Science.gov

Sample records for pacific plate interface

  1. Tectonic Evolution of the Jurassic Pacific Plate

    NASA Astrophysics Data System (ADS)

    Nakanishi, M.; Ishihara, T.

    2015-12-01

    We present the tectonic evolution of the Jurassic Pacific plate based on magnetic anomly lineations and abyssal hills. The Pacific plate is the largest oceanic plate on Earth. It was born as a microplate aroud the Izanagi-Farallon-Phoenix triple junction about 192 Ma, Early Jurassic [Nakanishi et al., 1992]. The size of the Pacific plate at 190 Ma was nearly half that of the present Easter or Juan Fernandez microplates in the East Pacific Rise [Martinez et at, 1991; Larson et al., 1992]. The plate boundary surrounding the Pacific plate from Early Jurassic to Early Cretaceous involved the four triple junctions among Pacific, Izanagi, Farallon, and Phoenix plates. The major tectonic events as the formation of oceanic plateaus and microplates during the period occurred in the vicinity of the triple junctions [e.g., Nakanishi and Winterer, 1998; Nakanishi et al., 1999], implying that the study of the triple junctions is indispensable for understanding the tectonic evolution of the Pacific plate. Previous studies indicate instability of the configuration of the triple junctions from Late Jurassic to Early Cretaceous (155-125 Ma). On the other hand, the age of the birth of the Pacific plate was determined assuming that all triple junctions had kept their configurations for about 30 m.y. [Nakanishi et al., 1992] because of insufficient information of the tectonic history of the Pacific plate before Late Jurassic.Increase in the bathymetric and geomagnetic data over the past two decades enables us to reveal the tectonic evolution of the Pacific-Izanagi-Farallon triple junction before Late Jurassic. Our detailed identication of magnetic anomaly lineations exposes magnetic bights before anomaly M25. We found the curved abyssal hills originated near the triple junction, which trend is parallel to magnetic anomaly lineations. These results imply that the configuration of the Pacific-Izanagi-Farallon triple junction had been RRR before Late Jurassic.

  2. Geodetic Evidence of Post-2011 Acceleration of the Pacific Plate

    NASA Astrophysics Data System (ADS)

    Heki, K.; Mitsui, Y.

    2014-12-01

    Oceanic plates may accelerate after large inter-plate earthquakes (Anderson, Science 1975). This was indirectly substantiated by Heki and Mitsui (EPSL 2013), who analyzed crustal deformation of an island arc after megathrust earthquakes. Here we show direct evidence of postseismic acceleration of the Pacific Plate from the data of a Global Navigation Satellite System (GNSS) station on the Minami-torishima (Marcus) Island ~2000 km off the Pacific coast of Japan. Heki and Mitsui (2013) found the enhancement of the inter-plate coupling in NE Japan on segments adjacent to those ruptured in the 2003 Tokachi-Oki (Mw8.0) and the 2011 Tohoku-Oki (Mw9.0) earthquakes. They inferred that the subduction of the Pacific Plate slab significantly accelerated after these earthquakes. During interseismic periods, the balance between the down-dip (slab pull and ridge push) and up-dip (viscous traction and interplate coupling) forces realizes convergence rate constant over geological timescales. A megathrust event reduces interplate coupling, and the down-dip forces temporarily exceed the other. The accelerated subduction realizes under the new balance and continues until the interplate coupling recovers. In the Marcus Island, the closest island on the Pacific Plate to the Japan Trench, continuous GNSS observations started in 2002, and showed linear movement toward WNW of ~7.7 cm/year (in the nnr-NUVEL1 frame). This station showed coseismic jump of ~1 cm toward the epicenter in the 2011 Tohoku-oki earthquake. At the same time, the velocity showed distinct increase of ~10 percent without changing the azimuth, resulting in post-2011 speed of ~8.5 cm/year. This is difficult to explain with a simple postseismic viscous relaxation in a stratified earth, and would be the direct evidence of the postseismic acceleration of the Pacific Plate. Such an acceleration is, however, not seen in Hawaii, ~6000 km away from the fault.

  3. Tectonic Fabric of the Cocos Plate and Conjugate Pacific Plate Crust Near Mexico

    NASA Astrophysics Data System (ADS)

    Stock, J. M.

    2014-12-01

    Existing satellite gravity data, along with publicly available single beam bathymetry, multibeam bathymetry, and shipboard and satellite magnetic anomalies were compiled to make an updated map of tectonic features of the Cocos Plate offshore Mexico and the conjugate crust on the Pacific Plate. The area includes the northern Cocos plate as far south as the Tehuantepec Ridge, and Pacific plate crust on both sides of the Mathematician Rise. This thus includes the modern East Pacific Rise (EPR), the submarine rift margins that bound it - Moctezuma and Manzanillo Troughs - and features previously identified such as the Orozco and O'Gorman Fracture Zones near the Middle America Trench (MAT). The goal was to use existing data to evaluate the likely features that may have existed on the now subducted Cocos Plate crust north of the Clarion Fracture Zone-Tehuantepec Ridge. This can then be compared to seismic imaging of the downgoing slab and geochemical variations along the Mexican Volcanic Arc. Bathymetric slopes were computed automatically from multibeam data gridded at 200 m, 300 m, and 400 m pixel size, and processed to remove signals of circular features such as seamounts, and regions of low slope, while emphasizing higher slopes controlled by linear abyssal hill fabric and fracture zones. Tectonic fabrics at all 3 scales are generally similar. In the resulting tectonic fabric map, the domain of modern East Pacific Rise spreading is clearly visible, truncating older fabrics at the Manzanillo Trough on the east and the Moctezuma Trough on the west. The Orozco Fracture Zone lies entirely within the young part of this crustal province and does not reach the Manzanillo Trough or the MAT. Hence, it is not a feature of the downgoing Cocos Plate and should not be used to explain variations in geochemistry of the arc or geometric variations in the subducted plate. A zone of E-W to ENE-WSW oriented abyssal hills and lineated magnetic anomalies in a bathymetric low between the

  4. Fast Paleogene Motion of the Pacific Hotspots from Revised Global Plate Circuit Constraints

    NASA Technical Reports Server (NTRS)

    Raymond, C.; Stock, J.; Cande, S.

    2000-01-01

    Major improvements in late Cretaceous-early Tertiary Pacific-Antarctica plate reconstructions, and new East-West Antarctica rotations, allow a more definitive test of the relative motion between hotspots using global plate circuit reconstructions with quantitative uncertainties.

  5. Pacific-North America plate motions - New results from very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Ward, Steven N.

    1990-01-01

    The state of Pacific-North America plate interaction is updated using newest VLBI measurements and newly developed rigid plate tectonic models. Particular attention is given to examining the extent of relative motion between the Pacific plate and the North America plate as measured from their stable interiors, the evidence of Pacific plate deformation off the central California coast, and the distribution of path integrated deformaton east of the San Andreas fault. The information obtained on these questions is discussed in the framework of implications for lithospheric rheology and earthquake hazard.

  6. A new GPS velocity field for the Pacific Plate - Part 1: constraints on plate motion, intraplate deformation, and the viscosity of Pacific basin asthenosphere

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Márquez-Azúa, Bertha; Cabral-Cano, Enrique

    2014-12-01

    We combine new, well-determined GPS velocities from Clarion, Guadalupe and Socorro islands on young seafloor in the eastern Pacific basin with newly estimated velocities for 26 GPS sites from older seafloor in the central, western and southern parts of the Pacific Plate to test for deformation within the interior of the Pacific Plate and estimate the viscosity of the asthenosphere below the plate. Relative to a Pacific Plate reference frame defined from the velocities of the 26 GPS sites in other areas of the Pacific Plate, GPS sites on Clarion and Guadalupe islands in the eastern Pacific move 1.2 ± 0.6 mm yr-1 (1σ) towards S09°W ± 38° and 1.9 ± 0.3 mm yr-1 towards S19°E ± 10°, respectively. The two velocities, which are consistent within their 95 per cent uncertainties, both differ significantly from Pacific Plate motion. Transient volcanic deformation related to a 1993-1996 eruption of the Socorro Island shield volcano renders our GPS velocity from that island unreliable for the tectonic analysis although its motion is also southward like those of Clarion and Guadalupe islands. We test but reject the possibilities that drift of Earth's origin in ITRF2008 or unmodelled elastic offsets due to large-magnitude earthquakes around the Pacific rim since 1993 can be invoked to explain the apparent slow southward motions of Clarion and Guadalupe islands. Similarly, corrections to the Pacific Plate GPS velocity field for possible viscoelastic deformation triggered by large-magnitude earthquakes since 1950 also fail to explain the southward motions of the two islands. Viscoelastic models with prescribed asthenospheric viscosities lower than 1 × 1019 Pa s instead introduce statistically significant inconsistencies into the Pacific Plate velocity field, suggesting that the viscosity of the asthenosphere below the plate is higher than 1 × 1019 Pa s. Elastic deformation from locked Pacific-North America Plate boundary faults is also too small to explain the southward

  7. Circum-arctic plate accretion - Isolating part of a pacific plate to form the nucleus of the Arctic Basin

    USGS Publications Warehouse

    Churkin, M.; Trexler, J.H.

    1980-01-01

    A mosaic of large lithospheric plates rims the Arctic Ocean Basin, and foldbelts between these plates contain numerous allochthonous microplates. A new model for continental drift and microplate accretion proposes that prior to the late Mesozoic the Kula plate extended from the Pacific into the Arctic. By a process of circumpolar drift and microplate accretion, fragments of the Pacific basin, including parts of the Kula plate, were cut off and isolated in the Arctic Ocean, the Yukon-Koyukuk basin in Alaska, and the Bering Sea. ?? 1980.

  8. Plate motion controls on back-arc spreading. [Cenozoic movement in Western Pacific

    NASA Technical Reports Server (NTRS)

    Fein, J. B.; Jurdy, D. M.

    1986-01-01

    The motions of the subducting and the overriding plates influence the spatial and temporal distribution of back-arc spreading. Cenozoic plate motions in hot spot-fixed and no-net-rotation reference frames were studied with attention to correlations between changes in motion and episodes of back-arc spreading in the western Pacific. The results suggest that major back-arc opening occurs when both the overriding plate retreats from the trench in an absolute sense and the subducting plate undergoes a significant speed-up. Neither phenomenon alone is sufficient to initiate spreading. Three major plate velocity increases can be identified in the Cenozoic: (1) the Pacific plate 5-9 Ma; (2) the Indian plate at 27 Ma; and (3) the Pacific plate at 43 Ma, due to its shift from northerly to more westerly motion. At the present time, the Indian and Philippine are the only overriding plates that are retreating from their Pacific trenches and back-arc spreading occurs only on these two retreating plates. Although the Indian plate has been retreating for at least 25 Ma, back-arc spreading began only following the Pacific plate speed-up 5-9 Ma. Earlier, during the Indian plate speed-up, no overriding plates were retreating strongly and no back-arc spreading epsiodes are preserved from this time. For the earliest Pacific plate shift at 43 Ma, the Eurasian plate was not advancing, thus creating the only favorable plate kinematic conditions in the Cenozoic for back-arc basin formation in this region. It is unclear whether extension in the Japan Sea is a result of these conditions.

  9. Ridge-spotting: A new test for Pacific absolute plate motion models

    NASA Astrophysics Data System (ADS)

    Wessel, Paul; Müller, R. Dietmar

    2016-06-01

    Relative plate motions provide high-resolution descriptions of motions of plates relative to other plates. Yet geodynamically, motions of plates relative to the mantle are required since such motions can be attributed to forces (e.g., slab pull and ridge push) acting upon the plates. Various reference frames have been proposed, such as the hot spot reference frame, to link plate motions to a mantle framework. Unfortunately, both accuracy and precision of absolute plate motion models lag behind those of relative plate motion models. Consequently, it is paramount to use relative plate motions in improving our understanding of absolute plate motions. A new technique called "ridge-spotting" combines absolute and relative plate motions and examines the viability of proposed absolute plate motion models. We test the method on six published Pacific absolute plate motions models, including fixed and moving hot spot models as well as a geodynamically derived model. Ridge-spotting reconstructs the Pacific-Farallon and Pacific-Antarctica ridge systems over the last 80 Myr. All six absolute plate motion models predict large amounts of northward migration and monotonic clockwise rotation for the Pacific-Farallon ridge. A geodynamic implication of our ridge migration predictions is that the suggestion that the Pacific-Farallon ridge may have been pinned by a large mantle upwelling is not supported. Unexpected or erratic ridge behaviors may be tied to limitations in the models themselves or (for Indo-Atlantic models) discrepancies in the plate circuits used to project models into the Pacific realm. Ridge-spotting is promising and will be extended to include more plates and other ocean basins.

  10. Laser Shockwave Technique For Characterization Of Nuclear Fuel Plate Interfaces

    SciTech Connect

    James A. Smith; Barry H. Rabin; Mathieu Perton; Daniel Lévesque; Jean-Pierre Monchalin; Martin Lord

    2012-07-01

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process. Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.

  11. Laser shockwave technique for characterization of nuclear fuel plate interfaces

    SciTech Connect

    Perton, M.; Levesque, D.; Monchalin, J.-P.; Lord, M.; Smith, J. A.; Rabin, B. H.

    2013-01-25

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process. Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.

  12. Supraslab earthquakes above the Pacific-plate slab in NE Japan: A possible graveyard of detached seamounts and volcanic ridges?

    NASA Astrophysics Data System (ADS)

    Kirby, S.; Okada, T.; Uchida, N.; Hasegawa, A.; Matsuzawa, T.; Hino, R.

    2005-12-01

    Double-difference relocations of interplate thrust and intraslab earthquakes at depths greater than 35 km under NE Japan indicate that many clusters of earthquakes occur above the interplate thrust zone and hence are no longer part of the sinking Pacific-plate slab. The best examples of such clusters are found at depths of 40 to 60 km near the depth limit of interplate thrust earthquake activity and near the intersection of the forearc Moho with the plate interface. In some clusters, small repeating earthquakes occur on the plate interface below the supraslab clusters. The largest of these clusters have earthquakes that are as much as 25 km shallower than the plate boundary and extend as much as several tens of km in the down-dip direction. Offshore multi-beam sonar bathymetry shows seafloor relief that is dominated by seamounts and guyots, representing Cretaceous intraplate volcanic activity. The Japan inner trench slope is marked by many re-entrants that record past seamount-forearc collisions. Supraslab earthquake clusters may represent earthquake activity inside seamounts that have detached from the underlying Pacific plate along the original sedimented seafloor on which these intraplate shield volcanoes were built. If this interpretation is correct, then supraslab earthquakes may represent a unique cumulative record of past seamount subduction.

  13. Plate Interface Rheology, Mechanical Coupling and Accretion during Subduction Infancy

    NASA Astrophysics Data System (ADS)

    Agard, P.; Yamato, P.; Mathieu, S.; Prigent, C.; Guillot, S.; Plunder, A.; Dubacq, B.; Monie, P.; Chauvet, A.

    2015-12-01

    Understanding subduction rheology in both space and time has been a challenge since the advent of plate tectonics. We herein focus on "subduction infancy", that is the first ~1-5 My immediately following subduction nucleation, when a newly born slab penetrates into the upper plate mantle and heats up. The only remnants of this critical yet elusive geodynamic step are thin metamorphic soles, commonly found beneath pristine, 100-1000 km long portions of oceanic lithosphere emplaced on continents (i.e., ophiolites). Through the (i) worldwide compilation of pressure-temperature conditions of metamorphic sole formation augmented by pseudosection thermodynamic modeling, (ii) calculations of the viscosity of materials along the plate interface and (iii) generic numerical thermal models, we provide a conceptual model of dynamic plate interface processes during subduction infancy (and initiation s.l.). We show in particular how major rheological switches across the subduction interface control slab penetration, and the formation of metamorphic soles. Due to the downward progression of hydration and weakening of the mantle wedge with cooling, the lower plate (basalt, sediment) and the upper plate (mantle wedge) rheologies equalize and switch over a restricted temperature-time-depth interval (e.g., at ~800°C and ~1 GPa, during 0.1-2 My, for high-temperature metamorphic sole formation). These switches result in episodes of maximum interplate mechanical coupling, thereby slicing the top of the slab and welding pieces (basalt, sediment) to the base of the mantle wedge. Similar mechanical processes likely apply for the later, deeper accretion and exhumation of high-temperature oceanic eclogites in serpentinite mélanges, or for the accretion of larger tectonic slices. This model provides constraints on the effective rheologies of the crust and mantle and general understanding, at both rock and plate scale, for accretion processes and early slab dynamics.

  14. Relative motions of the Australian, Pacific and Antarctic plates estimated by the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Larson, Kristine M.; Freymueller, Jeff

    1995-01-01

    Global Positioning System (GPS) measurements spanning approximately 3 years have been used to determine velocities for 7 sites on the Australian, Pacific and Antarctic plates. The site velocities agree with both plate model predictions and other space geodetic techniques. We find no evidence for internal deformation of the interior of the Australian plate. Wellington, New Zealand, located in the Australian-Pacific plate boundary zone, moves 20 +/- 5 mm/yr west-southwest relative to the Australian plate. Its velocity lies midway between the predicted velocities of the two plates. Relative Euler vectors for the Australia-Antarctica and Pacific-Antarctica plates agree within one standard deviation with the NUVEL-1A predictions.

  15. Linking the Late Cretaceous to Paleogene Pacific plate and the Atlantic bordering continents using plate circuits and paleomagnetic data

    NASA Astrophysics Data System (ADS)

    Doubrovine, Pavel V.; Tarduno, John A.

    2008-07-01

    Late Cretaceous to Paleogene paleomagnetic data from the Pacific plate (the Emperor Seamounts) can be compared with data from the Atlantic bordering continents through the use of plate circuit reconstructions. Here we summarize the uncertainties in all data sets and present formal tests. We report agreement between Late Cretaceous Pacific paleomagnetic data and predictions based on the estimates of non-Pacific pole positions from synthetic apparent polar wander paths. This congruency points to the veracity of the plate circuits and the accuracy of the paleomagnetic estimates. In contrast to the agreement seen for the Late Cretaceous, small discrepancies are observed in the comparisons of the Pacific Paleogene data and predictions from synthetic apparent polar wander paths. Such a disparity in a younger time interval is unexpected, given the agreement of the Late Cretaceous data. The possibility that minor, temporally variable nondipole field components contribute to the discrepancy cannot be completely discounted. However, an alternative and more straightforward explanation is suggested by further comparisons of the mean non-Pacific paleomagnetic data and the highest-quality poles that contribute to the means. In particular, we note that (1) the Pacific Paleogene data are in full agreement with coeval poles from North America meeting strict reliability criteria and (2) the non-Pacific Paleogene poles of synthetic apparent polar wander paths are dominated by results from the North Atlantic Igneous Province (NAIP), but taken as a whole, the NAIP data fail a paleomagnetic reversal test. Hence, minor discrepancies between Paleocene paleomagnetic data from the Pacific and Atlantic hemispheres may point to limitations of the latter, which incorporate a relatively large number of older, lower-quality data. These findings call for renewed data collections utilizing comprehensive rock magnetic and paleomagnetic (demagnetization) procedures to improve resolution of Paleocene

  16. Plate interface strength and the flexural rigidity of subducting oceanic plates

    NASA Astrophysics Data System (ADS)

    Naliboff, J.; Billen, M. I.; Faccenda, M.; Gerya, T.

    2015-12-01

    Flexural rigidity estimates across a wide range of subduction zones reveal that oceanic plates rapidly weaken as they bend and pass through the outer-rise region into the trench. Inherently, the magnitude of weakening reflects the forces acting on the plate, which drive deformation through plastic yielding and brittle faulting. These forces include those acting to drive (slab pull) or resist (bending, plate coupling) subduction, which vary significantly through long-term (millions of years) changes in slab structure and dynamics. The forces also vary on seismic time-scales as indicated by changes in outer-rise seismicity characteristics before and after great earthquakes in many regions. As the rheology of the downgoing-overriding plate interface plays a first-order role in governing great earthquake seismicity, a quantifiable relationship may exist between large-scale slab weakening and the strength of the subduction interface. Here, we assess this relationship using high-resolution, thermal-mechanical models of the Tonga subduction zone. Rather than developing subduction through time-dependent processes, these models use a cross-sectional slice (2-D) through the Tonga subduction zone as an initial condition in order to approximate the modern forces driving and resisting subduction. Consequently, deformation patterns develop over short (< 0.1 Myr) time-scales, allowing a direct comparison to measurements of flexural rigidity. We define a rheologically distinct, 1 km thick zone between the downgoing and overriding plate. The properties of this zone are varied to examine a range of interface strengths, including fixed (Von Mises), pressure (Mohr-Coulomb) and velocity-dependent rheologies. We then quantify the relationship between variations in subduction interface strength on these time-scales and the corresponding changes in the flexural rigidity of the subducting plate.

  17. Anisotropy from SKS splitting across the Pacific-North America plate boundary offshore southern California

    NASA Astrophysics Data System (ADS)

    Ramsay, Joseph; Kohler, Monica D.; Davis, Paul M.; Wang, Xinguo; Holt, William; Weeraratne, Dayanthie S.

    2016-10-01

    SKS arrivals from ocean bottom seismometer (OBS) data from an offshore southern California deployment are analysed for shear wave splitting. The project involved 34 OBSs deployed for 12 months in a region extending up to 500 km west of the coastline into the oceanic Pacific plate. The measurement process consisted of removing the effects of anisotropy using a range of values for splitting fast directions and delay times to minimize energy along the transverse seismometer axis. Computed splitting parameters are unexpectedly similar to onland parameters, exhibiting WSW-ENE fast polarization directions and delays between 0.8 and 1.8 s, even for oceanic plate sites. This is the first SKS splitting study to extend across the entire boundary between the North America and Pacific plates, into the oceanic part of the Pacific plate. The splitting results show that the fast direction of anisotropy on the Pacific plate does not align with absolute plate motion (APM), and they extend the trend of anisotropy in southern California an additional 500 km west, well onto the oceanic Pacific plate. We model the finite strain and anisotropy within the asthenosphere associated with density-buoyancy driven mantle flow and the effects of APM. In the absence of plate motion effects, such buoyancy driven mantle flow would be NE-directed beneath the Pacific plate observations. The best-fit patterns of mantle flow are inferred from the tomography-based models that show primary influences from foundering higher-density zones associated with the history of subduction beneath North America. The new offshore SKS measurements, when combined with measurements onshore within the plate boundary zone, indicate that dramatic lateral variations in density-driven upper-mantle flow are required from offshore California into the plate boundary zone in California and western Basin and Range.

  18. The `Plate-Like' Subsidence of the East Pacific Rise - South Pacific Superswell System

    NASA Astrophysics Data System (ADS)

    Hillier, J. K.; Watts, T. B.

    2003-12-01

    The separation of small-scale features from the regional seafloor depth is an important problem in the geosciences, especially as it impacts our understanding of mid-plate topographic swells and subsidence away from mid-ocean ridges. In the south Pacific ocean, for example, the removal of these features from the bathymetry using modal techniques has revealed a large and unusually shallow region of the seafloor, which at ˜3000 km wide and up to 1 km high has been dubbed a ``Superswell''. Modal analysis, however, does not completely isolate and remove small-scale features such as oceanic islands, seamounts, oceanic plateaus and localised hot-spot swells from the regional bathymetry. This is because these features are superimposed upon the unperturbed ridge-generated regional bathymetry, accordingly a technique is required that underlines topographic constructs rather than passing through them as is the tendency of any average (mean, median or mode). We have therefore developed an algorithm that reproducibly simulates manual interpretation (MiMIC), thereby removing the superimposed features and revealing larger scale trends. Application of MiMIC to grids of bathymetric data in the region 12-26oS, 200-243oE shows that seafloor of all ages (0.5-112Ma) deepens slowly (initially ˜218 mMa-1/2) and in essence monotonically from the East Pacific Rise (EPR). Although initially deep (-2712m) with respect to a standard plate model (-2500m, 125km, 1350oC), the low subsidence rate reduces the negative depth anomaly with time until it becomes a positive anomaly west of ˜234oE ( ˜20-25Ma) that increases to a maximum of 712+/-66m at 98Ma, not 1300m at ˜65Ma as previously observed. Most significantly though, the Superswell appears to be part of a larger scale, monotonic and `plate-like' subsidence trend that extends to the EPR, not an isolated shallowing that reverses subsidence and causes uplift between 40-80Ma. The continuous nature of the EPR-Superswell subsidence trend

  19. Imaging the Subduction Plate Interface Using Low-Frequency Earthquakes

    NASA Astrophysics Data System (ADS)

    Plourde, A. P.; Bostock, M. G.

    2015-12-01

    Low-frequency Earthquakes (LFEs) in subduction zones are commonly thought to represent slip on the plate interface. They have also been observed to lie near or within a zone of low shear-wave velocity, which is modelled as fluid-rich upper oceanic crust. Due to relatively large depth uncertainties in absolute hypocenters of most LFE families, their location relative to an independently imaged subucting plate and, consequently, the nature of the plate boundary at depths between 30-45 km have not been precisely determined. For a selection of LFE families in northern Washington, we measure variations in arrival time of individual LFE detections using multi-channel cross-correlation incorporating both arrivals at the same station and different events (cross-detection data), and the same event but different stations (cross-station data). Employing HypoDD, these times are used to generate relative locations for individual LFE detections. After creating templates from spatial subgroups of detections, network cross-correlation techniques will be used to search for new detections in neighbouring areas, thereby expanding the local catalogue and enabling further subdivision. By combining the source ``arrays'' and the receiver arrays from the Array of Arrays experiment we plan to interrogate plate boundary structure using migration of scattered waves from the subduction complex as previously documented beneath southern Vancouver Island.

  20. Metamorphic sole formation reveals plate interface rheology during early subduction

    NASA Astrophysics Data System (ADS)

    Mathieu, S.; Agard, P.; Dubacq, B.; Plunder, A.; Prigent, C.

    2015-12-01

    Metamorphic soles are m to ~500m thick tectonic slices welded beneath most large ophiolites. They correspond to highly to mildly deformed portions of oceanic lithosphere metamorphosed at amphibolite to granulite facies peak conditions. Metamorphic soles are interpreted as formed ≤1-2Ma after intraoceanic subduction initiation by heat transfer from the hot, incipient mantle wegde to the underthrusting lower plate. Their early accretion and exhumation together with the future ophiolite implies at least one jump of the subduction plate interface from above to below the metamorphic sole. Metamorphic soles thus represent one of the few remnants of the very early evolution of the subduction plate interface and provide major constraints on the thermal structure and the effective rheology of the crust and mantle along the nascent slab interface.We herein present a structural and petrological detailed description of the Oman and Turkey metamorphic soles. Both soles present a steep inverted metamorphic structure, with isograds subparallel to the peridotite contact, in which the proportion of mafic rocks, pressure and temperature conditions increase upward. They comprise, as most metamorphic soles worldwide, two main units: (1) a high-grade unit adjacent to the overlying peridotite composed of granulitized to amphibolized metabasalts, with rare metasedimentary interlayers (~800±100ºC at 10±2kbar) and (2) a low-grade greenschist facies unit composed of metasedimentary rocks with rare metatuffs (~500±100ºC at 5±2kbar). We provide for the first time refined P-T peak condition estimations by means of pseudosection modelling and maximum temperature constraints for the Oman low-grade sole by RAMAN thermometry. In order to quantify micro-scale deformations trough the sole, we also present EBSD data on the Oman garnet-bearing and garnet-free high-grade sole.With these new constraints, we finally propose a new conceptual mechanical model for metamorphic sole formation. This

  1. The golden transformation of the Cretaceous plate subduction in the west Pacific

    NASA Astrophysics Data System (ADS)

    Sun, Weidong; Ding, Xing; Hu, Yan-Hua; Li, Xian-Hua

    2007-10-01

    Long-term couplings between the subducting and overlying plates are very important to understanding plate tectonics, in particular intraplate evolutions. Geological records of this coupling however, are usually not well preserved. Here we show a good example in eastern China where Cretaceous tectonic evolution matches remarkably well with the drifting history of the Pacific plate. The most pronounced phenomenon is that the eastern China large-scale orogenic lode gold (Au) mineralization occurred contemporaneously with an abrupt change of ~ 80° in the drifting direction of the subducting Pacific plate, concurrent with the formation of the Ontong Java Plateau. Given that lode Au deposits usually form at the onset of compressional or transpressional deformations, the Au deposits dated the major tectonic change from extension to transpression in eastern China, coherent with the subduction regime. The Cretaceous drifting history of the Pacific plate also tallies with other major geological events in eastern China, e.g., the evolution of the Tan-Lu fault and magmatic activities, suggesting that the major geological events in eastern China in the Cretaceous were mainly controlled by the subduction of the Pacific plate, and that plate interactions during subduction are important driving forces for geological evolution in eastern China and intraplate tectonics in general.

  2. Constraining Late Cretaceous to mid Eocene plate boundaries in the southwest Pacific

    NASA Astrophysics Data System (ADS)

    Matthews, K. J.; Williams, S.; Whittaker, J. M.; Müller, D.; Clarke, G. L.; Seton, M.; Flament, N. E.

    2013-12-01

    The southwest Pacific has undergone a complex tectonic history since the Late Cretaceous, involving multiple episodes of subduction, back-arc spreading and continental deformation. Starkly contrasting reconstructions have been proposed for this period, ranging from tectonic quiescence with no plate boundary between the Lord Howe Rise (LHR) and Pacific, to widespread subduction and back-arc spreading, and this disparity reflects sparse and ambiguous data. Placing further constraints on these reconstructions is crucial for a variety of applications, from global-scale geodynamic studies using plate circuits to basin-scale studies of paleogeographic evolution and vertical motions. Geologic and kinematic data from the southwest Pacific are reviewed to better constrain the tectonic history of the region from the Late Cretaceous to mid Eocene, including the timing and location of plate boundary activity. This facilitates better constraints on the time-dependent evolution of the southwest Pacific plate circuit so that motion between plate pairs is consistent with geologic data and known tectonic regimes. The southwest Pacific comprised three spreading ridges during this time: in the Southeast Indian Ocean, Tasman Sea and Amundsen Sea. However, at least one, and possibly two other plate boundaries also accommodated relative motions: in the West Antarctic Rift System (WARS) and between the LHR and Pacific. Uncertainties in the timing and nature of plate boundaries prevent the construction of a robust reconstruction model and the implementation of a southwest Pacific plate circuit. Some previous plate models include continuous subduction east of the LHR throughout the Late Cretaceous-Cenozoic, while an alternative scenario involves the absence of plate boundaries between the LHR and Pacific until 45 Ma. Geologic observations suggests that subduction initiated to the east of New Caledonia at c. 55 Ma, including dyke emplacement and metamorphism in New Caledonia, and arc

  3. Changes in Pacific Absolute Plate Motion and Formation of Oceanic Flood Basalt Plateaus

    NASA Astrophysics Data System (ADS)

    Kroenke, L. W.; Wessel, P.

    2006-12-01

    The origin of the large oceanic flood basalt plateaus that are prominent features of the central western Pacific Basin remains unclear. Major changes in Pacific Absolute Plate Motion (APM) have been identified as occurring at 145, 125, 96, and 47 Ma. Formation of the Shatsky Rise (~145 Ma), the Ontong Java Plateau (122+ Ma), the Southern Hess Rise (95±5 Ma), and the Louisiade Plateau (~48 Ma) appear to coincide with these changes. A smaller, but still prominent change in Pacific APM also occurred at 110 Ma when the Northern Hess Rise formed. Although these concurrent events may simply be chance occurrences, initiation of plate tectonic reorganizations upon arrival of mantle plume heads also was proposed by Ratcliff et al. (1998), who suggested that the mantle plume head delivery of hot material to produce flood basalts also had the potential to trigger reorganizations of plate motions. It should be noted, however, that Pacific Rim subduction zone development also coincides with these APM changes, and that the actual cause and effect of each change in APM has yet to be clearly established. Here we present a modified Pacific APM model that uses several older seamount chains (Musicians, Ratak-Gilbert-Ellice, the Wake trails, and the Liliuokalani trails) to constrain the oldest Pacific plate motion using the hybrid technique of Wessel et al (2006).

  4. Long-lived Seamount Volcanism in the Western Pacific, and Early Cretaceous Motion of the Pacific Plate

    NASA Astrophysics Data System (ADS)

    Hirano, N.

    2002-12-01

    Most seamounts, islands, and atolls on the present western Pacific Plate were formed by submarine intraplate volcanism, mainly during the Cretaceous. Some seamount chains in the West Pacific Seamount Province, including the Magellan group, define hotspot trails and plate motions. Samples of peralkaline rhyolite pillow lava and radiolarian-bearing pelagic sedimentary rocks were collected by the Japanese submersible Shinkai6500 from Quesada Seamount (western Magellan Seamount group), on the oceanward slope of the Mariana Trench. The Ar-Ar age of the peralkaline rhyolite is 129.3+/-2.6 Ma, about 10 m.y. younger than the radiolarian age of the oldest intercalated tuffaceous claystone (early Berriasian: approximately 140 Ma). The claystone contains fragments of alkali-basalt glass of the shield-building volcanic stage. Because peralkaline rhyolite commonly erupts during the last stage of shield activity, volcanic activity appears to have lasted for approximately 10 m.y. at Quesada Seamount. Slow Early Cretaceous motion of the Pacific Plate permitted the Quesada edifice to remain above the source hotspot for a long time. At Hemler Seamount on the northeastern tip of Quesada Seamount, a Late Cretaceous Ar-Ar age has previously been reported for nephelinite phenocrysts in strongly alkaline basalt, which also records the rejuvenated stage of a long-lived Early Cretaceous seamount volcano. Such seamount trails can be used to calculate the absolute Early Cretaceous motion of the Pacific Plate; in addition to the Quesada to Hemler SW to NE trail, others have been previously reported from Shatsky Rise and western Mid-Pacific Mountain.

  5. Late Cretaceous to mid Eocene plate boundaries in the southwest Pacific

    NASA Astrophysics Data System (ADS)

    Matthews, Kara J.; Dietmar Müller, R.; Whittaker, Joanne; Flament, Nicolas; Seton, Maria

    2013-04-01

    The late Cretaceous to mid Eocene history of the southwest and southernmost Pacific has been subject to starkly contrasting interpretations, ranging from relative tectonic quiescence with the Lord Howe Rise (LHR) being part of the Pacific plate to a dynamic subduction setting. In the first scenario the Tasman Sea would have formed as a consequence of divergence between the Pacific and Australian plates, whereas in the second scenario it would have formed as a marginal basin associated with subduction. The first scenario is supported by a number of arguments, including a lack of evidence for deformation and tectonic activity in New Zealand during this period and a geodynamic modelling inference, namely that the bend in the Hawaiian-Emperor chain can be better reproduced if the LHR is part of the Pacific plate. The second scenario is supported by regional plate kinematic models reconciling a variety of observations including back-arc basin formation and destruction through time and the history of arc-continent collisions. The primary problem with the first scenario is the use of a plate circuit that leaves relative motion between East and West Antarctica unconstrained, leading to an improbable history of periodic compression and extension. The main problem with the alternative scenario is a lack of sampled late Cretaceous volcanic arc rocks east of the LHR. We analysed available geological and geophysical data to constrain the locations of and movements along the plate boundaries in the southwest and southern Pacific from the late Cretaceous to mid Eocene, and assessed how Pacific plate motion is best quantified during this period. Geological and geophysical evidence suggests that a plate boundary separated the Pacific plate from the LHR. The distribution of lower mantle slab material that is imaged by seismic tomography beneath New Zealand is best explained if subduction occurred to the east of the LHR during the entire late Cretaceous to mid Eocene period. Rocks

  6. Tectonic implications of post-30 Ma Pacific and North American relative plate motions

    USGS Publications Warehouse

    Bohannon, R.G.; Parsons, T.

    1995-01-01

    The Pacific plate moved northwest relative to North America since 42 Ma. The rapid half rate of Pacific-Farallon spreading allowed the ridge to approach the continent at about 29 Ma. Extinct spreading ridges that occur offshore along 65% of the margin document that fragments of the subducted Farallon slab became captured by the Pacific plate and assumed its motion proper to the actual subduction of the spreading ridge. This plate-capture process can be used to explain much of the post-29 Ma Cordilleran North America extension, strike slip, and the inland jump of oceanic spreading in the Gulf of California. Much of the post-29 Ma continental tectonism is the result of the strong traction imposed on the deep part of the continental crust by the gently inclined slab of subducted oceanic lithosphere as it moved to the northwest relative to the overlying continent. -from Authors

  7. High-resolution reconstructions of Pacific-North America plate motion: 20 Ma to present

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Merkouriev, S.

    2016-11-01

    We present new rotations that describe the relative positions and velocities of the Pacific and North America plates at 22 times during the past 19.7 Myr, offering ≈1-Myr temporal resolution for studies of the geotectonic evolution of western North America and other plate boundary locations. Derived from ≈18 000 magnetic reversal, fracture zone and transform fault identifications from the Pacific-Antarctic-Nubia-North America plate circuit and the velocities of 935 GPS sites on the Pacific and North America plates, the new rotations and GPS-derived angular velocity indicate that the rate of motion between the two plates increased by ≈70 per cent from 19.7 to 9±1 Ma, but changed by less than 2 per cent since 8 Ma and even less since 4.2 Ma. The rotations further suggest that the relative plate direction has rotated clockwise for most of the past 20 Myr, with a possible hiatus from 9 to 5 Ma. This conflicts with previously reported evidence for a significant clockwise change in the plate direction at ≈8-6 Ma. Our new rotations indicate that Pacific plate motion became obliquely convergent with respect to the San Andreas Fault of central California at 5.2-4.2 Ma, in agreement with geological evidence for a Pliocene onset of folding and faulting in central California. Our reconstruction of the northern Gulf of California at 6.3 Ma differs by only 15-30 km from structurally derived reconstructions after including 3-4 km Myr-1 of geodetically measured slip between the Baja California Peninsula and Pacific plate. This implies an approximate 15-30 km upper bound for plate non-rigidity integrated around the global circuit at 6.3 Ma. A much larger 200±54 km discrepancy between our reconstruction of the northern Gulf of California at 12 Ma and that estimated from structural and marine geophysical observations suggests that faults in northwestern Mexico or possibly west of the Baja California Peninsula accommodated large amounts of obliquely divergent dextral shear

  8. Upper mantle structure of the Pacific and Philippine Sea plates revealed by seafloor seismic array observations

    NASA Astrophysics Data System (ADS)

    Isse, Takehi; Shiobara, Hajime; Suetsugu, Daisuke; Sugioka, Hiroko; Ito, Aki

    2016-04-01

    Seismic tomography studies have revealed the structure and dynamics of Earth's interior since the 1980s. However, the spatial resolution of the oceanic region is not good enough caused by sparse distribution of the seismic stations. The observations with broadband ocean-bottom seismographs (BBOBSs) since the 2000s enabled us to obtain seismic tomography models with higher spatial resolution. Our Japanese BBOBS group deployed more than 100 BBOBSs in the Pacific Ocean and obtained a high-resolution (300-500 km) three-dimensional shear wave velocity structure in the upper mantle beneath northwestern and south Pacific Ocean by using surface wave tomography technique. In the northwestern Pacific Ocean, where the Pacific plate subducts beneath the Philippine Sea plate, we found that the shear wave structure in the Philippine sea plate is well correlated with the seafloor age in the upper 120 km, three separate slow anomalies in the mantle wedge at depth shallower than 100 km beneath the Izu-Bonin-Mariana arc, which have a close relationship with the three groups of frontal and rear arc volcanoes having distinct Sr, Nd, and Pb isotope ratios, and that the Philippine Sea plate, which is a single plate, shows very large lateral variations in azimuthal and radial anisotropies compared with the Pacific plate. In the South Pacific Ocean, where midplate hotspots are concentrated, we found that the localized slow anomalies are found near hotspots in the upper mantle, estimated thickness of the lithosphere is about 90 km in average and is thinned by ~20 km in the vicinity of hotspots, which may represent thermal erosion due to mantle plumes.

  9. Improved Late Cretaceous and early Cenozoic Paleomagnetic apparent polar wander path for the Pacific plate

    NASA Astrophysics Data System (ADS)

    Beaman, Melissa; Sager, William W.; Acton, Gary D.; Lanci, Luca; Pares, Josep

    2007-10-01

    Understanding of Pacific plate tectonics and geodynamics is aided by refinement of the plate's apparent polar wander path (APWP). We improved the Late Cretaceous and early Cenozoic APWP by analyzing a large, diverse paleomagnetic data set that combines core sample, seamount magnetic anomaly model, and marine magnetic anomaly skewness data. Our preferred APWP has five mean paleomagnetic poles representing the Oligocene (30 Ma), Late (39 Ma) and Early (49 Ma) Eocene, and Paleocene (61 Ma) epochs and the Maastrichtian (68 Ma) stage. Along with a published 80 Ma pole, the APWP shows a stillstand from ˜ 80 to ˜ 49 Ma punctuating the large overall northward drift of the plate. The two youngest poles imply resumption of northward motion during mid-Eocene time with another change of polar motion after ˜ 30 Ma. If unaffected by other phenomena (e.g., true polar wander or change in time-averaged magnetic field geometry), the stillstand implies negligible northward plate motion during the period of Emperor Seamounts formation, contrary to most accepted plate motion models. The stillstand is consistent with paleomagnetic data from the Emperor Seamounts, which imply southward motion of the Hawaiian melting anomaly. It also implies significant westward drift of the hotspot if the Pacific plate was moving west at rates similar to the later Cenozoic. In addition, changes in polar wander after ˜ 49 Ma are consistent with changes of north Pacific plate boundaries.

  10. Seamounts, knolls and petit spots on the NW Pacific Plate represent intra-plate volcanism from the Cretaceous to present

    NASA Astrophysics Data System (ADS)

    Hirano, N.; Nakanishi, M.; Koppers, A. A.

    2007-12-01

    Most of seamounts of the western Pacific formed before 70 Ma in the so-called West Pacific Seamount Province (WPSP) which is characterized by relatively short seamount chains maybe indicating a significant short-lived hotspot system (Koppers et al., 2003). As for the NW Pacific Plate offshore of Northeast Japan, the Joban and Japanese Seamount Trail are also composed of middle Cretaceous seamounts, which are erupted on the northern margin of WPSP. The 120 to 100 Ma seamounts in the Joban seamount chain do not show a middle Cretaceous hotspot track, whereas the Japanese seamount chain shows a well-established ENE to WSW trend in this age range. On the other hand, the unnamed knolls, which are well-circular and flat-topped in shape, are scattered on the NW Pacific Plate and are not aligned to any volcanic chains. These were correspond to eruptive ages of 70 Ma based on Ar-Ar ages of a second volcanic event in the NW Pacific. As the last stage, we should note that Hirano et al. (2006) reported the 0-1, 2, 4.2, 6.0 and 8.6 Ma volcanoes, called petit spots, in the Japan Trench on the outer-rise system. The petit spot volcanoes imply episodic eruptions of magma over a distance of 600 km of plate motion on the flexural Pacific Plate before its subduction but with low volumes of magma production. The volume of volcanic edifice of the petit spot volcanoes certainly is several orders of magnitude less than the Cretaceous seamounts and knolls. Therefore, we can interpret that the petit spot volcanoes are not related to any mantle plumes and hotspots. Evidence includes the geochemical data and the tectonic alignment of the volcanoes which show that the petit spot lavas escaped along fractures in the lithosphere and were sourced from small pockets of asthenospheric melts. The bathymetric map and sidescan sonar imagery of the ocean-ward slope in the Tonga Trench also shows a possible presence of young volcanoes. Such small volcanoes, therefore, may be ubiquitous on the ocean

  11. Thermal Performance Evaluation of Friction Stir Welded and Bolted Cold Plates with Al/Cu Interface

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, A. K.; Suresh, M.; Sibi Varshan, M.

    2015-05-01

    An attempt is made to design and fabricate a cold plate with aluminum-copper dissimilar interface joined by friction stir welding. Optimum welding conditions for obtaining sound-quality corner and T joints with an aluminum-copper interface were established. Welded cross sections of the friction stir welded cold plate were analyzed to understand the bonding characteristics. Computational fluid dynamics (CFD) was used to evaluate the fluid-flow characteristics and thermal resistance of friction stir welded cold plate and the resulted are compared with the conventional bolted cold plate configuration. For CFD modeling of a cold plate with a dissimilar interface, a new methodology is proposed. From the CFD analysis and experimental results, it is observed that friction stir welded cold plate offered better thermal performance compared to the bolted cold plate and it is due to the metallurgical bonding at the aluminum-copper interface with the dispersion of copper particles.

  12. Young lava fields on the Cretaceous Pacific Plate in the Japan Trench: Non-hotspot volcanism?

    NASA Astrophysics Data System (ADS)

    Hirano, N.; Haraguchi, S.; Yamamoto, J.; Takahashi, E.; Hirata, T.; Takahashi, A.; Ogawa, Y.

    2004-12-01

    The northwestern part of the Pacific Plate is comprised of Early Cretaceous abyssal oceanic lithosphere and Early to Late Cretaceous seamounts. Until recently, no present-day volcanic activity had been definitively documented on the cool, thick, and old Cretaceous lithosphere; however, Hirano et al. (2001) reported the presence of anomalously young alkali-basalt lavas (5.95±0.31 Ma) on the subducting, ˜130 Ma Pacific Plate. The trench-oceanward slope is characterized by trench-parallel normal faults, resulting from bending of the subducting Pacific Plate. Some hummock structures named the Kaiko Knolls can also be observed on the faulted abyssal plain using seabeam sonar bathymetric mapping. The Kaiko Knolls hummocks and some of the horst and graben fault walls are recognized in the seabeam sonar data by the presence of ocean floor with high acoustic intensity. The newly discovered lava fields include all hummocks in the Kaiko Knolls as well as the underlying sheet flow. The distinct WNW-ESE alignments of knolls are perpendicular to hinge lines of bending plate of the trench and outer-rise system. Composition of the dredged lavas shows the garnet presence in the source because the residual garnet buffered Al2O3 contents with degrees of partial melting and lowered HREE contents. Hirano et al. (2004) demonstrated that the olivine xenocrysts in this rock were entrained from the uppermost mantle. Volcanic eruption occurred ˜600 km ESE off the northern Japan Trench based on the radiometric age and the present absolute motion of the Pacific Plate. Morphological and petrological evidences show that the magma has been brought to the surface along some fissures, which can be interpreted along the direction of the maximum horizontal compression caused by the stress in the downwarping Pacific Plate at eastern edge of the outer-rise.

  13. Constraints from Seamounts on Pacific Plate or Plume Motion Prior to 80 Ma.

    NASA Astrophysics Data System (ADS)

    Konter, J. G.; Koppers, A. A. P.; Jackson, M. G.; Finlayson, V.; Konrad, K.

    2015-12-01

    The Hawaii-Emperor and Louisville hotspot tracks have long dominated the data set constraining absolute plate motion models. However, prior to ~80 Ma, multiple shorter, discontinuous hotspot trails and oceanic plateaus have been used to constrain absolute plate motion. Based on this earlier work, a clear Hawaii-Emperor style bend seems apparent around 100 Ma in the West Pacific Seamount Province (WPSP). More importantly, the ongoing debate on a plate versus plume motion origin for the Hawaii-Emperor Bend is applicable here, as the ~100 Ma bend may correspond to a global plate reorganization (Matthews et al., EPSL, 2012). Data for a comparison of bends comes from three groups with similar geographic patterns: 1) Mid-Pacific Mountains, Line Islands; 2) Shatsky Rise, Hess Rise, Musician and Wentworth Seamounts; and 3) Wake Seamounts, Marshall Islands, Magellan Seamounts. Both groups 1 and 2 feature a large igneous province (LIP) at their oldest end: Shatsky Rise and the Mid-Pacific Mountains. According to plate reconstructions these LIPs were constructed near all-ridge triple junctions, thus potential plume-ridge interactions need to be clarified before these LIPs can be used to define an absolute mantle reference frame. In contrast, the volcanoes of the third group (Wake, Marshall, Magellan) did erupt truly intra-plate and we therefore argue that this group provides a constraint on plate motion beyond 80 Ma that is independent of plume-ridge interactions. Since the volcanoes in this group are part of the WPSP, which is densely populated with seamounts, a combination of 40Ar/39Ar ages and Sr-Nd-Pb-Hf isotopes is needed to distinguish different hotspot tracks in this region. Backtracking each volcano through its age to its original eruptive location and using compositional color-coding, reveals groupings and patterns that vary by plate motion model, while the temporal patterns of backtracked locations inform us about potential plume motions.

  14. Using "Ridge-Spotting" as a Test for Pacific Absolute Plate Motion Models

    NASA Astrophysics Data System (ADS)

    Wessel, P.; Müller, D.; Williams, S.

    2015-12-01

    In the mid-1990s the "hotspotting" technique was developed to assess the internal consistency of Pacific absolute plate motions (APM) models derived from hotspot trails, with the assumption that mantle plumes were fixed. Being a variant of the Hough transform, hotspotting maps a dated location (1-D geometry) on the seafloor to a flow line (2-D geometry). The accumulation of intersections of these flow lines reveals the optimal location of a fixed hotspot, assuming that the plate motion model is correct. It is the optimal exploratory technique for a planet with moving rigid plates over a set of fixed hotspots. However, it seems increasingly unlikely that we live on such a planet. Avoiding hotspots altogether we introduce "ridge-spotting", another promising technique for a planet with moving rigid plates and fixed ridges. Alas, we may not be living on that planet either. Yet, ridges are expected to undergo slow changes (ridge jumps notwithstanding), but that does not necessarily imply that an optimal APM model should minimize the ridge migration speed. In particular, ridges between stationary continental plates and fast-moving oceanic plates will move relatively fast, and an APM model should be expected to reflect this motion. In contrast, ridges that have been "pinned" by large mantle upwellings for considerable periods of time might be expected to favor APM models that minimize ridge migration. Given the long-lived super-plume mantle upwelling in the Equatorial Pacific it seems possible that the East-Pacific Rise may be a candidate for the second scenario, while the Pacific-Antarctic ridge, pushing the Pacific away from a near-stationary Antarctic continent, may be a candidate for the former. We present the ridge-spotting method and test published Pacific APM models using seafloor formed at the two ridges. Preliminary results indicate that ridge-spotting identifies problematic APM models because they imply unreasonable ridge migration. Fixed hotspot APM models, but

  15. Overview on the Plate Boundaries Along the Western Mexican Pacific Margin

    NASA Astrophysics Data System (ADS)

    Mortera-Gutierrez, C. A.; Bandy, W. L.; Michaud, F.; Ortega Ramírez, J.

    2013-05-01

    The cinematic of the Pacific, Rivera and Cocos oceanic plates have a significant impact on the subduction process and seismic cycles occurring along the western Mexican Pacific margin of the North American and Caribbean plates. Sections of Pacific (PAC), Rivera (RIV), Cocos (COC), North American (NAM) and Caribbean (CAB) plate boundaries along the western margin of Mexico are not well constrained. From north to south: the transform-rift system at Gulf of California has been generally considered as part of PAC-NAM plate boundary. However results of the FAMEX cruise at 2002 evidenced that Tosco-Abreojos Fault System along the western margin of Baja California Peninsula is active. Should this tectonic structure be considered as a plate boundary? At the RIV plate northern corner (including Mazatlan Basin), the scatter seismicity recorded between Tamayo FZ and the Marias Islands restricts the characterization of the plate boundary between the RIV and NAM plates. Some authors have proposed that Tamayo FZ and Marias I. Escarpment are the RIV-NAM plate boundary. Recently other authors have called that RIV-NAM boundary is a geomorphology lineament that runs from a Rivera Rise transform at 23N to the northern end of Marias I. Escarpment. Even so this concept is not sustained with seismic activity. Further this thought would imply that the oceanic lithosphere of Mazatlan Basin would form part of NAM plate. Other thoughts are either that there is a diffuse RIV-NAM plate boundary to the north of the Maria Archipelago, or Middle America Subduction Zone is gradually extending northward of the Maria Is. While the plate boundary at SE corner of the RIV plate is neither well defined morphologically nor seismically constraint, offshore Colima Coast. Some authors have proposed that this zone is a diffuse plate boundary between RIV and COC plates, result of a NE-SW shear plate motion. Other authors have proposed that the RIV-COC boundary extends E-W from the El Gordo Graben (EGG) at

  16. Pacific Plate slab pull and intraplate deformation in the early Cenozoic

    NASA Astrophysics Data System (ADS)

    Butterworth, N. P.; Müller, R. D.; Quevedo, L.; O'Connor, J. M.; Hoernle, K.; Morra, G.

    2014-01-01

    Large tectonic plates are known to be susceptible to internal deformation, leading to a range of phenomena including intraplate volcanism. However, the space and time dependence of intraplate deformation and its relationship with changing plate boundary configurations, subducting slab geometries, and absolute plate motion is poorly understood. We utilise a buoyancy driven Stokes flow solver, BEM-Earth, to investigate the contribution of subducting slabs through time on Pacific Plate motion and plate-scale deformation, and how this is linked to intraplate volcanism. We produce a series of geodynamic models from 62 to 42 Ma in which the plates are driven by the attached subducting slabs and mantle drag/suction forces. We compare our modelled intraplate deformation history with those types of intraplate volcanism that lack a clear age progression. Our models suggest that changes in Cenozoic subduction zone topology caused intraplate deformation to trigger volcanism along several linear seafloor structures, mostly by reactivation of existing seamount chains, but occasionally creating new volcanic chains on crust weakened by fracture zones and extinct ridges. Around 55 Ma subduction of the Pacific-Izanagi ridge reconfigured the major tectonic forces acting on the plate by replacing ridge push with slab pull along its north-western perimeter, causing lithospheric extension along pre-existing weaknesses. Large scale deformation observed in the models coincides with the seamount chains of Hawaii, Louisville, Tokelau, and Gilbert during our modelled time period of 62 to 42 Ma. We suggest that extensional stresses between 72 and 52 Ma are the likely cause of large parts of the formation of the Gilbert chain and that localised extension between 62 and 42 Ma could cause late-stage volcanism along the Musicians Volcanic Ridges. Our models demonstrate that early Cenozoic changes in Pacific plate driving forces only cause relatively minor changes in Pacific absolute plate motions

  17. Pacific plate slab pull and intraplate deformation in the early Cenozoic

    NASA Astrophysics Data System (ADS)

    Butterworth, N. P.; Müller, R. D.; Quevedo, L.; O'Connor, J. M.; Hoernle, K.; Morra, G.

    2014-08-01

    Large tectonic plates are known to be susceptible to internal deformation, leading to a~range of phenomena including intraplate volcanism. However, the space and time dependence of intraplate deformation and its relationship with changing plate boundary configurations, subducting slab geometries, and absolute plate motion is poorly understood. We utilise a buoyancy-driven Stokes flow solver, BEM-Earth, to investigate the contribution of subducting slabs through time on Pacific plate motion and plate-scale deformation, and how this is linked to intraplate volcanism. We produce a series of geodynamic models from 62 to 42 Ma in which the plates are driven by the attached subducting slabs and mantle drag/suction forces. We compare our modelled intraplate deformation history with those types of intraplate volcanism that lack a clear age progression. Our models suggest that changes in Cenozoic subduction zone topology caused intraplate deformation to trigger volcanism along several linear seafloor structures, mostly by reactivation of existing seamount chains, but occasionally creating new volcanic chains on crust weakened by fracture zones and extinct ridges. Around 55 Ma, subduction of the Pacific-Izanagi ridge reconfigured the major tectonic forces acting on the plate by replacing ridge push with slab pull along its northwestern perimeter, causing lithospheric extension along pre-existing weaknesses. Large-scale deformation observed in the models coincides with the seamount chains of Hawaii, Louisville, Tokelau and Gilbert during our modelled time period of 62 to 42 Ma. We suggest that extensional stresses between 72 and 52 Ma are the likely cause of large parts of the formation of the Gilbert chain and that localised extension between 62 and 42 Ma could cause late-stage volcanism along the Musicians volcanic ridges. Our models demonstrate that early Cenozoic changes in Pacific plate driving forces only cause relatively minor changes in Pacific absolute plate motion

  18. Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics

    NASA Astrophysics Data System (ADS)

    Zhong, Shijie; Ritzwoller, Michael; Shapiro, Nikolai; Landuyt, William; Huang, Jinshui; Wessel, Paul

    2007-06-01

    A long-standing question in geodynamics is the cause of deviations of ocean depth or seafloor topography from the prediction of a cooling half-space model (HSC). Are the deviations caused entirely by mantle plumes or lithospheric reheating associated with sublithospheric small-scale convection or some other mechanisms? In this study we analyzed the age and geographical dependences of ocean depth for the Pacific plate, and we removed the effects of sediments, seamounts, and large igneous provinces (LIPs), using recently available data sets of high-resolution bathymetry, sediments, seamounts, and LIPs. We found that the removal of seamounts and LIPs results in nearly uniform standard deviations in ocean depth of ˜300 m for all ages. The ocean depth for the Pacific plate with seamounts, LIPs, the Hawaiian swell, and South Pacific super-swell excluded can be fit well with a HSC model till ˜80-85 Ma and a plate model for older seafloor, particularly, with the HSC-Plate depth-age relation recently developed by Hillier and Watts (2005) with an entirely different approach for the North Pacific Ocean. A similar ocean depth-age relation is also observed for the northern region of our study area with no major known mantle plumes. Residual topography with respect to Hillier and Watts' HSC-Plate model shows two distinct topographic highs: the Hawaiian swell and South Pacific super-swell. However, in this residual topography map, the Darwin Rise does not display anomalously high topography except the area with seamounts and LIPs. We also found that the topography estimated from the seismic model of the Pacific lithosphere of Ritzwoller et al. (2004) generally agrees with the observed topography, including the reduced topography at relatively old seafloor. Our analyses show that while mantle plumes may be important in producing the Hawaiian swell and South Pacific super-swell, they cannot be the only cause for the topographic deviations. Other mechanisms, particularly

  19. Constraints on Pacific plate kinematics and dynamics with global positioning system measurements

    NASA Technical Reports Server (NTRS)

    Dixon, T. H.; Golombek, M. P.; Thornton, C. L.

    1985-01-01

    A measurement program designed to investigate kinematic and dynamic aspects of plate tectonics in the Pacific region by means of satellite observations is proposed. Accuracy studies are summarized showing that for short baselines (less than 100 km), the measuring accuracy of global positioning system (GPS) receivers can be in the centimeter range. For longer baselines, uncertainty in the orbital ephemerides of the GPS satellites could be a major source of error. Simultaneous observations at widely (about 300 km) separated fiducial stations over the Pacific region, should permit an accuracy in the centimeter range for baselines of up to several thousand kilometers. The optimum performance level is based on the assumption of that fiducial baselines are known a priori to the centimeter range. An example fiducial network for a GPS study of the South Pacific region is described.

  20. Propagation of the Hawaiian-Emperor volcano chain by Pacific plate cooling stress

    USGS Publications Warehouse

    Stuart, W.D.; Foulger, G.R.; Barall, M.

    2007-01-01

    The lithosphere crack model, the main alternative to the mantle plume model for age-progressive magma emplacement along the Hawaiian-Emperor volcano chain, requires the maximum horizontal tensile stress to be normal to the volcano chain. However, published stress fields calculated from Pacific lithosphere tractions and body forces (e.g., subduction pull, basal drag, lithosphere density) are not optimal for southeast propagation of a stress-free, vertical tensile crack coincident with the Hawaiian segment of the Hawaiian-Emperor chain. Here we calculate the thermoelastic stress rate for present-day cooling of the Pacific plate using a spherical shell finite element representation of the plate geometry. We use observed seafloor isochrons and a standard model for lithosphere cooling to specify the time dependence of vertical temperature profiles. The calculated stress rate multiplied by a time increment (e.g., 1 m.y.) then gives a thermoelastic stress increment for the evolving Pacific plate. Near the Hawaiian chain position, the calculated stress increment in the lower part of the shell is tensional, with maximum tension normal to the chain direction. Near the projection of the chain trend to the southeast beyond Hawaii, the stress increment is compressive. This incremental stress field has the form necessary to maintain and propagate a tensile crack or similar lithosphere flaw and is thus consistent with the crack model for the Hawaiian volcano chain.?? 2007 The Geological Society of America.

  1. Petrologic Aspects of Seamount and Guyot Volcanism on the Ancestral Mesozoic Pacific Plate: a Review

    NASA Astrophysics Data System (ADS)

    Natland, J. H.

    2007-12-01

    Hundreds of large seamounts and guyots are widely scattered almost in a "shotgun-blast" arrangement in an area about the size of the United States west of the Mississippi River on the Mesozoic Pacific plate between the Mariana Trench and the Gilbert Islands. Most of these formed between ~160-100 Ma while the Pacific plate was surrounded by spreading ridges and growing outward in all directions. There is little to no indication that the seamounts and guyots formed along linear seamount chains; existing radiometric-age data show no age progressions. The volcanoes appear to have formed in response to a uniform stress configuration across the plate, which was either not moving or moving very slowly at the time (1, 2), much like the modern Antarctic plate. When the growing plate started to encounter subduction systems in the western Pacific at ~90 Ma, consistent stress patterns began to develop, and the broad linear Gilbert and Line volcanic ridge systems began to form. Even then, however, considerable overlapping of volcanism occurred, and only the most general age progressions are evident in existing data. Petrologic data from samples obtained from dozens of volcanic summits by dredging and beneath several carbonate platforms by drilling reveal considerable diversity in development of differentiated alkalic magmatic lineages rooted in diverse parental basaltic rocks. These include transitional, alkalic and basanitic compositions, with differentiates of hawaiite, mugearite, trachyte and one phonolite. Many of the basaltic rocks are partly to significantly transformed by alteration under oxidative conditions (dredged rocks) and both oxidative and non-oxidative conditions (drilled rocks). This can make estimations of mantle geochemical provenance difficult. Nevertheless, the province has been linked by backtracking techniques to the modern SOPITA region of the South Pacific (3), and its rocks show enrichments in trace elements and isotopic characteristics similar to

  2. New Evidence that the Emperor Seamount Chain Records Motion of the Pacific Plate Relative to the Deep Mantle

    NASA Astrophysics Data System (ADS)

    Gordon, Richard; Seidman, Lily

    2016-04-01

    A key question for Pacific and circum-Pacific tectonics with implications for mantle convection is whether the Emperor seamount chain records the northward motion of the Pacific plate relative to the deep mantle. To investigate this question, we determine a new Pacific plate paleomagnetic pole for ≈60 Ma BP from the analysis of the skewness of marine magnetic anomaly 26r recording Pacific-Farallon motion in low paleolatitudes. We further update a previously published Pacific plate pole for ≈65 Ma from the analysis of anomalies 27r to 31 by incorporating a larger correction for anomalous skewness. These two poles, along with prior poles for 58 Ma and 72 Ma allow us to test how much, if any, the Hawaiian hotspot moved relative to the spin axis for ≈14 Ma of the ≈30 Ma during which the Emperor chain was formed. We find that the Hawaiian hotspot moved insignificantly southward (4 ±17 mm/a (95% confidence limits)) from 72 Ma to 58 Ma while the Pacific plate moved significantly northward (42 ± 17 mm/a (95% confidence limits)). We further compare the apparent polar wander of the Pacific hotspots with that of the Indo-Atlantic hotspots over the past 65 Ma. The two paths indicate a jump of ≈8° in the position of the spin axis relative to global hotspots between ≈60 Ma and ≈45 Ma presumably due to true polar wander.

  3. Revised Late Cretaceous and Early Cenozoic Apparent Polar Wander Path for the Pacific Plate

    NASA Astrophysics Data System (ADS)

    Beaman, M. A.; Sager, W. W.; Lanci, L.; Parés, J. M.

    2005-12-01

    The current apparent polar wander path (APWP) of the Pacific plate suffers from a general lack of detail and has been calculated using some data with questionable reliability. This is especially true of the data set for the Late Cretaceous and Cenozoic which has come largely from seamount anomaly inversions and seafloor magnetic anomaly skewness. In an effort to increase the detail and reliability of the Pacific plate APWP, we used a larger and more diverse data set to calculate four mean poles for the latest Cretaceous and Paleogene. We combined four types of data in order to test data reliability and consistency, and found good agreement among different data types. Over half of the data comes from piston and DSDP/ODP sediment core paleocolatitudes, with the rest made up of paleocolatitudes from DSDP/ODP basalt cores, declinations from seamount anomaly inversions and effective inclinations from magnetic anomaly skewness analyses. Our four mean paleomagnetic poles represent the Oligocene, Eocene, Paleocene and Maastrichtian at 29, 44, 61 and 69 Ma, respectively. The 29 Ma pole is located at 80.1° N, 24.4° E, the 44 Ma pole at 74.4° N, 356.0° E, the 61 Ma pole at 72.2° N, 5.8° E, and the 69 Ma pole at 72.3° N, 355.7° E. The large numbers of data included in this compilation allow for reasonably compact error bounds and the good agreement between data types implies small systematic error. Although a significant percentage of the data are from azimuthally-unoriented cores, which do not provide constraint on paleodeclination, a wide longitudinal distribution of sites, as well as the use of declinations from seamount anomaly inversions gave reasonably good control on pole paleolongitude. While the new APWP exhibits the expected northward motion of the Pacific plate, it also shows a stillstand from the Late Cretaceous until approximately 44 Ma. This stillstand suggests no northward motion of the Pacific plate during this time, a concept at odds with accepted

  4. Constraining porosity of the shallow forearc and plate interface offshore Nicaragua with marine electromagnetic data

    NASA Astrophysics Data System (ADS)

    Naif, S.; Key, K.; Constable, S.; Evans, R. L.

    2015-12-01

    We imaged the electrical resistivity structure of the incoming plate and outer forearc across the Middle America Trench with 2-D inversion of marine controlled-source electromagnetic data. The inverted data reveal a high conductivity channel that is congruent with the geometry of the plate interface, which we infer to be subducted sediments. We used the resistivity model to estimate the porosity of the upper plate and underthrust sediments. The sediment porosity decays exponentially as it is subducted along the plate interface, in good agreement with existing constraints from compaction studies. The plate interface is overlain by an upper plate that is one to two orders of magnitude more resistive, requiring low porosities (<15%) that are consistent with a non-accreting margin composed of crystalline basement or lithified sediments.At 18 to 23 km landward of the trench, the conductive channel diverges from the plate interface and extends 1-2 km into the overlying plate below a cluster of active seafloor seeps. The location of the anomaly at depth is synonymous with a rapid steepening of the seafloor slope. The steepened slope occurs at 15 to 25 km landward of the trench and is extensive, persisting for more than 100 km along the margin. This correlation leads us to conclude that the cause of the conductive feature is sediment underplating. The implications for the 1992 tsunami earthquake will be discussed.

  5. Pacific-North America plate boundary reorganization in response to a change in relative plate motion: Offshore Canada

    NASA Astrophysics Data System (ADS)

    Rohr, K. M. M.; Tryon, A. J.

    2010-06-01

    The transition from subduction in Cascadia to the transform Queen Charlotte fault along western Canada is often drawn as a subduction zone, yet recent studies of GPS and earthquake data from northern Vancouver Island are not consistent with that model. In this paper we synthesize seismic reflection and gravity interpretations with microseismicity data in order to test models of (1) microplate subduction and (2) reorganization of the preexisting strike-slip plate boundary. We focus on the critical region of outer Queen Charlotte Sound and the adjacent offshore. On much of the continental shelf, several million years of subsidence above thin crust are a counterindicator for subduction. An undated episode of compression uplifted the southernmost shelf, but subsidence patterns offshore show that recent subduction is unlikely to be responsible. Previously unremarked near-vertical faults and a mix of extensional and compressional faults offshore indicate that strike-slip faulting has been a significant mode of deformation. Seismicity in the last 18 years is dominantly strike-slip and shows large amounts of moment release on the Revere-Dellwood fault and its overlap with the Queen Charlotte fault. The relative plate motion between the Pacific and North American plates rotated clockwise ˜6 Ma and appears to have triggered formation of an evolving array of structures. We suggest that the paleo-Queen Charlotte fault which had defined this continental margin retreated northward as offshore distributed shear and the newly formed Revere Dellwood fault propagated to the northwest.

  6. Shrinking of the Cocos and Nazca Plates due to Horizontal Thermal Contraction and Implications for Plate Non-rigidity and the Non-closure of the Pacific-Cocos-Nazca Plate Motion Circuit

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Kreemer, C.

    2015-12-01

    Plate rigidity is the central tenet of plate tectonics. Mounting evidence suggests, however, that significant intraplate deformation occurs in oceanic lithosphere due to horizontal thermal contraction, the rate of which decreases as ≈ 1/age [Kumar & Gordon 2009]. Support for this hypothesis comes from the azimuths of submarine transform faults, which are fit significantly better assuming shrinking plates than by assuming rigid plates [Mishra & Gordon 2015]. Previously we estimated the intraplate velocity field of the Pacific plate accounting for horizontal thermal contraction. The ≈2 mm/yr southeastward motion predicted for the northeastern part of the plate relative to the Pacific-Antarctic Rise may contribute to the non-closure of the Pacific-North America plate motion circuit. In a reference frame in which fix the oldest portion of the Pacific plate, some sites on the plate move up to ≈2 mm/yr [Kreemer & Gordon 2014]. Here we present intraplate velocity fields of the Cocos and Nazca plates and discuss their implications for the non-rigidity of plates and the non-closure of the Pacific-Cocos-Nazca plate circuit, which fails closure by a stunning 14 ±5 mm/yr [DeMets et al. 2010]. If we fix the oldest part of the Cocos plate, intraplate velocities of up to ≈2 mm/yr are estimated, with the fastest motion occurring at the northern end of the plate. If we fix the oldest part of the Nazca plate, displacement rates up to 2 mm/yr are estimated, with the fastest motion occurring in the northeasternmost portion of the plate. In the velocity fields for both plates, the lithosphere adjacent to transform faults along the East Pacific Rise tends to move to the south, which would skew the azimuths of the transform faults clockwise of the values expected for rigid plates, which is the same as the sense of misfit between observed azimuths of transform faults and the azimuths calculated from the MORVEL global set of relative angular velocities [DeMets et al. 2010]. Direct

  7. Bond-slip behavior of CFRP plate-concrete interface

    NASA Astrophysics Data System (ADS)

    Cho, D. Y.; Park, S. K.; Hong, S. N.

    2011-11-01

    The paper deals with evaluation of the bond performance between a CFRP plate and concrete with respect to various compressive strengths of concrete and bond lengths of the CFRP plate as parameters. To consider stress conditions in the tensile zone of reinforced concrete (RC) structures, double-lap axial tension tests were conducted for eight specimens with CFRP plates bonded to concrete prisms. In addition, a simple linear bond-slip model for the CFRP plate/concrete joints, developed from the bond tests, was used. To verify the model proposed, a total of seven RC beams were strengthened with CFRP plates and tested in flexure employing various bond lengths, strengthening methods, and numbers of CFRP plates. A nonlinear finite-element analysis, with the bond-slip model incorporated in the DIANA program, was performed for the strengthened RC beams. Also, the results of flexural test and analytical predictions are found to be in close agreement in terms of yield and ultimate loads and ductility.

