational, but activates its transcriptional function. The crystal structure of an MSC sub-complex established that LysRS is held in the MSC by binding to the N-terminus of the scaffold protein p38/AIMP2. Phosphorylation-created steric clashes at the LysRS domain interface disrupt its binding grooves for p38/AIMP2, releasing LysRS and provoking its nuclear translocation. This alteration also exposes the C-terminal domain of LysRS to bind to MITF and triggers LysRS-directed production of the second messenger Ap4A that activates MITF. Thus our results establish that a single conformational change triggered by phosphorylation leads to multiple effects driving an exclusive switch of LysRS function from translation to transcription. PMID:23159739

  14. Evaluation of dihydrofolate reductase and dihydropteroate synthetase genotypes that confer resistance to sulphadoxine-pyrimethamine in Plasmodium falciparum in Haiti

    PubMed Central

    2012-01-01

    Background Malaria caused by Plasmodium falciparum infects roughly 30,000 individuals in Haiti each year. Haiti has used chloroquine (CQ) as a first-line treatment for malaria for many years and as a result there are concerns that malaria parasites may develop resistance to CQ over time. Therefore it is important to prepare for alternative malaria treatment options should CQ resistance develop. In many other malaria-endemic regions, antifolates, particularly pyrimethamine (PYR) and sulphadoxine (SDX) treatment combination (SP), have been used as an alternative when CQ resistance has developed. This study evaluated mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes that confer PYR and SDX resistance, respectively, in P. falciparum to provide baseline data in Haiti. This study is the first comprehensive study to examine PYR and SDX resistance genotypes in P. falciparum in Haiti. Methods DNA was extracted from dried blood spots and genotyped for PYR and SDX resistance mutations in P. falciparum using PCR and DNA sequencing methods. Sixty-one samples were genotyped for PYR resistance in codons 51, 59, 108 and 164 of the dhfr gene and 58 samples were genotyped for SDX resistance codons 436, 437, 540 of the dhps gene in P. falciparum. Results Thirty-three percent (20/61) of the samples carried a mutation at codon 108 (S108N) of the dhfr gene. No mutations in dhfr at codons 51, 59, 164 were observed in any of the samples. In addition, no mutations were observed in dhps at the three codons (436, 437, 540) examined. No significant difference was observed between samples collected in urban vs rural sites (Welch’s T-test p-value = 0.53 and permutations p-value = 0.59). Conclusion This study has shown the presence of the S108N mutation in P. falciparum that confers low-level PYR resistance in Haiti. However, the absence of SDX resistance mutations suggests that SP resistance may not be present in Haiti. These results have important

  15. Altered thymidylate synthetase in 5-fluorodeoxyuridine-resistant Ehrlich ascites carcinoma cells.

    PubMed

    Jastreboff, M M; Kedzierska, B; Rode, W

    1983-07-15

    Thymidylate synthetase from 5-fluorodeoxyuridine-resistant Ehrlich ascites carcinoma cells was purified to a state close to electrophoretical homogeneity (sp. act. = 1.3 mumoles/min/mg protein) and studied in parallel with the homogeneous preparation of the enzyme from the parental Ehrlich ascites carcinoma cells. The enzyme from the resistant cells compared to that from the parental cells showed: (i) a higher turnover number (at least 91 against 31 min-1), (ii) a higher inhibition constant (19 against 1.9 nM) for FdUMP (a tight-binding inhibitor of both enzymes), (iii) a lower activation energy at temps above 36 degrees (1.37 against 2.59 kcal/mole), and (iv) a lower inhibition constant (26 against 108 microM) for dTMP, inhibiting both enzymes competitively vs dUMP.

  16. Coding of Class I and II aminoacyl-tRNA synthetases

    PubMed Central

    Carter, Charles W.

    2018-01-01

    SUMMARY The aminoacyl-tRNA synthetases and their cognate transfer RNAs translate the universal genetic code. The twenty canonical amino acids are sufficiently diverse to create a selective advantage for dividing amino acid activation between two distinct, apparently unrelated superfamilies of synthetases, Class I amino acids being generally larger and less polar, Class II amino acids smaller and more polar. Biochemical, bioinformatic, and protein engineering experiments support the hypothesis that the two Classes descended from opposite strands of the same ancestral gene. Parallel experimental deconstructions of Class I and II synthetases reveal parallel losses in catalytic proficiency at two novel modular levels—protozymes and Urzymes—associated with the evolution of catalytic activity. Bi-directional coding supports an important unification of the proteome; affords a genetic relatedness metric—middle base-pairing frequencies in sense/antisense alignments—that probes more deeply into the evolutionary history of translation than do single multiple sequence alignments; and has facilitated the analysis of hitherto unknown coding relationships in tRNA sequences. Reconstruction of native synthetases by modular thermodynamic cycles facilitated by domain engineering emphasizes the subtlety associated with achieving high specificity, shedding new light on allosteric relationships in contemporary synthetases. Synthetase Urzyme structural biology suggests that they are catalytically active molten globules, broadening the potential manifold of polypeptide catalysts accessible to primitive genetic coding and motivating revisions of the origins of catalysis. Finally, bi-directional genetic coding of some of the oldest genes in the proteome places major limitations on the likelihood that any RNA World preceded the origins of coded proteins. PMID:28828732

  17. Regulated capture by exosomes of mRNAs for cytoplasmic tRNA synthetases.

    PubMed

    Wang, Feng; Xu, Zhiwen; Zhou, Jie; Lo, Wing-Sze; Lau, Ching-Fun; Nangle, Leslie A; Yang, Xiang-Lei; Zhang, Mingjie; Schimmel, Paul

    2013-10-11

    Although tRNA synthetases are enzymes that catalyze the first step of translation in the cytoplasm, surprising functions unrelated to translation have been reported. These studies, and the demonstration of novel activities of splice variants, suggest a far broader reach of tRNA synthetases into cell biology than previously recognized. Here we show that mRNAs for most tRNA synthetases can be detected in exosomes. Also detected in exosomes was an mRNA encoding a unique splice variant that others had associated with prostate cancer. The exosomal mRNAs encoding the native synthetase and its cancer-associated splice variant could be translated in vitro and in mammalian cells into stable proteins. Other results showed that selection by exosomes of the splice variant mRNA could be regulated by an external stimulus. Thus, a broad and diverse regulated pool of tRNA synthetase-derived mRNAs is packaged for genetic exchange.

  18. The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives.

    PubMed

    Wang, Yane-Shih; Russell, William K; Wang, Zhiyong; Wan, Wei; Dodd, Lindsey E; Pai, Pei-Jing; Russell, David H; Liu, Wenshe R

    2011-03-01

    Using evolved pyrrolysyl-tRNA synthetase-tRNA(CUA)(Pyl) pairs, L-phenylalanine, p-iodo-L-phenylalanine and p-bromo-L-phenylalanine have been genetically incorporated into proteins at amber mutation sites in E. coli.

  19. Isolation and characterization of the gene coding for Escherichia coli arginyl-tRNA synthetase.

    PubMed Central

    Eriani, G; Dirheimer, G; Gangloff, J

    1989-01-01

    The gene coding for Escherichia coli arginyl-tRNA synthetase (argS) was isolated as a fragment of 2.4 kb after analysis and subcloning of recombinant plasmids from the Clarke and Carbon library. The clone bearing the gene overproduces arginyl-tRNA synthetase by a factor 100. This means that the enzyme represents more than 20% of the cellular total protein content. Sequencing revealed that the fragment contains a unique open reading frame of 1734 bp flanked at its 5' and 3' ends respectively by 247 bp and 397 bp. The length of the corresponding protein (577 aa) is well consistent with earlier Mr determination (about 70 kd). Primer extension analysis of the ArgRS mRNA by reverse transcriptase, located its 5' end respectively at 8 and 30 nucleotides downstream of a TATA and a TTGAC like element (CTGAC) and 60 nucleotides upstream of the unusual translation initiation codon GUG; nuclease S1 analysis located the 3'-end at 48 bp downstream of the translation termination codon. argS has a codon usage pattern typical for highly expressed E. coli genes. With the exception of the presence of a HVGH sequence similar to the HIGH consensus element, ArgRS has no relevant sequence homologies with other aminoacyl-tRNA synthetases. Images PMID:2668891

  20. Recruitment and Regulation of the Non-ribosomal Peptide Synthetase Modifying Cytochrome P450 Involved in Nikkomycin Biosynthesis.

    PubMed

    Wise, Courtney E; Makris, Thomas M

    2017-05-19

    The β-hydroxylation of l-histidine is the first step in the biosynthesis of the imidazolone base of the antifungal drug nikkomycin. The cytochrome P450 (NikQ) hydroxylates the amino acid while it is appended via a phosphopantetheine linker to the non-ribosomal peptide synthetase (NRPS) NikP1. The latter enzyme is comprised of an MbtH and single adenylation and thiolation domains, a minimal composition that allows for detailed binding and kinetics studies using an intact and homogeneous NRPS substrate. Electron paramagnetic resonance studies confirm that a stable complex is formed with NikQ and NikP1 when the amino acid is tethered. Size exclusion chromatography is used to further refine the principal components that are required for this interaction. NikQ binds NikP1 in the fully charged state, but binding also occurs when NikP1 is lacking both the phosphopantetheine arm and appended amino acid. This demonstrates that the interaction is mainly guided by presentation of the thiolation domain interface, rather than the attached amino acid. Electrochemistry and transient kinetics have been used to probe the influence of l-His-NikP1 binding on catalysis by NikQ. Unlike many P450s, the binding of substrate fails to induce significant changes on the redox potential and autoxidation properties of NikQ and slows down the binding of dioxygen to the ferrous enzyme to initiate catalysis. Collectively, these studies demonstrate a complex interplay between the NRPS maturation process and the recruitment and regulation of an auxiliary tailoring enzyme required for natural product biosynthesis.

  1. Genetic and Immunological Studies of Bacteriophage T4 Thymidylate Synthetase

    PubMed Central

    Krauss, S. W.; Stollar, B. D.; Friedkin, M.

    1973-01-01

    Thymidylate synthetase, which appears after infection of Escherichia coli with bacteriophage T4, has been partially purified. The phage enzyme is immunologically distinct from the host enzyme and has a molecular weight of 50,000 in comparison to 68,000 for the host enzyme. A system has been developed to characterize T4 td mutants previously known to have impaired expression of phage thymidylate synthetase. For this system, an E. coli host lacking thymidylate synthetase was isolated. Known genetic suppressors were transduced into this host. The resulting isogenic hosts were infected with phage T4 td mutants. The specific activities and amounts of cross-reacting material induced by several different types of phage mutants under conditions of suppression or non-suppression have been examined. The results show that the phage carries the structural gene specifying the thymidylate synthetase which appears after phage infection, and that the combination of plaque morphology, enzyme activity assays, and an assay for immunologically cross-reacting material provides a means for identifying true amber mutants of the phage gene. Images PMID:4575286

  2. When contemporary aminoacyl-tRNA synthetases invent their cognate amino acid metabolism

    PubMed Central

    Roy, Hervé; Becker, Hubert Dominique; Reinbolt, Joseph; Kern, Daniel

    2003-01-01

    Faithful protein synthesis relies on a family of essential enzymes called aminoacyl-tRNA synthetases, assembled in a piecewise fashion. Analysis of the completed archaeal genomes reveals that all archaea that possess asparaginyl-tRNA synthetase (AsnRS) also display a second ORF encoding an AsnRS truncated from its anticodon binding-domain (AsnRS2). We show herein that Pyrococcus abyssi AsnRS2, in contrast to AsnRS, does not sustain asparaginyl-tRNAAsn synthesis but is instead capable of converting aspartic acid into asparagine. Functional analysis and complementation of an Escherichia coli asparagine auxotrophic strain show that AsnRS2 constitutes the archaeal homologue of the bacterial ammonia-dependent asparagine synthetase A (AS-A), therefore named archaeal asparagine synthetase A (AS-AR). Primary sequence- and 3D-based phylogeny shows that an archaeal AspRS ancestor originated AS-AR, which was subsequently transferred into bacteria by lateral gene transfer in which it underwent structural changes producing AS-A. This study provides evidence that a contemporary aminoacyl-tRNA synthetase can be recruited to sustain amino acid metabolism. PMID:12874385

  3. Peptide Synthetase Gene in Trichoderma virens

    PubMed Central

    Wilhite, S. E.; Lumsden, R. D.; Straney, D. C.

    2001-01-01

    Trichoderma virens (synonym, Gliocladium virens), a deuteromycete fungus, suppresses soilborne plant diseases caused by a number of fungi and is used as a biocontrol agent. Several traits that may contribute to the antagonistic interactions of T. virens with disease-causing fungi involve the production of peptide metabolites (e.g., the antibiotic gliotoxin and siderophores used for iron acquisition). We cloned a 5,056-bp partial cDNA encoding a putative peptide synthetase (Psy1) from T. virens using conserved motifs found within the adenylate domain of peptide synthetases. Sequence similarities with conserved motifs of the adenylation domain, acyl transfer, and two condensation domains support identification of the Psy1 gene as a gene that encodes a peptide synthetase. Disruption of the native Psy1 gene through gene replacement was used to identify the function of this gene. Psy1 disruptants produced normal amounts of gliotoxin but grew poorly under low-iron conditions, suggesting that Psy1 plays a role in siderophore production. Psy1 disruptants cannot produce the major T. virens siderophore dimerum acid, a dipetide of acylated Nδ-hydroxyornithine. Biocontrol activity against damping-off diseases caused by Pythium ultimum and Rhizoctonia solani was not reduced by the Psy1 disruption, suggesting that iron competition through dimerum acid production does not contribute significantly to disease suppression activity under the conditions used. PMID:11679326

  4. Mis-Regulation of 3-Deoxy-d-Arabino-Heptulosonate 7-Phosphate Synthetase Does Not Account for Growth Inhibition by Phenylalanine in Agmenellum quadruplicatum

    PubMed Central

    Jensen, Roy A.; Stenmark-Cox, S.; Ingram, Lonnie O.

    1974-01-01

    The growth of the blue-green bacterium, Agmenellum quadruplicatum, is inhibited in the presence of l-phenylalanine. This species has a single, constitutively synthesized 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthetase. l-Phenylalanine inhibits DAHP synthetase non-competitively with respect to both substrate reactants. Other aromatic amino acids do not inhibit the activity of DAHP synthetase. A common expectation for branch-point enzymes such as DAHP synthetase is a balanced pattern of feedback control by all of the ultimate end products. It seemed likely that growth inhibition might equate with defective regulation within the branched aromatic pathway. Accordingly, the possibility was examined that mis-regulation of DAHP synthetase by l-phenylalanine in wild-type cells causes starvation for precursors of the other aromatic end products. However, the molecular basis for growth inhibition cannot be attributed to l-phenylalanine inhibition of DAHP synthetase for the following reasons: (i) DAHP synthetase enzymes from l-phenylalanine-resistant mutants are more, rather than less, sensitive to feedback inhibition by l-phenylalanine. (ii) Shikimate not only fails to antagonize inhibition, but is itself inhibitory. (iii) Neither the sensitivity nor the completeness of l-phenylalanine inhibition of the wild-type enzyme in vitro appears sufficient to account for the potent inhibition of growth in vivo by l-phenylalanine. The dominating effect of l-phenylalanine in the control of DAHP synthetase appears to reflect a mechanism that prevents rather than causes growth inhibition by l-phenylalanine. The alteration of the control of DAHP synthetase in mutants selected for resistance to growth inhibition by l-phenylalanine did indicate that the cause for this metabolite vulnerability can be localized within the aromatic amino acid pathway. Apparently, an aromatic intermediate (between shikimate and the end products) accumulates in the presence of l

  5. p56Lck and p59Fyn Regulate CD28 Binding to Phosphatidylinositol 3-Kinase, Growth Factor Receptor-Bound Protein GRB-2, and T Cell-Specific Protein-Tyrosine Kinase ITK: Implications for T-Cell Costimulation

    NASA Astrophysics Data System (ADS)

    Raab, Monika; Cai, Yun-Cai; Bunnell, Stephen C.; Heyeck, Stephanie D.; Berg, Leslie J.; Rudd, Christopher E.

    1995-09-01

    T-cell activation requires cooperative signals generated by the T-cell antigen receptor ξ-chain complex (TCRξ-CD3) and the costimulatory antigen CD28. CD28 interacts with three intracellular proteins-phosphatidylinositol 3-kinase (PI 3-kinase), T cell-specific protein-tyrosine kinase ITK (formerly TSK or EMT), and the complex between growth factor receptor-bound protein 2 and son of sevenless guanine nucleotide exchange protein (GRB-2-SOS). PI 3-kinase and GRB-2 bind to the CD28 phosphotyrosine-based Tyr-Met-Asn-Met motif by means of intrinsic Src-homology 2 (SH2) domains. The requirement for tyrosine phosphorylation of the Tyr-Met-Asn-Met motif for SH2 domain binding implicates an intervening protein-tyrosine kinase in the recruitment of PI 3-kinase and GRB-2 by CD28. Candidate kinases include p56Lck, p59Fyn, ξ-chain-associated 70-kDa protein (ZAP-70), and ITK. In this study, we demonstrate in coexpression studies that p56Lck and p59Fyn phosphorylate CD28 primarily at Tyr-191 of the Tyr-Met-Asn-Met motif, inducing a 3- to 8-fold increase in p85 (subunit of PI 3-kinase) and GRB-2 SH2 binding to CD28. Phosphatase digestion of CD28 eliminated binding. In contrast to Src kinases, ZAP-70 and ITK failed to induce these events. Further, ITK binding to CD28 was dependent on the presence of p56Lck and is thus likely to act downstream of p56Lck/p59Fyn in a signaling cascade. p56Lck is therefore likely to be a central switch in T-cell activation, with the dual function of regulating CD28-mediated costimulation as well as TCR-CD3-CD4 signaling.

  6. Glutamate-Dependent Translational Control of Glutamine Synthetase in Bergmann Glia Cells.

    PubMed

    Tiburcio-Félix, Reynaldo; Escalante-López, Miguel; López-Bayghen, Bruno; Martínez, Daniel; Hernández-Kelly, Luisa C; Zinker, Samuel; Hernández-Melchor, Dinorah; López-Bayghen, Esther; Olivares-Bañuelos, Tatiana N; Ortega, Arturo

    2018-06-01

    Glutamate is the major excitatory transmitter of the vertebrate brain. It exerts its actions through the activation of specific plasma membrane receptors expressed both in neurons and in glial cells. Recent evidence has shown that glutamate uptake systems, particularly enriched in glia cells, trigger biochemical cascades in a similar fashion as receptors. A tight regulation of glutamate extracellular levels prevents neuronal overstimulation and cell death, and it is critically involved in glutamate turnover. Glial glutamate transporters are responsible of the majority of the brain glutamate uptake activity. Once internalized, this excitatory amino acid is rapidly metabolized to glutamine via the astrocyte-enriched enzyme glutamine synthetase. A coupling between glutamate uptake and glutamine synthesis and release has been commonly known as the glutamate/glutamine shuttle. Taking advantage of the established model of cultured Bergmann glia cells, in this contribution, we explored the gene expression regulation of glutamine synthetase. A time- and dose-dependent regulation of glutamine synthetase protein and activity levels was found. Moreover, glutamate exposure resulted in the transient shift of glutamine synthetase mRNA from the monosomal to the polysomal fraction. These results demonstrate a novel mode of glutamate-dependent glutamine synthetase regulation and strengthen the notion of an exquisite glia neuronal interaction in glutamatergic synapses.

  7. Genetics Home Reference: holocarboxylase synthetase deficiency

    MedlinePlus

    ... holocarboxylase synthetase deficiency Orphanet: Multiple carboxylase deficiency Screening, Technology, and Research in Genetics Virginia Department of Health (PDF) Patient Support and Advocacy Resources (3 links) Children Living with Inherited Metabolic Diseases Organic Acidemia Association ...

  8. Bacillus anthracis o-succinylbenzoyl-CoA synthetase: reaction kinetics and a novel inhibitor mimicking its reaction intermediate.

    PubMed

    Tian, Yang; Suk, Dae-Hwan; Cai, Feng; Crich, David; Mesecar, Andrew D

    2008-11-25

    o-Succinylbenzoyl-CoA (OSB-CoA) synthetase (EC 6.2.1.26) catalyzes the ATP-dependent condensation of o-succinylbenzoate (OSB) and CoA to form OSB-CoA, the fourth step of the menaquinone biosynthetic pathway in Bacillus anthracis. Gene knockout studies have highlighted this enzyme as a potential target for the discovery of new antibiotics. Here we report the first studies on the kinetic mechanism of B. anthracis OSB-CoA synthetase, classifying it as an ordered bi uni uni bi ping-pong mechanism. Through a series of pre-steady-state and steady-state kinetic studies in conjunction with direct binding studies, it is demonstrated that CoA, the last substrate to bind, strongly activates the first half-reaction after the first round of turnover. The activation of the first half-reaction is most likely achieved by CoA stabilizing conformations of the enzyme in the "F" form, which slowly isomerize back to the E form. Thus, the kinetic mechanism of OSB-CoA synthetase may be more accurately described as an ordered bi uni uni bi iso ping-pong mechanism. The substrate specificity of OSB-CoA synthetase was probed using a series of OSB analogues with alterations in the carboxylate groups. OSB-CoA shows a strong preference for OSB over all of the analogues tested as none were active except 4-[2-(trifluoromethyl)phenyl]-4-oxobutyric acid which exhibited a 100-fold decrease in k(cat)/K(m). On the basis of an understanding of OSB-CoA synthetase's kinetic mechanism and substrate specificity, a reaction intermediate analogue of OSB-AMP, 5'-O-{N-[2-(trifluoromethyl)phenyl]-4-oxobutyl}adenosine sulfonamide (TFMP-butyl-AMS), was designed and synthesized. This inhibitor was found to be an uncompetitive inhibitor to CoA and a mixed-type inhibitor to ATP and OSB with low micromolar inhibition constants. Collectively, these results should serve as an important forerunner to more detailed and extensive inhibitor design studies aimed at developing lead compounds against the OSB-CoA synthetase

  9. Nucleotide synthetase ribozymes may have emerged first in the RNA world

    PubMed Central

    Ma, Wentao; Yu, Chunwu; Zhang, Wentao; Hu, Jiming

    2007-01-01

    Though the “RNA world” hypothesis has gained a central role in ideas concerning the origin of life, the scenario concerning its emergence remains uncertain. It has been speculated that the first scene may have been the emergence of a template-dependent RNA synthetase ribozyme, which catalyzed its own replication: thus, “RNA replicase.” However, the speculation remains uncertain, primarily because of the large sequence length requirement of such a replicase and the lack of a convincing mechanism to ensure its self-favoring features. Instead, we propose a nucleotide synthetase ribozyme as an alternative candidate, especially considering recent experimental evidence suggesting the possibility of effective nonenzymatic template-directed synthesis of RNA. A computer simulation was conducted to support our proposal. The conditions for the emergence of the nucleotide synthetase ribozyme are discussed, based on dynamic analysis on a computer. We suggest the template-dependent RNA synthetase ribozyme emerged later, perhaps after the emergence of protocells. PMID:17878321

  10. Orthogonal use of a human tRNA synthetase active site to achieve multifunctionality.

    PubMed

    Zhou, Quansheng; Kapoor, Mili; Guo, Min; Belani, Rajesh; Xu, Xiaoling; Kiosses, William B; Hanan, Melanie; Park, Chulho; Armour, Eva; Do, Minh-Ha; Nangle, Leslie A; Schimmel, Paul; Yang, Xiang-Lei

    2010-01-01

    Protein multifunctionality is an emerging explanation for the complexity of higher organisms. In this regard, aminoacyl tRNA synthetases catalyze amino acid activation for protein synthesis, but some also act in pathways for inflammation, angiogenesis and apoptosis. It is unclear how these multiple functions evolved and how they relate to the active site. Here structural modeling analysis, mutagenesis and cell-based functional studies show that the potent angiostatic, natural fragment of human tryptophanyl-tRNA synthetase (TrpRS) associates via tryptophan side chains that protrude from its cognate cellular receptor vascular endothelial cadherin (VE-cadherin). VE-cadherin's tryptophan side chains fit into the tryptophan-specific active site of the synthetase. Thus, specific side chains of the receptor mimic amino acid substrates and expand the functionality of the active site of the synthetase. We propose that orthogonal use of the same active site may be a general way to develop multifunctionality of human tRNA synthetases and other proteins.

  11. Comparative Genomic Analysis and Benzene, Toluene, Ethylbenzene, and o-, m-, and p-Xylene (BTEX) Degradation Pathways of Pseudoxanthomonas spadix BD-a59

    PubMed Central

    Choi, Eun Jin; Jin, Hyun Mi; Lee, Seung Hyeon; Math, Renukaradhya K.; Madsen, Eugene L.

    2013-01-01

    Pseudoxanthomonas spadix BD-a59, isolated from gasoline-contaminated soil, has the ability to degrade all six BTEX (benzene, toluene, ethylbenzene, and o-, m-, and p-xylene) compounds. The genomic features of strain BD-a59 were analyzed bioinformatically and compared with those of another fully sequenced Pseudoxanthomonas strain, P. suwonensis 11-1, which was isolated from cotton waste compost. The genome of strain BD-a59 differed from that of strain 11-1 in many characteristics, including the number of rRNA operons, dioxygenases, monooxygenases, genomic islands (GIs), and heavy metal resistance genes. A high abundance of phage integrases and GIs and the patterns in several other genetic measures (e.g., GC content, GC skew, Karlin signature, and clustered regularly interspaced short palindromic repeat [CRISPR] gene homology) indicated that strain BD-a59's genomic architecture may have been altered through horizontal gene transfers (HGT), phage attack, and genetic reshuffling during its evolutionary history. The genes for benzene/toluene, ethylbenzene, and xylene degradations were encoded on GI-9, -13, and -21, respectively, which suggests that they may have been acquired by HGT. We used bioinformatics to predict the biodegradation pathways of the six BTEX compounds, and these pathways were proved experimentally through the analysis of the intermediates of each BTEX compound using a gas chromatograph and mass spectrometry (GC-MS). The elevated abundances of dioxygenases, monooxygenases, and rRNA operons in strain BD-a59 (relative to strain 11-1), as well as other genomic characteristics, likely confer traits that enhance ecological fitness by enabling strain BD-a59 to degrade hydrocarbons in the soil environment. PMID:23160122

  12. Treatment of renal colic by prostaglandin synthetase inhibitors and avafortan (analgesic antispasmodic).

    PubMed

    el-Sherif, A E; Foda, R; Norlen, L J; Yahia, H

    1990-12-01

    In a study of the pain-relieving effect of 3 drugs commonly used to treat acute renal colic in this hospital, intravenous indomethacin and intramuscular diclofenac (prostaglandin synthetase inhibitors) were compared with intravenous Avafortan (analgesic antispasmodic). As first-line analgesics, prostaglandin synthetase inhibitors, if given intravenously, offer an effective alternative to Avafortan. Of 145 patients studied, 32 required a second injection for complete relief of pain. Administering a second dose of prostaglandin synthetase inhibitors resulted in equally significant pain relief rate even though the route was intramuscular.

  13. A stochastic modeling of isotope exchange reactions in glutamine synthetase

    NASA Astrophysics Data System (ADS)

    Kazmiruk, N. V.; Boronovskiy, S. E.; Nartsissov, Ya R.

    2017-11-01

    The model presented in this work allows simulation of isotopic exchange reactions at chemical equilibrium catalyzed by a glutamine synthetase. To simulate the functioning of the enzyme the algorithm based on the stochastic approach was applied. The dependence of exchange rates for 14C and 32P on metabolite concentration was estimated. The simulation results confirmed the hypothesis of the ascertained validity for preferred order random binding mechanism. Corresponding values of K0.5 were also obtained.

  14. A noncognate aminoacyl-tRNA synthetase that may resolve a missing link in protein evolution.

    PubMed

    Skouloubris, Stephane; Ribas de Pouplana, Lluis; De Reuse, Hilde; Hendrickson, Tamara L

    2003-09-30

    Efforts to delineate the advent of many enzymes essential to protein translation are often limited by the fact that the modern genetic code evolved before divergence of the tree of life. Glutaminyl-tRNA synthetase (GlnRS) is one noteworthy exception to the universality of the translation apparatus. In eukaryotes and some bacteria, this enzyme is essential for the biosynthesis of Gln-tRNAGln, an obligate intermediate in translation. GlnRS is absent, however, in archaea, and most bacteria, organelles, and chloroplasts. Phylogenetic analyses predict that GlnRS arose from glutamyl-tRNA synthetase (GluRS), via gene duplication with subsequent evolution of specificity. A pertinent question to ask is whether, in the advent of GlnRS, a transient GluRS-like intermediate could have been retained in an extant organism. Here, we report the discovery of an essential GluRS-like enzyme (GluRS2), which coexists with another GluRS (GluRS1) in Helicobacter pylori. We show that GluRS2's primary role is to generate Glu-tRNAGln, not Glu-tRNAGlu. Thus, GluRS2 appears to be a transient GluRS-like ancestor of GlnRS and can be defined as a GluGlnRS.

  15. Computational Insights into the High-Fidelity Catalysis of Aminoacyl-tRNA Synthetases

    NASA Astrophysics Data System (ADS)

    Aboelnga, Mohamed M.

    Obtaining insights into the catalytic function of enzymes is an important area of research due to their widespread applications in the biotechnology and pharmaceutical industries. Among these enzymes, the aminoacyl-tRNA synthetases (aaRSs) are known for their remarkable fidelity in catalyzing the aminoacylation reactions of tRNA in protein biosynthesis. Despite the exceptional execution of this critical function, mechanistic details of the reactions catalyzed by aminoacyl-tRNA synthetases remain elusive demonstrating the obvious need to explore their remarkable chemistry. During the PhD studies reported in this thesis the mechanism of aminoacylation, pre?transfer editing and post?transfer editing catalyzed by different aaRS have been established using multi-scale computational enzymology. In the first two chapters a detailed information about aaRS and the addressed questions was given in addition to an overview of the used computational methodology currently used to investigate the enzymatic mechanisms. The aminoacylation mechanism of threonine by Threonyl-tRNA synthetases, glutamine by Glutaminyl-tRNA synthetases and glutamate by Glutamyl-tRNA synthetases have been clearly unveiled in chapter 3 and 4. Also, valuable information regarding the role of cofactors and active site residues has been obtained. While investigating the post-transfer editing mechanisms, which proceed in a remote and distinct active site, two different scenarios were experimentally suggested for two types of threonyl-tRNA synthetase species to correct the misacylation of the structurally related serine. We explored these two mechanisms as in chapters 5 and 6. Moreover, the synthetic site in which the aminoacylation reaction is catalyzed, is also responsible for a second type of proofreading reaction called pre-transfer editing mechanism. In chapter 7, this latter mechanism has been elucidated for both Seryl-tRNA synthetases and Isoleucyl-tRNA synthetases against their non-cognate substrates

  16. Glucose-regulated protein 78 is an intracellular antiviral factor against hepatitis B virus.

    PubMed

    Ma, Yan; Yu, Jun; Chan, Henry L Y; Chen, Yang-chao; Wang, Hua; Chen, Ying; Chan, Chu-yan; Go, Minnie Y Y; Tsai, Sau-na; Ngai, Sai-ming; To, Ka-fai; Tong, Joanna H M; He, Qing-Yu; Sung, Joseph J Y; Kung, Hsiang-fu; Cheng, Christopher H K; He, Ming-liang

    2009-11-01

    Hepatitis B virus (HBV) infection is a global public health problem that plays a crucial role in the pathogenesis of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. However, the pathogenesis of HBV infection and the mechanisms of host-virus interactions are still elusive. In this study, two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were applied to analyze the host response to HBV using an inducible HBV-producing cell line, HepAD38. Twenty-three proteins were identified as differentially expressed with glucose-regulated protein 78 (GRP78) as one of the most significantly up-regulated proteins induced by HBV replication. This induction was further confirmed in both HepAD38 and HepG2 cells transfected with HBV-producing plasmids by real time RT-PCR and Western blotting as well as in HBV-infected human liver biopsies by immunohistochemistry. Knockdown of GRP78 expression by RNA interference resulted in a significant increase of both intracellular and extracellular HBV virions in the transient HBV-producing HepG2 cells concomitant with enhanced levels of hepatitis B surface antigen and e antigen in the culture medium. Conversely overexpression of GRP78 in HepG2 cells led to HBV suppression concomitant with induction of the positive regulatory circuit of GRP78 and interferon-beta1 (IFN-beta1). In this connection, the IFN-beta1-mediated 2',5'-oligoadenylate synthetase and RNase L signaling pathway was noted to be activated in GRP78-overexpressing HepG2 cells. Moreover GRP78 was significantly down-regulated in the livers of chronic hepatitis B patients after effective anti-HBV treatment (p = 0.019) as compared with their counterpart pretreatment liver biopsies. In conclusion, the present study demonstrates for the first time that GRP78 functions as an endogenous anti-HBV factor via the IFN-beta1-2',5'-oligoadenylate synthetase-RNase L pathway in hepatocytes. Induction of hepatic GRP78 may provide a novel therapeutic

  17. Glucose-regulated Protein 78 Is an Intracellular Antiviral Factor against Hepatitis B Virus*

    PubMed Central

    Ma, Yan; Yu, Jun; Chan, Henry L. Y.; Chen, Yang-chao; Wang, Hua; Chen, Ying; Chan, Chu-yan; Go, Minnie Y. Y.; Tsai, Sau-na; Ngai, Sai-ming; To, Ka-fai; Tong, Joanna H. M.; He, Qing-Yu; Sung, Joseph J. Y.; Kung, Hsiang-fu; Cheng, Christopher H. K.; He, Ming-liang

    2009-01-01

    Hepatitis B virus (HBV) infection is a global public health problem that plays a crucial role in the pathogenesis of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. However, the pathogenesis of HBV infection and the mechanisms of host-virus interactions are still elusive. In this study, two-dimensional gel electrophoresis and mass spectrometry-based comparative proteomics were applied to analyze the host response to HBV using an inducible HBV-producing cell line, HepAD38. Twenty-three proteins were identified as differentially expressed with glucose-regulated protein 78 (GRP78) as one of the most significantly up-regulated proteins induced by HBV replication. This induction was further confirmed in both HepAD38 and HepG2 cells transfected with HBV-producing plasmids by real time RT-PCR and Western blotting as well as in HBV-infected human liver biopsies by immunohistochemistry. Knockdown of GRP78 expression by RNA interference resulted in a significant increase of both intracellular and extracellular HBV virions in the transient HBV-producing HepG2 cells concomitant with enhanced levels of hepatitis B surface antigen and e antigen in the culture medium. Conversely overexpression of GRP78 in HepG2 cells led to HBV suppression concomitant with induction of the positive regulatory circuit of GRP78 and interferon-β1 (IFN-β1). In this connection, the IFN-β1-mediated 2′,5′-oligoadenylate synthetase and RNase L signaling pathway was noted to be activated in GRP78-overexpressing HepG2 cells. Moreover GRP78 was significantly down-regulated in the livers of chronic hepatitis B patients after effective anti-HBV treatment (p = 0.019) as compared with their counterpart pretreatment liver biopsies. In conclusion, the present study demonstrates for the first time that GRP78 functions as an endogenous anti-HBV factor via the IFN-β1-2′,5′-oligoadenylate synthetase-RNase L pathway in hepatocytes. Induction of hepatic GRP78 may provide a novel therapeutic

  18. Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform

    PubMed Central

    Theron, A.; Roth, R. L.; Hoppe, H.; Parkinson, C.; van der Westhuyzen, C. W.; Stoychev, S.; Wiid, I.; Pietersen, R. D.; Baker, B.

    2017-01-01

    Glutamine synthetase is a ubiquitous central enzyme in nitrogen metabolism that is controlled by up to four regulatory mechanisms, including adenylylation of some or all of the twelve subunits by adenylyl transferase. It is considered a potential therapeutic target for the treatment of tuberculosis, being essential for the growth of Mycobacterium tuberculosis, and is found extracellularly only in the pathogenic Mycobacterium strains. Human glutamine synthetase is not regulated by the adenylylation mechanism, so the adenylylated form of bacterial glutamine synthetase is of particular interest. Previously published reports show that, when M. tuberculosis glutamine synthetase is expressed in Escherichia coli, the E. coli adenylyl transferase does not optimally adenylylate the M. tuberculosis glutamine synthetase. Here, we demonstrate the production of soluble adenylylated M. tuberulosis glutamine synthetase in E. coli by the co-expression of M. tuberculosis glutamine synthetase and M. tuberculosis adenylyl transferase. The differential inhibition of adenylylated M. tuberulosis glutamine synthetase and deadenylylated M. tuberulosis glutamine synthetase by ATP based scaffold inhibitors are reported. Compounds selected on the basis of their enzyme inhibition were also shown to inhibit M. tuberculosis in the BACTEC 460TB™ assay as well as the intracellular inhibition of M. tuberculosis in a mouse bone-marrow derived macrophage assay. PMID:28972974

  19. Asparagine synthetase deficiency detected by whole exome sequencing causes congenital microcephaly, epileptic encephalopathy and psychomotor delay.

    PubMed

    Ben-Salem, Salma; Gleeson, Joseph G; Al-Shamsi, Aisha M; Islam, Barira; Hertecant, Jozef; Ali, Bassam R; Al-Gazali, Lihadh

    2015-06-01

    Deficiency of Asparagine Synthetase (ASNSD, MIM 615574) is a very rare autosomal recessive disorder presenting with some brain abnormalities. Affected individuals have congenital microcephaly and progressive encephalopathy associated with severe intellectual disability and intractable seizures. The loss of function of the asparagine synthetase (ASNS, EC 6.3.5.4), particularly in the brain, is the major cause of this particular congenital microcephaly. In this study, we clinically evaluated an affected child from a consanguineous Emirati family presenting with congenital microcephaly and epileptic encephalopathy. In addition, whole-exome sequencing revealed a novel homozygous substitution mutation (c.1193A > C) in the ASNS gene. This mutation resulted in the substitution of highly conserved tyrosine residue by cysteine (p.Y398C). Molecular modeling analysis predicts hypomorphic and damaging effects of this mutation on the protein structure and altering its enzymatic activity. Therefore, we conclude that the loss of ASNS function is most likely the cause of this condition in the studied family. This report brings the number of reported families with this very rare disorder to five and the number of pathogenic mutations in the ASNS gene to four. This finding extends the ASNS pathogenic mutations spectrum and highlights the utility of whole-exome sequencing in elucidation the causes of rare recessive disorders that are heterogeneous and/or overlap with other conditions.

  20. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture*

    PubMed Central

    Miller, Bradley R.; Drake, Eric J.; Shi, Ce; Aldrich, Courtney C.; Gulick, Andrew M.

    2016-01-01

    Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived from understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa. These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain. PMID:27597544

  1. Phosphorylation of SAF-A/hnRNP-U Serine 59 by Polo-Like Kinase 1 Is Required for Mitosis

    PubMed Central

    Douglas, Pauline; Ye, Ruiqiong; Morrice, Nicholas; Britton, Sébastien; Trinkle-Mulcahy, Laura

    2015-01-01

    Scaffold attachment factor A (SAF-A), also called heterogenous nuclear ribonuclear protein U (hnRNP-U), is phosphorylated on serine 59 by the DNA-dependent protein kinase (DNA-PK) in response to DNA damage. Since SAF-A, DNA-PK catalytic subunit (DNA-PKcs), and protein phosphatase 6 (PP6), which interacts with DNA-PKcs, have all been shown to have roles in mitosis, we asked whether DNA-PKcs phosphorylates SAF-A in mitosis. We show that SAF-A is phosphorylated on serine 59 in mitosis, that phosphorylation requires polo-like kinase 1 (PLK1) rather than DNA-PKcs, that SAF-A interacts with PLK1 in nocodazole-treated cells, and that serine 59 is dephosphorylated by protein phosphatase 2A (PP2A) in mitosis. Moreover, cells expressing SAF-A in which serine 59 is mutated to alanine have multiple characteristics of aberrant mitoses, including misaligned chromosomes, lagging chromosomes, polylobed nuclei, and delayed passage through mitosis. Our findings identify serine 59 of SAF-A as a new target of both PLK1 and PP2A in mitosis and reveal that both phosphorylation and dephosphorylation of SAF-A serine 59 by PLK1 and PP2A, respectively, are required for accurate and timely exit from mitosis. PMID:25986610

  2. Selective and Specific Inhibition of the Plasmodium falciparum Lysyl-tRNA Synthetase by the Fungal Secondary Metabolite Cladosporin

    PubMed Central

    Hoepfner, Dominic; McNamara, Case W.; Lim, Chek Shik; Studer, Christian; Riedl, Ralph; Aust, Thomas; McCormack, Susan L.; Plouffe, David M.; Meister, Stephan; Schuierer, Sven; Plikat, Uwe; Hartmann, Nicole; Staedtler, Frank; Cotesta, Simona; Schmitt, Esther K.; Petersen, Frank; Supek, Frantisek; Glynne, Richard J.; Tallarico, John A.; Porter, Jeffrey A.; Fishman, Mark C.; Bodenreider, Christophe; Diagana, Thierry T.; Movva, N. Rao; Winzeler, Elizabeth A.

    2012-01-01

    Summary With renewed calls for malaria eradication, next-generation antimalarials need be active against drug-resistant parasites and efficacious against both liver- and blood-stage infections. We screened a natural product library to identify inhibitors of Plasmodium falciparum blood- and liver-stage proliferation. Cladosporin, a fungal secondary metabolite whose target and mechanism of action are not known for any species, was identified as having potent, nanomolar, antiparasitic activity against both blood and liver stages. Using postgenomic methods, including a yeast deletion strains collection, we show that cladosporin specifically inhibits protein synthesis by directly targeting P. falciparum cytosolic lysyl-tRNA synthetase. Further, cladosporin is >100-fold more potent against parasite lysyl-tRNA synthetase relative to the human enzyme, which is conferred by the identity of two amino acids within the enzyme active site. Our data indicate that lysyl-tRNA synthetase is an attractive, druggable, antimalarial target that can be selectively inhibited. PMID:22704625

  3. Selective and specific inhibition of the plasmodium falciparum lysyl-tRNA synthetase by the fungal secondary metabolite cladosporin.

    PubMed

    Hoepfner, Dominic; McNamara, Case W; Lim, Chek Shik; Studer, Christian; Riedl, Ralph; Aust, Thomas; McCormack, Susan L; Plouffe, David M; Meister, Stephan; Schuierer, Sven; Plikat, Uwe; Hartmann, Nicole; Staedtler, Frank; Cotesta, Simona; Schmitt, Esther K; Petersen, Frank; Supek, Frantisek; Glynne, Richard J; Tallarico, John A; Porter, Jeffrey A; Fishman, Mark C; Bodenreider, Christophe; Diagana, Thierry T; Movva, N Rao; Winzeler, Elizabeth A

    2012-06-14

    With renewed calls for malaria eradication, next-generation antimalarials need be active against drug-resistant parasites and efficacious against both liver- and blood-stage infections. We screened a natural product library to identify inhibitors of Plasmodium falciparum blood- and liver-stage proliferation. Cladosporin, a fungal secondary metabolite whose target and mechanism of action are not known for any species, was identified as having potent, nanomolar, antiparasitic activity against both blood and liver stages. Using postgenomic methods, including a yeast deletion strains collection, we show that cladosporin specifically inhibits protein synthesis by directly targeting P. falciparum cytosolic lysyl-tRNA synthetase. Further, cladosporin is >100-fold more potent against parasite lysyl-tRNA synthetase relative to the human enzyme, which is conferred by the identity of two amino acids within the enzyme active site. Our data indicate that lysyl-tRNA synthetase is an attractive, druggable, antimalarial target that can be selectively inhibited. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Pseudouridylate Synthetase of Escherichia coli: a Catabolite-Repressible Enzyme

    PubMed Central

    Solomon, L. R.; Breitman, T. R.

    1971-01-01

    The growth on pseudouridine of two pyrimidine auxotrophs of Escherichia coli (Bu− and W63-86) was markedly enhanced when glycerol replaced glucose as a carbon source or when adenosine 3′:5′-cyclic monophosphoric acid was added to medium containing glucose. These results indicated that an enzyme catalyzing a reaction in the pathway of pseudouridine conversion to uracil was sensitive to catabolite repression. The following pathway is proposed for pseudouridine utilization: [Formula: see text] [Formula: see text] Pseudouridylate synthetase was sensitive to catabolite repression in strains Bu− and W63-86. In contrast, strains B5RU and W5RU, mutants of Bu− and W63-86 which were selected for their ability to grow rapidly on pseudouridine in the presence of glucose, had high levels of pseudouridylate synthetase in the presence of glucose. In the case of B5RU but not W5RU, synthetase activity was greater in cells grown on glycerol or on glucose plus adenosine 3′:5-cyclic monophosphoric acid than on glucose. PMID:4329733

  5. The Bacillus subtilis and Bacillus halodurans Aspartyl-tRNA Synthetases Retain Recognition of tRNA(Asn).

    PubMed

    Nair, Nilendra; Raff, Hannah; Islam, Mohammed Tarek; Feen, Melanie; Garofalo, Denise M; Sheppard, Kelly

    2016-02-13

    Synthesis of asparaginyl-tRNA (Asn-tRNA(Asn)) in bacteria can be formed either by directly ligating Asn to tRNA(Asn) using an asparaginyl-tRNA synthetase (AsnRS) or by synthesizing Asn on the tRNA. In the latter two-step indirect pathway, a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) attaches Asp to tRNA(Asn) and the amidotransferase GatCAB transamidates the Asp to Asn on the tRNA. GatCAB can be similarly used for Gln-tRNA(Gln) formation. Most bacteria are predicted to use only one route for Asn-tRNA(Asn) formation. Given that Bacillus halodurans and Bacillus subtilis encode AsnRS for Asn-tRNA(Asn) formation and Asn synthetases to synthesize Asn and GatCAB for Gln-tRNA(Gln) synthesis, their AspRS enzymes were thought to be specific for tRNA(Asp). However, we demonstrate that the AspRSs are non-discriminating and can be used with GatCAB to synthesize Asn. The results explain why B. subtilis with its Asn synthetase genes knocked out is still an Asn prototroph. Our phylogenetic analysis suggests that this may be common among Firmicutes and 30% of all bacteria. In addition, the phylogeny revealed that discrimination toward tRNA(Asp) by AspRS has evolved independently multiple times. The retention of the indirect pathway in B. subtilis and B. halodurans likely reflects the ancient link between Asn biosynthesis and its use in translation that enabled Asn to be added to the genetic code. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Phosphorylation of SAF-A/hnRNP-U Serine 59 by Polo-Like Kinase 1 Is Required for Mitosis.

    PubMed

    Douglas, Pauline; Ye, Ruiqiong; Morrice, Nicholas; Britton, Sébastien; Trinkle-Mulcahy, Laura; Lees-Miller, Susan P

    2015-08-01

    Scaffold attachment factor A (SAF-A), also called heterogenous nuclear ribonuclear protein U (hnRNP-U), is phosphorylated on serine 59 by the DNA-dependent protein kinase (DNA-PK) in response to DNA damage. Since SAF-A, DNA-PK catalytic subunit (DNA-PKcs), and protein phosphatase 6 (PP6), which interacts with DNA-PKcs, have all been shown to have roles in mitosis, we asked whether DNA-PKcs phosphorylates SAF-A in mitosis. We show that SAF-A is phosphorylated on serine 59 in mitosis, that phosphorylation requires polo-like kinase 1 (PLK1) rather than DNA-PKcs, that SAF-A interacts with PLK1 in nocodazole-treated cells, and that serine 59 is dephosphorylated by protein phosphatase 2A (PP2A) in mitosis. Moreover, cells expressing SAF-A in which serine 59 is mutated to alanine have multiple characteristics of aberrant mitoses, including misaligned chromosomes, lagging chromosomes, polylobed nuclei, and delayed passage through mitosis. Our findings identify serine 59 of SAF-A as a new target of both PLK1 and PP2A in mitosis and reveal that both phosphorylation and dephosphorylation of SAF-A serine 59 by PLK1 and PP2A, respectively, are required for accurate and timely exit from mitosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Inhibition of protein synthesis and malaria parasite development by drug targeting of methionyl-tRNA synthetases.

