Science.gov

Sample records for pack cementation diffusion

  1. Codeposited chromium and silicon diffusion coatings for Fe-base alloys via pack cementation

    SciTech Connect

    Harper, M.A.; Rapp, R.A. )

    1994-10-01

    The simultaneous deposition of Cr and Si into plain carbon, low-alloy, and austenitic steels using a halide-activated pack-cementation process is described. Equilibrium partial pressures of gaseous species have been calculated using the STEPSOL computer program to aid in designing specific processes for codepositing the desired ratios of Cr and Si into a given alloy. The calculations indicate that NaCl-activated packs are chromizing, while NaF-activated packs deposit more Si with less Cr. THe use of a [open quotes]dual activator[close quotes] (e.g., NaF+NaCl) allows for the deposition of both Cr and Si in the desired amounts. Single-phase ferritic coatings (150-250 microns thick) with a surface concentration of 20-35 wt.% Cr and 2-4% Si have been grown on AISI 1018, Fe-2.25Cr-1.0Mo-0.15C, and Fe-0.5Cr-0.5Mo-0.2C steels using packs containing a 90 wt.% Cr-10Si binary source alloy, a NaF+NaCl activator, and a silica filler. Two-phase coatings (approximately 75 microns thick) containing 20-25 wt.% Cr and 2.0-2.4% Si have been obtained on 304 stainless steel using packs containing a 90 wt.% Cr-10Si binary source alloy, a NaF activator, and an alumina filler. The same pack chemistry allowed the diffusion of Cr and Si into the austenitic Incoloy 800 alloy without a phase change. A coated Fe-2.25Cr-1.0Mo-0.15C coupon with a surface concentration of Fe-34 wt.% Cr-3Si was cyclically oxidized in air at 700[degrees]C for over four months and 47 cycles. The weight gain was very low (<0.2 mg/cm[sup 2]) with no scale spalling detected. Coated coupons of AISI 1018 steel, and Fe-0.5Cr-0.5Mo-0.2C steel have shown excellent oxidation-sulfidation resistance in reducing, sulfur-containing atmospheres at temperatures from 400 to 700[degrees]C and in erosion and erosion-oxidation testing in air at 650 and 850[degrees]C.

  2. Pack cementation diffusion coatings for Fe-base and refractory alloys. Final report

    SciTech Connect

    Rapp, R.A.

    1998-03-10

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels and refractory metal alloys. A new comprehensive theory to treat the multi-component thermodynamic equilibria in the gas phase for several coexisting solid phases was developed and used. Many different processes to deposit various types of coatings on several types of steels were developed: Cr-Si codeposition for low- or medium-carbon steels, Cr-Al codeposition on low-carbon steels to yield either a Kanthal-type composition (Fe-25Cr-4Al in wt.%) or else a (Fe, Cr){sub 3}Al surface composition. An Fe{sub 3}Al substrate was aluminized to achieve an FeAl surface composition, and boron was also added to ductilize the coating. The developmental Cr-lean ORNL alloys with exceptional creep resistance were Cr-Al coated to achieve excellent oxidation resistance. Alloy wires of Ni-base were aluminized to provide an average composition of Ni{sub 3}Al for use as welding rods. Several different refractory metal alloys based on Cr-Cr{sub 2}Nb have been silicided, also with germanium additions, to provide excellent oxidation resistance. A couple of developmental Cr-Zr alloys were similarly coated and tested.

  3. Pack cementation coatings for alloys

    SciTech Connect

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A.

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  4. Diffusion in Jammed Particle Packs.

    PubMed

    Bolintineanu, Dan S; Grest, Gary S; Lechman, Jeremy B; Silbert, Leonardo E

    2015-08-21

    Using random walk simulations we explore diffusive transport through monodisperse sphere packings over a range of packing fractions ϕ in the vicinity of the jamming transition at ϕ(c). Various diffusion properties are computed over several orders of magnitude in both time and packing pressure. Two well-separated regimes of normal "Fickian" diffusion, where the mean squared displacement is linear in time, are observed. The first corresponds to diffusion inside individual spheres, while the latter is the long-time bulk diffusion. The intermediate anomalous diffusion regime and the long-time value of the diffusion coefficient are both shown to be controlled by particle contacts, which in turn depend on proximity to ϕ(c). The time required to recover normal diffusion t* scales as (ϕ-ϕ(c))(-0.5) and the long-time diffusivity D(∞)∼(ϕ-ϕ(c))0.5, or D(∞)∼1/t*. It is shown that the distribution of mean first passage times associated with the escape of random walkers between neighboring particles controls both t* and D(∞) in the limit ϕ→ϕ(c).

  5. Diffusion in Jammed Particle Packs.

    PubMed

    Bolintineanu, Dan S; Grest, Gary S; Lechman, Jeremy B; Silbert, Leonardo E

    2015-08-21

    Using random walk simulations we explore diffusive transport through monodisperse sphere packings over a range of packing fractions ϕ in the vicinity of the jamming transition at ϕ(c). Various diffusion properties are computed over several orders of magnitude in both time and packing pressure. Two well-separated regimes of normal "Fickian" diffusion, where the mean squared displacement is linear in time, are observed. The first corresponds to diffusion inside individual spheres, while the latter is the long-time bulk diffusion. The intermediate anomalous diffusion regime and the long-time value of the diffusion coefficient are both shown to be controlled by particle contacts, which in turn depend on proximity to ϕ(c). The time required to recover normal diffusion t* scales as (ϕ-ϕ(c))(-0.5) and the long-time diffusivity D(∞)∼(ϕ-ϕ(c))0.5, or D(∞)∼1/t*. It is shown that the distribution of mean first passage times associated with the escape of random walkers between neighboring particles controls both t* and D(∞) in the limit ϕ→ϕ(c). PMID:26340211

  6. Diffusion in jammed particle packs

    NASA Astrophysics Data System (ADS)

    Bolintineanu, Dan S.; Silbert, Leonardo E.; Grest, Gary S.; Lechman, Jeremy B.

    2015-03-01

    Diffusive transport in jammed particle packs is of interest for a number of applications, as well as being a potential indicator of structural properties near the jamming point. To this end, we report stochastic simulations of equilibrium diffusion through monodisperse sphere packs near the jamming point in the limit of a perfectly insulating surrounding medium. The time dependence of various diffusion properties is resolved over several orders of magnitude. Two time regimes of expected Fickian diffusion are observed, separated by an intermediate regime of anomalous diffusion. This intermediate regime grows as the particle volume fraction approaches the critical jamming transition. The diffusion behavior is fully controlled by the extent of the contacts between neighboring particles, which in turn depend on proximity to the jamming point. In particular, the mean first passage time associated with the escape of random walkers between neighboring particles is shown to control both the time to recover Fickian diffusion and the long time diffusivity. Scaling laws are established that relate these quantities to the difference between the actual and critical jamming volume fractions. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE- AC04-94AL85000.

  7. Effect of Al-Si Pack Cementation Diffusion Coating on High-Temperature Low-Cycle Fatigue Behavior of Inconel 713LC

    NASA Astrophysics Data System (ADS)

    Mansuri, Mohammadreza; Hadavi, Seyed Mohammad Mehdi; Zare, Esmail

    2016-01-01

    In this research, an Al-Si protective coating was applied on the surface of an IN713LC specimen using pack cementation method. Surface-treated and untreated specimens were exposed to low-cycle fatigue by tension-tension loading under total strain control at 1173 K (900 °C) in air. Based on the obtained results, the hardening/softening, cyclic stress-strain, and fatigue life curves were plotted and analyzed. The results showed that both the single-stage and two-stage coatings improved the fatigue life of the substrate. However, owing to more silicon content of single-stage coating compared to that of two-stage coating, the effect of single-stage coating was superior. The stress response of the treated material was lower compared with the untreated one. Observations of the specimen section and fracture surface examinations were used to analyze fatigue behavior of both coated and uncoated materials.

  8. Synthesis and characterisation of pack cemented aluminide coatings on metals

    NASA Astrophysics Data System (ADS)

    Houngninou, C.; Chevalier, S.; Larpin, J. P.

    2004-09-01

    The exposition of metallic materials to high temperature environments leads to their corrosion because of oxidation or sulphidation. One way to protect such materials is to produce an Al 2O 3 layer which needs to be continuous enough to limit diffusion of oxygen or metallic elements, and withstand this corrosion. Since a few years, it has been proved that aluminide compounds are one of the most effective materials to achieve this goal. Indeed, they possess sufficient Al and many beneficial mechanical properties when exposed to high temperature conditions to make possible the formation of a protective Al 2O 3 scale. This study is aimed at the elaboration of iron, nickel and molybdenum aluminides by modification of the surface of the base materials by a pack cementation process. The as-cemented alloys were analysed by means of SEM coupled with EDX and by XRD. Cross-section examinations showed, in each case, a progressive diffusion of aluminium through the substrates. The diffusion thickness layer was more or less important depending on the base material and on the coating conditions.

  9. Nanostructure and nanomechanics of cement: polydisperse colloidal packing.

    PubMed

    Masoero, E; Del Gado, E; Pellenq, R J-M; Ulm, F-J; Yip, S

    2012-10-12

    Cement setting and cohesion are governed by the precipitation and growth of calcium-silicate-hydrate, through a complex evolution of microstructure. A colloidal model to describe nucleation, packing, and rigidity of calcium-silicate-hydrate aggregates is proposed. Polydispersity and particle size dependent cohesion strength combine to produce a spectrum of packing fractions and of corresponding elastic properties that can be tested against nanoindentation experiments. Implications regarding plastic deformations and reconciling current structural characterizations are discussed.

  10. Thermal diffusivity of glass-ionomer cements.

    PubMed

    Tay, W M; Braden, M

    1987-05-01

    Thermal diffusivity, a property related to the thermal insulative efficiency of a material, was measured in nine glass-ionomer cements and compared with results from a silicate and a polycarboxylate cement. Each cement was mixed at various powder-liquid ratios (P/L) and moulded into a rectangular prism of approximate dimensions 2 cm cube with a thermocouple embedded in it. The prism was immersed in a constant-temperature bath at 1 degree C, and the fall in temperature was observed over a period of three min. Except for the initial and later stages, the plot of the logarithmic difference between external and internal temperatures of each block of cement against time showed a straight line in accord with theoretical prediction. From the slope, the thermal diffusivity of the material was calculated. The values for the silicate, polycarboxylate, and glass-ionomer-metal (cermet) showed a marked rise with increasing P/L, whereas at higher P/L, glass ionomer cements showed gradual change, with values being only slightly higher than the thermal diffusivity of dentin. Glass-ionomer cements are good thermal insulators over a wide range of P/L, and close agreement between experimental and theoretical data shows that glass-ionomer cements are homogenous isotropic materials.

  11. Thermal diffusivity of glass-ionomer cements.

    PubMed

    Tay, W M; Braden, M

    1987-05-01

    Thermal diffusivity, a property related to the thermal insulative efficiency of a material, was measured in nine glass-ionomer cements and compared with results from a silicate and a polycarboxylate cement. Each cement was mixed at various powder-liquid ratios (P/L) and moulded into a rectangular prism of approximate dimensions 2 cm cube with a thermocouple embedded in it. The prism was immersed in a constant-temperature bath at 1 degree C, and the fall in temperature was observed over a period of three min. Except for the initial and later stages, the plot of the logarithmic difference between external and internal temperatures of each block of cement against time showed a straight line in accord with theoretical prediction. From the slope, the thermal diffusivity of the material was calculated. The values for the silicate, polycarboxylate, and glass-ionomer-metal (cermet) showed a marked rise with increasing P/L, whereas at higher P/L, glass ionomer cements showed gradual change, with values being only slightly higher than the thermal diffusivity of dentin. Glass-ionomer cements are good thermal insulators over a wide range of P/L, and close agreement between experimental and theoretical data shows that glass-ionomer cements are homogenous isotropic materials. PMID:3475320

  12. Volatile species in halide-activated-diffusion coating packs

    NASA Technical Reports Server (NTRS)

    Bianco, Robert; Rapp, Robert A.; Jacobson, Nathan S.

    1992-01-01

    An atmospheric pressure sampling mass spectrometer was used to identify the vapor species generated in a halide-activated cementation pack. Pack powder mixtures containing a Cr-Al binary masteralloy powder, an NH4Cl activator salt, and either ZrO2 or Y2O3 (or neither) were analyzed at 1000 C. Both the equilibrium calculations for the pack and mass spectrometer results indicated that volatile AlCl(x) and CrCl(y) species were generated by the pack powder mixture; in packs containing the reactive element oxide, volatile ZrCl(z) and YCl(w) species were formed by the conversion of their oxide sources.

  13. Pack cementation Cr-Al coating of steels and Ge-doped silicide coating of Cr-Nb alloy

    SciTech Connect

    He, Y.R.; Zheng, M.H.; Rapp, R.A.

    1995-08-01

    Carbon steels or low-alloy steels used in utility boilers, heat exchangers, petrochemical plants and coal gasification systems are subjected to high temperature corrosion attack such as oxidation, sulfidation and hot corrosion. The pack cementation coating process has proven to be an economical and effective method to enhance the corrosion resistance by modifying the surface composition of steels. With the aid of a computer program, STEPSOL, pack cementation conditions to produce a ferrite Cr-Al diffusion coating on carbon-containing steels by using elemental Cr and Al powders have been calculated and experimentally verified. The cyclic oxidation kinetics for the Cr-Al coated steels are presented. Chromium silicide can maintain high oxidation resistance up to 1100{degrees}C by forming a SiO{sub 2} protective scale. Previous studies at Ohio State University have shown that the cyclic oxidation resistance of MOSi{sub 2} and TiSi{sub 2} can be further improved by Ge addition introduced during coating growth. The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating in a single processing step for the ORNL-developed Cr-Nb advanced intermetallic alloy. The oxidation behavior of the silicide-coated Cr-Nb alloy was excellent: weight gain of about 1 mg/cm{sup 2} upon oxidation at 1100{degrees}C in air for 100 hours.

  14. Analytical method to estimate resin cement diffusion into dentin

    NASA Astrophysics Data System (ADS)

    de Oliveira Ferraz, Larissa Cristina; Ubaldini, Adriana Lemos Mori; de Oliveira, Bruna Medeiros Bertol; Neto, Antonio Medina; Sato, Fracielle; Baesso, Mauro Luciano; Pascotto, Renata Corrêa

    2016-05-01

    This study analyzed the diffusion of two resin luting agents (resin cements) into dentin, with the aim of presenting an analytical method for estimating the thickness of the diffusion zone. Class V cavities were prepared in the buccal and lingual surfaces of molars (n=9). Indirect composite inlays were luted into the cavities with either a self-adhesive or a self-etch resin cement. The teeth were sectioned bucco-lingually and the cement-dentin interface was analyzed by using micro-Raman spectroscopy (MRS) and scanning electron microscopy. Evolution of peak intensities of the Raman bands, collected from the functional groups corresponding to the resin monomer (C–O–C, 1113 cm-1) present in the cements, and the mineral content (P–O, 961 cm-1) in dentin were sigmoid shaped functions. A Boltzmann function (BF) was then fitted to the peaks encountered at 1113 cm-1 to estimate the resin cement diffusion into dentin. The BF identified a resin cement-dentin diffusion zone of 1.8±0.4 μm for the self-adhesive cement and 2.5±0.3 μm for the self-etch cement. This analysis allowed the authors to estimate the diffusion of the resin cements into the dentin. Fitting the MRS data to the BF contributed to and is relevant for future studies of the adhesive interface.

  15. Analytical method to estimate resin cement diffusion into dentin

    NASA Astrophysics Data System (ADS)

    de Oliveira Ferraz, Larissa Cristina; Ubaldini, Adriana Lemos Mori; de Oliveira, Bruna Medeiros Bertol; Neto, Antonio Medina; Sato, Fracielle; Baesso, Mauro Luciano; Pascotto, Renata Corrêa

    2016-05-01

    This study analyzed the diffusion of two resin luting agents (resin cements) into dentin, with the aim of presenting an analytical method for estimating the thickness of the diffusion zone. Class V cavities were prepared in the buccal and lingual surfaces of molars (n=9). Indirect composite inlays were luted into the cavities with either a self-adhesive or a self-etch resin cement. The teeth were sectioned bucco-lingually and the cement-dentin interface was analyzed by using micro-Raman spectroscopy (MRS) and scanning electron microscopy. Evolution of peak intensities of the Raman bands, collected from the functional groups corresponding to the resin monomer (C-O-C, 1113 cm-1) present in the cements, and the mineral content (P-O, 961 cm-1) in dentin were sigmoid shaped functions. A Boltzmann function (BF) was then fitted to the peaks encountered at 1113 cm-1 to estimate the resin cement diffusion into dentin. The BF identified a resin cement-dentin diffusion zone of 1.8±0.4 μm for the self-adhesive cement and 2.5±0.3 μm for the self-etch cement. This analysis allowed the authors to estimate the diffusion of the resin cements into the dentin. Fitting the MRS data to the BF contributed to and is relevant for future studies of the adhesive interface.

  16. Formation of the Thermoelectric Candidate Chromium Silicide by Use of a Pack-Cementation Process

    NASA Astrophysics Data System (ADS)

    Stathokostopoulos, D.; Chaliampalias, D.; Tarani, E.; Theodorakakos, A.; Giannoulatou, V.; Polymeris, G. S.; Pavlidou, E.; Chrissafis, K.; Hatzikraniotis, E.; Paraskevopoulos, K. M.; Vourlias, G.

    2014-10-01

    Transition-metal silicides are reported to be good candidates for thermoelectric applications because of their thermal and structural stability, high electrical conductivity, and generation of thermoelectric power at elevated temperatures. Chromium disilicide (CrSi2) is a narrow-gap semiconductor and a potential p-type thermoelectric material up to 973 K with a band gap of 0.30 eV. In this work, CrSi2 was formed from Si wafers by use of a two-step, pack-cementation, chemical diffusion method. Several deposition conditions were used to investigate the effect of temperature and donor concentration on the structure of the final products. Scanning electron microscopy and x-ray diffraction analysis were performed for phase identification, and thermal stability was evaluated by means of thermogravimetric measurements. The results showed that after the first step, chromizing, the structure of the products was a mixture of several Cr-Si phases, depending on the donor (Cr) concentration during the deposition process. After the second step, siliconizing, the pure CrSi2 phase was formed as a result of Si enrichment of the initial Cr-Si phases. It was also revealed that this compound has thermoelectric properties similar to those reported elsewhere. Moreover, it was found to have exceptional chemical stability even at temperatures up to 1273 K.

  17. The influence of Cr and Al pack cementation on low carbon steel to improve oxidation resistance

    NASA Astrophysics Data System (ADS)

    Prasetya, Didik; Sugiarti, Eni; Destyorini, Fredina; Thosin, Kemas Ahmad Zaini

    2012-06-01

    Pack chromizing and aluminizing has been widely used for many years to improve hot temperature oxidation and corrosion resistance of metals. The coating process involves packing the steel in a powder mixture which contain aluminum and chromium source, and inert filler (usually alumina), and halide activator NH4Cl. Al and Cr were deposited onto carbon steel by pack cementation process using elemental Al and Cr powder as Al and Cr source, whereas NiCo alloys codeposited by electrodeposition. The position of Al and Cr could be under or over Ni-Co alloys deposited. Pack cementation was heated on dry inert gas at temperature 800 °C about 5 hours and 20 minute for Cr and Al respectively. Al and Cr was successfully deposited. Laying down effect of Al and Cr onto carbon steel whether up and down toward NiCo alloys coating have affected to oxidation resistance. The pack aluminizing as top layer given best resitance to restrain excessive oxide scale, in contrast pack chromizing reveal bad oxidation resistance, moreover occured spallation on layer.

  18. Silver-cemented frit formation for the stabilization of the packing structure in the microchannel of electrochromatographic microchips.

    PubMed

    Park, Jongman; Oh, Hyejin; Jeon, In-Sun

    2011-10-28

    A simple but effective frit formation technique was developed to stabilize the packing structure inside the microchannel of capillary electrochromatographic microchips, utilizing the electroless plating technique. A Ag(NH(3))(2)(+) solution was allowed to diffuse through the colloidal silica packing in the microchannel from the reservoir of the microchip for a limited amount of time, and then it was reduced by an excess amount of formaldehyde solution. A frit structure of ~70 μm in length was formed at the entrance of the microchannel without clogging when treated with 1mM Ag(NH(3))(2)(+) ion and formaldehyde for 30s and 150 s, respectively. The formation of the frit structure was confirmed by a scanning electron microscopy. The stability of the packing structure was tested rigorously and then confirmed by applying alternating electroosmotic flows back and forth with pulsed potential steps on both sides of the frit structure. The effect of the treatment on the electrochromatograms was evaluated after the microchips were repeatedly used and stored for a long period of time. The results indicated that the silver-cemented frit structure extended the lifetime of the fully packed CEC microchips distinctly.

  19. Plasma Spray and Pack Cementation Process Optimization and Oxidation Behaviour of Novel Multilayered Coatings

    NASA Astrophysics Data System (ADS)

    Gao, Feng

    The hot section components in gas turbines are subjected to a harsh environment with the temperature being increased continuously. The higher temperature has directly resulted in severe oxidation of these components. Monolithic coatings such as MCrAIY and aluminide have been traditionally used to protect the components from oxidation; however, increased operating temperature quickly deteriorates the coatings due to accelerated diffusion of aluminum in the coatings. To improve the oxidation resistance a group of multilayered coatings are developed in this study. The multilayered coatings consist of a Cr-Si co-deposited layer as the diffusion barrier, a plasma sprayed NiCrA1Y coating as the middle layer and an aluminized top layer. The Cr-Si and aluminized layers are fabricated using pack cementation processes and the NiCrA1Y coatings are produced using the Mettech Axial III(TM) System. All of the coating processes are optimized using the methodology of Design of Experiments (DOE) and the results are analyzed using statistical method. The optimal processes are adopted to fabricate the multilayered coatings for oxidation tests. The coatings are exposed in air at 1050°C and 1150°C for 1000 hr. The results indicate that a Cr layer and a silicon-rich barrier layer have formed on the interface between the Cr-Si coating and the NiCrA1Y coating. This barrier layer not only prevents aluminum and chromium from diffusing into the substrate, but also impedes the diffusion of other elements from the substrate into the coating. The results also reveal that, for optimal oxidation resistance at 1050°C, the top layer in a multilayered coating should have at least Al/Ni ratio of one; whereas the multilayered coating with the All Ni ratio of two in the top layer exhibits the best oxidation resistance at 1150°C. The DOE methodology provides an excellent means for process optimization and the selection of oxidation test matrix, and also offers a more thorough understanding of the

  20. Structural disorder and anomalous diffusion in random packing of spheres

    PubMed Central

    Palombo, M.; Gabrielli, A.; Servedio, V. D. P.; Ruocco, G.; Capuani, S.

    2013-01-01

    Nowadays Nuclear Magnetic Resonance diffusion (dNMR) measurements of water molecules in heterogeneous systems have broad applications in material science, biophysics and medicine. Up to now, microstructural rearrangement in media has been experimentally investigated by studying the diffusion coefficient (D(t)) behavior in the tortuosity limit. However, this method is not able to describe structural disorder and transitions in complex systems. Here we show that, according to the continuous time random walk framework, the dNMR measurable parameter α, quantifying the anomalous regime of D(t), provides a quantitative characterization of structural disorder and structural transition in heterogeneous systems. To demonstrate this, we compare α measurements obtained in random packed monodisperse micro-spheres with Molecular Dynamics simulations of disordered porous media and 3D Monte Carlo simulation of particles diffusion in these kind of systems. Experimental results agree well with simulations that correlate the most used parameters and functions characterizing the disorder in porous media. PMID:24022264

  1. Aluminide coatings on iron-chromium-molybdenum steel synthesized by pack cementation for power generation applications

    NASA Astrophysics Data System (ADS)

    Wang, Yongqing

    Aluminide coatings on ferritic/martensite Fe-9Cr-1Mo steel substrates for power generation applications were developed via a pack cementation process at both high temperatures (1050°C) and low temperatures (650 and 700°C). Thermodynamic analysis was first conducted using HSC 5.0 software to provide a guideline for the selection of a masteralloy and the amount of the activator in the pack. Equilibrium partial pressures of halide gaseous species were calculated for packs containing Cr-Al binary alloys with Al contents varying from 5wt%Al to pure Al at both 1050°C and 700°C (Except for 650°C, at which only pure Al masteralloy was used). The calculation was also made for packs containing Hf, HfO2 or HfCl4 for developing Hf-modified aluminide coatings. At 1050°C, both simple and Hf-modified aluminide coatings were synthesized using a Cr-25wt.%Al binary masteralloy with a noncontact pack arrangement. Oxidation testing in air + 10vol.% H2O at 700°C indicates that simple pack aluminide coatings exhibited similar oxidation behavior to the model coatings fabricated via chemical vapor deposition (CVD). For up to 4,600h, Hf-modified aluminide coatings showed an improved oxidation resistance to CVD coatings. Low temperature aluminide coatings were synthesized at temperatures of 650 and 700°C, below the tempering temperature of the ferritic/martensite steel substrate. Initial coating development showed that a continuous Fe 2Al5 coating layer was deposited at 650°C with pure Al masteralloy. However, the coating thickness was not uniform and cracks were observed in the coatings. Cr-25wt%Al and Cr-15wt.%Al binary alloys with reduced Al activities were used to reduce the tendency of forming the brittle, Al-rich Fe2Al5 phase. With Cr-25wt.%Al masteralloy at 700°C, the synthesized coating consisted of a thin layer of Fe2Al 5 and an underlying layer of FeAl. The masteralloy of Cr-15wt.%Al was then utilized to further reduce the Al activity, and FeAl coatings with improved

  2. Creep behavior of pack cementation aluminide coatings on Grade 91 ferritic martensitic alloy

    SciTech Connect

    Bates, Brian; Zhang, Ying; Dryepondt, Sebastien N; Pint, Bruce A

    2014-01-01

    The creep behavior of various pack cementation aluminide coatings on Grade 91 ferritic-martensitic steel was investigated at 650 C in laboratory air. The coatings were fabricated in two temperature regimes, i.e., 650 or 700 C (low temperature) and 1050 C(high temperature), and consisted of a range of Al levels and thicknesses. For comparison, uncoated specimens heat-treated at 1050 C to simulate the high temperature coating cycle also were included in the creep test. All coated specimens showed a reduction in creep resistance, with 16 51% decrease in rupture life compared to the as-received bare substrate alloy. However, the specimens heat-treated at 1050 C exhibited the lowest creep resistance among all tested samples, with a surprisingly short rupture time of < 25 h, much shorter than the specimen coated at 1050 C. Factors responsible for the reduction in creep resistance of both coated and heat-treated specimens were discussed.

  3. Boundary conditions for diffusion in the pack-aluminizing of nickel.

    NASA Technical Reports Server (NTRS)

    Sivakumar, R.; Seigle, L. L.; Menon, N. B.

    1973-01-01

    The surface compositions of nickel specimens coated for various lengths of time in aluminizing packs at 2000 F were studied, in order to obtain information about the kinetics of the pack-cementation process in the formation of aluminide coatings. The results obtained indicate that the surface compositions of the coated nickel specimens are independent of time, at least for time between 0.5 and 20 hrs. Another important observation is that the specimens gained weight during the coating process.

  4. Cs diffusion in local Taiwan laterite with different solution concentration, pH and packing density.

    PubMed

    Wang, Tsing-Hai; Li, Ming-Hsu; Teng, Shi-Ping

    2008-09-01

    In this work we used an "in-diffusion" method to study the effects of pH, solution concentration and packing density on Cs diffusion by packing local Taiwan laterite (LTL) into modified capillary columns with 5mm diameter. These packed columns were first pre-equilibrated with synthetic groundwater (GW) for 3 weeks. The diffusion experiments were then carried out at ambient condition for 2 weeks. Our experimental results showed that the Cs diffusion profile fits Fick's second law very well in given experimental conditions, indicating the validity of modified capillary column method. Generally speaking, Cs diffusion in LTL decreases as the pH increases and as Cs concentration decreases. The apparent diffusion coefficient (D(a)) increases from 5.52 x 10(-12) (10(-7)M) to 2.18 x 10(-11) (10(-3)M)m(2)/s, while the effective diffusion coefficient (D(e)) shows slight variation as the Cs concentration changes. Both the derived D(a) and D(e) values decrease as the pH increases, implying that the diffusion mechanisms of Cs nuclide in alkaline and acid environment are different. In addition, our results show that Cs diffusion is unaffected by the given packing density, indicating the interlaminary space is not the major determinant of Cs adsorption and diffusion in LTL. PMID:18321721

  5. Cs diffusion in local Taiwan laterite with different solution concentration, pH and packing density.

    PubMed

    Wang, Tsing-Hai; Li, Ming-Hsu; Teng, Shi-Ping

    2008-09-01

    In this work we used an "in-diffusion" method to study the effects of pH, solution concentration and packing density on Cs diffusion by packing local Taiwan laterite (LTL) into modified capillary columns with 5mm diameter. These packed columns were first pre-equilibrated with synthetic groundwater (GW) for 3 weeks. The diffusion experiments were then carried out at ambient condition for 2 weeks. Our experimental results showed that the Cs diffusion profile fits Fick's second law very well in given experimental conditions, indicating the validity of modified capillary column method. Generally speaking, Cs diffusion in LTL decreases as the pH increases and as Cs concentration decreases. The apparent diffusion coefficient (D(a)) increases from 5.52 x 10(-12) (10(-7)M) to 2.18 x 10(-11) (10(-3)M)m(2)/s, while the effective diffusion coefficient (D(e)) shows slight variation as the Cs concentration changes. Both the derived D(a) and D(e) values decrease as the pH increases, implying that the diffusion mechanisms of Cs nuclide in alkaline and acid environment are different. In addition, our results show that Cs diffusion is unaffected by the given packing density, indicating the interlaminary space is not the major determinant of Cs adsorption and diffusion in LTL.

  6. The impact of hardpans and cemented layers on oxygen diffusivity in mining waste heaps: diffusion experiments and modelling studies.

    PubMed

    Kohfahl, Claus; Graupner, Torsten; Fetzer, Christian; Holzbecher, Ekkehard; Pekdeger, Asaf

    2011-08-01

    This study reports column tests and modelling results to assess the impact of hardpans and cemented layers on oxygen supply in mine waste sediments. The analysed sediment samples were obtained from a low-sulphide and low-carbonate polymetallic mine waste tailings impoundment located in the Freiberg mining district in Germany. The three samples were characterised by different degrees and types of cementation. After physical and mineralogical properties of the samples had been determined, breakthrough curves of oxygen were measured in column studies at different degrees of water saturation, and the diffusivities were assessed using a numerical modelling approach. Results demonstrate that cemented layers and hardpans in undisturbed sediments associated with fine-grained material operate as preferential pathways for diffusive gas transport during rewetting, leading to higher oxygen diffusivities compared to disturbed sediments. Under air-dry conditions, the disturbed samples show higher diffusivities than the undisturbed sample, indicating clogging of the porosity by precipitation of secondary minerals such as trivalent Fe oxyhydroxides acting as a barrier and thereby decreasing the diffusivity of the undisturbed sample. In contrast to sediments without cementation, diffusion experiments of sediments with cemented layers used in this study yield similar tortuosities in spite of their different grain size distributions, pointing to the important role of these heterogeneities for gas diffusion.

  7. Chloride diffusivity in hardened cement paste from microscale analyses and accounting for binding effects

    NASA Astrophysics Data System (ADS)

    Carrara, P.; De Lorenzis, L.; Bentz, D. P.

    2016-08-01

    The diffusion of chloride ions in hardened cement paste (HCP) under steady-state conditions and accounting for the highly heterogeneous nature of the material is investigated. The three-dimensional HCP microstructures are obtained through segmentation of x-ray images of real samples as well as from simulations using the cement hydration model CEMHYD3D. Moreover, the physical and chemical interactions between chloride ions and HCP phases (binding), along with their effects on the diffusive process, are explicitly taken into account. The homogenized diffusivity of the HCP is then derived through a least square homogenization technique. Comparisons between numerical results and experimental data from the literature are presented.

  8. Cloride ion diffusion in low water-to-solid cement pastes

    SciTech Connect

    Clifton, J.R.; Knab, L.I.; Garboczi, E.J. ); Xiong, L.X. )

    1991-06-01

    Diffusion coefficients of 0.3 water to solids ratio (w/s) hydrated portland cement paste specimens were measured using a conventional diffusion cell. Specimens were made from both ASTM Type 1 and Type 2 portland cements and blends containing mineral admixtures (fly ash, granulated blastfurnace slag, or silica fume). The average diffusion coefficient for the portland cement paste specimens was 14 {times} 10{sup {minus}13} m{sup 2}/s. The diffusion coefficients for the specimens containing mineral admixtures were such more variable than those for the portland cement paste specimens. A probable cause of the variability in the test results was the presence of cracks observed in the test specimens. The effects of the depth of concrete cover over reinforcing steel and of the chloride ion diffusion coefficient on the service life of reinforced concrete exposed to chloride ions were predicted based on a diffusion model. Based on the model, the effect of the cover was shown to be proportional to the square of the cover depth. 18 refs., 5 figs., 6 tabs.

  9. Open photoacoustic cell for thermal diffusivity measurements of a fast hardening cement used in dental restoring

    NASA Astrophysics Data System (ADS)

    Astrath, F. B. G.; Astrath, N. G. C.; Baesso, M. L.; Bento, A. C.; Moraes, J. C. S.; Santos, A. D.

    2012-01-01

    Thermal diffusivity and conductivity of dental cements have been studied using open photoacoustic cell (OPC). The samples consisted of fast hardening cement named CER, developed to be a root-end filling material. Thermal characterization was performed in samples with different gel/powder ratio and particle sizes and the results were compared to the ones from commercial cements. Complementary measurements of specific heat and mass density were also performed. The results showed that the thermal diffusivity of CER tends to increase smoothly with gel volume and rapidly against particle size. This behavior was linked to the pores size and their distribution in the samples. The OPC method was shown to be a valuable way in deriving thermal properties of porous material.

  10. Pixel-based Comparison of Spinal Cord MR Diffusion Anisotropy with Axon Packing Parameters

    PubMed Central

    Golabchi, F. N.; Brooks, D. H.; Hoge, W. S.; De Girolami, U.; Maier, S. E.

    2010-01-01

    Water diffusion in nerve fibers is strongly influenced by axon architecture. In this study, fractional diffusion anisotropy (FA) and transverse and longitudinal diffusion coefficients (tADC and lADC) were measured in excised human cervical spinal cord with MR line scan diffusion imaging, at 625 μm in-plane resolution and 3 mm slice thickness. A pixel-based comparison of FA, tADC, and lADC data with axon packing parameters derived from corresponding stained histological sections, was performed for four slices. The axon packing parameters, axon density (AD), axon area-fraction (AAF), and average axon size (AAS), for entire specimen cross-sections were calculated by computerized segmentation of optical microscopy data obtained at 0.53 μm resolution. Salient features could be recognized on FA, tADC, AD, AAF, and AAS maps. For white matter regions only, the average correlation coefficients for FA compared to histology-based parameters AD and AAF were 0.37 and 0.21, respectively. For tADC compared to AD and AAF, they were –0.40 and –0.36, and for lADC compared to AD and AAF, –0.14 and –0.30. All average correlation coefficients for AAS were low. Correlation coefficients for collectively analyzed white and gray matter regions, were significantly higher than correlation coefficients derived from analysis of white matter regions only. PMID:20512854

  11. Preparation and Oxidation Performance of Y and Ce-Modified Cr Coating on open-cell Ni-Cr-Fe Alloy Foam by the Pack Cementation

    NASA Astrophysics Data System (ADS)

    Pang, Q.; Hu, Z. L.; Wu, G. H.

    2016-10-01

    Metallic foams with a high fraction of porosity, low density and high-energy absorption capacity are a rapidly emerging class of novel ultralight weight materials for various engineering applications. In this study, Y-Cr and Ce-Cr-coated Ni-Cr-Fe alloy foams were prepared via the pack cementation method, and the effects of Y and Ce addition on the coating microstructure and oxidation performance were analyzed in order to improve the oxidation resistance of open-cell nickel-based alloy foams. The results show that the Ce-Cr coating is relatively more uniform and has a denser distribution on the surface of the nickel-based alloy foam. The surface grains of the Ce-Cr-coated alloy foam are finer compared to those of the Y-Cr-coated alloy foam. An obvious Ce peak appears on the interface between the coating and the alloy foam strut, which gives rise to a "site-blocking" effect for the short-circuit transport of the cation in the substrate. X-ray diffraction analysis shows that the Y-Cr-coated alloy foam mainly consists of Cr, (Fe, Ni) and (Ni, Cr) phases in the surface layer. The Ce-Cr-coated alloy foam is mainly composed of Cr and (Ni, Cr) phases. Furthermore, the addition of Y and Ce clearly lead to an improvement in the oxidation resistance of the coated alloy foams in the temperature range of 900-1000 °C. The addition of Ce is especially effective in enhancing the diffusion of chromium to the oxidation front, thus, accelerating the formation of a Cr2O3 layer.

  12. Water permeability and chloride ion diffusion in portland cement mortars: Relationship to sand content and critical pore diameter

    SciTech Connect

    Halamickova, P.; Detwiler, R.J.; Bentz, D.P.; Garboczi, E.J.

    1995-05-01

    The pore structure of hydrated cement in mortar and concrete is quite different from that of neat cement paste. The porous transition zones formed at the aggregate-paste interfaces affect the pore size distribution. The effect of the sand content on the development of pore structure, the permeability to water, and the diffusivity of chloride ions was studied on portland cement mortars. Mortars of two water-to-cement ratios and three sand volume fractions were cast together with pastes and tested at degrees of hydration ranging from 45 to 70%. An electrically-accelerated concentration cell test was used to determine the coefficient of chloride ion diffusion while a high pressure permeability cell was employed to assess liquid permeability. The coefficient of chloride ion diffusion varied linearly with the critical pore radius as determined by mercury intrusion porosimetry while permeability was found to follow a power-law relationship vs. this critical radius. The data set provides an opportunity to directly examine the application of the Katz-Thompson relationship to cement-based materials.

  13. Small-particle-size cement

    SciTech Connect

    Ewert, D.P.; Almond, S.W.; Blerhaus, W.M. II )

    1991-05-01

    Successful remedial cementing has historically been difficult in wells with large-interval, multizone, gravel-packed completions. The reason is the inability of conventional oilfield cements to penetrate gravel packs adequately. Small-particle-size cement (SPSC) was developed to penetrate gravel packs and to provide the zonal isolation required. This paper details the laboratory work, job design, and field implementation of this new cement.

  14. Long-term monitoring of microleakage of dental cements by radiochemical diffusion.

    PubMed

    Powis, D R; Prosser, H J; Wilson, A D

    1988-06-01

    Radioactive 14C sucrose was found to be an ideal marker for microleakage because it did not penetrate tooth tissue, dental cement, or mounting resin. The main finding is that the adhesive cements--the glass-ionomer and polycarboxylate--are significantly more effective at preventing microleakage than are the traditional phosphate cements--silicate and zinc phosphate. The differences can be as high as two orders of magnitude. The adhesive cements provide almost perfect and reliable seals. By contrast, the nonadhesive cements are erratic sealants with most of the restorations leaking.

  15. Spatially resolved diffuse reflectance spectroscopy of two-layer turbid media by densely packed multi-pixel photodiode reflectance probe

    NASA Astrophysics Data System (ADS)

    Senlik, Ozlem; Greening, Gage; Muldoon, Timothy J.; Jokerst, Nan M.

    2016-03-01

    Spatially-resolved diffuse reflectance (SRDR) measurements provide photon path information, and enable layered tissue analysis. This paper presents experimental SRDR measurements on two-layer PDMS skin tissue-mimicking phantoms of varying top layer thicknesses, and bulk phantoms of varying optical properties using concentric multi-pixel photodiode array (CMPA) probes, and corresponding forward Monte Carlo simulations. The CMPA is the most densely packed semiconductor SRDR probe reported to date. Signal contrasts between the single layer phantom and bi-layer phantoms with varying top layer thicknesses are as high as 80%. The mean error between the Monte Carlo simulations and the experiment is less than 6.2 %.

  16. The evolution of health warning labels on cigarette packs: the role of precedents, and tobacco industry strategies to block diffusion

    PubMed Central

    Hiilamo, Heikki; Crosbie, Eric; Glantz, Stanton A

    2013-01-01

    Objective To analyse the evolution and diffusion of health warnings on cigarette packs around the world, including tobacco industry attempts to block this diffusion. Methods We analysed tobacco industry documents and public sources to construct a database on the global evolution and diffusion of health warning labels from 1966 to 2012, and also analysed industry strategies. Results Health warning labels, especially labels with graphic elements, threaten the tobacco industry because they are a low-cost, effective measure to reduce smoking. Multinational tobacco companies did not object to voluntary innocuous warnings with ambiguous health messages, in part because they saw them as offering protection from lawsuits and local packaging regulations. The companies worked systematically at the international level to block or weaken warnings once stronger more specific warnings began to appear in the 1970s. Since 1985 in Iceland, the tobacco industry has been aware of the effectiveness of graphic health warning labels (GWHL). The industry launched an all-out attack in the early 1990s to prevent GHWLs, and was successful in delaying GHWLs internationally for nearly 10 years. Conclusions Beginning in 2005, as a result of the World Health Organisation Framework Convention on Tobacco Control (FCTC), GHWLs began to spread. Effective implementation of FCTC labelling provisions has stimulated diffusion of strong health warning labels despite industry opposition. PMID:23092884

  17. Determination of Diffusion Profiles in Altered Wellbore Cement Using X-ray Computed Tomography Methods

    SciTech Connect

    Mason, Harris E.; Walsh, Stuart D. C.; DuFrane, Wyatt L.; Carroll, Susan A.

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining “effective linear activity coefficients” (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment.

  18. Determination of diffusion profiles in altered wellbore cement using X-ray computed tomography methods.

    PubMed

    Mason, Harris E; Walsh, Stuart D C; DuFrane, Wyatt L; Carroll, Susan A

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining "effective linear activity coefficients" (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment. PMID:24869420

  19. Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core-shell particles with varied shell thickness and shell diffusion coefficient.

    PubMed

    Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich

    2015-08-14

    In recent years, chromatographic columns packed with core-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in core-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized core-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled eddy dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified eddy dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of core-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of core-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel eddy dispersion.

  20. Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core-shell particles with varied shell thickness and shell diffusion coefficient.

    PubMed

    Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich

    2015-08-14

    In recent years, chromatographic columns packed with core-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in core-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized core-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled eddy dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified eddy dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of core-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of core-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel eddy dispersion. PMID:26162667

  1. Designing gravel pack for uranium ISL wells

    NASA Astrophysics Data System (ADS)

    Ber, A. A.; Minaev, K. M.; Ber, L. M.; Isaev, Ye D.; Ulyanova, O. S.

    2016-09-01

    The paper describes the improvement of gravel packing technique applied for the production wells. The authors have suggested new design of gravel pack for gravel packing of productive formations. The issue is currently topical because gravel packing at drillhole ISL is less time- and money-consuming. The subject of the research is gravel pack design and content. The purpose defined by the authors is to design the gravel pack and to suggest the composition of gravel cement agent. As a result of the research, the authors have described different designs of the gravel pack, its optimal shape, as well as a choice and justification of cement agents, a hold cover of the gravel pack, and suggested the methods of experimental research.

  2. Pre-packing of cost effective antibiotic cement beads for the treatment of traumatic osteomyelitis in the developing world - an in-vitro study based in Cambodia.

    PubMed

    Noor, S; Gilson, A; Kennedy, K; Swanson, A; Vanny, V; Mony, K; Chaudhry, T; Gollogly, J

    2016-04-01

    The developing world often lacks the resources to effectively treat the most serious injuries including osteomyelitis following open fractures or surgical fracture treatment. Antibiotic cement beads are a widely accepted method of delivering antibiotics locally to the infected area following trauma. This study is based in Cambodia, a low income country struggling to recover from a recent genocide. The study aims to test the effectiveness of locally made antibiotic beads and analyse their effectiveness after being gas sterilised, packaged and kept in storage Different antibiotic beads were manufactured locally using bone cement and tested against MRSA bacteria grown from a case of osteomyelitis. Each antibiotic was tested before and after a process of gas sterilisation as well as later being tested after storage in packaging up to 42 days. The gentamicin, vancomycin, amikacin and ceftriaxone beads all inhibited growth of the MRSA on the TSB and agar plates, both before and after gas sterilisation. All four antibiotics continued to show similar zones of inhibition after 42 days of storage. The results show significant promise to produce beads with locally obtainable ingredients in an austere environment and improve cost effectiveness by storing them in a sterilised condition.

  3. Pre-packing of cost effective antibiotic cement beads for the treatment of traumatic osteomyelitis in the developing world - an in-vitro study based in Cambodia.

    PubMed

    Noor, S; Gilson, A; Kennedy, K; Swanson, A; Vanny, V; Mony, K; Chaudhry, T; Gollogly, J

    2016-04-01

    The developing world often lacks the resources to effectively treat the most serious injuries including osteomyelitis following open fractures or surgical fracture treatment. Antibiotic cement beads are a widely accepted method of delivering antibiotics locally to the infected area following trauma. This study is based in Cambodia, a low income country struggling to recover from a recent genocide. The study aims to test the effectiveness of locally made antibiotic beads and analyse their effectiveness after being gas sterilised, packaged and kept in storage Different antibiotic beads were manufactured locally using bone cement and tested against MRSA bacteria grown from a case of osteomyelitis. Each antibiotic was tested before and after a process of gas sterilisation as well as later being tested after storage in packaging up to 42 days. The gentamicin, vancomycin, amikacin and ceftriaxone beads all inhibited growth of the MRSA on the TSB and agar plates, both before and after gas sterilisation. All four antibiotics continued to show similar zones of inhibition after 42 days of storage. The results show significant promise to produce beads with locally obtainable ingredients in an austere environment and improve cost effectiveness by storing them in a sterilised condition. PMID:26899719

  4. Modeling packed bed sorbent systems with the Pore Surface Diffusion Model: Evidence of facilitated surface diffusion of arsenate in nano-metal (hydr)oxide hybrid ion exchange media.

    PubMed

    Dale, Sachie; Markovski, Jasmina; Hristovski, Kiril D

    2016-09-01

    This study explores the possibility of employing the Pore Surface Diffusion Model (PSDM) to predict the arsenic breakthrough curve of a packed bed system operated under continuous flow conditions with realistic groundwater, and consequently minimize the need to conduct pilot scale tests. To provide the nano-metal (hydr)oxide hybrid ion exchange media's performance in realistic water matrices without engaging in taxing pilot scale testing, the multi-point equilibrium batch sorption tests under pseudo-equilibrium conditions were performed; arsenate breakthrough curve of short bed column (SBC) was predicted by the PSDM in the continuous flow experiments; SBC tests were conducted under the same conditions to validate the model. The overlapping Freundlich isotherms suggested that the water matrix and competing ions did not have any denoting effect on sorption capacity of the media when the matrix was changed from arsenic-only model water to real groundwater. As expected, the PSDM provided a relatively good prediction of the breakthrough profile for arsenic-only model water limited by intraparticle mass transports. In contrast, the groundwater breakthrough curve demonstrated significantly faster intraparticle mass transport suggesting to a surface diffusion process, which occurs in parallel to the pore diffusion. A simple selection of DS=1/2 DP appears to be sufficient when describing the facilitated surface diffusion of arsenate inside metal (hydr)oxide nano-enabled hybrid ion-exchange media in presence of sulfate, however, quantification of the factors determining the surface diffusion coefficient's magnitude under different treatment scenarios remained unexplored.

  5. Migration and head penetration of Vitamin-E diffused cemented polyethylene cup compared to standard cemented cup in total hip arthroplasty: study protocol for a randomised, double-blind, controlled trial (E1 HIP)

    PubMed Central

    Sköldenberg, Olof; Rysinska, Agata; Chammout, Ghazi; Salemyr, Mats; Muren, Olle; Bodén, Henrik; Eisler, Thomas

    2016-01-01

    Introduction In vitro, Vitamin-E-diffused, highly cross-linked polyethylene (PE) has been shown to have superior wear resistance and improved mechanical properties when compared to those of standard highly cross-linked PE liners used in total hip arthroplasty (THA). The aim of the study is to evaluate the safety of a new cemented acetabular cup with Vitamin-E-doped PE regarding migration, head penetration and clinical results. Methods and analysis In this single-centre, double-blinded, randomised controlled trial, we will include 50 patients with primary hip osteoarthritis scheduled for THA and randomise them in a 1:1 ratio to a cemented cup with either argon gas-sterilised PE (control group) or Vitamin-E-diffused PE (vitamin-e group). All patients and the assessor of the primary outcome will be blinded and the same uncemented stem will be used for all participants. The primary end point will be proximal migration of the cup at 2 years after surgery measured with radiostereometry. Secondary end points include proximal migration at other follow-ups, total migration, femoral head penetration, clinical outcome scores and hip-related complications. Patients will be followed up at 3 months and at 1, 2, 5 and 10 years postoperatively. Results Results will be analysed using 95% CIs for the effect size. A regression model will also be used to adjust for stratification factors. Ethics and dissemination The ethical committee at Karolinska Institutet has approved the study. The first results from the study will be disseminated to the medical community via presentations and publications in relevant medical journals when the last patient included has been followed up for 2 years. Trial registration number NCT02254980. PMID:27388352

  6. Chain packing in glassy polymers by natural-abundance 13C-13C spin diffusion using 2D centerband-only detection of exchange.

