Schlegel, Ulf J; Sturm, Michael; Eysel, Peer; Breusch, Steffen J
2010-11-01
Polymethylmethacrylate bone cements are widely used in orthopaedic and trauma surgery as well as in dentistry. The toxic side effects of inhaled methylmethacrylate (MMA) fumes generated during mixing have been well studied. Vacuum cement mixing systems have been shown to reduce the risk of airborne MMA significantly compared to handmixing. In an effort to further reduce MMA exposure, the latest generation of mixing devices are pre-packed with the ingredients and thus allow preparation in nearly closed circuits. Until now, there has been no study proofing the efficacy of those systems in protecting theatre staff from MMA vapours. A pre-packed vacuum mixing system (Optipac®) was compared with two standard systems (Palamix® and Easymix®) regarding MMA emission. The latter systems require loading with the bone cement compounds prior to mixing. Following a standardized procedure, 10 mixes were performed with each system and the emission of MMA vapours in the breathing zone was recorded using photoionization detection over a period of 3 min. The mean MMA exposure was reduced when using the pre-packed system compared to the devices that require filling with the components. The highest emission peaks were recorded during the mixing and preparation steps in all systems. Modern pre-packed vacuum mixing systems further help to reduce the occupational hazards created by bone cement preparation. However, MMA fumes can still be detected using this technique. Although this is an important step in reducing MMA exposure in the operating theatre, further technical effort has to be taken to eliminate the continuous leakage of monomer from the devices while mixing and to minimize necessary manipulation for final delivery.
Spheroidization of glass powders for glass ionomer cements.
Gu, Y W; Yap, A U J; Cheang, P; Kumar, R
2004-08-01
Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.
NASA Astrophysics Data System (ADS)
Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Skolianos, S.; Chrissafis, K.; Stergioudis, G.
2009-01-01
Coatings formed from NiCrBSi powder were deposited by thermal spray and pack cementation processes on low carbon steel. The microstructure and morphology of the coatings were studied by scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Flame sprayed coatings exhibited high porosity and were mechanically bonded to the substrate while pack cementation coatings were more compact and chemically bonded to the substrate. The microhardness and the high temperature oxidation resistance of the coated samples were evaluated by a Vickers microhardness tester and by thermogravimetric measurements (TG), respectively. Pack cementation coatings showed higher hardness and were more protective to high temperature environments than the flame sprayed coatings.
Sustainable Blended Cements-Influences of Packing Density on Cement Paste Chemical Efficiency.
Knop, Yaniv; Peled, Alva
2018-04-18
This paper addresses the development of blended cements with reduced clinker amount by partial replacement of the clinker with more environmentally-friendly material (e.g., limestone powders). This development can lead to more sustainable cements with reduced greenhouse gas emission and energy consumption during their production. The reduced clicker content was based on improved particle packing density and surface area of the cement powder by using three different limestone particle diameters: smaller (7 µm, 3 µm) or larger (70 µm, 53 µm) than the clinker particles, or having a similar size (23 µm). The effects of the different limestone particle sizes on the chemical reactivity of the blended cement were studied by X-ray diffraction (XRD), thermogravimetry and differential thermogravimetry (TG/DTG), loss on ignition (LOI), isothermal calorimetry, and the water demand for reaching normal consistency. It was found that by blending the original cement with limestone, the hydration process and the reactivity of the limestone itself were increased by the increased surface area of the limestone particles. However, the carbonation reaction was decreased with the increased packing density of the blended cement with limestone, having various sizes.
The influence of Cr and Al pack cementation on low carbon steel to improve oxidation resistance
NASA Astrophysics Data System (ADS)
Prasetya, Didik; Sugiarti, Eni; Destyorini, Fredina; Thosin, Kemas Ahmad Zaini
2012-06-01
Pack chromizing and aluminizing has been widely used for many years to improve hot temperature oxidation and corrosion resistance of metals. The coating process involves packing the steel in a powder mixture which contain aluminum and chromium source, and inert filler (usually alumina), and halide activator NH4Cl. Al and Cr were deposited onto carbon steel by pack cementation process using elemental Al and Cr powder as Al and Cr source, whereas NiCo alloys codeposited by electrodeposition. The position of Al and Cr could be under or over Ni-Co alloys deposited. Pack cementation was heated on dry inert gas at temperature 800 °C about 5 hours and 20 minute for Cr and Al respectively. Al and Cr was successfully deposited. Laying down effect of Al and Cr onto carbon steel whether up and down toward NiCo alloys coating have affected to oxidation resistance. The pack aluminizing as top layer given best resitance to restrain excessive oxide scale, in contrast pack chromizing reveal bad oxidation resistance, moreover occured spallation on layer.
Carburizing treatment of low alloy steels: Effect of technological parameters
NASA Astrophysics Data System (ADS)
Benarioua, Younes
2018-05-01
The surface areas of the parts subjected to mechanical loads influence to a great extent the resistance to wear and fatigue. In majority of cases, producing of a hard superficial layer on a tough substrate is conducive to an increased resistance to mechanical wear and fatigue. Cementation treatment of low alloy steels which bonds superficial martensitic layer of high hardness and lateral compressive to a core of lower hardness and greater toughness is an example of a good solution of the problem. The high hardness of the martensitic layer is due to an increased concentration of interstitial carbon atoms in the austenite before quenching. The lower hardness of the core after quenching is due to the presence of ferrite and pearlite components which appear if the cooling rate after austenitization becomes lower than the critical on. The objective of the present study was to obtain a cemented surface layer on low alloy steel by means of pack carburizing treatment. Different steel grades, austenitization temperatures as well as different soaking times were used as parameters of the pack carburizing treatment. During this treatment, carbon atoms from the pack powder diffuse toward the steels surface and form compounds of iron carbides. The effect of carburizing parameters on the transformation rate of low carbon surface layer of the low alloy steel to the cemented one was investigated by several analytical techniques.
Ni-Al phase transformation of dual layer coating prepared by pack cementation and electrodeposition
NASA Astrophysics Data System (ADS)
Afandi, A.; Sugiarti, E.; Ekaputra, R.; Sudiro, T.; Thosin, K. A. Z.
2018-03-01
In this work, Fe-Cr alloys were coated via Aluminum (Al) pack cementation, followed by Nickel (Ni) electrodeposition. The process of pack cementation was done with mixing powders of Al, Al203 and NH4Cl with weight percentage of 15%, 85%, and 5% respectively. To control successful Al diffusion to the substrate, pack cementation was conducted for 7 hours with two holding temperatures treatment at 400 °C for 4 hours, and 800 ° C hours for 2 hours. Subsequently, the electrodeposition of Ni was applied with the solution consisting of NiSO4, H3BO3, and NiCl2. The samples were placed in the cathode, and then dipped in the solutions, while Ni plate used as anode. Successfully the samples were coated by dual Al-Ni layers, the samples were slowly heat treated at 900 °C for 10 hours. The inter-diffusion of Al and Ni were characterized with SEM/EDX to investigate the distribution of the elements. Mechanical properties of the coated substrates were analyzed with Hardness Vickers (HV). It was found the hardness of the substrate increased significantly, from originally 255 HV to the 1177 HV after pack cementation. The hardness of the substrates has decreased to 641 HV after Ni plating, but subsequent heat treatment has been able to increase the hardness to 842 HV. This phenomenon can be correlated to the inward Al diffusion, and outward Fe, Cr diffusion. The formation of intermetallic compounds due to Al inward and Fe, Cr outward diffusion were discussed in details.
NASA Astrophysics Data System (ADS)
Saak, Aaron Wilbur
The objective of this research is to better understand the important mechanisms that control the rheology of cement paste. In order to understand these mechanisms, new experimental techniques are developed. The insights gained through these studies are then applied toward designing self-flowing materials, particularly self-compacting concrete (SCC). A new testing program is developed where both the peak and equilibrium stress flow curves of cement paste are obtained by testing only one sample. Additionally, the influence of wall slip on yield stress and viscoelastic measurements is determined using a vane. The results indicate that a slip layer develops when the shear stress approaches the yield point. A three-dimensional model relating slump to yield stress is derived as a function of cone geometry. The results indicate that the model fits experimental data for cylindrical slumps over a wide range of yield stress values for a variety of materials. When compared to other published models, the results suggest that a fundamental relationship exists between yield stress and slump that is material independent and largely independent of cone geometry. The affect of various mixing techniques on the rheology of cement paste is investigated using a rheometer as a highly controlled mixer. The results suggest that there is a characteristic shear rate where the viscosity of cement paste is minimized. The influence of particle packing density, morphology and surface area on the viscosity of cement paste is quantified. The data suggest that even though packing density increases with the addition of fine particles, the benefits are largely overshadowed by a dramatic increase in surface area. Finally, a new methodology is introduced for designing self-compacting concrete. This approach incorporates a "self-flow zone" where the rheology of the paste matrix provides high workability, yet segregation resistance. The flow properties of fresh concrete are measured using a U-tube apparatus to test the general applicability of the proposed methodology. Using the new design approach, concrete with a slump of 29 cm (11 inches) and slump flow diameter of 60.9 cm (24 inches) is produced.
Attar, Hanaa El; Elhiny, Omnia; Salem, Ghada; Abdelrahman, Ahmed; Attia, Mazen
2016-12-15
To test the solubility of dual cure resin modified resin cement in a food simulating solution and the shear bond strength compared to conventional Glass ionomer cement. The materials tested were self-adhesive dual cure resin modified cement and Glass Ionomer (GIC). Twenty Teflon moulds were divided into two groups of tens. The first group was injected and packed with the modified resin cement, the second group was packed with GIC. To test the solubility, each mould was weighed before and after being placed in an analytical reagent for 30 days. The solubility was measured as the difference between the initial and final drying mass. To measure the Shear bond strength, 20 freshly extracted wisdom teeth were equally divided into two groups and embedded in self-cure acrylic resin. Four mm sections of stainless steel bands were cemented to the exposed buccal surfaces of teeth under a constant load of 500 g. Shear bond strength was measured using a computer controlled materials testing machine and the load required to deband the samples was recorded in Newtons. GIC showed significantly higher mean weight loss and an insignificant lower Shear bond strength, compared to dual cure resin Cement. It was found that dual cure resin modified cement was less soluble than glass ionomer cement and of comparable bond strength rendering it more useful clinically for orthodontic band cementation.
New manufacturing method for Fe-Si magnetic powders using modified pack-cementation process
NASA Astrophysics Data System (ADS)
Byun, Ji Young; Kim, Jang Won; Han, Jeong Whan; Jang, Pyungwoo
2013-03-01
This paper describes a new method for making Fe-Si magnetic powders using a pack-cementation process. It was found that Fe-Si alloy powders were formed by a reaction of the pack mixture of Fe, Si, NaF, and Al2O3 powders at 900 °C for 24 h under a hydrogen atmosphere. Separation of the Fe-Si alloy powders was dependent on the particle size of the Fe powders in the pack. For small Fe powders, magnetic separation in a medium of strong alkali solution was recommended. But, for relatively larger Fe powders, the Fe-Si alloy powders were easily separated from Al2O3 powders using a magnet in air atmosphere. The Si content in the Fe-Si magnetic powders were easily controlled by changing the weight ratio of Si to (Si+Fe) in the pack.
Acoustic probing of elastic behavior and damage in weakly cemented granular media
NASA Astrophysics Data System (ADS)
Langlois, V.; Jia, X.
2014-02-01
We investigate the elastic behavior and damage of weakly cemented granular media under external load with ultrasound. The cementation controlled experiments are performed by freezing the capillary liquid at the bead contact in a dense glass or polymeric [poly(methyl methacrylate)] bead pack wet by tetradecane of volume fraction ϕ = 0.1%-4%. When the pendular rings are solidified, an abrupt increase by a factor of 2 in the compressional wave velocity is observed. We interpret the data in terms of effective medium models in which the contact stiffnesses are derived by either a bonded contact model [P. J. Digby, J. Appl. Mech. 48, 803 (1981), 10.1115/1.3157738] or a cemented contact model [J. Dvorkin, A. Nur, and H. Yin, Mech. Mater. 18, 351 (1994), 10.1016/0167-6636(94)90044-2]. The former fails to quantitatively account for the results with a soft cement relative to the grain, whereas the latter considering the mechanical properties of the cement does apply. Moreover, we monitor the irreversible behavior of the cemented granular packs under moderate uniaxial loading (<1.3 MPa) with the correlation method of ultrasound scattering. The damage of the cemented materials is accompanied by a compressional wave velocity decrease up to 60%, likely due to the fractures induced at the grain-cement interfaces.
Development of Coatings for Tantalum Alloy Nozzle Vanes
NASA Technical Reports Server (NTRS)
Stetson, A. R.; Wimber, R. T.
1967-01-01
A group of silicide coatings developed for the T222 tantalum-base alloy have afforded over 600 hours of protection at 1600 and 2400 F during cyclic exposure in air. These coatings were applied in two steps. A modifier alloy was applied by slurry techniques and was sintered in vacuum prior to siliciding by pack cementation in argon. Application of the modifier alloy by pack cementation was found to be much less effective. The addition of titanium and vanadium to molybdenum and tungsten yielded beneficial modifier alloys, whereas the addition of chromium showed no improvement. After siliciding, the 15Ti- 35W-15V-35Mo modifier alloy exhibited the best performance; one sample survived 1064 hours of oxidation at 2400 F. This same coating was the only coating to reproducibly provide 600 hours of protection at both 1600 and 2400 F; in the second and third of three experiments, involving oxidation of three to five specimens at each temperature in each experiment, no failures were observed in 600 hours of testing. The slurry coatings were also shown to protect the Cb752 and D43 columbium-base alloys.
Attar, Hanaa El; Elhiny, Omnia; Salem, Ghada; Abdelrahman, Ahmed; Attia, Mazen
2016-01-01
AIM: To test the solubility of dual cure resin modified resin cement in a food simulating solution and the shear bond strength compared to conventional Glass ionomer cement. MATERIALS AND METHOD: The materials tested were self-adhesive dual cure resin modified cement and Glass Ionomer (GIC). Twenty Teflon moulds were divided into two groups of tens. The first group was injected and packed with the modified resin cement, the second group was packed with GIC. To test the solubility, each mould was weighed before and after being placed in an analytical reagent for 30 days. The solubility was measured as the difference between the initial and final drying mass. To measure the Shear bond strength, 20 freshly extracted wisdom teeth were equally divided into two groups and embedded in self-cure acrylic resin. Four mm sections of stainless steel bands were cemented to the exposed buccal surfaces of teeth under a constant load of 500 g. Shear bond strength was measured using a computer controlled materials testing machine and the load required to deband the samples was recorded in Newtons. RESULTS: GIC showed significantly higher mean weight loss and an insignificant lower Shear bond strength, compared to dual cure resin Cement. CONCLUSION: It was found that dual cure resin modified cement was less soluble than glass ionomer cement and of comparable bond strength rendering it more useful clinically for orthodontic band cementation. PMID:28028417
Spectroscopy of Loose and Cemented Sulfate-Bearing Soils: Implications for Duricrust on Mars
NASA Astrophysics Data System (ADS)
Cooper, Christopher D.; Mustard, John F.
2002-07-01
The goal of this work is to determine the spectroscopic properties of sulfate in martian soil analogs over the wavelength range 0.3 to 25 μm (which is relevant to existing and planned remotely sensed data sets for Mars). Sulfate is an abundant component of martian soil (up to 9% SO 3 by weight) and apparently exists as a particulate in the soil but also as a cement. Although previous studies have addressed the spectroscopic identity of sulfates on Mars, none have used laboratory mixtures of materials with sulfates at the abundances measured by landed spacecraft, nor have any works considered the effect of salt-cementation on spectral properties of soil materials. For this work we created mixtures of a palagonitic soil (JSC Mars-1) and sulfates (MgSO 4 and CaSO 4·2H 2O). The effects of cementation were determined and separated from the effects of packing and hydration by measuring the samples as loose powders, packed powders, cemented materials, and disaggregated materials. The results show that the presence of particulate sulfate is best observed in the 4-5 μm region. Soils cemented with sulfate exhibit a pronounced restrahlen band between 8 and 9 μm as well as well-defined absorptions in the 4-5 μm region. Cementation effects are distinct from packing effects and disaggregation of cemented samples rapidly diminishes the strength of the restrahlen bands. The results of this study show that sulfate in loose materials is more detectable in the near infrared (4-5 μm) than in the thermal infrared (8-9 μm). However, cemented materials are easily distinguished from loose mixtures in the thermal infrared because of the high values of their absorption coefficient in this region. Together these results suggest that both wavelength regions are important for determining the spatial extent and physical form of sulfates on the surface of Mars.
NASA Astrophysics Data System (ADS)
Bai, Ching-Yuan; Wen, Tse-Min; Hou, Kung-Hsu; Ger, Ming-Der
The low-temperature pack chromization, a reforming pack cementation process, is employed to modify AISI 1045 steel for the application of bipolar plates in PEMFC. The process is conducted to yield a coating, containing major Cr-carbides and minor Cr-nitrides, on the substrate in view of enhancing the steel's corrosion resistance and lowering interfacial contact resistance between the bipolar plate and gas diffusion layer. Electrical discharge machining and rolling approach are used as the pretreatment to produce an activated surface on the steel before pack chromization process to reduce operating temperatures and increase deposition rates. The rolled-chromized steel shows the lowest corrosion current density, 3 × 10 -8 A cm -2, and the smallest interfacial contact resistance, 5.9 mΩ cm 2, at 140 N cm -2 among all tested steels. This study clearly states the performance of 1045 carbon steel modified by activated and low-temperature pack chromization processes, which possess the potential to be bipolar plates in the application of PEMFC.
Characterization of the mechanical behavior of sea ice as a frictional material
NASA Astrophysics Data System (ADS)
Lade, Poul V.
2002-12-01
The mechanical properties of sea ice are determined by the formation process, and the consequent material behavior at the element scale exhibits viscoelastic behavior at the early loading stages, followed by brittle fracture or ductile, irrecoverable deformation that may be captured by hardening/softening plasticity models with nonassociated flow. Failure of sea ice under different loading conditions follows a pattern that demonstrates its highly cross-anisotropic nature as well as its behavior as a frictional material. The interactions between the floes in the pack ice resemble those observed in granular materials. These materials are frictional in nature, they exhibit both contractive and dilative volume changes, the plastic flow is nonassociated, and their stiffnesses and strengths increase with confining pressure, but they do not have any strength when unconfined. The overall behavior of the pack ice may be close to isotropic. Constitutive modeling of this behavior may be achieved by models used in geotechnical engineering. Formation of leads and subsequent freezing of the water results in cementation between the ice floes, and the pack ice becomes stronger. The behavior of the pack ice may now be compared with that observed in cemented soils or concrete. For these materials, increasing amounts of cementation result in increasing rates of dilation when sheared, and this accounts for the largest contribution to the increase in shear strength.
Effect of fabrication pressure on the fatigue performance of Cemex XL acrylic bone cement.
Lewis, Gladius; Janna, S I
2004-01-01
During a cemented arthroplasty, the prepared polymerizing dough of acrylic bone cement is subjected to pressurization in a number of ways; first, during delivery into the freshly prepared bone bed, second, during packing in that bed (either digitally or with the aid of a mechanical device), and, third, during the insertion of the prosthesis. Only a few studies have reported on the influence of the level of pressurization experienced during these events (which, depending on the cementing technique used, has been put at between 8 and 273 kPa) on various properties of the cement. That was the focus of the present study, in which the fully reversed tension-compression (+/-15 MPa; 5 Hz) fatigue lives (expressed as number of cycles to fracture, N(f)) of rectangular cross-sectioned "dog-bone" specimens (Type V, per ASTM D 638) fabricated from Cemex XL cement, at pressure applied continuously to the cement dough during curing in the specimen mold, p=75,150, and 300 kPa, were determined. The N(f) results were analyzed using the linearized transformation of the three-parameter Weibull relationship to obtain estimates of the Weibull mean, N(WM), which was taken to be the index of fatigue performance of the specimen set. Over the range of p studied, N(WM) increased as p increased (for example, from 329,118 cycles when p was 75 kPa to 388,496 cycles when p was 300 kPa); however, the increase was not significant over any pair of p increment steps (Mann-Whitney U-test; alpha<0.05).
1989-06-01
tions on either side of the stoichiometric 4V) have been aluminized by using a pack composition. Four factors are considered cementation process. Cyclic...However, in this new applica- tion GPCF is expanding into fiber- (1) Improving CF strength by designing reinforced cements and concretes. Carbon new...called hybrid composite. portland cement matrix. CF provides: (2) Enhancing the energy-absorbing • Chemical inertness to acid and alkali mechanism of
Boundary conditions for diffusion in the pack-aluminizing of nickel.
NASA Technical Reports Server (NTRS)
Sivakumar, R.; Seigle, L. L.; Menon, N. B.
1973-01-01
The surface compositions of nickel specimens coated for various lengths of time in aluminizing packs at 2000 F were studied, in order to obtain information about the kinetics of the pack-cementation process in the formation of aluminide coatings. The results obtained indicate that the surface compositions of the coated nickel specimens are independent of time, at least for time between 0.5 and 20 hrs. Another important observation is that the specimens gained weight during the coating process.
Method for molding threads in graphite panels
Short, W.W.; Spencer, C.
1994-11-29
A graphite panel with a hole having a damaged thread is repaired by drilling the hole to remove all of the thread and making a new hole of larger diameter. A bolt with a lubricated thread is placed in the new hole and the hole is packed with graphite cement to fill the hole and the thread on the bolt. The graphite cement is cured, and the bolt is unscrewed therefrom to leave a thread in the cement which is at least as strong as that of the original thread. 8 figures.
Le Châtelier's conjecture: Measurement of colloidal eigenstresses in chemically reactive materials
NASA Astrophysics Data System (ADS)
Abuhaikal, Muhannad; Ioannidou, Katerina; Petersen, Thomas; Pellenq, Roland J.-M.; Ulm, Franz-Josef
2018-03-01
Volume changes in chemically reactive materials, such as hydrating cement, play a critical role in many engineering applications that require precise estimates of stress and pressure developments. But a means to determine bulk volume changes in the absence of other deformation mechanisms related to thermal, pressure and load variations, is still missing. Herein, we present such a measuring devise, and a hybrid experimental-theoretical technique that permits the determination of colloidal eigenstresses. Applied to cementitious materials, it is found that bulk volume changes in saturated cement pastes at constant pressure and temperature conditions result from a competition of repulsive and attractive phenomena that originate from the relative distance of the solid particles - much as Henry Louis Le Châtelier, the father of modern cement science, had conjectured in the late 19th century. Precipitation of hydration products in confined spaces entails a repulsion, whereas the concurrent reduction in interparticle distance entails activation of attractive forces in charged colloidal particles. This cross-over from repulsion to attraction can be viewed as a phase transition between a liquid state (below the solid percolation) and the limit packing of hard spheres, separated by an energy barrier that defines the temperature-dependent eigenstress magnitude.
Physico-chemical studies of hardened cement paste structure with micro-reinforcing fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steshenko, Aleksei, E-mail: steshenko.alexey@gmail.com; Kudyakov, Aleksander; Konusheva, Viktoriya
The results of physico-chemical studies of modified hardened cement paste with micro-reinforcing fibers are given in this article. The goal was to study the reasons of the increase of strength properties of modified hardened cement paste by the method of X-ray diffraction and electron microscopy. It is shown that the use of mineral fibers in the production of cement based material has positive effect on its properties. The study found out that the increase in the strength of the hardened cement paste with micro-reinforcing fibers is due to the increase of the rate of hydration of cement without a significantmore » change in the phase composition in comparison with hardened cement paste without additive. The results of microstructure investigation (of control samples and samples of the reinforced hardened cement paste) have shown that introduction of mineral fibers in the amount of 0.1-2 % by weight of cement provides the structure of the homogeneous microporous material with uniform distribution of the crystalline phase provided by densely packed hydrates.« less
Method for molding threads in graphite panels
Short, William W.; Spencer, Cecil
1994-01-01
A graphite panel (10) with a hole (11) having a damaged thread (12) is repaired by drilling the hole (11) to remove all of the thread and make a new hole (13) of larger diameter. A bolt (14) with a lubricated thread (17) is placed in the new hole (13) and the hole (13) is packed with graphite cement (16) to fill the hole and the thread on the bolt. The graphite cement (16) is cured, and the bolt is unscrewed therefrom to leave a thread (20) in the cement (16) which is at least as strong as that of the original thread (12).
Santosa, Robert E; Martin, William; Morton, Dean
2010-01-01
Excess residual cement around the implant margin has been shown to be detrimental to the peri-implant tissue. This in vitro study examines the retentive strengths of two different cementing techniques and two different luting agents on a machined titanium abutment and solid screw implants. The amount of reduction of excess cement weight between the two cementation techniques was assessed. Forty gold castings were fabricated for 4.1 mm in diameter and 10 mm in length solid-screw dental implants paired with 5.5-mm machined titanium abutments. Twenty implants received a provisional cement, and 20 implants received a definitive cement. Each group was further divided into two groups. In the control group, cement was applied and the castings seated over the implant-abutment assembly. The excess cement was then removed. In the study group, a "practice abutment" was used to express excess cement prior to cementation. The weight of the implant-casting assembly was measured and the residual weight of cement was calculated. The samples were then stored for 24 hours at 100% humidity prior to tensile strength testing. Statistical analysis revealed significant differences in tensile strength across the groups. Further Tukey tests showed no significant difference in tensile strength between the practice abutment technique and the conventional technique for both definitive and provisional cements. There was a significant reduction in residual cement weight, irrespective of the type of cement, when the practice abutment was used prior to cementation. Cementation of implant restorations on a machined abutment using the practice abutment technique and definitive cement may provide similar uniaxial retention force and significantly reduced residual cement weight compared to the conventional technique of cement removal.
Bone preserving techniques for explanting the well-fixed cemented acetabular component.
Stevens, Jarrad; Macpherson, Gavin; Howie, Colin
2018-06-01
Removal of a well-fixed, cemented acetabular component at the time of revision hip surgery can be complex. It is essential to remove the implant and cement mantle in a timely fashion while preserving bone stock and osseous integrity. The biomechanical properties of polymethylmethacrylate cement and polyethylene can be utilised to aid with the removal of well cemented implants which are often harder than the surrounding bone. While removal of loose components may be relatively straightforward, the challenge for the revision arthroplasty surgeon often involves the removal of well-fixed implants. Here, we present three established techniques for the removal of a well-fixed cemented acetabular component and one novel modification we have described before. We collate and review four techniques for removing well-fixed cemented acetabular implants that utilise the different biomechanical properties of bone cement and polyethylene. These techniques are illustrated with a photographic series utilising saw bones. A step-by-step approach to our new technique is shown in photographs, both in the clinical setting and with a "Sawbone". This is accompanied by a clinical video that details the surgical technique in its entirety. These techniques utilise different biomechanical principles to extract the acetabular component. Each technique has advantages and disadvantages. Our new technique is a simplification of a previously published extraction manoeuvre that utilises tensile force between cement and the implant to remove the polyethylene cup. This is a safe and reproducible technique in patients with a well-fixed cemented acetabular implant. Understanding the biomechanical properties of polymethylmethacrylate bone cement and polyethylene can aid in the safe removal of a well-fixed cemented acetabular component in revision hip surgery. The optimal technique for removal of a cemented acetabular component varies depending on a number of patient and implant factors. This summary of the available techniques will be of interest to revision arthroplasty surgeons.
Rapid Assessment of Remedial Effectiveness and Rebound in Fractured Bedrock
2017-10-01
Permanent 5-inch diameter steel casing was then installed to a depth of 58.3 ft-bgs, and pressure-grouted in place using cement /bentonite grout. Once the...collected from 64 feet to 78 feet bgs. A 2-inch stainless steel well, screened from 64 to 74 feet bgs, was installed within the borehole. A filter pack was...installed from 63.5 ft to 74.5 ft bgs, and the remainder of the borehole was sealed with a bentonite seal and cement /bentonite grout. Therefore
Nanogranular origin of concrete creep.
Vandamme, Matthieu; Ulm, Franz-Josef
2009-06-30
Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.
NASA Astrophysics Data System (ADS)
Munro, T. C.; Gleeson, B.
1996-12-01
The halide-activated pack cementation method (HAPC) was utilized to deposit aluminide and silicide coatings on nominally stoichiometric γ-TiAl. The deposition temperature was 1000°C and deposition times ranged from 2 to 12 hours. The growth rates of the coatings were diffusion controlled, with the rate of aluminide growth being about a factor of 2 greater than that of silicide growth. The aluminide coating was inward growing and consisted of a thick, uniform outer layer of TiAl3 and a thin inner layer of TiAl2, with the rate-controlling step being the diffusion of aluminum from the pack into the substrate. Annealing experiments at 1100 °C showed that the interdiffusion between the aluminide coating and the γ-TiAl substrate was rapid. In contrast to the aluminide coating, the silicide coating was nonuniform and porous, consisting primarily of TiSi2, TiSi, and Ti5Si4, with the rate-controlling step for the coating growth believed to be the diffusion of aluminum into the γ-TiAl ahead of the silicide/γ-TiAl interface. The microstructural evolution of the aluminide and silicide coating structures is discussed qualitatively.
Nanogranular origin of concrete creep
Vandamme, Matthieu; Ulm, Franz-Josef
2009-01-01
Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652
Pape, G; Raiss, P; Kleinschmidt, K; Schuld, C; Mohr, G; Loew, M; Rickert, M
2010-12-01
Loosening of the glenoid component is one of the major causes of failure in total shoulder arthroplasty. Possible risk factors for loosening of cemented components include an eccentric loading, poor bone quality, inadequate cementing technique and insufficient cement penetration. The application of a modern cementing technique has become an established procedure in total hip arthroplasty. The goal of modern cementing techniques in general is to improve the cement-penetration into the cancellous bone. Modern cementing techniques include the cement vacuum-mixing technique, retrograde filling of the cement under pressurisation and the use of a pulsatile lavage system. The main purpose of this study was to analyse cement penetration into the glenoid bone by using modern cement techniques and to investigate the relationship between the bone mineral density (BMD) and the cement penetration. Furthermore we measured the temperature at the glenoid surface before and after jet-lavage of different patients during total shoulder arthroplasty. It is known that the surrounding temperature of the bone has an effect on the polymerisation of the cement. Data from this experiment provide the temperature setting for the in-vitro study. The glenoid surface temperature was measured in 10 patients with a hand-held non-contact temperature measurement device. The bone mineral density was measured by DEXA. Eight paired cadaver scapulae were allocated (n = 16). Each pair comprised two scapulae from one donor (matched-pair design). Two different glenoid components were used, one with pegs and the other with a keel. The glenoids for the in-vitro study were prepared with the bone compaction technique by the same surgeon in all cases. Pulsatile lavage was used to clean the glenoid of blood and bone fragments. Low viscosity bone cement was applied retrogradely into the glenoid by using a syringe. A constant pressure was applied with a modified force sensor impactor. Micro-computed tomography scans were applied to analyse the cement penetration into the cancellous bone. The mean temperature during the in-vivo arthroplasty of the glenoid was 29.4 °C (27.2-31 °C) before and 26.2 °C (25-27.5 °C) after jet-lavage. The overall peak BMD was 0.59 (range 0.33-0.99) g/cm (2). Mean cement penetration was 107.9 (range 67.6-142.3) mm (2) in the peg group and 128.3 (range 102.6-170.8) mm (2) in the keel group. The thickness of the cement layer varied from 0 to 2.1 mm in the pegged group and from 0 to 2.4 mm in the keeled group. A strong negative correlation between BMD and mean cement penetration was found for the peg group (r (2) = -0.834; p < 0.01) and for the keel group (r (2) = -0.727; p < 0.041). Micro-CT shows an inhomogenous dispersion of the cement into the cancellous bone. Data from the in-vivo temperature measurement indicate that the temperature at the glenohumeral surface under operation differs from the body core temperature and should be considered in further in-vitro studies with human specimens. Bone mineral density is negatively correlated to cement penetration in the glenoid. The application of a modern cementing technique in the glenoid provides sufficient cementing penetration although there is an inhomogenous dispersion of the cement. The findings of this study should be considered in further discussions about cementing technique and cement penetration into the cancellous bone of the glenoid. © Georg Thieme Verlag KG Stuttgart · New York.
Effect of different mixing methods on the physical properties of Portland cement.
Shahi, Shahriar; Ghasemi, Negin; Rahimi, Saeed; Yavari, Hamidreza; Samiei, Mohammad; Jafari, Farnaz
2016-12-01
The Portland cement is hydrophilic cement; as a result, the powder-to-liquid ratio affects the properties of the final mix. In addition, the mixing technique affects hydration. The aim of this study was to evaluate the effect of different mixing techniques (conventional, amalgamator and ultrasonic) on some selective physical properties of Portland cement. The physical properties to be evaluated were determined using the ISO 6786:2001 specification. One hundred sixty two samples of Portland cement were prepared for three mixing techniques for each physical property (each 6 samples). Data were analyzed using descriptive statistics, one-way ANOVA and post hoc Tukey tests. Statistical significance was set at P <0.05. The mixing technique had no significant effect on the compressive strength, film thickness and flow of Portland cement ( P >0.05). Dimensional changes (shrinkage), solubility and pH increased significantly by amalgamator and ultrasonic mixing techniques ( P <0.05). The ultrasonic technique significantly decreased working time, and the amalgamator and ultrasonic techniques significantly decreased the setting time ( P <0.05). The mixing technique exerted no significant effect on the flow, film thickness and compressive strength of Portland cement samples. Key words: Physical properties, Portland cement, mixing methods.
Ferreira, Cimara Fortes; Shafter, Mohamed Amer; Jain, Vinay; Wicks, Russel Anthony; Linder, Erno; Ledo, Carlos Alberto da Silva
2018-02-13
Extruded cement during dental implant crown cementation may cause peri-implant diseases if not removed adequately. Evaluate the efficiency of removal of cement after cementation of implant crowns using an experimental "circular crisscross flossing technique (CCCFT) flossing technique, compared to the conventional "C" shape flossing technique (CSFT). Twenty-four patients rendered 29 experimental and 29 control crowns. Prefabricated abutments were secured to the implant with the margins at least 1 mm subgingivally. The abutments were scanned using CADCAM technology and Emax crowns were fabricated in duplicates. Each crown was cemented separately and excess cement was removed using the CSFT and the CCFT techniques. After completion of cementation was completed, the screw access holes were accessed and the crown was unscrewed along with the abutment. The samples were disinfected using 70% ethanol for 10 minutes. Crowns were divided into 4 parts using a marker in order to facilitate measurement data collection. Vertical and horizontal measurements were made for extruded cement for each control and experimental groups by means of a digital microscope. One-hundred and seventeen measurements were made for each group. Mann-Whitney test was applied to verify statistical significance between the groups. The CCFT showed a highly statistically significant result (104.8 ± 13.66, p<0.0001) for cement removal compared with the CSFT (291.8 ± 21.96, p<0.0001). The vertical lengths of the extruded cement showed a median of 231.1 µm (IQR = 112.79 -398.39) and 43.62 µm (IQR = 0 - 180.21) for the control and the experimental flossing techniques, respectively. The horizontal length of the extruded cement showed a median of 987.1 µm (IQR = 476.7 - 1,933.58) and 139.2 µm (IQR = 0 - 858.28) for the control and the experimental flossing techniques, respectively. The CCFT showed highly statistically significant less cement after implant crowns cementation when compared with the CSFT.
Miller, Jeffrey W; Diani, Art; Docsa, Steve; Ashton, Kristi; Sciamanna, Michele
2017-09-01
Percutaneous sacroplasty involves image-guided injection of bone cement for sacral insufficiency fractures to alleviate pain and facilitate mobility. Correct sacral placement of the cement and the risk of cement extravasation present procedural challenges. This study compares the occurrence, number, location, and surface area of high viscosity radiopaque bone cement extravasation via biplane fluoroscopy with Dyna CT between the fluoroscopically-guided intraoperative long-axis and short-axis sacroplasty techniques in osteoporotic cadavers. Ten osteoporotic cadavers underwent bilateral percutaneous instillation of VertaPlex HV High Viscosity Radiopaque Bone Cement. Long- and short-axis sacroplasty techniques were randomly assigned to zone 1 of the left or right sacral ala of each cadaver. Cement extravasation data were summarized by technique (long-axis vs short-axis) and time period (15-min and 3-hour post-procedure syngo DynaCT scan) in the form of point and CI estimates for the true proportions of cement extravasation. No procedural sacral extravasation differences were observed between the long-axis and short-axis sacroplasty techniques. There were no occurrences of intra-procedural or post-procedural cement extravasation at 15 min or 3 hours in association with either the long-axis sacroplasty technique or the short-axis sacroplasty technique. The long- and short-axis sacroplasty techniques, using high viscosity cement with careful post-procedural positioning, result in no occurrence of cement extravasation in porous osteoporotic cadaver bone. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Shiratori, Fábio Kenji; Valle, Accácio Lins do; Pegoraro, Thiago Amadei; Carvalho, Ricardo Marins; Pereira, Jefferson Ricardo
2013-07-01
Resin cements are widely used to cement intraradicular posts, but bond strength is significantly influenced by the technique and material used for cementation. The purpose of this study was to evaluate the bond strength of 3 self-adhesive cements used to cement intraradicular glass fiber posts. The cements all required different application and handling techniques. Forty-five human maxillary canines were selected and randomly divided into 3 groups n= 15 by drawing lots: Group BIS - Biscem, Group BRE - Breeze, and Group MAX - Maxcem. Each group was divided into 3 subgroups according to application and handling techniques: Sub-group A - Automix/Point tip applicator, Sub-group L - Handmix/Lentulo, and Sub-group C - Handmix/Centrix. Cementation of the posts was performed according to the manufacturers' instructions. The push-out test was performed with a crosshead speed of 0.5 mm/min, and bond strength was expressed in megapascals. The results were evaluated by 2-way ANOVA and the all pairwise multiple comparison procedures (Tukey test) (α=.05). Breeze cement showed the highest average for the subgroups A, L, and C when compared to the Biscem cement and Maxcem Elite (P<.05). Statistically significant differences among the subgroups were only observed for Biscem. This study shows that application and handling techniques may influence the bond strength of different self-adhesive cements when used for intraradicular post cementation. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Addition of Silica Fume to Improve Strength of Cement Paste
NASA Astrophysics Data System (ADS)
Chen, Jiajian; Chen, Hongniao; Li, Gu
2018-03-01
This study measured the packing densities of 0 to 30% silica fume (SF) added cementitious materials and strength of the cementitious pastes with various water content. The results revealed that addition of silica fume up to a certain level has great effects on packing density and strength. In-depth analysis illustrated that a lower W/CM ratio would not always result in a higher cube strength, and the range between 0.05 and 0.07 µm would be the amount of water film thickness (WFT) for muximum strength.
Micro- and nano-scale characterization to study the thermal degradation of cement-based materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seungmin, E-mail: lim76@illinois.edu; Mondal, Paramita
2014-06-01
The degradation of hydration products of cement is known to cause changes in the micro- and nano-structure, which ultimately drive thermo-mechanical degradation of cement-based composite materials at elevated temperatures. However, a detailed characterization of these changes is still incomplete. This paper presents results of an extensive experimental study carried out to investigate micro- and nano-structural changes that occur due to exposure of cement paste to high temperatures. Following heat treatment of cement paste up to 1000 °C, damage states were studied by compressive strength test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) atomic force microscopy (AFM) and AFM image analysis.more » Using experimental results and research from existing literature, new degradation processes that drive the loss of mechanical properties of cement paste are proposed. The development of micro-cracks at the interface between unhydrated cement particles and paste matrix, a change in C–S–H nano-structure and shrinkage of C–S–H, are considered as important factors that cause the thermal degradation of cement paste. - Highlights: • The thermal degradation of hydration products of cement is characterized at micro- and nano-scale using scanning electron microscopy (SEM) and atomic force microscopy (AFM). • The interface between unhydrated cement particles and the paste matrix is considered the origin of micro-cracks. • When cement paste is exposed to temperatures above 300 ºC, the nano-structure of C-S-H becomes a more loosely packed globular structure, which could be indicative of C-S-H shrinkage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, E.F.
1988-02-01
White, elliptical, calcite-cemented concretion nuclei up to 1 m long contrast markedly in color, composition, and diagenetic history from more glauconite-rich concretion rinds and from dark-green glaucarenite host rocks. Concretion nuclei are loosely packed deposits of trilobite carapaces and minor quartz and glauconite that have intergranular volumes of 58%. The nuclei are shell-lag deposits that were cemented by calcite at the sea floor or after burial of a few meters. Concretion rinds, composed of subequal amounts of quartz and compactionally deformed glauconite, have an intergranular volume of only 32% and minor quartz overgrowths that preceded pore-occluding calcite cement. The rindsmore » underwent burial for several million years to tens of millions of years to depths of several hundred meters before they were cemented. The host rock is predominately glauconite with very minor quartz and calcite cement. Strontium isotopic ratios of host-rock calcite cement are variable (0.7084 to 0.7093), but the lowest value suggests precipitation during the Middle Ordovician. In the absence of significant amounts of carbonate cement, the host rock underwent complete dissolution of trilobite carapaces and maximum compaction with total loss of porosity through squashing of glauconite grains. Maximum burial during this stage was completed by the end of Ordovician time.« less
Novel cemented cup-holding technique while performing total hip arthroplasty with navigation system.
Takai, Hirokazu; Takahashi, Tomoki
2017-09-01
Recently, navigation systems have been more widely utilized in total hip arthroplasty. However, almost all of these systems have been developed for cementless cups. In the case of cemented total hip arthroplasty using a navigation system, a special-ordered cemented holder is needed. We propose a novel cemented cup-holding technique for navigation systems using readily available articles. We combine a cementless cup holder with an inverted cementless trial cup. The resulting apparatus is used as a cemented cup holder. The upside-down cup-holding technique is useful and permits cemented cup users to utilize a navigation system for placement of the acetabular component.
The dynamic volume changes of polymerising polymethyl methacrylate bone cement.
Muller, Scott D; Green, Sarah M; McCaskie, Andrew W
2002-12-01
The Swedish hip register found an increased risk of early revision of vacuum-mixed cemented total hip replacements. The influence of cement mixing technique on the dynamic volume change in polymerising PMMA is not well understood and may be relevant to this observation. Applying Archimedes' principle, we have investigated the dynamic volume changes in polymerising cement and determined the influence of mixing technique. All specimens showed an overall volume reduction: hand-mixed 3.4% and vacuum-mixed 6.0%. Regression analysis of sectional porosity and volume reduction showed a highly significant relationship. Hand-mixed porous cement showed a transient volume increase before solidification. However, vacuum-mixed cement showed a progressive volume reduction throughout polymerisation. Transient expansion of porous cement occurs at the critical time of micro-interlock formation, possibly improving fixation. Conversely, progressive volume reduction of vacuum-mixed cement throughout the formation of interlock may damage fixation. Stable fixation of vacuum-mixed cement may depend on additional techniques to offset the altered volumetric behaviour of vacuum-mixed cement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsipas, Sophia A., E-mail: stsipas@ing.uc3m.es; Go
Wear and high temperature oxidation resistance of some titanium-based alloys needs to be enhanced, and this can be effectively accomplished by surface treatment. Molybdenizing is a surface treatment where molybdenum is introduced into the surface of titanium alloys causing the formation of wear-resistant surface layers containing molybdenum, while aluminizing of titanium-based alloys has been reported to improve their high temperature oxidation properties. Whereas pack cementation and other surface modification methods have been used for molybdenizing or aluminizing of wrought and/or cast pure titanium and titanium alloys, such surface treatments have not been reported on titanium alloys produced by powder metallurgymore » (PM). Also a critical understanding of the process parameters for simultaneous one step molybdeno-aluminizing of titanium alloys by pack cementation and the predominant mechanism for this process have not been reported. The current research work describes the surface modification of titanium and Ti-6Al-4V prepared by PM by molybdeno-aluminizing and analyzes thermodynamic aspects of the deposition process. Similar coatings are also deposited to wrought Ti-6Al-4V and compared. Characterization of the coatings was carried out using scanning electron microscopy and x-ray diffraction. For both titanium and Ti-6Al-4V, the use of a powder pack containing ammonium chloride as activator leads to the deposition of molybdenum and aluminium into the surface but also introduces nitrogen causing the formation of a thin titanium nitride layer. In addition, various titanium aluminides and mixed titanium aluminium nitrides are formed. The appropriate conditions for molybdeno-aluminizing as well as the phases expected to be formed were successfully determined by thermodynamic equilibrium calculations. - Highlights: •Simultaneous co-deposition of Mo-Al onto powder metallurgy and wrought Ti alloy •Thermodynamic calculations were used to optimize deposition conditions •External TiN and internal a Mo-rich layer on all alloy substrates •Titanium aluminides and Ti-Al mixed nitrides are formed on Ti-6Al-4V •The presence of Al and V alloying elements modifies the diffusion of Mo.« less
Does a simple syringe applicator enhance bone cement set up time in knee arthroplasty?
Sodhi, Nipun; Dalton, Sarah E.; Khlopas, Anton; Sultan, Assem A.; Curtis, Gannon L.; Harb, Matthew A.; Naziri, Qais; Barrington, John W.; Mont, Michael A.
2017-01-01
Background The time required for polymethylmethacrylate (PMMA) cement curing or hardening can be modified by a number of variables including the mixing technique, and the temperature and pressure at which the process is taking place. Therefore, the purpose of this study was to evaluate two different methods of PMMA application in terms of set up time. Specifically, we (I) compared the PMMA set up time of cement that remained in the mixing bowl to cement that was placed in a syringe and (II) extrapolated the associated annual cost difference on the national and individual surgeon levels. Methods The cement set up time was measured for a total of 146 consecutive patients who underwent either unicompartmental knee arthroplasty (n=136) or patellofemoral arthroplasty (n=10) between January 2016 and April 2017. One pack of PMMA powder and monomer were mixed, placed in a 300 mL small plastic bowl, and mixed with a tongue depressor. Then, 50 mL of the mixed PMMA was placed in a sterile 60 mL syringe with the tip cut to a 6-mm opening, and the syringe was used to apply the cement to the bone and the prosthesis surface. The remaining unused cement in the syringe (syringe group) and the remaining unused cement in the plastic bowl (bowl group) were removed and formed into a two separate 2 cm diameter cubes that were allowed to cure at room temperature on a sterile set of osteotomes. The two cubes of cement were timed for complete PMMA curing. A two-tailed student’s t-test was used to compare the curing time for the two groups. Annual cost differences were calculated on the national and individual surgeon level. The total number of daily cases performed and the operative time savings using the syringe applicator was used to find daily and annual cost savings. Results The mean time for the cement to set up in the bowl group was 16.8±2.1 minutes, and the mean time for cement set up in the syringe group was 15.1±1.7 minutes. Compared to the bowl group cement set up time, the syringe group set up time was significantly lower (P<0.0001). An estimated 350,000 cemented knee arthroplasties are performed each year in the United States. With 1.7 minutes saved per case, 595,000 operating room minutes per year could be saved, resulting in a nearly $71,000,000 national and $110,000 individual surgeon annual cost savings. Conclusions The results of the present study demonstrated that the utilization of a simple, inexpensive syringe applicator enhanced the cement set up time by over one and a half minutes. This may be a result of the pressure differences in the syringe applicator. In addition to the control of and precision of where the cement is placed, the syringe applicator could provide an important potential time advantage to the arthroplasty surgeon. PMID:29299472
Compression and flexural strength of bone cement mixed with blood.
Tan, J H; Koh, B Th; Ramruttun, A K; Wang, W
2016-08-01
To assess the compression and flexural strength of bone cement mixed with 0 ml, 1 ml, or 2 ml of blood. High viscosity polymethyl methacrylate (PMMA) loaded with or without gentamicin was used. Blood was collected from total knee arthroplasty patients. In the same operating room, one pack of cement each was mixed with 0 ml (control), 1 ml, or 2 ml of blood for 1 minute during the dough phase. The dough was extruded into cylindrical and rectangular moulds for 20 minutes of setting, and then cured in phosphate buffered saline at 37±1ºC for 7 days. The samples were visually inspected for fractures and areas of weakness, and then scanned using microcomputed tomography. 48 gentamicin-loaded and 59 non-gentamicin-loaded samples mixed with 0 ml (control), 1 ml, or 2 ml of blood were randomised for flexural and compression strength testing; each group had at least 6 samples. In samples loaded with or without gentamicin, the flexural and compressive strength was highest in controls, followed by samples mixed with 1 ml or 2 ml of blood. In samples mixed with 2 ml of blood, the flexural strength fell below the standard of 50 MPa. In samples mixed with 2 ml of blood and all gentamicin-loaded samples, the compressive strength fell below the standard of 70 MPa. Microcomputed tomography revealed areas of voids and pores indicating the presence of laminations and partitions within. The biomechanical strength of PMMA contaminated with blood may decrease. Precautions such as saline lavage, pack drying the bone, change of gloves, and prompt insertion of the implant should be taken to prevent blood from contaminating bone cement.
Alumina as a filler for bone cement: a feasibility study.
Ackley, M A; Monroe, E
1980-10-01
A composite bone cement of Alcoa A-10 Alumina and very finely ground poly(methyl methacrylate) beads (PMMA) was fabricated. It was tested in an attempt to improve on the conventionally used pure PMMA bone cement. By knowing the densities of the powders and their volumes, the mass of each was calculated for the most efficient packing of PMMA and Al2O3 powders and a 65% PMMA: 35% Al2O3 ratio by weight composition was determined. This was tested, as well as the pure cement so comparisons could be made. Cylinders for the strength tests were also made of silane treated Al2O3. The compositions were tested for compressive and tensile strengths. The pure PMMA, composite and silane treated composite had compressive strengths of 79.64 +/- 13.0, 83.17 +/- 4.8, and 71.52 +/- 8.6 MPa and the tensile strengths were 6.69 +/- 0.6, 5.12 +/- 0.3, and 7.12 +/- 0.5 MPa respectively. Also the 65%-35% PMMA-Al2O3 composite required 64% less monomer for mixing than did the pure cement which is thought to be better for tissue healing. The maximum temperature attained from room temperature was 110 degrees-115 degrees C for both cements. The composite took 6.5 min longer to reach its peak temperature than did the pure cement. The bone cements were implanted for one week in a rabbit and both compositions seemed acceptable by the tissue.
Erdemci, Zeynep Yalçınkaya; Cehreli, S Burçak; Tirali, R Ebru
2014-01-01
This study's purpose was to investigate microleakage and marginal discrepancies in stainless steel crowns (SSCs) placed using conventional and Hall techniques and cemented with three different luting agents. Seventy-eight human primary maxillary second molars were randomly assigned to two groups (N=39), and SSCs were applied either with the Hall or conventional technique. These two groups were further subgrouped according to the material used for crown cementation (N=13 per group). Two specimens in each group were processed for scanning electron microscopy investigation. The extent of microleakage and marginal fit was quantified in millimeters on digitally photographed sections using image analysis software. The data were compared with a two-way independent and a two-way mixed analysis of variance (P=.05). The scores in the Hall group were significantly worse than those in the conventional technique group (P<.05). In both groups, resin cement displayed the lowest extent of microleakage, followed by glass ionomer and polycarboxylate cements (P<.05). Stainless steel crowns applied using the Hall technique displayed higher microleakage scores than those applied using the conventional technique, regardless of the cementation material. When the interaction of the material and technique was assessed, resin cement presented as the best choice for minimizing microleakage in both techniques.
NASA Astrophysics Data System (ADS)
Heinz, W. F.
1988-12-01
Pre-cementation or pre-grouting of deep shafts in South Africa is an established technique to improve safety and reduce water ingress during shaft sinking. The recent completion of several pre-cementation projects for shafts deeper than 1000m has once again highlighted the effectiveness of pre-grouting of shafts utilizing deep slimline boreholes and incorporating wireline technique for drilling and conventional deep borehole grouting techniques for pre-cementation. Pre-cementation of deep shaft will: (i) Increase the safety of shaft sinking operation (ii) Minimize water and gas inflow during shaft sinking (iii) Minimize the time lost due to additional grouting operations during sinking of the shaft and hence minimize costly delays and standing time of shaft sinking crews and equipment. (iv) Provide detailed information of the geology of the proposed shaft site. Informations on anomalies, dykes, faults as well as reef (gold bearing conglomerates) intersections can be obtained from the evaluation of cores of the pre-cementation boreholes. (v) Provide improved rock strength for excavations in the immediate vicinity of the shaft area. The paper describes pre-cementation techniques recently applied successfully from surface and some conclusions drawn for further considerations.
Wadenya, Rose; Menon, Sandhya; Mante, Francis
2011-01-01
This study investigated the effect of 2% chlorhexidine gluconate (CHX) disinfectant on bond strength (BS) of high-density glass ionomer cement (HDGIC) to dentin following atraumatic restorative treatment (ART) and conventional preparations. Specimens were divided into four groups: Group 1--ART (control); Group 2--ART with CHX disinfection; Group 3--Conventional (control); Group 4--Conventional with CHX disinfection. HDGIC was packed in cylindrical molds placed over flat dentin surfaces; BS was measured after seven days. ART-prepared dentin surfaces disinfected with CHX provided bonding to HDGIC that was comparable to untreated dentin and to conventionally prepared dentin.
Cement-in-cement acetabular revision with a constrained tripolar component.