    PubMed

    Hussain, Tahir; Yogavel, Manickam; Sharma, Amit

    2015-04-01

    Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes that couple cognate tRNAs with amino acids to transmit genomic information for protein translation. The Plasmodium falciparum nuclear genome encodes two P. falciparum methionyl-tRNA synthetases (PfMRS), termed PfMRS(cyt) and PfMRS(api). Phylogenetic analyses revealed that the two proteins are of primitive origin and are related to heterokonts (PfMRS(cyt)) or proteobacteria/primitive bacteria (PfMRS(api)). We show that PfMRS(cyt) localizes in parasite cytoplasm, while PfMRS(api) localizes to apicoplasts in asexual stages of malaria parasites. Two known bacterial MRS inhibitors, REP3123 and REP8839, hampered Plasmodium growth very effectively in the early and late stages of parasite development. Small-molecule drug-like libraries were screened against modeled PfMRS structures, and several "hit" compounds showed significant effects on parasite growth. We then tested the effects of the hit compounds on protein translation by labeling nascent proteins with (35)S-labeled cysteine and methionine. Three of the tested compounds reduced protein synthesis and also blocked parasite growth progression from the ring stage to the trophozoite stage. Drug docking studies suggested distinct modes of binding for the three compounds, compared with the enzyme product methionyl adenylate. Therefore, this study provides new targets (PfMRSs) and hit compounds that can be explored for development as antimalarial drugs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Pyrrolysyl-tRNA Synthetase, an Aminoacyl-tRNA Synthetase for Genetic Code Expansion

    DOE PAGES

    Crnkovic, Ana; Suzuki, Tateki; Soll, Dieter; ...

    2016-06-14

    Genetic code expansion (GCE) has become a central topic of synthetic biology. GCE relies on engineered aminoacyl-tRNA synthetases (aaRSs) and a cognate tRNA species to allow codon reassignment by co-translational insertion of non-canonical amino acids (ncAAs) into proteins. Introduction of such amino acids increases the chemical diversity of recombinant proteins endowing them with novel properties. Such proteins serve in sophisticated biochemical and biophysical studies both in vitro and in vivo, they may become unique biomaterials or therapeutic agents, and they afford metabolic dependence of genetically modified organisms for biocontainment purposes. In the Methanosarcinaceae the incorporation of the 22nd genetically encodedmore » amino acid, pyrrolysine (Pyl), is facilitated by pyrrolysyl-tRNA synthetase (PylRS) and the cognate UAG-recognizing tRNAPyl. This unique aaRS•tRNA pair functions as an orthogonal translation system (OTS) in most model organisms. The facile directed evolution of the large PylRS active site to accommodate many ncAAs, and the enzyme’s anticodon-blind specific recognition of the cognate tRNAPyl make this system highly amenable for GCE purposes. The remarkable polyspecificity of PylRS has been exploited to incorporate >100 different ncAAs into proteins. Here we review the Pyl-OT system and selected GCE applications to examine the properties of an effective OTS.« less

  9. The expression of selected non-ribosomal peptide synthetases in Aspergillus fumigatus is controlled by the availability of free iron.

    PubMed

    Reiber, Kathrin; Reeves, Emer P; Neville, Claire M; Winkler, Robert; Gebhardt, Peter; Kavanagh, Kevin; Doyle, Sean

    2005-07-01

    Three non-ribosomal peptide synthetase genes, termed sidD, sidC and sidE, have been identified in Aspergillus fumigatus. Gene expression analysis by RT-PCR confirms that expression of both sidD and C was reduced by up to 90% under iron-replete conditions indicative of a likely role in siderophore biosynthesis. SidE expression was less sensitive to iron levels. In addition, two proteins purified from mycelia grown under iron-limiting conditions corresponded to SidD ( approximately 200 kDa) and SidC (496 kDa) as determined by MALDI ToF peptide mass fingerprinting and MALDI LIFT-ToF/ToF. Siderophore synthetases are unique in bacteria and fungi and represent an attractive target for antimicrobial chemotherapy.

  10. Structural Basis for the ATP-dependent Configuration of Adenylation Active Site in Bacillus subtilis o-Succinylbenzoyl-CoA Synthetase*

    PubMed Central

    Chen, Yaozong; Sun, Yueru; Song, Haigang; Guo, Zhihong

    2015-01-01

    o-Succinylbenzoyl-CoA synthetase, or MenE, is an essential adenylate-forming enzyme targeted for development of novel antibiotics in the menaquinone biosynthesis. Using its crystal structures in a ligand-free form or in complex with nucleotides, a conserved pattern is identified in the interaction between ATP and adenylating enzymes, including acyl/aryl-CoA synthetases, adenylation domains of nonribosomal peptide synthetases, and luciferases. It involves tight gripping interactions of the phosphate-binding loop (P-loop) with the ATP triphosphate moiety and an open-closed conformational change to form a compact adenylation active site. In MenE catalysis, this ATP-enzyme interaction creates a new binding site for the carboxylate substrate, allowing revelation of the determinants of substrate specificities and in-line alignment of the two substrates for backside nucleophilic substitution reaction by molecular modeling. In addition, the ATP-enzyme interaction is suggested to play a crucial catalytic role by mutation of the P-loop residues hydrogen-bonded to ATP. Moreover, the ATP-enzyme interaction has also clarified the positioning and catalytic role of a conserved lysine residue in stabilization of the transition state. These findings provide new insights into the adenylation half-reaction in the domain alteration catalytic mechanism of the adenylate-forming enzymes. PMID:26276389

  11. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Bradley R.; Drake, Eric J.; Shi, Ce

    Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived frommore » understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa. These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain.« less

  12. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture.

    PubMed

    Miller, Bradley R; Drake, Eric J; Shi, Ce; Aldrich, Courtney C; Gulick, Andrew M

    2016-10-21

    Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived from understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Construction of hybrid peptide synthetases by module and domain fusions

    PubMed Central

    Mootz, Henning D.; Schwarzer, Dirk; Marahiel, Mohamed A.

    2000-01-01

    Nonribosomal peptide synthetases are modular enzymes that assemble peptides of diverse structures and important biological activities. Their modular organization provides a great potential for the rational design of novel compounds by recombination of the biosynthetic genes. Here we describe the extension of a dimodular system to trimodular ones based on whole-module fusion. The recombinant hybrid enzymes were purified to monitor product assembly in vitro. We started from the first two modules of tyrocidine synthetase, which catalyze the formation of the dipeptide dPhe-Pro, to construct such hybrid systems. Fusion of the second, proline-specific module with the ninth and tenth modules of the tyrocidine synthetases, specific for ornithine and leucine, respectively, resulted in dimodular hybrid enzymes exhibiting the combined substrate specificities. The thioesterase domain was fused to the terminal module. Upon incubation of these dimodular enzymes with the first tyrocidine module, TycA, incorporating dPhe, the predicted tripeptides dPhe-Pro-Orn and dPhe-Pro-Leu were obtained at rates of 0.15 min-1 and 2.1 min-1. The internal thioesterase domain was necessary and sufficient to release the products from the hybrid enzymes and thereby facilitate a catalytic turnover. Our approach of whole-module fusion is based on an improved definition of the fusion sites and overcomes the recently discovered editing function of the intrinsic condensation domains. The stepwise construction of hybrid peptide synthetases from catalytic subunits reinforces the inherent potential for the synthesis of novel, designed peptides. PMID:10811885

  14. Construction of hybrid peptide synthetases by module and domain fusions.

    PubMed

    Mootz, H D; Schwarzer, D; Marahiel, M A

    2000-05-23

    Nonribosomal peptide synthetases are modular enzymes that assemble peptides of diverse structures and important biological activities. Their modular organization provides a great potential for the rational design of novel compounds by recombination of the biosynthetic genes. Here we describe the extension of a dimodular system to trimodular ones based on whole-module fusion. The recombinant hybrid enzymes were purified to monitor product assembly in vitro. We started from the first two modules of tyrocidine synthetase, which catalyze the formation of the dipeptide dPhe-Pro, to construct such hybrid systems. Fusion of the second, proline-specific module with the ninth and tenth modules of the tyrocidine synthetases, specific for ornithine and leucine, respectively, resulted in dimodular hybrid enzymes exhibiting the combined substrate specificities. The thioesterase domain was fused to the terminal module. Upon incubation of these dimodular enzymes with the first tyrocidine module, TycA, incorporating dPhe, the predicted tripeptides dPhe-Pro-Orn and dPhe-Pro-Leu were obtained at rates of 0.15 min(-1) and 2.1 min(-1). The internal thioesterase domain was necessary and sufficient to release the products from the hybrid enzymes and thereby facilitate a catalytic turnover. Our approach of whole-module fusion is based on an improved definition of the fusion sites and overcomes the recently discovered editing function of the intrinsic condensation domains. The stepwise construction of hybrid peptide synthetases from catalytic subunits reinforces the inherent potential for the synthesis of novel, designed peptides.

  15. Saccharomyces cerevisiae possesses a stress-inducible glycyl-tRNA synthetase gene.

    PubMed

    Chen, Shun-Jia; Wu, Yi-Hua; Huang, Hsiao-Yun; Wang, Chien-Chia

    2012-01-01

    Aminoacyl-tRNA synthetases are a large family of housekeeping enzymes that are pivotal in protein translation and other vital cellular processes. Saccharomyces cerevisiae possesses two distinct nuclear glycyl-tRNA synthetase (GlyRS) genes, GRS1 and GRS2. GRS1 encodes both cytoplasmic and mitochondrial activities, while GRS2 is essentially silent and dispensable under normal conditions. We herein present evidence that expression of GRS2 was drastically induced upon heat shock, ethanol or hydrogen peroxide addition, and high pH, while expression of GRS1 was somewhat repressed under those conditions. In addition, GlyRS2 (the enzyme encoded by GRS2) had a higher protein stability and a lower K(M) value for yeast tRNA(Gly) under heat shock conditions than under normal conditions. Moreover, GRS2 rescued the growth defect of a GRS1 knockout strain when highly expressed by a strong promoter at 37 °C, but not at the optimal temperature of 30 °C. These results suggest that GRS2 is actually an inducible gene that may function to rescue the activity of GRS1 under stress conditions.

  16. Steric and thermodynamic limits of design for the incorporation of large unnatural amino acids in aminoacyl-tRNA synthetase enzymes.

    PubMed

    Armen, Roger S; Schiller, Stefan M; Brooks, Charles L

    2010-06-01

    Orthogonal aminoacyl-tRNA synthetase/tRNA pairs from archaea have been evolved to facilitate site specific in vivo incorporation of unnatural amino acids into proteins in Escherichia coli. Using this approach, unnatural amino acids have been successfully incorporated with high translational efficiency and fidelity. In this study, CHARMM-based molecular docking and free energy calculations were used to evaluate rational design of specific protein-ligand interactions for aminoacyl-tRNA synthetases. A series of novel unnatural amino acid ligands were docked into the p-benzoyl-L-phenylalanine tRNA synthetase, which revealed that the binding pocket of the enzyme does not provide sufficient space for significantly larger ligands. Specific binding site residues were mutated to alanine to create additional space to accommodate larger target ligands, and then mutations were introduced to improve binding free energy. This approach was used to redesign binding sites for several different target ligands, which were then tested against the standard 20 amino acids to verify target specificity. Only the synthetase designed to bind Man-alpha-O-Tyr was predicted to be sufficiently selective for the target ligand and also thermodynamically stable. Our study suggests that extensive redesign of the tRNA synthatase binding pocket for large bulky ligands may be quite thermodynamically unfavorable.

  17. The src-family protein-tyrosine kinase p59hck is located on the secretory granules in human neutrophils and translocates towards the phagosome during cell activation.

    PubMed Central

    Möhn, H; Le Cabec, V; Fischer, S; Maridonneau-Parini, I

    1995-01-01

    The src-family protein-tyrosine kinase p59hck is mainly expressed in neutrophils; however, its functional role in these cells is unknown. Several other src-family members are localized on secretory vesicles and have been proposed to regulate intracellular traffic. We have established here the subcellular localization of p59hck in human neutrophils. Immunoblotting of subcellular fractions showed that approx. 60% of the p59hck per cell is localized on the secretory granules; the other 40% is distributed equally between non-granular membranes and the cytosol. Immunofluorescence of neutrophils and HL60 cells suggests that the p59hck-positive granules are azurophil granules. Granular p59hck is highly susceptible to degradation by an azurophil-granule proteinase. Different forms of p59hck occur in the three subcellular compartments: a 61 kDa form is mainly found in the granules, a 59 kDa form is predominant in the non-granular membranes, whereas cytosolic p59hck migrates as a doublet at 63 kDa. During the process of phagocytosis-linked degranulation, induced by serum-opsonized zymosan in neutrophils or HL60 cells, granular p59hck translocates towards the phagosome. The subcellular localization of p59hck suggests that the enzyme could be involved in the regulation of the degranulation process. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7626033

  18. The src-family protein-tyrosine kinase p59hck is located on the secretory granules in human neutrophils and translocates towards the phagosome during cell activation.

    PubMed

    Möhn, H; Le Cabec, V; Fischer, S; Maridonneau-Parini, I

    1995-07-15

    The src-family protein-tyrosine kinase p59hck is mainly expressed in neutrophils; however, its functional role in these cells is unknown. Several other src-family members are localized on secretory vesicles and have been proposed to regulate intracellular traffic. We have established here the subcellular localization of p59hck in human neutrophils. Immunoblotting of subcellular fractions showed that approx. 60% of the p59hck per cell is localized on the secretory granules; the other 40% is distributed equally between non-granular membranes and the cytosol. Immunofluorescence of neutrophils and HL60 cells suggests that the p59hck-positive granules are azurophil granules. Granular p59hck is highly susceptible to degradation by an azurophil-granule proteinase. Different forms of p59hck occur in the three subcellular compartments: a 61 kDa form is mainly found in the granules, a 59 kDa form is predominant in the non-granular membranes, whereas cytosolic p59hck migrates as a doublet at 63 kDa. During the process of phagocytosis-linked degranulation, induced by serum-opsonized zymosan in neutrophils or HL60 cells, granular p59hck translocates towards the phagosome. The subcellular localization of p59hck suggests that the enzyme could be involved in the regulation of the degranulation process.

  19. Glutamine synthetase 2 is not essential for biosynthesis of compatible solutes in Halobacillus halophilus

    PubMed Central

    Shiyan, Anna; Thompson, Melanie; Köcher, Saskia; Tausendschön, Michaela; Santos, Helena; Hänelt, Inga; Müller, Volker

    2014-01-01

    Halobacillus halophilus, a moderately halophilic bacterium isolated from salt marshes, produces various compatible solutes to cope with osmotic stress. Glutamate and glutamine are dominant compatible solutes at mild salinities. Glutamine synthetase activity in cell suspensions of Halobacillus halophilus wild type was shown to be salt dependent and chloride modulated. A possible candidate to catalyze glutamine synthesis is glutamine synthetase A2, whose transcription is stimulated by chloride. To address the role of GlnA2 in the biosynthesis of the osmolytes glutamate and glutamine, a deletion mutant (ΔglnA2) was generated and characterized in detail. We compared the pool of compatible solutes and performed transcriptional analyses of the principal genes controlling the solute production in the wild type strain and the deletion mutant. These measurements did not confirm the hypothesized role of GlnA2 in the osmolyte production. Most likely the presence of another, yet to be identified enzyme has the main contribution in the measured activity in crude extracts and probably determines the total chloride-modulated profile. The role of GlnA2 remains to be elucidated. PMID:24782854

  20. Genetics Home Reference: carbamoyl phosphate synthetase I deficiency

    MedlinePlus

    ... synthetase I. This enzyme participates in the urea cycle, which is a sequence of biochemical reactions that occurs in liver cells. The urea cycle processes excess nitrogen, generated when protein is broken ...

  1. Biosynthetic engineering of nonribosomal peptide synthetases.

    PubMed

    Kries, Hajo

    2016-09-01

    From the evolutionary melting pot of natural product synthetase genes, microorganisms elicit antibiotics, communication tools, and iron scavengers. Chemical biologists manipulate these genes to recreate similarly diverse and potent biological activities not on evolutionary time scales but within months. Enzyme engineering has progressed considerably in recent years and offers new screening, modelling, and design tools for natural product designers. Here, recent advances in enzyme engineering and their application to nonribosomal peptide synthetases are reviewed. Among the nonribosomal peptides that have been subjected to biosynthetic engineering are the antibiotics daptomycin, calcium-dependent antibiotic, and gramicidin S. With these peptides, incorporation of unnatural building blocks and modulation of bioactivities via various structural modifications have been successfully demonstrated. Natural product engineering on the biosynthetic level is not a reliable method yet. However, progress in the understanding and manipulation of biosynthetic pathways may enable the routine production of optimized peptide drugs in the near future. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  2. Valyl-tRNA synthetase modification-dependent restriction of bacteriophage T4.

    PubMed Central

    Olson, N J; Marchin, G L

    1984-01-01

    A strain of Escherichia coli, CP 790302, severely restricts the growth of wild-type bacteriophage T4. In broth culture, most infections of single cells are abortive, although a few infected cells exhibit reduced burst sizes. In contrast, bacteriophage T4 mutants impaired in the ability to modify valyl-tRNA synthetase develop normally on this strain. Biochemical evidence indicates that the phage-modified valyl-tRNA synthetase in CP 790302 is different from that previously described. Although the enzyme is able to support normal protein synthesis, a disproportionate amount of phage structural protein (serum blocking power) fails to mature into particles of the appropriate density. The results with host strain CP 790302 are consistent with either a gratuitous inhibition of phage assembly by faulty modification or abrogation of an unknown role that valyl-tRNA synthetase might normally play in viral assembly. PMID:6374167

  3. Crystal structure of human cytosolic aspartyl-tRNA synthetase, a component of multi-tRNA synthetase complex

    PubMed Central

    Kim, Kyung Rok; Park, Sang Ho; Kim, Hyoun Sook; Rhee, Kyung Hee; Kim, Byung-Gyu; Kim, Dae Gyu; Park, Mi Seul; Kim, Hyun-Jung; Kim, Sunghoon; Han, Byung Woo

    2013-01-01

    Human cytosolic aspartyl-tRNA synthetase (DRS) catalyzes the attachment of the amino acid aspartic acid to its cognate tRNA and it is a component of the multi-tRNA synthetase complex (MSC) which has been known to be involved in unexpected signaling pathways. Here, we report the crystal structure of DRS at a resolution of 2.25 Å. DRS is a homodimer with a dimer interface of 3750.5 Å2 which comprises 16.6% of the monomeric surface area. Our structure reveals the C-terminal end of the N-helix which is considered as a unique addition in DRS, and its conformation further supports the switching model of the N-helix for the transfer of tRNAAsp to elongation factor 1α. From our analyses of the crystal structure and post-translational modification of DRS, we suggest that the phosphorylation of Ser146 provokes the separation of DRS from the MSC and provides the binding site for an interaction partner with unforeseen functions. PMID:23609930

  4. Crystal structure of human cytosolic aspartyl-tRNA synthetase, a component of multi-tRNA synthetase complex.

    PubMed

    Kim, Kyung Rok; Park, Sang Ho; Kim, Hyoun Sook; Rhee, Kyung Hee; Kim, Byung-Gyu; Kim, Dae Gyu; Park, Mi Seul; Kim, Hyun-Jung; Kim, Sunghoon; Han, Byung Woo

    2013-10-01

    Human cytosolic aspartyl-tRNA synthetase (DRS) catalyzes the attachment of the amino acid aspartic acid to its cognate tRNA and it is a component of the multi-tRNA synthetase complex (MSC) which has been known to be involved in unexpected signaling pathways. Here, we report the crystal structure of DRS at a resolution of 2.25 Å. DRS is a homodimer with a dimer interface of 3750.5 Å(2) which comprises 16.6% of the monomeric surface area. Our structure reveals the C-terminal end of the N-helix which is considered as a unique addition in DRS, and its conformation further supports the switching model of the N-helix for the transfer of tRNA(Asp) to elongation factor 1α. From our analyses of the crystal structure and post-translational modification of DRS, we suggest that the phosphorylation of Ser146 provokes the separation of DRS from the MSC and provides the binding site for an interaction partner with unforeseen functions. Copyright © 2013 Wiley Periodicals, Inc.

  5. Cloning and characterization of the metE gene encoding S-adenosylmethionine synthetase from Bacillus subtilis.

    PubMed Central

    Yocum, R R; Perkins, J B; Howitt, C L; Pero, J

    1996-01-01

    The metE gene, encoding S-adenosylmethionine synthetase (EC 2.5.1.6) from Bacillus subtilis, was cloned in two steps by normal and inverse PCR. The DNA sequence of the metE gene contains an open reading frame which encodes a 400-amino-acid sequence that is homologous to other known S-adenosylmethionine synthetases. The cloned gene complements the metE1 mutation and integrates at or near the chromosomal site of metE1. Expression of S-adenosylmethionine synthetase is reduced by only a factor of about 2 by exogenous methioinine. Overproduction of S-adenosylmethionine synthetase from a strong constitutive promoter leads to methionine auxotrophy in B. subtilis, suggesting that S-adenosylmethionine is a corepressor of methionine biosynthesis in B. subtilis, as others have already shown for Escherichia coli. PMID:8755891

  6. Cloning and characterization of the metE gene encoding S-adenosylmethionine synthetase from Bacillus subtilis.

    PubMed

    Yocum, R R; Perkins, J B; Howitt, C L; Pero, J

    1996-08-01

    The metE gene, encoding S-adenosylmethionine synthetase (EC 2.5.1.6) from Bacillus subtilis, was cloned in two steps by normal and inverse PCR. The DNA sequence of the metE gene contains an open reading frame which encodes a 400-amino-acid sequence that is homologous to other known S-adenosylmethionine synthetases. The cloned gene complements the metE1 mutation and integrates at or near the chromosomal site of metE1. Expression of S-adenosylmethionine synthetase is reduced by only a factor of about 2 by exogenous methioinine. Overproduction of S-adenosylmethionine synthetase from a strong constitutive promoter leads to methionine auxotrophy in B. subtilis, suggesting that S-adenosylmethionine is a corepressor of methionine biosynthesis in B. subtilis, as others have already shown for Escherichia coli.

  7. Bacillus anthracis o-succinylbenzoyl-CoA synthetase: reaction kinetics and a novel inhibitor mimicking its reaction intermediate †

    PubMed Central

    Tian, Yang; Suk, Dae-Hwan; Cai, Feng; Crich, David; Mesecar, Andrew D.

    2009-01-01

    O-succinylbenzoyl-CoA (OSB-CoA) synthetase (EC 6.2.1.26) catalyzes the ATP-dependent condensation of o-succinylbenzoate (OSB) and CoA to form OSB-CoA, the fourth step of the menaquinone biosynthetic pathway in Bacillus anthracis. Gene knockout studies have highlighted this enzyme as a potential target for the discovery of new antibiotics. Here we report the first studies on the kinetic mechanism of B. anthracis OSB-CoA synthetase, classifying it as an ordered Bi Uni Uni Bi ping-pong mechanism. Through a series of pre-steady-state and steady-state kinetic studies in conjunction with direct-binding studies, it is demonstrated that CoA, the last substrate to bind, strongly activates the first half-reaction after the first round of turnover. The activation of the first-half reaction is most likely achieved by CoA stabilizing conformations of the enzyme in the ‘F’ form, which slowly isomerize back to the E form. Thus, the kinetic mechanism of OSB-CoA synthetase may be more accurately described as an ordered Bi Uni Uni Bi Iso ping-pong mechanism. The substrate specificity of OSB-CoA synthetase was probed using a series of OSB analogs with alterations in the carboxylate groups. OSB-CoA shows a strong preference for OSB over all of the analogs tested as none were active except 4-(2-trifluoromethylphenyl)-4-oxobutyric acid which exhibited a 100-fold decrease in kcat/Km. Based on an understanding of OSB-CoA synthetase’s kinetic mechanism and substrate specificity, a reaction intermediate analog of OSB-AMP, 5’-O-(N-(2-trifluoromethylphenyl)-4-oxobutyl) adenosine sulfonamide (TFMP-butyl-AMS), was designed and synthesized. This inhibitor was found to be an uncompetitive inhibitor to CoA and a mixed-type inhibitor to ATP and OSB with low micromolar inhibition constants. Collectively, these results should serve as an important forerunner to more detailed and extensive inhibitor design studies aimed at developing lead compounds against the OSB-CoA synthetase class of

  8. Investigation of Material Gain of In0.90Ga0.10As0.59P0.41/InP Lasing Nano-Heregostructure

    NASA Astrophysics Data System (ADS)

    Yadav, Rashmi; Lal, Pyare; Rahman, F.; Dalela, S.; Alvi, P. A.

    2014-02-01

    In this paper, we have proposed a step separate confinement heterostructure (SCH) based lasing nano-heterostructure In0.90Ga0.10As0.59P0.41/InP consisting of single quantum well (SQW) and investigated material gain theoretically within TE and TM polarization modes. In addition, the quasi Fermi levels in the conduction and valence bands along with other lasing characteristics like anti-guiding factor, refractive index change with carrier density and differential gain have also been investigated and reported. Moreover, the behavior of quasi Fermi levels in respective bands has also been correlated with the material gain. Strain dependent study on material gain and refractive index change has also been reported. Interestingly, strain has been reported to play a very important role in shifting the lasing wavelength of TE mode to TM mode. The results investigated in the work suggest that the proposed unstrained nano-heterostructure is very suitable as a source for optical fiber based communication systems due to its lasing wavelengths achieved at 1.35 μm within TM mode, while 1.40 μm within TE mode.

  9. Characterization of cDNAs and genomic DNAs for human threonyl- and cysteinyl-tRNA synthetases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruzen, M.E.

    1993-01-01

    Techniques of molecular biology were used to clone, sequence and map two human aminoacyl-tRNA synthetase (aaRS) cDNAs: threonyl-tRNA synthetase (ThrRS) a class II enzyme and cysteinyl-tRNA synthetase (CysRS) a class I enzyme. The predicted protein sequence of human ThrRS is highly homologous to that of lower eukaryotic and prokaryotic ThRSs, particularly in the regions containing the three structural motifs common to all class II synthetases. Signature regions 1 and 2, which characterize the class IIa subgroup (SerRS, ThrRS and HisRS) are highly conserved from bacteria to human. Structural predictions for human ThrRS based on the known structure of the closelymore » related SerRS from E.coli implicate strongly conserved residues in the signature sequences to be important in substrate binding. The amino terminal 100 residues of the deduced amino acid sequence of ThrRS shares structural similarity to SerRS consistent with forming an antiparallel helix implicated in tRNA binding. The 5' untranslated sequence of the human ThrRS gene shares short stretches of common sequence with the gene for hamster HisRS including a binding site for the promoter specific transcription factor sp-1. The deduced amino acid sequence of human CysRS has a high degree of sequence identify to E. coli CysRS. Human CysRS possesses the classic characteristics of a class I synthetase and is most closely related to the MetRS subgroup. The amino terminal half of human CysRS can be modeled as a nucleotide binding fold and shares significant sequence and structural similarity to the other enzymes in this subgroup. The CysRS structural gene (CARS) was mapped to human chromosome 11p15.5 by fluorescent in situ hybridization. CARS is the first aaRS gene to be mapped to chromosome 11. The steady state of both CysRS and ThrRs mRNA were quantitated in several human tissues. Message levels for these enzymes appear to be subjected to differential regulation in different cell types.« less

  10. Hepatocellular carcinoma arising in a pigmented telangiectatic adenoma with nuclear β-catenin and glutamine synthetase positivity: case report and review of the literature.

    PubMed

    Hechtman, Jaclyn F; Raoufi, Mohammad; Fiel, M Isabel; Taouli, Bachir; Facciuto, Marcelo; Schiano, Thomas D; Blouin, Amanda G; Thung, Swan N

    2011-06-01

    Telangiectatic hepatocellular adenoma is a rare, recently recognized subtype of hepatocellular adenoma that is often underrecognized by pathologists. We report a case of hepatocellular carcinoma arising within a pigmented telangiectatic hepatocellular adenoma in a noncirrhotic man with diffuse glutamine synthetase and nuclear β-catenin positivity. This case highlights malignant transformation of telangiectatic adenomas, and describes a previously unreported association between pigment deposition and telangiectatic adenoma. Radiology, gross pathology, and histopathology are shown. Review of the literature with attention to β-catenin and glutamine synthetase staining, malignant transformation, patient characteristics, the presence of Dubin-Johnson-like pigment, and genetic characteristics of telangiectatic adenomas are discussed.

  11. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolutionmore » crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.« less

  12. Steric and Thermodynamic Limits of Design for the Incorporation of Large UnNatural Amino Acids in Aminoacyl-tRNA Synthetase Enzymes

    PubMed Central

    Armen, Roger S.; Schiller, Stefan M.; Brooks, Charles L.

    2015-01-01

    Orthogonal aminoacyl-tRNA synthetase/tRNA pairs from archaea have been evolved to facilitate site specific in vivo incorporation of unnatural amino acids into proteins in Escherichia coli. Using this approach, unnatural amino acids have been successfully incorporated with high translational efficiency and fidelity. In this study, CHARMM-based molecular docking and free energy calculations were used to evaluate rational design of specific protein-ligand interactions for aminoacyl-tRNA synthetases. A series of novel unnatural amino acid ligands were docked into the p-benzoyl-L-phenylalanine tRNA synthetase, which revealed that the binding pocket of the enzyme does not provide sufficient space for significantly larger ligands. Specific binding site residues were mutated to alanine to create additional space to accommodate larger target ligands, and then mutations were introduced to improve binding free energy. This approach was used to redesign binding sites for several different target ligands, which were then tested against the standard 20 amino acids to verify target specificity. Only the synthetase designed to bind Man-α-O-Tyr was predicted to be sufficiently selective for the target ligand and also thermodynamically stable. Our study suggests that extensive redesign of the tRNA synthatase binding pocket for large bulky ligands may be quite thermodynamically unfavorable. PMID:20310065

  13. Crystal structures of trypanosomal histidyl-tRNA synthetase illuminate differences between eukaryotic and prokaryotic homologs

    PubMed Central

    Merritt, Ethan A; Arakaki, Tracy L; Gillespie, J Robert; Larson, Eric T; Kelley, Angela; Mueller, Natascha; Napuli, Alberto J; Kim, Jessica; Zhang, Li; Verlinde, Christophe L M J; Fan, Erkang; Zucker, Frank; Buckner, Frederick S; Van Voorhis, Wesley C; Hol, Wim G J

    2010-01-01

    Crystal structures of histidyl-tRNA synthetase from the eukaryotic parasites Trypanosoma brucei and Trypanosoma cruzi provide a first structural view of a eukaryotic form of this enzyme, and reveal differences from bacterial homologs. Histidyl-tRNA synthetases in general contain an extra domain inserted between conserved motifs 2 and 3 of the Class II aminoacyl-tRNA synthetase catalytic core. The current structures show that the three dimensional topology of this domain is very different in bacterial and archaeal/eukaryotic forms of the enzyme. Comparison of apo and histidine-bound trypanosomal structures indicates substantial active site rearrangement upon histidine binding, but relatively little subsequent rearrangement after reaction of histidine with ATP to form the enzyme’s first reaction product, histidyladenylate. The specific residues involved in forming the binding pocket for the adenine moiety differ substantially both from the previously characterized binding site in bacterial structures and from the homologous residues in human histidyl-tRNA synthetases. The essentiality of the single histidyl-tRNA synthetase gene in T. brucei is shown by a severe depression of parasite growth rate that results from even partial suppression of expression by RNA interference. PMID:20132829

  14. Cloning and expression in Escherichia coli of isopenicillin N synthetase genes from Streptomyces lipmanii and Aspergillus nidulans.

    PubMed Central

    Weigel, B J; Burgett, S G; Chen, V J; Skatrud, P L; Frolik, C A; Queener, S W; Ingolia, T D

    1988-01-01

    beta-Lactam antibiotics such as penicillins and cephalosporins are synthesized by a wide variety of microbes, including procaryotes and eucaryotes. Isopenicillin N synthetase catalyzes a key reaction in the biosynthetic pathway of penicillins and cephalosporins. The genes encoding this protein have previously been cloned from the filamentous fungi Cephalosporium acremonium and Penicillium chrysogenum and characterized. We have extended our analysis to the isopenicillin N synthetase genes from the fungus Aspergillus nidulans and the gram-positive procaryote Streptomyces lipmanii. The isopenicillin N synthetase genes from these organisms have been cloned and sequenced, and the proteins encoded by the open reading frames were expressed in Escherichia coli. Active isopenicillin N synthetase enzyme was recovered from extracts of E. coli cells prepared from cells containing each of the genes in expression vectors. The four isopenicillin N synthetase genes studied are closely related. Pairwise comparison of the DNA sequences showed between 62.5 and 75.7% identity; comparison of the predicted amino acid sequences showed between 53.9 and 80.6% identity. The close homology of the procaryotic and eucaryotic isopenicillin N synthetase genes suggests horizontal transfer of the genes during evolution. Images PMID:3045077

  15. Characterization of the equine 2'-5' oligoadenylate synthetase 1 (OAS1) and ribonuclease L (RNASEL) innate immunity genes

    PubMed Central

    Rios, Jonathan J; Perelygin, Andrey A; Long, Maureen T; Lear, Teri L; Zharkikh, Andrey A; Brinton, Margo A; Adelson, David L

    2007-01-01

    Background The mammalian OAS/RNASEL pathway plays an important role in antiviral host defense. A premature stop-codon within the murine Oas1b gene results in the increased susceptibility of mice to a number of flaviviruses, including West Nile virus (WNV). Mutations in either the OAS1 or RNASEL genes may also modulate the outcome of WNV-induced disease or other viral infections in horses. Polymorphisms in the human OAS gene cluster have been previously utilized for case-control analysis of virus-induced disease in humans. No polymorphisms have yet been identified in either the equine OAS1 or RNASEL genes for use in similar case-control studies. Results Genomic sequence for equine OAS1 was obtained from a contig assembly generated from a shotgun subclone library of CHORI-241 BAC 100I10. Specific amplification of regions of the OAS1 gene from 13 horses of various breeds identified 33 single nucleotide polymorphisms (SNP) and two microsatellites. RNASEL cDNA sequences were determined for 8 mammals and utilized in a phylogenetic analysis. The chromosomal location of the RNASEL gene was assigned by FISH to ECA5p17-p16 using two selected CHORI-241 BAC clones. The horse genomic RNASEL sequence was assembled. Specific amplification of regions of the RNASEL gene from 13 horses identified 31 SNPs. Conclusion In this report, two dinucleotide microsatellites and 64 single nucleotide polymorphisms within the equine OAS1 and RNASEL genes were identified. These polymorphisms are the first to be reported for these genes and will facilitate future case-control studies of horse susceptibility to infectious diseases. PMID:17822564

  16. Production and processing of a 59-kilodalton exochitinase during growth of Streptomyces lividans carrying pCHIO12 in soil microcosms amended with crab or fungal chitin.

    PubMed Central

    Vionis, A P; Niemeyer, F; Karagouni, A D; Schrempf, H

    1996-01-01

    Streptomyces lividans (pCHIO12), which carries the previously cloned Streptomyces olivaceoviridis exo-chiO1 gene on a multicopy vector, secretes a 59-kDa exochitinase, consisting of a catalytic domain (40 kDa), a central fibronectin type III-like module, and a chitin-binding domain (12 kDa). The propagation rate of S. lividans (pCHIO12) was higher in soil microcosms amended with fungal mycelia than in those containing crab chitin. Comparative biochemical and immunological studies allowed the following conclusions to be drawn. Within soil microcosm systems amended with crab shell chitin or chitin-containing Aspergillus proliferans mycelia, the strain expressed the clones exo-chiO1 gene and produced high quantities of a 59-kDa exochitinase. The enzyme was preferentially attached via its binding domain to the pellet from soil or liquid cultures. In contrast, truncated forms of 47, 40, and 25 kDa could be easily extracted from soil. The relative proportions of the 59-kDa enzyme and its truncated forms varied depending on the source of chitin and differed in soil and in liquid cultures. PMID:8633877

  17. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2010-05-11

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  18. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason [Cambridge, GB; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [Lancaster, PA; Pastrnak, Miro [San Diego, CA; Santoro, Steven William [Cambridge, MA; Zhang, Zhiwen [San Diego, CA

    2012-05-22

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  19. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason [Cambridge, GB; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [Lancaster, PA; Pastrnak, Miro [San Diego, CA; Santoro, Steven William [Cambridge, MA; Zhang, Zhiwen [San Diego, CA

    2008-04-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  20. A Survey of Glutamine Synthetase Activities in Tissues from Three Classes of Fish.

    DTIC Science & Technology

    1980-09-01

    reveree side it necessay end identify by block enamaber) Glutamine synthetase, gamma-glutamyl transferase, osmoregulation , glutamate, glutamine...aspects of osmoregulation as well. The only known route of glutanmine synthesis n all species is activity of glutamine synthetase (EC 6.3.1.2) which...for osmoregulation . There is a relatively small difference n species which retain urea for osmoregulation . This may help to explain the relationship of

  1. Mitochondrial and cytoplasmic isoleucyl-, glutamyl- and arginyl-tRNA synthetases of yeast are encoded by separate genes.

    PubMed

    Tzagoloff, A; Shtanko, A

    1995-06-01

    Three complementation groups of a pet mutant collection have been found to be composed of respiratory-deficient deficient mutants with lesions in mitochondrial protein synthesis. Recombinant plasmids capable of restoring respiration were cloned by transformation of representatives of each complementation group with a yeast genomic library. The plasmids were used to characterize the complementing genes and to institute disruption of the chromosomal copies of each gene in respiratory-proficient yeast. The sequences of the cloned genes indicate that they code for isoleucyl-, arginyl- and glutamyl-tRNA synthetases. The properties of the mutants used to obtain the genes and of strains with the disrupted genes indicate that all three aminoacyl-tRNA synthetases function exclusively in mitochondrial proteins synthesis. The ISM1 gene for mitochondrial isoleucyl-tRNA synthetase has been localized to chromosome XVI next to UME5. The MSR1 gene for the arginyl-tRNA synthetase was previously located on yeast chromosome VIII. The third gene MSE1 for the mitochondrial glutamyl-tRNA synthetase has not been localized. The identification of three new genes coding for mitochondrial-specific aminoacyl-tRNA synthetases indicates that in Saccharomyces cerevisiae at least 11 members of this protein family are encoded by genes distinct from those coding for the homologous cytoplasmic enzymes.

  2. Double mimicry evades tRNA synthetase editing by toxic vegetable-sourced non-proteinogenic amino acid.

    PubMed

    Song, Youngzee; Zhou, Huihao; Vo, My-Nuong; Shi, Yi; Nawaz, Mir Hussain; Vargas-Rodriguez, Oscar; Diedrich, Jolene K; Yates, John R; Kishi, Shuji; Musier-Forsyth, Karin; Schimmel, Paul

    2017-12-22

    Hundreds of non-proteinogenic (np) amino acids (AA) are found in plants and can in principle enter human protein synthesis through foods. While aminoacyl-tRNA synthetase (AARS) editing potentially provides a mechanism to reject np AAs, some have pathological associations. Co-crystal structures show that vegetable-sourced azetidine-2-carboxylic acid (Aze), a dual mimic of proline and alanine, is activated by both human prolyl- and alanyl-tRNA synthetases. However, it inserts into proteins as proline, with toxic consequences in vivo. Thus, dual mimicry increases odds for mistranslation through evasion of one but not both tRNA synthetase editing systems.

  3. Prothrombotic mechanisms in patients with congenital p.Cys89Tyr mutation in CD59.

    PubMed

    Tabib, Adi; Hindi, Issam; Karbian, Netanel; Zelig, Orly; Falach, Batla; Mevorach, Dror

    2018-06-11

    Thrombosis is the prognostic factor with the greatest effect on survival in patients with paroxysmal nocturnal hemoglobinuria (PNH), who lack dozens of membrane surface proteins. We recently described a primary homozygous Cys89Tyr congenital nonfunctioning CD59 in humans with clinical manifestation in infancy, associated with chronic hemolysis, recurrent strokes, and relapsing peripheral demyelinating neuropathy. Here we investigated hypercoagulability mechanisms characterizing the syndrome. Membrane attack complex (MAC) deposition (anti-SC5b-9) and free hemoglobin (colorimetric assay) were assessed. Platelet activation was identified (anti-CD61, anti-CD62P), and microparticles (MPs) of 0.5-0.9 μm, were characterized (Annexin V, anti-human GlyA, anti-CD15, anti-CD14, anti-CD61). Platelet-monocyte aggregation was assessed with FlowSight. 2/7 patients (29%) with homozygosity for Cys89Tyr and 6/12 (50%) with any of four described CD59 mutations had recurrent strokes. In plasma samples from four patients carrying identical mutations, MAC deposition was increased on RBCs (p < 0.0003), neutrophils (p < 0.009), and platelets (p < 0.0003). Free-plasma hemoglobin levels were abnormally high, up to 100 mg/dl. Patients with CD59 mutation had RBC-derived MP levels 9-fold higher than those in healthy controls (p < 0.01), and 2-2.5 fold higher than PNH patients (p < 0.09). Leukocyte-activated platelet aggregation was increased (p < 0.0062). Loss of CD59 was shown in the endothelium of these patients. Nonfunctioning CD59 is a major risk factor for stroke and hypercoagulability. Uncontrolled hemolysis causes massive MP release and endothelial heme damage. MAC attack on unprotected endothelium and platelet activation and aggregation with leukocytes mediate additional mechanisms leading to vascular occlusion. It is suggested that CD59 loss represents a major arterial prothrombotic factor in PNH and additional diseases. Copyright © 2018. Published by

  4. Membrane anchoring of aminoacyl-tRNA synthetases by convergent acquisition of a novel protein domain.

    PubMed

    Olmedo-Verd, Elvira; Santamaría-Gómez, Javier; Ochoa de Alda, Jesús A G; Ribas de Pouplana, Lluis; Luque, Ignacio

    2011-11-25

    Four distinct aminoacyl-tRNA synthetases (aaRSs) found in some cyanobacterial species contain a novel protein domain that bears two putative transmembrane helices. This CAAD domain is present in glutamyl-, isoleucyl-, leucyl-, and valyl-tRNA synthetases, the latter of which has probably recruited the domain more than once during evolution. Deleting the CAAD domain from the valyl-tRNA synthetase of Anabaena sp. PCC 7120 did not significantly modify the catalytic properties of this enzyme, suggesting that it does not participate in its canonical tRNA-charging function. Multiple lines of evidence suggest that the function of the CAAD domain is structural, mediating the membrane anchorage of the enzyme, although membrane localization of aaRSs has not previously been described in any living organism. Synthetases containing the CAAD domain were localized in the intracytoplasmic thylakoid membranes of cyanobacteria and were largely absent from the plasma membrane. The CAAD domain was necessary and apparently sufficient for protein targeting to membranes. Moreover, localization of aaRSs in thylakoids was important under nitrogen limiting conditions. In Anabaena, a multicellular filamentous cyanobacterium often used as a model for prokaryotic cell differentiation, valyl-tRNA synthetase underwent subcellular relocation at the cell poles during heterocyst differentiation, a process also dependent on the CAAD domain.

  5. Orthogonal use of a human tRNA synthetase active site to achieve multi-functionality

    PubMed Central

    Zhou, Quansheng; Kapoor, Mili; Guo, Min; Belani, Rajesh; Xu, Xiaoling; Kiosses, William B.; Hanan, Melanie; Park, Chulho; Armour, Eva; Do, Minh-Ha; Nangle, Leslie A.; Schimmel, Paul; Yang, Xiang-Lei

    2011-01-01

    Protein multi-functionality is an emerging explanation for the complexity of higher organisms. In this regard, while aminoacyl tRNA synthetases catalyze amino acid activation for protein synthesis, some also act in pathways for inflammation, angiogenesis, and apoptosis. How multiple functions evolved and their relationship to the active site is not clear. Here structural modeling analysis, mutagenesis, and cell-based functional studies show that the potent angiostatic, natural fragment of human TrpRS associates via Trp side chains that protrude from the cognate cellular receptor VE-cadherin. Modeling indicates that (I prefer the way it was because the conclusion was reached not only by modeling, but more so by experimental studies.)VE-cadherin Trp side chains fit into the Trp-specific active site of the synthetase. Thus, specific side chains of the receptor mimic (?) amino acid substrates and expand the functionality of the active site of the synthetase. We propose that orthogonal use of the same active site may be a general way to develop multi-functionality of human tRNA synthetases and other proteins. PMID:20010843

  6. Multiple Click-Selective tRNA Synthetases Expand Mammalian Cell-Specific Proteomics.

    PubMed

    Yang, Andrew C; du Bois, Haley; Olsson, Niclas; Gate, David; Lehallier, Benoit; Berdnik, Daniela; Brewer, Kyle D; Bertozzi, Carolyn R; Elias, Joshua E; Wyss-Coray, Tony

    2018-06-13

    Bioorthogonal tools enable cell-type-specific proteomics, a prerequisite to understanding biological processes in multicellular organisms. Here we report two engineered aminoacyl-tRNA synthetases for mammalian bioorthogonal labeling: a tyrosyl ( ScTyr Y43G ) and a phenylalanyl ( MmPhe T413G ) tRNA synthetase that incorporate azide-bearing noncanonical amino acids specifically into the nascent proteomes of host cells. Azide-labeled proteins are chemoselectively tagged via azide-alkyne cycloadditions with fluorophores for imaging or affinity resins for mass spectrometric characterization. Both mutant synthetases label human, hamster, and mouse cell line proteins and selectively activate their azido-bearing amino acids over 10-fold above the canonical. ScTyr Y43G and MmPhe T413G label overlapping but distinct proteomes in human cell lines, with broader proteome coverage upon their coexpression. In mice, ScTyr Y43G and MmPhe T413G label the melanoma tumor proteome and plasma secretome. This work furnishes new tools for mammalian residue-specific bioorthogonal chemistry, and enables more robust and comprehensive cell-type-specific proteomics in live mammals.

  7. Evolutionary anomalies among the aminoacyl-tRNA synthetases

    NASA Technical Reports Server (NTRS)

    Doolittle, R. F.; Handy, J.; Bada, J. L. (Principal Investigator)

    1998-01-01

    Unexpected relationships among the various aminoacyl-tRNA synthetases continue to be uncovered. The question arises - is this mainly the result of promiscuous exchange, or is the confusion really a reflection of the differential loss of past duplications? Phylogenetic analysis may yet provide the answer.

  8. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher

    2015-10-20

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  9. Compositions of orthogonal glutamyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof

    DOEpatents

    Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA; Santoro, Stephen [Cambridge, MA

    2009-05-05

    Compositions and methods of producing components of protein biosynthetic machinery that include glutamyl orthogonal tRNAs, glutamyl orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of glutamyl tRNAs/synthetases are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins using these orthogonal pairs.

  10. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOEpatents

    Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2006-08-01

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  11. Methods and composition for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason W [San Diego, CA; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [San Diego, CA; Pastrnak, Miro [San Diego, CA; Santoro, Stephen William [San Diego, CA; Zhang, Zhiwen [San Diego, CA

    2012-05-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  12. Methods and compositions for the production of orthogonal tRNA-aminoacyl-tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason W [San Diego, CA; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [San Diego, CA; Pastrnak, Miro [San Diego, CA; Santoro, Stephen William [San Diego, CA; Zhang, Zhiwen [San Diego, CA

    2011-09-06

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  13. Structural Characterization of Monomeric/Dimeric State of p59fyn SH2 Domain.

    PubMed

    Huculeci, Radu; Kieken, Fabien; Garcia-Pino, Abel; Buts, Lieven; van Nuland, Nico; Lenaerts, Tom

    2017-01-01

    Src homology 2 (SH2) domains are key modulators in various signaling pathways allowing the recognition of phosphotyrosine sites of different proteins. Despite the fact that SH2 domains acquire their biological functions in a monomeric state, a multitude of reports have shown their tendency to dimerize. Here, we provide a technical description on how to isolate and characterize by gel filtration, circular dichroism (CD), and nuclear magnetic resonance (NMR) each conformational state of p59 fyn SH2 domain.

  14. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Transfer of D-phenylalanine from gramicidin S synthetase 1 to gramicidin S synthetase 2 in gramicidin S synthesis.

    PubMed

    Hori, K; Kanda, M; Miura, S; Yamada, Y; Saito, Y

    1983-01-01

    The transfer of phenylalanine from gramicidin S synthetase 1 (GS 1) to gramicidin S synthetase 2 (GS 2) was studied by the use of combinations of wild-type GS 1 with various GS 2s from a wild strain and gramicidin S non-producing mutant strains of Bacillus brevis Nagano. The combinations of mutant GS 2s lacking 4'-phosphopantetheine (from BI-4, C-3, E-1, and E-2) did not transfer D-phenylalanine from GS 1, although they could activate all the constituent amino acids. Other mutant GS 2s containing 4'-phosphopantetheine, except GS 2 from BII-3 (proline-activation lacking) accepted D-phenylalanine from intact GS 1. To ascertain more directly whether 4'-phosphopantetheine is involved in the transfer of D-phenylalanine from GS 1 to GS 2, pepsin digests of GS 2 that accepted [14C]phenylalanine were analyzed by Sephadex G-50 column chromatography and thin-layer chromatography (TLC). Radioactivity of [14C]phenylalanine was always associated with a peptide containing 4'-phosphopantetheine. Furthermore, the position of radioactivity was distinct from the position of 4'-phosphopantetheine on TLC after alkaline treatment or performic acid oxidation of the digests.