  8. Toward a self-consistent, high-resolution absolute plate motion model for the Pacific

    NASA Astrophysics Data System (ADS)

    Wessel, Paul; Harada, Yasushi; Kroenke, Loren W.

    2006-03-01

    The hot spot hypothesis postulates that linear volcanic trails form as lithospheric plates move relative to stationary or slowly moving plumes. Given geometry and ages from several trails, one can reconstruct absolute plate motions (APM) that provide valuable information about past and present tectonism, paleogeography, and volcanism. Most APM models have been designed by fitting small circles to coeval volcanic chain segments and determining stage rotation poles, opening angles, and time intervals. Unlike relative plate motion (RPM) models, such APM models suffer from oversimplicity, self-inconsistencies, inadequate fits to data, and lack of rigorous uncertainty estimates; in addition, they work only for fixed hot spots. Newer methods are now available that overcome many of these limitations. We present a technique that provides high-resolution APM models derived from stationary or moving hot spots (given prescribed paths). The simplest model assumes stationary hot spots, and an example of such a model is presented. Observations of geometry and chronology on the Pacific plate appear well explained by this type of model. Because it is a one-plate model, it does not discriminate between hot spot drift or true polar wander as explanations for inferred paleolatitudes from the Emperor chain. Whether there was significant relative motion within the hot spots under the Pacific plate during the last ˜70 m.y. is difficult to quantify, given the paucity and geological uncertainty of age determinations. Evidence in support of plume drift appears limited to the period before the 47 Ma Hawaii-Emperor Bend and, apart from the direct paleolatitude determinations, may have been somewhat exaggerated.

  9. Investigating the Subduction History of the Southwest Pacific using Coupled Plate Tectonic-Mantle Convection Models

    NASA Astrophysics Data System (ADS)

    Matthews, K. J.; Flament, N. E.; Williams, S.; Müller, D.; Gurnis, M.

    2014-12-01

    The Late Cretaceous to mid Eocene (~85-45 Ma) evolution of the southwest Pacific has been the subject of starkly contrasting plate reconstruction models, reflecting sparse and ambiguous data. Disparate models of (1) west-dipping subduction and back-arc basin opening to the east of the Lord Howe Rise, (2) east-dipping subduction and back-arc basin closure to the east of the Lord Howe Rise, and (3) tectonic quiescence with no subduction have all been proposed for this time frame. To help resolve this long-standing problem we test a new southwest Pacific reconstruction using global mantle flow models with imposed plate motions. The kinematic model incorporates east to northeast directed rollback of a west-dipping subduction zone between 85 and 55 Ma, accommodating opening of the South Loyalty back-arc basin to the east of New Caledonia. At 55 Ma there is a plate boundary reorganization in the region. West-dipping subduction and back-arc basin spreading end, and there is initiation of northeast dipping subduction within the back-arc basin. Consumption of South Loyalty Basin seafloor continues until 45 Ma, when obduction onto New Caledonia begins. West-dipping Tonga-Kermadec subduction initiates at this time at the relict Late Cretaceous-earliest Eocene subduction boundary. We use the 3D spherical mantle convection code CitcomS coupled to the plate reconstruction software GPlates, with plate motions and evolving plate boundaries imposed since 230 Ma. The predicted present-day mantle structure is compared to S- and P-wave seismic tomography models, which can be used to infer the presence of slab material in the mantle at locations where fast velocity anomalies are imaged. This workflow enables us to assess the forward-modeled subduction history of the region.

  10. Global Plate Reconstructions, Pacific Plate Apparent Polar Wander, and the Origin of the Bend in the Hawaiian-Emperor Chain

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.

    2011-12-01

    A key tectonic event near 50 Ma B.P. is the formation of the bend in the Hawaiian-Emperor hotspot track. A central question about the formation of the bend is whether it represents a change in plate motion or a change in motion of the Hawaiian hotspot or some combination of the two. In this presentation I will review results of mainly recent work with Rice collaborators and consider the implications for the bend. Koivisto et al. (2011) present an updated test of the fixed-hotspot approximation comparing the observed positions of Indo-Atlantic hotspot tracks with those predicted from Pacific plate hotspot tracks and the global plate motion circuit through Antarctica. This updated study indicates 2 to 5 mm/a motion between hotspots for the past 48 Ma,that is, since the formation of the bend in the Hawaiian-Emperor chain. The confidence limits include zero and thus are consistent with no motion between Pacific hotspots and Indo-Atlantic hotspots for the past 48 Ma. This does not necessarily imply that the hotspots are fixed, as the uncertainties allow for motion up to 8 to 12 mm/a, but does exclude higher rates. When we examine predictions for times preceding 48 Ma B.P. we obtain very different results, however, the apparent rates of inter-hotspot motion increase to about 45-55 ± 20 mm/a. One explanation is that hotspots moved rapidly relative to one another before 48 Ma B.P. and then slowed dramatically at roughly the age of the elbow. An alternative explanation is that as we go further back in time the global plate motion circuit through Antarctica is less reliable. The possibility of motion between East and West Antarctica will be considered. Paleomagnetic data can be used to discriminate between these alternatives. The paleomagnetic results of Petronotis & Gordon [1989], Acton & Gordon [1994], Horner-Johnson & Gordon [2010], Zheng et al. [this meeting], and Boswell et al. [this meeting] will be reviewed and implications discussed.

  11. An Evaluation of the Fixed Hotspot Hypothesis for the Pacific Plate

    NASA Astrophysics Data System (ADS)

    Wessel, P.; Kroenke, L. W.

    2008-12-01

    Using geometry and ages from 12 Pacific seamount chains, we recently constructed two new Pacific absolute plate motion models that extend our self-consistent and high-resolution models back to 145 Ma. The WK08-A model maps the full uncertainty in the age progressions into uncertainties in rotation opening angles, yielding a relatively smooth plate motion model. The WK08-G model relaxes the mapping of age uncertainties in order to better isolate secondary geometry changes seen along many co-registered chains. Both models have been used to assess the viability of the fixed hotspot hypothesis in the Pacific. In constructing these models, we found that only a small group of age samples had to be discarded on the grounds that they were discordant with the dominant trends. We were able to connect plate motions for pre- and post-Emperor age intervals by including the Ratak-Gilbert-Ellice, Liliuokalani and Musicians trails in our analysis. However, as no active hotspot locations exist for the older chains their inclusion adds additional model parameters. Both age and geometry misfits increase with age, reflecting the observed increase in age uncertainties and the broader and less distinct nature of the older trails. Paleomagnetic observations from the Emperor seamount chain have been interpreted to suggest that these seamounts must have formed at latitudes significantly more northerly than the present location of the Hawaii hotspot, implying a drifting mantle plume. At the same time, new estimates of the age of the Hawaii- Emperor bend places bend formation at a time of global plate reorganization. We will present a complete analysis of inter-chain distances between coeval radiometric samples from Pacific chains and compare these distances to the inter-hotspot distances at the present time. Significant departures from the current hotspot separations would be direct and unequivocal evidence of motion between the Pacific hotspot reference frame and the spin axis and as such

  12. The Hawaii-Emperor Bend: Clearly a Record of Pacific Plate Motion Change

    NASA Astrophysics Data System (ADS)

    Wessel, P.; Harada, Y.; Kroenke, L. W.; Sterling, A.

    2003-12-01

    As most introductory textbooks will point out, the conventional explanation for the ˜120° change in the trends of the Hawaiian and Emperor chains is a ˜60° change in plate motion over a fixed plume in the mantle. Recently, however, new paleomagnetic and radiometric age data from the Emperor Seamounts have led some scientists to reject the conventional view of the origin of the Hawaii-Emperor bend in favor of a mobile plume. Yet, at the brink of being explained away as the mere consequence of a drifting plume, the fixed hotspot hypothesis now gains support from newly reported radiometric dates of rock samples from seamounts at the bend which reveal an age much older than expected. Unlike the previous younger age ( ˜43 Ma), the older age ( ˜47 Ma) allows the bend to be directly correlated with a period of pronounced, global tectonic reorganizations around Chron 21. Here we present a new Pacific absolute plate motion model, derived from 15 hotspot chains, which does not require hotspot drift in order to satisfy geometric and chronological constraints. By considering this absolute plate motion model with available Pacific paleomagnetic poles we find support for the notion that the spin axis was closer to the Hawaiian hotspot during the formation of the Emperor chain, and this interpretation (polar wander, not hotspot drift) also explains the paleomagnetic latitudes from the Emperor seamounts as well as the lack of coral reefs materials in the drill holes north of Koko Guyot. However, this interpretation is not unique, and drift cannot be summarily ruled out. Yet, if Pacific plumes are drifting then they appear to be moving in unison. Careful examination of the Pacific seafloor reveals additional Pacific trails with bends that appear to be contemporaneous with the Hawaii-Emperor Bend, although conclusive radiometric age data are lacking. Our plate motion model predicts hotspot tracks that fit these bends. Considering all these lines of evidence the fixed hotspot

  13. Cretaceous Pacific plate movement beneath SE China: Evidence from episodic volcanism and related intrusions

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Xu, Xisheng; Xia, Yan

    2014-02-01

    Extensive Late Mesozoic igneous rocks in SE China have been widely considered to be generated under the paleo-Pacific tectonic regime, the plate subduction model, however, remains controversial. This study focuses on the Cretaceous volcanic rocks in northwestern Zhejiang Province. Zircon U-Pb age determination indicates that Cretaceous volcanism in northwestern Zhejiang took place at three episodes of 140-130, 130-127 and 123-118 Ma, in good agreement with the coeval lower volcanic series in southeastern Zhejiang, but lacking the episode at 110-88 Ma corresponding to the upper volcanic series. The Cretaceous volcanic rocks in Zhejiang therefore show an oceanward younging trend. In situ zircon Hf isotope analyses of three episodes of volcanics yield ɛHf(t) values of - 11.2 to - 8.7, -4.8 to - 2.4 and - 4.4 to + 2.2, respectively. The entire sequences display typical isotopic features of magma mixing, implying progressive involvement of juvenile component. Based on systematical researches on the Cretaceous volcanic rocks and a series of granitoid plutons in Zhejiang, it is also identified that the juvenile component involvement gradually occurred from the inland to the coast under an enhanced lithospheric extensional tectonic setting. All the observations in this study indicate the northwestward paleo-Pacific plate subduction with episodic slab rollback which triggered the arc system to retreat towards the Pacific Ocean, rather than the southwestward subduction related to the ridge subduction along the Lower Yangtze River belt.

  14. The 2011 Tohoku-oki Earthquake related to a large velocity gradient within the Pacific plate

    NASA Astrophysics Data System (ADS)

    Matsubara, Makoto; Obara, Kazushige

    2015-04-01

    We conduct seismic tomography using arrival time data picked by the high sensitivity seismograph network (Hi-net) operated by National Research Institute for Earth Science and Disaster Prevention (NIED). We used earthquakes off the coast outside the seismic network around the source region of the 2011 Tohoku-oki Earthquake with the centroid depth estimated from moment tensor inversion by NIED F-net (broadband seismograph network) as well as earthquakes within the seismic network determined by Hi-net. The target region, 20-48N and 120-148E, covers the Japanese Islands from Hokkaido to Okinawa. A total of manually picked 4,622,346 P-wave and 3,062,846 S-wave arrival times for 100,733 earthquakes recorded at 1,212 stations from October 2000 to August 2009 is available for use in the tomographic method. In the final iteration, we estimate the P-wave slowness at 458,234 nodes and the S-wave slowness at 347,037 nodes. The inversion reduces the root mean square of the P-wave traveltime residual from 0.455 s to 0.187 s and that of the S-wave data from 0.692 s to 0.228 s after eight iterations (Matsubara and Obara, 2011). Centroid depths are determined using a Green's function approach (Okada et al., 2004) such as in NIED F-net. For the events distant from the seismic network, the centroid depth is more reliable than that determined by NIED Hi-net, since there are no stations above the hypocenter. We determine the upper boundary of the Pacific plate based on the velocity structure and earthquake hypocentral distribution. The upper boundary of the low-velocity (low-V) oceanic crust corresponds to the plate boundary where thrust earthquakes are expected to occur. Where we do not observe low-V oceanic crust, we determine the upper boundary of the upper layer of the double seismic zone within high-V Pacific plate. We assume the depth at the Japan Trench as 7 km. We can investigate the velocity structure within the Pacific plate such as 10 km beneath the plate boundary since the

  15. Relationship between the present-day stress field and plate boundary forces in the Pacific Northwest

    USGS Publications Warehouse

    Geist, E.L.

    1996-01-01

    The relationship between plate boundary forces and the observed stress field in the Pacific Northwest is established using numerical models of continental deformation. Because the orientation of the greatest horizontal principal stress throughout the Pacific Northwest differs considerably from the direction of convergence between the Juan de Fuca and North American plates, the relationship between the stress field and forces acting along the subduction zone has been unclear. To address this relationship, a two-dimensional finite element model developed by Bird [1989] is used that incorporates critical aspects of continental deformation such as a stratified rheology and interaction between thermal and mechanical components of deformation. Boundary conditions are specified in terms of either velocity or shear traction, depending on whether the computed shear stress at the plate boundary is less than or exceeds, respectively, a prescribed limit. Shear-stress limits on the subduction and transform plate boundaries are independently varied to determine the relative effect of forces along these boundaries on intraplate deformation. Results from this study indicate that the shear stress limit of both subduction and transform boundaries is low, and that the intraplate stress field is attributed, in part, to the normal component of relative plate motion along the transform boundaries. However, the models also indicate that although the subduction zone fault is weak, a minimum shear strength ( ??? 10 MPa) for the fault is necessary to explain the observed stress field. The balance among forces along the tectonic boundaries of North America results in a surprising degree of variation in the present-day stress field.

  16. Ridge subduction sparked reorganization of the Pacific plate-mantle system 60-50 million years ago

    NASA Astrophysics Data System (ADS)

    Seton, Maria; Flament, Nicolas; Whittaker, Joanne; Müller, R. Dietmar; Gurnis, Michael; Bower, Dan J.

    2015-03-01

    A reorganization centered on the Pacific plate occurred ~53-47 million years ago. A "top-down" plate tectonic mechanism, complete subduction of the Izanagi plate, as opposed to a "bottom-up" mantle flow mechanism, has been proposed as the main driver. Verification based on marine geophysical observations is impossible as most ocean crust recording this event has been subducted. Using a forward modeling approach, which assimilates surface plate velocities and shallow thermal structure of slabs into mantle flow models, we show that complete Izanagi plate subduction and margin-wide slab detachment induced a major change in sub-Pacific mantle flow, from dominantly southward before 60 Ma to north-northeastward after 50 Ma. Our results agree with onshore geology, mantle tomography, and the inferred motion of the Hawaiian hot spot and are consistent with a plate tectonic process driving the rapid plate-mantle reorganization in the Pacific hemisphere between 60 and 50 Ma. This reorganization is reflected in tectonic changes in the Pacific and surrounding ocean basins.

  17. Reconstructing Ontong Java Nui: Implications for Pacific absolute plate motion, hotspot drift and true polar wander

    NASA Astrophysics Data System (ADS)

    Chandler, Michael T.; Wessel, Paul; Taylor, Brian; Seton, Maria; Kim, Seung-Sep; Hyeong, Kiseong

    2012-05-01

    The Taylor (2006) hypothesis suggesting a common origin for the Ontong Java, Manihiki, and Hikurangi large igneous provinces provides an opportunity for a quantitative reconstruction and reassessment of the Ontong Java-Louisville hotspot connection. Our plate tectonic reconstructions of the three plateaus into Ontong Java Nui, or greater Ontong Java, combined with models for Pacific absolute plate motion (APM), allow an analysis of this connection. A new survey of the central Ellice Basin confirms easterly fracture zones, northerly abyssal hill fabric, as well as an area of sigmoidally-southeast-trending fracture zones associated with a late-stage spreading reorientation. From the fracture zone trends we derive new rotation poles for a two-stage model of Ellice Basin opening between the Ontong Java and Manihiki Plateaus. We use these and a single stage pole for separation of the Manihiki and Hikurangi Plateaus, together with three different Pacific APMs, to reconstruct the Ontong Java Nui super plateau back to 123 Ma and compare its predicted location with paleolatitude data obtained from the Ontong Java and Manihiki plateaus. Discrepancies between our Ontong Java Nui reconstructions and Ontong Java and Manihiki paleolatitudes are largest for the fixed Pacific hotspot APM. Assuming a Louisville hotspot source for Ontong Java Nui, remaining disparity between Ontong Java Nui's paleo-location at 123 Ma and published paleomagnetic latitudes for Ontong Java plateau imply that 8°-19° of Louisville hotspot drift or true polar wander may have occurred since the formation of Ontong Java Nui. However, the older portions of the Pacific APMs could easily be biased by a similar amount, making a firm identification of the dominant source of misfit difficult. Prior studies required a combined 26° of hotspot drift, octupole bias effects, and true polar wander just to link the Ontong Java Plateau to Louisville. Consequently, we suggest the super plateau hypothesis and our new

  18. The recent history of the Galapagos triple junction preserved on the Pacific plate

    NASA Astrophysics Data System (ADS)

    Smith, Deborah K.; Schouten, Hans; Montési, Laurent; Zhu, Wenlu

    2013-06-01

    At the Galapagos triple junction, the Cocos and Nazca plates are broken by a succession of transient rifts north and south of the Cocos-Nazca (C-N) Rift. Modeling has suggested that each rift initiated at the East Pacific Rise (EPR), its location controlled by the distance of the C-N Rift tip from the EPR. Evidence on the Pacific plate confirms that each transient rift formed a true RRR triple junction with the EPR and clarifies the history of the region. At ˜1.5 Ma the triple junctions began jumping rapidly toward the C-N Rift suggesting that the C-N Rift tip moved closer to the EPR. Pacific abyssal hills became broad and shallow indicating enhanced magma supply to the region. At ˜1.4 Ma, the Galapagos microplate developed when extension became fixed on the southern transient rift to form the South scarp of the future Dietz rift basin. Lavas flooded the area and a Galapagos-Nazca magmatic spreading center initiated at the EPR. We suggest that a hotspot was approaching the southern triple junction from the west. The hotspot crossed to the Nazca plate ˜1.25 Ma. Dietz seamount formed within the young spreading center, dikes intruded Dietz rift basin, and eruptions built volcanic ridges. Since ˜0.8 Ma magmatic spreading has jumped northward twice, most recently to Dietz volcanic ridge. Amagmatic extension to the east has formed the large North scarp of Dietz rift basin. Northward jumping of the southern triple junction has maintained the microplate boundary close to the proposed hotspot.

  19. Rapid tremor reversals in Cascadia generated by a weakened plate interface

    NASA Astrophysics Data System (ADS)

    Houston, Heidi; Delbridge, Brent G.; Wech, Aaron G.; Creager, Kenneth C.

    2011-06-01

    Slow slip along the plate interface at subduction zones can generate weak seismic tremor in a quasi-periodic process called episodic tremor and slip. This process differs in character from regular earthquake rupture and can release stresses that build up on the deep plate interface. Here we analyse the spatial and temporal evolution of the five largest episodic tremor and slip events between 2004 and 2009 in northern Washington on the Cascadia subduction zone. We find that the events are similar, but not identical because they initiate in different locations and propagate along the plate interface at different average speeds of 7 to 12km per day. Our analysis reveals that tremor can migrate rapidly back, away from the region where tremor and slip are advancing, through parts of the plate interface that have just ruptured in the past three days. These rapid tremor reversals propagate backwards for tens of kilometres at speeds that are 20 to 40 times faster than the relatively slow, steady advance of episodic tremor and slip. Our observations suggest that once the plate interface is weakened by the initial advance of episodic tremor and slip, it allows stresses to induce slip more easily or fluid pressure waves to migrate back more rapidly, generating rapid tremor reversals.

  20. Seismic velocity structure of the subducting Pacific plate in the Izu-Bonin region

    SciTech Connect

    Iidaka, Takashi; Mizoue, Megumi; Suyehiro, Kiyoshi )

    1992-10-01

    Observed travel time residual data from a spatially dense seismic network above deep earthquakes in the Izu-Bonin region are compared with 3D ray tracing calculations. The data are inconsistent with a homogeneous slab model and consistent with a heterogenous slab model with regional velocity variations. The residual data can be explained by a model that has a velocity gradient within the slab. In the subducting Pacific plate, the velocity near the center of the slab is faster than that near the upper boundary, and gradually decreases toward the bottom of the plate. A model with a velocity decrease of 3 percent, as predicted by a thermal profile, explains the observed data. 52 refs.

  1. Early Tertiary rupture of the Pacific plate: 1700 km of dextral offset along the Emperor trough-Line Islands lineament

    NASA Astrophysics Data System (ADS)

    Farrar, Edward; Dixon, John M.

    1981-05-01

    Between 67 and ˜40 Ma ago a northwest-southeast-trending fracture system over 8000 km long split the Pacific plate and accumulated at least 1700 km of dextral offset between the east and west portions. This system, here named the Emperor fracture zone (EFZ) system, consisted of several segments, one along the present trace of the Emperor trough and another along the Line Islands, joined by short spreading ridges. The EFZ terminated at its northern end against the Kula-Pacific ridge, and at its southern end in a ridge-transform system, called the Emperor spreading system, which extended to the west, north of Australia. The finite angular velocity vector describing the relative motion between the East and West Pacific plates is ˜0.6°/Ma about a pole at 36°N, 70°W. This vector, added to the known Early Tertiary motion of the Pacific plate with respect to the global hotspot reference frame, accounts in large part for the NNW trend of the Emperor seamount chain relative to the WNW Hawaiian trend, without violation of the integrity of the Antarctic plate. The Meiji-Emperor and Emperor-Hawaiian bends date, respectively, the initiation (˜67 Ma ago) and cessation (˜40 Ma ago) of seafloor spreading on the Emperor spreading system. The postulated Early Tertiary relative motion along the EFZ between the East and West Pacific plates explains (1) the present misalignment of the two sets of magnetic bights of the Pacific, (2) the abrupt truncation of eastern Pacific bathymetric lineaments against the Emperor trough and Line Islands, (3) the contrast in paleolatitude between the eastern and western Pacific as indicated by paleomagnetic and sedimentologic studies, and (4) the anomalous gravity signature of the central Hawaiian ridge that indicates that the ridge loaded thin hot lithosphere.

  2. Paleocene Pacific Plate reorganization mirrored in formation of the Suvarov Trough, Manihiki Plateau

    NASA Astrophysics Data System (ADS)

    Pietsch, Ricarda; Uenzelmann-Neben, Gabriele

    2016-10-01

    The Suvarov Trough is a graben structure that deviates from the Danger Islands Troughs within the Manihiki Plateau, a Large Igneous Province (LIP) located in the Central Pacific. New high-resolution seismic reflection data provide evidence that the graben formed in two phases during the Paleocene (65-45 Ma). In a first phase extension occurred in southwestward direction, pulling apart the northern part of the Suvarov Trough and a parallel trending unnamed trough. In a second phase a change of extensional force direction occurred from southwest to west-northwest, forming the southern part of the Suvarov Trough that extends onto the High Plateau. The formation of the Suvarov Trough is accompanied by a series of normal fault systems that apparently formed simultaneously. Comparing the seismic results to existing Pacific paleo strain reconstructions, the timing of increased strain and local deformation direction fits well to our findings. We thus suggest that the multiple strike directions of the Suvarov Trough represent an extensional structure that was caused by the major, stepwise Pacific Plate reorganization during the Paleocene.

  3. Thermal study of interface between the Orbiter cold plate and typical Shuttle spacecraft payload flight electronics

    NASA Technical Reports Server (NTRS)

    Hwangbo, H.; Coyle, M. J.

    1979-01-01

    Spacelab provides a set of Freon line plumbing and cold plates for experiment equipments which are located in the Shuttle pallet and which need active thermal control. The reported study deals with the thermal problem of attaching a Command and Data Handling module with various electronic boxes whose combined footprints on the baseplate are much larger than the cold plate. A description of two modules and the cold plate assembly in the pallet is presented and a thermal model description is provided. The method employed in modeling heat pipes-honey-comb matrix is based upon an effective conductance between the heat pipe vapor and the walls of the heat pipe. The considered thermal models and a computer program are used to perform steady-state thermal analyses. The temperature gradients in the large module baseplate attached to the small cold plate are predicted as a function of the interface plate thickness.

  4. Thermal models beneath Kamchatka and the Pacific Plate rejuvenation from a mantle plume impact

    NASA Astrophysics Data System (ADS)

    Manea, V. C.; Manea, M.

    The Northwest Pacific area, comprising the Kamchatka peninsula, is a distinctive area where a series of on going geodynamical processes like: plate rejuvenation from a mantle plume impact, slab detachment, slab edge melting and exotic volcanism, take place. With the help of finite element modeling we infer the thermal structure across Kamchatka in a series of 2D profiles normal to the trench. We chose the location at these profiles based on seismicity, geochemical variation and offshore heat flow measurements. Assuming that the transition from brittle to ductile behavior inside the subducting slab corresponds to the 650°C isotherm, our thermal models predict a good fit with maximum depth of seismicity (˜500 km) for southern Kamchatka only if the exothermic olivine-spinel phase transition is introduced. In the central part of Kamchatka, a good fit is obtained if the hot mantle plume, located just beneath Meiji Guyot seamount, thermally rejuvenates the subducting Pacific plate. Further to the north, the seismicity shallows more (200-100 km) and slab rejuvenation alone cannot provide a thermal structure with a good fit with seismically active subducting slab. A good explanation for such shallow seismicity might be the slab detachment due to cessation of subduction just north of Kamchatka-Aleutians junction. The thermal structure beneath the northernmost active volcano in Kamchatka, Scheveluch, which exhibits a strong adakitic signature, shows that slab edge exposure to the hotter asthenosphere creates the favorable conditions for oceanic crust melting at ˜70 km depth, just beneath Scheveluch. Our numerical models show that plate rejuvenation from a mantle plume, slab edge exposure to hot upper mantle and probably slab detachment play an essential role in subduction slabs thermal structure, seismicity down-dip extension and geochemical variations of lavas in Kamchatka.

  5. On gravity from SST, geoid from Seasat, and plate age and fracture zones in the Pacific

    NASA Technical Reports Server (NTRS)

    Marsh, B. D.; Marsh, J. G.; Williamson, R. G. (Principal Investigator)

    1984-01-01

    A composite map produced by combining 90 passes of SST data show good agreement with conventional GEM models. The SEASAT altimeter data were deduced and found to agree with both the SST and GEM fields. The maps are dominated (especially in the east) by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. Comparison with regional bathymetric data shows a remarkedly close correlation with plate age. Most anomalies in the east half of the Pacific could be partly caused by regional differences in plate age. The amplitude of these geoid or gravity anomalies caused by age differences should decrease with absolute plate age, and large anomalies (approximately 3 m) over old, smooth sea floor may indicate a further deeper source within or perhaps below the lithosphere. The possible plume size and ascent velocity necessary to supply deep mantle material to the upper mantle without complete thermal equilibration was considered. A plume emanating from a buoyant layer 100 km thick and 10,000 times less viscous than the surrounding mantle should have a diameter of about 400 km and must ascend at about 10 cm/yr to arrive still anomalously hot in the uppermost mantle.

  6. Orthogonal relation of elastic modes in two-layered plate with weak interface

    NASA Astrophysics Data System (ADS)

    Du, Jun; Cheng, Jianchun

    2002-05-01

    The orthogonal features of the guided wave-modes have been discussed in details for a two-layered plate with a weak interface. The elastic operator is proved to be a self-adjoint operator under the weak interface modeled by the spring model. However, it is proved to be non-self-adjoint operator, and a new orthogonal relation is derived for the weak interface modeled by the density model. The theoretical analyses are verified by numerical calculations for the spring model.

  7. Active Pacific North America Plate boundary tectonics as evidenced by seismicity in the oceanic lithosphere offshore Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Hauksson, Egill; Kanamori, Hiroo; Stock, Joann; Cormier, Marie-Helene; Legg, Mark

    2014-03-01

    Pacific Ocean crust west of southwest North America was formed by Cenozoic seafloor spreading between the large Pacific Plate and smaller microplates. The eastern limit of this seafloor, the continent-ocean boundary, is the fossil trench along which the microplates subducted and were mostly destroyed in Miocene time. The Pacific-North America Plate boundary motion today is concentrated on continental fault systems well to the east, and this region of oceanic crust is generally thought to be within the rigid Pacific Plate. Yet, the 2012 December 14 Mw 6.3 earthquake that occurred about 275 km west of Ensenada, Baja California, Mexico, is evidence for continued tectonism in this oceanic part of the Pacific Plate. The preferred main shock centroid depth of 20 km was located close to the bottom of the seismogenic thickness of the young oceanic lithosphere. The focal mechanism, derived from both teleseismic P-wave inversion and W-phase analysis of the main shock waveforms, and the 12 aftershocks of M ˜3-4 are consistent with normal faulting on northeast striking nodal planes, which align with surface mapped extensional tectonic trends such as volcanic features in the region. Previous Global Positioning System (GPS) measurements on offshore islands in the California Continental Borderland had detected some distributed Pacific and North America relative plate motion strain that could extend into the epicentral region. The release of this lithospheric strain along existing zones of weakness is a more likely cause of this seismicity than current thermal contraction of the oceanic lithosphere or volcanism. The main shock caused weak to moderate ground shaking in the coastal zones of southern California, USA, and Baja California, Mexico, but the tsunami was negligible.

  8. Extensive deposits on the Pacific plate from Late Pleistocene North American glacial lake outbursts

    USGS Publications Warehouse

    Normark, W.R.; Reid, J.A.

    2003-01-01

    One of the major unresolved issues of the Late Pleistocene catastrophic-flood events in the northwestern United States (e.g., from glacial Lake Missoula) has been what happened when the flood discharge reached the ocean. This study compiles available 3.5-kHz high-resolution and airgun seismic reflection data, long-range sidescan sonar images, and sediment core data to define the distribution of flood sediment in deepwater areas of the Pacific Ocean. Upon reaching the ocean at the mouth of the Columbia River near the present-day upper continental slope, sediment from the catastrophic floods continued flowing downslope as hyperpycnally generated turbidity currents. The turbidity currents resulting from the Lake Missoula and other latest Pleistocene floods followed the Cascadia Channel into and through the Blanco Fracture Zone and then flowed west to the Tufts Abyssal Plain. A small part of the flood sediment, which was stripped off the main flow at a bend in the Cascadia Channel at its exit point from the Blanco Fracture Zone, continued flowing more than 400 km to the south and reached the Escanaba Trough, a rift valley of the southern Gorda Ridge. Understanding the development of the pathway for the Late Pleistocene flood sediment reaching Escanaba Trough provides insight for understanding the extent of catastrophic flood deposits on the Pacific plate.

  9. The 2011 Tohoku-oki Earthquake related to a strong velocity gradient within the Pacific plate

    NASA Astrophysics Data System (ADS)

    Matsubara, M.; Obara, K.

    2012-12-01

    1. Introduction We conduct seismic tomography using arrival time data picked by NIED Hi-net, including earthquakes off the coast, outside the seismic network around the source region of the 2011 Tohoku-oki Earthquake. For these offshore events, we use the centroid depth estimated from moment tensor inversion by NIED F-net. After the Tohoku-oki Earthquake we also used the centroid depth estimated from seismograms of high-sensitivity accelerometers operated by NIED with moment tensor inversion (Asano et al., 2011). 2. Data and method The target region, 20-48°N and 120-148°E, covers the Japanese Islands from Hokkaido to Okinawa. A total of manually picked 4,622,346 P-wave and 3,062,846 S-wave arrival times for 100,733 earthquakes recorded at 1,212 stations from October 2000 to August 2009 is available for use in the tomographic method. In the final iteration, we estimate the P-wave slowness at 458,234 nodes and the S-wave slowness at 347,037 nodes. The inversion reduces the root mean square of the P-wave traveltime residual from 0.455 s to 0.187 s and that of the S-wave data from 0.692 s to 0.228 s after eight iterations (Matsubara et al., 2011). After the Tohoku-oki earthquake, we also used arrival time data from many aftershocks determined by moment tensor inversion (Asano et al., 2011) composed of 1,089,228 P- and 593,191 S-wave arrival times from 4,384 events outside of the seismic network. Centroid depths are determined using a Green's function approach (Okada et al., 2004) such as in NIED F-net. For the events distant from the seismic network, the centroid depth is more reliable than that determined by NIED Hi-net, since there are no stations above the hypocenter. 3. Results and Discussion We determine the upper boundary of the Pacific plate based on the velocity structure and earthquake hypocentral distribution. The upper boundary of the low-V oceanic crust corresponds to the plate boundary where thrust earthquakes are expected to occur. Where we do not

  10. Roles of plate locking and block rotation in the tectonics of the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Ning, Zuoli

    The Pacific Northwest has potential for huge megathrust earthquakes. The influence of plate locking in the Cascadia subduction zone dominates crustal deformation off the shores of Washington and Oregon, but does not much affect areas far from the trench. The maximum principal strain rate epsilon 1 is -0.013 +/- 0.007 mustrain/yr in the Olympic Peninsula, 0.007 +/- 0.005 mustrain/yr in the Puget Sound, -0.005 +/- 0.005 mustrain/yr at Mt. Rainier, -0.004 +/- 0.005 mustrain/yr along the northern Oregon coast, and 0.011 +/- 0.006 mustrain/yr in central Oregon. The minimum principal strain rate epsilon2 is -0.083 +/- 0.008 mustrain/yr N56°E in the Olympic Peninsula, -0.034 +/- 0.007 mustrain/yr N63°E in the Puget Sound, -0.020 +/- 0.006 mustrain/yr N53°E at Mt. Rainier, -0.051 +/- 0.014 mustrain/yr N85°E along the northern Oregon coast, and -0.010 +/- 0.006 mustrain/yr N71°E in central Oregon. A new model of plate locking on the Cascadia subduction zone is similar to a model (1997). The uncertainty of the widths of the locked and transition zone in the model is about 25km--40km. Guided by computed site velocities, seismicity patterns, heat flow, volcanic data, and geological structures, we find it is necessary to divide the crust in the Pacific Northwest into separate moving blocks. We have analyzed a model in which the Oregon block is separated from the Washington block at latitude 46°. The Washington block has been further divided into 5-subblocks, three in the forearc and two in eastern Washington. We remove contributions of JDF plate locking from the site velocity field and determine a rotation pole and a strain rate for each sub-block. We conclude that Juan de Fuca plate locking has little direct effect on crustal earthquake occurrence in the Pacific Northwest (except for periodic megathrust earthquakes). In the Oregon block, plate locking and rigid block rotation are sufficient to explain GPS observations and the lower rate of seismicity in Oregon. The

  11. A passive and active seismic experiment near the Boso triple junction in the far northwestern part of the Pacific plate

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Mochizuki, K.; Shinohara, M.; Machida, Y.; Shinbo, T.; Nakahigashi, K.; Yagi, T.; Abe, H.; Hashimoto, S.; Shoji, W.; Sato, T.; Mizuno, M.; Uehira, K.; Hino, R.; Murai, Y.; Oguma, K.

    2011-12-01

    The Pacific Plate subducts beneath northeastern Japan along the Japan Trench and beneath the Izu-Bonin-Mariana arc along the Mariana Trench. The Boso triple junction is located at between the Japan Trench and the Mariana Trench, and the southeastern end of the Sagami Trough where the Philippine Sea Plate subducts beneath northeastern Japan. It is thus a trench-trench-trench type triple junction. For the purpose of understanding the interaction between three plates and its effect to the Pacific Plate, we have performed a passive and active seismic experiment near the Boso triple junction in the far northwestern part of the Pacific plate. We deployed 10 Ocean Bottom Seismometers (OBSs) equipped with a three-componet 1Hz geophone mounted on gimbabl systems on KH09-3 cruise of R/V Hakuho-maru on July 2009, and recovered the OBSs by using M/V Shinchou-maru on October 2010.During the KH09-3 cruise, we shot by using an airgun array (6000 cubic inch in total) during 18 hours on three profiles. We obtained 442days' seismic data from July 29, 2009 to October 13, 2010 in the experiment. More than 2000 earthquakes were detected, and the foci form some clusters.

  12. Solute transport at the interface of cartilage and subchondral bone plate: Effect of micro-architecture.

    PubMed

    Pouran, Behdad; Arbabi, Vahid; Bleys, Ronald Law; René van Weeren, P; Zadpoor, Amir A; Weinans, Harrie

    2017-02-08

    Cross-talk of subchondral bone and articular cartilage could be an important aspect in the etiology of osteoarthritis. Previous research has provided some evidence of transport of small molecules (~370Da) through the calcified cartilage and subchondral bone plate in murine osteoarthritis models. The current study, for the first time, uses a neutral diffusing computed tomography (CT) contrast agent (iodixanol, ~1550Da) to study the permeability of the osteochondral interface in equine and human samples. Sequential CT monitoring of diffusion after injecting a finite amount of contrast agent solution onto the cartilage surface using a micro-CT showed penetration of the contrast molecules across the cartilage-bone interface. Moreover, diffusion through the cartilage-bone interface was affected by thickness and porosity of the subchondral bone as well as the cartilage thickness in both human and equine samples. Our results revealed that porosity of the subchondral plate contributed more strongly to the diffusion across osteochondral interface compared to other morphological parameters in healthy equine samples. However, thickness of the subchondral plate contributed more strongly to the diffusion in slightly osteoarthritic human samples.

  13. Paleomagnetism of Midway Atoll lavas and northward movement of the Pacific plate

    USGS Publications Warehouse

    Gromme, S.; Vine, F.J.

    1972-01-01

    Two deep drill holes through the reef limestones of Midway Atoll penetrated 120 m and 19 m of basaltic lavas that were dated by the KAr method at 18 my. Inclinations of natural remanent magnetization have been measured in 173 specimens cut from 57 core samples from 13 of the lava flows. The mean paleomagnetic inclination is 27.6?? ?? 6.8??, corresponding to a paleolatitude of 14.7?? ?? 4.2??. The present latitude of Midway is 28??, suggesting a northward component of motion of the Pacific plate of approximately 13?? or 1400 km in the last 18 my. The paleolatitude of Midway is thus not significantly different from the present latitude (19??) of the active volcanic island of Hawaii. The paleomagnetic data from the Midway basalts thus support the hypothesis of Wilson and Morgan that volcanic heat sources are fixed with respect to the Earth's mantle below the asthenosphere and their apparent migration with time is due to plate motion. ?? 1972.

  14. The Baja California Borderland and the Neogene Evolution of the Pacific-North American Plate Boundary

    NASA Astrophysics Data System (ADS)

    Fletcher, J. M.; Eakins, B. W.

    2001-12-01

    New observational data on Neogene faulting in the borderland of Baja California places important constraints on tectonic models for the evolution of the Pacific-North American (P-NA) plate boundary and rifting in the Gulf of California. Neogene faults in the borderland range from strike slip to normal slip and accommodate integrated transtension. Most have east-facing escarpments and likely reactivate the former east-dipping accretionary complex. Numerous lines of evidence indicate that Neogene faults are still active and accomplish a significant component ( ~1-5 mm/yr) of Pacific-North American shearing. Quaternary volcanoes are found offshore and along the Pacific coastal margin, Quaternary marine terraces are warped and uplifted as high as 200 masl. Many of the offshore faults have fresh escarpments and cut Holocene sediments. Extensive arrays of Quaternary fault scarps are found throughout the coastal region and in Bahia Magdalena they are clearly associated with major faults that bound recently uplifted islands. A prominent band of seismicity follows the coast and eight earthquakes (Ms>5.0) were teleseismically recorded between 1973 and 1998. This evidence for active shearing indicates that the Baja microplate has not yet been completely transferred to the Pacific plate. The best lithologic correlation that can be used to define the total Neogene slip across the borderland faults is the offset between the Magdalena submarine fan and its Baja source terrane. The distal facies of the fan drilled during DSDP leg 63 is dominated by mudstone and siltstone that contain reworked Paleogene cocoliths derived from strata correlative with the Tepetate formation found throughout the borderland and fine-grained sandstone derived from a source terrane of granitoid basement. The Middle Miocene La Calera formation of the Cabo trough is one of many granitoid-clast syn-rift alluvial deposits that could form the continental counterpart of the submarine fan near the mouth of the

  15. Anomalously low heat flow around a “petit-spot” volcano on the old Pacific plate

    NASA Astrophysics Data System (ADS)

    Yamano, M.; Hamamoto, H.; Baba, K.; Takahashi, A.; Kawada, Y.; Abe, N.

    2009-12-01

    Recent heat flow measurements on the seaward slope and outer rise of the Japan Trench revealed the existence of high heat flow (70 to 120 mW/m2) on the old Pacific plate. It is anomalously high for the seafloor age, about 130 m.y., while the average of reliable values in old ocean basins with ages over 100 m.y. is about 50 mW/m2. Intra-plate volcanism called “petit-spot” is a possible heat source of the anomaly. Three petit-spot fields with a number of monogenetic volcanic knolls, which erupted in the last 9 m.y., were found on the seaward slope of the Japan Trench and on the Pacific plate about 600 km away from the trench (Hirano et al., 2006; 2008). In 2004, 2006, and 2007, we made heat flow measurements in and between two of the young volcanic fields in order to investigate thermal effect of the petit-spot volcanism. The measured values range from 50 to 70 mW/m2 at most stations, comparable to or slightly higher than the typical value for ocean basins older than 100 m.y. In contrast, an extremely low value, 20 mW/m2, was measured in the vicinity of the Yukawa Knoll, a petit-spot volcanic knoll at 37° 29.9’N, 149° 44.6’E. To investigate the conspicuous low heat flow in detail, we conducted closely-spaced heat flow measurements around the Yukawa Knoll in August 2008. The measurements were made along two cross lines on which subsurface structure had been investigated by seismic reflection survey (Fujiwara et al., 2007). The obtained values are low, 15 to 30 mW/m2, within about 1 km of the summit of the Yukawa Knoll, while they are around 50 mW/m2 beyond about 2 km from the summit. This local low heat flow anomaly can be interpreted as a result of advective heat transfer by pore fluid flow through permeable layers in the basement. In order to have a rough picture of conceivable fluid flow patterns within and around petit-spot knolls, we performed numerical simulations of fluid flow in permeable basaltic knolls penetrating an impermeable sediment layer. We

  16. Geodynamics of paleo-Pacific plate subduction constrained by the source lithologies of Late Mesozoic basalts in southeastern China

    NASA Astrophysics Data System (ADS)

    Zeng, Gang; He, Zhen-Yu; Li, Zhen; Xu, Xi-Sheng; Chen, Li-Hui

    2016-10-01

    Widespread Late Mesozoic volcanic magmatism in southeastern China is generally thought to represent products in response to the subduction of paleo-Pacific plate; however, it remains unclear when this process began to affect the mantle and the related magmatism. Here we present a systematic study on the source lithology of Late Mesozoic basalts in this area to highlight a link between lithological variations of mantle and subduction process of paleo-Pacific plate. Late Mesozoic basalts can be subdivided into four groups based on their erupted ages: 178 172 Ma, approximately 150 Ma, 137 123 Ma, and 109 64 Ma. The primary source lithology of these rocks is pyroxenite rather than peridotite, and this mafic lithology can be formed by either ancient or young recycled crustal components. Notably, the source lithology of the approximately 150 Ma and 137 123 Ma basalts is primarily SiO2-rich pyroxenite, and the former is carbonated. The discovery of carbonated, SiO2-rich pyroxenite reflects the influence of a recently recycling event in the mantle. The subduction of paleo-Pacific plate is the most appropriate candidate and can be responsible for the mantle-derived magmatism after approximately 150 Ma in southeastern China. Therefore, we suggest a paleo-Pacific slab rollback with increased dip angle as a possible model to control the lithological variations of Late Mesozoic mantle beneath southeastern China.

  17. Crustal structure and configuration of the subducting Philippine Sea plate beneath the Pacific coast industrial zone in Japan inferred from receiver function analysis

    NASA Astrophysics Data System (ADS)

    Igarashi, T.; Iidaka, T.; Sakai, S.; Hirata, N.

    2012-12-01

    We apply receiver function (RF) analyses to estimate the crustal structure and configuration of the subducting Philippine Sea (PHS) plate beneath the Pacific coast industrial zone stretching from Tokyo to Fukuoka in Japan. Destructive earthquakes often occurred at the plate interface of the PHS plate, and seismic activities increase after the 2011 Tohoku earthquake (Mw9.0) around the Tokyo metropolitan area. Investigation on the crustal structure is the key to understanding the stress concentration and strain accumulation process, and information on configuration of the subducting plate is important to mitigate future earthquake disasters. In this study, we searched for the best-correlated velocity structure model between an observed receiver function at each station and synthetic ones by using a grid search method. Synthetic RFs were calculated from many assumed one-dimensional velocity structures that consist of four layers with positive velocity steps. Observed receiver functions were stacked without considering back azimuth or epicentral distance. We further constructed the vertical cross-sections of depth-converted RF images transformed the lapse time of time series to depth by using the estimated structure models. Telemetric seismographic network data covered on the Japanese Islands including the Metropolitan Seismic Observation network, which constructed under the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan area and maintained by Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters, are used. We selected events with magnitudes greater or equal to 5.0 and epicentral distance between 30 and 90 degrees based on USGS catalogues. As a result, we clarify spatial distributions of the crustal S-wave velocities. Estimated average one-dimensional S-wave velocity structure is approximately equal to the JMA2011 structural model although the velocity from the ground surface to 5 km in depth is slow. In particular

  18. Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones

    USGS Publications Warehouse

    Brown, J.R.; Beroza, G.C.; Ide, S.; Ohta, K.; Shelly, D.R.; Schwartz, S.Y.; Rabbel, W.; Thorwart, M.; Kao, H.

    2009-01-01

    Deep tremor under Shikoku, Japan, consists primarily, and perhaps entirely, of swarms of low-frequency earthquakes (LFEs) that occur as shear slip on the plate interface. Although tremor is observed at other plate boundaries, the lack of cataloged low-frequency earthquakes has precluded a similar conclusion about tremor in those locales. We use a network autocorrelation approach to detect and locate LFEs within tremor recorded at three subduction zones characterized by different thermal structures and levels of interplate seismicity: southwest Japan, northern Cascadia, and Costa Rica. In each case we find that LFEs are the primary constituent of tremor and that they locate on the deep continuation of the plate boundary. This suggests that tremor in these regions shares a common mechanism and that temperature is not the primary control on such activity. Copyright 2009 by the American Geophysical Union.

  19. Repeating deep tremors on the plate interface beneath Kyushu, southwest Japan

    NASA Astrophysics Data System (ADS)

    Yabe, Suguru; Ide, Satoshi

    2013-01-01

    In the subduction zone south of Kyushu Island, at the western extension of the Nankai subduction zone, southwest Japan, the age of the oceanic crust increases toward the south across the subducting Kyushu-Palau ridge. While tremor activity is very high in Nankai, tectonic tremors have only recently been discovered in Kyushu. In this study, we examined tremors beneath Kyushu using an improved version of the envelope correlation method. In doing so, we distinguished tremors from normal earthquakes and background noise using the criteria of source duration and the spectrum ratio between low and high frequencies. Accurate measurement of S- P times, using cross-correlation between vertical and horizontal seismograms, constrains the tremor depth precisely. Tremor activity is low and within a small region in southern Kyushu, where thick crust of the Kyushu-Palau ridge is being subducted, at depths between 35 and 45 km (i.e., shallower than intra-slab earthquakes by about 20 km), which is consistent with the location of the plate interface within uncertainties proposed in previous studies. Establishing precise depth estimates for tectonic tremors beneath Kyushu, which results from shear slip along the plate interface, is useful in defining the plate interface within the Nankai subduction zone.

  20. A new GPS velocity field for the Pacific Plate - Part 2: implications for fault slip rates in western California

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Márquez-Azúa, Bertha; Cabral-Cano, Enrique

    2014-12-01

    Lower and upper bounds for present deformation rates across faults in central California between the San Andreas Fault and Pacific coast are estimated from a new Global Positioning System (GPS) velocity field for central, western California in light of geodetic evidence presented in a companion paper for slow, but significant deformation within the Pacific Plate between young seafloor in the eastern Pacific and older seafloor elsewhere on the plate. Transects of the GPS velocity field across the San Andreas Fault between Parkfield and San Juan Buatista, where fault slip is dominated by creep and the velocity field thus reveals the off-fault deformation, show that GPS sites in westernmost California move approximately parallel to the fault at an average rate of 3.4 ± 0.4 mm yr-1 relative to the older interior of the Pacific Plate, but only 1.8 ± 0.6 mm yr-1 if the Pacific Plate frame of reference is corrected for deformation within the plate. Modelled interseismic elastic deformation from the weakly coupled creeping segment of the San Andreas Fault is an order-of-magnitude too small to explain the southeastward motions of coastal sites in western California. Similarly, models that maximize residual viscoelastic deformation from the 1857 Fort Tejon and 1906 San Francisco earthquakes mismatch both the rates and directions of GPS site motions in central California relative to the Pacific Plate. Neither thus explains the site motions southwest of the San Andreas fault, indicating that the site motions measure deformation across faults and folds outboard of the San Andreas Fault. The non-zero site velocities thus constitute strong evidence for active folding and faulting outboard from the creeping segment of the San Andreas Fault and suggest limits of 0-2 mm yr-1 for the Rinconada Fault slip rate and 1.8 ± 0.6 to 3.4 ± 0.4 mm yr-1 for the slip rates integrated across near-coastal faults such as the Hosgri, San Gregorio and San Simeon faults.

  1. Life and Death of the Resurrection Plate: Evidence for an Additional Plate in the NE Pacific in Paleocene-Eocene Time

    NASA Astrophysics Data System (ADS)

    Haeussler, P. J.; Bradley, D. C.; Wells, R.; Rowley, D. B.; Miller, M.; Otteman, A.; Labay, K.

    2001-12-01

    We propose an additional plate in the northeastern Pacific Ocean in Paleocene-Eocene time. The Resurrection Plate, named after exposures of the Resurrection Peninsula ophiolite near Seward Alaska, was located northeast of the Kula Plate and north of the Farallon plate. We interpret concurrent near-trench magmatism in southern Alaska and the northwestern US as evidence for two slab windows associated with trench-ridge-trench (TRT) triple junctions that formed the boundaries of the Resurrection Plate. A compilation of geochronology from 100 Ma to the present from Alaska to Oregon displayed in movie form shows the following features. The Sanak-Baranof belt of near trench-intrusions in southern Alaska records a west to east migration of the northern TRT triple junction along a 2100-km-long section of coastline between 61-50 Ma. In Oregon, Washington, and southern Vancouver Island, voluminous basaltic volcanism of the Siletz River Volcanics, Crescent, and Metchosin Formations occurred between ~66-48 Ma. Lack of an age progression indicates this southern triple junction did not migrate significantly. Synchronous near-trench magmatism in southeastern Alaska, on southern Vancouver Island and beneath Puget Sound at ~50 Ma indicates a spreading center was subparallel to the margin of southeastern Alaska and British Columbia and was subducted all at once. We interpret 50 Ma as the approximate time of death of the Resurrection plate. The existence and demise of the Resurrection plate explains: 1) rapid northward terrane transport between 70 and 50 Ma; 2) uplift and magmatism in the Coast Mountains prior to 50 Ma; 3) cessation of magmatism in the Coast Mountains of BC and SE Alaska around 50 Ma; and 4) a major change in Pacific-North America plate motion and birth of the Queen Charlotte transform margin around 50 Ma. Death of the Resurrection plate was a contributing factor in the extensional collapse of the southern Canadian Cordilleran foreland fold and thrust belt after 50

  2. A new fluid-solid interface algorithm for simulating fluid structure problems in FGM plates

    NASA Astrophysics Data System (ADS)

    Eghtesad, A.; Shafiei, A. R.; Mahzoon, M.

    2012-04-01

    The capability to track material interfaces, especially in fluid structure problems, is among the advantages of meshless methods. In the present paper, the Smoothed Particle Hydrodynamics (SPH) method is used to investigate elastic-plastic deformation of AL and ceramic-metal FGM (Functionally Graded Materials) plates under the impact of water in a fluid-solid interface. Instead of using an accidental repulsive force which is not stable at higher pressures, a new scheme is proposed to improve the interface contact behavior between fluid and solid structure. This treatment not only prevents the interpenetration of fluid and solid particles significantly, but also maintains the gap distance between fluid and solid boundary particles in a reasonable range. A new scheme called corrected smooth particle method (CSPM) is applied to both fluid and solid particles to improve the free surface behavior. In order to have a more realistic free surface behavior in fluid, a technique is used to detect the free surface boundary particles during the solution process. The results indicate that using the proposed interface algorithm together with CSPM correction, one can predict the dynamic behavior of FGM plates under the impact of fluid very promisingly.

  3. Investigation on the Interface Morphologies of Explosive Welding of Inconel 625 to Steel A516 Plates

    SciTech Connect

    Mousavi, S. A. A. Akbari; Zareie, H. R.

    2011-01-17

    The purpose of this study is to produce composite plates by explosive cladding process. This is a process in which the controlled energy of explosives is used to create a metallic bond between two similar or dissimilar materials. The welding conditions were tailored through parallel geometry route with different operational parameters. In this investigation, a two-pronged study was adopted to establish the conditions required for producing successful solid state welding: (a) Analytical calculations to determine the weldability domain or welding window; (b) Metallurgical investigations of explosive welding experiments carried out under different explosive ratios to produce both wavy and straight interfaces. The analytical calculations confirm the experimental results. Optical microscopy studies show that a transition from a smooth to wavy interface occurs with an increase in explosive ratio. SEM studies show that the interface was outlined by characteristic sharp transition between two materials.

  4. On gravity from SST, geoid from SEASAT, and plate age and fracture zones in the Pacific

    NASA Technical Reports Server (NTRS)

    Marsh, B. D.; Marsh, J. G.; Williamson, R. G.

    1983-01-01

    Data from an additional 50 satellite-to-satellite tracking (SST) passes were combined with earlier measurements of the high degree and order (n, m, 12) gravity in the central Pacific. A composite map was produced which shows good agreement with conventional GEM models. Data from the SEASAT altimeter was reduced and found to agree well with both the SST and the GEM fields. The maps are dominated especially in the east, by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. Further comparison with regional bathymetric data shows a remarkably close correlation with plate age. Each anomaly band is framed by those major fracture zones having large offsets. The regular spacing of these fractures seems to account for the fabric in the gravity fields. Other anomalies are accounted for by hot spots. The source of part of these anomalies is in the lithosphere itself. The possible plume size and ascent velocity necessary to supply deep mantle material to the upper mantel without complete thermal equilibration is considered.

  5. Three-dimensional secondary surface geomorphology of submarine landslides on northwest Pacific plate guyots

    NASA Astrophysics Data System (ADS)

    Smoot, N. Christian; King, Robert E.

    1993-01-01

    Slump and debris slides form on seamounts as they grow, age, and are transported across the sea floor. Slump scars, evident as amphitheater headwalls, are a good morphological indicator where a landslide has occurred. Radical changes in the lower flank slope angles are also good indicators. Debris flows can be surmised by hummocky topography, with the larger blocks being nearer the main edifice. A cursory inspection of the Pacific plate from younger to older shows: (1) the Hawaiian-Emperor Ridge from Loihi to Suiko at 65 Ma, where the lower flank slopes increase with age, (2) Mammerickx seamount in the Mapmakers on 140 Ma crust, out of the fractured region, still showing moats and having no sign of landslides, (3) Castor and Pollux guyots of the Michelson Ridge on 150 Ma crust, where the debris field size is added to or overprinted by later volcanics, to (4) Hunk, Jennings, and Jaybee guyots in the Marcus-Wake seamounts on 160 Ma crust, where later fracture zone formation may have helped form landslides. None of the older seamounts have been dated. Three-dimensional views aid in the location and description of landslides.

  6. Microstructure and Phase Constitution Near the Interface of Explosively Welded Aluminum/Copper Plates

    NASA Astrophysics Data System (ADS)

    Paul, Henryk; Lityńska-Dobrzyńska, Lidia; Prażmowski, Mariusz

    2013-08-01

    The microstructure changes and the phase constitution within the layers close to the bonding interface strongly influence the properties of bimetallic strips. In this work, the layers near the interface of explosively welded aluminum and copper plates were investigated by means of microscopic observations, mostly with the use of transmission electron microscopy (TEM) equipped with energy dispersive spectrometry (EDX). The study was focused on the identification of the intermetallic phases, the possible interdiffusion between the copper and the aluminum, and the changes in the dislocation structure of the parent plates. In macro-/mesoscale, the interfaces were outlined by a characteristic sharp transition indicating that there was no mechanical mixing between the welded metals in the solid state. In micro-/nanoscale, the layers adhering to the interface show typical deformed microstructure features, i.e., structure refinement, elongated dislocation cells, slip bands, and microtwins (in copper plate). The internal microstructure of the intermetallic inclusion is composed mostly of dendrites. The electron diffractions and TEM/EDX chemical composition measurements revealed three crystalline equilibrium phases of the γ-Al4Cu9, η-AlCu, and Θ-Al2Cu type (the last one was dominant). However, most of the observed phases of the general Cu m Al n type (also crystalline) do not appear in the equilibrium Al-Cu phase diagram. Inside the intermetallic inclusions, no significant regularity in the phase distribution with respect to the parent sheets was observed. Therefore, it was concluded that the processes occurring in the melt determined their local chemical composition.

  7. A revised estimate of Pacific-North America motion and implications for Western North America plate boundary zone tectonics

    NASA Technical Reports Server (NTRS)

    Demets, Charles; Gordon, Richard G.; Stein, Seth; Argus, Donald F.

    1987-01-01

    Marine magnetic profiles from the Gulf of Californa are studied in order to revise the estimate of Pacific-North America motion. It is found that since 3 Ma spreading has averaged 48 mm/yr, consistent with a new global plate motion model derived without any data. The present data suggest that strike-slip motion on faults west of the San Andreas is less than previously thought, reducing the San Andreas discrepancy with geodetic, seismological, and other geologic observations.

  8. Distribution of the Pacific/North America motion in the Queen Charlotte Islands-S. Alaska plate boundary zone

    NASA Astrophysics Data System (ADS)

    Mazzotti, Stéphane; Hyndman, Roy D.; Flück, Paul; Smith, Alex J.; Schmidt, Michael

    2003-07-01

    We present GPS data that constrain the distribution of the relative Pacific/North America motion across the Queen Charlotte Islands-Alaska Panhandle margin (NW North America). Velocities from a network of 22 campaign and permanent sites indicate that the Pacific/North America transpressive motion is mostly accommodated along the locked Queen Charlotte-Fairweather Fault. A significant portion (6-7 mm/yr) of the relative plate motion is taken up by distributed dextral shear across a ~200 km wide region of the margin. Two models have been proposed to describe how the Pacific/North America convergence is accommodated off the Queen Charlotte Islands: Internal shortening vs. underthrusting of the Pacific plate. Although the GPS data cannot discriminate between the models, they provide strong constraints on the convergence distribution. The significant non-transient motion of GPS sites along the central British Columbia-southern Alaska margin has implications for seismic hazard and tectonic evolution models of the Canadian Cordillera.

  9. North America-Pacific plate boundary, an elastic-plastic megashear - Evidence from very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Ward, Steven N.

    1988-01-01

    Data obtained by Mark III VLBI measurements of radio signals from permanent and mobile VLBI sites for 5.5 years of observations, starting in October 1982, were used to derive a picture of the earth crust deformation near the North America-Pacific plate boundary. The data, which included the vector positions of the VLBI sites and their rate of change, were used for comparison with a number of lithospheric deformation models based upon the concept that the motions of points near the North America-Pacific plate boundary are a linear combination of North America and Pacific velocities. The best of these models were found to fit 95 percent of the variance in 139 VLBI length and transverse velocity observations. Instantaneous shear deformation associated with plate tectonics is apparently developing in a zone 450 km wide paralleling the San Andreas Fault; some of this deformation will be recovered through elastic rebound, while the rest will be permanently set through plastic processes. Because the VLBI data have not been collected for a significant fraction of the earthquake cycle, they cannot discriminate between elastic and plastic behaviors.

  10. Using aftershocks to Image the Subducting Pacific Plate in a Region of Deep Slow Slip, Hikurangi Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Jacobs, K. M.; Hirschberg, H.; Louie, J. N.; Savage, M. K.; Bannister, S. C.

    2014-12-01

    interface. These results are helping to build 3-D information about the plate interface. We hope that this will help us to understand future hazards posed by subduction thrust earthquakes in this region, and the feeding system for deep slow-slip earthquakes.

  11. Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab

    PubMed

    Bunge; Grand

    2000-05-18

    The high-resolution seismic imaging of subducted oceanic slabs has become a powerful tool for reconstructing palaeogeography. The images can now be interpreted quantitatively by comparison with models of the general circulation of the Earth's mantle. Here we use a three-dimensional spherical computer model of mantle convection to show that seismic images of the subducted Farallon plate provide strong evidence for a Mesozoic period of low-angle subduction under North America. Such a period of low-angle subduction has been invoked independently to explain Rocky Mountain uplift far inland from the plate boundary during the Laramide orogeny. The computer simulations also allow us to locate the largely unknown Kula-Farallon spreading plate boundary, the location of which is important for inferring the trajectories of 'suspect' terrain across the Pacific basin.

  12. Simulation of tectonic evolution of the Kanto basin of Japan since 1 Ma due to subduction of the Pacific and Philippine sea plates and collision of the Izu-Bonin arc

    NASA Astrophysics Data System (ADS)

    Hashima, Akinori; Sato, Toshinori; Sato, Hiroshi; Asao, Kazumi; Furuya, Hiroshi; Yamamoto, Shuji; Kameo, Koji; Miyauchi, Takahiro; Ito, Tanio; Tsumura, Noriko; Kaneda, Heitaro

    2015-04-01

    The Kanto basin, the largest lowland in Japan, developed by flexure as a result of (1) the subduction of the Philippine Sea (PHS) and the Pacific (PAC) plates and (2) the collision of the Izu-Bonin arc with the Japanese island arc. Geomorphological, geological, and thermochronological data on long-term vertical movements over the last 1 My suggest that subsidence initially affected the entire Kanto basin after which the area of subsidence gradually narrowed until, finally, the basin began to experience uplift. In this study, we modelled the tectonic evolution of the Kanto basin following the method of Matsu'ura and Sato (1989) for a kinematic subduction model with dislocations, in order to quantitatively assess the effects of PHS and PAC subduction. We include the steady slip-rate deficit (permanent locking rate at the plate interface) in our model to account for collision process. We explore how the arc-arc collision process has been affected by a westerly shift in the PHS plate motion vector with respect to the Eurasian plate, thought to have occurred between 1.0-0.5 Ma, using long-term vertical deformation data to constrain extent of the locked zone on the plate interface. We evaluated the change in vertical deformation rate for two scenarios: (1) a synchronous shift in the orientation of the locked zone as PHS plate motion shifts and (2) a delayed shift in the orientation of the locked zone following a change in plate motion. Observed changes in the subsidence/uplift pattern are better explained by scenario (2), suggesting that recent (<1 My) deformation in the Kanto basin shows a lag in crustal response to the shift in plate motion. We also calculated recent stress accumulation rates and found a good match with observed earthquake mechanisms, which shows that intraplate earthquakes serve to release stress accumulated through long-term plate interactions.

  13. Simulation of tectonic evolution of the Kanto Basin of Japan since 1 Ma due to subduction of the Pacific and Philippine Sea plates and the collision of the Izu-Bonin arc

    NASA Astrophysics Data System (ADS)

    Hashima, Akinori; Sato, Toshinori; Sato, Hiroshi; Asao, Kazumi; Furuya, Hiroshi; Yamamoto, Shuji; Kameo, Koji; Miyauchi, Takahiro; Ito, Tanio; Tsumura, Noriko; Kaneda, Heitaro

    2016-06-01

    The Kanto Basin, the largest lowland in Japan, developed by flexure as a result of (1) the subduction of the Philippine Sea (PHS) and the Pacific (PAC) plates and (2) the repeated collision of the Izu-Bonin arc fragments with the Japanese island arc. Geomorphological, geological, and thermochronological data on vertical movements over the last 1 My suggest that subsidence initially affected the entire basin after which the area of subsidence gradually narrowed until, finally, the basin began to experience uplift. In this study, we modeled the tectonic evolution of the Kanto Basin following the method of Matsu'ura and Sato (1989) for a kinematic subduction model with dislocations, in order to quantitatively assess the effects of PHS and PAC subduction. We include the steady slip-rate deficit (permanent locking rate at the plate interface) in our model to account for collision process. We explore how the latest collision of the Izu Peninsula block has been affected by a westerly shift in the PHS plate motion vector with respect to the Eurasian plate, thought to have occurred between 1.0-0.5 Ma, using long-term vertical deformation data to constrain extent of the locked zone on the plate interface. We evaluated the change in vertical deformation rate for two scenarios: (1) a synchronous shift in the orientation of the locked zone as PHS plate motion shifts and (2) a delayed shift in the orientation of the locked zone following the shift in plate motion. Observed changes in the uplift/subsidence pattern are better explained by scenario (2), suggesting that recent (< 1 My) deformation in the Kanto Basin shows a lag in crustal response to the plate motion shift. We also calculated stress accumulation rates and found a good match with observed earthquake mechanisms, which shows that intraplate earthquakes serve to release stress accumulated through long-term plate interactions.

  14. Numerical Modelling of Subduction Plate Interface, Technical Advances for Outstanding Questions

    NASA Astrophysics Data System (ADS)

    Le Pourhiet, L.; Ruh, J.; Pranger, C. C.; Zheng, L.; van Dinther, Y.; May, D.; Gerya, T.; Burov, E. B.

    2015-12-01

    The subduction zone interface is the place of the largest earthquakes on earth. Compared to the size of a subduction zone itself, it constitutes a very thin zone (few kilometers) with effective rheological behaviour that varies as a function of pressure, temperature, loading, nature of the material locally embedded within the interface as well as the amount of water, melts and CO2. Capturing the behaviour of this interface and its evolution in time is crucial, yet modelling it is not an easy task. In the last decade, thermo-mechanical models of subduction zone have flourished in the literature. They mostly focused on the long-term dynamics of the subduction; e.g. flat subduction, slab detachment or exhumation. The models were validated models against PTt path of exhumed material as well as topography. The models that could reproduce the data all included a mechanically weak subduction channel made of extremely weak and non cohesive material. While this subduction channel model is very convenient at large scale and might apply to some real subduction zones, it does not capture the many geological field evidences that point out the exhumation of very large slice of almost pristine oceanic crust along localised shear zone. Moreover, modelling of sismological and geodetic data using short term tectonic modelling approach also point out that large localised patches rupture within the subduction interface, which is in accordance with geological data but not with large-scale long-term tectonic models. I will present how high resolution models permit to produce slicing at the subduction interface and give clues on how the plate coupling and effective location of the plate interface vary over a few millions of year time scale. I will then discuss the implication of these new high-resolution long-term models of subduction zone on earthquake generation, report progress in the development of self-consistent thermomechanical codes which can handle large strain, high resolution

  15. The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion

    NASA Astrophysics Data System (ADS)

    Koppers, Anthony A. P.; Staudigel, Hubert; Wijbrans, Jan R.; Pringle, Malcolm S.

    1998-11-01

    The Magellan Seamount Trail (MST) delineates a northwest trending chain of four Cretaceous guyots in the West Pacific Seamount Province (WPSP). Seamount morphology, 40Ar/ 39Ar geochronology and Sr-Nd-Pb geochemistry of the MST provides evidence for a hotspot origin between the Samoa, Rarotonga and Society hotspots of the South Pacific Isotopic and Thermal Anomaly (SOPITA). The MST yields an excellent linear age progression of 47.6±1.6 mm/yr ( r2=1.000; MSWD = 0.23; 1 σ SE) including Vlinder guyot (95.1±0.5 Ma, n=5; 2 σ SD), Pako guyot (91.3±0.3 Ma, n=3) and Ioah guyot (87.1±0.3 Ma, n=2). The MST also exhibits a small range in Sr-Nd-Pb isotopic compositions indicating enriched mantle sources with an affinity of EMI. Nevertheless, three volcanic events are found out of sequence with linear MST hotspot volcanism: (1) an independent volcanic pedestal was formed 4-7 Myr before shield-volcanism started at Vlinder guyot, (2) a post-erosional volcanic cone was formed at least 20-30 Myr after drowning of Vlinder guyot, and (3) Ita Mai Tai guyot (118.1±0.5 Ma, n=3) was formed 34-36 Myr before the MST hotspot arrived at the predicted location of this guyot. By identifying and ruling out discordant volcanic events, we can use the age progression in MST to test the fixity of its hotspot. When presuming the fixed hotspot hypothesis, the local age progressions of the MST (47.6±1.6 mm/yr) and the copolar Musicians seamount trail (55.8±6.4 mm/yr) are not compatible with their 100-80 Ma Euler pole. We investigate two options: (1) acceptance of a `forced' Euler pole obeying the hotspot hypothesis by using both the age progressions and the azimuths of the studied seamount trails, or (2) acceptance of a `best-fit' Euler pole by using the azimuths of the studied seamount trail exclusively. In the first option, the angular speed of the Pacific plate during the 100-80 Ma stage pole is calculated at 0.502±0.017°/Myr. In the second option, the `best-fit' Euler pole is found

  16. Accretion/underplating, detachment and exhumation: short/long-term rheology of the subduction plate interface

    NASA Astrophysics Data System (ADS)

    Agard, Philippe; Angiboust, Samuel; Plunder, Alexis; Guillot, Stéphane; Yamato, Philippe; Oncken, Onno; Ruh, Jonas; Burov, Evgueni; Bonnet, Guillaume

    2016-04-01

    The presence of km-scale accreted terranes/units in both ancient and present-day subduction zones attests to changes in strain localization along the plate interface, whereby these terranes/units get detached from the downgoing slab (or, in places, are eroded away from the tip of the upper plate) and either directly exhumed or accreted/underplated below the upper plate before final exhumation. The rock record (P-T-t data) indicates that, for a given subduction zone, exhumation is episodic: no more than a few My compared to the ~100 My lifetime of typical subduction zones. Not much is known, however, regarding this process and important open questions remain: what exactly is episodic (i.e., detachment from the slab and/or exhumation?), for how long and where? How is mechanical coupling impacted by the initial structure of the incoming plates (structural/lithological heterogeneities, thermo-fluid regime, geodynamic boundary conditions, etc...)? We herein present both new and literature structural and P-T-t data ranging from shallow (i.e., 15-20 km) to intermediate depths (~100 km) along the subduction interface, that span a range from long-term to short-lived events of underplating and/or exhumation, and confront them with the recent wealth of geophysical data gathered on subduction zones. Structural and petrological data indicate that the slicing of km-scale units mostly occurs at specific depths where major mechanical changes occur along the plate interface: at 30-40 km (downdip of the seismogenic zone) and 70-80 km (where mechanical coupling between the two plates resumes and where eclogites get critically dense). This suggests that switches in mechanical coupling (i.e., in the rheology of the material) are key in controlling the ability to detach pieces from the slab (and that later exhumation is rather controlled by large-scale, lithospheric-scale boundary conditions). The study of rock remnants detached from the slab and underplated during subduction infancy (i

  17. Long-term coupling along the subduction plate interface: insights from exhumed rocks and models

    NASA Astrophysics Data System (ADS)

    Agard, P.; Angiboust, S.; Guillot, S.; Garcia-Casco, A.