Leonidou, Andreas; Pagkalos, Joseph; Luscombe, Jonathan
2012-02-17
Dislocation of a total hip replacement (THR) is common following total hip arthroplasty (THA). When nonoperative management fails to maintain reduction, revision surgery is considered. The use of constrained acetabular liners has been extensively described. Complete removal of the old cement mantle during revision THA can be challenging and is associated with significant complications. Cement-in-cement revision is an established technique. However, the available clinical and experimental studies focus on femoral stem revision. The purpose of this study was to present a case of cement-in-cement acetabular revision with a constrained component for recurrent dislocations and to investigate the current best evidence for this technique. This article describes the case of a 74-year-old woman who underwent revision of a Charnley THR for recurrent low-energy dislocations. A tripolar constrained acetabular component was cemented over the primary cement mantle following removal of the original liner by reaming, roughening the surface, and thoroughly irrigating and drying the primary cement. Clinical and radiological results were good, with the Oxford Hip Score improving from 11 preoperatively to 24 at 6 months postoperatively. The good short-term results of this case and the current clinical and biomechanical data encourage the use of the cement-in-cement technique for acetabular revision. Careful irrigation, drying, and roughening of the primary surface are necessary. Copyright 2012, SLACK Incorporated.
Costa, Francesco; Ortolina, Alessandro; Galbusera, Fabio; Cardia, Andrea; Sala, Giuseppe; Ronchi, Franco; Uccelli, Carlo; Grosso, Rossella; Fornari, Maurizio
2016-02-01
Pedicle screws with polymethyl methacrylate (PMMA) cement augmentation have been shown to significantly improve the fixation strength in a severely osteoporotic spine. However, the efficacy of screw fixation for different cement augmentation techniques remains unknown. This study aimed to determine the difference in pullout strength between different cement augmentation techniques. Uniform synthetic bones simulating severe osteoporosis were used to provide a platform for each augmentation technique. In all cases a polyaxial screw and acrylic cement (PMMA) at medium viscosity were used. Five groups were analyzed: I) only screw without PMMA (control group); II) retrograde cement pre-filling of the tapped area; III) cannulated and fenestrate screw with cement injection through perforation; IV) injection using a standard trocar of PMMA (vertebroplasty) and retrograde pre-filling of the tapped area; V) injection through a fenestrated trocar and retrograde pre-filling of the tapped area. Standard X-rays were taken in order to visualize cement distribution in each group. Pedicle screws at full insertion were then tested for axial pullout failure using a mechanical testing machine. A total of 30 screws were tested. The results of pullout analysis revealed better results of all groups with respect to the control group. In particular the statistical analysis showed a difference of Group V (p = 0.001) with respect to all other groups. These results confirm that the cement augmentation grants better results in pullout axial forces. Moreover they suggest better load resistance to axial forces when the distribution of the PMMA is along all the screw combining fenestration and pre-filling augmentation technique. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Zhu, Rencheng; Li, Shunyi; Wu, Zhenjun; Dumont, Éric
2017-04-01
A composite packing material (CM-5) was prepared in this study, mainly consisting of compost with functional microorganisms, calcium carbonate (CaCO 3 ), perlite, cement and plant fiber. To get stronger compressive strength, mass ratios of these components were optimized based on single factor experiments, and finally adding amounts of perlite, cement, plant fiber, CaCO 3 , compost and binder at 18%, 18%, 7%, 13%, 17% and 27%, respectively. According to the optimum proportion, CM-5 was extruded in cylindrical shape (12 mm in diameter and 20 mm in length) with a bulk density of 470 kg m -3 , a moisture retention capacity of 49% and the microbial counts of × 10 5 CFU g -1 of packing material. The cumulative release rates of total organic carbon (TOC) and total nitrogen (TN) from CM-5 were 3.1% and 6.5%, respectively, after 19 times extraction in distilled water. To evaluate the H 2 S removal capacity, CM-5 was compared with an organic (corncob) and an inorganic (ceramsite) packing material in three biofilters. The results showed that CM-5 had higher H 2 S removal capacity compared with corncob and ceramsite. CM-5 could avoid the large fluctuation of pH value and pressure drop during the operation. The maximum H 2 S removal capacity of CM-5 was 12.9 g m -3 h -1 and the removal efficiency could maintain over 95.4% when the inlet H 2 S loading rate was lower than 11.3 g m -3 h -1 without any addition of nutrients and pH buffer substances. Besides, only 2-3 days were needed for the recovery of biofiltration performance after about two weeks of idle period.
NASA Astrophysics Data System (ADS)
Bede, Andrea; Ardelean, Ioan
2017-12-01
Varying the amount of water in a concrete mix will influence its final properties considerably due to the changes in the capillary porosity. That is why a non-destructive technique is necessary for revealing the capillary pore distribution inside hydrated cement based materials and linking the capillary porosity with the macroscopic properties of these materials. In the present work, we demonstrate a simple approach for revealing the differences in capillary pore size distributions introduced by the preparation of cement paste with different water-to-cement ratios. The approach relies on monitoring the nuclear magnetic resonance transverse relaxation distribution of cyclohexane molecules confined inside the cement paste pores. The technique reveals the whole spectrum of pores inside the hydrated cement pastes, allowing a qualitative and quantitative analysis of different pore sizes. The cement pastes with higher water-to-cement ratios show an increase in capillary porosity, while for all the samples the intra-C-S-H and inter-C-S-H pores (also known as gel pores) remain unchanged. The technique can be applied to various porous materials with internal mineral surfaces.
Methane hydrate formation in partially water-saturated Ottawa sand
Waite, W.F.; Winters, W.J.; Mason, D.H.
2004-01-01
Bulk properties of gas hydrate-bearing sediment strongly depend on whether hydrate forms primarily in the pore fluid, becomes a load-bearing member of the sediment matrix, or cements sediment grains. Our compressional wave speed measurements through partially water-saturated, methane hydrate-bearing Ottawa sands suggest hydrate surrounds and cements sediment grains. The three Ottawa sand packs tested in the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) contain 38(1)% porosity, initially with distilled water saturating 58, 31, and 16% of that pore space, respectively. From the volume of methane gas produced during hydrate dissociation, we calculated the hydrate concentration in the pore space to be 70, 37, and 20% respectively. Based on these hydrate concentrations and our measured compressional wave speeds, we used a rock physics model to differentiate between potential pore-space hydrate distributions. Model results suggest methane hydrate cements unconsolidated sediment when forming in systems containing an abundant gas phase.
NASA Astrophysics Data System (ADS)
Yang, Jinkyu; Silvestro, Claudio; Sangiorgio, Sophia N.; Borkowski, Sean L.; Ebramzadeh, Edward; De Nardo, Luigi; Daraio, Chiara
2012-01-01
We propose a new biomedical sensing technique based on highly nonlinear solitary waves to assess orthopaedic implant stability in a nondestructive and efficient manner. We assemble a granular crystal actuator consisting of a one-dimensional tightly packed array of spherical particles, to generate acoustic solitary waves. Via direct contact with the specimen, we inject acoustic solitary waves into a biomedical prosthesis, and we nondestructively evaluate the mechanical integrity of the bone-prosthesis interface, studying the properties of the waves reflected from the contact zone between the granular crystal and the implant. The granular crystal contains a piezoelectric sensor to measure the travelling solitary waves, which allows it to function also as a sensor. We perform a feasibility study using total hip arthroplasty (THA) samples made of metallic stems implanted in artificial composite femurs using polymethylmethacrylate for fixation. We first evaluate the sensitivity of the proposed granular crystal sensor to various levels of prosthesis insertion into the composite femur. Then, we impose a sequence of harsh mechanical loading on the THA samples to degrade the mechanical integrity at the stem-cement interfaces, using a femoral load simulator that simulates aggressive, accelerated physiological loading. We investigate the implant stability via the granular crystal sensor-actuator during testing. Preliminary results suggest that the reflected waves respond sensitively to the degree of implant fixation. In particular, the granular crystal sensor-actuator successfully detects implant loosening at the stem-cement interface following violent cyclic loading. This study suggests that the granular crystal sensor and actuator has the potential to detect metal-cement defects in a nondestructive manner for orthopaedic applications.
Hata, Utako; Sadamitsu, Kenichiro; Yamamura, Osamu; Kawauchi, Daisuke; Fujii, Teruhisa
2004-12-01
In recent years,aesthetic appearance and function are called for and all-ceramic crowns are spreading. By choosing an all-ceramic crown the problem of metal ceramics is avoided. There are difficulties of color tone reproducibility of cervical margin and darkness of gingival margin. We examined IPS Empress also in various all-ceramic crowns. IPS Empress has high permeability a ceramic ingot of various color tones and excellent color tone reproducibility of natural teeth. Generally a layering technique is used for an anterior tooth and the staining technique is used for a molar. However the details are unknown We examined how differences of manufacturing method and cement affect the color tone of all ceramics clinically. Two kinds of Empress crown were fabricated for a 27 year-old woman's upper left-side central incisors:the staining technique of IPS Empress and the layering technique of IPS Empress II. Various try-in pastes(transparent opaque white white and yellow) of VariolinkII of the IPS Empress System were used for cementing. Color was measured using a spectrophotometer CMS 35FS. The L*a*b* color system was used for showing a color. The right-side central incisors on the opposite side of the same name teeth were used for comparison. We analyzed the color difference (DeltaE* ab)with a natural tooth. Consequently when it had no cement of staining technique and was tranceparent small values were obtained. It is considered that the color tone can be adjusted by color cement. It is effective to use the staining technique for an anterior tooth crown depending on the case. The crown manufactured using the layering technique is not easily influenced by cement. The crown manufactured by the staining technique tends to be influenced by cement.
Evaluation of pH at the Bacteria–Dental Cement Interface
Mayanagi, G.; Igarashi, K.; Washio, J.; Nakajo, K.; Domon-Tawaraya, H.; Takahashi, N.
2011-01-01
Physiochemical assessment of the parasite-biomaterial interface is essential in the development of new biomaterials. The purpose of this study was to develop a method to evaluate pH at the bacteria-dental cement interface and to demonstrate physiochemical interaction at the interface. The experimental apparatus with a well (4.0 mm in diameter and 2.0 mm deep) was made of polymethyl methacrylate with dental cement or polymethyl methacrylate (control) at the bottom. Three representative dental cements (glass-ionomer, zinc phosphate, and zinc oxide-eugenol cements) were used. Each specimen was immersed in 2 mM potassium phosphate buffer for 10 min, 24 hrs, 1 wk, or 4 wks. The well was packed with Streptococcus mutans NCTC 10449, and a miniature pH electrode was placed at the interface between bacterial cells and dental cement. The pH was monitored after the addition of 1% glucose, and the fluoride contained in the cells was quantified. Glass-ionomer cement inhibited the bacteria-induced pH fall significantly compared with polymethyl methacrylate (control) at the interface (10 min, 5.16 ± 0.19 vs. 4.50 ± 0.07; 24 hrs, 5.20 ± 0.07 vs. 4.59 ± 0.11; 1 wk, 5.34 ± 0.14 vs. 4.57 ± 0.11; and 4 wks, 4.95 ± 0.27 vs. 4.40 ± 0.14), probably due to the fluoride released from the cement. This method could be useful for the assessment of pH at the parasite-biomaterial interface. PMID:21933936
Melo Freire, C A; Borges, G A; Caldas, Dbm; Santos, R S; Ignácio, S A; Mazur, R F
To evaluate the cement line thickness and the interface quality in milled or injected lithium disilicate ceramic restorations and their influence on marginal adaptation using different cement types and different adhesive cementation techniques. Sixty-four bovine teeth were prepared for full crown restoration (7.0±0.5 mm in height, 8.0 mm in cervical diameter, and 4.2 mm in incisal diameter) and were divided into two groups: CAD/CAM automation technology, IPS e.max CAD (CAD), and isostatic injection by heat technology, IPS e.max Press (PRESS). RelyX ARC (ARC) and RelyX U200 resin cements were used as luting agents in two activation methods: initial self-activation and light pre-activation for one second (tack-cure). Next, the specimens were stored in distilled water at 23°C ± 2°C for 72 hours. The cement line thickness was measured in micrometers, and the interface quality received scores according to the characteristics and sealing aspects. The evaluations were performed with an optical microscope, and scanning electron microscope images were presented to demonstrate the various features found in the cement line. For the cement line thickness, data were analyzed with three-way analysis of variance (ANOVA) and the Games-Howell test (α=0.05). For the variable interface quality, the data were analyzed with the Mann-Whitney U-test, the Kruskal-Wallis test, and multiple comparisons nonparametric Dunn test (α=0.05). The ANOVA presented statistical differences among the ceramic restoration manufacturing methods as well as a significant interaction between the manufacturing methods and types of cement (p<0.05). The U200 presented lower cement line thickness values when compared to the ARC with both cementation techniques (p<0.05). With regard to the interface quality, the Mann-Whitney U-test and the Kruskal-Wallis test demonstrated statistical differences between the ceramic restoration manufacturing methods and cementation techniques. The PRESS ceramics obtained lower scores than did the CAD ceramics when using ARC cement (p<0.05). Milled restorations cemented with self-adhesive resin cement resulted in a thinner cement line that is statistically different from that of CAD or pressed ceramics cemented with resin cement with adhesive application. No difference between one-second tack-cure and self-activation was noted.
Impact of Casing Expansion on the Mechanical and Petro-Physical Properties of Wellbore Cements
NASA Astrophysics Data System (ADS)
Oyibo, A. E.
2014-12-01
The main objective of this research is to investigate the applicability of expandable casing technology as a remediation technique for leaky wells resulting in gas migration problems. Micro annulus is usually created at the cement-formation/cement-casing interface or within the cement matrix either due to poor primary cementing or as a result of activities such as temperature and pressure variation or fracturing operations. Recent reports on gas migration in hydraulically fractured wellbores, has raised concerns on the contamination of fresh water aquifers resulting from fluid migration though this flow path. A unique bench-scale physical model which utilizes expandable tubulars in the remediation of micro annular gas flow has been used to simulate expansion of a previously-cemented casing under field-like conditions. Three different designs of cement slurry: regular 16.4 lb. /gal, 16.4 lb. /gal base slurry foamed to 13 lb. /gal and 16.4 lb. /gal cement slurry with 10% salt concentration. Gas flow path (microannulus) was artificially created at the pipe-cement interface by rotating the inner pipe in a pipe inside pipe assembly with cement in the annulus within the first few hours of hydration to create debonding at the cement-casing interface. Nitrogen gas flow-through experiments were performed before and after the expansion to confirm the sealing of the microannulus. The results obtained confirmed the effectiveness of this technique in the complete closure of gas leakage path, providing seal-tight cement-formation interface free of microannulus. The manipulation of the cement sheath during the casing expansion resulted in improved porosity, permeability and the strength of the cement sheath. SEM micrographs revealed decrease in pore size and fracturing of unhydrated cement grains within the cement matrix. This technology has great potential to become one of the leading cement remediation techniques for leaks behind the casing if implemented. Keywords: Wellbore Integrity, Casing Expansion, Well Gas Leaks, CSH, Pore Collapse, Cement Pore Water.
Briant-Evans, Toby W; Veeramootoo, Darmaraja; Tsiridis, Eleftherios; Hubble, Matthew J
2009-10-01
Revision surgery for periprosthetic femoral fractures around an unstable cemented femoral stem traditionally requires removal of existing cement. We propose a new technique whereby a well-fixed cement mantle can be retained in cases with simple fractures that can be reduced anatomically when a cemented revision is planned. This technique is well established in femoral stem revision, but not in association with a fracture. We treated 23 Vancouver type B periprosthetic femoral fractures by reducing the fracture and cementing a revision stem into the pre-existing cement mantle, with or without supplementary fixation. 3 patients died in the first 6 months for reasons unrelated to surgery. In addition, 1 was too frail to attend follow-up and was therefore excluded from the study, and 1 patient underwent revision surgery for a nonunion. The remaining 18 cases all healed with radiographic union after an average time of 4.4 (2-11) months. There was no sign of loosening or subsidence of the revision stems within the old cement mantle in any of these cases at the most recent follow-up after an average of 3 (0.3-9) years. Our results support the use of the cement-in-cement revision in anatomically reducible periprosthetic fractures with a well-preserved pre-existing cement mantle. This technique is particularly useful for the elderly patient and for those who are not fit for prolonged surgical procedures.
In vitro evaluation of marginal adaptation in five ceramic restoration fabricating techniques.
Ural, Cağri; Burgaz, Yavuz; Saraç, Duygu
2010-01-01
To compare in vitro the marginal adaptation of crowns manufactured using ceramic restoration fabricating techniques. Fifty standardized master steel dies simulating molars were produced and divided into five groups, each containing 10 specimens. Test specimens were fabricated with CAD/CAM, heat-press, glass-infiltration, and conventional lost-wax techniques according to manufacturer instructions. Marginal adaptation of the test specimens was measured vertically before and after cementation using SEM. Data were statistically analyzed by one-way ANOVA with Tukey HSD tests (a = .05). Marginal adaptation of ceramic crowns was affected by fabrication technique and cementation process (P < .001). The lowest marginal opening values were obtained with Cerec-3 crowns before and after cementation (P < .001). The highest marginal discrepancy values were obtained with PFM crowns before and after cementation. Marginal adaptation values obtained in the compared systems were within clinically acceptable limits. Cementation causes a significant increase in the vertical marginal discrepancies of the test specimens.
LEACHING BOUNDARY IN CEMENT-BASED WASTE FORMS
Cement-based fixation systems are among the most commonly employed stabilization/solidification techniques. These cement haste mixtures, however, are vulnerable to ardic leaching solutions. Leaching of cement-based waste forms in acetic acid solutions with different acidic streng...
The mechanical effect of the existing cement mantle on the in-cement femoral revision.
Keeling, Parnell; Lennon, Alexander B; Kenny, Patrick J; O'Reilly, Peter; Prendergast, Patrick J
2012-08-01
Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct. Primary cement mantles were formed by cementing a polished stem into sections of tubular steel. If in the test group, the mantle underwent conditioning in saline to simulate ageing and was subject to a fatigue of 1 million cycles. If in the control group no such conditioning or fatigue was carried out. The cement-in-cement procedure was then undertaken. Both groups underwent a fatigue of 1 million cycles subsequent to the revision procedure. Application of a Mann-Whitney test on the recorded subsidence (means: 0.51, 0.46, n=10+10, P=0.496) and inducible displacement (means: 0.38, 0.36, P=0.96) revealed that there was no statistical difference between the groups. This study represents further biomechanical investigation of the mechanical behaviour of cement-in-cement revision constructs. Results suggest that pre-revision fatigue and ageing of the cement may not be deleterious to the mechanical performance of the revision construct. Thus, this study provides biomechanical evidence to back-up recent successes with this useful revision technique. Copyright © 2012 Elsevier Ltd. All rights reserved.
Early-age monitoring of cement structures using FBG sensors
NASA Astrophysics Data System (ADS)
Wang, Chuan; Zhou, Zhi; Zhang, Zhichun; Ou, Jinping
2006-03-01
With more and more broad applications of the cement-based structures such as neat cement paste, cement mortar and concrete in civil engineering, people hope to find out what their performances should like. The in-service performances of cement-based structures are highly affected by their hardening process during the early-age. But it is still a big problem for traditional sensors to be used to monitor the early curing of cement-based structures due to such disadvantages as difficulties to install sensors inside the concrete, limited measuring points, poor durability and interference of electromagnetic wave and so on. In this paper, according to the sensing properties of the Fiber Bragg Grating sensors and self-characters of the cement-based structures, we have successfully finished measuring and monitoring the early-age inner-strain and temperature changes of the neat cement paste, concrete with and without restrictions, mass concrete structures and negative concrete, respectively. Three types of FBG-based sensors have been developed to monitor the cement-based structures. Besides, the installation techniques and the embedding requirements of FBG sensors in cement-based structures are also discussed. Moreover, such kind of technique has been used in practical structure, 3rd Nanjing Yangtze Bridge, and the results show that FBG sensors are well proper for measuring and monitoring the temperature and strain changes including self-shrinkage, dry shrinkage, plastic shrinkage, temperature expansion, frost heaving and so on inside different cement-based structures. This technique provides us a new useful measuring method on early curing monitoring of cement-based structures and greater understanding of details of their hardening process.
Mattei, Tobias A
2017-06-01
Previous studies have demonstrated lower rates of cement extravasation when comparing balloon kyphoplasty with vertebroplasty, an effect attributed to the low-pressure injection. However, in patients with isolated endplate fractures, balloon kyphoplasty may lead to further endplate damage and increased risks of intradiscal extravasation. The author provides a stepwise description of a new technique called cavitational kyphoplasty that allows targeted low-pressure cement injection without the necessity of balloon inflation. The new technique of cavitational kyphoplasty has been shown to be specially useful in patients with isolated endplate fractures without significant loss of the vertebral body height.
NASA Astrophysics Data System (ADS)
Muslimin, A. N.; Sugiarti, E.; Aritonang, T.; Purawiardi, R. I.; Desiati, R. D.
2018-03-01
Ni-based superalloy is widely used for high performance components in power generation turbine due to its excellent mechanical properties. However, Ni-based superalloy has low oxidation resistantance. Therefore, surface coating is required to improve oxidation resistance at high temperatures. Al-Si as a coting material was successfully co-deposited on Ni-based substrate by pack cementation method at 900 °C for about 4 hours. The oxidation test was carried out at high temperature of 1000 °C for 100 hours. Micro structural characterization and analysis on crystal orientation were perfomed by using Field Emission Scanning Electron Microscope (FE-SEM) and Electron Back Scatter Diffraction (EBSD) technique, respectively. The results showed that the coating layer with a homogenous layer and had a thickness of 53 μm consisting of β-NiAl with cubic structure and Ni2Al3 with hexagonal structure. TGO layer was developed after oxidation and had a thickness of about 5 μm consisting of α-Al2O3 and spinel NiCr2O4. The phase composition map and crystal orientation acquired by EBSD technique was also discussed both in TGO and coating layers.
Revision total hip arthroplasty: the femoral side using cemented implants.
Holt, Graeme; Hook, Samantha; Hubble, Matthew
2011-02-01
Advances in surgical technique and implant technology have improved the ten-year survival after primary total hip arthroplasty (THA). Despite this, the number of revision procedures has been increasing in recent years, a trend which is predicted to continue into the future. Revision THA is a technically demanding procedure often complicated by a loss of host bone stock which may be compounded by the need to remove primary implants. Both cemented and uncemented implant designs are commonly used in the United Kingdom for primary and revision THA and much controversy still exists as to the ideal method of stem fixation. In this article we discuss revision of the femur using cemented components during revision THA. We focus on three clinical scenarios including femoral cement-in-cement revision where the primary femoral cement-bone interface remains well fixed, femoral cement-in-cement revision for peri-prosthetic femoral fractures, and femoral impaction grafting. We discuss the clinical indications, surgical techniques and clinical outcomes for each of these procedures.
An ESEM investigation of latex film formation in cement pore solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gretz, M.; Plank, J., E-mail: sekretariat@bauchemie.ch.tum.d
2011-02-15
Environmental scanning electron microscopy (ESEM) and complementary methods were employed to study the time dependent film formation of a latex dispersion in water and cement pore solution. First, a model carboxylated styrene/n-butyl acrylate latex dispersion possessing a minimum film forming temperature (MFFT) of 18 {sup o}C was synthesized in aqueous media via emulsion polymerization. Its film forming property was at a temperature of 40 {sup o}C, studied under an ESEM. The analysis revealed that upon removal of water, film formation occurs as a result of particle packing, particle deformation and finally particle coalescence. Film formation is significantly retarded when themore » latex dispersion is present in cement pore solution. This effect can be ascribed to adsorption of Ca{sup 2+} ions onto the surface of the anionic latex particles and to interfacial secondary phases. This layer of adsorbed Ca{sup 2+} ions hinders interdiffusion of the macromolecules and subsequent film formation of the latex polymer.« less
Estimating pore and cement volumes in thin section
Halley, R.B.
1978-01-01
Point count estimates of pore, grain and cement volumes from thin sections are inaccurate, often by more than 100 percent, even though they may be surprisingly precise (reproducibility + or - 3 percent). Errors are produced by: 1) inclusion of submicroscopic pore space within solid volume and 2) edge effects caused by grain curvature within a 30-micron thick thin section. Submicroscopic porosity may be measured by various physical tests or may be visually estimated from scanning electron micrographs. Edge error takes the form of an envelope around grains and increases with decreasing grain size and sorting, increasing grain irregularity and tighter grain packing. Cements are greatly involved in edge error because of their position at grain peripheries and their generally small grain size. Edge error is minimized by methods which reduce the thickness of the sample viewed during point counting. Methods which effectively reduce thickness include use of ultra-thin thin sections or acetate peels, point counting in reflected light, or carefully focusing and counting on the upper surface of the thin section.
Davies, J P; Tse, M K; Harris, W H
1996-08-01
Debonding of the cement-metal interface of cemented femoral components of total hip arthroplasty has been shown from clinical and autopsy material to be a common occurrence. Experimentally, debonding has been shown to increase markedly the strains in the adjacent cement mantle. Studies of autopsy-retrieved specimens demonstrate that debonding of the cement-metal interface is a key initiating event in loosening of cemented femoral components of total hip arthroplasty. However, both the radiographic and autopsy evidence of cement-metal interfacial debonding exist after the fact, that is, after debonding has occurred. The lack of prospective data showing that debonding does indeed occur under physiologic loading and occurs prior to other forms of failure of fixation leaves uncertain the issue of debonding and its role in initiating loosening of cemented femoral components. Knowing when, where, and to what extent the cement-metal interface debonds is critical information in understanding the process of loosening of cemented femoral components. Such information would contribute to improving the durability of stems and improving cementing techniques. In this study, the two nondestructive techniques of acoustic emission and ultrasonic evaluation of the cement-metal interface of cemented femoral stems of total hip arthroplasty were combined to investigate when, where, and to what extent cement-metal debonding occurred in vitro in simulated femurs loaded physiologically in fatigue in simulated single-leg stance. Debonding of the cement-metal interface of a cemented femoral component in this model was both an initiating event and a major mechanism of compromise of the cement-metal interface. Additional acoustic emission signals arose from cracks that developed in the cement.
Diagenetic history of the Surma Group sandstones (Miocene) in the Surma Basin, Bangladesh
NASA Astrophysics Data System (ADS)
Rahman, M. Julleh Jalalur; McCann, Tom
2012-02-01
This study examines the various diagenetic controls of the Miocene Surma Group sandstones encountered in petroleum exploration wells from the Surma Basin, which is situated in the northeastern part of the Bengal Basin, Bangladesh. The principal diagenetic minerals/cements in the Surma Group sandstones are Fe-carbonates (with Fe-calcite dominating), quartz overgrowths and authigenic clays (predominantly chlorite, illite-smectite and minor kaolin). The isotopic composition of the carbonate cement revealed a narrow range of δ 18O values (-10.3‰ to -12.4‰) and a wide range of δ 13C value (+1.4‰ to -23.1‰). The δ 13C VPDB and δ 18O VPDB values of the carbonate cements reveal that carbon was most likely derived from the thermal maturation of organic matter during burial, as well as from the dissolution of isolated carbonate clasts and precipitated from mixed marine-meteoric pore waters. The relationship between the intergranular volume (IGV) versus cement volume indicates that compaction played a more significant role than cementation in destroying the primary porosity. However, cementation also played a major role in drastically reducing porosity and permeability in sandstones with poikilotopic, pore-filling blocky cements formed in early to intermediate and deep burial areas. In addition to Fe-carbonate cements, various clay minerals including illite-smectite and chlorite occur as pore-filling and pore-lining authigenic phases. Significant secondary porosity has been generated at depths from 2500 m to 4728 m. The best reservoir rocks found at depths of 2500-3300 m are well sorted, relatively coarse grained; more loosely packed and better rounded sandstones having good porosities (20-30%) and high permeabilities (12-6000 mD). These good quality reservoir rocks are, however, not uniformly distributed and can be considered to be compartmentalized as a result of interbedding with sandstone layers of low to moderate porosities, low permeabilities owing to poor sorting and extensive compaction and cementation.
Musielak, Marion; Brusseau, Mark L; Marcoux, Manuel; Morrison, Candice; Quintard, Michel
2014-08-01
Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L -1 ) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnitude of retardation (retardation factor = 23) and sorption (sorption coefficient = 10.6 cm 3 g -1 ) for TCE, compared to negligible sorption for SF6. This magnitude of sorption obtained with pollutant vapor is much bigger than the one obtained for aqueous-flow experiments conducted for water-saturated systems. The considerable sorption exhibited for TCE under vapor-flow conditions is attributed to some combination of accumulation at the air-water interface and vapor-phase adsorption, both of which are anticipated to be significant for this system given the large surface area associated with the cement mortar. Transport of both SF6 and TCE was simulated successfully with a two-region physical non-equilibrium model, consistent with the dual-medium structure of the crushed cement mortar. This work emphasizes the importance of taking into account sorption phenomena when modeling transport of volatile organic compounds through concrete material, especially in regard to assessing vapor intrusion.
Guides emerge for cementing horizontal strings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parcevaux, P.
1987-10-19
This article recommends the following guidelines for cementing of horizontal strings: turbulent flow displacement technique for ensuring vest casing centralization and a cement slurry with a density as close as possible to that of the drilling mud.
Clements, James; Walker, Gavin; Pentlavalli, Sreekanth; Dunne, Nicholas
2014-10-01
The initial composition of acrylic bone cement along with the mixing and delivery technique used can influence its final properties and therefore its clinical success in vivo. The polymerisation of acrylic bone cement is complex with a number of processes happening simultaneously. Acrylic bone cement mixing and delivery systems have undergone several design changes in their advancement, although the cement constituents themselves have remained unchanged since they were first used. This study was conducted to determine the factors that had the greatest effect on the final properties of acrylic bone cement using a pre-filled bone cement mixing and delivery system. A design of experiments (DoE) approach was used to determine the impact of the factors associated with this mixing and delivery method on the final properties of the cement produced. The DoE illustrated that all factors present within this study had a significant impact on the final properties of the cement. An optimum cement composition was hypothesised and tested. This optimum recipe produced cement with final mechanical and thermal properties within the clinical guidelines and stated by ISO 5833 (International Standard Organisation (ISO), International standard 5833: implants for surgery-acrylic resin cements, 2002), however the low setting times observed would not be clinically viable and could result in complications during the surgical technique. As a result further development would be required to improve the setting time of the cement in order for it to be deemed suitable for use in total joint replacement surgery.
Bond enhancement techniques for PCC white topping
DOT National Transportation Integrated Search
1996-01-01
This research was initiated in 1991 as a part of a whitetopping project to study the effectiveness of various techniques to enhance bond strength between a new portland cement concrete (PCC) overlay and an existing asphalt cement concrete (ACC) pavem...
Zhou, Huan; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B
2013-10-01
There are two interesting features of this paper. First, we report herein a novel microwave assisted technique to prepare phosphate based orthopedic cements, which do not generate any exothermicity during setting. The exothermic reactions during the setting of phosphate cements can cause tissue damage during the administration of injectable compositions and hence a solution to the problem is sought via microwave processing. This solution through microwave exposure is based on a phenomenon that microwave irradiation can remove all water molecules from the alkaline earth phosphate cement paste to temporarily stop the setting reaction while preserving the active precursor phase in the formulation. The setting reaction can be initiated a second time by adding aqueous medium, but without any exothermicity. Second, a special emphasis is placed on using this technique to synthesize magnesium phosphate cements for orthopedic applications with their enhanced mechanical properties and possible uses as drug and protein delivery vehicles. The as-synthesized cements were evaluated for the occurrences of exothermic reactions, setting times, presence of Mg-phosphate phases, compressive strength levels, microstructural features before and after soaking in (simulated body fluid) SBF, and in vitro cytocompatibility responses. The major results show that exposure to microwaves solves the exothermicity problem, while simultaneously improving the mechanical performance of hardened cements and reducing the setting times. As expected, the cements are also found to be cytocompatible. Finally, it is observed that this process can be applied to calcium phosphate cements system (CPCs) as well. Based on the results, this microwave exposure provides a novel technique for the processing of injectable phosphate bone cement compositions. © 2013.
Interdiffusion behaviors of iron aluminide coatings on China low activation martensitic steel
NASA Astrophysics Data System (ADS)
Zhu, X. X.; Yang, H. G.; Yuan, X. M.; Zhao, W. W.; Zhan, Q.
2014-12-01
The iron aluminide coating on China Low Activation Martensitic (CLAM) steel was prepared by pack cementation and subsequent heat treatment. A surface Fe2Al5 layer was formed on CLAM substrate by pack cementation process with Fe2Al5 donor powder and NH4Cl activator. Diffusion heat treatment was performed in order to allow the phase transformation from Fe2Al5 to a phase with lower aluminum content. Morphology and composition of the coatings were characterized by optical microscopy (OM), scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). There is a need to study the interdiffusion behaviors in these Al containing systems, as a basis for controlling the formation and subsequent degradation of the coating. In this paper, a predictive model was developed to describe the phase transformation of Fe2Al5 as a function of processing parameters. The Wagner's equation was used to calculate the interdiffusion coefficients based on the analysis of the Al concentration profiles. The results showed that the interdiffusion coefficients in the FeAl and α-Fe(Al) phase strongly depends on Al content and showed a maximum at about 28 at.% Al.
Santana, Fernanda Ribeiro; Soares, Carlos José; Silva, Júlio Almeida; Alencar, Ana Helena Gonçalves; Renovato, Sara Rodrigues; Lopes, Lawrence Gonzaga; Estrela, Carlos
2015-07-01
To evaluate the effect of instrumentation techniques, irrigant solutions and specimen aging on fiberglass posts bond strength to intraradicular dentine. A total of 120 bovine teeth were prepared and randomized into control and experimental groups resulting from three study factors (instrumentation techniques, irrigant solutions, specimen aging). Posts were cemented with RelyX U100. Samples were submitted to push-out test and failure mode was evaluated under a confocal microscope. In specimens submitted to water artificial aging, nickel-titanium rotary instruments group presented higher bond strength values in apical third irrigated with NaOCl or chlorhexi-dine. Irrigation with NaOCl resulted in higher bond strength than ozonated water. Artificial aging resulted in significant bond strength increase. Adhesive cement-dentin failure was prevalent in all the groups. Root canal preparation with NiTi instruments associated with NaOCl irrigation and ethylenediaminetetra acetic acid (EDTA) increased bond strength of fiberglass posts cemented with self-adhesive resin cement to intraradicular dentine. Water artificial aging significantly increased post-Clinical significance: The understanding of factors that may influence the optimal bond between post-cement and cement-dentin are essential to the success of endodontically treated tooth restoration.
Practical Problems in the Cement Industry Solved by Modern Research Techniques
ERIC Educational Resources Information Center
Daugherty, Kenneth E.; Robertson, Les D.
1972-01-01
Practical chemical problems in the cement industry are being solved by such techniques as infrared spectroscopy, gas chromatography-mass spectrometry, X-ray diffraction, atomic absorption and arc spectroscopy, thermally evolved gas analysis, Mossbauer spectroscopy, transmission and scanning electron microscopy. (CP)
Hanke, M; Djonov, V; Tannast, M; Keel, M J; Bastian, J D
2016-06-01
Medial penetration of the helical blade into the hip joint after fixation of trochanteric fractures using the proximal femur nail antirotation (PFN-A) is a potential failure mode. In low demand patients a blade exchange with cement augmentation may be an option if conversion to total hip arthroplasty is unfeasible to salvage the cut-through. This article describes a technique to avoid intraarticular cement leakage using a cement plug to close the defect in the femoral head caused by the cut-through.
Stylolitization as source of cement in Mississippian Salem Limestone, west-central Indiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finkel, E.A.; Wilkinson, B.H.
The Mississippian Salem Limestone of west-central Indiana is a homogeneous cross-bedded grainstone containing numerous stylolites with amplitudes ranging up to 25 cm. Petrographic and geochemical analyses of closely spaced samples from four 1-m thick stylolite-bounded units document spatial trends in grainstone texture and composition, which correlate with proximity to bounding solution seams. Textural data indicate that stylolitization was locally preceded by grain compaction and that seam solution preferentially occurred within layers where grain packing was tightest. Amount of cement largely corresponds to volume of available pore space, and remaining porosity varies inversely to stylolite proximity. Trace-element compositions demonstrate that intergranularmore » spar is enriched in Mn and depleted in Mg relative to grains, and suggest a significant contribution of carbonate cement to grainstone pores from bounding solution seams. Data on grainstone and stylolite insoluble contents indicate that stylolite amplitude records 43% of actual section shortening. On average, seam solution within the Salem Limestone could have provided no less than 47% and no more than 90% of the CaCO{sub 3}, Fe, and Mn mass now in grainstone pores as intergranular spar cement. As such, stylolitization has played an important role during burial diagenesis, porosity occlusion, and permeability reduction within this Mississippian grainstone sequence. 17 figs., 1 tab.« less
The influence of a suction device on fixation of a cemented cup using RSA.
Timperley, A John; Whitehouse, Sarah L; Hourigan, Patrick G
2009-03-01
The quality of technique used at the time of socket cementation is crucial in ensuring a durable long-term result of the implant. We asked whether a new instrument, an aspirator retractor introduced into the wing of the ilium before socket preparation and cementation, would enhance cement fixation as defined by RSA and radiographic examination. We randomized 38 patients into two groups. The surgical technique was identical between the groups with the exception of the use of the aspirator retractor. Patients were followed clinically and with radiostereometry at a minimum of 2 years. We compared gross radiographic appearances, including the depth of penetration of cement and the incidence of postoperative and 2-year radiolucent lines. There was no difference in proximal migration between the two groups. No improvement of fixation was proven from the measured translations and rotations of the socket in the suction group. We found no difference in the number or extent of radiolucent lines or the depth of cement penetration when the iliac suction device was used in conjunction with contemporary cementing techniques. Although the data suggest no short-term advantage in this small study, we will continue to follow these patients presuming there will be improved outcomes in the longer term and since the device provides an easier method of obtaining adequate fixation, especially if technical difficulties are encountered during the pressurization procedure.
Cementless total knee arthroplasty
Risitano, Salvatore; Sabatini, Luigi; Giachino, Matteo; Agati, Gabriele; Massè, Alessandro
2016-01-01
Interest for uncemented total knee arthroplasty (TKA) has greatly increased in recent years. This technique, less used than cemented knee replacement in the last decades, sees a revival thanks an advance in prosthetic design, instrumentation and operative technique. The related literature in some cases shows conflicting data on survival and on the revision’s rate, but in most cases a success rate comparable to cemented TKA is reported. The optimal fixation in TKA is a subject of debate with the majority of surgeons favouring cemented fixation. PMID:27162779
Marosfoi, Miklós; Kulcsár, Zsolt; Berentei, Zsolt; Gubucz, István; Szikora, István
2011-07-30
Percutaenous Vertebroplasty (PVP) is effective in alleviating pain and facilitating early mobilization following vertebral compression fractures. The relatively high risk of extravertebral leakage due to uncontrolled delivery of low viscosity bone cement is an inherent limitation of the technique. The aim of this research is to investigate the ability of controlled cement delivery in decreasing the rate of such complications by applying radiofrequency heating to regulate cement viscosity. Thirty two vetebrae were treated in 28 patients as part of an Ethics Committee approved multicenter clinical trial using RadioFreqency assisted Percutaenous Vertebral Augmentation (RF-PVA) technique. This technique is injecting low viscosity polymethylmethacrylate (PMMA) bone cement using a pressure controlled hydraulic pump and applying radiofrequency heating to increase cement viscosity prior to entering the vertebral body. All patients were screened for any cement leakage by X-ray and CT scan. The intensity of pain was recorded on a Visual Analog Scale (VAS) and the level of physical activity on the Oswestry Disability Index (ODI) prior to, one day, one month and three months following procedure. All procedures were technically successful. There were no clinical complication, intraspinal or intraforaminal cement leakage. In nine cases (29%) a small amount of PMMA entered the intervertebral space through the broken end plate. Intensity of pain by VAS was reduced from a mean of 7.0 to 2.5 and physical inactivity dropped on the ODI from 52% to 23% three months following treatment. In this small series controlled cement injection using RF-PVA was capable of preventing clinically hazardous extravertebral cement leakage while achieving outcomes similar to that of conventional vertebroplasty.
Türk, Ayşe Gözde; Sabuncu, Metin; Ünal, Sena; Önal, Banu; Ulusoy, Mübin
2016-01-01
The purpose of the study was to use the photonic imaging modality of optical coherence tomography (OCT) to compare the marginal adaptation of composite inlays fabricated by direct and indirect techniques. Class II cavities were prepared on 34 extracted human molar teeth. The cavities were randomly divided into two groups according to the inlay fabrication technique. The first group was directly restored on cavities with a composite (Esthet X HD, Dentsply, Germany) after isolating. The second group was indirectly restored with the same composite material. Marginal adaptations were scanned before cementation with an invisible infrared light beam of OCT (Thorlabs), allowing measurement in 200 µm intervals. Restorations were cemented with a self-adhesive cement resin (SmartCem2, Dentsply), and then marginal adaptations were again measured with OCT. Mean values were statistically compared by using independent-samples t-test and paired samples t-test (p<0.05), before and after cementation. Direct inlays presented statistically smaller marginal discrepancy values than indirect inlays, before (p=0.00001442) and after (p=0.00001466) cementation. Marginal discrepancy values were increased for all restorations after cementation (p=0.00008839, p=0.000000952 for direct and indirect inlays, respectively). The mean marginal discrepancy value of the direct group increased from 56.88±20.04 µm to 91.88±31.7 µm, whereas the indirect group increased from 107.54±35.63 µm to 170.29±54.83 µm. Different techniques are available to detect marginal adaptation of restorations, but the OCT system can give quantitative information about resin cement thickness and its interaction between tooth and restoration in a nondestructive manner. Direct inlays presented smaller marginal discrepancy than indirect inlays. The marginal discrepancy values were increased for all restorations that refer to cement thickness after cementation.
Impact of implant size on cement filling in hip resurfacing arthroplasty.
de Haan, Roel; Buls, Nico; Scheerlinck, Thierry
2014-01-01
Larger proportions of cement within femoral resurfacing implants might result in thermal bone necrosis. We postulate that smaller components are filled with proportionally more cement, causing an elevated failure rate. A total of 19 femoral heads were fitted with polymeric replicas of ReCap (Biomet) resurfacing components fixed with low-viscosity cement. Two specimens were used for each even size between 40 and 56 mm and one for size 58 mm. All specimens were imaged with computed tomography, and the cement thickness and bone density were analyzed. The average cement mantle thickness was 2.63 mm and was not correlated with the implant size. However, specimen with low bone density had thicker cement mantles regardless of size. The average filling index was 36.65% and was correlated to both implant size and bone density. Smaller implants and specimens with lower bone density contained proportionally more cement than larger implants. According to a linear regression model, bone density but not implant size influenced cement thickness. However, both implant size and bone density had a significant impact on the filling index. Large proportions of cement within the resurfacing head have the potential to generate thermal bone necrosis and implant failure. When considering hip resurfacing in patients with a small femoral head and/or osteoporotic bone, extra care should be taken to avoid thermal bone necrosis, and alternative cementing techniques or even cementless implants should be considered. This study should help delimiting the indications for hip resurfacing and to choose an optimal cementing technique taking implant size into account.
Stabilization techniques for reactive aggregate in soil-cement base course : technical summary.
DOT National Transportation Integrated Search
2003-01-01
The objectives of this research are 1) to identify the mineralogical properties of soil-cement bases which have heaved or can potentially heave, 2) to simulate expansion of cement-stabilized soil in the laboratory, 3) to correlate expansion with the ...
2014-01-01
Background In total knee arthroplasty (TKA), cement penetration between 3 and 5 mm beneath the tibial tray is required to prevent loosening of the tibia component. The objective of this study was to develop and validate a reliable in vivo measuring technique using CT imaging to assess cement distribution and penetration depth in the total area underneath a tibia prosthesis. Methods We defined the radiodensity ranges for trabecular tibia bone, polymethylmethacrylate (PMMA) cement and cement-penetrated trabecular bone and measured the percentages of cement penetration at various depths after cementing two tibia prostheses onto redundant femoral heads. One prosthesis was subsequently removed to examine the influence of the metal tibia prostheses on the quality of the CT images. The percentages of cement penetration in the CT slices were compared with percentages measured with photographs of the corresponding transversal slices. Results Trabecular bone and cement-penetrated trabecular bone had no overlap in quantitative scale of radio-density. There was no significant difference in mean HU values when measuring with or without the tibia prosthesis. The percentages of measured cement-penetrated trabecular bone in the CT slices of the specimen were within the range of percentages that could be expected based on the measurements with the photographs (p = 0.04). Conclusions CT scan images provide valid results in measuring the penetration and distribution of cement into trabecular bone underneath the tibia component of a TKA. Since the proposed method does not turn metal elements into artefacts, it enables clinicians to assess the width and density of the cement mantle in vivo and to compare the results of different cementing methods in TKA. PMID:25158996
DOT National Transportation Integrated Search
2002-08-01
The purpose of this research was to evaluate the effectiveness of soil cement shrinkage crack mitigation techniques. The contents of this report reflect an evaluation of the construction of the test sections and a two-year evaluation of the test sect...
DOT National Transportation Integrated Search
2002-08-01
The purpose of this research is to evaluate the effectiveness of soil cement shrinkage crack mitigation techniques. Ten test sections, 1000 feet long, were constructed on LA 89 in Vermilion Parish. The shrinkage crack mitigation methods being evaluat...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apedo, K.L., E-mail: apedo@unistra.fr; Munzer, C.; He, H.
2015-02-15
Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are comparedmore » with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied.« less
Fit Analysis of Different Framework Fabrication Techniques for Implant-Supported Partial Prostheses.
Spazzin, Aloísio Oro; Bacchi, Atais; Trevisani, Alexandre; Farina, Ana Paula; Dos Santos, Mateus Bertolini
2016-01-01
This study evaluated the vertical misfit of implant-supported frameworks made using different techniques to obtain passive fit. Thirty three-unit fixed partial dentures were fabricated in cobalt-chromium alloy (n = 10) using three fabrication methods: one-piece casting, framework cemented on prepared abutments, and laser welding. The vertical misfit between the frameworks and the abutments was evaluated with an optical microscope using the single-screw test. Data were analyzed using one-way analysis of variance and Tukey test (α = .05). The one-piece casted frameworks presented significantly higher vertical misfit values than those found for framework cemented on prepared abutments and laser welding techniques (P < .001 and P < .003, respectively). Laser welding and framework cemented on prepared abutments are effective techniques to improve the adaptation of three-unit implant-supported prostheses. These techniques presented similar fit.
Ismail, Mostafa; Fares, Abd Alla; Abdelhak, Balegh; D'Haens, Jean; Michel, Olaf
2016-01-01
Sellar reconstruction with intrasellar packing following endoscopic resection of pituitary macroadenomas remains a subject of clinical and radiological discussion particularly, when an intraoperative cerebrospinal fluid (CSF) leakage is absent. This study was conducted to contribute our experience with sellar reconstruction after a standard endoscopic surgery of pituitary macroadenomas without intraoperative CSF leakage to the ongoing discussion between techniques with and without intrasellar packing. A consecutive series of 47 pituitary macroadenomas undergoing excision via a standard endoscopic endonasal transsphenoidal surgery (EETS) without evident intraoperative CSF leakage were retrospectively evaluated over a 10-months mean follow-up period. According to the sellar reconstruction technique, three groups could be identified: Group A - with no intrasellar packing, Group B - with haemostatic materials packing, and Group C - with abdominal fat packing. Postoperative clinical and radiological assessments of the three groups were documented and analyzed for differences in outcome. Postoperative clinical assessment did not differ significantly between the three groups. In group A, postoperative CSF leakage, sphenoid sinusitis and empty sella syndrome were not observed. However, a significant difference in radiological assessment could be identified; the interpretation of sellar contents in postoperative MRI of group A succeeded earlier and more reliably than in other groups with intrasellar packing. There is no difference in the incidence of postoperative CSF leakage and empty sella syndrome among the various reconstructive techniques with and without intrasellar packing, irrespective of size and extension of the pituitary adenoma. Sellar reconstruction without intrasellar packing following a standard EETS is not inferior to other techniques with packing and even shows more radiological advantages, which made it our preferred technique, at least if no intraoperative CSF leakage is evident.
Pourdeyhimi, B; Robinson, H H; Schwartz, P; Wagner, H D
1986-01-01
A study of the fracture behaviour of Kevlar 29 reinforced dental cement is undertaken using both linear elastic and nonlinear elastic fracture mechanics techniques. Results from both approaches--of which the nonlinear elastic is believed to be more appropriate--indicate that a reinforcing effect is obtained for the fracture toughness even at very low fibre content. The flexural strength and modulus are apparently not improved, however, by the incorporation of Kevlar 29 fibres in the PMMA cement, probably because of the presence of voids, the poor fibre/matrix interfacial bonding and unsatisfying cement mixing practice. When compared to other PMMA composite cements, the present system appears to be probably more effective than carbon/PMMA, for example, in terms of fracture toughness. More experimental and analytical work is needed so as to optimize the mechanical properties with respect to structural parameters and cement preparation technique.
NASA Astrophysics Data System (ADS)
Wang, Y.; Soga, K.; DeJong, J. T.; Kabla, A.
2017-12-01
Microbial-induced carbonate precipitation (MICP), one of the bio-mineralization processes, is an innovative subsurface improvement technique for enhancing the strength and stiffness of soils, and controlling their hydraulic conductivity. These macro-scale engineering properties of MICP treated soils controlled by micro-scale factors of the precipitated carbonate, such as its content, amount and distribution in the soil matrix. The precipitation process itself is affected by bacteria amount, reaction kinetics, porous medium geometry and flow distribution in the soils. Accordingly, to better understand the MICP process at the pore scale a new experimental technique that can observe the entire process of MICP at the pore-scale was developed. In this study, a 2-D transparent microfluidic chip made of Polydimethylsiloxane (PDMS) representing the soil matrix was designed and fabricated. A staged-injection MICP treatment procedure was simulated inside the microfluidic chip while continuously monitored using microscopic techniques. The staged-injection MICP treatment procedure started with the injection of bacteria suspension, followed with the bacteria setting for attachment, and then ended with the multiple injections of cementation liquid. The main MICP processes visualized during this procedure included the bacteria transport and attachment during the bacteria injection, the bacteria attachment and growth during the bacteria settling, the bacteria detachment during the cementation liquid injection, the cementation development during the cementation liquid injection, and the cementation development after the completion of cementation liquid injection. It is suggested that the visualization of the main MICP processes using the microfluidic technique can improve understating of the fundamental mechanisms of MICP and consequently help improve the treatment technique for in situ implementation of MICP.
An Ice Block: A Novel Technique of Successful Prevention of Cement Leakage Using an Ice Ball
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uri, Ishaq Fahmi, E-mail: uri.isaac@gmail.com; Garnon, Julien, E-mail: juliengarnon@gmail.com; Tsoumakidou, Georgia, E-mail: georgia.tsoumakidou@chru-strasbourg.fr
2015-04-15
We report three cases of painful bone metastases with extraosseous invasion treated with cementoplasty and cryoablation. Due to significant cortical loss in all cases, the ice ball was used simultaneously during cementoplasty to deter potential cement leakage. This was achieved by direct application of the ice ball against the cortical surface, resulting in adequate consolidation and successful containment of the cement within the treated bones. To the authors’ knowledge, this is the first report to describe such a combined technique.
NASA Astrophysics Data System (ADS)
Mirabolghasemi, M.; Prodanovic, M.; Choens, R. C., II; Dewers, T. A.
2016-12-01
We present a workflow to study the alteration of flow and mechanical characteristics of sandstones after shear failure, specifically modeling weakening of the formation due to CO2 injection. We use discrete elements method (DEM) to represent each sand grain as a cluster of bonded sub-particles, and model their potential crushing. We also introduce bonds between sand grain clusters to enable the modeling of the mechanical behavior of consolidated sandstones. The model is tuned by comparing our numerical compression tests on single sand grains with the experimental results reported in the literature. Once the mechanical behavior of individual grains is adequately captured by the model, a packing of such grains is subjected to shear stress. Once the packing fails under the imposed shear stress, its mechanical properties, permeability, and porosity are calculated. This test is repeated for various conditions by varying parameters such as the brittleness of single grains (the relative quartz-feldspar content of the grains), normal stress, and cement strength (assuming (chemical) weakening of the inter- and intra-grain-cluster bonds due to CO2 injection). We specifically compare the effect of cement/bond strength weakening on mechanical properties to triaxial compression experimental measurements before and after hydrous scCO2 and CO2-saturated brine injection in Boise sandstone performed in Sandia National Laboratory.
NASA Astrophysics Data System (ADS)
Wang, Qin-Ying; Behnamian, Yashar; Luo, Hong; Wang, Xian-Zong; Leitch, Michael; Zeng, Hongbo; Luo, Jing-Li
2017-10-01
A hash service environment containing H2S and CO2 in oil industry usually causes corrosion of carbon steel. In this study, the chromized coatings with different deposited time were prepared on the surface of carbon steel by the method of pack cementation to enhance its corrosion resistance. Then the microstructure, hardness, corrosion resistance as well as the semiconductor behavior of coatings in the simulated solution with saturated H2S and CO2 were investigated. The results show that the content of Cr in coating was increased by prolonging deposited time, and both chromium carbides and chromium nitrides were formed. Furthermore, coatings display higher polarization resistance, Rp, than that of the substrate, indicating a higher resistance to charge transfer on coating surface. The corrosion rates of coatings with different deposited time were significantly lower than that of substrate. Chemical analysis showed the formation of heavy sulfides on the surface of substrates after corrosion, while the least corrosion products were detected on the surface of coating with deposited time of 12 h. Mott-Schottky results indicated that coating of 12 h displayed less defects than the other two coatings with deposited time of 4 h and 8 h, which will be beneficial to improve corrosion resistance. The investigation showed that chromized coatings exhibited high corrosion resistance and owned a potential application in oil industry for corrosion prevention.