  16. Small-angle X-ray Solution Scattering Study of the Multi-aminoacyl-tRNA Synthetase Complex Reveals an Elongated and Multi-armed particle*

    PubMed Central

    Dias, José; Renault, Louis; Pérez, Javier; Mirande, Marc

    2013-01-01

    In animal cells, nine aminoacyl-tRNA synthetases are associated with the three auxiliary proteins p18, p38, and p43 to form a stable and conserved large multi-aminoacyl-tRNA synthetase complex (MARS), whose molecular mass has been proposed to be between 1.0 and 1.5 MDa. The complex acts as a molecular hub for coordinating protein synthesis and diverse regulatory signal pathways. Electron microscopy studies defined its low resolution molecular envelope as an overall rather compact, asymmetric triangular shape. Here, we have analyzed the composition and homogeneity of the native mammalian MARS isolated from rabbit liver and characterized its overall internal structure, size, and shape at low resolution by hydrodynamic methods and small-angle x-ray scattering in solution. Our data reveal that the MARS exhibits a much more elongated and multi-armed shape than expected from previous reports. The hydrodynamic and structural features of the MARS are large compared with other supramolecular assemblies involved in translation, including ribosome. The large dimensions and non-compact structural organization of MARS favor a large protein surface accessibility for all its components. This may be essential to allow structural rearrangements between the catalytic and cis-acting tRNA binding domains of the synthetases required for binding the bulky tRNA substrates. This non-compact architecture may also contribute to the spatiotemporal controlled release of some of its components, which participate in non-canonical functions after dissociation from the complex. PMID:23836901

  17. Small-angle X-ray solution scattering study of the multi-aminoacyl-tRNA synthetase complex reveals an elongated and multi-armed particle.

    PubMed

    Dias, José; Renault, Louis; Pérez, Javier; Mirande, Marc

    2013-08-16

    In animal cells, nine aminoacyl-tRNA synthetases are associated with the three auxiliary proteins p18, p38, and p43 to form a stable and conserved large multi-aminoacyl-tRNA synthetase complex (MARS), whose molecular mass has been proposed to be between 1.0 and 1.5 MDa. The complex acts as a molecular hub for coordinating protein synthesis and diverse regulatory signal pathways. Electron microscopy studies defined its low resolution molecular envelope as an overall rather compact, asymmetric triangular shape. Here, we have analyzed the composition and homogeneity of the native mammalian MARS isolated from rabbit liver and characterized its overall internal structure, size, and shape at low resolution by hydrodynamic methods and small-angle x-ray scattering in solution. Our data reveal that the MARS exhibits a much more elongated and multi-armed shape than expected from previous reports. The hydrodynamic and structural features of the MARS are large compared with other supramolecular assemblies involved in translation, including ribosome. The large dimensions and non-compact structural organization of MARS favor a large protein surface accessibility for all its components. This may be essential to allow structural rearrangements between the catalytic and cis-acting tRNA binding domains of the synthetases required for binding the bulky tRNA substrates. This non-compact architecture may also contribute to the spatiotemporal controlled release of some of its components, which participate in non-canonical functions after dissociation from the complex.

  18. Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones.

    PubMed

    Clemente, Maria R; Bustos-Sanmamed, Pilar; Loscos, Jorge; James, Euan K; Pérez-Rontomé, Carmen; Navascués, Joaquín; Gay, Marina; Becana, Manuel

    2012-06-01

    In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1-48 h with 50 μM of hormones. Immunogold localization studies revealed that γECS is confined to chloroplasts and plastids, whereas hGSHS is also in the cytosol. Addition of hormones caused differential expression of thiol synthetases in roots. After 24-48 h, abscisic and salicylic acids downregulated GSHS whereas jasmonic acid upregulated it. Cytokinins and polyamines activated GSHS but not γECS or hGSHS. Jasmonic acid elicited a coordinated response of the three genes and auxin induced both hGSHS expression and activity. Results show that the thiol biosynthetic pathway is compartmentalized in legumes. Moreover, the similar response profiles of the GSH and hGSH contents in roots of non-nodulated and nodulated plants to the various hormonal treatments indicate that thiol homeostasis is independent of the nitrogen source of the plants. The differential regulation of the three mRNA levels, hGSHS activity, and thiol contents by hormones indicates a fine control of thiol biosynthesis at multiple levels and strongly suggests that GSH and hGSH play distinct roles in plant development and stress responses.

  19. Purification, gene cloning, and characterization of γ-butyrobetainyl CoA synthetase from Agrobacterium sp. 525a.

    PubMed

    Fujimitsu, Hiroshi; Matsumoto, Akira; Takubo, Sayaka; Fukui, Akiko; Okada, Kazuma; Mohamed Ahmed, Isam A; Arima, Jiro; Mori, Nobuhiro

    2016-08-01

    The report is the first of purification, overproduction, and characterization of a unique γ-butyrobetainyl CoA synthetase from soil-isolated Agrobacterium sp. 525a. The primary structure of the enzyme shares 70-95% identity with those of ATP-dependent microbial acyl-CoA synthetases of the Rhizobiaceae family. As distinctive characteristics of the enzyme of this study, ADP was released in the catalytic reaction process, whereas many acyl CoA synthetases are annotated as an AMP-forming enzyme. The apparent Km values for γ-butyrobetaine, CoA, and ATP were, respectively, 0.69, 0.02, and 0.24 mM.

  20. Henoch-Schönlein purpura nephritis occurring postpartum in a patient with anti-PL-7 anti-synthetase syndrome.

    PubMed

    Nagai, Kojiro; Kishi, Jun; Morizumi, Shun; Minakuchi, Jun; Bando, Yoshimi; Nishioka, Yasuhiko; Doi, Toshio

    2017-09-01

    A 37-year-old pregnant woman developed purpura which was subsequently diagnosed as Henoch-Schönlein purpura (HSP). After childbirth, the patient developed proteinuria and hematuria. Further examination revealed that the HSP nephritis (HSPN) was associated with anti-threonyl-tRNA synthetase anti-synthetase syndrome. The onset of HSPN during pregnancy or after childbirth is rare. Moreover, to our knowledge, this is the first case to describe renal involvement in anti-synthetase syndrome.

  1. Properties and substrate specificities of the phenylalanyl-transfer-ribonucleic acid synthetases of Aesculus species

    PubMed Central

    Anderson, J. W.; Fowden, L.

    1970-01-01

    1. Phenylalanyl-tRNA synthetases have been partially purified from cotyledons of seeds of Aesculus californica, which contains 2-amino-4-methylhex-4-enoic acid, and from four other species of Aesculus that do not contain this amino acid. The A. californica preparation was free from other aminoacyl-tRNA synthetases, and the contaminating synthetase activity in preparations from A. hippocastanum was decreased to acceptable limits by conducting assays of pyrophosphate exchange activity in 0.5m-potassium chloride. 2. The phenylalanyl-tRNA synthetase from each species activated 2-amino-4-methylhex-4-enoic acid with Km 30–40 times that for phenylalanine. The maximum velocity for 2-amino-4-methylhex-4-enoic acid was only 30% of that for phenylalanine with the A. californica enzyme, but the maximum velocities for the two substrates were identical for the other four species. 3. 2-Amino-4-methylhex-4-enoic acid was not found in the protein of A. californica, so discrimination against this amino acid probably occurs in the step of transfer to tRNA, though subcellular localization, or subsequent steps of protein synthesis could be involved. 4. Crotylglycine, methallylglycine, ethallylglycine, 2-aminohex-4,5-dienoic acid, 2-amino-5-methylhex-4-enoic acid, 2-amino-4-methylhex-4-enoic acid, β-(thien-2-yl)alanine, β-(pyrazol-1-yl)alanine, phenylserine and m-fluorophenylalanine were substrates for pyrophosphate exchange catalysed by the phenylalanyl-tRNA synthetases of A. californica or A. hippocastanum. Allylglycine, phenylglycine and 2-amino-4-phenylbutyric acid were inactive. PMID:5493504

  2. Evolutionary divergence of chloroplast FAD synthetase proteins

    PubMed Central

    2010-01-01

    Background Flavin adenine dinucleotide synthetases (FADSs) - a group of bifunctional enzymes that carry out the dual functions of riboflavin phosphorylation to produce flavin mononucleotide (FMN) and its subsequent adenylation to generate FAD in most prokaryotes - were studied in plants in terms of sequence, structure and evolutionary history. Results Using a variety of bioinformatics methods we have found that FADS enzymes localized to the chloroplasts, which we term as plant-like FADS proteins, are distributed across a variety of green plant lineages and constitute a divergent protein family clearly of cyanobacterial origin. The C-terminal module of these enzymes does not contain the typical riboflavin kinase active site sequence, while the N-terminal module is broadly conserved. These results agree with a previous work reported by Sandoval et al. in 2008. Furthermore, our observations and preliminary experimental results indicate that the C-terminus of plant-like FADS proteins may contain a catalytic activity, but different to that of their prokaryotic counterparts. In fact, homology models predict that plant-specific conserved residues constitute a distinct active site in the C-terminus. Conclusions A structure-based sequence alignment and an in-depth evolutionary survey of FADS proteins, thought to be crucial in plant metabolism, are reported, which will be essential for the correct annotation of plant genomes and further structural and functional studies. This work is a contribution to our understanding of the evolutionary history of plant-like FADS enzymes, which constitute a new family of FADS proteins whose C-terminal module might be involved in a distinct catalytic activity. PMID:20955574

  3. Utp22p acts in concert with Utp8p to channel aminoacyl-tRNA from the nucleolus to the nuclear tRNA export receptor Los1p but not Msn5p.

    PubMed

    Eswara, Manoja B K; Clayton, Ashley; Mangroo, Dev

    2012-12-01

    Utp8p is an essential nucleolar protein that channels aminoacyl-tRNAs from aminoacyl-tRNA synthetases in the nucleolus to the nuclear tRNA export receptors located in the nucleoplasm and nuclear pore complex in Saccharomyces cerevisiae. Utp8p is also part of the U3 snoRNA-associated protein complex involved in 18S rRNA biogenesis in the nucleolus. We report that Utp22p, which is another member of the U3 snoRNA-associated protein complex, is also an intranuclear component of the nuclear tRNA export machinery. Depletion of Utp22p results in nuclear retention of mature tRNAs derived from intron-containing and intronless precursors. Moreover, Utp22p copurifies with the nuclear tRNA export receptor Los1p, the aminoacyl-tRNA synthetase Tys1p and Utp8p, but not with the RanGTPase Gsp1p and the nuclear tRNA export receptor Msn5p. Utp22p interacts directly with Utp8p and Los1p in a tRNA-independent manner in vitro. Utp22p also interacts directly with Tys1p, but this binding is stimulated when Tys1p is bound to tRNA. However, Utp22p, unlike Utp8p, does not bind tRNA saturably. These data suggest that Utp22p recruits Utp8p to aminoacyl-tRNA synthetases in the nucleolus to collect aminoacyl-tRNA and then accompanies the Utp8p-tRNA complex to deliver the aminoacyl-tRNAs to Los1p but not Msn5p. It is possible that Nrap/Nol6, the mammalian orthologue of Utp22p, plays a role in channelling aminoacyl-tRNA to the nuclear tRNA export receptor exportin-t.

  4. Genetic manipulation of the ApoF/Stat2 locus supports an important role for type I interferon signaling in atherosclerosis.

    PubMed

    Lagor, William R; Fields, David W; Bauer, Robert C; Crawford, Alison; Abt, Michael C; Artis, David; Wherry, E John; Rader, Daniel J

    2014-03-01

    Apolipoprotein F (ApoF) is a sialoglycoprotein that is a component of the HDL and LDL fractions of human serum. We sought to test the hypothesis that ApoF plays an important role in atherosclerosis in mice by modulating lipoprotein function. Atherosclerosis was assessed in male low density lipoprotein receptor knockout (Ldlr KO) and ApoF/Ldlr double knockout (DKO) mice fed a Western diet for 16 weeks. ApoF/Ldlr DKO mice showed a 39% reduction in lesional area by en face analysis of aortas (p < 0.05), despite no significant differences in plasma lipid parameters. ApoF KO mice had reduced expression of Interferon alpha (IFNα) responsive genes in liver and spleen, as well as impaired macrophage activation. Interferon alpha induced gene 27 like 2a (Ifi27l2a), Oligoadenylate synthetases 2 and 3 (Oas2 and Oas3) were significantly reduced in the ApoF KO mice relative to wild type controls. These effects were attributable to hypomorphic expression of Stat2 in the ApoF KO mice, a critical gene in the Type I IFN pathway that is situated just 425 base pairs downstream of ApoF. These studies implicate STAT2 as a potentially important player in atherosclerosis, and support the growing evidence that the Type I IFN pathway may contribute to this complex disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Effects of GSH1 and GSH2 Gene Mutation on Glutathione Synthetases Activity of Saccharomyces cerevisiae.

    PubMed

    Xu, Wen; Jia, Haiyan; Zhang, Longmei; Wang, Haiyan; Tang, Hui; Zhang, Liping

    2017-08-01

    In this paper, three mutants from wild Saccharomyces cerevisiae HBU2.558, called U2.558, UN2.558, and UNA2.558, were screened by UV, sodium nitrite, Atmospheric and room temperature plasma, respectively. Glutathione production of the three mutants increased by 41.86, 72.09 and 56.76%, respectively. We detected the activity of glutathione synthetases and found that its activity was improved. Amino acid sequences of three mutant colonies were compared with HBU2.558. Four mutants: Leu51→Pro51 (L51P), Glu62→Val62 (E62V), Ala332→Glu332 (A332E) and Ser653→Gly653 (S653G) were found in the analysis of γ-glutamylcysteine ligase. L51 is located adjacently to the two active sites of GCL/E/Mg 2+ /ADP complex in the overall GCL structure. L51P mutant spread distortion on the β-sheet due to the fact that the φ was changed from -50.4° to -40.2°. A mutant Leu54→Pro54 (L54P) was found in the analysis of glutathione synthetase, and L54 was an amino acid located between an α-helix and a β-sheet. The results confirm that introduction of proline located at the middle of the β-sheet or at the N- or C-terminal between α-helix and β-sheet or, i.e., L51P and L54P, changed the φ, rigidity, hydrophobicity and conformational entropy, thus increased protein stability and improved the enzyme activity.

  6. Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD[superscript +] synthetase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuenchor, Watchalee; Doukov, Tzanko I.; Resto, Melissa

    Glutamine-dependent NAD{sup +} synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD{sup +} from NaAD{sup +} (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 {angstrom} (1 {angstrom} = 0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligandmore » complexes with substrates (NaAD{sup +}/ATP), substrate analogue {l_brace}NaAD{sup +}/AMP-CPP (adenosine 5'-[{alpha},{beta}-methylene]triphosphate){r_brace} and intermediate analogues (NaAD{sup +}/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD{sup +}/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.« less

  7. Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones

    PubMed Central

    Clemente, Maria R.; Bustos-Sanmamed, Pilar; Loscos, Jorge; James, Euan K.; Pérez-Rontomé, Carmen; Navascués, Joaquín; Gay, Marina; Becana, Manuel

    2012-01-01

    In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1–48 h with 50 μM of hormones. Immunogold localization studies revealed that γECS is confined to chloroplasts and plastids, whereas hGSHS is also in the cytosol. Addition of hormones caused differential expression of thiol synthetases in roots. After 24–48 h, abscisic and salicylic acids downregulated GSHS whereas jasmonic acid upregulated it. Cytokinins and polyamines activated GSHS but not γECS or hGSHS. Jasmonic acid elicited a coordinated response of the three genes and auxin induced both hGSHS expression and activity. Results show that the thiol biosynthetic pathway is compartmentalized in legumes. Moreover, the similar response profiles of the GSH and hGSH contents in roots of non-nodulated and nodulated plants to the various hormonal treatments indicate that thiol homeostasis is independent of the nitrogen source of the plants. The differential regulation of the three mRNA levels, hGSHS activity, and thiol contents by hormones indicates a fine control of thiol biosynthesis at multiple levels and strongly suggests that GSH and hGSH play distinct roles in plant development and stress responses. PMID:22442424

  8. A Phenotypic Based Target Screening Approach Delivers New Antitubercular CTP Synthetase Inhibitors.

    PubMed

    Esposito, Marta; Szadocka, Sára; Degiacomi, Giulia; Orena, Beatrice S; Mori, Giorgia; Piano, Valentina; Boldrin, Francesca; Zemanová, Júlia; Huszár, Stanislav; Barros, David; Ekins, Sean; Lelièvre, Joel; Manganelli, Riccardo; Mattevi, Andrea; Pasca, Maria Rosalia; Riccardi, Giovanna; Ballell, Lluis; Mikušová, Katarína; Chiarelli, Laurent R

    2017-06-09

    Despite its great potential, the target-based approach has been mostly unsuccessful in tuberculosis drug discovery, while whole cell phenotypic screening has delivered several active compounds. However, for many of these hits, the cellular target has not yet been identified, thus preventing further target-based optimization of the compounds. In this context, the newly validated drug target CTP synthetase PyrG was exploited to assess a target-based approach of already known, but untargeted, antimycobacterial compounds. To this purpose the publically available GlaxoSmithKline antimycobacterial compound set was assayed, uncovering a series of 4-(pyridin-2-yl)thiazole derivatives which efficiently inhibit the Mycobacterium tuberculosis PyrG enzyme activity, one of them showing low activity against the human CTP synthetase. The three best compounds were ATP binding site competitive inhibitors, with K i values ranging from 3 to 20 μM, but did not show any activity against a small panel of different prokaryotic and eukaryotic kinases, thus demonstrating specificity for the CTP synthetases. Metabolic labeling experiments demonstrated that the compounds directly interfere not only with CTP biosynthesis, but also with other CTP dependent biochemical pathways, such as lipid biosynthesis. Moreover, using a M. tuberculosis pyrG conditional knock-down strain, it was shown that the activity of two compounds is dependent on the intracellular concentration of the CTP synthetase. All these results strongly suggest a role of PyrG as a target of these compounds, thus strengthening the value of this kind of approach for the identification of new scaffolds for drug development.

  9. Co-operation between Polymerases and Nucleotide Synthetases in the RNA World.

    PubMed

    Kim, Ye Eun; Higgs, Paul G

    2016-11-01

    It is believed that life passed through an RNA World stage in which replication was sustained by catalytic RNAs (ribozymes). The two most obvious types of ribozymes are a polymerase, which uses a neighbouring strand as a template to make a complementary sequence to the template, and a nucleotide synthetase, which synthesizes monomers for use by the polymerase. When a chemical source of monomers is available, the polymerase can survive on its own. When the chemical supply of monomers is too low, nucleotide production by the synthetase is essential and the two ribozymes can only survive when they are together. Here we consider a computational model to investigate conditions under which coexistence and cooperation of these two types of ribozymes is possible. The model considers six types of strands: the two functional sequences, the complementary strands to these sequences (which are required as templates), and non-functional mutants of the two sequences (which act as parasites). Strands are distributed on a two-dimensional lattice. Polymerases replicate strands on neighbouring sites and synthetases produce monomers that diffuse in the local neighbourhood. We show that coexistence of unlinked polymerases and synthetases is possible in this spatial model under conditions in which neither sequence could survive alone; hence, there is a selective force for increasing complexity. Coexistence is dependent on the relative lengths of the two functional strands, the strand diffusion rate, the monomer diffusion rate, and the rate of deleterious mutations. The sensitivity of this two-ribozyme system suggests that evolution of a system of many types of ribozymes would be difficult in a purely spatial model with unlinked genes. We therefore speculate that linkage of genes onto mini-chromosomes and encapsulation of strands in protocells would have been important fairly early in the history of life as a means of enabling more complex systems to evolve.

  10. Mutation of the human mitochondrial phenylalanine-tRNA synthetase causes infantile-onset epilepsy and cytochrome c oxidase deficiency.

    PubMed

    Almalki, Abdulraheem; Alston, Charlotte L; Parker, Alasdair; Simonic, Ingrid; Mehta, Sarju G; He, Langping; Reza, Mojgan; Oliveira, Jorge M A; Lightowlers, Robert N; McFarland, Robert; Taylor, Robert W; Chrzanowska-Lightowlers, Zofia M A

    2014-01-01

    Mitochondrial aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in protein synthesis since they charge tRNAs with their cognate amino acids. Mutations in the genes encoding mitochondrial aaRSs have been associated with a wide spectrum of human mitochondrial diseases. Here we report the identification of pathogenic mutations (a partial genomic deletion and a highly conserved p. Asp325Tyr missense variant) in FARS2, the gene encoding mitochondrial phenylalanyl-tRNA synthetase, in a patient with early-onset epilepsy and isolated complex IV deficiency in muscle. The biochemical defect was expressed in myoblasts but not in fibroblasts and associated with decreased steady state levels of COXI and COXII protein and reduced steady state levels of the mt-tRNA(Phe) transcript. Functional analysis of the recombinant mutant p. Asp325Tyr FARS2 protein showed an inability to bind ATP and consequently undetectable aminoacylation activity using either bacterial tRNA or human mt-tRNA(Phe) as substrates. Lentiviral transduction of cells with wildtype FARS2 restored complex IV protein levels, confirming that the p.Asp325Tyr mutation is pathogenic, causing respiratory chain deficiency and neurological deficits on account of defective aminoacylation of mt-tRNA(Phe). © 2013. Published by Elsevier B.V. All rights reserved.

  11. Assessing the effect of D59P mutation in the DE loop region in amyloid aggregation propensity of β2-microglobulin: A molecular dynamics simulation study.

    PubMed

    Narang, Simranjeet S; Shuaib, Suniba; Goyal, Deepti; Goyal, Bhupesh

    2018-01-01

    Dialysis-related amyloidosis (DRA) is a severe condition characterized by the accumulation of amyloidogenic β2-microglobulin (β2m) protein around skeletal joints and bones. The recent studies highlighted a critical role of the DE loop region for β2m stability and amyloid aggregation propensity. Despite significant efforts, the molecular mechanism of enhanced aggregation due to D59P mutation in the DE loop region remain elusive. In the present study, explicit-solvent molecular dynamics (MD) simulations were performed to examine the key changes in the structural and dynamic properties of wild type (wt) β2m upon D59P mutation. MD simulations reveal a decrease in the average number of hydrogen bonds in the loop regions on D59P mutation that enhances conformational flexibility, which lead to higher aggregation propensity of D59P as compare to wt β2m. The principal component analysis (PCA) highlight that D59P covers a larger region of phase space and display a higher trace value than wt β2m, which suggest an overall enhancement in the conformational flexibility. D59P display two minimum energy basins in the free energy landscape (FEL) that are associated with thermodynamically less stable conformational states as compare to single minimum energy basin in wt β2m. The present study provides theoretical insights into the molecular mechanism behind the higher aggregation propensity of D59P as compare to wt β2m. © 2017 Wiley Periodicals, Inc.

  12. Hemolytic anemia and metabolic acidosis: think about glutathione synthetase deficiency.

    PubMed

    Ben Ameur, Salma; Aloulou, Hajer; Nasrallah, Fehmi; Kamoun, Thouraya; Kaabachi, Naziha; Hachicha, Mongia

    2015-02-01

    Glutathione synthetase deficiency (GSSD) is a rare disorder of glutathione metabolism with varying clinical severity. Patients may present with hemolytic anemia alone or together with acidosis and central nervous system impairment. Diagnosis is made by clinical presentation and detection of elevated concentrations of 5-oxoproline in urine and low glutathione synthetase activity in erythrocytes or cultured skin fibroblasts. The prognosis seems to depend on early diagnosis and treatment. We report a 4 months old Tunisian male infant who presented with severe metabolic acidosis with high anion gap and hemolytic anemia. High level of 5-oxoproline was detected in her urine and diagnosis of GSSD was made. Treatment consists of the correction of acidosis, blood transfusion, and supplementation with antioxidants. He died of severe metabolic acidosis and sepsis at the age of 15 months.

  13. 36 CFR 59.5-59.6 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false [Reserved] 59.5-59.6 Section 59.5-59.6 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR LAND AND WATER CONSERVATION FUND PROGRAM OF ASSISTANCE TO STATES; POST-COMPLETION COMPLIANCE...

  14. 36 CFR 59.5-59.6 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false [Reserved] 59.5-59.6 Section 59.5-59.6 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR LAND AND WATER CONSERVATION FUND PROGRAM OF ASSISTANCE TO STATES; POST-COMPLETION COMPLIANCE...

  15. 36 CFR 59.5-59.6 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false [Reserved] 59.5-59.6 Section 59.5-59.6 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR LAND AND WATER CONSERVATION FUND PROGRAM OF ASSISTANCE TO STATES; POST-COMPLETION COMPLIANCE...

  16. 36 CFR 59.5-59.6 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false [Reserved] 59.5-59.6 Section 59.5-59.6 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR LAND AND WATER CONSERVATION FUND PROGRAM OF ASSISTANCE TO STATES; POST-COMPLETION COMPLIANCE...

  17. 36 CFR 59.5-59.6 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false [Reserved] 59.5-59.6 Section 59.5-59.6 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR LAND AND WATER CONSERVATION FUND PROGRAM OF ASSISTANCE TO STATES; POST-COMPLETION COMPLIANCE...

  18. Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof

    DOEpatents

    Anderson, J Christopher [San Francisco, CA; Wu, Ning [Brookline, MA; Santoro, Stephen [Cambridge, MA; Schultz, Peter G [La Jolla, CA

    2009-12-29

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.

  19. Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof

    DOEpatents

    Anderson, J Christopher [San Francisco, CA; Wu, Ning [Brookline, MA; Santoro, Stephen [Cambridge, MA; Schultz, Peter G [La Jolla, CA

    2011-10-04

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.

  20. Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof

    DOEpatents

    Anderson, J Christopher [San Francisco, CA; Wu, Ning [Brookline, MA; Santoro, Stephen [Cambridge, MA; Schultz, Peter G [La Jolla, CA

    2009-08-18

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.

  1. TRYPTOPHAN SYNTHETASE LEVELS IN ESCHERICHIA COLI, SHIGELLA DYSENTERIAE, AND TRANSDUCTION HYBRIDS

    PubMed Central

    Eisenstein, Richard B.; Yanofsky, Charles

    1962-01-01

    Eisenstein, Richard B. (Western Reserve University, Cleveland, Ohio) and Charles Yanofsky. Tryptophan synthetase levels in Escherichia coli, Shigella dysenteriae, and transduction hybrids. J. Bacteriol. 83:193–204. 1962—Shigella dysenteriae and Escherichia coli, strains K-12 and B, were found to produce low levels of tryptophan synthetase, although some hybrids, formed by the introduction of the gene cluster concerned with tryptophan synthesis from S. dysenteriae into E. coli, produced high levels of this enzyme system. A revertant obtained from a tryptophan-requiring mutant also formed high levels of tryptophan synthetase. The gene or genes responsible for high enzyme production in these strains was shown to be linked to the cluster of genes concerned with tryptophan synthesis. The cause of high enzyme production was investigated. Various lines of evidence, including stimulation of growth by tryptophan precursors, sensitivity to inhibition by 5-methyltryptophan, absence of accumulation of tryptophan, and repression of enzyme formation by anthranilic acid and tryptophan, suggested that high enzyme production in the strains examined results from a partial block in the tryptophan pathway and not from resistance to repression by tryptophan. The conversion of shikimic acid-5-phosphate to anthranilic acid appears to be the partially blocked reaction in the strains studied. PMID:13889700

  2. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of DHNA synthetase from Geobacillus kaustophilus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanaujia, Shankar Prasad; Ranjani, Chellamuthu Vasuki; Jeyakanthan, Jeyaraman

    2007-02-01

    DHNA synthetase from G. kaustophilus has been cloned, expressed, purified and crystallized. The aerobic Gram-positive bacterium Geobacillus kaustophilus is a bacillus species that was isolated from deep-sea sediment from the Mariana Trench. 1,4-Dihydroxy-2-naphthoate (DHNA) synthetase plays a vital role in the biosynthesis of menaquinone (vitamin K{sub 2}) in this bacterium. DHNA synthetase from Geobacillus kaustophilus was crystallized in the orthorhombic space group C222{sub 1}, with unit-cell parameters a = 77.01, b = 130.66, c = 131.69 Å. The crystal diffracted to a resolution of 2.2 Å. Preliminary studies and molecular-replacement calculations reveal the presence of three monomers in the asymmetricmore » unit.« less

  3. Rapid Total Synthesis of DARPin pE59 and RNase B. a

    PubMed Central

    Mong, Surin K.; Vinogradov, Alexander A.; Simon, Mark D.

    2014-01-01

    Here we report the convergent total synthesis of two proteins: DARPin pE59 and RNase B. a. (Barnase). Leveraging our recently developed fast flow peptide synthesis platform, we rapidly explored numerous conditions for the assembly of long polypeptides and were able to mitigate common side reactions including deletion and aspartimide products. We report general strategies for improving the synthetic quality of difficult peptide sequences with our system. High-quality protein fragments produced under optimal synthetic conditions were subjected to convergent native chemical ligation, which afforded native full-length proteins after a final desulfurization step. Both DARPin and Barnase were folded and found to be as active as their recombinant analogues. PMID:24616257

  4. Ferritin contains less iron (59Fe) in cells when the protein pores are unfolded by mutation.

    PubMed

    Hasan, Mohammad R; Tosha, Takehiko; Theil, Elizabeth C

    2008-11-14

    Ferric minerals in ferritins are protected from cytoplasmic reductants and Fe2+ release by the protein nanocage until iron need is signaled. Deletion of ferritin genes is lethal; two critical ferritin functions are concentrating iron and oxidant protection (consuming cytoplasmic iron and oxygen in the mineral). In solution, opening/closing (gating) of eight ferritin protein pores controls reactions between external reductant and the ferritin mineral; pore gating is altered by mutation, low heat, and physiological urea (1 mm) and monitored by CD spectroscopy, protein crystallography, and Fe2+ release rates. To study the effects of a ferritin pore gating mutation in living cells, we cloned/expressed human ferritin H and H L138P, homologous to the frog open pore model that was unexpressable in human cells. Human ferritin H L138P behaved like the open pore ferritin model in vitro as follows: (i) normal protein cage assembly and mineralization, (ii) increased iron release (t1/2) decreased 17-fold), and (iii) decreased alpha-helix (8%). Overexpression (> 4-fold), in HeLa cells, showed for ferritin H L138P equal protein expression and total cell 59Fe but increased chelatable iron, 16%, p < 0.01 (59Fe in the deferoxamine-containing medium), and decreased 59Fe in ferritin, 28%, p < 0.01, compared with wild type. The coincidence of decreased 59Fe in open pore ferritin with increased chelatable 59Fe in cells expressing the ferritin open pore mutation suggests that ferritin pore gating influences to the amount of iron (59Fe) in ferritin in vivo.

  5. Ribosomal incorporation of backbone modified amino acids via an editing-deficient aminoacyl-tRNA synthetase.

    PubMed

    Iqbal, Emil S; Dods, Kara K; Hartman, Matthew C T

    2018-02-14

    The ability to incorporate non-canonical amino acids (ncAA) using translation offers researchers the ability to extend the functionality of proteins and peptides for many applications including synthetic biology, biophysical and structural studies, and discovery of novel ligands. Here we describe the high promiscuity of an editing-deficient valine-tRNA synthetase (ValRS T222P). Using this enzyme, we demonstrate ribosomal translation of 11 ncAAs including those with novel side chains, α,α-disubstitutions, and cyclic β-amino acids.

  6. Identification of a Sjögren's syndrome susceptibility locus at OAS1 that influences isoform switching, protein expression, and responsiveness to type I interferons

    PubMed Central

    Li, He; Reksten, Tove Ragna; Ice, John A.; Kelly, Jennifer A.; Adrianto, Indra; Wang, Shaofeng; He, Bo; Grundahl, Kiely M.; Glenn, Stuart B.; Miceli-Richard, Corinne; Bowman, Simon; Lester, Sue; Eriksson, Per; Brun, Johan G.; Gøransson, Lasse G.; Harboe, Erna; Guthridge, Joel M.; Patel, Ketan; Adler, Adam J.; Farris, A. Darise; Brennan, Michael T.; Chodosh, James; Gopalakrishnan, Rajaram; Weisman, Michael H.; Venuturupalli, Swamy; Wallace, Daniel J.; Hefner, Kimberly S.; Houston, Glen D.; Hughes, Pamela J.; Lewis, David M.; Radfar, Lida; Vista, Evan S.; Rohrer, Michael D.; Stone, Donald U.; Vyse, Timothy J.; Harley, John B.; James, Judith A.; Turner, Sean; Alevizos, Ilias; Anaya, Juan-Manuel; Rhodus, Nelson L.; Segal, Barbara M.; Montgomery, Courtney G.; Scofield, R. Hal; Kovats, Susan; Mariette, Xavier; Witte, Torsten; Rischmueller, Maureen; Omdal, Roald; Lessard, Christopher J.; Sivils, Kathy L.

    2017-01-01

    Sjögren’s syndrome (SS) is a common, autoimmune exocrinopathy distinguished by keratoconjunctivitis sicca and xerostomia. Patients frequently develop serious complications including lymphoma, pulmonary dysfunction, neuropathy, vasculitis, and debilitating fatigue. Dysregulation of type I interferon (IFN) pathway is a prominent feature of SS and is correlated with increased autoantibody titers and disease severity. To identify genetic determinants of IFN pathway dysregulation in SS, we performed cis-expression quantitative trait locus (eQTL) analyses focusing on differentially expressed type I IFN-inducible transcripts identified through a transcriptome profiling study. Multiple cis-eQTLs were associated with transcript levels of 2'-5'-oligoadenylate synthetase 1 (OAS1) peaking at rs10774671 (PeQTL = 6.05 × 10−14). Association of rs10774671 with SS susceptibility was identified and confirmed through meta-analysis of two independent cohorts (Pmeta = 2.59 × 10−9; odds ratio = 0.75; 95% confidence interval = 0.66–0.86). The risk allele of rs10774671 shifts splicing of OAS1 from production of the p46 isoform to multiple alternative transcripts, including p42, p48, and p44. We found that the isoforms were differentially expressed within each genotype in controls and patients with and without autoantibodies. Furthermore, our results showed that the three alternatively spliced isoforms lacked translational response to type I IFN stimulation. The p48 and p44 isoforms also had impaired protein expression governed by the 3' end of the transcripts. The SS risk allele of rs10774671 has been shown by others to be associated with reduced OAS1 enzymatic activity and ability to clear viral infections, as well as reduced responsiveness to IFN treatment. Our results establish OAS1 as a risk locus for SS and support a potential role for defective viral clearance due to altered IFN response as a genetic pathophysiological basis of this complex autoimmune disease. PMID

  7. Expression of human argininosuccinate synthetase after retroviral-mediated gene transfer.

    PubMed

    Wood, P A; Partridge, C A; O'Brien, W E; Beaudet, A L

    1986-09-01

    The cDNA sequence for human argininosuccinate synthetase (AS) was introduced into plasmid expression vectors with an SV40 promoter or Rous sarcoma virus promoter to construct pSV2-AS and pRSV-AS, respectively, and human enzyme was synthesized after gene transfer into Chinese hamster cells. The functional cDNA was inserted into the retroviral vectors pZIP-NeoSV(X) and pZIP-NeoSV(B). Ecotropic AS retrovirus was produced after calcium-phosphate-mediated gene transfer of these constructions into the packaging cell line psi-2, and viral titers up to 10(5) CFU/ml were obtained. Recombinant AS retrovirus was evaluated by detecting G-418-resistant colonies after infection of the rodent cells, XC, NRK, and 3T3. Colonies were also obtained when infected XC cells were selected in citrulline medium for expression of AS activity. Southern blot analysis of infected cells demonstrated that the recombinant retroviral genome was not altered grossly after infecting some rodent cells, while other cells showed evidence of rearrangement. A rapid assay for detecting AS retrovirus was developed based on the incorporation of [14C]citrulline into protein by intact 3T3 cells or XC cells.

  8. Measurement of soluble CD59 in CSF in demyelinating disease: Evidence for an intrathecal source of soluble CD59.

    PubMed

    Zelek, Wioleta M; Watkins, Lewis M; Howell, Owain W; Evans, Rhian; Loveless, Sam; Robertson, Neil P; Beenes, Marijke; Willems, Loek; Brandwijk, Ricardo; Morgan, B Paul

    2018-02-01

    CD59, a broadly expressed glycosylphosphatidylinositol-anchored protein, is the principal cell inhibitor of complement membrane attack on cells. In the demyelinating disorders, multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), elevated complement protein levels, including soluble CD59 (sCD59), were reported in cerebrospinal fluid (CSF). We compared sCD59 levels in CSF and matched plasma in controls and patients with MS, NMOSD and clinically isolated syndrome (CIS) and investigated the source of CSF sCD59 and whether it was microparticle associated. sCD59 was quantified using enzyme-linked immunosorbent assay (ELISA; Hycult; HK374-02). Patient and control CSF was subjected to western blotting to characterise anti-CD59-reactive materials. CD59 was localised by immunostaining and in situ hybridisation. CSF sCD59 levels were double those in plasma (CSF, 30.2 ng/mL; plasma, 16.3 ng/mL). Plasma but not CSF sCD59 levels differentiated MS from NMOSD, MS from CIS and NMOSD/CIS from controls. Elimination of microparticles confirmed that CSF sCD59 was not membrane anchored. CSF levels of sCD59 are not a biomarker of demyelinating diseases. High levels of sCD59 in CSF relative to plasma suggest an intrathecal source; CD59 expression in brain parenchyma was low, but expression was strong on choroid plexus (CP) epithelium, immediately adjacent the CSF, suggesting that this is the likely source.

  9. Putative Nonribosomal Peptide Synthetase and Cytochrome P450 Genes Responsible for Tentoxin Biosynthesis in Alternaria alternata ZJ33.

    PubMed

    Li, You-Hai; Han, Wen-Jin; Gui, Xi-Wu; Wei, Tao; Tang, Shuang-Yan; Jin, Jian-Ming

    2016-08-02

    Tentoxin, a cyclic tetrapeptide produced by several Alternaria species, inhibits the F₁-ATPase activity of chloroplasts, resulting in chlorosis in sensitive plants. In this study, we report two clustered genes, encoding a putative non-ribosome peptide synthetase (NRPS) TES and a cytochrome P450 protein TES1, that are required for tentoxin biosynthesis in Alternaria alternata strain ZJ33, which was isolated from blighted leaves of Eupatorium adenophorum. Using a pair of primers designed according to the consensus sequences of the adenylation domain of NRPSs, two fragments containing putative adenylation domains were amplified from A. alternata ZJ33, and subsequent PCR analyses demonstrated that these fragments belonged to the same NRPS coding sequence. With no introns, TES consists of a single 15,486 base pair open reading frame encoding a predicted 5161 amino acid protein. Meanwhile, the TES1 gene is predicted to contain five introns and encode a 506 amino acid protein. The TES protein is predicted to be comprised of four peptide synthase modules with two additional N-methylation domains, and the number and arrangement of the modules in TES were consistent with the number and arrangement of the amino acid residues of tentoxin, respectively. Notably, both TES and TES1 null mutants generated via homologous recombination failed to produce tentoxin. This study provides the first evidence concerning the biosynthesis of tentoxin in A. alternata.

  10. Putative Nonribosomal Peptide Synthetase and Cytochrome P450 Genes Responsible for Tentoxin Biosynthesis in Alternaria alternata ZJ33

    PubMed Central

    Li, You-Hai; Han, Wen-Jin; Gui, Xi-Wu; Wei, Tao; Tang, Shuang-Yan; Jin, Jian-Ming

    2016-01-01

    Tentoxin, a cyclic tetrapeptide produced by several Alternaria species, inhibits the F1-ATPase activity of chloroplasts, resulting in chlorosis in sensitive plants. In this study, we report two clustered genes, encoding a putative non-ribosome peptide synthetase (NRPS) TES and a cytochrome P450 protein TES1, that are required for tentoxin biosynthesis in Alternaria alternata strain ZJ33, which was isolated from blighted leaves of Eupatorium adenophorum. Using a pair of primers designed according to the consensus sequences of the adenylation domain of NRPSs, two fragments containing putative adenylation domains were amplified from A. alternata ZJ33, and subsequent PCR analyses demonstrated that these fragments belonged to the same NRPS coding sequence. With no introns, TES consists of a single 15,486 base pair open reading frame encoding a predicted 5161 amino acid protein. Meanwhile, the TES1 gene is predicted to contain five introns and encode a 506 amino acid protein. The TES protein is predicted to be comprised of four peptide synthase modules with two additional N-methylation domains, and the number and arrangement of the modules in TES were consistent with the number and arrangement of the amino acid residues of tentoxin, respectively. Notably, both TES and TES1 null mutants generated via homologous recombination failed to produce tentoxin. This study provides the first evidence concerning the biosynthesis of tentoxin in A. alternata. PMID:27490569

  11. P1 and N170 components distinguish human-like and animal-like makeup stimuli.

    PubMed

    Luo, Shuwei; Luo, Wenbo; He, Weiqi; Chen, Xu; Luo, Yuejia

    2013-06-19

    This study used event-related potentials to investigate the sensitivity of P1 and N170 components to human-like and animal-like makeup stimuli, which were derived from pictures of Peking opera characters. As predicted, human-like makeup stimuli elicited larger P1 and N170 amplitudes than did animal-like makeup stimuli. Interestingly, a right hemisphere advantage was observed for human-like but not for animal-like makeup stimuli. Dipole source analyses of 130-200-ms window showed that the bilateral fusiform face area may contribute to the differential sensitivity of the N170 component in response to human-like and animal-like makeup stimuli. The present study suggests that the amplitudes of both the P1 and the N170 are sensitive for the mouth component of face-like stimuli.

  12. Structure of Escherichia coli Arginyl-tRNA Synthetase in Complex with tRNAArg: Pivotal Role of the D-loop.

    PubMed

    Stephen, Preyesh; Ye, Sheng; Zhou, Ming; Song, Jian; Zhang, Rongguang; Wang, En-Duo; Giegé, Richard; Lin, Sheng-Xiang

    2018-05-25

    Aminoacyl-tRNA synthetases are essential components in protein biosynthesis. Arginyl-tRNA synthetase (ArgRS) belongs to the small group of aminoacyl-tRNA synthetases requiring cognate tRNA for amino acid activation. The crystal structure of Escherichia coli (Eco) ArgRS has been solved in complex with tRNA Arg at 3.0-Å resolution. With this first bacterial tRNA complex, we are attempting to bridge the gap existing in structure-function understanding in prokaryotic tRNA Arg recognition. The structure shows a tight binding of tRNA on the synthetase through the identity determinant A20 from the D-loop, a tRNA recognition snapshot never elucidated structurally. This interaction of A20 involves 5 amino acids from the synthetase. Additional contacts via U20a and U16 from the D-loop reinforce the interaction. The importance of D-loop recognition in EcoArgRS functioning is supported by a mutagenesis analysis of critical amino acids that anchor tRNA Arg on the synthetase; in particular, mutations at amino acids interacting with A20 affect binding affinity to the tRNA and specificity of arginylation. Altogether the structural and functional data indicate that the unprecedented ArgRS crystal structure represents a snapshot during functioning and suggest that the recognition of the D-loop by ArgRS is an important trigger that anchors tRNA Arg on the synthetase. In this process, A20 plays a major role, together with prominent conformational changes in several ArgRS domains that may eventually lead to the mature ArgRS:tRNA complex and the arginine activation. Functional implications that could be idiosyncratic to the arginine identity of bacterial ArgRSs are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Glutamine-dependent carbamoyl-phosphate synthetase and other enzyme activities related to the pyrimidine pathway in spleen of Squalus acanthias (spiny dogfish).

    PubMed Central

    Anderson, P M

    1989-01-01

    The first two steps of urea synthesis in liver of marine elasmobranchs involve formation of glutamine from ammonia and of carbamoyl phosphate from glutamine, catalysed by glutamine synthetase and carbamoyl-phosphate synthetase, respectively [Anderson & Casey (1984) J. Biol. Chem. 259, 456-462]; both of these enzymes are localized exclusively in the mitochondrial matrix. The objective of this study was to establish the enzymology of carbamoyl phosphate formation and utilization for pyrimidine nucleotide biosynthesis in Squalus acanthias (spiny dogfish), a representative elasmobranch. Aspartate carbamoyltransferase could not be detected in liver of dogfish. Spleen extracts, however, had glutamine-dependent carbamoyl-phosphate synthetase, aspartate carbamoyltransferase, dihydro-orotase, and glutamine synthetase activities, all localized in the cytosol; dihydro-orotate dehydrogenase, orotate phosphoribosyltransferase, and orotidine-5'-decarboxylase activities were also present. Except for glutamine synthetase, the levels of all activities were very low. The carbamoyl-phosphate synthetase activity is inhibited by UTP and is activated by 5-phosphoribosyl 1-pyrophosphate. The first three enzyme activities of the pyrimidine pathway were eluted in distinctly different positions during gel filtration chromatography under a number of different conditions; although complete proteolysis of inter-domain regions of a multifunctional complex during extraction cannot be excluded, the evidence suggests that in dogfish, in contrast to mammalian species, these three enzymes of the pyrimidine pathway exist as individual polypeptide chains. These results: (1) establish that dogfish express two different glutamine-dependent carbamoyl-phosphate synthetase activities, (2) confirm the report [Smith, Ritter & Campbell (1987) J. Biol. Chem. 262, 198-202] that dogfish express two different glutamine synthetases, and (3) provide indirect evidence that glutamine may not be available in liver for

  14. S-Adenosylmethionine synthetase 3 is important for pollen tube growth

    USDA-ARS?s Scientific Manuscript database

    S-Adenosylmethionine is widely used in a variety of biological reactions and participates in the methionine (Met) metabolic pathway. In Arabidopsis (Arabidopsis thaliana), one of the four S-adenosylmethionine synthetase genes, METHIONINE ADENOSYLTRANSFERASE3 (MAT3), is highly expressed in pollen. He...

  15. Assessing the effects of threonyl-tRNA synthetase on angiogenesis-related responses.

    PubMed

    Mirando, Adam C; Abdi, Khadar; Wo, Peibin; Lounsbury, Karen M

    2017-01-15

    Several recent reports have found a connection between specific aminoacyl-tRNA synthetases and the regulation of angiogenesis. As this new area of research is explored, it is important to have reliable assays to assess the specific angiogenesis functions of these enzymes. This review provides information about specific in vitro and in vivo methods that were used to assess the angiogenic functions of threonyl-tRNA synthetase including endothelial cell migration and tube assays as well as chorioallantoic membrane and tumor vascularization assays. The theory and discussion include best methods of analysis and quantification along with the advantages and limitations of each type of assay. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases

    PubMed Central

    Bender, Carol L.; Alarcón-Chaidez, Francisco; Gross, Dennis C.