    2012-04-01

    Fragments of subducted oceanic lithosphere returned along the plate interface convey crucial information regarding the thermal and rheological conditions of convergent plate boundaries. Combining evidence from exhumed rocks worldwide and the results of recently published thermo-mechanical models, we herein investigate how long-term mechanical coupling takes place along deep portions of the plate interface (40-80 km depth), for which there is no counterflow (unlike in accretionary prisms) and no other known mechanisms to return eclogites than interplate friction or buoyancy. Geological evidence indicates that, unlike subduction, exhumation is highly discontinuous. Besides, eclogites worldwide are found in essentially two types of tectonic setting, either as large scale (>km) slices with coherent PT estimates (W. Alps) or as isolated fragments (frequently m-hm) in a serpentinite- or sedimentary-rich matrix showing contrasting equilibration depths (with hints of punctuated exhumation and even reburial in some localities; Franciscan, Cuba, Sistan). This latter type tends to show warmer equilibration paths (although minor lawsonite-eclogite blocks can be found), whereas the larger tectonic slices from the former type remain systematically cold. Serpentinites are crucial for both in permitting decoupling and acting as a buoy, and fluid budget is important too in enhancing floatability and allowing large slices to survive. Numerical models implementing free migration of fluids in the subduction zone also show that the plate interface is strongly localized in the absence of fluids: mechanical decoupling efficiently occurs along the sediment veneer and/or at the top of the highly hydrothermalized crust. Whenever fluids are released in greater amounts (depending on initial fluid content and/or thermal structure), deformation becomes much more distributed and affects both the mantle wedge and the top of the downgoing lithosphere (hydrated crust and mantle top), thereby

  18. Anatomy of the western Java plate interface from depth-migrated seismic images

    USGS Publications Warehouse

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2009-01-01

    Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the d??collement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous d??collement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous d??collement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the d??collement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity. ?? 2009 Elsevier B.V.

  19. Continent-continent collision at the Pacific/Australian plate boundary: Lithospheric deformation, mountain building, and subsequent scientific endeavors

    NASA Astrophysics Data System (ADS)

    Okaya, D. A.; Stern, T. A.; Davey, F. J.

    2012-12-01

    Continental collision occurs at strike-slip plate boundaries where transform motion and oblique convergence create processes of surficial mountain building and deformation within the deeper crust and lithospheric mantle. The Pacific/Australian transform plate boundary in South Island, New Zealand, is characterized by active oblique continent-continent collision with an associated Southern Alps orogen that exhibits both high exhumation rates and rapid strike-slip movement. Beginning in the 1990s, this system was the focus of a decade-long collaborative USA-New Zealand multi-disciplinary study to understand lithospheric structure and processes involved in this transpression. Funded primarily by the NSF Continental Dynamics program and the New Zealand Science Foundation, this project known as SIGHT (South Island Geophysical Transect) with its companion SAPSE (Southern Alps Passive Seismic Experiment) included the following disciplines that involved substantial field observation experiments: seismic reflection, explosion refraction, onshore-offshore wide-angle reflection/refraction, regional and teleseismic passive seismology, magnetotellurics, laboratory petrophysics, gravity, regional geological investigations, and rheological analyses. More than fifty scientists and students from both nations participated in the combined set of studies that have led to over forty-five journal publications, an AGU Monograph, and a dozen graduate theses. Primary results of the project indicate the Pacific-Australian strike-slip plate boundary (Alpine fault) is not vertical but is eastward dipping and rheologically weak based on diverse geophysical data. Most deformation is within the Pacific plate that hosts the Southern Alps orogen. High mantle seismic velocities vertically disposed beneath the orogen suggest Pacific and perhaps Australian mantle lithosphere contribute to a zone of plate-boundary-parallel distributed mantle shortening. The crustal root of the overlying Southern Alps

  20. Lamb wave dispersion in a PZT/metal/PZT sandwich plate with imperfect interface

    NASA Astrophysics Data System (ADS)

    Kurt, Ilkay; Akbarov, Surkay D.; Sezer, Semih

    2016-07-01

    The Lamb wave dispersion in a PZT/Metal/PZT sandwich plate is investigated by employing the exact linear equations of electro-elastic waves in piezoelectric materials within the scope of the plane-strain state. It is assumed that at the interfaces between the piezoelectric face layers and metal core layer, shear-spring and normal-spring type imperfect conditions are satisfied. The degree of this imperfectness is estimated through the corresponding shear-spring and normal-spring type parameters which appear in the contact condition characterizing the transverse and normal displacements' discontinuity. The corresponding dispersion equation is derived, and as a result of the numerical solution to this equation, the dispersion curves are constructed for the first and second lowest modes in the cases where the material of the face layers is PZT and the material of the middle layer is Steel (St). Consequently, for the PZT/St/PZT sandwich plate, the study of the influence of the problem parameters such as the piezoelectric and dielectric constants, layer thickness ratios, non-dimensional shear-spring, and normal-spring type parameters, is carried out. In particular, it is established that the imperfectness of the contact between the layers of the plate causes a decrease in the values of the wave propagation velocity.

  1. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations

    NASA Astrophysics Data System (ADS)

    Hall, Robert

    2002-04-01

    A plate tectonic model for the Cenozoic development of the region of SE Asia and the SW Pacific is presented and its implications are discussed. The model is accompanied by computer animations in a variety of formats, which can be viewed on most desktop computers. GPS measurements and present seismicity illustrate the high rates of motions and tectonic complexity of the region, but provide little help in long-term reconstruction. Plate boundaries shifted rapidly in the Cenozoic. During convergence of the major plates, there were numerous important episodes of extension, forming ocean basins and causing subsidence within continental regions, probably driven by subduction. Within eastern Indonesia, New Guinea and the Melanesian arcs, there are multiple Cenozoic sutures, with very short histories compared to most well-known older orogenic belts. They preserve a record of major changes in tectonics, including subduction polarity reversals, elimination of volcanic arcs, changing plate boundaries and extension within an overall contractional setting. Rapid tectonic changes have occurred within periods of less than 5 Ma. Many events would be overlooked or ignored in older orogenic belts, even when evidence is preserved, because high resolution dating is required to identify them, and the inference of almost simultaneous contraction and extension seems contradictory. There were three important periods in regional development: at about 45, 25 and 5 Ma. At these times, plate boundaries and motions changed, probably because of major collision events. The 45 Ma plate reorganisation may be related to India-Asia collision, although some important intra-Pacific events, such as voluminous Eocene boninite magmatism, seem to be older and require other causes. Indentation of Asia by India modified the Asian continent, but there is little indication that India has been the driving force of tectonics in most of SE Asia. The most important Cenozoic plate boundary reorganisation was at

  2. Finite Element Modeling of Laminated Composite Plates with Locally Delaminated Interface Subjected to Impact Loading

    PubMed Central

    Abo Sabah, Saddam Hussein; Kueh, Ahmad Beng Hong

    2014-01-01

    This paper investigates the effects of localized interface progressive delamination on the behavior of two-layer laminated composite plates when subjected to low velocity impact loading for various fiber orientations. By means of finite element approach, the laminae stiffnesses are constructed independently from their interface, where a well-defined virtually zero-thickness interface element is discreetly adopted for delamination simulation. The present model has the advantage of simulating a localized interfacial condition at arbitrary locations, for various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. In comparison, the model shows good agreement with existing results from the literature when modeled in a perfectly bonded state. It is found that as the local delamination area increases, so does the magnitude of the maximum displacement history. Also, as top and bottom fiber orientations deviation increases, both central deflection and energy absorption increase although the relative maximum displacement correspondingly decreases when in contrast to the laminates perfectly bonded state. PMID:24696668

  3. Surface constraints on the temporal and spatial evolution of the Farallon-Pacific-North America plate boundary

    NASA Astrophysics Data System (ADS)

    McQuarrie, N.; Oskin, M.

    2009-05-01

    Extension and volcanism are two surface derived data sets used to infer mantle processes back in time. We integrate two new large GIS-based datasets to create palinspastic restorations of extension and volcanism allowing us to readdress the relationship between plate-boundary deformation, intra-plate extension and magmatism in western North America. Using ArcGIS and custom software, we retrodeformed the NAVDat (North American Volcanic Database, navdat.geongrid.org) using the western North America reconstruction of McQuarrie and Wernicke (2005). We compare this data to strain rates calculated over a 50 km-grid forward- deformed from 36 Ma to present. With the deformed grid and palinspastically restored volcanic dataset we quantitatively compare rates of magmatism and deformation and evaluate the age, location, and migration of Cenozoic volcanic arcs. A first order conclusion from this study is that magmatism, throughout the Basin and Range, is primarily driven by plate boundary effects. The plate boundary effects include subduction and rollback of the Farallon plate, creation and expansion of slab windows as the Pacific plate intercepts the North American plate and re-establishment of the ancestral Cascade arc along the eastern margin of the Sierra Nevada at ˜ 15 Ma. Notable exceptions include the Yellowstone hotspot system along the northern boarder of our study area and late-stage (<8 Ma) passive, extension related asthenospheric upwelling that accompanied a thinning lithosphere along the eastern and western margins of the Basin and Range. The palinspastic reconstructions presented here highlight that the classic, high-angle, Basin and Range faulting that comprises most of the physiographic Basin and Range province commenced during a remarkably amagmatic period. These observations largely contradicts the active rifting model where magmatism triggers Basin and Range extension

  4. Electromagnetic imaging the of the Pacific-North American plate boundary in central California, USA

    NASA Astrophysics Data System (ADS)

    Wheelock, B. D.; Constable, S.; Key, K. W.

    2010-12-01

    The continental margin of central California lies adjacent to a segment of the San Andreas fault (SAF) that exhibits a transition between locked behavior south of the town of Cholame, and freely slipping (creeping) behavior north of the town of Parkfield. Recent reports of non-volcanic tremor (NVT) near the town of Cholame represent the first observation of NVT in a strike-slip environment. Dense clusters of tremor episodes located at the northern limit of the locked section of the SAF were found to originate within the ductile lower crust at depths between 15 and 30~km, and have been interpreted as evidence of high pore fluid pressure. An excess of fluids in this region is likely given its history of subduction, which transports large quantities of water into the forearc crust and mantle. We present a study that uses deep electromagnetic imaging methods to estimate the abundance and distribution of pore fluids at depths associated with non-volcanic tremor. This study extends a previously collected terrestrial profile of magnetotelluric (MT) data (Becken et al. 2008, Geophysical Journal International) into the offshore environment. We deployed 21 seafloor instruments that collected controlled-source electromagnetic (CSEM) and MT data in a line extending from the coast near Morro Bay, across the continental shelf, and out onto the Pacific plate. The marine MT data results in apparent resistivity and phase estimates at periods between 1~s and 20,000~s, sufficient for probing the upper 100~km of regional conductivity. A significant coast effect, marked by asymptotic behavior in the TE mode of the MT responses, is observed at the deep water sites. This necessitates accurate bathymetry modeling when inverting. The CSEM transmitter was towed by all receivers broadcasting a compact broadband binary waveform with a 0.25~Hz fundamental frequency. The controlled-source signal is observed above the noisefloor at source-receiver offsets up to 6~km, which provides constraints

  5. Effects of the Yakutat terrane collision with North America on the neighboring Pacific plate

    NASA Astrophysics Data System (ADS)

    Reece, R.; Gulick, S. P.; Christeson, G. L.; Barth, G. A.; van Avendonk, H.

    2011-12-01

    High-resolution bathymetry data show a 30 km N-S trending ridge within the deep-sea Surveyor Fan between the mouths of the Yakutat Sea Valley and Bering Trough in the Gulf of Alaska. The ridge originates in the north, perpendicular to and at the base of the continental slope, coincident with the Transition Fault, the strike-slip boundary between the Yakutat terrane (YAK) and the Pacific plate (PAC). The ridge exhibits greatest relief adjacent to the Transition Fault, and becomes less distinct farther from the shelf edge. Seismic reflection data reveal a sharp basement high beneath the ridge (1.1 sec of relief above "normal" basement in two-way travel time) as well as multiple similarly oriented strike-slip fault segments. The ridge, basement high, and faults are aligned and co-located with an intraplate earthquake swarm on the PAC, which includes four events > 6.5 Mw that occurred from 1987-1992. The swarm is defined by right-lateral strike-slip events, and is collectively called the Gulf of Alaska Shear Zone (GASZ). Based on the extent of historic seismicity, the GASZ extends at least 230 km into the PAC, seemingly ending at the Kodiak-Bowie Seamount Chain. Farther southwest, between the Kodiak-Bowie and Patton-Murray Seamount Chains, there is a large regional bathymetric low with an axis centered along the Aja Fracture Zone, perpendicular to the GASZ and Aleutian Trench. Basement and overlying sediment in the low are irregularly, but pervasively faulted. The GASZ and faulted bathymetric low could represent PAC deformation due to PAC-YAK coupling whereby YAK resistance to subduction is expressed as deformation in the thinner (weaker) PAC crust. The YAK is an allochthonous, basaltic terrane coupled to the PAC that began subducting at a low angle beneath North America (NA) ~25-40 Ma. Due to its 15-25 km thickness, the YAK is resistant to subduction compared to the normal oceanic crust of the PAC. As a result the plates developed differential motion along the

  6. Pre-Cretaceous Tectonic Evolution of the Pacific Plate and Extension of the Geomagnetic Polarity Reversal Time Scale with Implications for the Origin of the Jurassic ’Quiet Zone’

    DTIC Science & Technology

    1987-03-01

    decreasing geomagnetic field strength with increasing age during this period. The early history of the northern Pacific plate and Pacific- Farallon -lzanagi...scale. A number of the Pacific, Farallon and Izanagi plates (Hilde et workers measured magnetic lineations in the west- al., 1976; Woods and Davies, 1982...formed at a RRR triple junction between the over, many models of the geometry of the polarity Phoenix, Farallon and Izanagi plates at 180 Ma blocks within

  7. Tremor Hypocenters Form a Narrow Zone at the Plate Interface in Two Areas of SW Japan

    NASA Astrophysics Data System (ADS)

    Armbruster, J. G.

    2015-12-01

    The tremor detectors developed for accurately locating tectonic tremor in Cascadia [Armbruster et al., JGR 2014] have been applied to data from the HINET seismic network in Japan. In the overview by Obara [Science 2002] there are three strong sources of tectonic tremor in southwest Japan: Shikoku, Kii Pen. and Tokai. The daily epicentral distributions of tremor on the HINET web site allow the identification of days when tremor in each source is active. The worst results were obtained in Shikoku, in spite of the high level of tremor activity observed there by others. This method requires a clear direct arrival of the S and P waves at the stations for coherence to be seen, so scattering and shear wave splitting are possible reasons for poor results there. Relatively wide station spacing, 19-30 km, is another possible reason. The best results were obtained in Tokai with stations STR, HRY and TYE spacing 18-19 km, and Kii Pen. with stations KRT, HYS and KAW spacing 15-22 km. In both of those areas the three station detectors see strong episodes of tremor. If detections with three stations are located by constraining them to the plate interface, a pattern of persistent sources is seen, with some intense sources. This is similar to what was seen in Cascadia. Detections with four stations give S and P arrival times of high accuracy. In Tokai the hypocenters form a narrow, 2-3 km thick, zone dipping to the north, consistent with the plate interface there. In Kii Pen. the hypocenters dip to the northwest in a thin, 2-3 km thick, zone but approximately 5 km shallower than a plate interface model for this area [Yoshioka and Murakami, GJI 2007]. The overlap of tremor sources in the 12 years analyzed here suggests relative hypocentral location errors as small as 2-3 km. We conclude that the methods developed in Cascadia will work in Japan but the typical spacing of HINET stations, ~20 km, is greater than the optimum distance found in analysis of data from Cascadia, 8 to 15 km.

  8. Petrological insights into intermediate-depths of a subduction plate interface

    NASA Astrophysics Data System (ADS)

    Angiboust, Samuel; Agard, Philippe

    2013-04-01

    Understanding processes acting along the subduction interface is crucial to assess lithospheric scale coupling between tectonic plates, exhumation of deep-seated rocks and mechanisms causing intermediate-depth seismicity. Yet, despite a wealth of geophysical studies aimed at better characterizing the subduction interface, we still lack critical petrological data constraining such processes as intermediate-seismicity within oceanic subduction zones. This contribution reviews recent findings from two major localities showing deeply subducted ophiolitic remnants (Zermatt-Saas, Monviso), which crop out in the classic, well-preserved fossil subduction setting of the Western Alps. We herein show that both ophiolite remnants represent large, relatively continuous fragments of oceanic lithosphere (i.e., several km-thick tectonic slices across tens of km) exhumed from ~80 km depths and thereby provide important constraints on interplate coupling mechanisms. In both fragments (but even more so in the Zermatt-Saas one) pervasive hydrothermal processes and seafloor alteration, promoting fluid incorporation in both mafic and associated ultramafic rocks, was essential, together with the presence of km-thick serpentinite soles, to decrease the density of the tectonic slices and prevent them from an irreversible sinking into the mantle. The Monviso case sudy provides further insights into the subduction plate interface at ~80 km depths. The Lago Superiore Unit, in particular, is made of a 50-500 m thick eclogitized mafic crust (associated with minor calcschist lenses) overlying a 100-400 m thick metagabbroic body and a km-thick serpentinite sole, and is cut by two 10 to 100m thick eclogite-facies shear zones, respectively located at the boundary between basalts and gabbros, and between gabbros and serpentinites (the Lower Shear Zone: LSZ). The LSZ gives precious information on both seismicity and fluid flow: (1) Eclogite breccias, reported here for the first time, mark the locus

  9. Unlocking the Secrets of Slow Slip on the Plate Interface Using Cascadia LFEs

    NASA Astrophysics Data System (ADS)

    Sweet, J. R.; Creager, K. C.; Thomas, T.; Vidale, J. E.; Houston, H.

    2012-12-01

    Low-frequency earthquakes (LFEs) have been associated with tectonic tremor and slow slip on the deep extension of subduction zones (Japan, Cascadia, Alaska, Costa Rica) and major strike-slip faults (SAF). These tiny earthquakes are thought to represent small amounts of slip on the fault interface in places with very high pore fluid pressures and low effective stresses. Tectonic tremor has been shown to often consist of a superposition of many LFEs occurring at nearly the same time. Using data from the 2-year Array of Arrays (AofA) and 6-year CAFE experiments in northern Cascadia, we employ a matched-filter autocorrelation method to find new LFE families. Similar to the method of Brown et al. (GRL, 2008), ours makes use of efficient coding to minimize the significant computational time required. To date, we have identified and located 8 LFE families, all of which are very near the plate interface. By analyzing a 6-year history of individual LFE families, we find several new patterns that vary with downdip distance on the plate interface. The two end-member LFE families (LFE1 - farthest updip, and LFE4 - farthest downdip) illustrate the greatest differences in behavior. The recurrence interval of LFE activity increases updip. LFE1 is only active during major ETS episodes every 12-15 months, while LFE4 repeats every 2 weeks. This observation mirrors that already reported for tremor swarms in Cascadia (Wech et al., 2011, Nature GeoSci.), further supporting the idea that tremor and LFEs are closely linked. In addition, we observe that the duration of the initial burst of activity is longer for updip LFE families than for downdip ones. LFE1 exhibits an initial burst of frenzied activity that lasts ~4 hours, which we interpret to be the passage of the slow-slip rupture front. In contrast, LFE4 has initial bursts that last at most 1 hour (see Creager et al., this session). The different duration of bursts, combined with the different recurrence intervals, suggests that

  10. Plate interface rheological switches during subduction infancy: Control on slab penetration and metamorphic sole formation

    NASA Astrophysics Data System (ADS)

    Agard, P.; Yamato, P.; Soret, M.; Prigent, C.; Guillot, S.; Plunder, A.; Dubacq, B.; Chauvet, A.; Monié, P.

    2016-10-01

    Subduction infancy corresponds to the first few million years following subduction initiation, when slabs start their descent into the mantle. It coincides with the transient (yet systematic) transfer of material from the top of the slab to the upper plate, as witnessed by metamorphic soles welded beneath obducted ophiolites. Combining structure-lithology-pressure-temperature-time data from metamorphic soles with flow laws derived from experimental rock mechanics, this study highlights two main successive rheological switches across the subduction interface (mantle wedge vs. basalts, then mantle wedge vs. sediments; at ∼800 °C and ∼600 °C, respectively), during which interplate mechanical coupling is maximized by the existence of transiently similar rheologies across the plate contact. We propose that these rheological switches hinder slab penetration and are responsible for slicing the top of the slab and welding crustal pieces (high- then low-temperature metamorphic soles) to the base of the mantle wedge during subduction infancy. This mechanism has implications for the rheological properties of the crust and mantle (and for transient episodes of accretion/exhumation of HP-LT rocks in mature subduction systems) and highlights the role of fluids in enabling subduction to overcome the early resistance to slab penetration.

  11. Localized double-array stacking analysis of PcP: D″ and ULVZ structure beneath the Cocos plate, Mexico, central Pacific, and north Pacific

    USGS Publications Warehouse

    Hutko, Alexander R.; Lay, Thorne; Revenaugh, Justin

    2009-01-01

    A large, high quality P-wave data set comprising short-period and broadband signals sampling four separate regions in the lowermost mantle beneath the Cocos plate, Mexico, the central Pacific, and the north Pacific is analyzed using regional one-dimensional double-array stacking and modelling with reflectivity synthetics. A data-screening criterion retains only events with stable PcP energy in the final data stacks used for modelling and interpretation. This significantly improves the signal stacks relative to including unscreened observations, allows confident alignment on the PcP arrival and allows tight bounds to be placed on P-wave velocity structure above the core–mantle boundary (CMB). The PcP reflections under the Cocos plate are well modelled without any ultra-low velocity zone from 5 to 20°N. At latitudes from 15 to 20°N, we find evidence for two P-wave velocity discontinuities in the D″ region. The first is ∼182 km above the CMB with a δln Vp of +1.5%, near the same depth as a weaker discontinuity (<+0.5%) observed from 5 to 15°N in prior work. The other reflector is ∼454 km above the CMB, with a δln Vp of +0.4%; this appears to be a shallower continuation of the joint P- and S-wave discontinuity previously detected south of 15° N, which is presumed to be the perovskite to post-perovskite phase transition. The data stacks for paths bottoming below Mexico have PcP images that are well matched with the simple IASP91 structure, contradicting previous inferences of ULVZ presence in this region. These particular data are not very sensitive to any D″ discontinuities, and simply bound them to be <∼2%, if present. Data sampling the lowermost mantle beneath the central Pacific confirm the presence of a ∼15-km thick ultra-low velocity zone (ULVZ) just above the CMB, with δln Vp and δln Vs of around −3 to −4% and −4 to −8%, respectively. The ULVZ models predict previous S-wave data stacks well. The data for this region

  12. Solvent-tolerance of fungi located on an interface between an agar plate and an organic solvent.

    PubMed

    Oda, Shinobu; Sugitani, Ayaka; Ohashi, Shinichi

    2014-01-01

    While 6 by 20 of type culture fungi could grow on an interface between organic solvent (log P, 4.12) and agar plate, 13 by 20 of strains could form a large colony after the removal of more toxic solvent, such as styrene (log P, 2.95) and tert-butyl acetate (log P, 1.76) because of viability of spores on the interface.

  13. Episodic Mesozoic thickening and reworking of the North China Archean lower crust correlated to the fast-spreading Pacific plate

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-Bo; Ling, Wen-Li; Liu, Yong-Sheng; Duan, Rui-Chun; Gao, Shan; Wu, Yuan-Bao; Yang, Hong-Mei; Qiu, Xiao-Fei; Zhang, Yong-Qing

    2014-02-01

    A central target in Earth sciences is to understand the processes controlling the stabilization and destruction of Archean continents. The North China craton (NCC) has in part lost its dense crustal root after the Mesozoic, and thus it is a key region to test models of crust-mantle differentiation and subsequent evolution of the continental crust. However, the timing and mechanisms responsible for its crustal thickening and reworking have been long debated. Here we report the Early Cretaceous Yinan (eastern NCC) adakitic granites, for which major/trace elemental models demonstrate that they are complementary to the analogy of the documented eclogitic relicts within the NCC. Based on their Late Archean inherited zircons, depleted mantle Nd model ages of ˜2.8 Ga, large negative ɛNd(t) values (-36.7 to -25.3) and strongly radiogenic initial 87Sr/86Sr ratios (0.7178-0.7264), we suggest that the Yinan adakitic granites were potentially formed by the dehydration melting of a thickened Archean mica-bearing mafic lower crust during the Early Cretaceous (ca. 124 Ma), corresponding to a major period (117-132 Ma) of the NCC Mesozoic intrusive magmatism. Combined previous results, it is shown that the thickening and reworking of the North China Archean lower crust occurred largely as two short-lived episodes at 155-180 Ma and 117-132 Ma, rather than a gradual, secular event. These correlated temporally with the superfast-spreading Pacific plate during the Mesozoic. The synchroneity of these events suggests rapid plate motion of the Pacific plate driving the episodic NCC crustal thickening and reworking, resulting in dense eclogitic residues that became gravitationally unstable. The onset of lithospheric delamination occurred when upwelling asthenosphere heated the base of lower crust to form coeval felsic magmas with or without involvement of juvenile mantle material. Collectively, the circum-Pacific massive crustal production could be attributed to the unusually rapid

  14. Plate convergence, transcurrent faults and internal deformation adjacent to Southeast Asia and the western Pacific

    NASA Technical Reports Server (NTRS)

    Fitch, T. J.

    1971-01-01

    A model for oblique convergence between plates of lithosphere is proposed in which at least a fraction of slip parallel to the plate margin results in transcurrent movements on a nearly vertical fault which is located on the continental side of a zone of plate consumption. In an extreme case of complete decoupling only the component of slip normal to the plate margin can be inferred from underthrusting. Recent movements in the western Sunda region provide the most convincing evidence for decoupling of slip, which in this region is thought to be oblique to the plate margin. A speculative model for convergence along the margins of the Philippine Sea is constructed from an inferred direction of oblique slip in the Philippine region. This model requires that the triple point formed by the junction of the Japanese and Izu-Bonin trenches and the Nankai trough migrate along the Sagami trough.

  15. The Interface of Pacific and Other Knowledges in a Supplementary Education Site

    ERIC Educational Resources Information Center

    Fairbairn-Dunlop, Peggy

    2014-01-01

    Because identity (language and culture) are central to Pacific knowledge and knowledge construction processes, Pacific students' educational experiences should be viewed through a cultural lens that sees Pacific knowledge and practices as valid and valued. This study explores the relationship between culture and educational outcomes as seen in how…

  16. Temporal variations in latest Quaternary slip across the Australian-Pacific Plate Boundary, northeastern South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Knuepfer, Peter L. K.

    1992-06-01

    Rates of latest Quaternary slip from stream terraces and moraines displaced by faults of the Alpine shear system in NE South Island, New Zealand, vary in space and time. Detailed histories of fault slip are obtained from combining displacement data with estimates of the age of the surface from weathering characteristics. Precision in surface ages is 5-20% using rock weathering rinds and 15-50% using soil properties. The oldest surfaces examined are 15-20 ka and have right-lateral fault offsets up to 400-600 m. The main faults of the in the NE South Island (the Wairau, Awatere, Clarence, Hope, Kekerengu, and Porters Pass faults) have average latest Quaternary right-lateral slip rates of 3-10, 5-10, 7-10, 25-40, 5-7, and 3-4 mm/yr respectively. Every fault has undergone a substantial decrease in lateral slip rate in the last 3-5 kyr. Summed across the plate boundary, the average latest Quaternary slip rates are comparable to long-term rates of horizontal slip across the Australian-Pacific plate boundary (around 40 mm/yr parallel to the boundary) and rates of geodetic strain and seismic moment release over the last 50-100 years (approximately the same). However, sums of lateral fault-slip rates over the interval from 15 to 5 ka exceed the plate motions, whereas late Holocene lateral fault-slip rates are less than half the long-term average. The best explanation of these variations is slip across the plate boundary is episodic, varying over perhaps 5-kyr intervals. This implies that 15-20 kyr is the time interval necessary to average out shorter, 5-kyr episodic variations in plate boundary motions.

  17. Evaluation of a new approach for modelling the screw-bone interface in a locking plate fixation: a corroboration study.

    PubMed

    Moazen, Mehran; Mak, Jonathan H; Jones, Alison C; Jin, Zhongmin; Wilcox, Ruth K; Tsiridis, Eleftherios

    2013-07-01

    Computational modelling of the screw-bone interface in fracture fixation constructs is challenging. While incorporating screw threads would be a more realistic representation of the physics, this approach can be computationally expensive. Several studies have instead suppressed the threads and modelled the screw shaft with fixed conditions assumed at the screw-bone interface. This study assessed the sensitivity of the computational results to modelling approaches at the screw-bone interface. A new approach for modelling this interface was proposed, and it was tested on two locking screw designs in a diaphyseal bridge plating configuration. Computational models of locked plating and far cortical locking constructs were generated and compared to in vitro models described in prior literature to corroborate the outcomes. The new approach led to closer agreement between the computational and the experimental stiffness data, while the fixed approach led to overestimation of the stiffness predictions. Using the new approach, the pattern of load distribution and the magnitude of the axial forces, experienced by each screw, were compared between the locked plating and far cortical locking constructs. The computational models suggested that under more severe loading conditions, far cortical locking screws might be under higher risk of screw pull-out than the locking screws. The proposed approach for modelling the screw-bone interface can be applied to any fixation involved application of screws.

  18. True polar wander since 32 Ma B.P.: A paleomagnetic investigation of the skewness of magnetic anomaly 12r on the Pacific plate

    NASA Astrophysics Data System (ADS)

    Horner-Johnson, Benjamin C.; Gordon, Richard G.

    2010-09-01

    We test the fixed hot spot and fixed spin axis hypotheses through a paleomagnetic investigation of the skewness of crossings of magnetic anomaly 12r (32 Ma B.P.) between the Galapagos and Clarion fracture zones on the Pacific plate. We focus on this region for three reasons. First, numerical experiments show that these crossings, of all those available from the Pacific plate, should contain the most information about the location of the 32 Ma B.P. paleomagnetic pole for the Pacific plate. Second, many of the available crossings are from vector aeromagnetic profiles, which have superior signal-to-noise ratios. Third, the rate of seafloor spreading recorded in these crossings exceeds the threshold (half rate of 50 mm a-1) above which anomalous skewness is negligible. The new pole (83.5°N, 44.6°E) has compact 95% confidence limits (ellipse with major semiaxis length of 3.1° toward 84° clockwise from north and minor semiaxis length of 1.2°) and is not subject to the biases inherent in other methods for estimating Pacific plate paleomagnetic poles. The pole differs significantly by ≈5° from the pole predicted if the Pacific hot spots have been fixed with respect to the spin axis, thus demonstrating, for the first time from paleomagnetic data, that Pacific hot spots have moved relative to the spin axis since the formation of the elbow in the Hawaiian-Emperor chain. The pole is consistent, however, with previously published paleomagnetic poles in a reference frame fixed relative to Indo-Atlantic hot spots. Thus, the new results require no motion between Pacific and Indo-Atlantic hot spots since 32 Ma B.P. Instead, superimposed on whatever motion occurs between hot spots, as expected for true polar wander.

  19. First measurement of the displacement rate of the Pacific Plate near the Japan Trench after the 2011 Tohoku-Oki earthquake using GPS/acoustic technique

    NASA Astrophysics Data System (ADS)

    Tomita, Fumiaki; Kido, Motoyuki; Osada, Yukihito; Hino, Ryota; Ohta, Yusaku; Iinuma, Takeshi

    2015-10-01

    The subduction rate of an oceanic plate may accelerate after large earthquakes rupture the interplate coupling between the oceanic and overriding continental plates. To better understand postseismic deformation processes in an incoming oceanic plate, we directly measured the displacement rate of the Pacific Plate near the Japan Trench after the 2011 Tohoku-Oki earthquake using a GPS/acoustic technique over a period of 2 years (September 2012 to September 2014). The displacement rate was measured to be 18.0 ± 4.5 cm yr-1 (N302.0°E) relative to the North American Plate, which is almost twice as fast as the predicted interseismic plate motion. Because the sum of steady plate motion and viscoelastic response to the Tohoku-Oki earthquake roughly accounts for the observed displacement rate, we conclude that viscoelastic relaxation is the primary mechanism responsible for postseismic deformation of the Pacific Plate and that significant subduction acceleration did not occur at least not during the observation period.

  20. Geodetic constraints on areal changes in the Pacific-North America plate boundary zone: What controls Basin and Range extension?

    NASA Astrophysics Data System (ADS)

    Kreemer, Corné; Hammond, William C.

    2007-10-01

    Using ˜1500 geodetic velocities we model the present-day spatial patterns of areal changes inside the Pacific-North America plate boundary zone. From this model we show that between the central Gulf of California and the Queen Charlotte Islands there is no significant net change in surface area. This zero net areal-change result allows us to relate regions of areal growth to areas of equivalent contraction elsewhere within the plate boundary zone. We find that areal growth of the Basin and Range province (BRP) and its eastern margin (˜5.2 ± 0.1 × 103 m2/yr) is balanced by areal reduction near northwestern California between 38°N and 42°N. The San Andreas fault system south of 38°N and the plate boundary zone north of ˜42°N (including the Juan de Fuca and Gorda Ridge systems) each have no significant net areal change. Our results suggest a kinematic relationship between extension in the BRP and contraction near the northern California Coast Ranges and Klamath Mountains. From these observations we propose that, although BRP extension may be caused by internal forces, the southernmost Cascadia subduction zone provides a “window of escape” that acts as a stress guide to BRP extension as well as northwestward Sierra Nevada motion. Such a dynamic model is consistent with independent findings that (1) the least principal horizontal stress orientations in the BRP are toward northern California, (2) extension directions in the BRP have changed orientation to track the northward migration of the Mendocino triple junction, and (3) the southernmost Cascadia subduction zone is a relatively weak plate boundary.

  1. Faunal breaks and species composition of Indo-Pacific corals: the role of plate tectonics, environment and habitat distribution.

    PubMed

    Keith, S A; Baird, A H; Hughes, T P; Madin, J S; Connolly, S R

    2013-07-22

    Species richness gradients are ubiquitous in nature, but the mechanisms that generate and maintain these patterns at macroecological scales remain unresolved. We use a new approach that focuses on overlapping geographical ranges of species to reveal that Indo-Pacific corals are assembled within 11 distinct faunal provinces. Province limits are characterized by co-occurrence of multiple species range boundaries. Unexpectedly, these faunal breaks are poorly predicted by contemporary environmental conditions and the present-day distribution of habitat. Instead, faunal breaks show striking concordance with geological features (tectonic plates and mantle plume tracks). The depth range over which a species occurs, its larval development rate and genus age are important determinants of the likelihood that species will straddle faunal breaks. Our findings indicate that historical processes, habitat heterogeneity and species colonization ability account for more of the present-day biogeographical patterns of corals than explanations based on the contemporary distribution of reefs or environmental conditions.

  2. Faunal breaks and species composition of Indo-Pacific corals: the role of plate tectonics, environment and habitat distribution

    PubMed Central

    Keith, S. A.; Baird, A. H.; Hughes, T. P.; Madin, J. S.; Connolly, S. R.

    2013-01-01

    Species richness gradients are ubiquitous in nature, but the mechanisms that generate and maintain these patterns at macroecological scales remain unresolved. We use a new approach that focuses on overlapping geographical ranges of species to reveal that Indo-Pacific corals are assembled within 11 distinct faunal provinces. Province limits are characterized by co-occurrence of multiple species range boundaries. Unexpectedly, these faunal breaks are poorly predicted by contemporary environmental conditions and the present-day distribution of habitat. Instead, faunal breaks show striking concordance with geological features (tectonic plates and mantle plume tracks). The depth range over which a species occurs, its larval development rate and genus age are important determinants of the likelihood that species will straddle faunal breaks. Our findings indicate that historical processes, habitat heterogeneity and species colonization ability account for more of the present-day biogeographical patterns of corals than explanations based on the contemporary distribution of reefs or environmental conditions. PMID:23698011

  3. Fluid content along the subduction plate interface: how it impacts the long- (and short-) term rheology and exhumation modes

    NASA Astrophysics Data System (ADS)

    Agard, Philippe; Angiboust, Samuel; Guillot, Stéphane; Burov, Evgueni

    2015-04-01

    Over the last decade, many studies based on field, petrological and geophysical evidence have emphasized the link between mineral reactions, fluid release and seismogenesis, either along the whole plate interface (eg., Hacker et al., 2003) or at specific depths (e.g., ~30 km: Audet et al., 2009; ~70-80 km: Angiboust et al., 2012). Although they argue for a crucial influence of fluids on subduction processes, large uncertainties remain when assessing their impact on the rheology of the plate interface across space and time. Kilometer-scale accreted terranes/units in both ancient and present-day subduction zones potentially allow to track changes in mechanical coupling along the plate interface. Despite some potential biases (exhumation is limited and episodic, lasting no more than a few My if any, from prefered depths -- mainly 30-40 and 70-80 km, and there are so far only few examples precisely located with respect to the plate interface) their record of changes in fluid regime and strain localisation is extremely valuable. One striking example of the role of fluids on plate interface rheology during nascent subduction is provided by metamorphic soles (i.e., ~500 m thick tectonic slices welded to the base of ophiolites). We show that their accretion to the ophiolite indeed only happens across a transient, optimal time-T-P window (after < 1-2 My, at 1±0.2 GPa, 750-850°C) associated with fluid release and infiltration, leading to similar effective rheology on both sides (i.e., downgoing crust and mantle wedge). This maximizes interplate mechanical coupling, as deformation gets distributed over a large band encompassing the plate interface (i.e., a few km), and promotes detachment of the sole from the sinking slab. We also show how tectonic slicing during mature subduction likely relates to short-term fluid release and repeated seismicity, based on the Monviso exposures (W. Alps, a relatively continuous, 15 km long fragment of oceanic lithosphere exhumed from ~80 km

  4. Evolution of the Walker Lane: An Incipient Transform Fault and Future Pacific-North America Plate Boundary

    NASA Astrophysics Data System (ADS)

    Faulds, J. E.; Henry, C. D.

    2009-12-01

    Since ~30 Ma, western North America has been evolving from an Andean type margin to a dextral transform. Transform growth has been marked by arc retreat, orogenic collapse, and inland steps of the San Andreas fault system (SAF). In the western Great Basin (WGB), a system of dextral faults, known as the Walker Lane (WL) in the north and eastern California shear zone (ECSZ) in the south, currently accommodates ~20% of the Pacific - North America dextral motion. In contrast to the continuous 1100-km-long SAF, discontinuous ~10-250-km-long dextral faults comprise the WL-ECSZ. Displacement across the WL-ECSZ decreases N-ward from ≥60 km in south to E-central California, to ~25 km in NW Nevada, to zero in NE California. Geodetic strain rates are ~10 mm/yr across the WL-ECSZ in the WGB but decrease to <2.5 mm/yr at the NW terminus in NE California. The evolution of the WL-ECSZ is closely linked to events along the SAF. The early Miocene elimination of microplates along the southern California coast, S-ward steps in the Rivera triple junction at 19-16 Ma and 13 Ma, and an increase in plate motions ~12 Ma induced the first major episode of deformation in the WL-ECSZ, which began ~13 Ma along the N60°W-trending Las Vegas shear zone (LVSZ). The LVSZ shear zone paralleled plate motions, formed inboard of where the SAF initially organized into a through-going structure, and accommodated ~60 km of right slip ~13 to 6 Ma. In the late Miocene, the southern part of the transform shifted (~13-6 Ma) east to the Gulf of California (GC), the Big Bend of the SAF developed, and plate motions changed from ~N60°W to N37°W (11-6 Ma). Coincidentally (~11-6 Ma), dextral shear shifted west in the WL-ECSZ from the LVSZ to a NNW belt in the WGB. Dextral shear was favored in the WGB as it paralleled the new plate motion, aligned with the GC, and avoided the Big Bend bottleneck. By ~4 Ma, dextral shear had propagated to the northern WL (NW Nevada - NE California) in concert with the N

  5. Exhumation and Coupling at the Plate Interface: Large Tectonic Slices V. Melange Formation? Key Contexts and Possible Controlling Parameters

    NASA Astrophysics Data System (ADS)

    Agard, P.; Angiboust, S.; Guillot, S.; Garcia-Casco, A.

    2011-12-01

    Fragments of subducted oceanic lithosphere returned along the plate interface convey crucial information regarding the thermal and rheological conditions of convergent plate boundaries. Geological evidence indicate that, unlike subduction, exhumation is non-steady (Agard et al., Earth Sci. Rev. 2009). We herein focus on deep processes along the plate interface (40-80 km depth), for which there is no counterflow (unlike in accretionary prisms) and no other known mechanisms to return eclogites than interplate friction or buoyancy. These eclogites are of two major types: large scale (>km) slices with coherent PT estimates (W. Alps) versus isolated fragments (frequently m-hm) in a serpentinite- or sedimentary-rich matrix showing contrasting equilibration depths (with hints of punctuated exhumation and even reburial; Franciscan, Cuba, Sistan; e.g., Garcia-Casco et al., Geol. Acta 2006). This latter type tends to show warmer equilibration paths, whereas the larger tectonic slices from the former type remain systematically cold. Serpentinites are crucial for both in permitting decoupling and acting as a buoy, and fluid budget is important too in enhancing floatability and allowing large slices to survive (Angiboust and Agard, Lithos 2010). Numerical models implementing free migration of fluids in the subduction zone also show that the plate interface is strongly localized in the absence of fluids: mechanical decoupling efficiently occurs along the sediment veneer and/or at the top of the highly hydrothermalized crust. Whenever fluids are released in greater amounts (depending on initial fluid content and/or thermal structure), deformation becomes much more distributed and affects both the mantle wedge and the top of the downgoing lithosphere (crust and hydrated mantle top), thereby increasing mechanical coupling between the two plates. Based on natural data and numerical modelling we herein propose that rheological contrast chiefly controls mechanical decoupling. On a

  6. The joint impact of ocean circulation and plate tectonics on the glacial South Pacific carbon pool

    NASA Astrophysics Data System (ADS)

    Ronge, T.; Tiedemann, R.; Lamy, F.; Köhler, P.; Alloway, B.; De Pol-Holz, R.; Pahnke, K.; Southon, J. R.

    2015-12-01

    To understand the whereabouts of CO2 during glacials and its pathways during deglacial transitions is one of the main priorities in paleoclimate research. The opposing patterns of atmospheric CO2 and Δ14C suggest that the bulk of CO2 was released from an old and therefore 14C-depleted carbon reservoir. As the modern deep ocean, below ~2000 m, stores up to 60-times more carbon than the entire atmosphere, it is considered to be a major driver of the atmospheric CO2 pattern, storing CO2 during glacials, releasing it during deglacial transitions. We use a South Pacific transect of sediment cores, covering the Antarctic Intermediate Water (AAIW), the Upper Circumpolar Deep Water (UCDW) and the Lower Circumpolar Deep Water (LCDW), to reconstruct the spatio-temporal evolution of oceanic Δ14C over the last 30,000 years. During the last glacial, we find significantly 14C-depleted waters between 2000 and 4300 m water depth, indicating a strong stratification and the storage of carbon in these water masses. However, two sediment cores from 2500 m and 3600 m water depth reveal an extreme glacial atmosphere-to-deep-water Δ14C offset of up to -1000‰ and ventilation ages (deep-water to atmosphere 14C-age difference) of ~8000 years. Such old water masses are expected to be anoxic, yet there is no evidence of anoxia in the glacial S-Pacific. Recent studies showed an increase of Mid Ocean Ridge (MOR) volcanism during glacials due to the low stand of global sea level. For this reason, we hypothesize that the admixture of 14C-dead carbon via tectonic activity along MORs might have contributed to these extremely low radiocarbon values. With a simple 1-box model, we calculated if the admixture of hydrothermal CO2 has the potential to lower the deep Pacific Δ14C signal. We show that if the oceanic turnover time is at least 2700 years, an increased hydrothermal flux of 1.2 μmol kg-1 yr-1 has the potential to reproduce the extreme radiocarbon values observed in our records.

  7. Transients in Pacific/North American Plate Boundary Deformation: Synthesis and Modeling of GPS and Borehole Strain Observations

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Frey, H. V. (Technical Monitor)

    2002-01-01

    This is the Final Technical Report on research conducted between 1 June 1997 and 14 September 2001 entitled "Transients in Pacific/North American plate boundary deformation: Synthesis and modeling of GPS and borehole strain observations." As the project title implies, our effort involved a geodetic study of strain transients, i.e., temporal variations in deformation rates, that occur within plate boundary zones and their relationship to earthquakes and plate motions. Important transients occur during and following large earthquakes, and there are also strain transients not apparently associated with earthquakes. A particularly intriguing class of transients, for which there is a modest but growing list of examples, are preseismic anomalies. Such earthquake precursors, if further documented and understood, would have obvious importance for earthquake hazard mitigation. Because the timescales for these diverse transients range over at least 6 orders of magnitude (minutes to years), no single geodetic technique is optimum. We therefore undertook a systematic synthesis of Global Positioning Satellite (GPS) and borehole strainmeter data in three areas in California where there are adequate numbers of both types of instruments (or their equivalent): the San Francisco Bay region (within the Bay Area Regional Deformation network), southern California (within the Southern California Integrated GPS Network), and Parkfield (where a two-color laser system provides a proxy for continuous GPS measurements). An integral component of our study was the elucidation of the physical mechanisms by which such transients occur and propagate. We therefore initiated the development of multiple forward models, using two independent approaches. In the first, we explored the response to specified earthquake slip in viscoelastic models that incorporated failure criteria and the geometry of major faults in California. In the second approach, we examined the dynamical response of a complex

  8. Plume versus plate origin for the Shatsky Rise oceanic plateau (NW Pacific): Insights from Nd, Pb and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Heydolph, Ken; Murphy, David T.; Geldmacher, Jörg; Romanova, Irina V.; Greene, Andrew; Hoernle, Kaj; Weis, Dominique; Mahoney, John

    2014-07-01

    Shatsky Rise, an early Cretaceous igneous oceanic plateau in the NW Pacific, comprises characteristics that could be attributed to either formation by shallow, plate tectonic-controlled processes or to an origin by a mantle plume (head). The plateau was drilled during Integrated Ocean Drilling Program (IODP) Expedition 324. Complementary to a recent trace element study (Sano et al., 2012) this work presents Nd, Pb and Hf isotope data of recovered lava samples cored from the three major volcanic edifices of the Shatsky Rise. Whereas lavas from the oldest edifice yield fairly uniform compositions, a wider isotopic spread is found for lavas erupted on the younger parts of the plateau, suggesting that the Shatsky magma source became more heterogeneous with time. At least three isotopically distinct components can be identified in the magma source: 1) a volumetrically and spatially most common, moderately depleted component of similar composition to modern East Pacific Ridge basalt but with low 3He/4He, 2) an isotopically very depleted component which could represent local, early Cretaceous (entrained) depleted upper mantle, and 3) an isotopically enriched component, indicating the presence of (recycled) continental material in the magma source. The majority of analyzed Shatsky lavas, however, possess Nd-Hf-Pb isotope compositions consistent with a derivation from an early depleted, non-chondritic reservoir. By comparing these results with petrological and trace element data of mafic volcanic rock samples from all three massifs (Tamu, Ori, Shirshov), we discuss the origin of Shatsky Rise magmatism and evaluate the possible involvement of a mantle plume (head).

  9. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  10. True Polar Wander and Hotspot Fixity: A Paleomagnetic Investigation of the Skewness of Magnetic Anomaly 12r (32 Ma B.P.) on the Pacific Plate

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Horner-Johnson, B. C.

    2010-12-01

    Prior studies have shown that Pacific hotspots and Indo-Atlantic hotspots have moved in approximate unison relative to the spin axis since 65 Ma B.P. [Morgan, 1981; Gordon and Cape, 1981; Gordon, 1982] and since 56 Ma B.P. [Petronotis et al., 1994], which is most simply interpreted as true polar wander. In contrast, Pacific hotspots and Indo-Atlantic hotspots give conflicting results for 72 Ma B.P. and for 81 Ma B.P., which may indicate motion between Pacific hotspots and Indo-Atlantic hotspots [Tarduno and Cottrell, 1997; Petronotis et al., 1999; Tarduno et al., 2003]. Thus it is important to estimate Pacific plate apparent polar wander (APW) for more time intervals. From such estimates the APW of Pacific hotspots can be inferred and compared with that of Indo-Atlantic hotspots [e.g., Besse and Courtillot 2002]. Here we present a study of the skewness of anomaly 12r between the Galapagos and Clipperton and between the Clipperton and Clarion fracture zones. We chose this region for several reasons: First, numerical experiments, like those conducted by Acton and Gordon [1991], indicate that magnetic profiles between the Galapagos and Clarion fracture zones should contain the most information about the Pacific plate paleomagnetic pole for chron C12r (32 Ma B.P.). Second, in these two spreading rate corridors, spreading half rates range from 72 to 86 mm/a and therefore have negligible anomalous skewness, given that they exceed ≈50 mm/a [Roest et al., 1992; Dyment et al. 1994]. Third, vector aeromagnetic profiles are available for analysis. One of the challenges to interpreting magnetic anomalies in low latitudes where the anomalies strike nearly north-south is the very low amplitude of the signal relative to the noise, the latter of which can be especially intense near the present magnetic equator due to the amplification of diurnal variation by the equatorial electrojet. Previously we showed that vector aeromagnetic profiles record low-latitude Pacific plate

  11. Novel Three-Dimensional MALDI Plate for Interfacing High-Capacity LC Separations with MALDI-TOF

    PubMed Central

    Hattan, Stephen J.; Vestal, Marvin L.

    2009-01-01

    Novel matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) sample plates employing collimated-hole structures have been developed that allow capture and concentration of samples while simultaneously acting as a sink for carrier solvents. These plates were designed to provide an efficient interface between higher-capacity liquid chromatography (LC) separations and MALDI-TOF mass spectrometry (MS). LC–MALDI using conventional plates can accommodate the low-flow (<1 µL/min) separation protocols typically used in on-line LC–MS methods, and can also be used with higher flow rate, larger columns, but are ultimately limited by the capacity of the two-dimensional surface onto which the sample is deposited. Typically, about 1 µL of chromatographic effluent plus 1 µL of matrix solution can be deposited and dried on a ca. 3 mm diameter spot. Deposition rates (spot dwell time) are determined by the chromatographic resolution and the flow rate. To overcome this limitation, a new three-dimensional MALDI sample plate has been developed using collimated-hole structures (CHS) with monolithic chromatography media filling the holes in the collimated-hole structures. These new plates retain all of the required features of conventional sample plates, commonly formed from stainless steel, but provide additional capacity for capturing and concentrating samples. Results are presented from reversed-phase separation of peptides on a 1 mm i.d. column operating at flow rate of 50 µL/min. Typically, 10 µL of effluent can be collected on a single spot, and sample and matrix dried on a 1 mm diameter spot, to yield about 30-fold enrichment of sample concentration in matrix crystals on the surface compared to the conventional plate. Sample loadings ranging from 1 fmol to 10 pmol/spot were investigated. PMID:19551981

  12. Novel three-dimensional MALDI plate for interfacing high-capacity LC separations with MALDI-TOF.

    PubMed

    Hattan, Stephen J; Vestal, Marvin L

    2008-12-01

    Novel matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) sample plates employing collimated-hole structures have been developed that allow capture and concentration of samples while simultaneously acting as a sink for carrier solvents. These plates were designed to provide an efficient interface between higher-capacity liquid chromatography (LC) separations and MALDI-TOF mass spectrometry (MS). LC-MALDI using conventional plates can accommodate the low-flow (< 1 microL/min) separation protocols typically used in on-line LC-MS methods, and can also be used with higher flow rate, larger columns, but are ultimately limited by the capacity of the two-dimensional surface onto which the sample is deposited. Typically, about 1 microL of chromatographic effluent plus 1 microL of matrix solution can be deposited and dried on a ca. 3 mm diameter spot. Deposition rates (spot dwell time) are determined by the chromatographic resolution and the flow rate. To overcome this limitation, a new three-dimensional MALDI sample plate has been developed using collimated-hole structures (CHS) with monolithic chromatography media filling the holes in the collimated-hole structures. These new plates retain all of the required features of conventional sample plates, commonly formed from stainless steel, but provide additional capacity for capturing and concentrating samples. Results are presented from reversed-phase separation of peptides on a 1 mm i.d. column operating at flow rate of 50 microL/min. Typically, 10 microL of effluent can be collected on a single spot, and sample and matrix dried on a 1 mm diameter spot, to yield about 30-fold enrichment of sample concentration in matrix crystals on the surface compared to the conventional plate. Sample loadings ranging from 1 fmol to 10 pmol/spot were investigated.

  13. Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle upwelling [Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle-buoyancy contribution to plate driving forces

    DOE PAGES

    Rowley, David B.; Forte, Alessandro M.; Rowan, Christopher J.; ...

    2016-12-23

    Earth’s tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth’s dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pullmore » should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. Lastly, the mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region.« less

  14. Diffuse Pacific-North American plate boundary: 1000 km of dextral shear inferred from modeling geodetic data

    USGS Publications Warehouse

    Parsons, T.; Thatcher, W.

    2011-01-01

    Geodetic measurements tell us that the eastern part of the Basin and Range Province expands in an east-west direction relative to stable North America, whereas the western part of the province moves to the northwest. We develop three-dimensional finite element representations of the western United States lithosphere in an effort to understand the global positioning system (GPS) signal. The models are constrained by known bounding-block velocities and topography, and Basin and Range Province deformation is represented by simple plastic (thermal creep) rheology. We show that active Basin and Range spreading by gravity collapse is expected to have a strong southward component that does not match the GPS signal. We can reconcile the gravitational component of displacement with observed velocity vectors if the Pacific plate applies northwest-directed shear stress to the Basin and Range via the Sierra Nevada block. This effect reaches at least 1000 km east of the San Andreas fault in our models. ?? 2011 Geological Society of America.

  15. Change of tectono-stratigraphic regime in the Australian plate during the 99 Ma (mid-Cretaceous) and 43 Ma (mid-Eocene) swerves of the Pacific

    NASA Astrophysics Data System (ADS)

    Veevers, J. J.

    2000-01-01

    The clockwise bend at 99 Ma (mid-Cretaceous) in linear volcanic chains in the tropical Pacific coincides with a change from pre-99 Ma head-on Chilean-type subduction of the Pacific plate beneath eastern Gondwana to 99 43 Ma sinistral oblique Mariana-type subduction and strike-slip breakup by simple sea-floor spreading between Australia and Antarctica and by backarc spreading in the southwest Pacific. The 99 Ma breakup of Australia from Antarctica is documented by a mid-Cretaceous unconformity. This tectono-stratigraphic change founded modern Australia, with a mountain chain along an upper plate margin in the east and lowlands on the lower plate margin in the south. The counterclockwise bend at 43 Ma (mid-Eocene)—the Emperor-Hawaiian bend—coincides with the onset of structure in the Challenger Rift of New Zealand, the Eromanga-Cooper basin of central Australia, and the oil-shale grabens of coastal Queensland.

  16. Deformation and Metasomatic Evolution at the Subduction Plate Interface As Viewed from Study of HP/UHP Metamorphic Rocks

    NASA Astrophysics Data System (ADS)

    Bebout, G. E.; Penniston-Dorland, S.

    2014-12-01

    We provide a view of lithologic makeup, deformation, and fluid-rock interaction along the deep forearc to subarc plate interface, based on insights gained from study of HP/UHP metamorphic rocks. Exposures of plate-boundary shear zones on which we base our perspective represent 30-80 km depths and are on Catalina Island and at Monviso, Syros, and New Caledonia. Each contains highly deformed zones with schistose matrix, commonly with a large ultramafic component, containing bodies of less deformed mafic, sedimentary, and ultramafic rocks. These "blocks" have varying geometries, are up to km-scale, and can preserve disparate P-T histories reflecting dynamics of incorporation and entrainment. Sheared matrices contain high-variance, hydrous mineral assemblages in some cases resembling metasomatic zones ("rinds") at block-matrix contacts, and rinds and matrices have homogenized isotopic compositions reflecting extensive fluid-rock interaction. Shearing and related physical juxtaposition of disparate metasomatic rocks can result in mixed or 'hybrid' chemical compositions. The chlorite-, talc-, and amphibole-rich schists developed by these processes can stabilize H2O to great depth and influence its cycling. Fluids (hydrous fluids, silicate melts) released within slabs necessarily interact with highly deformed, lithologically hybridized zones at the plate interface as they ascend to potentially enter mantle wedges. Fluids bearing chemical/isotopic signatures of hybrid rocks appear capable of producing arc magma compositions interpreted as reflecting multiple, chemically distinct fluids sources. Geophysical signatures of these rheologically weak zones are equivocal but many recognize the presence of zones of low seismic velocity at/near the top of slabs and attribute them to hydrated rocks. Whether rocks from this interface buoyantly ascend into mantle wedges, indicated in some theoretical models, remains largely untested by field and geophysical observations.

  17. Effects of Heat Treatment on Interface Microstructure and Mechanical Properties of Explosively Welded Ck60/St37 Plates

    NASA Astrophysics Data System (ADS)

    Yazdani, Majid; Toroghinejad, Mohammad Reza; Hashemi, Seyyed Mohammad

    2016-12-01

    This study explores the effects of heat treatment on the microstructure and mechanical properties of explosively welded Ck60 steel/St37 steel. The objective is to find an economical way for manufacturing bimetallic plates that can be used in the rolling stand of hot rolling mill units. The explosive ratio and stand-off distance are set at 1.7 and 1.5 t ( t = flyer thickness), respectively. Since explosive welding is accompanied by such undesirable metallurgical effects as remarkable hardening, severe plastic deformation, and even formation of local melted zones near the interface, heat treatment is required to overcome or alleviate these adverse effects. For this purpose, the composites are subjected to heat treatment in a temperature range of 600-700 °C at a rate of 90 °C/h for 1 h. Results demonstrate well-bonded composite plates with a wavy interface. In the as-welded case, vortex zones are formed along the interface; however, they are transformed into fine grains upon heat treatment. Microhardness is also observed to be maximum near the interface in the welded case before it decreases with increasing temperature. Shear strength is the highest in the as-welded specimen, which later decreases as a result of heat treatment. Moreover, the energy absorbed by the heat-treated specimens is observed to increase with increasing temperature so that the lowest value of absorbed energy belongs to the as-welded specimen. Finally, fractography is carried out using the scanning electron microscope to examine the specimens subjected to shear and impact tests. As a result of heat treatment, fracture surfaces exhibit dimpled ruptures and fail in the mixed mode, while failure in the as-welded specimens predominantly occurs in the brittle mode.

  18. Pacific-North American plate motion from very long baseline interferometry compared with motion inferred from magnetic anomalies, transform faults, and earthquake slip vectors

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.; Gordon, Richard G.

    1990-01-01

    Geodetic VLBI measurements were used to test whether the Pacific-North American plate velocity averaged over several years of direct observation (1984-1987) equals that averaged over millions of years. It was also tested whether this velocity parallels the San Andreas fault, transform faults and earthquake slip vectors in the Gulf of California, and earthquake slip vectors along the Queen Charlotte fault, along the Alaskan peninsula, and along the Kamchatkan peninsula. The VLBI data provide an estimate of the direction of plate motion that is independent of estimates from fault azimuths and earthquake slip vectors. The Euler vector determined from VLBI was found to be nearly identical to the Euler vector of plate motion model NUVEL-1, which is based on the trends of transform faults, earthquake slip vectors, and spreading rates from marine magnetic anomalies that average motion since 3 Ma. The velocity between the Pacific and North American plates averaged over the past several years equals or nearly equals its velocity averaged over the past several million years, the difference along their boundary nowhere exceeding 4 + or - 7 mm/yr.

  19. Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature

    PubMed Central

    Xie, Z. M.; Liu, R.; Miao, S.; Yang, X. D.; Zhang, T.; Wang, X. P.; Fang, Q. F.; Liu, C. S.; Luo, G. N.; Lian, Y. Y.; Liu, X.

    2015-01-01

    The refractory tungsten alloys with high ductility/strength/plasticity are highly desirable for a wide range of critical applications. Here we report an interface design strategy that achieves 8.5 mm thick W-0.5 wt. %ZrC alloy plates with a flexural strength of 2.5 GPa and a strain of 3% at room temperature (RT) and ductile-to-brittle transition temperature of about 100 °C. The tensile strength is about 991 MPa at RT and 582 MPa at 500 °C, as well as total elongation is about 1.1% at RT and as large as 41% at 500 °C, respectively. In addition, the W-ZrC alloy plate can sustain 3.3 MJ/m2 thermal load without any cracks. This processing route offers the special coherent interfaces of grain/phase boundaries (GB/PBs) and the diminishing O impurity at GBs, which significantly strengthens GB/PBs and thereby enhances the ductility/strength/plasticity of W alloy. The design thought can be used in the future to prepare new alloys with higher ductility/strength. PMID:26531172

  20. Improving 6061-Al Grain Growth and Penetration across HIP-Bonded Clad Interfaces in Monolithic Fuel Plates: Initial Studies

    SciTech Connect

    Hackenberg, Robert E.; McCabe, Rodney J.; Montalvo, Joel D.; Clarke, Kester D.; Dvornak, Matthew J.; Edwards, Randall L.; Crapps, Justin M.; Trujillo, R. Ralph; Aikin, Beverly; Vargas, Victor D.; Hollis, Kendall J.; Lienert, Thomas J.; Forsyth, Robert T.; Harada, Kiichi L.

    2013-05-06

    Grain penetration across aluminum-aluminum cladding interfaces in research reactor fuel plates is desirable and was obtained by a legacy roll-bonding process, which attained 20-80% grain penetration. Significant grain penetration in monolithic fuel plates produced by Hot Isostatic Press (HIP) fabrication processing is equally desirable but has yet to be attained. The goal of this study was to modify the 6061-Al in such a way as to promote a much greater extent of crossinterface grain penetration in monolithic fuel plates fabricated by the HIP process. This study documents the outcomes of several strategies attempted to attain this goal. The grain response was characterized using light optical microscopy (LOM) electron backscatter diffraction (EBSD) as a function of these prospective process modifications done to the aluminum prior to the HIP cycle. The strategies included (1) adding macroscopic gaps in the sandwiches to enhance Al flow, (2) adding engineering asperities to enhance Al flow, (3) adding stored energy (cold work), and (4) alternative cleaning and coating. Additionally, two aqueous cleaning methods were compared as baseline control conditions. The results of the preliminary scoping studies in all the categories are presented. In general, none of these approaches were able to obtain >10% grain penetration. Recommended future work includes further development of macroscopic grooving, transferred-arc cleaning, and combinations of these with one another and with other processes.

  1. Post-glacial (<20 ka) Dextral Slip Rate of the Offshore Alpine Fault: Implications for Deformation in the Pacific-Australia Plate Boundary Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Barnes, P. M.

    2008-12-01

    Geological displacement rates for major plate boundary strike-slip faults have seldom been determined with precision from the marine environment. In this study of the southern Alpine Fault, high-precision fault structure and slip rates are identified using multibeam bathymetric data and dated samples from the Fiordland continental margin. These rates are derived from dextral displacements of relict, but well- preserved, glacial geomorphology (moraines and outwash fans), interpreted to be aged 17 (+2, -1) calendar ka. The weighted mean slip rate is 27.2 (-3.0, +1.8) mm/yr on the shelf between Milford and George sounds, increasing southward to 31.4 (-3.5, +2.1) mm/yr between Caswell and Doubtful sounds, with uncertainties at the 95% confidence level. These offshore rates are higher than those from an adjacent 80 km length section of the fault on land in south Westland, and are in good agreement with GPS data. The southern slip rates represent some of the highest strike-slip rates on Earth, and ~ 90% of the total plate motion in southern New Zealand. The southward increase in strike-slip rate on the Alpine Fault occurs despite a southward reduction in Pacific-Australian relative plate motion rate, and despite the prediction of southward decreasing plate-parallel motion and southward increasing normal convergence. The Fiordland region is thus an excellent example of geological strain being highly partitioned within an obliquely-convergent plate boundary zone.

  2. What is responsible for development of the Asian-Pacific transition zone: The geodynamics of oceanic plates or the Asian continent?

    NASA Astrophysics Data System (ADS)

    Utkin, V. P.

    2016-03-01

    The main unusual feature of tectogenesis of the Asian-Pacific transition zone in the Mesozoic-Cenozoic consists in the formation of left-lateral strike-slip faults, which form the East Asian global shear zone with paragenesis of its constituent variously oriented fault systems. Paragenetic analysis has revealed that continental blocks of the Asian-Pacific transition zone were displaced along systems of transit left-lateral strike-slip faults of the East Asian global shear zone by hundreds of kilometers in the southerly to southwesterly direction due to tectonic activity of the Asian continent, which drifted southwestward. This process was accompanied by the formation of compression and extension structures. Otherwise, it is difficult to explain the structuring of the overhanging margin of the continent by subduction of oceanic lithospheric plates in the northerly to northwesterly direction opposite relative to the displacement of the continental crust as is usually thought.

  3. Investigating crustal deformation associated with the North America-Pacific plate boundary in southern California with GPS geodesy

    NASA Astrophysics Data System (ADS)

    Spinler, Joshua C.

    The three largest earthquakes in the last 25 years in southern California occurred on faults located adjacent to the southern San Andreas fault, with the M7.3 1992 Landers and M7.1 1999 Hector Mine earthquakes occurring in the eastern California shear zone (ECSZ) in the Mojave Desert, and the M7.2 2010 El Mayor-Cucapah earthquake occurring along the Laguna Salada fault in northern Baja California, Mexico. The locations of these events near to but not along the southern San Andreas fault (SSAF) is unusual in that the last major event on the SSAF occurred more than 300 years ago, with an estimated recurrence interval of 215 +/- 25 years. The focus of this dissertation is to address the present-day deformation field along the North America-Pacific plate boundary in southern California and northern Baja California, through the analysis of GPS data, and elastic block and viscoelastic earthquake models to determine fault slip rates and rheological properties of the lithosphere in the plate boundary zone. We accomplish this in three separate studies. The first study looks at how strain is partitioned northwards along-strike from the southern San Andreas fault near the Salton Sea. We find that estimates for slip-rates on the southern San Andreas decrease from ~23 mm/yr in the south to ~8 mm/yr as the fault passes through San Gorgonio Pass to the northwest, while ~13-18 mm/yr of slip is partitioned onto NW-SE trending faults of the ECSZ where the Landers and Hector Mine earthquakes occurred. This speaks directly to San Andreas earthquake hazards, as a reduction in the slip rate would require greater time between events to build up enough slip deficit in order to generate a large magnitude earthquake. The second study focuses on inferring the rheological structure beneath the Salton Trough region. This is accomplished through analysis of postseismic deformation observed using a set of the GPS data collected before and after the 2010 El Mayor-Cucapah earthquake. By

  4. A serial sample loading system: interfacing multiwell plates with microfluidic devices.

    PubMed

    Rane, Tushar D; Zec, Helena C; Wang, Tza-Huei

    2012-10-01

    There is an increasing demand for novel high-throughput screening (HTS) technologies in the pharmaceutical and biotechnological industries. The robotic sample-handling techniques currently used in these industries, although fast, are still limited to operating in multiwell plates with the sample volumes per reaction in the microliter regime. Digital microfluidics offers an alternative for reduction in sample volume consumption for HTS but lacks a reliable technique for transporting a large number of samples to the microfluidic device. In this report, we develop a technique for serial delivery of sample arrays to a microfluidic device from multiwell plates, through a single sample inlet. Under this approach, a serial array of sample plugs, separated by an immiscible carrier fluid, is loaded into a capillary and delivered to a microfluidic device. Similar approaches have been attempted in the past, however, either with a slower sample loading device such as a syringe pump or vacuum-based sample loading with limited driving pressure. We demonstrated the application of our positive-pressure-based serial sample loading (SSL) system to load a series of sample plugs into a capillary. The adaptability of the SSL system to generate sample plugs with a variety of volumes in a predictable manner was also demonstrated.

  5. A Serial Sample Loading System: Interfacing Multi-well plates with Microfluidic Devices

    PubMed Central

    Rane, Tushar D.; Zec, Helena; Wang, Jeff Tza-Huei

    2013-01-01

    There is an increasing demand for novel high-throughput screening (HTS) technologies in the pharmaceutical and biotechnological industries. The robotic sample handling techniques currently used in these industries, although fast, are still limited to operating in multi-well plates with the sample volumes per reaction in the microliter regime. Digital microfluidics offers an alternative for reduction in sample volume consumption for HTS but lacks a reliable technique for transporting large number of samples to the microfluidic device. In this report, we develop a technique for serial delivery of sample arrays to a microfluidic device from multi-well plates, through a single sample inlet. Under this approach, a serial array of sample plugs, separated by an immiscible carrier fluid, is loaded into a capillary and delivered to a microfluidic device. Similar approaches have been attempted in the past, however, either with a slower sample loading device like syringe pump or vacuum based sample loading with limited driving pressure. We demonstrated the application of our positive pressure based ‘Serial Sample Loading’ (SSL) system to load a series of sample plugs into a capillary. The adaptability of the SSL system to generate sample plugs with a variety of volumes in a predictable manner was also demonstrated. PMID:22885789

  6. Variation of seismic slip in the Gulf of California and the possible effect on geodetic measurements of Pacific-North American plate motion

    NASA Technical Reports Server (NTRS)

    Tajima, Fumiko; Tralli, David M.

    1992-01-01

    A simple dislocation model is used to evaluate the variation of seismic slip in the Gulf of California and the possible effect on geodetic measurements of Pacific-North American plate motion by means of an estimation of the surface displacements due to typical transform events in the gulf. The results of this numerical calculation suggest that if a large transform event (about 1.5 x 10 exp 26 dyne cm) were to occur within 100 to 200 km of a geodetic baseline, the relative distance measurements could be affected by up to 15 mm. This is marginally at the error level of a few millimeters plus 2 parts in 10 exp 8 of baseline length for GOMEX measurements, which thus are sensitive only to the far-field displacement along the plate boundary.

  7. Life and death of the resurrection plate: Evidence for its existence and subduction in the northeastern Pacific in Paleocene-Eocene time

    USGS Publications Warehouse

    Haeussler, P.J.; Bradley, D.C.; Wells, R.E.; Miller, M.L.