    PubMed

    Singh, Manmilan; Schaefer, Jacob

    2011-03-01

    The proximities of specific subgroups of nearest-neighbor chains in glassy polymers are revealed by distance-dependent (13)C-(13)C dipolar couplings and spin diffusion. The measurement of such proximities is practical even with natural-abundance levels of (13)C using a 2D version of centerband-only detection of exchange (CODEX). Two-dimensional CODEX is a relaxation-compensated experiment that avoids the problems associated with variations in T(1)(C)'s due to dynamic site heterogeneity in the glass. Isotropic chemical shifts are encoded in the t(1) preparation times before and after mixing, and variations in T(2)'s are compensated by an S(0) reference (no mixing). Data acquisition involves acquisition of an S(0) reference signal on alternate scans, and the active control of power amplifiers, to achieve stability and accuracy over long accumulation times. The model system to calibrate spin diffusion is the polymer itself. For a mixing time of 200 ms, only (13)C-(13)C pairs separated by one or two bonds (2.5 Å) show cross peaks, which therefore identify reference intrachain proximities. For a mixing time of 1200 ms, 5 Å interchain proximities appear. The resulting cross peaks are used in a simple and direct way to compare nonrandom chain packing for two commercial polycarbonates with decidedly different mechanical properties.

  7. Kinetics of pack aluminization of nickel

    NASA Technical Reports Server (NTRS)

    Seigle, L. L.; Gupta, B. K.; Shankar, R.; Sarkhel, A. K.

    1978-01-01

    The kinetics of pack aluminization of unalloyed nickel in packs of varying aluminum activity with various halide activators were studied. Surface compositions of the coatings as functions of time, temperature, and pack composition were obtained in order to establish the boundary conditions for diffusion in the system. The structure of the packs was also examined in order to clarify the mechanism of aluminum transport. The results indicate that the kinetics of pack aluminization are controlled jointly by gas diffusion in the pack and solid diffusion in the coating. Levine and Caves' model for gas diffusion was combined with calculations of rates of diffusion in the solid to formulate a more complete theory for the kinetics of pack aluminization.

  8. Modeling packed bed sorbent systems with the Pore Surface Diffusion Model: Evidence of facilitated surface diffusion of arsenate in nano-metal (hydr)oxide hybrid ion exchange media.

    PubMed

    Dale, Sachie; Markovski, Jasmina; Hristovski, Kiril D

    2016-09-01

    This study explores the possibility of employing the Pore Surface Diffusion Model (PSDM) to predict the arsenic breakthrough curve of a packed bed system operated under continuous flow conditions with realistic groundwater, and consequently minimize the need to conduct pilot scale tests. To provide the nano-metal (hydr)oxide hybrid ion exchange media's performance in realistic water matrices without engaging in taxing pilot scale testing, the multi-point equilibrium batch sorption tests under pseudo-equilibrium conditions were performed; arsenate breakthrough curve of short bed column (SBC) was predicted by the PSDM in the continuous flow experiments; SBC tests were conducted under the same conditions to validate the model. The overlapping Freundlich isotherms suggested that the water matrix and competing ions did not have any denoting effect on sorption capacity of the media when the matrix was changed from arsenic-only model water to real groundwater. As expected, the PSDM provided a relatively good prediction of the breakthrough profile for arsenic-only model water limited by intraparticle mass transports. In contrast, the groundwater breakthrough curve demonstrated significantly faster intraparticle mass transport suggesting to a surface diffusion process, which occurs in parallel to the pore diffusion. A simple selection of DS=1/2 DP appears to be sufficient when describing the facilitated surface diffusion of arsenate inside metal (hydr)oxide nano-enabled hybrid ion-exchange media in presence of sulfate, however, quantification of the factors determining the surface diffusion coefficient's magnitude under different treatment scenarios remained unexplored. PMID:26672387

  9. Determination of Diffusion Coefficients in Cement-Based Materials: An Inverse Problem for the Nernst-Planck and Poisson Models

    NASA Astrophysics Data System (ADS)

    Szyszkiewicz-Warzecha, Krzysztof; Jasielec, Jerzy J.; Fausek, Janusz; Filipek, Robert

    2016-08-01

    Transport properties of ions have significant impact on the possibility of rebars corrosion thus the knowledge of a diffusion coefficient is important for reinforced concrete durability. Numerous tests for the determination of diffusion coefficients have been proposed but analysis of some of these tests show that they are too simplistic or even not valid. Hence, more rigorous models to calculate the coefficients should be employed. Here we propose the Nernst-Planck and Poisson equations, which take into account the concentration and electric potential field. Based on this model a special inverse method is presented for determination of a chloride diffusion coefficient. It requires the measurement of concentration profiles or flux on the boundary and solution of the NPP model to define the goal function. Finding the global minimum is equivalent to the determination of diffusion coefficients. Typical examples of the application of the presented method are given.

  10. Packed Bed Reactor Experiment

    NASA Video Gallery

    The purpose of the Packed Bed Reactor Experiment in low gravity is to determine how a mixture of gas and liquid flows through a packed bed in reduced gravity. A packed bed consists of a metal pipe ...

  11. Effect of system variables involved in packed column SFC of nevirapine as model analyte using response surface methodology: application to retention thermodynamics, solute transfer kinetic study and binary diffusion coefficient determination.

    PubMed

    Kaul, Neerej; Agrawal, Himani; Paradkar, A R; Mahadik, K R

    2005-08-31

    A multifactor optimization technique is successfully applied to study the effect of simultaneously varying the system variables on feasibility of nevirapine analysis by packed column supercritical fluid chromatography (PC-SFC). The optimal conditions were determined with the aid of the response surface methodology using 3(3) factorial designs. The method is based on methanol-modified carbon dioxide as the mobile phase at flow rate of 3.0 ml/min with elution through a JASCO Finepak SIL-5, [C18 (5-micron, 25 cm x 4.6 mm, i.d.)] column using photodiode array detection. The method has been successfully used to analyze commercial solid dosage form to assess the chromatographic performance of SFC system. The present work briefs the thermodynamic applications of PC-SFC with an emphasis on the results of nevirapine. The foremost of such applications is the determination of solute diffusion coefficient in supercritical mobile phase by Taylor-Aris peak broadening technique.

  12. Intrusion Characteristics of High Viscosity Bone Cements for the Tibial Component of a Total Knee Arthroplasty Using Negative Pressure Intrusion Cementing Technique

    PubMed Central

    Dinh, Nam L.; O’Chong, Alexander CM.; Walden, Justin K.; Adrian, Scott C.; Cusick, Robert P.

    2016-01-01

    Background With the advent of new bone cements with different viscosities, it is important to understand how they respond to different cementing techniques. The purpose of this study was to evaluate the high viscosity (HV) bone cement intrusion characteristics comparing negative pressure intrusion technique (NPI) and finger-packing technique in a cadaveric proximal tibial bone. Methods Soft tissues were removed from twenty- four fresh frozen cadaver proximal tibiae, and standard arthroplasty tibial cuts were performed. Palacos-R (Zimmer, Warsaw, IN) and Simplex-HV (Stryker Howmedica Osteonics, Mahwah, NJ) bone cement were used. Each tibia was randomly assigned to receive one of the two bone cements with finger-packing technique and NPI technique. Forty-five Newton weight was applied along the long axis of the tibia during cement-setting phase. Once the cement had cured, sagittal sections were prepared and analyzed for cement penetration depth using digital photography and stereoscopic micrographs. Area of interest (AOI) for each specimen was also used to quantitatively evaluate the area of cement penetration. Results When using Palacos-R, significant dif ferences were detected in cement penetration between the two cementing techniques. On the other hand, when using Simplex-HV, cement penetration was not significantly increased with finger-packing technique when compared to NPI technique. When comparing the two high-viscosity bone cements when using NPI cementing technique, significant differences were detected at Zone 4, where Simplex-HV penetrated deeper than the Palacos-R. When finger-packing technique was used with Simplex-HV, significant differences were detected in bone cement penetration at Zones 3-5. When looking at AOI, no significant differences were found between the Palacos-R and Simplex-HV bone cements in terms of penetration depths with NPI technique. Higher penetration depths were achieved with Simplex-HV bone cement compared to Palacos-R cement in

  13. Criteria for Remote Sensing Detection of Sulfate Cemented Soils on Mars

    NASA Technical Reports Server (NTRS)

    Cooper, Christopher D.; Mustard, John F.

    2000-01-01

    Spectral measurements of loose and cemented mixtures of palagonitic soil and sulfates were made to determine whether cemented soils could be identified on Mars. Cemented MgSO4 mixtures exhibit an enhanced 9 micron sulfate fundamental compared to gypsum mixtures due to more diffuse and pervasive cementing.

  14. The impact of cemented layers and hardpans on oxygen diffusivity in mining waste heaps: a field study of the Halsbrücke lead-zinc mine tailings (Germany).

    PubMed

    Kohfahl, Claus; Graupner, Torsten; Fetzer, Christian; Pekdeger, Asaf

    2010-11-01

    This article reports fibre-optic oxygen measurements on a reactive mine waste heap located in the polymetallic sulphide mine district of Freiberg in south-eastern Germany. The heaped material consists of sulphide-bearing tailings from a processing plant of a lead-zinc mine. Mine waste material was deposited in the water phase after separation of mining ores in a flotation process. The tailing impoundment is partly covered with coarse sand and topsoil. Oxygen profiles were monitored during one year at eleven locations showing different physical and mineralogical compositions. At each location a borehole was drilled where the optic sensors were installed at 2-5 different depths. After installation the oxygen profiles were monitored seven times during one year from 2006-2007 and three to five oxygen profiles at each location were obtained. Oxygen measurements were accompanied by physical, chemical and mineralogical data of the tailing material. Additionally, a detailed mineralogical profile was analysed at a location representative for the central part of the heap, where the cemented layers show lateral continuity. Results showed that cemented layers have a significant influence on natural attenuation of the toxic As and Pb species owing to their capacity of water retention. The measured oxygen profiles are controlled by the zone of active pyrite weathering as well as by the higher water content in the cemented layers which reduces gaseous atmospheric oxygen supply. In contrast, gypsum bearing hardpans detected at three other locations have no detectable influence on oxygen profiles. Furthermore, the grain size distribution was proved to have a major effect on oxygen diffusivity due to its control on the water saturation. Temporal changes of the oxygen profiles were only observed at locations with coarse sediment material indicating also an important advective part of gas flux.

  15. Thermodynamics and kinetics of pack aluminide coating formation on IN-100

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Caves, R. M.

    1973-01-01

    An investigation of the effects of pack variables on the formation of aluminide coatings on nickel-base superalloy IN-100 was conducted. Also, the thermodynamics and kinetics of coating formation were analyzed. Observed coating weights were in good agreement with predictions made from the analysis. Pack temperature rather than pack aluminum activity controls the principal coating phase formed. In 1 weight percent aluminum packs, aluminum weight gains were related to the halide pack activator. Solid-state nickel diffusion controlled coating formation from sodium fluoride and chloride and ammonium fluoride activated packs. In other ammonium and sodium halide activated 1 weight percent aluminum packs, gaseous diffusion controlled coating formation.

  16. Lunar cement

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  17. Sculpting with Cement.

    ERIC Educational Resources Information Center

    Olson, Lynn

    1983-01-01

    Cement offers many creative possibilities for school art programs. Instructions are given for sculpting with fiber-cement and sand-cement, as well as for finishing processes and the addition of color. Safety is stressed. (IS)

  18. Optimization and comparison of three vacuum mixing systems for porosity reduction of Simplex P cement.

    PubMed

    Davies, J P; Harris, W H

    1990-05-01

    Simplex P bone cement was prepared in three commercially available vacuum mixing systems, the Enhancement Mixer, the Mixevac II High Vacuum System, and the Mitab Vacuum System, to determine the improvement in fatigue strength associated with porosity reduction of the cement in all three systems. The results of the fatigue tests of vacuum-mixed Simplex P were also compared to the fatigue strength of Simplex P prepared by centrifugation of the cement immediately after mixing. Vacuum mixing one pack of Simplex P per syringe in all three systems was not effective in complete removal of all the large voids from the cement. Fatigue failure occurred very early in those specimens containing the large voids. There was no significant difference in fatigue life between one pack of cement per syringe mixed under vacuum in the three systems and the control cement (no vacuum, uncentrifuged). Vacuum mixing two packs of cement per syringe was more effective than one pack per syringe, and all three systems significantly increased the cycles to failure of Simplex P over the control cement. However, the Enhancement and Mitab vacuum mixing systems still produced some very weak specimens in fatigue. Two packs of cement per syringe prepared in the Mixevac II vacuum mixing system were significantly stronger in fatigue than two packs mixed in either the Enhancement or Mitab vacuum system. The Mixevac II vacuum mixing system was the most effective technique of the three vacuum mixing systems tested. Centrifugation of one or two packs of Simplex P per syringe produced a more uniform cement that was free of large voids and thus eliminated the very weak specimens.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2323141

  19. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-07-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that was performed to analyze the alkali-silica reactivity of ULHS in cement slurries.

  20. On the kinetics of the pack - Aluminization process

    NASA Technical Reports Server (NTRS)

    Sivakumar, R.; Seigle, L. L.

    1976-01-01

    An investigation has been made of the aluminization of unalloyed Ni in fluoride-activated packs of varying Al activity. In packs of low Al activity, in which the ratio of Al to Ni was less than 50 at. pct, the specimen surface quickly came to equilibrium with the pack and remained close to equilibrium for the duration of normal coating runs. In these packs the kinetics of aluminization was controlled by diffusion in the solid. In packs of higher Al activity the surface of the specimen did not come to equilibrium with the pack and the kinetics of the process was governed by a combination of solid and gas diffusion rates. Under most conditions however, the surface composition was time-invariant and a steady-state appeared to exist at the pack-coating interface. By combining Levine and Caves' model for gaseous diffusion in pure-Al packs with calculations of solid diffusion rates some success has been achieved in explaining the results.

  1. Optimal packings of superballs

    NASA Astrophysics Data System (ADS)

    Jiao, Y.; Stillinger, F. H.; Torquato, S.

    2009-04-01

    Dense hard-particle packings are intimately related to the structure of low-temperature phases of matter and are useful models of heterogeneous materials and granular media. Most studies of the densest packings in three dimensions have considered spherical shapes, and it is only more recently that nonspherical shapes (e.g., ellipsoids) have been investigated. Superballs (whose shapes are defined by |x1|2p+|x2|2p+|x3|2p≤1 ) provide a versatile family of convex particles (p≥0.5) with both cubic-like and octahedral-like shapes as well as concave particles (0packings for all convex and concave cases. The candidate maximally dense packings are certain families of Bravais lattice packings (in which each particle has 12 contacting neighbors) possessing the global symmetries that are consistent with certain symmetries of a superball. We also provide strong evidence that our packings for convex superballs (p≥0.5) are most likely the optimal ones. The maximal packing density as a function of p is nonanalytic at the sphere point (p=1) and increases dramatically as p moves away from unity. Two more nontrivial nonanalytic behaviors occur at pc∗=1.1509… and po∗=ln3/ln4=0.7924… for “cubic” and “octahedral” superballs, respectively, where different Bravais lattice packings possess the same densities. The packing characteristics determined by the broken rotational symmetry of superballs are similar to but richer than their two-dimensional “superdisk” counterparts [Y. Jiao , Phys. Rev. Lett. 100, 245504 (2008)] and are distinctly different from that of ellipsoid packings. Our candidate optimal superball packings provide a starting point to quantify the equilibrium phase behavior of superball systems, which should deepen our understanding of the statistical thermodynamics of nonspherical-particle systems.

  2. Development of fluidized bed cement sintering technology

    SciTech Connect

    Mukai, Katsuji

    1994-12-31

    In the new system presented in this paper, the cement clinker is sintered, not in a rotary kiln, but in two different furnaces: a spouted bed kiln and a fluidized bed kiln. The heat generated in the process of cooling the cement clinker is recovered by a fluidized bed cooler and a packed bed cooler, which are more efficient than the conventional coolers. Compared with the rotary kiln system, the new technology significantly reduces NO{sub x} emissions, appreciably cuts energy consumption, and reduces CO{sub 2} emissions as well. Thus, the new system is an efficient cement sintering system that is friendly to the global environment. In this paper, we describe this new technology as one of the applied technologies at an industrial level that is being developed in the Clean Coal Technology Project, and we present the results from test operations at our pilot plant.

  3. Barrier properties of k-mer packings

    NASA Astrophysics Data System (ADS)

    Lebovka, N.; Khrapatiy, S.; Vygornitskyi; Pivovarova, N.

    2014-08-01

    This work discusses numerical studies of the barrier properties of k-mer packings by the Monte Carlo method. The studied variants of regular and non-regular arrangements on a square lattice included models of random sequential adsorption (RSA) and random deposition (RD). The discrete problem of diffusion through the bonds of a square lattice was considered. The k-mers were perfectly oriented perpendicular to the diffusion direction and blocked certain fraction of bonds fb against diffusion. The barrier efficiency was estimated by calculation of the ratio D/Do where D is diffusion coefficient in direction perpendicular to the orientation of k-mers and Do is the same value for diffusion on the square lattice without blocked bonds, i.e., at fb=0. The value of k varied from 1 to 512 and different lattice sizes up to L=8192 lattice units were used. For dense packings (p=1), the obtained D/Do versus fb dependences deviated from the theoretical prediction of effective medium (EM) theory and deviation was the most obvious for the regular non-staggered arrangement. For loose RSA and RD packings, the percolation like-behavior of D/Do with threshold at fb=p∞ was observed and the data evidenced that their barrier properties at large values of k may be more effective than those of some dense packings. Such anomalous behavior can reflect the details of k-mer spatial organization (aggregation) and structure of pores in RD and RSA packings. The contradictions between simulation data and predictions of EM theory were also discussed.

  4. Flat Pack Toy Design

    ERIC Educational Resources Information Center

    Hutcheson, Brian

    2007-01-01

    In this article, the author introduces the concept of flat pack toys. Flat pack toys are designed using a template on a single sheet of letter-sized card stock paper. Before being cut out and built into a three-dimensional toy, they are scanned into the computer and uploaded to a website. With the template accessible from the website, anyone with…

  5. TLC Pack Unpacked

    ERIC Educational Resources Information Center

    Oberhofer, Margret; Colpaert, Jozef

    2015-01-01

    TLC Pack stands for Teaching Languages to Caregivers and is a course designed to support migrants working or hoping to work in the caregiving sector. The TLC Pack resources range from A2 to B2 level of the Common European Framework of Reference for Languages (CEFR), and will be made available online in the six project languages: Dutch, English,…

  6. Packed bed carburization of tantalum and tantalum alloy

    DOEpatents

    Lopez, P.C.; Rodriguez, P.J.; Pereyra, R.A.

    1999-06-29

    Packed bed carburization of a tantalum or tantalum alloy object is disclosed. A method for producing corrosion-resistant tantalum or tantalum alloy objects is described. The method includes the steps of placing the object in contact with a carburizing pack, heating the packed object in vacuum furnace to a temperature whereby carbon from the pack diffuses into the object forming grains with tantalum carbide along the grain boundaries, and etching the surface of the carburized object. This latter step removes tantalum carbides from the surface of the carburized tantalum object while leaving the tantalum carbide along the grain boundaries. 4 figs.

  7. Packed bed carburization of tantalum and tantalum alloy

    DOEpatents

    Lopez, Peter C.; Rodriguez, Patrick J.; Pereyra, Ramiro A.

    1999-01-01

    Packed bed carburization of a tantalum or tantalum alloy object. A method for producing corrosion-resistant tantalum or tantalum alloy objects is described. The method includes the steps of placing the object in contact with a carburizing pack, heating the packed object in vacuum furnace to a temperature whereby carbon from the pack diffuses into the object forming grains with tantalum carbide along the grain boundaries, and etching the surface of the carburized object. This latter step removes tantalum carbides from the surface of the carburized tantalum object while leaving the tantalum carbide along the grain boundaries.

  8. Morphology of the cement apparatus and the cement of the buoy barnacle Dosima fascicularis (Crustacea, Cirripedia, Thoracica, Lepadidae).

    PubMed

    Zheden, Vanessa; Von Byern, Janek; Kerbl, Alexandra; Leisch, Nikolaus; Staedler, Yannick; Grunwald, Ingo; Power, Anne Marie; Klepal, Waltraud

    2012-10-01

    Barnacles produce a proteinaceous adhesive called cement to attach permanently to rocks or to other hard substrata. The stalked barnacle Dosima fascicularis is of special interest as it produces a large amount of foam-like cement that can be used as a float. The morphology of the cement apparatus and of the polymerized cement of this species is almost unknown. The current study aims at filling these gaps in our knowledge using light and electron microscopy as well as x-ray microtomography. The shape of the cement gland cells changes from round to ovoid during barnacle development. The cytoplasm of the gland cells, unlike that of some other barnacles, does not have distinct secretory and storage regions. The cement canals, which transport the cement from the gland cells to the base of the stalk, end at different positions in juvenile and mature animals. With increasing size of the cement float, the exit of the cement canals shift from the centrally positioned attachment disk of the vestigial antennules to more lateral positions on the stalk. The bubbles enclosed in the foam-like float are most likely filled with CO(2) that diffuses from the hemolymph into the cement canal system and from there into the cement.

  9. Graphitic packing removal tool

    SciTech Connect

    Meyers, K.E.; Kolsun, G.J.

    1996-12-31

    Graphitic packing removal tools are described for removal of the seal rings in one piece from valves and pumps. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  10. Graphitic packing removal tool

    DOEpatents

    Meyers, K.E.; Kolsun, G.J.

    1997-11-11

    Graphitic packing removal tools for removal of the seal rings in one piece are disclosed. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal. 5 figs.

  11. Graphitic packing removal tool

    DOEpatents

    Meyers, Kurt Edward; Kolsun, George J.

    1997-01-01

    Graphitic packing removal tools for removal of the seal rings in one piece. he packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  12. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-10-31

    The objective of this project is to develop an improved ultra- lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  13. Nasal packing and stenting

    PubMed Central

    Weber, Rainer K.

    2011-01-01

    Nasal packs are indispensable in ENT practice. This study reviews current indications, effectiveness and risks of nasal packs and stents. In endoscopic surgery, nasal packs should always have smooth surfaces to minimize mucosal damage, improve wound healing and increase patient comfort. Functional endoscopic endonasal sinus surgery allows the use of modern nasal packs, since pressure is no longer required. So called hemostatic/resorbable materials are a first step in this direction. However, they may lead to adhesions and foreign body reactions in mucosal membranes. Simple occlusion is an effective method for creating a moist milieu for improved wound healing and avoiding dryness. Stenting of the frontal sinus is recommended if surgery fails to produce a wide, physiologically shaped drainage path that is sufficiently covered by intact tissue. PMID:22073095

  14. Thermodynamics and kinetics of pack aluminide coating formation on IN-100

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Caves, R. M.

    1973-01-01

    An investigation of the effects of pack variables on the formation of aluminide coatings on nickel-base superalloy IN-100 was conducted. Also, the thermodynamics and kinetics of coating formation were analyzed. Observed coating weights were in good agreement with predictions made from the analysis. Pack temperature rather than pack aluminum activity controls the principal coating phase formed. Solid-state nickel diffusion controlled coating formation from sodium fluoride and chloride and ammonium fluoride activated packs. In other ammonium and sodium halide activated 1 weight percent aluminum packs, gaseous diffusion controlled coating formation.

  15. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-04-29

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, and shear bond. Testing to determine the effect of temperature cycling on the shear bond properties of the cement systems was also conducted. In addition, the stress-strain behavior of the cement types was studied. This report discusses a software program that is being developed to help design ULHS cements and foamed cements.

  16. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-07-18

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job.

  17. [Release amount of heavy metals in cement product from co-processing waste in cement kiln].

    PubMed

    Yang, Yu-Fei; Huang, Qi-Fei; Zhang, Xia; Yang, Yu; Wang, Qi

    2009-05-15

    Clinker was produced by Simulating cement calcination test, and concrete samples were also prepared according to national standard GB/T 17671-1999. Long-term cumulative release amount of heavy metals in cement product from co-processing waste in cement kiln was researched through leaching test which refers to EA NEN 7371 and EA NEN 7375, and one-dimensional diffusion model which is on the base of Fick diffusion law. The results show that availabilities of heavy metals are lower than the total amounts in concrete. The diffusion coefficients of heavy metals are different (Cr > As > Ni > Cd). During 30 years service, the cumulative release amounts of Cr, As, Ni and Cd are 4.43 mg/kg, 0.46 mg/kg, 1.50 mg/kg and 0.02 mg/kg, respectively, and the ratios of release which is the division of cumulative release amount and availability are 27.0%, 18.0%, 3.0% and 0.2%, respectively. The most important influence factor of cumulative release amount of heavy metal is the diffusion coefficient, and it is correlative to cumulative release amount. The diffusion coefficient of Cr and As should be controlled exactly in the processing of input the cement-kiln.

  18. Pessimal shapes for packing

    NASA Astrophysics Data System (ADS)

    Kallus, Yoav

    2014-03-01

    The question of which convex shapes leave the most empty space in their densest packing is the subject of Reinhardt's conjecture in two dimensions and Ulam's conjecture in three dimensions. Such conjectures about pessimal packing shapes have proven notoriously difficult to make progress on. I show that the regular heptagon is a local pessimum among all convex shapes, and that the 3D ball is a local pessimum among origin-symmetric shapes. Any shape sufficiently close in the space of shapes to these local pessima can be packed at a greater efficiency than they. In two dimensions and in dimensions above three, the ball is not a local pessimum, so the situation in 3D is unusual and intriguing. I will discuss what conditions conspire to make the 3D ball a local pessimum and whether we can prove that it is also a global pessimum.

  19. The packing of particles

    SciTech Connect

    Cumberland, D.J.; Crawford, R.J.

    1987-01-01

    The wide range of information currently available on the packing of particles is brought together in this monograph. The authors' interest in the subject was initially aroused by the question of whether there is an optimum particle size distribution which would maximise the packing density of particles - a question which has attracted the interest of scientists and engineers for centuries. The densification of a powder mass is of relevance in a great many industries, among them the pharmaceutical, ceramic, powder metallurgy and civil engineering industries. In addition, the packing of regular - or irregular - shaped particles is also of relevance to a surprisingly large number of other industries and subject areas, i.e. the foundry industry, nuclear engineering, chemical engineering, crystallography, geology, biology, telecommunications, and so on. Accordingly, this book is written for a wide audience.

  20. Recent developments on corrosion-resistant diffusion coatings

    SciTech Connect

    Kung, S.C.; Rapp, R.A.

    1999-07-01

    The halide-activated pack cementation process has been used to grow corrosion-resistant diffusion coatings for a variety of traditional and advanced materials. Further understanding of the thermodynamics for packs activated by a selected pair of halide salts has led to the codeposition of two elements to form adherent coatings with compositions resistant to cyclic oxidation and other corrosion attack. The coating method has been applied in various novel ways to protect advanced materials. For example, different schemes are presented to create effective coatings for the application of materials for hot-gas cleanup and heat-exchanger tubes in combined-cycle coal-fired power generating systems. Likewise, developmental refractory-metal aluminides have been protected by either aluminizing or siliciding. The protection of Mo by a pack-grown Mo(Si,Ge){sub 2} coating may eliminate the occurrence of pesting in low-temperature oxidation. Traditional steels for boiler applications can be protected by the codeposition of Cr and Si to grow a ferrite surface layer with an approximate composition of Fe-25Cr-3Si. Alternatively, the codeposition of Al and Cr can yield a very corrosion-resistant composition of Fe{sub 3}(Al,Cr).

  1. Recycling of ladle slag in cement composites: Environmental impacts.

    PubMed

    Serjun, Vesna Zalar; Mladenovič, Ana; Mirtič, Breda; Meden, Anton; Ščančar, Janez; Milačič, Radmila

    2015-09-01

    In the present work compact and ground cement composites in which 30% of cement by mass was replaced by ladle slag were investigated for their chemical and physico-mechanical properties. To evaluate long-term environmental impacts, leachability test based on diffusion, which combined both, diffusion and dissolution of contaminants, was performed in water and saline water. Total element concentrations and Cr(VI) were determined in leachates over a time period of 180days. At the end of the experiment, the mineralogical composition and the physico-mechanical stability of cement composites was also assessed. The results revealed that Cr(III) and Cr(VI) were immobilized by the hydration products formed in the cement composites with the addition of ladle slag. Cr(VI) content originating from the cement was also appreciably reduced by Fe(II) from minerals present in the added ladle slag, which thus had significant positive environmental effects. Among metals, only Mo and Ba were leached in elevated concentrations, but solely in ground cement composites with the addition of ladle slag. Lower V concentrations were observed in leachates of ground than compact composite. It was demonstrated that the presence of ladle slag in cement composites can even contribute to improved mortar resistance. The investigated ladle slag can be successfully implemented in cement composites as supplementary cementitious material.

  2. Pack aluminization of nickel anode for molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Chun, H. S.; Park, G. P.; Lim, J. H.; Kim, K.; Lee, J. K.; Moon, K. H.; Youn, J. H.

    1994-04-01

    The aluminum pack cementation (pack aluminization) process on a porous nickel anode for molten carbonate fuel cells has been studied to improve anode creep resistance. The porous nickel substrates used in this study were fabricated by doctor blade equipment followed by sintering (850 C). Packs surrounding the Ni anode were made by mixing Al2O3 powder, Al powder, and NaCl as activator. The pack aluminization was performed at 700 to 850 C for 0.5-5.0 h. After pack aluminization, the principal Ni-Al intermetallic compounds detected were Ni3Al at 700 C, NiAl at 750 C and Ni3Al2 at 800 C. The aluminum content in the aluminized Ni anode was proportional to the square root of pack aluminizing time. With increasing the Al content in the anode, the creep of the anode decreased. It was nearly constant (2.0%) when the Al content was above 5.0%. Although the exchange current density (24 mA/sq cm) for the aluminized (2.5 wt.%) Ni anode was somewhat lower than that of the pure Ni anode (40 mA/sq cm), the performance of a single cell using an aluminized Ni anode was similar to that of the one with pure Ni anode.

  3. Sun Packs Double Punch

    NASA Video Gallery

    On August 3, the sun packed a double punch, emitting a M6.0-class flare at 9:43 am EDT. This video is of the second, slightly stronger M9.3-class flare at 11:41 pm EDT. Both flares had significant ...

  4. Packing Them In.

    ERIC Educational Resources Information Center

    Carter, Claudia

    1997-01-01

    This activity involves students investigating the mathematics of packaging and exploring various concepts in geometry, including area and the Pythagorean theorem. Mathematics comes out of the discussion of packaging cans into six-packs and focuses on the cost-effectiveness of the horizontal storage area used. Students learn how knowledge of…

  5. Nutrition Action Pack.

    ERIC Educational Resources Information Center

    Sockut, Joanne; Stumpe, Stephanie

    One of five McDonald's Action Packs, these instructional materials integrate elementary school-level nutrition education into other disciplines--biology, sociology, physiology, mathematics, and art. Contents include four units consisting of twelve activities. Unit 1, Why You Need Food, is a self-examination of what is needed for growth, health,…

  6. Economics Action Pack.

    ERIC Educational Resources Information Center

    McDonald's Corp., Oak Brook, IL.

    One of five McDonald's Action Packs, this learning package introduces intermediate grade students to basic economic concepts. The fourteen activities include the topics of consumption (4 activities), production (5), the market system (3), a pretest, and a posttest. Specific titles under consumption include The Wonderful Treasure Tree (introduction…

  7. AUTOmatic Message PACKing Facility

    2004-07-01

    AUTOPACK is a library that provides several useful features for programs using the Message Passing Interface (MPI). Features included are: 1. automatic message packing facility 2. management of send and receive requests. 3. management of message buffer memory. 4. determination of the number of anticipated messages from a set of arbitrary sends, and 5. deterministic message delivery for testing purposes.

  8. Abyssal seep site cementation

    SciTech Connect

    Neumann, A.C.; Paull, C.K.; Commeau, R.; Commeau, J.

    1988-01-01

    The deepest submarine cements known so far occur along the 3,300-m deep base of the Florida escarpment and are associated with methane-bearing brine seeps, which emanate there. These deep Holocene carbonates, which occur as surficial and buried crusts, burrow fillings, and friable horizons, were sampled via ALVIN. The carbonates form irregular halos extending up to 20 m from seeps colonized by chemosynthetic fauna. Mussels, gastropods, and clams, the carbonate components of the community, produce a shell hash that is locally cemented by coarsely crystalline low-Mg calcite. Halos of palisade calcite are reminiscent of ancient examples of marine cements. Also present are carbonate hemipelagics cemented by micrite into crusts and burrow fillings. The degree of cementation varies from pervasive to light. Slabs of cemented crust up to 30 cm thick contrast with typical shallow crusts and exhibit irregular tops and smooth bottoms indicating different chemical gradients and pathways.

  9. Leaching of metals from cement under simulated environmental conditions.

    PubMed

    Lu, Huixia; Wei, Fang; Tang, Jingchun; Giesy, John P

    2016-03-15

    Leaching of metals from cement under various environmental conditions was measured to evaluate their environmental safety. A cement product containing clinker, which was produced from cement kiln co-processing of hazardous wastes, was solidified and leaching of metals was characterized using the 8-period test. Concentrations and speciation of metals in cements were determined. Effects of ambient environment and particle size on leachability of metals and mineralogical phases of cement mortars were evaluated by use of XRD and SEM. Results indicated that metals in cements were leachable in various media in descending order of: sea water, groundwater and acid rain. Cr, Ni, As, Co and V were leached by simulated sea water, while Cu, Cd, Pb, Zn, Mn, Sb and Tl were not leached in simulated sea water, groundwater or acid rain. When exposed to simulated acid rain or groundwater, amounts of Cr, Ni, As and V leached was inversely proportional to particle size of cement mortar. According to the one-dimensional diffusion equation, Cr was most leachable and the cumulative leached mass was predicted to be 9.6 mg kg(-1) after 20 years. Results of this study are useful in predicting releases of metals from cement products containing ash and clinkers cement kiln co-processing of hazardous wastes, so that they can be safely applied in the environment.

  10. Leaching of metals from cement under simulated environmental conditions.

    PubMed

    Lu, Huixia; Wei, Fang; Tang, Jingchun; Giesy, John P

    2016-03-15

    Leaching of metals from cement under various environmental conditions was measured to evaluate their environmental safety. A cement product containing clinker, which was produced from cement kiln co-processing of hazardous wastes, was solidified and leaching of metals was characterized using the 8-period test. Concentrations and speciation of metals in cements were determined. Effects of ambient environment and particle size on leachability of metals and mineralogical phases of cement mortars were evaluated by use of XRD and SEM. Results indicated that metals in cements were leachable in various media in descending order of: sea water, groundwater and acid rain. Cr, Ni, As, Co and V were leached by simulated sea water, while Cu, Cd, Pb, Zn, Mn, Sb and Tl were not leached in simulated sea water, groundwater or acid rain. When exposed to simulated acid rain or groundwater, amounts of Cr, Ni, As and V leached was inversely proportional to particle size of cement mortar. According to the one-dimensional diffusion equation, Cr was most leachable and the cumulative leached mass was predicted to be 9.6 mg kg(-1) after 20 years. Results of this study are useful in predicting releases of metals from cement products containing ash and clinkers cement kiln co-processing of hazardous wastes, so that they can be safely applied in the environment. PMID:26802528

  11. Antimicrobial potency of alkali ion substituted calcium phosphate cements.

    PubMed

    Gbureck, Uwe; Knappe, Oliver; Grover, Liam M; Barralet, Jake E

    2005-12-01

    Potassium and sodium containing nanoapatite cements were produced by the reaction of mechanically activated CaNaPO(4) (CSP), CaKPO(4) (CPP) and Ca(2)KNa(PO(4))(2) (CPCP) with a 2.5% Na(2)HPO(4) solution. The cements exhibited clinically acceptable setting times of approximately 5 min and compressive strengths of 5-10 MPa. The antimicrobial properties of the cements were tested with the agar diffusion test using Streptococcus salvarius, Staphylococcus epidermis and Candida albicans. All types of alkali ion containing cements showed a significantly higher antimicrobial potency with inhibition zones of approx. 4-11 mm than a commercial calcium hydroxide cement which resulted in small inhibition zones around the cement samples of a maximum of 1.5 mm. The antimicrobial properties of all the cements were not found to diminish even after longer incubation times. This behaviour was attributed to the formation of soluble alkaline metal phosphates during setting which increased the pH value in the agar gel around the alkali containing calcium phosphate cement to 8.5-10.7 compared to 6.5-8.0 for the Ca(OH)(2) product. The high antimicrobial potency of alkali-calcium phosphate cements may find an application in dentistry as pulp capping agents, root fillers or cavity liners. PMID:16005511

  12. Cementation of indirect restorations: an overview of resin cements.

    PubMed

    Stamatacos, Catherine; Simon, James F

    2013-01-01

    The process of ensuring proper retention, marginal seal, and durability of indirect restorations depends heavily on effective cementation. Careful consideration must be made when selecting an adhesive cement for a given application. This article provides information on resin cements that can guide clinicians in determining which type of cement is best suited to their clinical needs regarding cementation of indirect restorations. Emphasis is placed on successful cementation of all-ceramic restorations.

  13. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-01-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. DOE joined the Materials Management Service (MMS)-sponsored joint industry project ''Long-Term Integrity of Deepwater Cement under Stress/Compaction Conditions.'' Results of the project contained in two progress reports are also presented in this report.

  14. Pulmonary Artery Cement Embolism after a Vertebroplasty

    PubMed Central

    Nooh, Anas; Abduljabbar, Fahad H.; Abduljabbar, Ahmed H.; Jarzem, Peter

    2015-01-01

    Background Context. Vertebroplasty is a minimally invasive procedure most commonly used for the treatment of vertebral compression fractures. Although it is relatively safe, complications have been reported over time. Among those complications, massive cement pulmonary embolism is considered a rare complication. Here we report a case of massive diffuse cement pulmonary embolism following percutaneous vertebroplasty for a vertebral compression fracture. Study Design. Case report. Methods. This is a 70-year-old female who underwent vertebroplasty for T11 and T12 vertebral compression fracture. Results. CT-scan revealed an incidental finding of cement embolism in the pulmonary trunk and both pulmonary arteries. Since the patient was asymptomatic, she was monitored closely and she did not need any intervention. Conclusion. Vertebroplasty is a minimally invasive procedure used for treatment of vertebral compression fracture. Despite the low rate of complications, a pulmonary cement embolism can occur. The consequences of cement embolism range widely from being asymptomatic to embolism that can cause paralysis, radiculopathy, or a fatal pulmonary embolism. PMID:26221556

  15. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2004-01-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  16. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-01-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

  17. Acoustic probing of elastic behavior and damage in weakly cemented granular media

    NASA Astrophysics Data System (ADS)

    Langlois, V.; Jia, X.

    2014-02-01

    We investigate the elastic behavior and damage of weakly cemented granular media under external load with ultrasound. The cementation controlled experiments are performed by freezing the capillary liquid at the bead contact in a dense glass or polymeric [poly(methyl methacrylate)] bead pack wet by tetradecane of volume fraction ϕ = 0.1%-4%. When the pendular rings are solidified, an abrupt increase by a factor of 2 in the compressional wave velocity is observed. We interpret the data in terms of effective medium models in which the contact stiffnesses are derived by either a bonded contact model [P. J. Digby, J. Appl. Mech. 48, 803 (1981), 10.1115/1.3157738] or a cemented contact model [J. Dvorkin, A. Nur, and H. Yin, Mech. Mater. 18, 351 (1994), 10.1016/0167-6636(94)90044-2]. The former fails to quantitatively account for the results with a soft cement relative to the grain, whereas the latter considering the mechanical properties of the cement does apply. Moreover, we monitor the irreversible behavior of the cemented granular packs under moderate uniaxial loading (<1.3 MPa) with the correlation method of ultrasound scattering. The damage of the cemented materials is accompanied by a compressional wave velocity decrease up to 60%, likely due to the fractures induced at the grain-cement interfaces.

  18. Acoustic probing of elastic behavior and damage in weakly cemented granular media.

    PubMed

    Langlois, V; Jia, X

    2014-02-01

    We investigate the elastic behavior and damage of weakly cemented granular media under external load with ultrasound. The cementation controlled experiments are performed by freezing the capillary liquid at the bead contact in a dense glass or polymeric [poly(methyl methacrylate)] bead pack wet by tetradecane of volume fraction ϕ = 0.1%-4%. When the pendular rings are solidified, an abrupt increase by a factor of 2 in the compressional wave velocity is observed. We interpret the data in terms of effective medium models in which the contact stiffnesses are derived by either a bonded contact model [P. J. Digby, J. Appl. Mech. 48, 803 (1981)] or a cemented contact model [J. Dvorkin, A. Nur, and H. Yin, Mech. Mater. 18, 351 (1994)]. The former fails to quantitatively account for the results with a soft cement relative to the grain, whereas the latter considering the mechanical properties of the cement does apply. Moreover, we monitor the irreversible behavior of the cemented granular packs under moderate uniaxial loading (1.3 MPa) with the correlation method of ultrasound scattering. The damage of the cemented materials is accompanied by a compressional wave velocity decrease up to 60%, likely due to the fractures induced at the grain-cement interfaces. PMID:25353594

  19. Computational studies of two-phase cement-CO2-brine interaction in wellbore environments

    SciTech Connect

    Carey, James William; Lichtner, Peter C

    2009-01-01

    Wellbore integrity is essential to ensuring long-term isolation of buoyant supercritical CO{sub 2} during geologic sequestration of CO{sub 2}. In this report, we summarize recent progress in numerical simulations of cement-brine-CO{sub 2} interactions with respect to migration of CO{sub 2} outside of casing. Using typical values for the hydrologic properties of cement, caprock (shale) and reservoir materials, we show that the capillary properties of good quality cement will prevent flow of CO{sub 2} into and through cement. Rather, CO{sub 2}, if present, is likely to be confined to the casing-cement or cement-formation interfaces. CO{sub 2} does react with the cement by diffusion from the interface into the cement, in which case it produces distinct carbonation fronts within the cement. This is consistent with observations of cement performance at the CO{sub 2}-enhanced oil recovery SACROC Unit in West Texas (Carey et al. 2007). For poor quality cement, flow through cement may occur and would produce a pattern of uniform carbonation without reaction fronts. We also consider an alternative explanation for cement carbonation reactions as due to CO{sub 2} derived from caprock. We show that carbonation reactions in cement are limited to surficial reactions when CO{sub 2} pressure is low (< 10 bars) as might be expected in many caprock environments. For the case of caprock overlying natural CO{sub 2} reservoirs for millions of years, we consider Scherer and Huet's (2009) hypothesis of diffusive steady-state between CO{sub 2} in the reservoir and in the caprock. We find that in this case, the aqueous CO{sub 2} concentration would differ little from the reservoir and would be expected to produce carbonation reaction fronts in cements that are relatively uniform as a function of depth.

  20. Timing of syntaxial cement

    SciTech Connect

    Perkins, R.D.

    1985-02-01

    Echinodermal fragments are commonly overgrown in ancient limestones, with large single crystals growing in optical continuity over their skeletal hosts (i.e., syntaxial overgrowths). Such syntaxial cements are usually considered to have precipitated from meteoric pore waters associated with a later stage of subaerial exposure. Although several examples have been reported from ancient carbonates where petrographic relationships may indicate an early submarine formation of syntaxial cement, no occurrences have been noted in Holocene submarine-cemented rocks. Syntaxial cements of submarine origin have been found in Bermuda beachrock where isopachous high-magnesian calcite cements merge with large optically continuous crystals growing on echinodermal debris. Examination of other Holocene sediments cemented by magnesian calcite indicates that echinodermal fragments are not always overgrown syntaxially, but may be rimmed by microcrystalline calcite. The reason for this difference is not clear, although it may be a function of the spacing of nucleation sites and rates of crystal growth. A review of syntaxial cements from several localities in ancient carbonate sequences reveals that many are best interpreted as having formed in the submarine setting, whereas it is more clear that others formed from meteoric precipitation. These occurrences suggest that care should be exercised in inferring meteoric diagenesis from syntaxial overgrowths and that the possibility of submarine formation should be considered.

  1. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-07-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the eleventh quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. This report provides a progress summary of ASR testing. The original laboratory procedure for measuring set cement expansion resulted in unacceptable erosion of the test specimens. In subsequent tests, a different expansion procedure was implemented and an alternate curing method for cements formulated with TXI Lightweight cement was employed to prevent sample failure caused by thermal shock. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but data for some compositions were still questionable. Additional modification of test procedures for compositions containing TXI Lightweight cement were implemented and testing is ongoing.

  2. Spheroidization of glass powders for glass ionomer cements.

    PubMed

    Gu, Y W; Yap, A U J; Cheang, P; Kumar, R

    2004-08-01

    Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.

  3. Cement and concrete

    NASA Technical Reports Server (NTRS)

    Corley, Gene; Haskin, Larry A.

    1992-01-01

    To produce lunar cement, high-temperature processing will be required. It may be possible to make calcium-rich silicate and aluminate for cement by solar heating of lunar pyroxene and feldspar, or chemical treatment may be required to enrich the calcium and aluminum in lunar soil. The effects of magnesium and ferrous iron present in the starting materials and products would need to be evaluated. So would the problems of grinding to produce cement, mixing, forming in vacuo and low gravity, and minimizing water loss.

  4. Stage cementing apparatus

    SciTech Connect

    Blamford, D.M.; Easter, J.H.

    1988-06-21

    A stage cementing apparatus for selectively passing cement from the interior passage of a casing to the annulus between the exterior of the casing and borehole, the casing having an upper portion and a lower portion, is described comprising: a barrel secured to the upper portion of the casing; a mandrel secured to the lower portion of the casing, and a stage cementing tool having a generally cylindrical configuration adapted for attachment to the lower end of the barrel about a portion of the mandrel.

  5. Bone cement implantation syndrome.

    PubMed

    Razuin, R; Effat, O; Shahidan, M N; Shama, D V; Miswan, M F M

    2013-06-01

    Bone cement implantation syndrome (BCIS) is characterized by hypoxia, hypotension, cardiac arrhythmias, increased pulmonary vascular resistance and cardiac arrest. It is a known cause of morbidity and mortality in patients undergoing cemented orthopaedic surgeries. The rarity of the condition as well as absence of a proper definition has contributed to under-reporting of cases. We report a 59-year-old woman who sustained fracture of the neck of her left femur and underwent an elective hybrid total hip replacement surgery. She collapsed during surgery and was revived only to succumb to death twelve hours later. Post mortem findings showed multiorgan disseminated microembolization of bone marrow and amorphous cement material. PMID:23817399

  6. Environmentally compatible spray cement

    SciTech Connect

    Loeschnig, P.

    1995-12-31

    Within the framework of a European research project, Heidelberger Zement developed a quickly setting and hardening binder for shotcrete, called Chronolith S, which avoids the application of setting accelerators. Density and strength of the shotcrete produced with this spray cement correspond to those of an unaccelerated shotcrete. An increased hazard for the heading team and for the environment, which may occur when applying setting accelerators, can be excluded here. Owing to the special setting properties of a spray cement, the process engineering for its manufacturing is of great importance. The treatment of a spray cement as a dry concrete with kiln-dried aggregates is possible without any problems. The use of a naturally damp pre-batched mixture is possible with Chronolith S but requires special process engineering; spray cement and damp aggregate are mixed with one another immediately before entering the spraying machinery.

  7. Thermodynamics and cement science

    SciTech Connect

    Damidot, D.; Lothenbach, B.; Herfort, D.; Glasser, F.P.

    2011-07-15

    Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

  8. Dust exposure and respiratory health effects in cement production.

    PubMed

    Kakooei, Hossein; Gholami, Abdollah; Ghasemkhani, Mehdi; Hosseini, Mostapha; Panahi, Davoud; Pouryaghoub, Golamreza

    2012-01-01

    Dust can be produced by almost all production processes in Portland cement factory. Dust exposure potentially can affect respiratory function. But evidence for respiratory effect of cement dust exposure has not been conclusive. In this study we assessed effect of cement dust exposure on respiratory function in a cement production factory. A respiratory symptoms questionnaire was completed and pulmonary function tests were carried out on 94 exposed and 54 non exposed workers at a cement factory in the east of Iran. Additionally, respirable dust level was determined by the gravimetric method. X-ray fluorescence (XRF) technique was performed to determine the silica phases and the SiO(2) contents of the bulk samples. The arithmetic means (AM) of personal respirable dust were 30.18 mg/m(3) in the crushing, 27 mg/m(3) in the packing, 5.4 mg/m(3) in the cement mill, 5.9 mg/m(3) in the kiln and 5.48 mg/m(3) in the maintenance that were higher than threshold limit value (TLV) of the American Conference of Governmental Industrial Hygienists (ACGIH) which is 5 mg/m(3). This value in the unexposed group was 0.93 mg/m(3). In this study cough, sputum, wheezing and dyspnea were more prevalent among exposed subjects. Exposed workers compared to the unexposed group showed significant reduction in Forced Expiratory Volume in one second (FEV(1)), Forced Vital Capacity (FVC), and Forced Expiratory Flow between 25% and 75% of the FVC (FEF(25-75%)) (P<0.05). It can be concluded that in our study there was close and direct association between cement dust exposure and functional impairment among the cement factory workers. PMID:22359082

  9. Atomic packing and diffusion in Fe{sub 85}Si{sub 2}B{sub 9}P{sub 4} amorphous alloy analyzed by ab initio molecular dynamics simulation

    SciTech Connect

    Wang, Yaocen; Takeuchi, Akira; Makino, Akihiro; Liang, Yunye; Kawazoe, Yoshiyuki

    2015-05-07

    In the work reported in this paper, ab initio molecular dynamics simulation was performed on Fe{sub 85}Si{sub 2}B{sub 9}P{sub 4} amorphous alloy. Preferred atomic environment of the elements was analyzed with Voronoi polyhedrons. It showed that B and P atoms prefer less neighbors compared with Fe and Si, making them structurally incompatible with Fe rich structure and repulsive to the formation of α-Fe. However, due to the low bonding energy of B and P caused by low coordination number, the diffusion rates of them were considerably large, resulting in the requirement of fast annealing for achieving optimum nano-crystallization for its soft magnetic property. The simulation work also indicates that diffusion rate in amorphous alloy is largely determined by bonding energy rather than atomic size.