    1999-01-01

    Coronatine, syringomycin, syringopeptin, tabtoxin, and phaseolotoxin are the most intensively studied phytotoxins of Pseudomonas syringae, and each contributes significantly to bacterial virulence in plants. Coronatine functions partly as a mimic of methyl jasmonate, a hormone synthesized by plants undergoing biological stress. Syringomycin and syringopeptin form pores in plasma membranes, a process that leads to electrolyte leakage. Tabtoxin and phaseolotoxin are strongly antimicrobial and function by inhibiting glutamine synthetase and ornithine carbamoyltransferase, respectively. Genetic analysis has revealed the mechanisms responsible for toxin biosynthesis. Coronatine biosynthesis requires the cooperation of polyketide and peptide synthetases for the assembly of the coronafacic and coronamic acid moieties, respectively. Tabtoxin is derived from the lysine biosynthetic pathway, whereas syringomycin, syringopeptin, and phaseolotoxin biosynthesis requires peptide synthetases. Activation of phytotoxin synthesis is controlled by diverse environmental factors including plant signal molecules and temperature. Genes involved in the regulation of phytotoxin synthesis have been located within the coronatine and syringomycin gene clusters; however, additional regulatory genes are required for the synthesis of these and other phytotoxins. Global regulatory genes such as gacS modulate phytotoxin production in certain pathovars, indicating the complexity of the regulatory circuits controlling phytotoxin synthesis. The coronatine and syringomycin gene clusters have been intensively characterized and show potential for constructing modified polyketides and peptides. Genetic reprogramming of peptide and polyketide synthetases has been successful, and portions of the coronatine and syringomycin gene clusters could be valuable resources in developing new antimicrobial agents. PMID:10357851

  17. Crystallization and preliminary X-ray analysis of a native human tRNA synthetase whose allelic variants are associated with Charcot–Marie–Tooth disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Wei; Schimmel, Paul; Yang, Xiang-Lei, E-mail: xlyang@scripps.edu

    2006-12-01

    Crystallization and preliminary X-ray analysis of a native human tRNA synthetase whose allelic variants are associated with Charcot–Marie–Tooth Disease. Glycyl-tRNA synthetase (GlyRS) is one of a group of enzymes that catalyze the synthesis of aminoacyl-tRNAs for translation. Mutations of human and mouse GlyRSs are causally associated with Charcot–Marie–Tooth disease, the most common genetic disorder of the peripheral nervous system. As the first step towards a structure–function analysis of this disease, native human GlyRS was expressed, purified and crystallized. The crystal belonged to space group P4{sub 3}2{sub 1}2 or its enantiomorphic space group P4{sub 1}2{sub 1}2, with unit-cell parameters a =more » b = 91.74, c = 247.18 Å, and diffracted X-rays to 3.0 Å resolution. The asymmetric unit contained one GlyRS molecule and had a solvent content of 69%.« less

  18. Entamoeba histolytica acetyl-CoA synthetase: biomarker of acute amoebic liver abscess

    PubMed Central

    Huat, Lim Boon; Garcia, Alfonso Olivos; Ning, Tan Zi; Kin, Wong Weng; Noordin, Rahmah; Azham, Siti Shafiqah Anaqi; Jie, Lee Zhi; Ching, Guee Cher; Chong, Foo Phiaw; Dam, Pim Chau

    2014-01-01

    Objective To characterize the Entamoeba histolytica (E. histolytica) antigen(s) recognized by moribound amoebic liver abscess hamsters. Methods Crude soluble antigen of E. histolytica was probed with sera of moribund hamsters in 1D- and 2D-Western blot analyses. The antigenic protein was then sent for tandem mass spectrometry analysis. The corresponding gene was cloned and expressed in Escherichia coli BL21-AI to produce the recombinant E. histolytica ADP-forming acetyl-CoA synthetase (EhACS) protein. A customised ELISA was developed to evaluate the sensitivity and specificity of the recombinant protein. Results A ∼75 kDa protein band with a pI value of 5.91-6.5 was found to be antigenic; and not detected by sera of hamsters in the control group. Tandem mass spectrometry analysis revealed the protein to be the 77 kDa E. histolytica ADP-forming acetyl-CoA synthetase (EhACS). The customised ELISA results revealed 100% sensitivity and 100% specificity when tested against infected (n=31) and control group hamsters (n=5) serum samples, respectively. Conclusions This finding suggested the significant role of EhACS as a biomarker for moribund hamsters with acute amoebic liver abscess (ALA) infection. It is deemed pertinent that future studies explore the potential roles of EhACS in better understanding the pathogenesis of ALA; and in the development of vaccine and diagnostic tests to control ALA in human populations. PMID:25182945

  19. Evidence for two immunologically distinct acetyl-coenzyme A synthetases in yeast

    NASA Technical Reports Server (NTRS)

    Satyanarayana, T.; Mandel, A. D.; Klein, H. P.

    1974-01-01

    Evidence is presented that clearly establishes the presence of two acetyl-CoA synthetases in Saccharomyces cerevisiae, one elaborated under 'aerobic' conditions, the other under 'nonaerobic' conditions. The antibody produced by each enzyme is immunologically specific.

  20. Reassimilation of Photorespiratory Ammonium in Lotus japonicus Plants Deficient in Plastidic Glutamine Synthetase

    PubMed Central

    Pérez-Delgado, Carmen M.; García-Calderón, Margarita; Márquez, Antonio J.; Betti, Marco

    2015-01-01

    It is well established that the plastidic isoform of glutamine synthetase (GS2) is the enzyme in charge of photorespiratory ammonium reassimilation in plants. The metabolic events associated to photorespiratory NH4 + accumulation were analyzed in a Lotus japonicus photorespiratory mutant lacking GS2. The mutant plants accumulated high levels of NH4 + when photorespiration was active, followed by a sudden drop in the levels of this compound. In this paper it was examined the possible existence of enzymatic pathways alternative to GS2 that could account for this decline in the photorespiratory ammonium. Induction of genes encoding for cytosolic glutamine synthetase (GS1), glutamate dehydrogenase (GDH) and asparagine synthetase (ASN) was observed in the mutant in correspondence with the diminishment of NH4 +. Measurements of gene expression, polypeptide levels, enzyme activity and metabolite levels were carried out in leaf samples from WT and mutant plants after different periods of time under active photorespiratory conditions. In the case of asparagine synthetase it was not possible to determine enzyme activity and polypeptide content; however, an increased asparagine content in parallel with the induction of ASN gene expression was detected in the mutant plants. This increase in asparagine levels took place concomitantly with an increase in glutamine due to the induction of cytosolic GS1 in the mutant, thus revealing a major role of cytosolic GS1 in the reassimilation and detoxification of photorespiratory NH4 + when the plastidic GS2 isoform is lacking. Moreover, a diminishment in glutamate levels was observed, that may be explained by the induction of NAD(H)-dependent GDH activity. PMID:26091523

  1. Paracentric Inversion of Chromosome 21 Leading to Disruption of the HLCS Gene in a Family with Holocarboxylase Synthetase Deficiency.

    PubMed

    Quinonez, Shane C; Seeley, Andrea H; Lam, Cindy; Glover, Thomas W; Barshop, Bruce A; Keegan, Catherine E

    2017-01-01

    Holocarboxylase synthetase (HLCS) deficiency is a rare autosomal recessive disorder that presents with multiple life-threatening metabolic derangements including metabolic acidosis, ketosis, and hyperammonemia. A majority of HLCS deficiency patients respond to biotin therapy; however, some patients show only a partial or no response to biotin therapy. Here, we report a neonatal presentation of HLCS deficiency with partial response to biotin therapy. Sequencing of HLCS showed a novel heterozygous mutation in exon 5, c.996G>C (p.Gln332His), which likely abolishes the normal intron 6 splice donor site. Cytogenetic analysis revealed that the defect of the other allele is a paracentric inversion on chromosome 21 that disrupts HLCS. This case illustrates that in addition to facilitating necessary family testing, a molecular diagnosis can optimize management by providing a better explanation of the enzyme's underlying defect. It also emphasizes the potential benefit of a karyotype in cases in which molecular genetic testing fails to provide an explanation.

  2. Effects of polyamine biosynthesis inhibitors on S-adenosylmethionine synthetase and S-adenosylmethionine decarboxylase activities in carrot cell cultures

    Treesearch

    S.C. Minocha; R. Minocha; A. Komamine

    1991-01-01

    Changes in the activites of S-adcnosylmethionine (SAM) synthetase (methionine adenosyltransferase, EC 2.5.1.6.) and SAM decarboxylase (EC 4.1.1.50) were studied in carrot (Daucus carota) cell cultures in response to 2,4-dichlorophenoxyacetic acid (2,4-D) and several inhibitors of polyamine biosynthesis. Activity of SAM synthetase increased...

  3. Non-standard amino acid recognition by Escherichia coli leucyl-tRNA synthetase

    NASA Technical Reports Server (NTRS)

    Martinis, S. A.; Fox, G. E.

    1997-01-01

    Recombinant E. coli leucyl-tRNA synthetase was screened for amino acid-dependent pyrophosphate exchange activity using noncognate aliphatic amino acids including norvaline, homocysteine, norleucine, methionine, and homoserine. [32P]-labeled reaction products were separated by thin layer chromatography using a novel solvent system and then quantified by phosphorimaging. Norvaline which differs from leucine by only one methyl group stimulated pyrophosphate exchange activity as did both homocysteine and norleucine to a lesser extent. The KM parameters for leucine and norvaline were measured to be 10 micromoles and 1.5 mM, respectively. Experiments are in progress to determine if norvaline is transferred to tRNA(Leu) and/or edited by a pre- or post-transfer mechanism.

  4. Inhibition of Carbamyl Phosphate Synthetase-I and Glutamine Synthetase by Hepatotoxic Doses of Acetaminophen in Mice

    PubMed Central

    Gupta, Sanjiv; Rogers, Lynette K.; Taylor, Sarah K.; Smith, Charles V.

    2016-01-01

    The primary mechanisms proposed for acetaminophen-induced hepatic necrosis should deplete protein thiols, either by covalent binding and thioether formation or by oxidative reactions such as S-thiolations. However, in previous studies we did not detect significant losses of protein thiol contents in response to administration of hepatotoxic doses of acetaminophen in vivo. In the present study we employed derivatization with the thiol-specific agent monobromobimane and separation of proteins by SDS–PAGE to investigate the possible loss of specific protein thiols during the course of acetaminophen-induced hepatic necrosis. Fasted adult male mice were given acetaminophen, and protein thiol status was examined subsequently in subcellular fractions isolated by differential centrifugation. No decreases in protein thiol contents were indicated, with the exception of a marked decrease in the fluorescent intensity, but not of protein content, as indicated by staining with Coomassie blue, of a single band of approximately 130 kDa in the mitochondrial fractions of acetaminophen-treated mice. This protein was identified by isolation and N-terminal sequence analysis as carbamyl phosphate synthetase-I (CPS-I) (EC 6.3.4.16). Hepatic CPS-I activities were decreased in mice given hepatotoxic doses of acetaminophen. In addition, hepatic glutamine synthetase activities were lower, and plasma ammonia levels were elevated in mice given hepatotoxic doses of acetaminophen. The observed hyperammonemia may contribute to the adverse effects of toxic doses of acetaminophen, and elucidation of the specific mechanisms responsible for the hyperammonemia may prove to be useful clinically. However, the preferential depletion of protein thiol content of a mitochondrial protein by chemically reactive metabolites generated in the endoplasmic reticulum presents a challenging and potentially informative mechanistic question. PMID:9344900

  5. Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation.

    PubMed Central

    Francklyn, Christopher; Perona, John J; Puetz, Joern; Hou, Ya-Ming

    2002-01-01

    Aminoacyl-tRNA synthetases attach amino acids to the 3' termini of cognate tRNAs to establish the specificity of protein synthesis. A recent Asilomar conference (California, January 13-18, 2002) discussed new research into the structure-function relationship of these crucial enzymes, as well as a multitude of novel functions, including participation in amino acid biosynthesis, cell cycle control, RNA splicing, and export of tRNAs from nucleus to cytoplasm in eukaryotic cells. Together with the discovery of their role in the cellular synthesis of proteins to incorporate selenocysteine and pyrrolysine, these diverse functions of aminoacyl-tRNA synthetases underscore the flexibility and adaptability of these ancient enzymes and stimulate the development of new concepts and methods for expanding the genetic code. PMID:12458790

  6. Function of membranous lysyl-tRNA synthetase and its implication for tumorigenesis.

    PubMed

    Young, Ho Jeon; Lee, Jung Weon; Kim, Sunghoon

    2016-12-01

    Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that conjugate specific amino acids to their cognate tRNAs for protein synthesis. Besides their catalytic activity, recent studies have uncovered many additional functions of these enzymes through their interactions with diverse cellular factors. Among human ARSs, cytosolic lysyl-tRNA synthetase (KRS) is often highly expressed in cancer cells and tissues, and facilitates cancer cell migration and invasion through the interaction with the 67kDa laminin receptor on the plasma membrane. Specific modulation of this interaction by small molecule inhibitors has revealed a new way to control metastasis. Here, we summarize the pro-metastatic functions of KRS and their patho-physiological implications. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Characteristics of a leucine aminoacyl transfer RNA synthetase from Tritrichomonas augusta.

    PubMed

    Horner, J; Champney, W S; Samuels, R

    1991-04-01

    This study has investigated the characteristics of a leucine aminoacyl transfer RNA synthetase enzyme from Tritrichomonas augusta. Differential centrifugation and DEAE-cellulose column chromatography were used for partial enzyme purification. The column purification increased the synthetase activity 125-fold over the unfractionated cell extract. The conditions for maximum [3H] leucine charging were 37 degrees C for 20 min, with protein at 180 micrograms ml-1 using yeast leucine tRNA as an acceptor. The optimal reaction conditions were 14 mM-Mg acetate, 3 mM-ATP, 3 mM-spermidine and 5.5 mM-putrescine. Acceptor activity with T. augusta transfer RNA was 8-fold higher than with yeast transfer RNA and 25-fold higher than with Escherichia coli transfer RNA. The partially purified enzyme fraction had comparable changing activities for both leucine and valine.

  8. Crystallization and preliminary X-ray diffraction analysis of recombinant phosphoribosylpyrophosphate synthetase from the Thermophilic thermus thermophilus strain HB27

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramchik, Yu. A.; Timofeev, V. I., E-mail: tostars@mail.ru; Muravieva, T. I.

    2017-01-15

    Phosphoribosylpyrophosphate synthetases (PRPP synthetases) are among the key enzymes essential for vital functions of organisms and are involved in the biosynthesis of purine and pyrimidine nucleotides, coenzymes, and the amino acids histidine and tryptophan. These enzymes are used in biotechnology for the combined chemoenzymatic synthesis of natural nucleotide analogs. Recombinant phosphoribosylpyrophosphate synthetase I from the thermophilic strain HB27 of the bacterium Thermus thermophilus (T. th HB27) has high thermal stability and shows maximum activity at 75°Ð¡, due to which this enzyme holds promise for biotechnological applications. In order to grow crystals and study them by X-ray crystallography, an enzyme sample,more » which was produced using a highly efficient producer strain, was purified by affinity and gel-filtration chromatography. The screening of crystallization conditions was performed by the vapor-diffusion technique. The crystals of the enzyme suitable for X-ray diffraction were grown by the counter-diffusion method through a gel layer. These crystals were used to collect the X-ray diffraction data set at the SPring-8 synchrotron radiation facility (Japan) to 3-Å resolution. The crystals belong to sp. gr. P2{sub 1} and have the following unitcell parameters: a = 107.7 Å, b = 112.6 Å, c = 110.2 Å, α = γ = 90°, β = 116.6°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the enzyme at 3.0-Å resolution.« less

  9. Crystallization and preliminary X-ray diffraction analysis of recombinant phosphoribosylpyrophosphate synthetase from the Thermophilic thermus thermophilus strain HB27

    NASA Astrophysics Data System (ADS)

    Abramchik, Yu. A.; Timofeev, V. I.; Muravieva, T. I.; Sinitsyna, E. V.; Esipov, R. S.; Kuranova, I. P.

    2017-01-01

    Phosphoribosylpyrophosphate synthetases (PRPP synthetases) are among the key enzymes essential for vital functions of organisms and are involved in the biosynthesis of purine and pyrimidine nucleotides, coenzymes, and the amino acids histidine and tryptophan. These enzymes are used in biotechnology for the combined chemoenzymatic synthesis of natural nucleotide analogs. Recombinant phosphoribosylpyrophosphate synthetase I from the thermophilic strain HB27 of the bacterium Thermus thermophilus ( T. th HB27) has high thermal stability and shows maximum activity at 75°C, due to which this enzyme holds promise for biotechnological applications. In order to grow crystals and study them by X-ray crystallography, an enzyme sample, which was produced using a highly efficient producer strain, was purified by affinity and gel-filtration chromatography. The screening of crystallization conditions was performed by the vapor-diffusion technique. The crystals of the enzyme suitable for X-ray diffraction were grown by the counter-diffusion method through a gel layer. These crystals were used to collect the X-ray diffraction data set at the SPring-8 synchrotron radiation facility (Japan) to 3-Å resolution. The crystals belong to sp. gr. P21 and have the following unitcell parameters: a = 107.7 Å, b = 112.6 Å, c = 110.2 Å, α = γ = 90°, β = 116.6°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the enzyme at 3.0-Å resolution.

  10. New isoforms and assembly of glutamine synthetase in the leaf of wheat (Triticum aestivum L.)

    PubMed Central

    Wang, Xiaochun; Wei, Yihao; Shi, Lanxin; Ma, Xinming; Theg, Steven M.

    2015-01-01

    Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regulated isoforms of GS holoenzyme in the leaf of wheat (Triticum aestivum L.) seedlings are described using native-PAGE with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2kDa), but different pI values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSII and GSIII, both located in the chloroplast, were each composed of a single 42.1kDa subunit with different pI values. GSII was active mainly in green leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experiments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 holoenzyme was ~490kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240kDa and likely a hexamer. Our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localization, assembly, and modification to achieve their roles during plant development. PMID:26307137

  11. New isoforms and assembly of glutamine synthetase in the leaf of wheat ( Triticum aestivum L.)

    DOE PAGES

    Wang, Xiaochun; Wei, Yihao; Shi, Lanxin; ...

    2015-08-24

    Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regulated isoforms of GS holoenzyme in the leaf of wheat ( Triticum aestivum L.) seedlings are described using native-PAGE with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2kDa), but different pI values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSIImore » and GSIII, both located in the chloroplast, were each composed of a single 42.1kDa subunit with different pI values. GSII was active mainly in green leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experiments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 holoenzyme was ~490kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240kDa and likely a hexamer. Lastly, our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localization, assembly, and modification to achieve their roles during plant development.« less

  12. Acetyl-coenzyme A synthetase 2 is a nuclear protein required for replicative longevity in Saccharomyces cerevisiae

    PubMed Central

    Falcón, Alaric A.; Chen, Shaoping; Wood, Michael S.

    2013-01-01

    Acs2p is one of two acetyl-coenzyme A synthetases in Saccharomyces cerevisiae. We have prepared and characterized a monoclonal antibody specific for Acs2p and find that Acs2p is localized primarily to the nucleus, including the nucleolus, with a minor amount in the cytosol. We find that Acs2p is required for replicative longevity: an acs2Δ strain has a reduced replicative life span compared to wild-type and acs1Δ strains. Furthermore, replicatively aged acs2Δ cells contain elevated levels of extrachromosomal rDNA circles, and silencing at the rDNA locus is impaired in an acs2Δ strain. These findings indicate that Acs2p-mediated synthesis of acetyl-CoA in the nucleus functions to promote rDNA silencing and replicative longevity in yeast. PMID:19618123

  13. OAS single-nucleotide polymorphisms and haplotypes are associated with variations in immune responses to rubella vaccine

    PubMed Central

    Haralambieva, Iana H.; Dhiman, Neelam; Ovsyannikova, Inna G.; Vierkant, Robert A.; Pankratz, V. Shane; Jacobson, Robert M.; Poland, Gregory A.

    2010-01-01

    Interferon (IFN)-induced antiviral genes are crucial players in innate antiviral defense and potential determinants of immune response heterogeneity. We selected 114 candidate SNPs from 12 antiviral genes using an LD tagSNP selection approach and genotyped them in a cohort of 738 schoolchildren immunized with two doses of rubella vaccine. Associations between SNPs/haplotypes and rubella virus-specific immune measures were assessed using linear regression methodologies. We identified 23 significant associations (p<0.05) between polymorphisms within the 2′-5′-oligoadenylate synthetase (OAS) gene cluster, and rubella virus-specific IL-2, IL-10, IL-6 secretion and antibody levels. The minor allele variants of three OAS1 SNPs (rs3741981/Ser162Gly, rs1051042/Thr361Arg, rs2660), located in a linkage disequilibrium block of functional importance, were significantly associated with an increase in rubella virus-specific IL-2/Th1 response (p≤0.024). Seven OAS1 and OAS3 promoter/regulatory SNPs were similarly associated with IL-2 secretion. Importantly, two SNPs (rs3741981 and rs10774670), independently cross-regulated rubella virus-specific IL-10 secretion levels (p≤0.031). Furthermore, both global tests and individual haplotype analyses revealed significant associations between OAS1 haplotypes and rubella virus-specific cytokine secretion. Our results suggest that innate immunity and OAS genetic variations are likely involved in modulating the magnitude and quality of the adaptive immune responses to live attenuated rubella vaccine. PMID:20079393

  14. Gene encoding plant asparagine synthetase

    DOEpatents

    Coruzzi, Gloria M.; Tsai, Fong-Ying

    1993-10-26

    The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

  15. Crystal structures and biochemical analyses suggest a unique mechanism and role for human glycyl-tRNA synthetase in Ap4A homeostasis.

    PubMed

    Guo, Rey-Ting; Chong, Yeeting E; Guo, Min; Yang, Xiang-Lei

    2009-10-16

    Aminoacyl-tRNA synthetases catalyze the attachment of amino acids to their cognate tRNAs for protein synthesis. However, the aminoacylation reaction can be diverted to produce diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways. The only known mechanism for Ap4A production by a tRNA synthetase is through the aminoacylation reaction intermediate aminoacyl-AMP, thus making Ap4A synthesis amino acid-dependent. Here, we demonstrate a new mechanism for Ap4A synthesis. Crystal structures and biochemical analyses show that human glycyl-tRNA synthetase (GlyRS) produces Ap4A by direct condensation of two ATPs, independent of glycine concentration. Interestingly, whereas the first ATP-binding pocket is conserved for all class II tRNA synthetases, the second ATP pocket is formed by an insertion domain that is unique to GlyRS, suggesting that GlyRS is the only tRNA synthetase catalyzing direct Ap4A synthesis. A special role for GlyRS in Ap4A homeostasis is proposed.

  16. Crystal Structures and Biochemical Analyses Suggest a Unique Mechanism and Role for Human Glycyl-tRNA Synthetase in Ap4A Homeostasis*

    PubMed Central

    Guo, Rey-Ting; Chong, Yeeting E.; Guo, Min; Yang, Xiang-Lei

    2009-01-01

    Aminoacyl-tRNA synthetases catalyze the attachment of amino acids to their cognate tRNAs for protein synthesis. However, the aminoacylation reaction can be diverted to produce diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways. The only known mechanism for Ap4A production by a tRNA synthetase is through the aminoacylation reaction intermediate aminoacyl-AMP, thus making Ap4A synthesis amino acid-dependent. Here, we demonstrate a new mechanism for Ap4A synthesis. Crystal structures and biochemical analyses show that human glycyl-tRNA synthetase (GlyRS) produces Ap4A by direct condensation of two ATPs, independent of glycine concentration. Interestingly, whereas the first ATP-binding pocket is conserved for all class II tRNA synthetases, the second ATP pocket is formed by an insertion domain that is unique to GlyRS, suggesting that GlyRS is the only tRNA synthetase catalyzing direct Ap4A synthesis. A special role for GlyRS in Ap4A homeostasis is proposed. PMID:19710017

  17. Biochemical heterogeneity in glutathione synthetase deficiency.

    PubMed Central

    Spielberg, S P; Garrick, M D; Corash, L M; Butler, J D; Tietze, F; Rogers, L; Schulman, J D

    1978-01-01

    Two different clinical syndromes are associated with glutathione synthetase deficiency, one presenting with hemolytic anemia and 5-oxoprolinuria, the other with isolated hemolysis. We have differentiated these disorders on an enzymatic basis. In 5-oxoprolinuria, all cell types examined have grossly deficient enzyme activity and glutathione content. In contrast, in the nonoxoprolinuric variant, erythrocytes have decreased enzyme activity and glutathione content, whereas nucleated cells maintain substantial levels of both. The enzyme in this disorder is unstable in vitro and has shortened survival in intact erythrocytes. Nucleated cells appear able to maintain sufficient enzyme activity and concentrations of glutathione to suppress overproduction of 5-oxoproline. PMID:659603

  18. Role of coupled dynamics in the catalytic activity of prokaryotic-like prolyl-tRNA synthetases.

    PubMed

    Sanford, Brianne; Cao, Bach; Johnson, James M; Zimmerman, Kurt; Strom, Alexander M; Mueller, Robyn M; Bhattacharyya, Sudeep; Musier-Forsyth, Karin; Hati, Sanchita

    2012-03-13

    Prolyl-tRNA synthetases (ProRSs) have been shown to activate both cognate and some noncognate amino acids and attach them to specific tRNA(Pro) substrates. For example, alanine, which is smaller than cognate proline, is misactivated by Escherichia coli ProRS. Mischarged Ala-tRNA(Pro) is hydrolyzed by an editing domain (INS) that is distinct from the activation domain. It was previously shown that deletion of the INS greatly reduced cognate proline activation efficiency. In this study, experimental and computational approaches were used to test the hypothesis that deletion of the INS alters the internal protein dynamics leading to reduced catalytic function. Kinetic studies with two ProRS variants, G217A and E218A, revealed decreased amino acid activation efficiency. Molecular dynamics studies showed motional coupling between the INS and protein segments containing the catalytically important proline-binding loop (PBL, residues 199-206). In particular, the complete deletion of INS, as well as mutation of G217 or E218 to alanine, exhibited significant effects on the motion of the PBL. The presence of coupled dynamics between neighboring protein segments was also observed through in silico mutations and essential dynamics analysis. Altogether, this study demonstrates that structural elements at the editing domain-activation domain interface participate in coupled motions that facilitate amino acid binding and catalysis by bacterial ProRSs, which may explain why truncated or defunct editing domains have been maintained in some systems, despite the lack of catalytic activity.

  19. Enzymatic characterization of a class II lysyl-tRNA synthetase, LysS, from Myxococcus xanthus.

    PubMed

    Oka, Manami; Takegawa, Kaoru; Kimura, Yoshio

    2015-08-01

    Lysyl-tRNA synthetases efficiently produce diadenosine tetraphosphate (Ap4A) from lysyl-AMP with ATP in the absence of tRNA. We characterized recombinant class II lysyl-tRNA synthetase (LysS) from Myxococcus xanthus and found that it is monomeric and requires Mn(2+) for the synthesis of Ap4A. Surprisingly, Zn(2+) inhibited enzyme activity in the presence of Mn(2+). When incubated with ATP, Mn(2+), lysine, and inorganic pyrophosphatase, LysS first produced Ap4A and ADP, then converted Ap4A to diadenosine triphosphate (Ap3A), and finally converted Ap3A to ADP, the end product of the reaction. Recombinant LysS retained Ap4A synthase activity without lysine addition. Additionally, when incubated with Ap4A (minus pyrophosphatase), LysS converted Ap4A mainly ATP and AMP, or ADP in the presence or absence of lysine, respectively. These results demonstrate that M. xanthus LysS has different enzymatic properties from class II lysyl-tRNA synthetases previously reported. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The pimeloyl-CoA synthetase BioW defines a new fold for adenylate-forming enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estrada, Paola; Manandhar, Miglena; Dong, Shi-Hui

    Reactions that activate carboxylates through acyl-adenylate intermediates are found throughout biology and include acyl- and aryl-CoA synthetases and tRNA synthetases. Here we describe the characterization of Aquifex aeolicus BioW, which represents a new protein fold within the superfamily of adenylating enzymes. Substrate-bound structures identified the enzyme active site and elucidated the mechanistic strategy for conjugating CoA to the seven-carbon α,ω-dicarboxylate pimelate, a biotin precursor. Proper position of reactive groups for the two half-reactions is achieved solely through movements of active site residues, as confirmed by site-directed mutational analysis. The ability of BioW to hydrolyze adenylates of noncognate substrates is reminiscentmore » of pre-transfer proofreading observed in some tRNA synthetases, and we show that this activity can be abolished by mutation of a single residue. These studies illustrate how BioW can carry out three different biologically prevalent chemical reactions (adenylation, thioesterification, and proofreading) in the context of a new protein fold.« less

  1. MD Simulations of tRNA and Aminoacyl-tRNA Synthetases: Dynamics, Folding, Binding, and Allostery

    PubMed Central

    Li, Rongzhong; Macnamara, Lindsay M.; Leuchter, Jessica D.; Alexander, Rebecca W.; Cho, Samuel S.

    2015-01-01

    While tRNA and aminoacyl-tRNA synthetases are classes of biomolecules that have been extensively studied for decades, the finer details of how they carry out their fundamental biological functions in protein synthesis remain a challenge. Recent molecular dynamics (MD) simulations are verifying experimental observations and providing new insight that cannot be addressed from experiments alone. Throughout the review, we briefly discuss important historical events to provide a context for how far the field has progressed over the past few decades. We then review the background of tRNA molecules, aminoacyl-tRNA synthetases, and current state of the art MD simulation techniques for those who may be unfamiliar with any of those fields. Recent MD simulations of tRNA dynamics and folding and of aminoacyl-tRNA synthetase dynamics and mechanistic characterizations are discussed. We highlight the recent successes and discuss how important questions can be addressed using current MD simulations techniques. We also outline several natural next steps for computational studies of AARS:tRNA complexes. PMID:26184179

  2. Time course of the uridylylation and adenylylation states in the glutamine synthetase bicyclic cascade.

    PubMed Central

    Varón-Castellanos, R; Havsteen, B H; García-Moreno, M; Valero-Ruiz, E; Molina-Alarcón, M; García-Cánovas, F

    1993-01-01

    A kinetic analysis of the glutamine synthetase bicyclic cascade is presented. It includes the dependence on time from the onset of the reaction of both the uridylylation of Shapiro's regulatory protein and the adenylylation of the glutamine synthetase. The transient phase equations obtained allow an estimation of the time elapsed until the states of uridylylation and adenylylation reach their steady-states, and therefore an evaluation of the effective sensitivity of the system. The contribution of the uridylylation cycle to the adenylylation cycle has been studied, and an equation relating the state of adenylylation at any time to the state of uridylylation at the same instant has been derived. PMID:8104399

  3. Cloning and characterization of the human 5,10-methenyltetrahydrofolate synthetase-encoding cDNA.

    PubMed

    Dayan, A; Bertrand, R; Beauchemin, M; Chahla, D; Mamo, A; Filion, M; Skup, D; Massie, B; Jolivet, J

    1995-11-20

    Methenyltetrahydrofolate synthetase (MTHFS) catalyses the obligatory initial metabolic step in the intracellular conversion of 5-formyltetrahydrofolate to other reduced folates. We have isolated and sequenced a human MTHFS cDNA which is 872-bp long and codes for a 203-amino-acid protein of 23,229 Da. Escherichia coli BL21(DE3), transfected with pET11c plasmids containing an open reading frame encoding MTHFS, showed a 100-fold increase in MTHFS activity in bacterial extracts after IPTG induction. Northern blot studies of human tissues determined that the MTHFS mRNA was expressed preferentially in the liver and Southern blot analysis of human genomic DNA suggested the presence of a single-copy gene.

  4. Formation of a Soluble Amylopectin-Like Polysaccharide in Potato Tubers 1

    PubMed Central

    Frydman, Rosalia B.; Cardini, Carlos E.

    1967-01-01

    When potato sprouts or potato tuber slices were incubated with 0.1 m glucose 1-phosphate, a soluble amylopectin-like polysaccharide was excreted to the medium. This polysaccharide was found to be a very good primer for phosphorylase and a poor one for starch synthetase. Beside the formation of this extracellular polysaccharide, a more branched intracellular polysaccharide could be isolated. This polysaccharide was an excellent primer for starch synthetase. Fructose 6-phosphate, glucose 6-phosphate, fructose 1,6-diphosphate, glucose or sucrose could not substitute for glucose 1-phosphate. 2,4-Dinitrophenol or nitrogen did not affect the excretion of the polysaccharide. Some properties of these 2 polysaccharides are described. PMID:16656546

  5. Infection-specific phosphorylation of glutamyl-prolyl tRNA synthetase induces antiviral immunity

    PubMed Central

    Lee, Eun-Young; Lee, Hyun-Cheol; Kim, Hyun-Kwan; Jang, Song Yee; Park, Seong-Jun; Kim, Yong-Hoon; Kim, Jong Hwan; Hwang, Jungwon; Kim, Jae-Hoon; Kim, Tae-Hwan; Arif, Abul; Kim, Seon-Young; Choi, Young-Ki; Lee, Cheolju; Lee, Chul-Ho; Jung, Jae U; Fox, Paul L; Kim, Sunghoon; Lee, Jong-Soo; Kim, Myung Hee

    2016-01-01

    The mammalian cytoplasmic multi-tRNA synthetase complex (MSC) is a depot system that regulates non-translational cellular functions. Here we found that the MSC component glutamyl-prolyl-tRNA synthetase (EPRS) switched its function following viral infection and exhibited potent antiviral activity. Infection-specific phosphorylation of EPRS at Ser990 induced its dissociation from the MSC, after which it was guided to the antiviral signaling pathway, where it interacted with PCBP2, a negative regulator of mitochondrial antiviral signaling protein (MAVS) that is critical for antiviral immunity. This interaction blocked PCBP2-mediated ubiquitination of MAVS and ultimately suppressed viral replication. EPRS-haploid (Eprs+/−) mice showed enhanced viremia and inflammation and delayed viral clearance. This stimulus-inducible activation of MAVS by EPRS suggests an unexpected role for the MSC as a regulator of immune responses to viral infection. PMID:27595231

  6. Holocarboxylase synthetase deficiency: novel clinical and molecular findings.

    PubMed

    Tammachote, R; Janklat, S; Tongkobpetch, S; Suphapeetiporn, K; Shotelersuk, V

    2010-07-01

    Multiple carboxylase deficiency (MCD) is an autosomal recessive metabolic disorder caused by defective activity of biotinidase or holocarboxylase synthetase (HLCS) in the biotin cycle. Clinical symptoms include skin lesions and severe metabolic acidosis. Here, we reported four unrelated Thai patients with MCD, diagnosed by urine organic acid analysis. Unlike Caucasians, which biotinidase deficiency has been found to be more common, all of our four Thai patients were affected by HLCS deficiency. Instead of the generally recommended high dose of biotin, our patients were given biotin at 1.2 mg/day. This low-dose biotin significantly improved their clinical symptoms and stabilized the metabolic state on long-term follow-up. Mutation analysis by polymerase chain reaction-sequencing of the entire coding region of the HLCS gene revealed the c.1522C>T (p.R508W) mutation in six of the eight mutant alleles. This suggests it as the most common mutation in the Thai population, which paves the way for a rapid and unsophisticated diagnostic method for the ethnic Thai. Haplotype analysis revealed that the c.1522C>T was on three different haplotypes suggesting that it was recurrent, not caused by a founder effect. In addition, a novel mutation, c.1513G>C (p.G505R), was identified, expanding the mutational spectrum of this gene.

  7. Recombinant expression, purification, and crystallization of the glutaminyl-tRNA synthetase from Toxoplasma gondii.

    PubMed

    van Rooyen, Jason M; Hakimi, Mohamed-Ali; Belrhali, Hassan

    2015-06-01

    Aminoacyl tRNA synthetases play a critical role in protein synthesis by providing precursor transfer-RNA molecules correctly charged with their cognate amino-acids. The essential nature of these enzymes make them attractive targets for designing new drugs against important pathogenic protozoans like Toxoplasma. Because no structural data currently exists for a protozoan glutaminyl-tRNA synthetase (QRS), an understanding of its potential as a drug target and its function in the assembly of the Toxoplasma multi-aminoacyl tRNA (MARS) complex is therefore lacking. Here we describe the optimization of expression and purification conditions that permitted the recovery and crystallization of both domains of the Toxoplasma QRS enzyme from a heterologous Escherichia coli expression system. Expression of full-length QRS was only achieved after the addition of an N-terminal histidine affinity tag and the isolated protein was active on both cellular and in vitro produced Toxoplasma tRNA. Taking advantage of the proteolytic susceptibility of QRS to cleavage into component domains, N-terminal glutathione S-transferase (GST) motif-containing domain fragments were isolated and crystallization conditions discovered. Isolation of the C-terminal catalytic domain was accomplished after subcloning the domain and optimizing expression conditions. Purified catalytic domain survived cryogenic storage and yielded large diffraction-quality crystals over-night after optimization of screening conditions. This work will form the basis of future structural studies into structural-functional relationships of both domains including potential targeted drug-design studies and investigations into the assembly of the Toxoplasma MARS complex. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Aspirin, protein transacetylation and inhibition of prostaglandin synthetase in the kidney

    PubMed Central

    Caterson, Robyn J.; Duggin, Geoffrey G.; Horvath, John; Mohandas, Janardanan; Tiller, David

    1978-01-01

    1 The effect of aspirin on the kidney has been investigated in mice and rabbits. [Acetyl-14C]-aspirin was administered intraperitoneally in doses ranging from subtherapeutic to toxic. The degree of acetylation of protein was determined by the radioactivity remaining on protein precipitates of renal cortex and medulla after sequential washing designed to remove non-covalently bound material. Controls were established, by the use of [carboxyl-14C]-aspirin. 2 The acetyl-14C residue was bound to renal proteins in a linear manner in increasing amounts with increasing dosage up to 100 mg/kg. The [carboxyl-14C]-aspirin was not bound and thus the salicylate portion of the molecule was not bound covalently to the renal protein. The time course of the acetylation was rapid, consistent with the rate of aspirin absorption. The disappearance of acetylated protein was slow, with a T1/2 of 112.5 h in the renal cortex, and 129.5 h in the renal medulla. 3 Differential centrifugation, Sephadex chromatography and gel electrophoresis were carried out on tissue homogenates to determine the site of acetylation. The acetylation was greatest in the microsomal fraction, although all protein fractions showed some degree of acetylation. 4 The prostaglandin synthetase activity of a particulate preparation from rabbit kidney was determined by a spectrophotometric assay of malondialdehyde formation. Aspirin (10 mg/kg, i.v.) significantly inhibited prostaglandin synthetase in the renal cortex and medulla. 5 Aspirin and renal proteins undergo a transacetylation reaction resulting in stable acetylated protein, with acetylation being greatest in the microsomal fraction. Aspirin has been shown to inhibit prostaglandin synthetase and this could lead to functional impairment of the tissue. PMID:102389

  9. Structural insights into the polyphyletic origins of glycyl tRNA synthetases

    DOE PAGES

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; ...

    2016-05-23

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α 2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α 2β 2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α 2β 2more » GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. Furthermore, a structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α 2β 2 GlyRS, convergent with α 2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor.« less

  10. 59Ni Production Rates in Mesosiderites Measured with Accelerator Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fink, D.; Tuniz, C.; Herzog, G. F.; Albrecht, A.; Fifield, L. K.; Allan, G. L.; Paul, M.

    1993-07-01

    neutron cross-sections alone. A twofold change in Budulan's terrestrial age alters the flux ratio by 10% at most. Like ^41Ca [9,10], P(sub)Fe(^59Ni) can be used to estimate shielding depths and lower limits on the pre-atmospheric radius. Calculations by [11] give a maximum value for P(sub)Fe(^59Ni) of 22 atoms/min/g-Ni at the center of an L-chondrite with a radius of 300 g/cm^2. The ^10Be and ^26Al activities in Estherville [5] and respective semi-empirical production rate formulas [12] set a maximum meteoroid radius of 300 g/cm^2. Our measured value for ^59Ni implies a lower radius limit of 150 g/cm^2 and shielding depths of 60-150 g/cm^2. Similarly for Budulan, we suggest a radius of 200 < R < 400 g/cm^2 and shielding depths from 40-200 g/cm^2. We infer that the above samples originated at relatively large depths (except for perhaps Budulan-2428) in meteoroids with preatmospheric radii > 30 cm, assuming a mesosiderite density of 5.5 g/cm^3. Interestingly, those samples (Budulan-2357 and Estherville-3311) having ^41Ca production rates that indicate a higher degree of shielding, have flux ratios equal to or less than 1; the other two samples have ^41Ca contents typical of near-surface exposure and have ratios phi(^59Ni)/phi(^41Ca) larger than unity. This correlation indicates that P(sub)59 from fast neutron reactions on ^60,61Ni enhances ^59Ni production at near surface regions. References: [1] Paul M. et al. (1993) Nucl. Inst. Meth., submitted. [2] Kutschera W. et al. (1992) Nucl. Inst. Meth., in press. [3] Klein J. et al.(1993) Meteoritics (this issue). [4] Albrecht A. et al. (1992) LPS XXIII, 5-6. [5] Vogt S. et al. (1991) Meteoritics, 26, 403. [6] Fink D. et al.(1992) LPS XXIII, 355-356. [7] Honda et al. (1967) Handb. Physik. 46(2), 613-632. [8] Fink D. et al. (1991) EPSL, 107, 115-128. [9] Fink D. et al. (1990) Nucl. Inst. Meth., B47, 79-96. [10] Klein J. et al. (1991) Meteoritics, 26, 358. [11] Spergel M. et al.(1986) Proc. LPS 16th; J. Geophys. Res., 91, D483-D494

  11. Role of Coupled-Dynamics in the Catalytic Activity of Prokaryotic-like Prolyl-tRNA Synthetases

    PubMed Central

    Sanford, Brianne; Cao, Bach; Johnson, James M.; Zimmerman, Kurt; Strom, Alexander M.; Mueller, Robyn M.; Bhattacharyya, Sudeep; Musier-Forsyth, Karin; Hati, Sanchita

    2012-01-01

    Prolyl-tRNA synthetases (ProRSs) have been shown to activate both cognate and some noncognate amino acids and attach them to specific tRNAPro substrates. For example, alanine, which is smaller than cognate proline, is misactivated by Escherichia coli ProRS. Mischarged Ala-tRNAPro is hydrolyzed by an editing domain (INS) that is distinct from the activation domain. It was previously shown that deletion of the INS greatly reduced cognate proline activation efficiency. In the present study, experimental and computational approaches were used to test the hypothesis that INS deletion alters the internal protein dynamics leading to reduce catalytic function. Kinetic studies with two ProRS variants, G217A and E218A, revealed decreased amino acid activation efficiency. Molecular dynamics studies showed motional coupling between the INS and protein segments containing the catalytically important proline-binding loop (PBL, residues 199–206). In particular, the complete deletion of INS, as well as mutation of G217 or E218 to alanine, exhibited significant effects on the motion of the PBL. The presence of coupled-dynamics between neighboring protein segments was also observed through in silico mutations and essential dynamics analysis. Taken together, the present study demonstrates that structural elements at the editing domain-activation domain interface participate in coupled motions that facilitate amino acid binding and catalysis by bacterial ProRSs, which may explain why truncated or defunct editing domains have been maintained in some systems, despite the lack of catalytic activity. PMID:22356126

  12. Multistep modeling of protein structure: application towards refinement of tyr-tRNA synthetase

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Shibata, M.; Roychoudhury, M.; Rein, R.

    1987-01-01

    The scope of multistep modeling (MSM) is expanding by adding a least-squares minimization step in the procedure to fit backbone reconstruction consistent with a set of C-alpha coordinates. The analytical solution of Phi and Psi angles, that fits a C-alpha x-ray coordinate is used for tyr-tRNA synthetase. Phi and Psi angles for the region where the above mentioned method fails, are obtained by minimizing the difference in C-alpha distances between the computed model and the crystal structure in a least-squares sense. We present a stepwise application of this part of MSM to the determination of the complete backbone geometry of the 321 N terminal residues of tyrosine tRNA synthetase to a root mean square deviation of 0.47 angstroms from the crystallographic C-alpha coordinates.

  13. A member of the polymerase beta nucleotidyltransferase superfamily is required for RNA interference in C. elegans.

    PubMed

    Chen, Chun-Chieh G; Simard, Martin J; Tabara, Hiroaki; Brownell, Daniel R; McCollough, Jennifer A; Mello, Craig C

    2005-02-22

    RNA interference (RNAi) is an ancient, highly conserved mechanism in which small RNA molecules (siRNAs) guide the sequence-specific silencing of gene expression . Several silencing machinery protein components have been identified, including helicases, RNase-related proteins, double- and single-stranded RNA binding proteins, and RNA-dependent RNA polymerase-related proteins . Work on these factors has led to the revelation that RNAi mechanisms intersect with cellular pathways required for development and fertility . Despite rapid progress in understanding key steps in the RNAi pathway, it is clear that many factors required for both RNAi and related developmental mechanisms have not yet been identified. Here, we report the characterization of the C. elegans gene rde-3. Genetic analysis of presumptive null alleles indicates that rde-3 is required for siRNA accumulation and for efficient RNAi in all tissues, and it is essential for fertility and viability at high temperatures. RDE-3 contains conserved domains found in the polymerase beta nucleotidyltransferase superfamily, which includes conventional poly(A) polymerases, 2'-5' oligoadenylate synthetase (OAS), and yeast Trf4p . These findings implicate a new enzymatic modality in RNAi and suggest possible models for the role of RDE-3 in the RNAi mechanism.

  14. Identification of Bacillus subtilis men mutants which lack O-succinylbenzoyl-coenzyme A synthetase and dihydroxynaphthoate synthase.

    PubMed Central

    Meganathan, R; Bentley, R; Taber, H

    1981-01-01

    Menaquinone (vitamin K2)-deficient mutants of Bacillus subtilis, whose growth requirement is satisfied by 1,4-dihydroxy-2-naphthoic acid but not by o-succinylbenzoic acid (OSB), have been analyzed for enzymatic defects. Complementation analysis of cell-free extracts of the mutants revealed that there are two groups, as already indicated by genetic analysis. The missing enzyme in each group was identified by complementation of the cell-free extracts with o-succinylbenzoyl-coenzyme A (CoA) synthetase and dihydroxynaphthoate synthase extracted from Mycobacterium phlei. Mutants found to lack dihydroxynaphthoate synthase, and which therefore complement with dihydroxynaphthoate synthase of M. phlei, were designated as menB; those lacking o-succinylbenzoyl-CoA synthetase, and therefore complementing with o-succinylbenzoyl-CoA synthetase, were designated as menE. The menB mutants RB413 (men-325) and RB415 (men-329), when incubated with [2,3-14C2]OSB, produced only the spirodilactone form of OSB in a reaction that was CoA and adenosine 5'-triphosphate dependent. PMID:6780515

  15. Changes in polyamines, inorganic ions and glutamine synthetase activity in response to nitrogen availability and form in red spruce (Picea rubens)

    Treesearch

    Michelle J. Serapiglia; Rakesh Minocha; Subhash C. Minocha

    2008-01-01

    We analyzed effects of nitrogen availability and form on growth rates, concentrations of polyamines and inorganic ions and glutamine synthetase activity in in-vitro-cultured red spruce (Picea rubens Sarg.) cells. Growth rates, concentrations of polyamines and glutamine synthetase activity declined when either the amount of nitrate or the total amount...

  16. The growing pipeline of natural aminoacyl-tRNA synthetase inhibitors for malaria treatment.

    PubMed

    Saint-Léger, Adélaïde; Sinadinos, Christopher; Ribas de Pouplana, Lluís

    2016-04-02

    Malaria remains a major global health problem. Parasite resistance to existing drugs makes development of new antimalarials an urgency. The protein synthesis machinery is an excellent target for the development of new anti-infectives, and aminoacyl-tRNA synthetases (aaRS) have been validated as antimalarial drug targets. However, avoiding the emergence of drug resistance and improving selectivity to target aaRS in apicomplexan parasites, such as Plasmodium falciparum, remain crucial challenges. Here we discuss such issues using examples of known inhibitors of P. falciparum aaRS, namely halofuginone, cladosporin and borrelidin (inhibitors of ProRS, LysRS and ThrRS, respectively). Encouraging recent results provide useful guidelines to facilitate the development of novel drug candidates which are more potent and selective against these essential enzymes.

  17. 24Na at Ex=4.7 -5.9 MeV from 22Ne(3He,p )

    NASA Astrophysics Data System (ADS)

    Fortune, H. T.

    2018-04-01

    Abstract. Analysis of data from the 22Ne(3He,p ) 24Na reaction has been extended to include 18 angular distributions for states between 4.7 and 5.9 MeV. A distorted-wave Born-approximation analysis allows the determination of ℓ value(s) for most of them. Results for Jπ are compared with previous information. In general, agreement is good. Some apparent disagreements between current and past results are indicative of population of a different state in this reaction than the nearby one listed in the compilation.

  18. A comparative study of low pH stress in E. coli and S. typhimurium, and a comparative study of the inducibility of lysyl-tRNA synthetase in the enterobacteriaceae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickey, E.W.