    2003-01-01

    Onshore evidence suggests that a plate is missing from published reconstructions of the northeastern Pacific Ooean in Paleocene- Eocene time. The Resurrection plate, named for the Resurrection Peninsula ophiolite near Seward, Alaska, was located east of the Kula plate and north of the Farallon plate. We interpret coeval near-trench magmatism in southern Alaska and the Cascadia margin as evidence for two slab windows associated with trench-ridge-trench (TRT) triple junctions, which formed the western and southern boundaries of the Resurrection plate. In Alaska, the Sanak-Baranof belt of near-trench intrusions records a west-to-east migration, from 61 to 50 Ma, of the northern TRT triple junction along a 2100-km-long section of coastline. In Oregon, Washington, and southern Vancouver Island, voluminous basaltic volcanism of the Siletz River Volcanics, Crescent Formation, and Metchosin Volcanics occurred between ca. 66 and 48 Ma. Lack of a clear age progression of magmatism along the Cascadia margin suggests that this southern triple junction did not migrate significantly. Synchronous near-trench magmatism from southeastern Alaska to Puget Sound at ca. 50 Ma documents the middle Eocene subduction of a spreading center, the crest of which was subparallel to the margin. We interpret this ca. 50 Ma event as recording the subduction-zone consumption of the last of the Resurrection plate. The existence and subsequent subduction of the Resurrection plate explains (1) northward terrane transport along the southeastern Alaska-British Columbia margin between 70 and 50 Ma, synchronous with an eastward-migrating triple junction in southern Alaska; (2) rapid uplift and voluminous magmatism in the Coast Mountains of British Columbia prior to 50 Ma related to subduction of buoyant, young oceanic crust of the Resurrection plate; (3) cessation of Coast Mountains magmatism at ca. 50 Ma due to cessation of subduction, (4) primitive mafic magmatism in the Coast Mountains and Cascade

  8. Metamorphic sole formation and early plate interface rheology: Insights from Griggs apparatus experiments

    NASA Astrophysics Data System (ADS)

    Soret, Mathieu; Agard, Philippe; Dubacq, Benoît; Hirth, Greg; Yamato, Philippe; Ildefonse, Benoît; Prigent, Cécile

    2016-04-01

    Metamorphic soles correspond to m to ~500 m thick highly strained metamorphic rock units found beneath mylonitic banded peridotites at the base of large-scale ophiolites, as exemplified in Oman. Metamorphic soles are mainly composed of metabasalts deriving from the downgoing oceanic lithosphere and metamorphosed up to granulite-facies conditions by heat transfer from the mantle wedge. Pressure-temperature peak conditions are usually estimated at 1.0±0.2 GPa and 800±100°C. The absence of HP-LT metamorphism overprint implies that metamorphic soles have been formed and exhumed during subduction infancy. In this view, metamorphic soles were strongly deformed during their accretion to the mantle wedge (corresponding, now, to the base of the ophiolite). Therefore, metamorphic soles and banded peridotites are direct witnesses of the dynamics of early subduction zones, in terms of thermal structure, fluid migration and rheology evolution across the nascent slab interface. Based on fieldwork and EBSD analyses, we present a detailed (micro-) structural study performed on samples coming from the Sumeini window, the better-preserved cross-section of the metamorphic sole of Oman. Large differences are found in the deformation (CPO, grain size, aspect ratio) of clinopyroxene, amphibole and plagioclase, related to mineralogical changes linked with the distance to the peridotite contact (e.g., hardening due to the appearance of garnet and clinopyroxene). To model the incipient slab interface in laboratory, we carried out 5 hydrostatic annealing and simple-shear experiments on Griggs solid-medium apparatus. Deformation experiments were conducted at axial strain rates of 10-6 s-1. Fine-grained amphibolite was synthetized by adding 1 wt.% water to a (Mid-Ocean Ridge) basalt powder as a proxy for the metamorphic sole (amphibole + plagioclase + clinopyroxene ± garnet assemblage). To synthetize garnet, 2 experiments were carried out in hydrostatic conditions and with deformation at

  9. Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction - A review of the evidence

    NASA Astrophysics Data System (ADS)

    Wilde, Simon A.

    2015-11-01

    The Central Asian Orogenic Belt (CAOB) evolved through complex closure of the Paleo-Asian Ocean from the Neoproterozoic to the late Phanerozoic. This caused the Chinese cratons to collide with Eurasia and led to the formation of the world's largest Phanerozoic orogenic belt. Ocean closure commenced in the west and was completed in the east near Changchun. Closure of the Paleo-Asian Ocean in NE China was along the Solonker-Xar Moron-Changchun-Yanji suture and this was likely completed in the Late Permian, although associated activity continued into the Triassic. There was an overlap in the latest Permian-Early Triassic between terminal activity associated with Paleo-Asian Ocean closure and the onset of tectonism associated with subduction of the Paleo-Pacific plate. This switch in geodynamic setting occurred at ~ 260-250 Ma, and is reflected by a relaxing of north-south directed compression and the onset of east-west directed processes related to Paleo-Pacific subduction. By the Early Jurassic, events associated with the westward advance of the Paleo-Pacific plate dominated, leading to extensive development of I-type granites as far inland as the Great Xing'an Range. From ~ 140 Ma, the Paleo-Pacific plate retreated eastward, resulting in an extensional setting in the Early Cretaceous, the effects of which were enhanced by regional thinning of the lithosphere, commonly attributed to delamination. Throughout this period, the eastern Asian margin was tectonically complex. The north-south oriented Jiamusi-Khanka(-Bureya) block was rifted away from the eastern margin of the CAOB in the Late Triassic, but was then re-united in the Jurassic by westward-advancing subduction that affected both the western and eastern margins of the block. Accretionary complexes continued to evolve in the Cretaceous along the whole eastern margin of Asia, with final accretion of the Nadanhada Terrane (part of the Sikhote-Alin accretionary terrane) with the CAOB at ~ 130 Ma, followed by the

  10. Thermochronology of mid-Cretaceous dioritic granulites adjacent "Big Bend" in Australia-Pacific plate boundary, northern South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Sagar, M.; Seward, D.; Heizler, M. T.; Palin, J. M.; Toy, V. G.; Tulloch, A. J.

    2012-12-01

    The Western Fiordland Orthogneiss (WFO), situated south-east of the Australian-Pacific plate boundary (Alpine Fault), southern South Island, New Zealand is the largest suite of plutonic rocks intruded into the Pacific margin of Gondwana during the final stages of arc plutonism preceding break-up of the supercontinent in the Late Cretaceous. Dextral motion of c. 480 km along the Alpine Fault during the Cenozoic has offset originally contiguous Pacific Gondwana margin rocks in northern and southern South Island. The Glenroy Complex in northern South Island, west of the Alpine Fault is dominated by two-pyroxene+hornblende granulite facies monzodioritic gneisses. U-Pb zircon geochronological and geochemical data indicate the Glenroy Complex was emplaced between 128-122 Ma and is a correlative of the WFO. The Glenroy Complex forms the lower-most block bounded by an east-dipping set of imbricate thrusts that developed during the late Cenozoic to the west of the largest S-shaped restraining bend ("Big Bend") in the Alpine Fault. New 40Ar/39Ar and fission-track thermochronological data, combined with previous geological field-mapping, demonstrate that the Glenroy Complex cooled rapidly (c. 30° C/Ma) after emplacement and granulite facies metamorphism (c. 850°C) at c. 120 Ma, through c. 550 °C by c. 110-100 Ma. The average cooling rate during the Late Cretaceous-Cenozoic was relatively slow, and initial exposure in the late Early Miocene (c. 16 Ma) was followed by reburial to c. 3-4 km (c. 80-100 °C) before final exhumation post-Pliocene. This thermal history is similar to the WFO, which cooled rapidly through c. 350 °C during mid-Cretaceous continental extension, followed by slow cooling during the Late Cretaceous and Cenozoic until development of the Australian-Pacific boundary through New Zealand facilitated rapid, exhumation-related cooling from c. 240 °C at c. 20 Ma and final exhumation post-10 Ma (Davids, 1999). However, the Glenroy Complex cooled at a faster

  11. Pore pressure evolution at the plate interface along the Cascadia subduction zone from the trench to the ETS transition zone

    NASA Astrophysics Data System (ADS)

    Skarbek, R. M.; Rempel, A. W.; Schmidt, D. A.

    2010-12-01

    Pore fluid pressures in subduction zones are a primary control on fault strength and slip dynamics. Numerous studies document elevated pore pressures in the outer wedge along several margins. Seismic observations and the occurrence of non-volcanic tremor provide additional evidence for the presence of near-lithostatic pore pressures at the plate interface far down-dip from the trench (~35 km depth). Here we use numerical models in one and two dimensions to evaluate the pore pressure and compaction state of sediments on the subducting Juan de Fuca plate in Cascadia from the trench to the ETS zone. 2-D models allow pressure to diffuse vertically and also laterally normal to strike of the megathrust; 1-D models simulate only vertical diffusion. Model parameters are chosen with reference to two strike-normal profiles: one through central Oregon and one through the Olympic Peninsula of Washington. We examine temporal variations in sediment input to the trench and consider implications for fault strength and permeability as well as the down-dip extent to which compactive dewatering can be considered a significant fluid source. In 1-D, we use a general and fully nonlinear model of sediment compaction derived without making any assumptions regarding stress-strain or porosity-permeability relations and allowing finite strains. In contrast, most previous models of fluid flow in subduction zones have used linear models of diffusion that rely on assumptions of constant sediment permeability and infinitesimal strains for their formulation. Our nonlinear finite-strain model remains valid at greater depths, where stresses and strains are large. Boundary conditions in 1-D are constrained by pore pressure estimates along the megathrust fault that are based on seismic velocities (e.g. Tobin and Saffer, 2010) and data from consolidation tests conducted on sediments gathered during ODP Leg 204 (Tan, 2001). Initial conditions rely on input sediment thickness; while sediment thickness

  12. Upper boundaries of the Pacific and Philippine Sea plates near the triple junction off the Boso Peninsula deduced from ocean-bottom seismic observations

    NASA Astrophysics Data System (ADS)

    Ito, Aki; Sugioka, Hiroko; Obana, Koichiro; Hino, Ryota; Suetsugu, Daisuke; Nakahigashi, Kazuo; Shinohara, Masanao; Nakano, Masaru; Yamamoto, Yojiro

    2017-02-01

    We determined hypocenter distributions and focal mechanisms of earthquakes off the Boso Peninsula, Japan, based on seafloor observations using ocean-bottom seismometers (OBSs). From OBS data, we detected and located earthquakes that were closer to the trenches than had previously been reported. The determined focal depths of relocated hypocenters were systematically shallower than those in the Japan Meteorological Agency catalog determined from land-based data. The hypocenter distribution was separated into two groups: one associated with the Pacific plate (PAC) and the other with the North American and/or Philippine Sea plates (PHS). For the former group, both the focal depths and mechanisms of low-angle thrust-faulting earthquakes were consistent with the geometry of the PAC determined by previous studies. Among the latter group, we selected low-angle thrust-faulting earthquakes with a slip direction parallel to the direction of PHS subduction or with a dip direction parallel to the PHS to delineate the upper boundary of the PHS. The depth of the plate upper boundary off the Boso Peninsula was found to be approximately 6 km shallower than previously reported estimates.

  13. Relationship between compressional-wave velocity and porosity of sediments along subduction plate interface

    NASA Astrophysics Data System (ADS)

    Yamaguchi, M.; Hashimoto, Y.

    2012-12-01

    Evolution of physical properties of sediments along subduction interface has effects on wedge strength, wedge geometry, dewatering and dehydration processes, and seismic behavior. Sediments have initially more than 70% of porosity prior to subduction. Through underthrusting and accretion, porosity of sediments decreases by compaction and cementation to be lithified sediments. The purpose of this study is to understand evolution of physical properties from a state before subduction to a state within a wedge using a relationship between compressional-wave velocity and porosity. In this study, we obtained new data for sediments from a reference site in IODP NanTroSEIZE, Expedition 333. In addition to that, we have complied velocity-porosity relationships for the samples and also for previous studies from NanTroSEIZE (off Kumano) (Hashimoto et al., 2010, 2011), ODP Leg 190 (off Shikoku) (Hoffman and Tobin, 2004) and ODP Leg 170 (off Costa Rica) (Gettemy and Tobin, 2003). Velocity measurement procedure in this study to obtain new data is as following: Two pumps were used to control pore fluid pressure and confining pressure. The pore pressure of 1000kPa was kept under drained conditions. Confining (effective) pressure was increased stepwise in the measurements. Velocity measurements were conducted under isotropic pressure conditions. Confining pressure was pressurized in tens seconds and kept for more than 8 hours for next step to obtain equilibrium conditions between effective pressure and sediments strain. Lead zirconate titanate (PZT) shear wave transducers (500kHz) were used in a source-receiver pair to measure wave speed. Porosity and P-wave velocity ranges about 27 - 75% and 1.4 - 2.2 km/s in this study, respectively. In the comparison in Vp-porosity relationships between sedimetns from reference sites and others, sediments were classified into two, simply compacted sediments (reference site and slope sediments) and wedge sediments. Different trends in Vp

  14. Seismic and Geodynamic Constraints on Compositional Heterogeneity in the Lower Mantle: Implications for Deeply-Rooted Hot Upwellings Under the African and Pacific Plates

    NASA Astrophysics Data System (ADS)

    Forte, A. M.; Glisovic, P.; Rowley, D. B.; Simmons, N. A.; Grand, S. P.; Lu, C.

    2014-12-01

    We present the results of a series of tests that probe the possible existence of compositionally distinct material in the central core of the LLSVPs under the African and Pacific plates using tomography-based mantle flow models that employ several independently-derived viscosity profiles (Mitrovica & Forte 2004, Behn et al. 2004, Steinberger & Calderwood 2006, Forte et al. 2010). We also consider four global tomography models derived from seismic shear velocity data alone (Grand 2002, Panning & Romanowicz 2006, Kustowski et al. 2008, Ritsema et al. 2011). The possible combinations of viscosity and tomography models yield 16 different tests for compositional heterogeneity inside the LLSVPs. In all tests we begin with a mineral physical scaling between lower-mantle shear velocity and density anomalies that assumes thermal effects are dominant everywhere, including within the LLSVPs. We find it is not possible, in any of the tests, to obtain a satisfactory fit to surface geodynamic data, especially the global, long-wavelength gravity anomalies and space-geodetic inferences of excess CMB flattening with a purely thermal interpretation of lower-mantle heterogeneity. If we introduce compositionally-distinct material in the central portions of the LLSVPs, all tests show a notable improvement in the fit to the gravity anomaly and CMB ellipticity data. An optimal reconciliation of the gravity and CMB data is obtained by extending compositional heterogeneity upwards, with maximum-amplitude in the seismic D"-layer and tapering off to negligible values in the mid-mantle. A robust assessment of the dynamical impact of this deeply-rooted compositional heterogeneity is obtained with maps of "mean" convective flow, by averaging the results of all 16 test cases. We find (see map below) dominant lower-mantle upwellings below the axis of the East Pacific Rise (EPR), and under the Caroline Islands in the Western Pacific. Under the African plate we find large-scale upwellings under the

  15. Earth's Decelerating Tectonic Plates

    SciTech Connect

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  16. Tectonic Structure of the Middle America Pacific Margin and Incoming Cocos Plate From Costa Rica to Guatemala

    NASA Astrophysics Data System (ADS)

    Ranero, C. R.; Weinrebe, W.; Grevemeyer, I.; Phipps Morgan, J.; Vannucchi, P.; von Huene, R.

    2003-12-01

    A new multibeam bathymetry and magnetic survey with R/V SONNE in summer 2003 has mapped the continental margin and incoming plate of NW Nicaragua, El Salvador and Guatemala, extending existing coverage from offshore Costa Rica and part of Nicaragua to a full coverage map of about 1200 km long by 100 km wide area along the plate boundary. The incoming plate along Nicaragua, El Salvador and Guatemala is of similar age and was formed at superfast spreading rates; however, its morphology changes drastically along strike. The seafloor-spreading inherited morphology is very smooth along Nicaragua, but with ridges up to 800 m high in Guatemala, with a transition across El Salvador. The development and dimensions of the dominant inherited fabric seems to be related to discontinuities at the paleospreading center. A series of troughs oblique to the main fabric may indicate the location of pseudofaults and correspond to areas where the seafloor fabric is most prominent. Bending of the oceanic plate into the trench reactivates the inherited fabric forming a well pervasive faulting system along the oceanic trench slope. The continental slope displays three morphotectonic units that roughly correspond to the upper, middle and lower slope, although the across slope width of each unit is fairly variable. Small canyons and gullies that form at the sudden dip change across the shelf break carve the upper slope. The canyons coalesce and become shallower as the dip decreases downslope. Locally some large canyons continue into the slope toe. The middle slope is a rough terrain variable in width and dip sculptured by pervasive normal faulting and locally by mass wasting processes. The lower slope is formed by en echelon terraces striking similar to the rough terrain of the incoming plate and mimicking the half graben morphology of the underthusting plate. The three morphotectonic slope domains represent differences in tectonic activity, with more stable upper slope, a middle slope

  17. Holocene subsidence at the transition between strike-slip and subduction on the Pacific-Australian plate boundary, Marlborough Sounds, New Zealand

    NASA Astrophysics Data System (ADS)

    Hayward, Bruce W.; Grenfell, Hugh R.; Sabaa, Ashwaq T.; Kay, Jon; Daymond-King, Rhiannon; Cochran, Ursula

    2010-03-01

    This paper provides the first solid evidence in support of a century-old hypothesis that the mountainous Marlborough Sounds region in central New Zealand is subsiding. More recent hypotheses suggest that this may be a result of southward migration of a slab of subducted Pacific Plate causing flexural downwarping of the overlying crust in the vicinity of the transition between subduction and strike-slip on the Pacific-Australian plate boundary. The proxy evidence for gradual Holocene subsidence comes from micropaleontological study of seven intertidal sediment cores from the inner Marlborough Sounds (at Havelock, Mahau Sound and Shakespeare Bay). Quantitative estimates (using Modern Analogue Technique) of former tidal elevations based on fossil foraminiferal faunas provide evidence of tectonic (not compaction-related) subsidence in all cores. Estimates of subsidence rates for individual cores vary within the range 0.2-2.4 m ka -1. The wide variation within subsidence rate estimates are related to a combination of the accuracy limits of radiocarbon dates, elevation estimates, and particularly our poor knowledge of the New Zealand Holocene sea-level curve. The most consistent subsidence rate at all three sites for the mid-late Holocene (last 6-7 ka) is ˜0.7-0.8 m ka -1. This rate is consistent with the average subsidence rate in the adjacent 4-km thick Wanganui sedimentary basin for the last 5 myr. Subsidence is inferred to have migrated southwards from the Wanganui Basin to impinge on the inner Marlborough Sounds in just the last 100-200 ka.

  18. Early Miocene transpression across the Pacific-North American plate margin, initiation of the San Andreas fault, and tectonic wedge activation

    SciTech Connect

    McLaughlin, R.J. ); Underwood, M.B. )

    1993-04-01

    Magnetic stripes on the Pacific plate (PAC) indicate that subduction along the North American plate (NAM) margin ceased about 26--28 Ma south of the Mendocino fracture zone (MFZ), when the Pacific-Farallon (PAC-FAR) ridge encountered the NAM. In this area the PAC-FAR ridge apparently was segmented and abandoned as it encountered the margin, and was thrust beneath the western lip of the NAM, possibly due to residual FAR slab-pull. Between [approximately] 26 and 23.5 Ma, compressional tectonism in the distal NAM overlying the hot, buoyant ridge, produced ocean floor volcanism and a series of borderland structural basins that filled with continent-derived clastics. Initiation of the San Andreas transform, and capture of a large segment of the NAM by the PAC appears to have occurred between [approximately] 24 and [approximately] 14 Ma. Beginning at least as early as 18 Ma, northeast of the San Andreas fault, blind thrusts, folding and tilting developed in the roof of a northeastwardly-propagating wedge complex beneath the length of the Coast Ranges. The wedge complex probably was multistage and may have been initiated as early as 70--60 Ma. In the Cape Mendocino and Loma Prieta regions, Miocene or younger northeast-vergent members of the roof thrust system root into the San Andreas fault and characteristically displace deep water marine rocks northeastward over the shallower margin. Total shortening across the transform margin based on deep crustal models must exceed 200 km since 70 Ma and is [ge]50 km since 28 Ma.

  19. Distribution and mechanism of Neogene to present-day vertical axis rotations, Pacific-Australian Plate Boundary Zone, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Little, Timothy A.; Roberts, Andrew P.

    1997-01-01

    Remarkably little knowledge exists about mechanisms of vertical axis rotation in continental crust. Steeply dipping basement rocks in South Island, New Zealand, provide an opportunity to map the distribution of rotations across the Pacific-Australian plate boundary zone, and to delineate boundaries of rotated blocks in unusual detail. We synthesize new structural data with new and existing paleomagnetic data, with geodetic data, and with patterns of Neogene-Quaternary faulting in the strike-slip Marlborough fault system. For the past 20 m.y., vertical axis rotations have been hinged about two crustal-scale boundaries near the east coast. The NE hinge accommodated ˜50° of early-middle Miocene clockwise rotation, which caused deformation of the eastern ends of the Alpine-Wairau and Clarence strike-slip faults. The SW hinge has accommodated a further 30°-50° of finite clockwise rotation since ˜4 Ma and deflects active fault traces. The locus of rotation has shifted southwestward astride a subduction margin that is lengthening in that direction. Rotating rocks are pinned to the south against a locked collision zone where the continental Chatham Rise impinges against the margin. Slip on inland strike-slip faults is transformed seaward across a zone of fault termination into rigid body rotation of a large continental block that has been thrust eastward over the downgoing subducted slab of the Pacific plate. The rotation mechanism is a "migrating hinge," which resembles a flexed telephone book. Strike-slip faults are translated through a brecciated hinge region that does not coincide with a fixed material line in the rock.

  20. Late cretaceous pelagic sediments, volcanic ASH and biotas from near the Louisville hotspot, Pacific Plate, paleolatitude ∼42°S

    USGS Publications Warehouse

    Ballance, Peter F.; Barron, John A.; Blome, Charles D.; Bukry, David; Cawood, Peter A.; Chaproniere, George C.H.; Frisch, Robyn; Herzer, Richard H.; Nelson, Campbell S.; Quinterno, Paula; Ryan, Holly F.; Scholl, David W.; Stevenson, Andrew J.; Tappin, David G.; Vallier, Tracy L.

    1989-01-01

    Dredging on the deep inner slope of the Tonga Trench, immediately north of the intersection between the Louisville Ridge hotspot chain and the trench, recovered some Late Cretaceous (Maestrichtian) slightly tuffaceous pelagic sediments. They are inferred to have been scraped off a recently subducted Late Cretaceous guyot of the Louisville chain. In the vicinity of the Louisville hotspot (present location 50°26′S, 139°09′W; Late Cretaceous location ∼42°S, longitude unknown) Late Cretaceous rich diatom, radiolarian, silicoflagellate, foraminiferal and coccolith biotas, accumulated on the flanks of the guyot and are described in this paper. Rich sponge faunas are not described. ?Inoceramus prisms are present. Volcanic ash is of within-plate alkalic character. Isotope ratios in bulk carbonate δ18O − 2.63 to + 0.85, δ13C + 2.98 to 3.83) are normal for Pacific Maestrichtian sediments. The local CCD may have been shallower than the regional CCD, because of high organic productivity. In some samples Late Cretaceous materials have been mixed with Neogene materials. Mixing may have taken place on the flanks of the guyot during transit across the western Pacific, or on the trench slope during or after subduction and offscraping about 0.5 Ma.

  1. Evidence for True Polar Wander since mid-Cenozoic time: A Paleomagnetic Investigation of the Skewness of Magnetic Anomaly 12r (32 Ma) Between the Galapagos and Clarion Fracture Zones on the Pacific Plate

    NASA Astrophysics Data System (ADS)

    Horner-Johnson, B. C.; Gordon, R. G.

    2007-12-01

    In recent years, some researchers have asserted that there has been no motion of the Pacific hotspots relative to the spin axis since the age (ca. 47 Ma) of the elbow in the Hawaiian-Emperor chain (e.g., Tarduno et al. 2003). In contrast, the apparent polar wander of the Indo-Atlantic hotspots shows distinct motion of the hotspots relative to the spin axis over the same time interval (e.g., Morgan 1981; Besse and Courtillot 2002). If this latter shift is due to true polar wander, one would expect to see a similar shift of Pacific hotspots relative to the spin axis. Here we present critical new data and analyses to test these distinctly different hypotheses. Specifically, we present results of an investigation of the skewness of magnetic anomaly crossings of anomaly 12r between the Galapagos and Clipperton and between the Clipperton and Clarion fracture zones on the Pacific plate. We chose to focus on these adjacent regions for three reasons. First, numerical experiments showed that these crossings, of all those available from the Pacific plate, should contain the most information about the location of the 32 Ma paleomagnetic pole for the Pacific plate. Second, many of the available crossings are from vector aeromagnetic profiles, which have superior signal to noise ratios (Horner-Johnson and Gordon, 2003). Third, the rate of seafloor spreading recorded in these crossings exceeds the threshold (half rate of 50 mm/yr) above which no anomalous skewness occurs. Moreover, for the first time, we combine uncertainties in plate- hotspot rotations (Andrews et al. 2005) with paleomagnetic uncertainties to obtain the total uncertainties of our new paleomagnetic pole reconstructed into the Pacific hotspot frame of reference. The results show significant and unambiguous motion of Pacific hotspots relative to the spin axis since 32 Ma. Moreover, when the 32 Ma Pacific plate paleomagnetic pole is reconstructed into the Pacific hotspot reference frame, it is consistent with the

  2. Extending Alaska's plate boundary: tectonic tremor generated by Yakutat subduction

    USGS Publications Warehouse

    Wech, Aaron G.

    2016-01-01

    The tectonics of the eastern end of the Alaska-Aleutian subduction zone are complicated by the inclusion of the Yakutat microplate, which is colliding into and subducting beneath continental North America at near-Pacific-plate rates. The interaction among these plates at depth is not well understood, and further east, even less is known about the plate boundary or the source of Wrangell volcanism. The drop-off in Wadati-Benioff zone (WBZ) seismicity could signal the end of the plate boundary, the start of aseismic subduction, or a tear in the downgoing plate. Further compounding the issue is the possible presence of the Wrangell slab, which is faintly outlined by an anemic, eastward-dipping WBZ beneath the Wrangell volcanoes. In this study, I performed a search for tectonic tremor to map slow, plate-boundary slip in south-central Alaska. I identified ∼11,000 tremor epicenters, which continue 85 km east of the inferred Pacific plate edge marked by WBZ seismicity. The tremor zone coincides with the edges of the downgoing Yakutat terrane, and tremors transition from periodic to continuous behavior as they near the aseismic Wrangell slab. I interpret tremor to mark slow, semicontinuous slip occurring at the interface between the Yakutat and North America plates. The slow slip region lengthens the megathrust interface beyond the WBZ and may provide evidence for a connection between the Yakutat slab and the aseismic Wrangell slab.

  3. TH-C-19A-09: Quantification of Transmission and Backscatter Factors as a function of Distance to Inhomogeneity Interface for Three Types of Surgical Implant Plates

    SciTech Connect

    Wilson, D; Mills, M; Wang, B

    2014-06-15

    Purpose: Carbon fiber materials have been increasingly used clinically, mainly in orthopedics, as an alternative to metallic implants because of their minimal artifacts on CT and MRI images. This study characterizes the transmission and backscatter property of carbon fiber plates (CarboFix Orthopedics, Herzeliya, Israel) with measurements for radiation therapy applications, and compares them to traditional Stainless Steel (SS) and Titanium (Ti) metal materials. Methods: For the transmission measurements, 1-mm-thick test plate was placed upstream from a plane parallel Markus chamber, separated by various thicknesses of polystyrene plates in 0.5 cm increments between 0 and 5 cm. With this setup, we quantified the radiation transmission as a function of distance to the inhomogeneity interface. The LINAC source to detector distance was maintained at 100 cm and 200 MU was delivered for each measurement. Two 3-cm solid water phantoms were placed at the top and bottom to provide build up. All the measurements were performed for 6 MV and 18 MV photons. The backscatter measurements had the identical setup, except that the test plate was downstream of the chamber from radiation. Results: The carbon fiber plates did not introduce any measureable inhomogeneity effect on the transmission and backscatter factor because of its low atomic number. In contrast, traditional metal implant materials caused up to 15% dose difference at upstream and 25% backscatter at downstream from radiation. Such differences decrease as the distance to the inhomogeneity interface increases and become unmeasurable at distance of 3 cm and 1 cm for upstream and downstream, respectively. Conclusion: A new type of carbon fiber implant plate was evaluated and found to have minimal inhomogeneity effect in MV radiation beams. Patients would benefit from a carbon based implant over metal for radiation therapy due to their minimal backscatter and imaging artifacts.

  4. Compilation of Surface Creep on California Faults and Comparison of WGCEP 2007 Deformation Model to Pacific-North American Plate Motion

    USGS Publications Warehouse

    Wisely, Beth A.; Schmidt, David A.; Weldon, Ray J.

    2008-01-01

    This Appendix contains 3 sections that 1) documents published observations of surface creep on California faults, 2) constructs line integrals across the WG-07 deformation model to compare to the Pacific ? North America plate motion, and 3) constructs strain tensors of volumes across the WG-07 deformation model to compare to the Pacific ? North America plate motion. Observation of creep on faults is a critical part of our earthquake rupture model because if a fault is observed to creep the moment released as earthquakes is reduced from what would be inferred directly from the fault?s slip rate. There is considerable debate about how representative creep measured at the surface during a short time period is of the whole fault surface through the entire seismic cycle (e.g. Hudnut and Clark, 1989). Observationally, it is clear that the amount of creep varies spatially and temporally on a fault. However, from a practical point of view a single creep rate is associated with a fault section and the reduction in seismic moment generated by the fault is accommodated in seismic hazard models by reducing the surface area that generates earthquakes or by reducing the slip rate that is converted into seismic energy. WG-07 decided to follow the practice of past Working Groups and the National Seismic Hazard Map and used creep rate (where it was judged to be interseismic, see Table P1) to reduce the area of the fault surface that generates seismic events. In addition to following past practice, this decision allowed the Working Group to use a reduction of slip rate as a separate factor to accommodate aftershocks, post seismic slip, possible aseismic permanent deformation along fault zones and other processes that are inferred to affect the entire surface area of a fault, and thus are better modeled as a reduction in slip rate. C-zones are also handled by a reduction in slip rate, because they are inferred to include regions of widely distributed shear that is not completely

  5. SEISMICITY AND VOLCANISM IN THE PACIFIC NORTHWEST: EVIDENCE FOR THE SEGMENTATION OF THE JUAN DE FUCA PLATE.

    USGS Publications Warehouse

    Weaver, Craig S.; Michaelson, Caryl A.

    1985-01-01

    The distributions of earthquakes and late Cenozoic and Quaternary volcanism in Washington and northern Oregon change markedly across two northeast-striking lines, one near Mount Rainier and one near Mount Hood. On the basis of these observations and a comparison with the Nazoa subduction zone, we propose that the Juan de Fuca subduction zone is divided into two segments. Landward of the coastal thrust zone, we suggest the Juan de Fuca plate dips more steeply beneath the southern segment than beneath the northern segment. Refs.

  6. An unrecognized major collision of the Okhotomorsk Block with East Asia during the Late Cretaceous, constraints on the plate reorganization of the Northwest Pacific

    NASA Astrophysics Data System (ADS)

    Yang, Yong-Tai

    2013-11-01

    Interactions at plate boundaries induce stresses that constitute critical controls on the structural evolution of intraplate regions. However, the traditional tectonic model for the East Asian margin during the Mesozoic, invoking successive episodes of paleo-Pacific oceanic subduction, does not provide an adequate context for important Late Cretaceous dynamics across East Asia, including: continental-scale orogenic processes, significant sinistral strike-slip faulting, and several others. The integration of numerous documented field relations requires a new tectonic model, as proposed here. The Okhotomorsk continental block, currently residing below the Okhotsk Sea in Northeast Asia, was located in the interior of the Izanagi Plate before the Late Cretaceous. It moved northwestward with the Izanagi Plate and collided with the South China Block at about 100 Ma. The indentation of the Okhotomorsk Block within East Asia resulted in the formation of a sinistral strike-slip fault system in South China, formation of a dextral strike-slip fault system in North China, and regional northwest-southeast shortening and orogenic uplift in East Asia. Northeast-striking mountain belts over 500 km wide extended from Southeast China to Southwest Japan and South Korea. The peak metamorphism at about 89 Ma of the Sanbagawa high-pressure metamorphic belt in Southwest Japan was probably related to the continental subduction of the Okhotomorsk Block beneath the East Asian margin. Subsequently, the north-northwestward change of motion direction of the Izanagi Plate led to the northward movement of the Okhotomorsk Block along the East Asian margin, forming a significant sinistral continental transform boundary similar to the San Andreas fault system in California. Sanbagawa metamorphic rocks in Southwest Japan were rapidly exhumed through the several-kilometer wide ductile shear zone at the lower crust and upper mantle level. Accretionary complexes successively accumulated along the East

  7. An analysis of the relaxation of laminar boundary layer on a flat plate after passage of an interface with application to expansion-tube flows

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.

    1972-01-01

    The relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate in an expansion tube is analyzed. Several combinations of test gas and acceleration gas are considered. The problem is treated in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this lag is negligible. The time-dependent laminar-boundary-layer equations of a binary mixture of perfect gases are taken as the flow-governing equations. This coupled set of differential equations, written in terms of the Lam-Crocco variables, has been solved by a line-relaxation finite-difference techniques. The results presented include the Stanton number and the local skin-friction coefficient as functions of shock Mach number and the nondimensional distance-time variable. The results indicate that more than 95 percent of the test-gas boundary layer exists over a length, measured from the leading edge of the plate, equal to about three-tenths of the distance traversed by the interface in the free stream.

  8. Microstructural Characterization of the U-9.1Mo Fuel/AA6061 Cladding Interface in Friction-Bonded Monolithic Fuel Plates Irradiated in the RERTR-6 Experiment

    SciTech Connect

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Medvedev, Pavel; Madden, James; Wachs, Dan; Clark, Curtis; Meyer, Mitch

    2015-09-03

    Low-enrichment (U-235 < 20%) U-Mo monolithic fuel is being developed for use in research and test reactors. The earliest design for this fuel that was investigated via reactor testing was comprised of a nominally U-10Mo fuel foil encased in AA6061 (Al-6061) cladding. For a fuel design to be deemed adequate for final use in a reactor, it must maintain dimensional stability and retain fission products throughout irradiation, which means that there must be good integrity at the fuel foil/cladding interface. To investigate the nature of the fuel/cladding interface for this fuel type after irradiation, fuel plates that were tested in INL's Advanced Test Reactor (ATR) were subsequently characterized using optical metallography, scanning electron microscopy, and transmission electron microscopy. Results of this characterization showed that the fuel/cladding interaction layers present at the U-Mo fuel/AA6061 cladding interface after fabrication became amorphous during irradiation. Up to two main interaction layers, based on composition, could be found at the fuel/cladding interface, depending on location. After irradiation, an Al-rich layer contained very few fission gas bubbles, but did exhibit Xe enrichment near the AA6061 cladding interface. Another layer, which contained more Si, had more observable fission gas bubbles. Adjacent to the AA6061 cladding were Mg-rich precipitates, which was in close proximity to the region where Xe is observed to be enriched. In samples produced using a focused ion beam at the interaction zone/AA6061 cladding interface were possible indications of porosity/debonding, which suggested that the interface in this location is relatively weak.

  9. Microstructural Characterization of the U-9.1Mo Fuel/AA6061 Cladding Interface in Friction-Bonded Monolithic Fuel Plates Irradiated in the RERTR-6 Experiment

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Medvedev, Pavel; Madden, James; Wachs, Dan; Clark, Curtis; Meyer, Mitch

    2015-09-01

    Low-enrichment (235U < 20 pct) U-Mo monolithic fuel is being developed for use in research and test reactors. The earliest design for this fuel that was investigated via reactor testing consisted of a nominally U-10Mo fuel foil encased in AA6061 (Al-6061) cladding. For a fuel design to be deemed adequate for final use in a reactor, it must maintain dimensional stability and retain fission products throughout irradiation, which means that there must be good integrity at the fuel foil/cladding interface. To investigate the nature of the fuel/cladding interface for this fuel type after irradiation, fuel plates were fabricated using a friction bonding process, tested in INL's advanced test reactor (ATR), and then subsequently characterized using optical metallography, scanning electron microscopy, and transmission electron microscopy. Results of this characterization showed that the fuel/cladding interaction layers present at the U-Mo fuel/AA6061 cladding interface after fabrication became amorphous during irradiation. Up to two main interaction layers, based on composition, could be found at the fuel/cladding interface, depending on location. After irradiation, an Al-rich layer contained very few fission gas bubbles, but did exhibit Xe enrichment near the AA6061 cladding interface. Another layer, which contained more Si, had more observable fission gas bubbles. In the samples produced using a focused ion beam at the interaction zone/AA6061 cladding interface, possible indications of porosity/debonding were found, which suggested that the interface in this location is relatively weak.

  10. Microstructural Characterization of the U-9.1Mo Fuel/AA6061 Cladding Interface in Friction-Bonded Monolithic Fuel Plates Irradiated in the RERTR-6 Experiment

    DOE PAGES

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon; ...

    2015-09-03

    Low-enrichment (U-235 < 20%) U-Mo monolithic fuel is being developed for use in research and test reactors. The earliest design for this fuel that was investigated via reactor testing was comprised of a nominally U-10Mo fuel foil encased in AA6061 (Al-6061) cladding. For a fuel design to be deemed adequate for final use in a reactor, it must maintain dimensional stability and retain fission products throughout irradiation, which means that there must be good integrity at the fuel foil/cladding interface. To investigate the nature of the fuel/cladding interface for this fuel type after irradiation, fuel plates that were tested inmore » INL's Advanced Test Reactor (ATR) were subsequently characterized using optical metallography, scanning electron microscopy, and transmission electron microscopy. Results of this characterization showed that the fuel/cladding interaction layers present at the U-Mo fuel/AA6061 cladding interface after fabrication became amorphous during irradiation. Up to two main interaction layers, based on composition, could be found at the fuel/cladding interface, depending on location. After irradiation, an Al-rich layer contained very few fission gas bubbles, but did exhibit Xe enrichment near the AA6061 cladding interface. Another layer, which contained more Si, had more observable fission gas bubbles. Adjacent to the AA6061 cladding were Mg-rich precipitates, which was in close proximity to the region where Xe is observed to be enriched. In samples produced using a focused ion beam at the interaction zone/AA6061 cladding interface were possible indications of porosity/debonding, which suggested that the interface in this location is relatively weak.« less

  11. On gravity from SST, geoid from Seasat, and plate age and fracture zones in the Pacific. [Satellite-to-Satellite Tracking

    NASA Technical Reports Server (NTRS)

    Marsh, B. D.; Marsh, J. G.; Williamson, R. G.

    1984-01-01

    Data from an additional 50 satellite-to-satellite tracking (SST) passes were combined with earlier measurements of the high degree and order (n, m, 12) gravity in the central Pacific. A composite map was produced which shows good agreement with conventional GEM models. Data from the Seasat altimeter was reduced and found to agree well with both the SST and the GEM fields. The maps are dominated especially in the east, by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. Further comparison with regional bathymetric data shows a remarkably close correlation with plate age. Each anomaly band is framed by those major fracture zones having large offsets. The regular spacing of these fractures seems to account for the fabric in the gravity fields. Other anomalies are accounted for by hot spots. The source of part of these anomalies is in the lithosphere itself. The possible plume size and ascent velocity necessary to supply deep mantle material to the upper mantle without complete thermal equilibration is considered. Previously announced in STAR as N84-11559

  12. Slow slip and aseismic deformation episodes associated with the subducting Pacific plate offshore Japan, revealed by changes in seismicity (Invited)

    NASA Astrophysics Data System (ADS)

    Marsan, D.; Reverso, T.; Helmstetter, A.; Enescu, B.

    2013-12-01

    Aseismic phenomena, including slow slip, can alter the surrounding seismicity. We here investigate how seismicity can be used in order to reveal episodes of aseismic deformation: transient anomalous increases of seismicity activity are searched for, as signatures of episodic aseismic deformation in a fault zone. An objective method is proposed, that accounts for both earthquake interactions and transient loading. Applying it to the 1990 - 2011 (pre-Tohoku) seismicity of the Japan subduction zone, we find several significant instances of aseismic transients. Small scale and short duration transients are favored updip of the subducting plate.Large scale transients are mostly observed off-shore Ibaraki prefecture, in a partly decoupled zone that extends downdip. The four most intense of such transients have occurred periodically every 5.9 years, and are likely due to slow slip episodes. Other aseismic phenomena, including possible fluid intrusion in the outer-rise, are also detected. Finally, the seismicity in January and February 2011, close to the epicenter of the mega-thrust Tohoku earthquake, is found to be due to aseismic loading, confirming previous studies, although this transient is only one among others, and is not the most intense nor the most significant for the 21 year-long period studied here.

  13. Slow slip and aseismic deformation episodes associated with the subducting Pacific plate offshore Japan, revealed by changes in seismicity

    NASA Astrophysics Data System (ADS)

    Marsan, D.; Reverso, T.; Helmstetter, A.; Enescu, B.

    2013-09-01

    Aseismic phenomena, including slow slip, can alter the surrounding seismicity. We here investigate how seismicity can be used in order to reveal episodes of aseismic deformation. An objective method is proposed that accounts for both earthquake interactions and transient loading. Applying it to the 1990-2011 (pre-Tohoku) seismicity of the Japan subduction zone, we find several significant instances of aseismic transients. Small-scale and short-duration transients are favored updip of the subducting plate. Large-scale transients are mostly observed offshore Ibaraki prefecture, in a partly decoupled zone that extends downdip. The four most intense of such transients have occurred periodically every 5.9years and are likely due to slow-slip episodes. Other aseismic phenomena, including possible fluid intrusion in the outer rise, are also detected. Finally, the seismicity in January and February 2011, close to the epicenter of the megathrust Tohoku earthquake, is found to be due to aseismic loading, confirming previous studies, although this transient is only one among others and is not the most intense nor the most significant for the 21year long period studied here.

  14. Geochronology and geochemistry of Late Cretaceous-Paleocene granitoids in the Sikhote-Alin Orogenic Belt: Petrogenesis and implications for the oblique subduction of the paleo-Pacific plate

    NASA Astrophysics Data System (ADS)

    Tang, Jie; Xu, Wenliang; Niu, Yaoling; Wang, Feng; Ge, Wenchun; Sorokin, A. A.; Chekryzhov, I. Y.

    2016-12-01

    We present zircon U-Pb ages, major and trace element analyses, and zircon Hf isotope data on the Late Cretaceous-Paleocene granitoids at the southern end of the Sikhote-Alin Orogenic Belt of the Russian Far East. These data are used to discuss the petrogenesis of the granitoids in the context of the paleo-Pacific subduction beneath the eastern Eurasia. Zircons from four granitoid samples give emplacement ages of 56, 83, 91, and 92 Ma. These granitoids with high SiO2 (73.43-76.76 wt%) are metaluminous to weakly peraluminous (A/CNK = 0.97-1.03) and belong to the high-K calc-alkaline series (K2O = 3.75-4.95 wt%). They are all enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), and relatively depleted in high field strength elements (HFSEs) with striking depletion also in Ba, Sr, P and Eu. They are petrographically and geochemically consistent with being of I-type granitoids. The zircons have εHf (t) values (- 0.8 to + 7.6) higher than whole-rock εHf (t) values predicted from whole-rock εNd (t) (- 4.1 to + 0.5) in the literature. All these observations suggest that primary magmas parental to these granitoids were likely to have derived from partial melting of a juvenile lower crust accompanied by assimilation with ancient mature crust during magma ascent and evolution. A recent study illustrates that the collision of an exotic terrane carried by the paleo-Pacific plate with the continental China at 100 Ma accreted the basement of the Chinese continental shelf (beneath East and South China Seas), and resulted in a new plate boundary of transform nature between the NNW moving paleo-Pacific plate and the eastern margin of the shelf. Our new data and analysis of existing data support this hypothesis, but we hypothesize that this transform becomes transpressional in its northern segment with oblique subduction of the paleo-Pacific plate beneath northeastern Asia as manifested by the Late Cretaceous-Paleocene granitoids in the Russian

  15. Neotectonic studies of northern Baja California, Mexico, with LANDSAT thematic mapper and SPOT panchromatic imagery: Partitioning of dextral and extensional strain at the Pacific-North America plate boundary

    NASA Technical Reports Server (NTRS)

    Miller, M. Meghan; Crippen, Robert E.; Dixon, Timothy H.

    1991-01-01

    Numerous studies of active faulting in southern California indicate that the San Jacinto, Elsinore, and adjacent faults west of the San Andreas fault accommodate a significant proportion of Pacific-North America relative plate motion. Because of the complex distribution of slip, little is known about the activities of these and similar structures in northern Baja California and the southward transition to the oceanic ridge transform-fault system in the Gulf of California. SPOT and LANDSAT Thematic Mapper imagery for northern Baja California was processed to optimize discrimination of lithologic and structural features. This data was used to suggest a preliminary kinematic framework for distribution of relative plate motion between 31 and 33 degrees north, in which continental borderland tectonics play an important role in partitioning of plate motion.

  16. Structural and Tectonic Map Along the Pacific-North America Plate Boundary in Northern Gulf of California, Sonora Desert and Valle de Mexicali, Mexico, from Seismic Reflection Evidence

    NASA Astrophysics Data System (ADS)

    Gonzalez-Escobar, M.; Suarez-Vidal, F.; Mendoza-Borunda, R.; Martin Barajas, A.; Pacheco-Romero, M.; Arregui-Estrada, S.; Gallardo-Mata, C.; Sanchez-Garcia, C.; Chanes-Martinez, J.

    2012-12-01

    Between 1978 and 1983, Petróleos Mexicanos (PEMEX) carried on an intense exploration program in the northern Gulf of California, the Sonora Desert and the southern part of the Mexicali Valley. This program was supported by a seismic reflection field operation. The collected seismic data was 2D, with travel time of 6 s recording, in 48 channels, and the source energy was: dynamite, vibroseis and air guns. Since 2007 to present time, the existing seismic data has been re-processing and ire-interpreting as part of a collaboration project between the PEMEX's Subdirección de Exploración (PEMEX) and CICESE. The study area is located along a large portion of the Pacific-North America plate boundary in the northern Gulf of California and the Southern part of the Salton Trough tectonic province (Mexicali Valley). We present the result of the processes reflection seismic lines. Many of the previous reported known faults were identify along with the first time described located within the study region. We identified regions with different degree of tectonic activity. In structural map it can see the location of many of these known active faults and their associated seismic activity, as well as other structures with no associated seismicity. Where some faults are mist placed they were deleted or relocated based on new information. We included historical seismicity for the region. We present six reflection lines that cross the aftershocks zone of the El Mayor-Cucapah earthquake of April 4, 2010 (Mw7.2). The epicenter of this earthquake and most of the aftershocks are located in a region where pervious to this earthquake no major earthquakes are been reported. A major result of this study is to demonstrate that there are many buried faults that increase the seismic hazard.

  17. New Insights into Strain Accumulation and Release in the Central and Northern Walker Lane, Pacific-North American Plate Boundary, California and Nevada, USA

    NASA Astrophysics Data System (ADS)

    Bormann, Jayne M.

    The Walker Lane is a 100 km-wide distributed zone of complex transtensional faulting that flanks the eastern margin of the Sierra Nevada. Up to 25% of the total Pacific-North American relative right-lateral plate boundary deformation is accommodated east of the Sierra Nevada, primarily in the Walker Lane. The results of three studies in the Central and Northern Walker Lane offer new insights into how constantly accumulating plate boundary shear strain is released on faults in the Walker Lane and regional earthquake hazards. This research is based on the collection and analysis of new of geologic and geodetic datasets. Two studies are located in the Central Walker Lane, where plate boundary deformation is accommodated on northwest trending right-lateral faults, east-northeast trending left-lateral faults, and north trending normal faults. In this region, a prominent set of left-stepping, en-echelon, normal fault-bounded basins between Walker Lake and Lake Tahoe fill a gap in Walker Lane strike slip faults. Determining how these basins accommodate shear strain is a primary goal of this research. Paleoseismic and neotectonic observations from the Wassuk Range fault zone in the Walker Lake basin record evidence for at least 3 Holocene surface rupturing earthquakes and Holocene/late Pleistocene vertical slip rates between 0.4-0.7 mm/yr on the normal fault, but record no evidence of right-lateral slip along the rangefront fault. A complementary study presents new GPS velocity data that measures present-day deformation across the Central Walker Lane and infers fault slip and block rotation rates using an elastic block model. The model results show a clear partitioning between distinct zones of strain accommodation characterized by (1) right-lateral translation of blocks on northwest trending faults, (2) left-lateral slip and clockwise block rotations between east and northeast trending faults, and (3) right-lateral oblique normal slip with minor clockwise block rotations

  18. Decarbonation of the Subducting Pacific Plate Triggered by the Lawsonite-to-Epidote Transition Beneath the Mariana Forearc Serpentinite Mud Volcanoes

    NASA Astrophysics Data System (ADS)

    Mottl, M. J.; McCollom, T. M.; Wheat, C. G.; Fryer, P.

    2008-12-01

    A band of serpentinite mud volcanoes in the outer half of the Mariana forearc provides a unique view into conditions, processes, and fluxes in the shallowest part of a subduction zone, to depths of ~25 km. These large mud volcanoes, up to 2 km high and 50 km across, are abundant along a 600-km swath from 13°47'N to 19°33'N and from 50 to 90 km behind the trench. They form when water generated by dehydration of the subducting Pacific Plate ascends into the overlying mantle of the Philippine Plate and converts it to serpentinite. This low-density rock then rises buoyantly along fractures and extrudes at the seafloor, usually as a point source, producing a mud volcano with a central conduit that is narrow relative to the diameter of the volcano. This conduit feeds flows of unconsolidated sedimentary serpentinite that comprise the bulk of the seamount and contain variably serpentinized clasts of harzburgite ranging in size from silt to boulders. The upwelling serpentinite brings up fragments of subducted ocean crust metamorphosed in the blueschist facies. Also rising up are the aqueous fluids generated during, and responsible for, this metamorphism and serpentinization, that exit the seafloor as springs on the summits of the mud volcanoes. Because depleted harzburgite is much simpler chemically and mineralogically than most igneous rocks, these upwelling pore waters retain a clear chemical signal of their deep metamorphic origin in spite of their long ascent. The ascending fluids are all fresher than seawater because of slab dehydration. Their chemistry varies abruptly with distance: near the trench, at 48-54 km, they have pH 10.7, much higher Ca and Sr than seawater and much lower alkalinity, sulfate, Na/Cl, K, Rb, and B. Farther from the trench, at 70 to 90 km, the waters have pH 12.5 and show the opposite trends relative to seawater for all of these species. Sulfate, Na/Cl, K, Rb, Cs, and B all increase regularly with distance from the trench, leached from the

  19. A variety of slip behaviors along plate interface and interplay among them before and after the 2011 Mw9.0 Tohoku-Oki earthquake (Invited)

    NASA Astrophysics Data System (ADS)

    Kato, A.; Obara, K.

    2013-12-01

    Prior to the 11 March 2011 Mw 9.0 Tohoku earthquake in Japan, two distinct sequences of foreshock migrations along the trench axis toward the mainshock epicenter were identified by an earthquake catalog created using a waveform correlation technique [Kato et al., 2012, Science]. In addition, the time history of quasi-static slip along the plate interface extracted from small repeating earthquakes shows that transient slip coincided with the two sequences of earthquake migrations. The transient slip first started to build up from mid- to late February. After the Mw 7.3 foreshock, the amount of transient slip increased abruptly to the north of the Mw 7.3 epicenter, though it slightly slowed down logarithmically with time, a phenomenon commonly observed in afterslip. In contrast, slip in the earthquake migration zone (to the south of the Mw 7.3 epicenter) increased almost linearly during the final phase. Geodetic measurements also detected transient deformation after the Mw 7.3 foreshock [Ohta et al., 2012, GRL]. These results provide strong evidence for the propagation of slow-slip events toward the Mw 9.0 epicenter. The slow-slip events may have caused stress loading onto the prospective hypocenter of the Mw 9.0 mainshock and prompted the initiation of unstable dynamic rupture. Similar stress loading by transient slip onto prospective hypocenter was identified by earthquake migrations prior to the 2008 Mw 6.8 interplate (Ibaraki-Oki) earthquake, and by geodetic measurement before the 2004 Mw 7.0 earthquake offshore of eastern Hokkaido [Murakami et al., 2006, GRL]. Stress loading by slow slip transients plays a crucial role to prompt initiation of dynamic rupture, provided that large-sized potential earthquake-nucleation patch is close to failure. After the Tohoku-Oki mainshock rupture, any subsequent seismicity along the plate interface in the foreshock area was abruptly terminated, and has remained very low ever since [Kato and Igarashi, 2012, GRL]. This

  20. On plane stress state and stress free deformation of thick plate with FGM interface under thermal loading

    NASA Astrophysics Data System (ADS)

    Szubartowski, Damian; Ganczarski, Artur

    2016-10-01

    This paper demonstrates the plane stress state and the stress free thermo-elastic deformation of FGM thick plate under thermal loading. First, the Sneddon-Lockett theorem on the plane stress state in an isotropic infinite thick plate is generalized for a case of FGM problem in which all thermo-mechanical properties are optional functions of depth co-ordinate. The proof is based on application of the Iljushin thermo-elastic potential to displacement type system of equations that reduces it to the plane stress state problem. Then an existence of the purely thermal deformation is proved in two ways: first, it is shown that the unique solution fulfils conditions of simultaneous constant temperature and linear gradation of thermal expansion coefficient, second, proof is based directly on stress type system of equations which straightforwardly reduces to compatibility equations for purely thermal deformation if only stress field is homogeneous in domain and at boundary. Finally, couple examples of application to an engineering problem are presented.

  1. Plating Tank Control Software

    SciTech Connect

    Krafcik, John

    1998-03-01

    The Plating Tank Control Software is a graphical user interface that controls and records plating process conditions for plating in high aspect ratio channels that require use of low current and long times. The software is written for a Pentium II PC with an 8 channel data acquisition card, and the necessary shunt resistors for measuring currents in the millampere range.

  2. The Fairway-Aotea Basin and the New Caledonia Trough, witnesses of the Pacific-Australian plate boundary evolution : from mid-Cretaceous cessation of subduction to Eocene subduction renewal

    NASA Astrophysics Data System (ADS)

    Collot, J.; Geli, L. B.; Lafoy, Y.; Sutherland, R.; Herzer, R. H.; Roest, W. R.

    2009-12-01

    The geodynamical history of the SW Pacific is controlled since the Mesozoic by the evolution of peri-Pacific subduction zones, in a trench retreat by slab roll-back process, which successively occurred along the Eastern Gondwana margin. In this context, most basins which formed after 45 Ma reached a stage of seafloor spreading, have recorded the inversions of the earth's magnetic field and present typical oceanic crust morphologies. By contrast, the New Caledonia and Fairway basins, which are narrower and present thick sedimentary covers have a less known and more controversial origin. Based on a regional geological synthesis and on interpretation of multichannel seismic reflection and refraction data, combined with drill hole data off New Zealand and a compilation of regional potential data, we distinguish 2 phases of the evolution of the Fairway-Aotea Basin (FAB) and the New Caledonia Trough (NCT), which reflect the evolution of the Gondwana-Pacific plate boundary: Phase 1: Mid Cretaceous formation of the FAB in a continental intra- or back- arc position of the Pacific-Gondwana subduction system. The formation of this shallow basin reflects the onset of continental breakup of the Eastern Gondwana margin during Cenomanian which was most probably caused by a dynamic change of the subduction zone through a « verticalization » of the slab. This event may be the result of the 99 Ma kinematic plate reorganization which probably led to subduction cessation along the Gondwana-Pacific plate boundary. A tectonic escape mechanism, in relation with the locking of the subduction zone by the Hikurangi Plateau, could also be responsible of the trench retreat leading to backarc extension. Phase 2: Regional Eocene-Oligocene uplift followed by rapid subsidence (3-4 km) of the system « Lord Howe Rise - FAB - Norfolk Ridge ». The structural style of this deformation leads us to suggest that detachment of the lower crust is the cause of subsidence. We therefore propose a model in

  3. The Turbulent Boundary Layer Near the Air-Water Interface on a Surface-Piercing Flat Plate

    NASA Astrophysics Data System (ADS)

    Washuta, Nathan; Masnadi, Naeem; Duncan, James H.

    2015-11-01

    Turbulent fluctuations in the vicinity of the water free surface along a flat, vertically oriented surface-piercing plate are studied experimentally using a laboratory-scale experiment. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes, which are separated by 7.5 meters. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section between rollers. The belt is launched from rest with a 3- g acceleration in order to quickly reach steady state velocity. This creates a temporally evolving boundary layer analogous to the spatially evolving boundary layer created along a flat-sided ship moving at the same velocity, with a length equivalent to the length of belt that has passed the measurement region since the belt motion began. Cinematic Stereo PIV measurements are performed in planes parallel to the free surface by imaging the flow from underneath the tank in order to study the modification of the boundary layer flow field due to the effects of the water free surface. The support of the Office of Naval Research under grant N000141110029 is gratefully acknowledged.

  4. Monitoring of slip at the transition zone on the plate interface estimated from non-volcanic deep low-frequency tremors in southwestern Japan

    NASA Astrophysics Data System (ADS)

    Ishida, R.; Hiramatsu, Y.; Obara, K.; Matsuzawa, T.

    2011-12-01

    In southwestern Japan, non-volcanic deep low-frequency (DLF) tremors (e.g., Obara, 2002) and short-term slow slip events (S-SSEs; e.g., Obara et al., 2004) occur in temporal and spatial coincidence with the active stages of DLF tremors (Obara et al., 2004). Based on this feature, Hiramatsu et al. (2008) proposed a method to monitor slip at the transition zone between the locked and aseismic slip zones on the plate interface using DLF tremors. In this study, we applied the method as the same way of previous studies (Hiramatsu et al., 2008; Hirose et al., 2010) and estimated the long-term average slip rate at the transition zone from DLF tremors in southwestern Japan. We also estimated the slip distributions of S-SSEs from DLF tremors using the modified envelope correlation method (ECM) tremor catalog (Maeda and Obara, 2009) and the hourly centroid tremor catalog (Obara et al., 2010) along with the ECM tremor catalog (Obara, 2002) in southwestern Japan. The modified ECM applied both the differential travel time and the spatial distribution of mean square amplitudes to estimate a tremor's spatial location and radiation energy. The hourly centroid tremor catalog is constructed using a clustering process to estimate centroid locations, revealing clear depth-dependent behavior of the tremor activity. The cumulative seismic moment from 2001 to 2009 increases at a constant rate, indicating a constant moment release rate in the long-term average. We estimated slip rate at the transition zone using the formula ˙ {M0} = μ S_˙ {U}, where ˙ {M0} is the moment release rate, μ the rigidity, S the fault area that is related to the slip of S-SSEs in each region, and ˙ {U} the slip rate. We obtained the slip rates of 4.1 ± 0.5 cm/yr, 3.7 ± 0.6 cm/yr, and 2.6 ± 0.2 cm/yr in the western Shikoku, northern Kii peninsula, and Tokai regions, respectively, at the transition zone through the analyzed period. The slip deficit rate at the transition zone in each region is 2.6cm/yr, 2

  5. Insights into a fossil plate interface of an erosional subduction zone: a tectono-metamorphic study of the Tianshan metamorphic belt.

    NASA Astrophysics Data System (ADS)

    Bayet, Lea; Moritz, Lowen; Li, Jilei; Zhou, Tan; Agard, Philippe; John, Timm; Gao, Jun

    2016-04-01

    Subduction zone seismicity and volcanism are triggered by processes occurring at the slab-wedge interface as a consequence of metamorphic reactions, mass-transfer and deformation. Although the shallow parts of subduction zones (<30-40 km) can be partly accessed by geophysical methods, the resolution of these techniques is insufficient to characterize and image the plate interface at greater depths (>60km). In order to better understand the plate interface dynamics at these greater depths, one has to rely on the rock record from fossil subduction zones. The Chinese Tianshan metamorphic belt (TMB) represents an ideal candidate for such studies, because structures are well exposed with exceptionally fresh high-pressure rocks. Since previous studies from this area focused on fluid-related processes and its metamorphic evolution was assessed on single outcrops, the geodynamic setting of this metamorphic belt is unfortunately heavily debated. Here, we present a new geodynamic concept for the TMB based on detailed structural and petrological investigations on a more regional scale. A ~11km x 13km area was extensively covered, together with E-W and N-S transects, in order to produce a detailed map of the TMB. Overall, the belt is composed of two greenschist-facies units that constitute the northern and southern border of a large high-pressure (HP) to ultra high-pressure (UHP) unit in the center. This HP-UHP unit is mainly composed of metasediments and volcanoclastic rocks, with blueschist, eclogite and carbonate lenses. Only the southern part of the HP-UHP unit is composed of the uppermost part of an oceanic crust (e.g., pillow basalts and deep-sea carbonates). From south to north, the relative abundance and size of blueschist massive boudins and layers (as well as eclogite boudins) decreases and the sequence is increasingly interlayered with metasedimentary and carbonate-rich horizons. This indicates that the subducted material was dominated by trench filling made of

  6. Initial subduction of the Paleo-Pacific Oceanic plate in NE China: Constraints from whole-rock geochemistry and zircon U-Pb and Lu-Hf isotopes of the Khanka Lake granitoids

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Zhang, Jinjiang; Wilde, Simon A.; Zhou, Jianbo; Wang, Meng; Ge, Maohui; Wang, Jiamin; Ling, Yiyun

    2017-03-01

    Northeast China is located in the eastern part of the Central Asian Orogenic Belt (CAOB) and was influenced by Paleo-Pacific subduction during the Mesozoic. Abundant granitoids from the late Paleozoic to early Mesozoic in NE China record this process, including the Khanka Lake granitoids, which resulted in extensive growth of continental crust in the area. However, the question of how and when the Paleo-Pacific tectonic system began to affect NE China is still highly controversial. The Khanka Lake granitoids can be subdivided into two main components based on their geochemical characteristics, namely granodiorite and syenogranite. The granodiorite has a U-Pb age of 249 Ma and is adakite-like (enriched in LREE and LILEs with high Mg#, Sr, La/Yb, Sr/Y and Na2O/K2O), with zircon εHf(t) values of - 0.65 to 1.61, produced by the magma mixing between melting of the lower continental crust and juvenile basaltic magma. The syenogranite has zircon U-Pb ages of 209 to 199 Ma and geochemical features of highly fractionated I-type granites, with high SiO2, total alkalis and low Mg (and Mg#), Fe, Cr and Ni, and positive zircon εHf(t) of 1.72 to 5.12, indicating an origin from remelting of juvenile crust. The granitoids were intruded by felsic veins between 195 and 184 Ma with positive zircon εHf(t) from 0.57 to 5.32. The εHf(t) values of the granitoids become more positive as the zircon U-Pb ages become younger, suggesting continuous melting of juvenile crust during subduction. It is concluded that the Khanka Lake granitoids record the early stage of subduction of the Paleo-Pacific Oceanic plate, which commenced at least ca. 250 Ma ago.

  7. Linking serpentinite geochemistry with tectonic evolution at the subduction plate-interface: The Voltri Massif case study (Ligurian Western Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Cannaò, E.; Scambelluri, M.; Agostini, S.; Tonarini, S.; Godard, M.

    2016-10-01

    , whereas mylonitic serpentinite is reset in its concentrations of FME and its B, Sr and Pb isotope compositions, due to interaction with sediment- and crust-derived fluids. The environment of this interaction is either compatible with (i) an outer-rise zone setting, with percolation of seawater-derived fluids enriched in sedimentary components into bending-related fault structures, or with (ii) subduction channel domains, where ascending sediment-derived slab fluids infiltrate slices of former oceanic serpentinite accreted to the plate interface domain. Influx of sediment-derived subduction fluids along major deformation zones in serpentinite modifies the element budget of the rocks, with important implications for element recycling and the tectonic history of serpentinite. The B, Sr and Pb isotopic systematics, coupled with FME concentration in serpentinites are particularly helpful geochemical tracers of interaction between different reservoirs in subduction-interface environments, and are more sensitive than the traditionally applied stable oxygen and hydrogen isotope compositions.

  8. Channel plate for DNA sequencing

    DOEpatents

    Douthart, Richard J.; Crowell, Shannon L.

    1998-01-01

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface.

  9. Channel plate for DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  10. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    NASA Astrophysics Data System (ADS)

    Andolina, Vincent L.

    The scientific hypothesis of this work is that modulation of the properties of hard materials to exhibit abrasion-reducing and low-energy surfaces will extend the functional lifetimes of elastomeric seals pressed against them in abrasive underwater systems. The initial motivation of this work was to correct a problem noted in the leaking of seals at major hydropower generating facilities subject to fouling by abrasive zebra mussel shells and extensive corrosion. Similar biofouling-influenced problems can develop at seals in medical devices and appliances from regulators in anesthetic machines and SCUBA diving oxygen supply units to autoclave door seals, injection syringe gaskets, medical pumps, drug delivery components, and feeding devices, as well as in food handling equipment like pasteurizers and transfer lines. Maritime and many other heavy industrial seal interfaces could also benefit from this coating system. Little prior work has been done to elucidate the relationship of seal plate surface properties to the friction and wear of elastomeric seals during sliding contacts of these articulating materials, or to examine the secondary influence of mineralized debris within the contacting interfaces. This investigation utilized the seal materials relevant to the hydropower application---neoprene elastomer against carbon steel---with and without the application of a silicone-epoxy coating (WearlonRTM 2020.98) selected for its wear-resistance, hydrophobicity, and "easy-release" capabilities against biological fouling debris present in actual field use. Analytical techniques applied to these materials before and after wear-producing processes included comprehensive Contact Angle measurements for Critical Surface Tension (CA-CST) determination, Scanning Electron Microscopic inspections, together with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and X-Ray Fluorescence (XRF) measurements for determination of surface texture and inorganic composition, Multiple

  11. Recent plate motions and crustal deformation

    SciTech Connect

    Lisowski, M. )

    1991-01-01

    Reports by U.S. workers on geodetic measurements of recent plate motions or crustal deformation published in 1987-1990 are reviewed. The review begins with global plate motions, proceeds through plate boundaries in California, Alaska, and the Pacific Northwest, and finishes with volcanic phenomena, monument stability and longevity, and GPS relative position measurements. 184 refs.

  12. Rebalance to the Pacific: Resourcing the Strategy

    DTIC Science & Technology

    2013-03-01

    concern is the geophysical stability of the ocean floor. Plate tectonics are shifting the sea floor daily, creating constant seismic activity. Known...countriesandterritories/northkorea/ index.html. 13 The Pacific Plate is unstable and always shifting, causing plates to slide underneath each other thus creating energy

  13. The South Pacific superswell

    NASA Astrophysics Data System (ADS)

    McNutt, Marcia K.; Fischer, Karen M.

    Seafloor depths in a broad area of French Polynesia are 250 to 750 m shallower than lithosphere of the same age in the North Pacific and the North Atlantic. The area of shallow seafloor also correlates with a region of high density of volcanoes, low seismic velocity in the upper mantle, and a reduction in the thickness of the elastic plate supporting the volcanoes. The Marquesas fracture zone marks an abrupt transition between normal lithosphere to the north which follows the thermal subsidence curve for a 125-km-thick plate and shallow lithosphere to the south which behaves as though it is only 75-km thick. This age dependence in the French Polynesian depth anomalies, the low elastic plate thickness, and the change in depth at the Marquesas fracture zone, a lithospheric discontinuity, require elevated temperatures in the lithosphere. The pattern and amplitude of the depth anomaly is not consistent with the notion that it results from lithospheric thinning beneath a number of overlapping hot spot swells. Rather, we propose that hot spot traces cluster in this region because the lithosphere is already thinner and more vulnerable to magma penetration. The reduction in the thickness of the thermal plate is presumably due to enhanced small-scale convection resulting from the thermal and/or chemical effect of a broad mantle up welling beneath the South Pacific as imaged by seismic tomography. The morphologic and petrologic characteristics of this superswell resemble those that existed in the mid-Cretaceous over H. W. Menard's Darwin Rise, a region of the Pacific which includes the Mid-Pacific Mountains, the Marshall Islands, Magellan Seamounts, and Wake Guyots. We propose that the South Pacific superswell is the modern-day equivalent of the Darwin Rise, and that it may be merely an extreme example of global variability in lithospheric thermal structure as a function of temperature, chemistry, and/or state-of-stress in the upper mantle.

  14. Crustal Recycling by Surface Processes Along the Pacific-North America Plate Boundary: From the Colorado Plateau to the Salton Trough and Gulf of California

    NASA Astrophysics Data System (ADS)

    Dorsey, R. J.

    2009-12-01

    Delivery of sediment from the Colorado Plateau to basins in the Salton Trough and northern Gulf of California exerts an incompletely understood control on structure, magmatism, rheology, and rift evolution. This study examines the volumetric rate at which crust of the continent interior is moved as sediment and converted into new crust in deep sedimentary basins along the active oblique-divergent plate boundary. The modern Colorado River was integrated by a series of lake spillover events that propagated from Lake Mead to the Salton Trough between 6.0 and 5.3 Ma (Spencer et al., 2001, 2008; House et al., 2005; Dorsey et al., 2007). Thus all transfer of sediment from the Colorado Plateau to the Salton Trough and northern Gulf post-dates 5.3 Ma. The volume of Colorado River sediment in subsurface basins of the Salton Trough and northern Gulf of California is estimated using published geophysical and borehole data, and two end-member crustal models. In the first model, pre-existing granitic crust has been fully ruptured by oblique rifting, and new crust is being formed by input of sediment from above mixed with mafic intrusions from below (Fuis et al., 1984). In the second model, the middle and lower crust consists of thinned granitic rock that has undergone large-scale crustal flow (Gonzalez et al., 2005). Using the two crustal models for basin depth, and measured basin areas, the total volume of Colorado River sediment in subsurface basins is bracketed between 198,000 and 291,000 km3. The volume of rock eroded from the Colorado Plateau can be approximated by multiplying the pre-dam sediment discharge (1.2-1.5 x 108 t/yr; Meade and Parker, 1985) by the total lifetime of sediment output (5.3 m.y.) and converting mass to volume by bracketing average sediment density between 2300 and 2500 kg/m3. This yields an equivalent sediment volume of 200,000-270,000 km3 that would have been delivered to the plate boundary at early-1900's discharge rates. Thus, despite current

  15. Early Cretaceous arc volcanic suite in Cebu Island, Central Philippines and its implications on paleo-Pacific plate subduction: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Deng, Jianghong; Yang, Xiaoyong; Zhang, Zhao-Feng; Santosh, M.