  10. Cement-based materials' characterization using ultrasonic attenuation

    NASA Astrophysics Data System (ADS)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  11. Packing Products: Polystyrene vs. Cornstarch

    ERIC Educational Resources Information Center

    Starr, Suzanne

    2009-01-01

    Packing materials such as polystyrene take thousands of years to decompose, whereas packing peanuts made from cornstarch, which some companies are now using, can serve the same purpose, but dissolve in water. The author illustrates this point to her class one rainy day using the sculptures students made from polystyrene and with the cornstarch…

  12. Vanadium diffusion coating on HT-9 cladding for mitigating the fuel cladding chemical interactions

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Yang; Yang, Yong

    2014-08-01

    Fuel cladding chemical interaction (FCCI) has been identified as one of the crucial issues for developing Ferritic/Martensitic (F/M) stainless steel claddings for metallic fuels in a fast reactor. The anticipated elevated temperature and high neutron flux can significantly aggravate the FCCI, in terms of formation of inter-diffusion and lower melting point eutectic phases. To mitigate the FCCI, vanadium carbide coating as a diffusion barrier was deposited on the HT-9 substrate using a pack cementation diffusion coating (PCDC) method, and the processing temperature was optimized down to 730 °C. A solid metallurgical bonding between the coating layer and substrate was achieved, and the coating is free from through depth cracks. The microstructural characterizations using SEM and TEM show a nanostructured grain structure. EDS/WDS and XRD analysis confirm the phase of coating layer as V2C. Diffusion couple tests at 660 °C for 100 h demonstrate that V2C layer with a thickness of less than 5 μm can effectively eliminate the inter-diffusion between the lanthanide cerium and HT-9 steel.

  13. Packing developments improve valve availability

    SciTech Connect

    Aikin, J.

    1994-01-01

    Regulatory environment and clean air legislation demand improvements in valve stuffing box performance. In normally inaccessible or hazardous areas, the cost of valve maintenance and repair in terms of safety, radiation, and toxic gas exposure is very high. AECL Research`s Mechanical Equipment Development (MED) branch at Chalk River Laboratories (Chalk River, Ont.) has researched stem packing leakage problems since the early 1970s. Early research and development (R and D) significantly improved the understanding of operational characteristics of asbestos-based valve packing. Of note was the development of live loading, a stem packing method that reduces valve leakage to near zero under most operating conditions, and significantly prolongs packing life. This article describes how stem packing developments, including live loading techniques, are reducing valve fugitive emissions and leakage.

  14. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-06-16

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the tenth quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. The original laboratory procedure for measuring set cement expansion resulted in test specimen erosion that was unacceptable. A different expansion procedure is being evaluated. This report provides a progress summary of ASR testing. The testing program initiated in November produced questionable initial results so the procedure was modified slightly and the testing was reinitiated. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but questionable data were obtained from several of the compositions. Additional modification of test procedures for compositions containing TXI Lightweight cement are being implemented and testing is ongoing.

  15. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  16. 7 CFR 51.310 - Packing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS) United States Standards for Grades of Apples Packing Requirements § 51.310 Packing requirements. (a) Apples tray packed or cell packed in cartons shall be arranged according to approved and... that apples are of the proper size for molds or cell compartments in which they are packed, and...

  17. 7 CFR 51.310 - Packing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS) United States Standards for Grades of Apples Packing Requirements § 51.310 Packing requirements. (a) Apples tray packed or cell packed in cartons shall be arranged according to approved and... that apples are of the proper size for molds or cell compartments in which they are packed, and...

  18. 7 CFR 51.310 - Packing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS) United States Standards for Grades of Apples Packing Requirements § 51.310 Packing requirements. (a) Apples tray packed or cell packed in cartons shall be arranged according to approved and... that apples are of the proper size for molds or cell compartments in which they are packed, and...

  19. Retention of crowns cemented on implant abutments with temporary cements.

    PubMed

    Nagasawa, Yuko; Hibino, Yasushi; Nakajima, Hiroshi

    2014-01-01

    This study was to examine the retentive force of crowns to implant abutments with commercial temporary cements. Six different temporary cements were investigated. Cast crowns were cemented to the abutments using each cement and their retentive forces to abutments were determined 7 or 28 days after cementing (n=10). The retentive force of the cements to abutments varied widely among the products [27-109 N (7-day), 18-80 N (28-days)]. The retentive force of all the cements was not reduced as the time elapsed, except for two products tested. The polycarboxylate cements and paste-mixing type eugenol-free cements revealed comparable retentive force after 28 days of storage. The powder-liquid type cements showed a positive correlation (p<0.05) between the retentive force and the shear strength, while a negative correlation (p<0.05) was obtained for paste-mixing type cement between the retentive force and compressive strength. Mechanical strength of temporary cements could not be a prominent predicting factor for retention of the crowns on the abutments.

  20. Recycled rubber in cement composites

    SciTech Connect

    Raghavan, D.; Tratt, K.; Wool, R.P.

    1994-12-31

    Disposal of 200 million waste tires in the US each year has become a major problem. An environmentally sound innovative technology of recycling rubber in cement matrix was examined. Using silane coupling agent the rubber was bonded to the hydrating cement making a lighter composite, which absorbed more energy than ordinary Portland cement. The bonding information was obtained by peel strength analysis. SEM was used to understand the mode of fracture in pure cement paste, cement bonded rubber composite and rubber filled cement paste. It was found that cracks propagate through the rubber particle in rubber bonded cement composite while in unbonded rubber cement mix, the cracks propagate around the interface. The density and shrinkage measurements are also discussed.

  1. System for radioactive waste cementation

    SciTech Connect

    Dmitriev, S.A.; Barinov, A.S.; Varlakov, A.P.; Volkov, A.S.; Karlin, S.V.

    1995-12-31

    NPP, research reactors and radiochemical enterprises produce a great amount of liquid radioactive waste (LRW). One of the methods of LRW solidification is cementation. The recent investigations demonstrated possible inclusion of sufficient amount of waste in the cement matrix (up to 20--30 mass% on dry residue). In this case the cementation process becomes competitive with bituminization process, where the matrix can include 40--50 mass% and the solidified product volume is equal to the volume, obtained by cementation. Additionally, the cement matrix in contrast with the bituminous one is unburnable. Many countries are investigating the cementation process. The main idea governing technological process is the waste and cement mixing method and type of mixer. In world practice some principal types of cementation systems are used. The paper describes the SIA Radon industrial plant in Moscow.

  2. The hydration of dental cements.

    PubMed

    Wilson, A D; Paddon, J M; Crisp, S

    1979-03-01

    A study was made of the hydration of dental cements, water being classified as "non-evaporable" and "evaporable". The ratio of these two types of water was found to vary greatly among different cement types, being lesser in zinc oxide and ionic polymer cements and greater in ion-leachable glass and phosphoric acid cements. The cement with the least "non-evaporable" water, i.e., showing least hydration (the zinc polycarboxylate cement), had the lowest strength and modulus and the greatest deformation at failure. A linear relationship was found to exist between strength and the degree of hydration of dental cements. All the cements were found to become more highly hydrated and stronger as they aged. PMID:284040

  3. Impact of Wellbore Cement Degradation on CO2 Storage Integrity

    NASA Astrophysics Data System (ADS)

    Kutchko, B.; Strazisar, B.; Lowry, G.; Dzombak, D.; Thaulow, N.

    2007-12-01

    zone. Over the one-year time period of the experiments, this condition led to a smaller amount of total degradation than in the aqueous phase. However, in this case, there was no deceleration of the reaction observed. It is unlikely that the diffusion controlled degradation process observed in these experiments would lead to well failure in well completions that are well cemented with neat Portland cement (without additives). Further investigation is required to evaluate the effect of cement additives, fractures or channels in the cement, and geomechanical stress.

  4. Valve stem and packing assembly

    DOEpatents

    Wordin, John J.

    1991-01-01

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

  5. Valve stem and packing assembly

    DOEpatents

    Wordin, J.J.

    1991-09-03

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents over tightening of the retaining nut and the resulting excessive friction between stem and stem packing. 2 figures.

  6. Reducing cement's CO2 footprint

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  7. Cement Mason's Curriculum. Instructional Units.

    ERIC Educational Resources Information Center

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  8. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  9. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  10. 7 CFR 982.11 - Pack.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Order Regulating Handling Definitions § 982.11 Pack. Pack means a specific commercial classification according to size, internal quality, and external appearance and condition of hazelnuts packed in...

  11. Cementing a wellbore using cementing material encapsulated in a shell

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  12. Method for packing chromatographic beds

    DOEpatents

    Freeman, David H.; Angeles, Rosalie M.; Keller, Suzanne

    1991-01-01

    Column chromatography beds are packed through the application of static force. A slurry of the chromatography bed material and a non-viscous liquid is filled into the column plugged at one end, and allowed to settle. The column is transferred to a centrifuge, and centrifuged for a brief period of time to achieve a predetermined packing level, at a range generally of 100-5,000 gravities. Thereafter, the plug is removed, other fixtures may be secured, and the liquid is allowed to flow out through the bed. This results in an evenly packed bed, with no channeling or preferential flow characteristics.

  13. Retention of posts cemented with various dentinal bonding cements.

    PubMed

    Mendoza, D B; Eakle, W S

    1994-12-01

    This investigation evaluated the retention of preformed posts with four different cements: C & B Metabond, Panavia, All-Bond 2, and Ketac-Cem. Sixty intact maxillary canines were selected for the study. The clinical crowns were removed and endodontic therapy done on each root, which was then prepared to receive prefabricated posts. The 60 samples were divided into four groups of 15, and the posts in each group were cemented with one of the four cements. The roots were mounted in acrylic resin blocks and the posts were separated from the canals with an Instron testing machine. Analysis of the forces needed to dislodge the posts with analysis of variance and Student-Newman-Keuls test disclosed that C & B Metabond cement was the most retentive (p < 0.05). No difference in retention was recorded between Ketac-Cem and Panavia cements. All-Bond 2 cement was the least retentive of cements. PMID:7853255

  14. Physico-chemical studies of hardened cement paste structure with micro-reinforcing fibers

    NASA Astrophysics Data System (ADS)

    Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya

    2016-01-01

    The results of physico-chemical studies of modified hardened cement paste with micro-reinforcing fibers are given in this article. The goal was to study the reasons of the increase of strength properties of modified hardened cement paste by the method of X-ray diffraction and electron microscopy. It is shown that the use of mineral fibers in the production of cement based material has positive effect on its properties. The study found out that the increase in the strength of the hardened cement paste with micro-reinforcing fibers is due to the increase of the rate of hydration of cement without a significant change in the phase composition in comparison with hardened cement paste without additive. The results of microstructure investigation (of control samples and samples of the reinforced hardened cement paste) have shown that introduction of mineral fibers in the amount of 0.1-2 % by weight of cement provides the structure of the homogeneous microporous material with uniform distribution of the crystalline phase provided by densely packed hydrates.

  15. Glycerol Salicylate-based Pulp-Capping Material Containing Portland Cement.

    PubMed

    Portella, Fernando Freitas; Collares, Fabrício Mezzomo; Santos, Paula Dapper; Sartori, Cláudia; Wegner, Everton; Leitune, Vicente Castelo Branco; Samuel, Susana Maria Werner

    2015-01-01

    The purpose of this study was to evaluate the water sorption, solubility, pH and ability to diffuse into dentin of a glycerol salicylate-based, pulp-capping cement in comparison to a conventional calcium hydroxide-based pulp capping material (Hydcal). An experimental cement was developed containing 60% glycerol salicylate resin, 10% methyl salicylate, 25% calcium hydroxide and 5% Portland cement. Water sorption and solubility were determined based on mass changes in the samples before and after the immersion in distilled water for 7 days. Material discs were stored in distilled water for 24 h, 7 days and 28 days, and a digital pHmeter was used to measure the pH of water. The cement's ability to diffuse into bovine dentin was assessed by Raman spectroscopy. The glycerol salicylate-based cement presented higher water sorption and lower solubility than Hydcal. The pH of water used to store the samples increased for both cements, reaching 12.59 ± 0.06 and 12.54 ± 0.05 after 7 days, for Hydcal and glycerol salicylate-based cements, respectively. Both cements were able to turn alkaline the medium at 24 h and sustain its alkalinity after 28 days. Hydcal exhibited an intense diffusion into dentin up to 40 µm deep, and the glycerol salicylate-based cement penetrated 20 µm. The experimental glycerol salicylate-based cement presents good sorption, solubility, ability to alkalize the surrounding tissues and diffusion into dentin to be used as pulp capping material. PMID:26312972

  16. Osteotransductive bone cements.

    PubMed

    Driessens, F C; Planell, J A; Boltong, M G; Khairoun, I; Ginebra, M P

    1998-01-01

    Calcium phosphate bone cements (CPBCs) are osteotransductive, i.e. after implantation in bone they are transformed into new bone tissue. Furthermore, due to the fact that they are mouldable, their osteointegration is immediate. Their chemistry has been established previously. Some CPBCs contain amorphous calcium phosphate (ACP) and set by a sol-gel transition. The others are crystalline and can give as the reaction product dicalcium phosphate dihydrate (DCPD), calcium-deficient hydroxyapatite (CDHA), carbonated apatite (CA) or hydroxyapatite (HA). Mixed-type gypsum-DCPD cements are also described. In vivo rates of osteotransduction vary as follows: gypsum-DCPD > DCPD > CDHA approximately CA > HA. The osteotransduction of CDHA-type cements may be increased by adding dicalcium phosphate anhydrous (DCP) and/or CaCO3 to the cement powder. CPBCs can be used for healing of bone defects, bone augmentation and bone reconstruction. Incorporation of drugs like antibiotics and bone morphogenetic protein is envisaged. Load-bearing applications are allowed for CHDA-type, CA-type and HA-type CPBCs as they have a higher compressive strength than human trabecular bone (10 MPa).

  17. Gentamicin in bone cement

    PubMed Central

    Chang, Y.; Tai, C-L.; Hsieh, P-H.; Ueng, S. W. N.

    2013-01-01

    Objectives The objective of this study is to determine an optimal antibiotic-loaded bone cement (ALBC) for infection prophylaxis in total joint arthroplasty (TJA). Methods We evaluated the antibacterial effects of polymethylmethacrylate (PMMA) bone cements loaded with vancomycin, teicoplanin, ceftazidime, imipenem, piperacillin, gentamicin, and tobramycin against methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staph. aureus (MRSA), coagulase-negative staphylococci (CoNS), Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Standardised cement specimens made from 40 g PMMA loaded with 1 g antibiotics were tested for elution characteristics, antibacterial activities, and compressive strength in vitro. Results The ALBC containing gentamicin provided a much longer duration of antibiotic release than those containing other antibiotic. Imipenem-loading on the cement had a significant adverse effect on the compressive strength of the ALBC, which made it insufficient for use in prosthesis fixation. All of the tested antibiotics maintained their antibacterial properties after being mixed with PMMA. The gentamicin-loaded ALBC provided a broad antibacterial spectrum against all the test organisms and had the greatest duration of antibacterial activity against MSSA, CoNS, P. aeruginosa and E. coli. Conclusion When considering the use of ALBC as infection prophylaxis in TJA, gentamicin-loaded ALBC may be a very effective choice. Cite this article: Bone Joint Res 2013;2:220–6. PMID:24128666

  18. The effect of carbonic acid on well cements

    NASA Astrophysics Data System (ADS)

    Duguid, Andrew

    Sequestration in abandoned petroleum fields has the potential to reduce atmospheric emissions of CO2 if adopted on a large scale. When CO2 comes in contact with brine in the sequestration formation, it will form carbonic acid. The acid may damage cement that is used to construct and abandon wells in the sequestration formation, allowing the wells to leak. CO2 release from a sequestration formation through abandoned wells to the vadose zone and then from the vadose zone into a residence could cause exposure to high levels of CO2. This study presents the results of two types of experiments that were conducted in order to understand how CO2 will affect well cements. This dissertation also presents a hypothetical risk assessment that examines the risks that a sequestration site may pose. The experiments examine how well cements react when exposed to carbonated brines at 20° and 50°C. Month-long flow-through experiments were conducted on samples made from Class H neat paste and Class H cement containing 6% bentonite under conditions that simulated sandstone (pH 2.4 and 3.7) and limestone (pH 5) sequestration formations. Year-long batch experiments were conducted on composite samples made from Class H well cement and either sandstone or limestone in order to determine how carbonated brine affects the cement-stone interface. The results of the flow-through experiments showed that calcium-containing phases in cement may be completely degraded and the formation of the calcium carbonate layer acts to slow, but not stop, degradation. The results of the batch experiments showed that carbonated brines can degrade cement and damage the integrity of the cement-stone interface. The damage to the cement at the cement-stone interface caused an order-of-magnitude increase in permeability in the sandstone-cement samples. The risk assessment identifies two potential screening levels. The assessment then uses a semianalytical wellfield model coupled with analytical models of diffusion

  19. Are proteins well-packed?

    PubMed

    Liang, J; Dill, K A

    2001-08-01

    The average packing density inside proteins is as high as in crystalline solids. Does this mean proteins are well-packed? We go beyond average densities, and look at the full distribution functions of free volumes inside proteins. Using a new and rigorous Delaunay triangulation method for parsing space into empty and filled regions, we introduce formal definitions of interior and surface packing densities. Although proteins look like organic crystals by the criterion of average density, they look more like liquids and glasses by the criterion of their free volume distributions. The distributions are broad, and the scalings of volume-to-surface, volume-to-cluster-radius, and numbers of void versus volume show that the interiors of proteins are more like randomly packed spheres near their percolation threshold than like jigsaw puzzles. We find that larger proteins are packed more loosely than smaller proteins. And we find that the enthalpies of folding (per amino acid) are independent of the packing density of a protein, indicating that van der Waals interactions are not a dominant component of the folding forces. PMID:11463623

  20. Volatile Components from Packing Matrials, Rev. 2

    SciTech Connect

    Smith, R. A.

    2006-03-01

    An outgassing study was conducted on five packing materials, comprising two experiments. These materials comprised 277-4 borated concrete, Borobond4 concrete, polyethylene bags, silica-filled silicone rubber seals, and silicone foam padding. The purpose was measure the volume of gases which diffuse from packaging materials when sealed in containers. Two heating profiles were used to study the offgassing quantities in a set of accelerated aging tests. It was determined that the concretes contain a large quantity of water. The plastic materials hold much less moisture, with the silicone materials even consuming water, possibly due to the presence of silica filler. Polyethylene tends to degrade as the temperature is elevated and the foam stiffens.

  1. 7 CFR 51.1527 - Standard pack.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Fresh Plums and Prunes Standard Pack § 51.1527 Standard pack. (a) Packing. (1) All... plums or prunes in the top layer of any package shall be reasonably representative in quality and size of those in the remainder of the package. (3) “Well filled” means that the plums or prunes packed...

  2. 7 CFR 51.1527 - Standard pack.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Fresh Plums and Prunes Standard Pack § 51.1527 Standard pack. (a) Packing. (1) All... plums or prunes in the top layer of any package shall be reasonably representative in quality and size of those in the remainder of the package. (3) “Well filled” means that the plums or prunes packed...

  3. 7 CFR 51.310 - Packing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Packing Requirements § 51.310 Packing requirements. (a) Apples tray packed or cell packed in cartons shall be arranged.... 3 2 “Fairly tight” means that apples are of the proper size for molds or cell compartments in...

  4. 7 CFR 51.310 - Packing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Packing Requirements § 51.310 Packing requirements. (a) Apples tray packed or cell packed in cartons shall be arranged.... 3 2 “Fairly tight” means that apples are of the proper size for molds or cell compartments in...

  5. 7 CFR 51.1217 - Standard pack.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Peaches Standard Pack § 51.1217 Standard pack. (a) Each package shall be packed so that the peaches in the shown face shall be reasonably representative in size, color and quality of the contents of the package. (b) Peaches packed in U.S....

  6. 7 CFR 51.1217 - Standard pack.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Peaches Standard Pack § 51.1217 Standard pack. (a) Each package shall be packed so that the peaches in the shown face shall be reasonably representative in size, color and quality of the contents of the package. (b) Peaches packed in U.S. Standard bushel baskets, or half-bushel baskets,...

  7. 7 CFR 51.1217 - Standard pack.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Peaches Standard Pack § 51.1217 Standard pack. (a) Each package shall be packed so that the peaches in the shown face shall be reasonably representative in size, color and quality of the contents of the package. (b) Peaches packed in U.S. Standard bushel baskets, or half-bushel baskets,...

  8. 7 CFR 51.1217 - Standard pack.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Peaches Standard Pack § 51.1217 Standard pack. (a) Each package shall be packed so that the peaches in the shown face shall be reasonably representative in size, color and quality of the contents of the package. (b) Peaches packed in U.S. Standard bushel baskets, or half-bushel baskets,...

  9. 7 CFR 51.1217 - Standard pack.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Peaches Standard Pack § 51.1217 Standard pack. (a) Each package shall be packed so that the peaches in the shown face shall be reasonably representative in size, color and quality of the contents of the package. (b) Peaches packed in U.S....

  10. Disc pack cleaning table saves computer time

    NASA Technical Reports Server (NTRS)

    Guy, J. T., Sr.

    1970-01-01

    Disc pack holding table is support frame upon which computer disc pack is loaded and protective cover released. This combination permits manual off-line cleaning of disc pack storage units at any time without shutting down the computer, and eliminates on-line disc drive unit to hold pack during cleaning.

  11. Mineral resource of the month: hydraulic cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  12. Nature of packs used in propellant modeling.

    PubMed

    Maggi, F; Stafford, S; Jackson, T L; Buckmaster, J

    2008-04-01

    In recent years we have constructed closely packed spheres using the Lubachevsky-Stillinger algorithm to generate morphological models of heterogeneous solid propellants. Improvements to the algorithm now allow us to create large polydisperse packs on a laptop computer, and to create monodisperse packs with packing fractions greater than 70% which display significant crystal order. The use of these models in the physical context motivates efforts to examine in some detail the nature of the packs, including certain statistical properties. We compare packing fractions for binary packs with long-known experimental data. Also, we discuss the near-neighbor number and the radial distribution function (RDF) for monodisperse packs and make comparisons with experimental data. We also briefly discuss the RDF for bidisperse packs. We also consider bounded monodisperse packs, and pay particular attention to the near-wall structure where we identify significant order.

  13. Valve packings conquer fugitive emissions

    SciTech Connect

    1995-11-01

    In the early 1990s, when the US Environmental Protection Agency (EPA; Washington, D.C.) declared its intent to regulate fugitive emissions from valve-stem leakage, much of the chemical process industries (CPI) responded with fear and uncertainty. The biggest fear was that valve packing would not meet the required limits on leak rates and that expensive bellows seals may be required on many applications. The uncertainly was about how much it would cost. Today, for the most part, these concerns have been mitigated. It is estimated that about 80--90% of valves satisfy the emission requirements. The rest need some improvement in their packing systems to meet the regulations. Generally, these valves can be brought within compliance if the packing designers follow a few basic principles: Employ less-pliable outer rings and more-pliable inner rings; and don`t use excessive packing. While interest in valve packing remains high, mechanical seals continue to become more user-friendly. Many of those covered below are designed to run dry, and some can even tolerate high shaft-wobble without damage. Also look for improved flange gaskets and a host of seals to protect bearings. Twenty-one summaries are presented on new products and services.

  14. US cement industry

    SciTech Connect

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  15. Sleeping distance in wild wolf packs

    USGS Publications Warehouse

    Knick, S.T.; Mech, L.D.

    1980-01-01

    Sleeping distances were observed among members of 13 wild wolf (Canis lupus) packs and 11 pairs in northeastern Minnesota to determine if the distances correlated with pack size and composition. The study utilized aerial radio-tracking and observation during winter. Pack size and number of adults per pack were inversely related to pack average sleeping distance and variability. No correlation between sleeping distance and microclimate was observed. Possible relationships between social bonding and our results are discussed.

  16. Tympanoplasty with ionomeric cement.

    PubMed

    Kjeldsen, A D; Grøntved, A M

    2000-01-01

    Patients with isolated erosion of the long incus process suffer from severe hearing loss caused by lack of continuity of the ossicular chain. This study is a retrospective evaluation of the hearing results using two different surgical procedures. Since January 1993, 12 consecutive patients with isolated erosion of the long incus process have been treated with a new surgical technique in which the ossicular chain was rebuilt with ionomeric cement. The results in hearing performance (mean pure-tone average (PTA) 0.5, 1 and 2 kHz) were evaluated pre- and post-surgery, and compared to those in a group of 20 historical controls who underwent surgery in 1991 and 1992 using incus autograft interposition. Among the 12 index patients, 7 (58%) achieved improvement in PTA of > 10 dB, in 3 there was no difference and in 2 a slight decline. Among the 20 controls, 14 (70%) achieved improvement in PTA of > 10 dB, in 4 there was a slight improvement and in 2 a decline. The difference was not statistically significant. Hearing improvement using ionomeric cement in type II tympanoplasty was satisfactory. Reconstruction of the ossicular chain with ionomeric cement is recommended, as the procedure is easy to perform, presents less risk of damage to the stapes and cochlea, requires less extensive surgery and does not exclude other surgical methods in cases of reoperation. PMID:10909000

  17. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials

    SciTech Connect

    Lim, Seungmin Mondal, Paramita

    2014-06-01

    The degradation of hydration products of cement is known to cause changes in the micro- and nano-structure, which ultimately drive thermo-mechanical degradation of cement-based composite materials at elevated temperatures. However, a detailed characterization of these changes is still incomplete. This paper presents results of an extensive experimental study carried out to investigate micro- and nano-structural changes that occur due to exposure of cement paste to high temperatures. Following heat treatment of cement paste up to 1000 °C, damage states were studied by compressive strength test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) atomic force microscopy (AFM) and AFM image analysis. Using experimental results and research from existing literature, new degradation processes that drive the loss of mechanical properties of cement paste are proposed. The development of micro-cracks at the interface between unhydrated cement particles and paste matrix, a change in C–S–H nano-structure and shrinkage of C–S–H, are considered as important factors that cause the thermal degradation of cement paste. - Highlights: • The thermal degradation of hydration products of cement is characterized at micro- and nano-scale using scanning electron microscopy (SEM) and atomic force microscopy (AFM). • The interface between unhydrated cement particles and the paste matrix is considered the origin of micro-cracks. • When cement paste is exposed to temperatures above 300 ºC, the nano-structure of C-S-H becomes a more loosely packed globular structure, which could be indicative of C-S-H shrinkage.

  18. Cement penetration after patella venting.

    PubMed

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement.

  19. Cement penetration after patella venting.

    PubMed

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement. PMID:19010682

  20. Mineral of the month: cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2006-01-01

    Hydraulic cement is a virtually ubiquitous construction material that, when mixed with water, serves as the binder in concrete and most mortars. Only about 13 percent of concrete by weight is cement (the rest being water and aggregates), but the cement contributes all of the concrete’s compressional strength. The term “hydraulic” refers to the cement’s ability to set and harden underwater through the hydration of the cement’s components.

  1. Entanglement Theories: Packing vs. Percolation

    NASA Astrophysics Data System (ADS)

    Wool, Richard

    2007-03-01

    There are two emergent theories of polymer entanglements, the Packing Model (Fetters, Lohse, Graessley, Milner, Whitten, ˜'98) and the Percolation Model (Wool ˜'93). The Packing model suggests that the entanglement molecular weight Me is determined by Me = K p^3, where the packing length parameter p = V/R^2 in which V is the volume of the chain (V=M/ρNa), R is the end-to end vector of the chain, and K 357 ρNa, is an empirical constant. The Percolation model states that an entanglement network develops when the number of chains per unit area σ, intersecting any load bearing plane, is equal to 3 times the number of chain segments (1/a cross-section), such that when 3aσ =1 at the percolation threshold, Me 31 MjC∞, in which Mj is the step molecular weight and C∞ is the characteristic ratio. There are no fitting parameters in the Percolation model. The Packing model predicts that Me decreases rapidly with chain stiffness, as Me˜1/C∞^3, while the Percolation model predicts that Me increases with C∞, as Me˜C∞. The Percolation model was found to be the correct model based on computer simulations (M. Bulacu et al) and a re-analysis of the Packing model experimental data. The Packing model can be derived from the Percolation model, but not visa versa, and reveals a surprising accidental relation between C∞ and Mj in the front factor K. This result significantly impacts the interpretation of the dynamics of rheology and fracture of entangled polymers.

  2. [Electroflotation packing of mycelial wastes].

    PubMed

    Nikolaev, V B; Karpukhin, V F; Zav'ialova, E V; Faingol'd, Z L

    1989-04-01

    Data on testing a pilot plant for electroflotative packing of mycelial wastes are presented. Both the mycelial wastes and their mixtures were used. Concentration of dry substances raged from 3.5 to 131 g/l. The process was performed with varying flow density and consumption rate of the liquid supplied to the plant. Insoluble magnetite and ruthenium oxide anodes were used. The moister content in the packed phase was 81-97.5 per cent. The study provided specification of the process technological parameters and investigation of the flotator hydroulic characteristics.

  3. Cylinder valve packing nut studies

    SciTech Connect

    Blue, S.C.

    1991-12-31

    The design, manufacture, and use of cylinder valve packing nuts have been studied to improve their resistance to failure from stress corrosion cracking. Stress frozen photoelastic models have been analyzed to measure the stress concentrations at observed points of failure. The load effects induced by assembly torque and thermal expansion of stem packing were observed by strain gaging nuts. The effects of finishing operations and heat treatment were studied by the strain gage hole boring and X-ray methods. Modifications of manufacturing and operation practices are reducing the frequency of stress corrosion failures.

  4. Cemented total hip prosthesis: Radiographic and scintigraphic evaluation

    SciTech Connect

    Aliabadi, P.; Tumeh, S.S.; Weissman, B.N.; McNeil, B.J. )

    1989-10-01

    Conventional radiographs, technetium-99m bone scans, and gallium-67 scans were reviewed in 44 patients who had undergone cemented total hip joint replacement and were imaged because of suspicion of prosthesis loosening or infection. A complete radiolucent line of 2 mm or wider along the bone-cement interface or metal-cement lucency on conventional radiographs was used as the criterion for prosthetic loosening with or without infection and proved to be 54% sensitive and 96% specific. Scintigraphic criteria for prosthetic loosening were increased focal uptake of the radiopharmaceutical for the femoral component and increased focal or diffuse uptake for the acetabular component. For bone scintigraphy, sensitivity was 73% and specificity was 96%. Combining the results of conventional radiographs and bone scans increased sensitivity to 84% and decreased specificity to 92% for the diagnosis of loosening, infection, or both. The study also showed that Ga-67 scintigraphy has a low sensitivity for the detection of infection.

  5. The use of EAF dust in cement composites: assessment of environmental impact.

    PubMed

    Sturm, Tina; Milacic, Radmila; Murko, Simona; Vahcic, Mitja; Mladenovic, Ana; Suput, Jerneja Strupi; Scancar, Janez

    2009-07-15

    Electric arc filter dust (EAF dust) is a waste by-product which occurs in the production of steel. Instead of being disposed of, it can be used in cement composites for civil engineering, and for balances in washing machines. To estimate the environmental impact of the use of EAF dust in cement composites leachability tests based on diffusion were performed using water and salt water as leaching agents. Compact and ground cement composites, and cement composites with addition of 1.5% of EAF dust by mass were studied. The concentrations of total Cr and Cr(VI) were determined in leachates over a time period of 175 days. At the end of the experiment the concentrations of some other metals were also determined in leachates. The results indicated that Cr in leachates was present almost solely in its hexavalent form. No leaching of Cr(VI) was observed in aqueous leachates from compact cement composites and compact cement composites to which different quantities of EAF dust have been added. In ground cement composites and in ground cement composites with addition of EAF dust, Cr(VI) was leached with water in very low concentrations up to 5 microg L(-1). Cr(VI) concentrations were higher in salt water leachates. In compact and ground cement composites with addition of EAF dust Cr(VI) concentrations were 40 and 100 microg L(-1), respectively. It was experimentally found that addition of EAF dust had almost no influence on leaching of Cr(VI) from cement composites. Leaching of Cr(VI) originated primarily from cement. Leaching of other metals from composites investigated did not represent an environmental burden. From the physico-mechanical and environmental aspects EAF dust can be used as a component in cement mixtures.

  6. Performance of Diffusion Aluminide Coatings Applied on Alloy CF8C-Plus at 800oC

    SciTech Connect

    Kumar, Deepak; Dryepondt, Sebastien N; Zhang, Ying; Haynes, James A; Pint, Bruce A; Armstrong, Beth L; Shyam, Amit; Lara-Curzio, Edgar

    2012-01-01

    High performance cast stainless steel, CF8C-Plus, is a low cost alloy with prospective applications ranging from covers and casings of small and medium size gas turbines to turbocharger housing and manifolds in internal combustion engines. Diffusion aluminide coatings were applied on this alloy as a potential strategy for improved oxidation resistance, particularly in wet air and steam. In this paper the performance of the aluminide coatings evaluated by cyclic oxidation experiments in air containing 10 vol.% H2O at 800 C and conventional tension-compression low-cycle-fatigue tests in air at 800 C with a strain range of 0.5% is presented. The results show that specimens coated by a chemical vapor deposition process provide better oxidation resistance than those coated by an Al-slurry coating process. The application of a coating by pack cementation reduced the fatigue life by 15%.

  7. Ecology and Energy Action Pack.

    ERIC Educational Resources Information Center

    McDonald's Corp., Oak Brook, IL.

    One of five McDonald's Action Packs, these elementary school-level instructional materials are for use as an introduction to existing units of study, supplements to a textbook, or a source of special projects for environmental education. Contents include these six units: Make Your Own Ecology Mini-spinner, Let's Look at a Food Chain, Drip the…

  8. Wire and Packing Tape Sandwiches

    ERIC Educational Resources Information Center

    Rabinowitz, Sandy

    2009-01-01

    In this article, the author describes how students can combine craft wire with clear packing tape to create a two-dimensional design that can be bent and twisted to create a three-dimensional form. Students sandwich wire designs between two layers of tape. (Contains 1 online resource.)

  9. Thermal Shock-resistant Cement

    SciTech Connect

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  10. Packing tube assembly for pumping wells

    SciTech Connect

    Towner, G.F.; Carter, C.A.

    1987-09-22

    A packing tube assembly for replacing a conventional stuffing box is described. The packing tube assembly comprising: a packing tube; a rod adaptor adapted to be coupled between the polished rod and the sucker rod string and adapted to extend throughout the packing tube when positioned therein; compressible packing means on the rod adaptor adapted to provide a seal between the rod adaptor and the packing tube when the rod adaptor is in position within the packing tube; stabilizing means on the rod adaptor adapted to engage the packing tube to stabilize the rod adaptor within the packing tube during operation; and a mounting bushing connected to the top of the packing tube and adapted to be threaded into the pumping tee to secure the packing tube position within the production tubing string. A method of converting a conventional stuffing box-equipped pumping well to a packing tube-equipped well is described. It consists of: disconnecting the polished rod of the pumping well from the sucker rod string while suspending the sucker rod string within the well by the use of slips; unthreading the conventional stuffing box from the pumping tee of the well and removing the stuffing box; attaching the polished rod to the upper end of a rod adaptor of a packing tube assembly, inserting the rod adaptor with the polished rod attached into the packing tube of the packing tube assembly; aligning the packing tube assembly with the sucker rod string; connecting the lower end of the rod adaptor to the sucker rod string; removing the slips and lowering the packer tube assembly through the pumping tee; and connecting the upper end of the packing tube to the pumping tee.

  11. Radon resistant potential of concrete manufactured using Ordinary Portland Cement blended with rice husk ash

    NASA Astrophysics Data System (ADS)

    Chauhan, R. P.; Kumar, Amit

    2013-12-01

    The emission of radon from building materials and soil depends upon the radium content, porosity, moisture content and radon diffusion length of materials. Several techniques have been used to reduce the radon emission from the soil using different flooring materials. But the effectiveness of radon shielding depends upon the diffusion of radon through these materials. The present study proposes a method for producing a radon resistant material for decreasing radon diffusion through it. The method involves rice husk ash (RHA) in addition to cement for the preparation of concrete used for flooring and walls. The radon diffusion, exhalation and mechanical property of concrete prepared by rice husk ash blended cement were studied. The addition of RHA caused the reduction in radon diffusion coefficient, exhalation rates, porosity and enhanced the compressive strength of concrete. The bulk radon diffusion coefficient of cementitious concrete was reduced upto 69% by addition of rice husk ash as compare to that of control concrete.

  12. Flushed zone process helps control gas migration in primary cementing

    SciTech Connect

    Teichrob, R.R. )

    1993-08-16

    Gas migration during cementing operations can be eliminated with optimal drilling practices and ultra-high filtrate loss drilling fluids or properly designed squeeze fluids. A method based on the flushed zone theory involves squeezing fluid into a potential gas-bearing formation to reduce the permeability to gas near the well bore. The process aims to suppress gas flow long enough for the cement to set. The process is accomplished in the following way: the well is drilled to a predetermined depth and all inhibited drilling fluids in the well are displaced by an appropriate squeeze fluid. The annulus is packed off and pressure is applied down the drill pipe. The volume of squeeze fluid pumped away is monitored, and the flush volume is estimated based on assumed permeability, porosity, and interval height. Once the squeeze fluid volume is pumped away, the remaining fluid is displaced back to surface with the original mud system. Drilling resumes, and the well is drilled to total depth, logged, and then abandoned or cased. As the hydrostatic pressure imposed by liquid cement decreases as a function of gel strength development, the altered permeability of adjacent gas-bearing intervals precludes gas movement into the setting cement. The concept behind the flushed zone theory is basic: the gas is moved radially away from the well bore face, and because the formation's permeability to gas changes, the gas is kept away at least long enough to drill, log, and case the zone. Because the residual effects of reduced permeability to gas are unknown, cement permeability to gas in itself may play an important role in long-term solutions to controlling migrating gases through micro-annuli.

  13. 7 CFR 984.15 - Pack.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.15 Pack. Pack means to bleach, clean, grade, shell or otherwise prepare walnuts for market as inshell or shelled walnuts....

  14. 7 CFR 984.15 - Pack.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.15 Pack. Pack means to bleach, clean, grade, shell or otherwise prepare walnuts for market as inshell or shelled walnuts....

  15. 7 CFR 984.15 - Pack.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.15 Pack. Pack means to bleach, clean, grade, shell or otherwise prepare walnuts for market as inshell or shelled walnuts....

  16. 7 CFR 984.15 - Pack.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.15 Pack. Pack means to bleach, clean, grade, shell or otherwise prepare walnuts for market as inshell or shelled walnuts....

  17. 7 CFR 984.15 - Pack.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.15 Pack. Pack means to bleach, clean, grade, shell or otherwise prepare walnuts for market as inshell or shelled walnuts....

  18. Metal/cement interface strength in cemented stem fixation.

    PubMed

    Ahmed, A M; Raab, S; Miller, J E

    1984-01-01

    To characterize the strength of the interface between stem-type metal implants and bone cements, a fracture mechanics parameter was used. This parameter, the critical strain energy release rate (Gc), was determined from "push-out" tests of cylindrical specimens. The specimens, formed using molds of bone, were maintained and tested at body temperature. The strength of interfaces formed with cancellous bone surrounding the cement mantle was significantly less than the strength of those formed in apposition to cortical bone. A marked degradation of strength was found with saline immersion for SS316LVM/cement interfaces formed with Zimmer regular, Simplex-P, and Zimmer LVC cements. After 60 days of immersion the interface Gc was only 10-20% of the value for bulk cement. Interfaces formed with thin-film polymethylmethacrylate-precoated metals (SS316LVM, Co-Cr-Mo, and Ti-6A1-4V) yielded "dry" Gc values one order of magnitude greater than those measured with interfaces formed with uncoated metals. Moreover, the strength of precoated SS316LVM/cement interfaces formed with all three brands of cement did not change after saline immersion for 60 days. PMID:6491806

  19. In vitro antimicrobial activity of endodontic sealers, MTA-based cements and Portland cement.

    PubMed

    Tanomaru-Filho, Mário; Tanomaru, Juliane M G; Barros, Danilo B; Watanabe, Evandro; Ito, Izabel Y

    2007-03-01

    The aim of this study was to evaluate the antimicrobial activity of different root-end filling materials - Sealer 26, Sealapex with zinc oxide, zinc oxide and eugenol, white and gray Portland cement, white and gray MTA-Angelus, and gray Pro Root MTA - against six different microorganism strains. The agar diffusion method was used. A base layer was made using Müller-Hinton agar (MH) and wells were formed by removing the agar. The materials were placed in the wells immediately after manipulation. The microorganisms used were: Micrococcus luteus (ATCC9341), Staphylococcus aureus (ATCC6538), Escherichia coli (ATCC10538), Pseudomonas aeruginosa (ATCC27853), Candida albicans (ATCC 10231), and Enterococcus faecalis (ATCC 10541). The plates were kept at room temperature for 2 h for prediffusion and then incubated at 37 degrees C for 24 h. Triphenyltetrazolium chloride 0.05% gel was added for optimization, and the zones of inhibition were measured. Data were subjected to the Kruskal-Wallis and Dunn tests at a 5% significance level. The results showed that all materials had antimicrobial activity against all the tested strains. Analysis of the efficacy of the materials against the microbial strains showed that Sealapex with zinc oxide, zinc oxide and eugenol and Sealer 26 created larger inhibition halos than the MTA-based and Portland cements (P < 0.05). On the basis of the methodology used, it may be concluded that all endodontic sealers, MTA-based and Portland cements evaluated in this study possess antimicrobial activity, particularly the endodontic sealers.

  20. Using artificial neural networks to predict the quality and performance of oilfield cements

    SciTech Connect

    Coveney, P.V.; Hughes, T.L.; Fletcher, P.

    1996-12-31

    Inherent batch to batch variability, ageing and contamination are major factors contributing to variability in oilfield cement slurry performance. Of particular concern are problems encountered when a slurry is formulated with one cement sample and used with a batch having different properties. Such variability imposes a heavy burden on performance testing and is often a major factor in operational failure. We describe methods which allow the identification, characterization and prediction of the variability of oilfield cements. Our approach involves predicting cement compositions, particle size distributions and thickening time curves from the diffuse reflectance infrared Fourier transform spectrum of neat cement powders. Predictions make use of artificial neural networks. Slurry formulation thickening times can be predicted with uncertainties of less than {+-}10%. Composition and particle size distributions can be predicted with uncertainties a little greater than measurement error but general trends and differences between cements can be determined reliably. Our research shows that many key cement properties are captured within the Fourier transform infrared spectra of cement powders and can be predicted from these spectra using suitable neural network techniques. Several case studies are given to emphasize the use of these techniques which provide the basis for a valuable quality control tool now finding commercial use in the oilfield.

  1. Rate of CO2 attack on hydrated Class H well cement under geologic sequestration conditions.

    PubMed

    Kutchko, Barbara G; Strazisar, Brian R; Lowry, Gregory V; Dzombak, David A; Thaulow, Niels

    2008-08-15

    Experiments were conducted to study the degradation of hardened cement paste due to exposure to CO2 and brine under geologic sequestration conditions (T = 50 degrees C and 30.3 MPa). The goal was to determine the rate of reaction of hydrated cement exposed to supercritical CO2 and to CO2-saturated brine to assess the potential impact of degradation in existing wells on CO2 storage integrity. Two different forms of chemical alteration were observed. The supercritical CO2 alteration of cement was similar in process to cement in contact with atmospheric CO2 (ordinary carbonation), while alteration of cement exposed to CO2-saturated brine was typical of acid attack on cement. Extrapolation of the hydrated cement alteration rate measured for 1 year indicates a penetration depth range of 1.00 +/- 0.07 mm for the CO2-saturated brine and 1.68 +/- 0.24 mm for the supercritical CO2 after 30 years. These penetration depths are consistent with observations of field samples from an enhanced oil recovery site after 30 years of exposure to CO2-saturated brine under similar temperature and pressure conditions. These results suggest that significant degradation due to matrix diffusion of CO2 in intact Class H neat hydrated cement is unlikely on time scales of decades. PMID:18767693

  2. 7 CFR 51.1527 - Standard pack.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Fresh Plums and Prunes Standard Pack § 51... the approved and recognized methods. (2) The plums or prunes in the top layer of any package shall be...” means that the plums or prunes packed in loose or volume filled containers are packed within 1 inch...

  3. 7 CFR 51.1527 - Standard pack.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Fresh Plums and Prunes Standard Pack § 51... the approved and recognized methods. (2) The plums or prunes in the top layer of any package shall be...” means that the plums or prunes packed in loose or volume filled containers are packed within 1 inch...

  4. 7 CFR 966.11 - Pack.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE TOMATOES GROWN IN FLORIDA Order Regulating Handling Definitions § 966.11 Pack. Pack means any of the packs of tomatoes as defined and set forth in the United States Standards for Fresh Tomatoes issued by the United States Department of Agriculture (§§...

  5. 7 CFR 966.11 - Pack.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE TOMATOES GROWN IN FLORIDA Order Regulating Handling Definitions § 966.11 Pack. Pack means any of the packs of tomatoes as defined and set forth in the United States Standards for Fresh Tomatoes issued by the United States Department of Agriculture (§§...

  6. 7 CFR 966.11 - Pack.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE TOMATOES GROWN IN FLORIDA Order Regulating Handling Definitions § 966.11 Pack. Pack means any of the packs of tomatoes as defined and set forth in the United States Standards for Fresh Tomatoes issued by the United States Department of Agriculture (§§...

  7. 7 CFR 966.11 - Pack.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE TOMATOES GROWN IN FLORIDA Order Regulating Handling Definitions § 966.11 Pack. Pack means any of the packs of tomatoes as defined and set forth in the United States Standards for Fresh Tomatoes issued by the United States Department of Agriculture (§§...

  8. 7 CFR 966.11 - Pack.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE TOMATOES GROWN IN FLORIDA Order Regulating Handling Definitions § 966.11 Pack. Pack means any of the packs of tomatoes as defined and set forth in the United States Standards for Fresh Tomatoes issued by the United States Department of Agriculture (§§...

  9. 7 CFR 51.1527 - Standard pack.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... package. The number of plums or prunes in California peach boxes or lug boxes shall not vary more than 4... Standards for Grades of Fresh Plums and Prunes Standard Pack § 51.1527 Standard pack. (a) Packing. (1) All... plums or prunes in the top layer of any package shall be reasonably representative in quality and...

  10. Polyolefin Blend Miscibility and Packing

    NASA Astrophysics Data System (ADS)

    Lohse, David J.

    2000-03-01

    Over the last several years data have been obtained on the miscibility of a wide range of polyolefins, covering some 200 blends involving about 75 different components. Despite the fact that there are no 'specific interactions' between these saturated hydrocarbon polymers, every kind of phase behavior has been observed, including UCST, LCST, and even negative values of the Flory interaction parameter. The key factor that determines how these polyolefins mix is the way that they pack. Very often, polyolefins mix regularly, that is, the interaction energy is determined by the cohesive energies of the pure components. When they do mix regularly, miscibility is achieved by a close match in the packing lengths of the components. Favorable irregular mixing appears to be the result of some specific packing arrangements. Recent data on the effects of pressure and temperature on the mixing of several polyolefin blends shows that the interaction energies depend only on density (and not on T and P independently) for UCST blends far from a critical point. As a result, the effects of pressure on miscibility can be predicted for such blends from knowledge of the effects of temperature on the interactions combined with PVT data. This remarkable simplification appears to be related to the van der Waals nature of the interactions between saturated hydrocarbons. Density dependence predicts the trends correctly for LCST polyolefin blends, but for these mixtures the interactions depend in a more complex way on T and P.

  11. 21 CFR 888.4200 - Cement dispenser.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  12. 21 CFR 888.4200 - Cement dispenser.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  13. Percolation behavior of tritiated water into a soil packed bed

    SciTech Connect

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S.; Takeishi, T.

    2015-03-15

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  14. Reinforcement of cement-based matrices with graphite nanomaterials

    NASA Astrophysics Data System (ADS)

    Sadiq, Muhammad Maqbool

    micro-scale fibers were used for comparison purposes at different volume fractions. Replicated mixes and tests were considered to provide the basis for statistically reliable inferences. Theoretical studies were conducted in order to develop insight into the reinforcement mechanisms of properly functionalized graphite nanomaterials. The results suggested that modified graphite nanomaterials improve the mechanical performance of cement-based matrices primarily through control of microcrack size and propagation, relying on their close spacing within matrix and dissipation of substantial energy by debonding and frictional pullout over their enormous surface areas. The gains in barrier qualities of cement-based materials with introduction of modified graphite nanomaterials could be attributed to the increased tortuosity of diffusion paths in the presence of closely spaced nanomaterials. Experimental investigations were designed and implemented towards identification of the optimum (nano- and micro-scale) reinforcement systems for high-performance concrete through RSA (Response Surface Analysis). A comprehensive experimental data base was developed on the mechanical, physical and durability characteristics as well as the structure and composition of high-performance cementitious nanocomposites reinforced with modified graphite nanomaterials and/ or different micro-fibers.

  15. Adhesive loose packings of small dry particles

    NASA Astrophysics Data System (ADS)

    Liu, Wenwei; Li, Shuiqing; Baule, Adrian; Makse, Hernán A.