Wakitani, S; Imoto, K; Saito, M; Yamamoto, T; Kawabata, H
2002-05-01
Reconstruction of a knee damaged by cement packed to cure a giant-cell tumor is sometimes difficult. We reconstructed such a knee by removal of the cement, autologous bone transplantation and distraction osteogenesis using the Ilizarov apparatus. In this paper the results 29 months after the salvage surgery are given. We saw a 31-year-old woman's knee joint that showed osteoarthritic change after curettage, cryosurgery and cementation performed 4 years previously for a giant-cell tumor of the proximal tibia. We reconstructed the knee joint. This procedure included cement removal, alignment correction by tibial osteotomy, subchondral bone reconstruction by autologous bone transplantation, and filling the defect after removing the bone cement by elongating the diaphysis using the Ilizarov apparatus. Distraction was terminated 4 months later when 54 mm of elongation was performed. All devices were removed 12 months after the surgery. Seventeen months after the removal of the apparatus, the range of motion of the right knee was 0 degrees extension and 110 degrees flexion, and the patient was able to walk without pain. Although the treatment period is long and there may be some complications of Ilizarov lengthening and distraction osteogenesis, this procedure has numerous benefits. Bony defects can be soundly reconstructed and, at the same time, the alignment of the knee can be corrected. Also it is not necessary to reconstruct the ligaments because the insertions are intact. If osteoarthritis progresses, a surface type total knee replacement can be performed, not constrained type prosthesis, which would be used if the bony structure had not been reconstructed. This procedure may be one of the candidates for reconstructing such knee joints destroyed by bone cement. Copyright 2002 OsteoArthritis Research Society International. Published by Elsevier Science Ltd. All rights reserved.
Makarewicz, Dominika; Le Bell-Rönnlöf, Anna-Maria B; Lassila, Lippo V.J.; Vallittu, Pekka K.
2013-01-01
Objectives: The aim of this study was to evaluate the effect of two different cementation techniques of individually formed E-glass fiber-reinforced composite (FRC) post on bond strength and microleakage. Methods: The crowns of extracted third molars were removed and post preparation was carried out with parapost drills (diameter 1.5 mm). After application of bonding agents individually formed FRC posts (everStick POST, diameter 1.5 mm) were cemented into the post spaces with either ParaCem®Universal or self-adhesive RelyX™Unicem, using two different cementation techniques: 1) an “indirect (traditional) technique” where the post was prepolymerized prior application of luting cement and insertion into the post space or 2) a “direct technique” where the uncured post was inserted to the post space with luting cement and light-polymerized in situ at the same time. After water storage of 48 hours, the roots (n = 10/group) were cut into discs of thickness of 2 mm. A push-out force was applied until specimen fracture or loosening of the post. A microleakage test was carried out on roots which were not subjected to the loading test (n= 32) to evaluate the sealing capacity of the post-canal interface. The microleakage was measured using dye penetration depth under a stereomicroscope. Results: Higher bond strength values (p<0.05) and less microleakage (p<0.05) were obtained with the “direct technique” compared to the “indirect technique”. None of the FRC posts revealed any dye penetration between the post and the cement. Conclusions: The “direct technique” seems to be beneficial when cementing individually formed FRC posts. PMID:23986792
Brondani, Lucas Pradebon; Pereira-Cenci, Tatiana; Wandsher, Vinicius Felipe; Pereira, Gabriel Kalil; Valandro, Luis Felipe; Bergoli, César Dalmolin
2017-04-10
Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding) and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding), resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation) for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.
The optimization of concrete mixtures for use in highway applications
NASA Astrophysics Data System (ADS)
Moini, Mohamadreza
Portland cement concrete is most used commodity in the world after water. Major part of civil and transportation infrastructure including bridges, roadway pavements, dams, and buildings is made of concrete. In addition to this, concrete durability is often of major concerns. In 2013 American Society of Civil Engineers (ASCE) estimated that an annual investment of 170 billion on roads and 20.5 billion for bridges is needed on an annual basis to substantially improve the condition of infrastructure. Same article reports that one-third of America's major roads are in poor or mediocre condition [1]. However, portland cement production is recognized with approximately one cubic meter of carbon dioxide emission. Indeed, the proper and systematic design of concrete mixtures for highway applications is essential as concrete pavements represent up to 60% of interstate highway systems with heavier traffic loads. Combined principles of material science and engineering can provide adequate methods and tools to facilitate the concrete design and improve the existing specifications. In the same manner, the durability must be addressed in the design and enhancement of long-term performance. Concrete used for highway pavement applications has low cement content and can be placed at low slump. However, further reduction of cement content (e.g., versus current specifications of Wisconsin Department of Transportation to 315-338 kg/m 3 (530-570 lb/yd3) for mainstream concrete pavements and 335 kg/m3 (565 lb/yd3) for bridge substructure and superstructures) requires delicate design of the mixture to maintain the expected workability, overall performance, and long-term durability in the field. The design includes, but not limited to optimization of aggregates, supplementary cementitious materials (SCMs), chemical and air-entraining admixtures. This research investigated various theoretical and experimental methods of aggregate optimization applicable for the reduction of cement content. Conducted research enabled further reduction of cement contents to 250 kg/m3 (420 lb/yd3) as required for the design of sustainable concrete pavements. This research demonstrated that aggregate packing can be used in multiple ways as a tool to optimize the aggregates assemblies and achieve the optimal particle size distribution of aggregate blends. The SCMs, and air-entraining admixtures were selected to comply with existing WisDOT performance requirements and chemical admixtures were selected using the separate optimization study excluded from this thesis. The performance of different concrete mixtures was evaluated for fresh properties, strength development, and compressive and flexural strength ranging from 1 to 360 days. The methods and tools discussed in this research are applicable, but not limited to concrete pavement applications. The current concrete proportioning standards such as ACI 211 or current WisDOT roadway standard specifications (Part 5: Structures, Section 501: Concrete) for concrete have limited or no recommendations, methods or guidelines on aggregate optimization, the use of ternary aggregate blends (e.g., such as those used in asphalt industry), the optimization of SCMs (e.g., class F and C fly ash, slag, metakaolin, silica fume), modern superplasticizers (such as polycarboxylate ether, PCE) and air-entraining admixtures. This research has demonstrated that the optimization of concrete mixture proportions can be achieved by the use and proper selection of optimal aggregate blends and result in 12% to 35% reduction of cement content and also more than 50% enhancement of performance. To prove the proposed concrete proportioning method the following steps were performed: • The experimental aggregate packing was investigated using northern and southern source of aggregates from Wisconsin; • The theoretical aggregate packing models were utilized and results were compared with experiments; • Multiple aggregate optimization methods (e.g., optimal grading, coarseness chart) were studied and compared to aggregate packing results and performance of experimented concrete mixtures; • Optimal aggregate blends were selected and used for concrete mixtures; • The optimal dosage of admixtures were selected for three types of plasticizing and superplasticizing admixtures based on a separately conducted study; • The SCM dosages were selected based on current WisDOT specifications; • The optimal air-entraining admixture dosage was investigated based on performance of preliminary concrete mixtures; • Finally, optimal concrete mixtures were tested for fresh properties, compressive strength development, modulus of rupture, at early ages (1day) and ultimate ages (360 days). • Durability performance indicators for optimal concrete mixtures were also tested for resistance of concrete to rapid chloride permeability (RCP) at 30 days and 90 days and resistance to rapid freezing and thawing at 56 days.
Galy-Bernadoy, C; Akkari, M; Mondain, M; Uziel, A; Venail, F
2016-12-01
Bone cement is used for ossicular chain repair and revision stapes surgery. Its efficient use requires cautious removal of mucosa from the ossicles. This paper reports a technique for easy, fast and safe removal of this mucosa prior to cement application. It consists of the application of monopolar electrocoagulation on the ossicles prior to bone cement application. The outcomes of six cases of revision stapes surgery and seven cases of partial ossiculoplasty, conducted between 2007 and 2012 using this new technique, were evaluated. Intra-operative reports and audiometric data were collected. During the last assessment, reconstruction using bone cement resulted in mean post-operative air-bone gaps of 4.1 ± 6.5 dB in revision stapes surgery cases and 5.7 ± 5.5 dB in partial ossiculoplasty cases, reflecting a significant hearing improvement (p = 0.03). No complications were observed. Electrocoagulation allows the removal of mucosa from the ossicles in an easy, fast and safe manner, enabling the use of bone cement for ossicular chain reconstruction.
A critical assessment of proximal macrotexturing on cemented femoral components.
Duffy, G P; Muratoglu, O K; Biggs, S A; Larson, S L; Lozynsky, A J; Harris, W H
2001-12-01
We analyzed the cement-metal interface of 3 different types of femoral components that had proximal macrotexturing after in vitro insertion and after fatigue testing designed to produce debonding and micromotion. These components were compared with clinical retrieval specimens. The cement did not flow into the macrotexturing; rather, hollow, brittle volcanoes or calderas were formed. These fragile protrusions of cement become worn down or abraded by debonded components. This abrasion of cement may contribute to the early and aggressive osteolysis seen in some of these early failures with proximal macrotextured components. The formation of these volcanos and calderas can be aborted by placing bone-cement onto the macrotexturing before stem insertion. This simple technique allows the macrotexturing to be filled with cement.
NASA Astrophysics Data System (ADS)
Gautham, S.; Sindu, B. S.; Sasmal, Saptarshi
2017-10-01
Properties and distribution of the products formed during the hydration of cementitious composite at the microlevel are investigated using a nanoindentation technique. First, numerical nanoindentation using nonlinear contact mechanics is carried out on three different phase compositions of cement paste, viz. mono-phase Tri-calcium Silicate (C3S), Di-calcium Silicate (C2S) and Calcium-Silicate-Hydrate (CSH) individually), bi-phase (C3S-CSH, C2S-CSH) and multi-phase (more than 10 individual phases including water pores). To reflect the multi-phase characteristics of hydrating cement composite, a discretized multi-phase microstructural model of cement composite during the progression of hydration is developed. Further, a grid indentation technique for simulated nanoindentation is established, and employed to evaluate the mechanical characteristics of the hydrated multi-phase cement paste. The properties obtained from the numerical studies are compared with those obtained from experimental grid nanoindentation. The influence of composition and distribution of individual phase properties on the properties obtained from indentation are closely investigated. The study paves the way to establishing the procedure for simulated grid nanoindentation to evaluate the mechanical properties of heterogeneous composites, and facilitates the design of experimental nanoindentation.
TÜRK, Ayşe Gözde; SABUNCU, Metin; ÜNAL, Sena; ÖNAL, Banu; ULUSOY, Mübin
2016-01-01
ABSTRACT Objective The purpose of the study was to use the photonic imaging modality of optical coherence tomography (OCT) to compare the marginal adaptation of composite inlays fabricated by direct and indirect techniques. Material and Methods Class II cavities were prepared on 34 extracted human molar teeth. The cavities were randomly divided into two groups according to the inlay fabrication technique. The first group was directly restored on cavities with a composite (Esthet X HD, Dentsply, Germany) after isolating. The second group was indirectly restored with the same composite material. Marginal adaptations were scanned before cementation with an invisible infrared light beam of OCT (Thorlabs), allowing measurement in 200 µm intervals. Restorations were cemented with a self-adhesive cement resin (SmartCem2, Dentsply), and then marginal adaptations were again measured with OCT. Mean values were statistically compared by using independent-samples t-test and paired samples t-test (p<0.05), before and after cementation. Results Direct inlays presented statistically smaller marginal discrepancy values than indirect inlays, before (p=0.00001442) and after (p=0.00001466) cementation. Marginal discrepancy values were increased for all restorations after cementation (p=0.00008839, p=0.000000952 for direct and indirect inlays, respectively). The mean marginal discrepancy value of the direct group increased from 56.88±20.04 µm to 91.88±31.7 µm, whereas the indirect group increased from 107.54±35.63 µm to 170.29±54.83 µm. Different techniques are available to detect marginal adaptation of restorations, but the OCT system can give quantitative information about resin cement thickness and its interaction between tooth and restoration in a nondestructive manner. Conclusions Direct inlays presented smaller marginal discrepancy than indirect inlays. The marginal discrepancy values were increased for all restorations that refer to cement thickness after cementation. PMID:27556210
The extent of slits at the interfaces between luting cements and enamel, dentin and alloy.
Oilo, G
1978-01-01
Four different cements were used to assess the presence of slits at the cement/tooth or the cement/alloy interfaces using a tooth-crown model. The model consisted of ground sections of teeth and plane plates of silver/palladium alloy. The plates were fixed with bolts between two brass plates and with three different dimensions of the cement film between tooth and alloy, i.e. 50 micrometer, 100 micrometer and 200 micrometer. The tooth-alloy specimens were sectioned and the adaption of cements was studied with an indirect technique (replica) in a scanning electron microscope. The extent of slits was expressed as the length of all slits relative to the total length of the interface in each specimen. The results showed that the zinc phosphate cement and polycarboxylate cement exhibited a slight to moderate tendency to formation of slits at the interfaces. The EBA cement had a small extent of slits adjacent to thin cement films, but more slits were observed with increasing film thickness. The composite resin cement had a marked tendency to slit formation independent of the cement film thickness.
[Bonding of visible light cured composite resins to glass ionomer and Cermet cements].
Kakaboura, A; Vougiouklakis, G
1990-04-01
The "sandwich" technique involves combination of composite resins to etched glassionomer cements, is used today in restorative dentistry. The purpose of this study is to evaluate the bond strength between several composite resins and glass ionomer or cerment cements. Cylindrical specimens of the cements Ketac-Silver, Ionobond and GC-Lining Ce-ment were inserted in a mold and their flat free surfaces were etched for 30". Cylindrical plastic tubes were set upon each one of these surfaces and filled with the Composite resins Durafill, Brilliant Lux, Estilux posterior, Estilux posterior CVS and Herculite XR. Half of the specimens transferred in tap water for 24 hours and the others after thermocycling in the first month, kept for 4 months. Shear bond strengths were determined in Monsanto Testing Machine and some fractured surfaces were examined under SEM. The results of this investigation indicate that this technique produces bond strengths between composite resins and glassioners and the combination type of resin and type of cement, affects the values of the strength. Glass cermeet--small particle resin provides the most effective strength and glass ionomer--microfill resins the least. Storage time and thermocycling don't significantly effect the bond strength. SEM examination showed that all fracture failures were obtained in the cement while the opposite resin surfaces were covered with particles of the cements.
NASA Astrophysics Data System (ADS)
Samshuri, S. F.; Daud, R.; Rojan, M. A.; Mat, F.; Basaruddin, K. S.; Hassan, R.
2017-10-01
This paper presents the energy method to evaluate fracture behavior of enamel-cement-bracket system based on cement thickness. Finite element (FE) model of enamel-cement-bracket was constructed by using ANSYS Parametric Design Language (APDL). Three different thickness were used in this study, 0.05, 0.2, and 0.271 mm which assigned as thin, medium and thick for both enamel-cement and cement bracket interface cracks. Virtual crack closure technique (VCCT) was implemented as a simulation method to calculated energy release rate (ERR). Simulation results were obtained for each thickness are discussed by using Griffith’s energy balance approach. ERR for thin thickness are found to be the lowest compared to medium and thick. Peak value of ERR also showed a significant different between medium and thick thickness. Therefore, weakest bonding occurred at low cement thickness because less load required to produce enough energy to detach the bracket. For medium and thick thickness, both increased rapidly in energy value at about the mid-point of the enamel-cement interface. This behavior occurred because of the increasing in mechanical and surface energy when the cracks are increasing. However, result for thick thickness are higher at mid-point compared to thin thickness. In conclusion, fracture behavior of enamel cracking process for medium most likely the safest to avoid enamel fracture and withstand bracket debonding.
1992-11-01
Godlewska and K. Godlewski, Oxid. Met., 22 (1984) 117. 4. J.E. Restall, U.S. Patent #4,687,684 (1987). 5. P.N. Walsh, in Proceeding of the Fourth...McCarron, N.R. Lindblad, and D. Chatterji, Corrosion, 32 (1976) 476. 34 33. E. Godlewska and K. Godlewski, Oxid. Met., 22 (1984) 117. 34. B. Pieraggi
Multiphasic modelling of bone-cement injection into vertebral cancellous bone.
Bleiler, Christian; Wagner, Arndt; Stadelmann, Vincent A; Windolf, Markus; Köstler, Harald; Boger, Andreas; Gueorguiev-Rüegg, Boyko; Ehlers, Wolfgang; Röhrle, Oliver
2015-01-01
Percutaneous vertebroplasty represents a current procedure to effectively reinforce osteoporotic bone via the injection of bone cement. This contribution considers a continuum-mechanically based modelling approach and simulation techniques to predict the cement distributions within a vertebra during injection. To do so, experimental investigations, imaging data and image processing techniques are combined and exploited to extract necessary data from high-resolution μCT image data. The multiphasic model is based on the Theory of Porous Media, providing the theoretical basis to describe within one set of coupled equations the interaction of an elastically deformable solid skeleton, of liquid bone cement and the displacement of liquid bone marrow. The simulation results are validated against an experiment, in which bone cement was injected into a human vertebra under realistic conditions. The major advantage of this comprehensive modelling approach is the fact that one can not only predict the complex cement flow within an entire vertebra but is also capable of taking into account solid deformations in a fully coupled manner. The presented work is the first step towards the ultimate and future goal of extending this framework to a clinical tool allowing for pre-operative cement distribution predictions by means of numerical simulations. Copyright © 2015 John Wiley & Sons, Ltd.
Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel
2017-05-30
Nowadays, one of the most popular ways to get a more sustainable cement industry is using additions as cement replacement. However, there are many civil engineering applications in which the use of sustainable cements is not extended yet, such as special foundations, and particularly micropiles, even though the standards do not restrict the cement type to use. These elements are frequently exposed to the sulphates present in soils. The purpose of this research is to study the effects in the very long-term (until 600 days) of sulphate attack in the microstructure of micropiles grouts, prepared with ordinary Portland cement, fly ash and slag commercial cements, continuing a previous work, in which these effects were studied in the short-term. The microstructure changes have been analysed with the non-destructive impedance spectroscopy technique, mercury intrusion porosimetry and the "Wenner" resistivity test. The mass variation and the compressive strength have also been studied. The impedance spectroscopy has been the most sensitive technique for following the sulphate attack process. Considering the results obtained, micropiles grouts with slag and fly ash, exposed to an aggressive medium with high content of sulphates, have shown good behaviour in the very long-term (600 days) compared to grouts made with OPC.
Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel
2017-01-01
Nowadays, one of the most popular ways to get a more sustainable cement industry is using additions as cement replacement. However, there are many civil engineering applications in which the use of sustainable cements is not extended yet, such as special foundations, and particularly micropiles, even though the standards do not restrict the cement type to use. These elements are frequently exposed to the sulphates present in soils. The purpose of this research is to study the effects in the very long-term (until 600 days) of sulphate attack in the microstructure of micropiles grouts, prepared with ordinary Portland cement, fly ash and slag commercial cements, continuing a previous work, in which these effects were studied in the short-term. The microstructure changes have been analysed with the non-destructive impedance spectroscopy technique, mercury intrusion porosimetry and the “Wenner” resistivity test. The mass variation and the compressive strength have also been studied. The impedance spectroscopy has been the most sensitive technique for following the sulphate attack process. Considering the results obtained, micropiles grouts with slag and fly ash, exposed to an aggressive medium with high content of sulphates, have shown good behaviour in the very long-term (600 days) compared to grouts made with OPC. PMID:28772958
Two imaging techniques for 3D quantification of pre-cementation space for CAD/CAM crowns.
Rungruanganunt, Patchanee; Kelly, J Robert; Adams, Douglas J
2010-12-01
Internal three-dimensional (3D) "fit" of prostheses to prepared teeth is likely more important clinically than "fit" judged only at the level of the margin (i.e. marginal "opening"). This work evaluates two techniques for quantitatively defining 3D "fit", both using pre-cementation space impressions: X-ray microcomputed tomography (micro-CT) and quantitative optical analysis. Both techniques are of interest for comparison of CAD/CAM system capabilities and for documenting "fit" as part of clinical studies. Pre-cementation space impressions were taken of a single zirconia coping on its die using a low viscosity poly(vinyl siloxane) impression material. Calibration specimens of this material were fabricated between the measuring platens of a micrometre. Both calibration curves and pre-cementation space impression data sets were obtained by examination using micro-CT and quantitative optical analysis. Regression analysis was used to compare calibration curves with calibration sets. Micro-CT calibration data showed tighter 95% confidence intervals and was able to measure over a wider thickness range than for the optical technique. Regions of interest (e.g., lingual, cervical) were more easily analysed with optical image analysis and this technique was more suitable for extremely thin impression walls (<10-15μm). Specimen preparation is easier for micro-CT and segmentation parameters appeared to capture dimensions accurately. Both micro-CT and the optical method can be used to quantify the thickness of pre-cementation space impressions. Each has advantages and limitations but either technique has the potential for use as part of clinical studies or CAD/CAM protocol optimization. Copyright © 2010 Elsevier Ltd. All rights reserved.
Calculus removal on a root cement surface by ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Kraft, Johan F.; Vestentoft, Kasper; Christensen, Bjarke H.; Løvschall, Henrik; Balling, Peter
2008-01-01
Ultrashort-pulse-laser ablation of dental calculus (tartar) and cement is performed on root surfaces. The investigation shows that the threshold fluence for ablation of calculus is a factor of two to three times smaller than that of a healthy root cement surface. This indicates that ultrashort laser pulses may provide an appropriate tool for selective removal of calculus with minimal damage to the underlying root cement. Future application of an in situ profiling technique allows convenient on-line monitoring of the ablation process.
Application of resistivity monitoring to evaluate cement grouting effect in earth filled dam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jin-Mo; Yoon, Wang-Jung
In this paper, we applied electrical resistivity monitoring method to evaluate the cement grouting effect. There are a lot of ways to evaluate cement grouting effect. In order to do this evaluation in a great safety, high efficiency, and lower cost, resistivity monitoring is found to be the most appropriate technique. In this paper we have selected a dam site from Korea to acquire resistivity monitoring data and compare the results of inversion to estimate the cement grouting effect.
Estrada, Nicolas
2016-12-01
Using discrete element methods, the effects of the grain size distribution on the density and the shear strength of frictionless disk packings are analyzed. Specifically, two recent findings on the relationship between the system's grain size distribution and its rheology are revisited, and their validity is tested across a broader range of distributions than what has been used in previous studies. First, the effects of the distribution on the solid fraction are explored. It is found that the distribution that produces the densest packing is not the uniform distribution by volume fractions as suggested in a recent publication. In fact, the maximal packing fraction is obtained when the grading curve follows a power law with an exponent close to 0.5 as suggested by Fuller and Thompson in 1907 and 1919 [Trans Am. Soc. Civ. Eng. 59, 1 (1907) and A Treatise on Concrete, Plain and Reinforced (1919), respectively] while studying mixtures of cement and stone aggregates. Second, the effects of the distribution on the shear strength are analyzed. It is confirmed that these systems exhibit a small shear strength, even if composed of frictionless particles as has been shown recently in several works. It is also found that this shear strength is independent of the grain size distribution. This counterintuitive result has previously been shown for the uniform distribution by volume fractions. In this paper, it is shown that this observation keeps true for different shapes of the grain size distribution.
Development of monetite-nanosilica bone cement: a preliminary study.
Zhou, Huan; Luchini, Timothy J F; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B
2014-11-01
In this paper, we reported the results of our efforts in developing DCPA/nanosilica composite orthopedic cement. It is motivated by the significances of DCPA and silicon in bone physiological activities. More specifically, this paper examined the effects of various experimental parameters on the properties of such composite cements. In this work, DCPA cement powders were synthesized using a microwave synthesis technique. Mixing colloidal nanosilica directly with synthesized DCPA cement powders can significantly reduce the washout resistance of DCPA cement. In contrast, a DCPA-nanosilica cement powder prepared by reacting Ca(OH)2 , H3 PO4 and nanosilica together showed good washout resistance. The incorporation of nanosilica in DCPA can improve compressive strength, accelerate cement solidification, and intensify surface bioactivity. In addition, it was observed that by controlling the content of NaHCO3 during cement preparation, the resulting composite cement properties could be modified. Allowing for the development of different setting times, mechanical performance and crystal features. It is suggested that DCPA-nanosilica composite cement can be a potential candidate for bone healing applications. © 2014 Wiley Periodicals, Inc.
Lehmann, Franziska; Eickemeyer, Grit; Rammelsberg, Peter
2004-09-01
The improved mechanical properties of contemporary composites have resulted in their extensive use for the restoration of posterior teeth. However, the influence of fiber reinforcement, cementation technique, and physical stress on the fracture resistance of metal-free crowns is unknown. This in vitro study evaluated the effect of fiber reinforcement, physical stress, and cementation methods on the fracture resistance of posterior metal-free Sinfony crowns. Ninety-six extracted human third molars received a standardized tooth preparation: 0.5-mm chamfer preparation and occlusal reduction of 1.3 to 1.5 mm. Sinfony (nonreinforced crowns, n=48) and Sinfony-Vectris (reinforced crowns, n=48) crowns restoring original tooth contour were prepared. Twenty-four specimens of each crown type were cemented, using either glass ionomer cement (GIC) or resin cement. Thirty-two crowns (one third) were stored in humidity for 48 hours. Another third was exposed to 10,000 thermal cycles (TC) between 5 degrees C and 55 degrees C. The remaining third was treated with thermal cycling and mechanical loading (TCML), consisting of 1.2 million axial loads of 50 N. The artificial crowns were then vertically loaded with a steel sphere until failure occurred. Significant differences in fracture resistance (N) between experimental groups were assessed by nonparametric Mann-Whitney U-test (alpha=.05). Fifty percent of the Sinfony and Sinfony-Vectris crowns cemented with glass ionomer cement loosened after thermal cycling. Thermal cycling resulted in a significant reduction in the mean fracture resistance for Sinfony crowns cemented with GIC, from 2037 N to 1282 N (P=.004). Additional fatigue produced no further effects. Fiber reinforcement significantly increased fracture resistance, from 1555 N to 2326 N (P=.001). The minimal fracture resistance was above 600 N for all combinations of material, cement and loading. Fracture resistance of metal-free Sinfony crowns was significantly increased by fiber reinforcement. Adhesive cementation may be recommended to avoid cementation failure.
Microstructural characterization of catalysis product of nanocement based materials: A review
NASA Astrophysics Data System (ADS)
Sutan, Norsuzailina Mohamed; Izaitul Akma Ideris, Nur; Taib, Siti Noor Linda; Lee, Delsye Teo Ching; Hassan, Alsidqi; Kudnie Sahari, Siti; Mohamad Said, Khairul Anwar; Rahman Sobuz, Habibur
2018-03-01
Cement as an essential element for cement-based products contributed to negative environmental issues due to its high energy consumption and carbon dioxide emission during its production. These issues create the need to find alternative materials as partial cement replacement where studies on the potential of utilizing silica based materials as partial cement replacement come into picture. This review highlights the effectiveness of microstructural characterization techniques that have been used in the studies that focus on characterization of calcium hydroxide (CH) and calcium silicate hydrate (C-S-H) formation during hydration process of cement-based product incorporating nano reactive silica based materials as partial cement replacement. Understanding the effect of these materials as cement replacement in cement based product focusing on the microstructural development will lead to a higher confidence in the use of industrial waste as a new non-conventional material in construction industry that can catalyse rapid and innovative advances in green technology.
investigating the use of geophysical techniques to detect hydrocarbon seeps
NASA Astrophysics Data System (ADS)
Somwe, Vincent Tambwe
In the Cement oil field, seeps occur in the Hydrocarbon Induced Diagenetic Aureole (HIDA).This 14 square km diagenetic alteration region is mainly characterized by the: (1) secondary carbonate minerals deposition that tends to form ridges throughout the oil field; (2) disseminated pyrite in the vicinity of the fault zones; (3) uranium occurrence and the change in color pattern from red to bleached red sandstone. Generally the HIDA of the Cement oil field is subdivided into four zones: (1) carbonate cemented sandstone zone (zone 1), (2) altered sandstone zone (zone 2), (3) sulfide zone (zone 3) and (4) unaltered sandstone zone (zone 4). This study investigated the use of geophysical techniques to detect alteration zones over the Cement oil field. Magnetic and electromagnetic data were acquired at 5 m interval using the geometric G858 magnetometer and the Geonics EM-31 respectively. Both total magnetic intensity and bulk conductivity were found to decrease across boundaries between unaltered and altered sandstones. Boundaries between sulfide and carbonate zones, which in most cases were located in fault zones, were found to be characterized by higher magnetic and bulk conductivity readings. The contrast between the background and the highest positive peak was found to be in the range of 0.5-10% for total magnetic intensity and 258-450% for bulk conductivity respectively; suggesting that the detection of hydrocarbon seeps would be more effective with EM techniques. The study suggests that geophysical techniques can be used to delineate contact between the different alteration zones especially where metallic minerals such as pyrite are precipitated. The occurrence of carbonate cemented sandstone in the Cement oil field can be used as a pathfinder for hydrocarbon reservoir. The change in color in the altered sandstone zone can still be useful in the hydrocarbon exploration.
Is there still a place for the cemented titanium femoral stem?
2012-01-01
Background and purpose Despite the fact that there have been some reports on poor performance, titanium femoral stems intended for cemented fixation are still used at some centers in Europe. In this population-based registry study, we examined the results of the most frequently used cemented titanium stem in Norway. Patients and methods 11,876 cases implanted with the cemented Titan stem were identified for the period 1987–2008. Hybrid arthroplasties were excluded, leaving 10,108 cases for this study. Stem survival and the influence of age, sex, stem offset and size, and femoral head size were evaluated using Cox regression analyses. Questionnaires were sent to the hospitals to determine the surgical technique used. Results Male sex, high stem offset, and small stem size were found to be risk factors for stem revision, (adjusted RR = 2.5 (1.9–3.4), 3.3 (2.3–4.8), and 2.2 (1.4–3.5), respectively). Patients operated in the period 2001–2008 had an adjusted relative risk (RR) of 4.7 (95% CI: 3.0–7.4) for stem revision due to aseptic stem loosening compared to the period 1996–2000. Changes in broaching technique and cementing technique coincided with deterioration of the results in some hospitals. Interpretation The increased use of small stem sizes and high-offset stems could only explain the deterioration of results to a certain degree since the year 2000. The influence of discrete changes in surgical technique over time could not be fully evaluated in this registry study. We suggest that this cemented titanium stem should be abandoned. The results of similar implants should be carefully evaluated. PMID:22206445
NASA Astrophysics Data System (ADS)
Dussenova, D.; Bilheux, H.; Radonjic, M.
2012-12-01
Wellbore Cement studies have been ongoing for decades. The studies vary from efforts to reduce permeability and resistance to corrosive environment to issues with gas migration also known as Sustained Casing Pressure (SCP). These practical issues often lead to health and safety problems as well as huge economic loss in oil and gas industry. Several techniques have been employed to reduce the impact of gas leakage. In this study we purely focus on expandable liners, which are introduced as part of oil well reconstruction and work-overs and as well abandonment procedures that help in prevention of SCP. Expandable liner is a tube that after application of a certain tool can increase its diameter. The increase in diameter creates extra force on hydrated cement that results in reducing width of interface fractures and cement-tube de-bonding. Moreover, this also causes cement to change its microstructure and other porous medium properties, primarily hydraulic conductivity. In order to examine changes before and after operations, cement pore structure must be well characterized and correlated to cement slurry design as well as chemical and physical environmental conditions. As modern oil well pipes and tubes contain iron, it is difficult to perform X-ray tomography of a bulk measurement of the cement in its wellbore conditions, which are tube wall-cement-tube wall. Neutron imaging is a complementary technique to x-ray imaging and is well suited for detection of light elements imbedded in metallic containers. Thus, Neutron Imaging (NI) is investigated as a tool for the detection of pore structure of hydrated wellbore cement. Recent measurements were conducted at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) neutron imaging facility. NI is is highly sensitive to light elements such as Hydrogen (H). Oil well cements that have undergone a full hydration contain on average 30%-40% of free water in its pore structure. The unreacted water is the main storage of the hydrogen atom. In such case, neutron tomography does not give information of the pore structure as neutrons will strongly scatter of H and the data have low count and low statistics or low neutron transmission. Hence, as the comparison and the possible tuning technique, neutron tomography measurements are performed on a Deuterium Oxide (D2O) or heavy water samples the same dimensions, cement composition, cement/liquid content and hydration time as the H2O samples. The advantage of using heavy water is that the total neutron cross-section for Deuterium is approximately four times smaller than Hydrogen's and, thus, permits better neutron transmission, i.e. better statistics. D2O does not alter cement properties or its chemical composition; therefore, the samples are almost identical. Comparison of the measurements using water and heavy water samples and the preparation of the measurement cement samples are discussed in this
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hun Bok; Jansik, Danielle; Um, Wooyong
2013-01-02
ABSTRACT: X-ray microtomography (XMT), a nondestructive three-dimensional imaging technique, was applied to demonstrate its capability to visualize the mineralogical alteration and microstructure changes in hydrated Portland cement exposed to carbon dioxide under geologic sequestration conditions. Steel coupons and basalt fragments were added to the cement paste in order to simulate cement-steel and cement-rock interfaces. XMT image analysis showed the changes of material density and porosity in the degradation front (density: 1.98 g/cm3, porosity: 40%) and the carbonated zone (density: 2.27 g/cm3, porosity: 23%) after reaction with CO2- saturated water for 5 months compared to unaltered cement (density: 2.15 g/cm3, porosity:more » 30%). Three-dimensional XMT imaging was capable of displaying spatially heterogeneous alteration in cement pores, calcium carbonate precipitation in cement cracks, and preferential cement alteration along the cement-steel and cement-rock interfaces. This result also indicates that the interface between cement and host rock or steel casing is likely more vulnerable to a CO2 attack than the cement matrix in a wellbore environment. It is shown here that XMT imaging can potentially provide a new insight into the physical and chemical degradation of wellbore cement by CO2 leakage.« less
2012-01-01
Background Aseptic loosening is one of the greatest problems in hip replacement surgery. The rotation center of the hip is believed to influence the longevity of fixation. The aim of this study was to compare the influence of cemented and cementless cup fixation techniques on the position of the center of rotation because cemented cup fixation requires the removal of more bone for solid fixation than the cementless technique. Methods We retrospectively compared pre- and post-operative positions of the hip rotation center in 25 and 68 patients who underwent artificial hip replacements in our department in 2007 using cemented or cementless cup fixation, respectively, with digital radiographic image analysis. Results The mean horizontal and vertical distances between the rotation center and the acetabular teardrop were compared in radiographic images taken pre- and post-operatively. The mean horizontal difference was −2.63 mm (range: -11.00 mm to 10.46 mm, standard deviation 4.23 mm) for patients who underwent cementless fixation, and −2.84 mm (range: -10.87 to 5.30 mm, standard deviation 4.59 mm) for patients who underwent cemented fixation. The mean vertical difference was 0.60 mm (range: -20.15 mm to 10.00 mm, standard deviation 3.93 mm) and 0.41 mm (range: -9.26 mm to 6.54 mm, standard deviation 3.58 mm) for the cementless and cemented fixation groups, respectively. The two fixation techniques had no significant difference on the position of the hip rotation center in the 93 patients in this study. Conclusions The hip rotation center was similarly restored using either the cemented or cementless fixation techniques in this patient cohort, indicating that the fixation technique itself does not interfere with the position of the center of rotation. To completely answer this question further studies with more patients are needed. PMID:22686355
Munk, Peter L; Murphy, Kieran J; Gangi, Afshin; Liu, David M
2011-04-01
Oncology intervention is actively moving beyond simple bone cement injection. Archimedes taught us that a volume displaces its volume. Where does the tumor we displace with our cement injection go? It is no longer acceptable that we displace tumor into the venous system with our cement injections. We must kill the tumor first. Different image-guided percutaneous techniques can be used for treatment in patients with primary or secondary bone tumors. Curative ablation can be applied for the treatment of specific benign or in selected cases of malignant localized spinal tumors. Pain palliation therapy of primary and secondary bone tumors can be achieved with safe, fast, effective, and tolerable percutaneous methods. Ablation (chemical, thermal, mechanical), cavitation (radiofrequency ionization), and consolidation (cementoplasty) techniques can be used separately or in combination. Each technique has its indications, with both advantages and drawbacks. To prevent pathological fractures, a consolidation is necessary. In spinal or acetabular tumors, a percutaneous cementoplasty should be associated with cryoablation to avoid a compression fracture. The cement is injected after complete thawing of the ice ball or the day after the cryotherapy. A syndrome of multiorgan failure, severe coagulopathy, and disseminated intravascular coagulation following hepatic cryoablation has been described and is referred to as the cryoshock phenomenon. © Thieme Medical Publishers.
Effects of Cementing on Ligament Balance During Total Knee Arthroplasty.
Chow, Jimmy; Wang, Kevin; Elson, Leah; Anderson, Christopher; Roche, Martin
2017-05-01
Complications related to joint imbalance may contribute to some of the most predominant modes of failure in total knee arthroplasty (TKA). These complications include instability, aseptic loosening, asymmetric component wear, and idiopathic pain. Fixation may represent a step that introduces unchecked variability into the procedure and may contribute to the incidence of joint imbalance-related complications. The ability to quantify in vivo loading in the medial and lateral compartments would allow for the ability to confirm balance after fixation and prior to wound closure. This retrospective study sought to capture any variability and imbalance associated with cementing technique. A total of 93 patients underwent sensor-assisted TKA. All patients were confirmed to have quantifiably balanced joints prior to cementation. After cementing and final component placement, the sensor was reinserted into the joint to capture any cementation-induced changes in loading. Imbalance was observed in 44% of patients after cementation. There was no difference in the proportion of imbalance due to surgeon experience (P=.456), cement type (P=.429), or knee system (P=.792). A majority of knees exhibited loading increase in the medial compartment. It was concluded that cementation technique contributes to a significant amount of balance-related variability at the fixation stage of the procedure. The use of the sensor in this study allowed for the correction of all instances of imbalance prior to closure. More objective methods of balance verification may be important for ensuring optimal surgical outcomes. [Orthopedics. 2017; 40(3):e455-e459.]. Copyright 2017, SLACK Incorporated.
Kain, Jay; Martorello, Laura; Swanson, Edward; Sego, Sandra
2011-01-01
The purpose of the randomized clinical study was to scientifically assess which intervention increases passive range of motion most effectively: the indirect tri-planar myofascial release (MFR) technique or the application of hot packs for gleno-humeral joint flexion, extension, and abduction. A total of 31 participants from a sample of convenience were randomly assigned to examine whether or not MFR was as effective in increasing range of motion as hot packs. The sample consisted of students at American International College. Students were randomly assigned to two groups: hot pack application (N=13) or MFR technique (N=18). The independent variable was the intervention, either the tri-planar MFR technique or the hot pack application. Group one received the indirect tri-planar MFR technique once for 3min. Group two received one hot pack application for 20min. The dependent variables, passive gleno-humeral shoulder range of motion in shoulder flexion, shoulder extension, and shoulder abduction, were taken pre- and post-intervention for both groups. Data was analyzed through the use of a two-way factorial design with mixed-factors ANOVA. Prior to conducting the study, inter-rater reliability was established using three testers for goniometric measures. A 2 (type of intervention: hot packs or MFR) by 2 (pre-test or post-test) mixed-factors ANOVA was calculated. Significant increases in range of motion were found for flexion, extension and abduction when comparing pre-test scores to post-test scores. The results of the ANOVA showed that for passive range of motion no differences were found for flexion, extension and abduction between the effectiveness of hot packs and MFR. For each of the dependent variables measured, MFR was shown to be as effective as hot packs in increasing range of motion, supporting the hypothesis. Since there was no significant difference between the types of intervention, both the hot pack application and the MFR technique were found to be equally effective in increasing passive range of motion of the joint in flexion, extension, and abduction of the gleno-humeral joint. The indirect tri-planar intervention could be considered more effective as an intervention in terms of time spent with a patient and the number of patients seen in a 20-min period. No equipment is required to carry out the MFR intervention, whereby using a hot pack requires the hot pack, towels, and a hydraculator unit with the use of the indirect tri-planar intervention, a therapist could treat four to five patients in the time it would take for one standard hot pack treatment of 20min, less the hands-on intervention of the therapist. Copyright © 2009 Elsevier Ltd. All rights reserved.
Rupture in cemented granular media: application to wheat endosperm
NASA Astrophysics Data System (ADS)
Topin, V.; Delenne, J.-Y.; Radjai, F.
2009-06-01
The mechanical origin of the wheat hardness used to classify wheat flours is an open issue. Wheat endosperm can be considered as a cemented granular material, consisting of densely packed solid particles (the starch granules) and a pore-filling solid matrix (the protein) sticking to the particles. We use the lattice element method to investigate cemented granular materials with a texture close to that of wheat endosperm and with variable matrix volume fraction and particle-matrix adherence. From the shape of the probability density of vertical stresses we distinguish weak, intermediate and strong stresses. The large stresses occur mostly at the contact zones as in noncohesive granular media with a decreasing exponential distribution. The weak forces reflect the arching effect. The intermediate stresses belong mostly to the bulk of the particles and their distribution is well fit to a Gaussian distribution. We also observe that the stress chains are essentially guided by the cementing matrix in tension and by the particulate backbone in compression. Crack formation is analyzed in terms of particle damage as a function of matrix volume fraction and particle-matrix adherence. Our data provide evidence for three regimes of crack propagation depending on the crack path through the material. We find that particle damage scales well with the relative toughness of the particle-matrix interface. The interface toughness appears therefore to be strongly correlated with particle damage and determines transition from soft to hard behavior in wheat endosperm.
ESEM analysis of polymeric film in EVA-modified cement paste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, D.A.; Monteiro, P.J.M.
2005-10-01
Portland cement pastes modified by 20% weight (polymer/cement ratio) of poly(ethylene-co-vinyl acetate) (EVA) were prepared, cured, and immersed in water for 11 days. The effects of water saturation and drying on the EVA polymeric film formed in cement pastes were observed using environmental scanning electron microscopy (ESEM). This technique allowed the imaging of the EVA film even in saturated samples. The decrease of the relative humidity inside the ESEM chamber did not cause any visual modification of the polymeric film during its drying.
Lee, Ju-Hyoung; Park, In-Sook; Sohn, Dong-Seok
2016-07-01
If a cement-retained implant prosthesis is placed on an abutment, excess cement should be minimized or removed to prevent periimplant inflammation. Various methods for fabricating an abutment replica have been introduced to maintain tissue health and reduce clean-up time. The purpose of this article is to present an alternative technique for fabricating an abutment replica with computer-aided design/computer-aided manufacturing (CAD/CAM) technology. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Vibrational investigation of calcium-silicate cements for endodontics in simulated body fluids
NASA Astrophysics Data System (ADS)
Taddei, Paola; Modena, Enrico; Tinti, Anna; Siboni, Francesco; Prati, Carlo; Gandolfi, Maria Giovanna
2011-05-01
Calcium-silicate MTA (Mineral Trioxide Aggregate) cements have been recently developed for oral and endodontic surgery. This study was aimed at investigating commercial (White ProRoot MTA, White and Grey MTA-Angelus) and experimental (wTC-Bi) accelerated calcium-silicate cements with regards to composition, hydration products and bioactivity upon incubation for 1-28 days at 37 °C, in Dulbecco's Phosphate Buffered Saline (DPBS). Deposits on the surface of the cements and the composition changes during incubation were investigated by micro-Raman and ATR/FT-IR spectroscopy, and pH measurements. Vibrational techniques disclosed significant differences in composition among the unhydrated cements, which significantly affected the bioactivity as well as pH, and hydration products of the cements. After one day in DPBS, all the cements were covered by a more or less homogeneous layer of B-type carbonated apatite. The experimental cement maintained a high bioactivity, only slightly lower than the other cements and appears a valid alternative to commercial cements, in view of its adequate setting time properties. The bioactivity represents an essential property to favour bone healing and makes the calcium-silicate cements the gold standard materials for root-apical endodontic surgery.
Shoulder rehabilitation using portland cement and recycled asphalt pavement.
DOT National Transportation Integrated Search
2007-04-01
Maine has hundreds of miles of roadway originally constructed with Portland Cement Concrete that now : are covered with Hot Mix Asphalt overlays. In 2001 the Maine Department of Transportation utilized an : experimental construction technique on one ...
Damage of Wood-Concrete Composite subjected to variable hygrometric conditions
NASA Astrophysics Data System (ADS)
Loulou, L.; Caré, S.; Le Roy, R.; Bornert, M.
2010-06-01
This paper discusses the factors influencing the durability of glued assemblies of wood and cementitious material under variable hygrometric conditions. The composite specimens are composed of cement paste connected to plywood using epoxy glue. The cement paste is subjected to autogeneous shrinkage and the wood is subjected to imbibition test. Plywood is used so that the swelling deformations due to the imbibition process are parallel to the connection plane. Swelling strains in wood are related to the water content measured by gammadensimetry technique. Global strains above and below the glue interface have been measured and have been compared to the free strains. We showed that there are restrained deformations at the glue interface and that the cement paste is damaged. Local strains have been characterized by means of the digital image correlation technique. We showed in particular that the deformations in wood are related to the microstructure of the layers of plywood and that the restrained deformations at the glue interface lead to a bending of the cement paste. In the case of strong adhesion properties, this bending induces cracking in cement paste.
Comparative study of methods to measure the density of Cementious powders.
Helsel, Michelle A; Ferraris, Chiara F; Bentz, Dale
2016-11-01
The accurate measurement of the density of hydraulic cement has an essential role in the determination of concrete mixture proportions. As more supplementary cementitious materials (SCM), such as fly ash, and slag, or cement replacements materials such as limestone and calcium carbonate are used in blended cements, knowledge of the density of each powder or of the blended cement would allow a more accurate calculation of the proportions of a concrete mixture by volume instead of by mass. The current ASTM standard for measuring cement density is the "Test Method for Density of Hydraulic Cements" (ASTM C188-14), which utilizes a liquid displacement method to measure the volume of the cement. This paper will examine advantageous modifications of the current ASTM test, by alcohol substitutions for kerosene. In addition, a gas (helium) pycnometry method is evaluated as a possible alternative to the current standard. The described techniques will be compared to determine the most precise and reproducible method for measuring the density of hydraulic cements and other powders.
Job Tasks as Determinants of Thoracic Aerosol Exposure in the Cement Production Industry.
Notø, Hilde; Nordby, Karl-Christian; Skare, Øivind; Eduard, Wijnand
2017-12-15
The aims of this study were to identify important determinants and investigate the variance components of thoracic aerosol exposure for the workers in the production departments of European cement plants. Personal thoracic aerosol measurements and questionnaire information (Notø et al., 2015) were the basis for this study. Determinants categorized in three levels were selected to describe the exposure relationships separately for the job types production, cleaning, maintenance, foreman, administration, laboratory, and other jobs by linear mixed models. The influence of plant and job determinants on variance components were explored separately and also combined in full models (plant&job) against models with no determinants (null). The best mixed models (best) describing the exposure for each job type were selected by the lowest Akaike information criterion (AIC; Akaike, 1974) after running all possible combination of the determinants. Tasks that significantly increased the thoracic aerosol exposure above the mean level for production workers were: packing and shipping, raw meal, cement and filter cleaning, and de-clogging of the cyclones. For maintenance workers, time spent with welding and dismantling before repair work increased the exposure while time with electrical maintenance and oiling decreased the exposure. Administration work decreased the exposure among foremen. A subjective tidiness factor scored by the research team explained up to a 3-fold (cleaners) variation in thoracic aerosol levels. Within-worker (WW) variance contained a major part of the total variance (35-58%) for all job types. Job determinants had little influence on the WW variance (0-4% reduction), some influence on the between-plant (BP) variance (from 5% to 39% reduction for production, maintenance, and other jobs respectively but an 79% increase for foremen) and a substantial influence on the between-worker within-plant variance (30-96% for production, foremen, and other workers). Plant determinants had little influence on the WW variance (0-2% reduction), some influence on the between-worker variance (0-1% reduction and 8% increase), and considerable influence on the BP variance (36-58% reduction) compared to the null models. Some job tasks contribute to low levels of thoracic aerosol exposure and others to higher exposure among cement plant workers. Thus, job task may predict exposure in this industry. Dust control measures in the packing and shipping departments and in the areas of raw meal and cement handling could contribute substantially to reduce the exposure levels. Rotation between low and higher exposed tasks may contribute to equalize the exposure levels between high and low exposed workers as a temporary solution before more permanent dust reduction measures is implemented. A tidy plant may reduce the overall exposure for almost all workers no matter of job type. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
New method for antibiotic release from bone cement (polymethylmethacrylate): Redefining boundaries.
Carbó-Laso, E; Sanz-Ruiz, P; Del Real-Romero, J C; Ballesteros-Iglesias, Y; Paz-Jiménez, E; Arán-Ais, F; Sánchez-Navarro, M; Pérez-Limiñana, M A; López-Torres, I; Vaquero-Martín, J
The increasing antimicrobial resistance is promoting the addition of antibiotics with high antistaphylococcal activity to polymethylmethacrylate (PMMA), for use in cement spacers in periprosthetic joint infection. Linezolid and levofloxacin have already been used in in-vitro studies, however, rifampicin has been shown to have a deleterious effect on the mechanical properties of PMMA, because it inhibits PMMA polymerization. The objective of our study was to isolate the rifampicin during the polymerization process using microencapsulation techniques, in order to obtain a PMMA suitable for manufacturing bone cement spacers. Microcapsules of rifampicin were synthesized with alginate and PHBV, using Rifaldin ® . The concentration levels of rifampicin were studied by UV-visible spectrophotometry. Compression, hardness and setting time tests were performed with CMW ® 1 cement samples alone, with non-encapsulated rifampicin and with alginate or PHBV microcapsules. The production yield, efficiency and microencapsulation yield were greater with alginate (P = .0001). The cement with microcapsules demonstrated greater resistance to compression than the cement with rifampicin (91.26±5.13, 91.35±6.29 and 74.04±3.57 MPa in alginate, PHBV and rifampicin, respectively) (P = .0001). The setting time reduced, and the hardness curve of the cement with alginate microcapsules was similar to that of the control. Microencapsulation with alginate is an appropriate technique for introducing rifampicin into PMMA, preserving compression properties and setting time. This could allow intraoperative manufacturing of bone cement spacers that release rifampicin for the treatment of periprosthetic joint infection. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.
Improved specifications for hydraulic cement concrete : final report.
DOT National Transportation Integrated Search
1983-01-01
This is the final report of a study of the application of statistical concepts to specifications for hydraulic cement concrete as used in highway facilities. It reviews the general problems associated with the application of statistical techniques to...
Esteban, María Dolores; Rodríguez, Raúl Rubén; Ibanco, Francisco José; Sánchez, Isidro
2017-01-01
At present, sustainability is of major importance in the cement industry, and the use of additions such as silica fume as clinker replacement contributes towards that goal. Special foundations, and particularly micropiles, are one of the most suitable areas for the use of sustainable cements. The aim of this research is to analyse the effects in the very long-term (for 600 days) produced by sulphate attack in the microstructure of grouts for micropiles in which OPC (ordinary Portland cement) has been replaced by 5% and 10% silica fume. This line of study is building on a previous work, where these effects were studied in slag and fly ash grouts. Grouts made using a commercial sulphate-resisting Portland cement were also studied. The non-destructive impedance spectroscopy technique, mercury intrusion porosimetry, and Wenner resistivity testing were used. Mass variation and the compressive strength have also been analysed. Apparently, impedance spectroscopy is the most suitable technique for studying sulphate attack development. According to the results obtained, grouts for micropiles with a content of silica fume up to 10% and exposed to an aggressive sulphate medium, have a similar or even better behaviour in the very long-term, compared to grouts prepared using sulphate-resisting Portland cement. PMID:28767078
Ortega, José Marcos; Esteban, María Dolores; Rodríguez, Raúl Rubén; Pastor, José Luis; Ibanco, Francisco José; Sánchez, Isidro; Climent, Miguel Ángel
2017-08-02
At present, sustainability is of major importance in the cement industry, and the use of additions such as silica fume as clinker replacement contributes towards that goal. Special foundations, and particularly micropiles, are one of the most suitable areas for the use of sustainable cements. The aim of this research is to analyse the effects in the very long-term (for 600 days) produced by sulphate attack in the microstructure of grouts for micropiles in which OPC (ordinary Portland cement) has been replaced by 5% and 10% silica fume. This line of study is building on a previous work, where these effects were studied in slag and fly ash grouts. Grouts made using a commercial sulphate-resisting Portland cement were also studied. The non-destructive impedance spectroscopy technique, mercury intrusion porosimetry, and Wenner resistivity testing were used. Mass variation and the compressive strength have also been analysed. Apparently, impedance spectroscopy is the most suitable technique for studying sulphate attack development. According to the results obtained, grouts for micropiles with a content of silica fume up to 10% and exposed to an aggressive sulphate medium, have a similar or even better behaviour in the very long-term, compared to grouts prepared using sulphate-resisting Portland cement.