    1988-01-01

    Lysyl-tRNA synthetase (LRS) in Escherichia coli is coded by two genes, one constitutive, and the other inducible. The commonness of inducibility of this enzyme in prokaryotes was first tested in eight members of the Enterobacteriaceae using culture conditions known to induce it in E. coli. LRS was found to be inducible in Salmonella Typhimurium, Citrobacter freundii, Klebsiella pneumoniae and Enterobacter aerogenes, but not in Serratia marcescens, Proteus mirabilis, Proteus vulgaris or Morganella morganii. The results also indicated that LRS was not induced in E. coli grown in defined medium (SMM) at an external pH (pH{sub 0}) of 5.0, whereas, itmore » was induced in S. typhimurium under this condition. Further investigation of low pH{sub 0} induced behavior in E. coli and S. typhimurium by quantitation of H{sub 2} {sup 35}SO{sub 4} labeled proteins from two dimensional polyacrylamide gels of whole cell sonic extracts showed that at least twenty proteins were induced from 2- to 16-fold in S. typhimurium grown at pH{sub 0} 5.0 or shifted from growth at pH{sub 0} 7.0 to 5.0. Internal pH (pH{sub i}) changes occurring during steady state growth at low pH{sub 0}, and on shifting from pH{sub 0} 7.0 to 5.0, were measured using {sup 14}C-benzoic acid uptake.« less

  19. Structural modeling of tissue-specific mitochondrial alanyl-tRNA synthetase (AARS2) defects predicts differential effects on aminoacylation

    PubMed Central

    Euro, Liliya; Konovalova, Svetlana; Asin-Cayuela, Jorge; Tulinius, Már; Griffin, Helen; Horvath, Rita; Taylor, Robert W.; Chinnery, Patrick F.; Schara, Ulrike; Thorburn, David R.; Suomalainen, Anu; Chihade, Joseph; Tyynismaa, Henna

    2015-01-01

    The accuracy of mitochondrial protein synthesis is dependent on the coordinated action of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mtARSs) and the mitochondrial DNA-encoded tRNAs. The recent advances in whole-exome sequencing have revealed the importance of the mtARS proteins for mitochondrial pathophysiology since nearly every nuclear gene for mtARS (out of 19) is now recognized as a disease gene for mitochondrial disease. Typically, defects in each mtARS have been identified in one tissue-specific disease, most commonly affecting the brain, or in one syndrome. However, mutations in the AARS2 gene for mitochondrial alanyl-tRNA synthetase (mtAlaRS) have been reported both in patients with infantile-onset cardiomyopathy and in patients with childhood to adulthood-onset leukoencephalopathy. We present here an investigation of the effects of the described mutations on the structure of the synthetase, in an effort to understand the tissue-specific outcomes of the different mutations. The mtAlaRS differs from the other mtARSs because in addition to the aminoacylation domain, it has a conserved editing domain for deacylating tRNAs that have been mischarged with incorrect amino acids. We show that the cardiomyopathy phenotype results from a single allele, causing an amino acid change R592W in the editing domain of AARS2, whereas the leukodystrophy mutations are located in other domains of the synthetase. Nevertheless, our structural analysis predicts that all mutations reduce the aminoacylation activity of the synthetase, because all mtAlaRS domains contribute to tRNA binding for aminoacylation. According to our model, the cardiomyopathy mutations severely compromise aminoacylation whereas partial activity is retained by the mutation combinations found in the leukodystrophy patients. These predictions provide a hypothesis for the molecular basis of the distinct tissue-specific phenotypic outcomes. PMID:25705216

  20. Moderate folic acid supplementation and MTHFD1-synthetase deficiency in mice, a model for the R653Q variant, result in embryonic defects and abnormal placental development.

    PubMed

    Christensen, Karen E; Hou, Wenyang; Bahous, Renata H; Deng, Liyuan; Malysheva, Olga V; Arning, Erland; Bottiglieri, Teodoro; Caudill, Marie A; Jerome-Majewska, Loydie A; Rozen, Rima

    2016-11-01

    Moderately high folic acid intake in pregnant women has led to concerns about deleterious effects on the mother and fetus. Common polymorphisms in folate genes, such as methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) R653Q, may modulate the effects of elevated folic acid intake. We investigated the effects of moderate folic acid supplementation on reproductive outcomes and assessed the potential interaction of the supplemented diet with MTHFD1-synthetase (Mthfd1S) deficiency in mice, which is a model for the R653Q variant. Female Mthfd1S +/+ and Mthfd1S +/- mice were fed a folic acid-supplemented diet (FASD) (5-fold higher than recommended) or control diets before mating and during pregnancy. Embryos and placentas were assessed for developmental defects at embryonic day 10.5 (E10.5). Maternal folate and choline metabolites and gene expression in folate-related pathways were examined. The combination of FASD and maternal MTHFD1-synthetase deficiency led to a greater incidence of defects in E10.5 embryos (diet × maternal genotype, P = 0.0016; diet × embryonic genotype, P = 0.054). The methylenetetrahydrofolate reductase (MTHFR) protein and methylation potential [ratio of S-adenosylmethionine (major methyl donor):S-adenosylhomocysteine) were reduced in maternal liver. Although 5-methyltetrahydrofolate (methylTHF) was higher in maternal circulation, the methylation potential was lower in embryos. The presence of developmental delays and defects in Mthfd1S +/- embryos was associated with placental defects (P = 0.003). The labyrinth layer failed to form properly in the majority of abnormal placentas, which compromised the integration of the maternal and fetal circulation and presumably the transfer of methylTHF and other nutrients. Moderately higher folate intake and MTHFD1-synthetase deficiency in pregnant mice result in a lower methylation potential in maternal liver and embryos and a greater

  1. Enhancement of lysyl-tRNA synthetase activity in the Enterobacteriaceae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickey, E.W.; Hirshfield, I.

    1987-05-01

    Lysyl-tRNA synthetase (LRS) in E. coli is coded by two genes, one constitutive, and the other inducible; the latter is a cell stress protein. To determine if this system is wide spread in prokaryotes, the inducibility of LRS was first tested in eight members of the Enterobacteriaceae using cultural conditions known to induce the enzyme in E. coli K-12. Uninduced control cultures were grown to an O.D. of 0.2 at 580 nm in a supplemented minimal medium (SMM), pH 7.0 at 37/sup 0/C. Induction stimuli include: growth in SMM with 3mM Gly-L-Leu; growth in SMM as above, but with themore » initial pH adjusted to 5.0; or growth in Difco AC Broth to early stationary phase with a concomitant drop in the pH of the medium below 5.5. LRS activity was assayed in whole-cell sonic extracts by the aminoacylation of crude E. coli tRNA by /sup 14/C-lysine at pH 7.8 for three minutes. When E. aerogenes, K. pneumoniae, C. freundii, and S. typhimurium were grown in AC Broth, LRS activity was enhanced 2 to 4 fold. The enzyme is induced 2 to 4 fold in C. freundii and S. typhimurium upon growth at pH 5.0, whereas E. coli, K.; pneumoniae, and E. aerogenes show only a 1.5 fold induction. The peptide Gly-L-Leu enhanced LRS activity only in E. coli. LRS was not found to be inducible in S. marcescens, M. morganii, P. mirabilis, or P. vulgaris by any of the stimuli.« less

  2. Recoding aminoacyl-tRNA synthetases for synthetic biology by rational protein-RNA engineering.

    PubMed

    Hadd, Andrew; Perona, John J

    2014-12-19

    We have taken a rational approach to redesigning the amino acid binding and aminoacyl-tRNA pairing specificities of bacterial glutaminyl-tRNA synthetase. The four-stage engineering incorporates generalizable design principles and improves the pairing efficiency of noncognate glutamate with tRNA(Gln) by over 10(5)-fold compared to the wild-type enzyme. Better optimized designs of the protein-RNA complex include substantial reengineering of the globular core region of the tRNA, demonstrating a role for specific tRNA nucleotides in specifying the identity of the genetically encoded amino acid. Principles emerging from this engineering effort open new prospects for combining rational and genetic selection approaches to design novel aminoacyl-tRNA synthetases that ligate noncanonical amino acids onto tRNAs. This will facilitate reconstruction of the cellular translation apparatus for applications in synthetic biology.

  3. In Lactobacillus plantarum, Carbamoyl Phosphate Is Synthesized by Two Carbamoyl-Phosphate Synthetases (CPS): Carbon Dioxide Differentiates the Arginine-Repressed from the Pyrimidine-Regulated CPS

    PubMed Central

    Nicoloff, Hervé; Hubert, Jean-Claude; Bringel, Françoise

    2000-01-01

    Carbamoyl phosphate (CP) is an intermediate in pyrimidine and arginine biosynthesis. Carbamoyl-phosphate synthetase (CPS) contains a small amidotransferase subunit (GLN) that hydrolyzes glutamine and transfers ammonia to the large synthetase subunit (SYN), where CP biosynthesis occurs in the presence of ATP and CO2. Lactobacillus plantarum, a lactic acid bacterium, harbors a pyrimidine-inhibited CPS (CPS-P; Elagöz et al., Gene 182:37–43, 1996) and an arginine-repressed CPS (CPS-A). Sequencing has shown that CPS-A is encoded by carA (GLN) and carB (SYN). Transcriptional studies have demonstrated that carB is transcribed both monocistronically and in the carAB arginine-repressed operon. CP biosynthesis in L. plantarum was studied with three mutants (ΔCPS-P, ΔCPS-A, and double deletion). In the absence of both CPSs, auxotrophy for pyrimidines and arginine was observed. CPS-P produced enough CP for both pathways. In CO2-enriched air but not in ordinary air, CPS-A provided CP only for arginine biosynthesis. Therefore, the uracil sensitivity observed in prototrophic wild-type L. plantarum without CO2 enrichment may be due to the low affinity of CPS-A for its substrate CO2 or to regulation of the CP pool by the cellular CO2/bicarbonate level. PMID:10852872

  4. Electron-impact Ionization of P-like Ions Forming Si-like Ions

    NASA Astrophysics Data System (ADS)

    Kwon, D.-H.; Savin, D. W.

    2014-03-01

    We have calculated electron-impact ionization (EII) for P-like systems from P to Zn15 + forming Si-like ions. The work was performed using the flexible atomic code (FAC) which is based on a distorted-wave approximation. All 3l → nl' (n = 3-35) excitation-autoionization (EA) channels near the 3p direct ionization threshold and 2l → nl' (n = 3-10) EA channels at the higher energies are included. Close attention has been paid to the detailed branching ratios. Our calculated total EII cross sections are compared both with previous FAC calculations, which omitted many of these EA channels, and with the available experimental results. Moreover, for Fe11 +, we find that part of the remaining discrepancies between our calculations and recent measurements can be accounted for by the inclusion of the resonant excitation double autoionization process. Lastly, at the temperatures where each ion is predicted to peak in abundances in collisional ionization equilibrium, the Maxwellian rate coefficients derived from our calculations differ by 50%-7% from the previous FAC rate coefficients, with the difference decreasing with increasing charge.

  5. BVPaP-3, a T7-like lytic phage of Pseudomonas aeruginosa: its isolation and characterisation.

    PubMed

    Ahiwale, Sangeeta; Prakash, Divya; Gajbhiye, Milind; Jagdale, Smita; Patil, Nita; Kapadnis, Balu

    2012-04-01

    The increasing emergence of antibiotic-resistant bacteria has produced a growing interest among scientists in bacteriophages as alternative antimicrobial agents. This article reports a lytic phage against an antibiotic-resistant strain of Pseudomonas aeruginosa. Phage BVPaP-3 is a member of the Podoviridae family and morphologically similar to the T7-like phage gh-1. The phage has a hexagonal head of 58-59 nm in diameter and a short tail of 10 × 8 nm. It is stable at a wide range of pH (6-10) and temperatures (4-40°C). Its optimal growth temperature is 37°C and the adsorption rate constant is 1.19 × 10(-9). Latent and eclipse periods are 20 and 15 min, respectively, and the burst size is 44 after 35 min at 37°C. The phage has a DNA size of 41.31 kb and a proteome of 11 proteins. The major protein is 33 kDa in size.

  6. Three-dimensional structure of phosphoribosyl pyrophosphate synthetase from E. coli at 2.71 Å resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeev, V. I., E-mail: inna@ns.crys.ras.ru, E-mail: tostars@mail.ru, E-mail: ugama@yandex.ru; Abramchik, Yu. A.; Zhukhlistova, N. E.

    2016-01-15

    Phosphoribosyl pyrophosphate synthetase from Escherichia coli was cloned, purified, and crystallized. Single crystals of the enzyme were grown under microgravity. The X-ray diffraction data set was collected at the Spring-8 synchrotron facility and used to determine the three-dimensional structure of the enzyme by the molecular-replacement method at 2.71 Å resolution. The active and regulatory sites in the molecule of E. coli phosphoribosyl pyrophosphate synthetase were revealed by comparison with the homologous protein from Bacillus subtilis, the structure of which was determined in a complex with functional ligands. The conformations of polypeptide-chain fragments surrounding and composing the active and regulatory sitesmore » were shown to be identical in both proteins.« less

  7. Control of 5-aminolaevulinate synthetase activity in Rhodopseudomonas spheroides. The involvement of sulphur metabolism

    PubMed Central

    Neuberger, Albert; Sandy, John D.; Tait, George H.

    1973-01-01

    1. The `initial' 5-aminolaevulinate synthetase activity, that is the activity observed immediately after cell disruption, in extracts prepared from unharvested semianaerobically grown Rhodopseudomonas spheroides, was twice that observed under the same assay conditions in extracts prepared from harvested cells. 2. The effect of oxygenation of a culture on the `maximum' aminolaevulinate synthetase activity, that is the activity observed 1h after disruption of harvested cells, is markedly influenced by the contents of the growth medium. Oxygenation of organisms for 1h in the medium in which they have grown produces an 80–90% decrease in maximum activity, whereas similar treatment of organisms resuspended in fresh medium produces less than a 40% decrease. 3. This protective effect of fresh medium is absolutely dependent on the presence of sulphate. When cells are suspended in sulphate-deficient fresh medium, the maximum activity falls by 65–75% even without oxygenation. A high maximum activity is regenerated when sulphate is resupplied. 4. When organisms are oxygenated in the medium in which they have grown, the cellular contents of GSH+GSSG and cysteine+cystine fall very markedly and homolanthionine is formed. Both the fall in aminolaevulinate synthetase activity and the changes in sulphur metabolism are largely prevented by the addition of compounds which stimulate synthesis of cysteine de novo or inhibit the conversion of cysteine S into homocysteine S. 5. The maximum aminolaevulinate synthetase activity was directly proportional to the GSH+GSSG content of all cell preparations. In glutathione-depleted extracts the `low'-activity enzyme could be re-activated in vitro by the addition of GSH, GSSG, cysteine or cystine, whereas in extracts with a high glutathione content the `high'-activity enzyme was unaffected by these sulphur compounds. 6. The activation of low-activity enzyme with exogenous sulphur compounds was prevented by excluding air or by adding NADH

  8. Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases*♦

    PubMed Central

    Valencia-Sánchez, Marco Igor; Rodríguez-Hernández, Annia; Ferreira, Ruben; Santamaría-Suárez, Hugo Aníbal; Arciniega, Marcelino; Dock-Bregeon, Anne-Catherine; Moras, Dino; Beinsteiner, Brice; Brieba, Luis G.; Grøtli, Morten

    2016-01-01

    Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor. PMID:27226617

  9. Cylindrospermopsin and Saxitoxin Synthetase Genes in Cylindrospermopsis raciborskii Strains from Brazilian Freshwater

    PubMed Central

    Hoff-Risseti, Caroline; Dörr, Felipe Augusto; Schaker, Patricia Dayane Carvalho; Pinto, Ernani; Werner, Vera Regina; Fiore, Marli Fatima

    2013-01-01

    The Cylindrospermopsis raciborskii population from Brazilian freshwater is known to produce saxitoxin derivatives (STX), while cylindrospermopsin (CYN), which is commonly detected in isolates from Australia and Asia continents, has thus far not been detected in South American strains. However, during the investigation for the presence of cyrA, cyrB, cyrC and cyrJ CYN synthetase genes in the genomes of four laboratory-cultured C. raciborskii Brazilian strains, the almost complete cyrA gene sequences were obtained for all strains, while cyrB and cyrC gene fragments were observed in two strains. These nucleotide sequences were translated into amino acids, and the predicted protein functions and domains confirmed their identity as CYN synthetase genes. Attempts to PCR amplify cyrJ gene fragments from the four strains were unsuccessful. Phylogenetic analysis grouped the nucleotide sequences together with their homologues found in known CYN synthetase clusters of C. raciborskii strains with high bootstrap support. In addition, fragments of sxtA, sxtB and sxtI genes involved in STX production were also obtained. Extensive LC-MS analyses were unable to detect CYN in the cultured strains, whereas the production of STX and its analogues was confirmed in CENA302, CENA305 and T3. To our knowledge, this is the first study reporting the presence of cyr genes in South American strains of C. raciborskii and the presence of sxt and cyr genes in a single C. raciborskii strain. This discovery suggests a shift in the type of cyanotoxin production over time of South American strains of C. raciborskii and contributes to the reconstruction of the evolutionary history and diversification of cyanobacterial toxins. PMID:24015317

  10. Influence of endogenous pyrogen on the cerebral prostaglandin-synthetase system.

    PubMed

    Ziel, R; Krupp, P

    1976-11-15

    The biotransformation of arachidonic acid to prostaglandins in vitro is specifically augmented by endogenous pyrogen to a degree depending on the concentration applied, providing that the microsomal fraction of the cerebral cortex is used as prostaglandin-synthetase system. This effect is inhibited by non-steroidal anti-inflammatory agents. These findings are compatible with the hypothesis that prostaglandins might act as mediators of the febrile reaction induced by endogenous pyrogen.

  11. The growing pipeline of natural aminoacyl-tRNA synthetase inhibitors for malaria treatment

    PubMed Central

    Saint-Léger, Adélaïde; Sinadinos, Christopher; Ribas de Pouplana, Lluís

    2016-01-01

    ABSTRACT Malaria remains a major global health problem. Parasite resistance to existing drugs makes development of new antimalarials an urgency. The protein synthesis machinery is an excellent target for the development of new anti-infectives, and aminoacyl-tRNA synthetases (aaRS) have been validated as antimalarial drug targets. However, avoiding the emergence of drug resistance and improving selectivity to target aaRS in apicomplexan parasites, such as Plasmodium falciparum, remain crucial challenges. Here we discuss such issues using examples of known inhibitors of P. falciparum aaRS, namely halofuginone, cladosporin and borrelidin (inhibitors of ProRS, LysRS and ThrRS, respectively). Encouraging recent results provide useful guidelines to facilitate the development of novel drug candidates which are more potent and selective against these essential enzymes. PMID:26963157

  12. Avian influenza rapidly induces antiviral genes in duck lung and intestine

    PubMed Central

    Vanderven, Hillary A.; Petkau, Kristina; Ryan-Jean, Kieran E. E.; Aldridge, Jerry R.; Webster, Robert G.; Magor, Katharine E.

    2012-01-01

    Ducks are the natural reservoir of influenza A and survive infection by most strains. To characterize the duck immune response to influenza, we sought to identify innate immune genes expressed early in an infection. We used suppressive subtractive hybridization (SSH) to construct 3 libraries enriched in differentially expressed genes from lung RNA of a duck infected with highly pathogenic avian influenza virus A/Vietnam/1203/04 (H5N1), or lung and intestine RNA of a duck infected with low pathogenic avian influenza A/mallard/BC/500/05 (H5N2) compared to a mock-infected duck. Sequencing of 1687 clones identified a transcription profile enriched in genes involved in antiviral defense and other cellular processes. Major histocompatibility complex class I (MHC I), interferon induced protein with tricopeptide repeats 5 (IFIT5), and 2′–5′oligoadenylate synthetase-like gene (OASL) were increased more than 1000-fold in relative transcript abundance in duck lung at 1 dpi with highly pathogenic VN1203. These genes were induced much less in lung or intestine following infection with low pathogenic BC500. The expression of these genes following infection suggests that ducks initiate an immediate and robust response to a potentially lethal influenza strain, and a minimal response a low pathogenic strain. PMID:22534314

  13. Rheb Protein Binds CAD (Carbamoyl-phosphate Synthetase 2, Aspartate Transcarbamoylase, and Dihydroorotase) Protein in a GTP- and Effector Domain-dependent Manner and Influences Its Cellular Localization and Carbamoyl-phosphate Synthetase (CPSase) Activity*

    PubMed Central

    Sato, Tatsuhiro; Akasu, Hitomi; Shimono, Wataru; Matsu, Chisa; Fujiwara, Yuki; Shibagaki, Yoshio; Heard, Jeffrey J.; Tamanoi, Fuyuhiko; Hattori, Seisuke

    2015-01-01

    Rheb small GTPases, which consist of Rheb1 and Rheb2 (also known as RhebL1) in mammalian cells, are unique members of the Ras superfamily and play central roles in regulating protein synthesis and cell growth by activating mTOR. To gain further insight into the function of Rheb, we carried out a search for Rheb-binding proteins and found that Rheb binds to CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), a multifunctional enzyme required for the de novo synthesis of pyrimidine nucleotides. CAD binding is more pronounced with Rheb2 than with Rheb1. Rheb binds CAD in a GTP- and effector domain-dependent manner. The region of CAD where Rheb binds is located at the C-terminal region of the carbamoyl-phosphate synthetase domain and not in the dihydroorotase and aspartate transcarbamoylase domains. Rheb stimulated carbamoyl-phosphate synthetase activity of CAD in vitro. In addition, an elevated level of intracellular UTP pyrimidine nucleotide was observed in Tsc2-deficient cells, which was attenuated by knocking down of Rheb. Immunostaining analysis showed that expression of Rheb leads to increased accumulation of CAD on lysosomes. Both a farnesyltransferase inhibitor that blocks membrane association of Rheb and knockdown of Rheb mislocalized CAD. These results establish CAD as a downstream effector of Rheb and suggest a possible role of Rheb in regulating de novo pyrimidine nucleotide synthesis. PMID:25422319

  14. Rheb protein binds CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase) protein in a GTP- and effector domain-dependent manner and influences its cellular localization and carbamoyl-phosphate synthetase (CPSase) activity.

    PubMed

    Sato, Tatsuhiro; Akasu, Hitomi; Shimono, Wataru; Matsu, Chisa; Fujiwara, Yuki; Shibagaki, Yoshio; Heard, Jeffrey J; Tamanoi, Fuyuhiko; Hattori, Seisuke

    2015-01-09

    Rheb small GTPases, which consist of Rheb1 and Rheb2 (also known as RhebL1) in mammalian cells, are unique members of the Ras superfamily and play central roles in regulating protein synthesis and cell growth by activating mTOR. To gain further insight into the function of Rheb, we carried out a search for Rheb-binding proteins and found that Rheb binds to CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), a multifunctional enzyme required for the de novo synthesis of pyrimidine nucleotides. CAD binding is more pronounced with Rheb2 than with Rheb1. Rheb binds CAD in a GTP- and effector domain-dependent manner. The region of CAD where Rheb binds is located at the C-terminal region of the carbamoyl-phosphate synthetase domain and not in the dihydroorotase and aspartate transcarbamoylase domains. Rheb stimulated carbamoyl-phosphate synthetase activity of CAD in vitro. In addition, an elevated level of intracellular UTP pyrimidine nucleotide was observed in Tsc2-deficient cells, which was attenuated by knocking down of Rheb. Immunostaining analysis showed that expression of Rheb leads to increased accumulation of CAD on lysosomes. Both a farnesyltransferase inhibitor that blocks membrane association of Rheb and knockdown of Rheb mislocalized CAD. These results establish CAD as a downstream effector of Rheb and suggest a possible role of Rheb in regulating de novo pyrimidine nucleotide synthesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Electron-impact ionization of P-like ions forming Si-like ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, D.-H.; Savin, D. W., E-mail: hkwon@kaeri.re.kr

    2014-03-20

    We have calculated electron-impact ionization (EII) for P-like systems from P to Zn{sup 15+} forming Si-like ions. The work was performed using the flexible atomic code (FAC) which is based on a distorted-wave approximation. All 3ℓ → nℓ' (n = 3-35) excitation-autoionization (EA) channels near the 3p direct ionization threshold and 2ℓ → nℓ' (n = 3-10) EA channels at the higher energies are included. Close attention has been paid to the detailed branching ratios. Our calculated total EII cross sections are compared both with previous FAC calculations, which omitted many of these EA channels, and with the available experimentalmore » results. Moreover, for Fe{sup 11+}, we find that part of the remaining discrepancies between our calculations and recent measurements can be accounted for by the inclusion of the resonant excitation double autoionization process. Lastly, at the temperatures where each ion is predicted to peak in abundances in collisional ionization equilibrium, the Maxwellian rate coefficients derived from our calculations differ by 50%-7% from the previous FAC rate coefficients, with the difference decreasing with increasing charge.« less

  16. Thymidine kinase 2 and alanyl-tRNA synthetase 2 deficiencies cause lethal mitochondrial cardiomyopathy: case reports and review of the literature.

    PubMed

    Mazurova, Stella; Magner, Martin; Kucerova-Vidrova, Vendula; Vondrackova, Alzbeta; Stranecky, Viktor; Pristoupilova, Anna; Zamecnik, Josef; Hansikova, Hana; Zeman, Jiri; Tesarova, Marketa; Honzik, Tomas

    2017-07-01

    Cardiomyopathy is a common manifestation in neonates and infants with mitochondrial disorders. In this study, we report two cases manifesting with fatal mitochondrial hypertrophic cardiomyopathy, which include the third known patient with thymidine kinase 2 deficiency and the ninth patient with alanyl-tRNA synthetase 2 deficiency. The girl with thymidine kinase 2 deficiency had hypertrophic cardiomyopathy together with regression of gross motor development at the age of 13 months. Neurological symptoms and cardiac involvement progressed into severe myopathy, psychomotor arrest, and cardiorespiratory failure at the age of 22 months. The imaging methods and autoptic studies proved that she suffered from unique findings of leucoencephalopathy, severe, mainly cerebellar neuronal degeneration, and hepatic steatosis. The girl with alanyl-tRNA synthetase 2 deficiency presented with cardiac failure and underlying hypertrophic cardiomyopathy within 12 hours of life and subsequently died at 9 weeks of age. Muscle biopsy analyses demonstrated respiratory chain complex I and IV deficiencies, and histological evaluation revealed massive mitochondrial accumulation and cytochrome c oxidase-negative fibres in both cases. Exome sequencing in the first case revealed compound heterozygozity for one novel c.209T>C and one previously published c.416C>T mutation in the TK2 gene, whereas in the second case homozygozity for the previously described mutation c.1774C>T in the AARS2 gene was determined. The thymidine kinase 2 mutations resulted in severe mitochondrial DNA depletion (to 12% of controls) in the muscle. We present, for the first time, severe leucoencephalopathy and hepatic steatosis in a patient with thymidine kinase 2 deficiency and the finding of a ragged red fibre-like image in the muscle biopsy in a patient with alanyl-tRNA synthetase 2 deficiency.

  17. Identification of H209 as Essential for pH 8-Triggered Receptor-Independent Syncytium Formation by S Protein of Mouse Hepatitis Virus A59.

    PubMed

    Li, Pei; Shan, Yiwei; Zheng, Wangliang; Ou, Xiuyuan; Mi, Dan; Mu, Zhixia; Holmes, Kathryn V; Qian, Zhaohui

    2018-06-01

    The spike glycoprotein (S) of murine coronavirus mouse hepatitis virus (MHV) strain A59 uses murine carcinoembryonic antigen-related cell adhesion molecule 1a as its receptor for cell entry, but S protein can also be triggered in the absence of receptor by pH 8.0 alone at 37°C. The mechanism by which conformational changes of this S glycoprotein can be triggered by pH 8.0 has not yet been determined. Here, we show that MHV-A59 S protein is triggered by pH 8.0 at 37°C to induce receptor-independent syncytium (RIS) formation on 293T cells, and that the conformational changes in S proteins triggered by pH 8.0 are very similar to those triggered by receptor binding. We systemically mutated each of 15 histidine residues in S protein and found that H209 is essential for pH 8.0-triggered RIS formation, while H179, H441, H643, and H759 also play important roles in this process. Replacement of H209 with Ala had no effect on receptor binding, but in murine 17Cl.1 cells mutant H209A MHV-A59 showed delayed growth kinetics and was readily outcompeted by wild-type virus when mixed together, indicating that the H209A mutation caused a defect in virus fitness. Finally, the H209A mutation significantly increased the thermostability of S protein in its prefusion conformation, which may raise the energy barrier for conformational change of S protein required for membrane fusion and lead to a decrease in virus fitness in cell culture. Thus, MHV-A59 may have evolved to lower the stability of its S protein in order to increase virus fitness. IMPORTANCE Enveloped viruses enter cells through fusion of viral and cellular membranes, and the process is mediated by interactions between viral envelope proteins and their host receptors. In the prefusion conformation, viral envelope proteins are metastable, and activation to the fusion conformation is tightly regulated, since premature activation would lead to loss of viral infectivity. The stability of viral envelope proteins greatly

  18. Interferon action: two (2'-5')(A)n synthetases specified by distinct mRNAs in Ehrlich ascites tumor cells treated with interferon.

    PubMed

    St Laurent, G; Yoshie, O; Floyd-Smith, G; Samanta, H; Sehgal, P B; Lengyel, P

    1983-05-01

    (2'-5')(A)n synthetase and RNAase L (a latent endoribonuclease) are among the mediators of interferon action. The product of (2'-5')(A)n synthetase (i.e., (2'-5')(A)n) binds, and thereby activates RNAase L. Interferons induce in Ehrlich ascites tumor (EAT) cells two mRNAs (sizes 1.5 kb and 3.8 kb), which can be translated in Xenopus oocytes into (2'-5')(A)n synthetases of 20,000 to 30,000 daltons and 85,000 to 100,000 daltons, respectively. (2'-5')(A)n synthetases of corresponding sizes are induced by interferons in EAT cells. In the cell extract the bulk of the larger enzyme is in the cytoplasmic fraction, and the bulk of the smaller one in the nuclear fraction. The only known function of (2'-5')(A)n is the activation of RNAase L, and RNAase L can be selectively crosslinked to a (2'-5')(A)n derivative in a cytoplasmic extract from EAT cells. The same (2'-5')(A)n derivative can be crosslinked to several proteins in the nuclear extract of EAT cells, and some of these proteins are induced by interferon.

  19. The acetaminophen metabolite N-acetyl-p-benzoquinone imine (NAPQI) inhibits glutathione synthetase in vitro; a clue to the mechanism of 5-oxoprolinuric acidosis?

    PubMed

    Walker, Valerie; Mills, Graham A; Anderson, Mary E; Ingle, Brandall L; Jackson, John M; Moss, Charlotte L; Sharrod-Cole, Hayley; Skipp, Paul J

    2017-02-01

    1. Metabolic acidosis due to accumulation of l-5-oxoproline is a rare, poorly understood, disorder associated with acetaminophen treatment in malnourished patients with chronic morbidity. l-5-Oxoprolinuria signals abnormal functioning of the γ-glutamyl cycle, which recycles and synthesises glutathione. Inhibition of glutathione synthetase (GS) by N-acetyl-p-benzoquinone imine (NAPQI) could contribute to 5-oxoprolinuric acidosis in such patients. We investigated the interaction of NAPQI with GS in vitro. 2. Peptide mapping of co-incubated NAPQI and GS using mass spectrometry demonstrated binding of NAPQI with cysteine-422 of GS, which is known to be essential for GS activity. Computational docking shows that NAPQI is properly positioned for covalent bonding with cysteine-422 via Michael addition and hence supports adduct formation. 3. Co-incubation of 0.77 μM of GS with NAPQI (25-400 μM) decreased enzyme activity by 16-89%. Inhibition correlated strongly with the concentration of NAPQI and was irreversible. 4. NAPQI binds covalently to GS causing irreversible enzyme inhibition in vitro. This is an important novel biochemical observation. It is the first indication that NAPQI may inhibit glutathione synthesis, which is pivotal in NAPQI detoxification. Further studies are required to investigate its biological significance and its role in 5-oxoprolinuric acidosis.

  20. NF-κB and enhancer-binding CREB protein scaffolded by CREB-binding protein (CBP)/p300 proteins regulate CD59 protein expression to protect cells from complement attack.

    PubMed

    Du, Yiqun; Teng, Xiaoyan; Wang, Na; Zhang, Xin; Chen, Jianfeng; Ding, Peipei; Qiao, Qian; Wang, Qingkai; Zhang, Long; Yang, Chaoqun; Yang, Zhangmin; Chu, Yiwei; Du, Xiang; Zhou, Xuhui; Hu, Weiguo

    2014-01-31

    The complement system can be activated spontaneously for immune surveillance or induced to clear invading pathogens, in which the membrane attack complex (MAC, C5b-9) plays a critical role. CD59 is the sole membrane complement regulatory protein (mCRP) that restricts MAC assembly. CD59, therefore, protects innocent host cells from attacks by the complement system, and host cells require the constitutive and inducible expression of CD59 to protect themselves from deleterious destruction by complement. However, the mechanisms that underlie CD59 regulation remain largely unknown. In this study we demonstrate that the widely expressed transcription factor Sp1 may regulate the constitutive expression of CD59, whereas CREB-binding protein (CBP)/p300 bridge NF-κB and CREB, which surprisingly functions as an enhancer-binding protein to induce the up-regulation of CD59 during in lipopolysaccharide (LPS)-triggered complement activation, thus conferring host defense against further MAC-mediated destruction. Moreover, individual treatment with LPS, TNF-α, and the complement activation products (sublytic MAC (SC5b-9) and C5a) could increase the expression of CD59 mainly by activating NF-κB and CREB signaling pathways. Together, our findings identify a novel gene regulation mechanism involving CBP/p300, NF-κB, and CREB; this mechanism suggests potential drug targets for controlling various complement-related human diseases.

  1. Analogs of natural aminoacyl-tRNA synthetase inhibitors clear malaria in vivo

    PubMed Central

    Novoa, Eva Maria; Camacho, Noelia; Tor, Anna; Wilkinson, Barrie; Moss, Steven; Marín-García, Patricia; Azcárate, Isabel G.; Bautista, José M.; Mirando, Adam C.; Francklyn, Christopher S.; Varon, Sònia; Royo, Miriam; Cortés, Alfred; Ribas de Pouplana, Lluís

    2014-01-01

    Malaria remains a major global health problem. Emerging resistance to existing antimalarial drugs drives the search for new antimalarials, and protein translation is a promising pathway to target. Here we explore the potential of the aminoacyl-tRNA synthetase (ARS) family as a source of antimalarial drug targets. First, a battery of known and novel ARS inhibitors was tested against Plasmodium falciparum cultures, and their activities were compared. Borrelidin, a natural inhibitor of threonyl-tRNA synthetase (ThrRS), stands out for its potent antimalarial effect. However, it also inhibits human ThrRS and is highly toxic to human cells. To circumvent this problem, we tested a library of bioengineered and semisynthetic borrelidin analogs for their antimalarial activity and toxicity. We found that some analogs effectively lose their toxicity against human cells while retaining a potent antiparasitic activity both in vitro and in vivo and cleared malaria from Plasmodium yoelii-infected mice, resulting in 100% mice survival rates. Our work identifies borrelidin analogs as potent, selective, and unexplored scaffolds that efficiently clear malaria both in vitro and in vivo. PMID:25489076

  2. Structural basis of malaria parasite lysyl-tRNA synthetase inhibition by cladosporin.

    PubMed

    Khan, Sameena; Sharma, Arvind; Belrhali, Hassan; Yogavel, Manickam; Sharma, Amit

    2014-06-01

    Malaria parasites inevitably develop drug resistance to anti-malarials over time. Hence the immediacy for discovering new chemical scaffolds to include in combination malaria drug therapy. The desirable attributes of new chemotherapeutic agents currently include activity against both liver and blood stage malaria parasites. One such recently discovered compound called cladosporin abrogates parasite growth via inhibition of Plasmodium falciparum lysyl-tRNA synthetase (PfKRS), an enzyme central to protein translation. Here, we present crystal structure of ternary PfKRS-lysine-cladosporin (PfKRS-K-C) complex that reveals cladosporin's remarkable ability to mimic the natural substrate adenosine and thereby colonize PfKRS active site. The isocoumarin fragment of cladosporin sandwiches between critical adenine-recognizing residues while its pyran ring fits snugly in the ribose-recognizing cavity. PfKRS-K-C structure highlights ample space within PfKRS active site for further chemical derivatization of cladosporin. Such derivatives may be useful against additional human pathogens that retain high conservation in cladosporin chelating residues within their lysyl-tRNA synthetase.

  3. Rare recessive loss-of-function methionyl-tRNA synthetase mutations presenting as a multi-organ phenotype

    PubMed Central

    2013-01-01

    Background Methionyl-tRNA synthetase (MARS) catalyzes the ligation of methionine to its cognate transfer RNA and therefore plays an essential role in protein biosynthesis. Methods We used exome sequencing, aminoacylation assays, homology modeling, and immuno-isolation of transfected MARS to identify and characterize mutations in the methionyl-tRNA synthetase gene (MARS) in an infant with an unexplained multi-organ phenotype. Results We identified compound heterozygous mutations (F370L and I523T) in highly conserved regions of MARS. The parents were each heterozygous for one of the mutations. Aminoacylation assays documented that the F370L and I523T MARS mutants had 18 ± 6% and 16 ± 6%, respectively, of wild-type activity. Homology modeling of the human MARS sequence with the structure of E. coli MARS showed that the F370L and I523T mutations are in close proximity to each other, with residue I523 located in the methionine binding pocket. We found that the F370L and I523T mutations did not affect the association of MARS with the multisynthetase complex. Conclusion This infant expands the catalogue of inherited human diseases caused by mutations in aminoacyl-tRNA synthetase genes. PMID:24103465

  4. New Insights into the Role of RNase L in Innate Immunity

    PubMed Central

    Chakrabarti, Arindam; Jha, Babal Kant

    2011-01-01

    The interferon (IFN)-inducible 2′-5′-oligoadenylate synthetase (OAS)/RNase L pathway blocks infections by some types of viruses through cleavage of viral and cellular single-stranded RNA. Viruses induce type I IFNs that initiate signaling to the OAS genes. OAS proteins are pathogen recognition receptors for the viral pathogen-associated molecular pattern, double-stranded RNA. Double-stranded RNA activates OAS to produce px5′A(2′p5′A)n; x = 1–3; n > 2 (2-5A) from ATP. Upon binding 2-5A, RNase L is converted from an inactive monomer to a potently active dimeric endoribonuclease for single-stranded RNA. RNase L contains, from N- to C-terminus, a series of 9 ankyrin repeats, a linker, several protein kinase-like motifs, and a ribonuclease domain homologous to Ire1 (involved in the unfolded protein response). In the past few years, it has become increasingly apparent that RNase L and OAS contribute to innate immunity in many ways. For example, small RNA cleavage products produced by RNase L during viral infections can signal to the retinoic acid-inducible-I like receptors to amplify and perpetuate signaling to the IFN-β gene. In addition, RNase L is now implicated in protecting the central nervous system against viral-induced demyelination. A role in tumor suppression was inferred by mapping of the RNase L gene to the hereditary prostate cancer 1 (HPC1) gene, which in turn led to discovery of the xenotropic murine leukemia-related virus. A broader role in innate immunity is suggested by involvement of RNase L in cytokine induction and endosomal pathways that suppress bacterial infections. These newly described findings about RNase L could eventually provide the basis for developing broad-spectrum antimicrobial drugs. PMID:21190483

  5. Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation.

    PubMed

    Mayr, Johannes A; Zimmermann, Franz A; Fauth, Christine; Bergheim, Christa; Meierhofer, David; Radmayr, Doris; Zschocke, Johannes; Koch, Johannes; Sperl, Wolfgang

    2011-12-09

    Lipoic acid is an essential prosthetic group of four mitochondrial enzymes involved in the oxidative decarboxylation of pyruvate, α-ketoglutarate, and branched chain amino acids and in the glycine cleavage. Lipoic acid is synthesized stepwise within mitochondria through a process that includes lipoic acid synthetase. We identified the homozygous mutation c.746G>A (p.Arg249His) in LIAS in an individual with neonatal-onset epilepsy, muscular hypotonia, lactic acidosis, and elevated glycine concentration in plasma and urine. Investigation of the mitochondrial energy metabolism showed reduced oxidation of pyruvate and decreased pyruvate dehydrogenase complex activity. A pronounced reduction of the prosthetic group lipoamide was found in lipoylated proteins. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Effector gene birth in plant parasitic nematodes: Neofunctionalization of a housekeeping glutathione synthetase gene

    PubMed Central

    Lilley, Catherine J.; Maqbool, Abbas; Wu, Duqing; Yusup, Hazijah B.; Jones, Laura M.; Birch, Paul R. J.; Urwin, Peter E.

    2018-01-01

    Plant pathogens and parasites are a major threat to global food security. Plant parasitism has arisen four times independently within the phylum Nematoda, resulting in at least one parasite of every major food crop in the world. Some species within the most economically important order (Tylenchida) secrete proteins termed effectors into their host during infection to re-programme host development and immunity. The precise detail of how nematodes evolve new effectors is not clear. Here we reconstruct the evolutionary history of a novel effector gene family. We show that during the evolution of plant parasitism in the Tylenchida, the housekeeping glutathione synthetase (GS) gene was extensively replicated. New GS paralogues acquired multiple dorsal gland promoter elements, altered spatial expression to the secretory dorsal gland, altered temporal expression to primarily parasitic stages, and gained a signal peptide for secretion. The gene products are delivered into the host plant cell during infection, giving rise to “GS-like effectors”. Remarkably, by solving the structure of GS-like effectors we show that during this process they have also diversified in biochemical activity, and likely represent the founding members of a novel class of GS-like enzyme. Our results demonstrate the re-purposing of an endogenous housekeeping gene to form a family of effectors with modified functions. We anticipate that our discovery will be a blueprint to understand the evolution of other plant-parasitic nematode effectors, and the foundation to uncover a novel enzymatic function. PMID:29641602

  7. Targeting Prolyl-tRNA Synthetase to Accelerate Drug Discovery against Malaria, Leishmaniasis, Toxoplasmosis, Cryptosporidiosis, and Coccidiosis.

    PubMed

    Jain, Vitul; Yogavel, Manickam; Kikuchi, Haruhisa; Oshima, Yoshiteru; Hariguchi, Norimitsu; Matsumoto, Makoto; Goel, Preeti; Touquet, Bastien; Jumani, Rajiv S; Tacchini-Cottier, Fabienne; Harlos, Karl; Huston, Christopher D; Hakimi, Mohamed-Ali; Sharma, Amit

    2017-10-03

    Developing anti-parasitic lead compounds that act on key vulnerabilities are necessary for new anti-infectives. Malaria, leishmaniasis, toxoplasmosis, cryptosporidiosis and coccidiosis together kill >500,000 humans annually. Their causative parasites Plasmodium, Leishmania, Toxoplasma, Cryptosporidium and Eimeria display high conservation in many housekeeping genes, suggesting that these parasites can be attacked by targeting invariant essential proteins. Here, we describe selective and potent inhibition of prolyl-tRNA synthetases (PRSs) from the above parasites using a series of quinazolinone-scaffold compounds. Our PRS-drug co-crystal structures reveal remarkable active site plasticity that accommodates diversely substituted compounds, an enzymatic feature that can be leveraged for refining drug-like properties of quinazolinones on a per parasite basis. A compound we termed In-5 exhibited a unique double conformation, enhanced drug-like properties, and cleared malaria in mice. It thus represents a new lead for optimization. Collectively, our data offer insights into the structure-guided optimization of quinazolinone-based compounds for drug development against multiple human eukaryotic pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Active site nanospace of aminoacyl tRNA synthetase: difference between the class I and class II synthetases.

    PubMed

    Dutta, Saheb; Choudhury, Kaberi; Banik, Sindrila Dutta; Nandi, Nilashis

    2014-03-01

    The present work is aimed at understanding the origin of the difference in the molecular organization of the active site nanospaces of the class I and class II aminoacyl tRNA synthetases (aaRSs) which are tunnel-like structures. The active site encloses the cognate amino acid (AA) and the adenosine triphosphate (ATP) to carry out aminoacylation reaction. Comparison of the structures of the active site of the class I and class II (aaRSs) shows that the nanodimensional tunnels are curved in opposite directions in the two classes. We investigated the origin of this difference using quantum mechanical computation of electrostatic potential (ESP) of substrates, surrounding residues and ions, using Atoms in Molecule (AIM) Theory and charge population analysis. We show that the difference is principally due to the variation in the spatial charge distribution of ATP in the two classes which correspond to extended and bent conformations of ATP. The present computation shows that the most feasible pathway for nucleophilic attack to alphaP is oppositely directed for class I and class II aaRSs. The available crystal structures show that the cognate AA is indeed located along the channel favorable for nucleophilic attack as predicted by the ESP analysis. It is also shown that the direction of the channel changes its orientation when the orientation of ATP is changed from extended to a bent like structure. We further used the AIM theory to confirm the direction of the approach of AA in each case and the results corroborate the results from the ESP analysis. The opposite curvatures of the active site nanospaces in class I and class II aaRSs are related with the influence of the charge distributions of the extended and bent conformations of ATP, respectively. The results of the computation of electrostatic potential by successive addition of active site residues show that their roles on the reaction are similar in both classes despite the difference in the organization of the

  9. AMP-forming acetyl-CoA synthetases in Archaea show unexpected diversity in substrate utilization

    PubMed Central

    Ingram-Smith, Cheryl; Smith, Kerry S.

    2007-01-01

    Adenosine monophosphate (AMP)-forming acetyl-CoA synthetase (ACS; acetate:CoA ligase (AMP-forming), EC 6.2.1.1) is a key enzyme for conversion of acetate to acetyl-CoA, an essential intermediate at the junction of anabolic and catabolic pathways. Phylogenetic analysis of putative short and medium chain acyl-CoA synthetase sequences indicates that the ACSs form a distinct clade from other acyl-CoA synthetases. Within this clade, the archaeal ACSs are not monophyletic and fall into three groups composed of both bacterial and archaeal sequences. Kinetic analysis of two archaeal enzymes, an ACS from Methanothermobacter thermautotrophicus (designated as MT-ACS1) and an ACS from Archaeoglobus fulgidus (designated as AF-ACS2), revealed that these enzymes have very different properties. MT-ACS1 has nearly 11-fold higher affinity and 14-fold higher catalytic efficiency with acetate than with propionate, a property shared by most ACSs. However, AF-ACS2 has only 2.3-fold higher affinity and catalytic efficiency with acetate than with propionate. This enzyme has an affinity for propionate that is almost identical to that of MT-ACS1 for acetate and nearly tenfold higher than the affinity of MT-ACS1 for propionate. Furthermore, MT-ACS1 is limited to acetate and propionate as acyl substrates, whereas AF-ACS2 can also utilize longer straight and branched chain acyl substrates. Phylogenetic analysis, sequence alignment and structural modeling suggest a molecular basis for the altered substrate preference and expanded substrate range of AF-ACS2 versus MT-ACS1. PMID:17350930

  10. Caenorhabditis elegans Evolves a New Architecture for the Multi-aminoacyl-tRNA Synthetase Complex*

    PubMed Central

    Havrylenko, Svitlana; Legouis, Renaud; Negrutskii, Boris; Mirande, Marc

    2011-01-01

    MARS is an evolutionary conserved supramolecular assembly of aminoacyl-tRNA synthetases found in eukaryotes. This complex was thought to be ubiquitous in the deuterostome and protostome clades of bilaterians because similar complexes were isolated from arthropods and vertebrates. However, several features of the component enzymes suggested that in the nematode Caenorhabditis elegans, a species grouped with arthropods in modern phylogeny, this complex might not exist, or should display a significantly different structural organization. C. elegans was also taken as a model system to study in a multicellular organism amenable to experimental approaches, the reason for existence of these supramolecular entities. Here, using a proteomic approach, we have characterized the components of MARS in C. elegans. We show that this organism evolved a specific structural organization of this complex, which contains several bona fide components of the MARS complexes known so far, but also displays significant variations. These data highlight molecular evolution events that took place after radiation of bilaterians. Remarkably, it shows that expansion of MARS assembly in metazoans is not linear, but is the result of additions but also of subtractions along evolution. We then undertook an experimental approach, using inactivation of the endogenous copy of methionyl-tRNA synthetase by RNAi and expression of transgenic variants, to understand the role in complex assembly and the in vivo functionality, of the eukaryotic-specific domains appended to aminoacyl-tRNA synthetases. We show that rescue of the worms and assembly of transgenic variants into MARS rest on the presence of these appended domains. PMID:21685384

  11. Caenorhabditis elegans evolves a new architecture for the multi-aminoacyl-tRNA synthetase complex.

    PubMed

    Havrylenko, Svitlana; Legouis, Renaud; Negrutskii, Boris; Mirande, Marc

    2011-08-12

    MARS is an evolutionary conserved supramolecular assembly of aminoacyl-tRNA synthetases found in eukaryotes. This complex was thought to be ubiquitous in the deuterostome and protostome clades of bilaterians because similar complexes were isolated from arthropods and vertebrates. However, several features of the component enzymes suggested that in the nematode Caenorhabditis elegans, a species grouped with arthropods in modern phylogeny, this complex might not exist, or should display a significantly different structural organization. C. elegans was also taken as a model system to study in a multicellular organism amenable to experimental approaches, the reason for existence of these supramolecular entities. Here, using a proteomic approach, we have characterized the components of MARS in C. elegans. We show that this organism evolved a specific structural organization of this complex, which contains several bona fide components of the MARS complexes known so far, but also displays significant variations. These data highlight molecular evolution events that took place after radiation of bilaterians. Remarkably, it shows that expansion of MARS assembly in metazoans is not linear, but is the result of additions but also of subtractions along evolution. We then undertook an experimental approach, using inactivation of the endogenous copy of methionyl-tRNA synthetase by RNAi and expression of transgenic variants, to understand the role in complex assembly and the in vivo functionality, of the eukaryotic-specific domains appended to aminoacyl-tRNA synthetases. We show that rescue of the worms and assembly of transgenic variants into MARS rest on the presence of these appended domains.