    We explore adhesive loose packings of dry small spherical particles of micrometer size using 3D discrete-element simulations with adhesive contact mechanics. A dimensionless adhesion parameter ($Ad$) successfully combines the effects of particle velocities, sizes and the work of adhesion, identifying a universal regime of adhesive packings for $Ad>1$. The structural properties of the packings in this regime are well described by an ensemble approach based on a coarse-grained volume function that includes correlations between bulk and contact spheres. Our theoretical and numerical results predict: (i) An equation of state for adhesive loose packings that appears as a continuation from the frictionless random close packing (RCP) point in the jamming phase diagram; (ii) The existence of a maximal loose packing point at the coordination number $Z=2$ and packing fraction $\\phi=1/2^{3}$. Our results highlight that adhesion leads to a universal packing regime at packing fractions much smaller than the random loose packing, which can be described within a statistical mechanical framework. We present a general phase diagram of jammed matter comprising frictionless, frictional, adhesive as well as non-spherical particles, providing a classification of packings in terms of their continuation from the spherical frictionless RCP.

  16. Formation and Oxidation Performance of Low-Temperature Pack Aluminide Coatings on Ferritic-Martensitic Steels

    SciTech Connect

    Bates, Brian; Wang, Y. Q.; Zhang, Ying; Pint, Bruce A

    2009-01-01

    A pack cementation process was developed to coat commercial 9% Cr ferritic-martensitic steel T91 at temperatures below its normal tempering temperature to avoid any potential detrimental effect on the mechanical properties of the coated alloy. In order to prevent the formation of Fe{sub 2}Al{sub 5} coatings, the Al activity in the pack cementation process was reduced by substituting the pure Al masteralloy with binary Cr-Al masteralloys containing either 15 or 25 wt.% Al. When the Cr-25Al masteralloy was used, a duplex coating was formed at 700 C, consisting of a thin Fe{sub 2}Al{sub 5} outer layer and an inner layer of FeAl. With the Cr-15Al masteralloy, an FeAl coating of {approx} 12 {micro}m thick was achieved at 700 C. The pack aluminide coatings fabricated at 700 C are being evaluated in air + 10 vol.% H{sub 2}O at 650 C and 700 C to determine their long-term oxidation performance.

  17. Graphite-reinforced bone cement

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.

    1976-01-01

    Chopped graphite fibers added to surgical bone cement form bonding agent with mechanical properties closely matched to those of bone. Curing reaction produces less heat, resulting in reduced traumatization of body tissues. Stiffness is increased without affecting flexural strength.

  18. Cement pulmonary embolism after vertebroplasty.

    PubMed

    Sifuentes Giraldo, Walter Alberto; Lamúa Riazuelo, José Ramón; Gallego Rivera, José Ignacio; Vázquez Díaz, Mónica

    2013-01-01

    In recent years, the use of vertebral cementing techniques for vertebroplasty and kyphoplasty has spread for the treatment of pain associated with osteoporotic vertebral compression fractures. This is also associated with the increased incidence of complications related with these procedures, the most frequent being originated by leakage of cementation material. Cement can escape into the vertebral venous system and reach the pulmonary circulation through the azygous system and cava vein, producing a cement embolism. This is a frequent complication, occurring in up to 26% of patients undergoing vertebroplasty but, since most patients have no clinical or hemodynamical repercussion, this event usually goes unnoticed. However, some serious, and even fatal cases, have been reported. We report the case of a 74-year-old male patient who underwent vertebroplasty for persistent pain associated with osteoporotic L3 vertebral fracture and who developed a cement leak into the cava vein and right pulmonary artery during the procedure. Although he developed a pulmonary cement embolism, the patient remained asymptomatic and did not present complications during follow-up.

  19. Coupled modeling of cement/claystone interactions and radionuclide migration

    NASA Astrophysics Data System (ADS)

    De Windt, L.; Pellegrini, D.; van der Lee, J.

    2004-02-01

    The interactions between cement and a clayey host-rock of an underground repository for intermediate-level radioactive waste are studied with the reactive transport code HYTEC for supporting performance assessment. Care is taken in using relevant time scales (100,000 years) and dimensions. Based on a literature review, three hypotheses are considered with respect to the mineralogical composition of the claystone and the neo-formed phases. In the long term, the pH is buffered for all hypotheses and important mineral transformations occur both in cement and the host-rock. The destruction of the primary minerals is localized close to the cement/claystone interface and is characterized by the precipitation of secondary phases with retention properties (illite, zeolite). However, beyond the zone of intense mineral transformations, the pore water chemistry is also disturbed over a dozen meters due to an attenuated but continuous flux of hydroxyl, potassium and calcium ions. Four interdependent mechanisms control the profile in the whole system: diffusion of the alkaline plume, mineralogical buffering, ion exchange and clogging of the pore space at the cement/claystone interface. The migration of a selected group of radionuclides (Cs, Ra, Tc and U) is explicitly integrated in the simulations of the strongly coupled system. Theoretical profiles of distribution coefficient (Kd) and solubility limit values are derived from the simulations, and their sensitivity with respect to the system evolution is estimated.

  20. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    NASA Astrophysics Data System (ADS)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-06-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used.

  1. Aggregate influence on chloride ion diffusion into concrete

    SciTech Connect

    Hobbs, D.W.

    1999-12-01

    An attempt is made to predict the probable effect of the aggregate on chloride ion diffusion into saturated concrete. It is shown that if the chloride ion diffusion coefficient of an aggregate ranges from 0.2 to 10 times that of the cement past matrix, then this could result in variations in the concrete chloride ion diffusion coefficient of up to 10:1. Such a variation is equivalent to a change in free water-cement ration from 0.77 to 0.45.

  2. Comparative Evaluation of the Antimicrobial Properties of Glass Ionomer Cements with and without Chlorhexidine Gluconate

    PubMed Central

    Jampanapalli, Sharada Reddy; Konda, Suhasini; Inguva, Hema Chandrika; Chimata, Vamsi Krishna

    2016-01-01

    ABSTRACT Background: Chlorhexidine gluconate is a widely used antimicrobial agent. Adding chlorhexidine and quaternary ammonium compounds to filling materials, such as composite resins, acrylic resins, and glass ionomer cements increases the antibacterial property of restorative materials. This study includes antibacterial property of glass ionomer restorative cements with chlorhexidine gluconate. Aim: The primary objective of our study was to compare the antimicrobial properties of two commercially available glass ionomer cements with and without chlorhexidine gluconate on strains of mutans streptococci. Materials and methods: Two glass ionomers (Fuji II Conventional and Fuji IX) were used. Chlorhexidine gluconate was mixed with glass ionomer cements, and antimicrobial properties against mutans streptococci were assessed by agar diffusion. The tested bacterial strain was inhibited and the antimicrobial properties decreased with time. Results: The highest amount of antimicrobial activity with mean inhibitory zone was found in Fuji II with chlorhexidine gluconate followed by Fuji IX with chlorhexidine gluconate, Fuji II without chlorhexidine gluconate, and Fuji IX without chlorhexidine gluconate. Conclusion: The results of the study confirmed that the addition of 5% chlorhexidine gluconate to Fuji II and Fuji IX glass ionomer cements resulted in a restorative material that had increased antimicrobial properties over the conventional glass ionomer cements alone for Streptococcus mutans. How to cite this article: Yadiki JV, Jampanapalli SR , Konda S, Inguva HC, Chimata VK. Comparative Evaluation of the Antimicrobial Properties of Glass Ionomer Cements with and without Chlorhexidine Gluconate. Int J Clin Pediatr Dent 2016;9(2):99-103. PMID:27365927

  3. Photocatalytic cementitious materials: influence of the microstructure of cement paste on photocatalytic pollution degradation.

    PubMed

    Chen, Jun; Poon, Chi-Sun

    2009-12-01

    Incorporation of nanophotocatalysts into cementitious materials is an important development in the field of photocatalytic pollution mitigation. In this study, the photocatalytic nitrogen oxides (NO(x)) conversion by titanium dioxide (TiO(2)) blended cement pastes was used as a standard process to evaluate the internal factors that may influence the depollution performance. The chemical composition and microstructure of the TiO(2) modified cement pastes were characterized and analyzed. The active photocatalytic sites related to the surface area of TiO(2) are the key factor in determining the photocatalytic activity. Ordinary Portland cement pastes showed lower photocatalytic activity than white cement pastes probably due to the influence of minor metallic components. X-ray diffraction and thermal gravity analysis demonstrated that TiO(2) was chemically stable in the hydrated cement matrix. The NO(x) removal ability decreased with the increase of curing age. This could be attributed to the cement hydration products which filled up capillary pores forming diffusion barriers to both reactants and photons. It was also proved that surface carbonation could reduce the photocatalytic pollution removal efficiency after the hydration of cement.

  4. The Packing of Granular Polymer Chains

    SciTech Connect

    Zou, Ling-Nan; Cheng, Xiang; Rivers, Mark L.; Jaeger, Heinrich M.; Nagel, Sidney R.; UC

    2009-12-01

    Rigid particles pack into structures, such as sand dunes on the beach, whose overall stability is determined by the average number of contacts between particles. However, when packing spatially extended objects with flexible shapes, additional concepts must be invoked to understand the stability of the resulting structure. Here, we examine the disordered packing of chains constructed out of flexibly connected hard spheres. Using x-ray tomography, we find that long chains pack into a low-density structure whose mechanical rigidity is mainly provided by the backbone. On compaction, randomly oriented, semi-rigid loops form along the chain, and the packing of chains can be understood as the jamming of these elements. Finally, we uncover close similarities between the packing of chains and the glass transition in polymers.

  5. Glass ionomer cement used as surgical dressing after radical surgical exposure of impacted teeth.

    PubMed

    Nordenvall, K J

    1992-01-01

    GPA cement was tested as an alternative to conventional surgical dressings in connection with radical surgical exposure of teeth. The material comprised 29 patients (mean age 14 4/12 years) with 35 impacted maxillary canines in palatinal position. Soft tissue and bone covering one fifth to one quarter of the tooth crown were removed. The enamel was cleaned with physiological saline and dried with gauze pads. Ketac-Fil was applied using the ESPE Aplicap system. Application stopped when the level of intact mucosa was reached. At control after 1-2 weeks (35 teeth) all packs were in place. Healing conditions were normal and soft tissue regrowth was not seen. At control after 1-6 months (23 teeth) 10 dressings were in place. Surrounding mucosa was healthy regardless of the presence of absence of pack. Soft tissue regrowth was not seen. 6-16 months postoperatively (12 teeth) all packs except 1 had been lost. Soft tissue regrowth in combination with eruption failure was seen in 2 patients. In these cases the packs had been lost soon after the first control, i.e. before healing had been completed. The results indicate that GPA cement can be recommended as an alternative to conventional surgical dressings in connection with radical surgical exposure of teeth.

  6. Evaluation of antibacterial and antifungal activity of new calcium-based cement (Biodentine) compared to MTA and glass ionomer cement

    PubMed Central

    Bhavana, Vankayala; Chaitanya, Krishna Popuri; Gandi, Padma; Patil, Jayaprakash; Dola, Binoy; Reddy, Rahul B.

    2015-01-01

    Objective: To evaluate the antibacterial and antifungal properties of calcium-based cement, Biodentine (Ca3SiO2), compared to commercial glass ionomer cements (GICs) and mineral trioxide aggregate (MTA). Materials and Methods: Pellets of GICs, ProRoot MTA, and Biodentine were prepared to test the influence of these cements on the growth of four oral microbial strains: Streptococcus mutans, Enterococcus faecalis, Escherichia coli, and Candida albicans; using agar diffusion method. Wells were formed by removing the agar and the manipulated materials were immediately placed in the wells. The pellets were lodged in seeded plates and the growth inhibition diameter around the material was measured after 24-72 h incubation at 37°C. The data were analyzed using analysis of variance (ANOVA) test to compare the differences among the three cements at different concentrations. Results: Test indicates that the antimicrobial activity of Biodentine, on all the microorganisms tested, was very strong, showing a mean inhibition zone of 3.2 mm, which extends over time towards all the strains. For Biodentine, GIC, and MTA, the diameters of the inhibition zones for S. mutans were significantly larger than for E. faecalis, Candida, and E. coli (P < 0.05). Conclusion: All materials showed antimicrobial activity against the tested strains except for GIC on Candida. Largest inhibition zone was observed for Streptococcus group. Biodentine created larger inhibition zones than MTA and GIC. PMID:25657526

  7. 7 CFR 982.11 - Pack.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE HAZELNUTS GROWN IN OREGON AND WASHINGTON... according to size, internal quality, and external appearance and condition of hazelnuts packed in...

  8. 7 CFR 982.11 - Pack.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE HAZELNUTS GROWN IN OREGON AND WASHINGTON... according to size, internal quality, and external appearance and condition of hazelnuts packed in...

  9. 7 CFR 982.11 - Pack.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE HAZELNUTS GROWN IN OREGON AND WASHINGTON... according to size, internal quality, and external appearance and condition of hazelnuts packed in...

  10. 7 CFR 982.11 - Pack.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE HAZELNUTS GROWN IN OREGON AND WASHINGTON... according to size, internal quality, and external appearance and condition of hazelnuts packed in...

  11. Random packing of spheres in Menger sponge.

    PubMed

    Cieśla, Michał; Barbasz, Jakub

    2013-06-01

    Random packing of spheres inside fractal collectors of dimension 2 < d < 3 is studied numerically using Random Sequential Adsorption (RSA) algorithm. The paper focuses mainly on the measurement of random packing saturation limit. Additionally, scaling properties of density autocorrelations in the obtained packing are analyzed. The RSA kinetics coefficients are also measured. Obtained results allow to test phenomenological relation between random packing saturation density and collector dimension. Additionally, performed simulations together with previously obtained results confirm that, in general, the known dimensional relations are obeyed by systems having non-integer dimension, at least for d < 3.

  12. Dynamic Evolution of Cement Composition and Transport Properties under Conditions Relevant to Geological Carbon Sequestration

    SciTech Connect

    Brunet, Jean-Patrick Leopold; Li, Li; Karpyn, Zuleima T; Strazisar, Brian; Grant, Bromhal

    2013-08-01

    Assessing the possibility of CO{sub 2} leakage is one of the major challenges for geological carbon sequestration. Injected CO{sub 2} can react with wellbore cement, which can potentially change cement composition and transport properties. In this work, we develop a reactive transport model based on experimental observations to understand and predict the property evolution of cement in direct contact with CO{sub 2}-saturated brine under diffusion-controlled conditions. The model reproduced the observed zones of portlandite depletion and calcite formation. Cement alteration is initially fast and slows down at later times. This work also quantified the role of initial cement properties, in particular the ratio of the initial portlandite content to porosity (defined here as φ), in determining the evolution of cement properties. Portlandite-rich cement with large φ values results in a localized “sharp” reactive diffusive front characterized by calcite precipitation, leading to significant porosity reduction, which eventually clogs the pore space and prevents further acid penetration. Severe degradation occurs at the cement–brine interface with large φ values. This alteration increases effective permeability by orders of magnitude for fluids that preferentially flow through the degraded zone. The significant porosity decrease in the calcite zone also leads to orders of magnitude decrease in effective permeability, where fluids flow through the low-permeability calcite zone. The developed reactive transport model provides a valuable tool to link cement–CO{sub 2} reactions with the evolution of porosity and permeability. It can be used to quantify and predict long-term wellbore cement behavior and can facilitate the risk assessment associated with geological CO{sub 2} sequestration.

  13. Minimally packed phases in holography

    NASA Astrophysics Data System (ADS)

    Donos, Aristomenis; Gauntlett, Jerome P.

    2016-03-01

    We numerically construct asymptotically AdS black brane solutions of D = 4 Einstein-Maxwell theory coupled to a pseudoscalar. The solutions are holographically dual to d = 3 CFTs at finite chemical potential and in a constant magnetic field, which spontaneously break translation invariance leading to the spontaneous formation of abelian and momentum magnetisation currents flowing around the plaquettes of a periodic Bravais lattice. We analyse the three-dimensional moduli space of lattice solutions, which are generically oblique, and show, for a specific value of the magnetic field, that the free energy is minimised by the triangular lattice, associated with minimal packing of circles in the plane. We show that the average stress tensor for the thermodynamically preferred phase is that of a perfect fluid and that this result applies more generally to spontaneously generated periodic phases. The triangular structure persists at low temperatures indicating the existence of novel crystalline ground states.

  14. Chain packing in polycarbonate glasses

    NASA Astrophysics Data System (ADS)

    Stueber, Dirk; Yu, Tsyr-Yan; Hess, Berk; Kremer, Kurt; O'Connor, Robert D.; Schaefer, Jacob

    2010-03-01

    Chain packing in homogeneous blends of carbonate C13-labeled bisphenol A polycarbonate with either (i) CF3-labeled bisphenol A polycarbonate or (ii) ring-F-labeled bisphenol A polycarbonate has been characterized using C13{F19} rotational-echo double-resonance (REDOR) nuclear magnetic resonance. In both blends, the C13 observed spin was at high concentration, and the F19 dephasing or probe spin was at low concentration. In this situation, an analysis in terms of a distribution of isolated heteronuclear pairs of spins is valid. Nearest-neighbor separation of C13 and F19 labels was determined by accurately mapping the initial dipolar evolution using a shifted-pulse version of REDOR. Based on the results of this experiment, the average distance from a ring-fluorine to the nearest C13O is more than 1.2 Å greater than the corresponding CF3C13O distance. Next-nearest and more-distant-neighbor separations of labels were measured in a 416-rotor-cycle constant-time version of REDOR for both blends. Statistically significant local order was established for the nearest-neighbor labels in the methyl-labeled blend. These interchain packing results are in qualitative agreement with predictions based on coarse-grained simulations of a specially adapted model for bisphenol A polycarbonate. The model itself has been previously used to determine static and dynamic properties of polycarbonate with results in good agreement with those from rheological and neutron scattering experiments.

  15. Release of cetyl pyridinium chloride from fatty acid chelate temporary dental cement

    PubMed Central

    Hurt, Andrew; Coleman, Nichola J.; Tüzüner, Tamer; Bagis, Bora; Korkmaz, Fatih Mehmet; Nicholson, John W.

    2016-01-01

    Abstract Objective To determine whether the antimicrobial nature of a fatty acid chelate temporary dental cement can be enhanced by the addition of 5% cetyl pyridinium chloride (CPC). Materials and methods The temporary cement, Cavex Temporary was employed, and additions of CPC were made to either the base or the catalyst paste prior to mixing the cement. Release of CPC from set cement specimens was followed using reverse-phase HPLC for a period of up to 2 weeks following specimen preparation. Potential interactions between Cavex and CPC were examined by Fourier transform infrared spectroscopy (FTIR) and antimicrobial effects were determined using zone of inhibition measurements after 24 h with disc-shaped specimens in cultured Streptococcus mutans. Results FTIR showed no interaction between CPC and the components of the cement. CPC release was found to follow a diffusion mechanism for the first 6 h or so, and to equilibrate after approximately 2 weeks, with no significant differences between release profiles when the additive was incorporated into the base or the catalyst paste. Diffusion was rapid, and had a diffusion coefficient of approximately 1 × 10−9 m2 s−1 in both cases. Total release was in the range 10–12% of the CPC loading. Zones of inhibition around discs containing CPC were significantly larger than those around the control discs of CPC-free cement. Conclusions The antimicrobial character of this temporary cement can be enhanced by the addition of CPC. Such enhancement is of potential clinical value, though further in vivo work is needed to confirm this. PMID:27335898

  16. A MODIFIED PMMA CEMENT (SUB-CEMENT) FOR ACCELERATED FATIGUE TESTING OF CEMENTED IMPLANT CONSTRUCTS USING CADAVERIC BONE

    PubMed Central

    Race, Amos; Miller, Mark A.; Mann, Kenneth A.

    2008-01-01

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress intensity factor, fatigue crack propagation rates for sub-cement were higher by a factor of 25 ± 19. When tested in a simplified 2 1/2D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models. PMID:18774136

  17. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    PubMed

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models.

  18. Confined disordered strictly jammed binary sphere packings

    NASA Astrophysics Data System (ADS)

    Chen, D.; Torquato, S.

    2015-12-01

    Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010), 10.1103/PhysRevE.82.061302] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to large sphere radius ratio α , and small sphere relative concentration x . We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance στ2(R ) to characterize confined packings and find that these

  19. Solidification/stabilization of technetium in cement-based grouts

    SciTech Connect

    Gilliam, T.M.; Bostick, W.D.; Spence, R.D.; Shoemaker, J.L.; Oak Ridge Gaseous Diffusion Plant, TN; Oak Ridge National Lab., TN; Oak Ridge Gaseous Diffusion Plant, TN )

    1990-01-01

    Mixed low-level radioactive and chemically hazardous process treatment wastes from the Portsmouth Gaseous Diffusion Plant are stabilized by solidification in cement-based grouts. Conventional portland cement and fly ash grouts have been shown to be effective for retention of hydrolyzable metals (e.g., lead, cadmium, uranium and nickel) but are marginally acceptable for retention of radioactive Tc-99, which is present in the waste as the highly mobile pertechnate anion. Addition of ground blast furnace slag to the grout is shown to reduce the leachability of technetium by several orders of magnitude. The selective effect of slag is believed to be due to its ability to reduce Tc(VII) to the less soluble Tc(IV) species. 12 refs., 4 tabs.

  20. Simulation of chloride penetration in cement-based materials

    SciTech Connect

    Masi, M.; Colella, D.; Radaelli, G.; Bertolini, L.

    1997-10-01

    Corrosion of reinforcement in concrete can initiate when chloride ion concentration in contact with steel bars exceeds a threshold value. It is then of crucial importance to describe Cl{sup {minus}} penetration through models based on fundamental physico-chemical relationships avoiding the use of empirical parameters. Here, the multicomponent diffusional process was simulated by means of the percolation concepts. Furthermore, the adsorption of chloride within hardened cement paste was also considered. General relationships were derived to calculate binding coefficients and effective diffusivity of ions as a function of technological concrete parameters. The model explains experimental trends in a wide range of operating conditions (e.g., with and without superimposed current) both for cement paste and concrete.

  1. Diffusion of light in two-dimensional granular materials

    NASA Astrophysics Data System (ADS)

    Sadjadi, Zeinab; Miri, MirFaez

    2013-06-01

    We study diffusive light transport in a two dimensional packing of monodisperse disks. Ray optics approximation is employed to follow a light beam or photon as it is transmitted or reflected by the grains. We present an analytic expression for the transport-mean-free path based on persistent random walk of photons in a packing of disks and express the diffusion constant of photons in terms of the refractive indices of grains and host medium, grain diameter, and packing fraction. Our analytical results are examined with numerical simulations. The derived results are beneficial for better understanding of the dynamics of granular systems.

  2. Antibacterial effect and shear bond strength of an orthodontic adhesive cement containing Galla chinensis extract

    PubMed Central

    WANG, LU-FEI; LUO, FENG; XUE, CHAO-RAN; DENG, MENG; CHEN, CHEN; WU, HAO

    2016-01-01

    Galla chinensis extract (GCE), a naturally-derived agent, has a significant inhibitory effect on cariogenic bacteria. The present study aims to evaluate the antibacterial effect and shear bond strength of an orthodontic adhesive cement containing GCE. A resin-modified glass ionomer cement incorporated GCE at five mass fractions (0, 0.1, 0.2, 0.4, and 0.8%) to prepare GCE-containing cement for analysis. For the agar diffusion test, cement specimens were placed on agar disk inoculated with Streptococcus mutans (strain ATCC 25175). Following 48 h incubation, the inhibition halo diameter was measured. To assess bacteria colonization susceptibility, S. mutans adhesion to cement specimens was detected by scanning electron microscopy (SEM) following 48 h incubation. To evaluate bond strength, a total of 50 metal brackets were bonded on premolar surfaces by using cement (10 teeth/group). Following immersion in an artificial saliva for 3 days, shear bond strength (SBS) was measured. The results demonstrated that GCE-containing samples exhibited a larger bacterial inhibition halo than control, and the inhibition zone increased as the GCE mass fraction increased. SEM analysis demonstrated that S. mutans presented a weaker adherent capacity to all GCE-containing cements compared with control, but the difference between each GCE-containing group was not significant. SBS values of each GCE-containing group exhibited no difference compared with the control. In conclusion, GCE-containing adhesive cement exhibits a promising inhibitory effect on S. mutans growth and adhesion. Without compromising bond strength, adding GCE in adhesive cement may be an attractive option for preventing white spot lesions during orthodontic treatment. PMID:27073642

  3. High temperature well bore cement slurry

    SciTech Connect

    Nahm, J.J.W.; Vinegar, H.J.; Karanikas, J.M.; Wyant, R.E.

    1993-07-13

    A low density well bore cement slurry composition is described suitable for cementing well bores with high reservoir temperatures comprising: (a) a high alumina cement in an amount of about 40 pounds per barrel of slurry or greater: (b) graphite in an amount greater than about one quarter, by volume, of the solids in the cement slurry; and (c) and a carrier fluid comprising drilling mud.

  4. Cements containing syringic acid esters -- o-ethoxybenzoic acid and zinc oxide.

    PubMed

    Brauer, G M; Stansbury, J W

    1984-02-01

    Fissure caries is reduced when syringic acid is incorporated into a cariogenic diet of rats. It was therefore of interest to synthesize n-hexyl and 2-ethylhexyl syringate and to evaluate the properties of cements with these compounds as ingredients. Liquids containing the esters dissolved in o-ethoxybenzoic acid (EBA) - when mixed with powders made up from zinc oxide, aluminum oxide, and hydrogenated rosin - hardened in from four to nine min. Properties of the cements were determined, when possible, according to ANSI/ADA specification tests. Depending on the powder-liquid ratio employed, we obtained compositions with varying physical properties desirable for different dental applications. The syringate cements, compared with the commonly used ZOE materials, have improved compressive and tensile strength, lower water solubility, do not inhibit polymerization, and are compatible with acrylic monomers. These cements pass, and mostly greatly exceed, the requirements for ZOE-type restorative materials. They also bond significantly to resins, composites, and non-precious metals. The bond strength is somewhat less than that of n-hexyl vanillate-EBA cement, but greatly exceeds the adhesion to various substrates of ZOE luting agents. Cements containing n-hexyl syringate were somewhat brittle. Best results were obtained with liquid compositions containing 5% 2-ethylhexyl syringate, 7% n-hexyl vanillate, and 88% EBA, which yielded non-brittle materials. These cements, because of the syringate ingredient, may possess caries-reducing properties. Thus, perhaps in conjunction with fluoride additives, they would be useful as insulating bases, pulp capping agents, root canal sealers, soft tissue packs, or intermediate restoratives.

  5. Neutron Scattering Studies of Cement

    NASA Astrophysics Data System (ADS)

    Allen, Andrew

    2010-03-01

    Despite more than a century of research, basic questions remain regarding both the internal structure and the role of water in Ordinary Portland cement (OPC) concrete, the world's most widely used manufactured material. Most such questions concern the primary hydration product and strength-building phase of OPC paste, the calcium silicate hydrate (C-S-H) gel. When cement and water are mixed, this phase precipitates as clusters of nanoscale (nearly amorphous) colloidal particles with an associated water-filled inter-particle pore system. Most attempts to characterize the C-S-H gel and the behavior of the associated water involve drying or other processes that, themselves, change the bound water content within and around the gel. Neutron scattering methods do not suffer from this disadvantage. Furthermore, the neutron isotope effect and the neutron's sensitivity to molecular motion have enabled considerable progress to be made in recent years by: (i) determining the C-S-H composition, density and gel structure in small-angle neutron scattering (SANS) H/D contrast variation studies; (ii) elucidating the changing state of water within cement as hydration progresses using quasielastic neutron scattering (QENS); and (iii) measuring the production and consumption of nanoscale calcium hydroxide (CH), a by-product of cement hydration that co-exists with the C-S-H gel, using inelastic neutron scattering (INS). These experiments have provided new insights into the physics and chemistry of cement hydration, and have implications for the design of new concretes with pozzolanic cement additions that are intended to address environmental concerns and sustainability issues.

  6. Probe with integrated heater and thermocouple pack

    SciTech Connect

    McCulloch, R.W.; Dial, R.E.; Finnell, W.F.R.

    1988-02-16

    This patent describes a gamma thermometer probe for detecting heat produced within the thermometer probe. It comprises: an outer elongate thermometer sheath; an elongate rod; annular recesses; a longitudinal bore; and an integrated thermocouple pack. The thermocouple pack comprises: a first type wire, and second type wires. The second type wires comprises: an outer section; and an inner segment.

  7. Pack Density Limitations of Hybrid Parachutes

    NASA Technical Reports Server (NTRS)

    Zwicker, Matthew L.; Sinclair, Robert J.

    2013-01-01

    The development and testing of the Orion crew capsule parachute system has provided a unique opportunity to study dense parachute packing techniques and limits, in order to establish a new baseline for future programs. The density of parachute packs has a significant influence on vibration loads, retention system stresses, and parachute mortar performance. Material compositions and pack densities of existing designs for space capsule recovery were compared, using the pack density of the Apollo main parachutes as the current baseline. The composition of parachutes has changed since Apollo, incorporating new materials such as Kevlar , Vectran , Teflon and Spectra . These materials have different specific densities than Nylon, so the densities of hybrid parachute packs cannot be directly compared to Nylon parachutes for determination of feasibility or volume allocation. Six parachute packs were evaluated in terms of weighted average solid density in order to achieve a non-dimensional comparison of packing density. Means of mitigating damage due to packing pressure and mortar firing were examined in light of the Capsule Parachute Assembly System (CPAS) and Apollo experience. Parachute design improvements including incorporation of modern materials and manufacturing processes serves to make CPAS the new knowledge base on which future spacecraft parachute systems will be built.

  8. Kid's PACK: Population Awareness Campaign Kit.

    ERIC Educational Resources Information Center

    Zero Population Growth, Inc., Washington, DC.

    This fun and educational kit is designed specifically for elementary students. The "Kid's PACK" (Population Awareness Campaign Kit) entertains and informs children on the environment and human population growth through stories, games, and concrete ideas for making a difference. In three booklets, the "Kid's PACK" offers elementary students…

  9. Cluster and constraint analysis in tetrahedron packings.

    PubMed

    Jin, Weiwei; Lu, Peng; Liu, Lufeng; Li, Shuixiang

    2015-04-01

    The disordered packings of tetrahedra often show no obvious macroscopic orientational or positional order for a wide range of packing densities, and it has been found that the local order in particle clusters is the main order form of tetrahedron packings. Therefore, a cluster analysis is carried out to investigate the local structures and properties of tetrahedron packings in this work. We obtain a cluster distribution of differently sized clusters, and peaks are observed at two special clusters, i.e., dimer and wagon wheel. We then calculate the amounts of dimers and wagon wheels, which are observed to have linear or approximate linear correlations with packing density. Following our previous work, the amount of particles participating in dimers is used as an order metric to evaluate the order degree of the hierarchical packing structure of tetrahedra, and an order map is consequently depicted. Furthermore, a constraint analysis is performed to determine the isostatic or hyperstatic region in the order map. We employ a Monte Carlo algorithm to test jamming and then suggest a new maximally random jammed packing of hard tetrahedra from the order map with a packing density of 0.6337.

  10. Pack rats (Neotoma spp.): Keystone ecological engineers?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential role of two species of pack rats (Neotoma albigula and Neotoma micropus) as keystone ecological engineers was examined by estimating the species diversity of invertebrates living in the nest middens, and nitrogen mineralization rates in soils associated with the middens. Although pack-...

  11. 7 CFR 51.2338 - Standard pack.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... packed in containers with cell compartments, cardboard fillers or molded trays shall be of proper size for the cells, fillers, or molds in which they are packed, and conform to the marked count. (2) In... angles to a line from stem to blossom end. (f) In order to allow for variations incident to proper...

  12. 7 CFR 51.2338 - Standard pack.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... packed in containers with cell compartments, cardboard fillers or molded trays shall be of proper size for the cells, fillers, or molds in which they are packed, and conform to the marked count. (2) In... angles to a line from stem to blossom end. (f) In order to allow for variations incident to proper...

  13. 7 CFR 51.2338 - Standard pack.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... (c) Boxes, flats, lugs, or cartons: (1) Fruit packed in containers with cell compartments, cardboard fillers or molded trays shall be of proper size for the cells, fillers, or molds in which they are packed...” means the greatest dimension measured at right angles to a line from stem to blossom end. (f) In...

  14. 7 CFR 51.3152 - Standard pack.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Nectarines packed in containers equipped with cell compartments, cardboard fillers or molded trays shall be of the proper size for the cells, fillers, or molds in which they are packed, and the number of... angles to a line from stem to blossom end of the fruit. (h) Tolerances. In order to allow for...

  15. 7 CFR 51.2338 - Standard pack.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... packed in containers with cell compartments, cardboard fillers or molded trays shall be of proper size for the cells, fillers, or molds in which they are packed, and conform to the marked count. (2) In... angles to a line from stem to blossom end. (f) In order to allow for variations incident to proper...

  16. 7 CFR 51.3152 - Standard pack.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Nectarines packed in containers equipped with cell compartments, cardboard fillers or molded trays shall be of the proper size for the cells, fillers, or molds in which they are packed, and the number of... angles to a line from stem to blossom end of the fruit. (h) Tolerances. In order to allow for...

  17. 7 CFR 51.2338 - Standard pack.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... (c) Boxes, flats, lugs, or cartons: (1) Fruit packed in containers with cell compartments, cardboard fillers or molded trays shall be of proper size for the cells, fillers, or molds in which they are packed...” means the greatest dimension measured at right angles to a line from stem to blossom end. (f) In...

  18. Slimhole frac pack tools overcome erosion problems

    SciTech Connect

    Stout, G.; Matte, T.; Rogers, B.

    1997-04-01

    The application of frac pack technology for stimulation and sand control in the Gulf of Mexico`s unconsolidated formations has steadily increased during the past several years. In addition, re-entry drilling has been one of the fastest growing development techniques used by operators for optimizing reservoir productivity. As such, smaller casing sizes are becoming more common in oil and gas producing wells. Gravel pack tools were being used for frac packing in 7-in. casing sizes and larger, but no tools were available to frac pack in the smaller 5-in. and 5{1/2}-in. casing. The erosion problems operators were experiencing in 7-in. gravel pack tools heightened concerns about fracturing through 5-in. tools with even smaller flow areas. Flow cutting in the 7-in. tools was so severe that it caused fluid communication between the gravel pack ports and the return flow holes in the crossover tool. This allowed fluid and proppant to return to the annulus above the packer, which could cause possible early screen-out and sticking of the crossover tool. The flow cutting could also reduce the tool`s pressure and tensile ratings. Any one of these problems could jeopardize the success of the frac pack operation. Therefore, an erosion resistant crossover tool for slimhole casing was developed to address these problems and optimize frac pack success.

  19. 7 CFR 906.10 - Pack.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... GRANDE VALLEY IN TEXAS Order Regulating Handling Definitions § 906.10 Pack. Pack means the specific grade, quality, size, or arrangement of fruit in a particular container or containers....

  20. Record high Wolf, Canis lupus, pack density

    USGS Publications Warehouse

    Mech, L.D.; Tracy, S.

    2004-01-01

    This report documents a year-around Wolf (Canis lupus) density of 18.2/100 km2 and a summer density of 30.8/100 km2, in a northeastern Minnesota Wolf pack. The previous record was a summer density of 14.1/100 km2, for a Wolf pack on Vancouver Island, British Columbia, Canada.

  1. Record high wolf, Canis lupus, pack density

    USGS Publications Warehouse

    Mech, L.D.; Tracy, S.

    2004-01-01

    This report documents a year-around wolf (Canis lupus) density of 18.2/100 m2 and summer density of 30.8/100 km2, in a northeastern Minnesota wolf pack. The previous record was a summer density of 14.1/100 km2, for a wolf pack on Vancouver Island, BC, Canada.

  2. Method of gravel packing a well

    SciTech Connect

    Almond, S. W.; Himes, R. E.

    1985-11-12

    The present invention relates to a thermally stable crosslinked gel gravel packing fluid for use in the treatment of highly deviated well bores penetrating a subterranean formation. The gravel packing fluid comprises an aqueous liquid, a gelling agent comprising a selected modified cellulose ether, a crosslinking agent, a breaker, a particulate agent and any additional additives that may be present.

  3. Does post septoplasty nasal packing reduce complications?

    PubMed

    Naghibzadeh, Bijan; Peyvandi, Ali Asghar; Naghibzadeh, Ghazal

    2011-01-01

    The main issues in nasal surgery are to stabilize the nose in the good position after surgery and preserve the cartilages and bones in the favorable situation and reduce the risk of deviation recurrence. Also it is necessary to avoid the synechia formation, nasal valve narrowing, hematoma and bleeding. Due to the above mentioned problems and in order to solve and minimize them nasal packing, nasal splint and nasal mold have been advised. Patients for whom the nasal packing used may faced to some problems like naso-pulmonary reflex, intractable pain, sleep disorder, post operation infection and very dangerous complication like toxic shock syndrome. We have two groups of patients and three surgeons (one of the surgeons used post operative nasal packing in his patients and the two others surgeons did not).Complications and morbidities were compared in these two groups. Comparing the two groups showed that the rate of complication and morbidities between these two groups were same and the differences were not valuable, except the pain and discomfort post operatively and at the time of its removal. Nasal packing has several risks for the patients while its effects are not studied. Septoplasty can be safely performed without postoperative nasal packing. Nasal packing had no main findings that compensated its usage. Septal suture is one of the procedures that can be used as alternative method to nasal packing. Therefore the nasal packing after septoplasty should be reserved for the patients with increased risk of bleeding. PMID:21425063

  4. Development of an effective valve packing program

    SciTech Connect

    Hart, K.A.

    1996-12-01

    Current data now shows that graphite valve packing installed within the guidance of a controlled program produces not only reliable stem sealing but predictable running loads. By utilizing recent technological developments in valve performance monitoring for both MOV`s and AOV`s, valve packing performance can be enhanced while reducing maintenance costs. Once known, values are established for acceptable valve packing loads, the measurement of actual valve running loads via the current MOV/AOV diagnostic techniques can provide indication of future valve stem sealing problems, improper valve packing installation or identify the opportunity for valve packing program improvements. At times the full benefit of these advances in material and predictive technology remain under utilized due to simple past misconceptions associated with valve packing. This paper will explore the basis for these misconceptions, provide general insight into the current understanding of valve packing and demonstrate how with this new understanding and current valve diagnostic equipment the key aspects required to develop an effective, quality valve packing program fit together. The cost and operational benefits provided by this approach can be significant impact by the: elimination of periodic valve repacking, reduction of maintenance costs, benefits of leak-free valve operation, justification for reduced Post Maintenance Test Requirements, reduced radiation exposure, improved plant appearance.

  5. 21 CFR 890.5700 - Cold pack.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cold pack. 890.5700 Section 890.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5700 Cold pack. (a) Identification....

  6. 21 CFR 890.5700 - Cold pack.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cold pack. 890.5700 Section 890.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5700 Cold pack. (a) Identification....

  7. 21 CFR 890.5700 - Cold pack.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cold pack. 890.5700 Section 890.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5700 Cold pack. (a) Identification....

  8. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    SciTech Connect

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well cements, and further

  9. Coalescence preference in densely packed microbubbles

    SciTech Connect

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; Weon, Byung Mook

    2015-01-13

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubbles shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.

  10. Coalescence preference in densely packed microbubbles

    DOE PAGES

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; Weon, Byung Mook

    2015-01-13

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubblesmore » shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.« less

  11. Fracture dimensions in frac&pack stimulation

    SciTech Connect

    Fan, Y.; Economides, M.J.

    1995-12-31

    A model is introduced to predict dynamic fracture dimensions in frac&pack stimulation. Design aspects of the two-in-one step treatment techniques, required by soft and high-permeability reservoirs are discussed. A pressure-dependent leakoff model, based on the transient flow of a non-Newtonian fluid displacing a reservoir fluid has been developed and incorporated with fracture mechanics concepts to simulate the entire process of frac&pack treatments including fracture propagation, inflation, proppant packing and closure. Results obtained in this study indicate the considerable difference between traditional fracturing and frac&pack treatments. In the latter, fracture length is much less important than fracture conductivity. This work shows how to terminate the fracture growth at the appropriate time, and how to design frac&packs resulting in fracture widths several times larger than those for traditional fracturing.

  12. Ion beam analysis of diffusion in heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Clough, A. S.; Jenneson, P. M.

    1998-04-01

    Ion-beam analysis has been applied to a variety of problems involving diffusion in heterogeneous materials. An energy loss technique has been used to study both the diffusion of water and the surface segregation of fluoropolymers in polymeric matrices. A scanning micro-beam technique has been developed to allow water concentrations in hydrophilic polymers and cements to be measured together with associated solute elements. It has also been applied to the diffusion of shampoo into hair.

  13. Thermodynamics of diffusion

    NASA Astrophysics Data System (ADS)

    Matuszak, Daniel

    Diffusion is the migration of molecules in the reference frame of a system's center of mass and it is a physical process that occurs in all chemical and biological systems. Diffusion generally involves intermolecular interactions that lead to clustering, adsorption, and phase transitions; as such, it is difficult to describe theoretically on a molecular level in systems containing both intermolecular repulsions and attractions. This work describes a simple thermodynamic approach that accounts for intermolecular attractions and repulsions (much like how the van der Waals equation does) to model and help provide an understanding of diffusion. The approach is an extension of the equilibrium Lattice Density Functional Theory of Aranovich and Donohue; it was developed with Mason and Lonsdale's guidelines on how to construct and test a transport theory. In the framework of lattice fluids, this new approach gives (a) correct equilibrium limits, (b) Fickian behavior for non-interacting systems, (c) correct departures from Fickian behavior in non-ideal systems, (d) the correct Maxwell-Stefan formulation, (e) symmetry behavior upon re-labeling species, (f) reasonable non-equilibrium phase behavior, (g) agreement with Molecular Dynamics simulations, (h) agreement with the theory of non-equilibrium thermodynamics, (i) a vanishing diffusive flux at the critical point, and (j) other qualitatively-correct behaviors when applied to problems in porous membranes and in packed beds.

  14. Condensation in Nanoporous Packed Beds.

    PubMed

    Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid

    2016-05-10

    In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization.

  15. Condensation in Nanoporous Packed Beds.

    PubMed

    Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid

    2016-05-10

    In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization. PMID:27115446

  16. Considerations for proper selection of dental cements.

    PubMed

    Simon, James F; Darnell, Laura A

    2012-01-01

    Selecting the proper cement for sufficient bond strength has become progressively complicated as the number of different materials for indirect restorations has increased. The success of any restoration is highly dependent on the proper cement being chosen and used. The function of the cement is not only to seal the restoration on the tooth but also, in some cases, to support the retention of the restoration. This ability to strengthen retention varies by the cement chosen by the clinician; therefore, careful consideration must precede cement selection.

  17. Water dynamics in hardened ordinary Portland cement paste or concrete: from quasielastic neutron scattering.

    PubMed

    Bordallo, Heloisa N; Aldridge, Laurence P; Desmedt, Arnaud

    2006-09-14

    Portland cement reacts with water to form an amorphous paste through a chemical reaction called hydration. In concrete the formation of pastes causes the mix to harden and gain strength to form a rock-like mass. Within this process lies the key to a remarkable peculiarity of concrete: it is plastic and soft when newly mixed, strong and durable when hardened. These qualities explain why one material, concrete, can build skyscrapers, bridges, sidewalks and superhighways, houses, and dams. The character of the concrete is determined by the quality of the paste. Creep and shrinkage of concrete specimens occur during the loss and gain of water from cement paste. To better understand the role of water in mature concrete, a series of quasielastic neutron scattering (QENS) experiments were carried out on cement pastes with water/cement ratio varying between 0.32 and 0.6. The samples were cured for about 28 days in sealed containers so that the initial water content would not change. These experiments were carried out with an actual sample of Portland cement rather than with the components of cement studied by other workers. The QENS spectra differentiated between three different water interactions: water that was chemically bound into the cement paste, the physically bound or "glassy water" that interacted with the surface of the gel pores in the paste, and unbound water molecules that are confined within the larger capillary pores of cement paste. The dynamics of the "glassy" and "unboud" water in an extended time scale, from a hundred picoseconds to a few nanoseconds, could be clearly differentiated from the data. While the observed motions on the picosecond time scale are mainly stochastic reorientations of the water molecules, the dynamics observed on the nanosecond range can be attributed to long-range diffusion. Diffusive motion was characterized by diffusion constants in the range of (0.6-2) 10(-9) m(2)/s, with significant reduction compared to the rate of diffusion

  18. Express penetration of hydrogen on Mg(10͞13) along the close-packed-planes.

    PubMed

    Ouyang, Liuzhang; Tang, Jiajun; Zhao, Yujun; Wang, Hui; Yao, Xiangdong; Liu, Jiangwen; Zou, Jin; Zhu, Min

    2015-06-01

    Metal atoms often locate in energetically favorite close-packed planes, leading to a relatively high penetration barrier for other atoms. Naturally, the penetration would be much easier through non-close-packed planes, i.e. high-index planes. Hydrogen penetration from surface to the bulk (or reversely) across the packed planes is the key step for hydrogen diffusion, thus influences significantly hydrogen sorption behaviors. In this paper, we report a successful synthesis of Mg films in preferential orientations with both close- and non-close-packed planes, i.e. (0001) and a mix of (0001) and (10͞13), by controlling the magnetron sputtering conditions. Experimental investigations confirmed a remarkable decrease in the hydrogen absorption temperature in the Mg (10͞13), down to 392 K from 592 K of the Mg film (0001), determined by the pressure-composition-isothermal (PCI) measurement. The ab initio calculations reveal that non-close-packed Mg(10͞13) slab is advantageous for hydrogen sorption, attributing to the tilted close-packed-planes in the Mg(10͞13) slab.

  19. Acetabular liner fixation by cement.

    PubMed

    Jiranek, William A

    2003-12-01

    Many situations in revision THA require the exchange of a PE liner in the setting of a well-fixed cementless acetabular shell. Unfortunately, a replacement liner is not always available, the locking mechanism of the metal shell may be damaged or incompatible with the desired liner, or the shell is malpositioned. Revision of a well-fixed cementless acetabular shell has been associated with considerable morbidity. This raises several questions: can a new PE liner be fixed in the existing shell using bone cement, and if so, which techniques can improve the end result, and in which patients should they be used? Biomechanical testing of cemented PE liners has shown initial fixation strengths that exceed conventional locking mechanisms. It is not known during what period this initial fixation will fail, but clinical reports with followup of as many as 6 years have shown survival in approximately 90% of cases. These studies have shown the importance of proper patient selection, accurate sizing of the PE liner, careful preparation of the substrate of the liner and the shell, and good cement technique. The potential advantages of this technique are less surgical morbidity, more rapid surgery and patient recovery, the ability to incorporate antibiotics in the cement, and more liner options.

  20. Fracture behavior of cemented sand

    NASA Astrophysics Data System (ADS)

    Alqasabi, Ahmad Othman

    While fracture mechanics for cementitious materials and composites in the past three decades have developed mainly in concrete applications, it has not yet gained its rightful place in the geotechnical field. There are many examples in the geotechnical literature, especially those related to brittle and stiff soils, where traditional approaches of analysis have proven to be inadequate. While geotechnical problems are inherently complex in nature, using the finite element method (FEM) with fracture mechanics (FM) have been shown to provide powerful analytical tool that could be used to investigate and solve many problems in geomechanics and geotechnical engineering. This thesis addresses the application of FM concepts and theories in analysis of cemented soils. In addition to theoretical aspects, experiments were conducted to evaluate the application of FM to cemented soils. Three point bending beam tests with crack mouth opening displacements (CMOD) conducted on cemented sand samples showed that fracture parameters, such as CMOD, indeed could play an important role in investigation of such soils. Using this unambiguous material parameter, field engineers might have a reliable measure that could prove to be useful in stability assessment of earth structures and soil structure system. By studying size effect on cemented sand, strong relationship was established between critical CMOD and failure, which might be a very useful index and analysis tool in geotechnical engineering practice.

  1. Process for cementing geothermal wells

    DOEpatents

    Eilers, Louis H.

    1985-01-01

    A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight mono- or copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

  2. Effect of Al Enrichment by Pack Cementation of FeCr Coatings Deposited by HVOF

    NASA Astrophysics Data System (ADS)

    Bellucci, A.; Bellini, S.; Pileggi, R.; Stocchi, D.; Tuurna, S.

    2015-01-01

    A great contribution to CO2 emissions comes from coal fired power generation. Combination of carbon capture sequestering technologies with sustainable biomass conversion constitutes a decisive boost in limiting rise in global temperature. Co-firing alternative materials with pulverized coal and using oxy-fuel combustion conditions (oxy-fuel co-combustion) is a very attractive process for power industry. Materials with both high mechanical properties and high environmental resistance are required by such advanced combustion systems. One approach to improve high-temperature oxidation/corrosion resistance is to apply protective coatings. In the present work, low and high Cr content Fe-based alloys have been deposited in order to investigate the influence of Cr content on coating protective performance in oxy-fuel co-combustion conditions. Grade 91 steel has been assumed as reference substrate. Effect of Al enrichment on coating environmental resistance has also been analyzed. Activities have been performed within the framework of Macplus Project (Integrated Project co-founded by the European Commission under the 7th Framework Program in the Energy area).

  3. Lightweight Cement Slurries based on vermiculite

    NASA Astrophysics Data System (ADS)

    Minaev, K.; Gorbenko, V.; Ulyanova, O.