    2015-08-01

    The Philippine island arc system is a collage of amalgamated terranes of oceanic, continental and island arc affinities. Here we investigate a volcanic suite in Cebu Island of central Philippines, including basalt, diabase dike, basaltic pyroclastic rock and porphyritic andesite. LA-ICP-MS U-Pb geochronology of zircon grains from the porphyritic andesite and pyroclastic rock yielded ages of 126 ± 3 Ma and 119 ± 2 Ma, respectively, indicating an Early Cretaceous age. The age distribution of the detrital zircons from river sand in the area displays a peak at ca. 118 Ma, close to the age of the pyroclastic rock. The early Cretaceous volcanic rocks in the central Philippines were previously regarded as parts of ophiolite complexes by most investigators, whereas the Cebu volcanics are distinct from these, and display calc-alkaline affinity and island arc setting, characterized by high LREE/HREE ratios and low HFSE contents. These features are similar to the Early Cretaceous arc basalts in the Amami Plateau and east Halmahera in the northernmost and southernmost West Philippine Basin respectively. Zircon Hf isotopes of the pyroclastic rocks show depleted nature similar to those of the Amami Plateau basalts, implying the subducted Pacific-type MORB as probable source. Zircon Hf isotopes of the porphyritic andesite show slight enrichment relative to that of the pyroclastic rocks and MORB, indicating subducted sediments as a minor end-member in the source. The Hf isotopic compositions of the volcanic rocks are also reflected in the detrital zircons from the river sands. We propose that the volcanic rocks of Cebu Island were derived from partial melting of sub-arc mantle wedge which was metasomatized by dehydration of subducted oceanic crust together with minor pelagic sediments. Within the tectonic environment of Southeast Asia during Early Cretaceous, the volcanic rocks in Cebu Island can be correlated to the subduction of paleo-Pacific plate. The Early Cretaceous

  16. Imaging the Structure of the Pacific-North American Plate Boundary using Airborne Laser Swath Mapping (ALSM) Data and Wavelet Analysis

    NASA Astrophysics Data System (ADS)

    Sanquini, A.; Cheung, K.; Gudmundsdottir, M. H.; Moon, S.; Lin, N.; Shelef, E.; Hilley, G. E.; Prentice, C. S.

    2011-12-01

    Since the 1906 San Francisco earthquake, geologists have noted that the topography of active fault zones is significantly modified by repeated fault ruptures over geologic time. Here, we present an analysis of fault zone topography generated by high-resolution Airborne Laser Swath Mapping (ALSM) data collected by the National Center for Airborne Laser Mapping (NCALM). The digital elevation models (DEMs) generated from the ALSM data reveal the location, orientation, and curvature of scarps associated with active, plate-boundary faults. In particular, we have examined topographic data from the B4 and Northern California data sets, as well as data from faults within the Eastern California Shear Zone. We used a wavelet-based convolution scheme, based on topographic forms modified from the profile scarp-diffusion model of Hanks et al. (1984), extended to encompass along-strike features. We applied this filtering methodology to digital topography along fault zones to estimate the best-fitting height, orientation, morphologic age, and associated Signal-to-Noise Ratio (SNR) of scarps found within these datasets. These results will be available to the community via a GIS web portal so that other workers can mine these data to understand patterns of fault-zone structure observed along the plate-bounding fault zones. To evaluate the utility of this methodology for identifying and characterizing fault scarps within the topographic swaths, we present sample results from the Calaveras fault, part of the San Andreas fault system in northern California. We found that along this fault, the filtering algorithm correctly identifies scarps characterized by ground surveys, previous analysis of aerial photography, and/or field mapping. However, some mapped fault traces with low SNR values because of their subtle morphologic expression are not identified by the algorithm. Similarly, some fluvial scarps that trend in a similar orientation to the overall fault zone are erroneously

  17. Refined Views of Strike-slip Fault Zones, Seismicity, and State of Stress Associated With the Pacific-North America Plate Boundary in Southern California

    NASA Astrophysics Data System (ADS)

    Hauksson, E.; Nicholson, C.; Shaw, J. H.; Plesch, A.; Shearer, P. M.; Sandwell, D. T.; Yang, W.

    2013-12-01

    The mostly strike-slip plate boundary in southern California is expressed as a system of late Quaternary faults or principal slip zones (PSZs), with numerous adjacent smaller slip surfaces. It is complex, even after large cumulative displacements, and consists of major fault systems with multi-stranded, non-planar fault geometry, including some in close proximity to each other. There are also secondary cross faults and low-angle detachments that interact with the PSZs accommodating main plate boundary motion. The loading of plate-tectonic strain causes the largest earthquakes along PSZs, moderate-sized events in their immediate vicinity, and small earthquakes across the whole region. We apply relocated earthquake and refined focal mechanism (1981-2013) catalogs, as well as other geophysical datasets to provide refined views of the 3D fault geometry of these active fault systems. To determine properties of individual fault zones, we measure the Euclidian distance from every hypocenter to the nearest PSZ. In addition, we assign crustal geophysical parameters such as heat flow value and shear or dilatation strain rates to each epicenter. We investigate seismogenic thickness and fault zone width as well as earthquake source processes. We find that the seismicity rate is a function of location, with the rate dying off exponentially with distance from the PSZ. About 80% of small earthquakes are located within 5 km of a PSZ. For small earthquakes, stress drops increase in size with distance away from the PSZs. The magnitude distribution near the PSZs suggests that large earthquakes are more common close to PSZs, and they are more likely to occur at greater depth than small earthquakes. In contrast, small quakes can occur at any geographical location. An optimal combination of heat flow and strain rate is required to concentrate the strain along rheologically weak fault zones, which accommodate the crustal deformation processes, causing seismicity. The regional trend of

  18. Earth's Decelerating Tectonic Plates (Invited)

    NASA Astrophysics Data System (ADS)

    Forte, A. M.; Moucha, R.; Rowley, D. B.; Quere, S.; Mitrovica, J. X.; Simmons, N. A.; Grand, S. P.

    2009-12-01

    We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data (Simmons et al., GJI 2009) to explore the impact of time-dependent changes in mantle buoyancy forces on tectonic plate accelerations. This plate-coupled mantle convection model incorporates a viscosity structure that reconciles both glacial isostatic adjustment and global convection-related data sets (Mitrovica & Forte, EPSL 2004) and it successfully reproduces present-day plate velocities, global surface gravity and topography data. This convection model predicts the recent deceleration of several major plates in the Pacific and Indo-Atlantic hemispheres. Independent verification of these predictions is a fundamental test of the plausibility of the buoyancy forces and rheological structure in the convection model. To this end, we consider marine magnetic anomaly and space geodetic constraints on tectonic plate motions to determine a new global map of present-day rates of change of plate velocities. This map shows that several major plates, such as the Pacific, Africa and Nazca plates are presently decelerating and that they contribute to a globally-averaged slowdown in tectonic plate speeds. These joint geologic-geodetic inferences of plate decelerations are consistent with those predicted by our tomography-based convection model.

  19. Chemical and isotopic diversity in basalts dredged from the East Pacific Rise at 10°S, the fossil Galapagos Rise and the Nazca plate

    USGS Publications Warehouse

    Batiza, Rodey; Oestrike, Richard; Futa, Kiyoto

    1982-01-01

    The dredges from the East Pacific Rise at about 10°S recovered unusual transitional, light rare-earth element (LREE) enriched basalts which show a range of fractionation. On the basis of their chemical and isotopic abundances, it is unlikely that the lavas are related by a single simple process of magmatic differentiation. We suggest that the mantle source region of these basalts was chemically and isotopically heterogeneous. The chemistry of LREE-depleted tholeiitic basalt dredged from near the axis of the extinct Galapagos Rise indicates complex petrogenesis and differentiation. The presence of tholeiitic basalts here indicates that unlike the Guadalupe and Mathematician fossil ridges, the Galapagos Rise has not been the site of voluminous post-abandonment alkalic volcanism. Alkalic basalts of picritic bulk composition dredged from an elongate seamount near the Galapagos Rise do not represent liquid compositions. Instead, we suggest that these alkalic liquids contain added olivine and plagioclase xenocrysts. Although most of the samples analyzed are very fresh, a few have been altered. The latter exhibit characteristic chemical and isotopic effects of seawater alteration.

  20. Cenozoic reconstruction of southwest Pacific

    SciTech Connect

    Chun, Y.Y.; Kroenke, L.W.

    1986-07-01

    Poles of opening and spreading rates for some of the well-studied marginal basins in the southwest Pacific have been redetermined. Times of opening range from Late Cretaceous-Paleocene in the Tasman basin to middle Pliocene in the Bismarck Sea. The observed magnetic lineations in most of these basins show a relatively short duration of opening and relatively small area of total opening. Most of the smaller basins are bounded by troughs and arcuate island chains, some of which are inferred to be trenches and volcanic arcs situated along paleoconvergent boundaries. At least four successive paleoconvergent boundaries are believed to have formed between the Pacific and the Indian-Australian plates during the Cenozoic. Combining the newly determined poles of opening, spreading rates, and paleoplate boundary locations, a series of palinspastic maps of the southwest Pacific have been constructed for these times, relative to a fixed hot-spot frame of reference for both the Pacific and Indian-Australian plates.

  1. A Western Pacific Hotspot?

    NASA Astrophysics Data System (ADS)

    MacPherson, C. G.; Hall, R.

    2002-12-01

    The petrology of volcanic rocks from the St. Andrew Strait and helium isotope ratios of backarc lavas from the Manus Basin have been used to propose the existence of an active hotspot beneath the eastern Bismarck Sea [1,2]. The possible influence of this hotspot can be assessed by mapping its present location onto a plate tectonic reconstruction of the western Pacific [3,4]. During the Middle Eocene the nascent Izu-Bonin-Mariana (IBM) arc lay above the hotspot. The volume of magma emplaced at the IBM arc at that time substantially exceeds the average magma production rate for mature island arcs. Furthermore, the ultramafic (boninitic) character of much of this magmatism requires elevated temperatures in the mantle. The geochemistry of contemporaneous magmatism in the backarc resembles melts usually found at ocean islands and much of the backarc region experienced significant uplift at that time. All of these features can be explained by the influx of hot, buoyant, chemically distinct mantle beneath the IBM and its hinterland. The plates lying above the hotspot during the later Eocene were subsequently subducted, but plate reconstruction suggests that during the Oligo-Miocene it was crossed by parts of the Caroline Plate where the Euripik Rise is found. This is an aseismic rise that possesses the geophysical characteristics of thickened oceanic crust formed by excess, basaltic magmatism and is the type of structure that would result from the passage of relatively young oceanic lithosphere over a mantle hotspot. Plate reconstruction for the western Pacific predicts a hotspot trail that is consistent with the Middle Eocene and Oligo-Miocene geology of the IBM and Caroline Plates, respectively. Parts of the trail have been disrupted by subsequent sea-floor spreading or lost through subduction but the remaining vestiges are consistent with the action of a thermal anomaly throughout much of the Cenozoic. More speculatively, the difference in buoyancy between the IBM

  2. Pacific Array

    NASA Astrophysics Data System (ADS)

    Kawakatsu, H.; Takeo, A.; Isse, T.; Nishida, K.; Shiobara, H.; Suetsugu, D.

    2014-12-01

    Based on our recent results on broadband ocean bottom seismometry, we propose a next generation large-scale array experiment in the ocean. Recent advances in ocean bottom broadband seismometry (e.g., Suetsugu & Shiobara, 2014, Annual Review EPS), together with advances in the seismic analysis methodology, have now enabled us to resolve the regional 1-D structure of the entire lithosphere/asthenosphere system, including seismic anisotropy (both radial and azimuthal), with deployments of ~10-15 broadband ocean bottom seismometers (BBOBSs) (namely "ocean-bottom broadband dispersion survey"; Takeo et al., 2013, JGR; Kawakatsu et al., 2013, AGU; Takeo, 2014, Ph.D. Thesis; Takeo et al., 2014, JpGU). Having ~15 BBOBSs as an array unit for 2-year deployment, and repeating such deployments in a leap-frog way (an array of arrays) for a decade or so would enable us to cover a large portion of the Pacific basin. Such efforts, not only by giving regional constraints on the 1-D structure, but also by sharing waveform data for global scale waveform tomography, would drastically increase our knowledge of how plate tectonics works on this planet, as well as how it worked for the past 150 million years. International collaborations might be sought.

  3. Transition from adakitic to bimodal magmatism induced by the paleo-Pacific plate subduction and slab rollback beneath SE China: Evidence from petrogenesis and tectonic setting of the dike swarms

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Xu, Xisheng; Liu, Lei

    2016-02-01

    The late Mesozoic magmatic record of SE China is dominated by felsic volcanics and intrusions. However, this magmatism mainly occurred in coastal areas at 110-80 Ma, in contrast to poorly researched dike swarms that were emplaced inland at 165-120 Ma. Here, we focus on Early Cretaceous mafic and felsic dike swarms that provide new insights into the tectono-magmatic evolution of SE China. The swarms were intruded into Neoproterozoic plutons and include granodioritic porphyry, granitic porphyry, and diabase dikes. The granodioritic porphyry (128 ± 2 Ma) dikes are geochemically similar to adakitic rocks, suggesting that inland adakitic magmatism occurred between ca. 175 and ca. 130 Ma. The majority of these adakitic rocks are calc-alkaline and have Sr-Nd-Hf-O isotopic compositions that are indicative of derivation from a Neoproterozoic magmatic arc source within the lower crust. The granitic porphyry and diabase dikes were emplaced coevally at ca. 130 Ma, and the former contain high alkali and high field strength element (HFSE; e.g., Zr, Nb, Ce, and Y) concentrations that together with their high Ga/Al and FeOT/(FeOT + MgO) ratios imply an A-type affinity. The widespread ca. 130 Ma magmatism that formed the A-type granites and coeval diabase dikes defines a NE-SW trending inland belt of bimodal magmatism in SE China. The presence of mafic enclaves in some of the A-type granites, and the Sr-Nd-Hf isotopic compositions of the latter are indicative of inadequate mixing between the basement sediment-derived and coeval mantle-derived basaltic melts that define the bimodal magmatism. The transition from adakitic rocks to bimodal magmatism in the inland region of SE China indicates a change in the prevailing tectonic regime. This change was associated with an increase in the dip angle of the northwestward-subducting paleo-Pacific Plate beneath SE China between the Middle Jurassic and the Early Cretaceous. This resulted in a transition from a local intra-plate extensional

  4. Tectonics of the Easter plate

    NASA Technical Reports Server (NTRS)

    Engeln, J. F.; Stein, S.

    1984-01-01

    A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.

  5. The Indosinian collision-extension event between the South China Block and the Palaeo-Pacific plate: Evidence from Indosinian alkaline granitic rocks in Dashuang, eastern Zhejiang, South China

    NASA Astrophysics Data System (ADS)

    Mao, Jianren; Ye, Haimin; Liu, Kai; Li, Zilong; Takahashi, Yutaka; Zhao, Xilin; Kee, Weon-Seo

    2013-07-01

    collision and extension between the Palaeo-Pacific plate and the South China Block during the Indosinian. We use these data to refine the geodynamic model for Indosinian multi-plate convergence in South China.

  6. Interface between Education and State Policy: Australia. Asia and the Pacific Programme of Educational Innovation for Development, Education and Polity, No. 2.

    ERIC Educational Resources Information Center

    Hughes, Phillip; And Others

    One of seven studies in the "Education and Polity" series, this document looks at alternative futures and the interface of education with four areas: communication; employment and leisure; state policy; and technology. The studies were commissioned during 1984 and were conducted by interdisciplinary teams: two in Australia, two in India,…

  7. Global Plate Velocities from the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Larson, Kristine M.; Freymueller, Jeffrey T.; Philipsen, Steven

    1997-01-01

    We have analyzed 204 days of Global Positioning System (GPS) data from the global GPS network spanning January 1991 through March 1996. On the basis of these GPS coordinate solutions, we have estimated velocities for 38 sites, mostly located on the interiors of the Africa, Antarctica, Australia, Eurasia, Nazca, North America, Pacific, and South America plates. The uncertainties of the horizontal velocity components range from 1.2 to 5.0 mm/yr. With the exception of sites on the Pacific and Nazca plates, the GPS velocities agree with absolute plate model predictions within 95% confidence. For most of the sites in North America, Antarctica, and Eurasia, the agreement is better than 2 mm/yr. We find no persuasive evidence for significant vertical motions (less than 3 standard deviations), except at four sites. Three of these four were sites constrained to geodetic reference frame velocities. The GPS velocities were then used to estimate angular velocities for eight tectonic plates. Absolute angular velocities derived from the GPS data agree with the no net rotation (NNR) NUVEL-1A model within 95% confidence except for the Pacific plate. Our pole of rotation for the Pacific plate lies 11.5 deg west of the NNR NUVEL-1A pole, with an angular speed 10% faster. Our relative angular velocities agree with NUVEL-1A except for some involving the Pacific plate. While our Pacific-North America angular velocity differs significantly from NUVEL-1A, our model and NUVEL-1A predict very small differences in relative motion along the Pacific-North America plate boundary itself. Our Pacific-Australia and Pacific- Eurasia angular velocities are significantly faster than NUVEL-1A, predicting more rapid convergence at these two plate boundaries. Along the East Pacific Pise, our Pacific-Nazca angular velocity agrees in both rate and azimuth with NUVFL-1A.

  8. Intermittent Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Silver, P. G.; Behn, M. D.

    2006-12-01

    Intermittent Plate Tectonics A basic premise of Earth Science is that plate tectonics has been continuously operating since it began early in Earth's history. Yet, plate-tectonic theory itself, specifically the collisional phase of the Wilson Cycle, constitutes a process that is capable of stopping all plate motion. The plausibility of a plate-tectonic hiatus is most easily illustrated by considering the expected future of the present-day plate-tectonic configuration. Since the opening of the Atlantic at ~200 ma, the area of the Atlantic basin has been growing at the expense of the Pacific. If this trend continues, relative plate motion models predict that in ~350 my, the Pacific Ocean basin will effectively close leading to widespread continent-continent collisions. Since a continent-continent collision represents the termination of subduction locally, the accumulated effect of all collisions is to stop subduction globally. In this scenario, ridges would then stop spreading and young oceanic lithosphere would cool, reaching a steady-state thickness of 100 km in about 80 my, based on the properties of oceanic lithosphere today. This would constitute the stoppage of plate tectonics. The presumption that plate tectonics never stops in the face of continental collisions is equivalent to requiring that subduction flux is approximately constant through time, such that subduction initiation roughly balances subduction termination. Such a balance then raises several questions about the subduction initiation process. When and how does subduction initiate? Is there a detectible relationship between subduction cessation and subduction initiation? We can gain some guidance into these questions by examining the plate motion history over the last 200 my. Subduction initiation has occurred over the last 80 my in three intra- oceanic subduction zones: Aleutians, Marianas-Izu-Bonin and Tonga-Kermadec in the Pacific basin. In these cases, however, subduction initiation would not

  9. Origin of Small Tectonic Plates

    NASA Astrophysics Data System (ADS)

    Mallard, C.; Coltice, N.; Seton, M.; Müller, D.; Tackley, P.

    2015-12-01

    The plate tectonic theory allowed to split the Earth surface into 6 (Le Pichon 1968) to 52 tectonic plates (Bird 2003). These plates are separated into two groups: the first of 7 large plates and the second of numerous smaller plates (Morra et al 2013). Previous studies using the reconstruction of the past 200 My, suggest that the size of large plates is driven by mantle flow. But the tools employed are descriptive (Morra et al 2013, Sornette and Pisarenko 2003), hence ignoring forces and physical principles within the lithosphere and the mantle. The processes at the origin of small plates remain unknown. We developed a new approach to explain the plate sizes. We demonstrate that the physics of convection drives it. We applied plate tectonics theory on 3D spherical convection models generating plate-like motions, which give access to a complete survey of data: velocities, viscosity and heat flow. Our data show that (1) the large plates depend on the dominating scale of the convective flow due to the initiation or the shutdown of subductions; (2) the smaller plates are generated thanks to large variability of regional stresses along subduction zone by slab pull and suction influenced by the geometry of trenches. Our results are consistent with the quick reorganizations of back-arc basins occuring synchronously with the modification of subduction zones geometry around the Pacific plate (Sdrolias et al 2004). Hence, we conclude that (1) the decreasing number of small plates in the plate reconstructions back in time is an artifact induced by their short lifetime, that is why they are artificially ignored; (2) the geometry of past trenches is simplified leading to an underestimation of the length of subduction zones.

  10. Accretion and Subduction of Oceanic Lithosphere: 2D and 3D Seismic Studies of Off-Axis Magma Lenses at East Pacific Rise 9°37-40'N Area and Downgoing Juan de Fuca Plate at Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Han, Shuoshuo

    Two thirds of the Earth's lithosphere is covered by the ocean. The oceanic lithosphere is formed at mid-ocean ridges, evolves and interacts with the overlying ocean for millions of years, and is eventually consumed at subduction zones. In this thesis, I use 2D and 3D multichannel seismic (MCS) data to investigate the accretionary and hydrothermal process on the ridge flank of the fast-spreading East Pacific Rise (EPR) at 9°37-40'N and the structure of the downgoing Juan de Fuca plate at the Cascadia subduction zone offshore Oregon and Washington. Using 3D multichannel seismic (MCS) data, I image a series of off-axis magma lenses (OAML) in the middle or lower crust, 2-10 km from the ridge axis at EPR 9°37-40'N. The large OAMLs are associated with Moho travel time anomalies and local volcanic edifices above them, indicating off-axis magmatism contributes to crustal accretion though both intrusion and eruption (Chapter 1). To assess the effect of OAMLs on the upper crustal structure, I conduct 2-D travel time tomography on downward continued MCS data along two across-axis lines above a prominent OAML in our study area. I find higher upper crustal velocity in a region ~ 2 km wide above this OAML compared with the surrounding crust. I attribute these local anomalies to enhanced precipitation of alteration minerals in the pore space of upper crust associated with high-temperature off-axis hydrothermal circulation driven by the OAML (Chapter 2). At Cascadia, a young and hot end-member of the global subduction system, the state of hydration of the downgoing Juan de Fuca (JdF) plate is important to a number of subduction processes, yet is poorly known. As local zones of higher porosity and permeability, faults constitute primary conduits for seawater to enter the crust and potentially uppermost mantle. From pre-stack time migrated MCS images, I observe pervasive faulting in the sediment section up to 200 km from the deformation front. Yet faults with large throw and

  11. Three-dimensional finite-element models on the deformation of forearcs caused by aseismic ridge subduction: The role of ridge shape, friction coefficient of the plate interface and mechanical properties of the forearc

    NASA Astrophysics Data System (ADS)

    Zeumann, Stefanie; Hampel, Andrea

    2016-08-01

    Geological and geophysical data show that the forearc of subduction zones experiences strong deformation during the subduction of aseismic oceanic ridges. In order to better understand ridge-related forearc deformation patterns, we performed a series of three-dimensional finite-element models, in which we varied the ridge shape, the friction coefficient of the plate interface and the mechanical strength of the forearc. Experiments were carried out for migrating/non-migrating ridges and accretive/erosive margins, respectively. Our results show that the subducting ridge uplifts the forearc and induces horizontal displacements that alter the strain regime of both erosive and accretive forearcs. Generally, shortening prevails in front of the ridge, while domains of shortening and extension exist above the ridge. Models with stationary ridges show high uplift rates only above the ridge tip, whereas the forearc above migrating ridges experiences uplift above the leading ridge flank and subsequent subsidence above the trailing flank. The height and width of the ridge as well as the friction coefficient of the plate interface have the largest effect on the forearc deformation patterns, whereas the mechanical strength of the forearc plays a lesser role. Forearc indentation at the trench is largest for high and broad ridges, high friction coefficients and/or weak forearc material. Shortening and extension of the forearc above the ridge are more intense for high and narrow ridges. Our model results provide information about the distribution of ridge-induced displacements and strain fields and hence help to identify deformation patterns caused by subducting aseismic ridges in nature.

  12. Pore Fluid Pressure and State of Stress Above the Plate Interface from Observations in a 3 Kilometer Deep Borehole: IODP Site C0002, Nankai Trough Subduction Zone

    NASA Astrophysics Data System (ADS)

    Tobin, H. J.; Saffer, D. M.; Hirose, T.; Castillo, D. A.; Kitajima, H.; Sone, H.

    2014-12-01

    During IODP Expedition 348 from October 2013 to January 2014, Site C0002 was drilled to more than 3000 meters' depth into the inner accretionary wedge at the Nankai Trough, setting a new depth record for scientific ocean drilling. It is the first hole to access the deep interior of an active convergent margin. Site C0002 is part of the NanTroSEIZE project off the Kii-Kumano region of Japan, designed to shed light on plate boundary fault zone processes near the up-dip edge of seismogenic locking and slip. The zone from 865 - 3056 meters below the sea floor was sampled via logging-while-drilling measurements, continuous sampling of drill cuttings, and limited coring. This interval was composed of lithified middle to late Miocene hemipelagic sediments and turbidites that are markedly deformed and dip steeply. P-wave speeds from sonic logs increase with depth to ~ 1600 meters, but are constant to slightly decreasing with depth from 1600 to 3050 meters. We hypothesize that this change in trend indicates the onset of elevated pore fluid pressure, but structural and lithologic factors may also play a role. We explore several methods for quantitative estimation of sonic-derived fluid pressure conditions in the inner wedge. A borehole leak-off test (LOT) and a series of borehole pressurization and injection tests were also performed, which we synthesize to estimate the least principal stress, or Shmin. Furthermore, downhole pressure while drilling (PWD) measurements recorded during borehole packoff events provide information on the maximum principal stress, SHmax. Taken together, the LOT and PWD observations suggest that the inner wedge at ~ 2000 meters depth is currently in a strike-slip stress regime, despite its position as the hanging wall of a main plate boundary thrust. This may be a transitional stress regime between shallow normal and deep thrust, controlled by depth-dependent magnitude of the tectonic convergence-related principal stress. Our results document for

  13. Assembly of plate-like nanoparticles in immiscible polymer blends--effect of the presence of a preferred liquid-liquid interface.

    PubMed

    Filippone, Giovanni; Causa, Andrea; Salzano de Luna, Martina; Sanguigno, Luigi; Acierno, Domenico

    2014-05-14

    The assembly of lamellar (clay) nanoparticles in a blend of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with drop-matrix morphology is studied combining viscoelastic measurements and morphological analyses. A reference system based on pure PS is used to highlight the effect on the assembly process of the presence of liquid interfaces where the particles are inclined to gather. The filler content is varied in a wide range to cover all the possible structures, from isolated flocs up to space-spanning networks. The goal is to elucidate whether the particles govern the blend morphology or the structural evolutions of the fluids dictate the space arrangement of the filler. The PMMA drops anchor the lamellae frustrating their peculiar mobility in the polymer melt. On the other hand, the clay radically affects the blend morphology, inducing irregularly-shaped drops and drop clustering phenomena even in case of partial coverage of the drop surface. Above the critical filler content for the saturation of the polymer-polymer interface, a space-spanning particle network eventually builds up. Despite the embedding of the PMMA drops, such a superstructure exhibits the same features of those forming in homogeneous mediums, enabling the use of approaches conceived for systems with single-phase matrix. Compared to the latter, the percolation and fractal models reveal subtle and yet meaningful differences in terms of stress-bearing mechanisms and structure of the building blocks which constitute the network.

  14. Intermittent plate tectonics?

    PubMed

    Silver, Paul G; Behn, Mark D

    2008-01-04

    Although it is commonly assumed that subduction has operated continuously on Earth without interruption, subduction zones are routinely terminated by ocean closure and supercontinent assembly. Under certain circumstances, this could lead to a dramatic loss of subduction, globally. Closure of a Pacific-type basin, for example, would eliminate most subduction, unless this loss were compensated for by comparable subduction initiation elsewhere. Given the evidence for Pacific-type closure in Earth's past, the absence of a direct mechanism for termination/initiation compensation, and recent data supporting a minimum in subduction flux in the Mesoproterozoic, we hypothesize that dramatic reductions or temporary cessations of subduction have occurred in Earth's history. Such deviations in the continuity of plate tectonics have important consequences for Earth's thermal and continental evolution.

  15. Regional Geological Maps of the Northeast Pacific - Standard Navy Ocean Area NP-9

    DTIC Science & Technology

    1978-01-01

    Plate is the eastern limb of the sea floor northeast Pacific is presented In this report as plates 1-11. The which originated at the Gorda.Juan de...seismic reflection mid-oceanic rise in the eastern Pacific Basin which has ap- profiles are displayed in the appendix. parently been overridden by the...NAVOCEANO), the In California, the San Andreas Fault is the eastern limit of Defense Mapping Agency Hydrographic Center (DMAHC), the Pacific Plate. Thus

  16. Swan probe: A nanoliter-scale and high-throughput sampling interface for coupling electrospray ionization mass spectrometry with microfluidic droplet array and multiwell plate.

    PubMed

    Jin, Di-Qiong; Zhu, Ying; Fang, Qun

    2014-11-04

    Mass spectrometry provides a versatile detection method for high-throughput drug screening because it permits the use of native biological substrates and the direct quantification of unlabeled reaction products. This paper describes the design and application of a Swan-shaped probe for high-throughput and nanoliter-scale analysis of biological samples in both a microfluidic droplet array and a multiwell plate with electrospray ionization mass spectrometry (ESI-MS). The Swan probe is fabricated using a single capillary with quite low cost, and it consists of a U-shaped section with a micrometer-sized hole for sampling and a tapered tip for sample electrospray ionization. Continuous sample introduction was carried out under both sampling modes of push-pull and spontaneous injection by sequentially dipping the probe in the sample solutions and then removing them. High-throughput and reliable ESI-MS analysis was achieved in analyzing 256 droplets within 90 min with a peak height RSD of 12.6% (n = 256). To validate its potential in drug discovery, the present system was applied in the screening of inhibitors of acetylcholinesterase (AchE) and the measurement of the IC50 values of identified inhibitors.

  17. A Western Pacific Hotspot?

    NASA Astrophysics Data System (ADS)

    MacPherson, C. G.; Hall, R.

    2003-04-01

    The petrology of volcanic rocks from the St. Andrew Strait and helium isotope ratios of backarc lavas from the Manus Basin have been used to propose the existence of an active hotspot beneath the eastern Bismarck Sea (Johnson et al., 1978; Macpherson et al., 1998). The past influence of this hotspot can be assessed by mapping its present location onto a plate tectonic reconstruction of the western Pacific (Macpherson and Hall, 2001). During the Middle Eocene the nascent Izu-Bonin-Mariana (IBM) arc lay above the hotspot. The volume of magma emplaced at the IBM arc at that time substantially exceeds the average magma production rate for mature island arcs. Furthermore, the ultramafic (boninitic) character of much of this magmatism requires elevated temperatures. The geochemistry of contemporaneous magmatism in the backarc resembles ocean island basalts and much of the backarc region experienced significant uplift at that time. All of these features can be explained by the influx of hot, buoyant, chemically distinct mantle beneath the IBM and its hinterland. The lithosphere lying above the hotspot during the later Eocene was subsequently subducted. During the Oligo-Miocene the hotspot was traversed by parts of the Caroline Plate where the Euripik Rise is found. This is an aseismic rise that possesses the geophysical characteristics of thickened oceanic crust formed by excess, basaltic magmatism and is the type of structure that would result from the passage of relatively young oceanic lithosphere over a mantle hotspot. Plate reconstruction for the western Pacific predicts a hotspot trail that is consistent with the Middle Eocene and Oligo-Miocene geology of the IBM and Caroline Plates, respectively (Macpherson and Hall, 2001). Parts of the trail have been disrupted by subsequent sea-floor spreading or lost through subduction but the remaining vestiges are consistent with the action of a thermal anomaly throughout much of the Cenozoic. More speculatively, buoyancy

  18. Seismicity of the Earth 1900-2012 Philippine Sea plate and vicinity

    USGS Publications Warehouse

    Smoczyk, Gregory M.; Hayes, Gavin P.; Hamburger, Michael W.; Benz, Harley M.; Villaseñor, Antonio; Furlong, Kevin P.

    2013-01-01

    The complex tectonics surrounding the Philippine Islands are dominated by the interactions of the Pacific, Sunda, and Eurasia plates with the Philippine Sea plate (PSP). The latter is unique because it is almost exclusively surrounded by zones of plate convergence. At its eastern and southeastern edges, the Pacific plate is subducted beneath the PSP at the Izu-Bonin, Mariana, and Yap trenches. Here, the subduction zone exhibits high rates of seismic activity to depths of over 600 km, though no great earthquakes (M>8.0) have been observed, likely because of weak coupling along the plate interface. In the northeast, the PSP subducts beneath Japan and the eastern margin of the Eurasia plate at the Nankai and Ryukyu trenches, extending westward to Taiwan. The Nankai portion of this subduction zone has hosted some of the largest earthquakes along the margins of the PSP, including a pair of Mw8.1 megathrust events in 1944 and 1946. Along its western margin, the convergence of the PSP and the Sunda plate is responsible for a broad and active plate boundary system extending along both sides of the Philippine Islands chain. The region is characterized by opposite-facing subduction systems on the east and west sides of the islands, and the archipelago is cut by a major transform structure: the Philippine Fault. Subduction of the Philippine Sea plate occurs at the eastern margin of the islands along the Philippine Trench and its northern extension, the East Luzon Trough. On the west side of Luzon, the Sunda Plate subducts eastward along a series of trenches, including the Manila Trench in the north, the smaller Negros Trench in the central Philippines, and the Sulu and Cotabato trenches in the south. Twentieth and early twentyfirst century seismic activity along the boundaries of the Philippine Sea plate has produced seven great (M>8.0) earthquakes and 250 large (M>7) events. Among the most destructive events were the 1923 Kanto, the 1948 Fukui, and the 1995 Kobe, Japan

  19. Kinematics to dynamics in the New Zealand plate-boundary zone

    NASA Astrophysics Data System (ADS)

    Lamb, S. H.

    2013-12-01

    New Zealand straddles the boundary between the Australian and Pacific plate, with a transition from subduction of Pacific oceanic lithosphere beneath North Island, to oblique continental collision in South Island. Cenozoic relative plate motion has resulted in a complex pattern of faulting and block rotation in a zone up to 250 km wide, with displacements on individual faults up to 100s of kilometres. Active deformation must be driven by a combination of plate-boundary forces and internal buoyancy forces. I use a compilation of seismic reflection/refraction studies and high quality receiver function analyses, together with simple Airy isostasy, to determine regional crustal and mantle structure. Integration of the vertical normal stress to the base of the deforming layer yields the buoyancy stress. Horizontal gradients of this can be compared with horizontal gradients of strain rate, using the method of England & Molnar (1997), in the context of a simple thin sheet model of deformation. Thus, if deformation is that of a Newtonian fluid, then appropriate combinations of the horizontal gradients of vorticity and dilatation are related to gradients of buoyancy stress by the fluid viscosity. However, the short term geodetic deformation is strongly biased by elastic strain accumulation related to locking on the plate interface, and cannot be used to determine the plate-boundary velocity field averaged over many seismic cycles (see Lamb & Smith 2013). Therefore, I derive here a velocity field for the plate-boundary zone, which is representative of deformation over tens of thousands of years. This is based on an inversion of fault slip, strain rate azimuth and paleomagnetic data, in the context of the short term relative plate motions, solved in a network of triangles spanning the plate-boundary, using the method of Lamb (2000). A comparison of gradients of buoyancy stress with the appropriate combinations of gradients of vorticity and dilatation shows that deformation in

  20. Average slip rate at the transition zone on the plate interface in the Nankai subduction zone, Japan, estimated from short-term SSE catalog

    NASA Astrophysics Data System (ADS)

    Itaba, S.; Kimura, T.

    2013-12-01

    Short-term slow slip events (S-SSEs) in the Nankai subduction zone, Japan, have been monitored by borehole strainmeters and borehole accelerometers (tiltmeters) mainly. The scale of the S-SSE in this region is small (Mw5-6), and therefore there were two problems in S-SSE identification and estimation of the fault model. (1) There were few observatories that can detect crustal deformation associated with S-SSEs. Therefore, reliability of the estimated fault model was low. (2) The signal associated with the S-SSE is relatively small. Therefore, it was difficult to detect the S-SSE only from strainmeter and tiltmeter. The former problem has become resolvable to some extent by integrating the data of borehole strainmeter, tiltmeter and groundwater (pore pressure) of the National Institute of Advanced Industrial Science and Technology, tiltmeter of the National Research Institute for Earthquake Science and Disaster Prevention and borehole strainmeter of the Japan Meteorological Agency. For the latter, by using horizontal redundant component of a multi-component strainmeter, which consists generally of four horizontal extensometers, it has become possible to extract tectonic deformation efficiently and detect a S-SSE using only strainmeter data. Using the integrated data and newly developed technique, we started to make a catalog of S-SSE in the Nankai subduction zone. For example, in central Mie Prefecture, we detect and estimate fault model of eight S-SSEs from January 2010 to September 2012. According to our estimates, the average slip rate of S-SSE is 2.7 cm/yr. Ishida et al. [2013] estimated the slip rate as 2.6-3.0 cm/yr from deep low-frequency tremors, and this value is consistent with our estimation. Furthermore, the slip deficit rate in this region evaluated by the analysis of GPS data from 2001 to 2004 is 1.0 - 2.6 cm/yr [Kobayashi et al., 2006], and the convergence rate of the Philippine Sea plate in this region is estimated as 5.0 - 7.0 cm/yr. The difference

  1. Present-day kinematics of the Rivera plate and implications for tectonics in southwestern Mexico

    NASA Technical Reports Server (NTRS)

    Demets, Charles; Stein, Seth

    1990-01-01

    A model for the present-day motion of the Rivera plate relative to the North America, Cocos, and Pacific plates is derived using new data from the Pacific-Rivera rise and Rivera transform fault, together with new estimates of Pacific-Rivera motions. The results are combined with the closure-consistent NUVEL-1 global plate motion model of DeMets et al. (1990) to examine present-day deformation in southwestern Mexico. The analysis addresses several questions raised in previous studies of the Rivera plate. Namely, do plate motion data from the northern East Pacific rise require a distinct Rivera plate? Do plate kinematic data require the subduction of the Rivera plate along the seismically quiescent Acapulco trench? If so, what does the predicted subduction rate imply about the earthquake recurrence interval in the Jalisco region of southwestern Mexico?

  2. No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.; Gordon, Richard G.

    1991-01-01

    NNR-NUVEL1 is presented which is a model of plate velocities relative to the unique reference frame defined by requiring no-net-rotation of the lithosphere while constraining relative plate velocities to equal those in global plate motion model NUVEL-1 (DeMets et al., 1990). In NNR-NUVEL1, the Pacific plate rotates in a right-handed sense relative to the no-net-rotation reference frame at 0.67 deg/m.y. about 63 deg S, 107 deg E. At Hawaii the Pacific plate moves relative to the no-net-rotation reference frame at 70 mm/yr, which is 25 mm/yr slower than the Pacific plate moves relative to the hotspots. Differences between NNR-NUVEL1 and HS2-NUVEL1 are described. The no-net-rotation reference frame differs significantly from the hotspot reference frame. If the difference between reference frames is caused by motion of the hotspots relative to a mean-mantle reference frame, then hotspots beneath the Pacific plate move with coherent motion towards the east-southeast. Alternatively, the difference between reference frames can show that the uniform drag, no-net-torque reference frame, which is kinematically equivalent to the no-net-rotation reference frame, is based on a dynamically incorrect premise.

  3. General perspective view of the main steel plate girder spans, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the main steel plate girder spans, view looking southwest - Whiteson Bridge, Spanning South Yamhill River at Milepoint 42 on Pacific Highway West (Oregon Route 99W), Whiteson, Yamhill County, OR

  4. 12. DETAIL OF BLAST PLATES AND BIRDHOUSES, EAST SIDE. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL OF BLAST PLATES AND BIRDHOUSES, EAST SIDE. VIEW TO WEST-NORTHWEST - Milwaukee Road Railroad Overpass, Spanning Chicago, Milwaukee, St. Paul, & Pacific Railroad Grade (Milwaukee Road) at Orange Street, Missoula, Missoula County, MT

  5. Errors in plate rotations as described by covariance matrices and their combination in reconstructions

    NASA Technical Reports Server (NTRS)

    Jurdy, Donna M.; Stefanick, Michael

    1987-01-01

    The use of covariance matrices to describe the errors in plate rotations and to combine the contributions of individual plate pairs for plate reconstructions is discussed. Particular attention is given to finite rotations and the combination of covariance matrices for a circuit of successive plate pair rotations. Examples of errors in plate reconstructions in which the position of the Pacific plate relative to North America is reconstructed are presented.

  6. Peen plating

    NASA Technical Reports Server (NTRS)

    Babecki, A. J. (Inventor); Haehner, C. L.

    1973-01-01

    A process for metal plating which comprises spraying a mixture of metallic powder and small peening particles at high velocity against a surface is described. The velocity must be sufficient to impact and bond metallic powder onto the surface. In the case of metal surfaces, the process has as one of its advantages providing mechanical working (hardening) of the surface simultaneously with the metal plating.

  7. Tectonic Evolution and Midplate Volcanism in the South Pacific

    DTIC Science & Technology

    1999-02-01

    Changes in morphology of the Marquesas Fracture Zone are correlated with small changes in Pacific- Farallon relative motion. The simple flexural...vertical slip after leaving the active transform. One such small change in plate motion is documented in the Southern Austral Island region of the South...Pacific. A twelve degree clockwise change in Pacific- Farallon relative motion occurred around fifty million years ago. This Eocene change in spreading

  8. Using GPS, tide gauge and altimetry data to constrain subduction parameters at the Vanuatu plate boundary.

    NASA Astrophysics Data System (ADS)

    Ballu, V.; Bouin, M.; Baillard, C.; Calmant, S.; Pelletier, B.; Crawford, W. C.; Kanas, T.; Garaebiti, E.

    2012-12-01

    The Vanuatu subduction zone, Southwest Pacific, combines several features that makes it a particularly useful place to study seismic cycles. The convergence rate is high - approximately 12 cm/yr - and the seismic cycle relatively short. Measurements of interseismic motions are helped by relatively high vertical rates, the close proximity of some islands to the plate interface and the existence of very shallow seamounts on either side of the plate interface. The Vanuatu archipelago is part of the Pacific Ring of Fire: the Australian plate subducts eastward beneath the North Fiji basin, on the western border of the Pacific Plate. High topographic features on the diving plate may contribute to locking of the plates, which can play a major role in the genesis of destructive earthquakes. GPS network points were installed in the early 1990s and the geodesy network has been densified through the years, enabling us to map interseismic horizontal and vertical deformation rates throughout the archipelago. More recently, 8 continuous GPS stations were installed, along with 3 continuous seafloor pressure gauges very near to the plate interface. We show results from GPS data collected from 1996 to 2011, that we re-processed and combined into the ITRF2008 reference frame, and altimetry and seafloor pressure data from 1999 to 2010. The GPS results show that vertical deformation rates vary both across and along the archipelago. We believe that these variations result from variable distance to the plate limit and variable locking parameters. In some areas, subsidence rates are close to one centimeter per year. In the Torres islands (at the northern end of the archipelago) where villagers face recurrent coastal flooding, we showed that this flooding is due more to ground motion than to rise in the absolute sea level, even though the sea-level rise rates are locally high and the islands uplift over the long term. In the Central area of Vanuatu, we augmented the on-land network with

  9. Plate-induced Miocene extension in southern California

    SciTech Connect

    Stuart, W.D. Univ. of California, Santa Barbara, CA )

    1992-01-01

    Miocene crustal extension in southern California can be explained by the interaction of tectonic plates in relative motion. The Pacific, Juan de Fuca, and Farallon (Guadalupe) plates are represented by flat elastic plates surrounded by an infinite elastic plate, the eastern part of which represents the North America plate. Forcing is by assigned subduction pull, and tractions at all plate boundaries satisfy a viscous constitutive law. Plate bottoms are stress-free. In the first part of the solution plate velocities and boundary tractions are found from static equilibrium. Then principal horizontal stresses and strains in plate interiors caused by tractions and subduction pull are found by a boundary element procedure. Using plate boundary geometry from Stock and Hodges for early- and mid-Miocene times, it is found that the portion of the North America plate margin between the Mendocino and Rivera triple junctions has maximum extensional strain directed westward. This result is generally consistent with directions associated with metamorphic core complex formation in southern California. The model is also consistent with extensional strain and rotation sense of crustal blocks in the vicinity of Los Angeles, as inferred by Luyendyk and others from paleomagnetic data. In the model the greatest extensional strain of the North America plate occurs near the Pacific-North America transform, in the area above the absent Farallon slab. Extension direction varies from northwest to southwest according to plate geometry, subduction pull (Juan de Fuca and Guadalupe), and plate boundary tractions.

  10. High-frequency seismic radiation during Maule earthquake (Chile, 27/02/2010, Mw 8.8) inferred by backprojection of P waves: evidence of activation of two distinct zones at the downdip part of the plate interface

    NASA Astrophysics Data System (ADS)

    Palo, M.; Tilmann, F. J.; Krueger, F.; Ehlert, L.; Lange, D.; Rietbrock, A.; Jenkins, J.; Hicks, S. P.

    2013-12-01

    zones of the subduction interface at different depths, the deeper of which is characterised by a large number of repeating event clusters (Rietbrock, Jenkins et al., this session). Thus, our backprojection analysis in combination with the aftershock distribution demonstrates the existence of a peculiar doubled downdip transition from seismogenic behaviour to stable sliding. We suspect fluids released from the downgoing plate to be the cause of the transitions in frictional behaviour because of (1) the co-location of high Vp/Vs ratios with the deep interface seismicity, (2) systematic decrease of depth of onset of deeper seismicity with younging incoming plate age, (3) patchy occurrence along-strike of deeper seismicity.

  11. The Plate Boundary Observatory: Community Focused Web Services

    NASA Astrophysics Data System (ADS)

    Matykiewicz, J.; Anderson, G.; Lee, E.; Hoyt, B.; Hodgkinson, K.; Persson, E.; Wright, J.; Torrez, D.; Jackson, M.

    2006-12-01

    The Plate Boundary Observatory (PBO), part of the NSF-funded EarthScope project, is designed to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, PBO will install 852 continuous GPS stations, 103 borehole strainmeter stations, 28 tiltmeters, and five laser strainmeters, as well as manage data for 209 previously existing continuous GPS stations. UNAVCO provides access to data products from these stations, as well as general information about the PBO project, via the PBO web site (http://pboweb.unavco.org). GPS and strainmeter data products can be found using a variety of channels, including map searches, text searches, and station specific data retrieval. In addition, the PBO construction status is available via multiple mapping interfaces, including custom web based map widgets and Google Earth. Additional construction details can be accessed from PBO operational pages and station specific home pages. The current state of health for the PBO network is available with the statistical snap-shot, full map interfaces, tabular web based reports, and automatic data mining and alerts. UNAVCO is currently working to enhance the community access to this information by developing a web service framework for the discovery of data products, interfacing with operational engineers, and exposing data services to third party participants. In addition, UNAVCO, through the PBO project, provides advanced data management and monitoring systems for use by the community in operating geodetic networks in the United States and beyond. We will demonstrate these systems during the AGU meeting, and we welcome inquiries from the community at any time.

  12. Earthquake studies on Canada’s west coast; Pacific Geoscience Centre

    USGS Publications Warehouse

    Rogers, G. C.; Riddihough, R.P.

    1979-01-01

    On a global scale, Canada's west coast lies within the zone of a seismicity that stretches around the Pacific Ocean. In plate tectonic terms, it is dominated by the same right-lateral shearing between the Pacific and American plates that is responsible for the seismicity of California. However, in southern British Columbia the interaction is further complicated. Between the San Andreas fault in California and the Queen Charlotte fault off British Columbia, the Pacific and American plates are separated by the small independent Juan de Fuca plate system. This is spreading away from the Pacific plate and converging with the margin of the Pacific Northwest. The resulting Cascade volcanic chain and its extension into southern British Columbia are the topograhic expression of its subduction. 

  13. 3-D simulation of temporal change in tectonic deformation pattern and evolution of the plate boundary around the Kanto Region of Japan due to the collision of the Izu-Bonin Arc

    NASA Astrophysics Data System (ADS)

    Hashima, A.; Sato, T.; Ito, T.; Miyauchi, T.; Furuya, H.; Tsumura, N.; Kameo, K.; Yamamoto, S.

    2010-12-01

    The Kanto region of Japan is in a highly complex tectonic setting with four plates interacting with each other: beneath Kanto, situated on the Eurasian and North American plates, the Philippine sea plate subducts and the Pacific plate further descends beneath the North American and Philippine sea plates, forming the unique trench-trench-trench triple junction on the earth. In addition, the Izu-Bonin (Ogasawara) arc on the Philippine sea plate is colliding with the Japan islands, which is considered to be a significant effect on the tectonics of Kanto. To reveal the present crustal structure and the present internal stress fields in such a complex tectonic setting, it is essential to comprehend them through the long-term tectonic evolution process. In this study, we estimate the temporal change in tectonic deformation pattern along with the geometry of the plate boundary around Kanto by numerical simulation with a kinematic plate subduction model based on the elastic dislocation theory. This model is based on the idea that mechanical interaction between plates can rationally be represented by the increase of the displacement discontinuity (dislocation) across plate interfaces. Given the 3-D geometry of plate interfaces, the distribution of slip rate vectors for simple plate subduction can be obtained directly from relative plate velocities. In collision zones, the plate with arc crust cannot easily descend because of its buoyancy. This can be represented by giving slip-rate deficit. When crustal deformation occurs, it also causes change in geometry of the plate boundary itself. This geometry change sensitively affects mechanical interaction at the plate boundary. Then the renewed plate-to-plete interaction alters crustal deformation rates. This feedback system has a large effect on collision zones. Indeed, the plate boundary around the Izu peninsula, the northernmost end of the Izu-Bonin arc, intends landward as large as 100 km. Iterating this effect sequentially

  14. Pacific Northwest AGU Meeting

    NASA Astrophysics Data System (ADS)

    Engebretson, David C.; Beck, Myrl E., Jr.

    1984-04-01

    The 30th AGU Pacific Northwest Regional Meeting was held September 29 to October 1, 1983, on the campus of Western Washington University, Bellingham, Wash. Approximately 125 attended the meeting, and 36 papers were presented. The meeting included two fields trips, five special symposia, and a banquet where keynote speaker Don Swanson presented “Dome building on Mt. St. Helens.”The meeting highlights included a symposium on Tertiary sedimentary basins of Washington and Oregon which revealed the importance of sedimentological studies for deciphering the timing and nature of accretionary processes in tectonically active areas. Geological and geophysical studies on the recent tectonics of the Juan de Fuca plate and nearby continent were presented by workers from the United States and Canada as well as ongoing studies for the evolution and character of the crystalline North Cascades of Washington and British Columbia.

  15. Northern east Pacific rise: Evolution from 25 m. y. B. P. to the present

    SciTech Connect

    Mammerickx, J.; Klitgord, K.D.

    1982-08-10

    The northeast Pacific topography and magnetic lineations (25 m.y. B.P. to the Present) record the traces of three major spreading reorganizations. Only one spreading center is observed today, but there is evidence for several ephemeral episodes of twin spreading accompanying the evolution from an extensive Pacific-Guadalupe plate boundary to a much shortened Pacific-Cocos and Pacific-Rivera plate boundary. The 25 m.y. B.P. plate reorganization culminated with the formation of the Guadalupe plate, bound by the Murray fracture zone to the north and the Cocos-Nazca spreading ridge to the south. Between 25 and 12.5 m.y. B.P. spreading continued while the plate retained the same general outline. The 12.5--11 m.y. B.P. reorganization resulted in the creation of a much shortened Pacific-Cocos plate boundary located in its early stages over the Mathematician seamounts and a much reduced Cocos-plate. The last reorganization (6.5--3.5 m.y. B.P.) resulted in the abandonment of the Mathematician spreading ridge as a Pacific-Cocos plate boundary in favor of the East Pacific Rise.

  16. Pacific HYCOM

    DTIC Science & Technology

    2003-08-21

    Pacific HYCOM E. Joseph Metzger†, Harley E. Hurlburt†, Alan J. Wallcraft†, Luis Zamudio ‡ and Patrick J. Hogan† †Naval Research Laboratory, Stennis...Simulations • HYCOM code upgrade: v2.0.02 v2.1.09 • Thin deep isopycnal layer capability • PLM vertical remapping for fixed coordinate layers • COARE 2.6 heat...flux (flxflg = 4) vs. Kara et al. (flxflg = 2) • Bug- fixed ice model • Longwave SST correction • Monthly shortwave attenuation coefficients - turbidity

  17. Plating on some difficult-to-plate metals and alloys

    SciTech Connect

    Dini, J.W.; Johnson, H.R.

    1984-02-21

    Electrodeposition of coatings on metals such as beryllium, beryllium-copper, Kovar, lead, magnesium, thorium, titanium, tungsten, uranium, zirconium, and their alloys can be problematic. This is due in most cases to a natural oxide surface film that readily reforms after being removed. The procedures we recommend for plating on these metals rely on replacing the oxide film with a displacement coating, or etching to allow mechanical keying between the substrate and plated deposit. The effectiveness of the procedures is demonstrated by interface bond strengths found in ring-shear and conical-head tensile tests. 3 figures, 9 tables.

  18. Plating on some difficult-to-plate metals and alloys

    SciTech Connect

    Dini, J.W.; Johnson, H.R.

    1980-02-01

    Electrodeposition of coatings on metals such as beryllium, beryllium-copper, Kovar, lead, magnesium, thorium, titanium, tungsten, uranium, zirconium, and their alloys can be problematic. This is due in most cases to a natural oxide surface film that readily reforms after being removed. The procedures we recommend for plating on these metals rely on replacing the oxide film with a displacement coating, or etching to allow mechanical keying between the substrate and plated deposit. The effectiveness of the procedures is demonstrated by interface bond strengths found in ring-shear and conical-head tensile tests.

  19. Plate electronics

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    Using a Cray T3D supercomputer and a simple assumption about the physical character of Earth's mantle, a pair of researchers from the University of California at Berkeley have built a computer model that may help explain why the planet's tectonic plates look the way they do.In creating a three-dimensional numerical simulation of convection in the Earth's interior, UC researchers Hans-Peter Bunge and Mark Richards simplified their model to account for just one major physical effect: that the viscosity of the mantle increases with depth. Reviewing some recent—but not yet widely accepted—seismic data, Bunge and Richards assumed for the sake of the model that the viscosity of the mantle increases by a factor of 30 from the lithosphere to the core-mantle boundary. Relying on that assumption, the pair ran the model for nearly three weeks on a supercomputer at Los Alamos National Laboratory and found that the simulation produced an effect similar to what we see on the surface of Earth. The model produced a surface paralleling the actual width of plates and the geometry of the plate boundaries.

  20. Late Tectonic history of Beaufort Sea - North Pacific area

    SciTech Connect

    McWhae, J.R.H.

    1985-02-01

    The Kaltag fault (and its northern associated splay, the Rapid fault array) is the sheared suture between the Eurasian-Alaskan plate and the North American plate in the area between the Mackenzie Delta and the Alaskan Border. This condition has been maintained throughout considerable additional phases of faulting and folding from mid-Cretaceous to the present. Previously, the Alaskan plate had been the northwestern nose of the North America plate. The interplate suture was deflected to the north as the Canadian Shield was approached. The Kaltag fault continued northeastward 2000 km seaward of the Sverdrup rim, northwest of the Canadian Arctic Island, and north of Greenland. The driving force was directed from the southwest by the Eurasian plate after its collision in Early Cretaceous (Hauterivian) with the North American plate and the docking of north-moving exotic terranes from the Pacific. During the early Tertiary, perhaps in concert with the accretion of the Okhotsk block to the Asian plate north of Japan, the northern Pacific subduction zone jumped southward to the Aleutian Arc where it has persisted until today. A distance of 800 km separates the stable shelf of the Canadian craton, at the Alberta Foothills thrust belt, from the subduction zone off Vancouver Island. The foreland thrust belt and the accretion of exotic terranes in Mesozoic and Tertiary times extended the continental crust of the North American plate westward to the present active transform margin with the Pacific plate along the Queen Charlotte fault zone.

  1. Creation of the Cocos and Nazca plates by fission of the Farallon plate

    NASA Astrophysics Data System (ADS)

    Lonsdale, Peter

    2005-08-01

    Throughout the Early Tertiary the area of the Farallon oceanic plate was episodically diminished by detachment of large and small northern regions, which became independently moving plates and microplates. The nature and history of Farallon plate fragmentation has been inferred mainly from structural patterns on the western, Pacific-plate flank of the East Pacific Rise, because the fragmented eastern flank has been subducted. The final episode of plate fragmentation occurred at the beginning of the Miocene, when the Cocos plate was split off, leaving the much reduced Farallon plate to be renamed the Nazca plate, and initiating Cocos-Nazca spreading. Some Oligocene Farallon plate with rifted margins that are a direct record of this plate-splitting event has survived in the eastern tropical Pacific, most extensively off northern Peru and Ecuador. Small remnants of the conjugate northern rifted margin are exposed off Costa Rica, and perhaps south of Panama. Marine geophysical profiles (bathymetric, magnetic and seismic reflection) and multibeam sonar swaths across these rifted oceanic margins, combined with surveys of 30-20 Ma crust on the western rise-flank, indicate that (i) Localized lithospheric rupture to create a new plate boundary was preceded by plate stretching and fracturing in a belt several hundred km wide. Fissural volcanism along some of these fractures built volcanic ridges (e.g., Alvarado and Sarmiento Ridges) that are 1-2 km high and parallel to "absolute" Farallon plate motion; they closely resemble fissural ridges described from the young western flank of the present Pacific-Nazca rise. (ii) For 1-2 m.y. prior to final rupture of the Farallon plate, perhaps coinciding with the period of lithospheric stretching, the entire plate changed direction to a more easterly ("Nazca-like") course; after the split the northern (Cocos) part reverted to a northeasterly absolute motion. (iii) The plate-splitting fracture that became the site of initial Cocos

  2. Relationship between temperatures and fault slips on the upper surface of the subducting Philippine Sea plate beneath the Kanto district, central Japan

    NASA Astrophysics Data System (ADS)

    Yoshioka, Shoichi; Takagi, Rumi; Matsumoto, Takumi

    2015-05-01

    To elucidate the relationship between interplate temperatures and generation mechanisms for megathrust earthquakes and slow slip events (SSEs) in the Kanto district, central Japan, we performed numerical simulations on the thermal state. For this purpose, we newly developed a 2-D box-type thermal convection model that is able to handle the subduction of two oceanic plates: the young oceanic Philippine Sea (PHS) plate subducts following subduction of the old oceanic Pacific (PAC) plate beneath it. To constrain temperatures on the upper surface of the PHS plate, we used high-density Hi-net heat flow data on land. We found that low heat flow in the Kanto district was caused mostly by subduction of the cold PHS plate. To explain the heat flow distribution in the Kanto district in more detail, we needed to incorporate frictional heating at the plate interface on the seaward side of the corner of the mantle wedge, and temperature changes due to surface erosion and sedimentation associated with crustal deformation during the Quaternary on land into the models. The most suitable pore pressure ratio to explain the heat flow data was 0.98. The thermally estimated seismogenic zone corresponded well to the fault planes of the 1923 Taisho Kanto earthquake and the western half of the 1707 Genroku Kanto earthquake. The eastern half of the fault plane of the 1707 Genroku Kanto earthquake could be divided into two areas; the northwestern fault plane corresponded to the thermally estimated seismogenic zone, whereas the relationship between the southeastern fault plane and interplate temperatures was ambiguous. The off-Boso SSEs occurred on the plate interface at temperatures lower than approximately 250 °C, and the slipped region passed through the 150 °C isotherm, corresponding to the clay mineral phase transformation from smectite to illite. This might suggest that the SSEs occurred in relation to a dehydration process.

  3. Environmental materials and interfaces

    SciTech Connect

    Not Available

    1991-11-01

    A workshop that explored materials and interfaces research needs relevant to national environmental concerns was conducted at Pacific Northwest Laboratory. The purposes of the workshop were to refine the scientific research directions being planned for the Materials and Interface Program in the Molecular Science Research Center (MSRC) and further define the research and user equipment to the included as part of the proposed Environmental and Molecular Science Laboratory (EMSL). Three plenary information sessions served to outline the background, objectives, and status of the MSRC and EMSL initiatives; selected specific areas with environmentally related materials; and the status of capabilities and facilities planned for the EMSL. Attention was directed to four areas where materials and interface science can have a significant impact on prevention and remediation of environmental problems: in situ detection and characterization of hazardous wastes (sensors), minimization of hazardous waste (separation membranes, ion exchange materials, catalysts), waste containment (encapsulation and barrier materials), and fundamental understanding of contaminant transport mechanisms. During all other sessions, the participants were divided into three working groups for detailed discussion and the preparation of a written report. The working groups focused on the areas of interface structure and chemistry, materials and interface stability, and materials synthesis. These recommendations and suggestions for needed research will be useful for other researchers in proposing projects and for suggesting collaborative work with MSRC researchers. 1 fig.

  4. Stochastic modelling of a large subduction interface earthquake in Wellington, New Zealand

    NASA Astrophysics Data System (ADS)

    Francois-Holden, C.; Zhao, J.

    2012-12-01

    The Wellington region, home of New Zealand's capital city, is cut by a number of major right-lateral strike slip faults, and is underlain by the currently locked west-dipping subduction interface between the down going Pacific Plate, and the over-riding Australian Plate. A potential cause of significant earthquake loss in the Wellington region is a large magnitude (perhaps 8+) "subduction earthquake" on the Australia-Pacific plate interface, which lies ~23 km beneath Wellington City. "It's Our Fault" is a project involving a comprehensive study of Wellington's earthquake risk. Its objective is to position Wellington city to become more resilient, through an encompassing study of the likelihood of large earthquakes, and the effects and impacts of these earthquakes on humans and the built environment. As part of the "It's Our Fault" project, we are working on estimating ground motions from potential large plate boundary earthquakes. We present the latest results on ground motion simulations in terms of response spectra and acceleration time histories. First we characterise the potential interface rupture area based on previous geodetically-derived estimates interface of slip deficit. Then, we entertain a suitable range of source parameters, including various rupture areas, moment magnitudes, stress drops, slip distributions and rupture propagation directions. Our comprehensive study also includes simulations from historical large world subduction events translated into the New Zealand subduction context, such as the 2003 M8.3 Tokachi-Oki Japan earthquake and the M8.8 2010 Chili earthquake. To model synthetic seismograms and the corresponding response spectra we employed the EXSIM code developed by Atkinson et al. (2009), with a regional attenuation model based on the 3D attenuation model for the lower North-Island which has been developed by Eberhart-Phillips et al. (2005). The resulting rupture scenarios all produce long duration shaking, and peak ground

  5. Flexure and rheology of Pacific oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Hunter, Johnny; Watts, Tony

    2016-04-01

    The idea of a rigid lithosphere that supports loads through flexural isostasy was first postulated in the late 19th century. Since then, there has been much effort to investigate the spatial and temporal variation of the lithosphere's flexural rigidity, and to understand how these variations are linked to its rheology. We have used flexural modelling to first re-assess the variation in the rigidity of oceanic lithosphere with its age at the time of loading, and then to constrain mantle rheology by testing the predictions of laboratory-derived flow laws. A broken elastic plate model was used to model trench-normal, ensemble-averaged profiles of satellite-derived gravity at the trench-outer rise system of circum-Pacific subduction zones, where an inverse procedure was used to find the best-fit Te and loading conditions. The results show a first-order increase in Te with plate age, which is best fit by the depth to the 400 ± 35°C plate-cooling isotherm. Fits to the observed gravity are significantly improved by an elastic plate that weakens landward of the outer rise, which suggests that bending-induced plate weakening is a ubiquitous feature of circum-Pacific subduction zones. Two methods were used to constrain mantle rheology. In the first, the Te derived by modelling flexural observations was compared to the Te predicted by laboratory-derived yield strength envelopes. In the second, flexural observations were modelled using elastic-plastic plates with laboratory-derived, depth-dependent yield strength. The results show that flow laws for low-temperature plasticity of dry olivine provide a good fit to the observations at circum-Pacific subduction zones, but are much too strong to fit observations of flexure in the Hawaiian Islands region. We suggest that this discrepancy can be explained by differences in the timescale of loading combined with moderate thermal rejuvenation of the Hawaiian lithosphere.

  6. High Reliability Robot Friendly ORU Interface

    NASA Technical Reports Server (NTRS)

    Voellmer, George M. (Inventor)

    1991-01-01

    Presented here is a robot friendly coupling device for an orbital replacement unit (ORU). The invention will provide a coupling that is detached and attached remotely by a robot. The design of the coupling must allow for slight misalignments, over-torque protection, and precision placement. This is accomplished by means of a triangular interface comprising three components. A base plate assembly is located on an attachment surface, such as a satellite. The base plate assembly has a cup member, a slotted member, and a post member. The ORU that the robot attaches to the base plate assembly has an ORU plate assembly with two cone members and a post member which mate to the base plate assembly. As the two plates approach one another, one cone member of the ORU plate assembly has to be placed accurately enough to fall into the cup member of the base plate assembly. The cup member forces alignment until a second cone falls into a slotted member which provides final alignment. A single bolt is used to attach the two plates. Two deflecting plates are attached to the backs of the plates. When pressure is applied to the center of the deflecting plates, the force is distributed preventing the ORU and base plates from deflecting. This accounts for precision in the placement of the article. The novelty is believed to reside in using deflecting plates in conjunction with kinematic mounts to provide distributed forces to the two members.

  7. Cocos plate gravity lineaments due to thermal contraction cracks

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-09-01

    Gravity lineaments, narrow strips of stronger gravity, were first observed on the ocean floor in the south central Pacific several decades ago, but scientists still debate their origin. Because the south central Pacific gravity lineaments align with the tectonic plate motion, some scientists have suggested that they were created through small-scale convection cells below the lithosphere that become elongated as the plate moved. Other proposed explanations have included flow of low-viscosity material along the base of the the lithosphere and cracking of the lithosphere due to thermal contraction. Newly recognized gravity lineaments on the Cocos plate, which lies beneath the Pacific Ocean off the coast of Central America, could help scientists figure out how such lineaments form. Cormier et al. identified the lineaments using satellite altimetry data. They used gravity, bathymetric, and magnetic data to investigate the physical characteristics of the lineaments and how they changed over time. (Geochemistry, Geophysics, Geosystems, doi:10.1029/2011GC003573, 2011)

  8. Simulations of seismic hazard for the Pacific Northwest of the United States from earthquakes associated with the Cascadia subduction zone

    USGS Publications Warehouse

    Petersen, M.D.; Cramer, C.H.; Frankel, A.D.

    2002-01-01

    We investigate the impact of different rupture and attenuation models for the Cascadia subduction zone by simulating seismic hazard models for the Pacific Northwest of the U.S. at 2% probability of exceedance in 50 years. We calculate the sensitivity of hazard (probabilistic ground motions) to the source parameters and the attenuation relations for both intraslab and interface earthquakes and present these in the framework of the standard USGS hazard model that includes crustal earthquakes. Our results indicate that allowing the deep intraslab earthquakes to occur anywhere along the subduction zone increases the peak ground acceleration hazard near Portland, Oregon by about 20%. Alternative attenuation relations for deep earthquakes can result in ground motions that differ by a factor of two. The hazard uncertainty for the plate interface and intraslab earthquakes is analyzed through a Monte-Carlo logic tree approach and indicates a seismic hazard exceeding 1 g (0.2 s spectral acceleration) consistent with the U.S. National Seismic Hazard Maps in western Washington, Oregon, and California and an overall coefficient of variation that ranges from 0.1 to 0.4. Sensitivity studies indicate that the paleoseismic chronology and the magnitude of great plate interface earthquakes contribute significantly to the hazard uncertainty estimates for this region. Paleoseismic data indicate that the mean earthquake recurrence interval for great earthquakes is about 500 years and that it has been 300 years since the last great earthquake. We calculate the probability of such a great earthquake along the Cascadia plate interface to be about 14% when considering a time-dependent model and about 10% when considering a time-independent Poisson model during the next 50-year interval.

  9. High-frequency Pn,Sn phases recorded by ocean bottom seismometers on the Cocos plate

    SciTech Connect

    McCreery, C.S.

    1981-05-01

    Data from ocean bottom seismometers located on the Cocos plate indicate that high-frequency Pn,Sn phases are generated by earthquakes along the subducting margin of that plate and are propagated across the plate. The Sn phase appears to be severely attenuated as it approaches the ridge crest. Estimates of Pn velocity are lower than previous extimates for western Pacific paths, which may indicate a relationship between Pn,Sn velocity and lithospheric age. High frequencies found in these phases suggest that Q for Pn,Sn propagation across the Cocos plate is similar to that for the western Pacific.

  10. Corrugated cover plate for flat plate collector

    DOEpatents

    Hollands, K. G. Terry; Sibbitt, Bruce

    1978-01-01

    A flat plate radiant energy collector is providing having a transparent cover. The cover has a V-corrugated shape which reduces the amount of energy reflected by the cover away from the flat plate absorber of the collector.

  11. Pacific subduction and Mesozoic mineralization in eastern China

    NASA Astrophysics Data System (ADS)

    Sun, W.; Ling, M.; Liang, H.; Ding, X.; Fan, W.; Yang, X.

    2009-12-01

    Northeastern China is well known for the removal of subcontinental lithosphere mantle of the North China craton in the Late Mesozoic and the Cretaceous giant igneous event, while southeastern China is famous for its large scale magmatism and mineralization from the Late Jurassic to the Early Cretaceous. All these can be plausibly interpreted by the interaction between eastern China and the subducting Pacific plate. From Jurassic to Cretaceous, Eastern China was related to the subduction of the Pacific plate under Eurasia in the south, concurrent with oblique subduction of the Izanagi plate in the north (Maruyama et al., 1997; Li and Li, 2007; Sun et al., 2007; Zhou et al., 2000). Cretaceous tectonic evolution of eastern China matches remarkably well with the drifting history of the Pacific plate. The most pronounced phenomena are: (1) eastern China large-scale orogenic lode gold (Au) mineralisation occurred contemporaneously with an abrupt change of ~80 degree in the drifting direction of the subducting Pacific plate, concurrent with the formation of the Ontong Java Plateau (Sun et al., 2007); (2) the subduction of the ridge between the Pacific and Izanagi Plates can plausibly explain the mineralization and rock distribution of the Lower Yangtze River mineralization belt (Ling et al., 2009); (3) southwestward subduction of the Pacific plate and corresponding slab rollback can feasibly interprete the formation of the late Mesozoic (180-125 Ma) magmatism and metallogenic events in SE China. Reference Li, Z. X., and Li, X. H., 2007, Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model: Geology, v. 35, p. 179-182. Ling, M. X., Wang, F. Y., Ding, X., Hu, Y. H., Zhou, J. B., Zartman, R. E., Yang, X. Y., and Sun, W. D., 2009, Cretaceous ridge subduction along the Lower Yangtze River Belt, eastern China: Economic Geology, v. 104, p. 303-321. Maruyama, S., 1997, Pacific-type orogeny

  12. Origin of the oceanic basalt basement of the Solomon Islands arc and its relationship to the Ontong Java Plateau-insights from Cenozoic plate motion models

    USGS Publications Warehouse

    Wells, R.E.