  12. Diagnostic of protein crystallization by dynamic light scattering; an application to an aminoacyl-tRNA synthetase

    NASA Astrophysics Data System (ADS)

    Mikol, Vincent; Vincendon, Pascale; Eriani, Gilbert; Hirsch, Ernest; Giegé, Richard

    1991-03-01

    The apparent hydrodynamic radius of a truncated form of baker's yeast aspartyl-tRNA synthetase has been measured in various precipitating agent solutions as a function of the protein concentration by dynamic light scattering. In solvents containing ammonium sulfate or 2-methyl-2,4-pentanediol as the precipitating agent the protein remains essentially monodisperse, whereas in the presence of polyethylene glycol interactions and aggregations between protein molecules are detected before reaching supersaturation. These data are indications of possible crystallizations of the protein by the two former precipitants and no crystallization by the latter one. Crystallization experiments indeed have shown that the truncated synthetase crystallizes in the presence of ammonium sulfate and that no crystals grow in solvents containing polyethylene glycol.

  13. The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response

    PubMed Central

    Ezelle, Heather J.; Malathi, Krishnamurthy; Hassel, Bret A.

    2016-01-01

    The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2′-5′-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed. PMID:26760998

  14. The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response.

    PubMed

    Ezelle, Heather J; Malathi, Krishnamurthy; Hassel, Bret A

    2016-01-08

    The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2'-5'-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed.

  15. Negative argininosuccinate synthetase expression in melanoma tumours may predict clinical benefit from arginine-depleting therapy with pegylated arginine deiminase

    PubMed Central

    Feun, L G; Marini, A; Walker, G; Elgart, G; Moffat, F; Rodgers, S E; Wu, C J; You, M; Wangpaichitr, M; Kuo, M T; Sisson, W; Jungbluth, A A; Bomalaski, J; Savaraj, N

    2012-01-01

    Background: Arginine-depleting therapy with pegylated arginine deiminase (ADI-PEG20) was reported to have activity in advanced melanoma in early phase I–II trial, and clinical trials are currently underway in other cancers. However, the optimal patient population who benefit from this treatment is unknown. Methods: Advanced melanoma patients with accessible tumours had biopsy performed before the start of treatment with ADI-PEG20 and at the time of progression or relapse when amenable to determine whether argininosuccinate synthetase (ASS) expression in tumour was predictive of response to ADI-PEG20. Results: Twenty-seven of thirty-eight patients treated had melanoma tumours assessable for ASS staining before treatment. Clinical benefit rate (CBR) and longer time to progression were associated with negative expression of tumour ASS. Only 1 of 10 patients with ASS-positive tumours (ASS+) had stable disease, whereas 4 of 17 (24%) had partial response and 5 had stable disease, when ASS expression was negative (ASS−), giving CBR rates of 52.9 vs 10%, P=0.041. Two responding patients with negative ASS expression before therapy had rebiopsy after tumour progression and the ASS expression became positive. The survival of ASS− patients receiving at least four doses at 320 IU m−2 was significantly better than the ASS+ group at 26.5 vs 8.5 months, P=0.024. Conclusion: ADI-PEG20 is safe and the drug is only efficacious in melanoma patients whose tumour has negative ASS expression. Argininosuccinate synthetase tumour positivity is associated with drug resistance and tumour progression. PMID:22472884

  16. The genetic incorporation of p-azidomethyl-l-phenylalanine into proteins in yeast.

    PubMed

    Supekova, Lubica; Zambaldo, Claudio; Choi, Seihyun; Lim, Reyna; Luo, Xiaozhou; Kazane, Stephanie A; Young, Travis S; Schultz, Peter G

    2018-05-15

    The noncanonical amino acid p-azidomethyl-l-phenylalanine can be genetically incorporated into proteins in bacteria, and has been used both as a spectroscopic probe and for the selective modification of proteins by alkynes using click chemistry. Here we report identification of Escherichia coli tyrosyl tRNA synthetase mutants that allow incorporation of p-azidomethyl-l-phenylalanine into proteins in yeast. When expressed together with the cognate E. coli tRNA CUA Tyr , the new mutant tyrosyl tRNA synthetases directed robust incorporation of p-azidomethyl-l-phenylalanine into a model protein, human superoxide dismutase, in response to the UAG amber nonsense codon. Mass spectrometry analysis of purified superoxide dismutase proteins confirmed the efficient site-specific incorporation of p-azidomethyl-l-phenylalanine. This work provides an additional tool for the selective modification of proteins in eukaryotic cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Suppression of Amber Codons in Caulobacter crescentus by the Orthogonal Escherichia coli Histidyl-tRNA Synthetase/tRNAHis Pair

    PubMed Central

    Ko, Jae-hyeong; Llopis, Paula Montero; Heinritz, Jennifer; Jacobs-Wagner, Christine; Söll, Dieter

    2013-01-01

    While translational read-through of stop codons by suppressor tRNAs is common in many bacteria, archaea and eukaryotes, this phenomenon has not yet been observed in the α-proteobacterium Caulobacter crescentus. Based on a previous report that C. crescentus and Escherichia coli tRNAHis have distinctive identity elements, we constructed E. coli tRNAHis CUA, a UAG suppressor tRNA for C. crescentus. By examining the expression of three UAG codon- containing reporter genes (encoding a β-lactamase, the fluorescent mCherry protein, or the C. crescentus xylonate dehydratase), we demonstrated that the E. coli histidyl-tRNA synthetase/tRNAHis CUA pair enables in vivo UAG suppression in C. crescentus. E. coli histidyl-tRNA synthetase (HisRS) or tRNAHis CUA alone did not achieve suppression; this indicates that the E. coli HisRS/tRNAHis CUA pair is orthogonal in C. crescentus. These results illustrate that UAG suppression can be achieved in C. crescentus with an orthogonal aminoacyl-tRNA synthetase/suppressor tRNA pair. PMID:24386240

  18. Genomic structure and chromosomal localization of GML (GPI-anchored molecule-like protein), a gene induced by p53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Yasutoshi; Furuhata, Tomohisa; Nakamura, Yusuke

    1997-05-01

    Among its known functions, tumor suppressor gene p53 serves as a transcriptional regulator and mediates various signals through activation of downstream genes. We recently identified a novel gene, GML (glycosylphosphatidylinositol (GPI)-anchored molecule-like protein), whose expression is specifically induced by wildtype p53. To characterize the GML gene further, we determined 35.8 kb of DNA sequence that included a consensus binding sequence for p53 and the entire GML gene. The GML gene consists of four exons, and the p53-binding sequence is present in the 5{prime}-flanking region. In genomic organization this gene resembles genes encoding murine Ly-6 glycoproteins, a human homologue of themore » Ly-6 family called RIG-E, and CD59; products of these genes, known as GPI-anchored proteins, are variously involved in signal transduction, cell-cell adhesion, and cell-matrix attachment. FISH analysis revealed that the GML gene is located on human chromosome 8q24.3. Genes encoding at least two other GPI-anchored molecules, E48 and RIG-E, are also located in this region. 20 refs., 2 figs., 1 tab.« less

  19. Long-Range Structural Effects of a Charcot-Marie-Tooth Disease-Causing Mutation in Human Glycyl-TRNA Synthetase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, W.; Nangle, L.A.; Zhang, W.

    2009-06-04

    Functional expansion of specific tRNA synthetases in higher organisms is well documented. These additional functions may explain why dominant mutations in glycyl-tRNA synthetase (GlyRS) and tyrosyl-tRNA synthetase cause Charcot-Marie-Tooth (CMT) disease, the most common heritable disease of the peripheral nervous system. At least 10 disease-causing mutant alleles of GlyRS have been annotated. These mutations scatter broadly across the primary sequence and have no apparent unifying connection. Here we report the structure of wild type and a CMT-causing mutant (G526R) of homodimeric human GlyRS. The mutation is at the site for synthesis of glycyl-adenylate, but the rest of the two structuresmore » are closely similar. Significantly, the mutant form diffracts to a higher resolution and has a greater dimer interface. The extra dimer interactions are located {approx}30 {angstrom} away from the G526R mutation. Direct experiments confirm the tighter dimer interaction of the G526R protein. The results suggest the possible importance of subtle, long-range structural effects of CMT-causing mutations at the dimer interface. From analysis of a third crystal, an appended motif, found in higher eukaryote GlyRSs, seems not to have a role in these long-range effects.« less

  20. pH responsiveness of dendrimer-like poly(ethylene oxide)s.

    PubMed

    Feng, Xiaoshuang; Taton, Daniel; Borsali, Redouane; Chaikof, Elliot L; Gnanou, Yves

    2006-09-06

    Poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA), two polymers known to form pH-sensitive aggregates through noncovalent interactions, were assembled in purposely designed architecture -a dendrimer-like PEO scaffold carrying short inner PAA chains-to produce unimolecular systems that exhibit pH responsiveness. Because of the particular placement of the PAA chains within the dendrimer-like structure, intermolecular complexation between acrylic acid (AA) and ethylene oxide (EO) units-and thus macroscopic aggregation or even mesoscopic micellization-could be avoided in favor of the sole intramolecular complexation. The sensitivity of such interactions to pH was exploited to generate dendrimer-like PEOs that reversibly shrink and expand with the pH. Such PAA-carrying dendrimer-like PEOs were synthesized in two main steps. First, a fifth-generation dendrimer-like PEO was obtained by combining anionic ring-opening polymerization (AROP) of ethylene oxide from a tris-hydroxylated core and selective branching reactions of PEO chain ends. To this end, an AB(2)C-type branching agent was designed: the latter includes a chloromethyl (A) group for its covalent attachment to the arm ends, two geminal hydroxyls (B(2)) protected in the form of a ketal ring for the growth of subsequent PEO generations by AROP, and a vinylic (C) double bonds for further functionalization of the interior of dendrimer-like PEOs. Reiteration of AROP and derivatization of PEO branches allowed us to prepare a dendrimer-like PEO of fourth generation with a total molar mass of 52,000 g x mol(-1), containing 24 external hydroxyl functions and 21 inner vinylic groups in the interior. A fifth generation of PEO chains was generated from this parent dendrimer-like PEO of fourth generation using a "conventional" AB(2)-type branching agent, and 48 PEO branches could be grown by AROP. The 48 outer hydroxy-end groups of the fifth-generation dendrimer-like PEO obtained were subsequently quantitatively

  1. Inhibition of isoleucyl-tRNA synthetase as a potential treatment for human African Trypanosomiasis.

    PubMed

    Cestari, Igor; Stuart, Kenneth

    2013-05-17

    Trypanosoma brucei sp. causes human African trypanosomiasis (HAT; African sleeping sickness). The parasites initially proliferate in the hemolymphatic system and then invade the central nervous system, which is lethal if not treated. New drugs are needed for HAT because the approved drugs are few, toxic, and difficult to administer, and drug resistance is spreading. We showed by RNAi knockdown that T. brucei isoleucyl-tRNA synthetase is essential for the parasites in vitro and in vivo in a mouse model of infection. By structure prediction and experimental analysis, we also identified small molecules that inhibit recombinant isoleucyl-tRNA synthetase and that are lethal to the parasites in vitro and highly selective compared with mammalian cells. One of these molecules acts as a competitive inhibitor of the enzyme and cures mice of the infection. Because members of this class of molecules are known to cross the blood-brain barrier in humans and to be tolerated, they may be attractive as leading candidates for drug development for HAT.

  2. Aminoacyl-tRNA synthetases database Y2K

    PubMed Central

    Szymanski, Maciej; Barciszewski, Jan

    2000-01-01

    The aminoacyl-tRNA synthetases (AARS) are a diverse group of enzymes that ensure the fidelity of transfer of genetic information from DNA into protein. They catalyse the attachment of amino acids to transfer RNAs and thereby establish the rules of the genetic code by virtue of matching the nucleotide triplet of the anticodon with its cognate amino acid. Currently, 818 AARS primary structures have been reported from archaebacteria, eubacteria, mitochondria, chloroplasts and eukaryotic cells. The database is a compilation of the amino acid sequences of all AARSs, known to date, which are available as separate entries or alignments of related proteins via the WWW at http://rose.man.poznan.pl/aars/index.html PMID:10592262

  3. Aminoacyl-tRNA synthetases database Y2K.

    PubMed

    Szymanski, M; Barciszewski, J

    2000-01-01

    The aminoacyl-tRNA synthetases (AARS) are a diverse group of enzymes that ensure the fidelity of transfer of genetic information from DNA into protein. They catalyse the attachment of amino acids to transfer RNAs and thereby establish the rules of the genetic code by virtue of matching the nucleotide triplet of the anticodon with its cognate amino acid. Currently, 818 AARS primary structures have been reported from archaebacteria, eubacteria, mitochondria, chloro-plasts and eukaryotic cells. The database is a compilation of the amino acid sequences of all AARSs, known to date, which are available as separate entries or alignments of related proteins via the WWW at http://rose.man.poznan.pl/aars/index.html

  4. Electron impact excitation rate coefficients for P-like Ni XIV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, K.; Shanghai EBIT Lab, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433; Yan, J.

    2012-07-15

    We have calculated the atomic data including electron impact excitations and radiative decays among the lowest 143 fine-structure levels arising from 3s{sup 2}3p{sup 3}, 3s3p{sup 4}, 3s{sup 2}3p{sup 2}3d, 3p{sup 5}, 3s3p{sup 3}3d, and 3s{sup 2}3p3d{sup 2} configurations in P-like Ni XIV. Direct excitation collision strengths are calculated employing the relativistic distorted-wave method. Resonances are included via the isolated resonance approximation using distorted-waves. Resonance contributions from S-like [3s{sup 2}3p{sup 3}, 3s3p{sup 4}, 3s{sup 2}3p{sup 2}3d,3p{sup 5}, 3s3p{sup 3}3d,3s{sup 2}3p3d{sup 2}, 3p{sup 4}3d,3s3p{sup 2}3d{sup 2},3s{sup 2}3d{sup 3}]n{sup Prime }l{sup Prime} complex series are taken into account. Effective collision strengths are reportedmore » over an electron temperature range of 1.0 Multiplication-Sign 10{sup 5}-1.0 Multiplication-Sign 10{sup 8} K. -- Highlights: Black-Right-Pointing-Pointer Radiative and collisional atomic data are presented for the lowest 143 fine-structure levels in P-like Ni XIV. Black-Right-Pointing-Pointer Calculations are performed using the FAC package. Black-Right-Pointing-Pointer Resonances enhance significantly a large amount of transitions. Black-Right-Pointing-Pointer Resonances play an important role of level population and line intensity ratios.« less

  5. NDM-1 encoded by a pNDM-BJ01-like plasmid p3SP-NDM in clinical Enterobacter aerogenes

    PubMed Central

    Chen, Zhenhong; Li, Hongxia; Feng, Jiao; Li, Yuxue; Chen, Xin; Guo, Xuemin; Chen, Weijun; Wang, Li; Lin, Lei; Yang, Huiying; Yang, Wenhui; Wang, Jie; Zhou, Dongsheng; Liu, Changting; Yin, Zhe

    2015-01-01

    A carbapenem-nonsusceptible Enterobacter aerogenes strain named 3-SP was isolated from a human case of pneumonia in a Chinese teaching hospital. NDM-1 carbapenemase is produced by a pNDM-BJ01-like conjugative plasmid designated p3SP-NDM to account for carbapenem resistance of 3-SP. p3SP-NDM was fully sequenced and compared with all publically available pNDM-BJ01-like plasmids. The genetic differences between p3SP-NDM and pNDM-BJ01 include only 18 single nucleotide polymorphisms, a 1 bp deletion and a 706 bp deletion. p3SP-NDM and pNDM-BJ01 harbor an identical Tn125 element organized as ISAba125, blaNDM−1, bleMBL, ΔtrpF, dsbC, cutA, ΔgroES, groEL, ISCR27, and ISAba125. The blaNDM−1 surrounding regions in these pNDM-BJ01-like plasmids have a conserved linear organization ISAba14-aphA6-Tn125-unknown IS, with considerable genetic differences identified within or immediately downstream of Tn125. All reported pNDM-BJ01-like plasmids are exclusively found in Acinetobacter, whereas this is the first report of identification of a pNDM-BJ01-like plasmid in Enterobacteriaceae. PMID:25926823

  6. NDM-1 encoded by a pNDM-BJ01-like plasmid p3SP-NDM in clinical Enterobacter aerogenes.

    PubMed

    Chen, Zhenhong; Li, Hongxia; Feng, Jiao; Li, Yuxue; Chen, Xin; Guo, Xuemin; Chen, Weijun; Wang, Li; Lin, Lei; Yang, Huiying; Yang, Wenhui; Wang, Jie; Zhou, Dongsheng; Liu, Changting; Yin, Zhe

    2015-01-01

    A carbapenem-nonsusceptible Enterobacter aerogenes strain named 3-SP was isolated from a human case of pneumonia in a Chinese teaching hospital. NDM-1 carbapenemase is produced by a pNDM-BJ01-like conjugative plasmid designated p3SP-NDM to account for carbapenem resistance of 3-SP. p3SP-NDM was fully sequenced and compared with all publically available pNDM-BJ01-like plasmids. The genetic differences between p3SP-NDM and pNDM-BJ01 include only 18 single nucleotide polymorphisms, a 1 bp deletion and a 706 bp deletion. p3SP-NDM and pNDM-BJ01 harbor an identical Tn125 element organized as ISAba125, bla NDM-1, ble MBL, ΔtrpF, dsbC, cutA, ΔgroES, groEL, ISCR27, and ISAba125. The bla NDM-1 surrounding regions in these pNDM-BJ01-like plasmids have a conserved linear organization ISAba14-aphA6-Tn125-unknown IS, with considerable genetic differences identified within or immediately downstream of Tn125. All reported pNDM-BJ01-like plasmids are exclusively found in Acinetobacter, whereas this is the first report of identification of a pNDM-BJ01-like plasmid in Enterobacteriaceae.

  7. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase*

    PubMed Central

    Yao, Jiangwei; Dodson, V. Joshua; Frank, Matthew W.; Rock, Charles O.

    2015-01-01

    The obligate intracellular parasite Chlamydia trachomatis has a reduced genome but relies on de novo fatty acid and phospholipid biosynthesis to produce its membrane phospholipids. Lipidomic analyses showed that 8% of the phospholipid molecular species synthesized by C. trachomatis contained oleic acid, an abundant host fatty acid that cannot be made by the bacterium. Mass tracing experiments showed that isotopically labeled palmitic, myristic, and lauric acids added to the medium were incorporated into C. trachomatis-derived phospholipid molecular species. HeLa cells did not elongate lauric acid, but infected HeLa cell cultures elongated laurate to myristate and palmitate. The elongated fatty acids were incorporated exclusively into C. trachomatis-produced phospholipid molecular species. C. trachomatis has adjacent genes encoding the separate domains of the bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase gene (aas) of Escherichia coli. The CT775 gene encodes an acyltransferase (LpaT) that selectively transfers fatty acids from acyl-ACP to the 1-position of 2-acyl-glycerophospholipids. The CT776 gene encodes an acyl-ACP synthetase (AasC) with a substrate preference for palmitic compared with oleic acid in vitro. Exogenous fatty acids were elongated and incorporated into phospholipids by Escherichia coli-expressing AasC, illustrating its function as an acyl-ACP synthetase in vivo. These data point to an AasC-dependent pathway in C. trachomatis that selectively scavenges host saturated fatty acids to be used for the de novo synthesis of its membrane constituents. PMID:26195634

  8. 1p36 deletion syndrome associated with Prader-Willi-like phenotype.

    PubMed

    Tsuyusaki, Yu; Yoshihashi, Hiroshi; Furuya, Noritaka; Adachi, Masanori; Osaka, Hitoshi; Yamamoto, Kayono; Kurosawa, Kenji

    2010-08-01

    1p36 deletion syndrome is one of the most common subtelomeric deletion syndromes, characterized by moderate to severe mental retardation, characteristic facial appearance, hypotonia, obesity, and seizures. The clinical features often overlap with those of Prader-Willi syndrome (PWS). To elucidate the phenotype-genotype correlation in 1p36 deletion syndrome, two cases involving a PWS-like phenotype were analyzed on molecular cytogenetics. Two patients presenting with the PWS-like phenotype but having negative results for PWS underwent fluorescence in situ hybridization (FISH). The size of the chromosome 1p36 deletions was characterized using probes of BAC clones based on the University of California, Santa Cruz (UCSC) Genome Browser. PWS was excluded on FISH and methylation-specific polymerase chain reaction. Subsequent FISH using the probe D1Z2 showed deletion of the 1p36.3 region, confirming the diagnosis of 1p36 deletion syndrome. Further analysis characterized the 1p36 deletions as being located between 4.17 and 4.36 Mb in patient 1 and between 4.89 and 6.09 Mb in patient 2. Patients with 1p36 deletion syndrome exhibit a PWS-like phenotype and are therefore probably underdiagnosed. The possible involvement of the terminal 4 Mb region of chromosome 1p36 in the PWS-like phenotype is hypothesized. © 2010 Japan Pediatric Society.

  9. Malonyl-CoA Synthetase, Encoded by ACYL ACTIVATING ENZYME13, Is Essential for Growth and Development of Arabidopsis[C][W][OA

    PubMed Central

    Chen, Hui; Kim, Hyun Uk; Weng, Hua; Browse, John

    2011-01-01

    Malonyl-CoA is the precursor for fatty acid synthesis and elongation. It is also one of the building blocks for the biosynthesis of some phytoalexins, flavonoids, and many malonylated compounds. In plants as well as in animals, malonyl-CoA is almost exclusively derived from acetyl-CoA by acetyl-CoA carboxylase (EC 6.4.1.2). However, previous studies have suggested that malonyl-CoA may also be made directly from malonic acid by malonyl-CoA synthetase (EC 6.2.1.14). Here, we report the cloning of a eukaryotic malonyl-CoA synthetase gene, Acyl Activating Enzyme13 (AAE13; At3g16170), from Arabidopsis thaliana. Recombinant AAE13 protein showed high activity against malonic acid (Km = 529.4 ± 98.5 μM; Vm = 24.0 ± 2.7 μmol/mg/min) but little or no activity against other dicarboxylic or fatty acids tested. Exogenous malonic acid was toxic to Arabidopsis seedlings and caused accumulation of malonic and succinic acids in the seedlings. aae13 null mutants also grew poorly and accumulated malonic and succinic acids. These defects were complemented by an AAE13 transgene or by a bacterial malonyl-CoA synthetase gene under control of the AAE13 promoter. Our results demonstrate that the malonyl-CoA synthetase encoded by AAE13 is essential for healthy growth and development, probably because it is required for the detoxification of malonate. PMID:21642549

  10. Functional asymmetry in the lysyl-tRNA synthetase explored by molecular dynamics, free energy calculations and experiment

    PubMed Central

    Hughes, Samantha J; Tanner, Julian A; Hindley, Alison D; Miller, Andrew D; Gould, Ian R

    2003-01-01

    Background Charging of transfer-RNA with cognate amino acid is accomplished by the aminoacyl-tRNA synthetases, and proceeds through an aminoacyl adenylate intermediate. The lysyl-tRNA synthetase has evolved an active site that specifically binds lysine and ATP. Previous molecular dynamics simulations of the heat-inducible Escherichia coli lysyl-tRNA synthetase, LysU, have revealed differences in the binding of ATP and aspects of asymmetry between the nominally equivalent active sites of this dimeric enzyme. The possibility that this asymmetry results in different binding affinities for the ligands is addressed here by a parallel computational and biochemical study. Results Biochemical experiments employing isothermal calorimetry, steady-state fluorescence and circular dichroism are used to determine the order and stoichiometries of the lysine and nucleotide binding events, and the associated thermodynamic parameters. An ordered mechanism of substrate addition is found, with lysine having to bind prior to the nucleotide in a magnesium dependent process. Two lysines are found to bind per dimer, and trigger a large conformational change. Subsequent nucleotide binding causes little structural rearrangement and crucially only occurs at a single catalytic site, in accord with the simulations. Molecular dynamics based free energy calculations of the ATP binding process are used to determine the binding affinities of each site. Significant differences in ATP binding affinities are observed, with only one active site capable of realizing the experimental binding free energy. Half-of-the-sites models in which the nucleotide is only present at one active site achieve their full binding potential irrespective of the subunit choice. This strongly suggests the involvement of an anti-cooperative mechanism. Pathways for relaying information between the two active sites are proposed. Conclusions The asymmetry uncovered here appears to be a common feature of oligomeric aminoacyl

  11. The Role of Glutamine Synthetase and Glutamate Dehydrogenase in Cerebral Ammonia Homeostasis

    PubMed Central

    Cooper, Arthur J. L.

    2012-01-01

    In the brain, glutamine synthetase (GS), which is located predominantly in astrocytes, is largely responsible for the removal of both blood-derived and metabolically generated ammonia. Thus, studies with [13N]ammonia have shown that about 25% of blood-derived ammonia is removed in a single pass through the rat brain and that this ammonia is incorporated primarily into glutamine (amide) in astrocytes. Major pathways for cerebral ammonia generation include the glutaminase reaction and the glutamate dehydrogenase (GDH) reaction. The equilibrium position of the GDH-catalyzed reaction in vitro favors reductive amination of α-ketoglutarate at pH 7.4. Nevertheless, only a small amount of label derived from [13N]ammonia in rat brain is incorporated into glutamate and the α-amine of glutamine in vivo. Most likely the cerebral GDH reaction is drawn normally in the direction of glutamate oxidation (ammonia production) by rapid removal of ammonia as glutamine. Linkage of glutamate/α-ketoglutarate-utilizing aminotransferases with the GDH reaction channels excess amino acid nitrogen toward ammonia for glutamine synthesis. At high ammonia levels and/or when GS is inhibited the GDH reaction coupled with glutamate/α-ketoglutarate-linked aminotransferases may, however, promote the flow of ammonia nitrogen toward synthesis of amino acids. Preliminary evidence suggests an important role for the purine nucleotide cycle (PNC) as an additional source of ammonia in neurons (Net reaction: L-Aspartate + GTP + H2O → Fumarate + GDP + Pi + NH3) and in the beat cycle of ependyma cilia. The link of the PNC to aminotransferases and GDH/GS and its role in cerebral nitrogen metabolism under both normal and pathological (e.g. hyperammonemic encephalopathy) conditions should be a productive area for future research. PMID:22618691

  12. Mutation in the nuclear-encoded mitochondrial isoleucyl-tRNA synthetase IARS2 in patients with cataracts, growth hormone deficiency with short stature, partial sensorineural deafness, and peripheral neuropathy or with Leigh syndrome.

    PubMed

    Schwartzentruber, Jeremy; Buhas, Daniela; Majewski, Jacek; Sasarman, Florin; Papillon-Cavanagh, Simon; Thiffault, Isabelle; Thiffaut, Isabelle; Sheldon, Katherine M; Massicotte, Christine; Patry, Lysanne; Simon, Mariella; Zare, Amir S; McKernan, Kevin J; Michaud, Jacques; Boles, Richard G; Deal, Cheri L; Desilets, Valerie; Shoubridge, Eric A; Samuels, Mark E

    2014-11-01

    Mutations in the nuclear-encoded mitochondrial aminoacyl-tRNA synthetases are associated with a range of clinical phenotypes. Here, we report a novel disorder in three adult patients with a phenotype including cataracts, short-stature secondary to growth hormone deficiency, sensorineural hearing deficit, peripheral sensory neuropathy, and skeletal dysplasia. Using SNP genotyping and whole-exome sequencing, we identified a single likely causal variant, a missense mutation in a conserved residue of the nuclear gene IARS2, encoding mitochondrial isoleucyl-tRNA synthetase. The mutation is homozygous in the affected patients, heterozygous in carriers, and absent in control chromosomes. IARS2 protein level was reduced in skin cells cultured from one of the patients, consistent with a pathogenic effect of the mutation. Compound heterozygous mutations in IARS2 were independently identified in a previously unreported patient with a more severe mitochondrial phenotype diagnosed as Leigh syndrome. This is the first report of clinical findings associated with IARS2 mutations. © 2014 WILEY PERIODICALS, INC.

  13. Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohareer, Krishnaveni; Institute of Life Sciences, University of Hyderabad Campus, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046; Sahdev, Sudhir

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Baculovirus p35 is regulated by both viral and host factors. Black-Right-Pointing-Pointer Baculovirus p35 is negatively regulated by SfP53-like factor. Black-Right-Pointing-Pointer Baculovirus p35 is positively regulated by SfAP-1-like factor. -- Abstract: Baculovirus p35 belongs to the early class of genes of AcMNPV and requires viral factors like Immediate Early protein-1 for its transcription. To investigate the role of host factors in regulating p35 gene expression, the putative transcription factor binding sites were examined in silico and the role of these factors in influencing the transcription of p35 gene was assessed. We focused our studies on AP-1 and P53-like factors,more » which are activated under oxidative stress conditions. The AP-1 motif is located at -1401 while P53 motif is at -1912 relative to p35 translation start site. The predicted AP-1 and P53 elements formed specific complexes with Spodoptera frugiperda nuclear extracts. Both AP-1 and P53 motif binding proteins were down regulated as a function of AcMNPV infection in Spodoptera cells. To address the question whether during an oxidative outburst, the p35 transcription is enhanced; we investigated the role of these oxidative stress induced host transcription factors in influencing p35 gene transcription. Reporter assays revealed that AP-1 element enhances the transcription of p35 by a factor of two. Interestingly, P53 element appears to repress the transcription of p35 gene.« less

  14. Inhibition of Isoleucyl-tRNA Synthetase as a Potential Treatment for Human African Trypanosomiasis*

    PubMed Central

    Cestari, Igor; Stuart, Kenneth

    2013-01-01

    Trypanosoma brucei sp. causes human African trypanosomiasis (HAT; African sleeping sickness). The parasites initially proliferate in the hemolymphatic system and then invade the central nervous system, which is lethal if not treated. New drugs are needed for HAT because the approved drugs are few, toxic, and difficult to administer, and drug resistance is spreading. We showed by RNAi knockdown that T. brucei isoleucyl-tRNA synthetase is essential for the parasites in vitro and in vivo in a mouse model of infection. By structure prediction and experimental analysis, we also identified small molecules that inhibit recombinant isoleucyl-tRNA synthetase and that are lethal to the parasites in vitro and highly selective compared with mammalian cells. One of these molecules acts as a competitive inhibitor of the enzyme and cures mice of the infection. Because members of this class of molecules are known to cross the blood-brain barrier in humans and to be tolerated, they may be attractive as leading candidates for drug development for HAT. PMID:23548908

  15. The transcriptional activator NtrC controls the expression and activity of glutamine synthetase in Herbaspirillum seropedicae.

    PubMed

    Persuhn, D C; Souza, E M; Steffens, M B; Pedrosa, F O; Yates, M G; Rigo, L U

    2000-11-15

    The role of the Ntr system in Herbaspirillum seropedicae was determined via ntrB and ntrC mutants. Three phenotypes were identified in these mutants: Nif(-), deficiency in growth using nitrate, and low glutamine synthetase (GS) activity. All phenotypes were restored by the plasmid pKRT1 containing the intact glnA, ntrB and ntrC genes of H. seropedicae. The promoter region of glnA was subcloned into a beta-galactosidase fusion vector and the results suggested that NtrC positively regulates the glnA promoter in response to low nitrogen. The H. seropedicae ntrC and ntrB mutant strains showed a deficiency of adenylylation/deadenylylation of GS, indicating that NtrC and NtrB are involved in both transcription and activity control of GS in this organism.

  16. Glutamine synthetase immunor present in oligodendroglia of regions of the central nervous system

    NASA Technical Reports Server (NTRS)

    D'Amelio, Fernando; Eng, Lawrence F.; Gibbs, Michael A.

    1990-01-01

    Glutamine synthetase immunoreactive oligodendrocytes were identified in the cerebral cortex, cerebellum, brain stem, and spinal cord. They were mostly confined to the gray matter, particularly close to neurons and processes. The white matter showed few immunoreactive oligodendroglia. It was suggested that some type of oligodendrocytes, specially those in perineuronal location, might fulfill a functional role more akin to astrocytes than to the normally myelinating oligodendroglia.

  17. Glutamine Synthetase Isoenzymes in the Green Soil Alga Stichococcus bacillaris Naeg.

    PubMed

    Ahmad, I; Hellebust, J A

    1987-02-01

    Two forms of glutamine synthetase (GS(1) and GS(2)) have been separated from cells of Stichococcus bacillaris by fast protein liquid chromatography. The activities of the two isoenzymes were influenced by the composition of the media employed; thiol reagents were essential for stabilizing GS(2) but they suppressed GS(1) activity. The activity of each isoenzyme was, therefore, determined following separate purification procedures. Growth conditions influenced both isoenzymes; GS(2) showed maximum activity under photoautotrophic conditions, whereas GS(1) showed maximum activity under heterotrophic conditions.

  18. Acetate scavenging activity in Escherichia coli: interplay of acetyl-CoA synthetase and the PEP-glyoxylate cycle in chemostat cultures.

    PubMed

    Renilla, Sergio; Bernal, Vicente; Fuhrer, Tobias; Castaño-Cerezo, Sara; Pastor, José M; Iborra, José L; Sauer, Uwe; Cánovas, Manuel

    2012-03-01

    Impairment of acetate production in Escherichia coli is crucial for the performance of many biotechnological processes. Aerobic production of acetate (or acetate overflow) results from changes in the expression of central metabolism genes. Acetyl-CoA synthetase scavenges extracellular acetate in glucose-limited cultures. Once converted to acetyl-CoA, it can be catabolized by the tricarboxylic acid cycle or the glyoxylate pathway. In this work, we assessed the significance of these pathways on acetate overflow during glucose excess and limitation. Gene expression, enzyme activities, and metabolic fluxes were studied in E. coli knock-out mutants related to the glyoxylate pathway operon and its regulators. The relevance of post-translational regulation by AceK-mediated phosphorylation of isocitrate dehydrogenase for pathway functionality was underlined. In chemostat cultures performed at increasing dilution rates, acetate overflow occurs when growing over a threshold glucose uptake rate. This threshold was not affected in a glyoxylate-pathway-deficient strain (lacking isocitrate lyase, the first enzyme of the pathway), indicating that it is not relevant for acetate overflow. In carbon-limited chemostat cultures, gluconeogenesis (maeB, sfcA, and pck), the glyoxylate operon and, especially, acetyl-CoA synthetase are upregulated. A mutant in acs (encoding acetyl-CoA synthetase) produced acetate at all dilution rates. This work demonstrates that, in E. coli, acetate production occurs at all dilution rates and that overflow is the result of unbalanced synthesis and scavenging activities. The over-expression of acetyl-CoA synthetase by cAMP-CRP-dependent induction limits this phenomenon in cultures consuming glucose at low rate, ensuring the recycling of the acetyl-CoA and acetyl-phosphate pools, although establishing an energy-dissipating substrate cycle.

  19. Motion-Based pH Sensing Based on the Cartridge-Case-like Micromotor.

    PubMed

    Su, Yajun; Ge, Ya; Liu, Limei; Zhang, Lina; Liu, Mei; Sun, Yunyu; Zhang, Hui; Dong, Bin

    2016-02-17

    In this paper, we report a novel cartridge-case-like micromotor. The micromotor, which is fabricated by the template synthesis method, consists of a gelatin shell with platinum nanoparticles decorating its inner surface. Intriguingly, the resulting cartridge-case-like structure exhibits a pH-dependent "open and close" feature, which originates from the pH responsiveness of the gelatin material. On the basis of the catalytic activity of the platinum nanoparticle inside the gelatin shell, the resulting cartridge-case-like structure is capable of moving autonomously in the aqueous solution containing the hydrogen peroxide fuel. More interestingly, we find out that the micromotor can be utilized as a motion-based pH sensor over the whole pH range. The moving velocity of the micromotor increases monotonically with the increase of pH of the analyte solution. Three different factors are considered to be responsible for the proportional relation between the motion speed and pH of the analyte solution: the peroxidase-like and oxidase-like catalytic behavior of the platinum nanoparticle at low and high pH, the volumetric decomposition of the hydrogen peroxide under the basic condition and the pH-dependent catalytic activity of the platinum nanoparticle caused by the swelling/deswelling behavior of the gelatin material. The current work highlights the impact of the material properties on the motion behavior of a micromotor, thus paving the way toward its application in the motion-based sensing field.

  20. Hyperfine quenching of the 2s2 2p5 3 s3P2 state of Ne-like ions

    NASA Astrophysics Data System (ADS)

    Safronova, U. I.; Stafford, A.; Safronova, A. S.

    2017-04-01

    The many-body perturbation theory (RMBPT) is used to calculate energies and multipole matrix elements to evaluate hyperfine quenching of the 2s2 2p5 3 s 3P2 state in Ne-like ions. In particular, the 3P2 excited state decays to the 1S0 ground state by M2 emission, while both 1P1 and 3P1 states decay to the ground-state by E1 emission, which is substantially faster. For odd-A nuclei, the hyperfine interaction induces admixtures of 3P1 and 1P1 states into the 3P2 state, resulting in an increase of the 3P2 transition rate and a corresponding reduction of the 3P2 lifetime. We consider 22 Ne like ions with Z = 14 - 94 and nuclear moment I =1/2. We found that the largess hyperfine quenching contribution by a factor of 2 are for Ne-like 31P and 203Tl. The smallest (less than 1%) induced contribution are the following Ne-like ions: 57Fe, 107Ag, 109Ag, 183W, and 187Os ions. For another 15 Ne-like ions the hyperfine quenching contribution is between 15% and 35%. Applications to x-ray line polarization of Ne-like lines is considered. This work is supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002954.

  1. Mutations in glycyl-tRNA synthetase impair mitochondrial metabolism in neurons.

    PubMed

    Boczonadi, Veronika; Meyer, Kathrin; Gonczarowska-Jorge, Humberto; Griffin, Helen; Roos, Andreas; Bartsakoulia, Marina; Bansagi, Boglarka; Ricci, Giulia; Palinkas, Fanni; Zahedi, René P; Bruni, Francesco; Kaspar, Brian; Lochmüller, Hanns; Boycott, Kym M; Müller, Juliane S; Horvath, Rita

    2018-06-15

    The nuclear-encoded glycyl-tRNA synthetase gene (GARS) is essential for protein translation in both cytoplasm and mitochondria. In contrast, different genes encode the mitochondrial and cytosolic forms of most other tRNA synthetases. Dominant GARS mutations were described in inherited neuropathies, while recessive mutations cause severe childhood-onset disorders affecting skeletal muscle and heart. The downstream events explaining tissue-specific phenotype-genotype relations remained unclear. We investigated the mitochondrial function of GARS in human cell lines and in the GarsC210R mouse model. Human-induced neuronal progenitor cells (iNPCs) carrying dominant and recessive GARS mutations showed alterations of mitochondrial proteins, which were more prominent in iNPCs with dominant, neuropathy-causing mutations. Although comparative proteomic analysis of iNPCs showed significant changes in mitochondrial respiratory chain complex subunits, assembly genes, Krebs cycle enzymes and transport proteins in both recessive and dominant mutations, proteins involved in fatty acid oxidation were only altered by recessive mutations causing mitochondrial cardiomyopathy. In contrast, significant alterations of the vesicle-associated membrane protein-associated protein B (VAPB) and its downstream pathways such as mitochondrial calcium uptake and autophagy were detected in dominant GARS mutations. The role of VAPB has been supported by similar results in the GarsC210R mice. Our data suggest that altered mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) may be important disease mechanisms leading to neuropathy in this condition.

  2. Localization of Carbamoylphosphate Synthetase and Aspartate Carbamoyltransferase in Chloroplasts

    PubMed Central

    Shibata, Hitoshi; Ochiai, Hideo; Sawa, Yoshihiro; Miyoshi, Shoji

    1986-01-01

    The localization of carbamoylphosphate synthetase (CPSase) and aspartate carbamoyltransferase (ACTase), the first two enzymes of the pyrimidine biosynthetic pathway, in chloroplasts was investigated. In dark-grown radish (Raphanus sativus) seedlings, light induced a prominent increase in CPSase activity, but had little effect on ACTase activity. Both enzymes were found in chloroplasts isolated from radish cotyledons and leaves of spinach (Spinacia oleracea), soybean (Glycine max), and corn (Zea mays). The higher activity of ACTase relative to CPSase is discussed in relation to the instability of carbamoylphosphate, the product of the CPSase, and to the control of pyrimidine synthesis. Based on these results, the function of CPSase and ACTase in chloroplasts is discussed. PMID:16664566

  3. The structure of S . lividans acetoacetyl-CoA synthetase shows a novel interaction between the C-terminal extension and the N-terminal domain

    DOE PAGES

    Mitchell, Carter A.; Tucker, Alex C.; Escalante-Semerena, Jorge C.; ...

    2014-12-09

    The adenosine monoposphate-forming acyl-CoA synthetase enzymes catalyze a two-step reaction that involves the initial formation of an acyl adenylate that reacts in a second partial reaction to form a thioester between the acyl substrate and CoA. These enzymes utilize a Domain Alternation catalytic mechanism, whereby a ~110 residue C-terminal domain rotates by 140° to form distinct catalytic conformations for the two partial reactions. In this paper, the structure of an acetoacetyl-CoA synthetase (AacS) is presented that illustrates a novel aspect of this C-terminal domain. Specifically, several acetyl- and acetoacetyl-CoA synthetases contain a 30-residue extension on the C-terminus compared to othermore » members of this family. Finally, whereas residues from this extension are disordered in prior structures, the AacS structure shows that residues from this extension may interact with key catalytic residues from the N-terminal domain.« less

  4. CMP‑N‑acetylneuraminic acid synthetase interacts with fragile X related protein 1.

    PubMed

    Ma, Yun; Tian, Shuai; Wang, Zongbao; Wang, Changbo; Chen, Xiaowei; Li, Wei; Yang, Yang; He, Shuya

    2016-08-01

    Fragile X mental retardation protein (FMRP), fragile X related 1 protein (FXR1P) and FXR2P are the members of the FMR protein family. These proteins contain two KH domains and a RGG box, which are characteristic of RNA binding proteins. The absence of FMRP, causes fragile X syndrome (FXS), the leading cause of hereditary mental retardation. FXR1P is expressed throughout the body and important for normal muscle development, and its absence causes cardiac abnormality. To investigate the functions of FXR1P, a screen was performed to identify FXR1P‑interacting proteins and determine the biological effect of the interaction. The current study identified CMP‑N‑acetylneuraminic acid synthetase (CMAS) as an interacting protein using the yeast two‑hybrid system, and the interaction between FXR1P and CMAS was validated in yeast using a β‑galactosidase assay and growth studies with selective media. Furthermore, co‑immunoprecipitation was used to analyze the FXR1P/CMAS association and immunofluorescence microscopy was performed to detect expression and intracellular localization of the proteins. The results of the current study indicated that FXR1P and CMAS interact, and colocalize in the cytoplasm and the nucleus of HEK293T and HeLa cells. Accordingly, a fragile X related 1 (FXR1) gene overexpression vector was constructed to investigate the effect of FXR1 overexpression on the level of monosialotetrahexosylganglioside 1 (GM1). The results of the current study suggested that FXR1P is a tissue‑specific regulator of GM1 levels in SH‑SY5Y cells, but not in HEK293T cells. Taken together, the results initially indicate that FXR1P interacts with CMAS, and that FXR1P may enhance the activation of sialic acid via interaction with CMAS, and increase GM1 levels to affect the development of the nervous system, thus providing evidence for further research into the pathogenesis of FXS.

  5. Severe respiratory failure as a presenting feature of an interstitial lung disease associated with anti-synthetase syndrome (ASS).

    PubMed

    Piroddi, Ines Maria Grazia; Ferraioli, Gianluca; Barlascini, Cornelius; Castagneto, Corrado; Nicolini, Antonello

    2016-07-01

    Anti-synthetase syndrome (ASS) is defined as a heterogeneous connective tissue disorder characterized by the association of an interstitial lung disease (ILD) with or without inflammatory myositis with the presence of anti-aminoacyl-tRNA-synthetase antibodies. ILD is one of the major extra-muscular manifestations of polymyositis and dermatomyositis. We report a case of a patient with dyspnea, cough, and intermittent fever as well as ILD associated ASS in the absence of muscular involvement. This patient was admitted to the emergency department with severe respiratory failure requiring non-invasive ventilation. Our patient's case demonstrates that the diagnosis of ASS may not be obvious. However, its diagnosis leads to appropriate and potentially life-saving treatment. Copyright © 2016 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  6. Genetic Validation of Leishmania donovani Lysyl-tRNA Synthetase Shows that It Is Indispensable for Parasite Growth and Infectivity

    PubMed Central

    Chadha, Sanya; Mallampudi, N. Arjunreddy; Mohapatra, Debendra K.

    2017-01-01

    ABSTRACT Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis. Increasing resistance and severe side effects of existing drugs have led to the need to identify new chemotherapeutic targets. Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous and are required for protein synthesis. aaRSs are known drug targets for bacterial and fungal pathogens. Here, we have characterized and evaluated the essentiality of L. donovani lysyl-tRNA synthetase (LdLysRS). Two different coding sequences for lysyl-tRNA synthetases are annotated in the Leishmania genome database. LdLysRS-1 (LdBPK_150270.1), located on chromosome 15, is closer to apicomplexans and eukaryotes, whereas LdLysRS-2 (LdBPK_300130.1), present on chromosome 30, is closer to bacteria. In the present study, we have characterized LdLysRS-1. Recombinant LdLysRS-1 displayed aminoacylation activity, and the protein localized to the cytosol. The LdLysRS-1 heterozygous mutants had a restrictive growth phenotype and attenuated infectivity. LdLysRS-1 appears to be an essential gene, as a chromosomal knockout of LdLysRS-1 could be generated when the gene was provided on a rescuing plasmid. Cladosporin, a fungal secondary metabolite and a known inhibitor of LysRS, was more potent against promastigotes (50% inhibitory concentration [IC50], 4.19 µM) and intracellular amastigotes (IC50, 1.09 µM) than were isomers of cladosporin (3-epi-isocladosporin and isocladosporin). These compounds exhibited low toxicity to mammalian cells. The specificity of inhibition of parasite growth caused by these inhibitors was further assessed using LdLysRS-1 heterozygous mutant strains and rescue mutant promastigotes. These inhibitors inhibited the aminoacylation activity of recombinant LdLysRS. Our data provide a framework for the development of a new class of drugs against this parasite. IMPORTANCE Aminoacyl-tRNA synthetases are housekeeping enzymes essential for protein translation, providing charged tRNAs for the

  7. Genetic Validation of Leishmania donovani Lysyl-tRNA Synthetase Shows that It Is Indispensable for Parasite Growth and Infectivity.

    PubMed

    Chadha, Sanya; Mallampudi, N Arjunreddy; Mohapatra, Debendra K; Madhubala, Rentala

    2017-01-01

    Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis. Increasing resistance and severe side effects of existing drugs have led to the need to identify new chemotherapeutic targets. Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous and are required for protein synthesis. aaRSs are known drug targets for bacterial and fungal pathogens. Here, we have characterized and evaluated the essentiality of L. donovani lysyl-tRNA synthetase ( Ld LysRS). Two different coding sequences for lysyl-tRNA synthetases are annotated in the Leishmania genome database. Ld LysRS-1 (LdBPK_150270.1), located on chromosome 15, is closer to apicomplexans and eukaryotes, whereas Ld LysRS-2 (LdBPK_300130.1), present on chromosome 30, is closer to bacteria. In the present study, we have characterized Ld LysRS-1. Recombinant Ld LysRS-1 displayed aminoacylation activity, and the protein localized to the cytosol. The Ld LysRS-1 heterozygous mutants had a restrictive growth phenotype and attenuated infectivity. Ld LysRS-1 appears to be an essential gene, as a chromosomal knockout of Ld LysRS-1 could be generated when the gene was provided on a rescuing plasmid. Cladosporin, a fungal secondary metabolite and a known inhibitor of LysRS, was more potent against promastigotes (50% inhibitory concentration [IC 50 ], 4.19 µM) and intracellular amastigotes (IC 50 , 1.09 µM) than were isomers of cladosporin (3-epi-isocladosporin and isocladosporin). These compounds exhibited low toxicity to mammalian cells. The specificity of inhibition of parasite growth caused by these inhibitors was further assessed using Ld LysRS-1 heterozygous mutant strains and rescue mutant promastigotes. These inhibitors inhibited the aminoacylation activity of recombinant Ld LysRS. Our data provide a framework for the development of a new class of drugs against this parasite. IMPORTANCE Aminoacyl-tRNA synthetases are housekeeping enzymes essential for protein translation, providing charged tRNAs for

  8. 47 CFR 27.59 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false [Reserved] 27.59 Section 27.59 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.59 [Reserved] ...

  9. 47 CFR 27.59 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false [Reserved] 27.59 Section 27.59 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.59 [Reserved] ...

  10. Succinyl-CoA Synthetase is a Phosphate Target for the Activation of Mitochondrial Metabolism

    PubMed Central

    Phillips, Darci; Aponte, Angel M.; French, Stephanie A.; Chess, David J.; Balaban, Robert S.