    2014-08-01

    The main purpose of the research is to study the lightweight cement slurry based on vermiculite and its parameters in accordance with GOST 1581-96 requirements as well as improvement of its formulation by polymer additives. Analysis of vermiculite-containing mixture providing the lowest density while maintaining other required parameters was conducted. As a cement base, cement PTscT-I-G-CC-1, cement PTscT - 100 and vermiculite M200 and M150 were used. Vermiculite content varied from 10 to 15 %; and water-to-cement-ratio ranged from 0.65 to 0.8. To sum up, despite the fact that lightweight cement slurry based on vermiculite satisfies GOST 1581-96 requirements under laboratory conditions, field studies are necessary in order to make a conclusion about applicability of this slurry for well cementing.

  4. Zinc polycarboxylate dental cement for the controlled release of an active organic substance: proof of concept.

    PubMed

    Ali, Mohammad Naseem; Edwards, Mark; Nicholson, John W

    2010-04-01

    The potential of employing zinc polycarboxylate dental cement as a controlled release material has been studied. Benzalkonium chloride was used as the active ingredient, and incorporated at concentrations of 1, 2 and 3% by mass within the cement. At these levels, there was no observable effect on the speed of setting. Release was followed using an ion-selective electrode to determine changes in chloride ion concentration with time. This technique showed that the additive was released when the cured cement was placed in water, with release occurring by a diffusion mechanism for the first 3 h, but continuing beyond that for up to 1 week. Diffusion coefficients were in the range 5.62 x 10(-6) cm(2) s(-1) (for 1% concentration) to 10.90 x 10(-6) cm(2) s(-1) (for 3% concentration). Up to 3% of the total loading of benzalkonium chloride was released from the zinc polycarboxylate after a week, which is similar to that found in previous studies with glass-ionomer cement. It is concluded that zinc polycarboxylate cement is capable of acting as a useful material for the controlled release of active organic compounds.

  5. Mesoscale texture of cement hydrates.

    PubMed

    Ioannidou, Katerina; Krakowiak, Konrad J; Bauchy, Mathieu; Hoover, Christian G; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J-M; Del Gado, Emanuela

    2016-02-23

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium-silicate-hydrates (C-S-H) during cement hydration. Controlling structure and properties of the C-S-H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C-S-H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C-S-H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C-S-H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C-S-H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  6. Mesoscale texture of cement hydrates

    PubMed Central

    Ioannidou, Katerina; Krakowiak, Konrad J.; Bauchy, Mathieu; Hoover, Christian G.; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J.-M.; Del Gado, Emanuela

    2016-01-01

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium–silicate–hydrates (C–S–H) during cement hydration. Controlling structure and properties of the C–S–H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C–S–H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C–S–H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C–S–H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C–S–H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  7. CBL evaluation of foam-cemented and synthetic-cemented casings

    SciTech Connect

    Burckdorfer, R.; Jacobs, W.R.; Masson, J.P.

    1983-10-01

    Cement Bond Log (CBL) studies on foam-cemented and synthetic-cemented wells were initiated to determine the feasibility of, as well as to develop technologies for, evaluating these novel cementing services. Early CBL's on these cementing systems showed little effect on the log amplitude curve. Hence, CBL evaluations were difficult to obtain and interpret. A special sonde with a 1.3-ft (0.4-m) transmitter-to-receiver spacing was developed for this study. Sonic signal amplitudes were determined using cemented short-casing test sections. Sonic attenuation rates were correlated to compressive strengths for a range of cement densities. Experimental details of the cementing operation and logging studies are discussed. Data relating attenuation rates to compressive strengths and cement densities are also presented. Field results are discussed.

  8. The relationship between water absorption characteristics and the mechanical strength of resin-modified glass-ionomer cements in long-term water storage.

    PubMed

    Akashi, A; Matsuya, Y; Unemori, M; Akamine, A

    1999-09-01

    The purpose of this study is to elucidate the water absorption characteristics of resin-modified glass-ionomer cements and to also investigate the relationship between the characteristics and mechanical strength after long-term water storage. The mechanism of water diffusion in these cements is also discussed. Water absorption was measured using a gravimetric analysis for 12 m, while the diffusion coefficient was calculated using Fick's law of diffusion. Water solubility was determined based on the weight of the residue in the immersed water. The compressive and diametral tensile strength were measured at 1, 2, 6, and 12 m. A correlation was observed between the diffusion coefficient and equilibrium water uptake, which thus suggests the water in the cements to diffuse through micro-voids in accordance with the 'Free volumetric theory'. A correlation was seen between the solubility and diffusion coefficient of the cements. The deterioration ratio, defined as the ratio of the strength at 12 m versus that at 1 m, was also calculated. Finally, a negative correlation was observed between the deterioration ratio of the compressive strength and the diffusion coefficients of the cements.

  9. Improved Taxation Rate for Bin Packing Games

    NASA Astrophysics Data System (ADS)

    Kern, Walter; Qiu, Xian

    A cooperative bin packing game is a N-person game, where the player set N consists of k bins of capacity 1 each and n items of sizes a 1, ⋯ ,a n . The value of a coalition of players is defined to be the maximum total size of items in the coalition that can be packed into the bins of the coalition. We present an alternative proof for the non-emptiness of the 1/3-core for all bin packing games and show how to improve this bound ɛ= 1/3 (slightly). We conjecture that the true best possible value is ɛ= 1/7.

  10. Leadership in wolf, Canis lupus, packs

    USGS Publications Warehouse

    Mech, L. David

    2000-01-01

    I examine leadership in Wolf (Canis lupus) packs based on published observations and data gathered during summers from 1986 to 1998 studying a free-ranging pack of Wolves on Ellesmere Island that were habituated to my presence. The breeding male tended to initiate activities associated with foraging and travel, and the breeding female to initiate, and predominate in, pup care and protection. However, there was considerable overlap and interaction during these activities such that leadership could be considered a joint function. In packs with multiple breeders, quantitative information about leadership is needed.

  11. Characterization of maximally random jammed sphere packings. II. Correlation functions and density fluctuations.

    PubMed

    Klatt, Michael A; Torquato, Salvatore

    2016-08-01

    In the first paper of this series, we introduced Voronoi correlation functions to characterize the structure of maximally random jammed (MRJ) sphere packings across length scales. In the present paper, we determine a variety of different correlation functions that arise in rigorous expressions for the effective physical properties of MRJ sphere packings and compare them to the corresponding statistical descriptors for overlapping spheres and equilibrium hard-sphere systems. Such structural descriptors arise in rigorous bounds and formulas for effective transport properties, diffusion and reactions constants, elastic moduli, and electromagnetic characteristics. First, we calculate the two-point, surface-void, and surface-surface correlation functions, for which we derive explicit analytical formulas for finite hard-sphere packings. We show analytically how the contact Dirac delta function contribution to the pair correlation function g_{2}(r) for MRJ packings translates into distinct functional behaviors of these two-point correlation functions that do not arise in the other two models examined here. Then we show how the spectral density distinguishes the MRJ packings from the other disordered systems in that the spectral density vanishes in the limit of infinite wavelengths; i.e., these packings are hyperuniform, which means that density fluctuations on large length scales are anomalously suppressed. Moreover, for all model systems, we study and compute exclusion probabilities and pore size distributions, as well as local density fluctuations. We conjecture that for general disordered hard-sphere packings, a central limit theorem holds for the number of points within an spherical observation window. Our analysis links problems of interest in material science, chemistry, physics, and mathematics. In the third paper of this series, we will evaluate bounds and estimates of a host of different physical properties of the MRJ sphere packings that are based on the

  12. Characterization of maximally random jammed sphere packings. II. Correlation functions and density fluctuations

    NASA Astrophysics Data System (ADS)

    Klatt, Michael A.; Torquato, Salvatore

    2016-08-01

    In the first paper of this series, we introduced Voronoi correlation functions to characterize the structure of maximally random jammed (MRJ) sphere packings across length scales. In the present paper, we determine a variety of different correlation functions that arise in rigorous expressions for the effective physical properties of MRJ sphere packings and compare them to the corresponding statistical descriptors for overlapping spheres and equilibrium hard-sphere systems. Such structural descriptors arise in rigorous bounds and formulas for effective transport properties, diffusion and reactions constants, elastic moduli, and electromagnetic characteristics. First, we calculate the two-point, surface-void, and surface-surface correlation functions, for which we derive explicit analytical formulas for finite hard-sphere packings. We show analytically how the contact Dirac delta function contribution to the pair correlation function g2(r ) for MRJ packings translates into distinct functional behaviors of these two-point correlation functions that do not arise in the other two models examined here. Then we show how the spectral density distinguishes the MRJ packings from the other disordered systems in that the spectral density vanishes in the limit of infinite wavelengths; i.e., these packings are hyperuniform, which means that density fluctuations on large length scales are anomalously suppressed. Moreover, for all model systems, we study and compute exclusion probabilities and pore size distributions, as well as local density fluctuations. We conjecture that for general disordered hard-sphere packings, a central limit theorem holds for the number of points within an spherical observation window. Our analysis links problems of interest in material science, chemistry, physics, and mathematics. In the third paper of this series, we will evaluate bounds and estimates of a host of different physical properties of the MRJ sphere packings that are based on the

  13. CO2-saturated brine reactivity at the Portland cement-shale interface and the integrity of wellbore systems

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Lichtner, P. C.; Wigand, M. O.

    2006-12-01

    Long-term geologic storage of CO2 requires trapping the buoyant CO2 plume beneath impermeable caprocks such as shale. Given a high-quality caprock, wells that penetrate the caprock represent the most significant potential leak point in the sequestration system. This is particularly so because the Portland cement used to create the primary fluid barrier in the wellbore system is reactive with CO2 and may degrade over time. In this study, we used a combination of field observations obtained at the SACROC Unit in West Texas (the oldest CO2-enhanced oil recovery field in the US), experimental studies of cement-CO2-brine interactions, and numerical modeling to investigate the stability of the primary seal. The field observations and the recognition of the large thickness of Portland cement used in the wellbore annulus shows that the primary concern for potential leakage is not matrix flow due to carbonation of the Portland cement, but is the interfaces between the casing and cement and the cement and caprock. We focused on the dynamics of the cement- caprock interface in this study. Both field observations and experiments show that cement carbonation is accompanied by loss of primary cement phases such as portlandite and their replacement by a combination of carbonate minerals (calcite, aragonite, vaterite, and dolomite) and an amorphous alumino-silica residue. The carbonation reaction is accompanied by a transformation of the cement to a distinctive orange color. We have used the field and laboratory observations to construct a numerical model of carbonation at the cement-shale interface. The initial focus was on obtaining an adequate simulation of the cement alteration mineralogy with a 1-D, diffusion-based model. The primary variables controlling the reaction characteristics were porosity, tortuosity, and mineral reaction rates. By suitable adjustment of these parameters, the model successfully reproduces many of the alteration features of the cement including the

  14. Diffusion MRI

    NASA Astrophysics Data System (ADS)

    Fukuyama, Hidenao

    Recent advances of magnetic resonance imaging have been described, especially stressed on the diffusion sequences. We have recently applied the diffusion sequence to functional brain imaging, and found the appropriate results. In addition to the neurosciences fields, diffusion weighted images have improved the accuracies of clinical diagnosis depending upon magnetic resonance images in stroke as well as inflammations.

  15. Determining controls on element concentrations in cement kiln dust leachate

    SciTech Connect

    Duchesne, J.; Reardon, E.J.

    1998-12-31

    Cement kiln dust is a waste residue composed chiefly of oxidized, anhydrous, micron-sized particles generated as a by-product of the manufacture of Portland cement. When cement kiln dust is brought into contact with water, high concentrations of potassium, sulfate and caustic alkalinity are leached. Other constitutents are leached to a lesser extent. The objective of this study was to determine whether the concentration of a given chemical constituent in kiln dust leachate is controlled by the precipitation of a secondary mineral phase or whether its concentration depends on its initial availability to the leachate solution and its subsequent diffusive flux from hydrating particles with time. Differentiating between these two distinctive styles of leaching behavior is necessary to predict the chemical composition of kiln dust leachate under dynamic flow conditions in disposal environments. Evidence of solubility control was found for Si, Ca, Mg, Al, Zn, Ti, Sr, and Ba. The concentrations of Na, Cl, K, Mo, Cr and Se, however, were found to have no solubility control. Because of the observed lack of solubility control and the particularly high concentrations of Cr and Mo in kiln dust leachate, The authors tested two additives to reduce their concentrations: (1) aluminum oxide to promote the precipitation of calcium aluminosulfates and the proxying of chromate and molybdate for sulfate in their structures; and (2) iron metal to promote the reduction of chromate and molybdate to lower valent and less soluble forms. Neither treatment had any effect on the concentration levels of Cr and Mo in solution.

  16. Nanostructured material formulated acrylic bone cements with enhanced drug release.

    PubMed

    Shen, Shou-Cang; Ng, Wai Kiong; Dong, Yuan-Cai; Ng, Junwei; Tan, Reginald Beng Hee

    2016-01-01

    To improve antibiotic properties, poly(methyl methacrylate) (PMMA)-based bone cements are formulated with antibiotic and nanostructured materials, such as hydroxyapatite (HAP) nanorods, carbon nanotubes (CNT) and mesoporous silica nanoparticles (MSN) as drug carriers. For nonporous HAP nanorods, the release of gentamicin (GTMC) is not obviously improved when the content of HAP is below 10%; while the high content of HAP shows detrimental to mechanical properties although the release of GTMC can be substantially increased. As a comparison, low content of hollow nanostructured CNT and MSN can enhance drug delivery efficiency. The presence of 5.3% of CNT in formulation can facilitate the release of more than 75% of GTMC in 80 days, however, its mechanical strength is seriously impaired. Among nanostructured drug carriers, antibiotic/MSN formulation can effectively improve drug delivery and exhibit well preserved mechanical properties. The hollow nanostructured materials are believed to build up nano-networks for antibiotic to diffuse from the bone cement matrix to surface and achieve sustained drug release. Based on MSN drug carrier in formulated bone cement, a binary delivery system is also investigated to release GTMC together with other antibiotics.

  17. Effects of packing rates of cubic-shaped polyurethane foam carriers on the microbial community and the removal of organics and nitrogen in moving bed biofilm reactors.

    PubMed

    Feng, Quan; Wang, Yuxiao; Wang, Tianmin; Zheng, Hao; Chu, Libing; Zhang, Chong; Chen, Hongzhang; Kong, Xiuqin; Xing, Xin-Hui

    2012-08-01

    The effects of packing rates (20%, 30%, and 40%) of polyurethane foam (PUF) to the removal of organics and nitrogen were investigated by continuously feeding artificial sewage in three aerobic moving bed biofilm reactors. The results indicated that the packing rate of the PUF carriers had little influence on the COD removal efficiency (81% on average). However, ammonium removal was affected by the packing rates, which was presumably due to the different relative abundances of nitrifying bacteria. A high ammonium removal efficiency of 96.3% at a hydraulic retention time of 5h was achieved in 40% packing rate reactor, compared with 37.4% in 20% packing rate. Microprofiles of dissolved oxygen and nitrate revealed that dense biofilm limits the DO transfer distance and nitrate diffusion. Pyrosequencing analysis of the biofilm showed that Proteobacteria, Bacteroidetes and Verrucomicrobia were the three most abundant phyla, but the proportions of the microbial community varied with the packing rate of the PUF carriers.

  18. 48-Pack low level waste storage facility

    SciTech Connect

    Bilik, T.J.

    1995-11-01

    ComEd has completed a design for a low level radioactive waste (LLW) storage facility, dubbed the {open_quotes}48-Pack{close_quotes}. The 48-Pack, so named because of its ability to hold 48 high integrity containers (HICs), is a modular, heavily shielded, concrete bunker. The facility was designed to serve as an effective means of augmenting the Company`s existing process waste storage capacity if and when the need arose. This paper identifies how ComEd addressed the potential need to supplement the storage capacity at its six nuclear stations through the development of the 48-Pack. Based on the criteria of meeting safety and regulatory requirements, low cost, short lead time for construction, universal design, and modularity, the 48-Pack concept was anticipated to meet and exceed the Company`s storage needs which were anticipated to end with the availability of a Central Midwest Compact (CMC) disposal facility.

  19. Packing and Entanglements in Polymer Melts

    NASA Astrophysics Data System (ADS)

    Ozisik, Rahmi; Sternstein, Sandy S.

    2004-03-01

    The idea of obtaining the properties of polymers simply from the chemical structure is a very attractive one. Recent work on entanglements and packing indicates that the entanglement molecular weight is related to packing length (= M/(ρ N_a), where M is the molecular weight, ρ is the density, R is the end-to-end vector, and Na is the Avogadro number). The exact relationship is given as follows: Me = 218 ρ p^3. This simple equation holds for a very large group of polymers and is temperature insensitive. In this study, we studied the packing and tried to obtain a scaling between packing and M_e, and extended the concept to cyclic polymers.

  20. Combination gravel packing device and method

    SciTech Connect

    Salerni, J. V.; Zachman, J. R.

    1985-09-17

    An apparatus for gravel packing a screen positioned adjacent the casing perforations of a subterranean well incorporates an annular sealing surface immediately above the gravel pack screen. A flapper valve is mounted for movement about a horizontal pivot axis into engagement with the annular valve seat. The flapper valve and the cooperating valve seat are both provided with spherical segment sealing surfaces so as to prevent leakage through the valve due to any misalignment of the pivot axis of the flapper valve with respect to the annular valve seat. With this apparatus, the withdrawal of the gravel packing apparatus at the completion of the gravel packing operations prevents the entry of undesired fluids and contaminates into the producing formation.

  1. Contact breaking in frictionless granular packings

    NASA Astrophysics Data System (ADS)

    Wu, Qikai; Bertrand, Thibault; O'Hern, Corey; Shattuck, Mark

    We numerically study the breaking of interparticle contact networks in static granular packings of frictionless bidisperse disks that are subjected to vibrations. The packings are created using an isotropic compression protocol at different values of the total potential energy per particle Ep. We first add displacements along a single vibrational mode i of the dynamical matrix to a given packing and calculate the minimum amplitude Ai of the perturbation at which the first interparticle contact breaks. We then identify the minimum amplitude Amin over all perturbations along each mode and study the distribution of Amin from an ensemble of packings at each Ep. We then study two-, three-, and multi-mode excitations and determine the dependence of Amin on the number of modes that are included in the perturbation. W. M. Keck Foundation Science and Engineering Grant.

  2. Groundwater well with reactive filter pack

    DOEpatents

    Gilmore, Tyler J.; Holdren, Jr., George R.; Kaplan, Daniel I.

    1998-01-01

    A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

  3. Groundwater well with reactive filter pack

    DOEpatents

    Gilmore, T.J.; Holdren, G.R. Jr.; Kaplan, D.I.

    1998-09-08

    A method and apparatus are disclosed for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques. 3 figs.

  4. A Versatile, Automatic Chromatographic Column Packing Device

    ERIC Educational Resources Information Center

    Barry, Eugene F.; And Others

    1977-01-01

    Describes an inexpensive apparatus for packing liquid and gas chromatographic columns of high efficiency. Consists of stainless steel support struts, an Automat Getriebmotor, and an associated three-pulley system capable of 10, 30, and 300 rpm. (MLH)

  5. Research of magnesium phosphosilicate cement

    NASA Astrophysics Data System (ADS)

    Ding, Zhu

    Magnesium phosphosilicate cement (MPSC) is a novel phosphate bonded cement, which consists mainly of magnesia, phosphate and silicate minerals. The traditional magnesium phosphate cements (MPCs) usually composed by ammonium phosphate, and gaseous ammonia will emit during mixing and in service. There is no noxious ammonia released from MPSC, furthermore, it can recycle a large volume of the non-hazardous waste. The goal of this research is to investigate the composition, reaction products, reaction mechanism, microstructure, properties, durability and applications of the MPSC. MPSC sets rapidly and has high early strength. It reacts better with solid industrial waste when compared to Portland cement. Many solid industrial wastes, such as fly ash, steel slag, coal gangue, red coal gangue, red mud, barium-bearing slag, copper slag, silica fume, and ground granulated blast furnace slag, have been used as the main component (40% by weight) in MPSC. The research has found that these aluminosilicate (or ironsilicate, or calciumsilicate) minerals with an amorphous or glass structure can enhance the performance of MPSC. The disorganized internal structure of amorphous materials may make it possess higher reactivity compared to the crystalline phases. Chemical reaction between phosphate and these minerals may form an amorphous gel, which is favorable to the cementing. Borax, boric acid and sodium tripolyphosphate have been used as retardants in the MPSC system. It is found that boric acid has a higher retarding effect on the setting of cement, than borax does. However, sodium polyphosphate accelerates the reaction of MPSC. The hydration of MPSC is exothermic reaction. The heat evolution may prompt hydrates formation, and shorten the setting process. Modern materials characterization techniques, XRD, DSC, TG-DTA FTIR, XPS, MAS-NMR, SEM, TEM, MIP, etc. were used to analyze the phase composition, micro morphology, and microstructure of hardened MPSC. The main hydration product

  6. Distillation of light hydrocarbons in packed columns

    SciTech Connect

    Strigle, R.F.

    1985-04-01

    Newly developed design procedures have led to a wider acceptance of packed columns for distillation operations, especially those operating at atmospheric or higher pressures. Based on these new design methods, modern IMTP packing has been used in a wide variety of services to revamp over 300 distillation columns previously equipped with trays. A few of these columns are listed. These revamps were justified by capacity increase and by greater product recovery. In addition, energy savings were realized from reduction of reflux ratio.

  7. Software For Nearly Optimal Packing Of Cargo

    NASA Technical Reports Server (NTRS)

    Fennel, Theron R.; Daughtrey, Rodney S.; Schwaab, Doug G.

    1994-01-01

    PACKMAN computer program used to find nearly optimal arrangements of cargo items in storage containers, subject to such multiple packing objectives as utilization of volumes of containers, utilization of containers up to limits on weights, and other considerations. Automatic packing algorithm employed attempts to find best positioning of cargo items in container, such that volume and weight capacity of container both utilized to maximum extent possible. Written in Common LISP.

  8. Pressure solution creep of random packs of spheres

    NASA Astrophysics Data System (ADS)

    Bernabé, Y.; Evans, B.

    2014-05-01

    We performed numerical calculations of compaction in aggregates of spherical grains, using Lehner and Leroy's (2004, hereinafter LL) constitutive model of pressure solution at grain contacts. That model is founded on a local definition of the thermodynamic driving force and leads to a fully coupled formulation of elastic deformation, dissolution, and diffusive transport along the grain boundaries. The initial geometry of the aggregate was generated by random packing of spheres with a small standard deviation of the diameters. During the simulations, isostatic loading was applied. The elastic displacements at the contacts were calculated according to Digby's (1981) nonlinear contact force model, and deformation by dissolution was evaluated using the LL formulation. The aggregate strain and porosity were tracked as a function of time for fixed temperature, applied effective pressure, and grain size. We also monitored values of the average and standard deviation of total load at each contact, the coordination number for packing, and the statistics of the contact dimensions. Because the simulations explicitly exclude processes such as fracturing, plastic flow, and transport owing to surface curvature, they can be used to test the influence of relative changes in the kinetics of dissolution and diffusion processes caused by contact growth and packing rearrangements. We found that the simulated strain data could be empirically fitted by two successive power laws of the form, ɛx ∝ tξ, where ξ was equal to 1 at very early times, but dropped to as low as 0.3 at longer times. The apparent sensitivity of strain rate to stress found in the simulations was much lower than predicted from constitutive laws that assume a single dominant process driven by average macroscopic loads. Likewise, the apparent activation enthalpy obtained from the simulated data was intermediate between that assumed for dissolution and diffusion, and, further, tended to decrease with time. These

  9. Bidispersed Sphere Packing on Spherical Surfaces

    NASA Astrophysics Data System (ADS)

    Atherton, Timothy; Mascioli, Andrew; Burke, Christopher

    Packing problems on spherical surfaces have a long history, originating in the classic Thompson problem of finding the ground state configuration of charges on a sphere. Such packings contain a minimal number of defects needed to accommodate the curvature; this is predictable using the Gauss-Bonnet theorem from knowledge of the topology of the surface and the local symmetry of the ordering. Famously, the packing of spherical particles on a sphere contains a 'scar' transition, where additional defects over those required by topology appear above a certain critical number of particles and self-organize into chains or scars. In this work, we study the packing of bidispersed packings on a sphere, and hence determine the interaction of bidispersity and curvature. The resultant configurations are nearly crystalline for low values of bidispersity and retain scar-like structures; these rapidly become disordered for intermediate values and approach a so-called Appollonian limit at the point where smaller particles can be entirely accommodated within the voids left by the larger particles. We connect our results with studies of bidispersed packings in the bulk and on flat surfaces from the literature on glassy systems and jamming. Supported by a Cottrell Award from the Research Corporation for Science Advancement.

  10. Patchy particle packing under electric fields.

    PubMed

    Song, Pengcheng; Wang, Yufeng; Wang, Yu; Hollingsworth, Andrew D; Weck, Marcus; Pine, David J; Ward, Michael D

    2015-03-01

    Colloidal particles equipped with two, three, or four negatively charged patches, which endow the particles with 2-fold, 3-fold, or tetrahedral symmetries, form 1D chains, 2D layers, and 3D packings when polarized by an AC electric field. Two-patch particles, with two patches on opposite sides of the particle (2-fold symmetry) pack into the cmm plane group and 3D packings with I4mm space group symmetry, in contrast to uncharged spherical or ellipsoidal colloids that typically crystallize into a face-centered ABC layer packing. Three-patch particles (3-fold symmetry) form chains having a 21 screw axis symmetry, but these chains pair in a manner such that each individual chain has one-fold symmetry but the pair has 21 screw axis symmetry, in an arrangement that aligns the patches that would favor Coulombic interactions along the chain. Surprisingly, some chain pairs form unanticipated double-helix regions that result from mutual twisting of the chains about each other, illustrating a kind of polymorphism that may be associated with nucleation from short chain pairs. Larger 2D domains of the three-patch particles crystallize in the p6m plane group with alignment (with respect to the field) and packing densities that suggest random disorder in the domains, whereas four-patch particles form 2D domains in which close-packed rows are aligned with the field.

  11. Packing of elastic wires in flexible shells

    NASA Astrophysics Data System (ADS)

    Vetter, R.; Wittel, F. K.; Herrmann, H. J.

    2015-11-01

    The packing problem of long thin filaments that are injected into confined spaces is of fundamental interest for physicists and biologists alike. How linear threads pack and coil is well known only for the ideal case of rigid containers, though. Here, we force long elastic rods into flexible spatial confinement borne by an elastic shell to examine under which conditions recently acquired knowledge on wire packing in rigid spheres breaks down. We find that unlike in rigid cavities, friction plays a key role by giving rise to the emergence of two distinct packing patterns. At low friction, the wire densely coils into an ordered toroidal bundle with semi-ellipsoidal cross-section, while at high friction, it packs into a highly disordered, hierarchic structure. These two morphologies are shown to be separated by a continuous phase transition. Our findings demonstrate the dramatic impact of friction and confinement elasticity on filamentous packing and might drive future research on such systems in physics, biology and even medical technology toward including these mutually interacting effects.

  12. Patchy particle packing under electric fields.

    PubMed

    Song, Pengcheng; Wang, Yufeng; Wang, Yu; Hollingsworth, Andrew D; Weck, Marcus; Pine, David J; Ward, Michael D

    2015-03-01

    Colloidal particles equipped with two, three, or four negatively charged patches, which endow the particles with 2-fold, 3-fold, or tetrahedral symmetries, form 1D chains, 2D layers, and 3D packings when polarized by an AC electric field. Two-patch particles, with two patches on opposite sides of the particle (2-fold symmetry) pack into the cmm plane group and 3D packings with I4mm space group symmetry, in contrast to uncharged spherical or ellipsoidal colloids that typically crystallize into a face-centered ABC layer packing. Three-patch particles (3-fold symmetry) form chains having a 21 screw axis symmetry, but these chains pair in a manner such that each individual chain has one-fold symmetry but the pair has 21 screw axis symmetry, in an arrangement that aligns the patches that would favor Coulombic interactions along the chain. Surprisingly, some chain pairs form unanticipated double-helix regions that result from mutual twisting of the chains about each other, illustrating a kind of polymorphism that may be associated with nucleation from short chain pairs. Larger 2D domains of the three-patch particles crystallize in the p6m plane group with alignment (with respect to the field) and packing densities that suggest random disorder in the domains, whereas four-patch particles form 2D domains in which close-packed rows are aligned with the field. PMID:25692316

  13. Pharyngeal Packing during Rhinoplasty: Advantages and Disadvantages

    PubMed Central

    Razavi, Majid; Taghavi Gilani, Mehryar; Bameshki, Ali Reza; Behdani, Reza; Khadivi, Ehsan; Bakhshaee, Mahdi

    2015-01-01

    Introduction: Controversy remains as to the advantages and disadvantages of pharyngeal packing during septorhinoplasty. Our study investigated the effect of pharyngeal packing on postoperative nausea and vomiting and sore throat following this type of surgery or septorhinoplasty. Materials and Methods: This clinical trial was performed on 90 American Society of Anesthesiologists (ASA) I or II patients who were candidates for septorhinoplasty. They were randomly divided into two groups. Patients in the study group had received pharyngeal packing while those in the control group had not. The incidence of nausea and vomiting and sore throat based on the visual analog scale (VAS) was evaluated postoperatively in the recovery room as well as at 2, 6 and 24 hours. Results: The incidence of postoperative nausea and vomiting (PONV) was 12.3%, with no significant difference between the study and control groups. Sore throat was reported in 50.5% of cases overall (56.8% on pack group and 44.4% on control). Although the severity of pain was higher in the study group at all times, the incidence in the two groups did not differ significantly. Conclusion: The use of pharyngeal packing has no effect in reducing the incidence of nausea and vomiting and sore throat after surgery. Given that induced hypotension is used as the routine method of anesthesia in septorhinoplasty surgery, with a low incidence of hemorrhage and a high risk of unintended retention of pharyngeal packing, its routine use is not recommended for this procedure. PMID:26788486

  14. Decontamination of pesticide packing using ionizing radiation

    NASA Astrophysics Data System (ADS)

    Duarte, C. L.; Mori, M. N.; Kodama, Yasko; Oikawa, H.; Sampa, M. H. O.

    2007-11-01

    The Brazilian agriculture activities have consumed about 288,000 tons of pesticides per year conditioned in about 107,000,000 packing with weight of approximately 23,000 tons. The discharge of empty plastic packing of pesticides can be an environmental concern causing problems to human health, animals, and plants if done without inspection and monitoring. The objective of this work is to study the ionizing radiation effect in the main pesticides used in Brazil for plastic packing decontamination. Among the commercial pesticides, chlorpyrifos has significant importance because of its wide distribution and extensive use and persistence. The radiation-induced degradation of chlorpyrifos in liquid samples and in polyethylene pack was studied by gamma radiolysis. Packing of high-density polyethylene (HDPE) three layer coextruded, named COEX, contaminated with chlorpyrifos, were irradiated using both a multipurpose Co-60 gamma irradiator and a gamma source with 5000 Ci total activity Gamma cell type. The chemical analysis of the chlorpyrifos was made using a gas chromatography associated to the Mass Spectrometry—GCMS from Shimadzu Model QP 5000. Gamma radiation was efficient for removing chlorpyrifos from the plastic packing, in all studied cases.

  15. Lunar cement and lunar concrete

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1991-01-01

    Results of a study to investigate methods of producing cements from lunar materials are presented. A chemical process and a differential volatilization process to enrich lime content in selected lunar materials were identified. One new cement made from lime and anorthite developed compressive strengths of 39 Mpa (5500 psi) for 1 inch paste cubes. The second, a hypothetical composition based on differential volatilization of basalt, formed a mineral glass which was activated with an alkaline additive. The 1 inch paste cubes, cured at 100C and 100 percent humidity, developed compressive strengths in excess of 49 Mpa (7100 psi). Also discussed are tests made with Apollo 16 lunar soil and an ongoing investigation of a proposed dry mix/steam injection procedure for casting concrete on the Moon.

  16. Snow Pack and Lake Ice Pack Remote Sensing using Wideband Autocorrelation Radiometry

    NASA Astrophysics Data System (ADS)

    Mousavi, S.; De Roo, R. D.; Sarabandi, K.; England, A. W.

    2015-12-01

    A novel microwave radiometric technique, wideband autocorrelation radiometry (WiBAR), offers a deterministic method of remotely sensing the propagation time τdelay of microwaves through low loss layers at the bottom of the atmosphere. Terrestrial examples are the snow and lake ice packs. This technique is based on the Planck radiation from the surface beneath the pack which travels upwards through the pack towards the radiometer; such a signal we call a direct signal. On the other hand, part of this radiation reflects back from the pack's upper interface then from its lower interface, before traveling towards the radiometer's antenna. Thus, there are two signals received by the radiometer, the direct signal and a delayed copy of it. The microwave propagation time τdelay through the pack yields a measure of its vertical extent. We report a time series of measurements of the ice pack on Lake Superior from February to April 2014 to demonstrate this technique. The observations are done at frequencies from 7 to 10 GHz. At these frequencies, the volume and surface scattering are small in the ice pack. This technique is inherently low-power since there is no transmitter as opposed to active remote sensing techniques. The results of this paper is to present the WiBAR technique and show that the microwave travel time within a dry snow pack and lake ice pack can be deterministically measured for different thicknesses using this technique.

  17. Determination of Chlorinated Solvent Sorption by Porous Material—Application to Trichloroethene Vapor on Cement Mortar

    PubMed Central

    Musielak, Marion; Brusseau, Mark L.; Marcoux, Manuel; Morrison, Candice; Quintard, Michel

    2014-01-01

    Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L−1) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnitude of retardation (retardation factor = 23) and sorption (sorption coefficient = 10.6 cm3 g−1) for TCE, compared to negligible sorption for SF6. This magnitude of sorption obtained with pollutant vapor is much bigger than the one obtained for aqueous-flow experiments conducted for water-saturated systems. The considerable sorption exhibited for TCE under vapor-flow conditions is attributed to some combination of accumulation at the air-water interface and vapor-phase adsorption, both of which are anticipated to be significant for this system given the large surface area associated with the cement mortar. Transport of both SF6 and TCE was simulated successfully with a two-region physical non-equilibrium model, consistent with the dual-medium structure of the crushed cement mortar. This work emphasizes the importance of taking into account sorption phenomena when modeling transport of volatile organic compounds through concrete material, especially in regard to assessing vapor intrusion. PMID:25530647

  18. Cement bond log evaluation of foam- and synthetic-cemented casings

    SciTech Connect

    Bruckdorfer, R.A.; Jacobs, W.R.; Masson, J.P.

    1984-11-01

    Cement bond log (CBL /SUP TM/ ) studies on foam- and synthetic-cemented wells were initiated to determine the feasibility of, as well as to develop technologies for, evaluating these novel cementing services. Early CBL's on these cementing systems showed little effect on the log amplitude curve. Hence, CBL evaluations were difficult to obtain and interpret. A special sonde with a 1.3-ft (0.4-m) transmitter-toreceiver spacing was developed for this study. Sonic signal amplitudes were determined by using cemented shortcasing test sections. Sonic attenuation rates were correlated to compressive strengths for a range of cement densities. Experimental details of the cementing operation and logging studies are discussed. Data relating attenuation rates to compressive strengths and cement densities also are presented. Field results are discussed.

  19. How to obtain good primary cement jobs

    SciTech Connect

    Kundert, D.P. ); Vacca, H.L. ); Smink, D.E

    1990-04-01

    A review of 23 primary cementing jobs performed over an 11-year period in four states has shown improved success with attention having been directed to low- cost means of improving displacement of drilling muds by cement slurries. The most important factors appear to be placement of centralizers and scratchers, conditioning of the drilling mud and pipe movement (reciprocation) while conditioning mud and while placing cement. Confidence gained in the use of these methods has resulted in a job technique wherein the top cementing plug is pumped down with 10% acetic acid or other desired perforating fluid followed by 2% KCI water. This technique permits lower-cost completions. The theory and application of cement bond logging is reviewed with five example CBL-VDL logs presented and discussed. Several examples are shown under applied surface pressure conditions. An example of a CBL-VDL log for an offset well where the principles of primary cementing were not observed is shown for comparison.

  20. Sustainable cement production-present and future

    SciTech Connect

    Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H.

    2011-07-15

    Cement will remain the key material to satisfy global housing and modern infrastructure needs. As a consequence, the cement industry worldwide is facing growing challenges in conserving material and energy resources, as well as reducing its CO{sub 2} emissions. According to the International Energy Agency, the main levers for cement producers are the increase in energy efficiency and the use of alternative materials, be it as fuel or raw materials. Accordingly, the use of alternative fuels has already increased significantly in recent years, but potential for further increases still exists. In cement, the reduction of the clinker factor remains a key priority: tremendous progress has already been made. Nevertheless, appropriate materials are limited in their regional availability. New materials might be able to play a role as cement constituents in the future. It remains to be seen to what extent they could substitute Portland cement clinker to a significant degree.

  1. Diffusion and transport coefficients in synthetic opals

    SciTech Connect

    Sofo, J. O.; Mahan, G. D.

    2000-07-15

    Opals are structures composed of close-packed spheres in the size range of nano to micrometers. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the thermal and electrical conductivity is used to estimate the transport coefficients of opal structures as a function of the neck size and the mean free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures. (c) 2000 The American Physical Society.

  2. Zirconia: cementation of prosthetic restorations. Literature review

    PubMed Central

    GARGARI, M.; GLORIA, F.; NAPOLI, E.; PUJIA, A.M.

    2011-01-01

    SUMMARY Aim of the work Aim of the work was to execute a review of the international literature about the cementation of zirconia restorations, analyzing the properties of the cements most commonly used in clinical activities. Materials and methods It was performed, through PubMed, a bibliographic search on the international literature of the last 10 years using the following limits: studies in English, in vitro studies, randomized clinical trial, reviews, meta-analysis, guide-lines. Were excluded from the search: descriptive studies, case reports, discussion articles, opinion’s leader. Results From studies results that common surface treatments (silanization, acid etching) are ineffective on zirconia because it has an inert surface without glassy component (on which this surface treatments act primarily), instead the sandblasting at 1atm with aluminium oxide (Al2O3) results significantly effective for the resulting roughening that increase the surface energy and the wettability of the material. Furthermore it has been shown that zinc phosphate-based cements, Bis-GMA-based and glass-ionomer cements can’t guarantee a stable long-term adhesion, instead resin cements containing phosphate monomer 10-methacryloyloxyidecyl-dihyidrogenphosphate (MDP) have shown higher adhesion and stability values than the other cements. In particular, it has seen that bond strength of zirconia copings on dentin, using MDP-based cement, is about 6,9MPa; this value is comparable to that obtained with gold copings cementation. Conclusions Analyzed studies have led to the following conclusions: sandblasting with aluminium oxide (Al2O3) is the best surface treatment to improve adhesion between resin cements and zirconia; resin cements containing phosphate ester monomers 10-methacryloyloxyidecyl-dihyidrogenphosphate (MDP) have shown in the studies an higher bond strength and stability after ageing treatment; the best procedure for cementing zirconia restorations results the combination of

  3. Water dynamics in glass ionomer cements

    NASA Astrophysics Data System (ADS)

    Berg, M. C.; Jacobsen, J.; Momsen, N. C. R.; Benetti, A. R.; Telling, M. T. F.; Seydel, T.; Bordallo, H. N.

    2016-07-01

    Glass ionomer cements (GIC) are an alternative for preventive dentistry. However, these dental cements are complex systems where important motions related to the different states of the hydrogen atoms evolve in a confined porous structure. In this paper, we studied the water dynamics of two different liquids used to prepare either conventional or resin-modified glass ionomer cement. By combining thermal analysis with neutron scattering data we were able to relate the water structure in the liquids to the materials properties.

  4. Injectability, microstructure and release properties of sodium fusidate-loaded apatitic cement as a local drug-delivery system.

    PubMed

    Noukrati, Hassan; Cazalbou, Sophie; Demnati, Imane; Rey, Christian; Barroug, Allal; Combes, Christèle

    2016-02-01

    The introduction of an antibiotic, sodium fusidate (SF), into the liquid phase of calcium carbonate-calcium phosphate (CaCO3-CaP) bone cement was evaluated, considering the effect of the liquid to powder ratio (L/P) on the composition and microstructure of the set cement and the injectability of the paste. In all cases, we obtained set cements composed mainly of biomimetic carbonated apatite analogous to bone mineral. With this study, we evi-denced a synergistic effect of the L/P ratio and SF presence on the injectability (i.e., the filter-pressing pheno-menon was suppressed) and the setting time of the SF-loaded cement paste compared to reference cement (without SF). In addition, the in vitro study of SF release, according to the European Pharmacopoeia recommendations, showed that, regardless of the L/P ratio, the cement allowed a sustained release of the antibiotic over 1month in sodium chloride isotonic solution at 37°C and pH7.4; this release is discussed considering the microstructure characteristics of SF-loaded cements (i.e., porosity, pore-size distribution) before and after the release test. Finally, modelling antibiotic release kinetics with several models indicated that the SF release was controlled by a diffusion mechanism. PMID:26652362

  5. Pressurization of bioactive bone cement in vitro.

    PubMed

    Fujita, H; Iida, H; Kawanabe, K; Okada, Y; Oka, M; Masuda, T; Kitamura, Y; Nakamura, T

    1999-01-01

    We have developed a bioactive bone cement consisting of MgO-CaO-SiO2-P2O5-CaF2 glass-ceramic powder (AW glass-ceramic powder), silica glass powder as an inorganic filler, and bisphenol-a-glycidyl methacrylate (bis-GMA) based resin as an organic matrix. The efficacy of this bioactive bone cement was investigated by evaluating its pressurization in a 5-mm hole and small pores using a simulated acetabular cavity. Two types of acetabular components were used (flanged and unflanged sockets) and a commercially available polymethylmethacrylate (PMMA) bone cement (CMW 1 Radiopaque Bone Cement) was selected as a comparative control. Bioactive bone cement exerted greater intrusion volume in 5-mm holes than PMMA bone cement in both the flanged and unflanged sockets 10 minutes after pressurization (p < 0.05). In the small pores the bioactive and PMMA bone cements exerted almost identical intrusion volumes in flanged and unflanged sockets 10 min after pressurization. The intrusion volume in the flanged socket 10 minutes after pressurization was greater than that in the unflanged socket in all groups (p < 0.05). These results show that bioactive bone cement intrudes deeper into anchor holes than PMMA bone cement.

  6. Proper selection of contemporary dental cements.

    PubMed

    Yu, Hao; Zheng, Ming; Chen, Run; Cheng, Hui

    2014-03-01

    Today proper selection of dental cements is a key factor to achieve a successful restoration and will greatly increase the chances of long-term success of the restoration. In recent years, many newly formulated dental cements have been developed with the claim of better performance compared to the traditional materials. Unfortunately, selection of suitable dental cement for a specific clinical application has become increasingly complicated, even for the most experienced dentists. The purpose of this article is to review the currently existing dental cements and to help the dentists choose the most suitable materials for clinical applications.

  7. 27 CFR 24.308 - Bottled or packed wine record.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bottled or packed wine... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Records and Reports § 24.308 Bottled or packed wine record. A proprietor who bottles, packs, or receives bottled or packed beverage wine in bond...

  8. 21 CFR 880.5760 - Chemical cold pack snakebite kit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Chemical cold pack snakebite kit. 880.5760 Section... Therapeutic Devices § 880.5760 Chemical cold pack snakebite kit. (a) Identification. A chemical cold pack snakebit kit is a device consisting of a chemical cold pack and tourniquet used for first-aid treatment...

  9. 21 CFR 880.5760 - Chemical cold pack snakebite kit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Chemical cold pack snakebite kit. 880.5760 Section... Therapeutic Devices § 880.5760 Chemical cold pack snakebite kit. (a) Identification. A chemical cold pack snakebit kit is a device consisting of a chemical cold pack and tourniquet used for first-aid treatment...

  10. 21 CFR 880.5760 - Chemical cold pack snakebite kit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Chemical cold pack snakebite kit. 880.5760 Section... Therapeutic Devices § 880.5760 Chemical cold pack snakebite kit. (a) Identification. A chemical cold pack snakebit kit is a device consisting of a chemical cold pack and tourniquet used for first-aid treatment...

  11. 21 CFR 880.5760 - Chemical cold pack snakebite kit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Chemical cold pack snakebite kit. 880.5760 Section... Therapeutic Devices § 880.5760 Chemical cold pack snakebite kit. (a) Identification. A chemical cold pack snakebit kit is a device consisting of a chemical cold pack and tourniquet used for first-aid treatment...

  12. 21 CFR 880.5760 - Chemical cold pack snakebite kit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Chemical cold pack snakebite kit. 880.5760 Section... Therapeutic Devices § 880.5760 Chemical cold pack snakebite kit. (a) Identification. A chemical cold pack snakebit kit is a device consisting of a chemical cold pack and tourniquet used for first-aid treatment...

  13. Try-in Pastes Versus Resin Cements: A Color Comparison.

    PubMed

    Vaz, Edenize Cristina; Vaz, Maysa Magalhães; Rodrigues Gonçalves de Oliveira, Maria Beatriz; Takano, Alfa Emília; de Carvalho Cardoso, Paula; de Torres, Érica Miranda; Gonzaga Lopes, Lawrence

    2016-05-01

    This study aimed to compare the color of ceramic veneer restorations using different shades of try-in pastes and resin cement. Researchers found no differences between try-in pastes and resin cements after cementation. PMID:27213935

  14. Quasistatic packings of droplets in flat microfluidic channels

    NASA Astrophysics Data System (ADS)

    Kadivar, Erfan

    2016-02-01

    As observed in recent experiments, monodisperse droplets self-assemble spontaneously in different ordered packings. In this work, we present a numerical study of the droplet packings in the flat rectangular microfluidic channels. Employing the boundary element method, we numerically solve the Stokes equation in two-dimension and investigate the appearance of droplet packing and transition between one and two-row packings of monodisperse emulsion droplets. By calculating packing force applied on the droplet interface, we investigate the effect of flow rate, droplet size, and surface tension on the packing configurations of droplets and transition between different topological packings.

  15. [Research progress on the management of no packing after septoplasty].

    PubMed

    Lu, Sheng; Zhang, Longcheng; Li, Jieen

    2016-01-01

    Packing the nose after septoplasty is common practice. The use of postoperative packing has been proposed to reduce the dead space between the subperichondrial flaps and minimize postoperative complications such as hemorrhage, septal hematoma, and formation of synechiae. Additionally, postoperative packing is thought to stabilize the remaining cartilaginous septum and minimize persistence or recurrence of septal deviation. Despite these theoretic advantages, evidence to support the use of postoperative packing is lacking. Additionally, nasal packing is not an innocuous procedure. The use of nasal packing actually cause these complications such as postop- erative pain, mucosal injury, bleeding, worsening of breathing due to sleep disorders, and postoperative infections. Routine use of anterior nasal packing after septoplasty should be challenged for not presenting proven benefit. As alternatives to traditional packing, septal suturing, septal stapler and fibrin glue have been used recently. The purpose of this article is to summarize the progress of traditional packing to no packing after septoplasty. PMID:27197467

  16. Coalescence preference in dense packing of bubbles

    NASA Astrophysics Data System (ADS)

    Kim, Yeseul; Gim, Bopil; Gim, Bopil; Weon, Byung Mook

    2015-11-01

    Coalescence preference is the tendency that a merged bubble from the contact of two original bubbles (parent) tends to be near to the bigger parent. Here, we show that the coalescence preference can be blocked by densely packing of neighbor bubbles. We use high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence phenomenon which occurs in micro scale seconds and inside dense packing of microbubbles with a local packing fraction of ~40%. Previous theory and experimental evidence predict a power of -5 between the relative coalescence position and the parent size. However, our new observation for coalescence preference in densely packed microbubbles shows a different power of -2. We believe that this result may be important to understand coalescence dynamics in dense packing of soft matter. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST and also was supported by Ministry of Science, ICT and Future Planning (2009-0082580) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry and Education, Science and Technology (NRF-2012R1A6A3A04039257).

  17. Quartz cement in sandstones: a review

    NASA Astrophysics Data System (ADS)

    McBride, Earle F.

    Quartz cement as syntaxial overgrowths is one of the two most abundant cements in sandstones. The main factors that control the amount of quartz cement in sandstones are: framework composition; residence time in the "silica mobility window"; and fluid composition, flow volume and pathways. Thus, the type of sedimentary basin in which a sand was deposited strongly controls the cementation process. Sandstones of rift basins (arkoses) and collision-margin basins (litharenites) generally have only a few percent quartz cement; quartzarenites and other quartzose sandstones of intracratonic, foreland and passive-margin basins have the most quartz cement. Clay and other mineral coatings on detrital quartz grains and entrapment of hydrocarbons in pores retard or prevent cementation by quartz, whereas extremely permeable sands that serve as major fluid conduits tend to sequester the greatest amounts of quartz cement. In rapidly subsiding basins, like the Gulf Coast and North Sea basins, most quartz cement is precipitated by cooling, ascending formation water at burial depths of several kilometers where temperatures range from 60° to 100° C. Cementation proceeds over millions of years, often under changing fluid compositions and temperatures. Sandstones with more than 10% imported quartz cement pose special problems of fluid flux and silica transport. If silica is transported entirely as H 4SiO 4, convective recycling of formation water seems to be essential to explain the volume of cement present in most sandstones. Precipitation from single-cycle, upward-migrating formation water is adequate to provide the volume of cement only if significant volumes of silica are transported in unidentified complexes. Modeling suggests that quartz cementation of sandstones in intracratonic basins is effected by advecting meteoric water, although independent petrographic, isotopic or fluid inclusion data are lacking. Silica for quartz cement comes from both shale and sandstone beds within

  18. Deterioration of organic packing materials commonly used in air biofiltration: effect of VOC-packing interactions.

    PubMed

    Lebrero, Raquel; Estrada, José M; Muñoz, Raúl; Quijano, Guillermo

    2014-05-01

    The abiotic deterioration of three conventional organic packing materials used in biofiltration (compost, wood bark and Macadamia nutshells) caused by their interaction with toluene (used as a model volatile organic compound) was here studied. The deterioration of the materials was evaluated in terms of structural damage, release of co-substrates and increase of the packing biodegradability. After 21 days of exposure to toluene, all packing materials released co-substrates able to support microbial growth, which were not released by the control materials not exposed to toluene. Likewise, the exposure to toluene increased the packing material biodegradability by 26% in wood bark, 20% in compost and 17% in Macadamia nutshells. Finally, scanning electron microscopy analysis confirmed the deterioration in the structure of the packing materials evaluated due to the exposure to toluene, Macadamia nutshells being the material with the highest resistance to volatile organic compound attack.