Nano-Inclusions Applied in Cement-Matrix Composites: A Review
Bastos, Guillermo; Patiño-Barbeito, Faustino; Patiño-Cambeiro, Faustino; Armesto, Julia
2016-01-01
Research on cement-based materials is trying to exploit the synergies that nanomaterials can provide. This paper describes the findings reported in the last decade on the improvement of these materials regarding, on the one hand, their mechanical performance and, on the other hand, the new properties they provide. These features are mainly based on the electrical and chemical characteristics of nanomaterials, thus allowing cement-based elements to acquire “smart” functions. In this paper, we provide a quantitative approach to the reinforcements achieved to date. The fundamental concepts of nanoscience are introduced and the need of both sophisticated devices to identify nanostructures and techniques to disperse nanomaterials in the cement paste are also highlighted. Promising results have been obtained, but, in order to turn these advances into commercial products, technical, social and standardisation barriers should be overcome. From the results collected, it can be deduced that nanomaterials are able to reduce the consumption of cement because of their reinforcing effect, as well as to convert cement-based products into electric/thermal sensors or crack repairing materials. The main obstacle to foster the implementation of such applications worldwide is the high cost of their synthesis and dispersion techniques, especially for carbon nanotubes and graphene oxide. PMID:28774135
High temperature surface protection. [10 gas turbines
NASA Technical Reports Server (NTRS)
Levine, S. R.
1978-01-01
Alloys of the MCrAlX type are the basis for high temperature surface protection systems in gas turbines. M can be one or more of Ni, Co, or Fe and X denotes a reactive metal added to enhance oxide scale adherence. The selection and formation as well as the oxidation, hot corrosion and thermal fatigue performance of MCrAlX coatings are discussed. Coatings covered range from simple aluminides formed by pack cementation to the more advanced physical vapor deposition overlay coatings and developmental plasma spray deposited thermal barrier coatings.
NASA Astrophysics Data System (ADS)
Lippitz, Nicolas; Erdeniz, Dinc; Sharp, Keith W.; Dunand, David C.
2018-03-01
Braided tubes of Ni-based superalloys are fabricated via three-dimensional (3-D) braiding of ductile Ni-20Cr (wt pct) wires followed by post-textile gas-phase alloying with Al and Ti to create, after homogenization and aging, γ/ γ' strengthened lightweight, porous structures. Tensile tests reveal an increase in strength by 100 MPa compared to as-braided Ni-20Cr (wt pct). An interrupted tensile test, combined with X-ray tomographic scans between each step, sheds light on the failure behavior of the braided superalloy tubes.
Attachment techniques for high temperature strain
NASA Astrophysics Data System (ADS)
Wnuk, Steve P., Jr.
1993-01-01
Attachment methods for making resistive strain measurements to 2500 F were studied. A survey of available strain gages and attachment techniques was made, and the results are compiled for metal and carbon composite test materials. A theoretical analysis of strain transfer into a bonded strain gage was made, and the important physical parameters of the strain transfer medium, the ceramic matrix, were identified. A pull tester to measure pull-out tests on commonly used strain gage cements indicated that all cements tested displayed adequate strength for good strain transfer. Rokide flame sprayed coatings produced significantly stronger bonds than ceramic cements. An in-depth study of the flame spray process produced simplified installation procedures which also resulted in greater reliability and durability. Application procedures incorporating improvements made during this program are appended to the report. Strain gages installed on carbon composites, Rene' 41, 316 stainless steel, and TZM using attachment techniques developed during this program were successfully tested to 2500 F. Photographs of installation techniques, test procedures, and graphs of the test data are included in this report.
Castillo-de-Oyagüe, Raquel; Sánchez-Turrión, Andrés; López-Lozano, José-Francisco; Albaladejo, Alberto; Torres-Lagares, Daniel; Montero, Javier; Suárez-García, Maria-Jesús
2012-07-01
This study aimed to evaluate the vertical discrepancy of implant-supported crown structures constructed with vacuum-casting and Direct Metal Laser Sintering (DMLS) technologies, and luted with different cement types. Crown copings were fabricated using: (1) direct metal laser sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Ti (CT). Frameworks were luted onto machined implant abutments under constant seating pressure. Each alloy group was randomly divided into 5 subgroups (n = 10 each) according to the cement system utilized: Subgroup 1 (KC) used resin-modified glass-ionomer Ketac Cem Plus; Subgroup 2 (PF) used Panavia F 2.0 dual-cure resin cement; Subgroup 3 (RXU) used RelyX Unicem 2 Automix self-adhesive dual-cure resin cement; Subgroup 4 (PIC) used acrylic/urethane-based temporary Premier Implant Cement; and Subgroup 5 (DT) used acrylic/urethane-based temporary DentoTemp cement. Vertical misfit was measured by scanning electron microscopy (SEM). Two-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, and cement type on vertical misfit. The statistical significance was set at α = 0.05. The alloy/manufacturing technique and the luting cement affected the vertical discrepancy (p < 0.001). For each cement type, LS samples exhibited the best fit (p < 0.01) whereas CC and CT frames were statistically similar. Within each alloy group, PF and RXU provided comparably greater discrepancies than KC, PIC, and DT, which showed no differences. Laser sintering may be an alternative to vacuum-casting of base metals to obtain passive-fitting implant-supported crown copings. The best marginal adaptation corresponded to laser sintered structures luted with glass-ionomer KC, or temporary PIC or DT cements. The highest discrepancies were recorded for Co-Cr and Ti cast frameworks bonded with PF or RXU resinous agents. All groups were within the clinically acceptable misfit range.
Noor, S; Gilson, A; Kennedy, K; Swanson, A; Vanny, V; Mony, K; Chaudhry, T; Gollogly, J
2016-04-01
The developing world often lacks the resources to effectively treat the most serious injuries including osteomyelitis following open fractures or surgical fracture treatment. Antibiotic cement beads are a widely accepted method of delivering antibiotics locally to the infected area following trauma. This study is based in Cambodia, a low income country struggling to recover from a recent genocide. The study aims to test the effectiveness of locally made antibiotic beads and analyse their effectiveness after being gas sterilised, packaged and kept in storage Different antibiotic beads were manufactured locally using bone cement and tested against MRSA bacteria grown from a case of osteomyelitis. Each antibiotic was tested before and after a process of gas sterilisation as well as later being tested after storage in packaging up to 42 days. The gentamicin, vancomycin, amikacin and ceftriaxone beads all inhibited growth of the MRSA on the TSB and agar plates, both before and after gas sterilisation. All four antibiotics continued to show similar zones of inhibition after 42 days of storage. The results show significant promise to produce beads with locally obtainable ingredients in an austere environment and improve cost effectiveness by storing them in a sterilised condition. Copyright © 2016 Elsevier Ltd. All rights reserved.
The long-term in vivo behavior of polymethyl methacrylate bone cement in total hip arthroplasty.
Oonishi, Hiroyuki; Akiyama, Haruhiko; Takemoto, Mitsuru; Kawai, Toshiyuki; Yamamoto, Koji; Yamamuro, Takao; Oonishi, Hironobu; Nakamura, Takashi
2011-10-01
The long-term success of cemented total hip arthroplasty (THA) has been well established. Improved outcomes, both radiographically and clinically, have resulted mainly from advances in stem design and improvements in operating techniques. However, there is concern about the durability of bone cement in vivo. We evaluated the physical and chemical properties of CMW1 bone cements retrieved from patients undergoing revision THA. CMW1 cements were retrieved from 14 patients who underwent acetabular revision because of aseptic loosening. The time in vivo before revision was 7-30 years. The bending properties of the retrieved bone cement were assessed using the three-point bending method. The molecular weight and chemical structure were analyzed by gel permeation chromatography and Fourier-transform infrared spectroscopy. The porosity of the bone cements was evaluated by 3-D microcomputer tomography. The bending strength decreased with increasing time in vivo and depended on the density of the bone cement, which we assume to be determined by the porosity. There was no correlation between molecular weight and time in vivo. The infrared spectra were similar in the retrieved cements and in the control CMW1 cements. Our results indicate that polymer chain scission and significant hydrolysis do not occur in CMW1 cement after implantation in vivo, even in the long term. CMW1 cement was stable through long-term implantation and functional loading.
Shahi, Shahriar; Ghasemi, Negin; Rahimi, Saeed; Yavari, Hamidreza; Janani, Maryam; Mokhtari, Hadi; Bahari, Mahmood; Rabbani, Parastu
2015-01-01
The aim of the present study was to evaluate the effect of different mixing techniques (conventional, amalgamator and ultrasonic mixing) on the physical properties the working time (WT), setting time (ST), dimensional changes (DC) and film thickness (FT)] of calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA). The mentioned physical properties were determined using the ISO 6786:2001 specification. Six samples of each material were prepared for three mixing techniques (totally 36 samples). Data were analyzed using descriptive statistics, two-way ANOVA and Post Hoc Tukey's tests. The level of significance was defined at 0.05. Irrespective of mixing technique, there was no significant difference between the WT and FT of the tested materials. Except for the DC of MTA and the FT of the all materials, other properties were significantly affected with mixing techniques (P<0.05). The ultrasonic technique decreased the ST of MTA and CEM cement and increased the WT of CEM cement (P<0.05). The mixing technique of the materials had no significant effect on the dimensional changes of MTA and the film thickness of both materials.
Construction of a thin-bonded Portland cement concrete overlay using accelerated paving techniques.
DOT National Transportation Integrated Search
1992-01-01
The report describes the Virginia Department of Transportations' first modern experience with the construction of thin-bonded Portland cement concrete overlays of existing concrete pavements and with the fast track mode of rigid paving. The study was...
Dahl, Bjørn E; Dahl, Jon E; Rønold, Hans J
2018-02-01
Suboptimal adaptation of fixed dental prostheses (FDPs) can lead to technical and biological complications. It is unclear if the computer-aided design/computer-aided manufacturing (CAD/CAM) technique improves adaptation of FDPs compared with FDPs made using the lost-wax and metal casting technique. Three-unit FDPs were manufactured by CAD/CAM based on digital impression of a typodont model. The FDPs were made from one of five materials: pre-sintered zirconium dioxide; hot isostatic pressed zirconium dioxide; lithium disilicate glass-ceramic; milled cobalt-chromium; and laser-sintered cobalt-chromium. The FDPs made using the lost-wax and metal casting technique were used as reference. The fit of the FDPs was analysed using the triple-scan method. The fit was evaluated for both single abutments and three-unit FDPs. The average cement space varied between 50 μm and 300 μm. Insignificant differences in internal fit were observed between the CAD/CAM-manufactured FDPs, and none of the FPDs had cement spaces that were statistically significantly different from those of the reference FDP. For all FDPs, the cement space at a marginal band 0.5-1.0 mm from the preparation margin was less than 100 μm. The milled cobalt-chromium FDP had the closest fit. The cement space of FDPs produced using the CAD/CAM technique was similar to that of FDPs produced using the conventional lost-wax and metal casting technique. © 2017 Eur J Oral Sci.
A new method to analyze copolymer based superplasticizer traces in cement leachates.
Guérandel, Cyril; Vernex-Loset, Lionel; Krier, Gabriel; De Lanève, Michel; Guillot, Xavier; Pierre, Christian; Muller, Jean François
2011-03-15
Enhancing the flowing properties of fresh concrete is a crucial step for cement based materials users. This is done by adding polymeric admixtures. Such additives have enabled to improve final mechanicals properties and the development of new materials like high performance or self compacting concrete. Like this, the superplasticizers are used in almost cement based materials, in particular for concrete structures that can have a potential interaction with drinking water. It is then essential to have suitable detection techniques to assess whether these organic compounds are dissolved in water after a leaching process or not. The main constituent of the last generation superplasticizer is a PolyCarboxylate-Ester copolymer (PCE), in addition this organic admixture contains polyethylene oxide (free PEO) which constitutes a synthesis residue. Numerous analytical methods are available to characterize superplasticizer content. Although these techniques work well, they do not bring suitable detection threshold to analyze superplasticizer traces in solution with high mineral content such as leachates of hardened cement based materials formulated with superplasticizers. Moreover those techniques do not enable to distinguish free PEO from PCE in the superplasticizer. Here we discuss two highly sensitive analytical methods based on mass spectrometry suitable to perform a rapid detection of superplasticizer compounds traces in CEM I cement paste leachates: MALDI-TOF mass spectrometry, is used to determine the free PEO content in the leachate. However, industrial copolymers (such as PCE) are characterized by high molecular weight and polymolecular index. These two parameters lead to limitation concerning analysis of copolymers by MALDI-TOFMS. In this study, we demonstrate how pyrolysis and a Thermally assisted Hydrolysis/Methylation coupled with a triple-quadrupole mass spectrometer, provides good results for the detection of PCE copolymer traces in CEM I cement paste leachates. Copyright © 2011 Elsevier B.V. All rights reserved.
Impact of drying on pore structures in ettringite-rich cements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galan, I., E-mail: isabelgalan@abdn.ac.uk; Beltagui, H.; García-Maté, M.
Drying techniques affect the properties of cement pastes to varying extents. The effect of different drying techniques on calcium sulfoaluminate-based (C$A) cements and their constituent phases is reported for a range of simulated and commercial C$A pastes which are benchmarked against an OPC paste. The recommended methodologies used to dry samples were identified from the literature and include D-drying and solvent exchange. These methods were used in conjunction with mercury intrusion porosimetry (MIP) and X-ray powder diffraction (XRPD) measurements to assess the changes in pore structure and the damage to crystalline phases, respectively. D-drying and isopropanol exchange are the mostmore » satisfactory and least damaging methods for drying C$A based pastes.« less
Comparative study of methods to measure the density of Cementious powders
Helsel, Michelle A.; Bentz, Dale
2016-01-01
The accurate measurement of the density of hydraulic cement has an essential role in the determination of concrete mixture proportions. As more supplementary cementitious materials (SCM), such as fly ash, and slag, or cement replacements materials such as limestone and calcium carbonate are used in blended cements, knowledge of the density of each powder or of the blended cement would allow a more accurate calculation of the proportions of a concrete mixture by volume instead of by mass. The current ASTM standard for measuring cement density is the “Test Method for Density of Hydraulic Cements” (ASTM C188-14), which utilizes a liquid displacement method to measure the volume of the cement. This paper will examine advantageous modifications of the current ASTM test, by alcohol substitutions for kerosene. In addition, a gas (helium) pycnometry method is evaluated as a possible alternative to the current standard. The described techniques will be compared to determine the most precise and reproducible method for measuring the density of hydraulic cements and other powders. PMID:27099404
Reinforcement Strategies for Load-Bearing Calcium Phosphate Biocements
Geffers, Martha; Groll, Jürgen; Gbureck, Uwe
2015-01-01
Calcium phosphate biocements based on calcium phosphate chemistry are well-established biomaterials for the repair of non-load bearing bone defects due to the brittle nature and low flexural strength of such cements. This article features reinforcement strategies of biocements based on various intrinsic or extrinsic material modifications to improve their strength and toughness. Altering particle size distribution in conjunction with using liquefiers reduces the amount of cement liquid necessary for cement paste preparation. This in turn decreases cement porosity and increases the mechanical performance, but does not change the brittle nature of the cements. The use of fibers may lead to a reinforcement of the matrix with a toughness increase of up to two orders of magnitude, but restricts at the same time cement injection for minimal invasive application techniques. A novel promising approach is the concept of dual-setting cements, in which a second hydrogel phase is simultaneously formed during setting, leading to more ductile cement–hydrogel composites with largely unaffected application properties.
Accelerated ageing of blended OPC cements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quillin, K.C.; Duerden, S.L.; Majumdar, A.J.
1994-12-31
An accelerated experimental technique using high water:cement ratios has been developed to study the long term hydration of blended cements that may be used in a repository for the disposal of radioactive waste. This technique has been used to investigate the hydration reactions of Ordinary Portland Cement (OPC) blended with ground granulated blastfurnace slag (ggbs) or pulverised fuel ash (pfa). The effects of high sulphate-bearing and high carbonate-bearing ground waters on the compounds formed on hydration were investigated. Solid/solution compositional data were collected during the course of the hydration process for periods up to 2 years. Thomsonite, thaumasite, afwillite andmore » a tobermorite-like phase were found in addition to the expected cement hydration products. The pH of the aqueous solution in contact with 60 pfa:40 OPC blends hydrated at 90{degrees}C fell to below 8. This is lower than the value required to inhibit the corrosion of steel canisters in a repository. The pH of the aqueous solution in contact with OPC and 75 ggbs:25 OPC blends remained above 11, although if the ground waters in contact with the OPC/ggbs blends were periodically replaced the pH eventually fell below 10.« less
NASA Astrophysics Data System (ADS)
Chou, Yeong-Shyung; Stevenson, Jeffry W.; Singh, Prabhakar
A novel high-temperature alkaline earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two metallic coupons of Cr-containing ferritic stainless steel for seal strength evaluation. In previous work, SrCrO 4 was found to form along the glass/steel interface, which led to severe strength degradation. In the present study, aluminization of the steel surface was investigated as a remedy to minimize or prevent the strontium chromate formation. Three different processes for aluminization were evaluated with Crofer22APU stainless steel: pack cementation, vapor-phase deposition, and aerosol spraying. It was found that pack cementation resulted in a rough surface with occasional cracks in the Al-diffused region. Vapor-phase deposition yielded a smoother surface, but the resulting high Al content increased the coefficient of thermal expansion (CTE), resulting in the failure of joined coupons. Aerosol spraying of an Al-containing salt resulted in the formation of a thin aluminum oxide layer without any surface damage. The room temperature seal strength was evaluated in the as-fired state and in environmentally aged conditions. In contrast to earlier results with uncoated Crofer22APU, the aluminized samples showed no strength degradation even for samples aged in air. Interfacial and chemical compatibility was also investigated. The results showed aluminization to be a viable candidate approach to minimize undesirable chromate formation between alkaline earth silicate sealing glass and Cr-containing interconnect alloys for SOFC applications.
Thermal Properties of Cement-Based Composites for Geothermal Energy Applications.
Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi
2017-04-27
Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural-functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles.
NASA Astrophysics Data System (ADS)
Hanan, M. R. Abdul; Daud, N. M.; Ismail, L. H.; Saidin, S.
2017-05-01
An injectable calcium phosphate (CaP) bone cement has been widely used for musculoskeletal and bone disorder due to its biocompatible and osteoconductive properties. In this study, CaP was successfully synthesized from crab shells by a wet chemical route. Poly(lactic-co-glycolic acid) (PLGA) microspheres which have been produced through a double emulsion technique were incorporated into the CaP mixture for the purpose of bone cement solidification. The ratio of both compounds, CaP and PLGA, were set at 8:2. The CaP and PLGA/CaP bone cement were analyzed by ATR-FTIR, FESEM-EDX and contact angle analyses. The bone cement was composed of CaP and PLGA where the micro-powders of CaP were agglomerated on the PLGA microspheres. Addition of the PLGA has increased the hydrophilicity of the bone cement which will be beneficial for materials degradation and bone integration.
Thermal Properties of Cement-Based Composites for Geothermal Energy Applications
Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi
2017-01-01
Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural–functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles. PMID:28772823
Timperley, A John; Nusem, Iulian; Wilson, Kathy; Whitehouse, Sarah L; Buma, Pieter; Crawford, Ross W
2010-08-01
Our aim was to assess in an animal model whether the use of HA paste at the cement-bone interface in the acetabulum improves fixation. We examined, in sheep, the effect of interposing a layer of hydroxyapatite cement around the periphery of a polyethylene socket prior to fixing it using polymethylmethacrylate (PMMA). We performed a randomized study involving 22 sheep that had BoneSource hydroxyapatite material applied to the surface of the acetabulum before cementing a polyethylene cup at arthroplasty. We studied the gross radiographic appearance of the implant-bone interface and the histological appearance at the interface. There were more radiolucencies evident in the control group. Histologically, only sheep randomized into the BoneSource group exhibited a fully osseointegrated interface. Use of the hydroxyapatite material did not give any detrimental effects. In some cases, the material appeared to have been fully resorbed. When the material was evident in histological sections, it was incorporated into an osseointegrated interface. There was no giant cell reaction present. There was no evidence of migration of BoneSource to the articulation. The application of HA material prior to cementation of a socket produced an improved interface. The technique may be useful in humans, to extend the longevity of the cemented implant by protecting the socket interface from the effect of hydrodynamic fluid flow and particulate debris.
Springorum, Hans-Robert; Gebauer, Matthias; Mehrl, Alexander; Stark, Olaf; Craiovan, Benjamin; Püschel, Klaus; Amling, Michael; Grifka, Joachim; Beckmann, Johannes
2014-07-01
To compare 2 different femoral neck augmentation techniques at improving the mechanical strength of the femoral neck. Twenty pairs of human cadaveric femora were randomly divided into 2 groups. In 1 group, the femora were augmented with a steel spiral; the other group with the cemented technique. The untreated contralateral side served as an intraindividual control. Fracture strength was evaluated using an established biomechanical testing scenario mimicking a fall on the greater trochanter (Hayes fall). The peak load to failure was significantly higher in the steel spiral group (P = 0.0024) and in the cemented group (P = 0.001) compared with the intraindividual controls. The peak load to failure showed a median of 3167 N (1825-5230 N) in the spiral group and 2485 N (1066-4395 N) in the spiral control group. The peak load to failure in the cemented group was 3698 N (SD ± 1249 N) compared with 2763 N (SD ± 1335 N) in the cement control group. Furthermore, fracture displacement was clearly reduced in the steel spiral group. Femoral augmentations using steel spirals or cement-based femoroplasty are technically feasible procedures. Our results demonstrate that a prophylactic reinforced proximal femur has higher strength when compared with the untreated contralateral limb. Prophylactic augmentation has potential to become an auxiliary treatment option to protect the osteoporotic proximal femur against fracture.
Slane, Josh; Vivanco, Juan; Rose, Warren; Ploeg, Heidi-Lynn; Squire, Matthew
2015-03-01
Prosthetic joint infection is one of the most serious complications that can lead to failure of a total joint replacement. Recently, the rise of multidrug resistant bacteria has substantially reduced the efficacy of antibiotics that are typically incorporated into acrylic bone cement. Silver nanoparticles (AgNPs) are an attractive alternative to traditional antibiotics resulting from their broad-spectrum antimicrobial activity and low bacterial resistance. The purpose of this study, therefore, was to incorporate metallic silver nanoparticles into acrylic bone cement and quantify the effects on the cement's mechanical, material and antimicrobial properties. AgNPs at three loading ratios (0.25, 0.5, and 1.0% wt/wt) were incorporated into a commercial bone cement using a probe sonication technique. The resulting cements demonstrated mechanical and material properties that were not substantially different from the standard cement. Testing against Staphylococcus aureus and Staphylococcus epidermidis using Kirby-Bauer and time-kill assays demonstrated no antimicrobial activity against planktonic bacteria. In contrast, cements modified with AgNPs significantly reduced biofilm formation on the surface of the cement. These results indicate that AgNP-loaded cement is of high potential for use in primary arthroplasty where prevention of bacterial surface colonization is vital. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Corrochano, Cristina Mayo; Lasheras Merino, Felix; Sanz-Arauz, David
2016-04-01
Roman cement was patented in 1796 and it arrived to Spain in 1835. Although the natural cement used in Madrid came mainly from Guipúzcoa's factories, there were a few small factories producing natural cement in the area. In the south east of Madrid, in "Morata de Tajuña", are the marl quarries of the Madrid Community. Natural cement was extensively used to decorate buildings in Madrid during the 19th century and the beginning of the 20th. It was highly demanded in various sectors of civil engineering: sewerage, water supply, canals, ports and tunnels. In the building sector, at first the use of cements was limited to building foundations and masonry mortars, but never as render mortar because it was considered an unsightly and vulgar material. For renders still traditional lime mortar was used. And is not till the end of the 19th century when it was used in facade decorations for the first time. We have analysed 25 buildings in Madrid built in that period of time. It was used microscopy techniques for the identification of these cements, checking how many of them used natural cement, how they used it, what is its conservation status and their compatibility with modern cements.
Clinically used adhesive ceramic bonding methods: a survey in 2007, 2011, and in 2015.
Klosa, K; Meyer, G; Kern, M
2016-09-01
The objective of the study is to evaluate practices of dentists regarding adhesive cementation of all-ceramic restorations over a period of 8 years. The authors developed a questionnaire regarding adhesive cementation procedures for all-ceramic restorations. Restorations were distinguished between made out of silicate ceramic or oxide ceramic. The questionnaire was handed out to all dentists participating in a local annual dental meeting in Northern Germany. The returned questionnaires were analyzed to identify incorrect cementation procedures based upon current evidence-based technique from the scientific dental literature. The survey was conducted three times in 2007, 2011, and 2015 and their results were compared. For silicate ceramic restorations, 38-69 % of the participants used evidence-based bonding procedures; most of the incorrect bonding methods did not use a silane containing primer. In case of oxide ceramic restorations, most participants did not use air-abrasion prior to bonding. Only a relatively low rate (7-14 %) of dentists used evidence-based dental techniques for bonding oxide ceramics. In adhesive cementation of all-ceramic restorations, the practices of surveyed dentists in Northern Germany revealed high rates of incorrect bonding. During the observation period, the values of evidence-based bonding procedures for oxide ceramics improved while the values for silicate ceramics declined. Based on these results, some survey participants need additional education for adhesive techniques. Neglecting scientifically accepted methods for adhesive cementation of all-ceramic restorations may result in reduced longevity of all-ceramic restorations.
Keum, Eun-Cheol
2013-01-01
PURPOSE This study evaluated the effectiveness of various methods for removing provisional cement from implant abutments, and what effect these methods have on the retention of prosthesis during the definitive cementation. MATERIALS AND METHODS Forty implant fixture analogues and abutments were embedded in resin blocks. Forty cast crowns were fabricated and divided into 4 groups each containing 10 implants. Group A was cemented directly with the definitive cement (Cem-Implant). The remainder were cemented with provisional cement (Temp-Bond NE), and classified according to the method for cleaning the abutments. Group B used a plastic curette and wet gauze, Group C used a rubber cup and pumice, and Group D used an airborne particle abrasion technique. The abutments were observed using a stereomicroscope after removing the provisional cement. The tensile bond strength was measured after the definitive cementation. Statistical analysis was performed using one-way analysis of variance test (α=.05). RESULTS Group B clearly showed provisional cement remaining, whereas the other groups showed almost no cement. Groups A and B showed a relatively smooth surface. More roughness was observed in Group C, and apparent roughness was noted in Group D. The tensile bond strength tests revealed Group D to have significantly the highest tensile bond strength followed in order by Groups C, A and B. CONCLUSION A plastic curette and wet gauze alone cannot effectively remove the residual provisional cement on the abutment. The definitive retention increased when the abutments were treated with rubber cup/pumice or airborne particle abraded to remove the provisional cement. PMID:24049563
Microwave processing of cement and concrete materials – towards an industrial reality?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttress, Adam, E-mail: adam.buttress@nottingham.ac.uk; Jones, Aled; Kingman, Sam
2015-02-15
Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination.
Pérez, M A; Grasa, J; García-Aznar, J M; Bea, J A; Doblaré, M
2006-01-01
The long-term behavior of the stem-cement interface is one of the most frequent topics of discussion in the design of cemented total hip replacements, especially with regards to the process of damage accumulation in the cement layer. This effect is analyzed here comparing two different situations of the interface: completely bonded and debonded with friction. This comparative analysis is performed using a probabilistic computational approach that considers the variability and uncertainty of determinant factors that directly compromise the damage accumulation in the cement mantle. This stochastic technique is based on the combination of probabilistic finite elements (PFEM) and a cumulative damage approach known as B-model. Three random variables were considered: muscle and joint contact forces at the hip (both for walking and stair climbing), cement damage and fatigue properties of the cement. The results predicted that the regions with higher failure probability in the bulk cement are completely different depending on the stem-cement interface characteristics. In a bonded interface, critical sites appeared at the distal and medial parts of the cement, while for debonded interfaces, the critical regions were found distally and proximally. In bonded interfaces, the failure probability was higher than in debonded ones. The same conclusion may be established for stair climbing in comparison with walking activity.
Wiater, Brett P; Moravek, James E; Kurdziel, Michael D; Baker, Kevin C; Wiater, J Michael
2016-01-01
Newer glenoid components that allow for hybrid cement fixation via traditional cementation of peripheral pegs and bony ingrowth into an interference-fit central peg introduce the possibility of long-term biological fixation. However, little biomechanical work has been done on the initial stability of these components and the various fixation options. We conducted a study in which all-polyethylene glenoid components with a centrally fluted peg were implanted in polyurethane blocks with interference-fit, hybrid cement, and fully cemented fixation (5 per fixation group). Biomechanical evaluation of glenoid loosening, according to ASTM Standard F-2028-12, subjected the glenoids to 50,000 cycles of rim loading, and glenoid component motion was recorded with 2 differential variable reluctance transducers fixed to each glenoid prosthesis. Fully cemented fixation exhibited significantly less mean distraction in comparison with interference-fit fixation (P < .001) and hybrid cement fixation (P < .001). Hybrid cement fixation exhibited significantly less distraction (P < .001), more compression (P < .001), and no significant difference in glenoid translation (P = .793) in comparison with interference-fit fixation. Fully cemented fixation exhibited the most resistance to glenoid motion in comparison with hybrid cement fixation and interference-fit fixation. However, hybrid cement fixation and interference-fit fixation exhibited equivocal motion. Given these results, cementation of peripheral pegs may confer no additional initial stability over that provided by uncemented interference-fit fixation.
IPS Empress crown system: three-year clinical trial results.
Sorensen, J A; Choi, C; Fanuscu, M I; Mito, W T
1998-02-01
The IPS Empress system is a highly esthetic hot pressed glass ceramic material for fabrication of single crowns. Adhesive cementation of the system not only contributes to the esthetics but is necessary for increased strength of the crown. The purpose of this prospective clinical trials was to evaluate the longevity of 75 adhesively cemented Empress full crowns. An additional aim was to assess the adhesive cementation methodology and potential side effects. At the three-year point, one molar crown fractured for a 1.3 percent failure rate. The resin cementation technique that was employed exhibited a low incidence of microleakage with few clinical side effects. There was a 5.6 percent incidence of post-cementation sensitivity, with all symptoms subsiding by eight weeks. None of the crowns in the study required endodontic therapy.
The long-term in vivo behavior of polymethyl methacrylate bone cement in total hip arthroplasty
2011-01-01
Background and purpose The long-term success of cemented total hip arthroplasty (THA) has been well established. Improved outcomes, both radiographically and clinically, have resulted mainly from advances in stem design and improvements in operating techniques. However, there is concern about the durability of bone cement in vivo. We evaluated the physical and chemical properties of CMW1 bone cements retrieved from patients undergoing revision THA. Methods CMW1 cements were retrieved from 14 patients who underwent acetabular revision because of aseptic loosening. The time in vivo before revision was 7–30 years. The bending properties of the retrieved bone cement were assessed using the three-point bending method. The molecular weight and chemical structure were analyzed by gel permeation chromatography and Fourier-transform infrared spectroscopy. The porosity of the bone cements was evaluated by 3-D microcomputer tomography. Results The bending strength decreased with increasing time in vivo and depended on the density of the bone cement, which we assume to be determined by the porosity. There was no correlation between molecular weight and time in vivo. The infrared spectra were similar in the retrieved cements and in the control CMW1 cements. Interpretation Our results indicate that polymer chain scission and significant hydrolysis do not occur in CMW1 cement after implantation in vivo, even in the long term. CMW1 cement was stable through long-term implantation and functional loading. PMID:22103279
[Cement augmentation on the spine : Biomechanical considerations].
Kolb, J P; Weiser, L; Kueny, R A; Huber, G; Rueger, J M; Lehmann, W
2015-09-01
Vertebral compression fractures are the most common osteoporotic fractures. Since the introduction of vertebroplasty and screw augmentation, the management of osteoporotic fractures has changed significantly. The biomechanical characteristics of the risk of adjacent fractures and novel treatment modalities for osteoporotic vertebral fractures, including pure cement augmentation by vertebroplasty, and cement augmentation of screws for posterior instrumentation, are explored. Eighteen human osteoporotic lumbar spines (L1-5) adjacent to vertebral bodies after vertebroplasty were tested in a servo-hydraulic machine. As augmentation compounds we used standard cement and a modified low-strength cement. Different anchoring pedicle screws were tested with and without cement augmentation in another cohort of human specimens with a simple pull-out test and a fatigue test that better reflects physiological conditions. Cement augmentation in the osteoporotic spine leads to greater biomechanical stability. However, change in vertebral stiffness resulted in alterations with the risk of adjacent fractures. By using a less firm cement compound, the risk of adjacent fractures is significantly reduced. Both screw augmentation techniques resulted in a significant increase in the withdrawal force compared with the group without cement. Augmentation using perforated screws showed the highest stability in the fatigue test. The augmentation of cement leads to a significant change in the biomechanical properties. Differences in the stability of adjacent vertebral bodies increase the risk of adjacent fractures, which could be mitigated by a modified cement compound with reduced strength. Screws that were specifically designed for cement application displayed greatest stability in the fatigue test.
Confocal Raman Microscopy: new perspective on the weathering of anhydrous cement
NASA Astrophysics Data System (ADS)
Torres-Carrasco, M.; del Campo, A.; de la Rubia, MA; Reyes, E.; Moragues, A.; Fernández, JF
2017-10-01
Raman spectroscopy when is combined with Confocal microscopy is a non-destructive technique that allow us to obtain information in cementitious materials. In this study, we present non-destructive image and structural analysis of anhydrous cement with carbonation evidences by Confocal Raman Microscopy (CRM). The results obtained by CRM show a direct relationship between the presence of the weathering processes of an anhydrous cement with the presence of sulphates and surprisingly, with the existence of amorphous carbon in the medium.
Treatment of root fracture with accompanying resorption using cermet cement.
Lui, J L
1992-02-01
A method of treating an apical root fracture with accompanying resorption at the junction of the fracture fragments using glass-cermet cement is described. Endodontically, the material had previously been used for repair of lateral resorptive root defects and retrograde root fillings. Complete bone regeneration was observed three years post-operatively following treatment of the root fracture in the conventional manner. The various advantages of glass-cermet cement as a root filling material used in the technique described are discussed.
Sánchez-Turrión, Andrés; López-Lozano, José F.; Albaladejo, Alberto; Torres-Lagares, Daniel; Montero, Javier; Suárez-García, Maria J.
2012-01-01
Objectives. This study aimed to evaluate the vertical discrepancy of implant-supported crown structures constructed with vacuum-casting and Direct Metal Laser Sintering (DMLS) technologies, and luted with different cement types. Study Design. Crown copings were fabricated using: (1) direct metal laser sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Ti (CT). Frameworks were luted onto machined implant abutments under constant seating pressure. Each alloy group was randomly divided into 5 subgroups (n = 10 each) according to the cement system utilized: Subgroup 1 (KC) used resin-modified glass-ionomer Ketac Cem Plus; Subgroup 2 (PF) used Panavia F 2.0 dual-cure resin cement; Subgroup 3 (RXU) used RelyX Unicem 2 Automix self-adhesive dual-cure resin cement; Subgroup 4 (PIC) used acrylic/urethane-based temporary Premier Implant Cement; and Subgroup 5 (DT) used acrylic/urethane-based temporary DentoTemp cement. Vertical misfit was measured by scanning electron microscopy (SEM). Two-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, and cement type on vertical misfit. The statistical significance was set at α = 0.05. Results. The alloy/manufacturing technique and the luting cement affected the vertical discrepancy (p < 0.001). For each cement type, LS samples exhibited the best fit (p < 0.01) whereas CC and CT frames were statistically similar. Within each alloy group, PF and RXU provided comparably greater discrepancies than KC, PIC, and DT, which showed no differences. Conclusions. Laser sintering may be an alternative to vacuum-casting of base metals to obtain passive-fitting implant-supported crown copings. The best marginal adaptation corresponded to laser sintered structures luted with glass-ionomer KC, or temporary PIC or DT cements. The highest discrepancies were recorded for Co-Cr and Ti cast frameworks bonded with PF or RXU resinous agents. All groups were within the clinically acceptable misfit range. Key words:Dental alloy, laser sintering, implant-supported prostheses, vertical discrepancy, vertical misfit. PMID:22322524
Secure hemostasis in transhiatal esophagectomy for esophageal cancer with gauze packing.
Hirahara, Noriyuki; Matsubara, Takeshi; Hari, Yoko; Fujii, Yusuke; Wake, Hitomi; Tajima, Yoshitsugu
2012-12-19
Transhiatal esophagectomy for esophageal cancer implies blind manipulation of the intrathoracic esophagus. We report a secure hemostatic method with gauze packing in transhiatal esophagectomy. The gauze-packing technique is utilized for hemostasis just after removal of the thoracic esophagus during transhiatal esophagectomy. After confirming cancer-free margins, the abdominal esophagus and cervical esophagus are transected. A vein stripper is inserted into the oral-side stump of the esophagus and led to exit from the abdominal-side stump of the esophagus. The vein stripper and the oral stump of the esophagus are affixed by silk thread. A polyester tape is then affixed to the vein stripper, as the polyester tape is left in the posterior mediastinum after removal of the esophagus toward the abdominal side. The polyester tape on the cervical side is ligated with gauze and the polyester tape is removed toward the abdominal side. The oral stump of gauze and new additional gauze are affixed. As the first gauze is pulled out from the abdominal side, the second gauze gets drawn from the cervical wound into the mediastinum. The posterior mediastinum is finally packed with gauze and possible bleeding at this site undergoes a complete astriction. The status of hemostasis with the gauze packing is checked by an observation of color and bloodstain on the gauze. Between January 2005 and February 2012, 13 consecutive patients with esophageal cancer underwent a transhiatal esophagectomy with the gauze-packing hemostatic technique. Hemostasis at the posterior mediastinum was performed successfully and quickly in all cases with this method, requiring up to four pieces of gauze for a complete hemostasis. Median required time for hemostasis was 1219 (range 1896 to 1293) seconds and estimated blood loss was 20.4 (range 15 to 25) ml during gauze packing. Our technique could minimize bleeding after the removal of the thoracic esophagus. The gauze-packing method is a simple and easy technique for secure hemostasis when performing a transhiatal esophagectomy.
Secure hemostasis in transhiatal esophagectomy for esophageal cancer with gauze packing
2012-01-01
Background Transhiatal esophagectomy for esophageal cancer implies blind manipulation of the intrathoracic esophagus. We report a secure hemostatic method with gauze packing in transhiatal esophagectomy. Methods The gauze-packing technique is utilized for hemostasis just after removal of the thoracic esophagus during transhiatal esophagectomy. After confirming cancer-free margins, the abdominal esophagus and cervical esophagus are transected. A vein stripper is inserted into the oral-side stump of the esophagus and led to exit from the abdominal-side stump of the esophagus. The vein stripper and the oral stump of the esophagus are affixed by silk thread. A polyester tape is then affixed to the vein stripper, as the polyester tape is left in the posterior mediastinum after removal of the esophagus toward the abdominal side. The polyester tape on the cervical side is ligated with gauze and the polyester tape is removed toward the abdominal side. The oral stump of gauze and new additional gauze are affixed. As the first gauze is pulled out from the abdominal side, the second gauze gets drawn from the cervical wound into the mediastinum. The posterior mediastinum is finally packed with gauze and possible bleeding at this site undergoes a complete astriction. The status of hemostasis with the gauze packing is checked by an observation of color and bloodstain on the gauze. Results Between January 2005 and February 2012, 13 consecutive patients with esophageal cancer underwent a transhiatal esophagectomy with the gauze-packing hemostatic technique. Hemostasis at the posterior mediastinum was performed successfully and quickly in all cases with this method, requiring up to four pieces of gauze for a complete hemostasis. Median required time for hemostasis was 1219 (range 1896 to 1293) seconds and estimated blood loss was 20.4 (range 15 to 25) ml during gauze packing. Conclusions Our technique could minimize bleeding after the removal of the thoracic esophagus. The gauze-packing method is a simple and easy technique for secure hemostasis when performing a transhiatal esophagectomy. PMID:23253358
Cao, Haihua; Liu, Wei; Xu, Jingcheng; Liu, Jia; Huang, Juwen; Huang, Xiangfeng; Li, Guangming
2018-02-01
Co-processing lime-dried sludge (LDS) in cement kilns is an appropriate technique to solve the problem of LDS disposal and promote the sustainable development for cement industry. However, there were limited studies that investigated the effects of feeding points on product quality and cement kiln emissions. In this study, simulated experiments were conducted by dividing the feeding points into high-temperature zones (HTZs) and raw mill (RM). Cement quality and major cement kiln emission characteristics were comprehensively investigated. The results showed that in terms of burnability, compressive strength and microstructure, the optimum co-processing amount of LDS were 9 wt% when feeding at RM, while 6% when feeding at HTZs. Meanwhile, the organic emissions of RM samples were mainly low environmental risk compounds of amides and nitrogenous heterocyclic compounds. Inorganic gaseous pollutions of NO X and SO 2 , respectively, were 8.11 mg/g DS and 12.89 mg/g DS, compared with 7.61 mg/g DS and 4.44 mg/g DS for HTZs. However, all the cement kiln emissions concentration were still much lower than standard requirements. Overall, RM had a bigger LDS co-processing capacity and higher, but acceptable, cement kiln emissions. Feeding LDS via RM could dispose larger amounts of sludge and provide more alternative materials for cement manufacturing.
Investigation of fatigue crack growth in acrylic bone cement using the acoustic emission technique.
Roques, A; Browne, M; Thompson, J; Rowland, C; Taylor, A
2004-02-01
Failure of the bone cement mantle has been implicated in the loosening process of cemented hip stems. Current methods of investigating degradation of the cement mantle in vitro often require sectioning of the sample to confirm failure paths. The present research investigates acoustic emission as a passive experimental method for the assessment of bone cement failure. Damage in bone cement was monitored during four point bending fatigue tests through an analysis of the peak amplitude, duration, rise time (RT) and energy of the events emitted from the damage sections. A difference in AE trends was observed during failure for specimens aged and tested in (i) air and (ii) Ringer's solution at 37 degrees C. It was noted that the acoustic behaviour varied according to applied load level; events of higher duration and RT were emitted during fatigue at lower stresses. A good correlation was observed between crack location and source of acoustic emission, and the nature of the acoustic parameters that were most suited to bone cement failure characterisation was identified. The methodology employed in this study could potentially be used as a pre-clinical assessment tool for the integrity of cemented load bearing implants.
Influence of Cellulosic Fibres on the Physical Properties of Fibre Cement Composites
NASA Astrophysics Data System (ADS)
Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.
2017-10-01
Nowadays, there are new approaches directing to processing of non-conventional fibre-cement composites for application in the housing construction. Vegetable cellulosic fibres coming from natural resources used as reinforcement in cost-effective and environmental friendly building products are in the spotlight. The applying of natural fibres in cement based composites is narrowly linked to the ecological building sector, where a choice of materials is based on components including recyclable, renewable raw materials and low-resource manufacture techniques. In this paper, two types of cellulosic fibres coming from wood pulp and recycled waste paper with 0.2%; 0.3% and 0.5% of fibre addition into cement mixtures were used. Differences in the physical characteristics (flowability, density, coefficient of thermal conductivity and water absorbability) of 28 days hardened fibre-cement composites are investigated. Addition of cellulosic fibres to cement mixture caused worsening the workability of fresh mixture as well as absorbability of hardened composites due to hydrophilic nature of biomaterial, whereas density and thermal conductivity of manufactured cement based fibre plaster are enhanced. The physical properties of cement plasters based on cellulosic fibres depend on structural, physical characteristics of cellulosic fibres, their nature and processing.
Research on A3 steel corrosion behavior of basic magnesium sulfate cement
NASA Astrophysics Data System (ADS)
Xing, Sainan; Wu, Chengyou; Yu, Hongfa; Jiang, Ningshan; Zhang, Wuyu
2017-11-01
In this paper, Tafel polarization technique is used to study the corrosion behavior of A3 steel basic magnesium sulfate, and then analyzing the ratio of raw materials cement, nitrites rust inhibitor and wet-dry cycle of basic magnesium sulfate corrosion of reinforced influence, and the steel corrosion behavior of basic magnesium sulfate compared with magnesium oxychloride cement and Portland cement. The results show that: the higher MgO/MgSO4 mole ratio will reduce the corrosion rate of steel; Too high and too low H2O/MgSO4 mole ratio may speed up the reinforcement corrosion effect; Adding a small amount of nitrite rust and corrosion inhibitor, not only can obviously reduce the alkali type magnesium sulfate in the early hydration of cement steel bar corrosion rate, but also can significantly reduce dry-wet circulation under the action of alkali type magnesium sulfate cement corrosion of reinforcement effect. Basic magnesium sulfate cement has excellent ability to protect reinforced, its long-term corrosion of reinforcement effect and was equal to that of Portland cement. Basic magnesium sulfate corrosion of reinforced is far below the level in the MOC in the case.
Cement pulmonary embolism after vertebroplasty.
Sifuentes Giraldo, Walter Alberto; Lamúa Riazuelo, José Ramón; Gallego Rivera, José Ignacio; Vázquez Díaz, Mónica
2013-01-01
In recent years, the use of vertebral cementing techniques for vertebroplasty and kyphoplasty has spread for the treatment of pain associated with osteoporotic vertebral compression fractures. This is also associated with the increased incidence of complications related with these procedures, the most frequent being originated by leakage of cementation material. Cement can escape into the vertebral venous system and reach the pulmonary circulation through the azygous system and cava vein, producing a cement embolism. This is a frequent complication, occurring in up to 26% of patients undergoing vertebroplasty but, since most patients have no clinical or hemodynamical repercussion, this event usually goes unnoticed. However, some serious, and even fatal cases, have been reported. We report the case of a 74-year-old male patient who underwent vertebroplasty for persistent pain associated with osteoporotic L3 vertebral fracture and who developed a cement leak into the cava vein and right pulmonary artery during the procedure. Although he developed a pulmonary cement embolism, the patient remained asymptomatic and did not present complications during follow-up. Copyright © 2012 Elsevier España, S.L. All rights reserved.
Influence of Carbon Nanotube Clustering on Mechanical and Electrical Properties of Cement Pastes
Jang, Sung-Hwan; Kawashima, Shiho; Yin, Huiming
2016-01-01
Given the continued challenge of dispersion, for practical purposes, it is of interest to evaluate the impact of multi-walled carbon nanotubes (MWCNTs) at different states of clustering on the eventual performance properties of cement paste. This study evaluated the clustering of MWCNTs and the resultant effect on the mechanical and electrical properties when incorporated into cement paste. Cement pastes containing different concentrations of MWCNTs (up to 0.5% by mass of cement) with/without surfactant were characterized. MWCNT clustering was assessed qualitatively in an aqueous solution through visual observation, and quantitatively in cement matrices using a scanning electron microscopy technique. Additionally, the corresponding 28-day compressive strength, tensile strength, and electrical conductivity were measured. Results showed that the use of surfactant led to a downward shift in the MWCNT clustering size distribution in the matrices of MWCNT/cement paste, indicating improved dispersion of MWCNTs. The compressive strength, tensile strength, and electrical conductivity of the composites with surfactant increased with MWCNT concentration and were higher than those without surfactant at all concentrations. PMID:28773348
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krakowiak, Konrad J., E-mail: kjkrak@mit.edu; Thomas, Jeffrey J., E-mail: JThomas39@slb.com; Musso, Simone, E-mail: SMusso@slb.com
2015-01-15
With ever more challenging (T,p) environments for cementing applications in oil and gas wells, there is a need to identify the fundamental mechanisms of fracture resistant oil well cements. We report results from a multi-technique investigation of behavior and properties of API class G cement and silica-enriched cement systems subjected to hydrothermal curing from 30 °C to 200 °C; including electron probe microanalysis, X-ray diffraction, thermogravimetry analysis, electron microscopy, neutron scattering (SANS), and fracture scratch testing. The results provide a new insight into the link between system chemistry, micro-texture and micro-fracture toughness. We suggest that the strong correlation found betweenmore » chemically modulated specific surface and fracture resistance can explain the drop in fracture properties of neat oil-well cements at elevated temperatures; the fracture property enhancement in silica-rich cement systems, between 110° and 175 °C; and the drop in fracture properties of such systems through prolonged curing over 1 year at 200 °C.« less
NASA Astrophysics Data System (ADS)
Wicaksono, Muchammad Ridho Sigit; Qoly, Amelia; Hidayah, Annisaul; Pangestuti, Endah Kanti
2017-03-01
Concrete is a mixture of cement, fine aggregate, coarse aggregate and water with or without additives. Concrete can be made with substitution of cement with materials like Fly Ash, CaCO3 and silica sand that can increase the binding on pasta and also increase the compressive strength of concrete. The Superplasticizer on a mixture is used to reduce the high water content, improve concrete durability, low permeability concrete by making it more resilient, and improve the quality of concrete. The combination between Fly Ash (30% of cement required), CaCO3 (10% of cement required) and silica sand (5% of cement required) with added MasterGlenium ACE 8595 as much as 1,2% from total cement will produces compressive strength of up to 1080 kN/cm2 or 73,34 Mpa when the concrete is aged at 28 day. By using this technique and innovation, it proves that the cost reduction is calculated at 27%, which is much more efficient. While the strength of the concrete is increased at 5% compared with normal mixture.
An on-belt elemental analyser for the cement industry.
Lim, C S; Tickner, J R; Sowerby, B D; Abernethy, D A; McEwan, A J; Rainey, S; Stevens, R; Manias, C; Retallack, D
2001-01-01
On-line control of raw mill feed composition is a key factor in the improved control of cement plants. A new and improved on-conveyor belt elemental analyser for cement raw mill feed based on neutron inelastic scatter and capture techniques has been developed and tested successfully in Adelaide Brighton's Birkenhead cement plant on highly segregated material with a depth range of 100 to 180 mm. Dynamic tests in the plant have shown analyser RMS total errors of 0.49, 0.52, 0.38 and 0.23 wt% (on a loss free basis) for CaO, SiO2, Al2O3 and Fe2O3 respectively, when 10-minute counting periods are used.
Pei, Si-Lu; Pan, Shu-Yuan; Li, Ye-Mei; Chiang, Pen-Chi
2017-09-19
A high-gravity carbonation process was deployed at a petrochemical plant using petroleum coke fly ash and blowdown wastewater to simultaneously mineralized CO 2 and remove nitrogen oxides and particulate matters from the flue gas. With a high-gravity carbonation process, the CO 2 removal efficiency was found to be 95.6%, corresponding to a capture capacity of 600 kg CO 2 per day, at a gas flow rate of 1.47 m 3 /min under ambient temperature and pressure. Moreover, the removal efficiency of nitrogen oxides and particulate matters was 99.1% and 83.2%, respectively. After carbonation, the reacted fly ash was further utilized as supplementary cementitious materials in the blended cement mortar. The results indicated that cement with carbonated fly ash exhibited superior compressive strength (38.1 ± 2.5 MPa at 28 days in 5% substitution ratio) compared to the cement with fresh fly ash. Furthermore, the environmental benefits for the high-gravity carbonation process using fly ash were critically assessed. The energy consumption of the entire high-gravity carbonation ranged from 80 to 169 kWh/t-CO 2 (0.29-0.61 GJ/t-CO 2 ). Compared with the scenarios of business-as-usual and conventional carbon capture and storage plant, the economic benefit from the high-gravity carbonation process was approximately 90 and 74 USD per ton of CO 2 fixation, respectively.
Carbonate petrography of the Burlington/Keokuk contact in southeastern Iowa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maguire, T.D.
1993-02-01
The top of the Burlington Formation (Mississippian, Osagean Series), a dominantly skeletal packstone/grainstone unit in southeastern Iowa, is defined by a regionally persistent bone bed horizon and is overlain by the lower Keokuk Formation, a dominant skeletal wackestone and chert. A thin gray-green shale at some localities at the contact is interpreted as a condensed section that corresponds to a deepening event during the beginning of the Keokuk deposition. Both units represent similar carbonate bank settings deposited during rapid, uninterrupted progradation of carbonate sediments during changing sea levels. The upper Burlington facies consists dominantly of crinoids and has the highestmore » biotic diversity (i.e., bryozoan, corals, and brachiopods) during the most open marine conditions. In thin section most crinoid grains show moderate abrasion and some evidence of early fragmentation. Frequent winnowing during storm events resulted in relatively clean packed calcarenite fabrics. Both formations acted as a single paragenetic unit during the induration process, characterized by multiple episodes of cementation, dolomitization, and compaction. Crinoidal syntaxial overgrowths and crushed bryozoan matrix make up most of the packstone/grainstone fabrics in both formations. The presence of mashed bryozoans suggests that some compaction may have preceded complete stabilization of the sedimentary mass by crinoidal syntaxial overgrowth cements. Staining revealed at least three generations of syntaxial overgrowth cements which probably formed in a meteoric phreatic environment during a relatively short period of geologic time.« less
Pofale, Arun D; Nadeem, Mohammed
2012-01-01
This investigation explores the possibility of utilizing granular slag as an alternative to fine aggregate (natural sand) in construction applications like masonry and plastering. Construction industry utilizes large volume of fine aggregate in all the applications which has resulted into shortage of good quality naturally available fine aggregate. Use of granular slag serves two fold purposes, i.e. waste utilisation as well as alternative eco-friendly green building material for construction. The investigation highlights comparative study of properties with partial and full replacement of fine aggregate (natural sand) by granular slag in cement mortar applications (masonry and plastering). For this purpose, cement mortar mix proportions from 1:3, 1:4, 1:5 & 1:6 by volume were selected for 0, 25, 50, 75 & 100% replacement levels with w/c ratios of 0.60, 0.65, 0.70 & 0.72 respectively. Based on the study results, it could be inferred that replacement of natural sand with granular slag from 25 to 75% increased the packing density of mortar which resulted into reduced w/c ratio, increased strength properties of all mortar mixes. Hence, it could be recommended that the granular slag could be effectively utilized as fine aggregate in masonry and plastering applications in place of conventional cement mortar mixes using natural sand.