    2009-01-01

    Succinyl-CoA synthetase (SCS) is the only mitochondrial enzyme capable of ATP production via substrate level phosphorylation in the absence of oxygen, but it also plays a key role in the citric acid cycle, ketone metabolism and heme synthesis. Inorganic phosphate (Pi) is a signaling molecule capable of activating oxidative phosphorylation at several sites, including NADH generation and as a substrate for ATP formation. In this study it was shown that Pi-binds porcine heart SCS α-subunit (SCSα) in a non-covalent manner and enhances its enzymatic activity, thereby providing a new target for Pi-activation in mitochondria. Coupling 32P-labeling of intact mitochondria with SDS gel electrophoresis revealed that 32P-labeling of SCSα was enhanced in substrate-depleted mitochondria. Using mitochondrial extracts and purified bacterial SCS (BSCS) it was shown that this enhanced 32P-labeling resulted from a simple binding of 32P, not covalent protein phosphorylation. The ability of SCSα to retain its 32P throughout the SDS denaturing gel process was unique over the entire mitochondrial proteome. In vitro studies also revealed a Pi-induced activation of SCS activity by more than 2-fold when mitochondrial extracts and purified BSCS were incubated with mM concentrations of Pi. Since 32P-binding to SCSα was increased in substrate-depleted mitochondria, where matrix Pi concentration is increased, we conclude that SCS activation by Pi-binding represents another mitochondrial target for the Pi-induced activation of oxidative phosphorylation and anaerobic ATP production in energy-limited mitochondria. PMID:19527071

  11. Effects of aeration on formation and localization of the acetyl coenzyme A synthetases of Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Klein, H. P.; Jahnke, L.

    1979-01-01

    Previous studies on the yeast Saccharomyces cerevisiae have shown that two different forms of the enzyme acetyl coenzyme A synthetase (ACS) are present, depending on the conditions under which the cells are grown. The paper evaluates the usefulness of a method designed to assay both synthetases simultaneously in yeast homogenates. The data presented confirm the possibility of simultaneous detection and estimation of the amount of both ACSs of S. cerevisiae in crude homogenates of this strain, making possible the study of physiological factors involved in the formation of these isoenzymes. One important factor for specifying which of the two enzymes is found in these yeast cells is the presence or absence of oxygen in their environment. Aeration not only affects the ratio of the two ACSs but also appears to affect the cellular distribution of these enzymes. Most of the data presented suggest the possibility that the nonaerobic ACS may serve as a precursor to the aerobic form.

  12. Antipeptide antibodies that can distinguish specific subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.)

    NASA Technical Reports Server (NTRS)

    Cai, X.; Henry, R. L.; Takemoto, L. J.; Guikema, J. A.; Wong, P. P.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The amino acid sequences of the beta and gamma subunit polypeptides of glutamine synthetase from bean (Phaseolus vulgaris L.) root nodules are very similar. However, there are small regions within the sequences that are significantly different between the two polypeptides. The sequences between amino acids 2 and 9 and between 264 and 274 are examples. Three peptides (gamma 2-9, gamma 264-274, and beta 264-274) corresponding to these sequences were synthesized. Antibodies against these peptides were raised in rabbits and purified with corresponding peptide-Sepharose affinity chromatography. Western blot analysis of polyacrylamide gel electrophoresis of bean nodule proteins demonstrated that the anti-beta 264-274 antibodies reacted specifically with the beta polypeptide and the anti-gamma 264-274 and anti-gamma 2-9 antibodies reacted specifically with the gamma polypeptide of the native and denatured glutamine synthetase. These results showed the feasibility of using synthetic peptides in developing antibodies that are capable of distinguishing proteins with similar primary structures.

  13. Factors beyond Enolase 2 and Mitochondrial Lysyl-tRNA Synthetase Precursor Are Required for tRNA Import into Yeast Mitochondria.

    PubMed

    Baleva, M V; Meyer, M; Entelis, N; Tarassov, I; Kamenski, P; Masquida, B

    2017-11-01

    In yeast, the import of tRNA Lys with CUU anticodon (tRK1) relies on a complex mechanism where interaction with enolase 2 (Eno2p) dictates a deep conformational change of the tRNA. This event is believed to mask the tRNA from the cytosolic translational machinery to re-direct it towards the mitochondria. Once near the mitochondrial outer membrane, the precursor of the mitochondrial lysyl-tRNA synthetase (preMsk1p) takes over enolase to carry the tRNA within the mitochondrial matrix, where it is supposed to participate in translation following correct refolding. Biochemical data presented in this report focus on the role of enolase. They show that despite the inability of Eno2p alone to form a complex with tRK1, mitochondrial import can be recapitulated in vitro using fractions of yeast extracts sharing either recombinant or endogenous yeast Eno2p as one of the main components. Taken together, our data suggest the existence of a protein complex containing Eno2p that is involved in RNA mitochondrial import.

  14. Diversities and similarities in pH dependency among bacterial NhaB-like Na+/H+ antiporters.

    PubMed

    Kiriyama, Wakako; Honma, Kei; Hiratsuka, Tomoaki; Takahashi, Itsuka; Nomizu, Takahiro; Takashima, Yuta; Ohtsuka, Masataka; Takahashi, Daiki; Moriyama, Kazuya; Mori, Sayoko; Nishiyama, Shiho; Fukuhara, Masahiro; Nakamura, Tatsunosuke; Shigematsu, Toru; Yamaguchi, Toshio

    2013-10-01

    NhaB-like antiporters were the second described class of Na(+)/H(+) antiporters, identified in bacteria more than 20 years ago. While nhaB-like gene sequences have been found in a number of bacterial genomes, only a few of the NhaB-like antiporters have been functionally characterized to date. Although earlier studies have identified a few pH-sensitive and -insensitive NhaB-like antiporters, the mechanisms that determine their pH responses still remain elusive. In this study, we sought to investigate the diversities and similarities among bacterial NhaB-like antiporters, with particular emphasis on their pH responsiveness. Our phylogenetic analysis of NhaB-like antiporters, combined with pH profile analyses of activities for representative members of several phylogenetic groups, demonstrated that NhaB-like antiporters could be classified into three distinct types according to the degree of their pH dependencies. Interestingly, pH-insensitive NhaB-like antiporters were only found in a limited proportion of enterobacterial species, which constitute a subcluster that appears to have diverged relatively recently among enterobacterial NhaB-like antiporters. Furthermore, kinetic property analyses of NhaB-like antiporters at different pH values revealed that the degree of pH sensitivity of antiport activities was strongly correlated with the magnitude of pH-dependent change in apparent Km values, suggesting that the dramatic pH sensitivities observed for several NhaB-like antiporters might be mainly due to the significant increases of apparent Km at lower pH. These results strongly suggested the possibility that the loss of pH sensitivity of NhaB-like antiporters had occurred relatively recently, probably via accumulation of the mutations that impair pH-dependent change of Km in the course of molecular evolution.

  15. Versatility of acyl-acyl carrier protein synthetases

    DOE PAGES

    Beld, Joris; Finzel, Kara; Burkart, Michael D.

    2014-10-09

    The acyl carrier protein (ACP) requires posttranslational modification with a 4'-phosphopantetheine arm for activity, and this thiol-terminated modification carries cargo between enzymes in ACP-dependent metabolic pathways. In this paper, we show that acyl-ACP synthetases (AasSs) from different organisms are able to load even, odd, and unnatural fatty acids onto E. coli ACP in vitro. Vibrio harveyi AasS not only shows promiscuity for the acid substrate, but also is active upon various alternate carrier proteins. AasS activity also extends to functional activation in living organisms. We show that exogenously supplied carboxylic acids are loaded onto ACP and extended by the E.more » coli fatty acid synthase, including unnatural fatty acid analogs. These analogs are further integrated into cellular lipids. Finally, in vitro characterization of four different adenylate-forming enzymes allowed us to disambiguate CoA-ligases and AasSs, and further in vivo studies show the potential for functional application in other organisms.« less

  16. Statistical Evaluation of the Rodin–Ohno Hypothesis: Sense/Antisense Coding of Ancestral Class I and II Aminoacyl-tRNA Synthetases

    PubMed Central

    Chandrasekaran, Srinivas Niranj; Yardimci, Galip Gürkan; Erdogan, Ozgün; Roach, Jeffrey; Carter, Charles W.

    2013-01-01

    We tested the idea that ancestral class I and II aminoacyl-tRNA synthetases arose on opposite strands of the same gene. We assembled excerpted 94-residue Urgenes for class I tryptophanyl-tRNA synthetase (TrpRS) and class II Histidyl-tRNA synthetase (HisRS) from a diverse group of species, by identifying and catenating three blocks coding for secondary structures that position the most highly conserved, active-site residues. The codon middle-base pairing frequency was 0.35 ± 0.0002 in all-by-all sense/antisense alignments for 211 TrpRS and 207 HisRS sequences, compared with frequencies between 0.22 ± 0.0009 and 0.27 ± 0.0005 for eight different representations of the null hypothesis. Clustering algorithms demonstrate further that profiles of middle-base pairing in the synthetase antisense alignments are correlated along the sequences from one species-pair to another, whereas this is not the case for similar operations on sets representing the null hypothesis. Most probable reconstructed sequences for ancestral nodes of maximum likelihood trees show that middle-base pairing frequency increases to approximately 0.42 ± 0.002 as bacterial trees approach their roots; ancestral nodes from trees including archaeal sequences show a less pronounced increase. Thus, contemporary and reconstructed sequences all validate important bioinformatic predictions based on descent from opposite strands of the same ancestral gene. They further provide novel evidence for the hypothesis that bacteria lie closer than archaea to the origin of translation. Moreover, the inverse polarity of genetic coding, together with a priori α-helix propensities suggest that in-frame coding on opposite strands leads to similar secondary structures with opposite polarity, as observed in TrpRS and HisRS crystal structures. PMID:23576570

  17. Structural analysis of malaria-parasite lysyl-tRNA synthetase provides a platform for drug development.

    PubMed

    Khan, Sameena; Garg, Ankur; Camacho, Noelia; Van Rooyen, Jason; Kumar Pole, Anil; Belrhali, Hassan; Ribas de Pouplana, Lluis; Sharma, Vinay; Sharma, Amit

    2013-05-01

    Aminoacyl-tRNA synthetases are essential enzymes that transmit information from the genetic code to proteins in cells and are targets for antipathogen drug development. Elucidation of the crystal structure of cytoplasmic lysyl-tRNA synthetase from the malaria parasite Plasmodium falciparum (PfLysRS) has allowed direct comparison with human LysRS. The authors' data suggest that PfLysRS is dimeric in solution, whereas the human counterpart can also adopt tetrameric forms. It is shown for the first time that PfLysRS is capable of synthesizing the signalling molecule Ap4a (diadenosine tetraphosphate) using ATP as a substrate. The PfLysRS crystal structure is in the apo form, such that binding to ATP will require rotameric changes in four conserved residues. Differences in the active-site regions of parasite and human LysRSs suggest the possibility of exploiting PfLysRS for selective inhibition. These investigations on PfLysRS further validate malarial LysRSs as attractive antimalarial targets and provide new structural space for the development of inhibitors that target pathogen LysRSs selectively.

  18. Apical localization of glutamate in GLAST-1, glutamine synthetase positive ciliary body nonpigmented epithelial cells

    PubMed Central

    Langford, Marlyn P; Gosslee, Jeffrey M; Liang, Chanping; Chen, Dequan; Redens, Thomas B.; Welbourne, Tomas C

    2007-01-01

    The distribution of glutamate (Glu), the Glu transporter GLAST-1, and glutamine synthetase (GS) in human and monkey anterior uveal tissue, as well as serum (S) to aqueous humor (AH) Glu and glutamine (Gln) gradients were investigated. Cross-linked Glu (xGlu), GLAST-1, and GS were detected using the immunofluorescent antibody technique. S/AH Glu, Gln, and alanine (Ala) concentrations were quantified by high performance liquid chromatography. xGlu immunoreactivity was detected in melanocytes, posterior pigmented epithelial/dilator muscle cells, vascular endothelial cells, and lymphocytes of the iris, as well as the pigmented (PE) and nonpigmented epithelial (NPE) cells and muscle cells of ciliary body. xGlu immunoreactivity was highly concentrated at the apices of GLAST-1, GS positive ciliary body NPE cells, and in GLAST-1 positive iris melanocytes and iris dilator muscle cells. AH Glu concentrations were lower (p < 0.001), while Gln was higher in monkey (p = 0.01) and human cataractous (p = 0.15) AH than serum. The results indicate that Glu is concentrated within GLAST-1, GS positive NPE cells and are consistent with the suggestion that Glu and Gln concentrations in AH may be due in part to GLAST-1 and GS activity in iris and ciliary body epithelial cells. PMID:19668465

  19. An acyl-CoA synthetase in Mycobacterium tuberculosis involved in triacylglycerol accumulation during dormancy.

    PubMed

    Daniel, Jaiyanth; Sirakova, Tatiana; Kolattukudy, Pappachan

    2014-01-01

    Latent infection with dormant Mycobacterium tuberculosis is one of the major reasons behind the emergence of drug-resistant strains of the pathogen worldwide. In its dormant state, the pathogen accumulates lipid droplets containing triacylglycerol synthesized from fatty acids derived from host lipids. In this study, we show that Rv1206 (FACL6), which is annotated as an acyl-CoA synthetase and resembles eukaryotic fatty acid transport proteins, is able to stimulate fatty acid uptake in E. coli cells. We show that purified FACL6 displays acyl-coenzyme A synthetase activity with a preference towards oleic acid, which is one of the predominant fatty acids in host lipids. Our results indicate that the expression of FACL6 protein in Mycobacterium tuberculosis is significantly increased during in vitro dormancy. The facl6-deficient Mycobacterium tuberculosis mutant displayed a diminished ability to synthesize acyl-coenzyme A in cell-free extracts. Furthermore, during in vitro dormancy, the mutant synthesized lower levels of intracellular triacylglycerol from exogenous fatty acids. Complementation partially restored the lost function. Our results suggest that FACL6 modulates triacylglycerol accumulation as the pathogen enters dormancy by activating fatty acids.

  20. Glutathione Synthetase Deficiency, an Inborn Error of Metabolism Involving the γ-Glutamyl Cycle in Patients with 5-Oxoprolinuria (Pyroglutamic Aciduria)

    PubMed Central

    Wellner, Vaira P.; Sekura, Ronald; Meister, Alton; Larsson, Agne

    1974-01-01

    Enzyme studies on placenta, cultured skin fibroblasts, and erythrocytes from two sisters with the inborn error 5-oxoprolinuria (pyroglutamic aciduria) indicate that the metabolic lesion in this disease is at the glutathione synthetase (EC 6.3.2.3) step of the γ-glutamyl cycle. Excessive urinary excretion of 5-oxoproline by these patients appears to be associated with increased synthesis of γ-glutamyl-cysteine and formation of 5-oxoproline from this dipeptide. Thus, 5-oxoproline is produced in amounts that exceed the normal capacity of 5-oxoprolinase to convert it to glutamate. The data indicate that it may be possible to identify individuals who are heterozygous for this trait by determinations of erythrocyte glutathione synthetase. PMID:4152248

  1. Anti-synthetase syndrome associated with anti PL-12 and anti-Signal recognition particle antibodies and a necrotizing auto-immune myositis.

    PubMed

    Malkan, Ashish; Cappelen-Smith, Cecilia; Beran, Roy; Griffith, Neil; Toong, Catherine; Wang, Min-Xia; Cordato, Dennis

    2015-02-01

    We report a 37-year-old woman with a 2 month history of proximal muscle weakness and extremely high creatine kinase (21,808 U/L) due to necrotizing auto-immune myositis (NAM) in association with anti-synthetase syndrome. Myositis-specific auto-immune antibody panel was positive for anti-Signal recognition particle and anti-PL-12. CT scan of the chest confirmed interstitial lung disease. Prednisolone, intravenous immunoglobulin and cyclophosphamide therapy was given with gradual improvement. This patient is notable for the unusual combination of NAM and anti-synthetase syndrome with the rare finding of two myositis-specific autoantibodies, which directed testing for associated extramuscular features and management with more aggressive immunotherapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Knockdown of Tripartite-59 (TRIM59) Inhibits Cellular Proliferation and Migration in Human Cervical Cancer Cells.

    PubMed

    Aierken, Gulijiahan; Seyiti, Ayinuer; Alifu, Mayinuer; Kuerban, Gulina

    2017-03-13

    The tripartite motif (TRIM) family of proteins is a class of highly conservative proteins that have been implicated in multiple processes. TRIM59, one member of the TRIM family, has now received recognition as a key regulator in the development and progression of human diseases. However, its role in human tumorigenesis has remained largely unknown. In this study, the effects of TRIM59 expression on cell proliferation and migration were investigated in human cervical cancer cells. The expression of TRIM59 in clinical cervical cancer tissues and cervical cancer cells was initially determined by RT-PCR and Western blot. Specific shRNA against TRIM59 was then employed to knock down the expression of TRIM59 in cervical cancer lines HeLa and SiHa. The effects of TRIM59 knockdown on cell proliferation was assessed by MTT assay and colony formation assay. Transwell assay was conducted to reveal cell migration and invasion abilities before and after TRIM59 knockdown. Our results showed that the expression of TRIM59 was significantly elevated in cervical cancers. Knockdown of TRIM59 significantly inhibited cell proliferation and colony formation as well as cell migration and invasion abilities in cervical cancer HeLa and SiHa cells. Cell cycle progression analysis showed that TRIM59-depleted cells preferred to accumulate in the S phase. These data suggest that TRIM59 is a potential target that promotes the progression of cervical cancer.

  3. 40 CFR 258.59 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false [Reserved] 258.59 Section 258.59 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.59 [Reserved] ...

  4. 40 CFR 258.59 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false [Reserved] 258.59 Section 258.59 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.59 [Reserved] ...

  5. Crystal structure of an indole-3-acetic acid amido synthetase from grapevine involved in auxin homeostasis.

    PubMed

    Peat, Thomas S; Böttcher, Christine; Newman, Janet; Lucent, Del; Cowieson, Nathan; Davies, Christopher

    2012-11-01

    Auxins are important for plant growth and development, including the control of fruit ripening. Conjugation to amino acids by indole-3-acetic acid (IAA)-amido synthetases is an important part of auxin homeostasis. The structure of the auxin-conjugating Gretchen Hagen3-1 (GH3-1) enzyme from grapevine (Vitis vinifera), in complex with an inhibitor (adenosine-5'-[2-(1H-indol-3-yl)ethyl]phosphate), is presented. Comparison with a previously published benzoate-conjugating enzyme from Arabidopsis thaliana indicates that grapevine GH3-1 has a highly similar domain structure and also undergoes a large conformational change during catalysis. Mutational analyses and structural comparisons with other proteins have identified residues likely to be involved in acyl group, amino acid, and ATP substrate binding. Vv GH3-1 is a monomer in solution and requires magnesium ions solely for the adenlyation reaction. Modeling of IAA and two synthetic auxins, benzothiazole-2-oxyacetic acid (BTOA) and 1-naphthaleneacetic acid (NAA), into the active site indicates that NAA and BTOA are likely to be poor substrates for this enzyme, confirming previous enzyme kinetic studies. This suggests a reason for the increased effectiveness of NAA and BTOA as auxins in planta and provides a tool for designing new and effective auxins.

  6. 42 CFR 59.213 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false [Reserved] 59.213 Section 59.213 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.213 [Reserved] ...

  7. 42 CFR 59.213 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false [Reserved] 59.213 Section 59.213 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.213 [Reserved] ...

  8. 42 CFR 59.213 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false [Reserved] 59.213 Section 59.213 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.213 [Reserved] ...

  9. 42 CFR 59.213 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false [Reserved] 59.213 Section 59.213 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.213 [Reserved] ...

  10. 42 CFR 59.213 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false [Reserved] 59.213 Section 59.213 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.213 [Reserved] ...

  11. Identification of acyl-CoA synthetases involved in the mammalian sphingosine 1-phosphate metabolic pathway.

    PubMed

    Ohkuni, Aya; Ohno, Yusuke; Kihara, Akio

    2013-12-13

    Sphingosine 1-phosphate (S1P) plays important roles both as a bioactive lipid molecule and an intermediate of the sphingolipid-to-glycerophospholipid metabolic pathway. To identify human acyl-CoA synthetases (ACSs) involved in S1P metabolism, we cloned all 26 human ACS genes and examined their abilities to restore deficient sphingolipid-to-glycerophospholipid metabolism in a yeast mutant lacking two ACS genes, FAA1 and FAA4. Here, in addition to the previously identified ACSL family members (ACSL1, 3, 4, 5, and 6), we found that ACSVL1, ACSVL4, and ACSBG1 also restored metabolism. All 8 ACSs were localized either exclusively or partly to the endoplasmic reticulum (ER), where S1P metabolism takes place. We previously proposed the entire S1P metabolic pathway from results obtained using yeast cells, i.e., S1P is metabolized to glycerophospholipids via trans-2-hexadecenal, trans-2-hexadecenoic acid, trans-2-hexadecenoyl-CoA, and palmitoyl-CoA. However, as S1P is not a naturally occurring long-chain base 1-phosphate in yeast, the validity of this pathway required further verification using mammalian cells. In the present study, we treated HeLa cells with the ACS inhibitor triacsin C and found that inhibition of ACSs resulted in accumulation of trans-2-hexadecenoic acid as in ACS mutant yeast. From these results, we conclude that S1P is metabolized by a common pathway in eukaryotes. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Hypoxia-inducible factor-1α promotes cell survival during ammonia stress response in ovarian cancer stem-like cells

    PubMed Central

    Kitajima, Shojiro; Lee, Kian Leong; Hikasa, Hiroki; Sun, Wendi; Huang, Ruby Yun-Ju; Yang, Henry; Matsunaga, Shinji; Yamaguchi, Takehiro; Araki, Marito; Kato, Hiroyuki

    2017-01-01

    Ammonia is a toxic by-product of metabolism that causes cellular stresses. Although a number of proteins are involved in adaptive stress response, specific factors that counteract ammonia-induced cellular stress and regulate cell metabolism to survive against its toxicity have yet to be identified. We demonstrated that the hypoxia-inducible factor-1α (HIF-1α) is stabilized and activated by ammonia stress. HIF-1α activated by ammonium chloride compromises ammonia-induced apoptosis. Furthermore, we identified glutamine synthetase (GS) as a key driver of cancer cell proliferation under ammonia stress and glutamine-dependent metabolism in ovarian cancer stem-like cells expressing CD90. Interestingly, activated HIF-1α counteracts glutamine synthetase function in glutamine metabolism by facilitating glycolysis and elevating glucose dependency. Our studies reveal the hitherto unknown functions of HIF-1α in a biphasic ammonia stress management in the cancer stem-like cells where GS facilitates cell proliferation and HIF-1α contributes to the metabolic remodeling in energy fuel usage resulting in attenuated proliferation but conversely promoting cell survival. PMID:29383096

  13. 7 CFR 906.59 - Agents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Agents. 906.59 Section 906.59 Agriculture Regulations... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ORANGES AND GRAPEFRUIT GROWN IN LOWER RIO GRANDE VALLEY IN TEXAS Order Regulating Handling Miscellaneous Provisions § 906.59 Agents. The Secretary...

  14. 45 CFR 86.59 - Advertising.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Advertising. 86.59 Section 86.59 Public Welfare... in Employment in Education Programs or Activities Prohibited § 86.59 Advertising. A recipient shall not in any advertising related to employment indicate preference, limitation, specification, or...

  15. 45 CFR 86.59 - Advertising.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Advertising. 86.59 Section 86.59 Public Welfare... in Employment in Education Programs or Activities Prohibited § 86.59 Advertising. A recipient shall not in any advertising related to employment indicate preference, limitation, specification, or...

  16. 45 CFR 86.59 - Advertising.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Advertising. 86.59 Section 86.59 Public Welfare... in Employment in Education Programs or Activities Prohibited § 86.59 Advertising. A recipient shall not in any advertising related to employment indicate preference, limitation, specification, or...

  17. 45 CFR 86.59 - Advertising.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Advertising. 86.59 Section 86.59 Public Welfare... in Employment in Education Programs or Activities Prohibited § 86.59 Advertising. A recipient shall not in any advertising related to employment indicate preference, limitation, specification, or...

  18. 45 CFR 86.59 - Advertising.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Advertising. 86.59 Section 86.59 Public Welfare... in Employment in Education Programs or Activities Prohibited § 86.59 Advertising. A recipient shall not in any advertising related to employment indicate preference, limitation, specification, or...

  19. 33 CFR 401.59 - Pollution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pollution. 401.59 Section 401.59 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.59 Pollution. (a) No vessel shall: (1...

  20. 33 CFR 401.59 - Pollution.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pollution. 401.59 Section 401.59 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.59 Pollution. (a) No vessel shall: (1...

  1. 33 CFR 401.59 - Pollution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pollution. 401.59 Section 401.59 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.59 Pollution. (a) No vessel shall: (1...

  2. 33 CFR 401.59 - Pollution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pollution. 401.59 Section 401.59 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.59 Pollution. (a) No vessel shall: (1...

  3. 33 CFR 401.59 - Pollution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pollution. 401.59 Section 401.59 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.59 Pollution. (a) No vessel shall: (1...

  4. 38 CFR 59.120 - Hearings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Hearings. 59.120 Section 59.120 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) GRANTS TO STATES FOR CONSTRUCTION OR ACQUISITION OF STATE HOMES § 59.120 Hearings. If the Secretary determines that...

  5. 38 CFR 3.59 - Parent.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Parent. 3.59 Section 3.59 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation Relationship § 3.59 Parent. (a) The term parent means a...

  6. 38 CFR 3.59 - Parent.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Parent. 3.59 Section 3.59 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation Relationship § 3.59 Parent. (a) The term parent means a...

  7. 38 CFR 3.59 - Parent.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Parent. 3.59 Section 3.59 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation Relationship § 3.59 Parent. (a) The term parent means a...

  8. 38 CFR 59.120 - Hearings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Hearings. 59.120 Section 59.120 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) GRANTS TO STATES FOR CONSTRUCTION OR ACQUISITION OF STATE HOMES § 59.120 Hearings. If the Secretary determines that...

  9. 33 CFR 159.59 - Placard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Placard. 159.59 Section 159.59 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.59 Placard. Each device must have a placard...

  10. Activation of the pacidamycin PacL adenylation domain by MbtH-like proteins.

    PubMed

    Zhang, Wenjun; Heemstra, John R; Walsh, Christopher T; Imker, Heidi J

    2010-11-23

    Nonribosomal peptide synthetase (NRPS) assembly lines are major avenues for the biosynthesis of a vast array of peptidyl natural products. Several hundred bacterial NRPS gene clusters contain a small (∼70-residue) protein belonging to the MbtH family for which no function has been defined. Here we show that two strictly conserved Trp residues in MbtH-like proteins contribute to stimulation of amino acid adenylation in some NRPS modules. We also demonstrate that adenylation can be stimulated not only by cognate MbtH-like proteins but also by homologues from disparate natural product pathways.

  11. Alkaline pH enhances farnesol production by Saccharomyces cerevisiae.

    PubMed

    Muramatsu, Masayoshi; Ohto, Chikara; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2009-07-01

    External environments affect prenyl alcohol production by squalene synthetase-deficient mutant Saccharomyces cerevisiae ATCC 64031. Cultivation of the yeast in medium with an initial pH ranging from 7.0 to 8.0 increased the amount of secreted farnesol (FOH). In contrast, acidic medium with a pH below 4.0 increased the intracellular FOH and its isomer nerolidol. These effects of alkaline pH were also observed on constant pH cultivation in a jar fermenter. On cultivation for 133 h, the FOH production reached 102.8 mg/l.

  12. Structural evolution of the P22-like phages: Comparison of Sf6 and P22 procapsid and virion architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parent, Kristin N.; Gilcrease, Eddie B.; Casjens, Sherwood R., E-mail: sherwood.casjens@path.utah.edu

    Coat proteins of tailed, dsDNA phages and in herpesviruses include a conserved core similar to the bacteriophage HK97 subunit. This core is often embellished with other domains such as the telokin Ig-like domain of phage P22. Eighty-six P22-like phages and prophages with sequenced genomes share a similar set of virion assembly genes and, based on comparisons of twelve viral assembly proteins (structural and assembly/packaging chaperones), these phages are classified into three groups (P22-like, Sf6-like, and CUS-3-like). We used cryo-electron microscopy and 3D image reconstruction to determine the structures of Sf6 procapsids and virions ({approx} 7 A resolution), and the structuremore » of the entire, asymmetric Sf6 virion (16-A resolution). The Sf6 coat protein is similar to that of P22 yet it has differences in the telokin domain and in its overall quaternary organization. Thermal stability and agarose gel experiments show that Sf6 virions are slightly less stable than those of P22. Finally, bacterial host outer membrane proteins A and C were identified in lipid vesicles that co-purify with Sf6 particles, but are not components of the capsid.« less

  13. 42 CFR 59.203 - Eligibility.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Eligibility. 59.203 Section 59.203 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.203 Eligibility. (a) Eligible applicants. Any public or...

  14. 42 CFR 59.11 - Confidentiality.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Confidentiality. 59.11 Section 59.11 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Project Grants for Family Planning Services § 59.11 Confidentiality. All information as to personal facts...

  15. 42 CFR 59.203 - Eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Eligibility. 59.203 Section 59.203 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.203 Eligibility. (a) Eligible applicants. Any public or...

  16. 42 CFR 59.201 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Applicability. 59.201 Section 59.201 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.201 Applicability. The regulations in this subpart are...

  17. 42 CFR 59.11 - Confidentiality.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Confidentiality. 59.11 Section 59.11 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Project Grants for Family Planning Services § 59.11 Confidentiality. All information as to personal facts...

  18. 42 CFR 59.11 - Confidentiality.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Confidentiality. 59.11 Section 59.11 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Project Grants for Family Planning Services § 59.11 Confidentiality. All information as to personal facts...

  19. 42 CFR 59.201 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Applicability. 59.201 Section 59.201 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.201 Applicability. The regulations in this subpart are...

  20. 42 CFR 59.11 - Confidentiality.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Confidentiality. 59.11 Section 59.11 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Project Grants for Family Planning Services § 59.11 Confidentiality. All information as to personal facts...

  1. 42 CFR 59.201 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Applicability. 59.201 Section 59.201 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.201 Applicability. The regulations in this subpart are...

  2. 42 CFR 59.203 - Eligibility.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Eligibility. 59.203 Section 59.203 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.203 Eligibility. (a) Eligible applicants. Any public or...

  3. 42 CFR 59.203 - Eligibility.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Eligibility. 59.203 Section 59.203 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.203 Eligibility. (a) Eligible applicants. Any public or...

  4. 42 CFR 59.203 - Eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Eligibility. 59.203 Section 59.203 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.203 Eligibility. (a) Eligible applicants. Any public or...

  5. 42 CFR 59.201 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Applicability. 59.201 Section 59.201 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.201 Applicability. The regulations in this subpart are...

  6. 42 CFR 59.201 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Applicability. 59.201 Section 59.201 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.201 Applicability. The regulations in this subpart are...

  7. 42 CFR 59.11 - Confidentiality.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Confidentiality. 59.11 Section 59.11 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Project Grants for Family Planning Services § 59.11 Confidentiality. All information as to personal facts...

  8. Minimal dose interferon suppository treatment suppresses viral replication with platelet counts and serum albumin levels increased in chronically hepatitis C virus-infected patients: a phase 1b, placebo-controlled, randomized study.

    PubMed

    Haruna, Yoshimichi; Inoue, Atsuo

    2014-02-01

    Animal studies have shown that rectally administrated interferon (IFN) is transferred into the lymphatic system via the rectal mucous membrane, suggesting that an IFN suppository could serve as another drug delivery method. We developed an IFN suppository and administered it to patients with chronic hepatitis C to evaluate its efficacy and safety. Twenty-eight patients with chronic hepatitis C participated in the study. The low-dose IFN suppository containing 1,000 international units (IU) of lymphoblastoid IFNα was administered to 14 patients daily for 24 weeks. Others had a placebo dosing. In 13 of the 14 IFN suppository-treated patients, viral load decreased at week 4. The serum hepatitis C virus (HCV) RNA levels (Log IU/mL, mean±standard error) were 5.65±0.18 before the treatment and 5.17±0.27 at week 4 (P=0.01). The 2'-5' oligoadenylate synthetase activity increased, while the CD4/CD8 ratio decreased significantly. Interestingly, platelet counts and serum albumin levels were significantly increased during and after the treatment. No serious adverse events were observed. The low-dose IFN suppository treatment suppressed HCV replication, modifying host immunity, with increased platelet counts and serum albumin levels. The IFN suppository could be considered a new drug delivery method to preserve the quality of life of patients.

  9. Large Conformational Changes of Insertion 3 in Human Glycyl-tRNA Synthetase (hGlyRS) during Catalysis

    DOE PAGES

    Deng, Xiangyu; Qin, Xiangjing; Chen, Lei; ...

    2016-01-21

    Glycyl-tRNA synthetase (GlyRS) is the enzyme that covalently links glycine to cognate tRNA for translation. It is of great interest because of its nonconserved quaternary structures, unique species-specific aminoacylation properties, and noncanonical functions in neurological diseases, but none of these is fully understood. We report two crystal structures of human GlyRS variants, in the free form and in complex with tRNA Gly respectively, and reveal new aspects of the glycylation mechanism. We discover that insertion 3 differs considerably in conformation in catalysis and that it acts like a "switch" and fully opens to allow tRNA to bind in a cross-subunitmore » fashion. The flexibility of the protein is supported by molecular dynamics simulation, as well as enzymatic activity assays. The biophysical and biochemical studies suggest that human GlyRS may utilize its flexibility for both the traditional function (regulate tRNA binding) and alternative functions (roles in diseases).« less

  10. Cloning and characterization of GDP-perosamine synthetase (Per) from Escherichia coli O157:H7 and synthesis of GDP-perosamine in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Guohui; Liu Jun; Liu Xiang

    2007-11-23

    GDP-perosamine synthetase (Per, E.C. not yet classified) is important to the synthesis of Escherichia coli O157:H7 O-antigen. The mutant in per gene can disrupt the synthesis of O157 O-antigen. In this study, GDP-perosamine synthetase was cloned from E. coli O157:H7 and over-expressed in E. coli BL21 (DE3). The recombinant His-tagged Per fusion protein was a decamer with molecular weight of 431 kDa. The optimal pH value of this recombinant protein was 7.5. The divalent ions had no significant effect on Per-catalyzed reaction. The K{sub m} and K{sub cat}/K{sub m} for GDP-4-keto-6-deoxy-D-mannose were 0.09 mM and 2.1 x 10{sup 5} M{supmore » -1} S{sup -1}, and those for L-glutamate were 2 mM and 0.52 x 10{sup 5} M{sup -1}S{sup -1}, respectively. Per was used to synthesize GDP-perosamine from GDP-mannose together with recombinant GDP-mannose dehydratase (GMD, E.C. 4.2.1.47). The purified GDP-perosamine was identified by MS and NMR. In summary, this work provided a feasible approach for the synthesis of GDP-perosamine which can lead to the study of LPS biosynthesis of pathogenic E. coli O157:H7.« less

  11. 27 CFR 27.59 - Wines.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Wines. 27.59 Section 27.59... TREASURY LIQUORS IMPORTATION OF DISTILLED SPIRITS, WINES, AND BEER General Requirements Marking and Labeling of Wines and Beer § 27.59 Wines. All imported wines containing not less than 7 percent and not...

  12. 6 CFR 5.9 - Appeals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Appeals. 5.9 Section 5.9 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY DISCLOSURE OF RECORDS AND INFORMATION Freedom of Information Act § 5.9 Appeals. (a) Appeals of adverse determinations. (1) If you are dissatisfied with a...

  13. 42 CFR 59.207 - Payments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Payments. 59.207 Section 59.207 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.207 Payments. The Secretary shall from time to time make...

  14. 42 CFR 59.202 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Definitions. 59.202 Section 59.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.202 Definitions. As used in this subpart: (a) Act means...

  15. 42 CFR 59.202 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Definitions. 59.202 Section 59.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.202 Definitions. As used in this subpart: (a) Act means...

  16. 42 CFR 59.207 - Payments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Payments. 59.207 Section 59.207 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.207 Payments. The Secretary shall from time to time make...

  17. 42 CFR 59.207 - Payments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Payments. 59.207 Section 59.207 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.207 Payments. The Secretary shall from time to time make...

  18. 42 CFR 59.202 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Definitions. 59.202 Section 59.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.202 Definitions. As used in this subpart: (a) Act means...

  19. 42 CFR 59.202 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Definitions. 59.202 Section 59.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.202 Definitions. As used in this subpart: (a) Act means...

  20. 42 CFR 59.202 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Definitions. 59.202 Section 59.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.202 Definitions. As used in this subpart: (a) Act means...

  1. 42 CFR 59.207 - Payments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Payments. 59.207 Section 59.207 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.207 Payments. The Secretary shall from time to time make...

  2. 42 CFR 59.207 - Payments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Payments. 59.207 Section 59.207 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.207 Payments. The Secretary shall from time to time make...

  3. Twin Attributes of Tyrosyl-tRNA Synthetase of Leishmania donovani: A HOUSEKEEPING PROTEIN TRANSLATION ENZYME AND A MIMIC OF HOST CHEMOKINE.

    PubMed

    Anand, Sneha; Madhubala, Rentala

    2016-08-19

    Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes essential for protein synthesis. Apart from their parent aminoacylation activity, several aaRSs perform non-canonical functions in diverse biological processes. The present study explores the twin attributes of Leishmania tyrosyl-tRNA synthetase (LdTyrRS) namely, aminoacylation, and as a mimic of host CXC chemokine. Leishmania donovani is a protozoan parasite. Its genome encodes a single copy of tyrosyl-tRNA synthetase. We first tested the canonical aminoacylation role of LdTyrRS. The recombinant protein was expressed, and its kinetic parameters were determined by aminoacylation assay. To study the physiological role of LdTyrRS in Leishmania, gene deletion mutations were attempted via targeted gene replacement. The heterozygous mutants showed slower growth kinetics and exhibited attenuated virulence. LdTyrRS appears to be an essential gene as the chromosomal null mutants did not survive. Our data also highlights the non-canonical function of L. donovani tyrosyl-tRNA synthetase. We show that LdTyrRS protein is present in the cytoplasm and exits from the parasite cytoplasm into the extracellular medium. The released LdTyrRS functions as a neutrophil chemoattractant. We further show that LdTyrRS specifically binds to host macrophages with its ELR (Glu-Leu-Arg) peptide motif. The ELR-CXCR2 receptor interaction mediates this binding. This interaction triggers enhanced secretion of the proinflammatory cytokines TNF-α and IL-6 by host macrophages. Our data indicates a possible immunomodulating role of LdTyrRS in Leishmania infection. This study provides a platform to explore LdTyrRS as a potential target for drug development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Modulation of phenytoin teratogenicity and embryonic covalent binding by acetylsalicylic acid, caffeic acid, and alpha-phenyl-N-t-butylnitrone: implications for bioactivation by prostaglandin synthetase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, P.G.; Zubovits, J.T.; Wong, S.T.

    1989-02-01

    Teratogenicity of the anticonvulsant drug phenytoin is thought to involve its bioactivation by cytochromes P-450 to a reactive arene oxide intermediate. We hypothesized that phenytoin also may be bioactivated to a teratogenic free radical intermediate by another enzymatic system, prostaglandin synthetase. To evaluate the teratogenic contribution of this latter pathway, an irreversible inhibitor of prostaglandin synthetase, acetylsalicylic acid (ASA), 10 mg/kg intraperitoneally (ip), was administered to pregnant CD-1 mice at 9:00 AM on Gestational Days 12 and 13, 2 hr before phenytoin, 65 mg/kg ip. Other groups were pretreated 2 hr prior to phenytoin administration with either the antioxidant caffeicmore » acid or the free radical spin trapping agent alpha-phenyl-N-t-butylnitrone (PBN). Caffeic acid and PBN were given ip in doses that respectively were up to 1.0 to 0.05 molar equivalents to the dose of phenytoin. Dams were killed on Day 19 and the fetuses were assessed for teratologic anomalies. A similar study evaluated the effect of ASA on the in vivo covalent binding of radiolabeled phenytoin administered on Day 12, in which case dams were killed 24 hr later on Day 13. ASA pretreatment produced a 50% reduction in the incidence of fetal cleft palates induced by phenytoin (p less than 0.05), without significantly altering the incidence of resorptions or mean fetal body weight. Pretreatment with either caffeic acid or PBN resulted in dose-related decreases in the incidence of fetal cleft palates produced by phenytoin, with maximal respective reductions of 71 and 82% at the highest doses of caffeic acid and PBN (p less than 0.05).« less

  5. 19 CFR 145.59 - Seizures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Seizures. 145.59 Section 145.59 Customs Duties U.S...) MAIL IMPORTATIONS Restricted and Prohibited Merchandise § 145.59 Seizures. (a) Articles prohibited and... handled by the Postal Service as specified in §§ 145.51 and 145.52. (b) Notification of seizure or...

  6. Glutamine Synthetase Isoenzymes in the Green Soil Alga Stichococcus bacillaris Naeg. 1

    PubMed Central

    Ahmad, Iftikhar; Hellebust, Johan A.

    1987-01-01

    Two forms of glutamine synthetase (GS1 and GS2) have been separated from cells of Stichococcus bacillaris by fast protein liquid chromatography. The activities of the two isoenzymes were influenced by the composition of the media employed; thiol reagents were essential for stabilizing GS2 but they suppressed GS1 activity. The activity of each isoenzyme was, therefore, determined following separate purification procedures. Growth conditions influenced both isoenzymes; GS2 showed maximum activity under photoautotrophic conditions, whereas GS1 showed maximum activity under heterotrophic conditions. PMID:16665232

  7. The 2.1Å Crystal Structure of an Acyl-CoA Synthetase from Methanosarcina acetivorans reveals an alternate acyl binding pocket for small branched acyl substrates†,‡

    PubMed Central

    Shah, Manish B.; Ingram-Smith, Cheryl; Cooper, Leroy L.; Qu, Jun; Meng, Yu; Smith, Kerry S.; Gulick, Andrew M.

    2009-01-01

    The acyl-AMP forming family of adenylating enzymes catalyze two-step reactions to activate a carboxylate with the chemical energy derived from ATP hydrolysis. X-ray crystal structures have been determined for multiple members of this family and, together with biochemical studies, provide insights into the active site and catalytic mechanisms used by these enzymes. These studies have shown that the enzymes use a domain rotation of 140° to reconfigure a single active site to catalyze the two partial reactions. We present here the crystal structure of a new medium chain acyl-CoA synthetase from Methanosarcina acetivorans. The binding pocket for the three substrates is analyzed, with many conserved residues present in the AMP binding pocket. The CoA binding pocket is compared to the pockets of both acetyl-CoA synthetase and 4-chlorobenzoate:CoA ligase. Most interestingly, the acyl binding pocket of the new structure is compared with other acyl- and aryl-CoA synthetases. A comparison of the acyl-binding pocket of the acyl-CoA synthetase from M. acetivorans with other structures identifies a shallow pocket that is used to bind the medium chain carboxylates. These insights emphasize the high sequence and structural diversity among this family in the area of the acyl binding pocket. PMID:19544569

  8. The lack of RNA-dependent protein kinase enhances susceptibility of mice to genital herpes simplex virus type 2 infection

    PubMed Central

    Carr, Daniel J J; Wuest, Todd; Tomanek, Lisa; Silverman, Robert H; Williams, Bryan R G

    2006-01-01

    Mice deficient in RNA-dependent protein kinase (PKR–/–) or deficient in PKR and a functional 2′,5′-oligoadenylate synthetase (OAS) pathway (PKR/RL–/–) are more susceptible to genital herpes simplex virus type 2 (HSV-2) infection than wild-type mice or mice that are deficient only in a functional OAS pathway (RL–/–) as measured by survival over 30 days. The increase in susceptibility correlated with an increase in virus titre recovered from vaginal tissue or brainstem of infected mice during acute infection. There was also an increase in CD45+ cells and CD8+ T cells residing in the central nervous system of HSV-2-infected PKR/RL–/– mice in comparison with RL–/– or wild-type control animals. In contrast, there was a reduction in the HSV-specific CD8+ T cells within the draining lymph node of the PKR/RL–/– mice. Collectively, activation of PKR, but not of OAS, contributes significantly to the local control and spread of HSV-2 following genital infection. PMID:16895559

  9. Activation of the 2-5OAS/RNase L pathway in CVB1 or HAV/18f infected FRhK-4 cells does not require induction of OAS1 or OAS2 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulka, Michael, E-mail: michael.kulka@fda.hhs.go; Calvo, Mona S., E-mail: mona.calvo@fda.hhs.go; Ngo, Diana T., E-mail: diana.ngo@fda.hhs.go

    2009-05-25

    The latent, constitutively expressed protein RNase L is activated in coxsackievirus and HAV strain 18f infected FRhK-4 cells. Endogenous oligoadenylate synthetase (OAS) from uninfected and virus infected cell extracts synthesizes active forms of the triphosphorylated 2-5A oligomer (the only known activator of RNase L) in vitro and endogenous 2-5A is detected in infected cell extracts. However, only the largest OAS isoform, OAS3, is readily detected throughout the time course of infection. While IFNbeta treatment results in an increase in the level of all three OAS isoforms in FRhK-4 cells, IFNbeta pretreatment does not affect the temporal onset or enhancement ofmore » RNase L activity nor inhibit virus replication. Our results indicate that CVB1 and HAV/18f activate the 2-5OAS/RNase L pathway in FRhK-4 cells during permissive infection through endogenous levels of OAS, but contrary to that reported for some picornaviruses, CVB1 and HAV/18f replication is insensitive to this activated antiviral pathway.« less

  10. Alphavirus-based DNA vaccine breaks immunological tolerance by activating innate antiviral pathways

    PubMed Central

    Leitner, Wolfgang W.; Hwang, Leroy N.; Deveer, Michael J.; Zhou, Aimin; Silverman, Robert H.; Williams, Bryan R.G.; Dubensky, Thomas W.; Ying, Han; Restifo, Nicholas P.

    2006-01-01

    Cancer vaccines targeting ‘self’ antigens that are expressed at consistently high levels by tumor cells are potentially useful in immunotherapy, but immunological tolerance may block their function. Here, we describe a novel, naked DNA vaccine encoding an alphavirus replicon (self-replicating mRNA) and the self/tumor antigen tyrosinase-related protein-1. Unlike conventional DNA vaccines, this vaccine can break tolerance and provide immunity to melanoma. The vaccine mediates production of double-stranded RNA, as evidenced by the autophosphorylation of protein kinase R. Double-stranded RNA is critical to vaccine function because both the immunogenicity and the anti-tumor activity of the vaccine are blocked in mice deficient for the RNase L enzyme, a key component of the 2′,5′-linked oligoadenylate synthetase antiviral pathway involved in double-stranded RNA recognition. This study shows for the first time that alphaviral replicon-encoding DNA vaccines activate innate immune pathways known to drive antiviral immune responses, and points the way to strategies for improving the efficacy of immunization with naked DNA. PMID:12496961

  11. Increased Activity of [gamma]-Glutamylcysteine Synthetase in Tomato Cells Selected for Cadmium Tolerance.

    PubMed

    Chen, J.; Goldsbrough, P. B.

    1994-09-01

    Two cell lines of tomato (Lycopersicon esculentum Mill cv VFNT-Cherry) were systematically compared for their capacity to tolerate cadmium. Unselected CdS cells died in the presence of 0.3 mM CdCl2. CdR6-0 cells, which were selected from CdS, survived and grew in medium supplemented with 0.3 mM CdCl2. Growth of CdR6-0 cells under this condition was accompanied by synthesis of cadmium-binding phytochelatins and maintenance of cellular glutathione (GSH) levels. CdR6-0 cells also exhibited increased tolerance to buthionine sulfoximine, in both the presence and absence of 0.1 mM CdCl2. The specific activity of [gamma]-glutamylcysteine synthetase (EC 6.3.2.2) was approximately 2-fold higher in CdR6-0 cells than in CdS cells, whereas there was no difference between cell lines in specific activity of GSH synthetase (EC 6.3.2.3). Increased activity of the first enzyme of GSH biosynthesis in CdR6-0 cells, presumably a result of selection for increased cadmium tolerance, provides an enhanced capacity to synthesize GSH and to maintain the production of phytochelatins in response to cadmium. This adaptation may contribute to the enhanced cadmium tolerance of CdR6-0 cells.