  19. Deterioration of organic packing materials commonly used in air biofiltration: effect of VOC-packing interactions.

    PubMed

    Lebrero, Raquel; Estrada, José M; Muñoz, Raúl; Quijano, Guillermo

    2014-05-01

    The abiotic deterioration of three conventional organic packing materials used in biofiltration (compost, wood bark and Macadamia nutshells) caused by their interaction with toluene (used as a model volatile organic compound) was here studied. The deterioration of the materials was evaluated in terms of structural damage, release of co-substrates and increase of the packing biodegradability. After 21 days of exposure to toluene, all packing materials released co-substrates able to support microbial growth, which were not released by the control materials not exposed to toluene. Likewise, the exposure to toluene increased the packing material biodegradability by 26% in wood bark, 20% in compost and 17% in Macadamia nutshells. Finally, scanning electron microscopy analysis confirmed the deterioration in the structure of the packing materials evaluated due to the exposure to toluene, Macadamia nutshells being the material with the highest resistance to volatile organic compound attack. PMID:24603032

  20. Mechanichal Behavior of a Noncohesive Packing at Small Deformations: Deviation From Continuum Elasticity

    NASA Astrophysics Data System (ADS)

    Amar, El Hadji Bouya; Clamond, Didier; Fraysse, Nathalie; Rajchenbach, Jean

    2009-06-01

    In order to specify the mechanical behavior of grain piles, we investigate the response of a non-cohesive bidimensional packing of cylinders submitted to a point load. By means of image processing, we have an accurate access to the individual grain displacements in the reversible regime. The measured displacement field deviates unambiguously from the predictions of Continuum Elasticity. The data reveal a partial agreement with the diffusive models of Harr (1966) or of Coppersmith et al. (1996).

  1. GraSPI (Graphical Structured Packing Interface)

    SciTech Connect

    Almedia, Valmor de

    2004-06-10

    GraSPI is a collection of macros (computer programs) written to work in concert with Fluent Inc. software GAMBIT and FLUENT for modeling and design of structured packing columns used in the chemical industry (the application focus is in distillation but other applications such as gas absorbers, and other chemical contactors can also be analyzed). GraSPI is an accessory to GAMBIT and FLUENT that drives the process of complex geometry creation, domain setup, and mesh generation. In addition, GraSPI manages automatic flow analysis in the aforementioned domain via either serial or parallel computing using FLUENT. A library of typical commercial structured packing elements is included in GraSPI, so is the capability for user-defined creation of new packings.

  2. Safety considerations for fabricating lithium battery packs

    NASA Technical Reports Server (NTRS)

    Ciesla, J. J.

    1986-01-01

    Lithium cell safety is a major issue with both manufacturers and end users. Most manufacturers have taken great strides to develop the safest cells possible while still maintaining performance characteristics. The combining of lithium cells for higher voltages, currents, and capacities requires the fabricator of lithium battery packs to be knowledgable about the specific electrochemical system being used. Relatively high rate, spirally wound (large surface area) sulfur oxychloride cells systems, such as Li/Thionyl or Sulfuryl chloride are considered. Prior to the start of a design of a battery pack, a review of the characterization studies for the cells should be conducted. The approach for fabricating a battery pack might vary with cell size.

  3. GraSPI (Graphical Structured Packing Interface)

    2004-06-10

    GraSPI is a collection of macros (computer programs) written to work in concert with Fluent Inc. software GAMBIT and FLUENT for modeling and design of structured packing columns used in the chemical industry (the application focus is in distillation but other applications such as gas absorbers, and other chemical contactors can also be analyzed). GraSPI is an accessory to GAMBIT and FLUENT that drives the process of complex geometry creation, domain setup, and mesh generation.more » In addition, GraSPI manages automatic flow analysis in the aforementioned domain via either serial or parallel computing using FLUENT. A library of typical commercial structured packing elements is included in GraSPI, so is the capability for user-defined creation of new packings.« less

  4. Spontaneous Crystallization in Athermal Polymer Packings

    PubMed Central

    Karayiannis, Nikos Ch.; Foteinopoulou, Katerina; Laso, Manuel

    2013-01-01

    We review recent results from extensive simulations of the crystallization of athermal polymer packings. It is shown that above a certain packing density, and for sufficiently long simulations, all random assemblies of freely-jointed chains of tangent hard spheres of uniform size show a spontaneous transition into a crystalline phase. These polymer crystals adopt predominantly random hexagonal close packed morphologies. An analysis of the local environment around monomers based on the shape and size of the Voronoi polyhedra clearly shows that Voronoi cells become more spherical and more symmetric as the system transits to the ordered state. The change in the local environment leads to an increase in the monomer translational contribution to the entropy of the system, which acts as the driving force for the phase transition. A comparison of the crystallization of hard-sphere polymers and monomers highlights similarities and differences resulting from the constraints imposed by chain connectivity. PMID:23263666

  5. An integrated model of ring pack performance

    NASA Technical Reports Server (NTRS)

    Keribar, R.; Dursunkaya, Z.; Flemming, M. F.

    1991-01-01

    This paper describes an integrated model developed for the detailed characterization and simulation of piston ring pack behavior in internal combustion engines and the prediction of ring pack performance. The model includes comprehensive and coupled treatments of (1) ring-liner hydrodynamic and boundary lubrication and friction; (2) ring axial, radial, and (toroidal) twist dynamics; (3) inter-ring gas dynamics and blowby. The physics of each of these highly inter-related phenomena are represented by submodels, which are intimately coupled to form a design-oriented predictive tool aimed at the calculation of ring film thicknesses, ring motions, land pressures, engine friction, and blowby. The paper also describes the results of a series of analytical studies investigating effects of engine speed and load and ring pack design parameters, on ring motions, film thicknesses, and inter-ring pressures, as well as ring friction and blowby.

  6. Quartz cementation mechanisms between adjacent sandstone and shale in Middle Cambrian, West Lithuania

    NASA Astrophysics Data System (ADS)

    Zhou, Lingli; Friis, Henrik

    2013-04-01

    dissolution (chemical compaction) of quartz within the shales, or internal supply through chemical compaction within sandstones or along sandstone/shale interfaces; 2) Dissolution of detrital silicate grains, such as feldspars or lithic grains may locally play a role; 3) Shale diagenesis process that required addition of K2O and Al2O3, and resulted in loss of SiO2. Thin shales could act as an open system and export silica towards the intercalated sandstones. The main mechanism to move these dissolved silica is supposed to be compaction that resulted in the elongated grains and etched margines in shales and sandstones. Dissolved silica that was produced during dissolution may have been transported by diffusion into inter-stylolite regions or porous area with less pressure where the aqueous silica precipitates as quartz cement on quartz grains.

  7. Antimicrobial properties of erythromycin and colistin impregnated bone cement. An in vitro analysis.

    PubMed

    Ruzaimi, M Y; Shahril, Y; Masbah, O; Salasawati, H

    2006-02-01

    Deep surgical site infection is a devastating consequence of total joint arthroplasty. The use of antibiotic impregnated bone cement is a well-accepted adjunct for treatment of established infection and prevention of deep orthopaedic infection. It allows local delivery of the antibiotic at the cement-bone interface and sustained release of antibiotic provides adequate antibiotic coverage after the wound closure. Preclinical testing, randomised and clinical trials indicate that the use of antibiotic-impregnated bone cement is a potentially effective strategy in reducing the risk of deep surgical site infection following total joint arthroplasty. The purpose of this study was to assess antibacterial activity of erythromycin and colistin impregnated bone cement against strains of organisms' representative of orthopaedic infections including Gram-positive and Gram-negative aerobic organisms: Staphylococcus aureus, coagulase-negative Staphylococci, Enterococcus sp., Proteus sp., Klebsiella sp., Pseudomonas sp., and Escherichia coli. Pre-blended Simplex P bone cement with the addition of erythromycin and colistin (Howemedica Inc) was mixed thoroughly with 20ml liquid under sterile conditions to produce uniform cylindrical discs with a diameter of 14mm and thickness of 2mm. 24-48 hour agar cultures of Staphylococcus aureus, coagulase-negative Staphylococci, Enterococcus sp.,Proteus sp., Klebsiella sp.,Pseudomonas sp., and Escherichia coli were used for the agar diffusion tests. The agar plates were streaked for confluent growth followed by application of erythromycin and colistin impregnated bone cement disc to each agar plate. The plates were incubated at 30 degrees C and examined at 24, 48, 72 hours, and four and five days after the preparation of the impregnated cement. The susceptibility of Staphylococcus aureus to the control discs was most clearly demonstrated showing a distinct zone of inhibition. The zone observed around coagulase-negative Staphylococci

  8. The formation and potential importance of cemented layers in inactive sulfide mine tailings

    NASA Astrophysics Data System (ADS)

    Blowes, David W.; Reardon, Eric J.; Jambor, John L.; Cherry, John A.

    1991-04-01

    Investigations of inactive sulfide-rich tailings impoundments at the Heath Steele (New Brunswick) and Waite Amulet (Quebec) minesites have revealed two distinct types of cemented layers or "hardpans." That at Heath Steele is 10-15 cm thick, occurs 20-30 cm below the depth of active oxidation, is continuous throughout the tailings impoundment, and is characterized by cementation of tailings by gypsum and Fe(II) solid phases, principally melanterite. Hardpan at the Waite Amulet site is only 1-5 cm thick, is laterally discontinuous (10-100 cm), occurs at the depth of active oxidation, and is characterized by cementation of tailings by Fe(III) minerals, principally goethite, lepidocrocite, ferrihydrite, and jarosite. At Heath Steele, an accumulation of gas-phase CO 2, of up to 60% of the pore gas, occurs below the hardpan. The calculated diffusivity of the hardpan layer is only about 1/100 that of the overlying, uncemented tailings. The pore-water chemistry at Heath Steele has changed little over a 10-year period, suggesting that the cemented layer restricts the movement of dissolved metals through the tailings and also acts as a zone of metal accumulation. Generation of a cemented layer therefore has significant environmental and economic implications. It is likely that, in sulfide-rich tailings impoundments, the addition of carbonate-rich buffering material during the late stages of tailings deposition would enhance the formation of hardpan layers.

  9. Microbial analysis of biofilms on cement surfaces: An investigation in cement-associated peri-implantitis.

    PubMed

    Korsch, Michael; Walther, Winfried; Marten, Silke-Mareike; Obst, Ursula

    2014-09-05

    The cementation of implant-supported restorations always poses the risk of excess cement retained in the peri-implant sulcus despite careful clinical control. Excess cement can become the basis of colonization by oral microorganisms. As a result of the biofilm formation peri-mucositis or peri-implantitis may develop. Complications were observed in the routine prosthetic restoration of implants when a methacrylate-based cement was used. These developed a few weeks after cementation of the suprastructure and caused bleeding on probing as well as suppuration from the peri-implant tissue. In the revision therapy, excess cement in the peri-implant sulcus was found in many cases. This excess cement was sampled from ten patients and investigated for biofilm formation. For this purpose, the cement samples were collected and analyzed for bacterial in situ colonization by 16S rDNA-based methods. In laboratory experiments, the methacrylate-based cement and two other dental cements were then investigated for their proneness to form biofilm. The results of the in situ and in vitro investigations revealed a strong tendency towards bacterial invasion of the methacrylate-based cement by opportunistic species and pathogens.

  10. Hydration products and thermokinetic properties of cement-bentonite and cement-chalk mortars

    SciTech Connect

    Klyusov, A.A.

    1988-08-20

    Bentonite and chalk are the most popular auxiliary additives to portland cement for borehole cementation. The authors studied by physicochemical analysis methods (x-ray phase, derivatographic, and scanning and electron microscopy in combination with microdiffraction) the newly formed solid-phase composition of cement-bentonite and cement-chalk mortars (binder-additive ratio 9:1) prepared from portland cement for cold boreholes and 8% calcium chloride solution at a water-mixing ratio of 0.9. The mechanism of the influence of Ca-bentonite and chalk additives on the portland cement hydration rate was ascertained from the heat evolution rate curves. It was found that the phase compositions of the hydration products are represented in the studied systems by newly formed substances typical for portland cement. It has been noted that Ca-bentonite interacts with the calcium hydroxide of hydrated cement with the formation of hexagonal and cubic calcium hydroaluminates. Unlike Ca-bentonite, chalk does not react with portland cement at normal and reduced temperatures, does not block hydrated cement particles, which, in turn, ensures all other conditions remaining equal, a higher initial rate of hydration of cement-chalk mortar.

  11. Prediction of packing of secondary structure.

    PubMed

    Nagano, K; Ponnuswamy, P K

    1984-01-01

    An improved method of picking up candidates for predicting the packing arrangement of beta-strands and alpha-helices of the alpha/beta type domains is described here. The method of judging whether the region of the protein would fold into the alpha/beta type or not is also described. The folding constraints of globular proteins are analysed and presented in this article for application to the prediction of packing of secondary structure. The analysis of the residue-fluctuations is also applicable for the purpose.

  12. A Study of Pack Aluminizing Process for NiCrAlY Coatings Using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Huang, Xiao; Liu, Rong; Yang, Qi

    2014-01-01

    Aluminizing process is widely used to provide additional Al deposition onto superalloy surface for enhanced oxidation and corrosion resistance. In this research, an aluminizing process—pack cementation process, is used to deposit Al onto the surface of NiCrAlY coatings for increasing environmental protection. The experiment is designed using Box-Behnken approach, in which three parameters, the Al content, Ni content of the pack powder, and the temperature of the process, are selected as factors; and the thickness and Al/Ni ratio of the coatings are selected as responses. The effects of the factors on the responses are analyzed and modeled empirically. It is found that these empirical models correlate well with the results from additional sets of experiment. These models can be used to produce aluminized NiCrAlY coatings with specific thicknesses and Al/Ni ratios.

  13. Basic Chemistry for the Cement Industry.

    ERIC Educational Resources Information Center

    Turner, Mason

    This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement…

  14. A note on cement in asteroids

    NASA Astrophysics Data System (ADS)

    Bilalbegović, G.

    2016-09-01

    Cement mineral tobermorite was formed in hydrothermal experiments on alternation of calcium-aluminum-rich inclusions (CAIs) in carbonaceous chondrite meteorites. Unidentified bands at 14 μm were measured for CAIs and the matrix of the Allende meteorite sample, as well as for Hektor and Agamemnon asteroids. The presence of cement nanoparticles may explain the feature at 14 μm.

  15. 21 CFR 872.3275 - Dental cement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental cement. 872.3275 Section 872.3275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1)...

  16. 21 CFR 872.3275 - Dental cement.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Dental cement. 872.3275 Section 872.3275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1)...

  17. Tires fuel oil field cement manufacturing

    SciTech Connect

    Caveny, B.; Ashford, D.; Garcia, J.G.; Hammack, R.

    1998-08-31

    In a new process, waste automobile tires added to the fuel mix of gas, coal, and coke help fire kilns to produce API-quality oil field cement. Capital Cement uses this process in its cement-manufacturing plant in San Antonio, in which it also produces construction cement. The tires provide a lower-cost fuel and boost the temperature at a critical stage in the kiln burn process. Also, steel-belted tires add iron content to the mix. According to lab results, tire-burned cement slurries will perform the same as conventionally burned cement slurries. Actual field applications have proven that cement produced by burning tires performs no different than conventionally produced slurries. Capital`s plant uses both dry and wet processes, with separate kilns running both processes at the same time. Cement clinker is partially fired by waste tires in both kiln processes. The tires represent 12% of the fuel consumed by the plant, a number that is expected to increase. Capital burns about 200 tires/hr, or about 1.6 million tires/year.

  18. TECHNOLOGICAL CHANGES IN THE CEMENT MANUFACTURING INDUSTRY.

    ERIC Educational Resources Information Center

    WESSON, CARL E.

    THE PURPOSE OF THIS STUDY IS TO PRESENT A PRELIMINARY PICTURE OF OCCUPATIONAL CHANGES BROUGHT ABOUT IN THE MANUFACTURE OF CEMENT AS A RESULT OF INTRODUCING AUTOMATED EQUIPMENT. ONE AUTOMATED AND SEVERAL CONVENTIONAL TYPE CEMENT PLANTS WERE STUDIED. ANALYSIS OF DATA OBTAINED THROUGH RESEARCH AND DATA COLLECTED DURING THE STUDY REVEALED THAT…

  19. Vaneless diffusers

    NASA Astrophysics Data System (ADS)

    Senoo, Y.

    The influence of vaneless diffusers on flow in centrifugal compressors, particularly on surge, is discussed. A vaneless diffuser can demonstrate stable operation in a wide flow range only if it is installed with a backward leaning blade impeller. The circumferential distortion of flow in the impeller disappears quickly in the vaneless diffuser. The axial distortion of flow at the diffuser inlet does not decay easily. In large specific speed compressors, flow out of the impeller is distorted axially. Pressure recovery of diffusers at distorted inlet flow is considerably improved by half guide vanes. The best height of the vanes is a little 1/2 diffuser width. In small specific speed compressors, flow out of the impeller is not much distorted and pressure recovery can be predicted with one-dimensional flow analysis. Wall friction loss is significant in narrow diffusers. The large pressure drop at a small flow rate can cause the positive gradient of the pressure-flow rate characteristic curve, which may cause surging.

  20. Rheological Characterization of Oil Cement Suspensions

    NASA Astrophysics Data System (ADS)

    Abderrahmane, Mellak; Moh-Amokrane, Aitouche

    2015-04-01

    This study is a contribution to the study of the rheological behavior of cement suspensions. An oil well is drilled, cased, cemented and set completion. The well drilling is done in several phases then at various diameters to isolate the following problems like land fragile subsidence and poorly consolidated aquifer formations, loss of the movement in the porous and permeable formations. Therefore, it would go down a casing and cementing to work safely. The materials studied were chosen to satisfy the requirements and the problems encountered in real applications in the oil field (casing cementing wells). So it was used an oil hydraulic binder "G". This systematic study of rheological properties of cement Class "G" standardized API (American Petroleum Institute) deal with a formulation which is compatible with the surrounding environment taking account an optimal efficiency.

  1. Damage Detection in Concrete Using Diffuse Ultrasound Measurements

    NASA Astrophysics Data System (ADS)

    Deroo, Frederik; Jacobs, Laurence J.; Kim, Jin-Yeon; Qu, Jianmin; Sabra, Karim

    2010-02-01

    Heterogeneities in concrete caused by the random distribution of aggregate in the cement-paste matrix lead to strong scattering of ultrasonic waves at wavelengths on the order of the aggregate. Use of these high frequencies is necessary to detect damage at an early stage, something that is not possible with conventional ultrasonic methods. The ultrasound energy density in that regime can be described by the diffusion equation. The objective of this research is to develop a quantitative understanding of the effects of additional scattering sources, such as small cracks in the cement-paste matrix, on the parameters of the diffusion equation; these parameters are the diffusion and the dissipation coefficients. Applying diffusion theory, the diffusivity and dissipation coefficients are experimentally determined as functions of frequency using ultrasonic waves. The cuboid shaped samples employed are made of a Portland cement-paste matrix and regular aggregate, such as gravel and sand. The results provide a basic understanding of repeatability and consistency of diffusion measurements, with an emphasis on the nondestructive evaluation of concrete.

  2. Cements with low Clinker Content

    NASA Astrophysics Data System (ADS)

    García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A.

    2015-11-01

    Hybrid alkaline cements are multi-component systems containing a high percentage of mineral additions (fly ash, blast furnace slag), low proportions (<30%) of Portland clinker and scarce amounts of alkaline activators. The substantially lower amount of clinker needed to manufacture these binders in comparison to ordinary Portland cement is both economically and ecologically beneficial. Their enormous versatility in terms of the raw materials used has made them the object of considerable interest. The present study explored the mechanical strength of binary blends mixes; B1= 20% clinker (CK) + 80% fly ash (FA) and B2=20% clinker + 80% blast furnace slag (BFS), both hydrated in the presence and absence of an alkaline activator specifically designed for this purpose. The use of the activator enhanced the development of early age strength considerably. All the hydrated matrices were characterised with XRD, SEM/EDX and (29Si and 27Al) NMR. The use of the alkaline activator generated reaction products consisting primarily of a mix of gels ((N,C)-A-S-H and C-A-S-H) whose respective proportions were found to depend upon system composition and initial reactivity.

  3. Pulmonary and hepatic granulomatous disorders due to the inhalation of cement and mica dusts.

    PubMed Central

    Cortex Pimentel, J; Peixoto Menezes, A

    1978-01-01

    Hepatic and pulmonary granulomas were recognised in two workers exposed respectively to Portland cement and to muscovite dusts. The pulmonary lesions in the patient exposed to cement consisted of histiocytic granulomas and irregular fibrohyaline scars, and in the patient exposed to mica of a diffuse thickening of all interalveolar septa due to new formation of reticulin and collagen fibres and proliferation of fibroblasts and histiocytes. In the liver the following pathological findings were observed: focal or diffuse swelling of sinusoidal lining cells, sarcoid-type granulomas, and, in the case of mica exposure, perisinusoidal and portal tract fibrosis. Abundant inclusions of the inhaled material were identified within the pulmonary and hepatic lesions by histochemical and x-ray diffraction techniques. Images PMID:663882

  4. The dissolution mechanisms of silicate and glass-ionomer dental cements.

    PubMed

    Kuhn, A T; Wilson, A D

    1985-11-01

    The mechanism of dissolution of two dental cements of the acid-base setting types (silicate and glass-ionomer) is considered. Dissolution is incongruent, probably because most of the leached species can derive both from the matrix (polysalt gel) and the partly reacted glass particles. The release occurs by means of three discrete mechanisms, surface wash-off, diffusion through pores and cracks or diffusion through the bulk. Such behaviour is shown to be capable of being modelled with extremely high goodness-of-fit values, using equations such as y = const + at1/2 + bt. Analogies with research from the fields of geochemistry and nuclear fuel storage are made and these systems obey similar relationships. The dental cement systems differ, however, in that their dissolution is to some extent reversible. This is explained in terms of formation of insoluble complexes, either by reaction of the constituent ions, or by replacement of OH-, for example, with F-.

  5. Close packing of rods on spherical surfaces.

    PubMed

    Smallenburg, Frank; Löwen, Hartmut

    2016-04-28

    We study the optimal packing of short, hard spherocylinders confined to lie tangential to a spherical surface, using simulated annealing and molecular dynamics simulations. For clusters of up to twelve particles, we map out the changes in the geometry of the closest-packed configuration as a function of the aspect ratio L/D, where L is the cylinder length and D the diameter of the rods. We find a rich variety of cluster structures. For larger clusters, we find that the best-packed configurations up to around 100 particles are highly dependent on the exact number of particles and aspect ratio. For even larger clusters, we find largely disordered clusters for very short rods (L/D = 0.25), while slightly longer rods (L/D = 0.5 or 1) prefer a global baseball-like geometry of smectic-like domains, similar to the behavior of large-scale nematic shells. Intriguingly, we observe that when compared to their optimal flat-plane packing, short rods adapt to the spherical geometry more efficiently than both spheres and longer rods. Our results provide predictions for experimentally realizable systems of colloidal rods trapped at the interface of emulsion droplets.

  6. Close packing of rods on spherical surfaces

    NASA Astrophysics Data System (ADS)

    Smallenburg, Frank; Löwen, Hartmut

    2016-04-01

    We study the optimal packing of short, hard spherocylinders confined to lie tangential to a spherical surface, using simulated annealing and molecular dynamics simulations. For clusters of up to twelve particles, we map out the changes in the geometry of the closest-packed configuration as a function of the aspect ratio L/D, where L is the cylinder length and D the diameter of the rods. We find a rich variety of cluster structures. For larger clusters, we find that the best-packed configurations up to around 100 particles are highly dependent on the exact number of particles and aspect ratio. For even larger clusters, we find largely disordered clusters for very short rods (L/D = 0.25), while slightly longer rods (L/D = 0.5 or 1) prefer a global baseball-like geometry of smectic-like domains, similar to the behavior of large-scale nematic shells. Intriguingly, we observe that when compared to their optimal flat-plane packing, short rods adapt to the spherical geometry more efficiently than both spheres and longer rods. Our results provide predictions for experimentally realizable systems of colloidal rods trapped at the interface of emulsion droplets.

  7. Packing frustration in dense confined fluids.

    PubMed

    Nygård, Kim; Sarman, Sten; Kjellander, Roland

    2014-09-01

    Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile--each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.

  8. Simple Cloud Chambers Using Gel Ice Packs

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  9. Monkey Baker in bio-pack

    NASA Technical Reports Server (NTRS)

    1959-01-01

    A squirrel monkey, Baker, in bio-pack couch being readied for Jupiter (AM-18 flight). Jupiter, AM-18 mission, also carried an American-born rhesus monkey, Able into suborbit. The flight was successful and both monkeys were recovered in good condition. AM-18 was launched on May 28, 1959.

  10. The benefits of using customized procedure packs.

    PubMed

    Baines, R; Colquhoun, G; Jones, N; Bateman, R

    2001-01-01

    Discrete item purchasing is the traditional approach for hospitals to obtain consumable supplies for theatre procedures. Although most items are relatively low cost, the management and co-ordination of the supply chain, raising orders, controlling stock, picking and delivering to each operating theatre can be complex and costly. Customized procedure packs provide a solution. PMID:11892113

  11. Stuffed Derivatives of Close-Packed Structures

    ERIC Educational Resources Information Center

    Douglas, Bodie E.

    2007-01-01

    Decades ago Buerger described and later Palmer reviewed stuffed silica crystal structures widely used by mineralogists. Many publications and books have discussed common crystal structures in terms of close-packing of one set of atoms or ions (P sites) with other atoms or ions in tetrahedral (T) or octahedral (O) sites. Douglas and Ho described…

  12. The General Heating Multi-Project Pack

    ERIC Educational Resources Information Center

    Cowking A.; And Others

    1978-01-01

    Describes a multi-project pack on central heating systems, developed into an educational game, used for teaching a variety of subjects in high school. The students examine the basic decision to install a central heating system, for a particular house, and the economics involved. (GA)

  13. 7 CFR 917.13 - Pack.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Pack. 917.13 Section 917.13 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE FRESH PEARS AND PEACHES GROWN IN...

  14. 7 CFR 917.13 - Pack.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Pack. 917.13 Section 917.13 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE FRESH PEARS AND PEACHES GROWN IN...

  15. 7 CFR 917.13 - Pack.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Pack. 917.13 Section 917.13 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE FRESH PEARS AND PEACHES GROWN IN...

  16. 7 CFR 917.13 - Pack.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Pack. 917.13 Section 917.13 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE FRESH PEARS AND PEACHES GROWN IN...

  17. 7 CFR 917.13 - Pack.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Pack. 917.13 Section 917.13 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE FRESH PEARS AND PEACHES GROWN IN...

  18. Random close packing in protein cores

    NASA Astrophysics Data System (ADS)

    Ohern, Corey

    Shortly after the determination of the first protein x-ray crystal structures, researchers analyzed their cores and reported packing fractions ϕ ~ 0 . 75 , a value that is similar to close packing equal-sized spheres. A limitation of these analyses was the use of `extended atom' models, rather than the more physically accurate `explicit hydrogen' model. The validity of using the explicit hydrogen model is proved by its ability to predict the side chain dihedral angle distributions observed in proteins. We employ the explicit hydrogen model to calculate the packing fraction of the cores of over 200 high resolution protein structures. We find that these protein cores have ϕ ~ 0 . 55 , which is comparable to random close-packing of non-spherical particles. This result provides a deeper understanding of the physical basis of protein structure that will enable predictions of the effects of amino acid mutations and design of new functional proteins. We gratefully acknowledge the support of the Raymond and Beverly Sackler Institute for Biological, Physical, and Engineering Sciences, National Library of Medicine training grant T15LM00705628 (J.C.G.), and National Science Foundation DMR-1307712 (L.R.).

  19. Radiological and practical aspects of body packing

    PubMed Central

    Reginelli, A; Pinto, F; Sica, G; Scaglione, M; Berger, F H; Romano, L; Brunese, L

    2014-01-01

    Body packing represents the concealment of illegal substances in a person's body with the aim of smuggling. “Body packers” either swallow drug-filled packets or introduce drug-filled packets into their bodies rectally or vaginally with the purpose of concealing them. The three main smuggled drugs are cocaine, heroin and cannabis products. Body packing represents a serious risk of acute narcotic toxicity from drug exposure, intestinal obstruction owing to pellet impaction and bowel perforation with consequent abdominal sepsis. A suspected body packer is generally admitted to hospital to perform imaging investigations and confirm the presence of drugs in his/her body. Radiological imaging methods are essential to diagnose body packing and to detect potential complications. Increasing sophistication of traffickers and improvements in packaging add to the detection difficulty. Radiologists should be aware of the appearance of drug packets in a range of imaging modalities. This article informs physicians about the challenging aspects of body packing, its background and medicolegal issues, what imaging methods can be used and what criteria are necessary to perform a correct diagnosis. PMID:24472727

  20. 7 CFR 920.13 - Pack.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Pack. 920.13 Section 920.13 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE KIWIFRUIT GROWN IN CALIFORNIA...

  1. Close packing of rods on spherical surfaces.

    PubMed

    Smallenburg, Frank; Löwen, Hartmut

    2016-04-28

    We study the optimal packing of short, hard spherocylinders confined to lie tangential to a spherical surface, using simulated annealing and molecular dynamics simulations. For clusters of up to twelve particles, we map out the changes in the geometry of the closest-packed configuration as a function of the aspect ratio L/D, where L is the cylinder length and D the diameter of the rods. We find a rich variety of cluster structures. For larger clusters, we find that the best-packed configurations up to around 100 particles are highly dependent on the exact number of particles and aspect ratio. For even larger clusters, we find largely disordered clusters for very short rods (L/D = 0.25), while slightly longer rods (L/D = 0.5 or 1) prefer a global baseball-like geometry of smectic-like domains, similar to the behavior of large-scale nematic shells. Intriguingly, we observe that when compared to their optimal flat-plane packing, short rods adapt to the spherical geometry more efficiently than both spheres and longer rods. Our results provide predictions for experimentally realizable systems of colloidal rods trapped at the interface of emulsion droplets. PMID:27131565

  2. 7 CFR 989.9 - Packed raisins.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Packed raisins. 989.9 Section 989.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN...

  3. 7 CFR 989.9 - Packed raisins.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Packed raisins. 989.9 Section 989.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN...

  4. 7 CFR 989.9 - Packed raisins.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Packed raisins. 989.9 Section 989.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN...

  5. 7 CFR 989.9 - Packed raisins.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Packed raisins. 989.9 Section 989.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN...

  6. 7 CFR 989.9 - Packed raisins.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Packed raisins. 989.9 Section 989.9 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN...

  7. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  8. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  9. Physico-chemical investigation of clayey/cement-based materials interaction in the context of geological waste disposal: Experimental approach and results

    SciTech Connect

    Dauzeres, A.; Le Bescop, P.; Sardini, P.; Cau Dit Coumes, C.

    2010-08-15

    Within the concepts under study for the geological disposal of intermediate-level long-lived waste, cement-based materials are considered as candidate materials. The clayey surrounding rock and the cement-based material being considered differ greatly in their porewater composition. Experiments are conducted on the diffusion of solutes constituting those porewaters in a confined clay/cement composite system using cells. The test temperature was set at 25 {sup o}C and 2, 6 and 12 months. Results supply new information: carbonation is low and not clog the interface. Such absence of carbonation allows for the diffusion of aqueous species and, thus, for the degradation of the cement paste and the illitisation of illite/smectite interstratifications. The cement material is subjected to a decalcification: portlandite dissolution and a CaO/SiO{sub 2} reduction in the calcium silicate hydrate. The sulphate in diffusion induces non-destructive ettringite precipitation in the largest pores. After 12 months, about 800 {mu}m of cement material is concerned by decalcification.

  10. Microscale investigation of arsenic distribution and species in cement product from cement kiln coprocessing wastes.

    PubMed

    Yang, Yufei; Xue, Jingchuan; Huang, Qifei

    2013-01-01

    To improve the understanding of the immobilization mechanism and the leaching risk of Arsenic (As) in the cement product from coprocessing wastes using cement kiln, distribution and species of As in cement product were determined by microscale investigation methods, including electron probe microanalysis (EPMA) and X-ray absorption spectroscopy. In this study, sodium arsenate crystals (Na3AsO412H2O) were mixed with cement production raw materials and calcined to produce cement clinker. Then, clinker was mixed water to prepare cement paste. EPMA results showed that As was generally distributed throughout the cement paste. As content in calcium silicate hydrates gel (C-S-H) was in low level, but higher than that in other cement mineral phases. This means that most of As is expected to form some compounds that disperse on the surfaces of cement mineral phases. Linear combination fitting (LCF) of the X-ray absorption near edge structure spectra revealed that As in the cement paste was predominantly As(V) and mainly existed as Mg3(AsO4)2, Ca3(AsO4)2, and Na2HAsO4. PMID:24223030

  11. Microscale investigation of arsenic distribution and species in cement product from cement kiln coprocessing wastes.

    PubMed

    Yang, Yufei; Xue, Jingchuan; Huang, Qifei

    2013-01-01

    To improve the understanding of the immobilization mechanism and the leaching risk of Arsenic (As) in the cement product from coprocessing wastes using cement kiln, distribution and species of As in cement product were determined by microscale investigation methods, including electron probe microanalysis (EPMA) and X-ray absorption spectroscopy. In this study, sodium arsenate crystals (Na3AsO412H2O) were mixed with cement production raw materials and calcined to produce cement clinker. Then, clinker was mixed water to prepare cement paste. EPMA results showed that As was generally distributed throughout the cement paste. As content in calcium silicate hydrates gel (C-S-H) was in low level, but higher than that in other cement mineral phases. This means that most of As is expected to form some compounds that disperse on the surfaces of cement mineral phases. Linear combination fitting (LCF) of the X-ray absorption near edge structure spectra revealed that As in the cement paste was predominantly As(V) and mainly existed as Mg3(AsO4)2, Ca3(AsO4)2, and Na2HAsO4.

  12. Cement oscillation increases interlock strength at the cement-bone interface, with commentary.

    PubMed

    Wang, Yi; Han, Pengfei; Gu, Wenguang; Shi, Zuowei; Li, Dabin; Wang, Changli

    2009-05-01

    Modern cementing techniques aim to improve the interlock between bone and cement and to establish a durable interface. Cement penetration is generally believed to influence interface failure, but current methods for improving the cement-bone interface are inadequate. Oscillation is the reciprocated movement of an object through its balanced position, or the quantum physics of systematic fluctuation back and forth near an average value (or trimmed value). To increase the interlock strength at the cement-bone interface, we designed a cement oscillator according to the principles of vibrational mechanics. To evaluate the effect of oscillation on the quality of interlock strength at the cement-bone interface, we randomly divided 156 femoral bones of adult pigs into 2 groups, oscillated and control, and performed mechanical tests to assess interlock strength at the cement-bone interface. The filling effect of bone cement was observed and analyzed under a stereomicroscope, and then each oscillated femur was compared with a control femur. The interlock strength at the cement-bone interface in the oscillated group was significantly greater than in the control group (P<.05), and the filling effect in the oscillated group was also better than that in the control group (P<.05). Our findings show that oscillation of bone cement significantly increases interlock strength at the cement-bone interface, point the way for clinicians to develop a high-performance and pragmatic fixation technique for prostheses to increase interlock strength, and will be of considerable practical importance in helping to prevent aseptic loosening of cemented prostheses.

  13. The single-valued diffusion coefficient for ionic diffusion through porous media

    NASA Astrophysics Data System (ADS)

    Lorente, Sylvie; Voinitchi, Dorinel; Bégué-Escaffit, Pascale; Bourbon, Xavier

    2007-01-01

    The current literature on ionic diffusion through porous media teaches that the diffusion coefficient is a complicated function depending on concentration, concentration gradient, and electrical potential gradient. This paper documents how natural diffusion tests and migration tests (electrically enhanced transport) lead to the measurement of a unique diffusion coefficient for a given ionic species and a given material. Natural diffusion tests for chloride and a ceramic of TiO2 were implemented at two different concentration levels. The experiments were designed to emphasize the impact of the membrane potential in the pore solution on the chloride flux. By accounting for the membrane potential it is shown that the chloride diffusion coefficient is unique for a given material. An iterative method based on a numerical model solving the continuity equations and the current law is proposed to determine the diffusion coefficient. The approach is applied with success to published results on a cement-based material. Migration tests were also performed with chloride in a cementitious material, where the chloride transport is enhanced by an external electrical field. The experimental results reveal the competition between diffusion and electrical effects in the case of noncontaminated porous materials. By varying the electrical potential difference it is shown that the flux of chloride varies linearly with the electrical field, meaning that the chloride diffusion coefficient does not depend on the electrical field. The main conclusion is that there is only one chloride diffusion coefficient for a given porous material.

  14. Extraoral Cementation Technique to Minimize Cement-Associated Peri-implant Marginal Bone Loss: Can a Thin Layer of Zinc Oxide Cement Provide Sufficient Retention?

    PubMed

    Frisch, Eberhard; Ratka-Krüger, Petra; Weigl, Paul; Woelber, Johan

    2016-01-01

    This report describes the use of laboratory-fabricated crown intaglio replicas for extraorally prepared cementation of fixed restorations to implants. This technique minimizes excess cement and may therefore reduce the risk of cement-related marginal peri-implant bone loss. It is unclear whether the remaining thin layer of luting agent provides sufficient retention if low-adhesive zinc oxide (ZnO) cement is used. In 85 consecutive patients, 113 single crowns were cemented to implants using extraoral cementation technique (ECT) and ZnO cement. All patients were followed for 6 months and investigated for decementation. Seven events of decementation (incidence: 6.19%) were found in 7 patients (8.24%). ECT may represent a viable cementation technique for implant-supported single crowns, even using low-adhesion cements.

  15. Extraoral Cementation Technique to Minimize Cement-Associated Peri-implant Marginal Bone Loss: Can a Thin Layer of Zinc Oxide Cement Provide Sufficient Retention?

    PubMed

    Frisch, Eberhard; Ratka-Krüger, Petra; Weigl, Paul; Woelber, Johan

    2016-01-01

    This report describes the use of laboratory-fabricated crown intaglio replicas for extraorally prepared cementation of fixed restorations to implants. This technique minimizes excess cement and may therefore reduce the risk of cement-related marginal peri-implant bone loss. It is unclear whether the remaining thin layer of luting agent provides sufficient retention if low-adhesive zinc oxide (ZnO) cement is used. In 85 consecutive patients, 113 single crowns were cemented to implants using extraoral cementation technique (ECT) and ZnO cement. All patients were followed for 6 months and investigated for decementation. Seven events of decementation (incidence: 6.19%) were found in 7 patients (8.24%). ECT may represent a viable cementation technique for implant-supported single crowns, even using low-adhesion cements. PMID:27479343

  16. Calcite cements in the modern Floridan aquifer

    SciTech Connect

    Hammes, U.; Budd, D.A. )

    1991-03-01

    Calcite cements in the Ocala (Eocene) and Suwannee (Oligocene) formations, southwestern Floridan aquifer have been studied to determine updip to downdip variations in cement chemistries and cathodoluminescence within a modern regional confined aquifer. Interparticle, intraparticle, and fracture-fill cements comprise 5-15% of the limestones. Five different calcite cement morphologies are distinguishable and occur throughout the aquifer: (1) circumgranular microspar, (2) fine- to medium-crystalline rhombs, (3) medium-crystalline syntaxial overgrowths on echinoderms, (4) fine-crystalline pore-filling mosaics, and (5) micrite. Type 5 occurs only below former exposure surfaces. Volumetrically, type 3 is the most important and type 4 is the least. Cathodoluminescence observations reveal only nonluminescent cements updip and an increase in luminescent zones and luminescent intensity downdip. Updip nonluminescent cements have very low Fe and Mn concentrations, but high Mg and Sr concentrations. These relations are interpreted to reflect oxidizing conditions and high rock/water interaction. Fe and Mn concentrations increase and Sr and Mg contents decrease downdip. These trends are interpreted to reflect reducing conditions, cross-formational flow, and slower rock/water interaction. Downdip cathodoluminescence zonations consist of a broad nonluminescent zone, followed by a thin bright orange zone, and then a dull luminescence zone. These geochemical and luminescent patterns along a regional flow line in the confined Floridan aquifer have many similarities to those observed in calcite cements described from ancient aquifers.

  17. Correlating cement characteristics with rheology of paste

    SciTech Connect

    Vikan, H. Justnes, H.; Winnefeld, F.; Figi, R.

    2007-11-15

    The influence of cement characteristics such as cement fineness and clinker composition on the 'flow resistance' measured as the area under the shear stress-shear rate flow curve has been investigated. Three different types of plasticizers namely naphthalene sulphonate-formaldehyde condensate, polyether grafted polyacrylate, and lignosulphonate have been tested in this context on 6 different cements. The flow resistance correlated well with the cement characteristic (Blaine.{l_brace}d.cC{sub 3}A + [1 - d].C{sub 3}S{r_brace}) where the factor d represents relative reactivity of cubic C{sub 3}A and C{sub 3}S while cC{sub 3}A and C{sub 3}S represent the content of these minerals. It was found to be either a linear or exponential function of the combined cement characteristic depending on plasticizer type and dosage. The correlation was valid for a mix of pure cement and cement with fly ash, limestone filler (4%), as well as pastes with constant silica fume dosage, when the mineral contents were determined by Rietveld analysis of X-ray diffractograms.

  18. Dermatoses in cement workers in southern Taiwan.

    PubMed

    Guo, Y L; Wang, B J; Yeh, K C; Wang, J C; Kao, H H; Wang, M T; Shih, H C; Chen, C J

    1999-01-01

    Construction workers are known to have occupational dermatoses. The prevalence of such dermatoses was unknown in Taiwanese construction workers. The objective of this study was to determine the work exposure, prevalence of skin manifestations, and sensitivity to common contact allergens in cement workers of southern Taiwan. A total of 1147 current regular cement workers were telephone-interviewed about skin problems during the past 12 months, work exposure, and personal protection. Among those interviewed, 166 were examined and patch tested with common contact allergens. A high % of cement workers reported skin problems in the past 12 months. More men (13.9%) reported skin problems possibly related to work than women (5.4%). Prevalence was associated with lower use of gloves, duration of work as cement worker, and more time in jobs involving direct manual handling of cement, especially tiling. A high % of dermatitis was noted in the 166 workers examined, which correlated with reported skin problems. On patch testing, construction workers had a high frequency of sensitivity to chromate. Sensitivity to chromate or cobalt was associated with reported skin problems, or dorsal hand dermatitis on examination. These workers' dermatitis was under-diagnosed and inadequately managed. It is concluded that cement workers in southern Taiwan had a high prevalence of skin problems related to cement use. Protective measures, work practice, and physician education should be improved to prevent or manage such problems.

  19. An evaluation of cement-based waste forms using the results of approximately two years of dynamic leaching

    SciTech Connect

    Cote, P.L.; Constable, T.W.; Moreira, A.

    1987-01-01

    The leachability of cement-based waste forms was assessed using a dynamic leaching test, in which solidified waste cubes are immersed in distilled water, and the water renewed at variable time intervals which were calculated assuming bulk diffusion controlled leaching. The four waste forms assessed were produced by solidifying a synthetic sludge containing arsenic, cadmium, chromium and lead, using additives of lime and fly ash, fly ash and cement, bentonite and cement, and cement and soluble silicates. The cumulative fractions of cadmium, chromium and lead leached were smaller than 1% for all the waste forms studied. Arsenic leached more readily, especially from the soluble silicates-cement waste form, attaining 15% after 665 days. The pH of the leachates remained alkaline throughout the testing period. For cadmium, chromium and lead, the rate of leaching was explained by diffusion of the soluble fraction through the pore system of the waste form matrix. For arsenic, the rate of leaching was linear, and it is postulated that the rate was limited by the mobilization of the arsenite ion resulting from carbonation of basic calcium arsenite.

  20. Rebamipide Delivered by Brushite Cement Enhances Osteoblast and Macrophage Proliferation

    PubMed Central

    Pujari-Palmer, Michael; Pujari-Palmer, Shiuli; Engqvist, Håkan; Karlsson Ott, Marjam

    2015-01-01

    Many of the bioactive agents capable of stimulating osseous regeneration, such as bone morphogenetic protein-2 (BMP-2) or prostaglandin E2 (PGE2), are limited by rapid degradation, a short bioactive half-life at the target site in vivo, or are prohibitively expensive to obtain in large quantities. Rebamipide, an amino acid modified hydroxylquinoline, can alter the expression of key mediators of bone anabolism, cyclo-oxygenase 2 (COX-2), BMP-2 and vascular endothelial growth factor (VEGF), in diverse cell types such as mucosal and endothelial cells or chondrocytes. The present study investigates whether Rebamipide enhances proliferation and differentiation of osteoblasts when delivered from brushite cement. The reactive oxygen species (ROS) quenching ability of Rebampide was tested in macrophages as a measure of bioactivity following drug release incubation times, up to 14 days. Rebamipide release from brushite occurrs via non-fickian diffusion, with a rapid linear release of 9.70% ±0.37% of drug per day for the first 5 days, and an average of 0.5%-1% per day thereafter for 30 days. Rebamipide slows the initial and final cement setting time by up to 3 and 1 minute, respectively, but does not significantly reduce the mechanical strength below 4% (weight percentage). Pre-osteoblast proliferation increases by 24% upon exposure to 0.4uM Rebamipide, and by up to 73% when Rebamipide is delivered via brushite cement. Low doses of Rebamipide do not adversely affect peak alkaline phosphatase activity in differentiating pre-osteoblasts. Rebamipide weakly stimulates proliferation in macrophages at low concentrations (118 ±7.4% at 1uM), and quenches ROS by 40-60%. This is the first investigation of Rebamipide in osteoblasts. PMID:26023912

  1. Holocene cemented beach deposits in Belize

    NASA Astrophysics Data System (ADS)

    Gischler, Eberhard; Lomando, Anthony J.

    1997-06-01

    Two types of cemented beach deposits occur on reef islands off the coast of Belize. These are (1) intertidal beachrock that is dominantly cemented by marine aragonite and high-magnesium-calcite cements, and (2) supratidal cayrock that is cemented mainly by vadose low-magnesium-calcite cements. Besides differences in position relative to present sea level and resulting early diagenesic features, beachrock and cayrock can be distinguished on the basis of differences in composition, texture, geographical position, and age. Whereas the composition of beachrock is similar to that of the adjacent marginal reef sediments, cayrock is enriched in benthic foraminifera. Intertidal beachrock is moderately to well sorted and well cemented, while supratidal cayrock is very well sorted, poorly cemented and friable. Beachrock occurs preferentially on windward beaches of sand-shingle Gays on the middle and southern barrier reefs and on the isolated platforms Glovers and Lighthouse Reefs. Cayrock only occurs on larger mangrove-sand Gays of the isolated platforms Turneffe Islands, Lighthouse Reef, and the northern barrier reef. 14C-dating of ten whole-rock and mollusk shell samples produced calibrated dates between AD 345 and AD 1435 for beachrock and between BC 1085 and AD 1190 for cayrock. The large-scale distribution of beachrock in Belize supports the contention that physical processes such as water agitation rather than biological processes control beachrock formation and distribution. Only on windward sides of cays that are close to the reef crest, where large amounts of seawater flush the beaches, considerable amounts of cements can be precipitated to produce beachrock. Cayrock forms due to cementation in the vadose zone and is only preserved on larger, stable mangrove-sand cays.

  2. Effect of aging on temporary cement retention in vitro.

    PubMed

    Millstein, P L; Hazan, E; Nathanson, D

    1991-06-01

    Retention of restorations cemented with temporary cement varies. Some cements are adhesive and others are weak in retention. In addition, cement retention may vary over time. This study determined (1) the retentive properties of four temporary cements, and (2) the effects of aging on temporary cement retention. Cylindrical amalgam cores and mated stainless steel retainers with a 0.05 mm cement space were used in the study. Cores were cemented into the retainers and stored in 100% humidity at 37 degrees C until tested. Retention was measured by applying a compressive force to the cores through a rod in an Instron machine. Half the samples were tested after 1 week and half were tested after 6 weeks. The results indicate a significant difference in retentive value among the four cements, including a significant decrease in retention for one cement over the 6-week aging period.

  3. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, Toshifumi

    1993-01-01

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.

  4. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, T.

    1993-09-21

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  5. Reinforcement of osteosynthesis screws with brushite cement.