Ghonim, Mohamed; Shabana, Yousef; Ashraf, Bassem; Salem, Mohamed
2017-04-01
To discuss the different modalities for managing necrosis of the long process of the incus in revision stapedectomy on the basis of the degree of necrosis and compare the results with those reported in the literature. Thirty-six patients underwent revision stapedectomy with the necrosis of the long process of the incus from 2009 to 2016. The patients were divided into three groups on the basis of the degree of necrosis. For group A (minimal necrosis), augmentation technique with bone cement was performed. For group B (partial necrosis), the cement plug technique was performed. For group C (sever necrosis), malleus relocation with malleovestibulopexy was performed using reshaped necrosed incus. Air and bone conduction thresholds at frequencies of 500-3000 Hz were reviewed pre- and postoperatively using conventional audiometry. The air-bone gap (ABG) and bone conduction thresholds were measured. Postoperative ABG was reduced to <10 dB in 28 cases (77.8%) and <20 dB in all cases (100%). There was no significant change in postoperative bone conduction thresholds. The mean patient follow-up duration was 23 (range, 18-36) months. The cement plug technique was used in 75% of cases. Managing necrosis of the long process of the incus in revision stapedectomy should be considered according to the degree of necrosis. The cement plug technique is considered to be a reasonable option in most cases. Malleus relocation with malleovestibulopexy is an effective alternative to prosthesis.
Hearing Outcome With the Use of Glass Ionomer Cement as an Alternative to Crimping in Stapedotomy.
Elzayat, Saad; Younes, Ahmed; Fouad, Ayman; Erfan, Fatthe; Mahrous, Ali
2017-10-01
To evaluate early hearing outcomes using glass ionomer cement to fix the Teflon piston prosthesis onto the long process of incus to minimize residual conductive hearing loss after stapedotomy. Original report of prospective randomized control study. Tertiary referral center. A total of 80 consecutive patients with otosclerosis were randomized into two groups. Group A is a control group in which 40 patients underwent small fenestra stapedotomy using the classic technique. Group B included 40 patients who were subjected to small fenestra stapedotomy with fixation of the incus-prosthesis junction with glass ionomer bone cement. Stapedotomy with the classical technique in group A and the alternative technique in group B. The audiometric results before and after surgery. Analysis of the results was performed using the paired t test to compare between pre and postoperative results. χ test was used to compare the results of the two groups. A p value less than 0.05 was considered significant from the statistical standpoint. Significant postoperative improvement of both pure-tone air conduction thresholds and air-bone gaps were reported in the two studied groups. The postoperative average residual air-bone gap and hearing gain were statistically significant in group B (p < 0.05) compared with group A. The use of glass ionomer bone cement in primary otosclerosis surgery using the aforementioned prosthesis and the surgical technique is of significant value in producing maximal closure of the air-bone gap and better audiological outcomes.
Pullout strength of standard vs. cement-augmented rotator cuff repair anchors in cadaveric bone.
Aziz, Keith T; Shi, Brendan Y; Okafor, Louis C; Smalley, Jeremy; Belkoff, Stephen M; Srikumaran, Uma
2018-05-01
We evaluate a novel method of rotator cuff repair that uses arthroscopic equipment to inject bone cement into placed suture anchors. A cadaver model was used to assess the pullout strength of this technique versus anchors without augmentation. Six fresh-frozen matched pairs of upper extremities were screened to exclude those with prior operative procedures, fractures, or neoplasms. One side from each pair was randomized to undergo standard anchor fixation with the contralateral side to undergo anchor fixation augmented with bone cement. After anchor fixation, specimens were mounted on a servohydraulic testing system and suture anchors were pulled at 90° to the insertion to simulate the anatomic pull of the rotator cuff. Sutures were pulled at 1 mm/s until failure. The mean pullout strength was 540 N (95% confidence interval, 389 to 690 N) for augmented anchors and 202 N (95% confidence interval, 100 to 305 N) for standard anchors. The difference in pullout strength was statistically significant (P < 0.05). This study shows superior pullout strength of a novel augmented rotator cuff anchor technique. The described technique, which is achieved by extruding polymethylmethacrylate cement through a cannulated in situ suture anchor with fenestrations, significantly increased the ultimate failure load in cadaveric human humeri. This novel augmented fixation technique was simple and can be implemented with existing instrumentation. In osteoporotic bone, it may substantially reduce the rate of anchor failure. Copyright © 2018 Elsevier Ltd. All rights reserved.
In vitro evaluation of microleakage of various types of dental cements.
Medić, Vesna; Obradović-Djuricić, Kosovka; Dodić, Slobodan; Petrović, Renata
2010-01-01
Microleakage is defined as the clinically undetectable seepage of oral fluids containing bacteria and debris between cement layer and tooth restoration. This in vitro study investigated the effect of different dental cements (zinc-phosphate, polycarboxylate, glass-ionomer and resin cement) on microleakage in different ceramic crown systems (metal ceramic crown, metal ceramic crown with a porcelain margin, Empress 2 and in Ceram all-ceramic crowns) fixed on extracted human teeth. One hundred and sixty intact human premolars were randomized to four groups of forty teeth each, according to the different ceramic crown systems. They were prepared in a standardized manner for metal-ceramic and all-ceramic crowns. Crowns were made following a standard laboratory technique, and each group of crowns were divided into four groups according to the different cement agents and cemented on their respective abutments. The specimens were subjected to thermocycling, placed in methylene blue solutions, embedded in resin blocks and vertically cut in the bucco-oral and meso-distal direction. The microleakage in the area of tooth-cement interface was defined as linear penetration of methylene blue and was determined with a microscope to assign microleakage scores using a five-point scale. A significant association was found between a cement type and degree of microleakage (p = 0.001). No statistically significant differences were found among the different ceramic crown systems luted with the same dental cement. The smallest degree of microleakage was observed in specimens luted with resin cement (X = 1.73), followed by glass-ionomer cement (X=2.45) and polycarboxylate cement (X = 3.20). The greatest degree of microleakage was detected in the crowns fixed with zincphosphate cement (X = 3.33). The investigated dental cements revealed different sealing abilities. The use of resin cement resulted in the percentage of 0 microleakage scores. Due to this feature, the resin cement is to be recommended in everyday clinical practice.
Reinforcement of cement-based matrices with graphite nanomaterials
NASA Astrophysics Data System (ADS)
Sadiq, Muhammad Maqbool
Cement-based materials offer a desirable balance of compressive strength, moisture resistance, durability, economy and energy-efficiency; their tensile strength, fracture energy and durability in aggressive environments, however, could benefit from further improvements. An option for realizing some of these improvements involves introduction of discrete fibers into concrete. When compared with today's micro-scale (steel, polypropylene, glass, etc.) fibers, graphite nanomaterials (carbon nanotube, nanofiber and graphite nanoplatelet) offer superior geometric, mechanical and physical characteristics. Graphite nanomaterials would realize their reinforcement potential as far as they are thoroughly dispersed within cement-based matrices, and effectively bond to cement hydrates. The research reported herein developed non-covalent and covalent surface modification techniques to improve the dispersion and interfacial interactions of graphite nanomaterials in cement-based matrices with a dense and well graded micro-structure. The most successful approach involved polymer wrapping of nanomaterials for increasing the density of hydrophilic groups on the nanomaterial surface without causing any damage to the their structure. The nanomaterials were characterized using various spectrometry techniques, and SEM (Scanning Electron Microscopy). The graphite nanomaterials were dispersed via selected sonication procedures in the mixing water of the cement-based matrix; conventional mixing and sample preparation techniques were then employed to prepare the cement-based nanocomposite samples, which were subjected to steam curing. Comprehensive engineering and durability characteristics of cement-based nanocomposites were determined and their chemical composition, microstructure and failure mechanisms were also assessed through various spectrometry, thermogravimetry, electron microscopy and elemental analyses. Both functionalized and non-functionalized nanomaterials as well as different micro-scale fibers were used for comparison purposes at different volume fractions. Replicated mixes and tests were considered to provide the basis for statistically reliable inferences. Theoretical studies were conducted in order to develop insight into the reinforcement mechanisms of properly functionalized graphite nanomaterials. The results suggested that modified graphite nanomaterials improve the mechanical performance of cement-based matrices primarily through control of microcrack size and propagation, relying on their close spacing within matrix and dissipation of substantial energy by debonding and frictional pullout over their enormous surface areas. The gains in barrier qualities of cement-based materials with introduction of modified graphite nanomaterials could be attributed to the increased tortuosity of diffusion paths in the presence of closely spaced nanomaterials. Experimental investigations were designed and implemented towards identification of the optimum (nano- and micro-scale) reinforcement systems for high-performance concrete through RSA (Response Surface Analysis). A comprehensive experimental data base was developed on the mechanical, physical and durability characteristics as well as the structure and composition of high-performance cementitious nanocomposites reinforced with modified graphite nanomaterials and/ or different micro-fibers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannah, R.R.; Park, E.I.; Porter, D.A.
1994-11-01
This paper describes a one-step fracturing/gravel-pack (frac-and-pack) completion procedure conducted on the BP Exploration Amberjack platform beginning in early 1992. This platform is 35 miles southwest of Venice, LA. The first four completions on this platform had an average positive skin values of 21. The goal of the frac-and-pack procedure was to reduce these skins to nearly zero. In total, 24 frac-and-pack operations were performed. Details of the fracture design, prefracture testing, fracture design and execution, and production response and a continuing optimization program are discussed. The fractures were performed with the screens in place with the gravel pack aftermore » the fracturing operation. The treatments were designed for the tip screenout technique to create wide fractures and to provide proppant loadings exceeding 8 lbm/ft. This paper presents the trend of the declining skin values, along with a discussion of time-dependent skins. The changes in fluids, breakers, and proppants are also presented. The average skin on 14 frac-and-pack completions was 5.3. The average skin on the final eight completions was 0.2.« less
Cermet reinforcement of a weakened endodontically treated root: a case report.
Lui, J L
1992-08-01
Many clinical applications have been recommended for glass-cermet cement because of its improved properties compared to the original glass-ionomer cements. It has also been accepted as a dentinal substitute that can strengthen teeth. In this paper, an additional clinical application for glass-cermet cement, the reinforcement of weakened endodontically treated roots, is suggested. This technique is in keeping with the trends of tooth conservation and the use of an adhesive restorative material in the restoration of severely damaged teeth by a conservative approach.
Characterization of corrosion resistant on NiCoCr coating layer exposed to 5%NaCl
NASA Astrophysics Data System (ADS)
Sugiarti, E.; Sundawa, R.; Desiati, R. D.; Zaini, K. A.
2018-03-01
Highly corrosion resistant of carbon steel coated NiCoCr was applied in corrosive of marine environtment. Carbon steel coated NiCoCr was prepared by a two step technique of NiCo electro-deposition and Cr pack cementation. The samples were exposed to 5 wt.% NaCl for 48 and 168 hours. The microstructure and corrosion product were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The corrosion resistance of carbon steel coated NiCoCr was found to be better than that of carbon steel substrate without coating. The results showed the microstructure of 48 h corroded sample has duplex layer composed of inner α-(Ni,Co), α-Cr and outer Cr2O3, while a quite thin and continues protective oxide of Cr2O3 was observed in outer layer of 168 h corroded sample. The formation of oxide scale rich in Cr2O3 has contributed for the better corrosion resistance of carbon steel coated NiCoCr, whereas the formation of non protective oxide of iron might caused low corrosion resistance of carbon steel substrate.
Effect of cloric acid concentration on corrosion behavior of Ni/Cr coated on carbon steel
NASA Astrophysics Data System (ADS)
Desiati, Resetiana Dwi; Sugiarti, Eni; Thosin, K. A. Zaini
2018-05-01
Corrosion is one of the causes of metal degradation. Carbon steel (Fe) is easy to corrode in the extreme environment. Coating on carbon steel is required to improve corrosion resistance owing to protection or hindrance to extreme environmental conditions. In this present work, carbon steel was coated by electroplating techniques for nickel and pack cementation for chrome. The corrosion rate test was performed by Weight Loss method on FeNiCr, FeNi, FeCr and uncoated Fe as comparator which was dyed in 37% HCl and 25% HCl which had previously been measured dimension and mass. The immersion test result of FeNiCr and FeNi specimen were better than FeCr and uncoated Fe in terms of increasing corrosion resistance. The corrosion rate for 56 hours in 37% HCl for FeNiCr was 1.592 mm/y and FeNi was 3.208 mm/y, FeCr only lasted within 32 hours with corrosion rate was 6.494 mm/y. Surface of the sample after the corrosion test there was pitting, crevice corrosion and alloy cracking caused by chloride. The higher the concentration of HCl the faster the corrosion rate.
NASA Astrophysics Data System (ADS)
Pang, Q.; Hu, Z. L.; Wu, G. H.
2016-12-01
Metallic foams with a high fraction of porosity, low density and high-energy absorption capacity are a rapidly emerging class of novel ultralight weight materials for various engineering applications. In this study, Y-Cr and Ce-Cr-coated Ni-Cr-Fe alloy foams were prepared via the pack cementation method, and the effects of Y and Ce addition on the coating microstructure and oxidation performance were analyzed in order to improve the oxidation resistance of open-cell nickel-based alloy foams. The results show that the Ce-Cr coating is relatively more uniform and has a denser distribution on the surface of the nickel-based alloy foam. The surface grains of the Ce-Cr-coated alloy foam are finer compared to those of the Y-Cr-coated alloy foam. An obvious Ce peak appears on the interface between the coating and the alloy foam strut, which gives rise to a "site-blocking" effect for the short-circuit transport of the cation in the substrate. X-ray diffraction analysis shows that the Y-Cr-coated alloy foam mainly consists of Cr, (Fe, Ni) and (Ni, Cr) phases in the surface layer. The Ce-Cr-coated alloy foam is mainly composed of Cr and (Ni, Cr) phases. Furthermore, the addition of Y and Ce clearly lead to an improvement in the oxidation resistance of the coated alloy foams in the temperature range of 900-1000 °C. The addition of Ce is especially effective in enhancing the diffusion of chromium to the oxidation front, thus, accelerating the formation of a Cr2O3 layer.
Gómez-Cogolludo, Pablo; Castillo-Oyagüe, Raquel; Lynch, Christopher D; Suárez-García, María-Jesús
2013-09-01
The aim of this study was to identify the most appropriate alloy composition and melting technique by evaluating the marginal accuracy of cast metal-ceramic crowns. Seventy standardised stainless-steel abutments were prepared to receive metal-ceramic crowns and were randomly divided into four alloy groups: Group 1: palladium-gold (Pd-Au), Group 2: nickel-chromium-titanium (Ni-Cr-Ti), Group 3: nickel-chromium (Ni-Cr) and Group 4: titanium (Ti). Groups 1, 2 and 3 were in turn subdivided to be melted and cast using: (a) gas oxygen torch and centrifugal casting machine (TC) or (b) induction and centrifugal casting machine (IC). Group 4 was melted and cast using electric arc and vacuum/pressure machine (EV). All of the metal-ceramic crowns were luted with glass-ionomer cement. The marginal fit was measured under an optical microscope before and after cementation using image analysis software. All data was subjected to two-way analysis of variance (ANOVA). Duncan's multiple range test was run for post-hoc comparisons. The Student's t-test was used to investigate the influence of cementation (α=0.05). Uncemented Pd-Au/TC samples achieved the best marginal adaptation, while the worst fit corresponded to the luted Ti/EV crowns. Pd-Au/TC, Ni-Cr and Ti restorations demonstrated significantly increased misfit after cementation. The Ni-Cr-Ti alloy was the most predictable in terms of differences in misfit when either torch or induction was applied before or after cementation. Cemented titanium crowns exceeded the clinically acceptable limit of 120μm. The combination of alloy composition, melting technique, casting method and luting process influences the vertical seal of cast metal-ceramic crowns. An accurate use of the gas oxygen torch may overcome the results attained with the induction system concerning the marginal adaptation of fixed dental prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gandolfi, Maria Giovanna; Ciapetti, Gabriela; Taddei, Paola; Perut, Francesca; Tinti, Anna; Cardoso, Marcio Vivan; Van Meerbeek, Bart; Prati, Carlo
2010-10-01
The effect of ageing in phosphate-containing solution of bioactive calcium-silicate cements on the chemistry, morphology and topography of the surface, as well as on in vitro human marrow stromal cells viability and proliferation was investigated. A calcium-silicate cement (wTC) mainly based on dicalcium-silicate and tricalcium-silicate was prepared. Alpha-TCP was added to wTC to obtain wTC-TCP. Bismuth oxide was inserted in wTC to prepare a radiopaque cement (wTC-Bi). A commercial calcium-silicate cement (ProRoot MTA) was tested as control. Cement disks were aged in DPBS for 5 h ('fresh samples'), 14 and 28 days, and analyzed by ESEM/EDX, SEM/EDX, ATR-FTIR, micro-Raman techniques and scanning white-light interferometry. Proliferation, LDH release, ALP activity and collagen production of human marrow stromal cells (MSC) seeded for 1-28 days on the cements were evaluated. Fresh samples exposed a surface mainly composed of calcium-silicate hydrates CSH (from the hydration of belite and alite), calcium hydroxide, calcium carbonate, and ettringite. Apatite nano-spherulites rapidly precipitated on cement surfaces within 5 h. On wTC-TCP the Ca-P deposits appeared thicker than on the other cements. Aged cements showed an irregular porous calcium-phosphate (Ca-P) coating, formed by aggregated apatite spherulites with interspersed calcite crystals. All the experimental cements exerted no acute toxicity in the cell assay system and allowed cell growth. Using biochemical results, the scores were: fresh cements>aged cements for cell proliferation and ALP activity (except for wTC-Bi), whereas fresh cements
How to Help Parents Pack Better Preschool Sack Lunches: Advice from Parents for Educators
ERIC Educational Resources Information Center
Sweitzer, Sara J.; Briley, Margaret E.; Roberts-Gray, Cindy; Hoelscher, Deanna M.; Staskel, Deanna M.; Almansour, Fawaz D.
2011-01-01
Objectives: This exploratory study obtained parent suggestions about messages and activities to guide parents to pack healthful sack lunches for preschool-aged children. Methods: A facilitator conducted group interviews using a modified nominal group technique with a convenience sample of parents who pack daily lunches for their children.…
[Fiber reinforced composite posts: literature review].
Frydman, G; Levatovsky, S; Pilo, R
2013-07-01
FRC (Fiber-reinforced composite) posts have been used since the beginning of the 90s with the introduction of carbon fiber posts. Fiber posts are widely used to restore endodontically treated teeth that have insufficient coronal tooth structure. Many in vitro and in vivo studies have shown the advantage of using FRC over prefabricated and cast metal post especially indicated in narrow root canals which are prone to vertically root fracture. The most frequent failure of FRC is debonding of a post at the resin cement/dentin interface. Bonding to dentin may be achieved by using etch-and-rinse and self-etch adhesives. The bond strength formed by self-adhesive cements is noticeably lower in comparison to the bond strength formed with resin cements applied in combination with etch-and-rinse adhesives. In an attempt to maximize resin bonding to fiber posts, several surface treatments have been suggested. Sandblasting with alumina particles results in an increased surface roughness and surface area without affecting the integrity of the post as long as it is applied by 50 microm alumina particles at 2.5 bars for maximally 5 seconds at a distance of 30 mm. The efficiency of post salinization is controversial and its contribution to the retention is of minor importance. Hydrofluoric acid has recently been proposed for etching glass fiber posts but this technique produced substantial damage to the glass fibers and affected the integrity of the post. Delayed cementation of fiber post (at least 24h post endodontic treatment) resulted in higher retentive strengths in comparison to immediate cementation and the best results were obtained when the luting agent was brought into the post space with lentulo spirals or specific syringes. The resin cement film thickness also influences the pullout strengths of fiber-reinforced posts .The highest bond strength values were obtained when the cement layer oversized the post spaces but not larger than 0.3 mm. The use of core build-up materials as post luting cements is not recommended. The use of FRC post, combined with proper adhesive cementation technique can give an excellent solution when restoring endodontically treated teeth that are prone to fracture.
Kakaboura, A; Vougiouklakis, G; Argiri, G
1989-01-01
Finishing and polishing an amalgam restoration, is considered as an important and necessary step of the restorative procedure. Various polishing techniques have been recommended to success a smooth amalgam surface. The aim of this study was to investigate the influence of three different polishing treatments on the marginal integrity and surface smoothness of restorations made of three commercially available amalgams and a glass-cermet cement. The materials used were the amalgams, Amalcap (Vivadent), Dispersalloy (Johnson and Johnson), Duralloy (Degussa) and the glass-cermet Katac-Silver (ESPE). The occlusal surfaces of the restorations were polished by the methods: I) round bur, No4-rubber cup-zinc oxide paste in a small brush, II) round bur No 4-bur-brown, green and super green (Shofu) polishing cups and points successively and III) amalgam polishing bur of 12-blades-smooth amalgam polishing bur. Photographs from unpolished and polished surfaces of the restorations, were taken with scanning electron microscope, to evaluate the polishing techniques. An improvement of marginal integrity and surface smoothness of all amalgam restorations was observed after the specimens had been polished with the three techniques. Method II, included Shofu polishers, proved the best results in comparison to the methods I and III. Polishing of glass-cermet cement was impossible with the examined techniques.
Fatta, Despo; Papadopoulos, Achilleas; Stefanakis, Nikos; Loizidou, Maria; Savvides, Chrysanthos
2004-08-01
The aim of this study was to develop cost-effective, appropriate solidification technologies for treating hazardous industrial wastes that are currently disposed of in ways that may threaten the quality of local groundwater. One major objective was to use materials other than cement, and preferably materials that are themselves wastes, as the solidification additives, namely using wastes to treat wastes or locally available natural material. This research examines the cement-based and lime-based stabilization/solidification (S/S) techniques applied for waste generated at a metal-plating industry and a dye industry. For the lime-based S/S process the following binder mixtures were used: cement kiln dust/ lime, bentonite/lime and gypsum/lime. For the cement-based S/S process three binder mixtures were used: cement kiln dust/cement, bentonite/cement and gypsum/cement. The leachability of the wastes was evaluated using the toxicity characteristic leaching procedure. The applicability and optimum weight ratio of the binder mixtures were estimated using the unconfined compressive strength test. The optimum ratio mixtures were mixed with waste samples in different ratios and cured for 28 days in order to find the S/S products with the highest strength and lowest leachability at the same time. The results of this work showed that the cement-and lime-based S/S process, using cement kiln dust and bentonite as additives can be effectively used in order to treat industrial waste.
Saikia, Nabajyoti; Cornelis, Geert; Mertens, Gilles; Elsen, Jan; Van Balen, Koenraad; Van Gerven, Tom; Vandecasteele, Carlo
2008-06-15
Three types of wastes, metallurgical slag from Pb production (SLG), the sand-sized (0.1-2 mm) fraction of MSWI bottom ash from a grate furnace (SF), and boiler and fly ash from a fluidised bed incinerator (BFA), were characterized and used to replace the fine aggregate during preparation of cement mortar. The chemical and mineralogical behaviour of these wastes along with the reactivities of the wastes with lime and the hydration behaviour of ordinary Portland cement paste with and without these wastes added were evaluated by various chemical and instrumental techniques. The compressive strengths of the cement mortars containing waste as a partial substitution of fine aggregates were also assessed. Finally, leaching studies of the wastes and waste containing cement mortars were conducted. SLG addition does not show any adverse affect during the hydration of cement, or on the compressive strengths behaviours of mortars. Formation of expansive products like ettringite, aluminium hydroxide and H2 gas due to the reaction of some constituents of BFA and SF with alkali creates some cracks in the paste as well as in the cement mortars, which lower the compressive strength of the cement mortars. However, utilization of all materials in cement-based application significantly improves the leaching behaviour of the majority of the toxic elements compared to the waste as such.
Influence of Thermal Treatment Conditions on the Properties of Dental Silicate Cements.
Voicu, Georgeta; Popa, Alexandru Mihai; Badanoiu, Alina Ioana; Iordache, Florin
2016-02-18
In this study the sol-gel process was used to synthesize a precursor mixture for the preparation of silicate cement, also called mineral trioxide aggregate (MTA) cement. This mixture was thermally treated under two different conditions (1400 °C/2 h and 1450 °C/3 h) followed by rapid cooling in air. The resulted material (clinker) was ground for one hour in a laboratory planetary mill (v = 150 rot/min), in order to obtain the MTA cements. The setting time and mechanical properties, in vitro induction of apatite formation by soaking in simulated body fluid (SBF) and cytocompatibility of the MTA cements were assessed in this study. The hardening processes, nature of the reaction products and the microstructural characteristics were also investigated. The anhydrous and hydrated cements were characterized by different techniques e.g., X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR) and thermal analysis (DTA-DTG-TG). The setting time of the MTA cement obtained by thermal treatment at 1400 °C/2 h (MTA1) was 55 min and 15 min for the MTA cement obtained at 1450 °C/3 h (MTA2). The compressive strength values were 18.5 MPa (MTA1) and 22.9 MPa (MTA2). Both MTA cements showed good bioactivity (assessed by an in vitro test), good cytocompatibility and stimulatory effect on the proliferation of cells.
Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel
NASA Astrophysics Data System (ADS)
Criado, Maria; Provis, John L.
2018-06-01
The pore solutions of alkali-activated slag cements and Portland-based cements are very different in terms of their chemical and redox characteristics, particularly due to the high alkalinity and high sulfide content of alkali-activated slag cement. Therefore, differences in corrosion mechanisms of steel elements embedded in these cements could be expected, with important implications for the durability of reinforced concrete elements. This study assesses the corrosion behaviour of steel embedded in alkali-activated blast furnace slag (BFS) mortars exposed to alkaline solution, alkaline chloride-rich solution, water, and standard laboratory conditions, using electrochemical techniques. White Portland cement (WPC) mortars and blended cement mortars (white Portland cement and blast furnace slag) were also tested for comparative purposes. The steel elements embedded in immersed alkali-activated slag mortars presented very negative redox potentials and high apparent corrosion current values; the presence of sulfide reduced the redox potential, and the oxidation of the reduced sulfur-containing species within the cement itself gave an electrochemical signal that classical electrochemical tests for reinforced concrete durability would interpret as being due to steel corrosion processes. However, the actual observed resistance to chloride-induced corrosion was very high, as measured by extraction and characterisation of the steel at the end of a 9-month exposure period, whereas the steel embedded in white Portland cement mortars was significantly damaged under the same conditions.
Lim, T T; Chu, J; Goi, M H
2006-01-01
The suitability of using cement-stabilized sludge products as artificial soils in earth works was evaluated. The sludge products investigated were cemented sludge, cement-treated clay-amended sludge (SS+MC), and cement-treated copper slag-amended sludge (SS+CS). The leachability of lead (Pb), zinc (Zn), copper (Cu), and chromium (Cr) were assessed using the sequential extraction technique, toxicity characteristic leaching procedure (TCLP), NEN 7341 availability test, and column leaching test. The results indicated that Zn leachability was reduced in all the cement-stabilized sludge products. In contrast, Cu was transferred from the organic fraction to the readily leachable phases in the cement-stabilized sludge products and therefore exhibited increased leachability. The increased Cu leachability could be attributed to dissolution of humic substances in the sludge as a result of elevated pH. Good correlation between dissolved organic carbon (DOC) and heavy metal leaching from the cement-stabilized sludge products was observed in the column leaching experiment. Even with a cement percentage as small as 12.5%, calcium silicate hydrate (C-S-H) was formed in the SS+MC and SS+CS products. Inclusion of the marine clay in the SS+MC products could reduce the leaching potentials of Zn, and this was the great advantage of the marine clay over the copper slag for sludge amendment.
Spectroscopic investigation of Ni speciation in hardened cement paste.
Vespa, M; Dähn, R; Grolimund, D; Wieland, E; Scheidegger, A M
2006-04-01
Cement-based materials play an important role in multi-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive wastes. Cement is used to condition and stabilize the waste materials and to construct the engineered barrier systems (container, backfill, and liner materials) of repositories for radioactive waste. In this study, Ni uptake by hardened cement paste has been investigated with the aim of improving our understanding of the immobilization process of heavy metals in cement on the molecular level. X-ray absorption spectroscopy (XAS) coupled with diffuse reflectance spectroscopy (DRS) techniques were used to determine the local environment of Ni in cement systems. The Ni-doped samples were prepared at two different water/cement ratios (0.4, 1.3) and different hydration times (1 hour to 1 year) using a sulfate-resisting Portland cement. The metal loadings and the metal salts added to the system were varied (50 up to 5000 mg/kg; NO3(-), SO4(2-), Cl-). The XAS study showed that for all investigated systems Ni(ll) is predominantly immobilized in a layered double hydroxide (LDH) phase, which was corroborated by DRS measurements. Only a minor extent of Ni(ll) precipitates as Ni-hydroxides (alpha-Ni(OH)2 and beta-Ni(OH)2). This finding suggests that Ni-Al LDH, rather than Ni-hydroxides, is the solubility-limiting phase in the Ni-doped cement system.
Martínez-Rus, Francisco; Suárez, María J; Rivera, Begoña; Pradíes, Guillermo
2012-04-01
To analyze the effect of ceramic manufacturing technique and luting cement selection on the marginal adaptation of zirconium oxide-based all-ceramic crowns. An extracted mandibular first premolar was prepared for a complete coverage restoration and subsequently duplicated 40 times in a liquid crystal polymer (LCP). All-ceramic crowns (n = 10) were fabricated on LCP models using the following systems: glass-infiltrated zirconia-toughened alumina (In-Ceram Zirconia) and yttrium cation-doped tetragonal zirconia polycrystals (In-Ceram YZ, Cercon, and Procera Zirconia). The restorations (n = 5) were cemented on their respective dies with glass-ionomer cement (Ketac Cem Aplicap) and resin cement (Panavia 21). The absolute marginal discrepancy of the crowns was measured before and after cementation by scanning electronic microscopy at 160 points along the circumferential margin. The data were analyzed using one-way ANOVA for repeated measures and for independent samples, Scheffé's multiple range post hoc test, and Student's t-test (alpha = 0.05). There were statistical differences in the mean marginal openings among the four all-ceramic systems before and after luting (P < 0.0001). The Procera restorations had the lowest pre- and post-cementation values (P < 0.0001). A significant increase in the marginal gap size caused by luting media occurred in all tested groups (P < 0.0001). Resin cement resulted in larger marginal discrepancies than glass-ionomer cement (P < 0.0001).
Pereira, Jefferson Ricardo; Rosa, Ricardo Abreu da; Só, Marcus Vinícius Reis; Afonso, Daniele; Kuga, Milton Carlos; Honório, Heitor Marques; Valle, Accácio Lins do; Vidotti, Hugo Alberto
2014-01-01
The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs) and resinmodified glass ionomer cements (RMGICs). Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa) were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05). The post level did not influence the bond strength of fiber posts to root dentin (P=0.148). The major cause of failure was cohesive at the cement for all GICs and RMGICs. Except for Ionoseal, all cements provided satisfactory bond strength values.
PEREIRA, Jefferson Ricardo; da ROSA, Ricardo Abreu; SÓ, Marcus Vinícius Reis; AFONSO, Daniele; KUGA, Milton Carlos; HONÓRIO, Heitor Marques; do VALLE, Accácio Lins; VIDOTTI, Hugo Alberto
2014-01-01
Objective The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs) and resin-modified glass ionomer cements (RMGICs). Material and Methods Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa) were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. Results Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05). The post level did not influence the bond strength of fiber posts to root dentin (P=0.148). The major cause of failure was cohesive at the cement for all GICs and RMGICs. Conclusions Except for Ionoseal, all cements provided satisfactory bond strength values. PMID:25004052
Cemented total knee replacement in 24 dogs: surgical technique, clinical results, and complications.
Allen, Matthew J; Leone, Kendall A; Lamonte, Kimberly; Townsend, Katy L; Mann, Kenneth A
2009-07-01
To characterize the performance of cemented total knee replacement (TKR) in dogs. Preclinical research study. Skeletally mature, male Hounds (25-30 kg; n=24) with no preexisting joint pathology. Dogs had unilateral cemented TKR and were evaluated at 6, 12, 26, or 52 weeks (6 dogs/time point) by radiography, bone density analysis, visual gait assessment, and direct measurement of thigh circumference and stifle joint range of motion as indicators of functional recovery. At study end, the stability of the cemented tibial component was determined by destructive mechanical testing. Joint stability was excellent in 16 dogs (67%) and good in 8 dogs. None of the tibial components had evidence of migration or periprosthetic osteolysis whereas 1 femoral component was loose at 52 weeks. There was an early and significant decrease in tibial bone density, likely because of disuse of the operated limb. Dogs returned to full activity by 12 weeks. The tibial cement-bone interface maintained its strength over 52 weeks. Cement provides stable fixation of the tibial component in canine TKR. Cemented TKR yields adequate clinical function and stifle joint excursion in the dog. Clinical studies are needed to determine the long-term fate of cemented TKR implants, to assess the influence of implant design on implant fixation and wear, and to obtain objective functional data.
NASA Astrophysics Data System (ADS)
Elbakhshwan, M.; Gill, S.; Weidner, R.; Ecker, L.
2017-12-01
Sequestration of CO2 in geological formations requires a deep understanding of its interaction with the cement-casing components in the depleted oil and gas wells. Portland cement is used to seal the wellbores; however it tends to interact with the CO2. Therefore it is critical to investigate the wellbore integrity over long term exposure to CO2. Studies showed that, CO2 leakage is due to the flow through the casing-cement microannulus, cement-cement fractures, or the cement-caprock interface. The objective of this work is to gain a better understanding of the dissolution process of the cement-casing in the CO2 flow channels alongside with the carbonation reactions at the interfaces using XRF, XANES and X-ray tomography techniques. In this study, a synthetic wellbore system, consisting of cement with an embedded rectangular length of steel casing that had grooves to accommodate fluid flow, was used to investigate the casing-cement microannulus through core-flood experiments. The objective of this work is to gain a better understanding of the dissolution process of the cement-casing in the CO2 flow channels alongside with the carbonation reactions at the interfaces using a sample environment designed and built for in situ X-ray diffraction in the National Synchrotron Light Source II (NSLS II). The formation of carbonate phases at cement -fluid and cement-steel/fluid interfaces will be monitored in real time. Samples may be exposed to super critical CO2 at pressures above 1100 psi and temperatures around 50°C. The reaction cell is built from hastealloy to provide corrosion resistance, while the experimental temperature and pressure are controlled with thermocouples and pressure vessel.
Watson, T F; Pagliari, D; Sidhu, S K; Naasan, M A
1998-03-01
This study aimed to develop techniques to allow dynamic imaging of a cavity before, during and after placement of glass-ionomer restorative materials. Cavities were cut in recently extracted third molars and the teeth longitudinally sectioned. Each hemisected tooth surface was placed in green modelling compound at 90 to the optical axis of the microscope. The cavity surface was imaged using a video rate confocal microscope in conjunction with an internally focusable microscope objective. The sample on the stage was pushed up to the objective lens which 'clamped' the cover glass onto it. Water, glycerine or oil was placed below the coverglass, with oil above. Internal tooth structures were imaged by changing the internal focus of the objective. The restorative material was then placed into the cavity. Video images were stored either onto video tape or digitally, using a frame grabber, computer and mass memory storage. Software controls produced time-lapse recordings of the interface over time. Preliminary experiments have examined the placement and early maturation of conventional glass-ionomer cements and a syringeable resin-modified glass-ionomer cement. Initial contact of the cement matrix and glass particles was visible as the plastic material rolled past the enamel and dentine, before making a bond. Evidence for water movement from the dentine into the cement has also been seen. After curing, the early dimensional changes in the cements due to water flux were apparent using the time-lapse facility. This new technique enables examination of developing tooth/restoration interfaces and the tracking of movement in materials.
Groundwater well with reactive filter pack
Gilmore, Tyler J.; Holdren, Jr., George R.; Kaplan, Daniel I.
1998-01-01
A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.
Chee, Winston W L; Duncan, Jesse; Afshar, Manijeh; Moshaverinia, Alireza
2013-04-01
Complete removal of excess cement from subgingival margins after cementation of implant-supported restorations has been shown to be unpredictable. Remaining cement has been shown to be associated with periimplant inflammation and bleeding. The purpose of this study was to investigate and compare the amount of excess cement after cementation with 4 different methods of cement application for cement-retained implant-supported restorations. Ten implant replicas/abutments (3i) were embedded in acrylic resin blocks. Forty complete veneer crowns (CVCs) were fabricated by waxing onto the corresponding plastic waxing sleeves. The wax patterns were cast and the crowns were cemented to the implant replicas with either an interim (Temp Bond) or a definitive luting agent (FujiCEM). Four methods of cement application were used for cementation: Group IM-Cement applied on the internal marginal area of the crown only; Group AH-Cement applied on the apical half of the axial walls of the crown; Group AA-Cement applied to all axial walls of the interior surface of the crown, excluding the occlusal surface; and Group PI-Crown filled with cement then seated on a putty index formed to the internal configuration of the restoration (cementation device) (n=10). Cement on the external surfaces was removed before seating the restoration. Cement layers were applied on each crown, after which the crown was seated under constant load (80 N) for 10 minutes. The excess cement from each specimen was collected and measured. One operator performed all the procedures. Results for the groups were compared, with 1 and 2-way ANOVA and the Tukey multiple range test (α=.05). No significant difference in the amount of excess/used cement was observed between the 2 different types of cements (P=.1). Group PI showed the least amount of excess cement in comparison to other test groups (P=.031). No significant difference was found in the amount of excess cement among groups MI, AH, and AA. Group AA showed the highest amount of excess cement. The volume of cement used for group PI specimens was significantly higher than for those in the other groups (P=.001). With respect to the volume of cement loaded into the test crowns no statistically significant difference was observed among other test groups (groups IM, AH, and AA). Group MI used the least amount of cement, followed by group AH and AA. No correlation between the amount of used cement and the amount of excess cement was found in any of the tested groups. Within the limitations of this in vitro study, the least amount of excess cement was present when a cementation device was used to displace the excess cement before seating the crown on the abutment (Group PI). With this technique a uniform layer of the luting agent is distributed over the internal surface of the crown leaving minimal excess cement when the restoration is seated. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Pacheco-Salazar, O F; Wakayama, Shuichi; Sakai, Takenobu; Cauich-Rodríguez, J V; Ríos-Soberanis, C R; Cervantes-Uc, J M
2015-06-01
In this work, the effect of the incorporation of core-shell particles on the fracture mechanisms of the acrylic bone cements by using acoustic emission (AE) technique during the quasi-static compression mechanical test was investigated. Core-shell particles were composed of a poly(butyl acrylate) (PBA) rubbery core and a methyl methacrylate/styrene copolymer (P(MMA-co-St)) outer glassy shell. Nanoparticles were prepared with different core-shell ratio (20/80, 30/70, 40/60 and 50/50) and were incorporated into the solid phase of bone cement at several percentages (5, 10 and 15 wt%). It was observed that the particles exhibited a spherical morphology averaging ca. 125 nm in diameter, and the dynamic mechanical analysis (DMA) thermograms revealed the desired structuring pattern of phases associated with core-shell structures. A fracture mechanism was proposed taking into account the detected AE signals and the scanning electron microscopy (SEM) micrographs. In this regard, core-shell nanoparticles can act as both additional nucleation sites for microcracks (and crazes) and to hinder the microcrack propagation acting as a barrier to its growth; this behavior was presented by all formulations. Cement samples containing 15 wt% of core-shell nanoparticles, either 40/60 or 50/50, were fractured at 40% deformation. This fact seems related to the coalescence of microcracks after they surround the agglomerates of core-shell nanoparticles to continue growing up. This work also demonstrated the potential of the AE technique to be used as an accurate and reliable detection tool for quasi-static compression test in acrylic bone cements. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microstructural Effects of Sulphate Attack in Sustainable Grouts for Micropiles.
Ortega Álvarez, José Marcos; Esteban Pérez, María Dolores; Rodríguez Escribano, Raúl Rubén; Pastor Navarro, José Luís; Sánchez Martín, Isidro
2016-11-08
Nowadays, the use of micropiles has undergone a great development. In general, they are made with cement grout, reinforced with steel tubing. In Spain, these grouts are prepared using OPC, although the standards do not forbid the use of other cements, like sustainable ones. Micropiles are in contact with soils and groundwater, in which the presence of sulphates is common. Their deleterious effects firstly affect to the microstructure. Then, the aim of this research is to study the effects of sulphate attack in the microstructure of micropiles grouts, prepared with OPC, fly ash and slag commercial cements, compared to their behaviour when they are exposed to an optimum hardening condition. The microstructure evolution has been studied with the non-destructive impedance spectroscopy technique, which has never been used for detecting the effects of sulphate attack when slag and fly ash cements are used. Its results have been contrasted with mercury intrusion porosimetry and "Wenner" resistivity ones. The 28-day compressive strength of grouts has been also determined. The results of microstructure characterization techniques are in agreement, although impedance spectroscopy is the most sensitive for following the changes in the porous network of grouts. The results showed that micropiles made using fly ash and slag cements could have a good performance in contact with aggressive sodium sulphate media, even better than OPC ones.
Microstructural Effects of Sulphate Attack in Sustainable Grouts for Micropiles
Ortega Álvarez, José Marcos; Esteban Pérez, María Dolores; Rodríguez Escribano, Raúl Rubén; Pastor Navarro, José Luís; Sánchez Martín, Isidro
2016-01-01
Nowadays, the use of micropiles has undergone a great development. In general, they are made with cement grout, reinforced with steel tubing. In Spain, these grouts are prepared using OPC, although the standards do not forbid the use of other cements, like sustainable ones. Micropiles are in contact with soils and groundwater, in which the presence of sulphates is common. Their deleterious effects firstly affect to the microstructure. Then, the aim of this research is to study the effects of sulphate attack in the microstructure of micropiles grouts, prepared with OPC, fly ash and slag commercial cements, compared to their behaviour when they are exposed to an optimum hardening condition. The microstructure evolution has been studied with the non-destructive impedance spectroscopy technique, which has never been used for detecting the effects of sulphate attack when slag and fly ash cements are used. Its results have been contrasted with mercury intrusion porosimetry and “Wenner” resistivity ones. The 28-day compressive strength of grouts has been also determined. The results of microstructure characterization techniques are in agreement, although impedance spectroscopy is the most sensitive for following the changes in the porous network of grouts. The results showed that micropiles made using fly ash and slag cements could have a good performance in contact with aggressive sodium sulphate media, even better than OPC ones. PMID:28774026
A Method of Assembling Compact Coherent Fiber-Optic Bundles
NASA Technical Reports Server (NTRS)
Martin, Stefan; Liu, Duncan; Levine, Bruce Martin; Shao, Michael; Wallace, James
2007-01-01
A method of assembling coherent fiber-optic bundles in which all the fibers are packed together as closely as possible is undergoing development. The method is based, straightforwardly, on the established concept of hexagonal close packing; hence, the development efforts are focused on fixtures and techniques for practical implementation of hexagonal close packing of parallel optical fibers.
Cement line staining in undecalcified thin sections of cortical bone
NASA Technical Reports Server (NTRS)
Bain, S. D.; Impeduglia, T. M.; Rubin, C. T.
1990-01-01
A technique for demonstrating cement lines in thin, undecalcified, transverse sections of cortical bone has been developed. Cortical bone samples are processed and embedded undecalcified in methyl methacrylate plastic. After sectioning at 3-5 microns, cross-sections are transferred to a glass slide and flattened for 10 min. Sections of cortical bone are stained for 20 sec free-floating in a fresh solution of 1% toluidine blue dissolved in 0.1% formic acid. The section is dehydrated in t-butyl alcohol, cleared in xylene, and mounted with Eukitt's medium. Reversal lines appear as thin, scalloped, dark blue lines against a light blue matrix, whereas bone formation arrest lines are thicker with a smooth contour. With this technique cellular detail, osteoid differentiation, and fluorochrome labels are retained. Results demonstrate the applicability of a one-step staining method for cement lines which will facilitate the assessment of bone remodeling activity in thin sections of undecalcified cortical bone.
Quantitative analysis of packed and compacted granular systems by x-ray microtomography
NASA Astrophysics Data System (ADS)
Fu, Xiaowei; Milroy, Georgina E.; Dutt, Meenakshi; Bentham, A. Craig; Hancock, Bruno C.; Elliott, James A.
2005-04-01
The packing and compaction of powders are general processes in pharmaceutical, food, ceramic and powder metallurgy industries. Understanding how particles pack in a confined space and how powders behave during compaction is crucial for producing high quality products. This paper outlines a new technique, based on modern desktop X-ray tomography and image processing, to quantitatively investigate the packing of particles in the process of powder compaction and provide great insights on how powder densify during powder compaction, which relate in terms of materials properties and processing conditions to tablet manufacture by compaction. A variety of powder systems were considered, which include glass, sugar, NaCl, with a typical particle size of 200-300 mm and binary mixtures of NaCl-Glass Spheres. The results are new and have been validated by SEM observation and numerical simulations using discrete element methods (DEM). The research demonstrates that XMT technique has the potential in further investigating of pharmaceutical processing and even verifying other physical models on complex packing.
Optical coherence tomography investigations of ceramic lumineers
NASA Astrophysics Data System (ADS)
Fernandes, Luana O.; Graça, Natalia D. R. L.; Melo, Luciana S. A.; Silva, Claudio H. V.; Gomes, Anderson S. L.
2016-02-01
Lumineers are veneer laminates used as an alternative for aesthetic dental solutions of the highest quality, but the only current means of its performance assessment is visual inspection. The objective of this study was to use the Optical Coherence Tomography (OCT) technique working in spectral domain to analyze in vivo in a single patient, 14 lumineers 180 days after cementation. It was possible to observe images in various kinds of changes in the cementing line and the laminate. It was concluded that the OCT is an effective and promising method to clinical evaluation of the cementing line in lumineers.
Rehousek, Petr; Jenner, Edward; Holton, James; Czyz, Marcin; Capek, Lukas; Henys, Petr; Kulvajtova, Marketa; Krbec, Martin; Skala-Rosenbaum, Jiri
2018-05-18
Odontoid process fractures are the most common injuries of the cervical spine in the elderly. Anterior screw stabilization of type II odontoid process fractures improves survival and function in these patients but may be complicated by failure of fixation. The present study aimed to determine whether cement augmentation of a standard anterior screw provides biomechanically superior fixation of type II odontoid fractures in comparison with a non-cemented standard screw. Twenty human cadaveric C2 vertebrae from elderly donors (mean age 83 years) were obtained. Anderson and D'Alonzo type IIa odontoid fracture was created by transverse osteotomy, and fluoroscopy-guided anterior screw fixation was performed. The specimens were divided into two matched groups. The cemented group (n=10) had radiopaque high viscosity polymethylmethacrylate cement injected via Jamshidi needle into the base of the odontoid process. The other group was not augmented. A V-shaped punch was used for loading the odontoid in an anteroposterior direction until failure. The failure state was defined as screw cutout or 5% force decrease. Mean failure load and bending stiffness were calculated. The mean failure load for the cemented group was 352±12 N compared with 168±23 N for the non-cemented group (p<.001). The mean initial stiffness of the non-cemented group was 153±19 N/mm compared with 195±29 N/mm for the cemented group (p<.001) CONCLUSIONS: Cement augmentation of an anterior standard screw fixation of type II odontoid process fractures in elderly patients significantly increased load to failure under anteroposterior load in comparison with non-augmented fixation. This may be a valuable technique to reduce failure of fixation. Copyright © 2018 Elsevier Inc. All rights reserved.
Groundwater well with reactive filter pack
Gilmore, T.J.; Holdren, G.R. Jr.; Kaplan, D.I.
1998-09-08
A method and apparatus are disclosed for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques. 3 figs.
Bone Repair and Military Readiness
2012-10-25
formation. Orthopedic surgeons have had to adapt surgical techniques to account for issues with cementing total joint prostheses and subsequent total joint ...the silorane composite has the potential to support osseous integration around the cemented total joint implant and may generate less immunogenic wear...factors, and potential for osseointegration/osseoinduction, this material has potential to be used for screw augmentation, total hip/knee joint
Oyagüe, Raquel Castillo; Sánchez-Turrión, Andrés; López-Lozano, José Francisco; Montero, Javier; Albaladejo, Alberto; Suárez-García, María Jesús
2012-07-01
This study evaluated the vertical discrepancy of implant-fixed 3-unit structures. Frameworks were constructed with laser-sintered Co-Cr, and vacuum-cast Co-Cr, Ni-Cr-Ti, and Pd-Au. Samples of each alloy group were randomly luted in standard fashion using resin-modified glass-ionomer, self-adhesive, and acrylic/urethane-based cements (n = 12 each). Discrepancies were SEM analyzed. Three-way ANOVA and Student-Newman-Keuls tests were run (P < 0.05). Laser-sintered structures achieved the best fit per cement tested. Within each alloy group, resin-modified glass-ionomer and acrylic/urethane-based cements produced comparably lower discrepancies than the self-adhesive agent. The abutment position did not yield significant differences. All misfit values could be considered clinically acceptable.
Percolation behavior of tritiated water into a soil packed bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honda, T.; Katayama, K.; Uehara, K.
2015-03-15
A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particlemore » densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)« less
The effects of modern cementing techniques on the longevity of total hip arthroplasty.
Poss, R; Brick, G W; Wright, R J; Roberts, D W; Sledge, C B
1988-07-01
Modern prosthetic design and cementing techniques have dramatically improved femoral component fixation. Compared to studies reported in the 1970s, the incidence of radiographic loosening for periods up to 5 years postoperatively has been reduced by at least a factor of 10. These results are the benchmark by which alternative forms of femoral component fixation must be measured. With the likelihood of increased longevity of total hip arthroplasty resulting from improved fixation, the problems of wear debris from the bearing surfaces and loss of bone stock with time will become preeminent.
NASA Astrophysics Data System (ADS)
Slane, Joshua A.
Acrylic bone cement (polymethyl methacrylate) is widely used in total joint replacements to provide long-term fixation of implants. In essence, bone cement acts as a grout by filling in the voids left between the implant and the patient's bone, forming a mechanical interlock. While bone cement is considered the `gold standard' for implant fixation, issues such as mechanical failure of the cement mantle (aseptic loosening) and the development of prosthetic joint infection (PJI) still plague joint replacement procedures and often necessitate revision arthroplasty. In an effort to address these failures, various modifications are commonly made to bone cement such as mechanical reinforcement with particles/fibers and the addition of antibiotics to mitigate PJI. Despite these attempts, issues such as poor particle interfacial adhesion, inadequate drug release, and the development of multidrug resistant bacteria limit the effectiveness of bone cement modifications. Therefore, the overall goal of this work was to use micro and nanoparticles to enhance the properties of acrylic bone cement, with particular emphasis placed on improving the mechanical properties, cumulative antibiotic release, and antimicrobial properties. An acrylic bone cement (Palacos R) was modified with three types of particles in various loading ratios: mesoporous silica nanoparticles (for mechanical reinforcement), xylitol microparticles (for increased antibiotic release), and silver nanoparticles (as an antimicrobial agent). These particles were used as sole modifications, not in tandem with one another. The resulting cement composites were characterized using a variety of mechanical (macro to nano, fatigue, fracture, and dynamic), imaging, chemical, thermal, biological, and antimicrobial testing techniques. The primary outcomes of this dissertation demonstrate that: (1) mesoporous silica, as used in this work, is a poor reinforcement phase for acrylic bone cement, (2) xylitol can significantly increase the cumulative antibiotic release from acrylic cement, and (3) silver nanoparticles are a potential alternative to traditional antibiotics in cement, such as gentamicin.
Al Kahtani, Ahmed M.
2010-01-01
Objectives The objectives of the study were to study the effect of root canal sealers either eugenol or non-eugenol and timing of cementation on microleakage of the parapost luted with resin cement. Materials and methods Seventy extracted human, single-rooted teeth were instrumented using a crown-down technique. All teeth were instrumented up to a size 50 .04 taper ProFile followed by the use of Gates Glidden drills from size 2 up to 5. Following instrumentation, the teeth were randomly divided into four experimental groups of fifteen teeth each, based on type of root canal sealer (eugenol or non-eugenol sealer) and timing of post cementation (immediate or delayed). The remaining ten teeth were divided into two control groups with five teeth per group. All teeth were tested for microleakage using a fluid filtration method. Results The microleakage of the paraposts luted with resin cement increased over time, irrespective of sealer type or timing of post cementation. Immediate post cementation following obturation with AH26 (non-eugenol sealer) produced the least microleakage at all three time periods at 24 h, 2 months and 3 months. Conclusions The microleakage paraposts luted with resin cement was not influenced by either sealer type or timing of post placement. All experimental groups demonstrated a significant increase in microleakage over time as well as the presence of voids at the resin–dentin interface. PMID:24109165
Binary Disassembly Block Coverage by Symbolic Execution vs. Recursive Descent
2012-03-01
explores the effectiveness of symbolic execution on packed or obfuscated samples of the same binaries to generate a model-based evaluation of success...24 2.3.4.1 Packing . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.4.2 Techniques...inner workings of UPX (Universal Packer for eXecutables), a common packing tool, on a Windows binary. Image source: GFC08 . . . . . . . . . . . 25 3.1
Thiel, Cassandra L; Fiorin Carvalho, Rafaela; Hess, Lindsay; Tighe, Joelle; Laurence, Vincent; Bilec, Melissa M; Baratz, Mark
2017-11-01
The US health care sector has substantial financial and environmental footprints. As literature continues to study the differences between wide-awake hand surgery (WAHS) and the more traditional hand surgery with sedation & local anesthesia, we sought to explore the opportunities to enhance the sustainability of WAHS through analysis of the respective costs and waste generation of the 2 techniques. We created a "minimal" custom pack of disposable surgical supplies expressly for small hand surgery procedures and then measured the waste from 178 small hand surgeries performed using either the "minimal pack" or the "standard pack," depending on physician pack choice. Patients were also asked to complete a postoperative survey on their experience. Data were analyzed using 1- and 2-way ANOVAs, 2-sample t tests, and Fisher exact tests. As expected, WAHS with the minimal pack produced 0.3 kg (13%) less waste and cost $125 (55%) less in supplies per case than sedation & local with the standard pack. Pack size was found to be the driving factor in waste generation. Patients who underwent WAHS reported slightly greater pain and anxiety levels during their surgery, but also reported greater satisfaction with their anesthetic choice, which could be tied to the enthusiasm of the physician performing WAHS. Surgical waste and spending can be reduced by minimizing the materials brought into the operating room in disposable packs. WAHS, as a nascent technique, may provide an opportunity to drive sustainability by paring back what is considered necessary in these packs. Moreover, despite some initial anxiety, many patients report greater satisfaction with WAHS. All told, our study suggests a potentially broader role for WAHS, with its concomitant emphases on patient satisfaction and the efficient use of time and resources.