    1989-01-01

    Cenozoic global plate motion models based on a hotspot reference frame may provide a useful framework for analyzing the tectonic evolution of the Solomon Islands convergent margin. A postulated late Miocene collision of the Ontong Java Plateau (OJP) with a NE-facing arc is consistent with the predicted path of the OJP across the Pacific Basin and its Miocene arrival at the trench. Late-stage igneous activity (65-30 Ma) predicted for the OJP as it rode over the Samoan hotspot occurred in correlative stratigraphic sections on Malaita, the supposed accreted flake of OJP in the Solomon Islands arc. Convergence similar to the present velocities between Australia and the Pacific plates was characteristic of the last 43 million years. Prior to 43 Ma Pacific-Australia plate motions were divergent, seemingly at odds with geologic evidence for early Tertiary convergence, particularly in Papua New Guinea. A postulated South Pacific plate may have existed between Australia and the Pacific plate and would have allowed implied northward subduction along the northeastern Australia plate boundary that lasted into the early Eocene. Subsequent reorganization of plate motions in the middle Eocene correlates with middle Eocene marginal basin formation along ridges oblique to the main plate boundary. Cessation of spreading on the Pacific-South Pacific Ridge and its subsequent subduction beneath Asia followed the change in Pacific plate motion at 43 Ma. A trapped remnant of the extinct, NW-trending ridge may still lie beneath the western Philippine Sea. The terminal deformation, metamorphism and ophiolite obduction in the Eocene orogen of the southwest Pacific also correlates with the major change in Pacific plate motion at 43 Ma and the subsequent compression of the dying Eocene arc against outlying continental and oceanic crustal blocks of the Australian plate. The Solomon Islands oceanic basement may represent juxtaposition of oceanic plateaus of the Australian plate beneath

  13. Thermal modeling of subducted plates: tear and hotspot at the Kamchatka corner

    NASA Astrophysics Data System (ADS)

    Davaille, Anne; Lees, Jonathan M.

    2004-10-01

    Pacific plate subduction at the Aleutian-Kamchatka juncture, or corner, could be accommodated by either a large bend or a tear in the oceanic lithosphere. In this paper, we describe a number of observations which suggest that the Pacific plate terminates abruptly at the Bering transform zone (TZ). Seismicity shoals along the subduction zone from Southern Kamchatka (600 km) to relatively shallow depths near the Kamchatka-Bering Fault intersection (100-200 km). This seismicity shoaling is accompanied by an increase in the heat flow values measured on the Pacific plate. Moreover, unusual volcanic products related to adakites are erupted on Kamchatka peninsula at the juncture. Simple thermal modeling shows that a slab torn and thinner along the northern edge of the Pacific plate would be compatible with the observations. Delayed thickening of the lithosphere due to the Meiji-Hawaiian hotspot may be responsible for the required thinning.

  14. Geodynamics of the Eastern Pacific Region, Caribbean and Scotia Arcs. Volume 9

    SciTech Connect

    Cabre, R.

    1983-01-01

    This book analyze the geodynamic phenomena related to the interaction of the eastern Pacific with the Americas between Canada and the Antarctic peninsula. Studies include the Cordilleran arcs and Juan de Fuca plate.

  15. Growth Plate Fractures

    MedlinePlus

    .org Growth Plate Fractures Page ( 1 ) The bones of children and adults share many of the same risks for injury. But because they ... to a unique injury called a growth plate fracture. Growth plates are areas of cartilage located near ...

  16. High-Repeatability, Robot Friendly, ORU Interface

    NASA Technical Reports Server (NTRS)

    Voellmer, George M. (Inventor)

    1992-01-01

    A robot-friendly coupling device for an Orbital Replacement Unit (ORU). The invention will provide a coupling that is detached and attached remotely by a robot. The design of the coupling must allow for slight misalignments, over torque protection, and precision placement. This is accomplished by using of a triangular interface having three components. A base plate assembly is located on an attachment surface, such as a satellite. The base plate assembly has a cup member, a slotted member, and a post member. The ORU that the robot attaches to the base plate assembly has an ORU plate assembly with two cone members and a post member which mate to the base plate assembly. As the two plates approach one another, one cone member of the ORU plate assembly only has to be placed accurately enough to fall into the cup member of the base plate assembly. The cup forces alignment until a second cone falls into a slotted member which provides final alignment. A single bolt is used to attach the two plates. Two deflecting plates are attached to the backs of the plates. When pressure is applied to the center of the deflecting plates, the force is distributed preventing the ORU & base plates from deflecting. This accounts for precision in the placement of the article.

  17. Thyroid hormone and the growth plate.

    PubMed

    Shao, Yvonne Y; Wang, Lai; Ballock, R Tracy

    2006-12-01

    Thyroid hormone was first identified as a potent regulator of skeletal maturation at the growth plate more than forty years ago. Since that time, many in vitro and in vivo studies have confirmed that thyroid hormone regulates the critical transition between cell proliferation and terminal differentiation in the growth plate, specifically the maturation of growth plate chondrocytes into hypertrophic cells. However these studies have neither identified the molecular mechanisms involved in the regulation of skeletal maturation by thyroid hormone, nor demonstrated how the systemic actions of thyroid hormone interface with the local regulatory milieu of the growth plate. This article will review our current understanding of the role of thyroid hormone in regulating the process of endochondral ossification at the growth plate, as well as what is currently known about the molecular mechanisms involved in this regulation.

  18. Subduction Drive of Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    2003-12-01

    Don Anderson emphasizes that plate tectonics is self-organizing and is driven by subduction, which rights the density inversion generated as oceanic lithosphere forms by cooling of asthenosphere from the top. The following synthesis owes much to many discussions with him. Hinge rollback is the key to kinematics, and, like the rest of actual plate behavior, is incompatible with bottom-up convection drive. Subduction hinges (which are under, not in front of, thin leading parts of arcs and overriding plates) roll back into subducting plates. The Pacific shrinks because bounding hinges roll back into it. Colliding arcs, increasing arc curvatures, back-arc spreading, and advance of small arcs into large plates also require rollback. Forearcs of overriding plates commonly bear basins which preclude shortening of thin plate fronts throughout periods recorded by basin strata (100 Ma for Cretaceous and Paleogene California). This requires subequal rates of advance and rollback, and control of both by subduction. Convergence rate is equal to rates of rollback and advance in many systems but is greater in others. Plate-related circulation probably is closed above 650 km. Despite the popularity of concepts of plumes from, and subduction into, lower mantle, there is no convincing evidence for, and much evidence against, penetration of the 650 in either direction. That barrier not only has a crossing-inhibiting negative Clapeyron slope but also is a compositional boundary between fractionated (not "primitive"), sluggish lower mantle and fertile, mobile upper mantle. Slabs sink more steeply than they dip. Slabs older than about 60 Ma when their subduction began sink to, and lie down on and depress, the 650-km discontinuity, and are overpassed, whereas younger slabs become neutrally buoyant in mid-upper mantle, into which they are mixed as they too are overpassed. Broadside-sinking old slabs push all upper mantle, from base of oceanic lithosphere down to the 650, back under

  19. Plate motions and deformations from geologic and geodetic data

    NASA Technical Reports Server (NTRS)

    Jordan, T. H.

    1986-01-01

    A satellite laser ranging experiment conducted by NASA since 1972 has measured the relative motion between the North America and Pacific plates in California. Based on these measurements, the 896-km distance between San Diego and Quincy, California, is shortening at 62 + or - 9 mm/yr. This geodetic estimate is consistent with the rate of motion between the two plates, calculated from geological data to be 53 + or - 3 mm/yr averaged over the past few million years.

  20. Plate motions and deformations from geologic and geodetic data

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.

    A satellite laser ranging experiment conducted by NASA since 1972 has measured the relative motion between the North America and Pacific plates in California. Based on these measurements, the 896-km distance between San Diego and Quincy, California, is shortening at 62 + or - 9 mm/yr. This geodetic estimate is consistent with the rate of motion between the two plates, calculated from geological data to be 53 + or - 3 mm/yr averaged over the past few million years.

  1. Guam USA: America’s Forward Fortress in Asia Pacific

    DTIC Science & Technology

    2002-04-09

    uninhabited island for naval gunnery and aircraft target practice. The Farallon de Mendinilla Island north of Saipan and Tinian is currently being used by both...33 "New Japan Leader Urges Stronger Military," The Honolulu Advertiser 28 April 2001, sec. A, p.2. and Thomas Plate , "Would a Militarized Japan...Mission Brings B-2 Bombers to Guam." Hagatna (GU) Pacific Daily News. 30 March 2002, p. 1. Plate , Thomas. "Would a Militarized Japan Benefit Asia?" The

  2. A Simple Model for the Vertical Crustal Movement Associated with the Earthquake Cycle Along the Pacific Coast of Northeast Japan

    NASA Astrophysics Data System (ADS)

    Sagiya, T.

    2013-12-01

    Before the 2011 M9.0 Tohoku-oki earthquake, rapid subsidence more than 5mm/yr has been observed along the Pacific coast of the Tohoku area by leveling, tide gauges, and GPS (Kato, 1979, Kato and Tsumura, 1979, El-Fiky and Kato, 1999). On the other hand, Stage 5e (~125 ka) marine terraces are widely recognized along the same area, implying the area is uplifting in a long-term. Ikeda (1999) hypothesized that these deformation signals reflect accumulation of elastic strain at the plate interface and there is a possibility of a giant earthquake causing a coastal uplift. However, the coastal area subsided as large as 1m during the 2011 main shock. Though we observe significant postseismic uplift, it is not certain if the preseismic as well as coseismic subsidence will be recovered. We construct a simple model of earthquake deformation cycle to interpret the vertical movement along the Pacific coast of northeast Japan. The model consists of a 40 km thick elastic lithosphere overlying a Maxwell viscoelastic asthenospher with a viscosity of 10^19 Pa s. Plate boundary is modeled as two rectangular faults located in the lithosphere and connected each other. As for the kinematic conditions of these faults, we represent the temporal evolution of fault slip as a sum of the steady term and the perturbation term following Savage and Prescott (1978). The first steady term corresponds to the long-term plate subduction, which contributes to long-term geomorphic evolution such as the marine terraces (Hashimoto et al., 2004). The second perturbation term represent earthquake cycle effects. We evaluate this effect under assumptions that earthquake occurrence is perfectly periodic, plate interface is fully coupled during interseismic periods, and the slip deficit is fully released by earthquakes. If the earthquake recurrence interval is shorter than the relaxation time of the structure, interseismic movement is in the opposite direction to the coseismic ones and changes almost linearly

  3. Pressurized bellows flat contact heat exchanger interface

    NASA Technical Reports Server (NTRS)

    Voss, Fred E. (Inventor); Howell, Harold R. (Inventor); Winkler, Roger V. (Inventor)

    1990-01-01

    Disclosed is an interdigitated plate-type heat exchanger interface. The interface includes a modular interconnect to thermally connect a pair or pairs of plate-type heat exchangers to a second single or multiple plate-type heat exchanger. The modular interconnect comprises a series of parallel, plate-type heat exchangers arranged in pairs to form a slot therebetween. The plate-type heat exchangers of the second heat exchanger insert into the slots of the modular interconnect. Bellows are provided between the pairs of fins of the modular interconnect so that when the bellows are pressurized, they drive the plate-type heat exchangers of the modular interconnect toward one another, thus closing upon the second heat exchanger plates. Each end of the bellows has a part thereof a thin, membrane diaphragm which readily conforms to the contours of the heat exchanger plates of the modular interconnect when the bellows is pressurized. This ensures an even distribution of pressure on the heat exchangers of the modular interconnect thus creating substantially planar contact between the two heat exchangers. The effect of the interface of the present invention is to provide a dry connection between two heat exchangers whereby the rate of heat transfer can be varied by varying the pressure within the bellows.

  4. Sputtering and ion plating

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of a conference on sputtering and ion plating are presented. Subjects discussed are: (1) concepts and applications of ion plating, (2) sputtering for deposition of solid film lubricants, (3) commercial ion plating equipment, (4) industrial potential for ion plating and sputtering, and (5) fundamentals of RF and DC sputtering.

  5. Data Access and Web Services at the EarthScope Plate Boundary Observatory

    NASA Astrophysics Data System (ADS)

    Matykiewicz, J.; Anderson, G.; Henderson, D.; Hodgkinson, K.; Hoyt, B.; Lee, E.; Persson, E.; Torrez, D.; Smith, J.; Wright, J.; Jackson, M.

    2007-12-01

    The EarthScope Plate Boundary Observatory (PBO) at UNAVCO, Inc., part of the NSF-funded EarthScope project, is designed to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States. To meet these goals, PBO will install 880 continuous GPS stations, 103 borehole strainmeter stations, and five laser strainmeters, as well as manage data for 209 previously existing continuous GPS stations and one previously existing laser strainmeter. UNAVCO provides access to data products from these stations, as well as general information about the PBO project, via the PBO web site (http://pboweb.unavco.org). GPS and strainmeter data products can be found using a variety of access methods, incuding map searches, text searches, and station specific data retrieval. In addition, the PBO construction status is available via multiple mapping interfaces, including custom web based map widgets and Google Earth. Additional construction details can be accessed from PBO operational pages and station specific home pages. The current state of health for the PBO network is available with the statistical snap-shot, full map interfaces, tabular web based reports, and automatic data mining and alerts. UNAVCO is currently working to enhance the community access to this information by developing a web service framework for the discovery of data products, interfacing with operational engineers, and exposing data services to third party participants. In addition, UNAVCO, through the PBO project, provides advanced data management and monitoring systems for use by the community in operating geodetic networks in the United States and beyond. We will demonstrate these systems during the AGU meeting, and we welcome inquiries from the community at any time.

  6. Diffusion brazing nickel-plated stainless steel

    NASA Technical Reports Server (NTRS)

    Beuyukian, C. S.; Mitchell, M. J.

    1976-01-01

    To bond parts, sandwich assembly is made up of aluminum core, aluminum face sheet with brazing alloy interface, and nickel plated stainless steel part. Sandwich is placed between bottom and top glide sheet that is placed in stainless steel retort where assembly is bonded at 580 C.

  7. Plate Coupling and Transient Events Detection from Geodetic Measurements in Nicoya Peninsula, Costa Rica

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; McCaffrey, R.; Wdowinski, S.; Dixon, T.; Protti, M.; Gonzalez, V. M.; Newman, A. V.; Feng, L.

    2011-12-01

    Aseismic tremor and slow slip events (SSE) are known to perturb the stress field at the plate subduction interface. Nicoya Peninsula in northern Costa Rica is located near the Middle America Trench (MAT), where the Cocos plate subducts underneath Caribbean plate. The subducting Cocos plate contains two types of subducting oceanic crust, East Pacific Rise (EPR) in the northern peninsula and Cocos-Nazca Spreading center (CNS) in the southern peninsula. The two crust types differ in subducting speed and orientation, topography, age and heat flow. This unique geological setting provides an opportunity to investigate the kinematics and dynamics of SSE and tremor. In the Nicoya peninsula SSE are found in high b-value regions and occur approximately every 20 months. However, the location and magnitude of SSE are still uncertain due to limited observations. Here we report additional geodetic observations and use a new GPS time-series inversion scheme to investigate simultaneously both SSE and interseismic locking patterns in the study area and their evolution with time. We solve for the steady inter-seismic velocity field and parameters characterizing SSE including slip amount and duration. A preliminary analysis of continuous and campaign GPS data using the time dependent geodetic inversion software TDefnode [McCaffrey 2009] reveals three slow-slipping patches for events in 2003, 2005, 2007 and 2009. Previous inversion analysis of Outerbridge et al. [2010] of the 2007 SSE identified the two of the three patches, a deep on at depth of ~25 km, and a shallower patch at depth of ~7 km. The third patch identified by our inversion at depth of ~15 km is similar in area and location to that reported by Protti et al. [2004] for the 2003 event.

  8. On the Origin of Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Bercovici, D.

    2014-12-01

    thatpersist for the age of the plate. Grain-damage within a cold subducting slab may alsocause its very rapid detachment, and the abrupt loss of the slab-pull force could accountfor precipitous changes in plate motion, such as for the Pacific plate at both 47Ma and6Ma.

  9. An updated digital model of plate boundaries

    NASA Astrophysics Data System (ADS)

    Bird, Peter

    2003-03-01

    A global set of present plate boundaries on the Earth is presented in digital form. Most come from sources in the literature. A few boundaries are newly interpreted from topography, volcanism, and/or seismicity, taking into account relative plate velocities from magnetic anomalies, moment tensor solutions, and/or geodesy. In addition to the 14 large plates whose motion was described by the NUVEL-1A poles (Africa, Antarctica, Arabia, Australia, Caribbean, Cocos, Eurasia, India, Juan de Fuca, Nazca, North America, Pacific, Philippine Sea, South America), model PB2002 includes 38 small plates (Okhotsk, Amur, Yangtze, Okinawa, Sunda, Burma, Molucca Sea, Banda Sea, Timor, Birds Head, Maoke, Caroline, Mariana, North Bismarck, Manus, South Bismarck, Solomon Sea, Woodlark, New Hebrides, Conway Reef, Balmoral Reef, Futuna, Niuafo'ou, Tonga, Kermadec, Rivera, Galapagos, Easter, Juan Fernandez, Panama, North Andes, Altiplano, Shetland, Scotia, Sandwich, Aegean Sea, Anatolia, Somalia), for a total of 52 plates. No attempt is made to divide the Alps-Persia-Tibet mountain belt, the Philippine Islands, the Peruvian Andes, the Sierras Pampeanas, or the California-Nevada zone of dextral transtension into plates; instead, they are designated as "orogens" in which this plate model is not expected to be accurate. The cumulative-number/area distribution for this model follows a power law for plates with areas between 0.002 and 1 steradian. Departure from this scaling at the small-plate end suggests that future work is very likely to define more very small plates within the orogens. The model is presented in four digital files: a set of plate boundary segments; a set of plate outlines; a set of outlines of the orogens; and a table of characteristics of each digitization step along plate boundaries, including estimated relative velocity vector and classification into one of 7 types (continental convergence zone, continental transform fault, continental rift, oceanic spreading ridge

  10. Seismicity and plate tectonics in south central Alaska

    NASA Technical Reports Server (NTRS)

    Van Wormer, J. D.; Davies, J.; Gedney, L.

    1974-01-01

    Hypocenter distribution shows that the Benioff zone associated with the Aleutian arc terminates in interior Alaska some 75 km north of the Denali fault. There appears to be a break in the subducting Pacific plate in the Yentna River-Prince William Sound area which separates two seismically independent blocks, similar to the segmented structure reported for the central Aleutian arc.

  11. Plate tectonics and the Gulf of California region

    SciTech Connect

    Schmidt, N.

    1990-11-01

    The geology and tectonism of California have been influenced greatly by the collision and interaction between the Pacific plate and the North American plate. The forces generated by this interaction caused substantial horizontal movement along the San Andreas fault system and created the Gulf of California rift zone. This article summarizes the unique features of the gulf, describes the theory of plate tectonics, explains how tectonism may have affected the geologic evolution and physiography of the gulf, and illustrates the process by which the Colorado River became linked to the gulf.

  12. Mantle flow geometry from ridge to trench beneath the Gorda-Juan de Fuca plate system

    NASA Astrophysics Data System (ADS)

    Martin-Short, Robert; Allen, Richard M.; Bastow, Ian D.; Totten, Eoghan; Richards, Mark A.

    2015-12-01

    Tectonic plates are underlain by a low-viscosity mantle layer, the asthenosphere. Asthenospheric flow may be induced by the overriding plate or by deeper mantle convection. Shear strain due to this flow can be inferred using the directional dependence of seismic wave speeds--seismic anisotropy. However, isolation of asthenospheric signals is challenging; most seismometers are located on continents, whose complex structure influences the seismic waves en route to the surface. The Cascadia Initiative, an offshore seismometer deployment in the US Pacific Northwest, offers the opportunity to analyse seismic data recorded on simpler oceanic lithosphere. Here we use measurements of seismic anisotropy across the Juan de Fuca and Gorda plates to reconstruct patterns of asthenospheric mantle shear flow from the Juan de Fuca mid-ocean ridge to the Cascadia subduction zone trench. We find that the direction of fastest seismic wave motion rotates with increasing distance from the mid-ocean ridge to become aligned with the direction of motion of the Juan de Fuca Plate, implying that this plate influences mantle flow. In contrast, asthenospheric mantle flow beneath the Gorda Plate does not align with Gorda Plate motion and instead aligns with the neighbouring Pacific Plate motion. These results show that asthenospheric flow beneath the small, slow-moving Gorda Plate is controlled largely by advection due to the much larger, faster-moving Pacific Plate.

  13. SKITTER/implement mechanical interface

    NASA Technical Reports Server (NTRS)

    Cash, John Wilson, III; Cone, Alan E.; Garolera, Frank J.; German, David; Lindabury, David Peter; Luckado, Marshall Cleveland; Murphey, Craig; Rowell, John Bryan; Wilkinson, Brad

    1988-01-01

    SKITTER (Spacial Kinematic Inertial Translatory Tripod Extremity Robot) is a three-legged transport vehicle designed to perform under the unique environment of the moon. The objective of this project was to design a mechanical interface for SKITTER. This mechanical latching interface will allow SKITTER to use a series of implements such as drills, cranes, etc., and perform different tasks on the moon. The design emphasized versatility and detachability; that is, the interface design is the same for all implements, and connection and detachment is simple. After consideration of many alternatives, a system of three identical latches at each of the three interface points was chosen. The latching mechanism satisfies the design constraints because it facilitates connection and detachment. Also, the moving parts are protected from the dusty environment by housing plates.

  14. The Plate Boundary Observatory Cascadia Network: Development and Installation of a Large Scale Real-time GPS Network

    NASA Astrophysics Data System (ADS)

    Austin, K. E.; Blume, F.; Berglund, H. T.; Dittman, T.; Feaux, K.; Gallaher, W. W.; Mattioli, G. S.; Mencin, D.; Walls, C. P.

    2013-12-01

    The EarthScope Plate Boundary Observatory (PBO), through a NSF-ARRA supplement, has enhanced the geophysical infrastructure in in the Pacific Northwest by upgrading 232 Plate Boundary Observatory GPS stations to allow the collection and distribution of high-rate (1 Hz), low-latency (<1 s) data streams (RT-GPS). These upgraded stations supplemented the original 100 RT-GPS stations in the PBO GPS network. The addition of the new RT-GPS sites in the Pacific Northwest should spur new volcano and earthquake research opportunities in an area of great scientific interest and high geophysical hazard. Streaming RT-GPS data will enable researchers to detect and investigate strong ground motion during large geophysical events, including a possible plate-interface earthquake, which has implications for earthquake hazard mitigation. A total of 282 PBO stations were upgraded and added to the UNAVCO real-time GPS system, along with addition of 22 new meteorological instruments to existing PBO stations. Extensive testing of BGAN satellite communications systems has been conducted to support the Cascadia RT-GPS upgrades and the installation of three BGAN satellite fail over systems along the Cascadia margin will allow for the continuation of data flow in the event of a loss of primary communications during in a large geophysical event or other interruptions in commercial cellular networks. In summary, with these additional upgrades in the Cascadia region, the PBO RT-GPS network will increase to 420 stations. Upgrades to UNAVCO's data infrastructure included evaluation and purchase of the Trimble Pivot Platform, servers, and additional hardware for archiving the high rate data. UNAVCO staff is working closely with the UNAVCO community to develop data standards, protocols, and a science plan for the use of RT-GPS data.

  15. Tectonic stress state in NE Japan as part of the Okhotsk plate

    NASA Astrophysics Data System (ADS)

    Altis, Sungat

    2001-09-01

    latter zone. The calculated rotation rates from the geodetic flow model are clockwise (CW) in both of the ˜E-W contractional regions. NE Japan, extruding southward, faces buttresses in (1) the Oga-Ojika Line (OOL), and/or a crustal weakness zone between the northern and the southern halves of Tohoku approx. at ˜38.5°N latitude, and, especially, (2) the Japanese Alps rampart; these obstacles cause the northern and southernmost Tohoku to veer to its right and rotate CW, thereby setting up the ˜E-W-trending compressional deformation in their respective inner zones. Between the OOL (or the 38.5°N boundary) and the Kanto Tectonic Line (KTL), the sense of the differential rotations is counterclockwise (CCW), towards the ocean to the SE. The northern Tohoku (north of the OOL) and the southernmost Tohoku (south of the KTL) cannot rotate CCW towards the ocean because of the Izu block's collision in the south and the relatively strong coupling along the subduction interface beneath the Japan trench in the north off-Sanriku. The relatively stronger long-term coupling between the northern Tohoku and the Pacific plate at the Sanriku coast, with respect to that in off-Fukushima, is due to a flatter subduction of the Pacific slab there, increasing the plates' interface contact area; the flattening of the subduction dip angle was caused by CCW rotation and shifting of the northern Tohoku along the dextral Honjo-Matsushima Line, roughly corresponding to the OOL, towards the Pacific and overriding of the subduction zone during the formation of the Japan Sea.

  16. Deformation-related volcanism in the Pacific Ocean linked to the Hawaiian-Emperor bend

    NASA Astrophysics Data System (ADS)

    O'Connor, John M.; Hoernle, Kaj; Müller, R. Dietmar; Morgan, Jason P.; Butterworth, Nathaniel P.; Hauff, Folkmar; Sandwell, David T.; Jokat, Wilfried; Wijbrans, Jan R.; Stoffers, Peter

    2015-05-01

    Ocean islands, seamounts and volcanic ridges are thought to form above mantle plumes. Yet, this mechanism cannot explain many volcanic features on the Pacific Ocean floor and some might instead be caused by cracks in the oceanic crust linked to the reorganization of plate motions. A distinctive bend in the Hawaiian-Emperor volcanic chain has been linked to changes in the direction of motion of the Pacific Plate, movement of the Hawaiian plume, or a combination of both. However, these links are uncertain because there is no independent record that precisely dates tectonic events that affected the Pacific Plate. Here we analyse the geochemical characteristics of lava samples collected from the Musicians Ridges, lines of volcanic seamounts formed close to the Hawaiian-Emperor bend. We find that the geochemical signature of these lavas is unlike typical ocean island basalts and instead resembles mid-ocean ridge basalts. We infer that the seamounts are unrelated to mantle plume activity and instead formed in an extensional setting, due to deformation of the Pacific Plate. 40Ar/39Ar dating reveals that the Musicians Ridges formed during two time windows that bracket the time of formation of the Hawaiian-Emperor bend, 53-52 and 48-47 million years ago. We conclude that the Hawaiian-Emperor bend was formed by plate-mantle reorganization, potentially triggered by a series of subduction events at the Pacific Plate margins.

  17. Geologic maps of Pacific basin and rim

    SciTech Connect

    Craddock, C.

    1986-07-01

    A major component of the Circum-Pacific Map Project is to compile five regional geologic maps at a scale of 1:10 million and a final map of the Pacific Ocean basin at a scale of 1:17 million. The Geologic Map of the Northeast Quadrant was published in 1983, and the Geologic Map of the Southeast Quadrant in 1985. The Geologic Maps of the Northwest Quadrant, the Southwest Quadrant, and the Antarctic Region are expected to reach publication during 1986. The Geologic Map of the Pacific Basin, with energy and mineral resources, is scheduled for publication in 1989. Each geologic map is a synthesis of a large amount of information. The land areas portray rock types by patterns and ages by colors; major faults are shown if they form the boundaries for map units. The oceanic areas include bathymetric contours, 13 sea-floor sediment types, all Deep Sea Drilling Program (DSDP) sites, selected DSDP columns, and selected sites of pre-Quaternary bedrock or sediment recovery. A correlation diagram on each map shows stratigraphic columns for the five regional maps, map units, geologic ages, and a time scale. An inset map shows presently active tectonic plates. The principal information sources for each sheet are given in a reference list, and each map is accompanied by explanatory notes. This map series represents the first integrated set of geologic maps of the entire Pacific Ocean basin and rim, including the Antarctic continent- altogether more than half the surface area of planet Earth.

  18. PACIFIC NORTHWEST CYBER SUMMIT

    SciTech Connect

    Lesperance, Ann M.; Matlock, Gordon W.; Becker-Dippmann, Angela S.; Smith, Karen S.

    2013-08-07

    On March 26, 2013, the Snohomish County Public Utility District (PUD) and the U.S. Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) jointly hosted the Pacific Northwest Cyber Summit with the DOE’s Office of Electricity Delivery and Energy Reliability, the White House, Washington State congressional delegation, Washington State National Guard, and regional energy companies.

  19. Accelerated plate tectonics.

    PubMed

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  20. Obliquity along plate boundaries

    NASA Astrophysics Data System (ADS)

    Philippon, Mélody; Corti, Giacomo

    2016-12-01

    Most of the plate boundaries are activated obliquely with respect to the direction of far field stresses, as roughly only 8% of the plate boundaries total length shows a very low obliquity (ranging from 0 to 10°, sub-orthogonal to the plate displacement). The obliquity along plate boundaries is controlled by (i) lateral rheological variations within the lithosphere and (ii) consistency with the global plate circuit. Indeed, plate tectonics and magmatism drive rheological changes within the lithosphere and consequently influence strain localization. Geodynamical evolution controls large-scale mantle convection and plate formation, consumption, and re-organization, thus triggering plate kinematics variations, and the adjustment and re-orientation of far field stresses. These geological processes may thus result in plate boundaries that are not perpendicular but oblique to the direction of far field stresses. This paper reviews the global patterns of obliquity along plate boundaries. Using GPlate, we provide a statistical analysis of present-day obliquity along plate boundaries. Within this framework, by comparing natural examples and geological models, we discuss deformation patterns and kinematics recorded along oblique plate boundaries.

  1. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  2. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1985-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  3. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1984-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  4. Guided waves in a jointed composite plate

    SciTech Connect

    Karunasena, W.; Shah, A.H. ); Datta, S.K. )

    1994-03-01

    Reflection of guided waves by a thin region of bonding material at the interface between two composite plates has been investigated in this paper. The study is motivated by the need to develop a quantitative ultrasonic technique to characterize properties of joints between two plates, which may be laminated and anisotropic. Although there have been some recent studies that have examined the reflection and transmission of surface waves at the interface between two plates, they consider the two plates to be semi-infinite in thickness. Thus the mode conversion of waves into higher guided modes of the plates are not taken into account. In this paper, a model study of the interaction of the [ital A][sub 0] and [ital S][sub 0] guided wave modes with the joint material is presented. It is shown that as the frequency increases the coefficient of reflection shows resonant peaks at the cutoff frequencies of higher guided modes. These peaks become increasingly pronounced as the thickness of the joint increases. Another interesting feature is that the reflection coefficients have minima at a frequency that depends on the thickness and the properties of the joint material. These features can be used to determine the relevant properties of the joint.

  5. Depth of the main crustal and mantle interfaces beneath the Gorely volcano (Kamchatka) based on the receiver function analysis

    NASA Astrophysics Data System (ADS)

    Ivanov, Arseny; Woelbern, Ingo; Nikulin, Alex; Koulakov, Ivan; Jakovlev, Andrey; Gordeev, Evgeny; Abkadyrov, Ilyas

    2016-04-01

    Gorely volcano is located in the southern part of the Kamchatka peninsula. It is two-tier structure with an old shield volcano at the base and a younger edifice on the top. The subducting Pacific oceanic Plate is located at the depth of 120 km beneath the volcano. The receiver function method was used to investigate the 1D structure beneath the volcano. From the continuous yearly seismograms recorded by a temporary network consisting of 16 seismic stations, we selected more than 600 records corresponding to teleseismic events which were used for the receiver function analysis. Based on the method by Zhu and Kanamory, we have determined the depth of the Moho interface at 38 km and that of the Conrad discontinuity at 26 km. These values correspond to the well exposed continental crust. The receiver functions also provide a rather prominent signal corresponding to a discontinuity at ~300 km depth; however, no clear signatures of deeper interfaces and slab interfaces are determined in this study. This study is the first attempt to determine the depth of the major interfaces beneath the Gorely volcano.

  6. Tectonic map of the Circum-Pacific region, Pacific basin sheet

    USGS Publications Warehouse

    Scheibner, E.; Moore, G.W.; Drummond, K.J.; Dalziel, Corvalan Q.J.; Moritani, T.; Teraoka, Y.; Sato, T.; Craddock, C.

    2013-01-01

    Circum-Pacific Map Project: The Circum-Pacific Map Project was a cooperative international effort designed to show the relationship of known energy and mineral resources to the major geologic features of the Pacific basin and surrounding continental areas. Available geologic, mineral, and energy-resource data are being complemented by new, project-developed data sets such as magnetic lineations, seafloor mineral deposits, and seafloor sediment. Earth scientists representing some 180 organizations from more than 40 Pacific-region countries are involved in this work. Six overlapping equal-area regional maps at a scale of 1:10,000,000 form the cartographic base for the project: the four Circum-Pacific Quadrants (Northwest, Southwest, Southeast, and Northeast), and the Antarctic and Arctic Sheets. There is also a Pacific Basin Sheet at a scale of 1:17,000,000. The Base Map Series and the Geographic Series (published from 1977 to 1990), the Plate-Tectonic Series (published in 1981 and 1982), the Geodynamic Series (published in 1984 and 1985), and the Geologic Series (published from 1984 to 1989) all include six map sheets. Other thematic map series in preparation include Mineral-Resources, Energy-Resources and Tectonic Maps. Altogether, more than 50 map sheets are planned. The maps were prepared cooperatively by the Circum-Pacific Council for Energy and Mineral Resources and the U.S. Geological Survey and are available from the Branch of Distribution, U. S. Geological Survey, Box 25286, Federal Center, Denver, Colorado 80225, U.S.A. The Circum-Pacific Map Project is organized under six panels of geoscientists representing national earth-science organizations, universities, and natural-resource companies. The six panels correspond to the basic map areas. Current panel chairmen are Tomoyuki Moritani (Northwest Quadrant), R. Wally Johnson (Southwest Quadrant), Ian W.D. Dalziel (Antarctic Region), vacant. (Southeast Quadrant), Kenneth J. Drummond (Northeast Quadrant), and

  7. The age and origin of the Pacific islands: a geological overview.

    PubMed

    Neall, Vincent E; Trewick, Steven A

    2008-10-27

    The Pacific Ocean evolved from the Panthalassic Ocean that was first formed ca 750 Ma with the rifting apart of Rodinia. By 160 Ma, the first ocean floor ascribed to the current Pacific plate was produced to the west of a spreading centre in the central Pacific, ultimately growing to become the largest oceanic plate on the Earth. The current Nazca, Cocos and Juan de Fuca (Gorda) plates were initially one plate, produced to the east of the original spreading centre before becoming split into three. The islands of the Pacific have originated as: linear chains of volcanic islands on the above plates either by mantle plume or propagating fracture origin, atolls, uplifted coralline reefs, fragments of continental crust, obducted portions of adjoining lithospheric plates and islands resulting from subduction along convergent plate margins. Out of the 11 linear volcanic chains identified, each is briefly described and its history summarized. The geology of 10 exemplar archipelagos (Japan, Izu-Bonin, Palau, Solomons, Fiji, New Caledonia, New Zealand, Society, Galápagos and Hawaii) is then discussed in detail.

  8. Malachite green photosensitive plates.

    PubMed

    Solano, C

    1989-08-15

    An experimental study of the behavior of malachite green sensitized plates was carried out. The transmittance variation of the irradiated plates was taken as a parameter. It has been observed that photoreduction in the malachite green plates is present only when ammonium dichromate is added to the plates. The introduction of external electron donors does not improve the photochemical reaction. It has been determined that malachite green molecules form a weak complex with the dichromate molecules and this complex can only be destroyed photochemically. This effect can explain the limited response of the malachite green dichromated plates.

  9. An improved plating process

    NASA Technical Reports Server (NTRS)

    Askew, John C.

    1994-01-01

    An alternative to the immersion process for the electrodeposition of chromium from aqueous solutions on the inside diameter (ID) of long tubes is described. The Vessel Plating Process eliminates the need for deep processing tanks, large volumes of solutions, and associated safety and environmental concerns. Vessel Plating allows the process to be monitored and controlled by computer thus increasing reliability, flexibility and quality. Elimination of the trivalent chromium accumulation normally associated with ID plating is intrinsic to the Vessel Plating Process. The construction and operation of a prototype Vessel Plating Facility with emphasis on materials of construction, engineered and operational safety and a unique system for rinse water recovery are described.

  10. Multicolor printing plate joining

    NASA Technical Reports Server (NTRS)

    Waters, W. J. (Inventor)

    1984-01-01

    An upper plate having ink flow channels and a lower plate having a multicolored pattern are joined. The joining is accomplished without clogging any ink flow paths. A pattern having different colored parts and apertures is formed in a lower plate. Ink flow channels each having respective ink input ports are formed in an upper plate. The ink flow channels are coated with solder mask and the bottom of the upper plate is then coated with solder. The upper and lower plates are pressed together at from 2 to 5 psi and heated to a temperature of from 295 F to 750 F or enough to melt the solder. After the plates have cooled and the pressure is released, the solder mask is removed from the interior passageways by means of a liquid solvent.

  11. Plate Motion and Crustal Deformation Estimated with Geodetic Data from the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.; Heflin, Michael B.

    1995-01-01

    We use geodetic data taken over four years with the Global Positioning System (GPS) to estimate: (1) motion between six major plates and (2) motion relative to these plates of ten sites in plate boundary zones. The degree of consistency between geodetic velocities and rigid plates requires the (one-dimensional) standard errors in horizontal velocities to be approx. 2 mm/yr. Each of the 15 angular velocities describing motion between plate pairs that we estimate with GPS differs insignificantly from the corresponding angular velocity in global plate motion model NUVEL-1A, which averages motion over the past 3 m.y. The motion of the Pacific plate relative to both the Eurasian and North American plates is observed to be faster than predicted by NUVEL-1A, supporting the inference from Very Long B ase- line Interferometry (VLBI) that motion of the Pacific plate has speed up over the past few m.y. The Eurasia-North America pole of rotation is estimated to be north of NUVEL-1A, consistent with the independent hypothesis that the pole has recently migrated northward across northeast Asia to near the Lena River delta. Victoria, which lies above the main thrust at the Cascadia subduction zone, moves relative to the interior of the overriding plate at 30% of the velocity of the subducting plate, reinforcing the conclusion that the thrust there is locked beneath the continental shelf and slope.

  12. 11. GIRDER PARTIAL ELEVATION AND SECTIONS, 80 FOOT THROUGH PLATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. GIRDER PARTIAL ELEVATION AND SECTIONS, 80 FOOT THROUGH PLATE GIRDER SPAN. (Also includes a Marking Diagram and a schedule of parts.) American Bridge Company, Ambridge Plant No. 5, sheet no. 1, dated April 7, 1928, order no. F5073. For U.S. Steel Products Company, Pacific Coast Depot, order no. SF578. For Southern Pacific Company, order no. 8873-P-28746. Scale 1/4 inch to one foot. - Napa River Railroad Bridge, Spanning Napa River, east of Soscol Avenue, Napa, Napa County, CA

  13. Pacific Southwest Media Center

    EPA Pesticide Factsheets

    News media, state and local officials, and others can find press releases, media events and contacts in EPA's Pacific Southwest. Additional resources include newsletters, annual reports, and library services that support regional activities.

  14. GOLD PLATING PROCESS

    DOEpatents

    Seegmiller, R.

    1957-08-01

    An improved bath is reported for plating gold on other metals. The composition of the plating bath is as follows: Gold cyanide from about 15 to about 50 grams, potassium cyanide from about 70 to about 125 grams, and sulfonated castor oil from about 0.1 to about 10 cc. The gold plate produced from this bath is smooth, semi-hard, and nonporous.

  15. Plating methods, a survey

    NASA Technical Reports Server (NTRS)

    Berkowitz, J. B.; Emerson, N. H.

    1972-01-01

    Results are presented of a comprehensive search of the literature available, much of which has been generated by the research centers of NASA and its contractors, on plating and coating methods and techniques. Methods covered included: (1) electroplating from aqueous solutions; (2) electroplating from nonaqueous solutions; (3) electroplating from fused-salt baths; (4) electroforming; (5) electroless plating, immersion plating, and mirroring; (6) electroplating from gaseous plasmas; and (7) anodized films and conversion coatings.

  16. PLATES WITH OXIDE INSERTS

    DOEpatents

    West, J.M.; Schumar, J.F.

    1958-06-10

    Planar-type fuel assemblies for nuclear reactors are described, particularly those comprising fuel in the oxide form such as thoria and urania. The fuel assembly consists of a plurality of parallel spaced fuel plate mennbers having their longitudinal side edges attached to two parallel supporting side plates, thereby providing coolant flow channels between the opposite faces of adjacent fuel plates. The fuel plates are comprised of a plurality of longitudinally extending tubular sections connected by web portions, the tubular sections being filled with a plurality of pellets of the fuel material and the pellets being thermally bonded to the inside of the tubular section by lead.

  17. CALUTRON FACE PLATE

    DOEpatents

    Brobeck, W.M.

    1959-08-25

    The construction of a removable cover plate for a calutron tank is described. The plate is fabricated of a rectangular frame member to which is welded a bowed or dished plate of thin steel, reinforced with transverse stiffening ribs. When the tank is placed between the poles of a magnet, the plate may be pivoted away from the tank and magnet and is adapted to support the ion separation mechanism secured to its inner side as well as the vacuum load within the tank.

  18. Transpression between two warm mafic plates: The Queen Charlotte Fault revisited

    NASA Astrophysics Data System (ADS)

    Rohr, Kristin M. M.; Scheidhauer, Maren; Trehu, Anne M.

    2000-04-01

    The Queen Charlotte Fault is a transpressive transform plate boundary between the Pacific and North American plates offshore western Canada. Previous models for the accommodation of transpression include internal deformation of both plates adjacent to the plate boundary or oblique subduction of the oceanic plate; the latter has been the preferred model. Both plates are warm and mafic and have similar mechanical structures. New multichannel seismic reflection data show a near-vertical Queen Charlotte Fault down to the first water bottom multiple, significant subsidence east of the Queen Charlotte Fault, a large melange where the fault is in a compressive left step, and faulting which involves oceanic basement. Gravity modeling of profiles indicates that Moho varies fairly smoothly across the plate boundary. Isostatic anomalies indicate that the Pacific plate is flexed downward adjacent to the Queen Charlotte Fault. Upward flexure of North America along with crust thickened relative to crust in the adjacent basin creates topography known as the Queen Charlotte Islands. Combined with other regional studies, these observations suggest that the plate boundary is a vertical strike-slip fault and that transpression is taken up within each plate.

  19. Present-day plate motions. [ocean bottom movements

    NASA Technical Reports Server (NTRS)

    Minster, J. B.; Jordan, T. H.

    1978-01-01

    An instantaneous plate-motion model, Relative Motion 2 (RM2), is obtained by inverting a data set comprising 110 spreading rates, 78 transform fault azimuths, and 142 earthquake slip vectors. RM2 is compared with angular velocity vectors which best fit the data along individual plate boundaries and, while the model performs close to optimally in most regions, attention is directed to those regions which are not suitably described by the model. Reasons for the discrepancies between RM2 and observations for the India-Antarctica plate boundary, the Pacific-India plate boundary, and the east-west trending transform fault azimuths observed in the French-American Mid-Ocean Undersea Study area are discussed.

  20. A review of the tectonic evolution of the Northern Pacific and adjacent Cordilleran Orogen

    NASA Astrophysics Data System (ADS)

    Jakob, Johannes; Gaina, Carmen; Johnston, Stephen T.

    2014-05-01

    Numerous plate kinematic models for the North Pacific realm have been developed since the advent of plate tectonics in the early seventies (e.g Atwater (1970), Mammerickx and Sharman (1988)). Although published kinematic models are consistent with the broad scale features of the North Pacific, the link between plate motions and the evolution of the North American Cordillera remains poorly understood. Part of the problem lies in conflicting interpretations of geological versus paleomagnetic data sets, with the result being a lack of consensus regarding: the paleolocation of key geological units; the paleogeography of terrane formation and amalgamation; the motion, boundaries and even existence of oceanic plates; and the character (e.g. trend of subduction) and position of plate boundaries within the northern Pacific basin. Remnants of the Farallon and Kula plates, and some short-lived microplates, demonstrate the complicated tectonic evolution of the oceanic realm west of the North American margin (e.g. Rea and Dixon (1983); McCrory and Wilson (2013); Shephard et al. (2013)). The creation and destruction of major tectonic plates and microplates has presumably left a record in the Cordilleran orogen of western North America. However, working backward from the geological relationships to plate reconstructions remains difficult. Here we investigate the relationship between the plate motions of the Pacific Ocean and the terrane movements in the North American Cordillera by revising the marine magnetic and gravity anomalies of the northern Pacific. In particular, we reevaluate plate boundaries at times of major changes in plate geometry of the Pacific, Kula, Chinook and Farallon plates from C34n onward. Our focus is also on the plate geometries of the Resurrection, Eshamy and Siletz-Crescent plates during the time between anomaly C26 and C12, and the links between plate interactions and on-shore tectonic events recorded in the geological record of Vancouver Island

  1. African absolute plate motion and True Polar Wander at about 50Ma

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Wessel, P.

    2011-12-01

    Using new data set of seamount ages on the African plate, a model of motion of the African plate relative to the African hotspots are calculated by the Polygonal Finite Rotation Method; PFRM (Harada and Hamano, 2000). The new motion of the African plate has more abrupt change at about 50Ma than the previous models of the African plate mainly due to the PFRM which can allow the finite pole of the plate rotation to move continuously. The new model of the motion fits positions and ages of the almost all seamounts which are created by the African hotspots, whereas the previous models do not fit with positions of northwestern hotspots of the African plate such as Canary, Cape Verde, Meteor and Bathymetric hotspot. The new model suggests that the African plate rotated counter clockwise abruptly at about 50Ma. To compare the 50Ma abrupt change with coeval event at the Pacific plate motion, we utilized the paleomagnetic data from both plates. From the apparent geomagnetic polar wander path of the African plate and African plate motion relative to the African hotspots, we calculated geomagnetic polar motion relative to the African hotspots. Similarly, we calculated geomagnetic polar motion relative to the Pacific hotspots from the Pacific sets of paleomagnetic data and plate motion. The geomagnetic polar motion or true polar wander should be only one, therefore we can calculate relative motion of the African hotspots and the Pacific hotspots. The result shows that there was no significant motion between two groups of hotspots since about 70Ma. The new true polar wander path since 70Ma, thus, presented by averaging the two models of motions, and this has about 90 degree clockwise change of directions at about 50Ma. This study strongly suggests below. 1, There was coeval event of the African plate motion with Hawaii-Emperor bend event at the Pacific plate. 2, There was no significant relative motion between global hotspots for the time scale of 70Myr even though there was

  2. Pacific Array (Transportable Broadband Ocean Floor Array)

    NASA Astrophysics Data System (ADS)

    Kawakatsu, Hitoshi; Ekstrom, Goran; Evans, Rob; Forsyth, Don; Gaherty, Jim; Kennett, Brian; Montagner, Jean-Paul; Utada, Hisashi

    2016-04-01

    Based on recent developments on broadband ocean bottom seismometry, we propose a next generation large-scale array experiment in the ocean. Recent advances in ocean bottom broadband seismometry1, together with advances in the seismic analysis methodology, have enabled us to resolve the regional 1-D structure of the entire lithosphere/asthenosphere system, including seismic anisotropy (azimuthal, and hopefully radial), with deployments of ~15 broadband ocean bottom seismometers (BBOBSs). Having ~15 BBOBSs as an array unit for a 2-year deployment, and repeating such deployments in a leap-frog way or concurrently (an array of arrays) for a decade or so would enable us to cover a large portion of the Pacific basin. Such efforts, not only by giving regional constraints on the 1-D structure beneath Pacific ocean, but also by sharing waveform data for global scale waveform tomography, would drastically increase our knowledge of how plate tectonics works on this planet, as well as how it worked for the past 150 million years. International collaborations is essential: if three countries/institutions participate this endeavor together, Pacific Array may be accomplished within five-or-so years.

  3. Alignment between seafloor spreading directions and absolute plate motions through time

    NASA Astrophysics Data System (ADS)

    Williams, Simon E.; Flament, Nicolas; Müller, R. Dietmar

    2016-02-01

    The history of seafloor spreading in the ocean basins provides a detailed record of relative motions between Earth's tectonic plates since Pangea breakup. Determining how tectonic plates have moved relative to the Earth's deep interior is more challenging. Recent studies of contemporary plate motions have demonstrated links between relative plate motion and absolute plate motion (APM), and with seismic anisotropy in the upper mantle. Here we explore the link between spreading directions and APM since the Early Cretaceous. We find a significant alignment between APM and spreading directions at mid-ocean ridges; however, the degree of alignment is influenced by geodynamic setting, and is strongest for mid-Atlantic spreading ridges between plates that are not directly influenced by time-varying slab pull. In the Pacific, significant mismatches between spreading and APM direction may relate to a major plate-mantle reorganization. We conclude that spreading fabric can be used to improve models of APM.

  4. Pole of rotating analysis of present-day Juan de Fuca plate motion

    NASA Technical Reports Server (NTRS)

    Nishimura, C.; Wilson, D. S.; Hey, R. N.

    1984-01-01

    Convergence rates between the Juan de Fuca and North American plates are calculated by means of their relative, present-day pole of rotation. A method of calculating the propagation of errors in addition to the instantaneous poles of rotation is also formulated and applied to determine the Euler pole for Pacific-Juan de Fuca. This pole is vectorially added to previously published poles for North America-Pacific and 'hot spot'-Pacific to obtain North America-Juan de Fuca and 'hot spot'-Juan de Fuca, respectively. The errors associated with these resultant poles are determined by propagating the errors of the two summed angular velocity vectors. Under the assumption that hot spots are fixed with respect to a mantle reference frame, the average absolute velocity of the Juan de Puca plate is computed at approximately 15 mm/yr, thereby making it the slowest-moving of the oceanic plates.

  5. A great earthquake rupture across a rapidly evolving three-plate boundary.

    PubMed

    Furlong, Kevin P; Lay, Thorne; Ammon, Charles J

    2009-04-10

    On 1 April 2007 a great, tsunamigenic earthquake (moment magnitude 8.1) ruptured the Solomon Islands subduction zone at the triple junction where the Australia and Solomon Sea-Woodlark Basin plates simultaneously underthrust the Pacific plate with different slip directions. The associated abrupt change in slip direction during the great earthquake drove convergent anelastic deformation of the upper Pacific plate, which generated localized uplift in the forearc above the subducting Simbo fault, potentially amplifying local tsunami amplitude. Elastic deformation during the seismic cycle appears to be primarily accommodated by the overriding Pacific forearc. This earthquake demonstrates the seismogenic potential of extremely young subducting oceanic lithosphere, the ability of ruptures to traverse substantial geologic boundaries, and the consequences of complex coseismic slip for uplift and tsunamigenesis.

  6. Blue Willow Story Plates

    ERIC Educational Resources Information Center

    Fontes, Kris

    2009-01-01

    In the December 1997 issue of "SchoolArts" is a lesson titled "Blue Willow Story Plates" by Susan Striker. In this article, the author shares how she used this lesson with her middle-school students many times over the years. Here, she describes a Blue Willow plate painting project that her students made.

  7. Earthquakes and plate tectonics

    USGS Publications Warehouse

    Spall, H.

    1977-01-01

    An explanation is to be found in plate tectonics, a concept which has revolutionized thinking in the Earth sciences in the last 10 years. The theory of plate tectonics combines many of the ideas about continental drift (originally proposed in 1912 by Alfred Wegener in Germany) and sea-floor spreading (suggested originally by Harry Hess of Princeton University). 

  8. Global Dynamic Numerical Simulations of Plate Tectonic Reorganizations

    NASA Astrophysics Data System (ADS)

    Morra, G.; Quevedo, L.; Butterworth, N.; Matthews, K. J.; Müller, D.

    2010-12-01

    We use a new numerical approach for global geodynamics to investigate the origin of present global plate motion and to identify the causes of the last two global tectonic reorganizations occurred about 50 and 100 million years ago (Ma) [1]. While the 50 Ma event is the most well-known global plate-mantle event, expressed by the bend in the Hawaiian-Emperor volcanic chain, a prominent plate reorganization at about 100 Ma, although presently little studied, is clearly indicated by a major bend in the fracture zones in the Indian Ocean and by a change in Pacific plate motion [2]. Our workflow involves turning plate reconstructions into surface meshes that are subsequently employed as initial conditions for global Boundary Element numerical models. The tectonic setting that anticipates the reorganizations is processed with the software GPlates, combining the 3D mesh of the paleo-plate morphology and the reconstruction of paleo-subducted slabs, elaborated from tectonic history [3]. All our models involve the entire planetary system, are fully dynamic, have free surface, are characterized by a spectacular computational speed due to the simultaneous use of the multi-pole algorithm and the Boundary Element formulation and are limited only by the use of sharp material property variations [4]. We employ this new tool to unravel the causes of plate tectonic reorganizations, producing and comparing global plate motion with the reconstructed ones. References: [1] Torsvik, T., Müller, R.D., Van der Voo, R., Steinberger, B., and Gaina, C., 2008, Global Plate Motion Frames: Toward a unified model: Reviews in Geophysics, VOL. 46, RG3004, 44 PP., 2008 [2] Wessel, P. and Kroenke, L.W. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. Journal of Geophysical Research, Vol 113, B06101, 2008 [3] L. Quevedo, G. Morra, R. D. Mueller. Parallel Fast Multipole Boundary Element Method for Crustal Dynamics, Proceeding 9th World Congress and 4th Asian

  9. Shear-wave splitting and implications for mantle flow beneath the MELT region of the east pacific rise

    PubMed

    Wolfe; Solomon

    1998-05-22

    Shear-wave splitting across the fast-spreading East Pacific Rise has been measured from records of SKS and SKKS phases on the ocean-bottom seismometers of the Mantle Electromagnetic and Tomography (MELT) Experiment. The direction of fast shear-wave polarization is aligned parallel to the spreading direction. Delay times between fast and slow shear waves are asymmetric across the rise, and off-axis values on the Pacific Plate are twice those on the Nazca Plate. Splitting on the Pacific Plate may reflect anisotropy associated with spreading-induced flow above a depth of about 100 km, as well as a deeper contribution from warm asthenospheric return flow from the Pacific Superswell region.

  10. Deck view, west approach; former Western Pacific (now Union Pacific) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Deck view, west approach; former Western Pacific (now Union Pacific) Railroad at left; wind turbine generators atop hill in background; view to northeast; 90mm lens - Carroll Overhead Bridge, Altamont Pass Road, Livermore, Alameda County, CA

  11. Turbine vane plate assembly

    DOEpatents

    Schiavo Jr., Anthony L.

    2006-01-10

    A turbine vane assembly includes a turbine vane having first and second shrouds with an elongated airfoil extending between. Each end of the airfoil transitions into a shroud at a respective junction. Each of the shrouds has a plurality of cooling passages, and the airfoil has a plurality of cooling passages extending between the first and second shrouds. A substantially flat inner plate and an outer plate are coupled to each of the first and second shrouds so as to form inner and outer plenums. Each inner plenum is defined between at least the junction and the substantially flat inner plate; each outer plenum is defined between at least the substantially flat inner plate and the outer plate. Each inner plenum is in fluid communication with a respective outer plenum through at least one of the cooling passages in the respective shroud.

  12. Stroke and Native Hawaiians/Pacific Islanders

    MedlinePlus

    ... Population Profiles > Native Hawaiian/Other Pacific Islander > Stroke Stroke and Native Hawaiians/Pacific Islanders Native Hawaiians/Pacific ... non-Hispanic white adults to die from a stroke in 2010. In general, Native Hawaiian/Pacific Islander ...

  13. Interface resistance

    NASA Astrophysics Data System (ADS)

    Sinkkonen, Juha

    1983-11-01

    Interface resistance is studied by using the Landauer formula which relates the resistance to the quantum mechanical transmission coefficient. A simple rederivation of the Landauer formula is given. Using a step-like potential barrier as a model for the metal-semiconductor contact an analytical expression for the effective Richardson constant is derived. As an other application the grain boundary resistance in polycrystalline semiconductors is studied. The short-range potential fluctuation associated with the grain boundary is described by a rectangular potential barrier. The results for the grain boundary limited mobility cover both the strong and weak scattering regimes.

  14. Teleseismic receiver function imaging of the Pacific Northwest, United States

    NASA Astrophysics Data System (ADS)

    Eager, Kevin Charles

    The origins of widespread Cenozoic tectonomagmatism in the Pacific Northwest, United States likely involve complex dynamics including subduction of the Juan de Fuca plate and mantle upwelling processes, all of which are reflected in the crust and upper mantle. To provide an improved understanding of these processes, I analyze P-to- S converted phases using the receiver function method to image topographic variations on regional seismic discontinuities in the upper mantle, which provides constraints on mantle thermal structure, and the crust-mantle interface, which provides constraints on crustal thickness and composition. My results confirm complexity in the Juan de Fuca slab structure as found by regional tomographic studies, including limited evidence of the slab penetrating the transition zone between the 410 and 660 km discontinuities. Evidence is inconclusive for a simple mantle plume beneath the central Oregon High Lava Plains, but indicates a regional increase in mantle temperatures stretching to the east. This result implies the inflow of warm material, either from around the southern edge of the Juan de Fuca plate as it descends into the mantle, or from a regional upwelling to the east related to the Yellowstone hotspot. Results for regional crustal structure reveal thin (˜31 km) crust beneath the High Lava Plains relative to surrounding regions that exhibit thicker (35+ km) crust. The thick (≥ 40 km) crust of the Owyhee Plateau has a sharp western boundary and normal Poisson's ratio, a measure of crustal composition. I find a slightly thickened crust and low Poisson's ratio between Steens Mountain and the Owyhee Plateau, consistent with residuum from source magma of the Steens flood basalts. Central and southern Oregon exhibit very high Poisson's ratios and low velocity zones within the crust, suggesting a degree of intracrustal partial melt not seen along the center of the age-progressive High Lava Plains magmatic track, perhaps due to crustal melt

  15. Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates

    PubMed Central

    Ganesh, VK; Ramakrishna, K; Ghista, Dhanjoo N

    2005-01-01

    Background In the internal fixation of fractured bone by means of bone-plates fastened to the bone on its tensile surface, an on-going concern has been the excessive stress-shielding of the bone by the excessively-stiff stainless-steel plate. The compressive stress-shielding at the fracture-interface immediately after fracture-fixation delays callus formation and bone healing. Likewise, the tensile stress-shielding of the layer of the bone underneath the plate can cause osteoporosis and decrease in tensile strength of this layer. Method In order to address this problem, we propose to use stiffness-graded plates. Accordingly, we have computed (by finite-element analysis) the stress distribution in the fractured bone fixed by composite plates, whose stiffness is graded both longitudinally and transversely. Results It can be seen that the stiffness-graded composite-plates cause less stress-shielding (as an example: at 50% of the healing stage, stress at the fracture interface is compressive in nature i.e. 0.002 GPa for stainless steel plate whereas stiffness graded plates provides tensile stress of 0.002 GPa. This means that stiffness graded plate is allowing the 50% healed bone to participate in loadings). Stiffness-graded plates are more flexible, and hence permit more bending of the fractured bone. This results in higher compressive stresses induced at the fractured faces accelerate bone-healing. On the other hand, away from the fracture interface the reduced stiffness and elastic modulus of the plate causes the neutral axis of the composite structure to be lowered into the bone resulting in the higher tensile stress in the bone-layer underneath the plate, wherein is conducive to the bone preserving its tensile strength. Conclusion Stiffness graded plates (with in-built variable stiffness) are deemed to offer less stress-shielding to the bone, providing higher compressive stress at the fractured interface (to induce accelerated healing) as well as higher tensile

  16. Eastern Pacific Ocean Conference

    NASA Astrophysics Data System (ADS)

    The promotion of interaction among investigators of all oceanographic disciplines studying the eastern Pacific Ocean was the goal of the 1990 Eastern Pacific Ocean Conference (EPOC), held October 17-19 on the snow-covered slopes of Mt. Hood, Oreg. Thirty oceanographers representing all disciplines attended.Dick Barber, Duke University Marine Lab, Beaufort, N.C., chaired a session on the eastern equatorial Pacific Ocean, emphasizing issues related to biological activity. Steve Ramp of the Naval Postgraduate School in Montery, Calif., chaired a session on recent results from northern and central California experiments. On October 19, following an early morning earthquake, a business meeting and discussions regarding a collaboration in future experiments were held.

  17. Earthquakes and plate tectonics.

    USGS Publications Warehouse

    Spall, H.

    1982-01-01

    Earthquakes occur at the following three kinds of plate boundary: ocean ridges where the plates are pulled apart, margins where the plates scrape past one another, and margins where one plate is thrust under the other. Thus, we can predict the general regions on the earth's surface where we can expect large earthquakes in the future. We know that each year about 140 earthquakes of magnitude 6 or greater will occur within this area which is 10% of the earth's surface. But on a worldwide basis we cannot say with much accuracy when these events will occur. The reason is that the processes in plate tectonics have been going on for millions of years. Averaged over this interval, plate motions amount to several mm per year. But at any instant in geologic time, for example the year 1982, we do not know, exactly where we are in the worldwide cycle of strain build-up and strain release. Only by monitoring the stress and strain in small areas, for instance, the San Andreas fault, in great detail can we hope to predict when renewed activity in that part of the plate tectonics arena is likely to take place. -from Author

  18. Pixelated neutron image plates

    NASA Astrophysics Data System (ADS)

    Schlapp, M.; Conrad, H.; von Seggern, H.

    2004-09-01

    Neutron image plates (NIPs) have found widespread application as neutron detectors for single-crystal and powder diffraction, small-angle scattering and tomography. After neutron exposure, the image plate can be read out by scanning with a laser. Commercially available NIPs consist of a powder mixture of BaFBr : Eu2+ and Gd2O3 dispersed in a polymer matrix and supported by a flexible polymer sheet. Since BaFBr : Eu2+ is an excellent x-ray storage phosphor, these NIPs are particularly sensitive to ggr-radiation, which is always present as a background radiation in neutron experiments. In this work we present results on NIPs consisting of KCl : Eu2+ and LiF that were fabricated into ceramic image plates in which the alkali halides act as a self-supporting matrix without the necessity for using a polymeric binder. An advantage of this type of NIP is the significantly reduced ggr-sensitivity. However, the much lower neutron absorption cross section of LiF compared with Gd2O3 demands a thicker image plate for obtaining comparable neutron absorption. The greater thickness of the NIP inevitably leads to a loss in spatial resolution of the image plate. However, this reduction in resolution can be restricted by a novel image plate concept in which a ceramic structure with square cells (referred to as a 'honeycomb') is embedded in the NIP, resulting in a pixelated image plate. In such a NIP the read-out light is confined to the particular illuminated pixel, decoupling the spatial resolution from the optical properties of the image plate material and morphology. In this work, a comparison of experimentally determined and simulated spatial resolutions of pixelated and unstructured image plates for a fixed read-out laser intensity is presented, as well as simulations of the properties of these NIPs at higher laser powers.

  19. Deep earthquakes in the southwest Pacific: A tectonic interpretation

    SciTech Connect

    Hamburger, M.W.; Isacks, B.L.

    1987-12-10

    This paper examines the spatial distribution deep earthquakes in the Tonga-Fiji-New Hebrides region of the southwest Pacific. Our interpretation emphasizes the complex Cenozoic tectonics of the Pacific/Indo-Australian plate boundary as a primary control on the distribution and deformation of subducted lithosphere. Most deep earthquakes in the interarc region are associated with the contorted Pacific plate lithosphere subducted at the Tonga Trench. However, anomalous groups of deep earthquakes located west of the Tonga zone are unrelated to the present plate configuration. Tectonic reconstructions of the region to 8 m.y. B.P. provide circumstantial evidence that (1) the anomalous events west of the Tonga zone occur in two pieces of detached lithosphere, subducted at the Vitiaz and proto-New Hebrides trenches during the late Miocene, (2) the flattening of the inclined seismic zone in northernmost Tonga is related to the rapid opening of the Lau Basin since 4 m.y. B.P., and (3) the sharp westward curvature of the Tonga seismic zone in this area coincides with a preexisting bend in the late Miocene Vitiaz arc. The sharpness of its present curvature appears to be secondary effect of shear flow in the lower mantle and compression between detached (Vitiaz) and attached (Tonga) lithosphere. Thus much of the contortion of the subducted lithosphere beneath Tonga-Fiji may be produced by local tectonic interactions, rather than collision of the slab with an impenetrable boundary in the midmantle. copyright American Geophysical Union 1987

  20. Hypervelocity Impact on Interfaces: A Molecular-Dynamics Simulations Study

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.; Owens, Eli T.; Leonard, Robert H.; Cockburn, Bronwyn C.

    2008-03-01

    Silicon/silicon nitride interfaces are found in micro electronics and solar cells. In either application the mechanical integrity of the interface is of great importance. Molecular-dynamics simulations are performed to study the failure of interface materials under the influence of hypervelocity impact. Silicon nitride plates impacting on silicon/silicon nitride interface targets of different thicknesses result in structural phase transformation and delamination at the interface. Detailed analyses of atomic velocities, bond lengths, and bond angles are used to qualitatively examine the respective failure mechanisms.

  1. Palaeotectonic implications of increased late Eocene-early Oligocene volcanism from South Pacific DSDP sites

    USGS Publications Warehouse

    Kennett, J.P.; Von Der Borch, C.; Baker, P.A.; Barton, C.E.; Boersma, A.; Cauler, J.P.; Dudley, W.C.; Gardner, J.V.; Jenkins, D.G.; Lohman, W.H.; Martini, E.; Merrill, R.B.; Morin, R.; Nelson, Campbell S.; Robert, C.; Srinivasan, M.S.; Stein, R.; Takeuchi, A.; Murphy, M.G.

    1985-01-01

    Late Eocene-early Oligocene (42-35 Myr) sediments cored at two DSDP sites in the south-west Pacific contain evidence of a pronounced increase in local volcanic activity, particularly in close association with the Eocene-Oligocene boundary. This pulse of volcanism is coeval with that in New Zealand and resulted from the development of an Indo- Australian / Pacific Plate boundary through the region during the late Eocene. The late Eocene / earliest Oligocene was marked by widespread volcanism and tectonism throughout the Pacific and elsewhere, and by one of the most important episodes of Cenozoic climatic cooling. ?? 1985 Nature Publishing Group.

  2. Fiji in the South Pacific.

    ERIC Educational Resources Information Center

    Scott, Rosalind; Semaan, Leslie

    This text introduces Fiji and other island nations located in the Pacific, the world's largest ocean. Cut off from the world by vast expanses of water, these people developed a unique culture. Contents include: Teacher Overview, Geography of the South Pacific Islands, History of the South Pacific, Fiji, Traditional Village Life, Yaquna Ceremony,…

  3. Unicortical versus bicortical locked plate fixation in midshaft clavicle fractures.

    PubMed

    Bravman, Jonathan T; Taylor, Michal L; Baldini, Todd; Vidal, Armando F

    2015-05-01

    Higher rates of poor outcomes in displaced midshaft clavicle fractures treated nonoperatively have recently been reported. Along with expanding indications for operative fixation and increasing application of locked plate constructs, it is unknown whether complications related to bicortical penetration of the clavicle can be avoided using unicortical fixation. The purpose of this study is to compare the biomechanical properties of unicortical and bicortical fixation in precontoured vs manually contoured locking clavicle plates. Forty-eight Sawbone composite human clavicle specimens (item #3408; Pacific Research Laboratories, Vashon, Washington) with a midshaft clavicle osteotomy were reduced and plated in 8 specimens each using a bicortical and unicortical fixation for each of 3 locked plate constructs (3.5-mm LCP Reconstruction Plate; 3.5-mm LCP Superior Clavicle Plate; 3.5-mm LCP Superior Anterior Clavicle Plate; Synthes, Inc, West Chester, Pennsylvania). Specimens were tested for stiffness in axial torsion and cantilever bending and then loaded to failure in 3-point bending. Data were analyzed using 2-way analysis of variance and Tukey's test (P<.05). No significant differences were found between unicortical and bicortical fixation in failure load, cantilever bending, and cross body stiffness. Bicortical fixation was significantly stiffer than unicortical fixation in torsion only for the same plates. Significant differences also existed between plates in torsion. Unicortical locked plate fixation may be a reasonable option in the treatment of displaced midshaft clavicle fracture fixation to avoid complications associated with posteroinferior hardware penetration following clavicle fracture fixation based on the biomechanical performance of these constructs. However, it remains unclear whether these differences will be clinically significant.

  4. Interface standardization

    NASA Technical Reports Server (NTRS)

    Spencer, R.; Wong, V.

    1983-01-01

    Central-station applications create a large and attractive market for photovoltaics in the near future. However, some significant barriers lie between the industry of today and realization of that market. Manufacturing capacity and price are two principal impediments. The Utilities, which are the future system owners, are gaining experience with central-station PV power through the Sacramento Municipal Utility District, Hesperia and similar small central-station installations. SMUD has recognized that competition must be maintained to help reduce prices. So little standardization exists that the cost is driven upward to redefine mechanical and electrical interfaces for each vendor. New structues are required for each vendor and nonoptimum field geometries result from attempts to include more than one vendor in an array field. Standards at some hardware level are required.

  5. Intermediate photovoltaic system/utility interface experience

    NASA Astrophysics Data System (ADS)

    Biringer, K. L.; McDowell, J. F.; Rogers, C. B.; Haskins, D. E.

    A description is given of 11 intermediate photovoltaic application projects, including the Arizona Public Service Company project, the E-Systems 27 kW photovoltaic concentrator application experiment, a 110 kW photovoltaic application experiment in Orlando, Florida, the Lea County photovoltaic flat plate photovoltaic experiment in southeastern New Mexico, the Mt. Laguna photovoltaic flat plate installation in California, the San Bernardino 35 kW photovoltaic flat plate project in California, and the Solar Power flat plate photovoltaic experiment in Massachusetts. It is pointed out that the most significant point to be made relative to the interface of photovoltaic systems with the utility grid is that it can be done successfully.

  6. Plate convergence west of Patagonia and the Antarctic Peninsula since 61 Ma

    NASA Astrophysics Data System (ADS)

    Eagles, Graeme; Scott, Benjamin G. C.