    PubMed

    Van Landuyt, P; Peter, B; Beluze, L; Lemaître, J

    1999-08-01

    The fixation of osteosynthesis screws remains a severe problem for fracture repair among osteoporotic patients. Polymethyl-methacrylate (PMMA) is routinely used to improve screw fixation, but this material has well-known drawbacks such as monomer toxicity, exothermic polymerization, and nonresorbability. Calcium phosphate cements have been developed for several years. Among these new bone substitution materials, brushite cements have the advantage of being injectable and resorbable. The aim of this study is to assess the reinforcement of osteosynthesis screws with brushite cement. Polyurethane foams, whose density is close to that of cancellous bone, were used as bone model. A hole was tapped in a foam sample, then brushite cement was injected. Trabecular osteosynthesis screws were inserted. After 24 h of aging in water, the stripping force was measured by a pull-out test. Screws (4.0 and 6.5 mm diameter) and two foam densities (0.14 and 0.28 g/cm3) were compared. Cements with varying solid/liquid ratios and xanthan contents were used in order to obtain the best screw reinforcement. During the pull-out test, the stripping force first increases to a maximum, then drops to a steady-state value until complete screw extraction. Both maximum force and plateau value increase drastically in the presence of cement. The highest stripping force is observed for 6.5-mm screws reinforced with cement in low-density foams. In this case, the stripping force is multiplied by 3.3 in the presence of cement. In a second experiment, cements with solid/liquid ratio ranging from 2.0 to 3.5 g/mL were used with 6.5-mm diameter screws. In some compositions, xanthan was added to improve injectability. The best results were obtained with 2.5 g/mL cement containing xanthan and with 3.0 g/mL cements without xanthan. A 0.9-kN maximal stripping force was observed with nonreinforced screws, while 1.9 kN was reached with reinforced screws. These first results are very promising regarding screw

  6. 76 FR 24519 - Gray Portland Cement and Cement Clinker From Japan; Institution of a Five-Year Review Concerning...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... order on imports of gray portland cement and cement clinker from Japan (56 FR 21658). Following first... clinker from Japan (71 FR 34892). The Commission is now conducting a third review to determine whether... COMMISSION Gray Portland Cement and Cement Clinker From Japan; Institution of a Five-Year Review...

  7. Foamed cement for squeeze cementing low-pressure, highly permeable reservoirs; Design and evaluation

    SciTech Connect

    Chmllowski, W. ); Kondratoff, L.B. )

    1992-12-01

    Four different cement squeezing techniques have been used on wells producing from the Keg River formation in the Rainbow Lake area of Alberta, Canada. This paper evaluates 151 cement squeeze treatments performed at 96 wellsites and compares the use of foam cement vs. conventional squeeze treatments and techniques. Discussion includes key aspects, such as candidate selection, slurry design, treatment design, economic evaluation, and operational considerations.

  8. Stabilization and solidification of Pb in cement matrices.

    PubMed

    Gollmann, Maria A C; da Silva, Márcia M; Masuero, Angela B; dos Santos, João Henrique Z

    2010-07-15

    Pb was incorporated to a series of cement matrices, which were submitted to different testes of solidified/stabilized product. The leaching behaviors of aqueous solution were monitored by graphite furnace atomic absorption spectroscopy (GF-AAS). The mechanical strengths were evaluated by unconfined compressive strength (UCS) at 7 and 28 ages. Data are discussed in terms of metal mobility along the cement block monitored by X-ray fluorescence (XRF) spectrometry. Complementary techniques, namely, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), thermal gravimetric analysis (TGA), small angle X-ray scattering (SAXS) and X-ray diffraction spectroscopy (XRD) were employed in the characterization of the modified matrices. The Pb incorporated matrices have shown that a long cure time is more suitable for avoiding metal leaching. At pH 8 lower Pb leaching took place both for both short and long cure time. For a longer cure period there is a decreasing in the compressive strength. TGA and DRIFTS analyses show that the resistance fall observed in the UCS tests in the sample with Pb are not caused by hydration excess. XRF analyses show that there is a lower Ca concentration in the matrix in which Pb was added.

  9. Body packing: from seizures to laparotomy.

    PubMed

    Janczak, Joanna M; Beutner, Ulrich; Hasler, Karin

    2015-01-01

    Body packing is a common method for illegal drug trafficking. Complications associated with body packing can be severe and even lead to rapid death. Thus, a timely diagnosis is warranted. As most body packers initially do not show any symptoms, making a correct diagnosis can be rather challenging. We describe a case of a 41-year-old male, who was admitted with an epileptic seizure and who turned out to be a cocaine intoxicated body packer. Due to neurological and cardiovascular deterioration an emergency surgery was performed. Four bags of cocaine could be removed. We discuss the current management regimen in symptomatic and asymptomatic body packers and highlight pearls and pitfalls with diagnosis and treatment. PMID:25883813

  10. Approaches to cutting/packing problems

    SciTech Connect

    Arenales, M.; Morabito, R.

    1994-12-31

    Cutting and Packing Problems (CPP) consist of geometrically combining ordered pieces into large objects such that an objective function is optimized. Depending on the number of dimensions involved, we may have one-dimensional CPP (e.g. Bin Packing Problem), two-dimensional CPP (e.g. Pallet Loading Problem), three-dimensional CPP (e.g. Container Loading Problem), and so on. The authors proposed a solution approach to two-dimensional guillotine cutting problems, and extended it to constrained three-dimensional problems. This approach, based on an and/or-graph representation of the solution space, can also be applied to non-guillotine cutting problems. This present work unifies and generalizes the previous ones.

  11. Is incest common in gray wolf packs?

    USGS Publications Warehouse

    Smith, D.; Meier, T.; Geffen, E.; Mech, L.D.; Burch, J.W.; Adams, L.G.; Wayne, R.K.

    1997-01-01

    Wolf packs generally consist of a breeding pair and their maturing offspring that help provision and protect pack young. Because the reproductive tenure in wolves often is short, reproductively mature offspring might replace their parents, resulting in sibling or parent-offspring matings. To determine the extent of incestuous pairings, we measure relatedness based on variability in 20 microsatellite loci of mated pairs, parent-offspring pairs and siblings in two populations of gray wolves. Our 16 sampled mated pairs had values of relatedness not overlapping those of known parent-offspring or sibling dyads, which is consistent with their being unrelated or distantly related. These results suggest that full siblings or a parent and their offspring rarely mate and that incest avoidance is an important constraint on gray wolf behavioral ecology.

  12. Assessing the effect of cement-steel interface on well casing corrosion in aqueous CO2 environments

    SciTech Connect

    Han, Jiabin; Carey, James W; Zhang, Jinsuo

    2010-01-01

    CO{sub 2} leakage is a critical safety concern for geologic storage. In wellbore environments, important leakage paths include the rock-cement and cement-casing interfaces. If the cement-casing interface is filled with escaping CO{sub 2}, the well casing directly contacts the CO{sub 2}. This can cause severe corrosion in the presence of water. This paper studies the effect of steel-cement interface gaps, ranging from 1 mm to 0 um, on casing corrosion. Corrosion kinetics were measured employing electrochemical techniques including linear polarization resistance, open circuit potential and electrochemical impedance spectroscopy. The experimental results showed that the corrosion of steel is not significant where the gap between steel and cement is small ({le} 100 {micro}m). Corrosion rates are controlled by the diffusion of corrosive species (H{sub 2}CO{sub 3} and H{sup +}) along the interface. In contrast, steel corrosion is severe in a broad gap where the corrosion process is limited only by the reaction kinetics of steel and corrosive species. The threshold leading to severe corrosion in terms of the cement-steel interface size (100 {micro}m) was determined. Our research clarifies a corrosion scenario at the cement-steel interface. Casing steel corrosion is initiated when attacked by corrosive species at the cement-steel interface. For relatively tight interfaces, this results in a slow thinning of the casing and expansion of the interface width. If the gap increases beyond the critical threshold size, the corrosion rate increases significantly, and a potentially damaging cycle of corrosion and interface expansion is developed.

  13. Rate of CO2 Attack on Hydrated Class H Well Cement under Geologic Sequestration Conditions

    SciTech Connect

    Kutchko, Barbara G.; Strazisar, Brian R.; Lowry, Gregory V.; Dzombak, David A.; Thaulow, Niels

    2008-08-01

    Experiments were conducted to study the degradation of hardened cement paste due to exposure to CO2 and brine under geologic sequestration conditions (T = 50 degrees C and 30.3 MPa). The goal was to determine the rate of reaction of hydrated cement exposed to supercritical CO2 and to CO2-saturated brine to assess the potential impact of degradation in existing wells on CO2 storage integrity. Two different forms of chemical alteration were observed. The supercritical CO2 alteration of cement was similar in process to cement in contact with atmospheric CO2 (ordinary carbonation), while alteration of cement exposed to CO2-saturated brine was typical of acid attack on cement. Extrapolation of the hydrated cement alteration rate measured for I year indicates a penetration depth range of 1.00 +/- 0.07 mm for the CO2-saturated brine and 1.68 +/- 0.24 mm for the supercritical CO2 after 30 years. These penetration depths are consistent with observations of field samples from an enhanced oil recovery site after 30 years of exposure to CO2-saturated brine under similar temperature and pressure conditions. These results suggest that significant degradation due to matrix diffusion of CO2 in intact Class H neat hydrated cement is unlikely on time scales of decades.

  14. Radiopacity evaluation of contemporary luting cements by digitization of images.

    PubMed

    Reis, José Maurício Dos Santos Nunes; Jorge, Erica Gouveia; Ribeiro, João Gustavo Rabelo; Pinelli, Ligia Antunes Pereira; Abi-Rached, Filipe de Oliveira; Tanomaru-Filho, Mário

    2012-01-01

    Objective. The aim of this study was to evaluate the radiopacity of two conventional cements (Zinc Cement and Ketac Cem Easymix), one resin-modified glass ionomer cement (RelyX Luting 2) and six resin cements (Multilink, Bistite II DC, RelyX ARC, Fill Magic Dual Cement, Enforce and Panavia F) by digitization of images. Methods. Five disc-shaped specimens (10 × 1.0 mm) were made for each material, according to ISO 4049. After setting of the cements, radiographs were made using occlusal films and a graduated aluminum stepwedge varying from 1.0 to 16 mm in thickness. The radiographs were digitized, and the radiopacity of the cements was compared with the aluminum stepwedge using the software VIXWIN-2000. Data (mmAl) were submitted to one-way ANOVA and Tukey's test (α = 0.05). Results. The Zinc Cement was the most radiopaque material tested (P < 0.05). The resin cements presented higher radiopacity (P < 0.05) than the conventional (Ketac Cem Easymix) or resin-modified glass ionomer (RelyX Luting 2) cements, except for the Fill Magic Dual Cement and Enforce. The Multilink presented the highest radiopacity (P < 0.05) among the resin cements. Conclusion. The glass ionomer-based cements (Ketac Cem Easymix and RelyX Luting 2) and the resin cements (Fill Magic Dual Cement and Enforce) showed lower radiopacity values than the minimum recommended by the ISO standard. PMID:23008777

  15. Radiographic appearance of commonly used cements in implant dentistry.

    PubMed

    Pette, Gregory A; Ganeles, Jeffrey; Norkin, Frederic J

    2013-01-01

    Cement-retained restorations allow for a conventional fixed partial denture approach to restoring dental implants. However, inadequate removal of excess cement at the time of cementation may introduce a severe complication: cement-induced peri-implantitis. Radiopaque cements are more easily detected on radiographs and should improve the recognition of extravasated cement at the time of insertion. The purpose of this study was to evaluate the radiopacity of commercially available cements in vitro. Eighteen different cements commonly used for luting restorations to implants were tested at both 0.5- and 1.0-mm thicknesses. The cements examined were zinc oxide eugenol, zinc oxide, zinc polycarboxylate, zinc phosphate, resin-reinforced glass ionomer, urethane resin, resin, and composite resin. Two samples of each cement thickness underwent standardized radiography next to an aluminum step wedge as a reference. The mean grayscale value of each of the nine 1-mm steps in the step wedge were used as reference values and compared to each of the cement samples. Temp Bond Clear (resin), IMProv (urethane resin), Premier Implant Cement (resin), and Temrex NE (resin) were not radiographically detectable at either sample thickness. Cements containing zinc were the most detectable upon radiographic analysis. There are significant differences in the radiopacity of many commonly used cements. Since cementinduced peri-implantitis can lead to late implant failure, cements that can be visualized radiographically may reduce the incidence of this problem.

  16. The Powder-Pack Nitriding Process: Growth Kinetics of Nitride Layers on Pure Iron

    NASA Astrophysics Data System (ADS)

    Campos-Silva, I.; Ortiz-Dominguez, M.; Elias-Espinosa, M.; Vega-Morón, R. C.; Bravo-Bárcenas, D.; Figueroa-López, U.

    2015-09-01

    In this study, the growth kinetics of nitride layers that develop during the powder-pack nitriding process on the surface of ARMCO pure iron was estimated. The powder-pack nitriding of pure iron was performed according to the Pulnieren© (H.E.F. Durferrit) method using a "Pulnier" powder and an activator, at 798-848 K with different exposure times (2-12 h) for each temperature. In addition, for the entire set of nitriding conditions, three different activator/"Pulnier" powder ratios (0.20, 0.25, and 0.35) were used to evaluate the activation level during the growth of nitride layers. The kinetics of the nitride layers over the surface of ARMCO pure iron were estimated by two mathematical approaches, that consider the mass balance equations at the growth interphases. The resulting expressions for the effective diffusion coefficients in the nitride layers were evaluated as a function of nitriding temperatures and activator/"Pulnier" powder ratio. Finally, based on the experimental parameters ascribed to the powder-pack nitriding process, two expressions were proposed to estimate the nitride layer thicknesses at 798 and 823 K after 9 h of exposure for each temperature, to validate the diffusion models used in this work.

  17. 36 CFR 2.16 - Horses and pack animals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Horses and pack animals. 2.16... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.16 Horses and pack animals. The following are prohibited: (a) The use of animals other than those designated as “pack animals” for purposes of...

  18. 36 CFR 34.10 - Saddle and pack animals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Saddle and pack animals. 34... INTERIOR EL PORTAL ADMINISTRATIVE SITE REGULATIONS § 34.10 Saddle and pack animals. The use of saddle and pack animals is prohibited without a permit from the Superintendent....

  19. 36 CFR 34.10 - Saddle and pack animals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Saddle and pack animals. 34... INTERIOR EL PORTAL ADMINISTRATIVE SITE REGULATIONS § 34.10 Saddle and pack animals. The use of saddle and pack animals is prohibited without a permit from the Superintendent....

  20. 36 CFR 1002.16 - Horses and pack animals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Horses and pack animals. 1002... AND RECREATION § 1002.16 Horses and pack animals. The following are prohibited: (a) The use of animals other than those designated as “pack animals” for purposes of transporting equipment. (b) The use...

  1. 36 CFR 2.16 - Horses and pack animals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Horses and pack animals. 2.16... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.16 Horses and pack animals. The following are prohibited: (a) The use of animals other than those designated as “pack animals” for purposes of...

  2. 36 CFR 34.10 - Saddle and pack animals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Saddle and pack animals. 34... INTERIOR EL PORTAL ADMINISTRATIVE SITE REGULATIONS § 34.10 Saddle and pack animals. The use of saddle and pack animals is prohibited without a permit from the Superintendent....

  3. 36 CFR 1002.16 - Horses and pack animals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Horses and pack animals. 1002... AND RECREATION § 1002.16 Horses and pack animals. The following are prohibited: (a) The use of animals other than those designated as “pack animals” for purposes of transporting equipment. (b) The use...

  4. 36 CFR 1002.16 - Horses and pack animals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Horses and pack animals. 1002... AND RECREATION § 1002.16 Horses and pack animals. The following are prohibited: (a) The use of animals other than those designated as “pack animals” for purposes of transporting equipment. (b) The use...

  5. 36 CFR 2.16 - Horses and pack animals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Horses and pack animals. 2.16... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.16 Horses and pack animals. The following are prohibited: (a) The use of animals other than those designated as “pack animals” for purposes of...

  6. 36 CFR 2.16 - Horses and pack animals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Horses and pack animals. 2.16... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.16 Horses and pack animals. The following are prohibited: (a) The use of animals other than those designated as “pack animals” for purposes of...

  7. 36 CFR 34.10 - Saddle and pack animals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Saddle and pack animals. 34... INTERIOR EL PORTAL ADMINISTRATIVE SITE REGULATIONS § 34.10 Saddle and pack animals. The use of saddle and pack animals is prohibited without a permit from the Superintendent....

  8. 36 CFR 1002.16 - Horses and pack animals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Horses and pack animals. 1002... AND RECREATION § 1002.16 Horses and pack animals. The following are prohibited: (a) The use of animals other than those designated as “pack animals” for purposes of transporting equipment. (b) The use...

  9. 36 CFR 1002.16 - Horses and pack animals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Horses and pack animals. 1002... AND RECREATION § 1002.16 Horses and pack animals. The following are prohibited: (a) The use of animals other than those designated as “pack animals” for purposes of transporting equipment. (b) The use...

  10. 36 CFR 2.16 - Horses and pack animals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Horses and pack animals. 2.16... RESOURCE PROTECTION, PUBLIC USE AND RECREATION § 2.16 Horses and pack animals. The following are prohibited: (a) The use of animals other than those designated as “pack animals” for purposes of...

  11. 36 CFR 34.10 - Saddle and pack animals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Saddle and pack animals. 34... INTERIOR EL PORTAL ADMINISTRATIVE SITE REGULATIONS § 34.10 Saddle and pack animals. The use of saddle and pack animals is prohibited without a permit from the Superintendent....

  12. 48 CFR 211.272 - Alternate preservation, packaging, and packing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., packaging, and packing. 211.272 Section 211.272 Federal Acquisition Regulations System DEFENSE ACQUISITION... Requirements Documents 211.272 Alternate preservation, packaging, and packing. Use the provision at 252.211-7004, Alternate Preservation, Packaging, and Packing, in solicitations which include...

  13. 21 CFR 133.124 - Cold-pack cheese food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Cold-pack cheese food. 133.124 Section 133.124 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Cheese and Related Products § 133.124 Cold-pack cheese food. (a)(1) Cold-pack cheese food is the...

  14. 7 CFR 319.37-9 - Approved packing material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Plants for Planting 1 2 § 319.37-9 Approved... United States shall not be packed in a packing material unless the plants were packed in the...

  15. 7 CFR 319.37-9 - Approved packing material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Plants for Planting 1, 2 § 319.37-9 Approved... United States shall not be packed in a packing material unless the plants were packed in the...

  16. 21 CFR 133.124 - Cold-pack cheese food.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cold-pack cheese food. 133.124 Section 133.124 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Cheese and Related Products § 133.124 Cold-pack cheese food. (a)(1) Cold-pack cheese food is the...

  17. 21 CFR 133.124 - Cold-pack cheese food.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cold-pack cheese food. 133.124 Section 133.124 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Cheese and Related Products § 133.124 Cold-pack cheese food. (a)(1) Cold-pack cheese food is the...

  18. 1. Contextual view looking west, showing packing house and Union ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Contextual view looking west, showing packing house and Union Ice building, which is located to the north of Packing House (right hand side in photo) - College Heights Lemon Packing House, 519-532 West First Street, Claremont, Los Angeles County, CA

  19. Operational reliability of end packing of water and chemical pumps

    SciTech Connect

    Golobev, A.I.

    1984-05-01

    The multiplicity of the designs of end packings of water and chemical pumps is explained by the diversity of their operational conditions and specifications of packings. The following groups of packings having some common constructional features could be identified: packings for chemically neutral media; packings for chemically active media; packings for highly active media; packings for highly abrasive media; and packings for high temperature and low temperature media. Examples are given of some designs of end packings. These packings extensively use siliconized graphites as the friction pair material. The material of the friction pair rings should possess antifriction properties, corrosion resistance, thermal strength and erosion resistance. Rubber rings of circular section are most often used as secondary seals in the design of end packings. Among the main drawbacks of rubber seals is their tendency to aging. Bellows made of rubber, Teflon and metal represent more perfect secondary seals. Springs used in sealing systems absorb all of the vibrations of the packings, they experience variable stresses and undergo fatigue failure. The paper describes the failure modes of each component of end seals in more detail and suggests methods for alleviating the problems associated with each one.

  20. 48 CFR 211.272 - Alternate preservation, packaging, and packing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., packaging, and packing. 211.272 Section 211.272 Federal Acquisition Regulations System DEFENSE ACQUISITION... Requirements Documents 211.272 Alternate preservation, packaging, and packing. Use the provision at 252.211-7004, Alternate Preservation, Packaging, and Packing, in solicitations which include...

  1. 48 CFR 552.211-87 - Export packing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Export packing. 552.211-87... FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of Provisions and Clauses 552.211-87 Export packing. As prescribed in 511.204(b)(7), insert the following clause: Export Packing (JAN 2010)...

  2. Binary Mixtures of Particles with Different Diffusivities Demix.

    PubMed

    Weber, Simon N; Weber, Christoph A; Frey, Erwin

    2016-02-01

    The influence of size differences, shape, mass, and persistent motion on phase separation in binary mixtures has been intensively studied. Here we focus on the exclusive role of diffusivity differences in binary mixtures of equal-sized particles. We find an effective attraction between the less diffusive particles, which are essentially caged in the surrounding species with the higher diffusion constant. This effect leads to phase separation for systems above a critical size: A single close-packed cluster made up of the less diffusive species emerges. Experiments for testing our predictions are outlined.

  3. Binary Mixtures of Particles with Different Diffusivities Demix.

    PubMed

    Weber, Simon N; Weber, Christoph A; Frey, Erwin

    2016-02-01

    The influence of size differences, shape, mass, and persistent motion on phase separation in binary mixtures has been intensively studied. Here we focus on the exclusive role of diffusivity differences in binary mixtures of equal-sized particles. We find an effective attraction between the less diffusive particles, which are essentially caged in the surrounding species with the higher diffusion constant. This effect leads to phase separation for systems above a critical size: A single close-packed cluster made up of the less diffusive species emerges. Experiments for testing our predictions are outlined. PMID:26894737

  4. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  5. On the perfect hexagonal packing of rods

    NASA Astrophysics Data System (ADS)

    Starostin, E. L.

    2006-04-01

    In most cases the hexagonal packing of fibrous structures or rods extremizes the energy of interaction between strands. If the strands are not straight, then it is still possible to form a perfect hexatic bundle. Conditions under which the perfect hexagonal packing of curved tubular structures may exist are formulated. Particular attention is given to closed or cycled arrangements of the rods like in the DNA toroids and spools. The closure or return constraints of the bundle result in an allowable group of automorphisms of the cross-sectional hexagonal lattice. The structure of this group is explored. Examples of open helical-like and closed toroidal-like bundles are presented. An expression for the elastic energy of a perfectly packed bundle of thin elastic rods is derived. The energy accounts for both the bending and torsional stiffnesses of the rods. It is shown that equilibria of the bundle correspond to solutions of a variational problem formulated for the curve representing the axis of the bundle. The functional involves a function of the squared curvature under the constraints on the total torsion and the length. The Euler-Lagrange equations are obtained in terms of curvature and torsion and due to the existence of the first integrals the problem is reduced to the quadrature. The three-dimensional shape of the bundle may be readily reconstructed by integration of the Ilyukhin-type equations in special cylindrical coordinates. The results are of universal nature and are applicable to various fibrous structures, in particular, to intramolecular liquid crystals formed by DNA condensed in toroids or packed inside the viral capsids. International Workshop on Biopolymers: Thermodynamics, Kinetics and Mechanics of DNA, RNA and Proteins, 30.05.2005-3.06.2005, The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy.

  6. Atom-probe analysis of cemented carbides and cermets

    NASA Astrophysics Data System (ADS)

    Andrén, H.-O.; Rolander, U.; Lindahl, P.

    1994-03-01

    For many years we have studied the detailed microstructure of cemented carbides (WC-Co and WC-MC-Co) and cermets (TiC-TiN-Mo 2C-Ni/Co and (Ti, W, Ta)(C, N)-(Co, Ni)), using mainly atom-probe field ion microscopy. This paper contains an overview of our experimental methods and results. All investigated materials were found to have a hard-phase skeleton with about half a monolayer of binder metal grain boundary segregation. The binder phase contained metal atoms from hard phases, which dissolve during sintering, but was almost completely free of C and N. Depleted zones existed close to hard phases due to diffusion during cooling after sintering. Cobalt binder phase contains W and Mo but little Ti, nickel binder phase Ti and Mo. The amount of Ti did not vary much with N content in the alloy, whereas the Mo content increased substantially with total N content. Carbide or carbonitride grains in materials containing more than one hard phase formed a core-rim structure. Rims precipitated epitaxially onto cores during sintering, and compositional gradients reflect the sequence of hard-phase dissolution. No diffusion of metal atoms occurred in the hard phases during sintering so the material is far from thermodynamic equilibrium. However, C and N may diffuse so that the system approaches equilibrium with respect to these elements during sintering.

  7. Probe with integrated heater and thermocouple pack

    DOEpatents

    McCulloch, Reginald W.; Dial, Ralph E.; Finnell, Wilber K. R.

    1988-01-01

    A probe for measuring heat includes an elongate rod fitted within a sheath, and a plurality of annular recesses are formed on the surface of the rod in a spaced-apart relationship to form annular chambers that are resistant to heat flow. A longitudinal bore extends axially into the rod and within the cylinders defined by the annular chambers, and an integrated heater and thermocouple pack is dimensioned to fit within the bore. In construction, the integrated pack includes a plurality of wires disposed in electrical insulation within a sheath and a heater cable. These wires include one common wire and a plurality of thermocouple wires. The common wire is constructed of one type of conductive material while the thermocouple wires are each constructed of two types of materials so that at least one thermocouple junction is formed therein. All of the wires extend the length of the integrated pack and are connected together at their ends. The thermocouple wires are constructed to form thermocouple junctions proximate to each annular chamber for producing electromotive forces corresponding to the temperature of the rod within the annular chambers relative to outside the chambers. In the preferred embodiment, each thermocouple wire forms two thermocouple junctions, one junction being disposed within an annular chamber and the second junction being disposed outside of, but proximate to, the same annular chamber. In one embodiment two thermocouple wires are configured to double the sensitivity of the probe in one region.

  8. Packing transition in alkali metallic clusters

    NASA Astrophysics Data System (ADS)

    Kawai, R.; Sung, Ming Wen; Weare, John H.

    1996-03-01

    Small metallic clusters form a local geometric configuration quite different from the bulk crystals. As the cluster size increases, several transitions in the local coordination take place before the bulk structure appears. These transitions involve change in the nature of chemical bonds. We have systematically investigated the structural transition of various alkali metal clusters including binary compounds using an ab initio molecular dynamics simulation. Among them, Li clusters exhibit unusual transition in their packing pattern. Small lithium clusters (N <= 21) form open structures based on a ``solvation shell''.(M. Sung, R. Kawai, and J. Weare, Phys. Rev. Lett. 73) (1994) 3552., which is quite different from other alkali metal clusters. The bonding of these small clusters is partially ionic. Above N=25, a close-packed structure is established. However, the local configuration still differ from that of the bulk crystal. As the size further increases, the ionic nature decreases and the system reaches another close-packed structure based on the Mackay icosahedron, which is similar to the bulk crystal structure.

  9. Symmetric scrolled packings of multilayered carbon nanoribbons

    NASA Astrophysics Data System (ADS)

    Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.

    2016-06-01

    Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.

  10. Inverting sets and the packing problem

    SciTech Connect

    Faber, V.; Goldberg, M.K.; Knill, E.; Spencer, T.H.

    1992-12-01

    Given a set V, a subset S, and a permutation {pi} of V, we say that {pi} permutes S if {pi}(S) {intersection} S = {theta}. Given a collection S = (V; S{sub 1}..., S{sub m}), where S{sub i} {improper_subset} V (i = 1,...,m), we say that S is invertible if there is a permutation {pi} of V such that {pi}(S{sub i}) {improper_subset} V -- S{sub i}. In this paper, we present necessary and sufficient conditions for the invertibility of a collection and construct a polynomial algorithm which determines whether a given collection is invertible. For an arbitrary collection, we give a lower bound for the maximum number of sets that can be inverted. Finally, we consider the problem of constructing a collection of sets such that no sub-collection of size three is invertible. Our constructions of such collections come from solutions to the packing problem with unbounded block sizes. We prove several new lower and upper bounds for the packing problem and present a new explicit construction of packing.

  11. Inverting sets and the packing problem

    SciTech Connect

    Faber, V. ); Goldberg, M.K. . Dept. of Computer Science); Knill, E. . School of Computer Science); Spencer, T.H. . Dept. of Mathematics and Computer Science)

    1992-01-01

    Given a set V, a subset S, and a permutation [pi] of V, we say that [pi] permutes S if [pi](S) [intersection] S = [theta]. Given a collection S = (V; S[sub 1]..., S[sub m]), where S[sub i] [improper subset] V (i = 1,...,m), we say that S is invertible if there is a permutation [pi] of V such that [pi](S[sub i]) [improper subset] V -- S[sub i]. In this paper, we present necessary and sufficient conditions for the invertibility of a collection and construct a polynomial algorithm which determines whether a given collection is invertible. For an arbitrary collection, we give a lower bound for the maximum number of sets that can be inverted. Finally, we consider the problem of constructing a collection of sets such that no sub-collection of size three is invertible. Our constructions of such collections come from solutions to the packing problem with unbounded block sizes. We prove several new lower and upper bounds for the packing problem and present a new explicit construction of packing.

  12. Influence of fiber packing structure on permeability

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Berdichevsky, Alexander L.

    1993-01-01

    The study on the permeability of an aligned fiber bundle is the key building block in modeling the permeability of advanced woven and braided preforms. Available results on the permeability of fiber bundles in the literature show that a substantial difference exists between numerical and analytical calculations on idealized fiber packing structures, such as square and hexagonal packing, and experimental measurements on practical fiber bundles. The present study focuses on the variation of the permeability of a fiber bundle under practical process conditions. Fiber bundles are considered as containing openings and fiber clusters within the bundle. Numerical simulations on the influence of various openings on the permeability were conducted. Idealized packing structures are used, but with introduced openings distributed in different patterns. Both longitudinal and transverse flow are considered. The results show that openings within the fiber bundle have substantial effect on the permeability. In the longitudinal flow case, the openings become the dominant flow path. In the transverse flow case, the fiber clusters reduce the gap sizes among fibers. Therefore the permeability is greatly influenced by these openings and clusters, respectively. In addition to the porosity or fiber volume fraction, which is commonly used in the permeability expression, another fiber bundle status parameter, the ultimate fiber volume fraction, is introduced to capture the disturbance within a fiber bundle.

  13. Helix-packing motifs in membrane proteins.

    PubMed

    Walters, R F S; DeGrado, W F

    2006-09-12

    The fold of a helical membrane protein is largely determined by interactions between membrane-imbedded helices. To elucidate recurring helix-helix interaction motifs, we dissected the crystallographic structures of membrane proteins into a library of interacting helical pairs. The pairs were clustered according to their three-dimensional similarity (rmsd packing. Thus, the universe of common transmembrane helix-pairing motifs is relatively simple. The largest cluster, which comprises 29% of the library members, consists of an antiparallel motif with left-handed packing angles, and it is frequently stabilized by packing of small side chains occurring every seven residues in the sequence. Right-handed parallel and antiparallel structures show a similar tendency to segregate small residues to the helix-helix interface but spaced at four-residue intervals. Position-specific sequence propensities were derived for the most populated motifs. These structural and sequential motifs should be quite useful for the design and structural prediction of membrane proteins.

  14. Microwave radiometry for cement kiln temperature measurements.

    PubMed

    Stephan, Karl D; Wang, Lingyun; Ryza, Eric

    2007-01-01

    The maximum temperature inside a cement kiln is a critical operating parameter, but is often difficult or impossible to measure. We present here the first data that show a correlation between cement kiln temperature measured using a microwave radiometer and product chemistry over an eight-hour period. The microwave radiometer senses radiation in the 12-13 GHz range and has been described previously [Stephan and Pearce (2002), JMPEE 37: 112-124].

  15. Reaction of CO2 and brine at the interface between Portland cement and casing steel: Application to CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Zhang, J.; Lichtner, P. C.; Grigg, R.; Svec, B.; Pawar, R.

    2008-12-01

    diffusion of CO2 into the cement matrix and carbonation of the cement to CaCO3. The cement interface did not appear to have been significantly eroded. The experiment was used to calibrate numerical models for corrosion rates and for cement carbonation. These results were applied to interpret samples recovered from a CO2-enhanced oil recovery field (SACROC in West Texas; Carey et al. 2007, Int J. Greenhouse Gas Control, 1: 75-85). The results suggest that CO2-brine flux must have been limited along the cement-casing interface because the casing showed very little corrosion. They also suggest that CO2 penetration along the cement-formation interface was limited in volume because the depth of carbonation at SACROC was limited. These microscale models suggest that cement-casing flow has the potential to be self-limiting due to precipitation of CO2 and that standard logging measurements of casing integrity can be used to assess whether significant flow of CO2-brine has occurred at the casing interface.

  16. Demonstrating Diffusion

    ERIC Educational Resources Information Center

    Foy, Barry G.

    1977-01-01

    Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)

  17. Relativistic diffusion

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  18. Defusing Diffusion

    ERIC Educational Resources Information Center

    Dou, Remy; Hogan, DaNel; Kossover, Mark; Spuck, Timothy; Young, Sarah

    2013-01-01

    Diffusion has often been taught in science courses as one of the primary ways by which molecules travel, particularly within organisms. For years, classroom teachers have used the same common demonstrations to illustrate this concept (e.g., placing drops of food coloring in a beaker of water). Most of the time, the main contributor to the motion…

  19. Relativistic diffusion.

    PubMed

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  20. Convection-diffusion effects in marathon race dynamics

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Espinosa-Paredes, G.; Alvarez-Ramirez, J.

    2014-01-01

    In the face of the recent terrorist attack event on the 2013 Boston Marathon, the increasing participation of recreational runners in large marathon races has imposed important logistical and safety issues for organizers and city authorities. An accurate understanding of the dynamics of the marathon pack along the race course can provide important insights for improving safety and performance of these events. On the other hand, marathon races can be seen as a model of pedestrian movement under confined conditions. This work used data of the 2011 Chicago Marathon event for modeling the dynamics of the marathon pack from the corral zone to the finish line. By considering the marathon pack as a set of particles moving along the race course, the dynamics are modeled as a convection-diffusion partial differential equation with position-dependent mean velocity and diffusion coefficient. A least-squares problem is posed and solved with optimization techniques for fitting field data from the 2011 Chicago Marathon. It was obtained that the mean pack velocity decreases while the diffusion coefficient increases with distance. This means that the dispersion rate of the initially compact marathon pack increases as the marathon race evolves along the race course.

  1. Respiratory effects of portland cement dust

    SciTech Connect

    Abrons, H.L.; Sanderson, W.T.; Petersen, M.R.

    1985-01-01

    An epidemiologic study of the respiratory effects of Portland cement dust was conducted. The cohort consisted of 2,736 cement workers at 16 facilities in the United States. The comparisons consisted of 2,213 individuals in activities not involving dust exposure. Spirometry testing was performed. Respiratory-symptom questionnaires were administered. Chest x-rays were taken and examined. Personal sampling for total and respirable dust, quartz, and oxides of sulfur and nitrogen was performed. Cement workers had a significantly elevated adjusted-odds ratio for dyspnea, rounded and irregular small x-ray opacities, and pleural abnormalities. None of the ventilatory-function variables were significantly different between cement workers and the comparisons. The authors conclude that cement dust exerts little adverse effect on respiratory symptoms and ventilatory function. To determine whether the increase in x-ray abnormalities represents pneumoconiosis or another pathological process would require histological study. There is insufficient evidence to suggest a change in the exposure limit for cement dust.

  2. Case Study of the California Cement Industry

    SciTech Connect

    Coito, Fred; Powell, Frank; Worrell, Ernst; Price, Lynn; Friedmann, Rafael

    2005-05-01

    California is the largest cement producing state in theU.S., accounting for between 10 percent and 15 percent of U.S. cementproduction and cement industry employment. The cement industry inCalifornia consists of 31 sites that consume large amounts of energy,annually: 1,600 GWh of electricity, 22 million therms of natural gas, 2.3million tons of coal, 0.25 tons of coke, and smaller amounts of wastematerials, including tires. The case study summarized in this paperfocused on providing background information, an assessment ofenergy-efficiency opportunities and barriers, and program recommendationsthat can be used by program planners to better target products to thecement industry. The primary approach to this case study involvedwalk-through surveys of customer facilities and in depth interviews withcustomer decision makers and subsequent analysis of collected data. Inaddition, a basic review of the cement production process was developed,and summary cement industry energy and economic data were collected, andanalyzed. The analysis of secondary data provides background informationon the cement industry and identification of potential energy-efficiencyopportunities. The interviews provide some understanding of the customerperspective about implementation of energy-efficiencyprojects.

  3. Accelerated Biodegradation of Cement by Sulfur-Oxidizing Bacteria as a Bioassay for Evaluating Immobilization of Low-Level Radioactive Waste

    PubMed Central

    Aviam, Orli; Bar-Nes, Gabi; Zeiri, Yehuda; Sivan, Alex

    2004-01-01

    Disposal of low-level radioactive waste by immobilization in cement is being evaluated worldwide. The stability of cement in the environment may be impaired by sulfur-oxidizing bacteria that corrode the cement by producing sulfuric acid. Since this process is so slow that it is not possible to perform studies of the degradation kinetics and to test cement mixtures with increased durability, procedures that accelerate the biodegradation are required. Semicontinuous cultures of Halothiobacillus neapolitanus and Thiomonas intermedia containing thiosulfate as the sole energy source were employed to accelerate the biodegradation of cement samples. This resulted in a weight loss of up to 16% after 39 days, compared with a weight loss of 0.8% in noninoculated controls. Scanning electron microscopy of the degraded cement samples revealed deep cracks, which could be associated with the formation of low-density corrosion products in the interior of the cement. Accelerated biodegradation was also evident from the leaching rates of Ca2+ and Si2+, the major constituents of the cement matrix, and Ca exhibited the highest rate (up to 20 times greater than the control rate) due to the reaction between free lime and the biogenic sulfuric acid. Leaching of Sr2+ and Cs+, which were added to the cement to simulate immobilization of the corresponding radioisotopes, was also monitored. In contrast to the linear leaching kinetics of calcium, silicon, and strontium, the leaching pattern of cesium produced a saturation curve similar to the control curve. Presumably, the leaching of cesium is governed by the diffusion process, whereas the leaching kinetics of the other three ions seems to governed by dissolution of the cement. PMID:15466547

  4. Diffusion of ion-exchanging electrolytes in montmorillonite gels

    SciTech Connect

    Jahnke, F.M.

    1987-01-01

    The primary contributions of this work are: (1) Development of a unique radially perfused diffusion cell suitable for measuring transient diffusion rates in compacted, highly adsorbing and swelling porous media such as montmorillonite clay gels; (2) examination of the effective diffusion coefficient (D{sub 6}) of electrolytes in montmorillonite clay gels; and (3) Measurement of the transient diffusion rates of cesium, chloride and tritium in 15 w/o montmorillonite clay gels at pH 9 and sodium chloride backgrounds of 10{sup {minus}1} to 10{sup {minus}3} kmol/m{sup 3}. Results are interpreted by using the dilute limit of the multicomponent transport equations derived for species migration in a single clay pore after macroscopic averaging. The tortuosity of the clay gel is found by tritium diffusion. Transient chloride diffusion rates are found to be at molecular rates. Negative adsorption of anions from the clay gel, required for an a priori prediction of chloride profiles, are calculated from site-binding theory. Surface diffusion is the primary mode of cesium transport in montmorillonite clay gels. Migration of cesium is primarily along the inner Helmholtz plane of clay particles. The primary implication for the montmorillonite clay-based packing as a nuclear waste migration barrier is that surface diffusion must be included to describe properly diffusion rates of either anions or cations. Currently surface diffusion is neglected and cesium penetration into the packing is drastically underestimated. Penetration depths of anions is grossly overestimated. In either case, the appropriate diffusion coefficient of ions in compacted packing will be in considerable error relative to current design recommendations.

  5. Thermal Analysis of the Tibial Cement Interface with Modern Cementing Technique

    PubMed Central

    Vertullo, Christopher J.; Zbrojkiewicz, David; Vizesi, Frank; Walsh, William R.

    2016-01-01

    Background: The major cause of cemented Total Knee Arthroplasty (TKA) failure is aseptic loosening of the tibial component necessitating revision surgery. Recently, multiple techniques have been described to maximize cement penetration depth and density in the proximal tibia during TKA to potentially avoid early loosening. While cement polymerisation is an exothermic reaction, minimal investigation into the proximal tibial thermal safety margin during cement polymerisation has been undertaken. In animal models osseous injury occurs at temperatures greater than 47 °C when applied for one minute. The aim of this study was to investigate the cement bone interface temperatures in TKA using modern tibial cementing techniques with a cadaveric tibial tray model. Methods: Eight adult cadavers were obtained with the proximal tibial surface prepared by a fellowship trained arthroplasty surgeon. Third generation cementation techniques were used and temperatures during cement polymerization on cadaveric knee arthroplasty models were recorded using thermocouples. Results: The results showed that no tibial cement temperature exceeded 44 °C for more than 1 minute. Two of the eight cadaveric tibias recorded maximum temperatures greater than 44 °C for 55 seconds and 33 seconds, just less than the 60 seconds reported to cause thermal injury. Average maximum polymerization temperatures did not correlate with deeper cement penetration or tray material. Maximum mantle temperatures were not statistically different between metal and all polyethylene tibial trays. Conclusion: Our investigation suggests that modern cementing techniques result in maximum mantle temperatures that are less than previously recorded temperatures required to cause thermal osseous injury, although this thermal injury safety margin is quite narrow at an average of 4.95 °C (95% confidence interval ± 4.31). PMID:27073585

  6. Eating less from bigger packs: Preventing the pack size effect with diet primes.

    PubMed

    Versluis, Iris; Papies, Esther K

    2016-05-01

    An increase in the package size of food has been shown to lead to an increase in energy intake from this food, the so-called pack size effect. Previous research has shown that providing diet-concerned individuals with a reminder, or prime, of their dieting goal can help them control their consumption. Here, we investigated if providing such a prime is also effective for reducing the magnitude of the pack size effect. We conducted two experiments in which the cover of a dieting magazine (Experiment 1) and diet-related commercials (Experiment 2) served as diet goal primes. Both experiments had a 2 (pack size: small vs. large) × 2 (prime: diet vs. control) × 2 (dietary restraint: high vs. low) between participants design. We measured expected consumption of four snack foods in Experiment 1 (N = 477), and actual consumption of M&M's in Experiment 2 (N = 224). Results showed that the diet prime reduced the pack size effect for both restrained and unrestrained eaters in Experiment 1 and for restrained eaters only in Experiment 2. Although effect sizes were small, these findings suggest that a diet prime motivates restrained eaters to limit their consumption, and as a result the pack size has less influence on the amount consumed. We discuss limitations of this research as well as potential avenues for further research and theoretical and practical implications. PMID:26876911

  7. Highly efficient capillary columns packed with superficially porous particles via sequential column packing.

    PubMed

    Treadway, James W; Wyndham, Kevin D; Jorgenson, James W

    2015-11-27

    Highly efficient capillary columns packed with superficially porous particles were created for use in ultrahigh pressure liquid chromatography. Superficially porous particles around 1.5μm in diameter were packed into fused silica capillary columns with 30, 50, and 75μm internal diameters. To create the columns, several capillary columns were serially packed from the same slurry, with packing progress plots being generated to follow the packing of each column. Characterization of these columns using hydroquinone yielded calculated minimum reduced plate heights as low as 1.24 for the most efficient 30μm internal diameter column, corresponding to over 500,000plates/m. At least one highly efficient column (minimum reduced plate height less than 2) was created for all three of the investigated column inner diameters, with the smallest diameter columns having the highest efficiency. This study proves that highly efficient capillary columns can be created using superficially porous particles and shows the efficiency potential of these particles.

  8. Dense packings of polyhedra: Platonic and Archimedean solids.

    PubMed

    Torquato, S; Jiao, Y

    2009-10-01

    Understanding the nature of dense particle packings is a subject of intense research in the physical, mathematical, and biological sciences. The preponderance of previous work has focused on spherical particles and very little is known about dense polyhedral packings. We formulate the problem of generating dense packings of nonoverlapping, nontiling polyhedra within an adaptive fundamental cell subject to periodic boundary conditions as an optimization problem, which we call the adaptive shrinking cell (ASC) scheme. This optimization problem is solved here (using a variety of multiparticle initial configurations) to find the dense packings of each of the Platonic solids in three-dimensional Euclidean space R3 , except for the cube, which is the only Platonic solid that tiles space. We find the densest known packings of tetrahedra, icosahedra, dodecahedra, and octahedra with densities 0.823..., 0.836..., 0.904..., and 0.947..., respectively. It is noteworthy that the densest tetrahedral packing possesses no long-range order. Unlike the densest tetrahedral packing, which must not be a Bravais lattice packing, the densest packings of the other nontiling Platonic solids that we obtain are their previously known optimal (Bravais) lattice packings. We also derive a simple upper bound on the maximal density of packings of congruent nonspherical particles and apply it to Platonic solids, Archimedean solids, superballs, and ellipsoids. Provided that what we term the "asphericity" (ratio of the circumradius to inradius) is sufficiently small, the upper bounds are relatively tight and thus close to the corresponding densities of the optimal lattice packings of the centrally symmetric Platonic and Archimedean solids. Our simulation results, rigorous upper bounds, and other theoretical arguments lead us to the conjecture that the densest packings of Platonic and Archimedean solids with central symmetry are given by their corresponding densest lattice packings. This can be

  9. Influence of the method of blending an antibiotic powder with an acrylic bone cement powder on physical, mechanical, and thermal properties of the cured cement.

    PubMed

    Lewis, Gladius; Janna, Si; Bhattaram, Anuradha

    2005-07-01

    Two variants of antibiotic powder-loaded acrylic bone cements (APLBCs) are widely used in primary total joint replacements. In the United States, the antibiotic is manually blended with the powder of the cement at the start of the procedure, while, in Europe, pre-packaged commercially-available APLBCs (in which the blending is carried out using an industrial mixer) are used. Our objective was to investigate the influence of the method of blending gentamicin sulphate with the powder of the Cemex XL formulation on a wide collection of properties of the cured cement. The blending methods used were manual mixing (the MANUAL Set), use of a small-scale, easy-to-use, commercially-available mechanical powder mixer, OmoMix 1 (the MECHANICAL Set), and use of a large-scale industrial mixer (Cemex Genta) [the INDUSTRIAL Set]. In the MECHANICAL and MANUAL Sets, the blending time was 3 min. In preparing the test specimens for each set, the blended powder used contained 4.22 wt% of the gentamicin powder. The properties determined were the strength, modulus, and work-to-fracture (all obtained under four-point bending), plane-strain fracture toughness, Weibull mean fatigue life (fatigue conditions: +/-15 MPa; 2 Hz), activation energy and frequency factor for the cement polymerization process (both determined using differential scanning calorimetry, at heating rates of 5, 10, 15, and 20 Kmin(-1)), the diffusion coefficient for the absorption of phosphate buffered saline, PBS, at 37 degrees C, and the rate of elution of the gentamicin into PBS, at 37 degrees C (E). Also determined were the particle size, particle size distribution, and morphology of the blended powders and of the gentamicin. For each of the cured cement properties (except for E), there is no statistically significant difference between the means for the 3 cements, a finding that parallels the observation that there are no significant differences in either the mean particle size or the morphology of the blended cement

  10. Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations

    SciTech Connect

    Kim, Jihoon; Moridis, George

    2014-11-01

    We model and assess the possibility of shear failure, using the Mohr-Coulomb model ? along the vertical well by employing a rigorous coupled flow-geomechanic analysis. To this end, we vary the values of cohesion between the well casing and the surrounding cement to representing different quality levels of the cementing operation (low cohesion corresponds to low-quality cement and/or incomplete cementing). The simulation results show that there is very little fracturing when the cement is of high quality.. Conversely, incomplete cementing and/or weak cement can causes significant shear failure and the evolution of long fractures/cracks along the vertical well. Specifically, low cohesion between the well and cemented areas can cause significant shear failure along the well, but the same cohesion as the cemented zone does not cause shear failure. When the hydraulic fracturing pressure is high, low cohesion of the cement can causes fast propagation of shear failure and of the resulting fracture/crack, but a high-quality cement with no weak zones exhibits limited shear failure that is concentrated near the bottom of the vertical part of the well. Thus, high-quality cement and complete cementing along the vertical well appears to be the strongest protection against shear failure of the wellbore cement and, consequently, against contamination hazards to drinking water aquifers during hydraulic fracturing operations.

  11. Non-Euclidean geometry of twisted filament bundle packing

    PubMed Central

    Bruss, Isaac R.; Grason, Gregory M.

    2012-01-01

    Densely packed and twisted assemblies of filaments are crucial structural motifs in macroscopic materials (cables, ropes, and textiles) as well as synthetic and biological nanomaterials (fibrous proteins). We study the unique and nontrivial packing geometry of this universal material design from two perspectives. First, we show that the problem of twisted bundle packing can be mapped exactly onto the problem of disc packing on a curved surface, the geometry of which has a positive, spherical curvature close to the center of rotation and approaches the intrinsically flat geometry of a cylinder far from the bundle center. From this mapping, we find the packing of any twisted bundle is geometrically frustrated, as it makes the sixfold geometry of filament close packing impossible at the core of the fiber. This geometrical equivalence leads to a spectrum of close-packed fiber geometries, whose low symmetry (five-, four-, three-, and twofold) reflect non-Euclidean packing constraints at the bundle core. Second, we explore the ground-state structure of twisted filament assemblies formed under the influence of adhesive interactions by a computational model. Here, we find that the underlying non-Euclidean geometry of twisted fiber packing disrupts the regular lattice packing of filaments above a critical radius, proportional to the helical pitch. Above this critical radius, the ground-state packing includes the presence of between one and six excess fivefold disclinations in the cross-sectional order. PMID:22711799

  12. Structural characterization of the packings of granular regular polygons

    NASA Astrophysics Data System (ADS)

    Wang, Chuncheng; Dong, Kejun; Yu, Aibing

    2015-12-01

    By using a recently developed method for discrete modeling of nonspherical particles, we simulate the random packings of granular regular polygons with three to 11 edges under gravity. The effects of shape and friction on the packing structures are investigated by various structural parameters, including packing fraction, the radial distribution function, coordination number, Voronoi tessellation, and bond-orientational order. We find that packing fraction is generally higher for geometrically nonfrustrated regular polygons, and can be increased by the increase of edge number and decrease of friction. The changes of packing fraction are linked with those of the microstructures, such as the variations of the translational and orientational orders and local configurations. In particular, the free areas of Voronoi tessellations (which are related to local packing fractions) can be described by log-normal distributions for all polygons. The quantitative analyses establish a clearer picture for the packings of regular polygons.