  12. Inhibition of poly (ADP-ribose) Synthetase Attenuates Neutrophil Recruitment and Exerts Antiinflammatory Effects

    PubMed Central

    Szabó, Csaba; Lim, Lina H.K.; Cuzzocrea, Salvatore; Getting, Stephen J.; Zingarelli, Basilia; Flower, Roderick J.; Salzman, Andrew L.; Perretti, Mauro

    1997-01-01

    A cytotoxic cycle triggered by DNA single-strand breakage and poly (ADP-ribose) synthetase activation has been shown to contribute to the cellular injury during various forms of oxidant stress in vitro. The aim of this study was to investigate the role of poly (ADP-ribose) synthetase (PARS) in the process of neutrophil recruitment and in development of local and systemic inflammation. In pharmacological studies, PARS was inhibited by 3-aminobenzamide (10–20 mg/kg) in rats and mice. In other sets of studies, inflammatory responses in PARS−/− mice were compared with the responses in corresponding wild-type controls. Inhibition of PARS reduced neutrophil recruitment and reduced the extent of edema in zymosan- and carrageenan-triggered models of local inflammation. Moreover, inhibition of PARS prevented neutrophil recruitment, and reduced organ injury in rodent models of inflammation and multiple organ failure elicited by intraperitoneal injection of zymosan. Inhibition of PARS also reduced the extent of neutrophil emigration across murine mesenteric postcapillary venules. This reduction was due to an increased rate of adherent neutrophil detachment from the endothelium, promoting their reentry into the circulation. Taken together, our results demonstrate that PARS inhibition reduces local and systemic inflammation. Part of the antiinflammatory effects of PARS inhibition is due to reduced neutrophil recruitment, which may be related to maintained endothelial integrity. PMID:9314553

  13. Production, purification, sequencing and activity spectra of mutacins D-123.1 and F-59.1

    PubMed Central

    2011-01-01

    Background The increase in bacterial resistance to antibiotics impels the development of new anti-bacterial substances. Mutacins (bacteriocins) are small antibacterial peptides produced by Streptococcus mutans showing activity against bacterial pathogens. The objective of the study was to produce and characterise additional mutacins in order to find new useful antibacterial substances. Results Mutacin F-59.1 was produced in liquid media by S. mutans 59.1 while production of mutacin D-123.1 by S. mutans 123.1 was obtained in semi-solid media. Mutacins were purified by hydrophobic chromatography. The amino acid sequences of the mutacins were obtained by Edman degradation and their molecular mass was determined by mass spectrometry. Mutacin F-59.1 consists of 25 amino acids, containing the YGNGV consensus sequence of pediocin-like bacteriocins with a molecular mass calculated at 2719 Da. Mutacin D-123.1 has an identical molecular mass (2364 Da) with the same first 9 amino acids as mutacin I. Mutacins D-123.1 and F-59.1 have wide activity spectra inhibiting human and food-borne pathogens. The lantibiotic mutacin D-123.1 possesses a broader activity spectrum than mutacin F-59.1 against the bacterial strains tested. Conclusion Mutacin F-59.1 is the first pediocin-like bacteriocin identified and characterised that is produced by Streptococcus mutans. Mutacin D-123.1 appears to be identical to mutacin I previously identified in different strains of S. mutans. PMID:21477375

  14. Production, purification, sequencing and activity spectra of mutacins D-123.1 and F-59.1.

    PubMed

    Nicolas, Guillaume G; LaPointe, Gisèle; Lavoie, Marc C

    2011-04-10

    The increase in bacterial resistance to antibiotics impels the development of new anti-bacterial substances. Mutacins (bacteriocins) are small antibacterial peptides produced by Streptococcus mutans showing activity against bacterial pathogens. The objective of the study was to produce and characterise additional mutacins in order to find new useful antibacterial substances. Mutacin F-59.1 was produced in liquid media by S. mutans 59.1 while production of mutacin D-123.1 by S. mutans 123.1 was obtained in semi-solid media. Mutacins were purified by hydrophobic chromatography. The amino acid sequences of the mutacins were obtained by Edman degradation and their molecular mass was determined by mass spectrometry. Mutacin F-59.1 consists of 25 amino acids, containing the YGNGV consensus sequence of pediocin-like bacteriocins with a molecular mass calculated at 2719 Da. Mutacin D-123.1 has an identical molecular mass (2364 Da) with the same first 9 amino acids as mutacin I. Mutacins D-123.1 and F-59.1 have wide activity spectra inhibiting human and food-borne pathogens. The lantibiotic mutacin D-123.1 possesses a broader activity spectrum than mutacin F-59.1 against the bacterial strains tested. Mutacin F-59.1 is the first pediocin-like bacteriocin identified and characterised that is produced by Streptococcus mutans. Mutacin D-123.1 appears to be identical to mutacin I previously identified in different strains of S. mutans.

  15. A Multiple Aminoacyl-tRNA Synthetase Complex That Enhances tRNA-Aminoacylation in African Trypanosomes

    PubMed Central

    Cestari, Igor; Kalidas, Savitha; Monnerat, Severine; Anupama, Atashi; Phillips, Margaret A.

    2013-01-01

    The genes for all cytoplasmic and potentially all mitochondrial aminoacyl-tRNA synthetases (aaRSs) were identified, and all those tested by RNA interference were found to be essential for the growth of Trypanosoma brucei. Some of these enzymes were localized to the cytoplasm or mitochondrion, but most were dually localized to both cellular compartments. Cytoplasmic T. brucei aaRSs were organized in a multiprotein complex in both bloodstream and procyclic forms. The multiple aminoacyl-tRNA synthetase (MARS) complex contained at least six aaRS enzymes and three additional non-aaRS proteins. Steady-state kinetic studies showed that association in the MARS complex enhances tRNA-aminoacylation efficiency, which is in part dependent on a MARS complex-associated protein (MCP), named MCP2, that binds tRNAs and increases their aminoacylation by the complex. Conditional repression of MCP2 in T. brucei bloodstream forms resulted in reduced parasite growth and infectivity in mice. Thus, association in a MARS complex enhances tRNA-aminoacylation and contributes to parasite fitness. The MARS complex may be part of a cellular regulatory system and a target for drug development. PMID:24126051

  16. Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seula; Woo, Jong Kyu; Jung, Yuchae

    In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulkmore » cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.« less

  17. Glutamine synthetase immunoreactivity is present in oligodendroglia of various regions of the central nervous system

    NASA Technical Reports Server (NTRS)

    D'Amelio, F.; Eng, L. F.; Gibbs, M. A.

    1990-01-01

    Glutamine synthetase immunoreactive oligodendrocytes were identified in the cerebral cortex, cerebellum, brain stem, and spinal cord. They were mostly confined to the gray matter, particularly close to neurons and processes. The white matter showed few immunoreactive oligodendroglia. It was suggested that some type of oligodendrocytes, specially those in perineuronal location, might fulfill a functional role more akin to astrocytes than to the normally myelinating oligodendroglia.

  18. Gamma-ray mutagenesis studies in a new human-hamster hybrid, A(L)CD59(+/-), which has two human chromosomes 11 but is hemizygous for the CD59 gene

    NASA Technical Reports Server (NTRS)

    Kraemer, S. M.; Vannais, D. B.; Kronenberg, A.; Ueno, A.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Kraemer, S. M., Vannais, D. B., Kronenberg, A., Ueno, A. and Waldren, C. A. Gamma-Ray Mutagenesis Studies in a New Human-Hamster Hybrid, A(L)CD59(+/-), which has Two Human Chromosomes 11 but is Hemizygous for the CD59 Gene. Radiat. Res. 156, 10-19 (2001).We have developed a human-CHO hybrid cell line, named A(L)CD59(+/-), which has two copies of human chromosome 11 but is hemizygous for the CD59 gene and the CD59 cell surface antigen that it encodes. Our previous studies used the A(L) and A(L)C hybrids that respectively contain one or two sets of CHO chromosomes plus a single copy of human chromosome 11. The CD59 gene at 11p13.5 and the CD59 antigen encoded by it are the principal markers used in our mutagenesis studies. The hybrid A(L)CD59(+/-) contains two copies of human chromosome 11, only one of which carries the CD59 gene. The incidence of CD59 (-) mutants (formerly called S1(-)) induced by (137)Cs gamma rays is about fivefold greater in A(L)CD59(+/-) cells than in A(L) cells. Evidence is presented that this increase in mutant yield is due to the increased induction of certain classes of large chromosomal mutations that are lethal to A(L) cells but are tolerated in the A(L)CD59(+/-) hybrid. In addition, significantly more of the CD59 (-) mutants induced by (137)Cs gamma rays in A(L)CD59(+/-) cells display chromosomal instability than in A(L) cells. On the other hand, the yield of gamma-ray-induced CD59 (-) mutants in A(L)CD59(+/-) cells is half that of the A(L)C hybrid, which also tolerates very large mutations but has only one copy of human chromosome 11. We interpret the difference in mutability as evidence that repair processes involving the homologous chromosomes 11 play a role in determining mutant yields. The A(L)CD59(+/-) hybrid provides a useful new tool for quantifying mutagenesis and shedding light on mechanisms of genetic instability and mutagenesis.

  19. Crystallization and preliminary X-ray diffraction study of phosphoribosyl pyrophosphate synthetase from E. Coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeev, V. I., E-mail: inna@ns.crys.ras.ru; Abramchik, Yu. A., E-mail: tostars@mail.ru; Zhukhlistova, N. E., E-mail: ugama@yandex.ru

    2015-09-15

    Enzymes of the phosphoribosyl pyrophosphate synthetase family (PRPPS, EC 2.7.6.1) catalyze the formation of 5-phosphoribosyl pyrophosphate (5-PRPP) from adenosine triphosphate and ribose 5-phosphate. 5-Phosphoribosyl pyrophosphate is an important intermediate in the synthesis of purine, pyrimidine, and pyridine nucleotides, as well as of the amino acids histidine and tryptophan. The crystallization conditions for E. coli PRPPS were found by the vapor-diffusion technique and were optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals grown by the counter-diffusion technique using a synchrotron radiation source to 3.1-Å resolution. The crystals of PRPPS belong to sp.more » gr. P6{sub 3}22 and have the following unit-cell parameters: a = b = 104.44 Å, c = 124.98 Å, α = β = 90°, γ = 120°. The collected X-ray diffraction data set is suitable for the solution of the three-dimensional structure of PRPPS at 3.1-Å resolution.« less

  20. ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds.

    PubMed

    Gaufichon, Laure; Marmagne, Anne; Belcram, Katia; Yoneyama, Tadakatsu; Sakakibara, Yukiko; Hase, Toshiharu; Grandjean, Olivier; Clément, Gilles; Citerne, Sylvie; Boutet-Mercey, Stéphanie; Masclaux-Daubresse, Céline; Chardon, Fabien; Soulay, Fabienne; Xu, Xiaole; Trassaert, Marion; Shakiebaei, Maryam; Najihi, Amina; Suzuki, Akira

    2017-08-01

    Despite a general view that asparagine synthetase generates asparagine as an amino acid for long-distance transport of nitrogen to sink organs, its role in nitrogen metabolic pathways in floral organs during seed nitrogen filling has remained undefined. We demonstrate that the onset of pollination in Arabidopsis induces selected genes for asparagine metabolism, namely ASN1 (At3g47340), GLN2 (At5g35630), GLU1 (At5g04140), AapAT2 (At5g19950), ASPGA1 (At5g08100) and ASPGB1 (At3g16150), particularly at the ovule stage (stage 0), accompanied by enhanced asparagine synthetase protein, asparagine and total amino acids. Immunolocalization confined asparagine synthetase to the vascular cells of the silique cell wall and septum, but also to the outer and inner seed integuments, demonstrating the post-phloem transport of asparagine in these cells to developing embryos. In the asn1 mutant, aberrant embryo cell divisions in upper suspensor cell layers from globular to heart stages assign a role for nitrogen in differentiating embryos within the ovary. Induction of asparagine metabolic genes by light/dark and nitrate supports fine shifts of nitrogen metabolic pathways. In transgenic Arabidopsis expressing promoter Ca MV 35S ::ASN1 fusion, marked metabolomics changes at stage 0, including a several-fold increase in free asparagine, are correlated to enhanced seed nitrogen. However, specific promoter Napin2S ::ASN1 expression during seed formation and a six-fold increase in asparagine toward the desiccation stage result in wild-type seed nitrogen, underlining that delayed accumulation of asparagine impairs the timing of its use by releasing amide and amino nitrogen. Transcript and metabolite profiles in floral organs match the carbon and nitrogen partitioning to generate energy via the tricarboxylic acid cycle, GABA shunt and phosphorylated serine synthetic pathway. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  1. Intercalation of P atoms in Fullerene-like CP x

    NASA Astrophysics Data System (ADS)

    Gueorguiev, G. K.; Czigány, Zs.; Furlan, A.; Stafström, S.; Hultman, L.

    2011-01-01

    The energy cost for P atom intercalation and corresponding structural implications during formation of Fullerene-like Phosphorus carbide (FL-CPx) were evaluated within the framework of Density Functional Theory. Single P atom interstitial defects in FL-CPx are energetically feasible and exhibit energy cost of 0.93-1.21 eV, which is comparable to the energy cost for experimentally confirmed tetragon defects and dangling bonds in CPx. A single P atom intercalation event in FL-CPx can increase the inter-sheet distance from 3.39-3.62 Å to 5.81-7.04 Å. These theoretical results are corroborated by Selected Area Electron Diffraction characterization of FL-CPx samples.

  2. Functional Roles of Pattern Recognition Receptors That Recognize Virus Nucleic Acids in Human Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Wang, Fangchao; Yang, Can; Liu, Guoyan; Song, Xiangfeng

    2016-01-01

    Human adipose-derived mesenchymal stem cells (hAD-MSCs) are mesenchymal stem cells with the capability to modulate immune responses. Evidence showing that hAD-MSCs could mediate innate immune responses through pattern recognition receptors (PRRs) is increasing. However, the roles of PRRs in regulating the innate sensing of virus nucleic acids (RNA and DNA) in hAD-MSCs have not yet been investigated. This study focused on the abundant expression of PRRs, including Toll-like receptor 3 (TLR3) and retinoic acid-inducible gene I (RIG-I), which recognize viral RNA, and gamma-interferon inducible protein 16 (IFI16), which recognizes viral DNA in hAD-MSCs. Poly(I:C), a synthetic dsRNA analogy, activated TLR3 and RIG-I and induced the expression of type I interferons (IFN-α/β) and antivirus proteins, including IFN-stimulating gene 15, 2′5′-oligoadenylate synthetase, and Mx GTPase 1 in hAD-MSCs, which were attenuated by the knockdown of each TLR3 or RIG-I. Synthetic herpes simplex viral DNA (HSV60) activated IFI16 and induced the expression of IFN-α/β and antivirus proteins in hAD-MSCs, which were inhibited by the knockdown of IFI16. Both poly(I:C) and HSV60 induced the expression of IFN-α/β through the phosphorylation of IFN-regulatory factor 3. All these results indicated that PRRs recognizing virus nucleic acids were expressed and can mediate antivirus responses in hAD-MSCs. PMID:28105439

  3. 11th IUBMB Focused Meeting on the Aminoacyl-tRNA Synthetases: Sailing a New Sea of Complex Functions in Human Biology and Disease.

    PubMed

    Francklyn, Christopher; Roy, Herve; Alexander, Rebecca

    2018-05-01

    The 11th IUBMB Focused Meeting on Aminoacyl-tRNA Synthetases was held in Clearwater Beach, Florida from 29 October⁻2 November 2017, with the aim of presenting the latest research on these enzymes and promoting interchange among aminoacyl-tRNA synthetase (ARS) researchers. Topics covered in the meeting included many areas of investigation, including ARS evolution, mechanism, editing functions, biology in prokaryotic and eukaryotic cells and their organelles, their roles in human diseases, and their application to problems in emerging areas of synthetic biology. In this report, we provide a summary of the major themes of the meeting, citing contributions from the oral presentations in the meeting.

  4. Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions.

    PubMed

    Park, Seong-Im; Kim, Young-Saeng; Kim, Jin-Ju; Mok, Ji-Eun; Kim, Yul-Ho; Park, Hyang-Mi; Kim, Il-Sup; Yoon, Ho-Sung

    2017-08-01

    Reactive oxygen species, which increase under various environmental stresses, have deleterious effects on plants. An important antioxidant, glutathione, is used to detoxify reactive oxygen species in plant cells and is mainly produced by two enzymes: gamma-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GS). To evaluate the functional roles of the glutathione synthetase gene (OsGS) in rice, we generated four independent transgenic rice plants (TG1-TG4) that overexpressed OsGS under the control of the constitutively expressed OsCc1 promoter. When grown under natural paddy field conditions, the TG rice plants exhibited greater growth development, higher chlorophyll content, and higher GSH/GSSH ratios than control wild-type (WT) rice plants. Subsequently, the TG rice plants enhanced redox homeostasis by preventing hydroperoxide-mediated membrane damage, which improved their adaptation to environmental stresses. As a result, TG rice plants improved rice grain yield and total biomass following increases in panicle number and number of spikelets per panicle, despite differences in climate during the cultivation periods of 2014 and 2015. Overall, our results indicate that OsGS overexpression improved redox homeostasis by enhancing the glutathione pool, which resulted in greater tolerance to environmental stresses in the paddy fields. Copyright © 2017. Published by Elsevier GmbH.

  5. Predicting the Pathogenicity of Aminoacyl-tRNA Synthetase Mutations

    PubMed Central

    Oprescu, Stephanie N.; Griffin, Laurie B.; Beg, Asim A.; Antonellis, Anthony

    2016-01-01

    Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes responsible for charging tRNA with cognate amino acids—the first step in protein synthesis. ARSs are required for protein translation in the cytoplasm and mitochondria of all cells. Surprisingly, mutations in 28 of the 37 nuclear-encoded human ARS genes have been linked to a variety of recessive and dominant tissue-specific disorders. Current data sustains that impaired enzyme function is a robust predictor of the pathogenicity of ARS mutations. However, experimental model systems that distinguish between pathogenic and non-pathogenic ARS variants are required for implicating newly identified ARS mutations in disease. Here, we outline strategies to assist in predicting the pathogenicity of ARS variants and urge cautious evaluation of genetic and functional data prior to linking an ARS mutation to a human disease phenotype. PMID:27876679

  6. Scrutinizing Al-like 10+51V, 11+53Cr, 12+55Mn, 13+57Fe, 14+59Co, 15+61Ni, and 16+63Cu 1ions for atomic clocks with uncertainties below the 10-19 level

    NASA Astrophysics Data System (ADS)

    Yu, Yan-mei; Sahoo, B. K.

    2016-12-01

    We investigate the transition between the fine structure levels of the ground state, 3 p 2P1 /2→3 p 2P3 /2 , of the highly charged Al-like 10+51V, 11+53Cr, 12+55Mn, 13+57Fe, 14+59Co, 15+61Ni, and 16+63Cu ions for frequency standards. To comprehend them as prospective atomic clocks, we determine their transition wavelengths, quality factors, and various plausible systematics during the measurements. Since most of these ions have nuclear spin I =3 /2 , uncertainties due to dominant quadrupole shifts can be evaded in the F =0 hyperfine level of the 3 p 2P3 /2 state. Other dominant systematics such as quadratic Stark and black-body radiation shifts have been evaluated precisely demonstrating the feasibility of achieving high accuracy, below 10-19 fractional uncertainty, atomic clocks using the above transitions. Moreover, relativistic sensitivity coefficients are determined to find out the aptness of these proposed clocks to investigate possible temporal variation of the fine structure constant. To carry out these analysis, a relativistic coupled-cluster method considering Dirac-Coulomb-Breit Hamiltonian along with lower-order quantum electrodynamics interactions is employed and many spectroscopic properties are evaluated. These properties are also of immense interest for astrophysical studies.

  7. Dynamics of the active site loops in catalyzing aminoacylation reaction in seryl and histidyl tRNA synthetases.

    PubMed

    Dutta, Saheb; Kundu, Soumya; Saha, Amrita; Nandi, Nilashis

    2018-03-01

    Aminoacylation reaction is the first step of protein biosynthesis. The catalytic reorganization at the active site of aminoacyl tRNA synthetases (aaRSs) is driven by the loop motions. There remain lacunae of understanding concerning the catalytic loop dynamics in aaRSs. We analyzed the functional loop dynamics in seryl tRNA synthetase from Methanopyrus kandleri ( mk SerRS) and histidyl tRNA synthetases from Thermus thermophilus ( tt HisRS), respectively, using molecular dynamics. Results confirm that the motif 2 loop and other active site loops are flexible spots within the catalytic domain. Catalytic residues of the loops form a network of interaction with the substrates to form a reactive state. The loops undergo transitions between closed state and open state and the relaxation of the constituent residues occurs in femtosecond to nanosecond time scale. Order parameters are higher for constituent catalytic residues which form a specific network of interaction with the substrates to form a reactive state compared to the Gly residues within the loop. The development of interaction is supported from mutation studies where the catalytic domain with mutated loop exhibits unfavorable binding energy with the substrates. During the open-close motion of the loops, the catalytic residues make relaxation by ultrafast librational motion as well as fast diffusive motion and subsequently relax rather slowly via slower diffusive motion. The Gly residues act as a hinge to facilitate the loop closing and opening by their faster relaxation behavior. The role of bound water is analyzed by comparing implicit solvent-based and explicit solvent-based simulations. Loops fail to form catalytically competent geometry in absence of water. The present result, for the first time reveals the nature of the active site loop dynamics in aaRS and their influence on catalysis.

  8. Loss of function mutations in VARS encoding cytoplasmic valyl-tRNA synthetase cause microcephaly, seizures, and progressive cerebral atrophy.

    PubMed

    Stephen, Joshi; Nampoothiri, Sheela; Banerjee, Aditi; Tolman, Nathanial J; Penninger, Josef Martin; Elling, Ullrich; Agu, Chukwuma A; Burke, John D; Devadathan, Kalpana; Kannan, Rajesh; Huang, Yan; Steinbach, Peter J; Martinis, Susan A; Gahl, William A; Malicdan, May Christine V

    2018-04-01

    Progressive microcephaly and neurodegeneration are genetically heterogenous conditions, largely associated with genes that are essential for the survival of neurons. In this study, we interrogate the genetic etiology of two siblings from a non-consanguineous family with severe early onset of neurological manifestations. Whole exome sequencing identified novel compound heterozygous mutations in VARS that segregated with the proband: a missense (c.3192G>A; p.Met1064Ile) and a splice site mutation (c.1577-2A>G). The VARS gene encodes cytoplasmic valyl-tRNA synthetase (ValRS), an enzyme that is essential during eukaryotic translation. cDNA analysis on patient derived fibroblasts revealed that the splice site acceptor variant allele led to nonsense mediated decay, thus resulting in a null allele. Three-dimensional modeling of ValRS predicts that the missense mutation lies in a highly conserved region and could alter side chain packing, thus affecting tRNA binding or destabilizing the interface between the catalytic and tRNA binding domains. Further quantitation of the expression of VARS showed remarkably reduced levels of mRNA and protein in skin derived fibroblasts. Aminoacylation experiments on patient derived cells showed markedly reduced enzyme activity of ValRS suggesting the mutations to be loss of function. Bi-allelic mutations in cytoplasmic amino acyl tRNA synthetases are well-known for their role in neurodegenerative disorders, yet human disorders associated with VARS mutations have not yet been clinically well characterized. Our study describes the phenotype associated with recessive VARS mutations and further functional delineation of the pathogenicity of novel variants identified, which widens the clinical and genetic spectrum of patients with progressive microcephaly.

  9. 30 CFR 816.59 - Coal recovery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...

  10. 30 CFR 816.59 - Coal recovery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...

  11. 30 CFR 816.59 - Coal recovery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...

  12. 30 CFR 816.59 - Coal recovery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...

  13. 30 CFR 816.59 - Coal recovery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal recovery. 816.59 Section 816.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-SURFACE MINING ACTIVITIES § 816.59 Coal recovery... coal, while utilizing the best appropriate technology currently available to maintain environmental...

  14. 40 CFR 59.207 - Test methods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Test methods. 59.207 Section 59.207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... Compound Emission Standards for Consumer Products § 59.207 Test methods. Each manufacturer or importer...

  15. 40 CFR 59.207 - Test methods.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Test methods. 59.207 Section 59.207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... Compound Emission Standards for Consumer Products § 59.207 Test methods. Each manufacturer or importer...

  16. 40 CFR 59.207 - Test methods.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test methods. 59.207 Section 59.207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... Compound Emission Standards for Consumer Products § 59.207 Test methods. Each manufacturer or importer...

  17. 40 CFR 59.207 - Test methods.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test methods. 59.207 Section 59.207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... Compound Emission Standards for Consumer Products § 59.207 Test methods. Each manufacturer or importer...

  18. 40 CFR 59.207 - Test methods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test methods. 59.207 Section 59.207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... Compound Emission Standards for Consumer Products § 59.207 Test methods. Each manufacturer or importer...

  19. 14 CFR 65.59 - Skill requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Skill requirements. 65.59 Section 65.59 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Aircraft Dispatchers § 65.59 Skill requirements. An...

  20. 14 CFR 65.59 - Skill requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Skill requirements. 65.59 Section 65.59 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Aircraft Dispatchers § 65.59 Skill requirements. An...

  1. Landing of STS-59 Shuttle Endeavour at Edwards Air Force Base

    NASA Image and Video Library

    1994-04-20

    STS059-S-107 (20 April 1994) --- The main landing gear of the Space Shuttle Endeavour touches down at Edwards Air Force Base to complete the 11-day STS-59/SRL-1 mission. Landing occurred at 9:54 a.m. (PDT), April 20, 1994. Mission duration was 11 days, 5 hours, 49 minutes. Guiding Endeavour to a landing was astronaut Sidney M. Gutierrez, STS-59 commander. His crew was Kevin P. Chilton, Linda M. Godwin, Jerome (Jay) Apt, Michael R. (Rich) Clifford and Thomas D. Jones.

  2. Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture.

    PubMed Central

    Gebhardt, R; Mecke, D

    1983-01-01

    The distribution of glutamine synthetase [L-glutamate: ammonia ligase (ADP-forming), EC 6.3.1.1)] among rat liver parenchymal cells in situ and in primary culture was investigated by indirect immunofluorescence using a specific antiserum. In intact liver, the enzyme was found to be localized exclusively within a very small population of the parenchymal cells surrounding the terminal hepatic venules. Other parts of the parenchyma including non-parenchymal cell types did not stain for this enzyme. Heterogeneity was preserved during isolation of liver parenchymal cells and persisted in cultured cells for at least 3 days. Despite alterations in enzyme activity due to the adaptation of the cells to the culture conditions or due to the hormonal stimulation of the enzyme activity, no change in the relative number of cells expressing this enzyme could be detected. This rather peculiar localization of glutamine synthetase demonstrates an interesting aspect of liver zonation and might have important implications for liver glutamine and, more generally, nitrogen metabolism. Furthermore, it raises the question of whether there might be a phenotypic difference among liver parenchymal cells. Images Fig. 1. PMID:6138251

  3. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...

  4. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...

  5. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...

  6. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...

  7. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain environmental...

  8. 10 CFR 26.59 - Authorization reinstatement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Authorization reinstatement. 26.59 Section 26.59 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Granting and Maintaining Authorization § 26.59 Authorization reinstatement. (a) In order to grant authorization to an individual whose authorization has been...

  9. 10 CFR 26.59 - Authorization reinstatement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Authorization reinstatement. 26.59 Section 26.59 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Granting and Maintaining Authorization § 26.59 Authorization reinstatement. (a) In order to grant authorization to an individual whose authorization has been...

  10. 42 CFR 59.212 - Grantee accountability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Grantee accountability. 59.212 Section 59.212 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.212 Grantee accountability. (a...

  11. 42 CFR 59.212 - Grantee accountability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Grantee accountability. 59.212 Section 59.212 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.212 Grantee accountability. (a...

  12. 42 CFR 59.212 - Grantee accountability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Grantee accountability. 59.212 Section 59.212 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.212 Grantee accountability. (a...

  13. 42 CFR 59.212 - Grantee accountability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Grantee accountability. 59.212 Section 59.212 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.212 Grantee accountability. (a...

  14. 42 CFR 59.212 - Grantee accountability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Grantee accountability. 59.212 Section 59.212 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.212 Grantee accountability. (a...

  15. 10 CFR 26.59 - Authorization reinstatement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Authorization reinstatement. 26.59 Section 26.59 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Granting and Maintaining Authorization § 26.59 Authorization reinstatement. (a) In order to grant authorization to an individual whose authorization has been...

  16. 10 CFR 26.59 - Authorization reinstatement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Authorization reinstatement. 26.59 Section 26.59 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Granting and Maintaining Authorization § 26.59 Authorization reinstatement. (a) In order to grant authorization to an individual whose authorization has been...

  17. 10 CFR 26.59 - Authorization reinstatement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Authorization reinstatement. 26.59 Section 26.59 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Granting and Maintaining Authorization § 26.59 Authorization reinstatement. (a) In order to grant authorization to an individual whose authorization has been...

  18. 18 CFR 701.59 - Advisory committees.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Advisory committees. 701.59 Section 701.59 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.59 Advisory committees. The Council may establish standing and ad...

  19. 18 CFR 701.59 - Advisory committees.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Advisory committees. 701.59 Section 701.59 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.59 Advisory committees. The Council may establish standing and ad...

  20. 18 CFR 701.59 - Advisory committees.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Advisory committees. 701.59 Section 701.59 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.59 Advisory committees. The Council may establish standing and ad...

  1. 18 CFR 701.59 - Advisory committees.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Advisory committees. 701.59 Section 701.59 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.59 Advisory committees. The Council may establish standing and ad...

  2. 18 CFR 701.59 - Advisory committees.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Advisory committees. 701.59 Section 701.59 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.59 Advisory committees. The Council may establish standing and ad...

  3. 40 CFR 59.630 - EPA testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false EPA testing. 59.630 Section 59.630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... Emissions From New and In-Use Portable Fuel Containers Certifying Emission Families § 59.630 EPA testing. We...

  4. 40 CFR 59.630 - EPA testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false EPA testing. 59.630 Section 59.630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... Emissions From New and In-Use Portable Fuel Containers Certifying Emission Families § 59.630 EPA testing. We...

  5. 40 CFR 59.630 - EPA testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false EPA testing. 59.630 Section 59.630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... Emissions From New and In-Use Portable Fuel Containers Certifying Emission Families § 59.630 EPA testing. We...

  6. 40 CFR 59.630 - EPA testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false EPA testing. 59.630 Section 59.630 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... Emissions From New and In-Use Portable Fuel Containers Certifying Emission Families § 59.630 EPA testing. We...

  7. 28 CFR 90.59 - Grantee reporting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Grantee reporting. 90.59 Section 90.59 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) VIOLENCE AGAINST WOMEN Indian Tribal Governments Discretionary Program § 90.59 Grantee reporting. (a) Upon completion of the grant period under this part, an...

  8. 28 CFR 51.59 - Redistricting plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Redistricting plans. 51.59 Section 51.59... THE VOTING RIGHTS ACT OF 1965, AS AMENDED Determinations by the Attorney General § 51.59 Redistricting plans. (a) Relevant factors. In determining whether a submitted redistricting plan has a prohibited...

  9. 7 CFR 929.59 - Excess cranberries.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Excess cranberries. 929.59 Section 929.59 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE CRANBERRIES GROWN IN STATES OF... LONG ISLAND IN THE STATE OF NEW YORK Order Regulating Handling Regulations § 929.59 Excess cranberries...

  10. 7 CFR 929.59 - Excess cranberries.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Excess cranberries. 929.59 Section 929.59 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE CRANBERRIES GROWN IN STATES OF... LONG ISLAND IN THE STATE OF NEW YORK Order Regulating Handling Regulations § 929.59 Excess cranberries...

  11. 7 CFR 929.59 - Excess cranberries.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Excess cranberries. 929.59 Section 929.59 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE CRANBERRIES GROWN IN STATES OF... LONG ISLAND IN THE STATE OF NEW YORK Order Regulating Handling Regulations § 929.59 Excess cranberries...

  12. 7 CFR 929.59 - Excess cranberries.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Excess cranberries. 929.59 Section 929.59 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE CRANBERRIES GROWN IN STATES OF... LONG ISLAND IN THE STATE OF NEW YORK Order Regulating Handling Regulations § 929.59 Excess cranberries...

  13. 42 CFR 59.205 - Project requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Project requirements. 59.205 Section 59.205 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.205 Project requirements. An approvable...

  14. 42 CFR 59.205 - Project requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Project requirements. 59.205 Section 59.205 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.205 Project requirements. An approvable...

  15. 42 CFR 59.205 - Project requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Project requirements. 59.205 Section 59.205 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.205 Project requirements. An approvable...

  16. 42 CFR 59.205 - Project requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Project requirements. 59.205 Section 59.205 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.205 Project requirements. An approvable...

  17. 49 CFR 22.59 - Loan modifications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Loan modifications. 22.59 Section 22.59 Transportation Office of the Secretary of Transportation SHORT-TERM LENDING PROGRAM (STLP) Loan Administration § 22.59 Loan modifications. Any modification to the terms of the DOT OSDBU guarantee agreement must...

  18. 49 CFR 801.59 - Geological records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Geological records. 801.59 Section 801.59... PUBLIC AVAILABILITY OF INFORMATION Exemption From Public Disclosure § 801.59 Geological records. Pursuant to 5 U.S.C. 552(b)(9), records concerning geological wells are exempt from public disclosure. ...

  19. Rsd balances (p)ppGpp level by stimulating the hydrolase activity of SpoT during carbon source downshift in Escherichia coli.

    PubMed

    Lee, Jae-Woo; Park, Young-Ha; Seok, Yeong-Jae

    2018-06-18

    Bacteria respond to nutritional stresses by changing the cellular concentration of the alarmone (p)ppGpp. This control mechanism, called the stringent response, depends on two enzymes, the (p)ppGpp synthetase RelA and the bifunctional (p)ppGpp synthetase/hydrolase SpoT in Escherichia coli and related bacteria. Because SpoT is the only enzyme responsible for (p)ppGpp hydrolysis in these bacteria, SpoT activity needs to be tightly regulated to prevent the uncontrolled accumulation of (p)ppGpp, which is lethal. To date, however, no such regulation of SpoT (p)ppGpp hydrolase activity has been documented in E. coli In this study, we show that Rsd directly interacts with SpoT and stimulates its (p)ppGpp hydrolase activity. Dephosphorylated HPr, but not phosphorylated HPr, of the phosphoenolpyruvate-dependent sugar phosphotransferase system could antagonize the stimulatory effect of Rsd on SpoT (p)ppGpp hydrolase activity. Thus, we suggest that Rsd is a carbon source-dependent regulator of the stringent response in E. coli . Copyright © 2018 the Author(s). Published by PNAS.

  20. 46 CFR 111.59-1 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false General. 111.59-1 Section 111.59-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Busways § 111.59-1 General. Each busway must meet Article 368 of NFPA NEC 2002 (incorporated by reference...

  1. 46 CFR 111.59-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false General. 111.59-1 Section 111.59-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Busways § 111.59-1 General. Each busway must meet Article 368 of NFPA NEC 2002 (incorporated by reference...

  2. 46 CFR 111.59-1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false General. 111.59-1 Section 111.59-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Busways § 111.59-1 General. Each busway must meet Article 368 of NFPA NEC 2002 (incorporated by reference...

  3. 46 CFR 111.59-1 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false General. 111.59-1 Section 111.59-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Busways § 111.59-1 General. Each busway must meet Article 368 of NFPA NEC 2002 (incorporated by reference...

  4. 46 CFR 111.59-1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false General. 111.59-1 Section 111.59-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Busways § 111.59-1 General. Each busway must meet Article 368 of NFPA NEC 2002 (incorporated by reference...

  5. 36 CFR 59.2 - Information collection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Information collection. 59.2... RESPONSIBILITIES § 59.2 Information collection. The information collection requirements contained in § 59.3 have... clearance number 1024-0047. The information is being collected to determine whether to approve a project...

  6. 7 CFR 15a.59 - Advertising.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Advertising. 15a.59 Section 15a.59 Agriculture Office of the Secretary of Agriculture EDUCATION PROGRAMS OR ACTIVITIES RECEIVING OR BENEFITTING FROM... Activities Prohibited § 15a.59 Advertising. A recipient shall not in any advertising related to employment...

  7. 7 CFR 15a.59 - Advertising.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Advertising. 15a.59 Section 15a.59 Agriculture Office of the Secretary of Agriculture EDUCATION PROGRAMS OR ACTIVITIES RECEIVING OR BENEFITTING FROM... Activities Prohibited § 15a.59 Advertising. A recipient shall not in any advertising related to employment...

  8. 7 CFR 15a.59 - Advertising.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Advertising. 15a.59 Section 15a.59 Agriculture Office of the Secretary of Agriculture EDUCATION PROGRAMS OR ACTIVITIES RECEIVING OR BENEFITTING FROM... Activities Prohibited § 15a.59 Advertising. A recipient shall not in any advertising related to employment...

  9. 7 CFR 15a.59 - Advertising.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Advertising. 15a.59 Section 15a.59 Agriculture Office of the Secretary of Agriculture EDUCATION PROGRAMS OR ACTIVITIES RECEIVING OR BENEFITTING FROM... Activities Prohibited § 15a.59 Advertising. A recipient shall not in any advertising related to employment...

  10. 7 CFR 15a.59 - Advertising.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Advertising. 15a.59 Section 15a.59 Agriculture Office of the Secretary of Agriculture EDUCATION PROGRAMS OR ACTIVITIES RECEIVING OR BENEFITTING FROM... Activities Prohibited § 15a.59 Advertising. A recipient shall not in any advertising related to employment...

  11. 42 CFR 59.12 - Additional conditions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Additional conditions. 59.12 Section 59.12 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Project Grants for Family Planning Services § 59.12 Additional conditions. The Secretary may, with...

  12. 42 CFR 59.12 - Additional conditions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Additional conditions. 59.12 Section 59.12 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Project Grants for Family Planning Services § 59.12 Additional conditions. The Secretary may, with...

  13. 42 CFR 59.214 - Additional conditions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Additional conditions. 59.214 Section 59.214 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.214 Additional conditions. The Secretary may with...

  14. 42 CFR 59.12 - Additional conditions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Additional conditions. 59.12 Section 59.12 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Project Grants for Family Planning Services § 59.12 Additional conditions. The Secretary may, with...

  15. 42 CFR 59.12 - Additional conditions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Additional conditions. 59.12 Section 59.12 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Project Grants for Family Planning Services § 59.12 Additional conditions. The Secretary may, with...

  16. 42 CFR 59.12 - Additional conditions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Additional conditions. 59.12 Section 59.12 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Project Grants for Family Planning Services § 59.12 Additional conditions. The Secretary may, with...

  17. 42 CFR 59.214 - Additional conditions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Additional conditions. 59.214 Section 59.214 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.214 Additional conditions. The Secretary may with...

  18. 42 CFR 59.214 - Additional conditions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Additional conditions. 59.214 Section 59.214 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.214 Additional conditions. The Secretary may with...

  19. 42 CFR 59.214 - Additional conditions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Additional conditions. 59.214 Section 59.214 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.214 Additional conditions. The Secretary may with...

  20. 42 CFR 59.214 - Additional conditions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Additional conditions. 59.214 Section 59.214 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS GRANTS FOR FAMILY PLANNING SERVICES Grants for Family Planning Service Training § 59.214 Additional conditions. The Secretary may with...

  1. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic pipe...

  2. 46 CFR 59.01-1 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Scope. 59.01-1 Section 59.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING REPAIRS TO BOILERS, PRESSURE VESSELS AND APPURTENANCES General Requirements § 59.01-1 Scope. The regulations in this part apply to the repairs of all...

  3. 46 CFR 59.01-1 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Scope. 59.01-1 Section 59.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING REPAIRS TO BOILERS, PRESSURE VESSELS AND APPURTENANCES General Requirements § 59.01-1 Scope. The regulations in this part apply to the repairs of all...

  4. 46 CFR 59.01-1 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Scope. 59.01-1 Section 59.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING REPAIRS TO BOILERS, PRESSURE VESSELS AND APPURTENANCES General Requirements § 59.01-1 Scope. The regulations in this part apply to the repairs of all...

  5. 46 CFR 59.01-1 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Scope. 59.01-1 Section 59.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING REPAIRS TO BOILERS, PRESSURE VESSELS AND APPURTENANCES General Requirements § 59.01-1 Scope. The regulations in this part apply to the repairs of all...

  6. 46 CFR 59.01-1 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Scope. 59.01-1 Section 59.01-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING REPAIRS TO BOILERS, PRESSURE VESSELS AND APPURTENANCES General Requirements § 59.01-1 Scope. The regulations in this part apply to the repairs of all...

  7. 42 CFR 59a.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Definitions. 59a.2 Section 59a.2 Public Health... Grants for Establishing, Expanding, and Improving Basic Resources § 59a.2 Definitions. Undefined terms... relating to the health sciences. Secretary means the Secretary of Health and Human Services and any other...

  8. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic pipe...

  9. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic pipe...

  10. 49 CFR 192.59 - Plastic pipe.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic pipe...

  11. Potential role of acetyl-CoA synthetase (acs) and malate dehydrogenase (mae) in the evolution of the acetate switch in Bacteria and Archaea

    USGS Publications Warehouse

    Barnhart, Elliott P.; McClure, Marcella A.; Johnson, Kiki; Cleveland, Sean; Hunt, Kristopher A.; Fields, Matthew W.

    2015-01-01

    Although many Archaea have AMP-Acs (acetyl-coenzyme A synthetase) and ADP-Acs, the extant methanogenic genus Methanosarcina is the only identified Archaeal genus that can utilize acetate via acetate kinase (Ack) and phosphotransacetylase (Pta). Despite the importance of ack as the potential urkinase in the ASKHA phosphotransferase superfamily, an origin hypothesis does not exist for the acetate kinase in Bacteria, Archaea, or Eukarya. Here we demonstrate that Archaeal AMP-Acs and ADP-Acs contain paralogous ATPase motifs previously identified in Ack, which demonstrate a novel relation between these proteins in Archaea. The identification of ATPase motif conservation and resulting structural features in AMP- and ADP-acetyl-CoA synthetase proteins in this study expand the ASKHA superfamily to include acetyl-CoA synthetase. Additional phylogenetic analysis showed that Pta and MaeB sequences had a common ancestor, and that the Pta lineage within the halophilc archaea was an ancestral lineage. These results suggested that divergence of a duplicated maeB within an ancient halophilic, archaeal lineage formed a putative pta ancestor. These results provide a potential scenario for the establishment of the Ack/Pta pathway and provide novel insight into the evolution of acetate metabolism for all three domains of life.

  12. Potential Role of Acetyl-CoA Synthetase (acs) and Malate Dehydrogenase (mae) in the Evolution of the Acetate Switch in Bacteria and Archaea

    DOE PAGES

    Barnhart, Elliott P.; McClure, Marcella A.; Johnson, Kiki; ...

    2015-08-03

    Although many Archaea have AMP-Acs (acetyl-coenzyme A synthetase) and ADP-Acs, the extant methanogenic genus Methanosarcina is the only identified Archaeal genus that can utilize acetate via acetate kinase (Ack) and phosphotransacetylase (Pta). Despite the importance of ack as the potential urkinase in the ASKHA phosphotransferase superfamily, an origin hypothesis does not exist for the acetate kinase in Bacteria, Archaea, or Eukarya. Here we demonstrate that Archaeal AMP-Acs and ADP-Acs contain paralogous ATPase motifs previously identified in Ack, which demonstrate a novel relation between these proteins in Archaea. The identification of ATPase motif conservation and resulting structural features in AMP- andmore » ADP-acetyl-CoA synthetase proteins in this study expand the ASKHA superfamily to include acetyl-CoA synthetase. Additional phylogenetic analysis showed that Pta and MaeB sequences had a common ancestor, and that the Pta lineage within the halophilc archaea was an ancestral lineage. Lastly, these results suggested that divergence of a duplicated maeB within an ancient halophilic, archaeal lineage formed a putative pta ancestor. These results provide a potential scenario for the establishment of the Ack/Pta pathway and provide novel insight into the evolution of acetate metabolism for all three domains of life.« less

  13. Archaea recruited D-Tyr-tRNATyr deacylase for editing in Thr-tRNA synthetase.

    PubMed

    Rigden, Daniel J

    2004-12-01

    Aminoacyl-tRNA synthetases (AARSs) are key players in the maintenance of the genetic code through correct pairing of amino acids with their cognate tRNA molecules. To this end, some AARSs, as well as seeking to recognize the correct amino acid during synthesis of aminoacyl-tRNA, enhance specificity through recognition of mischarged aminoacyl-tRNA molecules in a separate editing reaction. Recently, an editing domain, of uncertain provenance, idiosyncratic to some archaeal ThrRSs has been characterized. Here, sequence analyses and molecular modeling are reported that clearly show a relationship of the archaea-specific ThrRS editing domains with d-Tyr-tRNATyr deacylases (DTDs). The model enables the identification of the catalytic site and other substrate binding residues, as well as the proposal of a likely catalytic mechanism. Interestingly, typical DTD sequences, common in bacteria and eukaryotes, are entirely absent in archaea, consistent with an evolutionary scheme in which DTD was co-opted to serve as a ThrRS editing domain in archaea soon after their divergence from eukaryotes. A group of present-day archaebacteria contain a ThrRS obtained from a bacterium by horizontal gene transfer. In some of these cases a vestigial version of the original archaeal ThrRS, of potentially novel function, is maintained.

  14. Archaea recruited d-Tyr-tRNATyr deacylase for editing in Thr–tRNA synthetase

    PubMed Central

    RIGDEN, DANIEL J.

    2004-01-01

    Aminoacyl–tRNA synthetases (AARSs) are key players in the maintenance of the genetic code through correct pairing of amino acids with their cognate tRNA molecules. To this end, some AARSs, as well as seeking to recognize the correct amino acid during synthesis of aminoacyl–tRNA, enhance specificity through recognition of mischarged aminoacyl–tRNA molecules in a separate editing reaction. Recently, an editing domain, of uncertain provenance, idiosyncratic to some archaeal ThrRSs has been characterized. Here, sequence analyses and molecular modeling are reported that clearly show a relationship of the archaea-specific ThrRS editing domains with d-Tyr-tRNATyr deacylases (DTDs). The model enables the identification of the catalytic site and other substrate binding residues, as well as the proposal of a likely catalytic mechanism. Interestingly, typical DTD sequences, common in bacteria and eukaryotes, are entirely absent in archaea, consistent with an evolutionary scheme in which DTD was co-opted to serve as a ThrRS editing domain in archaea soon after their divergence from eukaryotes. A group of present-day archaebacteria contain a ThrRS obtained from a bacterium by horizontal gene transfer. In some of these cases a vestigial version of the original archaeal ThrRS, of potentially novel function, is maintained. PMID:15525705

  15. 7 CFR 59.300 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Definitions. 59.300 Section 59.300 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE...

  16. 7 CFR 59.300 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Definitions. 59.300 Section 59.300 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE...

  17. 7 CFR 59.300 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Definitions. 59.300 Section 59.300 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE...

  18. 7 CFR 59.300 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Definitions. 59.300 Section 59.300 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE...

  19. 7 CFR 59.300 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Definitions. 59.300 Section 59.300 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE...

  20. Biochemical studies on Francisella tularensis RelA in (p)ppGpp biosynthesis

    PubMed Central

    Wilkinson, Rachael C.; Batten, Laura E.; Wells, Neil J.; Oyston, Petra C.F.; Roach, Peter L.

    2015-01-01

    The bacterial stringent response is induced by nutrient deprivation and is mediated by enzymes of the RSH (RelA/SpoT homologue; RelA, (p)ppGpp synthetase I; SpoT, (p)ppGpp synthetase II) superfamily that control concentrations of the ‘alarmones’ (p)ppGpp (guanosine penta- or tetra-phosphate). This regulatory pathway is present in the vast majority of pathogens and has been proposed as a potential anti-bacterial target. Current understanding of RelA-mediated responses is based on biochemical studies using Escherichia coli as a model. In comparison, the Francisella tularensis RelA sequence contains a truncated regulatory C-terminal region and an unusual synthetase motif (EXSD). Biochemical analysis of F. tularensis RelA showed the similarities and differences of this enzyme compared with the model RelA from Escherichia coli. Purification of the enzyme yielded a stable dimer capable of reaching concentrations of 10 mg/ml. In contrast with other enzymes from the RelA/SpoT homologue superfamily, activity assays with F. tularensis RelA demonstrate a high degree of specificity for GTP as a pyrophosphate acceptor, with no measurable turnover for GDP. Steady state kinetic analysis of F. tularensis RelA gave saturation activity curves that best fitted a sigmoidal function. This kinetic profile can result from allosteric regulation and further measurements with potential allosteric regulators demonstrated activation by ppGpp (5′,3′-dibisphosphate guanosine) with an EC50 of 60±1.9 μM. Activation of F. tularensis RelA by stalled ribosomal complexes formed with ribosomes purified from E. coli MRE600 was observed, but interestingly, significantly weaker activation with ribosomes isolated from Francisella philomiragia. PMID:26450927