    2014-12-01

    A new plate kinematic model portrays plate motions immediately west and south of Drake Passage in the southeast Pacific Ocean. Overall intermediate-to-slow rate spreading generated oceanic lithosphere as the Phoenix plate diverged from the Antarctic plate. The model shows a history of Phoenix plate motion that is interpretable as having been affected by a northeast-increasing gradient in the slab pull force since chron 18 (39 Ma), during which time newer, less dense lithosphere was subducting in the southwest than in the northeast. The model allows first calculations of Phoenix-Farallon (Nazca) plate motion parameters in the south Pacific plate circuit. Using these parameters, it is possible to show that the simplest assumptions about the ridge's segmentation, length and migration are consistent with existing suggestions of its location from consideration of slab window-related volcanism at sites in South America around 50 and 20 Ma. The parameters thus define ridge locations that can be used to define which plates were subducting beneath South America and the Magallanes and Antarctic plates, and when. We consider the relationships between the plate convergence rate, obliquity and the history of magmatism on the Antarctic Peninsula and at the North Patagonian batholith, showing that magmatic pulses can be related to accelerations in the plate convergence rate. Between these settings, Phoenix-South American plate motion was almost parallel to the Fuegian trench. Here, magmatism in Paleocene to early Miocene times must be related to the presence of a slab subducted beneath the region by the less oblique collision further north. Later magmatism can be related to migration of the Phoenix-Farallon ridge and Phoenix-Farallon-Antarctic triple junction into the area south of the Fuegian margin, which brought it into slow low-obliquity convergence with first Farallon and then Antarctic plate lithosphere.

  7. Designing Assemblies Of Plates

    NASA Technical Reports Server (NTRS)

    Williams, F. W.; Kennedy, D.; Butler, R.; Aston, G.; Anderson, M. S.

    1992-01-01

    VICONOPT calculates vibrations and instabilities of assemblies of prismatic plates. Designed for efficient, accurate analysis of buckling and vibration, and for optimum design of panels of composite materials. Written in FORTRAN 77.

  8. Plate tectonics: Metamorphic myth

    NASA Astrophysics Data System (ADS)

    Korenaga, Jun

    2016-01-01

    Clear evidence for subduction-induced metamorphism, and thus the operation of plate tectonics on the ancient Earth has been lacking. Theoretical calculations indicate that we may have been looking for something that cannot exist.

  9. Violin plate modes.

    PubMed

    Gough, Colin

    2015-01-01

    As the first step toward developing a generic model for the acoustically radiating vibrational modes of the violin and related instruments, the modes of both freely supported and edge-constrained top and back plates have been investigated as functions of shape, arching height, elastic anisotropy, the f-holes and associated island area, thickness graduations, and the additional boundary constraints of the ribs, soundpost, and bass-bar present in the assembled instrument. Comsol shell structure finite element software has been used as a quasi-experimental tool, with physical and geometric properties varied smoothly, often over several orders of magnitude, allowing the development of the plate modes to be followed continuously from those of an initially square plate to those of doubly-arched, guitar-shaped, orthotropic plates and their dependence on all the above factors.

  10. Tectonic Plate Movement.

    ERIC Educational Resources Information Center

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  11. Reduction of astrometric plates

    NASA Technical Reports Server (NTRS)

    Stock, J.

    1984-01-01

    A rapid and accurate method for the reduction of comet or asteroid plates is described. Projection equations, scale length correction, rotation of coordinates, linearization, the search for additional reference stars, and the final solution are examined.

  12. What's On Your Plate?

    MedlinePlus

    ... Table of Contents What's On Your Plate? Smart Food Choices for Healthy Aging www.nia.nih.gov/health/ ... calories in" and "calories out," and making good food choices as you age. Shopping Tips See how planning ...

  13. Feynman's wobbling plate

    NASA Astrophysics Data System (ADS)

    Tuleja, Slavomir; Gazovic, Boris; Tomori, Alexander; Hanc, Jozef

    2007-03-01

    In the book Surely You Are Joking, Mr. Feynman! Richard Feynman tells a story of a Cornell cafeteria plate being tossed into the air. As the plate spun, it wobbled. Feynman noticed a relation between the two motions. He solved the motion of the plate by using the Lagrangian approach. This solution didn't satisfy him. He wanted to understand the motion of the plate by analyzing the motion of its individual particles and the forces acting on them. He was successful, but he didn't tell us how he did it. We provide an elementary explanation for the two-to-one ratio of wobble to spin frequencies, based on an analysis of the motion of the particles and the forces acting on them. We also demonstrate the power of numerical simulation and computer animation to provide insight into a physical phenomenon and guidance on how to do the analysis.

  14. Flat plate solar oven

    SciTech Connect

    Parikh, M.

    1981-01-01

    The construction of an Indian Rs. 186 (US $20.33) flat-plate solar oven is described. Detailed drawings are provided and relevant information on cooking times and temperature for different foods is given.

  15. The Pacific Rim.

    ERIC Educational Resources Information Center

    Thomas, Paul F., Ed.

    1988-01-01

    The articles in this special edition were compiled to provide information to Canadian social studies teachers about Pacific Rim countries. Section 1, entitled "The Big Picture and Future Interests," contains: (1) "Social Studies for the 21st Century" (J. Tucker); (2) "Culture and Communication: A Perspective on Asian…

  16. OCLC in Asia Pacific.

    ERIC Educational Resources Information Center

    Chang, Min-min

    1998-01-01

    Discusses the Online Computer Library Center (OCLC) and the changing Asia Pacific library scene under the broad headings of the three phases of technology innovation. Highlights include WorldCat and the OCLC shared cataloging system; resource sharing and interlibrary loan; enriching OCLC online catalog with Asian collections; and future outlooks.…

  17. Fractal multifiber microchannel plates

    NASA Technical Reports Server (NTRS)

    Cook, Lee M.; Feller, W. B.; Kenter, Almus T.; Chappell, Jon H.

    1992-01-01

    The construction and performance of microchannel plates (MCPs) made using fractal tiling mehtods are reviewed. MCPs with 40 mm active areas having near-perfect channel ordering were produced. These plates demonstrated electrical performance characteristics equivalent to conventionally constructed MCPs. These apparently are the first MCPs which have a sufficiently high degree of order to permit single channel addressability. Potential applications for these devices and the prospects for further development are discussed.

  18. Positive battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John R. (Inventor)

    1985-01-01

    The power characteristics of a lead acid battery are improved by incorporating a dispersion of 1 to 10% by weight of a thermodynamically stable conductivity additive, such as conductive tin oxide coated glass fibers (34) of filamentary glass wool (42) in the positive active layer (32) carried on the grid (30) of the positive plate (16). Positive plate potential must be kept high enough to prevent reduction of the tin oxide to tin by utilizing an oversized, precharged positive paste.

  19. Amphibious seismic survey images plate interface at 1960 Chile Earthquake

    NASA Astrophysics Data System (ADS)

    The SPOC Team; Krawcyzk, C.

    The southern central Chilean margin at the site of the largest historically recorded earthquake in the Valdivia region, in 1960 (Mw = 9.5), is part of the 5000-km-long active subduction system whose geodynamic evolution is controversially debated and poorly understood. Covering the area between 36° and 40°S, the oceanic crust is segmented by prominent fracture zones. The offshore forearc and its onshore continuation show a complex image with segments of varying geophysical character, and several fault systems active during the past 24 m.y.In autumn 2001, the project SPOC was organized to study the Subduction Processes Off Chile, with a focus on the seismogenic coupling zone and the forearc. The acquired seismic data crossing the Chilean subduction system were gathered in a combined offshore-onshore survey and provide new insights into the lithospheric structure and evolution of active margins with insignificant frontal accretion.

  20. Is structural interface standardization beneficial?

    NASA Technical Reports Server (NTRS)

    Dombert, W. E.

    1983-01-01

    Factors applicable to fixed angle, large field and fixed angle, large building flat plate photovoltaic (PV) generator arrays are discussed in the context of standardization. It is concluded that structural interface standardization may be highly desirable in any one major project, but not at this time in the overall PV industry. Attempts to mandate such standardization will act as a deterrent to long-range improvements. In specific projects, structural standardization should be defined at the largest practical interface, leaving the maximum possible freedom to the module and array manufacturer. There is a corollary area, however, where detailed standards would benefit the industry; the matter of Standard Practices. Work being done towards definition of acceptable/desirable practices in materials, finishes, fastening and locking methods, grounding techniques, lightning protection, etc., and in handling the environmental ranges, should be continued.

  1. The response of a plate bonded to a randomly vibrating viscoelastic half-space.

    NASA Technical Reports Server (NTRS)

    Remington, P. J.

    1972-01-01

    The response of an infinite Bernoulli-Euler plate placed on the surface of a randomly vibrating viscoelastic half-space is calculated, allowing for the presence of shear stresses between the plate and the half-space. The shear stresses arise from the condition that the relative motion between the plate and the half-space vanishes at the interface. The three components of displacement of the free surface of the half-space before the plate is added are assumed to be stationary homogeneous random functions of position and time. From the wavenumber-frequency spectra of these displacements the frequency spectra of the three components of displacement of the plate half-space interface are calculated. As an example, the frequency spectrum of the vertical interface displacement is calculated for two assumed forms of the wavenumber spectra of the free-surface displacements.

  2. Mantle Heterogeneity and Off Axis Volcanism on Young Pacific Lithosphere

    NASA Astrophysics Data System (ADS)

    Harmon, N.; Forsyth, D. W.; Weeraratne, D. S.; Webb, S. C.; Yang, Y.

    2011-12-01

    Plate tectonics and mantle plumes explain most volcanism on earth, but there are numerous actively forming linear volcanic chains in the middle of tectonic plates that are not explained by these theories. Using the multidisciplinary geophysical dataset of the MELT and GLIMPSE experiments, we show that associated with 3 volcanic chains west of the East Pacific Rise there are low seismic velocities and densities in the asthenosphere that extend to the East Pacific Rise spreading center. Analogous to the Hawaiian swell, the low-density anomalies produce swells beneath the volcanoes on young seafloor. The associated gravity anomalies are part of a set of gravity lineaments that have been previously interpreted as being due to thermo-elastic cracking of the lithosphere or small-scale convection. The correlation between the surface volcanism and subsurface density and velocity anomalies and their extension to the spreading center suggest that pre-existing, buoyant or fertile asthenospheric mantle heterogeneities are stretched in the direction of plate motion by shear between the plate and the underlying mantle. These heterogeneities seed small-scale convection, producing upwelling and pressure release melting, forming volcanic chains that extend nearly to the ridge axis.

  3. Mantle heterogeneity and off axis volcanism on young Pacific lithosphere

    NASA Astrophysics Data System (ADS)

    Harmon, Nicholas; Forsyth, Donald W.; Weeraratne, Dayanthie S.; Yang, Yingjie; Webb, Spahr C.

    2011-11-01

    Plate tectonics and mantle plumes explain most volcanism on earth, but there are numerous actively forming linear volcanic chains in the middle of tectonic plates that are not explained by these theories. Using the multidisciplinary geophysical dataset of the MELT and GLIMPSE experiments, we show that associated with 3 volcanic chains west of the East Pacific Rise there are low seismic velocities and densities in the asthenosphere that extend to the East Pacific Rise spreading center. Analogous to the Hawaiian swell, the low-density anomalies produce swells beneath the volcanoes on young seafloor. The associated gravity anomalies are part of a set of gravity lineaments that have been previously interpreted as being due to thermo-elastic cracking of the lithosphere or small-scale convection. The correlation between the surface volcanism and subsurface density and velocity anomalies and their extension to the spreading center suggest that pre-existing, buoyant or fertile asthenospheric mantle heterogeneities are stretched in the direction of plate motion by shear between the plate and the underlying mantle. These heterogeneities seed small-scale convection, producing upwelling and pressure release melting, forming volcanic chains that extend nearly to the ridge axis.

  4. Past Plate Motions and The Evolution of Earth's Lower Mantle: Relating LLSVPs and Plume Distribution

    NASA Astrophysics Data System (ADS)

    Bull, A. L.; Torsvik, T. H.; Shephard, G. E.

    2015-12-01

    Seismic tomography elucidates broad, low shear-wave velocity structures in the lower mantle beneath Africa and the central Pacific with uncertain physical and compositional origins. The anomalously slow areas, which cover nearly 50% of the core-mantle boundary, are often referred to as Large Low Shear Velocity Provinces (LLSVPs) due to the reduced velocity of seismic waves passing through them. Several hypotheses have arisen to explain the LLSVPs in the context of large-scale mantle convection. One end-member scenario infers a spatial correlation between LLSVP margins at depth and the reconstructed surface eruption sites of hotspots, kimberlites, and Large Igneous Provinces. Such a correlation has been explained by the preferential triggering of plumes at LLSVP margins by impingement of the subducting lithosphere upon the lower thermal boundary layer at the interface between ambient mantle and the higher density structures. This scenario propounds that Earth's plate motion history plays a controlling role in plume development, and that the location, geometry and morphology of plumes may be influenced by the movement of subducting slabs. Here, we investigate what is necessary to create such a pattern of plume distribution in relation to LLSVPs. We consider what effect past plate motions may have had on the evolution of Earth's lower mantle, and discuss the development of mantle plumes in terms of subduction dynamics. We integrate plate tectonic histories and numerical models of mantle convection to investigate the role that subduction history plays in the development and evolution of plumes in the presence of LLSVPs. To test whether an interaction exists between the surface location of subduction and plume eruption sites, and if so, to what degree over time, we apply varying shifts to the absolute reference frame of the plate reconstruction. With this method, we are able to change the location of subduction at the surface and thus the global flow field. This in turn

  5. Caribbean plate interactions

    SciTech Connect

    Ball, M. )

    1993-02-01

    Vector analysis of plate motions, derived from studies of Atlantic magnetic lineations and fracture zone trends, indicates the following relative movements between the Caribbean, North American, and South American Plates. (1) During Early Jurassic to Early Cretaceous, the North American Plate moved 1900 km westward and 900 km northward relative to the South American Plate. A broad zone including the Caribbean region, i.e., the zone between the North and South America Plates, was a site of left-lateral shear and north-south extension. (2) During Early Cretaceous to Late Cretaceous, the North American Mate moved an additional 1200 km westward relative to South America across this zone. (3) During Late Cretaceous to the end of the Eocene, the North American Plate moved 200 km westward and 400 km northward relative to the South American Plate. (4) From the end of the Eocene to near the end of the Miocene, North America converged on South America some 200 km and moved 100 km eastward relative to it. Through the Mesozoic and earliest Tertiary history of the Caribbean, the region was a shear zone within which left-lateral displacement exceeded 3000 km and north-south extension exceeded 1300 km. In regard to time, 80% of the history of the Caribbean region is one of north-south extension and left-lateral shear. In terms of space, 97% of the shear is left-lateral and the ratio of divergence versus convergence is 7 to 1. Thus, characterizing the Caribbean region, and the Atlantic to its east, as a zone of north-south extension and left-lateral shear, is a fair generalization.

  6. The San Andreas fault experiment. [gross tectonic plates relative velocity

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Vonbun, F. O.

    1973-01-01

    A plan was developed during 1971 to determine gross tectonic plate motions along the San Andreas Fault System in California. Knowledge of the gross motion along the total fault system is an essential component in the construction of realistic deformation models of fault regions. Such mathematical models will be used in the future for studies which will eventually lead to prediction of major earthquakes. The main purpose of the experiment described is the determination of the relative velocity of the North American and the Pacific Plates. This motion being so extremely small, cannot be measured directly but can be deduced from distance measurements between points on opposite sites of the plate boundary taken over a number of years.

  7. Horizontal and vertical deformation field in New Caledonia, South West Pacific, derived from more than 20 years of GNSS measurements

    NASA Astrophysics Data System (ADS)

    Ballu, V.; Calmant, S.; Valty, P.; Gravelle, M.; Sakic, P.; Aucan, J.; Pelletier, B.

    2015-12-01

    New Caledonia is located in the South West Pacific Ocean, on the Australian Plate just before its subduction under the North Fiji Basin. Because it is on the subducting side of the plate interface, New Caledonia is considered to be stable to first order and not to undergo rapid deformation. However, moderate seismicity is recorded close to the plate interface, in the southern part of the main land and along the Loyalty ridge. In addition, the main island and Loyalty ridge are subjected to long-term vertical deformation due to the flexure of the plate entering subduction. A geodetic network was installed since the early days of GPS (~1990) and has been further developed and occasionally measured since. Due to the low number of global GNSS recording stations in the early 1990s, the positioning accuracy that can be achieved with these data is poor compared to present-day standards, and expected movements are slow (possibly less than 1 mm/yr). However, the >20 year length of the time series may allow us to determine the current deformation field in New Caledonia and Loyalty Ridge. We pay special care in using older GNSS data for characterizing ground motions, reprocessing all available data using a range of different processing strategies and products. We calculated daily positions from double-differenced ionosphere-free carrier phase data in a global network using the GAMIT software and combined and aligned the results on the ITRF2008 using the CATREF software, according to the processing strategy developed as part of the current ULR6 (www.sonel.org) reprocessing campaign for IGS. We compare the double difference results with those obtained in PPP mode using JPL GIPSY software as well as CNES GINS software and different products (MIT, JPL and GRG orbits and clocks provided in the framework of the IGS2 reprocessing campaign). We present both the results for New Caledonia and an analysis of the applicability of these different processing strategies to older GNSS

  8. Fracture of composite orthotropic plates for materials type 2

    NASA Technical Reports Server (NTRS)

    Delale, F.

    1976-01-01

    The fracture problem of laminated plates which consist of orthotropic layers is considered. Symmetrical cracks are located normal to the bimaterial interfaces. The external loads are applied away from the crack region. Three cases are considered: (a) the case of internal cracks; (b) the case of broken laminates; and (c) case of a crack crossing the interface. A general formulation of the problem is given for plane strain and generalized plane stress cases. The singular behavior of stresses at the crack tips and at the interfaces is studied. In each case the stress intensity factors are computed for various crack geometries.

  9. Elastocapillary coalescence of plates and pillars

    PubMed Central

    Wei, Z.; Schneider, T. M.; Kim, J.; Kim, H.-Y.; Aizenberg, J.; Mahadevan, L.

    2015-01-01

    When a fluid-immersed array of supported plates or pillars is dried, evaporation leads to the formation of menisci on the tips of the plates or pillars that bring them together to form complex patterns. Building on prior experimental observations, we use a combination of theory and computation to understand the nature of this instability and its evolution in both the two- and three-dimensional setting of the problem. For the case of plates, we explicitly derive the interaction torques based on the relevant physical parameters associated with pillar deformation, contact-line pinning/depinning and fluid volume changes. A Bloch-wave analysis for our periodic mechanical system captures the window of volumes where the two-plate eigenvalue characterizes the onset of the coalescence instability. We then study the evolution of these binary clusters and their eventual elastic arrest using numerical simulations that account for evaporative dynamics coupled to capillary coalescence. This explains both the formation of hierarchical clusters and the sensitive dependence of the final structures on initial perturbations, as seen in our experiments. We then generalize our analysis to treat the problem of pillar collapse in three dimensions, where the fluid domain is completely connected and the interface is a minimal surface with the uniform mean curvature. Our theory and simulations capture the salient features of experimental observations in a range of different situations and may thus be useful in controlling the ensuing patterns. PMID:25792949

  10. Cadmium plating replacements

    SciTech Connect

    Nelson, M.J.; Groshart, E.C.

    1995-03-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  11. Cadmium plating replacements

    NASA Technical Reports Server (NTRS)

    Nelson, Mary J.; Groshart, Earl C.

    1995-01-01

    The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.

  12. Survey of ion plating sources. [conferences

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Based on the type of evaporation source, gaseous media and mode of transport, the following is discussed: resistance, electron beam, sputtering, reactive and ion beam evaporation. Ionization efficiencies and ion energies in the glow discharge determine the percentage of atoms which are ionized under typical ion plating conditions. The plating flux consists of a small number of energetic ions and a large number of energetic neutrals. The energy distribution ranges from thermal energies up to a maximum energy of the discharge. The various reaction mechanisms which contribute to the exceptionally strong adherence - formation of a graded sustrate/coating interface are not fully understood, however the controlling factors are evaluated. The influence of process variables on the nucleation and growth characteristics are illustrated in terms of morphological changes which affect the mechanical and tribological properties of the coating.

  13. On the Paleomagnetism and Paleogeography of the Philippine Sea Plate.

    NASA Astrophysics Data System (ADS)

    Hall, R.; Fuller, M.

    2002-12-01

    Lying to the west of the Pacific Plate and surrounded by subduction zones, the Philippine Sea Plate has an enigmatic plate tectonic history. However, there are plentiful paleomagnetic data from DSDP and ODP studies as well from conventional surveys on many of the islands within the plate. There is broad agreement between these studies indicating clockwise rotation about a pole in the vicinity of 10°N and 160°E. This interpretation has been questioned because many of the sites lie close to the eastern margin of the plate and hence may have been affected by deformation at the plate margin. However, results from Halmahera come from a very different tectonic setting and yet agree with the earlier work. Models incorporating the interpretation from paleomagnetic data have a number of favourable consequences. For example, such models are consistent with the subduction and deformation within the Philippine mobile belt to the west. To the south, the model is consistent with the history of docking of New Guinea terranes and the subsequent left lateral shear zone.

  14. North Pacific Bloom

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Many images are made of relatively bright phytoplankton blooms. However, not all such blooms reflect more light than they absorb. SeaWiFS collected this image of a patch in the north Pacific that had been darkened because the photosynthetic pigments of the phytoplankton living there had absorbed more of the incoming solar radiation than the relatively phytoplankton-poor surrounding waters. The Hawaiian islands can be seen through the clouds about 1000 kilometers to the southwest of the patch.

  15. Lithospheric structure in the Pacific geoid

    NASA Technical Reports Server (NTRS)

    Marsh, B. D.; Hinojosa, J. H.

    1985-01-01

    The high degree and order SEASAT geoid in the central Pacific correlates closely with the structure of the cooling lithosphere. Relative changes in plate age across major fracture zones in relatively young seafloor frame the east-west trending pattern formed by the geoid anomalies. The field removal in bathymetry corresponds to removal of some of the low degree and order geoidal components, the step like structure across fracture zones is also removed. The regional thermal subsidence was removed from the bathymetry by subtracting a mean subsidence surface from the observed bathymetry. This produces a residual bathymetry map analogous to the usual residual depth anomaly maps. The residual bathymetry obtained in this way contains shallow depths for young seafloor, and larger depths for older seafloor, thus retaining the structure of the lithosphere while removing the subsidence of the lithosphere.

  16. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1987-01-01

    A liquid-impermeable plate (10) having through-plate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with led spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  17. Plate-mantle coupling from post-Pangea plate kinematics

    NASA Astrophysics Data System (ADS)

    Zahirovic, Sabin; Dietmar Müller, R.; Seton, Maria; Flament, Nicolas

    2015-04-01

    Convection in the Earth's mantle that involves plates at the surfaces gives rise to plate velocities that vary through time and depend on the balance of plate boundary forces, with the present-day providing a snapshot of this ongoing process. However, present-day plate velocities do not capture plate behaviour over geologically representative timeframes and thus cannot be used to evaluate factors limiting plate velocities. Previous studies investigated the effects of continental keels on plate speeds by either using the present-day snapshot or a limited number of reconstructed plate configurations, often leading to conflicting results. For example, an early assumption was that continental keels (especially cratons) were unlikely to impede fast plate motions because India's velocity approached ~20 cm/yr in the Eocene prior to the collision with Eurasia. We employ a modern plate reconstruction approach with evolving global topological plate boundaries for the post-Pangea timeframe (since 200 Ma) to evaluate factors controlling plate velocities. Plate boundary configurations and plate velocities are extracted from the open-source and cross-platform plate reconstruction package GPlates (www.gplates.org) at 1 Myr intervals. For each plate, at each timestep, the area of continental and cratonic lithosphere is calculated to evaluate the effect on plate velocities. Our results support that oceanic plates tend to be 2-3 times faster than plates with large portion of continental plate area, consistent with predictions of numerical models of mantle convection. The fastest plates (~8.5 cm/yr RMS) are dominated by oceanic plate area and high subducting portion of plate perimeter, while the slowest plates (~2.6-2.8 cm/yr RMS) are dominated by continental plate area and bounded by transforms and mid-oceanic ridge segments. Importantly, increasing cratonic fractions (both Proterozoic and Archean lithosphere) significantly impede plate velocities, suggesting that deep continental

  18. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Zhao, Dapeng; Li, Sanzhong; Wei, Wei

    2017-04-01

    We study the age of the subducting Pacific slab beneath East Asia using a high-resolution model of P-wave tomography and paleo-age data of ancient seafloor. Our results show that the lithosphere age of the subducting slab becomes younger from the Japan Trench (∼130 Ma) to the slab's western edge (∼90 Ma) beneath East China, and the flat (stagnant) slab in the mantle transition zone (MTZ) is the subducted Pacific plate rather than the proposed Izanagi plate which should have already collapsed into the lower mantle. The flat Pacific slab has been in the MTZ for no more than ∼10-20 million years, considerably less than the age of the big mantle wedge beneath East Asia (>110 million years). Hence, the present flat Pacific slab in the MTZ has contributed to the Cenozoic destruction of the East Asian continental lithosphere with extensive intraplate volcanism and back-arc spreading, whereas the destruction of the North China Craton during the Early Cretaceous (∼140-110 Ma) was caused by the subduction of the Izanagi (or the Paleo-Pacific) plate.

  19. Reduced Plating Ignitron

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A (Inventor); Pearson, J Boise (Inventor)

    2014-01-01

    An ignitron apparatus has an airtight tubular housing having a first sealed end and a second sealed end. An anode is connected at the first sealed end, projecting into the housing, and a recess at the second sealed and forms a well which contains a quantity of liquid gallium or gallium alloy making up the cathode. An ignitor projects through the liquid metal and into the housing. The inner surface of the housing includes at least one plating-reduction structure to prevent electrical shorting of the apparatus caused by plating of the liquid metal.

  20. NICKEL PLATING PROCESS

    DOEpatents

    Hoover, T.B.; Zava, T.E.

    1959-05-12

    A simplified process is presented for plating nickel by the vapor decomposition of nickel carbonyl. In a preferred form of the invention a solid surface is nickel plated by subjecting the surface to contact with a mixture containing by volume approximately 20% nickel carbonyl vapor, 2% hydrogen sulfide and .l% water vapor or 1% oxygen and the remainder carbon dioxide at room temperature until the desired thickness of nickel is obtained. The advantage of this composition over others is that the normally explosive nickel carbonyl is greatly stabilized.

  1. License plate detection algorithm

    NASA Astrophysics Data System (ADS)

    Broitman, Michael; Klopovsky, Yuri; Silinskis, Normunds

    2013-12-01

    A novel algorithm for vehicle license plates localization is proposed. The algorithm is based on pixel intensity transition gradient analysis. Near to 2500 natural-scene gray-level vehicle images of different backgrounds and ambient illumination was tested. The best set of algorithm's parameters produces detection rate up to 0.94. Taking into account abnormal camera location during our tests and therefore geometrical distortion and troubles from trees this result could be considered as passable. Correlation between source data, such as license Plate dimensions and texture, cameras location and others, and parameters of algorithm were also defined.

  2. Late Cretaceous to Paleogene plate motion, mantle flow and polar wander constrained by paleomagnetic data

    NASA Astrophysics Data System (ADS)

    Tarduno, J. A.; Bono, R.

    2011-12-01

    A wide range of investigations including plate circuit analyses, comparisons of the age progression of coeval hotspots on the Pacific plate and geodynamic modeling are consistent with paleomagnetic results that indicate motion of hotspots in Earth's mantle during Late Cretaceous to Paleogene times, with important changes in the rate of motion near 50 Ma. In the Pacific, the change has been hypothesized to reflect plume dynamics and hotspot-ridge capture; in the Cretaceous the two long-lived Pacific hotspots with well-defined age progressive tracks (Hawaii and Louisville) were near ridges that subsequently waned. In the case of the Hawaiian hotspot, the ridge in question appears to have become extinct close to the time of the bend in the hotspot track. Testing whether a deeper component of Pacific mantle flow also changed near 50 Ma requires a higher resolution investigation of reference frames for absolute plate motion. Here we use select paleomagnetic data prior to and after 50 Ma to test prior inferences about absolute plate motion changes and polar wander, and use these analyses to parse components of mantle flow.

  3. The Microstructure of Rolled Plates from Cast Billets of U-10Mo Alloys

    SciTech Connect

    Nyberg, Eric A.; Joshi, Vineet V.; Burkes, Douglas; Lavender, Curt A.

    2015-03-01

    This report covers the examination of 13 samples of rolled plates from three separate castings of uranium, alloyed with 10 wt% molybdenum (U-10Mo) which were sent from the Y-12 National Security Complex (Y12) to the Pacific Northwest National Laboratory (PNNL).

  4. The Pacific RANET Project

    NASA Astrophysics Data System (ADS)

    Postawko, S.; Ah Poe, A.; Morrissey, M.

    2004-12-01

    There are few places in the world more vulnerable to the effects of climate variability and change than the island nations of the tropical Pacific Ocean. The region also faces great challenges in communicating the issues related to climate to the general population. Lack of communications infrastructure, multiple languages, and knowledgeable personnel to deliver information, are all challenges for these countries. However, a recently developed international consortium is taking the first steps to addressing these challenges. The RANET (RAdio and interNET communications) project was originally developed for the countries of Africa, with initial funding from NOAA, to make weather, climate, and other environmental information more accessible to remote and resource-poor communities. The program is now expanding into Asia and the Pacific. RANET works to build telecommunication bridges between scientific-based products and remote communities that could benefit from such information.?The RANET project in the Pacific is a consortium of partners from the Pacific Island nations, the U.S., New Zealand, Australia, and others. Coordination of the project is loosely overseen by a Steering Committee, made up of representatives from the various interested partners. For regions where the appropriate technology exists (which includes the capital cities of nearly all of the island states of the Pacific), information is downloaded via a digital satellite receiver. This can then be broadcast within a country by many means, including Community FM Radio stations. The information distributed includes technical information needed by meteorological and related services to improve their own products and services, as well as a second level of information designed to serve communities, including weather forecasts, bulletins, warnings, etc. The primary challenge at this time is developing content that is both relevant and understandable to these remote communities. While some information will

  5. Fractures, not Plumes, Have Controlled Major Seamount Volcanism in the Pacific over 170 Million Years

    NASA Astrophysics Data System (ADS)

    Natland, J. H.; Winterer, E. L.

    2003-12-01

    The distribution of guyots and atolls and large volcanic islands on the Pacific plate can be used to outline the likely connection between stresses acting on the plate and the gradual development of large, linear volcanic chains over the past 170 Ma. We construe three general periods with different stress regimes in the history of the Pacific plate. 1) During the Jurassic and Early Cretaceous, the Pacific plate was surrounded by ridge segments and there were no major stress alignments within it. Within-plate volcanism thus assumed the scattered arrangement for the condition of no tectonic stress (1), and the large Magellan and Wake seamount clusters formed. Near the eastern boundaries of the plate, complex and shifting patterns of ridge reorganization dictated formation of very long, splayed, near-axis ridges such as Horizon Guyot and Necker Ridge. 2) At about 90 Ma, the growing middle-aged Pacific plate achieved its first persistent stress regime with the formation of subduction boundaries along its western or northwestern margin. The plate was no longer static but began to move over the asthenosphere and into the mantle. Subduction boundaries and the overall direction of subduction are uncertain, but this imparted a general yet not fully stable component of tension across the plate, producing the NNW Gilbert-Marshall, Line and Emperor Seamount ridges, generally orthogonal to the overall direction of least principal stress. The Line Island seamount chain, being near ridge axes, sustained a variable stress regime. It thus has no age progression of rocks dated between 70-90 Ma (2), great width, and a dual orientations of ridges. 3) By 47 Ma, nearly half of the boundaries of the Pacific plate now were trenches spanning from the Aleutians to New Zealand. In addition, northward migration of the Indian plate and Australia caught a major portion of the westerly moving Pacific plate between the northeast corner of the Tonga Trench and the Aleutians. The plate could not

  6. The 1990 Western Pacific Geophysics meeting

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The 1990 Western Pacific Geophysics Meeting was held in Kanazawa, Japan from 15-21 Aug. 1990. This was the first meeting of a new series of meetings for the American Geophysical Union, and it proved to be very successful in terms of the scientific program and attendance, which included over 1,000 participants. The intent of this meeting was an effort on the part of the American Geophysical Union (AGU) and several Japanese geophysical societies to gather individual Earth and space scientists at a major scientific meeting to focus on geophysical problems being studied in the western Pacific rim. The meeting was organized along the lines of a typical AGU annual meeting with some invited talks, many contributed talks, poster sessions, and with emphasis on presentations and informal discussions. The program committee consisted of scientists from both the U.S. and Japan. This meeting provided ample opportunities for U.S. and Japanese scientists to get to know each other and their works on a one-to-one basis. It was also a valuable opportunity for students studying geophysics to get together and interact with each other and with scientists from both the U.S. and Japan. There were 939 abstracts submitted to the conference and a total of 102 sessions designed as a result of the abstracts received. The topics of interest are as follows: space geodetic and observatory measurements for earthquake and tectonic studies; gravity, sea level, and vertical motion; variations in earth rotation and earth dynamics; sedimentary magnetism; global processes and precipitation; subsurface contaminant transport; U.S. Western Pacific Rim initiatives in hydrology; shelf and coastal circulation; tectonics, magmatism, and hydrothermal processes; earthquake prediction and hazard assessment; seismic wave propagation in realistic media; and dynamics and structure of plate boundaries and of the Earth's deep interior.

  7. Plate Motions, Regional Deformation, and Time-Variation of Plate Motions

    NASA Technical Reports Server (NTRS)

    Gordon, R. G.

    1998-01-01

    The significant results obtained with support of this grant include the following: (1) Using VLBI data in combination with other geodetical, geophysical, and geological data to bound the present rotation of the Colorado Plateau, and to evaluate to its implications for the kinematics and seismogenic potential of the western half of the conterminous U.S. (2) Determining realistic estimates of uncertainties for VLBI data and then applying the data and uncertainties to obtain an upper bound on the integral of deformation within the "stable interior" of the North American and other plates and thus to place an upper bound on the seismogenic potential within these regions. (3) Combining VLBI data with other geodetic, geophysical, and geologic data to estimate the motion of coastal California in a frame of reference attached to the Sierra Nevada-Great Valley microplate. This analysis has provided new insights into the kinematic boundary conditions that may control or at least strongly influence the locations of asperities that rupture in great earthquakes along the San Andreas transform system. (4) Determining a global tectonic model from VLBI geodetic data that combines the estimation of plate angular velocities with individual site linear velocities where tectonically appropriate. and (5) Investigation of the some of the outstanding problems defined by the work leading to global plate motion model NUVEL-1. These problems, such as the motion between the Pacific and North American plates and between west Africa and east Africa, are focused on regions where the seismogenic potential may be greater than implied by published plate tectonic models.

  8. Transition on the Geometry of the Cocos Plate in Central-Southern Mexico.

    NASA Astrophysics Data System (ADS)

    Rodríguez-Domínguez, M. Á.; Perez-Campos, X.; Valencia-Cabrera, D.; Clayton, R. W.; Cordoba-Montiel, F.; Valdes-Gonzales, C. M.; Brudzinski, M. R.; Cabral-Cano, E.; Arciniega-Ceballos, A.

    2014-12-01

    The tectonic setting, produced by the interaction between the Cocos and North American plates, follows complex geometries along the Pacific coast. Previous studies in central Mexico showed that the slab dips nearly horizontally before steeply subducting into the continental mantle; in contrast, in southern Mexico, the slabs dips under the continental plate at a constant angle. Receiver functions from four seismic networks: GECO (Geometry of Cocos), SSN (Servicio Sismológico Nacional), OxNet (Oaxaca Network) and UV (Universidad Veracruzana) are used to study the crustal structure underneath the stations, and image the subducting Cocos plate in order to define the geometry and the transition angle in central-southern Mexico.

  9. Franciscan complex calera limestones: Accreted remnants of farallon plate oceanic plateaus

    USGS Publications Warehouse

    Tarduno, J.A.; McWilliams, M.; Debiche, M.G.; Sliter, W.V.; Blake, M.C.

    1985-01-01

    The Calera Limestone, part of the Franciscan Complex of northern California, may have formed in a palaeoenvironment similar to Hess and Shatsky Rises of the present north-west Pacific1. We report here new palaeomagnetic results, palaeontological data and recent plate-motion models that reinforce this assertion. The Calera Limestone may have formed on Farallon Plate plateaus, north of the Pacific-Farallon spreading centre as a counterpart to Hess or Shatsky Rises. In one model2, the plateaus were formed by hotspots close to the Farallon_Pacific ridge axis. On accretion to North America, plateau dissection in the late Cretaceous to Eocene (50-70 Myr) could explain the occurrence of large volumes of pillow basalt and exotic blocks of limestone in the Franciscan Complex. Partial subduction of the plateaus could have contributed to Laramide (70-40 Myr) compressional events3. ?? 1985 Nature Publishing Group.

  10. Plate coupling strength inferred from aftershock area expansion patterns and associated plate age

    NASA Astrophysics Data System (ADS)

    Tajima, F. C.

    2010-12-01

    area expansion is greater in northeast Japan and western and south Pacific subduction zones where the interplate coupling was inferred to be weak. In these regions older plates (˜Cretaceus) subduct beneath island arcs or younger plates (˜Paleocene or younger). Under this circumstance the negative buoyancy of the subducting plate may be more effective to reduce the coupling with the overlying one than in the case of coupling of plates of a similar age. We suggest tentatively that the regional variation of plate coupling strength may be correlated with the associated plate ages and reflect the subduction history. However, there is substantial temporal variation of large earthquake occurrence and subsequent aftershock activity within the same subduction region, which may not be necessarily represented by a deterministic model. It is a practical exercise to identify the location of remnant seismic potential (which acted as a barrier to the preceding major rupture) by monitoring the aftershock area expansion pattern.

  11. Nuclear reactor alignment plate configuration

    SciTech Connect

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  12. New Pacific-Nazca(Farallon) finite rotation poles

    NASA Astrophysics Data System (ADS)

    Wilder, D.; Naar, D.; Tebbens, S.; Wessel, P.; Harada, Y.; Johnson, K.; Pyle, D.; Ray, J.; Mahoney, J.; Duncan, R.

    2003-04-01

    We present 9 new finite rotation poles for the Pacific-Nazca (and previous Farallon) plates for the magnetic anomalies listed below in an effort to provide the best possible relative motion model for the Pacific and Nazca plates during the time that the Easter-Salas y Gomez hotspot formed the volcanic chain that extends from about the EPR to the Peru-Chile Trench. This relative motion model allows calculation of the Nazca-hotspot finite rotations by adding the Nazca-Pacific to the Pacific-hotspot finite rotations. The Nazca-hotpsot motion model is used to compare to the Ar radiometric ages (Duncan et al., this session) of samples we collected in Nov-Dec 2001 on the R/V Revelle. This comparision provides a test of hotspot fixity and predictions derived by mantle circulation models (Steinberger, 2002; Duncan et al., this session). As part of this tectonic modeling effort, new magnetic isochrons have been identified and compared to previous interpretations in the dissertations of Liu (1996) and Cornaglia (1995). As expected, the time period between magnetic anomaly 5d and 6c is comprised of a major plate boundary reorganizations involving large changes in relative plate motion and the formation of microplates (including the Mendoza paleomicroplate), preventing Pacific-Nazca finite rotations to be calculated during that time period without additional magnetic and bathmetry data. Listed below are preliminary pole locations and rotation angles as we finalize our analyses of the magnetic and altimetry data from this region. Magnetic Anomaly, Latitude, Longitude, Degrees of Finite Rotation: 3a,-56.402,86.377,9.68; 4a,-58.229,86.357,13.18; 5o, -60.012,86.728,16.86; 5aa,-61.997,87.206,19.63; 5b,-64.519,83.614,23.10l; 5d,-72.215,89.268,26.49; 6c,-59.681,88.984,38.44; 7y,-61.151,88.859, 38.88; 10y,-65.595,82.612,43.83.

  13. Empowerment at Pacific Gas & Electric.

    ERIC Educational Resources Information Center

    Kaufman, Steven B.

    1991-01-01

    Pacific Gas and Electric's employee involvement program aggressively focuses on customer service, performance measurement tied to management bonuses, and commitment to change in the organizational culture. (SK)

  14. Pacific Southwest Tribal Program Newsletters

    EPA Pesticide Factsheets

    Pacific Southwest Tribal Program newsletters contain news and events of interest to tribal communities including: environmental news, upcoming meetings, webinars and training, grants, jobs and internships.

  15. The Plate Tectonics Project

    ERIC Educational Resources Information Center

    Hein, Annamae J.

    2011-01-01

    The Plate Tectonics Project is a multiday, inquiry-based unit that facilitates students as self-motivated learners. Reliable Web sites are offered to assist with lessons, and a summative rubric is used to facilitate the holistic nature of the project. After each topic (parts of the Earth, continental drift, etc.) is covered, the students will…

  16. Unitary plate electrode

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor); Clough, Thomas J. (Inventor); Josefowicz, Jack Y. (Inventor); Sibert, John W. (Inventor)

    1985-01-01

    The unitary electrode (10) comprises a porous sheet (12) of fiberglass the strands (14) of which contain a coating (16) of conductive tin oxide. The lower portion of the sheet contains a layer (18) of resin and the upper layer (20) contains lead dioxide forming a positive active electrode on an electrolyte-impervious layer. The strands (14) form a continuous conduction path through both layers (16, 18). Tin oxide is prevented from reduction by coating the surface of the plate facing the negative electrode with a conductive, impervious layer resistant to reduction such as a thin film (130) of lead or graphite filled resin adhered to the plate with a layer (31) of conductive adhesive. The plate (10) can be formed by casting a molten resin from kettle (60) onto a sheet of glass wool (56) overlying a sheet of lead foil and then applying positive active paste from hopper (64) into the upper layer (68). The plate can also be formed by passing an assembly of a sheet ( 80) of resin, a sheet (86) of sintered glass and a sheet (90) of lead between the nip (92) of heated rollers (93, 95) and then filling lead oxide into the pores (116) of the upper layer (118).

  17. Growth Plate Injuries

    MedlinePlus

    ... or crushed, the growth plate may close prematurely, forming a bony bridge or “bar.” The risk of ... this publication: James S. Panagis, M.D., M.P.H., NIAMS/NIH; R. Tracy Ballock, M.D., Case ...

  18. INL HIP Plate Fabrication

    SciTech Connect

    B. H. Park; C. R. Clark; J. F. Jue

    2010-02-01

    This document outlines the process used to bond monolithic fuel plates by Hot Isostatic Pressing (HIP). This method was developed at Idaho National Laboratory (INL) for the Reduced Enrichment for Research and Test Reactors (RERTR) program. These foils have been used in a number of irradiation experiments in support of the United States Global Threat Reduction Initiative (GTRI) program.

  19. Large-scale motion between Pacific and Atlantic hotspots

    NASA Astrophysics Data System (ADS)

    Tarduno, John A.; Gee, Jeff

    1995-11-01

    STUDIES of true polar wander (TPW), the rotation of the solid Earth with respect to the spin axis1, have suggested that there has been 10-15° of relative motion over the past 130 Myr (refs 2-4). In such studies, the orientation of the spin axis is recovered from continental palaeomagnetic poles (corrected for relative plate motions), and compared with a deep-mantle reference frame defined by hotspot locations. But deducing relative plate motions becomes increasingly difficult for older (Mesozoic) time periods, hindering tests of TPW on timescales comparable to those of large-scale mantle convection; moreover, the assumption of hotspot fixity is controversial5,6. We examine here a more direct approach7,8, using palaeolatitudes derived from Pacific guyots. Contrary to predictions from TPW models, these data suggest only minor latitudinal shifts of Pacific hotspots during the Cretaceous period. Instead of TPW, relative motion between the Atlantic and Pacific hotspot groups9 is required at a velocity of approximately 30 mm yr-1, more than 50% larger than previously proposed5.

  20. Seismic tomography of the Pacific slab edge under Kamchatka

    NASA Astrophysics Data System (ADS)

    Jiang, Guoming; Zhao, Dapeng; Zhang, Guibin

    2009-02-01

    We determine a 3-D P-wave velocity structure of the mantle down to 700 km depth under the Kamchatka peninsula using 678 P-wave arrival times collected from digital seismograms of 75 teleseismic events recorded by 15 portable seismic stations and 1 permanent station in Kamchatka. The subducting Pacific slab is imaged clearly that is visible in the upper mantle and extends below the 660-km discontinuity under southern Kamchatka, while it shortens toward the north and terminates near the Aleutian-Kamchatka junction. Low-velocity anomalies are visible beneath northern Kamchatka and under the junction, which are interpreted as asthenospheric flow. A gap model without remnant slab fragment is proposed to interpret the main feature of high-V anomalies. Combining our tomographic results with other geological and geophysical evidences, we consider that the slab loss may be induced by the friction with surrounding asthenosphere as the Pacific plate rotated clockwise at about 30 Ma ago, and then it was enlarged by the slab-edge pinch-off by the asthenospheric flow and the presence of Meiji seamounts. As a result, the slab loss and the subducted Meiji seamounts have jointly caused the Pacific plate to subduct under Kamchatka with a lower dip angle near the junction, which made the Sheveluch and Klyuchevskoy volcanoes shift westward.

  1. The cartilage-bone interface.

    PubMed

    Hoemann, Caroline D; Lafantaisie-Favreau, Charles-Hubert; Lascau-Coman, Viorica; Chen, Gaoping; Guzmán-Morales, Jessica

    2012-05-01

    In the knee joint, the purpose of the cartilage-bone interface is to maintain structural integrity of the osteochondral unit during walking, kneeling, pivoting, and jumping--during which tensile, compressive, and shear forces are transmitted from the viscoelastic articular cartilage layer to the much stiffer mineralized end of the long bone. Mature articular cartilage is integrated with subchondral bone through a approximately 20 to approximately 250 microm thick layer of calcified cartilage. Inside the calcified cartilage layer, perpendicular chondrocyte-derived collagen type II fibers become structurally cemented to collagen type I osteoid deposited by osteoblasts. The mature mineralization front is delineated by a thin approximately 5 microm undulating tidemark structure that forms at the base of articular cartilage. Growth plate cartilage is anchored to epiphyseal bone, sometimes via a thin layer of calcified cartilage and tidemark, while the hypertrophic edge does not form a tidemark and undergoes continual vascular invasion and endochondral ossification (EO) until skeletal maturity upon which the growth plates are fully resorbed and replaced by bone. In this review, the formation of the cartilage-bone interface during skeletal development and cartilage repair, and its structure and composition are presented. Animal models and human anatomical studies show that the tidemark is a dynamic structure that forms within a purely collagen type II-positive and collagen type I-negative hyaline cartilage matrix. Cartilage repair strategies that elicit fibrocartilage, a mixture of collagen type I and type II, are predicted to show little tidemark/calcified cartilage regeneration and to develop a less stable repair tissue-bone interface. The tidemark can be regenerated through a bone marrow-driven growth process of EO near the articular surface.

  2. Plate Kinematics in Northeast Asia Constrained by GPS

    NASA Astrophysics Data System (ADS)

    Kogan, M. G.; Steblov, G. M.; King, R. W.; Herring, T. A.; Scholz, C. H.; Bürgmann, R.; Frolov, D. I.; Levin, V. Y.

    2004-05-01

    GPS observations in Siberia combined with global observations, collected in 1995-2003, allow us to improve constraints on the geometry and relative motion of the Eurasian (EUR), North American (NAM), and Pacific (PAC) plates [1]. In contrast to our earlier work and to other published studies, we estimate simultaneously both the relative plate rotation vectors (RV) and the translation rate of the reference frame (RF) which is treated as a free parameter. With this approach, we get identical values of RV regardless of which RF is used. Our estimate of RV for the EUR-NAM pair and the estimate based on the ITRF2000 catalog differ significantly because of the non-uniform sampling of EUR in ITRF2000, with most stations clustered in Europe. There are small (<1 mm/yr) but systematic plate-residual velocities within stable EUR, westward in Siberia and eastward in Europe, which, if real, indicate a small relative motion of these formerly independent plates. By comparing velocities relative to EUR and to NAM, we conclude that east Siberia to the east of the Cherskiy Range belongs to the North American plate. This fact was assumed in the literature for three decades but not proven because of uncertainties with the plate boundary arising from the ambiguous seismicity. Smaller plates in east Asia, such as Amurian and Okhotsk, are not required by the GPS velocities in our analysis. [1] Steblov, G.M., M.G. Kogan, R.W. King, C.H. Scholz, R. Bürgmann, and D.I. Frolov, Imprint of the North American Plate in Siberia revealed by GPS, Geophys. Res. Lett., 30(18), 1924, doi:10.1029/2003GL017805, 2003.

  3. Gravity models of two-level collision of lithospheric plates in northeastern Asia

    NASA Astrophysics Data System (ADS)

    Petrishchevsky, A. M.

    2013-11-01

    Structural forms of emplacement of crustal and mantle rigid sheets in collision zones of lithospheric plates in northeastern Asia are analyzed using formalized gravity models reflecting the rheological properties of geological media. Splitting of the lithosphere of moving plates into crustal and mantle constituents is the main feature of collision zones, which is repeated in the structural units irrespective of their location, rank, and age. Formal signs of crustal sheet thrusting over convergent plate boundaries and subduction of the lithospheric mantle beneath these boundaries have been revealed. The deep boundaries and thickness of lithospheric plates and asthenospheric lenses have been traced. A similarity in the deep structure of collision zones of second-order marginal-sea buffer plates differing in age is displayed at the boundaries with the Eurasian, North American, and Pacific plates of the first order. Collision of oceanic crustal segments with the Mesozoic continental margin in the Sikhote-Alin is characterized, as well as collision of the oceanic lithosphere with the Kamchatka composite island arc. A spatiotemporal series of deep-seated Middle Mesozoic, Late Mesosoic, and Cenozoic collision tectonic units having similar structure is displayed in the transitional zone from the Asian continent to the Pacific plate.

  4. Classifying Pacific islands

    NASA Astrophysics Data System (ADS)

    Nunn, Patrick D.; Kumar, Lalit; Eliot, Ian; McLean, Roger F.

    2016-12-01

    An earth-science-based classification of islands within the Pacific Basin resulted from the preparation of a database describing the location, area, and type of 1779 islands, where island type is determined as a function of the prevailing lithology and maximum elevation of each island, with an island defined as a discrete landmass composed of a contiguous land area ≥1 ha (0.01 km2) above mean high-water level. Reefs lacking islands and short-lived (<20 years) transient islands are not included. The principal aim of the classification is to assess the spatial diversity of the geologic and geomorphic attributes of Pacific islands. It is intended to be valid at a regional scale and based on two attributes: five types of lithology (volcanic, limestone, composite, continental, surficial) and a distinction between high and low islands. These attributes yielded eight island types: volcanic high and low islands; limestone high and low islands; composite high and low islands; reef (including all unconsolidated) islands; and continental islands. Most common are reef islands (36 %) and volcanic high islands (31 %), whereas the least common are composite low islands (1 %). Continental islands, 18 of the 1779 islands examined, are not included in maps showing the distribution of island attributes and types. Rationale for the spatial distributions of the various island attributes is drawn from the available literature and canvassed in the text. With exception of the few continental islands, the distribution of island types is broadly interpretable from the proximity of island-forming processes. It is anticipated the classification will become the basis for more focused investigation of spatial variability of the climate and ocean setting as well as the biological attributes of Pacific islands. It may also be used in spatial assessments of second-order phenomena associated with the islands, such as their vulnerability to various disasters, coastal erosion, or ocean pollution as

  5. Dynamics of convergent plate boundaries: Insights from subduction-related serpentinite melanges from the northern edge of the Caribbean plate

    NASA Astrophysics Data System (ADS)

    García-Casco, A.

    2012-04-01

    Subduction-related rock complexes, many of them tectonic melanges, occur in the Central America-Caribbean-Andean belt. I review the lithology and P-T-t paths of HP rocks and offer interpretations and generalizations on the thermal estate of the subducting plate(s), the melange forming events, and the exhumation history of rock complexes formed in the northern branch of the Caribbean subduction zone (Cuba and nearby Guatemala and Dominican Republic; ca. 3000 km apart). These complexes contain high pressure rocks formed and exhumed at the convergent (Pacific-Atlantic) leading edge of the Caribbean plate during ca. 100 Ma (early Cretaceous-Oligocene), attesting for long lasting oceanic -followed by continental- subduction/accretion in the region. Lithologic data indicate a complex melange-forming process. In most cases, the HP rocks represent subducted MOR-related lithologies occurring as tectonic blocks within serpentinite-matrix melanges interpreted as exhumed fragments of the subduction channel(s). Most of these melanges, however, contain fragments of arc/forearc-related non metamorphic and metamorphic (low-P and high-P) sedimentary and igneous rocks. While the HP blocks of arc/forearc material indicate subduction erosion at depth, the interpretation of the LP and non-metamorphic blocks is not straight forward. Indeed, tectonic blocks of HP metamafic rocks are surrounded by antigorite-serpentinite which, in turn, is surrounded by a low-P, low-T (chrysotile-lizardite) serpentinite that makes much of the mélange. These relations indicate that the melanges represent, in fact, tectonic stacks of shallow low-T forearc serpentinite that incorporate tectonic blocks/slices of the subduction-channel (high-P, high-T serpentinite and HP metamafic blocks) and of the arc/forearc crust (low-P and non-metamorphic blocks). This picture is similar to that of HP continental margin-derived tectonic stacks containing exotic slices of antigoritite-serpentine melanges (with blocks of

  6. Pacific Northwest election results

    NASA Astrophysics Data System (ADS)

    Qamar, Anthony

    Six AGU members have been elected members of the Regional Committee of the AGU Pacific Northwest Region. Their terms are July 1, 1986, to June 30, 1988. The Regional Committee, which directs the activities of the branch, is composed of a representative of each of the AGU sections taking part in branch activities.Those elected are Robert M. Ellis, Tectonophysics Section; Stephen L. Gillett, Geomagnetism and Paleomagnetism Section; Tark S. Hamilton, Volcanology, Geochemistry, and Petrology Section; Renner B. Hofmann, Seismology Section; Charles W. Slaughter, Hydrology Section; and Richard E. Thomson, Ocean Sciences Section.

  7. Transform push, oblique subduction resistance, and intraplate stress of the Juan de Fuca plate

    USGS Publications Warehouse

    Wang, K.; He, J.; Davis, E.E.

    1997-01-01

    The Juan de Fuca plate is a small oceanic plate between the Pacific and North America plates. In the southernmost region, referred to as the Gorda deformation zone, the maximum compressive stress a, constrained by earthquake focal mechanisms is N-S. Off Oregon, and possibly off Washington, NW trending left-lateral faults cutting the Juan de Fuca plate indicate a a, in a NE-SW to E-W direction. The magnitude of differential stress increases from north to south; this is inferred from the plastic yielding and distribution of earthquakes throughout the Gorda deformation zone. To understand how tectonic forces determine the stress field of the Juan de Fuca plate, we have modeled the intraplate stress using both elastic and elastic-perfectly plastic plane-stress finite element models. We conclude that the right-lateral shear motion of the Pacific and North America plates is primarily responsible for the stress pattern of the Juan de Fuca plate. The most important roles are played by a compressional force normal to the Mendocino transform fault, a result of the northward push by the Pacific plate and a horizontal resistance operating against the northward, or margin-parallel, component of oblique subduction. Margin-parallel subduction resistance results in large N-S compression in the Gorda deformation zone because the force is integrated over the full length of the Cascadia subduction zone. The Mendocino transform fault serves as a strong buttress that is very weak in shear but capable of transmitting large strike-normal compressive stresses. Internal failure of the Gorda deformation zone potentially places limits on the magnitude of the fault-normal stresses being transmitted and correspondingly on the magnitude of strike-parallel subduction resistance. Transform faults and oblique subduction zones in other parts of the world can be expected to transmit and create stresses in the same manner. Copyright 1997 by the American Geophysical Union.

  8. The East Pacific Rise: An Active Not Passive Spreading System

    NASA Astrophysics Data System (ADS)

    Rowley, D. B.; Rowan, C. J.; Forte, A. M.; Moucha, R.; Grand, S. P.; Simmons, N. A.

    2011-12-01

    Traditional plate tectonic interpretations of mid-oceanic ridges regard spreading as an entirely passive phenomenon. From this one would assume that the oceanic ridges will move over the mantle in response to the geodynamics of the diverging plates, and do not remain fixed spatially over any protracted period of time. An analysis of the kinematics of ridge motions in the Indo-Atlantic hotspot frame of reference since 83 Ma generally supports this view, with the notable exception of the East Pacific Rise (EPR). The Pacific-Nazca/Farallon segment of the EPR north of Easter Island (27°S) is oriented essentially N-S, and has produced more than 9500km of E-W spreading in the past 80 Ma, making it the dominant ridge in the world's plate system over this interval of time. Yet despite the large amount of E-W divergence, the spreading center has maintained its longitudinal position to within <±250 km of the current ridge axis. Global mantle convective flow modeling indicates that the EPR, unlike any other extensive segment of the mid-oceanic ridge system, is underlain by an active upwelling system extending from the core-mantle boundary to the surface. We suggest that the lack of E-W motion of the EPR apparent from the kinematics is a consequence of these mantle dynamics; this ridge is thus not behaving as a passive plate boundary, but is actively and directly linked to, and controlled by, whole mantle upwelling. This observation overturns the notion that ridges are always entirely passive features of the plate system. Subduction of the northern EPR beneath western North America has thus resulted in the overriding of an active upwelling system that has contributed significantly to the evolution of Basin and Range kinematics and superimposed dynamics, including significant contributions from dynamic topography.

  9. Origin and subsidence of Guyots in Mid-Pacific Mountains

    NASA Astrophysics Data System (ADS)

    Winterer, Edward L.; Metzler, Christopher V.

    1984-11-01

    Morphologic and magnetic data suggest that the Mid-Pacific Mountains formed during Early Cretaceous time as a broad ENE trending double chain of midplate island seamounts over a mantle hot spot as the Pacific plate moved westward and slightly southward. Dredge, drill core, and reflection seismic data indicate that coral-rudistid reefs grew on the subsiding seamounts and evolved to atolls and banks, largely burying the volcanic foundations. Magnetic data indicate that by late Aptian time, about 110 Ma, the seamounts were located at about 20°-25°S, which we suggest was near the fringes of the latitudinal zone of vigorous reef growth, where upward growth rates could just keep up with subsidence. A broad uplift probably related to the widespread regional emplacement of Aptian volcanics as oceanic plateaus, seamounts, and deep-water flows and sills raised the Mid-Pacific Mountain reefs out of the water, and both reflection seismic and isotopic data suggest that a karstic topography developed on many of the emergent reefs. As subsidence recommenced, the reefs could hot grow upward apace with subsidence. Renewed volcanism in Late Cretaceous time in the easternmost Mid-Pacific Mountains maintained islands for a while, as at Horizon Guyot, but probably without large reefs. Elsewhere, pelagic conditions have prevailed as the guyots sank to their present-day depths. These depths are systematically related to the inferred age of the volcanic foundations, being greatest on the youngest volcanoes.

  10. What Are Growth Plate Injuries?

    MedlinePlus

    ... nih.gov November 2014 What Are Growth Plate Injuries? Fast Facts: An Easy-to-Read Series of Publications ... Some inherited disorders 1 What Are Growth Plate Injuries? Fast Facts: An Easy-to-Read Series of Publications ...

  11. Renewable liquid reflecting zone plate

    DOEpatents

    Toor, Arthur; Ryutov, Dmitri D.

    2003-12-09

    A renewable liquid reflecting zone plate. Electrodes are operatively connected to a dielectric liquid in a circular or other arrangement to produce a reflecting zone plate. A system for renewing the liquid uses a penetrable substrate.

  12. Fluid dynamics of rivulet flow between plates

    NASA Astrophysics Data System (ADS)

    Drenckhan, W.; Ritacco, H.; Saint-Jalmes, A.; Saugey, A.; McGuinness, P.; van der Net, A.; Langevin, D.; Weaire, D.

    2007-10-01

    We present computational and experimental investigations into the fluid dynamics of a narrow stream of surfactant solutions, which descends under gravity between two narrowly spaced, vertical glass plates. Such a "rivulet" is bounded by two liquid/solid and two mobile liquid/gas interfaces, posing fluid dynamic problems of direct relevance to local fluid flow in liquid foams and recently reported meandering phenomena. The rivulet presents a system in which the coupling between the bulk flow and the rheological properties of the gas/liquid interface can be systematically investigated. In particular, it carries the promise of providing an alternative measuring technique for interfacial shear viscosities. We present finite element simulations in conjunction with experiments in order to describe the relationship between the rivulet geometry, the flow field, and the interfacial shear viscosities. We also report on the role of the boundary condition between the liquid-carrying channels (surface Plateau borders) and the thin soap film, which spans the two plates at low flow rates.

  13. Friction and stress coupling on the subduction interfaces

    NASA Astrophysics Data System (ADS)

    Tan, E.; Lavier, L.; van Avendonk, H.

    2011-12-01

    At a subduction zone, the down-going oceanic plate slides underneath the overriding plate. The frictional resistance to the relative motion between the plates generates great earthquakes along the subduction interface, which can cause tremendous damage in the civil life and property. There is a strong incentive to understand the frictional strength of the subduction interface. One fundamental question of mechanics of subuction is the degree of coupling between the plates, which is linked to the size of earthquakes. It has been noted that the trench-parallel (along-strike) gravity variation correlates positively with the trench-parallel topography anomaly and negatively with the activity of great earthquake (Song and Simons, 2003). Regions with a negative trench-parallel gravity anomaly are more likely to have great earthquakes. The interpretation of such correlation is that strong coupling along subduction interface will drag down the for-arc region of the overriding plate, which generates the gravity and topography anomalies, and could store more strain energy to be released during a great earthquake. We developed a 2D numerical thermo-mechanical code for modeling subduction. The numerical method is based on an explicit finite element method similar to the Fast Lagrangian Analysis of Continua (FLAC) technique. The constitutive law is visco-elasti-plastic with strain weakening. The cohesion and friction angle are reduced with increasing plastic strain after yielding. To track different petrologic phases, Lagrangian particles are distributed in the domain. Basalt-eclogite, sediment-schist and peridotite-serpentinite phase changes are included in the model. Our numerical models show that the degree of coupling negatively correlates with the coefficient of friction. In the low friction case, the subduction interface has very shallow dipping angle, which helps to elastically couple the downing plate with the overriding plate. The topography and gravity anomalies of the

  14. Plate tectonics and crustal deformation around the Japanese Islands

    NASA Technical Reports Server (NTRS)

    Hashimoto, Manabu; Jackson, David D.

    1993-01-01

    We analyze over a century of geodetic data to study crustal deformation and plate motion around the Japanese Islands, using the block-fault model for crustal deformation developed by Matsu'ura et al. (1986). We model the area including the Japanese Islands with 19 crustal blocks and 104 faults based on the distribution of active faults and seismicity. Geodetic data are used to obtain block motions and average slip rates of faults. This geodetic model predicts that the Pacific plate moves N deg 69 +/- 2 deg W at about 80 +/- 3 mm/yr relative to the Eurasian plate which is much lower than that predicted in geologic models. Substantial aseismic slip occurs on the subduction boundaries. The block containing the Izu Peninsula may be separated from the rigid part of the Philippine Sea plate. The faults on the coast of Japan Sea and the western part of the Median Tectonic Line have slip rates exceeding 4 mm/yr, while the Fossa Magna does not play an important role in the tectonics of the central Japan. The geodetic model requires the division of northeastern Japan, contrary to the hypothesis that northeastern Japan is a part of the North American plate. Owing to rapid convergence, the seismic risk in the Nankai trough may be larger than that of the Tokai gap.

  15. About the REL Pacific Region

    ERIC Educational Resources Information Center

    Regional Educational Laboratory Pacific, 2014

    2014-01-01

    REL Pacific is one of ten Regional Educational Laboratories established and funded by the U.S. Department of Education's Institute of Education Sciences. Their region encompasses approximately 4.9 million square miles and serves seven Pacific island entities, including American Samoa; the Commonwealth of the Northern Mariana Islands; the Federated…

  16. Pacific Educational Research Journal, 1996.

    ERIC Educational Resources Information Center

    Berg, Kathleen F., Ed.; Lai, Morris K., Ed.

    1996-01-01

    This first issue of the new "Pacific Educational Research Journal" offers articles covering diverse subjects and using diverse research methods. The new journal represents a rejuvenation of a previous publication to address educational issues specific to the Pacific region. Ethnic groups specifically addressed include Hawaiians,…

  17. Vertical land motion of Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Melbourne, T. I.; Montillet, J. P.; Szeliga, W. M.

    2015-12-01

    We use GPS measurements from 400 stations located throughout the Pacific Northwest to estimate steady-state vertical land motion for the purpose of constraining relative sea level rise projections. Vertical motions are typically only a few percent of horizontal rates and the same order of magnitude as current sea level rise rates, so may either ameliorate or exacerbate future climate impacts. We use data from receivers operating from 1994 through 2015, each with at least three years of continuous daily measurements. Furthermore, daily position time series resulting from the processing of two GPS centers, namely the EarthScope Plate Boundary Observatory (PBO) and the Pacific Northwest Geodetic Array (PANGA), are considered throughout this study. The goal is two fold: the dissemination into the scientific community of the difference in processing between these two centers, and the level of agreement between the estimated crustal for future sea-level studies in the Pacific Northwest. We model both target and reference frame receiver trajectories as a superposition of discrete processes comprising steady-state tectonic motion, annual and bi-annual sinusoids exhibiting stationary phase and amplitude that reflect both local hydrology as well as artifacts introduced through satellite clock and orbit corrections, and discrete offsets due to known earthquakes (with Mw > 6) and hardware changes. Qualitatively, Vancouver Island shows long-term uplift of ~2 mm/year, consistent with both interseismic strain accumulation from the Juan de Fuca subduction along the coast and post-glacial rebound inland, and consistent with earlier reports based on few stations and shorter time series. Further south, coastal uplift rates transition to near-zero south of Pacific Beach, and remain low southward to Cape Blanco. Vertical motion is more heterogeneous throughout Puget Sound, but most regions show subsidence of ~0.5 - 1 mm/yr. The predominant subsidence throughout Puget Sound, where the

  18. Gravity and Flexure Modelling of Subducting Plates

    NASA Astrophysics Data System (ADS)

    Hunter, J. A.; Watts, A. B.; SO 215 Shipboard Scientific Party

    2012-04-01

    The long-term strength of the lithosphere is determined by its flexural rigidity, which is commonly expressed through the effective elastic thickness, Te. Flexure studies have revealed a dependence of Te on thermal age. In the oceans, loads formed on young (70 Ma) seafloor. In the continents, loads on young (1000 Ma) lithosphere. Recent studies have questioned the relationship of Te with age, especially at subduction zones, where oceanic and continental lithosphere are flexed downwards by up to ~6 km over horizontal distances of up to ~350 km. We have therefore used free-air gravity anomaly and topography profile data, combined with forward and inverse modelling techniques, to re-assess Te in these settings. Preliminary inverse modelling results from the Tonga-Kermadec Trench - Outer Rise system, where the Pacific plate is subducting beneath the Indo-Australian plate, show large spatial variations in Te that are unrelated to age. In contrast to the southern end of the system, where Te is determined by the depth to the 600° C and 900° C isotherms, the northern end of the system shows a reduction in strength. Results also suggest a reduction in Te trenchward of the outer rise that is coincident with a region of pervasive extensional faulting visible in swath bathymetry data. In a continental setting, the Ganges foreland basin has formed by flexure of the Indo-Australian plate in front of the migrating loads of the Himalaya. Preliminary forward modelling results, using the Himalaya as a known surface topographic load, suggest that Te is high - consistent with the great age of Indian cratonic lithosphere. However, results from inverse modelling that solves for unknown loads (vertical shear force and bending moment) show significant scatter and display trade-offs between Te and these driving loads.

  19. Microchannel plate streak camera

    DOEpatents

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  20. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1985-01-01

    A liquid-impermeable plate (10) having throughplate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with lead spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  1. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1984-09-28

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (uv to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 keV x-rays.

  2. Microchannel plate streak camera

    DOEpatents

    Wang, C.L.

    1989-03-21

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras is disclosed. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1,000 KeV x-rays. 3 figs.

  3. Mechanisms in Thermal Mechanical Forming of Plates.

    DTIC Science & Technology

    1987-05-01

    specific locations within the plate is discussed, and recommendations for further research are made. Keywords: Metal plates; Ship plates; Material forming; Thermomechanics; Edge effect ; Laser line heating.

  4. Tomography and Dynamics of Western-Pacific Subduction Zones

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2012-01-01

    the Japan Sea and the East Asia margin may be related to a metastable olivine wedge in the subducting Pacific slab. The Pacific slab becomes stagnant in the mantle transition zone under East Asia, and a big mantle wedge (BMW) has formed above the stagnant slab. Convective circulations and fluid and magmatic processes in the BMW may have caused intraplate volcanism (e.g., Changbai and Wudalianchi), reactivation of the North China craton, large earthquakes, and other active tectonics in East Asia. Deep subduction and dehydration of continental plates (such as the Eurasian plate, Indian plate and Burma microplate) are also found, which have caused intraplate magmatism (e.g., Tengchong) and geothermal anomalies above the subducted continental plates. Under Kamchatka, the subducting Pacific slab shortens toward the north and terminates near the Aleutian-Kamchatka junction. The slab loss was induced by friction with the surrounding asthenosphere, as the Pacific plate rotated clockwise 30 Ma ago, and then it was enlarged by the slab-edge pinch-off by the asthenospheric flow. The stagnant slab finally collapses down to the bottom of the mantle, which may trigger upwelling of hot mantle materials from the lower mantle to the shallow mantle. Suggestions are also made for future directions of the seismological research of subduction zones.

  5. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Reynolds, L.; Tweed, H.

    1972-01-01

    The work performed entailed the design, development, construction and testing of a 4000 word by 18 bit random access, NDRO plated wire memory for use in conjunction with a spacecraft imput/output unit and central processing unit. The primary design parameters, in order of importance, were high reliability, low power, volume and weight. A single memory unit, referred to as a qualification model, was delivered.

  6. Elastic plate spallation

    NASA Technical Reports Server (NTRS)

    Oline, L.; Medaglia, J.

    1972-01-01

    The dynamic finite element method was used to investigate elastic stress waves in a plate. Strain displacement and stress strain relations are discussed along with the stiffness and mass matrix. The results of studying point load, and distributed load over small, intermediate, and large radii are reported. The derivation of finite element matrices, and the derivation of lumped and consistent matrices for one dimensional problems with Laplace transfer solutions are included. The computer program JMMSPALL is also included.

  7. Martian plate tectonics

    NASA Astrophysics Data System (ADS)

    Sleep, N. H.