  13. 76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... review. Background The Commission instituted this review on May 2, 2011 (76 FR 24519) and determined on August 5, 2011 that it would conduct an expedited review (76 FR 50252, August 12, 2011). The Commission... COMMISSION Gray Portland Cement and Cement Clinker From Japan Determination On the basis of the record...

  14. Low fluid leakoff cementing compositions and filtration control additive for cement

    SciTech Connect

    Forrest, G.T.

    1993-07-20

    A cementing composition is described, for cementing oil or gas wells penetrating subterranean formations, capable of forming a fluid slurry when mixed with water comprising: dry hydraulic cement; and a filtration control additive of from about 0.2 to 5.0 percent by weight, based upon dry hydraulic cement, of finely ground peanut hulls, wherein 10 percent or more of the finely ground peanut hulls is in the particle size range of less than 20 standard sieve mesh and greater than 500 standard sieve mesh. In a process for cementing a casing in an oil or gas well penetrating a subterranean formation wherein a cement slurry, formed by mixing water and hydraulic cement, is pumped down the well to flow upwardly between the casing and the subterranean formation, the improvement is described comprising: utilizing as a filtration control additive of from about 0.2 to 5.0 percent by weight, based upon dry hydraulic cement, of finely ground peanut hulls, and utilizing finely ground peanut hulls wherein 10 percent or more of the finely ground peanut hulls is in the particle size range of less than 20 standard sieve mesh and greater than 500 standard sieve mesh.

  15. Analysis of CCRL proficiency cements 151 and 152 using the Virtual Cement and Concrete Testing Laboratory

    SciTech Connect

    Bullard, Jeffrey W. . E-mail: jeffrey.bullard@nist.gov; Stutzman, Paul E.

    2006-08-15

    To test the ability of the Virtual Cement and Concrete Testing Laboratory (VCCTL) software to predict cement hydration properties, characterization of mineralogy and phase distribution is necessary. Compositional and textural characteristics of Cement and Concrete Reference Laboratory (CCRL) cements 151 and 152 were determined via scanning electron microscopy (SEM) analysis followed by computer modeling of hydration properties. The general procedure to evaluate a cement is as follows: (1) two-dimensional SEM backscattered electron and X-ray microanalysis images of the cement are obtained, along with a measured particle size distribution (PSD); (2) based on analysis of these images and the measured PSD, three-dimensional microstructures of various water-to-cement ratios are created and hydrated using VCCTL, and (3) the model predictions for degree of hydration under saturated conditions, heat of hydration (ASTM C186), setting time (ASTM C191), and strength development of mortar cubes (ASTM C109) are compared to experimental measurements either performed at NIST or at the participating CCRL proficiency sample evaluation laboratories. For both cements, generally good agreement is observed between the model predictions and the experimental data.

  16. Kinetic study of the setting reaction of a calcium phosphate bone cement.

    PubMed

    Fernández, E; Ginebra, M P; Boltong, M G; Driessens, F C; Ginebra, J; De Maeyer, E A; Verbeeck, R M; Planell, J A

    1996-11-01

    The setting reaction of a calcium phosphate bone cement consisting of a mixture of 63.2 wt % alpha-tertiary calcium phosphate (TCP)[alpha-Ca3(PO4)2], 27.7 wt % dicalcium phosphate (DCP) (CaHPO4), and 9.1 wt % of precipitated hydroxyapatite [(PHA) used as seed material] was investigated. The cement samples were prepared at a liquid-to-powder ratio of: L/P = 0.30 ml/g. Bi-distilled water was used as liquid solution. After mixing the powder and liquid, some samples were molded and aged in Ringer's solution at 37 degrees C. At fixed time intervals they were unmolded and then immediately frozen in liquid nitrogen at a temperature of TN = -196 degrees C, lyofilized, and examined by X-ray diffraction as powder samples. The compressive strength versus time was also measured in setting samples of this calcium phosphate bone cement. The crystal entanglement morphology was examined by scanning electron microscopy. The results showed that: 1) alpha-TCP reacted to a calcium-deficient hydroxyapatite (CDHA), Ca9(HPO4)(PO4)5O H, whereas DCP did not react significantly; 2) the reaction was nearly finished within 32 h, during which both the reaction percentage and the compressive strength increased versus time, with a strong correlation between them; and 3) the calcium phosphate bone cement showed in general a structure of groups of interconnected large plates distributed among agglomerations of small crystal plates arranged in very dense packings.

  17. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  18. Red Cell Membrane Permeability Deduced from Bulk Diffusion Coefficients

    PubMed Central

    Redwood, W. R.; Rall, E.; Perl, W.

    1974-01-01

    The permeability coefficients of dog red cell membrane to tritiated water and to a series of[14C]amides have been deduced from bulk diffusion measurements through a "tissue" composed of packed red cells. Red cells were packed by centrifugation inside polyethylene tubing. The red cell column was pulsed at one end with radiolabeled solute and diffusion was allowed to proceed for several hours. The distribution of radioactivity along the red cell column was measured by sequential slicing and counting, and the diffusion coefficient was determined by a simple plotting technique, assuming a one-dimensional diffusional model. In order to derive the red cell membrane permeability coefficient from the bulk diffusion coefficient, the red cells were assumed to be packed in a regular manner approximating closely spaced parallelopipeds. The local steady-state diffusional flux was idealized as a one-dimensional intracellular pathway in parallel with a one-dimensional extracellular pathway with solute exchange occurring within the series pathway and between the pathways. The diffusion coefficients in the intracellular and extracellular pathways were estimated from bulk diffusion measurements through concentrated hemoglobin solutions and plasma, respectively; while the volume of the extracellular pathway was determined using radiolabeled sucrose. The membrane permeability coefficients were in satisfactory agreement with the data of Sha'afi, R. I., C. M. Gary-Bobo, and A. K. Solomon (1971. J. Gen. Physiol. 58:238) obtained by a rapid-reaction technique. The method is simple and particularly well suited for rapidly permeating solutes. PMID:4443795

  19. Alternative Fuel for Portland Cement Processing

    SciTech Connect

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  20. Effects of a discoloration-resistant calcium aluminosilicate cement on the viability and proliferation of undifferentiated human dental pulp stem cells

    PubMed Central

    Niu, Li-na; Watson, Devon; Thames, Kyle; Primus, Carolyn M.; Bergeron, Brian E.; Jiao, Kai; Bortoluzzi, Eduardo A.; Cutler, Christopher W.; Chen, Ji-hua; Pashley, David H.; Tay, Franklin R.

    2015-01-01

    Discoloration-resistant calcium aluminosilicate cement has been formulated to overcome the timely problem of tooth discoloration reported in the clinical application of bismuth oxide-containing hydraulic cements. The present study examined the effects of this experimental cement (Quick-Set2) on the viability and proliferation of human dental pulp stem cells (hDPSCs) by comparing the cellular responses with commercially available calcium silicate cement (white mineral trioxide aggregate; WMTA) after different aging periods. Cell viability and proliferation were examined using assays that examined plasma membrane integrity, leakage of cytosolic enzyme, caspase-3 activity for early apoptosis, oxidative stress, mitochondrial metabolic activity and intracellular DNA content. Results of the six assays indicated that both Quick-Set2 and WMTA were initially cytotoxic to hDPSCs after setting for 24 h, with Quick-Set2 being comparatively less cytotoxic than WMTA at this stage. After two aging cycles, the cytotoxicity profiles of the two hydraulic cements were not significantly different and were much less cytotoxic than the positive control (zinc oxide–eugenol cement). Based on these results, it is envisaged that any potential beneficial effect of the discoloration-resistant calcium aluminosilicate cement on osteogenesis by differentiated hDPSCs is more likely to be revealed after outward diffusion and removal of its cytotoxic components. PMID:26617338

  1. Effects of a discoloration-resistant calcium aluminosilicate cement on the viability and proliferation of undifferentiated human dental pulp stem cells.

    PubMed

    Niu, Li-na; Watson, Devon; Thames, Kyle; Primus, Carolyn M; Bergeron, Brian E; Jiao, Kai; Bortoluzzi, Eduardo A; Cutler, Christopher W; Chen, Ji-hua; Pashley, David H; Tay, Franklin R

    2015-11-30

    Discoloration-resistant calcium aluminosilicate cement has been formulated to overcome the timely problem of tooth discoloration reported in the clinical application of bismuth oxide-containing hydraulic cements. The present study examined the effects of this experimental cement (Quick-Set2) on the viability and proliferation of human dental pulp stem cells (hDPSCs) by comparing the cellular responses with commercially available calcium silicate cement (white mineral trioxide aggregate; WMTA) after different aging periods. Cell viability and proliferation were examined using assays that examined plasma membrane integrity, leakage of cytosolic enzyme, caspase-3 activity for early apoptosis, oxidative stress, mitochondrial metabolic activity and intracellular DNA content. Results of the six assays indicated that both Quick-Set2 and WMTA were initially cytotoxic to hDPSCs after setting for 24 h, with Quick-Set2 being comparatively less cytotoxic than WMTA at this stage. After two aging cycles, the cytotoxicity profiles of the two hydraulic cements were not significantly different and were much less cytotoxic than the positive control (zinc oxide-eugenol cement). Based on these results, it is envisaged that any potential beneficial effect of the discoloration-resistant calcium aluminosilicate cement on osteogenesis by differentiated hDPSCs is more likely to be revealed after outward diffusion and removal of its cytotoxic components.

  2. [Burns caused by cement mortar (based on expert opinion)].

    PubMed

    Kleinhans, D

    1984-01-01

    A 35-year-old farmer with scars on his right arm, following erosion obviously due to wet cement (case of an expert opinion), was examined. Cement water had continuously soaked his shirt while he was planing a freshly applied wet cement ceiling with his right arm upwards. The cement did not contain special additives, so the normal alkalinity of wet cement and occlusion effects caused the erosion. The farmer sued the manufacturer of the cement for damages because of missing warning notices. The court decided in his favor.

  3. Abyssal seep site cementation: west Florida escarpment

    SciTech Connect

    Neumann, A.C.; Paull, C.K.; Commeau, R.; Commeau, J.; Chanton, J.; Martens, C.; Gardemal, M.; Trumbull, W.; Showers, W.

    1988-02-01

    The deepest submarine cements known so far occur along the 3300-m deep base of the Florida escarpment and are associated with methane-bearing brine seeps, which emanate there. These deep Holocene carbonates, which occur as surficial and buried crusts, burrow fillings, and friable horizons, were sampled via ALVIN. The carbonates form irregular halos extending up to 20 m from seeps colonized by chemosynthetic fauna. Mussels, gastropods, and clams, the carbonate components of the community, produce a shell hash that is locally cemented by coarsely crystalline low-Mg calcite. Halos of palisade calcite are reminiscent of ancient examples of marine cements. Also present are carbonate hemipelagics cemented by micrite into crusts and burrow fillings. The degree of cementation varies from pervasive to light. Slabs of cemented crust up to 30 cm thick contrast with typical shallow crusts and exhibit irregular tops and smooth bottoms indicating different chemical gradients and pathways. Bulk /delta//sup 13/C values of the carbonates are low, ranging from /minus/ 2.4 to /minus/ 48.5 /per thousand/ (PDB) and implicating as the carbonate source the biogenic methane that occurs in high concentrations at the seeps. The interaction of methane and sulfate in these cement reactions is still unclear. The presence of course mollusk-fragment hardgrounds overlying an eroded limestone and covered by hemipelagics, if encountered elsewhere, could be mistaken for a much shallower setting. The erosion of limestone scarps and the concurrent development of deep hardgrounds containing a fossil chemosynthetic fauna at the unconformity is a scenario that needs to be included in the growing list of limestone facies interpretations.

  4. Assessment of Natural Radioactivity Levels of Cements and Cement Composites in the Slovak Republic

    PubMed Central

    Eštoková, Adriana; Palaščáková, Lenka

    2013-01-01

    The radionuclide activities of 226Ra, 232Th and 40K and radiological parameters (radium equivalent activity, gamma and alpha indices, the absorbed gamma dose rate and external and internal hazard indices) of cements and cement composites commonly used in the Slovak Republic have been studied in this paper. The cement samples of 8 types of cements from Slovak cement plants and five types of composites made from cement type CEM I were analyzed in the experiment. The radionuclide activities in the cements ranged from 8.58–19.1 Bq·kg−1, 9.78–26.3 Bq·kg−1 and 156.5–489.4 Bq·kg−1 for 226Ra, 232Th and 40K, respectively. The radiological parameters in cement samples were calculated as follows: mean radium equivalent activity Raeq = 67.87 Bq·kg−1, gamma index Iγ = 0.256, alpha index Iα = 0.067, the absorbed gamma dose rate D = 60.76 nGy·h−1, external hazard index Hex = 0.182 and internal hazard index Hin was 0.218. The radionuclide activity in composites ranged from 6.84–10.8 Bq·kg−1 for 226Ra, 13.1–20.5 Bq·kg−1 for 232Th and 250.4–494.4 Bq·kg−1 for 40K. The calculated radiological parameters of cements were lower than calculated radiological parameters of cement composites. PMID:24351739

  5. Lateral Packing of Mineral Crystals in Bone Collagen

    SciTech Connect

    Burger, C.; Zhou, H; Wang, H; Sics, I; Hsiao, B; Chu, B; Graham, L; Glimcher, M

    2008-01-01

    Combined small-angle x-ray scattering and transmission electron microscopy studies of intramuscular fish bone (shad and herring) indicate that the lateral packing of nanoscale calcium-phosphate crystals in collagen fibrils can be represented by irregular stacks of platelet-shaped crystals, intercalated with organic layers of collagen molecules. The scattering intensity distribution in this system can be described by a modified Zernike-Prins model, taking preferred orientation effects into account. Using the model, the diffuse fan-shaped small-angle x-ray scattering intensity profile, dominating the equatorial region of the scattering pattern, could be quantitatively analyzed as a function of the degree of mineralization. The mineral platelets were found to be very thin (1.5nm{approx}2.0nm), having a narrow thickness distribution. The thickness of the organic layers between adjacent mineral platelets within a stack is more broadly distributed with the average value varying from 6nm to 10nm, depending on the extent of mineralization. The two-dimensional analytical scheme also leads to quantitative information about the preferred orientation of mineral stacks and the average height of crystals along the crystallographic c axis.

  6. Simple cloud chambers using gel ice packs

    NASA Astrophysics Data System (ADS)

    Kamata, Masahiro; Kubota, Miki

    2012-07-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry ice or liquid nitrogen. The gel can be frozen in normal domestic freezers, and can be used repeatedly by re-freezing. The tracks of alpha-ray particles can be observed continuously for about 20 min, and the operation is simple and easy.

  7. Packed fluidized bed blanket for fusion reactor

    DOEpatents

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  8. Microstructural characterization of random packings of cubic particles

    PubMed Central

    Malmir, Hessam; Sahimi, Muhammad; Tabar, M. Reza Rahimi

    2016-01-01

    Understanding the properties of random packings of solid objects is of critical importance to a wide variety of fundamental scientific and practical problems. The great majority of the previous works focused, however, on packings of spherical and sphere-like particles. We report the first detailed simulation and characterization of packings of non-overlapping cubic particles. Such packings arise in a variety of problems, ranging from biological materials, to colloids and fabrication of porous scaffolds using salt powders. In addition, packing of cubic salt crystals arise in various problems involving preservation of pavements, paintings, and historical monuments, mineral-fluid interactions, CO2 sequestration in rock, and intrusion of groundwater aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We have developed a version of the random sequential addition algorithm to generate such packings, and have computed a variety of microstructural descriptors, including the radial distribution function, two-point probability function, orientational correlation function, specific surface, and mean chord length, and have studied the effect of finite system size and porosity on such characteristics. The results indicate the existence of both spatial and orientational long-range order in the packing, which is more distinctive for higher packing densities. The maximum packing fraction is about 0.57. PMID:27725736

  9. Microstructural characterization of random packings of cubic particles

    NASA Astrophysics Data System (ADS)

    Malmir, Hessam; Sahimi, Muhammad; Tabar, M. Reza Rahimi

    2016-10-01

    Understanding the properties of random packings of solid objects is of critical importance to a wide variety of fundamental scientific and practical problems. The great majority of the previous works focused, however, on packings of spherical and sphere-like particles. We report the first detailed simulation and characterization of packings of non-overlapping cubic particles. Such packings arise in a variety of problems, ranging from biological materials, to colloids and fabrication of porous scaffolds using salt powders. In addition, packing of cubic salt crystals arise in various problems involving preservation of pavements, paintings, and historical monuments, mineral-fluid interactions, CO2 sequestration in rock, and intrusion of groundwater aquifers by saline water. Not much is known, however, about the structure and statistical descriptors of such packings. We have developed a version of the random sequential addition algorithm to generate such packings, and have computed a variety of microstructural descriptors, including the radial distribution function, two-point probability function, orientational correlation function, specific surface, and mean chord length, and have studied the effect of finite system size and porosity on such characteristics. The results indicate the existence of both spatial and orientational long-range order in the packing, which is more distinctive for higher packing densities. The maximum packing fraction is about 0.57.

  10. The effect of nanoparticle packing on capacitive electrode performance.

    PubMed

    Lee, Younghee; Noh, Seonmyeong; Kim, Min-Sik; Kong, Hye Jeong; Im, Kyungun; Kwon, Oh Seok; Kim, Sungmin; Yoon, Hyeonseok

    2016-06-01

    Nanoparticles pack together to form macro-scale electrodes in various types of devices, and thus, optimization of the nanoparticle packing is a prerequisite for the realization of a desirable device performance. In this work, we provide in-depth insight into the effect of nanoparticle packing on the performance of nanoparticle-based electrodes by combining experimental and computational findings. As a model system, polypyrrole nanospheres of three different diameters were used to construct pseudocapacitive electrodes, and the performance of the electrodes was examined at various nanosphere diameter ratios and mixed weight fractions. Two numerical algorithms are proposed to simulate the random packing of the nanospheres on the electrode. The binary nanospheres exhibited diverse, complicated packing behaviors compared with the monophasic packing of each nanosphere species. The packing of the two nanosphere species with lower diameter ratios at an optimized composition could lead to more dense packing of the nanospheres, which in turn could contribute to better device performance. The dense packing of the nanospheres would provide more efficient transport pathways for ions because of the reduced inter-nanosphere pore size and enlarged surface area for charge storage. Ultimately, it is anticipated that our approach can be widely used to define the concept of "the best nanoparticle packing" for desirable device performance. PMID:27242155

  11. Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes.

    PubMed

    Biswas, Nupur; Bhattacharya, Rupak; Saha, Arindam; Jana, Nikhil R; Basu, Jaydeep K

    2015-10-01

    Understanding of nanoparticle-membrane interactions is useful for various applications of nanoparticles like drug delivery and imaging. Here we report on the studies of interaction between hydrophilic charged polymer coated semiconductor quantum dot nanoparticles with model lipid membranes. Atomic force microscopy and X-ray reflectivity measurements suggest that cationic nanoparticles bind and penetrate bilayers of zwitterionic lipids. Penetration and binding depend on the extent of lipid packing and result in the disruption of the lipid bilayer accompanied by enhanced lipid diffusion. On the other hand, anionic nanoparticles show minimal membrane binding although, curiously, their interaction leads to reduction in lipid diffusivity. It is suggested that the enhanced binding of cationic QDs at higher lipid packing can be understood in terms of the effective surface potential of the bilayers which is tunable through membrane lipid packing. Our results bring forth the subtle interplay of membrane lipid packing and electrostatics which determine nanoparticle binding and penetration of model membranes with further implications for real cell membranes.

  12. Chemical and Physical Reactions of Wellbore Cement under CO2 Storage Conditions: Effects of Cement Additives

    NASA Astrophysics Data System (ADS)

    Kutchko, B. G.; Strazisar, B. R.; Huerta, N.; Lowry, G. V.; Dzombak, D. A.; Thaulow, N.

    2008-12-01

    Sequestration of CO2 into geologic formations requires long-term storage and low leakage rates to be effective. Active and abandoned wells in candidate storage formations must be evaluated as potential leakage points. Wellbore integrity is an important part of an overall integrated assessment program being developed at NETL to assess potential risks at CO2 storage sites. Such a program is needed for ongoing policy and regulatory decisions for geologic carbon sequestration. The permeability and integrity of the cement in the well is a primary factor affecting its ability to prevent leakage. Cement must be able to maintain low permeability over lengthy exposure to reservoir conditions in a CO2 injection and storage scenario. Although it is known that cement may be altered by exposure to CO2, the results of ongoing research indicate that cement curing conditions, fluid properties, and cement additives play a significant role in the rate of alteration and reaction. The objective of this study is to improve understanding of the factors affecting wellbore cement integrity for large-scale geologic carbon sequestration projects. Due to the high frequency use of additives (pozzolan) in wellbore cement, it is also essential to understand the reaction of these cement-pozzolan systems upon exposure to CO2 under sequestration conditions (15.5 MPa and 50°C). Laboratory experiments were performed to determine the physical and chemical changes, as well as the rate of alteration of commonly used pozzolan-cement systems under simulated sequestration reservoir conditions, including both supercritical CO2 and CO2-saturated brine. The rate of alteration of the cement-pozzolan systems is considerably faster than with neat cement. However, the alteration of physical properties is much less significant with the pozzolanic blends. Permeability of a carbonated pozzolanic cement paste remains sufficiently small to block significant vertical migration of CO2 in a wellbore. All of the

  13. Plug cementing: Horizontal to vertical conditions

    SciTech Connect

    Calvert, D.G.; Heathman, J.F.; Griffith, J.E.

    1995-12-31

    This paper presents an in-depth study of cement plug placement that was conducted with large-scale models for the improvement of plug cementing practices and plug integrity. Common hole and workstring geometries were examined with various rheology and density ratios between the drilling fluid and cement. The critical conditions dictating the difference between success and failure for various wellbore angles and conditions were explored, and the mechanisms controlling slurry movement before and after placement are now better understood. An understanding of these mechanisms allows the engineer to better tailor a design to specific hole conditions. Controversial concepts regarding plug-setting practices have been examined and resolved. The cumulative effects of density, rheology, and hole angle are major factors affecting plug success. While the Boycott effect and an extrusion effect were observed to be predominant in inclined wellbores, a spiraling or {open_quotes}roping{close_quotes} effect controls slurry movement in vertical wellbores. Ultimate success of a cement plug can be obtained if allowances are made for these effects in the job design, provided all other previously published recommended placement practices are followed. Results of this work can be applied to many sidetracking and plug-to-abandon operations. Additionally, the understanding of the fluid movement (creep) mechanisms holds potential for use in primary and remedial cementing work, and in controlling the placement of noncementitious fluids in the wellbore.

  14. New technology improves cement-slurry design

    SciTech Connect

    1997-08-01

    A promising geothermal concession is located in a tea plantation on the island of Java. A drilling project was undertaken to evaluate and harness this resource for geothermal electricity generation. The program used two slimhole rigs to drill appraisal wells to establish the potential of the field. Geothermal wells present the most severe conditions to which cements are exposed. As a result, their performance requirements are among the most stringent. Geothermal cements are usually designed to provide at least 1,000 psi compressive strength and no more than 1.0-md water permeability. While casings with tight annular clearances require that good cementing practices be observed, they also create conditions that demand much greater care and control in slurry and procedure design than regular casing cementation. Free-water and thickening-time requirements are similar for geothermal and slimhole conditions, but the use of perlite and silica flour complicate the rheology required for geothermal wells. The paper describes liquid-cement premix, applications, laboratory testing, field pilot testing, and field operations.

  15. Sulfate attack on cement-stabilized sand

    SciTech Connect

    Rollings, R.S.; Burkes, J.P.; Rollings, M.P.

    1999-05-01

    A 3.5-km (2.2 mi) section of a road in Georgia developed unexpected transverse bumps within 6 months after construction. The source of the bumps appeared to be expansion within the cement-stabilized base course. Laboratory examination of samples from areas showing distress revealed the presence of ettringite, a calcium sulfoaluminate the formation of which can be accompanied by severe expansion. This expansive materials was the probable cause of the volume changes causing the transverse bumps. The calcium and alumina needed to form ettringite ware available from the portland cement and the stabilized soil`s clay minerals. The source of the sulfur was identified as the well water that was mixed with the cement-stabilized base. Sulfate attack of cement-stabilized soils is a relatively infrequent problem, but it is highly destructive when it occurs. Currently, there are no firm criteria for identifying when sulfate attack of a cement-stabilized soil is a potential problem nor are there established methods of preventing the attack.

  16. Structural characterization of submerged granular packings

    NASA Astrophysics Data System (ADS)

    Jakšić, Z. M.; Šćepanović, J. R.; Lončarević, I.; Budinski-Petković, Lj.; Vrhovac, S. B.; Belić, A.

    2014-12-01

    We consider the impact of the effective gravitational acceleration on microstructural properties of granular packings through experimental studies of spherical granular materials saturated within fluids of varying density. We characterize the local organization of spheres in terms of contact connectivity, distribution of the Delaunay free volumes, and the shape factor (parameter of nonsphericity) of the Voronoï polygons. The shape factor gives a clear physical picture of the competition between less and more ordered domains of particles in experimentally obtained packings. As the effective gravity increases, the probability distribution of the shape factor becomes narrower and more localized around the lowest values of the shape factor corresponding to regular hexagon. It is found that curves of the pore distributions are asymmetric with a long tail on the right-hand side, which progressively reduces while the effective gravity gets stronger for lower densities of interstitial fluid. We show that the distribution of local areas (Voronoï cells) broadens with decreasing value of the effective gravity due to the formation of lose structures such as large pores and chainlike structures (arches or bridges). Our results should be particularly helpful in testing the newly developed simulation techniques involving liquid-related forces associated with immersed granular particles.

  17. Packing material formulation for odorous emission biofiltration.

    PubMed

    Gaudin, François; Andres, Yves; Le Cloirec, Pierre

    2008-01-01

    In biological gas treatment, like biofiltration of volatile organic compounds or odorous substances, the microbial nutritional needs could be a key factor of the process. The aim of this work is to propose a new packing material able to provide the lacking nutrients. In the first part of this study, two kinds of material composed of calcium carbonate, an organic binder and two different nitrogen sources, ammonium phosphate and urea phosphate (UP), were compared. The new supports present bulk densities between 0.88 and 1.15g cm(-3), moisture retention capacities close to 50% and 70%, and water cohesion capacities greater than six months for the material with 20% binder. In the second part, oxygen consumption measurements in liquid experiments show that these packing materials could enhance bacterial growth compared to pine bark or pozzolan and have no inhibitory effect. The biodegradation of different substrates (sodium sulfide and ammonia) and the support colonization by the biomass were evaluated. Finally, UP 20 was chosen and tested in a hydrogen sulfide or ammoniac biofiltration process. This showed that, for H2S concentrations greater than 100mg m(-3), UP 20 has a real advantage over pine bark or pozzolan. PMID:17889256

  18. Effective Thermal Conductivity of Adsorbent Packed Beds

    NASA Astrophysics Data System (ADS)

    Mori, Hideo; Hamamoto, Yoshinori; Yoshida, Suguru

    The effective thermal conductivity of adsorbent packed beds of granular zeolite 13X and granular silica gel A in the presence of stagnant steam or air was measured under different conditions of the adsorbent bed temperature, particle size and filler-gas pressure. The measured effective thermal conductivity showed to become smaller with decreasing particle size or decreasing pressure, but it was nearly independent of the bed temperature. When steam was the filler-gas, the rise in the thermal conductivity of the adsorbent particles due to steam adsorption led to the increase in the effective thermal conductivity of the bed, and this effect was not negligible at high steam pressure for the bed of large particle size. It was found that both the predictions of the effective thermal conductivity by the Hayashi et al.'s model and the Bauer-Schlünder model generally agreed well with the measurements, by considering the particle thermal conductivity rise due to steam adsorption. The thermal conductivity of a consolidated bed of granular zeolite 13X was also measured, and it was found to be much larger than that of the packed bed especially at lower pressure. The above prediction models underestimated the effective thermal conductivity of the consolidated bed.

  19. Understanding shape entropy through local dense packing.

    PubMed

    van Anders, Greg; Klotsa, Daphne; Ahmed, N Khalid; Engel, Michael; Glotzer, Sharon C

    2014-11-11

    Entropy drives the phase behavior of colloids ranging from dense suspensions of hard spheres or rods to dilute suspensions of hard spheres and depletants. Entropic ordering of anisotropic shapes into complex crystals, liquid crystals, and even quasicrystals was demonstrated recently in computer simulations and experiments. The ordering of shapes appears to arise from the emergence of directional entropic forces (DEFs) that align neighboring particles, but these forces have been neither rigorously defined nor quantified in generic systems. Here, we show quantitatively that shape drives the phase behavior of systems of anisotropic particles upon crowding through DEFs. We define DEFs in generic systems and compute them for several hard particle systems. We show they are on the order of a few times the thermal energy ([Formula: see text]) at the onset of ordering, placing DEFs on par with traditional depletion, van der Waals, and other intrinsic interactions. In experimental systems with these other interactions, we provide direct quantitative evidence that entropic effects of shape also contribute to self-assembly. We use DEFs to draw a distinction between self-assembly and packing behavior. We show that the mechanism that generates directional entropic forces is the maximization of entropy by optimizing local particle packing. We show that this mechanism occurs in a wide class of systems and we treat, in a unified way, the entropy-driven phase behavior of arbitrary shapes, incorporating the well-known works of Kirkwood, Onsager, and Asakura and Oosawa.

  20. Immersion Calorimetry: Molecular Packing Effects in Micropores.

    PubMed

    Madani, S Hadi; Silvestre-Albero, Ana; Biggs, Mark J; Rodríguez-Reinoso, Francisco; Pendleton, Phillip

    2015-12-21

    Repeated and controlled immersion calorimetry experiments were performed to determine the specific surface area and pore-size distribution (PSD) of a well-characterized, microporous poly(furfuryl alcohol)-based activated carbon. The PSD derived from nitrogen gas adsorption indicated a narrow distribution centered at 0.57±0.05 nm. Immersion into liquids of increasing molecular sizes ranging from 0.33 nm (dichloromethane) to 0.70 nm (α-pinene) showed a decreasing enthalpy of immersion at a critical probe size (0.43-0.48 nm), followed by an increase at 0.48-0.56 nm, and a second decrease at 0.56-0.60 nm. This maximum has not been reported previously. After consideration of possible reasons for this new observation, it is concluded that the effect arises from molecular packing inside the micropores, interpreted in terms of 2D packing. The immersion enthalpy PSD was consistent with that from quenched solid density functional theory (QSDFT) analysis of the nitrogen adsorption isotherm.

  1. Immersion Calorimetry: Molecular Packing Effects in Micropores.

    PubMed

    Madani, S Hadi; Silvestre-Albero, Ana; Biggs, Mark J; Rodríguez-Reinoso, Francisco; Pendleton, Phillip

    2015-12-21

    Repeated and controlled immersion calorimetry experiments were performed to determine the specific surface area and pore-size distribution (PSD) of a well-characterized, microporous poly(furfuryl alcohol)-based activated carbon. The PSD derived from nitrogen gas adsorption indicated a narrow distribution centered at 0.57±0.05 nm. Immersion into liquids of increasing molecular sizes ranging from 0.33 nm (dichloromethane) to 0.70 nm (α-pinene) showed a decreasing enthalpy of immersion at a critical probe size (0.43-0.48 nm), followed by an increase at 0.48-0.56 nm, and a second decrease at 0.56-0.60 nm. This maximum has not been reported previously. After consideration of possible reasons for this new observation, it is concluded that the effect arises from molecular packing inside the micropores, interpreted in terms of 2D packing. The immersion enthalpy PSD was consistent with that from quenched solid density functional theory (QSDFT) analysis of the nitrogen adsorption isotherm. PMID:26394883

  2. Understanding shape entropy through local dense packing.

    PubMed

    van Anders, Greg; Klotsa, Daphne; Ahmed, N Khalid; Engel, Michael; Glotzer, Sharon C

    2014-11-11

    Entropy drives the phase behavior of colloids ranging from dense suspensions of hard spheres or rods to dilute suspensions of hard spheres and depletants. Entropic ordering of anisotropic shapes into complex crystals, liquid crystals, and even quasicrystals was demonstrated recently in computer simulations and experiments. The ordering of shapes appears to arise from the emergence of directional entropic forces (DEFs) that align neighboring particles, but these forces have been neither rigorously defined nor quantified in generic systems. Here, we show quantitatively that shape drives the phase behavior of systems of anisotropic particles upon crowding through DEFs. We define DEFs in generic systems and compute them for several hard particle systems. We show they are on the order of a few times the thermal energy ([Formula: see text]) at the onset of ordering, placing DEFs on par with traditional depletion, van der Waals, and other intrinsic interactions. In experimental systems with these other interactions, we provide direct quantitative evidence that entropic effects of shape also contribute to self-assembly. We use DEFs to draw a distinction between self-assembly and packing behavior. We show that the mechanism that generates directional entropic forces is the maximization of entropy by optimizing local particle packing. We show that this mechanism occurs in a wide class of systems and we treat, in a unified way, the entropy-driven phase behavior of arbitrary shapes, incorporating the well-known works of Kirkwood, Onsager, and Asakura and Oosawa. PMID:25344532

  3. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  4. In vitro bond strength and fatigue stress test evaluation of different adhesive cements used for fixed space maintainer cementation

    PubMed Central

    Cantekin, Kenan; Delikan, Ebru; Cetin, Secil

    2014-01-01

    Objective: The purposes of this research were to (1) compare the shear-peel bond strength (SPBS) of a band of a fixed space maintainer (SM) cemented with five different adhesive cements; and (2) compare the survival time of bands of SM with each cement type after simulating mechanical fatigue stress. Materials and Methods: Seventy-five teeth were used to assess retentive strength and another 50 teeth were used to assess the fatigue survival time. SPBS was determined with a universal testing machine. Fatigue testing was conducted in a ball mill device. Results: The mean survival time of bands cemented with R & D series Nova Glass-LC (6.2 h), Transbond Plus (6.7 h), and R & D series Nova Resin (6.8 h) was significantly longer than for bands cemented with Ketac-Cem (5.4 h) and GC Equia (5.2 h) (P < 0.05). Conclusion: Although traditional glass ionomer cement (GIC) cement presented higher retentive strength than resin-based cements (resin, resin modified GIC, and compomer cement), resin based cements, especially dual cure resin cement (nova resin cement) and compomer (Transbond Plus), can be expected to have lower failure rates for band cementation than GIC (Ketac-Cem) in the light of the results of the ball mill test. PMID:25202209

  5. Influence of cementation and cement type on the fracture load testing methodology of anterior crowns made of different materials.

    PubMed

    Stawarczyk, Bogna; Beuer, Florian; Ender, Andreas; Roos, Malgorzata; Edelhoff, Daniel; Wimmer, Timea

    2013-01-01

    To evaluate the influence of cementation on fracture load of anterior crowns made of CAD/CAM-resin-blocks (ART), leucite-reinforced glass-ceramics (LRG), lithium disilicate ceramics (LIT), veneered zirconia (ZRO) and veneered alloy (DEG). Each crown group (n=15/subgroup) was cemented on the metal abutment as follows: i. using glass ionomer, ii. using self-adhesive resin cement, and iii. not cemented. Crowns were tested and analyzed with 2-way and 1-way ANOVA (Scheffé test), and Weibull statistics (p<0.05). Within LRG, self-adhesive cemented subgroup showed higher fracture load compared to other groups (p<0.001). Among DEG, lower results were measured for non-cemented crowns than for cemented (p<0.001). For ART, LIT and ZRO no influence of cementation was observed. For fracture load test methodology, metal ceramic crowns should be generally cemented. Glass-ceramic crowns should be cemented using adhesive cement. Cementation and cement type did not have an influence on the fracture load results for resin, zirconia or lithium disilicate crowns.

  6. The importance of a thick cement mantle depends on stem geometry and stem-cement interfacial bonding.

    PubMed

    Caruana, J; Janssen, D; Verdonschot, N; Blunn, G W

    2009-04-01

    The thickness of the cement mantle around the femoral component of total hip replacements is a contributing factor to aseptic loosening and revision. Nevertheless, various designs of stems and surgical tooling lead to cement mantles of different thicknesses. Opinion is divided on whether a thick mantle enhances implant longevity. This study investigates the effect of cement mantle thickness on accumulated damage in the cement, and how this is influenced by the presence or absence of a proximal collar and on whether the stem-cement interface remains bonded. Three-dimensional finite element simulations incorporating creep and non-linear damage accumulation were performed to investigate cracking in the cement mantles around Stanmore Hips under physiologically informed stair-climbing and gait loads. Cement mantle thickness, stem-cement interfacial bonding, and collar design were varied to assess the interactive effects of these parameters. In all cases, damage levels were three to six times higher when the stem-cement interface remained bonded. Cement mantle thickness had little effect on cement damage accumulation around debonded collared stems but was critical in both bonded and collarless cases, where a thicker mantle reduced cement cracking. Damage around a smooth debonded stem with a collar is thus much less sensitive to cement thickness than around bonded or collarless stems.

  7. 3. Cement and Plaster Warehouse, north facade. Loading ramp on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Cement and Plaster Warehouse, north facade. Loading ramp on the right. Utility building, intrusion, on the far right. - Curtis Wharf, Cement & Plaster Warehouse, O & Second Streets, Anacortes, Skagit County, WA

  8. 6. Cement and Plaster Warehouse, interior. View looking south. Original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Cement and Plaster Warehouse, interior. View looking south. Original wood roof truss can be seen at upper left. - Curtis Wharf, Cement & Plaster Warehouse, O & Second Streets, Anacortes, Skagit County, WA

  9. 4. Cement and Plaster Warehouse, southeast corner, showing alterations; pent ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Cement and Plaster Warehouse, southeast corner, showing alterations; pent roof, window and door openings, siding, brick foundation sheathing. - Curtis Wharf, Cement & Plaster Warehouse, O & Second Streets, Anacortes, Skagit County, WA

  10. Microemulsions for use as spaces in well cementation

    SciTech Connect

    Carriay, J.; De Lautrec, J.

    1980-09-23

    New application of microemulsions as buffers between the slurry and the cement in the cementation of oil wells. The microemulsions contain an amphoteric surfactant selected from the group of alkyl dimethyl betaines.

  11. Cortical bone screw fixation in ionically modified apatite cements.

    PubMed

    Barralet, J E; Duncan, C O; Dover, M S; Bassett, D C; Nishikawa, H; Monaghan, A; Gbureck, U

    2005-05-01

    Hydroxyapatite cements are used in reconstruction of the face; usually in well-defined cavities where the cement can be stabilized without the need for internal fixation. A hydroxyapatite cement that could enable screw fixation and some loading therefore has considerable potential in maxillofacial reconstruction. It has been demonstrated recently that water demand of calcium phosphate cements can be reduced by ionically modifying the liquid component. This study investigated the capacity of an ionically modified precompacted apatite cement to retain self-tapping cortical bone screws. Screw pullout forces were determined in the direction of the screw long axis and perpendicular to it, using cortical bone and polymethylmethacrylate cement as a control. In bending pullout tests, measured forces to remove screws from ionically modified precompacted cement were insignificantly different from cortical bone. However, pullout forces of bone screws from hydroxyapatite cement decreased with aging time in vitro.

  12. Injection biomechanics of bone cements used in vertebroplasty.

    PubMed

    Baroud, G; Bohner, M; Heini, P; Steffen, T

    2004-01-01

    The incidence of osteoporotic bone fractures is growing exponentially as the western population ages and as life expectancy increases. Vertebroplasty, where acrylic or calcium phosphate cement is injected into the weakened vertebrae to augment them, is an emerging procedure for treating spinal fragility fractures. However, cement injection is currently limited because there are no clear standards for a safe, reproducible and predictable procedure. The purpose of this paper is to examine the role that bone cements play in the underlying bio-mechanisms that affect the outcomes of cement injection. Our most important finding after combining clinical, laboratory and theoretical research is that the process of cement injection poses conflicting demands on bone cements. The cements are required to be more viscous and less viscous at the same time. The challenge therefore is to develop biomaterials, techniques and/or devices that can overcome or manage the conflicting demands on cement viscosity.

  13. Modeling the degradation of Portland cement pastes by biogenic organic acids

    SciTech Connect

    De Windt, Laurent; Devillers, Philippe

    2010-08-15

    Reactive transport models can be used to assess the long-term performance of cement-based materials subjected to biodegradation. A bioleaching test (with Aspergillus niger fungi) applied to ordinary Portland cement pastes during 15 months is modeled with HYTEC. Modeling indicates that the biogenic organic acids (acetic, butyric, lactic and oxalic) strongly accelerate hydrate dissolution by acidic hydrolysis whilst their complexation of aluminum has an effect on the secondary gel stability only. The deepest degradation front corresponds to portlandite dissolution and decalcification of calcium silicate hydrates. A complex pattern of sulfate phases dissolution and precipitation takes place in an intermediate zone. The outermost degraded zone consists of alumina and silica gels. The modeling accurateness of calcium leaching, pH evolution and degradation thickness is consistently enhanced whilst considering increase of diffusivity in the degraded zones. Precipitation of calcium oxalate is predicted by modeling but was hindered in the bioleaching reactor.

  14. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?

    PubMed

    Walling, Sam A; Provis, John L

    2016-04-13

    This review examines the detailed chemical insights that have been generated through 150 years of work worldwide on magnesium-based inorganic cements, with a focus on both scientific and patent literature. Magnesium carbonate, phosphate, silicate-hydrate, and oxysalt (both chloride and sulfate) cements are all assessed. Many such cements are ideally suited to specialist applications in precast construction, road repair, and other fields including nuclear waste immobilization. The majority of MgO-based cements are more costly to produce than Portland cement because of the relatively high cost of reactive sources of MgO and do not have a sufficiently high internal pH to passivate mild steel reinforcing bars. This precludes MgO-based cements from providing a large-scale replacement for Portland cement in the production of steel-reinforced concretes for civil engineering applications, despite the potential for CO2 emissions reductions offered by some such systems. Nonetheless, in uses that do not require steel reinforcement, and in locations where the MgO can be sourced at a competitive price, a detailed understanding of these systems enables their specification, design, and selection as advanced engineering materials with a strongly defined chemical basis.

  15. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?

    PubMed

    Walling, Sam A; Provis, John L

    2016-04-13

    This review examines the detailed chemical insights that have been generated through 150 years of work worldwide on magnesium-based inorganic cements, with a focus on both scientific and patent literature. Magnesium carbonate, phosphate, silicate-hydrate, and oxysalt (both chloride and sulfate) cements are all assessed. Many such cements are ideally suited to specialist applications in precast construction, road repair, and other fields including nuclear waste immobilization. The majority of MgO-based cements are more costly to produce than Portland cement because of the relatively high cost of reactive sources of MgO and do not have a sufficiently high internal pH to passivate mild steel reinforcing bars. This precludes MgO-based cements from providing a large-scale replacement for Portland cement in the production of steel-reinforced concretes for civil engineering applications, despite the potential for CO2 emissions reductions offered by some such systems. Nonetheless, in uses that do not require steel reinforcement, and in locations where the MgO can be sourced at a competitive price, a detailed understanding of these systems enables their specification, design, and selection as advanced engineering materials with a strongly defined chemical basis. PMID:27002788

  16. Cogrinding significance for calcium carbonate-calcium phosphate mixed cement. II. Effect on cement properties.

    PubMed

    Tadier, Solène; Bolay, Nadine Le; Fullana, Sophie Girod; Cazalbou, Sophie; Charvillat, Cédric; Labarrère, Michel; Boitel, Daniel; Rey, Christian; Combes, Christèle

    2011-11-01

    In the present study, we aim to evaluate the contribution of the cogrinding process in controlling calcium carbonate-dicalcium phosphate dihydrate cement properties. We set a method designed to evaluate phase separation, usually occurring during paste extrusion, which is quantitative, reliable, and discriminating and points out the determining role of cogrinding to limit filter-pressing. We show that solid-phase cogrinding leads to synergistic positive effects on cement injectability, mechanical properties, and radio-opacity. It allows maintaining a low (<0.4 kg) and constant load during the extrusion of paste, and the paste's composition remains constant and close to that of the initial paste. Analogous behavior was observed when adding a third component into the solid phase, especially SrCO(3) as a contrasting agent. Moreover, the cement's mechanical properties can be enhanced by lowering the L/S ratio because of the lower plastic limit. Finally, unloaded or Sr-loaded cements show uniform and increased optical density because of the enhanced homogeneity of dry component distribution. Interestingly, this study reveals that cogrinding improves and controls essential cement properties and involves processing parameters that could be easily scaled up. This constitutes a decisive advantage for the development of calcium carbonate-calcium phosphate mixed cements and, more generally, of injectable multicomponent bone cements that meet a surgeon's requirements. PMID:21953727

  17. Expanded and packed bed albumin adsorption on fluoride modified zirconia.

    PubMed

    Mullick, A; Griffith, C M; Flickinger, M C

    1998-11-01

    The expanded bed characteristics of 75-103microm fluoride-modified zirconia (FmZr) particles synthesized by a fed batch oil emulsion process were investigated. These particles are distinguished from commercially available expanded-bed adsorbents by virtue of their high density (2.8 g/cc) and the mixed mode protein retention mechanism which allows for the retention of both cationic and anionic proteins. The linear velocity versus bed porosity data agree with the Richardson-Zaki relationship with the terminal velocity in infinite medium of 2858.4 cm/h and a bed expansion index of 5.1. Residence time distribution (RTD) studies and bovine serum albumin (BSA) adsorption studies were performed as a function of the height of the settled bed to the column diameter (H:D) ratio and degree of bed expansion with superficial velocities of 440 to 870 cm/h. The settled bed, a 2x expanded bed, and a 3x expanded bed were studied for the H:D ratios of 1:1, 2:1, and 3:1. The dynamic binding capacity (DBC) at 5% breakthrough was low (2-8 mg BSA/mL settled bed) and was independent of the H:D ratio or the degree of bed expansion. The saturation DBC was 32.3 +/- 7.0 mg BSA/mL settled bed. The adsorption-desorption kinetics and intraparticle diffusion for protein adsorption on FmZr (38-75 micrometer) were investigated by studying the packed bed RTD and BSA adsorption as a function of temperature and flow rate. The data show that the adsorption-desorption kinetics along with intraparticle diffusion significantly influence protein adsorption on FmZr. Low residence times ( approximately 0.8 min) of BSA result in a DBC at 5% breakthrough which is 3.5-fold lower compared to that at 6-fold higher protein residence time. At low linear velocity (45 cm/h) the breakthrough curve is nearly symmetrical and becomes asymmetrical and more dispersed at higher linear velocity (270 cm/h) due to the influence of slow adsorption-desorption kinetics and intraparticle diffusion. Bioeng 60: 333-340, 1998. PMID

  18. Aspects of column fabrication for packed capillary electrochromatography.

    PubMed

    Angus, P D; Demarest, C W; Catalano, T; Stobaugh, J F

    2000-07-28

    Various parameters have been evaluated to develop a process for optimization of column manufacture for packed capillary electrochromatography (CEC). Spherisorb ODS-1 was packed into 75 microm I.D. capillaries to establish a standard set of packing conditions to afford high-performance columns free of voids. Numerous silica-based packing materials including porous and non-porous reversed-phase and ion-exchange phases were employed to evaluate the applicability of the standard conditions. Success of column manufacture and performance demonstrate a relationship to the colligative properties of the packing materials under the applied conditions. Frequently encountered difficulties arising from inadequate column conditioning and void formation in the packed bed are identified and discussed.

  19. Howling at two Minnesota wolf pack summer homesites

    USGS Publications Warehouse

    Harrington, F.H.; Mech, L.D.

    1978-01-01

    Howling sessions were monitored at two Minnesota wolf pack homesites for 2255 h between 29 April and 3 August 1973. All sessions recorded occurred from dusk through early morning, with an evening peak for one pack. Within a night, multiple sessions were grouped temporally, most occurring within an hour of one another. Howling rates for both packs increased throughout the homesite season, with the larger pack howling twice as frequently. The role of howling in both intrapack and interpack contexts was considered. Much of the howling seemed to be involved in the coordination of pack activities. Further, the low frequency and clumped temporal distribution of sessions suggest that howling plays a secondary role in interpack contexts to other modes such as scent marking during the homesite season, but may increase in relative importance once homesites are abandoned and pack travel becomes nomadic.

  20. Simulation of abuse tolerance of lithium-ion battery packs

    NASA Astrophysics Data System (ADS)

    Spotnitz, Robert M.; Weaver, James; Yeduvaka, Gowri; Doughty, D. H.; Roth, E. P.

    A simple approach for using accelerating rate calorimetry data to simulate the thermal abuse resistance of battery packs is described. The thermal abuse tolerance of battery packs is estimated based on the exothermic behavior of a single cell and an energy balance than accounts for radiative, conductive, and convective heat transfer modes of the pack. For the specific example of a notebook computer pack containing eight 18650-size cells, the effects of cell position, heat of reaction, and heat-transfer coefficient are explored. Thermal runaway of the pack is more likely to be induced by thermal runaway of a single cell when that cell is in good contact with other cells and is close to the pack wall.