Three-dimensional shape optimization of a cemented hip stem and experimental validations.
Higa, Masaru; Tanino, Hiromasa; Nishimura, Ikuya; Mitamura, Yoshinori; Matsuno, Takeo; Ito, Hiroshi
2015-03-01
This study proposes novel optimized stem geometry with low stress values in the cement using a finite element (FE) analysis combined with an optimization procedure and experimental measurements of cement stress in vitro. We first optimized an existing stem geometry using a three-dimensional FE analysis combined with a shape optimization technique. One of the most important factors in the cemented stem design is to reduce stress in the cement. Hence, in the optimization study, we minimized the largest tensile principal stress in the cement mantle under a physiological loading condition by changing the stem geometry. As the next step, the optimized stem and the existing stem were manufactured to validate the usefulness of the numerical models and the results of the optimization in vitro. In the experimental study, strain gauges were embedded in the cement mantle to measure the strain in the cement mantle adjacent to the stems. The overall trend of the experimental study was in good agreement with the results of the numerical study, and we were able to reduce the largest stress by more than 50% in both shape optimization and strain gauge measurements. Thus, we could validate the usefulness of the numerical models and the results of the optimization using the experimental models. The optimization employed in this study is a useful approach for developing new stem designs.
Characterization of films formed by the aluminizing of T91 steel
NASA Astrophysics Data System (ADS)
Sanabria Cala, J. A.; Conde Rodríguez, G. R.; Y Peña Ballesteros, D.; Laverde Cataño, D.; Quintero Rangel, L. S.
2017-12-01
The aluminizing of a T91 martensitic ferritic steel was carried out by a novel modification to the traditional technique of packed cementation, with the objective of producing a diffusion coating of aluminum in a shorter time and operating cost, from a technique that allows the reuse of powder packaging and which the coating of metal parts with complex shapes can be secured. As an aluminum source, commercial foil is used to wrap the piece to be coated, while the powder packaging contains aluminum oxide Al2O3 and an activating salt, ammonium chloride NH4Cl. During the deposition process of the coating, the NH4Cl is decomposed by reacting with foil, and thus, aluminum halides can be transferred to the metallic substrate, which deposit aluminum on the T91 steel surface while Al2O3 can be recycled for subsequent processes. The results of the diffractograms and micrographs indicated the strong influence of temperature, exposure time and ammonium chloride concentration in the formation and growth evolution of a stable coating of iron-aluminum and iron-aluminum-nickel on the T91 steel surface, which was effectively deposited at a temperature of 700°C and an exposure period of 9 hours. The coating formed on the T91 steel surface could play a protective role towards the material by acting as a physical barrier between the alloy and other corrosive species in high temperature operated systems.
Educational Brief: Using Space for a Better Foundation on Earth Mechanics of Granular Materials
NASA Technical Reports Server (NTRS)
Dooling, Dave (Editor)
2002-01-01
Soils are three-phase composite materials that consist of soil, solid particles, and voids filled with water and/or air. Based on the particle-size distribution, they are generally classified as fine-grained (clays and plastic silts) and coarse-grained soils (nonplastic silts, sand, and gravel). Soil's resistance to external loadings is mainly derived from friction between particles and cohesion. Friction resistance is due to particles' surface-to-surface friction, interlocking, crushing, rearrangement, and dilation (or expansion) during shearing. Cohesion can be due to chemical cementation between particles, electrostatic and electromagnetic forces, and soil-water reaction and equilibrium. The basic factor responsible for the strength of coarse-grained soils is friction. Cohesion can be ignored. This educational brief focuses on measuring shear strength of sands (typical example of coarse-grained soils) where, for the same material, packing density is a main factor to be considered when one asks about the shear strength value. As the external load is applied, the soil's resistance is attained through shearing resistance, which causes the soil volume to increase (expand) or decrease (compress) depending on the initial packing density.
Kiss, Marc-Olivier; Levasseur, Annie; Petit, Yvan; Lavigne, Patrick
2012-05-01
Osteochondral autografts in mosaicplasty are inserted in a press-fit fashion, and hence, patients are kept nonweightbearing for up to 2 months after surgery to allow bone healing and prevent complications. Very little has been published regarding alternative fixation techniques of those grafts. Osteochondral autografts stabilized with a resorbable osteoconductive bone cement would have a greater load-bearing capacity than standard press-fit grafts. Controlled laboratory study. Biomechanical testing was conducted on 8 pairs of cadaveric bovine distal femurs. For the first 4 pairs, 6 single osteochondral autografts were inserted in a press-fit fashion on one femur. On the contralateral femur, 6 grafts were stabilized with a calcium triglyceride osteoconductive bone cement. For the 4 remaining pairs of femurs, 4 groups of 3 adjacent press-fit grafts were inserted on one femur, whereas on the contralateral femur, grafts were cemented. After a maturation period of 48 hours, axial loading was applied on all single grafts and on the middle graft of each 3-in-a-row series. For the single-graft configuration, median loads required to sink the press-fit and cemented grafts by 2 and 3 mm were 281.87 N versus 345.56 N (P = .015) and 336.29 N versus 454.08 N (P = .018), respectively. For the 3-in-a-row configuration, median loads required to sink the press-fit and cemented grafts by 2 and 3 mm were 260.31 N versus 353.47 N (P = .035) and 384.83 N versus 455.68 N (P = .029), respectively. Fixation of osteochondral grafts using bone cement appears to improve immediate stability over the original mosaicplasty technique for both single- and multiple-graft configurations. Achieving greater primary stability of osteochondral grafts could potentially accelerate postoperative recovery, allowing early weightbearing and physical therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musgrave, J.A.; Carey, R.G.; Janecky, D.R.
1994-06-01
The instrumentation, the luminescence microprobe, and synchronously scanned luminescence spectroscopy technique described here can be used to classify microliter quantities of oil such as those in fluid inclusions in cements from petroleum reservoirs. It is primarily constructed to obtain synchronously scanned luminescence spectra from microscopic sized samples to characterize the organic classes of compounds that predominate. At present no other technique can so readily analyze a single oil-bearing fluid inclusion. The data collected from the technique are pertinent to evaluating systems and providing quantitative data for solving problems in oil migration and maturation determinations, oil-to-oil and oil-to-source correlations, oil degradation,more » and episodes and chemistry of cementation.« less
Navimipour, Elmira Jafari; Oskoee, Siavash Savadi; Oskoee, Parnian Alizadeh; Bahari, Mahmoud; Rikhtegaran, Sahand; Ghojazadeh, Morteza
2012-03-01
Success in sandwich technique procedures can be achieved through an acceptable bond between the materials. The aim of this study was to compare the effect of 35% phosphoric acid and Er,Cr:YSGG laser on shear bond strength of conventional glass-ionomer cement (GIC) and resin-modified glass-ionomer cement (RMGIC) to composite resin in sandwich technique. Sixty-six specimens were prepared from each type of glass-ionomer cements and divided into three treatment groups as follows: without pretreatment, acid etching by 35% phosphoric acid for 15 s, and 1-W Er,Cr:YSGG laser treatment for 15 s with a 600-μm-diameter tip aligned perpendicular to the target area at a distance of 1 mm from the surface. Energy density of laser irradiation was 17.7 J/cm(2). Two specimens in each group were prepared for evaluation under a scanning electron microscope (SEM) after surface treatment and the remainder underwent bonding procedure with a bonding agent and composite resin. Then the shear bond strength was measured at a crosshead speed of 0.5 mm/min. Two-factor analysis of variance and post-hoc Tukey test showed that the cement type, surface treatment method, and the interaction of these two factors significantly affect the shear bond strength between glass-ionomer cements and composite resin (p < 0.05). Surface treatment with phosphoric acid or Er,Cr:YSGG laser increased the shear bond strength of GIC to composite resin; however, in RMGIC only laser etching resulted in significantly higher bond strength. These findings were supported by SEM results. The fracture mode was evaluated under a stereomicroscope at ×20.
Castillo-Oyagüe, Raquel; Lynch, Christopher D; Turrión, Andrés S; López-Lozano, José F; Torres-Lagares, Daniel; Suárez-García, María-Jesús
2013-01-01
This study evaluated the marginal misfit and microleakage of cement-retained implant-supported crown copings. Single crown structures were constructed with: (1) laser-sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC) and (3) vacuum-cast Ni-Cr-Ti (CN). Samples of each alloy group were randomly luted in standard fashion onto machined titanium abutments using: (1) GC Fuji PLUS (FP); (2) Clearfil Esthetic Cement (CEC); (3) RelyX Unicem 2 Automix (RXU) and (4) DentoTemp (DT) (n=15 each). After 60 days of water ageing, vertical discrepancy was SEM-measured and cement microleakage was scored using a digital microscope. Misfit data were subjected to two-way ANOVA and Student-Newman-Keuls multiple comparisons tests. Kruskal-Wallis and Dunn's tests were run for microleakage analysis (α=0.05). Regardless of the cement type, LS samples exhibited the best fit, whilst CC and CN performed equally well. Despite the framework alloy and manufacturing technique, FP and DT provide comparably better fit and greater microleakage scores than did CEC and RXU, which showed no differences. DMLS of Co-Cr may be a reliable alternative to the casting of base metal alloys to obtain well-fitted implant-supported crowns, although all the groups tested were within the clinically acceptable range of vertical discrepancy. No strong correlations were found between misfit and microleakage. Notwithstanding the framework alloy, definitive resin-modified glass-ionomer (FP) and temporary acrylic/urethane-based (DT) cements demonstrated comparably better marginal fit and greater microleakage scores than did 10-methacryloxydecyl-dihydrogen phosphate-based (CEC) and self-adhesive (RXU) dual-cure resin agents. Copyright © 2012 Elsevier Ltd. All rights reserved.
Release of U(VI) from spent biosorbent immobilized in cement concrete blocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkobachar, C.; Iyengar, L.; Mishra, U.K.
1995-12-01
This paper deals with cementation as the method for the disposal of spent biosorbent, Ganoderma lucidum (a wood rotting macrofungi) after it is used for the removal of Uranium. Results on the uranium release during the curing of cement-concrete (CC) blocks indicated that placing the spent sorbent at the center of the blocks during their casting yields better immobilization of uranium as compared to the homogeneous mixing of the spent sorbent with the cement. Short term leach tests indicated that the uranium release was negligible in simulated seawater, 1.8% in 0.2 N sodium carbonate and 6.0% in 0.2 N HCl.more » The latter two leachates were used to represent the extreme environmental conditions. It was observed that the presence of the spent biosorbent up to 5% by weight did not affect the compressive strength of CC blocks. Thus cementation technique is suitable for the immobilization of uranium loaded biosorbent for its ultimate disposal.« less
Effect of pulse pressure on borehole stability during shear swirling flow vibration cementing.
Cui, Zhihua; Ai, Chi; Lv, Lei; Yin, Fangxian
2017-01-01
The shear swirling flow vibration cementing (SSFVC) technique rotates the downhole eccentric cascade by circulating cementing fluid. It makes the casing eccentrically revolve at high speed around the borehole axis. It produces strong agitation action to the annulus fluid, makes it in the state of shear turbulent flow, and results in the formation of pulse pressure which affects the surrounding rock stress. This study was focused on 1) the calculation of the pulse pressure in an annular turbulent flow field based on the finite volume method, and 2) the analysis of the effect of pulse pressure on borehole stability. On the upside, the pulse pressure is conducive to enhancing the liquidity of the annulus fluid, reducing the fluid gel strength, and preventing the formation of fluid from channeling. But greater pulse pressure may cause lost circulation and even formation fracturing. Therefore, in order to ensure smooth cementing during SSFVC, the effect of pulse pressure should be considered when cementing design.
Marchan, Shivaughn M.; Coldero, Larry; White, Daniel; Smith, William A. J.; Rafeek, Reisha N.
2009-01-01
Objective. This in vitro study uses measurements of fracture resistance to compare maxillary premolars restored with the bonded amalgam technique using a new resin luting cement, glass ionomer, and resin-modified glass ionomer as the bonding agents. Materials. Eighty-five sound maxillary premolars were selected and randomly assigned to one of five test groups of 17 teeth each. One group of intact teeth served as the control. The remaining groups were prepared to a standard cavity form relative to the dimensions of the overall tooth and restored with amalgam alone or a bonded amalgam using one of three luting agents: RelyX Arc (a new resin luting cement), RelyX luting (a resin-modified glass ionomer), or Ketac-Cem μ (a glass ionomer) as the bonding agents. Each tooth was then subjected to compressive testing until catastrophic failure occurred. The mean loads at failure of each group were statistically compared using ANOVA with a post hoc Bonferroni test. Results. It was found that regardless of the luting cement used for the amalgam bonding technique, there was little effect on the fracture resistance of teeth. Conclusion. Cusp fracture resistance of premolars prepared with conservative MOD cavity preparations is not improved by using an amalgam-bonding technique compared to similar cavities restored with amalgam alone. PMID:20339450
Bostelmann, Richard; Keiler, Alexander; Steiger, Hans Jakob; Scholz, Armin; Cornelius, Jan Frederick; Schmoelz, Werner
2017-01-01
Augmentation of pedicle screws is recommended in selected indications (for instance: osteoporosis). Generally, there are two techniques for pedicle screw augmentation: inserting the screw in the non cured cement and in situ-augmentation with cannulated fenestrated screws, which can be applied percutaneously. Most of the published studies used an axial pull out test for evaluation of the pedicle screw anchorage. However, the loading and the failure mode of pullout tests do not simulate the cranio-caudal in vivo loading and failure mechanism of pedicle screws. The purpose of the present study was to assess the fixation effects of different augmentation techniques (including percutaneous cement application) and to investigate pedicle screw loosening under physiological cyclic cranio-caudal loading. Each of the two test groups consisted of 15 vertebral bodies (L1-L5, three of each level per group). Mean age was 84.3 years (SD 7.8) for group 1 and 77.0 years (SD 7.00) for group 2. Mean bone mineral density was 53.3 mg/cm 3 (SD 14.1) for group 1 and 53.2 mg/cm 3 (SD 4.3) for group 2. 1.5 ml high viscosity PMMA bone cement was used for all augmentation techniques. For test group 1, pedicles on the right side of the vertebrae were instrumented with solid pedicle screws in standard fashion without augmentation and served as control group. Left pedicles were instrumented with cannulated screws (Viper cannulated, DePuy Spine) and augmented. For test group 2 pedicles on the left side of the vertebrae were instrumented with cannulated fenestrated screws and in situ augmented. On the right side solid pedicle screws were augmented with cement first technique. Each screw was subjected to a cranio-caudal cyclic load starting at 20-50 N with increasing upper load magnitude of 0.1 N per cycle (1 Hz) for a maximum of 5000 cycles or until total failure. Stress X-rays were taken after cyclic loading to evaluate screw loosening. Test group 1 showed a significant higher number of load cycles until failure for augmented screws compared to the control (4030 cycles, SD 827.8 vs. 1893.3 cycles, SD 1032.1; p < 0.001). Stress X-rays revealed significant less screw toggling for the augmented screws (5.2°, SD 5.4 vs. 16.1°, SD 5.9; p < 0.001). Test group 2 showed 3653.3 (SD 934) and 3723.3 (SD 560.6) load cycles until failure for in situ and cement first augmentation. Stress X-rays revealed a screw toggling of 5.1 (SD 1.9) and 6.6 (SD 4.6) degrees for in situ and cement first augmentation techniques (p > 0.05). Augmentation of pedicle screws in general significantly increased the number of load cycles and failure load comparing to the nonaugmented control group. For the augmentation technique (cement first, in situ augmented, percutaneously application) no effect could be exhibited on the failure of the pedicle screws. By the cranio-caudal cyclic loading failure of the pedicle screws occurred by screw cut through the superior endplate and the characteristic "windshield-wiper effect", typically observed in clinical practice, could be reproduced.
Calcium Orthophosphate Cements and Concretes
Dorozhkin, Sergey V.
2009-01-01
In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA) or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone), calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.
Immobilization of Fast Reactor First Cycle Raffinate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langley, K. F.; Partridge, B. A.; Wise, M.
This paper describes the results of work to bring forward the timing for the immobilization of first cycle raffinate from reprocessing fuel from the Dounreay Prototype Fast Reactor (PFR). First cycle raffinate is the liquor which contains > 99% of the fission products separated from spent fuel during reprocessing. Approximately 203 m3 of raffinate from the reprocessing of PFR fuel is held in four tanks at the UKAEA's site at Dounreay, Scotland. Two methods of immobilization of this high level waste (HLW) have been considered: vitrification and cementation. Vitrification is the standard industry practice for the immobilization of first cyclemore » raffinate, and many papers have been presented on this technique elsewhere. However, cementation is potentially feasible for immobilizing first cycle raffinate because the heat output is an order of magnitude lower than typical HLW from commercial reprocessing operations such as that at the Sellafield site in Cumbria, England. In fact, it falls within the upper end of the UK definition of intermediate level waste (ILW). Although the decision on which immobilization technique will be employed has yet to be made, initial development work has been undertaken to identify a suitable cementation formulation using inactive simulant of the raffinate. An approach has been made to the waste disposal company Nirex to consider the disposability of the cemented product material. The paper concentrates on the process development work that is being undertaken on cementation to inform the decision making process for selection of the immobilization method.« less
Laboratory-Scale Solidification of Basin F Concentrate, Rocky Mountain Arsenal
1983-07-01
follows: ," a. Cement-based processes b. Pozzolanic processes (silicate processes that do not use cement) c. Thermoplastic techniques d. Organic polymer ...ARSENAL 6. AUTHOR(S) MYERST.; THOMPSON.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER ARMY ENG!NEER...SWLP Leachates Organics in EP and SWLP Leachates Leachable Contaminant Densities Qualitative Assessments of Ammonia Gas Release by Solidification
Lorenzoni, Fabio Cesar; Bonfante, Estevam A; Bonfante, Gerson; Martins, Leandro M; Witek, Lukasz; Silva, Nelson R F A
2013-08-01
This evaluation aimed to (1) validate micro-computed tomography (microCT) findings using scanning electron microscopy (SEM) imaging, and (2) quantify the volume of voids and the bonded surface area resulting from fiber-reinforced composite (FRC) dowel cementation technique using microCT scanning technology/3D reconstructing software. A fiberglass dowel was cemented in a condemned maxillary lateral incisor prior to its extraction. A microCT scan was performed of the extracted tooth creating a large volume of data in DICOM format. This set of images was imported to image-processing software to inspect the internal architecture of structures. The outer surface and the spatial relationship of dentin, FRC dowel, cement layer, and voids were reconstructed. Three-dimensional spatial architecture of structures and volumetric analysis revealed that 9.89% of the resin cement was composed of voids and that the bonded area between root dentin and cement was 60.63% larger than that between cement and FRC dowel. SEM imaging demonstrated the presence of voids similarly observed using microCT technology (aim 1). MicroCT technology was able to nondestructively measure the volume of voids within the cement layer and the bonded surface area at the root/cement/FRC interfaces (aim 2). The interfaces at the root dentin/cement/dowel represent a timely and relevant topic where several efforts have been conducted in the past few years to understand their inherent features. MicroCT technology combined with 3D reconstruction allows for not only inspecting the internal arrangement rendered by fiberglass adhesively bonded to root dentin, but also estimating the volume of voids and contacted bond area between the dentin and cement layer. © 2013 by the American College of Prosthodontists.
Influence of bone density on the cement fixation of femoral hip resurfacing components.
Bitsch, Rudi G; Jäger, Sebastian; Lürssen, Marcus; Loidolt, Travis; Schmalzried, Thomas P; Clarius, Michael
2010-08-01
In clinical outcome studies, small component sizes, female gender, femoral shape, focal bone defects, bad bone quality, and biomechanics have been associated with failures of resurfacing arthroplasties. We used a well-established experimental setup and human bone specimens to analyze the effects of bone density on cement fixation of femoral hip resurfacing components. Thirty-one fresh frozen femora were prepared for resurfacing using the original instruments. ASR resurfacing prostheses were implanted after dual-energy X-ray densitometer scans. Real-time measurements of pressure and temperature during implantation, analyses of cement penetration, and measurements of micro motions under torque application were performed. The associations of bone density and measurement data were examined calculating regression lines and multiple correlation coefficients; acceptability was tested with ANOVA. We found significant relations between bone density and micro motion, cement penetration, cement mantle thickness, cement pressure, and interface temperature. Mean bone density of the femora was 0.82 +/- 0.13 g/cm(2), t-score was -0.7 +/- 1.0, and mean micro motion between bone and femoral resurfacing component was 17.5 +/- 9.1 microm/Nm. The regression line between bone density and micro motion was equal to -56.7 x bone density + 63.8, R = 0.815 (p < 0.001). Bone density scans are most helpful for patient selection in hip resurfacing, and a better bone quality leads to higher initial component stability. A sophisticated cementing technique is recommended to avoid vigorous impaction and incomplete seating, since increasing bone density also results in higher cement pressures, lower cement penetration, lower interface temperatures, and thicker cement mantles. Copyright 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Tooth surface treatment strategies for adhesive cementation
2017-01-01
PURPOSE The aim of this study was to evaluate the effect of tooth surface pre-treatment steps on shear bond strength, which is essential for understanding the adhesive cementation process. MATERIALS AND METHODS Shear bond strengths of different cements with various tooth surface treatments (none, etching, priming, or etching and priming) on enamel and dentin of human teeth were measured using the Swiss shear test design. Three adhesives (Permaflo DC, Panavia F 2.0, and Panavia V5) and one self-adhesive cement (Panavia SA plus) were included in this study. The interface of the cement and the tooth surface with the different pre-treatments was analyzed using SEM. pH values of the cements and primers were measured. RESULTS The highest bond strength values for all cements were achieved with etching and primer on enamel (25.6 ± 5.3 - 32.3 ± 10.4 MPa). On dentin, etching and priming produced the highest bond strength values for all cements (8.6 ± 2.9 - 11.7 ± 3.5 MPa) except for Panavia V5, which achieved significantly higher bond strengths when pre-treated with primer only (15.3 ± 4.1 MPa). Shear bond strength values were correlated with the micro-retentive surface topography of enamel and the tag length on dentin except for Panavia V5, which revealed the highest bond strength with primer application only without etching, resulting in short but sturdy tags. CONCLUSION The highest bond strength can be achieved for Panavia F 2.0, Permaflo DC, and Panavia SA plus when the tooth substrate is previously etched and the respective primer is applied. The new cement Panavia V5 displayed low technique-sensitivity and attained significantly higher adhesion of all tested cements to dentin when only primer was applied. PMID:28435616
Silver-Doped Calcium Phosphate Bone Cements with Antibacterial Properties
Rau, J. V.; Fosca, M.; Graziani, V.; Egorov, A. A.; Zobkov, Yu. V.; Fedotov, A. Yu.; Ortenzi, M.; Caminiti, R.; Baranchikov, A. E.; Komlev, V. S.
2016-01-01
Calcium phosphate bone cements (CPCs) with antibacterial properties are demanded for clinical applications. In this study, we demonstrated the use of a relatively simple processing route based on preparation of silver-doped CPCs (CPCs-Ag) through the preparation of solid dispersed active powder phase. Real-time monitoring of structural transformations and kinetics of several CPCs-Ag formulations (Ag = 0 wt %, 0.6 wt % and 1.0 wt %) was performed by the Energy Dispersive X-ray Diffraction technique. The partial conversion of β-tricalcium phosphate (TCP) phase into the dicalcium phosphate dihydrate (DCPD) took place in all the investigated cement systems. In the pristine cement powders, Ag in its metallic form was found, whereas for CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, CaAg(PO3)3 was detected and Ag (met.) was no longer present. The CPC-Ag 0 wt % cement exhibited a compressive strength of 6.5 ± 1.0 MPa, whereas for the doped cements (CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt %) the reduced values of the compressive strength 4.0 ± 1.0 and 1.5 ± 1.0 MPa, respectively, were detected. Silver-ion release from CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, measured by the Atomic Emission Spectroscopy, corresponds to the average values of 25 µg/L and 43 µg/L, respectively, rising a plateau after 15 days. The results of the antibacterial test proved the inhibitory effect towards pathogenic Escherichia coli for both CPC-Ag 0.6 wt % and CPC-Ag 1.0 wt % cements, better performances being observed for the cement with a higher Ag-content. PMID:27096874
New Medium for Isolation of Bacteria From Cement Kiln Dust with a Potential to Apply in Bio-Concrete
NASA Astrophysics Data System (ADS)
Alshalif, A. F.; Irwan, J. M.; Othman, N.; Al-Gheethi, A.
2018-04-01
The present study aimed to introduce a new isolation medium named kiln dust medium (KDM) for recovering of bacteria from cement kiln dust with high pH (>pH 11) without the need for nutrients additives. The cement kiln dust samples were collected from five different areas of Cement Industries of Malaysia Berhad (CIMA). The bacterial isolates were recovered on KDM by direct plating technique. The chemical components for all collected samples were identified using X-ray fluorescence (XRF). The primary identification for the bacterial isolates indicated that these bacteria belongs to Bacillus spp. Based on the morphological characteristics. The growth curve of the bacterial strains was monitored using the optical density (OD) with 650 nm wavelength, which in role confirmed that all isolated bacteria had the ability to grow successfully in the proposed medium. The ability of the bacterial strains to grow at high pH reflects their potential in the bio-concrete applications (aerated and non-aerated concrete). These findings indicated that the cement kiln dust samples from Cement Industries represent the most appropriate source for bacteria used in the bioconcrete.
Design and biomechanical evaluation of a cementable endosteal blade implant.
Pugh, J; Weiss, C; Weiss, F; Malkin, D
1976-07-01
A cementable endosteal blade implant has been developed and evaluated. Inherent in the design are the following factors: minimization of stress concentrators, ease of implantation, and high resistance to loosening. Other potential advantages of this design as compared with conventional endosteal blade implants include reduced hazards of postoperative infection and reduced likelihood of metallic corrosion. Six conventional endosteal implants and six cementable implants were installed in steer mandibles using standard dental surgical techniques and Simplex-brand methyl methacrylate bone cement. They were loaded in uniaxial compresstion at a loading rate of 0.0122 in./min. the stiffness (S), deformation at 900-lb load (D900), proportional limil (PL), and load at 0.04 in. deformation (L0.04) were calculated for each test. The cementable design showed a twofold increase in stiffness, only 17% of the deformation at 900lb, more than twice the proportional limit, and at least twice the load at 0.04 in. deformation when compared with similar values for the conventional endosteal implants. This study reveals that, in addition to being unstable in bone, conventional endosteal implants are also unstable when used with acrylic bone cement. The new design should eliminate most of the problems associated with endosteal blade implantation.
NASA Astrophysics Data System (ADS)
Sinha, Deepa A., Dr; Verma, A. K., Dr
2017-08-01
This paper presents the results of M60 grade of concrete. M60 grade of concrete is achieved by maximum density technique. Concrete is brittle and weak in tension and develops cracks during curing and due to thermal expansion / contraction over a period ot time. Thus the effect of addition of 1% steel fibre is studied. For ages, concrete has been one of the widely used materials for construction. When cement is manufactured, every one ton of cement produces around one ton of carbon dioxide leading to global warming and also as natural resources are finishing, so use of supplementary cementitious material like alccofine and flyash is used as partial replacement of cement is considered. The effect of binary and ternary blend on the strength characteristics is studied. The results indicate that the concrete made with alccofine and flyash generally show excellent fresh and hardened properties. The ternary system that is Portland cement-fly ash-Alccofine concrete was found to increase the strength of concrete when compared to concrete made with Portland cement or even from Portland cement and fly ash.
Nano-modified cement composites and its applicability as concrete repair material
NASA Astrophysics Data System (ADS)
Manzur, Tanvir
Nanotechnology or Nano-science, considered the forth industrial revolution, has received considerable attention in the past decade. The physical properties of a nano-scaled material are entirely different than that of bulk materials. With the emerging nanotechnology, one can build material block atom by atom. Therefore, through nanotechnology it is possible to enhance and control the physical properties of materials to a great extent. Composites such as concrete materials have very high strength and Young's modulus but relatively low toughness and ductility due to their covalent bonding between atoms and lacking of slip systems in the crystal structures. However, the strength and life of concrete structures are determined by the microstructure and mass transfer at nano scale. Cementitious composites are amenable to manipulation through nanotechnology due to the physical behavior and size of hydration products. Carbon nanotubes (CNT) are nearly ideal reinforcing agent due to extremely high aspect ratios and ultra high strengths. So there is a great potential to utilize CNT in producing new cement based composite materials. It is evident from the review of past literature that mechanical properties of nanotubes reinforced cementitious composites have been highly variable. Some researches yielded improvement in performance of CNT-cement composites as compared to plain cement samples, while other resulted in inconsequential changes in mechanical properties. Even in some cases considerable less strengths and modulus were obtained. Another major difficulty of producing CNT reinforced cementitious composites is the attainment of homogeneous dispersion of nanotubes into cement but no standard procedures to mix CNT within the cement is available. CNT attract more water to adhere to their surface due to their high aspect ratio which eventually results in less workability of the cement mix. Therefore, it is extremely important to develop a suitable mixing technique and an optimum mix proportion to produce CNT reinforced cement composites. In this study, an extensive parametric study has been conducted using different types of treated and untreated multi walled nanotubes (MWNT) as reinforcement of cementitious composites having different mix proportions. It is found that mixing of nanotubes within cement matrix is the key to develop composites having desirable properties. A mixing technique has been proposed to address the issues related to dispersion of nanotubes within cement matrix. Polycarboxylate based super plasticizer has been proposed to use as surfactant. It is evident that there exists an optimum concentration of MWNT and mix proportion to achieve proper reinforcement behavior and strength properties. The affect of size of MWNT on strengths (both compressive and flexure) of composites has also been investigated. Based on the parametric study and statistical analysis, a tentative optimum mix proportion has been proposed. Composites made by the proposed mixing technique and design mix obtained 26, 27 and 16% higher compressive strength as compared to control samples at the age of 3, 7 and 28 day, respectively. Flexural strengths of those composites at 3, 7 and 28 day were about 24, 24.5 and 20% higher than that of control samples, respectively. It has also been suggested that application of MWNT reinforced cement mortar as concrete repair material has excellent potential since composites exhibited desirable behavior in setting time, bleeding and slant shear.
An insight into current concepts and techniques in resin bonding to high strength ceramics.
Luthra, R; Kaur, P
2016-06-01
Reliable bonding between high strength ceramics and resin composite cement is difficult to achieve because of their chemical inertness and lack of silica content. The aim of this review was to assess the current literature describing methods for resin bonding to ceramics with high flexural strength such as glass-infiltrated alumina and zirconia, densely sintered alumina and yttria-partially stabilized tetragonal zirconia polycrystalline ceramic (Y-TZP) with respect to bond strength and bond durability. Suitable peer reviewed publications in the English language were identified through searches performed in PubMed, Google Search and handsearches. The keywords or phrases used were 'resin-ceramic bond', 'silane coupling agents', 'air particle abrasion', 'zirconia ceramic' and 'resin composite cements'. Studies from January 1989 to June 2015 were included. The literature demonstrated that there are multiple techniques available for surface treatments but bond strength testing under different investigations have produced conflicting results. Within the scope of this review, there is no evidence to support a universal technique of ceramic surface treatment for adhesive cementation. A combination of chemical and mechanical treatments might be the recommended solution. The hydrolytic stability of the resin ceramic bond should be enhanced. © 2016 Australian Dental Association.
Kitayama, Shuzo; Nikaido, Toru; Maruoka, Rena; Zhu, Lei; Ikeda, Masaomi; Watanabe, Akihiko; Foxton, Richard M; Miura, Hiroyuki; Tagami, Junji
2009-07-01
This study was conducted to enhance the tensile bond strengths of resin cements to zirconia ceramics. Fifty-six zirconia ceramic specimens (Cercon Base) and twenty-eight silica-based ceramic specimens (GN-1, GN-1 Ceramic Block) were air-abraded using alumina. Thereafter, the zirconia ceramic specimens were divided into two subgroups of 28 each according to the surface pretreatment; no pretreatment (Zr); and the internal coating technique (INT). For INT, the surface of zirconia was coated by fusing silica-based ceramics (Cercon Ceram Kiss). Ceramic surfaces were conditioned with/without a silane coupling agent followed by bonding with one of two resin cements; Panavia F 2.0 (PF) and Superbond C&B (SB). After 24 hours storage in water, the tensile bond strengths were tested (n=7). For both PF and SB, silanization significantly improved the bond strength to GN-1 and INT (p<0.05). The INT coating followed by silanizaton demonstrated enhancement of bonding to zirconia ceramics.
NASA Astrophysics Data System (ADS)
Khanna, Sakshum; Marathey, Priyanka; Utsav, Chaliawala, Harsh; Mukhopadhyay, Indrajit
2018-05-01
We present the studies on the structural properties of monolayer Bidisperse silica (SiO2) nanoparticles (BDS) on Silicon (Si-100) substrate using spin coating technique. The Bidisperse silica nanoparticle was synthesised by the modified sol-gel process. Nanoparticles on the substrate are generally assembled in non-close/close-packed monolayer (CPM) form. The CPM form is obtained by depositing the colloidal suspension onto the silicon substrate using complex techniques. Here we report an effective method for forming a monolayer of bidisperse silica nanoparticle by three step spin coating technique. The samples were prepared by mixing the monodisperse solutions of different particles size 40 and 100 nm diameters. The bidisperse silica nanoparticles were self-assembled on the silicon substrate forming a close-packed monolayer film. The scanning electron microscope images of bidisperse films provided in-depth film structure of the film. The maximum surface coverage obtained was around 70-80%.
1985-07-01
protein, and AFFF (Air Force Firefighting Foam). The frequency of training exercises has varied considerably over the years. During the early 1970’s...Surface ’ Cement/ Bentonite Grout Bentonite Seal Sand Pack 1. Ground Water Elevation r Mamaur July 4.5, 194 * . FIGURE 3-9 WELL CONSTRUCTION SUMMARY, ZONE...e zzzzzzzzz z I z z Z 0 -. N N E-3 3 0 3 3 w 3 w 0 o z ~ zzzzzzzz z z z z E- 0 0 E- 0z zzzzzzzz zz aua E- 0 4 10 zw 3 E- z 0 0 U)z V fC InZ OE- 3
Naranjo, Jennifer; Ali, Mohsin; Belles, Donald
2015-11-01
Comparison of shear bond strength of self-etch and self-adhesive cements bonded to lithium disilicate, enamel and dentin. With several self-adhesive resin cements currently available, there is confusion about which product and technique is optimal for bonding ceramic restorations to teeth. The objective of this study was to compare the shear bond strength of lithium disilicate cemented to enamel and dentin using 5 adhesive cements. 100 lithium disilicate rods were pretreated with 5% hydrofluoric acid, silane, and cemented to 50 enamel and 50 dentin surfaces using five test cements: Variolink II (etch-and-rinse) control group, Clearfil Esthetic (two step self-etch), RelyX Unicem, SpeedCEM, and BifixSE (self-adhesive). All specimens were stored (37 degrees C, 100% humidity) for 24 hours before testing their shear bond strength using a universal testing machine (Instron). Debonded surfaces were observed under a low-power microscope to assess the location and type of failure. The highest bond strength for both enamel and dentin were recorded for Variolink II, 15.1MPa and 20.4MPa respectively, and the lowest were recorded for BifixSE, 0.6MPa and 0.9MPa respectively. Generally, higher bond strengths were found for dentin (7.4MPa) than enamel (5.3MPa). Tukey's post hoc test showed no significant difference between Clearfil Esthetic and SpeedCem (p = 0.059), Unicem and SpeedCem (p = 0.88), and Unicem and BifixSE (p = 0.092). All cements bonded better to lithium disilicate than to enamel or dentin, as all bond failures occurred at the tooth/adhesive interface except for Variolink II. Bond strengths recorded for self-adhesive cements were very low compared to the control "etch and rinse" and self-etch systems. Further improvements are apparently needed in self-adhesive cements for them to replace multistep adhesive systems. The use of conventional etch and rinse cements such as Veriolink II should be preferred for cementing all ceramic restorations over self-adhesive cements until the bond strengths are improved.
Cement-based materials' characterization using ultrasonic attenuation
NASA Astrophysics Data System (ADS)
Punurai, Wonsiri
The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct relationship between attenuation and water to cement (w/c) ratio. A phenomenological model based on the existence of fluid-filled capillary voids is used to help explain the experimentally observed behavior. Overall this research shows the potential of using ultrasonic attenuation to quantitatively characterize cement paste. The absorption and scattering losses can be related to the individual microstructural elements of hardened cement paste. By taking a fundamental, mechanics-based approach, it should be possible to add additional components such as scattering by aggregates or even microcracks in a systematic fashion and eventually build a realistic model for ultrasonic wave propagation study for concrete.
[Modified Exeter technique in revision hip surgery].
de Thomasson, E; Guingand, O; Terracher, R; Mazel, C
2008-06-01
The Exeter technique opened new perspectives for the treatment of femoral bone stock loss in revision hip arthroplasty. Implant migration in the cement sheath is, however, a frequent finding. According to the promoters of the technique, this would favor transformation of the allograft into living bone. For others it is a worrisome problem since it alters the heterogeneous cement sheath, leading to loosening and final surgical revision, with an incidence up to 20%. We propose an analysis of the mid-term results of the modified Exeter technique with the objective of cementing the distal part of the implant directly into the recipient bone in order to achieve satisfactory primary stability. The purpose of this work was to analyze the consequences of this method on the long-term evolution of the allograft. After preparing the femur, a specific gun is filled with allograph dough obtained from frozen femoral heads fragmented with an acetabular reamer. The Mersilene mesh enables the deposit of a tube of graft material at the desired level. The implant is sealed after impaction of the graft to enable direct distal cementing in contact with the recipient bone. Partial weight bearing is allowed as early as the fifth day and increased progressively to complete weight bearing at three months. Forty-five patients (46 hips) were treated between June 1996 and January 2002. Six patients were not retained for analysis due to insufficient follow-up. For three patients, graft outcome could not be properly assessed due to a major complication. In addition, two patients died and one was lost to follow-up. In all 39 patients (40 hips) were analyzed at mean follow-up of 84 months (range 48-110). There were no cases of revision for femoral loosening. Femoral bone loss was mainly moderate to severe type II and III hips (Sofcot classification) but limited in height (no grade IV in the Endo-Klinik classification). Clinical outcome was excellent in 13 hips, good in 16, fair in nine and poor in two (Postel-Merle-d'Aubigné score). Defective distal cementing with implant migration (less than 5 mm) was noted in four cases followed by secondary stabilization. Transformation of the allograft occurred in 36 cases, associated with corticalization of the recipient bone in 14. This technique is reproducible since primary stability was obtained in 90% of hips, without hindering transformation of the allograft. The results, which are sustained over time, are the same as with the princeps technique and no radiographic evidence of stress shielding could be found.
Sud, Shivani; Roth, Toni
2018-01-01
Purpose Intra-vaginal packing is used to fix the applicator and displace organs at risk (OAR) during high-dose-rate intracavitary tandem and ovoid brachytherapy (HDR-ICB). We retain the speculum from applicator placement as a dual-function bladder and rectum retractor during treatment. Our objective is to review salient techniques for OAR displacement, share our packing technique, and determine the reduction in dose to OAR and inter-fraction variability of dose to OAR, associated with speculum-based vaginal packing (SBVP) in comparison to conventional gauze packing during HDR-ICB. Material and methods We reviewed HDR-ICB treatment plans for 45 patients, including 10 who underwent both conventional gauze packing and SBVP. Due to institutional inter-provider practice differences, patients non-selectively received either packing procedure. Packing was performed under conscious sedation, followed by cone beam computed tomography used for dosimetric planning. Maximum absolute and percent-of-prescription dose to the International Commission of Radiation Units bladder and rectal points in addition to D0.1cc, D1.0cc, and D2.0cc volumes of the bladder and rectum were analyzed and compared for each packing method using an independent sample t-test. Results Of the 179 fractions included, 73% and 27% used SBVP and gauze packing, respectively. For patients prescribed 6 Gy to point A, SBVP was associated with reduced mean D0.1cc bladder dose, inter-fraction variability in D0.1cc bladder dose by 9.3% (p = 0.026) and 9.0%, respectively, and statistically equivalent rectal D0.1cc, D1.0cc, and D2.0cc. Patients prescribed 5.5 Gy or 5 Gy to point A after dose optimization, were less likely to benefit from SBVP. In the intra-patient comparison, 80% of patients had reduction in at least one rectum or bladder parameter. Conclusions In patients with conducive anatomy, SBVP is a cost-efficient packing method that is associated with improved bladder sparing and comparable rectal sparing relative to gauze packing during HDR-ICB without general anesthesia. PMID:29619054
The C-stem in clinical practice: fifteen-year follow-up of a triple tapered polished cemented stem.
Purbach, Bodo; Kay, Peter R; Siney, Paul D; Fleming, Patricia A; Wroblewski, B Michael
2013-09-01
The triple tapered polished cemented stem, C-Stem, introduced in 1993 was based on the original Charnley concept of the "flat back" polished stem. We present our continuing experience with the C-Stem in 621 consecutive primary arthroplasties implanted into 575 patients between 1993 and 1997. Four hundred and eighteen arthroplasties had a clinical and radiological follow-up past 10 years with a mean follow-up of 13 years (10-15). There were no revisions for stem loosening but 2 stems were revised for fracture - both with a defective cement mantle proximally. The stem design and the surgical technique support the original Charnley concept of limited stem subsidence within the cement mantle and the encouraging results continue to stand as a credit to Sir John Charnley's original philosophy. Copyright © 2013 Elsevier Inc. All rights reserved.
Las Vegas Basin Seismic Response Project: Measured Shallow Soil Velocities
NASA Astrophysics Data System (ADS)
Luke, B. A.; Louie, J.; Beeston, H. E.; Skidmore, V.; Concha, A.
2002-12-01
The Las Vegas valley in Nevada is a deep (up to 5 km) alluvial basin filled with interlayered gravels, sands, and clays. The climate is arid. The water table ranges from a few meters to many tens of meters deep. Laterally extensive thin carbonate-cemented lenses are commonly found across parts of the valley. Lenses range beyond 2 m in thickness, and occur at depths exceeding 200 m. Shallow seismic datasets have been collected at approximately ten sites around the Las Vegas valley, to characterize shear and compression wave velocities in the near surface. Purposes for the surveys include modeling of ground response to dynamic loads, both natural and manmade, quantification of soil stiffness to aid structural foundation design, and non-intrusive materials identification. Borehole-based measurement techniques used include downhole and crosshole, to depths exceeding 100 m. Surface-based techniques used include refraction and three different methods involving inversion of surface-wave dispersion datasets. This latter group includes two active-source techniques, the Spectral Analysis of Surface Waves (SASW) method and the Multi-Channel Analysis of Surface Waves (MASW) method; and a new passive-source technique, the Refraction Mictrotremor (ReMi) method. Depths to halfspace for the active-source measurements ranged beyond 50 m. The passive-source method constrains shear wave velocities to 100 m depths. As expected, the stiff cemented layers profoundly affect local velocity gradients. Scale effects are evident in comparisons of (1) very local measurements typified by borehole methods, to (2) the broader coverage of the SASW and MASW measurements, to (3) the still broader and deeper resolution made possible by the ReMi measurements. The cemented layers appear as sharp spikes in the downhole datasets and are problematic in crosshole measurements due to refraction. The refraction method is useful only to locate the depth to the uppermost cemented layer. The surface-wave methods, on the other hand, can process velocity inversions. With the broader coverage of the active-source surface wave measurements, through careful inversion that takes advantage of prior information to the greatest extent possible, multiple, shallow, stiff layers can be resolved. Data from such broader-coverage methods also provide confidence regarding continuity of the cemented layers. For the ReMi measurements, which provide the broadest coverage of all methods used, the more generalized shallow profile is sometimes characterized by a strong stiffness inversion at a depth of approximately 10 m. We anticipate that this impedance contrast represents the vertical extent of the multiple layered deposits of cemented media.
Microfabricated packed gas chromatographic column
Kottenstette, Richard; Matzke, Carolyn M.; Frye-Mason, Gregory C.
2003-12-16
A new class of miniaturized gas chromatographic columns has been invented. These chromatographic columns are formed using conventional micromachining techniques, and allow packed columns having lengths on the order of a meter to be fabricated with a footprint on the order of a square centimeter.
Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression
Baeza, F. Javier; Garcés, Pedro
2017-01-01
Cement composites with nano-additions have been vastly studied for their functional applications, such as strain and damage sensing. The capacity of a carbon nanofiber (CNF) cement paste has already been tested. However, this study is focused on the use of CNF cement composites as sensors in regular concrete samples. Different measuring techniques and humidity conditions of CNF samples were tested to optimize the strain and damage sensing of this material. In the strain sensing tests (for compressive stresses up to 10 MPa), the response depends on the maximum stress applied. The material was more sensitive at higher loads. Furthermore, the actual load time history did not influence the electrical response, and similar curves were obtained for different test configurations. On the other hand, damage sensing tests proved the capability of CNF cement composites to measure the strain level of concrete samples, even for loads close to the material’s strength. Some problems were detected in the strain transmission between sensor and concrete specimens, which will require specific calibration of each sensor one attached to the structure. PMID:29186797
Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression.
Galao, Oscar; Baeza, F Javier; Zornoza, Emilio; Garcés, Pedro
2017-11-24
Cement composites with nano-additions have been vastly studied for their functional applications, such as strain and damage sensing. The capacity of a carbon nanofiber (CNF) cement paste has already been tested. However, this study is focused on the use of CNF cement composites as sensors in regular concrete samples. Different measuring techniques and humidity conditions of CNF samples were tested to optimize the strain and damage sensing of this material. In the strain sensing tests (for compressive stresses up to 10 MPa), the response depends on the maximum stress applied. The material was more sensitive at higher loads. Furthermore, the actual load time history did not influence the electrical response, and similar curves were obtained for different test configurations. On the other hand, damage sensing tests proved the capability of CNF cement composites to measure the strain level of concrete samples, even for loads close to the material's strength. Some problems were detected in the strain transmission between sensor and concrete specimens, which will require specific calibration of each sensor one attached to the structure.
Modeling Framework for Fracture in Multiscale Cement-Based Material Structures
Qian, Zhiwei; Schlangen, Erik; Ye, Guang; van Breugel, Klaas
2017-01-01
Multiscale modeling for cement-based materials, such as concrete, is a relatively young subject, but there are already a number of different approaches to study different aspects of these classical materials. In this paper, the parameter-passing multiscale modeling scheme is established and applied to address the multiscale modeling problem for the integrated system of cement paste, mortar, and concrete. The block-by-block technique is employed to solve the length scale overlap challenge between the mortar level (0.1–10 mm) and the concrete level (1–40 mm). The microstructures of cement paste are simulated by the HYMOSTRUC3D model, and the material structures of mortar and concrete are simulated by the Anm material model. Afterwards the 3D lattice fracture model is used to evaluate their mechanical performance by simulating a uniaxial tensile test. The simulated output properties at a lower scale are passed to the next higher scale to serve as input local properties. A three-level multiscale lattice fracture analysis is demonstrated, including cement paste at the micrometer scale, mortar at the millimeter scale, and concrete at centimeter scale. PMID:28772948
Improvising a Posterior Nasal Pack with Equipment in a Basic First Aid Kit.
Royer, Allison K; Royer, Mark C
2016-09-01
Posterior epistaxis is a serious condition that can be difficult to treat in a wilderness setting. The initial standard of care involves packing the affected nostril with a 7 to 9 cm nasal pack to tamponade the bleed. These packs are often unavailable outside of the emergency or operating room. This study set out to determine whether a posterior nasal pack could be constructed from the supplies present in a basic first aid kit in order to control massive nasal hemorrhage in a wilderness setting. A basic first aid kit was utilized to construct a posterior nasal pack that was inserted into an anatomical model and visibly compared with the Rapid Rhino (Posterior, 7.5 cm; Smith & Nephew, Austin, TX) nasal packing. The shape, size, and anatomical areas of compression (ie, into nasopharynx and posterior aspect of inferior turbinate) of this pack was similar to the commercially available posterior nasal pack. Placement in an anatomical model appears to provide similar compression as the commercially available posterior pack. This technique may provide short-term hemorrhage control in cases of serious posterior nasal hemorrhage where standard treatment options are not available. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Arora, Shashank; Kapoor, Ajay; Shen, Weixiang
2018-02-01
Parasitic load, which describes electrical energy consumed by battery thermal management system (TMS), is an important design criterion for battery packs. Passive TMSs using phase change materials (PCMs) are thus generating much interest. However, PCMs suffer from low thermal conductivities. Most current thermal conductivity enhancement techniques involve addition of foreign particles to PCMs. Adding foreign particles increases effective thermal conductivity of PCM-systems but at expense of their latent heat capacity. This paper presents an alternate approach for improving thermal performance of PCM-based TMSs. The introduced technique involves placing battery cells in a vertically inverted position within the battery-pack. It is demonstrated through experiments that inverted cell-layout facilitates build-up of convection current in the pack, which in turn minimises thermal variations within the PCM matrix by enabling PCM mass transfer between the top and the bottom regions of the battery pack. The proposed system is found capable of maintaining tight control over battery cell temperature even during abusive usage, defined as high-rate repetitive cycling with minimal rest periods. In addition, this novel TMS can recover waste heat from PCM-matrix through thermoelectric devices, thereby resulting in a negative parasitic load for TMS.
Pelvic packing with vaginal traction for the management of intractable hemorrhage.
Naranjo-Gutiérrez, Leonardo A; Oliva-Cristerna, Joaquín; Ramírez-Montiel, Martha L; Ortiz, Mario I
2014-10-01
To present clinical cases examining the effectiveness and safety of pelvic packing with vaginal traction for inhibiting obstetric hemorrhage among women receiving treatment at a public obstetrics and gynecology tertiary care hospital in Mexico. In a retrospective observational descriptive study, eight cases of obstetric hemorrhage treated by pelvic packing with vaginal traction between January 2012 and December 2013 at Hospital de la Mujer, Mexico City, Mexico, were reviewed. The mean patient age was 28.8±6.8 years. The average blood loss was 4535±897 mL. Uterine atony was the cause of bleeding among six patients: histopathologic examination revealed two cases of placenta accreta, one case of placenta percreta, two cases of uteroplacental apoplexy, and one case of myomatosis. For two patients, placental separation was difficult and required surgical management. The packing technique was effective for all patients. No patients presented with infection or required re-operation for bleeding management. No deaths occurred. For management of bleeding among patients with underlying coagulation disorders, pelvic packing can be useful when standard techniques such as hysterectomy, tubal hypogastric ligation, and/or pharmacologic therapy are unsuccessful. Copyright © 2014 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
A new adhesive technique for internal fixation in midfacial surgery
Endres, Kira; Marx, Rudolf; Tinschert, Joachim; Wirtz, Dieter Christian; Stoll, Christian; Riediger, Dieter; Smeets, Ralf
2008-01-01
Background The current surgical therapy of midfacial fractures involves internal fixation in which bone fragments are fixed in their anatomical positions with osteosynthesis plates and corresponding screws until bone healing is complete. This often causes new fractures to fragile bones while drilling pilot holes or trying to insert screws. The adhesive fixation of osteosynthesis plates using PMMA bone cement could offer a viable alternative for fixing the plates without screws. In order to achieve the adhesive bonding of bone cement to cortical bone in the viscerocranium, an amphiphilic bone bonding agent was created, analogous to the dentin bonding agents currently on the market. Methods The adhesive bonding strengths were measured using tension tests. For this, metal plates with 2.0 mm diameter screw holes were cemented with PMMA bone cement to cortical bovine bone samples from the femur diaphysis. The bone was conditioned with an amphiphilic bone bonding agent prior to cementing. The samples were stored for 1 to 42 days at 37 degrees C, either moist or completely submerged in an isotonic NaCl-solution, and then subjected to the tension tests. Results Without the bone bonding agent, the bonding strength was close to zero (0.2 MPa). Primary stability with bone bonding agent is considered to be at ca. 8 MPa. Moist storage over 42 days resulted in decreased adhesion forces of ca. 6 MPa. Wet storage resulted in relatively constant bonding strengths of ca. 8 MPa. Conclusion A new amphiphilic bone bonding agent was developed, which builds an optimizied interlayer between the hydrophilic bone surface and the hydrophobic PMMA bone cement and thus leads to adhesive bonding between them. Our in vitro investigations demonstrated the adhesive bonding of PMMA bone cement to cortical bone, which was also stable against hydrolysis. The newly developed adhesive fixing technique could be applied clinically when the fixation of osteosynthesis plates with screws is impossible. With the detected adhesion forces of ca. 6 to 8 MPa, it is assumed that the adhesive fixation system is able to secure bone fragments from the non-load bearing midfacial regions in their orthotopic positions until fracture consolidation is complete. PMID:18489785
Effect of Resin-modified Glass Ionomer Cement Dispensing/Mixing Methods on Mechanical Properties.