    1994-03-01

    The northern lowlands of Mars have been produced by plate tectonics. Preexisting old thick highland crust was subducted, while seafloor spreading produced thin lowland crust during late Noachian and Early Hesperian time. In the preferred reconstruction, a breakup margin extended north of Cimmeria Terra between Daedalia Planum and Isidis Planitia where the highland-lowland transition is relatively simple. South dipping subduction occured beneath Arabia Terra and east dipping subduction beneath Tharsis Montes and Tempe Terra. Lineations associated with Gordii Dorsum are attributed to ridge-parallel structures, while Phelegra Montes and Scandia Colles are interpreted as transfer-parallel structures or ridge-fault-fault triple junction tracks. Other than for these few features, there is little topographic roughness in the lowlands. Seafloor spreading, if it occurred, must have been relatively rapid. Quantitative estimates of spreading rate are obtained by considering the physics of seafloor spreading in the lower (approx. 0.4 g) gravity of Mars, the absence of vertical scarps from age differences across fracture zones, and the smooth axial topography. Crustal thickness at a given potential temperature in the mantle source region scales inversely with gravity. Thus, the velocity of the rough-smooth transition for axial topography also scales inversely with gravity. Plate reorganizations where young crust becomes difficult to subduct are another constraint on spreading age. Plate tectonics, if it occurred, dominated the thermal and stress history of the planet. A geochemical implication is that the lower gravity of Mars allows deeper hydrothermal circulation through cracks and hence more hydration of oceanic crust so that more water is easily subducted than on the Earth. Age and structural relationships from photogeology as well as median wavelength gravity anomalies across the now dead breakup and subduction margins are the data most likely to test and modify hypotheses

  8. Electronic Equipment Cold Plates

    DTIC Science & Technology

    1976-04-01

    equations for such a flow regiae. For laainar flow and Moderate teaperature differwwe« between the well «nd coolant, a aodifled Sieder -Tate...con- figuration. The heat-transfer coefficients, therefore, were determined by using both the Sieder -Tate and McAdams equations and the coaputed...values used In the analytical predictions. As with th* previous cold Plates, the Sieder -Tate equation gave too low of values for the heat- transfer

  9. The Plate Overlap Technique.

    DTIC Science & Technology

    1978-07-31

    INTRODUCTION 1 II. NOTATION 2 III. THE GNOMONIC PROJECTION 4 IV . THE PLATE OVERLAP TECHNIQUE 6 A. MOTIVATION 6 B. FORNULATION 9 C. ON STATISTICAL RIGOR 14 D...and new hardware. Since this aim was clearly recognized long ago, wherever possible in earlier documents or software development flexibility was...reader should see 1, 2, and 3. The procedures one should use to update stellar positions are discussed in 4 with applica- tions to the SAOC in 5. Non

  10. Plate motion and deformation

    SciTech Connect

    Minster, B.; Prescott, W.; Royden, L.

    1991-02-01

    Our goal is to understand the motions of the plates, the deformation along their boundaries and within their interiors, and the processes that control these tectonic phenomena. In the broadest terms, we must strive to understand the relationships of regional and local deformation to flow in the upper mantle and the rheological, thermal and density structure of the lithosphere. The essential data sets which we require to reach our goal consist of maps of current strain rates at the earth's surface and the distribution of integrated deformation through time as recorded in the geologic record. Our success will depend on the effective synthesis of crustal kinematics with a variety of other geological and geophysical data, within a quantitative theoretical framework describing processes in the earth's interior. Only in this way can we relate the snapshot of current motions and earth structure provided by geodetic and geophysical data with long-term processes operating on the time scales relevant to most geological processes. The wide-spread use of space-based techniques, coupled with traditional geological and geophysical data, promises a revolution in our understanding of the kinematics and dynamics of plate motions over a broad range of spatial and temporal scales and in a variety of geologic settings. The space-based techniques that best address problems in plate motion and deformation are precise space-geodetic positioning -- on land and on the seafloor -- and satellite acquisition of detailed altimetric and remote sensing data in oceanic and continental areas. The overall science objectives for the NASA Solid Earth Science plan for the 1990's, are to Understand the motion and deformation of the lithosphere within and across plate boundaries'', and to understand the dynamics of the mantle, the structure and evolution of the lithosphere, and the landforms that result from local and regional deformation. 57 refs., 7 figs., 2 tabs.

  11. Armor Plate Surface Roughness Measurements

    DTIC Science & Technology

    2005-04-01

    Armor Plate Surface Roughness Measurements by Brian Stanton, William Coburn, and Thomas J. Pizzillo ARL-TR-3498 April 2005... Armor Plate Surface Roughness Measurements Brian Stanton, William Coburn and Thomas J. Pizzillo Sensors and Electron Devices Directorate...October 2004 5a. CONTRACT NUMBER 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Armor Plate Surface Roughness Measurements 5c. PROGRAM ELEMENT NUMBER

  12. EarthScope Plate Boundary Observatory Data in the College Classroom (Invited)

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Olds, S. E.

    2009-12-01

    The Plate Boundary Observatory (PBO) is the geodetic component of the EarthScope project, designed to study the 3-D strain field across the active boundary zone between the Pacific and North American tectonics plates in the western United States. All PBO data are freely available to scientific and educational communities and have been incorporated into a variety of activities for college and university classrooms. UNAVCO Education and Outreach program staff have worked closely with faculty users, scientific researchers, and facility staff to create materials that are scientifically and technically accurate as well as useful to the classroom user. Availability of processed GPS data is not new to the geoscience community. However, PBO data staff have worked with education staff to deliver data that are readily accessible to educators. The UNAVCO Data for Educators webpage, incorporating an embedded Google Map with PBO GPS locations and providing current GPS time series plots and downloadable data, extends and updates the datasets available to our community. Google Earth allows the visualization GPS data with other types of datasets, e.g. LiDAR, while maintaining the self-contained and easy-to-use interface of UNAVCO’s Jules Verne Voyager map tools, which have multiple sets of geological and geophysical data. Curricular materials provide scaffolds for using EarthScope data in a variety of forms for different learning goals. Simple visualization of earthquake epicenters and locations of volcanoes can be used with velocity vectors to make simple deductions of plate boundary behaviors. Readily available time series plots provide opportunities for additional science skills, and there are web and paper-based support materials for downloading data, manipulating tables, and using plotting programs for processed GPS data. Scientists have provided contextual materials to explore the importance of these data in interpreting the structure and dynamics of the Earth. These data

  13. A kinematic model for the evolution of the Gorda Plate

    NASA Technical Reports Server (NTRS)

    Stoddard, Paul R.

    1987-01-01

    The magnetic lineation pattern produced by the Gorda Rise reflects a complex tectonic history marked by propagating ridges and nonrigid deformation of the Gorda plate. The Pacific-side lineation pattern is matched using a kinematic model which incorporates northward and southward propagating ridge segments and ridge rotation. By superimposing flexural-slip style deformation on the resulting Gorda-side lineations, and allowing convergent motion at the Mendocino Fracture Zone, the Gorda magnetic pattern is also successfully predicted. A similar model, but one which does not allow convergence at the Mendocino Fracture Zone, fails to produce the observed lineation pattern. Model predictions of the amount of material that would be 'obducted' at the Mendocino due to convergence between the Gorda and Pacific agree with bathymetric and density estimates of the amount of material located along the Mendocino Ridge.

  14. Media independent interface. Interface control document

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A Media Independent Interface (MII) is specified, using current standards in the industry. The MII is described in hierarchical fashion. At the base are IEEE/International Standards Organization (ISO) documents (standards) which describe the functionality of the software modules or layers and their interconnection. These documents describe primitives which are to transcent the MII. The intent of the MII is to provide a universal interface to one or more Media Access Contols (MACs) for the Logical Link Controller and Station Manager. This interface includes both a standardized electrical and mechanical interface and a standardized functional specification which defines the services expected from the MAC.

  15. No-Net-Rotation and Indo-Atlantic Hotspot Reference Frames: Towards a New View of Tectonic Plate Motions and Earth Dynamics

    NASA Astrophysics Data System (ADS)

    Quere, S.; Rowley, D.; Forte, A.; Moucha, R.

    2007-12-01

    A new view of plate tectonics coupled to mantle dynamics is emerging from recent paleomagnetic reconstructions of tectonic plate histories obtained in the hotspot and no-net-rotation reference frames. A number of fundamental differences relative to past plate reconstructions have been discerned. Firstly, in previous models the difference between present-day plate motions in the global hotspot and no-net-rotation reference frames consisted of a westward drift of the lithosphere due to the dominant motion of the Pacific plate in the hotspot frame. In contrast, the new plate motion reconstructions based on the Indo-Atlantic hotspot reference frame now show that the present-day global rotation of the lithosphere is mainly in the South-North direction. Second, we find a more than 100% speed-up of the Nazca plate motion at 35 Ma which we have interpreted in terms of a slab avalanche event below the Nazca-South America plate boundary. This may be the first direct geological evidence for a mantle avalanche event occurring at a time which precedes a significant plate reorganisation. Third, the speed-up of the Nazca plate does not appear to be associated with a jump of the East-Pacific rise, therefore this feature may not be completely passive as previously thought. Fourth, the Hawaiian-Emperor bend which was a key element in previous plate reconstruction based on the assumption of a fixed Hawaiian hotspot, can no longer be explained by a change of direction of the Pacific plate and this corroborates recent studies showing a southward motion of the Hawaiian hotspot. Finally, the new Indo-Atlantic hotspot reconstruction of present-day plate motions is significantly different from the one previously established by Gripp and Gordon (1990) and the model appears to be in greater accord with plate motions predicted by seismic tomography-based mantle convection models.

  16. Structural patterns and tectonic history of the Bauer microplate, Eastern Tropical Pacific

    USGS Publications Warehouse

    Eakins, B.W.; Lonsdale, P.F.

    2003-01-01

    The Bauer microplate was an independent slab of oceanic lithosphere that from 17 Ma to 6 Ma grew from 1.4 ?? 105 km2 to 1.2 ?? 106 km2 between the rapidly diverging Pacific and Nazca plates. Growth was by accretion at the lengthening and overlapping axes of the (Bauer-Nazca) Galapagos Rise (GR) and the (Pacific-Bauer) East Pacific Rise (EPR). EPR and GR axial propagation to create and rapidly grow the counter-clockwise spinning microplate occurred in two phases: (1) 17-15Ma, when the EPR axis propagated north and the GR axis propagated south around a narrow (100- to 200-km-wide) core of older lithosphere; and (2) 8-6 Ma, when rapid northward propagation of the EPR axis resumed, overlapping ???400 km of the fast-spreading Pacific-Nazca rise-crest and appending a large (200- to 400-km-wide) area of the west flank of that rise as a 'northern annex' to the microplate. Between 15 and 8 Ma the microplate grew principally by crustal accretion at the crest of its rises. The microplate was captured by the Nazca plate and the Galapagos Rise axis became extinct soon after 6 Ma, when the south end of the Pacific-Bauer EPR axis became aligned with the southern Pacific-Nazca EPR axis and its north end was linked by the Quebrada Transform to the northern Pacific-Nazca EPR axis. Incomplete multibeam bathymetry of the microplate margins, and of both flanks of the Pacific-Bauer and Bauer-Nazca Rises, together with archival magnetic and satellite altimetry data, clarifies the growth and (counter-clockwise) rotation of the microplate, and tests tectonic models derived from studies of the still active, much smaller, Easter and Juan Fernandez microplates. Our interpretations differ from model predictions in that Euler poles were not located on the microplate boundary, propagation in the 15-8 Ma phase of growth was not toward these poles, and microplate rotation rates were small (5??/m.y.) for much of its history, when long, bounding transform faults reduced coupling to Nazca plate

  17. Advances in sputtered and ion plated solid film lubrication

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1985-01-01

    The glow discharge or ion assisted vacuum deposition techniques, primarily sputtering and ion plating, have rapidly emerged and offer great potential to deposit solid lubricants. The increased energizing of these deposition processes lead to improved adherence and coherence, favorable morphological growth, higher density, and reduced residual stresses in the film. These techniques are of invaluable importance where high precision machines tribo-components require very thin, uniform lubricating films (0.2 m), which do not interface with component tolerances. The performance of sputtered MoS2 films and ion plated Au and Pb films are described in terms of film thickness, coefficient of friction, and wear lives.

  18. Symmetries in laminated composite plates

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1976-01-01

    The different types of symmetry exhibited by laminated anisotropic fibrous composite plates are identified and contrasted with the symmetries of isotropic and homogeneous orthotropic plates. The effects of variations in the fiber orientation and the stacking sequence of the layers on the symmetries exhibited by composite plates are discussed. Both the linear and geometrically nonlinear responses of the plates are considered. A simple procedure is presented for exploiting the symmetries in the finite element analysis. Examples are given of square, skew and polygonal plates where use of symmetry concepts can significantly reduce the scope and cost of analysis.

  19. What can seafloor fabric tell us about the nature of the 50 Ma plate-mantle event?

    NASA Astrophysics Data System (ADS)

    Müller, R. D.; Matthews, K. J.

    2011-12-01

    Several different mechanisms have been proposed to account for the 50 Ma plate-mantle event, including India-Eurasia collision, the time dependence of the Reunion plume-push force, the subduction of the Izanagi-Pacific mid-ocean ridge, and transient ridge capture of the Hawaiian plume. We use a recent digital global seafloor tectonic fabric map derived from vertical gravity gradients together with magnetic anomaly identifications to analyse the geometry and timing of Late Cretaceous-Early Cenozoic fracture zone (FZ) bends. Two sets of closely spaced FZ bends in the North Atlantic, Weddell Sea and at the Southwest Indian Ridge between Antarctica and Africa produce an S-shape in the seafloor fabric. The older spreading ridge reorganisation initiated close to 70 Ma, and was completed around 55 Ma. The younger FZ bends are sharper, were initiated approximately 55-49 Ma and completed around 40-42 Ma, after which time spreading returned to its pre-S-bend azimuth. Additionally there is a distinct increase in seafloor roughness at the mid-Atlantic ridge at about 70 Ma reflecting a decrease in spreading rate. Seafloor fabric indicators of plate motion change produced at around 70 Ma coincide with emplacement of the Reunion plume and are restricted to parts of the Atlantic-Indian realm. The Pacific domain appears unaffected by the mechanism that drove plate motion changes in the Atlantic and Indian Oceans at this time. Yet, from ~55-40 Ma Pacific FZ bends and other oceanic and plate margin events are widespread. Along with formation of the younger part of the Atlantic-Indian S-bends, FZ bends and changes in FZ morphology in the northeast Pacific signify a reorientation of the Pacific-Farallon spreading ridge, a northward propagation of the Pacific-Antarctic ridge, increases in spreading rates at the Australia-Pacific ridge and a change in the direction of plate motion, with spreading terminating in the Tasman Sea. And initiation of Izu-Bonin-Mariana subduction. This

  20. Plumes do not Exist: Plate Circulation is Confined to Upper Mantle

    NASA Astrophysics Data System (ADS)

    Hamilton, W. B.

    2002-12-01

    Plumes from deep mantle are widely conjectured to define an absolute reference frame, inaugurate rifting, drive plates, and profoundly modify oceans and continents. Mantle properties and composition are assumed to be whatever enables plumes. Nevertheless, purported critical evidence for plume speculation is false, and all data are better interpreted without plumes. Plume fantasies are made ever more complex and ad hoc to evade contradictory data, and have no predictive value because plumes do not exist. All plume conjecture derives from Hawaii and the guess that the Emperor-Hawaii inflection records a 60-degree change in Pacific plate direction at 45 Ma. Paleomagnetic latitudes and smooth Pacific spreading patterns disprove any such change. Rationales for other fixed plumes collapse when tested, and hypotheses of jumping, splitting, and gyrating plumes are specious. Thermal and physical properties of Hawaiian lithosphere falsify plume predictions. Purported tomographic support elsewhere represents artifacts and misleading presentations. Asthenosphere is everywhere near solidus temperature, so melt needs a tensional setting for egress but not local heat. Gradational and inconsistent contrasts between MORB and OIB are as required by depth-varying melt generation and behavior in contrasted settings and do not indicate systematically unlike sources. MORB melts rise, with minimal reaction, through hot asthenosphere, whereas OIB melts react with cool lithosphere, and lose mass, by crystallizing refractories and retaining and assimilating fusibles. The unfractionated lower mantle of plume conjecture is contrary to cosmologic and thermodynamic data, for mantle below 660 km is more refractory than that above. Subduction, due to density inversion by top-down cooling that forms oceanic lithosphere, drives plate tectonics and upper-mantle circulation. It organizes plate motions and lithosphere stress, which controls plate boundaries and volcanic chains. Hinge rollback is the

  1. Hypervelocity impact on shielded plates

    NASA Technical Reports Server (NTRS)

    Smith, James P.

    1993-01-01

    A ballistic limit equation for hypervelocity impact on thin plates is derived analytically. This equation applies to cases of impulsive impact on a plate that is protected by a multi-shock shield, and it is valid in the range of velocity above 6 km/s. Experimental tests were conducted at the NASA Johnson Space Center on square aluminum plates. Comparing the center deflections of these plates with the theoretical deflections of a rigid-plastic plate subjected to a blast load, one determines the dynamic yield strength of the plate material. The analysis is based on a theory for the expansion of the fragmented projectile and on a simple failure criterion. Curves are presented for the critical projectile radius versus the projectile velocity, and for the critical plate thickness versus the velocity. These curves are in good agreement with curves that have been generated empirically.

  2. Fuel cell end plate structure

    DOEpatents

    Guthrie, Robin J.; Katz, Murray; Schroll, Craig R.

    1991-04-23

    The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

  3. Photovoltaic array: Power conditioner interface characteristics

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.

  4. Palaeotsunamis in the Pacific Islands

    USGS Publications Warehouse

    Goff, J.; Chague-Goff, C.; Dominey-Howes, D.; McAdoo, B.; Cronin, S.; Bonte-Grapetin, Michael; Nichol, S.; Horrocks, M.; Cisternas, M.; Lamarche, G.; Pelletier, B.; Jaffe, B.; Dudley, W.

    2011-01-01

    The recent 29 September 2009 South Pacific and 27 February 2010 Chilean events are a graphic reminder that the tsunami hazard and risk for the Pacific Ocean region should not be forgotten. Pacific Islands Countries (PICs) generally have short (<150 years) historic records, which means that to understand their tsunami hazard and risk researchers must study evidence for prehistoric events. However, our current state of knowledge of palaeotsunamis in PICs as opposed to their circum-Pacific counterparts is minimal at best. We briefly outline the limited extent of our current knowledge and propose an innovative methodology for future research in the Pacific. Each PIC represents a point source of information in the Pacific Ocean and this would allow their palaeotsunami records to be treated akin to palaeo-DART?? (Deep-ocean Assessment and Reporting of Tsunamis) buoys. Contemporaneous palaeotsunamis from local, regional and distant sources could be identified by using the spatial distribution of island records throughout the Pacific Ocean in conjunction with robust event chronologies. This would be highly innovative and, more importantly, would help provide the building blocks necessary to achieve more meaningful disaster risk reduction for PICs. ?? 2010 Elsevier B.V.

  5. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods

    NASA Astrophysics Data System (ADS)

    Wu, Jonny; Suppe, John; Lu, Renqi; Kanda, Ravi

    2016-06-01

    We reconstructed Philippine Sea and East Asian plate tectonics since 52 Ma from 28 slabs mapped in 3-D from global tomography, with a subducted area of ~25% of present-day global oceanic lithosphere. Slab constraints include subducted parts of existing Pacific, Indian, and Philippine Sea oceans, plus wholly subducted proto-South China Sea and newly discovered "East Asian Sea." Mapped slabs were unfolded and restored to the Earth surface using three methodologies and input to globally consistent plate reconstructions. Important constraints include the following: (1) the Ryukyu slab is ~1000 km N-S, too short to account for ~20° Philippine Sea northward motion from paleolatitudes; (2) the Marianas-Pacific subduction zone was at its present location (±200 km) since 48 ± 10 Ma based on a >1000 km deep slab wall; (3) the 8000 × 2500 km East Asian Sea existed between the Pacific and Indian Oceans at 52 Ma based on lower mantle flat slabs; (4) the Caroline back-arc basin moved with the Pacific, based on the overlapping, coeval Caroline hot spot track. These new constraints allow two classes of Philippine Sea plate models, which we compared to paleomagnetic and geologic data. Our preferred model involves Philippine Sea nucleation above the Manus plume (0°/150°E) near the Pacific-East Asian Sea plate boundary. Large Philippine Sea westward motion and post-40 Ma maximum 80° clockwise rotation accompanied late Eocene-Oligocene collision with the Caroline/Pacific plate. The Philippine Sea moved northward post-25 Ma over the northern East Asian Sea, forming a northern Philippine Sea arc that collided with the SW Japan-Ryukyu margin in the Miocene (~20-14 Ma).

  6. Shuttle plate braiding machine

    NASA Technical Reports Server (NTRS)

    Huey, Jr., Cecil O. (Inventor)

    1994-01-01

    A method and apparatus for moving yarn in a selected pattern to form a braided article. The apparatus includes a segmented grid of stationary support elements and a plurality of shuttles configured to carry yarn. The shuttles are supported for movement on the grid assembly and each shuttle includes a retractable plunger for engaging a reciprocating shuttle plate that moves below the grid assembly. Such engagement at selected times causes the shuttles to move about the grid assembly in a selected pattern to form a braided article of a particular geometry.

  7. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Carpenter, K. H.

    1974-01-01

    The design, construction, and test history of a 4096 word by 18 bit random access NDRO Plated Wire Memory for use in conjunction with a spacecraft input/output and central processing unit is reported. A technical and functional description is given along with diagrams illustrating layout and systems operation. Test data is shown on the procedures and results of system level and memory stack testing, and hybrid circuit screening. A comparison of the most significant physical and performance characteristics of the memory unit versus the specified requirements is also included.

  8. The Plate Boundary Observatory Cascadia Network: Development and Installation of a Large Scale Real-time GPS Network

    NASA Astrophysics Data System (ADS)

    Austin, K. E.; Blume, F.; Berglund, H. T.; Feaux, K.; Gallaher, W. W.; Hodgkinson, K. M.; Mattioli, G. S.; Mencin, D.

    2014-12-01

    The EarthScope Plate Boundary Observatory (PBO), through a NSF-ARRA supplement, has enhanced the geophysical infrastructure in in the Pacific Northwest by upgrading a total of 282 Plate Boundary Observatory GPS stations to allow the collection and distribution of high-rate (1 Hz), low-latency (<1 s) data streams (RT-GPS). These upgraded stations supplemented the original 100 RT-GPS stations in the PBO GPS network. The addition of the new RT-GPS sites in Cascadia should spur new volcano and earthquake research opportunities in an area of great scientific interest and high geophysical hazard. Streaming RT-GPS data will enable researchers to detect and investigate strong ground motion during large geophysical events, including a possible plate-interface earthquake, which has implications for earthquake hazard mitigation. A Mw 6.9 earthquake occurred on March 10, 2014, off the coast of northern California. As a response, UNAVCO downloaded high-rate GPS data from Plate Boundary Observatory stations within 500 km of the epicenter of the event, providing a good test of network performance.In addition to the 282 stations upgraded to real-time, 22 new meteorological instruments were added to existing PBO stations. Extensive testing of BGAN satellite communications systems has been conducted to support the Cascadia RT-GPS upgrades and the installation of three BGAN satellite fail over systems along the Cascadia margin will allow for the continuation of data flow in the event of a loss of primary communications during in a large geophysical event or other interruptions in commercial cellular networks. In summary, with these additional upgrades in the Cascadia region, the PBO RT-GPS network will increase to 420 stations. Upgrades to the UNAVCO data infrastructure included evaluation and purchase of the Trimble Pivot Platform, servers, and additional hardware for archiving the high rate data, as well as testing and implementation of GLONASS and Trimble RTX positioning on the

  9. Hydration of the incoming plate in the Kuril subduction zone

    NASA Astrophysics Data System (ADS)

    Fujie, G.; Kodaira, S.; Yamashita, M.; Sato, T.; Takahashi, T.; Takahashi, N.; Noguchi, N.

    2010-12-01

    Water supplied from the subducting oceanic plate by dehydration is inferred to cause seismicity and magmatism in subduction zones. It is important, therefore, to reveal the distribution of water within the incoming plate for understanding seismic and volcanic activities in subduction zones. In 2009 and 2010, to reveal the detailed seismic structure and hydration process within the incoming plate, we conducted a wide-angle seismic survey in the Kuril subduction zone, where the old Pacific plate formed in the eastern Pacific ridge is subducting from south to north beneath the island arc of Japan. We designed a north-south 500km-long seismic experimental line to be perpendicular to the Kuril trench. The northern end of our line is located at about 30km south of the trench axis and well-developed horst and graben structure is observed around the northern end. We deployed 80 Ocean Bottom Seismometers (OBSs) at intervals of 6km and shot a large tuned airgun array towed by R/V Kairei. In addition, we obtained MCS reflection data using a 444-channel hydrophone streamer (6km long) along the same line. We modelled both P-wave and S-wave velocity structures by the traveltime inversion using refraction, reflection and PS-conversion traveltimes. Our results show that P-wave velocity beneath the well-developed horst and graben structure is about 5% lower than that in the south of outer rise. This is consistent with a previous structure study in the Chili subduction zone that shows the P-wave velocity in the vicinity of the trench axis is lower than that of normal oceanic plate. More notable feature of our results is the regional variations of Vp/Vs. The S-wave velocity, as well as P-wave velocity, gradually decreases toward the trench axis. However Vp/Vs is not uniform; Vp/Vs immediately beneath the sediments is remarkably high beneath the well-developed horst and graben structure, and Vp/Vs decreases with depth (high Vp/Vs is confined to the top of the oceanic plate). Since the

  10. Media independent interface

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The work done on the Media Independent Interface (MII) Interface Control Document (ICD) program is described and recommendations based on it were made. Explanations and rationale for the content of the ICD itself are presented.

  11. Spot brazing of aluminum to copper with a cover plate

    NASA Astrophysics Data System (ADS)

    Hayashi, Junya; Miyazawa, Yasuyuki

    2014-08-01

    It is difficult to join dissimilar metals when an intermetallic compound is formed at the joining interface. Spot brazing can be accomplished in a short time by resistance heating. Therefore, it is said that the formation of a intermetallic compound can be prevented. In this study, aluminum and copper were joined by spot brazing with a cover plate. The cover plate was used to supply heat to base metals and prevent heat dissipation from the base metals. The ability to braze Al and Cu was investigated by observation and analysis. Pure aluminum (A1050) plate and oxygen-free copper (C1020) plate were used as base metals. Cu-Ni-Sn-P brazing filler was used as the brazing filler metal. SPCC was employed as cover plate. Brazing was done with a micro spot welder under an argon gas atmosphere. Brazing ability was estimated by tensile shear strength and cross sectional microstructure observation. Al and Cu can be joined by spot brazing with Cu-Ni-Sn-P brazing filler and cover plate.

  12. Vibration Analysis of Plates by MLS-Element Method

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xiang, Y.

    2010-05-01

    This paper presents a novel numerical method, the moving least square element (MLS-element) method for the free vibration analysis of plates based on the Mindlin shear deformable plate theory. In the MLS-element method, a plate can be first divided into multiple elements which are connected through selected nodal points on the interfaces of the elements. An element can be of any shape and the size of the element varies dependent on the problem at hand. The shape functions of the element for the transverse displacement and the rotations are derived based on the MLS interpolation technique. The convergence and accuracy of the method can be controlled by either increasing the number of elements or by increasing the number of MLS interpolation points within elements. Two selected examples for vibration of a simply supported square Mindlin plate and a clamped L-shaped Mindlin plate are studied to illustrate the versatility and accuracy of the proposed method. It shows that the proposed method is highly accurate and flexible for the vibration analysis of plate problems. The method can be further developed to bridge the existing meshless method and the powerful finite element method in dealing with various engineering computational problems, such as large deformation and crack propagation in solid mechanics.

  13. Phanerozoic tectonic evolution of the Circum-North Pacific

    USGS Publications Warehouse

    Nokleberg, Warren J.; Parfenov, Leonid M.; Monger, James W.H.; Norton, Ian O.; Khanchuk, Alexander I.; Stone, David B.; Scotese, Christopher R.; Scholl, David W.; Fujita, Kazuya

    2000-01-01

    the ancestral margins of present-day Northeast Asia and northwestern North America. The rifting resulted in the fragmentation of each continent and the formation of cratonal and passive continental-margin terranes that eventually migrated and accreted to other sites along the evolving margins of the original or adjacent continents. (2) From about the Late Triassic through the mid-Cretaceous, a succession of island arcs and tectonically paired subduction zones formed near the continental margins. (3) From about mainly the mid-Cretaceous through the present, a succession of igneous arcs and tectonically paired subduction zones formed along the continental margins. (4) From about the Jurassic to the present, oblique convergence and rotations caused orogenparallel sinistral and then dextral displacements within the upper-plate margins of cratons that have become Northeast Asia and North America. The oblique convergences and rotations resulted in the fragmentation, displacement, and duplication of formerly more nearly continuous arcs, subduction zones, and passive continental margins. These fragments were subsequently accreted along the expanding continental margins. (5) From the Early Jurassic through Tertiary, movement of the upper continental plates toward subduction zones resulted in strong plate coupling and accretion of the former island arcs and subduction zones to the continental margins. Accretions were accompanied and followed by crustal thickening, anatexis, metamorphism, and uplift. The accretions resulted in substantial growth of the North Asian and North American Continents. (6) During the middle and late Cenozoic, oblique to orthogonal convergence of the Pacifi c plate with present-day Alaska and Northeast Asia resulted in formation of the modern-day ring of volcanoes around the Circum-North Pacific. Oblique convergence between the Pacific plate and Alaska also resulted in major dextral-slip faulting in interior and southern Alaska and along the western p

  14. Variations in oceanic plate bending along the Mariana trench

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Lin, Jian; Zhan, Wenhuan

    2014-09-01

    We quantify along-trench variations in plate flexural bending along the Mariana trench in the western Pacific Ocean. A 3-D interpreted flexural deformation surface of the subducting Pacific Plate was obtained by removing from the observed bathymetry the effects of sediment loading, isostatically-compensated topography based on gravity modeling, age-related lithospheric thermal subsidence, and residual short-wavelength features. We analyzed flexural bending of 75 across-trench profile sections and calculated five best-fitting tectonic and plate parameters that control the flexural bending. Results of analysis revealed significant along-trench variations: the trench relief varies from 0.9 to 5.7 km, trench-axis vertical loading (-V0) from -0.73×1012 to 3.17×1012 N/m, and axial bending moment (-M0) from 0.1×1017 to 2.7×1017 N. The effective elastic plate thickness seaward of the outer-rise region (TeM) ranges from 45 to 52 km, while that trench-ward of the outer-rise (Tem) ranges from 19 to 40 km. This corresponds to a reduction in Te of 21-61%. The transition from TeM to Tem occurs at a breaking distance of 60-125 km from the trench axis, which is near the outer-rise and corresponds to the onset of observed pervasive normal faults. The Challenger Deep area is associated with the greatest trench relief and axial vertical loading, while areas with seamounts at the trench axis are often associated with more subtle trench relief, smaller axial vertical loading, and greater topographic bulge at the outer-rise.

  15. Precise relative locations for earthquakes in the northeast Pacific region

    SciTech Connect

    Cleveland, K. Michael; VanDeMark, Thomas F.; Ammon, Charles J.

    2015-10-09

    We report that double-difference methods applied to cross-correlation measured Rayleigh wave time shifts are an effective tool to improve epicentroid locations and relative origin time shifts in remote regions. We apply these methods to seismicity offshore of southwestern Canada and the U.S. Pacific Northwest, occurring along the boundaries of the Pacific and Juan de Fuca (including the Explorer Plate and Gorda Block) Plates. The Blanco, Mendocino, Revere-Dellwood, Nootka, and Sovanco fracture zones host the majority of this seismicity, largely consisting of strike-slip earthquakes. The Explorer, Juan de Fuca, and Gorda spreading ridges join these fracture zones and host normal faulting earthquakes. Our results show that at least the moderate-magnitude activity clusters along fault strike, supporting suggestions of large variations in seismic coupling along oceanic transform faults. Our improved relative locations corroborate earlier interpretations of the internal deformation in the Explorer and Gorda Plates. North of the Explorer Plate, improved locations support models that propose northern extension of the Revere-Dellwood fault. Relocations also support interpretations that favor multiple parallel active faults along the Blanco Transform Fault Zone. Seismicity of the western half of the Blanco appears more scattered and less collinear than the eastern half, possibly related to fault maturity. We use azimuthal variations in the Rayleigh wave cross-correlation amplitude to detect and model rupture directivity for a moderate size earthquake along the eastern Blanco Fault. Lastly, the observations constrain the seismogenic zone geometry and suggest a relatively narrow seismogenic zone width of 2 to 4 km.

  16. Precise relative locations for earthquakes in the northeast Pacific region

    DOE PAGES

    Cleveland, K. Michael; VanDeMark, Thomas F.; Ammon, Charles J.

    2015-10-09

    We report that double-difference methods applied to cross-correlation measured Rayleigh wave time shifts are an effective tool to improve epicentroid locations and relative origin time shifts in remote regions. We apply these methods to seismicity offshore of southwestern Canada and the U.S. Pacific Northwest, occurring along the boundaries of the Pacific and Juan de Fuca (including the Explorer Plate and Gorda Block) Plates. The Blanco, Mendocino, Revere-Dellwood, Nootka, and Sovanco fracture zones host the majority of this seismicity, largely consisting of strike-slip earthquakes. The Explorer, Juan de Fuca, and Gorda spreading ridges join these fracture zones and host normal faultingmore » earthquakes. Our results show that at least the moderate-magnitude activity clusters along fault strike, supporting suggestions of large variations in seismic coupling along oceanic transform faults. Our improved relative locations corroborate earlier interpretations of the internal deformation in the Explorer and Gorda Plates. North of the Explorer Plate, improved locations support models that propose northern extension of the Revere-Dellwood fault. Relocations also support interpretations that favor multiple parallel active faults along the Blanco Transform Fault Zone. Seismicity of the western half of the Blanco appears more scattered and less collinear than the eastern half, possibly related to fault maturity. We use azimuthal variations in the Rayleigh wave cross-correlation amplitude to detect and model rupture directivity for a moderate size earthquake along the eastern Blanco Fault. Lastly, the observations constrain the seismogenic zone geometry and suggest a relatively narrow seismogenic zone width of 2 to 4 km.« less

  17. Locking, mass flux and topographic response at convergent plate boundaries - the Chilean case

    NASA Astrophysics Data System (ADS)

    Oncken, Onno

    2016-04-01

    On the long term, convergent plate boundaries have been shown to be controlled by either accretion/underplating or by subduction erosion. Vertical surface motion is coupled to convergence rate - typically with an uplift rate of the coastal area ranging from 0 to +50% of convergence rate in accretive systems, and -20 to +30% in erosive systems. Vertical kinematics, however, are not necessarily linked to horizontal strain mode, i.e. upper plate shortening or extension, in a simple way. This range of kinematic behaviors - as well as their acceleration where forearcs collide with oceanic ridges/plateau - is well expressed along the Chilean plate margin. Towards the short end of the time scale, deformation appears to exhibit a close correlation with the frictional properties and geodetic locking at the plate interface. Corroborating analogue experiments of strain accumulation during multiple earthquake cycles, forearc deformation and uplift focus above the downdip and updip end of seismic coupling and slip and are each related to a particular stage of the seismic cycle, but with opposite trends for both domains. Similarly, barriers separating locked domains along strike appear to accumulate most upper plate faulting interseismically. Hence, locking patters are reflected in topography. From the long-term memory contained in the forearc topography the relief of the Chilean forearc seems to reflect long term stability of the observed heterogeneity of locking at the plate interface. This has fundamental implications for spatial and temporal distribution of seismic hazard. Finally, the nature of locking at the plate interface controlling the above kinematic behavior appears to be strongly controlled by the degree of fluid overpressuring at the plate interface suggesting that the hydraulic system at the interface takes a key role for the forearc response.

  18. Plating on difficult-to-plate metals: what's new

    SciTech Connect

    Wiesner, H.J.

    1980-07-30

    Some of the changes since 1970 in procedures for plating on such materials as titanium, molybdenum, silicon, aluminum, and gallium arsenide are summarized. While basic procedures for plating some of these materials were developed as many as 30 to 40 years ago, changes in the end uses of the plated products have necessitated new plating processes. In some cases, vacuum techniques - such as ion bombardment, ion implantation, and vacuum metallization - have been introduced to improve the adhesion of electrodeposits. In other cases, these techniques have been used to deposit materials upon which electrodeposits are required.

  19. 20. 'Portals and Gusset Plates for 3 180'61/2' c. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. 'Portals and Gusset Plates for 3 - 180'-6-1/2' c. to c. End Pins Single Track Through Spans, 10th, 11th, & 13th Crossings of Sacramento River, Southern Pacific Co. Sacramento Division, The Phoenix Bridge Co., C.O's. 839, 840 & 841, Drawing #12, Engineer C. Scheidl, Draftsman B. Heald, Scale 1-1/2' = 1'0', April 16th, 1901.' - Southern Pacific Railroad Shasta Route, Bridge No. 310.58, Milepost 310.58, Sims, Shasta County, CA

  20. April 2016 Pacific Southwest Newsletter

    EPA Pesticide Factsheets

    EPA Pacific Southwest Newsletter for April 2016: University of Arizona Reduces Food Waste, Cleaning Up Underground Fuel Tanks in Fresno, The Argonaut Mine, Ensuring Clean Water in Nevada,Cleaning Up Groundwater in Whittier, California, and more!

  1. Mid-pacific mountains revisited

    NASA Astrophysics Data System (ADS)

    Kroenke, Loren W.; Kellogg, James N.; Nemoto, Kenji

    1985-06-01

    The Mid-Pacific Mountains are guyots whose volcanic pedestals have been constructed on a broad basement plateau, the flanks of which are downfaulted. Edifice construction may have been controlled by an orthogonal system of intersecting faults trending roughly ENE and NNW. Low amplitude gravity anomalies observed over the Mid-Pacific Mountains indicate complete Airy-Heiskanen isostatic compensation, crustal thickening, and eruption on thin elastic lithosphere. Tholeiites of the Mid-Pacific Mountains resemble lavas of Iceland and the Galapagos Islands. The orthogonal fault system, low gravity anomalies, and lava chemistry of the Mid-Pacific Mountains can be explained by eruption on or near a great ENE-trending rift system.

  2. Anomalous deepening of a belt of intraslab earthquakes in the Pacific slab crust under Kanto, central Japan: Possible anomalous thermal shielding, dehydration reactions, and seismicity caused by shallower cold slab material

    USGS Publications Warehouse

    Hasegawa, A.; Nakajima, J.; Kita, S.; Okada, T.; Matsuzawa, T.; Kirby, S.H.

    2007-01-01

    A belt of intraslab seismicity in the Pacific slab crust parallel to iso-depth contours of the plate interface has been found beneath Hokkaido and Tohoku. Hypocenter relocations have shown that this seismic belt does not run parallel to but obliquely to the iso-depth contours beneath Kanto, deepening toward the north from ???100 km to ???140 km depth. The depth limit of the contact zone with the overlying Philippine Sea slab is located close to and parallel to this obliquely oriented seismic belt, suggesting that the deepening of the seismic belt there is caused by the contact with the overlying slab. The contact with this cold slab hinders the heating of the Pacific slab crust by hot mantle wedge, which would cause delay of eclogite-forming phase transformations and hence deepening of the seismic belt there. The depth limit of the subducting low-velocity crust also deepens toward the north, supporting this idea. Copyright 2007 by the American Geophysical Union.

  3. Is the Hawaiian-Emperor Bend Coeval for all Pacific Seamount Trails?

    NASA Astrophysics Data System (ADS)

    Koppers, A. A.; Staudigel, H.

    2004-12-01

    By far the largest number of hotspots can be found in the South Pacific Thermal and Isotopic Anomaly (SOPITA). Its Cretaceous counterpart is preserved in a large range of seamounts and guyots found in the West Pacific Seamount Province (WPSP). The seamounts in these regions display very distinct and long-lived isotopic signatures (Staudigel et al., 1991; Koppers et al., 2003) that can be used to combine source region chemistry and seamount geochronology to map out mantle melting anomalies over geological time. These mappings may resolve many important questions regarding the stationary character, continuity and longevity of the hotspots in the South Pacific mantle. Most importantly, it may also answer the question whether the Hawaiian-Emperor Bend (HEB) is coeval for all Pacific Seamount trails at 47 Ma? Fixed hotspots should be expressed in volcanic trails on the lithospheric plates revealing absolute rates of motion from their age progressions and the direction of motion based on their azimuths. By definition, bends in these hotspot trails thus should give an indication of changing plate motion happening simultaneously across individual lithospheric plates. Based on the morphology of seamounts in the Pacific, the Hawaiian-Emperor, Louisville, Gilbert Ridge and Tokelau seamount trails may be identified as the only hotspot trails to exhibit a clear HEB-type bend (Kroenke et al. 2004). Of these, the Louisville seamount trail only displays a faint bend that may be coeval with the sharp 60 degree bend in the Hawaiian-Emperor trail (Koppers et al. 2004) at 47 Ma. However, new 40Ar/39Ar analyses indicate that the HEB-type bends in the Gilberts Ridge and Tokelau seamount trails are asynchronous around 67 Ma and 57 Ma, respectively. We argue, therefore, that plate motion alone cannot explain these age systematics, but that both hotspot motion and changing lithospheric stress regimes may play an important role in their creation. The simple and elegant hotspot model that

  4. Rigidity of Major Plates and Microplates Estimated From GPS Solution GPS2006.0

    NASA Astrophysics Data System (ADS)

    Kogan, M. G.; Steblov, G. M.

    2006-05-01

    Here we analyze the rigidity of eight major lithospheric plates using our global GPS solution GPS2006.0. We included all daily observations in interval 1995.0 to 2006.0 collected at IGS stations, as well as observations at many important stations not included in IGS. Loose multiyear solution GPS2006.0 is based on daily solutions by GAMIT software, performed at SOPAC and at Columbia University; those daily solutions were combined by Kalman filter (GLOBK software) into a loose multiyear solution. The constrained solution for station positions and velocities was obtained without a conventional reference frame; instead, we applied translation and rotation in order to best fit the zero velocities of 76 stations in stable plate cores excluding the regions of postglacial rebound. Simultaneously, we estimated relative plate rotation vectors (RV) and the origin translation rate (OTR), and then corrected station velocities for it. Therefore, the velocities in GPS2006.0 are unaffected by the OTR error of ITRF2000 conventionally used to constrain a loose solution. The 1-sigma plate-residual velocity in a stable plate core is less than 1 mm/yr for the plates: Eurasia, Pacific, North and South Americas, Nubia, Australia, and Antarctica; it is 1.4 mm/yr for the Indian plate, most probably because of poorer data quality. Plate-residuals at other established plates (Arabia, Nazca, Caribbean, Philippine) were not assessed for lack of observations. From our analysis, an upper bound for the mobility of the plate inner area is 1 mm/yr. Plate- residual GPS velocities for several hypothesized microplates in east Asia, such as Okhotsk, Amuria, South China, are 3-4 times higher; corresponding strain rates for these microplates are an order of magnitude higher than for Eurasia, North America, and other large plates.

  5. Wave energy: a Pacific perspective.

    PubMed

    Paasch, Robert; Ruehl, Kelley; Hovland, Justin; Meicke, Stephen

    2012-01-28

    This paper illustrates the status of wave energy development in Pacific rim countries by characterizing the available resource and introducing the region's current and potential future leaders in wave energy converter development. It also describes the existing licensing and permitting process as well as potential environmental concerns. Capabilities of Pacific Ocean testing facilities are described in addition to the region's vision of the future of wave energy.

  6. Rehabilitation services for the Pacific.

    PubMed Central

    Fitzgerald, M H; Barker, J C

    1993-01-01

    The Pacific Basin Rehabilitation Research and Training Center was created to help meet the challenges of rehabilitating people in rural remote communities in the United States-associated Pacific. We describe the center, the special region it serves, some of its many programs, and some of the ways it is helping communities in this region provide services that are appropriate and sensitive to the culture, the environment, and the disability. PMID:8351905

  7. Localised Plate Motion on Venus

    NASA Astrophysics Data System (ADS)

    Ghail, R. C.

    1996-03-01

    The volcanic and tectonic features observed in Dali Vinculum, Parga Vinculum and Imdr Regio are concentrated at long, narrow, curvilinear zones, with relatively minor volcanism and tectonism between these zones. These zones, whilst more diffuse than terrestrial plate boundaries, nevertheless define the margins of tectonic plates. In contrast to Earth, however, it appears that venusian plates are neither created nor destroyed by lateral motion. Rather, plates are thinned and intruded at vincula plate boundaries, vertically accreted by small-scale intra-plate (planitia) volcanism and perhaps destroyed by delamination of thickened crust in tesserae and montane regions such as Thetis Regio and Ishtar Terra. The diversity in age both between and within these three areas together with the evidence for infrequent, small scale resurfacing in the planitiae are difficult to reconcile with a non-uniformitarian geological process.

  8. Micromachined devices for interfacing neurons

    NASA Astrophysics Data System (ADS)

    Stieglitz, Thomas; Beutel, Hansjoerg; Blau, Cornelia; Meyer, Joerg-Uwe

    1998-07-01

    Micromachining technologies were established to fabricate microelectrode arrays and devices for interfacing parts of the central or peripheral nervous system. The devices were part of a neural prosthesis that allows simultaneous multichannel recording and multisite stimulation of neurons. Overcoming the brittle mechanics of silicon devices and challenging housing demands close to the nerve we established a process technology to fabricate light-weighted and highly flexible polyimide based devices. Platinum and iridium thin-film electrodes were embedded in the polyimide. With reactive ion etching we got the possibility to simply integrate interconnections and to form nearly arbitrary outer shapes of the devices. We designed multichannel devices with up to 24 electrodes in the shape of plates, hooks and cuffs for different applications. In vitro tests exhibited stable electrode properties and no cytotoxicity of the materials and the devices. Sieve electrodes were chronically implanted in rats to interface the regenerating sciatic nerve. After six months, recordings and stimulation of the nerve via electrodes on the micro-device proved functional reinnervation of the limb. Concentric circular structures were designed for a retina implant for the blind. In preliminary studies in rabbits, evoked potentials in the visual cortex corresponded to stimulation sites of the implant.

  9. Origin of plate tectonics: Grain-damage, inheritance and hysteresis

    NASA Astrophysics Data System (ADS)

    Bercovici, D.; Ricard, Y. R.

    2015-12-01

    The emergence of plate tectonics is enigmatic because of the lack of observations in the early Archean as well as the challenge of understanding how plates form. The damage theory of lithospheric weakening by grain-reduction provides a physical framework for plate generation. This model builds on grain-scale physics to describe planetary-scale processes, and is consistent with lab and field observations of polycrystalline rocks and lithospheric mylonites. Grain-damage accounts for the evolution of damage and healing by grain growth, hence predicts plate boundary formation and longevity, and how they depend on surface conditions. The establishment of global plate tectonics likely started between >4Ga and 2.7Ga, and may have taken over a billion years to develop. Under Earth-like conditions, grain-damage combined with intermittent Archean protosubduction produces persistent weak zones that accumulate into well developed plates by 3Ga. However, Venus' hotter surface promotes healing, suppresses damage and inhibits weak zone accumulation, which suggests why plate tectonics failed to spread on our sister planet. New work posits that interface damage is possibly suppressed at moderate grain-size; this induces a hysteresis loop wherein three equilibrium deformation branches coexist. These branches include a stable large-grain, weakly-deforming state in dislocation creep, a stable small-grain rapidly-deforming state in diffusion creep analogous to mylonites, and an unstable intermediate-grain state. At the right conditions, a lithosphere can acquire two stable deformation states characteristic of plate tectonics; i.e., both slowly deforming plate interiors and rapidly deforming plate boundaries can co-exist. Earth currently sits inside the hysteresis loop and can have coexisting deformation states, while Venus sits at the end of the loop where only the weakly deforming branch dominates. The hot post-Hadean Earth might have had peak deformation only on the weakly

  10. Spreading behaviour of the Pacific-Farallon ridge system since 83 Ma

    NASA Astrophysics Data System (ADS)

    Rowan, Christopher J.; Rowley, David B.

    2014-06-01

    We present improved rotations, complete with uncertainties, for the Pacific-Farallon Ridge (PFR) between geomagnetic chrons 34y (83 Ma) and 10y (28.28 Ma). Despite substantial shortening since ˜55 Ma, this ridge system and its remnants (e.g. the East Pacific Rise) have produced as much as 45 per cent of all oceanic lithosphere created since the Late Cretaceous, but reconstructions face the twin challenges of extensive subduction of Farallon crust-which precludes reconstruction by fitting conjugate magnetic anomaly and fracture zone (FZ) traces-and asymmetric spreading behaviour for at least the past 51 Myr. We have calculated best-fit `half'-angle stage rotations between nine geomagnetic chron boundaries (34y, 33y, 29o, 24.3o, 20o, 18.2o, 17.1y, 13y and 10y) using combined anomaly and FZ data from both the northern and southern Pacific Plate. For rotations younger than chron 24.3o, estimates for spreading asymmetry, derived using anomaly picks from yet-to-be subducted Farallon/Nazca crust in the south Pacific, allow full stage rotations to be calculated. Between 50 and 83 Ma, where no direct constraints on spreading asymmetry are possible, a `best-fit' full stage rotation was calculated based on the net Nazca:Pacific spreading asymmetry (Pacific spreading fraction fPAC = 0.44) over the past 50 Myr, with conservative lower and upper bounds, based on variability in the degree of spreading asymmetry over periods of <15 Myr, assuming fPACs of 0.5 and 0.36, respectively. Synthetic flowlines generated from our new stage rotation produce a better match to Pacific FZ trends than previously published rotations. With the exception of the chron 18o-20o rotation, the six stage poles for rotations between chrons 33y and 13y (74-33 Ma) all cluster tightly at 60-75°E, 60-68°N, consistent with the relatively constant trend of the major Pacific FZs. This stability spans at least one episode of Farallon Plate fragmentation caused by subduction of PFR segments beneath the Americas

  11. Dissolution of HFIR control plates

    SciTech Connect

    Posey, J.C.

    1984-03-01

    A process was developed for the dissolution of High Flux Isotope Reactor (HFIR) control plates. These plates consist of aluminum metal, intensely radioactive europium oxide, and a small amount of tantalum metal. The radioactive solution will be diluted, mixed with grout, and disposed of by shale fracture. The plates are dissolved in nitric acid using a mercury catalyst. Conditions were determined that would produce a reaction rate compatible with existing equipment. 3 references, 1 figure, 3 tables.

  12. Ion plating for the future

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1981-01-01

    The ion plating techniques are classified relative to the instrumental set up, evaporation media, and mode of transport. A distinction is drawn between the low vacuum (plasma) and high vacuum (ion beam) techniques. Ion plating technology is discussed at the fundamental and industrial level. At the fundamental level, the capabilities and limitations of the plasma (evaporant flux) and film characteristics are evaluated. And on the industrial level, the performance and potential uses of ion plated films are discussed.

  13. Laser-Based Characterization of Nuclear Fuel Plates

    SciTech Connect

    James A. Smith; David L. Cottle; Barry H. Rabin

    2013-07-01

    Ensuring the integrity of fuel-clad and clad-clad bonding in nuclear fuels is important for safe reactor operation and assessment of fuel performance, yet the measurement of bond strengths in actual fuels has proved challenging. The laser shockwave technique (LST) originally developed to characterize structural adhesion in composites is being employed to characterize interface strength in a new type of plate fuel being developed at Idaho National Laboratory (INL). LST is a non-contact method that uses lasers for the generation and detection of large-amplitude acoustic waves and is well suited for application to both fresh and irradiated nuclear-fuel plates. This paper will report on initial characterization results obtained from fresh fuel plates manufactured by different processes, including hot isostatic pressing, friction stir welding, and hot rolling.

  14. Laser-based characterization of nuclear fuel plates

    SciTech Connect

    Smith, James A.; Cottle, Dave L.; Rabin, Barry H.

    2014-02-18

    Ensuring the integrity of fuel-clad and clad-clad bonding in nuclear fuels is important for safe reactor operation and assessment of fuel performance, yet the measurement of bond strengths in actual fuels has proved challenging. The laser shockwave technique (LST) originally developed to characterize structural adhesion in composites is being employed to characterize interface strength in a new type of plate fuel being developed at Idaho National Laboratory (INL). LST is a non-contact method that uses lasers for the generation and detection of large-amplitude acoustic waves and is well suited for application to both fresh and irradiated nuclear-fuel plates. This paper will report on initial characterization results obtained from fresh fuel plates manufactured by different processes, including hot isostatic pressing, friction stir welding, and hot rolling.

  15. Ion plated gold films: Properties, tribological behavior and performance

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1987-01-01

    The glow discharge energizing favorably modifies and controls the coating/substrate adherence and the nucleation and growth sequence of ion plated gold films. As a result the adherence, coherence, internal stresses, and morphology of the films are significantly improved. Gold ion plated films because of their graded coating/substrate interface and fine uniform densely packed microstructure not only improve the tribological properties but also induce a surface strengthening effect which improves the mechanical properties such as yield, tensile, and fatigue strength. Consequently significant improvements in the tribological performance of ion plated gold films as compared to vapor deposited gold films are shown in terms of decreased friction/wear and prolonged endurance life.

  16. Repeating Earthquakes on the Queen Charlotte Plate Boundary

    NASA Astrophysics Data System (ADS)

    Hayward, T. W.; Bostock, M. G.

    2015-12-01

    The Queen Charlotte Fault (QCF) is a major plate boundary located off the northwest coast of North America that has produced large earthquakes in 1949 (M8.1) and more recently in October, 2012 (M7.8). The 2012 event was dominated by thrusting despite the fact that plate motions at the boundary are nearly transcurrent. It is now widely believed that the plate boundary comprises the QCF (i.e., a dextral strike-slip fault) as well as an element of subduction of the Pacific Plate beneath the North American Plate. Repeating earthquakes and seismic tremor have been observed in the vicinity of the QCF; providing insight into the spatial and temporal characteristics of repeating earthquakes is the goal of this research. Due to poor station coverage and data quality, traditional methods of locating earthquakes are not applicable to these events. Instead, we have implemented an algorithm to locate local (i.e., < 100 km distance to epicenter) earthquakes using a single, three-component seismogram. This algorithm relies on the P-wave polarization and, through comparison with larger local events in the Geological Survey of Canada catalogue, is shown to yield epicentral locations accurate to within 5-10 km. A total of 24 unique families of repeating earthquakes has been identified, and 4 of these families have been located with high confidence. Their epicenters locate directly on the trace of the QCF and their depths are shallow (i.e., 5-15 km), consistent with the proposed depth of the QCF. Analysis of temporal recurrence leading up to the 2012 M7.8 event reveals a non-random pattern, with an approximately 15 day periodicity. Further analysis is planned to study whether this behaviour persists after the 2012 event and to gain insight into the effects of the 2012 event on the stress field and frictional properties of the plate boundary.

  17. Quantization of interface currents

    SciTech Connect

    Kotani, Motoko; Schulz-Baldes, Hermann; Villegas-Blas, Carlos

    2014-12-15

    At the interface of two two-dimensional quantum systems, there may exist interface currents similar to edge currents in quantum Hall systems. It is proved that these interface currents are macroscopically quantized by an integer that is given by the difference of the Chern numbers of the two systems. It is also argued that at the interface between two time-reversal invariant systems with half-integer spin, one of which is trivial and the other non-trivial, there are dissipationless spin-polarized interface currents.

  18. Decoupling of Pacific subduction zone guided waves

    NASA Astrophysics Data System (ADS)

    Garth, T.; Rietbrock, A.

    2010-12-01

    Subduction zone guided wave arrivals have been observed in many circum Pacific subduction zones and have been attributed to the presence of a low velocity layer (LVL) in the subducting slab. This LVL acts as a waveguide for the high frequency energy, while lower frequency energy is not retained and travels in the higher velocity surrounding mantle. This leads to the characteristic dispersion of seismic waves observed. The commonly accepted model for the LVL is the persistence of basaltic oceanic crust to a depth of greater than 150 km. This basaltic oceanic crust has not yet undergone phase transformation to eclogite due to kinetic hindering, and so still has a distinguishably lower velocity than the surrounding mantle. It has been shown that guided waves are only seen from events that occur in or near to the low velocity layer. Similarly it would be expected that guided waves are only seen when the receiver is on the wave guide. However in a subduction zone setting it has been shown that guided wave energy is decoupled from the waveguide, due to the bend of the slab (Martin et al., 2003). Therefore high frequency guided wave energy escapes the waveguide and so can be observed at receivers placed in specific positions on the overriding plate. This decoupling mechanism allows guided waves from intermediate and deep Wadati-Benioff zone earthquakes to be observed. We use a two dimensional finite difference model to investigate the decoupling of wave guide energy due to the geometry of various Pacific subduction zones in order to predict the occurrence of guided wave arrivals along up-dip and along-strike propagation paths. The slab geometry is inferred from the USGS slab contour model slab 1.0. An explosive source is used so that frequency effects of the source do not complicate the results. The thickness of the LVL is inferred from published observations of Pacific subduction zone guided waves. For the along-strike profile we concentrate on the observations of guided

  19. Laser-driven flyer plate

    DOEpatents

    Paisley, Dennis L.

    1991-01-01

    Apparatus for producing high velocity flyer plates involving placing a layer of dielectric material between a first metal foil and a second metal foil. With laser irradiation through an optical substrate, the first metal foil forms a plasma in the area of the irradiation, between the substrate and the solid portion of the first metal foil. When the pressure between the substrate and the foil reaches the stress limit of the dielectric, the dielectric will break away and launch the flyer plate out of the second metal foil. The mass of the flyer plate is controlled, as no portion of the flyer plate is transformed into a plasma.

  20. True Shear Parallel Plate Viscometer

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin; Kaukler, William

    2010-01-01

    This viscometer (which can also be used as a rheometer) is designed for use with liquids over a large temperature range. The device consists of horizontally disposed, similarly sized, parallel plates with a precisely known gap. The lower plate is driven laterally with a motor to apply shear to the liquid in the gap. The upper plate is freely suspended from a double-arm pendulum with a sufficiently long radius to reduce height variations during the swing to negligible levels. A sensitive load cell measures the shear force applied by the liquid to the upper plate. Viscosity is measured by taking the ratio of shear stress to shear rate.

  1. Glass-bead peen plating

    NASA Technical Reports Server (NTRS)

    Graves, J. R.

    1974-01-01

    Peen plating of aluminum, copper, and nickel powders was investigated. Only aluminum was plated successfully within the range of peen plating conditions studied. Optimum plating conditions for aluminum were found to be: (1) bead/powder mixture containing 25 to 35% powder by weight, (2) peening intensity of 0.007A as measured by Almen strip, and (3) glass impact bead diameter of at least 297 microns (0.0117 inches) for depositing-100 mesh aluminum powder. No extensive cleaning or substrate preparation is required beyond removing loose dirt or heavy oil.

  2. Carbon-assisted flyer plates

    DOEpatents

    Stahl, David B.; Paisley, Dennis L.

    1994-01-01

    A laser driven flyer plate utilizing an optical fiber connected to a laser. The end of the optical fiber has a layer of carbon and a metal layer deposited onto it. The carbon layer provides the laser induced plasma which is superior to the plasma produced from most metals. The carbon layer plasma is capable of providing a flatter flyer plate, converting more of the laser energy to driving plasma, promoting a higher flyer plate acceleration, and providing a more uniform pulse behind the plate. In another embodiment, the laser is in optical communication with a substrate onto which a layer of carbon and a layer of metal have been deposited.

  3. Eastern Pacific and central Pacific types of ENSO

    NASA Astrophysics Data System (ADS)

    Kao, Hsun-Ying

    In this study, I identify and contrast two types of El Nino Southern Oscillation (ENSO): one located in the eastern Pacific near the South American coast (i.e. EP-ENSO), and the other in the central Pacific close to the date line (i.e. CP-ENSO). The EP-ENSO possesses the properties of the canonical ENSO and is related to thermocline variations. It is characterized by basin-wide surface and subsurface evolution, coupled with Southern Oscillation and dominated by 2 to 4 year timescale. In contrast, the CP-ENSO is characterized by in-situ evolution and local atmosphere-ocean coupling, and is likely driven by atmospheric forcing. From an upper-ocean heat budget analysis, the CP-ENSO is found to be related to the trade wind forcing associated with the variations of the northern subtropical high. Wind-induced surface heat flux forcing first warms up the upper ocean temperature in the Northeastern Subtropical Pacific. The SST anomalies later spread toward the central equatorial Pacific through heat-flux forcing and vertical advection processes, are further enhanced by zonal advection, and eventually terminate by surface heat flux. The budget results suggest a possible interaction pathway between the north-eastern subtropics and central equatorial Pacific. The CP-ENSO is dominated by a quasi-biennial (˜2.5 yr) periodicity that is also found in subtropical high and Asian-Australian monsoon variability. The possible linkage between CP-ENSO and monsoon variability is demonstrated by an Indian Ocean-decoupled experiment using a coupled GCM. The biennial CP-ENSO in the model is significantly reduced when the Indian Ocean coupling is turned off to weaken the biennial monsoon variability. This study suggests the existence of a distinct CP-ENSO that is a result of interactions among Asian-Australian monsoon, northern subtropical Pacific and central equatorial Pacific.

  4. Lamb waves propagation in layered piezoelectric/piezomagnetic plates.

    PubMed

    Ezzin, Hamdi; Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi

    2017-04-01

    A dynamic solution is presented for the propagation of harmonic waves in magneto-electro-elastic plates composed of piezoelectric BaTiO3(B) and magnetostrictive CoFe2O4(F) material. The state-vector approach is employed to derive the propagator matrix which connects the field variables at the upper interface to those at the lower interface of each layer. The ordinary differential approach is employed to determine the wave propagating characteristics in the plate by imposing the traction-free boundary condition on the top and bottom surfaces of the layered plate. The dispersion curves of the piezoelectric-piezomagnetic plate are shown for different thickness ratios. The numerical results show clearly the influence of different stacking sequences as well as thickness ratio on dispersion curves and on magneto-electromechanical coupling factor. These findings could be relevant to the analysis and design of high-performance surface acoustic wave (SAW) devices constructed from piezoelectric and piezomagnetic materials.

  5. Characterization and Testing of Monolithic RERTR Fuel Plates

    SciTech Connect

    D. D. Keiser; J. F. Jue; D. E. Burkes

    2007-03-01

    Monolithic fuel plates are being developed for application in research reactors throughout the world. These fuel plates are comprised of a U-Mo alloy foil encased in aluminum alloy cladding. Three different fabrication techniques have been looked at for producing monolithic fuel plates: hot isostatic pressing (HIP), transient liquid phase bonding (TLPB), and friction stir welding (FSW). Of these three techniques, HIP and FSW are currently being emphasized. As part of the development of these fabrication techniques, fuel plates are characterized and tested to determine properties like hardness and the bond strength at the interface between the fuel and cladding. Testing of HIPed samples indicates that the foil/cladding interaction behavior depends on the Mo content in the U-Mo foil, the measured hardness values are quite different for the fuel, cladding, and interaction zone phase and Ti, Zr and Nb are the most effective diffusion barriers. For FSW samples, there is a dependence of the bond strength at the foil/cladding interface on the type of tool that is employed for performing the actual FSW process.

  6. Scintillator plate calorimetry

    SciTech Connect

    Price, L.E.

    1990-01-01

    Calorimetry using scintillator plates or tiles alternated with sheets of (usually heavy) passive absorber has been proven over multiple generations of collider detectors. Recent detectors including UA1, CDF, and ZEUS have shown good results from such calorimeters. The advantages offered by scintillator calorimetry for the SSC environment, in particular, are speed (<10 nsec), excellent energy resolution, low noise, and ease of achieving compensation and hence linearity. On the negative side of the ledger can be placed the historical sensitivity of plastic scintillators to radiation damage, the possibility of nonuniform response because of light attenuation, and the presence of cracks for light collection via wavelength shifting plastic (traditionally in sheet form). This approach to calorimetry is being investigated for SSC use by a collaboration of Ames Laboratory/Iowa State University, Argonne National Laboratory, Bicron Corporation, Florida State University, Louisiana State University, University of Mississippi, Oak Ridge National Laboratory, Virginia Polytechnic Institute and State University, Westinghouse Electric Corporation, and University of Wisconsin.

  7. Low-volume intraplate volcanism in the Early/Middle Jurassic Pacific basin documented by accreted sequences in Costa Rica

    NASA Astrophysics Data System (ADS)

    Buchs, David M.; Pilet, SéBastien; Cosca, Michael; Flores, Kennet E.; Bandini, Alexandre N.; Baumgartner, Peter O.

    2013-05-01

    Countless seamounts occur on Earth that can provide important constraints on intraplate volcanism and plate tectonics in the oceans, yet their nature and origin remain poorly known due to difficulties in investigating the deep ocean. We present here new lithostratigraphic, age and geochemical data from Lower/Middle Jurassic and Lower Cretaceous sequences in the Santa Rosa accretionary complex, Costa Rica, which offer a valuable opportunity to study a small-sized seamount from a subducted plate segment of the Pacific basin. The seamount is characterized by very unusual lithostratigraphic sequences with sills of potassic alkaline basalt emplaced within thick beds of radiolarite, basaltic breccia and hyaloclastite. An integration of new geochemical, biochronological and geochronological data with lithostratigraphic observations suggests that the seamount formed ~175 Ma ago on thick oceanic crust away from subduction zones and mid-ocean ridges. This seamount traveled ~65 Ma in the Pacific before accretion. It resembles lithologically and compositionally "petit-spot" volcanoes found off Japan, which form in response to plate flexure near subduction zones. Also, the composition of the sills and lava flows in the accreted seamount closely resembles that of potassic alkaline basalts produced by lithosphere cracking along the Line Islands chain. We hypothesize based on these observations, petrological constraints and formation of the accreted seamount coeval with the early stages of development of the Pacific plate that the seamount formed by extraction of small volumes of melt from the base of the lithosphere in response to propagating fractures at the scale of the Pacific basin.

  8. Apollo 12 Pacific Recovery

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Sitting in the life raft, during the Apollo 12 Pacific recovery, are the three mission astronauts; Alan L. Bean, pilot of the Lunar Module (LM), Intrepid; Richard Gordon, pilot of the Command Module (CM), Yankee Clipper; and Spacecraft Commander Charles Conrad. The second manned lunar landing mission, Apollo 12 launched from launch pad 39-A at Kennedy Space Center in Florida on November 14, 1969 via a Saturn V launch vehicle. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The LM, Intrepid, landed astronauts Conrad and Bean on the lunar surface in what's known as the Ocean of Storms, while astronaut Richard Gordon piloted the CM, Yankee Clipper, in a parking orbit around the Moon. Lunar soil activities included the deployment of the Apollo Lunar Surface Experiments Package (ALSEP), finding the unmanned Surveyor 3 that landed on the Moon on April 19, 1967, and collecting 75 pounds (34 kilograms) of rock samples. Apollo 12 safely returned to Earth on November 24, 1969.

  9. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates.

    PubMed

    Kawakatsu, Hitoshi; Kumar, Prakash; Takei, Yasuko; Shinohara, Masanao; Kanazawa, Toshihiko; Araki, Eiichiro; Suyehiro, Kiyoshi

    2009-04-24

    The mobility of the lithosphere over a weaker asthenosphere constitutes the essential element of plate tectonics, and thus the understanding of the processes at the lithosphere-asthenosphere boundary (LAB) is fundamental to understand how our planet works. It is especially so for oceanic plates because their relatively simple creation and evolution should enable easy elucidation of the LAB. Data from borehole broadband ocean bottom seismometers show that the LAB beneath the Pacific and Philippine Sea plates is sharp and age-dependent. The observed large shear wave velocity reduction at the LAB requires a partially molten asthenosphere consisting of horizontal melt-rich layers embedded in meltless mantle, which accounts for the large viscosity contrast at the LAB that facilitates horizontal plate motions.

  10. Nonlinear analysis of the dynamics in the Mexican Pacific seismic region by using visual recurrence plots.

    NASA Astrophysics Data System (ADS)

    Ramírez-Rojas, Alejandro; Moreno-Torres, Lucía; Flores-Márquez, Elsa

    2013-04-01

    The subduction in the Mexican South Pacific coast might be approximated as a subhorizontal slab bounded at the edge by the steep subduction geometry of the Cocos plate beneath the Caribbean plate to the east and of the Rivera plate beneath North America to the west. It has been reported a study that takes into account the geometry of the subducted Rivera and Cocos plates beneath the North American lithosphere defining, according their geometry, four regions: Jalisco, Michoacán, Guerrero and Oaxaca. By means of the visual recurrence analysis (VRA), in this work we study some dynamical features of the seismicity occurred for each region, Our analysis shows interesting differences among the recurrence plots of each region indicating a possible correlation between the subduction geometry and the nonlinear dynamical properties of each region.

  11. 10. DETAIL OF BUILDER'S PLATE AT NORTH PORTAL. PLATE READS: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF BUILDER'S PLATE AT NORTH PORTAL. PLATE READS: 1889, BUILT BY THE BERLIN IRON BRIDGE CO. EAST BERLIN CONN. DOUGLAS & JARVIS PAT. APT. 16, 1878, AP'L 17, 1885. A.P. FORESMAN, WM. S. STARR, T.J. STREBEIGH, COMMISSIONERS. - Pine Creek Bridge, River Road spanning Pine Creek, Jersey Shore, Lycoming County, PA

  12. Downgoing plate controls on overriding plate deformation in subduction zones

    NASA Astrophysics Data System (ADS)

    Garel, Fanny; Davies, Rhodri; Goes, Saskia; Davies, Huw; Kramer, Stephan; Wilson, Cian

    2014-05-01

    Although subduction zones are convergent margins, deformation in the upper plate can be extensional or compressional and tends to change through time, sometimes in repeated episodes of strong deformation, e.g, phases of back-arc extension. It is not well understood what factors control this upper plate deformation. We use the code Fluidity, which uses an adaptive mesh and a free-surface formulation, to model a two-plate subduction system in 2-D. The model includes a composite temperature- and stress-dependent rheology, and plates are decoupled by a weak layer, which allows for free trench motion. We investigate the evolution of the state of stress and topography of the overriding plate during the different phases of the subduction process: onset of subduction, free-fall sinking in the upper mantle and interaction of the slab with the transition zone, here represented by a viscosity contrast between upper and lower mantle. We focus on (i) how overriding plate deformation varies with subducting plate age; (ii) how spontaneous and episodic back-arc spreading develops for some subduction settings; (iii) the correlation between overriding plate deformation and slab interaction with the transition zone; (iv) whether these trends resemble observations on Earth.

  13. Intraplate seismicity of the Pacific Basin, 1913 1988

    NASA Astrophysics Data System (ADS)

    Wysession, Michael E.; Okal, Emile A.; Miller, Kristin L.

    1991-02-01

    We establish here a comprehensive database of intraplate seismicity in the Pacific Basin. Relocation and analysis of 894 earthquakes yield 403 reliable intraplate earthquakes during 1913 1988. These numbers do not include earthquake swarms, which account for another 838 events. Most of the remainder (304 events) are actually plate boundary earthquakes that have been erroneously located in intraplate regions. A significant number occur in recent years when location capabilities should have guarded against this situation. Relocations involve a careful linear inversion of P and S arrivals, accom