Sulaiman, T A; Abdulmajeed, A A; Altitinchi, A; Ahmed, S N; Donovan, T E
2018-03-23
Resin-modified glass ionomer cements (RMGIs) are often used for luting indirect restorations. Hand-mixing traditional cements demands significant time and may be technique sensitive. Efforts have been made by manufacturers to introduce the same cement using different dispensing/mixing methods. It is not known what effects these changes may have on the mechanical properties of the dental cement. The purpose of this study was to evaluate the mechanical properties (diametral tensile strength [DTS], compressive strength [CS], and fracture toughness [FT]) of RMGIs with different dispensing/mixing systems. The RMGI specimens (n=14)-RelyX Luting (hand mix), RelyX Luting Plus (clicker-hand mix), RelyX Luting Plus (automix) (3M ESPE), GC Fuji PLUS (capsule-automix), and GC FujiCEM 2 (automix) (GC)-were prepared for each mechanical test and examined after thermocycling (n=7/subgroup) for 20,000 cycles to the following: DTS, CS (ISO 9917-1) and FT (ISO standard 6872; Single-edge V-notched beam method). Specimens were mounted and loaded with a universal testing machine until failure occurred. Two-/one-way analysis of variance followed by Tukey honestly significantly different post hoc test was used to analyze data for statistical significance ( p<0.05). The interaction effect of both dispensing/mixing method and thermocycling was significant only for the CS test of the GC group ( p<0.05). The different dispensing/mixing methods had no effect on the DTS of the tested cements. The CS of GC Fuji PLUS was significantly higher than that of the automix version ( p<0.05). The FT decreased significantly when switching from RelyX (hand mix) to RelyX Luting Plus (clicker-hand mix) and to RelyX Luting Plus (automix) ( p<0.05). Except in the case of the DTS of the GC group and the CS of GC Fuji PLUS, thermocycling had a significant effect reducing the mechanical properties of the RMGI cements ( p<0.05). Introducing alternative dispensing/mixing methods for mixing RMGIs to reduce time and technique sensitivity may affect mechanical properties and is brand dependent.
Carvalho, R M; Pegoraro, T A; Tay, F R; Pegoraro, L F; Silva, N R F A; Pashley, D H
2004-01-01
To examine the effects of an experimental bonding technique that reduces the permeability of the adhesive layer on the coupling of resin cements to dentine. Extracted human third molars had their mid to deep dentin surface exposed flat by transversally sectioning the crowns. Resin composite overlays were constructed and cemented to the surfaces using either Panavia F (Kuraray) or Bistite II DC (Tokuyama) resin cements mediated by their respective one-step or two-step self-etch adhesives. Experimental groups were prepared in the same way, except that the additional layer of a low-viscosity bonding resin (LVBR, Scotchbond Multi-Purpose Plus, 3M ESPE) was placed on the bonded dentine surface before luting the overlays with the respective resin cements. The bonded assemblies were stored for 24 h in water at 37 degrees C and subsequently prepared for microtensile bond strength testing. Beams of approximately 0.8 mm(2) were tested in tension at 0.5 mm/min in a universal tester. Fractured surfaces were examined under scanning electron microscopy (SEM). Additional specimens were prepared and examined with TEM using a silver nitrate-staining technique. Two-way ANOVA showed significant interactions between materials and bonding protocols (p<0.05). When bonded according to manufacturer's directions, Panavia F produced bond strengths that were significantly lower than Bistite II DC (p<0.05). The placement of an additional layer of a LVBR improved significantly the bond strengths of Panavia F (p<0.05), but not of Bistite II DC (p>0.05). SEM observation of the fractured surfaces in Panavia F showed rosette-like features that were exclusive for specimens bonded according to manufacturer's directions. Such features corresponded well with the ultrastructure of the interfaces that showed more nanoleakage associated with the more permeable adhesive interface. The application of the additional layer of the LVBR reduced the amount of silver impregnation for both adhesives suggesting that reduced permeability of the adhesives resulted in improved coupling of the resin cements to dentin. Placement of an intermediate layer of a LVBR between the bonded dentine surface and the resin cements resulted in improved coupling of Panavia F to dentine.
Experimental studies on a new bioactive material: HAIonomer cements.
Yap, A U J; Pek, Y S; Kumar, R A; Cheang, P; Khor, K A
2002-02-01
The lack of exotherm during setting, absence of monomer and improved release of incorporated therapeutic agents has resulted in the development of glass ionomer cements (GICs) for biomedical applications. In order to improve biocompatibility and biomechanically match GICs to bone, hydroxyapatite-ionomer (HAIonomer) hybrid cements were developed. Ultra-fine hydroxyapatite (HA) powders were produced using a new induction spraying technique that utilizes a radio-frequency source to spheriodize an atomized suspension containing HA crystallites. The spheriodized particulates were then held at 800 degrees C for 4 h in a carbolite furnace using a heating and cooling rate of 25 degrees C/min to obtain almost fully crystalline HA powders. The heat-treated particles were characterized and introduced into a commercial glass ionomer cement. 4 (H4), 12 (H12) and 28 (H28) vol% of fluoroalumino silicate were substituted by crystalline HA particles that were dispersed using a high-speed dispersion technique. The HAIonomer cements were subjected to hardness, compressive and diametral tensile strength testing based upon BS6039:1981. The storage time were extended to one week to investigate the effects of cement maturation on mechanical properties. Commercially available capsulated GIC (GC) and GIC at maximum powder:liquid ratio (GM) served as comparisons. Results were analyzed using factorial ANOVA/Scheffe's post-hoc tests and independent samples t-test at significance level 0.05. The effect of time on hardness was material dependent. With the exception of H12, a significant increase in hardness was observed for all materials at one week. A significant increase in compressive strength was, however, observed for H12 over time. At 1 day and 1 week, the hardness of H28 was significantly lower than for GM, H4, and H12. No significant difference in compression and diametral tensile strengths were observed between materials at both time intervals. Results show that HAIonomers is a promising material, which possess good mechanical properties. Potential uses of this new material include bone cements and performed implants for hard tissue replacement in the field of otological, oral-maxillofacial and orthopedic surgery.
Oyagüe, Raquel Castillo; Sánchez-Turrión, Andrés; López-Lozano, José Francisco; Suárez-García, M Jesús
2012-02-01
This study aimed to evaluate the vertical misfit and microleakage of laser-sintered and vacuum-cast cement-retained implant-supported frameworks. Three-unit implant-fixed structures were constructed with: (1) laser-sintered Co-Cr (LS); (2) vacuum-cast Co-Cr (CC); and (3) vacuum-cast Pd-Au (CP). Every framework was luted onto 2 prefabricated abutments under constant seating pressure. Each alloy group was randomly divided into three subgroups (n=10) according to the cement used: (1) Ketac Cem Plus (KC); (2) Panavia F 2.0 (PF); and (3) RelyX Unicem 2 Automix (RXU). After 30 days of water ageing, vertical discrepancy was measured by SEM, and marginal microleakage was scored using a digital microscope. Three-way ANOVA and Student-Newman-Keuls tests were run to investigate the effect of alloy/fabrication technique, FDP retainer, and cement type on vertical misfit. Data for marginal microleakage were analysed with Kruskal-Wallis and Dunn's tests (α=0.05). Vertical discrepancy was affected by alloy/manufacturing technique and cement type (p<0.001). Despite the luting agent, LS structures showed the best marginal adaptation, followed by CP, and CC. Within each alloy group, KC provided the best fit, whilst the use of PF or RXU resulted in no significant differences. Regardless of the framework alloy, KC exhibited the highest microleakage scores, whilst PF and RXU showed values that were comparable to each other. Laser-sintered Co-Cr structures achieved the best fit in the study. Notwithstanding the framework alloy, resin-modified glass-ionomer demonstrated better marginal fit but greater microleakage than did MDP-based and self-adhesive dual-cure resin cements. All groups were within the clinically acceptable misfit range. Laser-sintered Co-Cr may be an alternative to cast base metal and noble alloys to obtain passive-fitting structures. Despite showing higher discrepancies, resin cements displayed lower microleakage than resin-modified glass-ionomer. Further research is necessary to determine whether low microleakage scores may guarantee a suitable seal that could compensate for misfit. Copyright © 2011 Elsevier Ltd. All rights reserved.
Riccitiello, Francesco; Amato, Massimo; Leone, Renato; Spagnuolo, Gianrico; Sorrentino, Roberto
2018-01-01
Prosthetic precision can be affected by several variables, such as restorative materials, manufacturing procedures, framework design, cementation techniques and aging. Marginal adaptation is critical for long-term longevity and clinical success of dental restorations. Marginal misfit may lead to cement exposure to oral fluids, resulting in microleakage and cement dissolution. As a consequence, marginal discrepancies enhance percolation of bacteria, food and oral debris, potentially causing secondary caries, endodontic inflammation and periodontal disease. The aim of the present in vitro study was to evaluate the marginal and internal adaptation of zirconia and lithium disilicate single crowns, produced with different manufacturing procedures. Forty-five intact human maxillary premolars were prepared for single crowns by means of standardized preparations. All-ceramic crowns were fabricated with either CAD-CAM or heat-pressing procedures (CAD-CAM zirconia, CAD-CAM lithium disilicate, heat-pressed lithium disilicate) and cemented onto the teeth with a universal resin cement. Non-destructive micro-CT scanning was used to achieve the marginal and internal gaps in the coronal and sagittal planes; then, precision of fit measurements were calculated in a dedicated software and the results were statistically analyzed. The heat-pressed lithium disilicate crowns were significantly less accurate at the prosthetic margins (p<0.05) while they performed better at the occlusal surface ( p <0.05). No significant differences were noticed between CAD-CAM zirconia and lithium disilicate crowns ( p >0.05); nevertheless CAD-CAM zirconia copings presented the best marginal fit among the experimental groups. As to the thickness of the cement layer, reduced amounts of luting agent were noticed at the finishing line, whereas a thicker layer was reported at the occlusal level. Within the limitations of the present in vitro investigation, the following conclusions can be drawn: the recorded marginal gaps were within the clinical acceptability irrespective of both the restorative material and the manufacturing procedures; the CAD-CAM processing techniques for both zirconia and lithium disilicate produced more consistent marginal gaps than the heat-pressing procedures; the tested universal resin cement can be safely used with both restorative materials.
Pulsed infrared thermography for assessment of ultrasonic welds
NASA Astrophysics Data System (ADS)
McGovern, Megan E.; Rinker, Teresa J.; Sekol, Ryan C.
2018-03-01
Battery packs are a critical component in electric vehicles. During pack assembly, the battery cell tab and busbar are ultrasonically welded. The properties of the welds ultimately affect battery pack durability. Quality inspection of these welds is important to ensure durable battery packs. Pack failure is detrimental economically and could also pose a safety hazard, such as thermal runaway. Ultrasonic welds are commonly checked by measuring electrical resistance or auditing using destructive mechanical testing. Resistance measurements are quick, but sensitive to set-up changes. Destructive testing cannot represent the entire weld set. It is possible for a weak weld to satisfy the electrical requirement check, because only sufficient contact between the tabs and busbar is required to yield a low resistance measurement. Laboratory techniques are often not suitable for inline inspection, as they may be time-consuming, use couplant, or are only suitable for coupons. The complex surface geometry also poses difficulties for conventional nondestructive techniques. A method for inspection of ultrasonic welds is proposed using pulsed infrared thermography to identify discrepant welds in a manufacturing environment. Thermal measurements of welds were compared to electrical and mechanical measurements. The heat source distribution was calculated to obtain thermal images with high temporal and spatial resolution. All discrepant welds were readily identifiable using two thermographic techniques: pixel counting and the gradient image. A positive relationship between pixel count and mechanical strength was observed. The results demonstrate the potential of pulsed thermography for inline inspection, which can complement, or even replace, conventional electrical resistance measurements.
DOT National Transportation Integrated Search
2002-09-01
This report presents the results of an evaluation of concrete slab fracturing techniques as a means of arresting or retarding reflective cracking through asphalt overlays placed on severely distressed portland cement concrete pavement. The study invo...
Cement technique for reducing post-operative bursitis after trochanteric fixation.
Derman, Peter B; Horneff, John G; Kamath, Atul F; Garino, Jonathan
2013-02-01
Post-operative trochanteric bursitis is a known complication secondary to the surgical approach in total hip arthroplasty. This phenomenon may be partially attributable to repetitive microtrauma generated when soft tissues rub against implanted hardware. Significant rates of post-operative trochanteric bursitis have been observed following procedures in which a trochanteric fixation device, such as a bolt-washer mechanism or a cable-grip/claw system, is used to secure the trochanteric fragment after trochanteric osteotomy. We present a simple technique for use with a bolt-washer system or grip plate in which trochanteric components are covered in bone wax followed by a layer of cement to decrease friction and to diminish the risk of post-operative bursitis.
Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Wooyong; Jung, Hun Bok; Martin, Paul F.
2011-11-01
Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C)more » for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron-sized calcite on the outside surface of cement, which resulted in the decrease in BJH pore volume and BET surface area. Cement carbonation and pore structure change are significantly dependent on pressure and temperature conditions as well as the phase of CO{sub 2}, which controls the balance between precipitation and dissolution in cement matrix. Geochemical modeling result suggests that ratio of solid (cement)-to-solution (carbonated water) has a significant effect on cement carbonation, thus the cement-CO{sub 2} reaction experiment needs to be conducted under realistic conditions representing the in-situ wellbore environment of carbon sequestration field site. Total porosity and air permeability for a duplicate cement column with water-to-cement ratio of 0.38 measured after oven-drying by Core Laboratories using Boyle's Law technique and steady-state method were 31% and 0.576 mD. A novel method to measure the effective liquid permeability of a cement column using X-ray micro-tomography images after injection of pressurized KI (potassium iodide) is under development by PNNL. Preliminary results indicate the permeability of a cement column with water-to-cement ratio of 0.38 is 4-8 mD. PNNL will apply the method to understand the effective permeability change of Portland cement by CO{sub 2}(g) reaction under a variety of pressure and temperature conditions to develop a more reliable well-bore leakage risk model.« less
Fakhim, Babak; Hassani, Abolfazl; Rashidi, Alimorad; Ghodousi, Parviz
2013-01-01
In this study the feasibility of using the artificial neural networks modeling in predicting the effect of MWCNT on amount of cement hydration products and improving the quality of cement hydration products microstructures of cement paste was investigated. To determine the amount of cement hydration products thermogravimetric analysis was used. Two critical parameters of TGA test are PHPloss and CHloss. In order to model the TGA test results, the ANN modeling was performed on these parameters separately. In this study, 60% of data are used for model calibration and the remaining 40% are used for model verification. Based on the highest efficiency coefficient and the lowest root mean square error, the best ANN model was chosen. The results of TGA test implied that the cement hydration is enhanced in the presence of the optimum percentage (0.3 wt%) of MWCNT. Moreover, since the efficiency coefficient of the modeling results of CH and PHP loss in both the calibration and verification stages was more than 0.96, it was concluded that the ANN could be used as an accurate tool for modeling the TGA results. Another finding of this study was that the ANN prediction in higher ages was more precise. PMID:24489487
Slope instability in a historical and architectural interest site: the Agrigento hill (Sicily-Italy)
NASA Astrophysics Data System (ADS)
Liguori, Vincenzo; Manno, Giorgio
2014-05-01
The impact of landslides are an issue for many urban cities and their cultural heritage, especially where both natural factors and human actions are join. Indeed in these cases, both the geological-geomorphological area predisposition and the continuous human actions increase the possibility occurrence of a landslide. In order to study these landslides and their natural hazard, a multi-disciplinary approach is necessary. Agrigento (37°19'18''N; 13°35'22''E), founded around 580 b.C. along the Sicilian southern coast, is an example of a possible impacts of landslides on cultural heritage. This work discusses the geological, geomorphological and hydrological data results, performed in order to study and the monitoring the landslide on the north side of the Agrigento hill (335 m a.s.l.), on which is localized the antique cathedral (sixteenth century) and the old city. The hill geology is a typical regressive Plio-Pleistocene succession and their lithology are clays (Monte Narbone formation) , calcarenites , sands and silts of the Agrigento formation. The landslide phenomena, current since 1315, involves a calcarenitic pack (Pleistocene), weakly cemented, highly porous, fractured and fissured (E-W). This phenomena from 1924, at different times, have produced various types of instability such as: falls, flows and complex movements. From 7 March 2005 have been reactivated fractures of the calcarenitic pack, already highlighted by studies in 1966. These fractures have triggered slope movements damaging the cathedral and the various historic buildings. In order to reduce the risk and thus safeguard the monuments and the activity in this area, carried out the several studies. Since 2005, the landslide is the subject both geological-geomorphological studies and a continuous monitoring, which have used different techniques of different disciplines: interferometric analysis, interpretation of aerial and satellite imagery, geophysical investigations, stratigraphic survey, etc. The results of this studies carried out the landslide kinematics and the lithology involved, in this way it was possible to suggest targeted intervention. Keywords: rotational landslide, rockfall, hazard, architectural heritage.
[Use of pedicle percutaneous cemented screws in the management of patients with poor bone stock].
Pesenti, S; Graillon, T; Mansouri, N; Adetchessi, T; Tropiano, P; Blondel, B; Fuentes, S
2016-12-01
Management of patients with poor bone stock remains difficult due to the risks of mechanical complications such as screws pullouts. At the same time, development of minimal invasive spinal techniques using a percutaneous approach is greatly adapted to these fragile patients with a reduction in operative time and complications. The aim of this study was to report our experience with cemented percutaneous screws in the management of patients with a poor bone stock. Thirty-five patients were included in this retrospective study. In each case, a percutaneous osteosynthesis using cemented screws was performed. Indications were osteoporotic fractures, metastasis or fractures on ankylosing spine. Depending on radiologic findings, short or long constructs (2 levels above and below) were performed and an anterior column support (kyphoplasty or anterior approach) was added. Evaluation of patients was based on pre and postoperative CT-scans associated with clinical follow-up with a minimum of 6 months. Eleven men and 24 women with a mean age of 73 years [60-87] were included in the study. Surgical indication was related to an osteoporotic fracture in 20 cases, a metastasis in 13 cases and a fracture on ankylosing spine in the last 2 cases. Most of the fractures were located between T10 and L2 and a long construct was performed in 22 cases. Percutaneous kyphoplasty was added in 24 cases and a complementary anterior approach in 3 cases. Average operative time was 86minutes [61-110] and blood loss was estimated as minor in all the cases. In the entire series, average volume of cement injected was 1.8 cc/screw. One patient underwent a major complication with a vascular leakage responsible for a cement pulmonary embolism. With a 9 months average follow-up [6-20], no cases of infection or mechanical complication was reported. Minimal invasive spinal techniques are greatly adapted to the management of fragile patients. The use of percutaneous cemented screws is, in our experience, a valuable alternative for spinal fixation in patients with poor bone stock. This technique allows a good bony fixation with a low rate of complications. However, rigorous preoperative planning is necessary in order to avoid complications. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Fully packed capillary electrochromatographic microchip with self-assembly colloidal silica beads.
Park, Jongman; Lee, Dami; Kim, Won; Horiike, Shigeyoshi; Nishimoto, Takahiro; Lee, Se Hwan; Ahn, Chong H
2007-04-15
A fully packed capillary electrochromatographic (CEC) microchip showing improved solution and chip handling was developed. Microchannels for the CEC microchip were patterned on a cyclic olefin copolymer substrate by injection molding and packed fully with 0.8-microm monodisperse colloidal silica beads utilizing a self-assembly packing technique. The silica packed chip substrate was covered and thermally press-bonded. After fabrication, the chip was filled with buffer solution by self-priming capillary action. The self-assembly packing at each channel served as a built-in nanofilter allowing quick loading of samples and running buffer solution without filtration. Because of a large surface area-to-volume ratio of the silica packing, reproducible control of electroosmotic flow was possible without leveling of the solutions in the reservoirs resulting 1.3% rsd in migration rate. The capillary electrophoretic separation characteristics of the chip were studied using fluorescein isothiocyanate (FITC)-derivatized amino acids as probe molecules. A mixture of FITC and four FITC-derivatized amino acids was successfully separated with 2-mm separation channel length.
NASA Astrophysics Data System (ADS)
Khanlari, G. R.; Heidari, M.; Noori, M.; Momeni, A.
2016-07-01
To assess relationship between engineering characteristics and petrographic features, conglomerates samples related to Qom formation from Famenin region in northeast of Hamedan province were studied. Samples were tested in laboratory to determine the uniaxial compressive strength, point load strength index, modulus of elasticity, porosity, dry and saturation densities. For determining petrographic features, textural and mineralogical parameters, thin sections of the samples were prepared and studied. The results show that the effect of textural characteristics on the engineering properties of conglomerates supposed to be more important than mineralogical composition. It also was concluded that the packing proximity, packing density, grain shape and mean grain size, cement and matrix frequency are as textural features that have a significant effect on the physical and mechanical properties of the studied conglomerates. In this study, predictive statistical relationships were developed to estimate the physical and mechanical properties of the rocks based on the results of petrographic features. Furthermore, multivariate linear regression was used in four different steps comprising various combinations of petrographical characteristics for each engineering parameters. Finally, the best equations with specific arrangement were suggested to estimate engineering properties of the Qom formation conglomerates.
Polymer-cement interactions towards improved wellbore cement fracture sealants
NASA Astrophysics Data System (ADS)
Beckingham, B. S.; Iloejesi, C.; Minkler, M. J.; Schindler, A. K.; Beckingham, L. E.
2017-12-01
Carbon capture, utilization, and storage (CCUS) in deep geologic formations is a promising means of reducing point source emissions of CO2. In these systems, CO2 is captured at the source and then injected to be utilized (eg. in enhanced oil recovery or as a working fluid in enhanced geothermal energy plants) or stored in geologic formations such as depleted oil and gas reservoirs or saline aquifers. While CCUS in subsurface systems could aid in reducing atmospheric CO2 emissions, the potential for CO2 leakage from these systems to overlying formations remains a major limitation and poses a significant risk to the security of injected CO2. Thus, improved materials for both initial wellbore isolation and repairing leakage pathways that develop over time are sought. One approach for the repair of cement fractures in wellbore (and other) systems is the injection of polymer materials into the fracture with a subsequent environmentally dependent (temperature, pressure, pH, etc.) densification or solidification. Here, we aim to investigate novel polymer materials for use to repair leaking wellbores in the context of CCUS. We synthesize and fully characterize a series of novel polymer materials and utilize a suite of analysis techniques to examine polymer-cement interactions at a range of conditions (namely temperature, pressure and pH). Initial findings will be leveraged to design novel polymer materials for further evaluation in polymer-cement composite cores, cement fracture healing, and the aging behavior of healed cements.
Coblation vertebroplasty for complex vertebral insufficiency fractures.
Wilson, David J; Owen, Sara; Corkill, Rufus A
2013-07-01
Coblation to create a cavity in the affected vertebral body was performed for complex fractures and/or when there was a posterior wall defect. This permitted a low-pressure injection and potentially reduces the risk of extravasation of cement into the spinal canal. Prospective audit for outcome measures and complications allowed retrospective review of cases treated by coblation. A commercial wand inserted via a wide-bore vertebroplasty needle created a cavity before inserting cement. A visual analogue scale assessed pain and Roland Morris scoring assessed mobility. Thirty-two coblation procedures were performed. Primary diagnoses were myeloma, metastases, osteoporosis and trauma. Outcome measures were recorded with a 56 % success rate, 6 % no change and 32 % with mixed but mainly positive results; 6 % died before follow-up. No complications were observed; in particular no patient suffered neurological damage and none have developed subsequent fractures at the treated levels. This technique makes possible cementation of patients who would otherwise be unsuitable for vertebroplasty. The modest pain and disability improvement is partly due to our stringent criteria as well as fracture complexity. Further work will assess the efficacy of the method compared with conservative measures. • Treatment of vertebral compression fractures with possible posterior wall defects is controversial. • Coblation before vertebroplasty allows a low-pressure injection into fractured vertebrae. • This technique reduces risk of extravasation of cement. • No serious complication of our coblation procedures was observed.
Giddings, V L; Kurtz, S M; Jewett, C W; Foulds, J R; Edidin, A A
2001-07-01
Polymethylmethacrylate (PMMA) bone cement is used in total joint replacements to anchor implants to the underlying bone. Establishing and maintaining the integrity of bone cement is thus of critical importance to the long-term outcome of joint replacement surgery. The goal of the present study was to evaluate the suitability of a novel testing technique, the small punch or miniaturized disk bend test, to characterize the elastic modulus and fracture behavior of PMMA. We investigated the hypothesis that the crack initiation behavior of PMMA during the small punch test was sensitive to the test temperature. Miniature disk-shaped specimens, 0.5 mm thick and 6.4 mm in diameter, were prepared from PMMA and Simplex-P bone cement according to manufacturers' instructions. Testing was conducted at ambient and body temperatures, and the effect of test temperature on the elastic modulus and fracture behavior was statistically evaluated using analysis of variance. For both PMMA materials, the test temperature had a significant effect on elastic modulus and crack initiation behavior. At body temperature, the specimens exhibited "ductile" crack initiation, whereas at room temperature "brittle" crack initiation was observed. The small punch test was found to be a sensitive and repeatable test method for evaluating the mechanical behavior of PMMA. In light of the results of this study, future small punch testing should be conducted at body temperature.
Pack Density Limitations of Hybrid Parachutes
NASA Technical Reports Server (NTRS)
Zwicker, Matthew L.; Sinclair, Robert J.
2013-01-01
The development and testing of the Orion crew capsule parachute system has provided a unique opportunity to study dense parachute packing techniques and limits, in order to establish a new baseline for future programs. The density of parachute packs has a significant influence on vibration loads, retention system stresses, and parachute mortar performance. Material compositions and pack densities of existing designs for space capsule recovery were compared, using the pack density of the Apollo main parachutes as the current baseline. The composition of parachutes has changed since Apollo, incorporating new materials such as Kevlar , Vectran , Teflon and Spectra . These materials have different specific densities than Nylon, so the densities of hybrid parachute packs cannot be directly compared to Nylon parachutes for determination of feasibility or volume allocation. Six parachute packs were evaluated in terms of weighted average solid density in order to achieve a non-dimensional comparison of packing density. Means of mitigating damage due to packing pressure and mortar firing were examined in light of the Capsule Parachute Assembly System (CPAS) and Apollo experience. Parachute design improvements including incorporation of modern materials and manufacturing processes serves to make CPAS the new knowledge base on which future spacecraft parachute systems will be built.
Ullattuthodi, Sujana; Cherian, Kandathil Phillip; Anandkumar, R; Nambiar, M Sreedevi
2017-01-01
This in vitro study seeks to evaluate and compare the marginal and internal fit of cobalt-chromium copings fabricated using the conventional and direct metal laser sintering (DMLS) techniques. A master model of a prepared molar tooth was made using cobalt-chromium alloy. Silicone impression of the master model was made and thirty standardized working models were then produced; twenty working models for conventional lost-wax technique and ten working models for DMLS technique. A total of twenty metal copings were fabricated using two different production techniques: conventional lost-wax method and DMLS; ten samples in each group. The conventional and DMLS copings were cemented to the working models using glass ionomer cement. Marginal gap of the copings were measured at predetermined four points. The die with the cemented copings are standardized-sectioned with a heavy duty lathe. Then, each sectioned samples were analyzed for the internal gap between the die and the metal coping using a metallurgical microscope. Digital photographs were taken at ×50 magnification and analyzed using measurement software. Statistical analysis was done by unpaired t -test and analysis of variance (ANOVA). The results of this study reveal that no significant difference was present in the marginal gap of conventional and DMLS copings ( P > 0.05) by means of ANOVA. The mean values of internal gap of DMLS copings were significantly greater than that of conventional copings ( P < 0.05). Within the limitations of this in vitro study, it was concluded that the internal fit of conventional copings was superior to that of the DMLS copings. Marginal fit of the copings fabricated by two different techniques had no significant difference.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-21
..., including the use of automated collection techniques or other forms of information technology. The Office of..., and Packing; and 252.211-7005, Substitutions for Military or Federal Specifications and Standards; OMB...-- Propose alternatives to military preservation, packaging, or packing specifications. DoD uses the...
A new after-loading intrauterine packing device: ten years experience.
Sklaroff, D M; Baker, A S; Tasbas, M
1985-12-01
A new variation of the uterine packing device for the treatment of endometrial carcinoma is described. It combines the advantages of the Holter technique with the after-loading method described by Simon. This device has been in use for more than 10 years and has been found most satisfactory.
Kitayama, Shuzo; Nikaido, Toru; Ikeda, Masaomi; Alireza, Sadr; Miura, Hiroyuki; Tagami, Junji
2010-01-01
Resin bonding to zirconia ceramic cannot be established by standard methods that are utilized for conventional silica-based dental ceramics. This study was aimed to examine the tensile bond strength of resin cement to zirconia ceramic using a new laboratory technique. Sixty-four zirconia ceramic specimens were air-abraded using Al2O3 particles and divided into two groups; the control group with no pretreatment (Control), and the group pretreated using the internal coating technique (INT), in which the surface of the zirconia specimens were thinly coated by fusing silica-based ceramic and air-abraded in the same manner. The specimens in each group were further divided into two subgroups according to the silane coupling agents applied; a mixture of dentin primer/silane coupling agent (Clearfil SE Bond Primer/Porcelain Bond Activator) or a newly developed single-component silane coupling agent (Clearfil Ceramic Primer). After bonding with dual-cured resin cement (Panavia F 2.0), they were stored in water for 24 h and half of them were additionally subjected to thermal cycling. The tensile bond strengths were tested using a universal testing machine. ANOVAs revealed significant influence of ceramic surface pretreatment (p<0.001), silane coupling agent (p<0.001) and thermal cycling (p<0.001); the INT coating technique significantly increased the bond strengths of resin cement to zirconia ceramic, whereas thermal cycling significantly decreased the bond strengths. The use of a single-component silane coupling agent demonstrated significantly higher bond strengths than that of a mixture of dentin primer/silane coupling agent. The internal coating of zirconia dental restorations with silica-based ceramic followed by silanization may be indicated in order to achieve better bonding for the clinical success.
Dental cementum in age estimation: a polarized light and stereomicroscopic study.
Kasetty, Sowmya; Rammanohar, M; Raju Ragavendra, T
2010-05-01
Dental hard tissues are good candidates for age estimation as they are less destructive and procedures to determine age can be easily performed. Although cementum annulations and cementum thickness are important parameters in this regard, they are seldom used. This study was undertaken to review the methods, difficulties in execution of techniques, and accuracy of cementum thickness and annulations in estimating the age. Unstained and stained ground sections of tooth were used to measure cemental thickness and count cemental annulations based on which age was estimated and was compared with known age. Although there was positive relation between cemental thickness and annulations with age, only in 1-1.5% of cases, age could be predicted with accuracy.
Lab on a Chip Packing of Submicron Particles for High Performance EOF Pumping
2010-08-26
and wet etching techniques, using a soda lime glass substrate coated with chromium and photoresist (Nanofilm, Westlake Village, CA). A weir structure...observed previously for these soda lime glass microchips [8]. Images of the three segments of different sized particles con- tainedwithin the packed... Silica beads High pressure Lab on a chip a b s t r a c t The packing of submicrometer sized silica beads inside a microchannel was enabled by a novel
Quintas, Adriana Ferreira; Oliveira, Fabiano; Bottino, Marco Antonio
2004-09-01
Prosthetic restorations that fit poorly may affect periodontal health and occlusion. Studies that have evaluated the accuracy of fit of ceramic restorations before and after cementation assessed primarily intracoronal restorations. This in vitro study evaluated the effect of different finish lines, ceramic manufacturing techniques, and luting agents on the vertical discrepancy of ceramic copings. Two stainless steel molars were prepared for complete crowns with 2 different finish lines (heavy chamfer and rounded shoulder); each molar was duplicated to fabricate 90 copings. A total of 180 copings generated 18 groups (n=10 for each finish line-coping material-luting agent combination). Luting agents tested included zinc phosphate, resin-modified glass ionomer (Fuji Plus), and resin composite cements (Panavia F). A metal frame was developed on which to screw the stainless steel model and a ceramic coping; the distance (microm) between 2 predetermined points was measured before and after cementation by a profile projector under a torquing force. A 4-way ANOVA with repeated measurements was performed to assess the influence of each factor in the vertical marginal discrepancy: 3 between-coping factors (finish line-coping material-luting agent) and 1 within-coping factor (before and after cementation) (alpha=.05). Procera copings presented the lowest mean values ( P <.05) of vertical marginal discrepancy before and after cementation (25/44 microm) when compared to Empress 2 (68/110 microm) and InCeram Alumina copings (57/117 microm), regardless of any combinations among all finish lines and luting agents tested. Considering each factor separately, the ceramic manufacturing technique appeared to be the most important factor tested for the definitive vertical discrepancy of all-ceramic copings, with lower mean values for Procera copings.
NASA Technical Reports Server (NTRS)
Grobstein, Toni (Editor); Doychak, Joseph (Editor)
1989-01-01
The present conference on the high-temperature oxidation behavior of aerospace structures-applicable intermetallic compounds discusses the influence of reactive-element additions on the oxidation of Ni3Al base alloys, the effect of Ni3Al oxidation below 850 C on fracture behavior, the oxidation of FeAl + Hf, Zr, and B, the synergistic effect of Al and Si on the oxidation resistance of Fe alloys, and pack cementation coatings of Cr-Al on Fe, Ni, and Co alloys. Also discussed are the formation of alumina on Nb- and Ti-base alloys, the oxidation behavior of titanium aluminide alloys, silicide coatings for refractory metals, the oxidation of chromium disilicide, and the oxidation behavior of nickel beryllides.
Moshaverinia, Alireza; Ansari, Sahar; Movasaghi, Zanyar; Billington, Richard W; Darr, Jawwad A; Rehman, Ihtesham U
2008-10-01
The objective of this study was to enhance the mechanical strength of glass-ionomer cements, while preserving their unique clinical properties. Copolymers incorporating several different segments including N-vinylpyrrolidone (NVP) in different molar ratios were synthesized. The synthesized polymers were copolymers of acrylic acid and NVP with side chains containing itaconic acid. In addition, nano-hydroxyapatite and fluoroapatite were synthesized using an ethanol-based sol-gel technique. The synthesized polymers were used in glass-ionomer cement formulations (Fuji II commercial GIC) and the synthesized nanoceramic particles (nano-hydroxy or fluoroapatite) were also incorporated into commercial glass-ionomer powder, respectively. The synthesized materials were characterized using FTIR and Raman spectroscopy and scanning electron microscopy. Compressive, diametral tensile and biaxial flexural strengths of the modified glass-ionomer cements were evaluated. After 24h setting, the NVP modified glass-ionomer cements exhibited higher compressive strength (163-167 MPa), higher diametral tensile strength (DTS) (13-17 MPa) and much higher biaxial flexural strength (23-26 MPa) in comparison to Fuji II GIC (160 MPa in CS, 12MPa in DTS and 15 MPa in biaxial flexural strength). The nano-hydroxyapatite/fluoroapatite added cements also exhibited higher CS (177-179 MPa), higher DTS (19-20 MPa) and much higher biaxial flexural strength (28-30 MPa) as compared to the control group. The highest values for CS, DTS and BFS were found for NVP-nanoceramic powder modified cements (184 MPa for CS, 22 MPa for DTS and 33 MPa for BFS) which were statistically higher than control group. It was concluded that, both NVP modified and nano-HA/FA added glass-ionomer cements are promising restorative dental materials with improved mechanical properties.
Uzgur, Recep; Ercan, Ertuğrul; Uzgur, Zeynep; Çolak, Hakan; Yalçın, Muhammet; Özcan, Mutlu
2016-08-12
To evaluate the marginal and internal cement thicknesses of inlay restorations made of various CAD/CAM materials using 3D X-ray micro-computed tomography (micro-CT) technique. Caries-free extracted mandibular molars (N = 30) with similar size were randomly assigned to three groups (N = 10 per group). Mesio-occlusal-distal (MOD) cavities were prepared, and inlay restorations were obtained by milling out CAD/CAM materials namely, (a) IPS: monolithic lithium disilicate (control), (b) VE: polymer-infiltrated ceramic, and (c) CS: nano-ceramic using a CAM unit. Marginal and internal cement thicknesses were measured using 3D micro-CT. Data were analyzed using 1-way ANOVA and Tukey's tests (alpha = 0.05). The mean marginal and internal cement thickness were not significant in all inlay materials (p > 0.05). Mean marginal cement thickness (μm) was the lowest for the IPS group (67.54 ± 10.16) followed by VE (84.09 ± 3.94) and CS (95.18 ± 10.58) (p > 0.05). The internal cement thickness (μm) was the lowest in the CS group (54.85 ± 6.94) followed by IPS (60.58 ± 9.22) and VE (77.53 ± 12.13) (p > 0.05). Marginal and internal cement thicknesses of MOD inlays made of monolithic lithium disilicate, polymer-infiltrated ceramic, and nano-ceramic CAD/CAM materials were similar and all less than 100 μm, which could be considered clinically acceptable. MOD inlays made of different CAD/CAM materials presented similar cement thickness, less than 100 μm. © 2016 by the American College of Prosthodontists.
Textural evidence for jamming and dewatering of a sub-surface, fluid-saturated granular flow
NASA Astrophysics Data System (ADS)
Sherry, T. J.; Rowe, C. D.; Kirkpatrick, J. D.; Brodsky, E. E.
2011-12-01
Sand injectites are spectacular examples of large-scale granular flows involving migration of hundreds of cubic meters of sand slurry over hundreds of meters to kilometers in the sub-surface. By studying the macro- and microstructural textures of a kilometer-scale sand injectite, we interpret the fluid flow regimes during emplacement and define the timing of formation of specific textures in the injected material. Fluidized sand sourced from the Santa Margarita Fm., was injected upward into the Santa Cruz Mudstone, Santa Cruz County, California. The sand injectite exposed at Yellow Bank Beach records emplacement of both hydrocarbon and aqueous sand slurries. Elongate, angular mudstone clasts were ripped from the wall rock during sand migration, providing evidence for high velocity, turbid flow. However, clast long axis orientations are consistently sub-horizontal suggesting the slurry transitioned to a laminar flow as the flow velocity decreased in the sill-like intrusion. Millimeter to centimeter scale laminations are ubiquitous throughout the sand body and are locally parallel to the mudstone clast long axes. The laminations are distinct in exposure because alternating layers are preferentially cemented with limonite sourced from later groundwater infiltration. Quantitative microstructural analyses show that the laminations are defined by subtle oscillations in grain alignment between limonite and non-limonite stained layers. Grain packing, size and shape distributions do not vary. The presence of limonite in alternating layers results from differential infiltration of groundwater, indicating permeability changes between the layers despite minimal grain scale differences. Convolute dewatering structures deform the laminations. Dolomite-cemented sand, a signature of hydrocarbon saturation, forms irregular bodies that cross-cut the laminations and dewatering structures. Laminations are not formed in the dolomite-cemented sand. The relative viscosity difference between the hydrocarbon and aqueous sand slurries controls the the critical radius of the contacts between dolomite cemented and limonite cemented sand bodies. The cross-cutting relationships established in the field show that the laminations formed at the jamming transition in the aqueous sand slurry. We interpret the laminations as preserving evidence for dynamic permeability instabilities in the dewatering slurry. Relatively high permeability channels formed as pore fluid flow rearranged grains during initial dewatering. Once initiated, the flow localized further into the higher permeability channels resulting in a feedback that caused the permeability in the channels to increase.
Calcium-enriched mixture cement as artificial apical barrier: A case series
Nosrat, Ali; Asgary, Saeed; Eghbal, Mohammad Jafar; Ghoddusi, Jamileh; Bayat-Movahed, Saeed
2011-01-01
In comparison to the conventional apexification using calcium hydroxide, artificial apical barrier technique is more valuable and less time consuming. This article describes successful use of calcium-enriched mixture (CEM) cement as an artificial apical barrier in open apices. In this study, 13 single-rooted teeth with necrotic pulps and open apices were treated non-surgically. After copious irrigation of the root canals with NaOCl 5.25% and gentle filing, based on need for interappointment dressing, treatments were followed by CEM cement (BioniqueDent, Tehran, Iran) apical plug insertion in the first or second appointment. All cases were then permanently restored. All subjects were followed until radiographic evidence of periradicular healing was seen (mean 14.5 months). Clinically, all cases were functional and asymptomatic and complete osseous healing was observed in all the teeth. Considering the biological properties of CEM cement, this new endodontic biomaterial might be appropriate to be used as artificial apical barrier in the open apex teeth. PMID:22144818
Pulmonary Embolism from Cement Augmentation of the Vertebral Body.
Ignacio, Jose Manuel Fernando; Ignacio, Katrina Hannah Dizon
2018-04-01
Pulmonary cement embolism (PCE) can follow cement augmentation procedures for spine fractures due to osteoporosis, traumatic injuries, and painful metastatic lesions. PCE is underreported and it is likely that many cases remain undiagnosed. Risk factors for PCE have been identified, which can help alert clinicians to patients likely to develop the condition, and there are recommended techniques to reduce its incidence. Most patients with PCE are asymptomatic or only develop transient symptoms, although a few may exhibit florid cardiorespiratory manifestations which can ultimately be fatal. Diagnosis is mainly by radiographic means, commonly using simple radiographs and computed tomography scans of the chest with ancillary tests that assess the patient's cardiorespiratory condition. Management depends on the location and size of the emboli as well as the patient's symptomatology. The aim of this review is to raise awareness of the not uncommon complications of PCE following vertebral cement augmentation and the possibility of serious sequelae. Recommendations for the diagnosis and management of PCE are presented, based on the most recent literature.
Urrutia, Oscar; Erro, Javier; Zabini, Andre; Hoshiba, Kent; Blandin, Anne F; Baigorri, Roberto; Martín-Pastor, Manuel; Alis, Yves; Yvin, Jean C; García-Mina, José M
2018-05-16
This study describes the efficiency of a new coating material for preparing granulated potassium-fertilizers with a potassium release to the soil solution sensitive to rainfall intensity. The composite is prepared by reaction of an alkyd-resin with cement in the absence of water. The complementary use of diverse analytical techniques showed that the presence of the cement fraction induced alkyd resin reticulation and gradual cement-resin hardening. Scanning electron microscopy revealed the formation of micro and nanopores within cement-clusters, whose water permeability is affected by the resin reticulation and amphiphilic character. Potassium release was evaluated in water, soil-columns, and in soil-plant trials in pots and open-field. Agronomic results were consistent with potassium release rates obtained in water solution and soil columns. The composite-coated potassium fertilizer was more efficient than the noncoated one in providing plant available potassium, with this effect being dependent on water presence in soil.
Energy efficiency technologies in cement and steel industry
NASA Astrophysics Data System (ADS)
Zanoli, Silvia Maria; Cocchioni, Francesco; Pepe, Crescenzo
2018-02-01
In this paper, Advanced Process Control strategies aimed at energy efficiency achievement and improvement in cement and steel industry are proposed. A flexible and smart control structure constituted by several functional modules and blocks has been developed. The designed control strategy is based on Model Predictive Control techniques, formulated on linear models. Two industrial control solutions have been developed, oriented to energy efficiency and process control improvement in cement industry clinker rotary kilns (clinker production phase) and in steel industry billets reheating furnaces. Tailored customization procedures for the design of ad hoc control systems have been executed, based on the specific needs and specifications of the analysed processes. The installation of the developed controllers on cement and steel plants produced significant benefits in terms of process control which resulted in working closer to the imposed operating limits. With respect to the previous control systems, based on local controllers and/or operators manual conduction, more profitable configurations of the crucial process variables have been provided.
Frictional Performance Assessment of Cemented Carbide Surfaces Textured by Laser
NASA Astrophysics Data System (ADS)
Fang, S.; Llanes, L.; Klein, S.; Gachot, C.; Rosenkranz, A.; Bähre, D.; Mücklich, F.
2017-10-01
Cemented carbides are advanced engineering materials often used in industry for manufacturing cutting tools or supporting parts in tribological system. In order to improve service life, special attention has been paid to change surface conditions by means of different methods, since surface modification can be beneficial to reduce the friction between the contact surfaces as well as to avoid unintended damage. Laser surface texturing is one of the newly developed surface modification methods. It has been successfully introduced to fabricate some basic patterns on cemented carbide surfaces. In this work, Direct Laser Interference Patterning Technique (DLIP) is implemented to produce special line-like patterns on a cobalt (Co) and nickel (Ni) based cemented tungsten carbide grade. It is proven that the laser-produced patterns have high geometrical precision and quality stability. Furthermore, tribology testing using a nano-tribometer unit shows that friction is reduced by the line-like patterns, as compared to the polished one, under both lubricated and dry testing regimes, and the reduction is more pronounced in the latter case.
Muthukumar, B; Kumar, M Vasantha
2015-01-01
Background Postoperative sensitivity after temporization is a common complaint in Fixed Partial Denture patients. It is caused by weak and ill fitting temporary restorations which results in microleakage. This can be controlled by providing good temporary restorations and by coating the exposed dentinal tubules of the prepared tooth with dentin bonding agent or dental varnish. Aim The purpose of the study was to determine the effect of dentin-bonding, dentin sealing agents on the microleakage of temporary crowns made by tooth colored auto polymerizing resin fabricated with direct and indirect technique. Materials and Methods Thirty premolar and molar human teeth were collected which were extracted recently was used for the study. The teeth were marked and divided into 3 groups each containing 10 nos. They were individually mounted with self-cure acrylic resin. It was then mounted on a milling machine and crown preparations done. Temporary crowns were fabricated by direct and indirect method with two types of materials. In group A (Control group), the temporary crowns fabricated with both direct and indirect method were cemented directly with temporary luting cement. In group B dentine-bonding agent (solobond M) was applied once to the prepared surface of each tooth specimen before the cementation of temporary crowns where as in case of group C a single layer of dental varnish is applied prior to crown cementation. The entire specimens were immersed in 1% methylene blue and allowed to undergo thermal treatment. It was then sectioned in a hard tissue microtome. Each section was evaluated for dye penetration into the dentin tubules by comparing it with a visual scale. Statistical Analysis SPSS Version 13 software was used for non-parametric data analysis by a qualified statistician. P-values less than 0.05 (p-value<0.05) were considered to be statistically significant. Results Group B (Dentin Bonding Agent) specimens cemented with crowns fabricated in direct technique showed the least amount of microleakage when compared with group A and group C. Group C (Dental Varnish) specimen showed comparatively more amount of microleakage than that of group B. Group A (control group) specimens showed the maximum amount of microleakage. Conclusion The application of a single layer of Dental varnish appears to be of no significant benefit when compared to crowns cemented with the application of Dentin bonding agent on the tooth surface. The application of a single layer of Dentin bonding agent (Solobond M) and temporary crowns fabricated with direct technique may be of some benefit for crown preparations as an interim measure prior to the luting of final crown. PMID:26266219
Annular Pulse Shaping Technique for Large-Diameter Kolsky Bar Experiments on Concrete
2014-10-01
practiced by a number of Kolsky bar researchers on a variety of brittle materials such as glass , ceramics , and ceramic composites using relatively... glass under compression/shear loading: Experiments. J Am Ceram Soc 90:2556–2562 37. Nie X, Sanborn B, Weerasooriya T, Chen W (2012) Inertia effects in...is comprised of ASTM type I/II cement [2], Grade 120 Slag cement [5] and Class F fly ash [4]. The 1344 Exp Mech (2014) 54:1343–1354 Author’s personal
Williams, J A; Billington, R W; Pearson, G J
2001-01-01
The objective of this study was to determine long term release of fluoride from a resin-modified glass-ionomer cement (RMGIC) (Fuji II LC (FLC)) compared with that from two conventional acid-base setting cements (HiDense (HD) and KetacSilver (KS)) marketed for similar restorative purposes. Fluoride release from discs of cement immersed in water or artificial saliva was measured for 2.7 years using an ion selective electrode technique. The RMGIC was affected by water if immersed immediately after setting. This is similar to conventional acid-base cements and the experimental method was designed to allow for this. Over the 2.7-year period, the RMGIC and HD released similar amounts of fluoride into both water and artificial saliva. In water, the RMGIC released the most fluoride, while in artificial saliva the highest release was from HD. KS released the least amount of fluoride in both immersing liquids. In artificial saliva, release was reduced to 17-25% of that found in water, with the RMGIC showing the greatest reduction. Both acid-base cured cements showed changes in colour over the 2.7-year span, while the colour of the RMGIC was stable. It was concluded that the RMGIC released equivalent or greater amounts of fluoride than the two acid-base cure glass-ionomers over a period of 2.7 years.
Non-invasive measurement of proppant pack deformation
Walsh, Stuart D. C.; Smith, Megan; Carroll, Susan A.; ...
2016-05-26
In this study, we describe a method to non-invasively study the movement of proppant packs at the sub-fracture scale by applying three-dimensional digital image correlation techniques to X-ray tomography data. Proppant movement is tracked in a fractured core of Marcellus shale placed under a series of increasing confining pressures up to 10,000 psi. The analysis reveals the sudden failure of a region of the proppant pack, accompanied by the large-scale rearrangement of grains across the entire fracture surface. The failure of the pack coincides with the appearance of vortex-like grain motions similar to features observed in biaxial compression of twomore » dimensional granular assemblies.« less
radon daughters is associated have greater ability to penetrate the variousfilter media than has the fission product debris in the atmosphere; therefore the former is associated with aerosols of smaller size. A preliminary evaluation of the techniques of employing packs of filters of different retentivity characteristics to determine the particle size and/or particle size distribution of radioactive aerosols has been made which indicates the feasibility of the method. It is recommended that a series of measurements be undertaken to determine the relative particle size
NASA Astrophysics Data System (ADS)
Han, J. W.; Lee, S. K.; Yu, C.; Park, C. G.
2015-12-01
The early strength development characteristics and permeability resistance of high early strength (HES) pre-packed road repair concrete incorporating a rapid-set binder material were evaluated for emergency repairs to road pavement. The rapid-set binder is a mixture of rapid-set cement and silica sands whose fluidity improves with the addition of styrene butadiene latex (latex). The resulting mixture has a compressive strength of 21 MPa or higher and a flexural strength of greater than 3.5 MPa after 4 hours, the maximum curing age allowed for emergency repair materials. This study examines the strength development properties and permeability resistance of HES latex-modified pre-packed road repair concrete using a rapid- set binder as a function of the latex-to-binder mixing ratio at values of 0.40, 0.33, 0.29 and 0.25. Both early strength development properties and permeability resistance increased as the ratio of latex to rapid-set binder decreased. The mixture showed a compressive strength of 21 MPa or higher after 4 hours, which is the design standard of emergency repair concrete, only when this ratio was 0.29 or lower. A flexural strength of 3.5 MPa or greater was observed after hours only when this ratio was 0.33 or lower. The standard for permeability resistance, less than 2,000 C of chloride after 7 days of curing, was satisfied by all ratios. The ratio of latex to rapid-set binder satisfying all of the conditions for an emergency road repair material was 0.29 or less.
Mohaddes, Maziar; Herberts, Peter; Malchau, Henrik; Johanson, Per-Erik; Kärrholm, Johan
2017-05-12
Bone impaction grafting is a biologically and mechanically appealing option in acetabular revision surgery, allowing restitution of the bone stock and restoration of the biomechanics. We analysed differences in proximal migration of the revision acetabular components when bone impaction grafting is used together with a cemented or an uncemented cup. 43 patients (47 hips), revised due to acetabular loosening and judged to have less than 50% host bone-implant contact were included. The hips were randomised to either an uncemented (n = 20) or a cemented (n = 27) revision cup. Radiostereometry and radiography was performed postoperatively, at 3 and 6 months, 1, 2, 3, 5, 7, 10 and 13 and 17 years postoperatively. Clinical follow-up was performed at 1, 2 and 5 years postoperatively and thereafter at the same interval as in the radiographic follow-up. There were no differences in the base line demographic data between the 2 groups. At the last follow-up (17 years) 14 hips (10 cemented, 4 uncemented) had been re-revised due to loosening. 3 additional cups (1 uncemented and 2 cemented) were radiographically loose. There was a higher early proximal migration in the cemented cups. Cups operated on with cement showed a higher early migration measured with RSA and also a higher number of late revisions. The reason for this is not known, but factors such as inclusion of cases with severe bone defects, use of smaller bone chips and issues related to the impaction technique might have had various degrees of influence.
Cement-based piezoelectric ceramic composites for sensor applications in civil engineering
NASA Astrophysics Data System (ADS)
Dong, Biqin
The objectives of this thesis are to develop and apply a new smart composite for the sensing and actuation application of civil engineering. Piezoelectric ceramic powder is incorporated into cement-based composite to achieve the sensing and actuation capability. The research investigates microstructure, polarization and aging, material properties and performance of cement-based piezoelectric ceramic composites both theoretically and experimentally. A hydrogen bonding is found at the interface of piezoelectric ceramic powder and cement phase by IR (Infrared Ray), XPS (X-ray Photoelectron Spectroscopy) and SIMS (Secondary Ion Mass Spectroscopy). It largely affects the material properties of composites. A simple first order model is introduced to explain the poling mechanism of composites and the dependency of polarization is discussed using electromechanical coupling coefficient kt. The mechanisms acting on the aging effect is explored in detail. Dielectrical, piezoelectric and mechanical properties of the cement-based piezoelectric ceramic composites are studied by experiment and theoretical calculation based on modified cube model (n=1) with chemical bonding . A complex circuit model is proposed to explain the unique feature of impedance spectra and the instinct of high-loss of cement-based piezoelectric ceramic composite. The sensing ability of cement-based piezoelectric ceramic composite has been evaluated by using step wave, sine wave, and random wave. It shows that the output of the composite can reflects the nature and characteristics of mechanical input. The work in this thesis opens a new direction for the current actuation/sensing technology in civil engineering. The materials and techniques, developed in this work, have a great potential in application of health monitoring of buildings and infrastructures.
Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel.
Sekhri, Sahil; Mittal, Sanjeev; Garg, Sandeep
2016-01-01
In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non-significant (p > 0.05). Surface treatment of enamel increases the bond strength of self adhesive resin cement.
Bond strength of selected composite resin-cements to zirconium-oxide ceramic
Fons-Font, Antonio; Amigó-Borrás, Vicente; Granell-Ruiz, María; Busquets-Mataix, David; Panadero, Rubén A.; Solá-Ruiz, Maria F.
2013-01-01
Objectives: The aim of this study was to evaluate bond strengths of zirconium-oxide (zirconia) ceramic and a selection of different composite resin cements. Study Design: 130 Lava TM cylinders were fabricated. The cylinders were sandblasted with 80 µm aluminium oxide or silica coated with CoJet Sand. Silane, and bonding agent and/or Clearfil Ceramic Primer were applied. One hundred thirty composite cement cylinders, comprising two dual-polymerizing (Variolink II and Panavia F) and two autopolymerizing (Rely X and Multilink) resins were bonded to the ceramic samples. A shear test was conducted, followed by an optical microscopy study to identify the location and type of failure, an electron microscopy study (SEM and TEM) and statistical analysis using the Kruskal-Wallis test for more than two independent samples and Mann-Whitney for two independent samples. Given the large number of combinations, Bonferroni correction was applied (α=0.001). Results: Dual-polymerizing cements provided better adhesion values (11.7 MPa) than the autopolymerizing (7.47 MPa) (p-value M-W<0.001). The worst techniques were Lava TM + sandblasting + Silane + Rely X; Lava TM + sandblasting + Silane + Multilink and Lava TM + CoJet + silane + Multilink. Adhesive failure (separation of cement and ceramic) was produced at a lesser force than cohesive failure (fracture of cement) (p-value M-W<0.001). Electron microscopy confirmed that the surface treatments modified the zirconium-oxide ceramic, creating a more rough and retentive surface, thus providing an improved micromechanical interlocking between the cement and the ceramic. Key words:Shear bond strength, silica coating, surface treatment, zirconia ceramics, phosphate monomer. PMID:22926485
NASA Astrophysics Data System (ADS)
Ganesan, Nandhini; Basu, Suman; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Yeo, Taejung; Sohn, Dong Kee; Doo, Seokgwang
2016-08-01
Lithium-Ion batteries used for electric vehicle applications are subject to large currents and various operation conditions, making battery pack design and life extension a challenging problem. With increase in complexity, modeling and simulation can lead to insights that ensure optimal performance and life extension. In this manuscript, an electrochemical-thermal (ECT) coupled model for a 6 series × 5 parallel pack is developed for Li ion cells with NCA/C electrodes and validated against experimental data. Contribution of the cathode to overall degradation at various operating conditions is assessed. Pack asymmetry is analyzed from a design and an operational perspective. Design based asymmetry leads to a new approach of obtaining the individual cell responses of the pack from an average ECT output. Operational asymmetry is demonstrated in terms of effects of thermal gradients on cycle life, and an efficient model predictive control technique is developed. Concept of reconfigurable battery pack is studied using detailed simulations that can be used for effective monitoring and extension of battery pack life.
Use of bauxite as packing material in steam injection wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scoglio, J.; Joubert, G.; Gallardo, B.
1995-12-31
Cyclic steam injection, also known as steam soak, has proven to be the most efficient method for producing heavy crude oil and bitumen from unconsolidated sands. The application of steam injection may, however, generate sand production, causing, among other things, a decrease in production. The gravel pack technique is the most efficient way to prevent fines production from cold producing wells. But, once they are steam stimulated, a dissolution of quartz containing gravel material takes place reducing greatly the packing permeability and eventually sand production. Different types of packing material have been used to avoid sand production after cyclic steammore » injection, such as gravel, ceramics, bauxite, coated resin, and American sand. This paper presents the results of field test, using sinterized bauxite as a packing material, carried out in Venezuela`s heavy oil operations as a part of a comprehensive program aimed at increasing the packing durability and reducing sand production. This paper also verify the results of laboratory tests in which Bauxite was found to be less soluble than other packing material when steam injected.« less
Al Amri, Mohammad D; Al-Johany, Sulieman S; Al-Qarni, Mohammed N; Al-Bakri, Ahmed S; Al-Maflehi, Nassr S; Abualsaud, Haythem S
2018-02-01
The detrimental effect of extruded excess cement on peri-implant tissue has been well documented. Although several techniques have been proposed to reduce this effect by decreasing the amount of extruded cement, how the space size of the abutment screw access channel (SAC) affects the amount of extruded cement and marginal accuracy is unclear. The purpose of this in vitro study was to evaluate the effect of the size of the unfilled space of the abutment SAC on the amount of extruded excess cement and the marginal accuracy of zirconia copings. Twelve implant replicas and corresponding standard abutments were attached and embedded in acrylic resin blocks. Computer-aided design and computer-aided manufacturing (CAD-CAM) zirconia copings with a uniform 30-μm cement space were fabricated by 1 dental technician using the standard method. The copings were temporarily cemented 3 times at different sizes of the left space of the SAC as follows: the nonspaced group (NS), in which the entire SAC was completely filled, the 1-mm-spaced group (1MMS), and the 2-mm-spaced group (2MMS). Abutments and crowns were ultrasonically cleaned, steam cleaned, and air-dried. The excess cement was collected and weighed. To measure the marginal accuracy, 20 measurements were made every 18 degrees along the coping margin at ×300 magnification and compared with the pre-cementation readings. One-way ANOVA was calculated to determine whether the amount of extruded excess cement differed among the 3 groups, and the Tukey test was applied for multiple comparisons (α=.05). The mean weights (mg) of extruded excess cement were NS (33.53 ±1.5), 1MMS (22.97 ±5.4), and 2MMS (15.17 ±5.9). Multiple comparisons showed significant differences in the amount of extruded excess cement among the 3 test groups (P<.001). The mean marginal discrepancy (μm) of the pre-cemented group (29.5 ±8.2) was significantly different (P<.01) from that of the NS (72.3 ±13.7), the 1MMS (70.1 ±19), and the 2MMS group (70.1 ±18.8). No significant differences were found in marginal accuracy among the 3 test groups (P=.942). Within the limitations of this in vitro study, leaving a 2-mm space in the SAC reduced the amount of extruded excess cement by 55% in comparison with the nonspaced abutments. However, no effect was found on the marginal accuracy of zirconia copings. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Research on Reasons for Repeated Falling of Tiles in Internal Walls of Construction
NASA Astrophysics Data System (ADS)
Xu, LiBin; Chen, Shangwei; He, Xinzhou; Zhu, Guoliang
2018-03-01
In view of the quality problem of repeated falling of facing tiles in some construction, the essay had a comparative trial in laboratory on cement mortar which is often used to paste tiles, special tile mortar and dry-hang glue, and measured durability of tile adhesive mortar through freezing and thawing tests. The test results indicated that ordinary cement mortar cannot meet standards due to reasons like big shrinkage and low adhesive. In addition, the ten times of freezing and thawing tests indicated that ordinary cement mortar would directly shell and do not have an adhesive force, and moreover, adhesive force of special tile mortar would reduce. Thus, for tiles of large size which are used for walls, dry-hang techniques are recommended to be used.
Moinzadeh, A T; Jongsma, L; de Groot-Kuin, D; Cristescu, R; Neirynck, N; Camilleri, J
2015-01-01
Hydraulic Calcium Silicate Cements (HCSCs) constitute a group of materials that have become increasingly popular in endodontics since the introduction of Mineral Trioxide Aggregate (MTA) in the 1990s. MTA is Portland cement to which bismuth oxide has been added to increase its radiopacity. The most important property of MTA is its capacity to set in water or a humid environment. However, MTA also has important limitations, for example, it's difficult to work with and can discolour teeth. Recently, numerous products based on HCSC chemistry, which can be considered as modifications of MTA intended to reduce its limitations, have become available on the market. Despite their potential advantages, all of these materials have their own specific limitations that are currently insufficiently known and investigated.
1985-06-01
packed column, with low liquid loading (2. 0 mm ID, 4% liquid phase loading on diatomaceous earth *) 0.3 Medium bore analytical packed column, with...moderate liquid loading (4. 5 mm ID, 8%16 liquid phase loading on diatomaceous earth *) 3.0 -3 * diatomaceous earth density 0.24 gm cm 12 associated with the...hydrocarbon fuels. Certain injector inserts have contained packed chromatographic media, e.g., stationary phases coated onto diatomaceous earth . This type
The Elite-Plus stem migrates more than the flanged Charnley stem
Sanzén, Lennart; Besjakov, Jack; Carlsson, Åke
2010-01-01
Background and purpose The Charnley Elite-Plus stem was introduced in 1993 as a presumed improvement of the flanged Charnley stem. We started this study in 1996 to investigate the migratory pattern of the Elite-Plus stem. Patients and methods We followed 114 patients with osteoarthritis and a primary total hip replacement with the Elite-Plus stem. Mean age at the time of operation was 64 (50–76) years. The mean follow-up time was 6.5 (2–7) years. Radiographs were evaluated with respect to cementing technique, migration, and wear measured by radiostereometry (RSA). Results The stem survival was 98% (CI: 96–100) at 7 years and 92% (CI: 86–97) at 10 years. Mean migration of the femoral head was 0.35 mm (SD 0.3) medially, 0.51 mm (SD 0.6) distally, and 1.1 mm (SD 1.8) in the dorsal direction. Mean total point motion was 1.7 mm (SD 1.7). The migration of the stems stabilized after 5 years in the medial and dorsal directions, but continued to subside slightly. Migration along any of the axes was higher if the cementing technique was inferior. Interpretation Patients with a Charnley Elite-Plus stem and defects in the cement mantle or other signs of inferior implantation technique should be carefully monitored. PMID:20367422
Kim, Wanlim; Yoon, Pil Whan; Kwak, Hong Suk; Yoo, Jeong Joon; Kim, Hee Joong; Yoon, Kang Sup
2017-07-01
The high failure rate of cemented femoral components in the 1970s facilitated the improvement of the cementing technique and surface finishes such as polymethylmethacrylate (PMMA)-precoated stems, reporting a survival rate of >95% at 10 years from some studies. However, controversy persists regarding whether precoated femoral stems are associated with a longer revision-free prosthesis survival. The purpose of this study was to evaluate the clinical and radiological outcomes of PMMA-precoated femoral stems, and analyze factors associated with implant survival. We retrospectively reviewed 73 primary hybrid total hip arthroplasties performed using PMMA-precoated femoral stems. The mean age of the patients was 61 years. During the mean follow-up period of 13 years, 18 hips (24.7%) underwent aseptic loosening, and all of the loosened stems were subjected to revision surgery 8.8 years (range 4.6-15.5 years) from the index surgery. Younger age and poor cementing were significantly associated with aseptic loosening (P = 0.013 and P < 0.001, respectively). However, the aseptic loosening rate was also high at 13.1% even with a good cementing technique. In conclusion, the PMMA-precoated stem failed to show expected advantages and needs to be replaced with other surface finish stem designs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1300-1306, 2017. © 2016 Wiley Periodicals, Inc.
Charles, Y P; Pelletier, H; Hydier, P; Schuller, S; Garnon, J; Sauleau, E A; Steib, J-P; Clavert, P
2015-05-01
Vertebroplasty prefilling or fenestrated pedicle screw augmentation can be used to enhance pullout resistance in elderly patients. It is not clear which method offers the most reliable fixation strength if axial pullout and a bending moment is applied. The purpose of this study is to validate a new in vitro model aimed to reproduce a cut out mechanism of lumbar pedicle screws, to compare fixation strength in elderly spines with different cement augmentation techniques and to analyze factors that might influence the failure pattern. Six human specimens (82-100 years) were instrumented percutaneously at L2, L3 and L4 by non-augmented screws, vertebroplasty augmentation and fenestrated screws. Cement distribution (2 ml PMMA) was analyzed on CT. Vertebral endplates and the rod were oriented at 45° to the horizontal plane. The vertebral body was held by resin in a cylinder, linked to an unconstrained pivot, on which traction (10 N/s) was applied until rupture. Load-displacement curves were compared to simultaneous video recordings. Median pullout forces were 488.5 N (195-500) for non-augmented screws, 643.5 N (270-1050) for vertebroplasty augmentation and 943.5 N (750-1084) for fenestrated screws. Cement augmentation through fenestrated screws led to significantly higher rupture forces compared to non-augmented screws (P=0.0039). The pullout force after vertebroplasty was variable and linked to cement distribution. A cement bolus around the distal screw tip led to pullout forces similar to non-augmented screws. A proximal cement bolus, as it was observed in fenestrated screws, led to higher pullout resistance. This cement distribution led to vertebral body fractures prior to screw pullout. The experimental setup tended to reproduce a pullout mechanism observed on radiographs, combining axial pullout and a bending moment. Cement augmentation with fenestrated screws increased pullout resistance significantly, whereas the fixation strength with the vertebroplasty prefilling method was linked to the cement distribution. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Military Curricula for Vocational & Technical Education. Packing and Unitization, 19-2.
ERIC Educational Resources Information Center
Joint Military Packaging Training Center, Aberdeen Proving Ground, MD.
This correspondence course on methods and techniques of packing materials and equipment for shipment and storage is designed to familiarize students with the subject matter area and to serve as a background for a more detailed and specialized study. One of a number of military-developed curriculum packages selected for adaptation to vocational…
Grit blasting and the marginal accuracy of two ceramic veneer systems--a pilot study.
Lim, C; Ironside, J G
1997-04-01
Margins of ceramic restorations can be damaged during removal of investment materials with grit blasting and result in relatively large marginal discrepancies and excessive marginal discrepancies with greater exposure of cement to the oral environment. Subsequent dissolution of cement can encourage plaque retention, dental caries, and periodontal problems. This study compared marginal adaptation of ceramic veneers created by the refractory die technique (R), Dicor glass ceramic technique (D), and effects of grit blasting on their margins. Two groups of ceramic veneers were constructed for each system, one without grit blasting (R g and D g) and one with grit blasting (R+g and D+g). Statistical analyses revealed that grit blasting had a greater effect in reducing marginal accuracy for Dicor ceramic veneers compared with refractory die ceramic veneers.
Comparison of denture tooth movement between CAD-CAM and conventional fabrication techniques.
Goodacre, Brian J; Goodacre, Charles J; Baba, Nadim Z; Kattadiyil, Mathew T
2018-01-01
Data comparing the denture tooth movement of computer-aided design and computer-aided manufacturing (CAD-CAM) and conventional denture processing techniques are lacking. The purpose of this in vitro study was to compare the denture tooth movement of pack-and-press, fluid resin, injection, CAD-CAM-bonded, and CAD-CAM monolithic techniques for fabricating dentures to determine which process produces the most accurate and reproducible prosthesis. A total of 50 dentures were evaluated, 10 for each of the 5 groups. A master denture was fabricated and milled from prepolymerized poly(methyl methacrylate). For the conventional processing techniques (pack-and-press, fluid resin, and injection) a polyvinyl siloxane putty mold of the master denture was made in which denture teeth were placed and molten wax injected. The cameo surface of each wax-festooned denture was laser scanned, resulting in a standard tessellation language (STL) format file. The CAD-CAM dentures included 2 subgroups: CAD-CAM-bonded teeth in which the denture teeth were bonded into the milled denture base and CAD-CAM monolithic teeth in which the denture teeth were milled as part of the denture base. After all specimens had been fabricated, they were hydrated for 24 hours, and the cameo surface laser scanned. The preprocessing and postprocessing scan files of each denture were superimposed using surface-matching software. Measurements were made at 64 locations, allowing evaluation of denture tooth movement in a buccal, lingual, mesial-distal, and occlusal direction. The use of median and interquartile range values was used to assess accuracy and reproducibility. Levene and Kruskal-Wallis analyses of variance were used to evaluate differences between processing techniques (α=.05). The CAD-CAM monolithic technique was the most accurate, followed by fluid resin, CAD-CAM-bonded, pack-and-press, and injection. CAD-CAM monolithic technique was the most reproducible, followed by pack-and-press, CAD-CAM-bonded, injection, and fluid resin. Techniques involving compression during processing showed increased positive occlusal tooth movement compared with techniques not involving compression. CAD-CAM monolithic dentures produced the best combination of accuracy and reproducibility of the tested techniques. The results from this study demonstrate that varying amounts of tooth movement can be expected depending on the processing technique. However, the clinical significance of these differences is unknown. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kong, Hyun-Joon
This dissertation investigates a dispersion/stabilization technique to improve the fluidity of heteroflocculating concentrated suspensions, and applies the technique to develop self-compacting Engineered Cementitious Composites (ECC), defined as a cementitious material which compacts without any external consolidation in the fresh state, while exhibiting strain-hardening performance in the hardened state. To meet the criteria of micromechanical design to achieve the ductile performance and processing design to attain high fluidity, this work has focused on preparing cement suspensions with low viscosity and high cohesiveness at a particle loading determined by the micromechanical design. Therefore, the goal of this work is to quantify how to adjust the strong flocculation between cement particles due to electrostatic and van der Waals attractive forces. For this purpose, a strong polyelectrolyte, melamine formaldehyde sulfonate (MFS), to disperse the oppositely-charged particles present in the cement dispersion, is combined with a non-ionic polymer, hydroxypropylmethylcellulose (HPMC). The combination of these two polymers to prevent re-flocculation leads to "complementary electrosteric dispersion/ stabilization". With these polymers, suspensions with the desired fluidity for processing are obtained. To quantify the roles of the two polymers in imparting stability, a heteroflocculating model suspension was developed, which facilitates the control of the interactions typical of cement suspensions, but without irreversible hydration. This model suspension is composed of alumina and silica particles, which bear surface potentials of opposite sign at intermediate pHs, as well as has a comparable magnitude of the Hamaker constant as compared to cement particles. As a result, the model system displays not only van der Waals attraction but also electrostatic attraction between dissimilar particles. Rheological studies of the model system stabilized by MFS and HPMC show behavior identical to that of the cement suspensions, allowing the model system to be used to interpret the role of the stabilizers in altering the system microstructure and fluidity. Finally, the self-compacting performance of fresh ECC mixes made with the electrosterically stabilized fresh matrix mix and the ductile strain-hardening performance of the hardened ECC were demonstrated.
Immediate impact on the rim zone of cement based materials due to chemical attack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwotzer, M., E-mail: matthias.schwotzer@kit.edu; Scherer, T.; Gerdes, A.
2015-01-15
Cement based materials are in their widespread application fields exposed to various aqueous environments. This can lead to serious chemical changes affecting the durability of the materials. In particular in the context of service life prediction a detailed knowledge of the reaction mechanisms is a necessary base for the evaluation of the aggressivity of an aqueous medium and this is deduced commonly from long term investigations. However, these processes start immediately at the material/water-interface, when a cementitious system comes into contact with an aqueous solution, altering here the chemical composition and microstructure. This rim zone represents the first hurdle thatmore » has to be overcome by an attacking aqueous solution. Therefore, the properties of the surface near area should be closely associated with the further course of deterioration processes by reactive transport. In this context short term exposure experiments with hardened cement paste over 4 and 48 h have been carried out with demineralized water, hard tap water and different sulfate solutions. In order to investigate immediate changes in the near-surface region, depth profile cuts have been performed on the cement paste samples by means of focused ion beam preparation techniques. A scanning beam of Gallium ions is applied to cut a sharp edge in the cement paste surface, providing insights into the composition and microstructure of the upper ten to hundred microns. Electron microscopic investigations on such a section of the rim zone, together with surface sensitive X-ray diffraction accompanied by a detailed characterization of the bulk composition confirm that the properties of the material/water interface are of relevance for the durability of cement based systems in contact with aqueous solutions. In this manner, focused ion beam investigations constitute auspicious tools to contribute to a more sophisticated understanding of the reaction mechanisms. - Highlights: • The chemical stability is related to the properties of material/water interface. • Properties of the rim zone readjust quickly, triggered by hydrochemical conditions. • Durability research can be improved by combining FIB techniques and common analytics.« less
Bernthal, Nicholas M; Price, Shawn L; Monument, Michael J; Wilkinson, Brandon; Jones, Kevin B; Randall, R Lor
2015-11-01
Metastatic disease to the acetabulum presents a difficult technical and philosophical challenge: complicated surgeries in patients with often short life expectancies force us to examine both the outcome and cost of these operations. Therefore, we studied the durability of a cement-screw rebar reconstruction technique and risk factors for failure, and we compare the results to other reconstruction options. This is a retrospective review of 52 acetabular reconstructions in 50 patients for nonprimary disease using a retrograde screw-rebar-cement all-polyethylene technique. Mean age was 57 years (range 25-81 years). Twenty-four lesions were classified as Harrington class II; 28 were Harrington class III. Mean follow-up was 17.7 months (range 1-92 months). Outcomes included patient survival, prosthesis survival, and complications. Forty-eight of 50 (96 %) patients ambulated after surgery. Five of 52 (9.6 %) of prostheses failed, three from loosening due to tumor progression, one from aseptic loosening, and one from soft tissue instability (dislocation). The three cases of tumor progression failure occurred in patients with massive preoperative ischial tumor burden. Mean surgical time was 198 min, and hospital stay was 5.2 days. The screw-cement-rebar all-polyethylene cup reconstruction technique is a comparatively successful and inexpensive reconstruction option for treating nonprimary oncologic disease in the acetabulum. All cases of loosening occurred beyond the median patient survival. Surgeons should be wary of massive ischial tumor burden in patients with projected longevity, as it may be associated with implant failure. Surgical time and hospital stay are consistent with historical data for alternative implants, and implant cost is lower.
Pelvic packing or angiography: competitive or complementary?
Suzuki, Takashi; Smith, Wade R; Moore, Ernest E
2009-04-01
Pelvic angiography is an established technique that has evolved into a highly effective means of controlling arterial pelvic haemorrhage. The current dominant paradigm for haemodynamically unstable patients with pelvic fractures is angiographic management combined with mechanical stabilisation of the pelvis. However, an effective rapid screening tool for arterial bleeding in pelvic fracture patients has yet to be identified. There is also no precise way to determine the major source of bleeding responsible for haemodynamic instability. In many pelvic fracture patients, bleeding is from venous lacerations which are not effectively treated with angiography to fractured bony surfaces. Modern pelvic packing consists of time-saving and minimally invasive techniques which appear to result in effective control of the haemorrhage via tamponade. This review article focuses on the recent body of knowledge on angiography and pelvic packing. We propose the optimal role for each modality in trauma centres.
Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques.
Goodacre, Brian J; Goodacre, Charles J; Baba, Nadim Z; Kattadiyil, Mathew T
2016-08-01
Currently no data comparing the denture base adaptation of CAD-CAM and conventional denture processing techniques have been reported. The purpose of this in vitro study was to compare the denture base adaptation of pack and press, pour, injection, and CAD-CAM techniques for fabricating dentures to determine which process produces the most accurate and reproducible adaptation. A definitive cast was duplicated to create 40 gypsum casts that were laser scanned before any fabrication procedures were initiated. A master denture was made using the CAD-CAM process and was then used to create a putty mold for the fabrication of 30 standardized wax festooned dentures, 10 for each of the conventional processing techniques (pack and press, pour, injection). Scan files from 10 casts were sent to Global Dental Science, LLC for fabrication of the CAD-CAM test specimens. After specimens for each of the 4 techniques had been fabricated, they were hydrated for 24 hours and the intaglio surface laser scanned. The scan file of each denture was superimposed on the scan file of the corresponding preprocessing cast using surface matching software. Measurements were made at 60 locations, providing evaluation of fit discrepancies at the following areas: apex of the denture border, 6 mm from the denture border, crest of the ridge, palate, and posterior palatal seal. The use of median and interquartile range was used to assess accuracy and reproducibility. The Levine and Kruskal-Wallis analysis of variance was used to evaluate differences between processing techniques at the 5 specified locations (α=.05). The ranking of results based on median and interquartile range determined that the accuracy and reproducibility of the CAD-CAM technique was more consistently localized around zero at 3 of the 5 locations. Therefore, the CAD-CAM technique showed the best combination of accuracy and reproducibility among the tested fabrication techniques. The pack and press technique was more accurate at 2 of the 5 locations; however, its interquartile range (reproducibility) was the greatest of the 4 tested processing techniques. The pour technique was the most reproducible at 2 of the 5 locations; however, its accuracy was the lowest of the tested techniques. The CAD-CAM fabrication process was the most accurate and reproducible denture fabrication technique when compared with pack and press, pour, and injection denture base processing techniques. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Traditional Portland cement and MgO-based cement: a promising combination?
NASA Astrophysics Data System (ADS)
Tonelli, Monica; Martini, Francesca; Calucci, Lucia; Geppi, Marco; Borsacchi, Silvia; Ridi, Francesca
2017-06-01
MgO/SiO2 cements are materials potentially very useful for radioactive waste disposal, but knowledge about their physico-chemical properties is still lacking. In this paper we investigated the hydration kinetics of cementitious formulations prepared by mixing MgO/SiO2 and Portland cement in different proportions and the structural properties of the hydrated phases formed in the first month of hydration. In particular, the hydration kinetics was investigated by measuring the free water index on pastes by means of differential scanning calorimetry, while the structural characterization was carried out by combining thermal (DTA), diffractometric (XRD), and spectroscopic (FTIR, 29Si solid state NMR) techniques. It was found that calcium silicate hydrate (C-S-H) and magnesium silicate hydrate (M-S-H) gels mainly form as separate phases, their relative amount and structural characteristics depending on the composition of the hydrated mixture. Moreover, the composition of the mixtures strongly affects the kinetics of hydration and the pH of the aqueous phase in contact with the cementitious materials. The results here reported show that suitable mixtures of Portland cement and MgO/SiO2 could be used to modify the properties of hydrated phases with potential application in the storage of nuclear waste in clayey disposal.
Ortega, José Marcos; Sánchez, Isidro; Climent, Miguel Ángel
2017-09-25
Today, the characterisation of the microstructure of cement-based materials using non-destructive techniques has become an important topic of study, and among them, the impedance spectroscopy has recently experienced great progress. In this research, mortars with two different contents of fly ash were exposed to four different constant temperature and relative humidity environments during a 180-day period. The evolution of their microstructure was studied using impedance spectroscopy, whose results were contrasted with mercury intrusion porosimetry. The hardening environment has an influence on the microstructure of fly ash cement mortars. On one hand, the impedance resistances R₁ and R₂ are more influenced by the drying of the materials than by microstructure development, so they are not suitable for following the evolution of the porous network under non-optimum conditions. On the other hand, the impedance spectroscopy capacitances C₁ and C₂ allow studying the microstructure development of fly ash cement mortars exposed to those conditions, and their results are in accordance with mercury intrusion porosimetry ones. Finally, it has been observed that the combined analysis of the abovementioned capacitances could be very useful for studying shrinkage processes in cement-based materials kept in low relative humidity environments.
Błaszczyszyn, Artur; Kubasiewicz-Ross, Paweł; Gedrange, Tomasz; Dominiak, Marzena
2013-01-01
The paper presents clinical-radiological research on the impact of the new semi-cement luting agent in the immediately loaded implant-supported restoration on alveolar ridge resorption. 25 patients with a partially edentulous alveolar ridge in the anterior section of the maxilla or mandible were included in the study. The implants were inserted with the application of traditional burs or with a Piezosurgery device supplied by Mectron. Taking into account the method of implant bed preparation, the scientific material was divided into two groups. The implants were loaded immediately with single crown restorations cemented with the Implantlink semi cement application. The following indices were taken into consideration: pocket depth around implant calculated at four measuring points, marginal alveolar bone loss measured using radio-visiography, the 3-degree Wachtel scale of healing of the soft tissue. In addition, the presence and possible width or height of any recession around the implants was measured. The success of the implant treatment was assessed according to the Albrektsson success criteria. The research results were subjected to statistical analysis. The results of our study revealed no influence of the Implant-link semi cement on the crestal bone level, regardless of the bone bed preparation technique.
Boger, A.; Schenk, B.; Heini, P. F.
2009-01-01
Percutaneous vertebroplasty, comprising an injection of polymethylmethacrylate (PMMA) into vertebral bodies, is a practical procedure for the stabilization of osteoporotic compression fractures as well as other weakening lesions. Cement leakage is considered to be one of the major and most severe complications during percutaneous vertebroplasty. The viscosity of the material plays a key role in this context. In order to enhance the safety for the patient, a rheometer system was developed to measure the cement viscosity intraoperatively. For this development, it is of great importance to know the proper viscosity to start the procedure determined by experienced surgeons and the relation between the time period when different injection devices are used and the cement viscosity. The purpose of the study was to investigate the viscosity ranges for different injection systems during conventional vertebroplasty. Clinically observed viscosity values and related time periods showed high scattering. In order to get a better understanding of the clinical observations, cement viscosity during hardening at different ambient temperatures and by simulation of the body temperature was investigated in vitro. It could be concluded, that the direct viscosity assessment with a rheometer during vertebroplasty can help clinicians to define a lower threshold viscosity and thereby decrease the risk of leakage and make adjustments to their injection technique in real time. Secondly, the acceleration in hardening of PMMA-based cements at body temperature can be useful in minimizing leakages by addressing them with a short injection break. PMID:19479285
NASA Astrophysics Data System (ADS)
Hu, Cairong; Benally, Aaron D.; Case, Tobias; Zoughi, Reza; Kurtis, Kimberly
2000-07-01
Corrosion of steel rebar in reinforced concrete structures, can be induced by the presence of chloride in the structure. Corrosion of steel rebar is a problematic issue in the construction industry as it compromises the strength and integrity of the structure. Although techniques exist for chloride detection and its migration into a structure, they are destructive, time consuming and cannot be used for the interrogation of large surfaces. In this investigation three different portland cement types; namely, ASTM types II, III and V were used, and six cubic (8' X 8' X 8') mortar specimens were produced all with water-to-cement (w/c) ratio of 0.6 and sand-to-cement (s/c) ratio of 1.5. Tap water was used when producing three of these specimens (one of each cement type). For the other three specimens calcium chloride was added to the mixing tap water resulting in a salinity of 2.5%. These specimens were placed in a hydration room for one day and thereafter left it the room temperature with low humidity. The reflection properties of these specimens, using an open-ended rectangular waveguide probe, were monitored daily at 3 GHz (S-band) and 10 GHz (X-band). The results show the influence of cement type on the reflection coefficient as well as the influence of chloride on the curing process and setting time.
FEM analysis of different dental root canal-post systems in young permanent teeth.
Vitale, M C; Chiesa, M; Coltellaro, F; Bignardi, C; Celozzi, M; Poggio, C
2008-09-01
Aim of this work was to carry out a comparative evaluation of the structural behaviour of different root canal posts (cylindrical, conical and triple conical) fitted in a second lower bicuspid and subjected to compression and bending test. This study has been carried out by numerical method of structural analysis of finite elements (FEM, Finite Element Method). Different tridimensional models were obtained by CAT images of an extracted tooth, endodontically treated, filled with guttapercha and triple conical glass post. Images have been elaborated by a software for images (Mimics and Ansys) and CAD (Rhinoceros 3 D). In the models a II Class restoration has been virtually created. In the numerical simulation dental tissues (enamel, dentine and root cement), guttapercha, root canal cement, different posts, different techniques of cementation and crown restoration (composites and adhesive systems) have been considered. Strain distributions in dental tissues, in root canal cement and in posts have been compared. The equivalent tensions and the single components (traction, compression and cut) have been analysed. In all examined posts, the most strained part is resulted the coronal one, even if the total tension, in the different tooth-post analyzed systems, resulted uniformly distributed. A similar behaviour was shown by the root canal cement. According to the analyzed conditions of bond and load, varying according to the geometry of the considered posts, our results confirm that there is no substantial difference of deformation in posts, root canal cement and treated tooth.
NASA Technical Reports Server (NTRS)
Gantz, E. E.
1977-01-01
Reinforced carbon-carbon material specimens were machined from 19 and 33 ply flat panels which were fabricated and processed in accordance with the specifications and procedures accepted for the fabrication and processing of the leading edge structural subsystem (LESS) elements for the space shuttle orbiter. The specimens were then baseline coated and tetraethyl orthosilicate impregnated, as applicable, in accordance with the procedures and requirements of the appropriate LESS production specifications. Three heater bars were ATJ graphite silicon carbide coated with the Vought 'pack cementation' coating process, and three were stackpole grade 2020 graphite silicon carbide coated with the chemical vapor deposition process utilized by Vought in coating the LESS shell development program entry heater elements. Nondestructive test results are reported.
Ryan, Sean; Eward, William; Brigman, Brian; Zura, Robert
2017-01-01
Chronic osteomyelitis involving the distal femur often results in amputation or arthrodesis. This article presents three cases of chronic osteomyelitis treated with a staged approach culminating in endoprosthetic reconstruction. Stage one involved resection of infected bone and placement of an intramedullary nail spanning the bony defect between proximal femur and tibia, with antibiotic cement packed around the nail. Patients were then placed on long-term IV +/- oral antibiotics to clear the infection. A "cooldown" period was then used between stages where patients were off antibiotics and inflammatory markers were monitored for signs of remaining infection. Stage two then involved reconstruction of the distal femur and knee with an endoprosthesis. In the appropriate patient, this treatment strategy offers another option in this challenging population.
Interaction between solar energetic particles and interplanetary grains
NASA Astrophysics Data System (ADS)
Strazzulla, G.; Calcagno, L.; Foti, G.; Sheng, K. L.
Some laboratory-studied effects induced by the fluence of fast ions on frosts of astrophysical interest are summarized. The results are applied to the interaction between energetic solar ions and interplanetary dust grains assumed to be cometary debris which spends about one-million yr before being collected in the earth's atmosphere or colliding on the moon's surface. The importance of erosion by particles to the stability of ice grains is confirmed. The build up of carbonaceous material by ion fluence on hydrocarbon containing grains is discussed. It is suggested that these new materials could be the glue which cements submicron silicate particles to form a complex agglomeration whose density increases with increasing proton fluence (packing effect). The IR spectra of laboratory synthesized carbonaceous material are compared with those observed in some carbonaceous meteoritic extracts.
Empress 2. First year clinical results.
Culp, L
1999-03-01
As the search for perfect dental restorative materials continues, it seems we routinely return to ceramics as our standard. Current all-ceramic systems are state-of-the-art with regard to esthetics and function, but are limited in use to single unit restorations. Recently, an all-ceramic lithium disilicate-fluorapatite ceramic system was introduced (IPS Empress 2, Ivoclar North America, Amherst, NY), that allows multiple unit restorations to be fabricated and cemented using adhesive or traditional cementation techniques. This article will overview the technical procedures and advantages of this new ceramic system.
The Morphology of Titanium Dioxide Aerogels
NASA Astrophysics Data System (ADS)
Zhu, Zhu
The morphology of titanium dioxide TiO _2 aerogels has been characterized by four major techniques. This work will discuss these complementary techniques such as nitrogen adsorption, X-ray powder diffraction (XRD), electron microscopies (EM- TEM, SEM), and small angle neutron scattering (SANS). The results of these characterizations have shown that the morphology of titanium dioxide TiO_2 aerogels can be characterized in terms of two length scales: 5 nm diameter, crystalline nanoparticles of anatase closely packed into mesoaggregates about 50 nm in size. The mesoaggregates are, in turn, packed into a loosely linked structure with an overall porosity of 80%.
Kim, Dong-Kyu; Rhee, Chae Seo; Kim, Jeong-Whun
2016-05-01
Nasal packing is commonly performed after functional endoscopic sinus surgery (FESS). However, nasal packing is associated with higher cost (owing to the cost of packing materials), patient discomfort, delayed wound healing, and concern about toxic shock syndrome. Some surgeons have been performing FESS without packing, but there are few studies that show its safety. The purpose of this study was to evaluate the safety of electrocauterization and no packing. A total of 490 patients who underwent bilateral FESS for chronic rhinosinusitis were included in this retrospective study, 242 in the nasal packing group and 248 in the electrocauterization and no-packing group. Electrocauterization was performed by using a suction coagulator. Rates of immediate (first 24 hours after surgery) and delayed postoperative bleeding were compared. Patient characteristics, including concomitant disease and medication history, and Lund-Mackay computed tomography score were also assessed Results: There were no significant differences in age; sex; Lund-Mackay score; use of anticoagulant drugs; or prevalence of hypertension, diabetes, or asthma between the two groups. In the electrocauterization and no-packing group, there were fewer patients with allergic rhinitis and more smokers. Primary bleeding did not occur in the nasal packing group, but 11 patients (4.4%) had delayed bleeding. Primary bleeding occurred in four patients (1.7%) in the electrocauterization and no-packing group, and five patients (2.1%) had delayed bleeding. There were no significant differences in primary (p = 0.058) and secondary bleeding (p = 0.142) between the two groups. All bleeding was minor and easily controlled. Multivariate logistic regression analysis ruled out significant correlation between no packing and postoperative bleeding. This study provided evidence that, in terms of postoperative hemorrhage, the safety of the electrocauterization and no-packing technique after FESS was comparable with that of nasal packing.
Preparation and evaluation of a novel star-shaped polyacid-constructed dental glass-ionomer system.
Howard, Leah; Weng, Yiming; Xie, Dong
2014-06-01
The objective of this study was to synthesize and characterize novel star-shaped poly(acrylic acid-co-itaconic acid)s via chain-transfer radical polymerization technique, use these polyacids to formulate the resin-modified glass-ionomer cements, and evaluate the mechanical strengths of the formed cements The star-shaped poly(acrylic acid-co-itaconic acid)s were synthesized via a chain-transfer radical polymerization reaction using a newly synthesized star-shaped chain-transfer agent. The effects of MW, GM-tethering ratio, P/L ratio and aging on the compressive properties of the formed experimental cements were studied. Compressive, diametral tensile as well as flexural strengths were evaluated and compared to those of Fuji II and Fuji II LC cements. The star-shaped polyacids showed significantly lower viscosities in water as compared to their linear counterparts. The cements formulated with these novel polyacids showed significantly improved mechanical strengths i.e., 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS and 36% in FS, higher than commercial Fuji II LC. After aging in water for 30 days, the compressive strengths of the experimental cements were significantly changed with an increase of 29% in YS, 19% in modulus as well as 23% in CS and a decrease of 5% in toughness, indicating that aging in water enhances the salt-bridge formation and increases brittleness. A novel light-cured glass-ionomer cement system composed of the star-shaped poly(carboxylic acid)s has been developed via a cost-effective and time-efficient chain-transfer radical polymerization. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel
Sekhri, Sahil; Garg, Sandeep
2016-01-01
Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165
Peroz, Ingrid; Mitsas, Triantafyllos; Erdelt, Kurt; Kopsahilis, Niko
2018-04-17
The cementation process and cementation materials have an influence on the marginal adaptation of restorations. The gap could be affected by thermal and mechanical loading (TCML). The computerized x-ray microtomography (μCT) method offers the possibility of measuring the marginal gap without destruction of the restoration. The aim of this study was to evaluate the marginal gap (MG) and the absolute marginal discrepancy (AMD) before and after TCML. Thirty-nine human premolars were prepared for full ceramic crowns made of lithium disilicate. The crowns were cemented by three different resins-Panavia F 2.0, Variolink II, and Relyx Unicem. The MG and AMD were evaluated by μCT before and after TCML. Panavia F 2.0 had the lowest MG (before 118 μm-after TMCL 124 μm) and AMD (before 145 μm-after TMCL 154 μm), followed by Relyx Unicem (MG: before 164 μm-after TCML 155 μm; AMD: before 213 μm-after TMCL 209 μm) and Variolink II (MG: before 317 μm-after TMCL 320 μm; AMD: before 412 μm-after TMCL 406 μm). The differences were statistically significant before and after TCML. Rather than TCML, it appeared the resin cement was responsible for differences between the MG and AMD before and after TCML. μCT is an accurate technique for assessing cemented restorations. Panavia F 2.0 has the lowest MG and AMD before and after TCML. The resin material that features a three-step protocol (Variolink II) produced higher MG and AMG values than the Panavia or Relyx Unicem varieties with less or no intermediate steps at all.
Material selection and assembly method of battery pack for compact electric vehicle
NASA Astrophysics Data System (ADS)
Lewchalermwong, N.; Masomtob, M.; Lailuck, V.; Charoenphonphanich, C.
2018-01-01
Battery packs become the key component in electric vehicles (EVs). The main costs of which are battery cells and assembling processes. The battery cell is indeed priced from battery manufacturers while the assembling cost is dependent on battery pack designs. Battery pack designers need overall cost as cheap as possible, but it still requires high performance and more safety. Material selection and assembly method as well as component design are very important to determine the cost-effectiveness of battery modules and battery packs. Therefore, this work presents Decision Matrix, which can aid in the decision-making process of component materials and assembly methods for a battery module design and a battery pack design. The aim of this study is to take the advantage of incorporating Architecture Analysis method into decision matrix methods by capturing best practices for conducting design architecture analysis in full account of key design components critical to ensure efficient and effective development of the designs. The methodology also considers the impacts of choice-alternatives along multiple dimensions. Various alternatives for materials and assembly techniques of battery pack are evaluated, and some sample costs are presented. Due to many components in the battery pack, only seven components which are positive busbar and Z busbar are represented in this paper for using decision matrix methods.
An approximate model for cancellous bone screw fixation.
Brown, C J; Sinclair, R A; Day, A; Hess, B; Procter, P
2013-04-01
This paper presents a finite element (FE) model to identify parameters that affect the performance of an improved cancellous bone screw fixation technique, and hence potentially improve fracture treatment. In cancellous bone of low apparent density, it can be difficult to achieve adequate screw fixation and hence provide stable fracture fixation that enables bone healing. Data from predictive FE models indicate that cements can have a significant potential to improve screw holding power in cancellous bone. These FE models are used to demonstrate the key parameters that determine pull-out strength in a variety of screw, bone and cement set-ups, and to compare the effectiveness of different configurations. The paper concludes that significant advantages, up to an order of magnitude, in screw pull-out strength in cancellous bone might be gained by the appropriate use of a currently approved calcium phosphate cement.
Self-curing concrete with different self-curing agents
NASA Astrophysics Data System (ADS)
Gopala krishna sastry, K. V. S.; manoj kumar, Putturu
2018-03-01
Concrete is recognised as a versatile construction material globally. Properties of concrete depend upon, to a greater extent, the hydration of cement and microstructure of hydrated cement. Congenial atmosphere would aid the hydration of cement and hence curing of concrete becomes essential, till a major portion of the hydration process is completed. But in areas of water inadequacy and concreting works at considerable heights, curing is problematic. Self-Curing or Internal Curing technique overcomes these problems. It supplies redundant moisture, for more than sufficient hydration of cement and diminish self-desiccation. Self-Curing agents substantially help in the conservation of water in concrete, by bringing down the evaporation during the hydration of Concrete. The present study focuses on the impact of self-curing agents such as Poly Ethylene Glycol (PEG), Poly Vinyl Alcohol (PVA) and Super Absorbent Polymer (SAP) on the concrete mix of M25 grade (reference mix). The effect of these agents on strength properties of Concrete such as compressive strength, split tensile strength and flexural strength was observed on a comparative basis which revealed that PEG 4000 was the most effective among all the agents.
Donovan, Terrence J.; Termain, Patricia A.; Henry, Mitchell E.
1979-01-01
The Cement oil field, Oklahoma, was a test site for an experiment designed to evaluate LANDSAT's capability to detect an alteration zone in surface rocks caused by hydrocarbon microseepage. Loss of iron and impregnation of sandstone by carbonate cements and replacement of gypsum by calcite are the major alteration phenomena at Cement. The bedrock alterations are partially masked by unaltered overlying beds, thick soils, and dense natural and cultivated vegetation. Interpreters biased by detailed ground truth were able to map the alteration zone subjectively using a magnified, filtered, and sinusoidally stretched LANDSAT composite image; other interpreters, unbiased by ground truth data, could not duplicate that interpretation. Similar techniques were applied at a secondary test site (Garza oil field, Texas), where similar alterations in surface rocks occur. Enhanced LANDSAT images resolved the alteration zone to a biased interpreter and some individual altered outcrops could be mapped using higher resolution SKYLAB color and conventional black and white aerial photographs suggesting repeat experiments with LANDSAT C and D.
Nano- and Macro-wear of Bio-carbo-nitrided AISI 8620 Steel Surfaces
NASA Astrophysics Data System (ADS)
Arthur, Emmanuel Kwesi; Ampaw, Edward; Zebaze Kana, M. G.; Adetunji, A. R.; Olusunle, S. O. O.; Adewoye, O. O.; Soboyejo, W. O.
2015-12-01
This paper presents the results of an experimental study of nano- and macro-scale wear in a carbo-nitrided AISI 8620 steel. Carbo-nitriding is carried out using a novel method that involves the use of dried, cyanide-containing cassava leaves, as sources of carbon and nitrogen. These are used in a pack cementation that is used to diffuse carbon and nitrogen into case layers at intermediate temperatures [673.15 K, 723.15 K, 773.15 K, and 823.15 K (400 °C, 450 °C, 500 °C, and 550 °C)]. Nano- and macro-scale wear properties are studied in the case-hardened surfaces, using a combination of nano-scratch and pin-on-disk experiments. The measured wear volumes (at both nano- and macro-length scales) are shown to increase with decreasing pack cyaniding temperature. The nano- and macro-wear resistances are also shown to be enhanced by the in situ diffusion of carbon and nitrogen from cyanide-containing bio-processed waste. The underlying wear mechanisms are also elucidated via atomic force microscopy and scanning electron microscopy observations of the wear tracks. The implications of the results are discussed for the design of hardened carbo-nitrided steel surfaces with improved wear resistance.
Microstructure and elevated-temperature erosion-oxidation behaviour of aluminized 9Cr-1Mo Steel
NASA Astrophysics Data System (ADS)
Huttunen-Saarivirta, E.; Honkanen, M.; Tsipas, S. A.; Omar, H.; Tsipas, D.
2012-10-01
Degradation of materials by a combination of erosive wear and atmospheric oxidation at elevated temperatures constitutes a problem in some power generation processes, such as fluidized-bed combustion. In this work, 9Cr-1Mo steel, a common tube material in combustion chambers, is coated by a pack cementation method from an Al-containing pack in order to improve the resistance to erosion-oxidation at elevated temperatures. The resulting coating is studied in terms of microstructure and microhardness and tested for its resistance against impacts by sand particles in air at temperatures of 550-700 °C under several conditions, with thickness changes and appearance of the exposed surfaces being studied. The coating was found to contain several phases and layers, the outermost of which was essentially Al-rich and contained e.g., small AlN precipitates. The microhardness values for such coating ranged from 950 to 1100 HV20g. The coating provided the substrate with increased protection particularly against normal particle impacts, as manifested by smaller thickness losses for coated specimens as compared to uncoated counterparts. However, much of the coating was lost under all test conditions, despite the fact that particle debris formed a homogeneous layer on the surface. These results are described and discussed in this paper.
High temperature oxidation in boiler environment of chromized steel
NASA Astrophysics Data System (ADS)
Alia, F. F.; Kurniawan, T.; Asmara, Y. P.; Ani, M. H. B.; Nandiyanto, A. B. D.
2017-10-01
The demand for increasing efficiency has led to the development and construction of higher operating temperature power plant. This condition may lead to more severe thickness losses in boiler tubes due to excessive corrosion process. Hence, the research to improve the corrosion resistance of the current operated material is needed so that it can be applied for higher temperature application. In this research, the effect of chromizing process on the oxidation behaviour of T91 steel was investigated under steam condition. In order to deposit chromium, mixture of chromium (Cr) powder as master alloy, halide salt (NH4Cl) powder as activator and alumina (Al2O3) powder as inert filler were inserted into alumina retort together with the steel sample and heated inside furnace at 1050°C for ten hours under argon gas environment. Furthermore, for the oxidation process, steels were exposed at 700°C at different oxidation time (6h-24h) under steam condition. From FESEM/EDX analysis, it was found that oxidation rate of pack cemented steel was lower than the un-packed steel. These results show that Cr from chromizing process was able to become reservoir for the formation of Cr2O3 in high temperature steam oxidation, and its existence can be used for a longer oxidation time.
Feasibility study of fluxless brazing cemented carbides to steel
NASA Astrophysics Data System (ADS)
Tillmann, W.; Sievers, N.
2017-03-01
One of the most important brazing processes is the joints between cemented carbides and steel for the tool industry such as in rotary drill hammers or saw blades. Even though this technique has already been used for several decades, defects in the joint can still occur and lead to quality loss. Mostly, the joining process is facilitated by induction heating and the use of a flux to enhance the wetting of the filler alloy on the surface of the steel and cemented carbide in an ambient atmosphere. However, although the use of flux enables successful joining, it also generates voids within the joint, which reduces the strength of the connection while the chemicals within the flux are toxic and polluting. In this feasibility study, a fluxless brazing process is used to examine the joint between cemented carbides and steel for the first time. For this, ultrasound is applied during induction heating to enable the wetting between the liquid filler metal and the surfaces of the cemented carbide and steel. The ultrasound generates cavitations within the liquid filler metal, which remove the oxides from the surface. Several filler metals such as a silver based alloy Ag449, pure Zn, and an AlSi-alloy were used to reduce the brazing temperature and to lower the thermal residual stresses within the joint. As a result, every filler metal successfully wetted both materials and led to a dense connection. The ultrasound has to be applied carefully to prevent a damage of the cemented carbide. In this regard, it was observed that single grains of the cemented carbide broke out and remained in the joint. This positive result of brazing cemented carbides to steel without a flux but using ultrasound, allows future studies to focus on the shear strength of these joints as well as the behavior of the thermally induced residual stresses.
Temperature Increase during Different Post Space Preparation Systems: An In Vitro Study
Nazari Moghadam, Kiumars; Shahab, Shahriar; Shirvani, Soghra; Kazemi, Ali
2011-01-01
INTRODUCTION: The purpose of this study was to evaluate external root surface temperature rise during post space preparation using LA Axxess bur, Beefill pack System, and Peeso Reamer drill. MATERIALS AND METHODS: The distal canals of forty-five extracted human permanent mandibular first molars were instrumented in crown-apical manner and obturated with lateral condensation technique. Teeth were then randomly divided into three groups according to post space preparation technique including: group 1. LA Axxess bur (Sybronendo Co., CA, USA), group 2 Beefill pack System (VD W Co., Munich, Germany) and group 3 Peeso Reamer drill (Mani Co., Tochigi-ken, Japan). Temperature was measured by means of digital thermometer MT-405 (Comercio Co., Sao Paulo, Brazil) which was installed on the root surfaces. Data was collected and submitted to one-way ANOVA and Post hoc analysis. RESULTS: Root surface temperatures were found to be significantly higher (7.3±2.7 vs. 4.3±2.1 and 4±2.4,) in samples of Beefill pack System compared with the two other groups (P<0.02). CONCLUSION: Using Beefill pack System during post space preparation may be potentially hazardous for periodontal tissues. PMID:24778690
Temperature Increase during Different Post Space Preparation Systems: An In Vitro Study.
Nazari Moghadam, Kiumars; Shahab, Shahriar; Shirvani, Soghra; Kazemi, Ali
2011-01-01
The purpose of this study was to evaluate external root surface temperature rise during post space preparation using LA Axxess bur, Beefill pack System, and Peeso Reamer drill. The distal canals of forty-five extracted human permanent mandibular first molars were instrumented in crown-apical manner and obturated with lateral condensation technique. Teeth were then randomly divided into three groups according to post space preparation technique including: group 1. LA Axxess bur (Sybronendo Co., CA, USA), group 2 Beefill pack System (VD W Co., Munich, Germany) and group 3 Peeso Reamer drill (Mani Co., Tochigi-ken, Japan). Temperature was measured by means of digital thermometer MT-405 (Comercio Co., Sao Paulo, Brazil) which was installed on the root surfaces. Data was collected and submitted to one-way ANOVA and Post hoc analysis. Root surface temperatures were found to be significantly higher (7.3±2.7 vs. 4.3±2.1 and 4±2.4,) in samples of Beefill pack System compared with the two other groups (P<0.02). Using Beefill pack System during post space preparation may be potentially hazardous for periodontal tissues.
Patient radiation exposure during different kyphoplasty techniques.
Panizza, Denis; Barbieri, Massimo; Parisoli, Francesco; Moro, Luca
2014-01-01
The scope of this study was to quantify patient radiation exposure during two different techniques of kyphoplasty (KP), which differ by a cement delivery method, in order to assess whether or not one of the two used methods can reduce the patient dose. Twenty patients were examined for this investigation. One X-ray fluoroscopy unit was used for localization, navigation and monitoring of cement delivery. The patient biometric data, the setting of the fluoroscope, the exposure time and the kerma-area product (KAP) were monitored in all the procedures for anteroposterior (AP) and lateral (LL) fluoroscopic projections in order to assess the range of radiation doses imparted to the patient. Theoretical entrance skin dose (ESD) and effective dose (E) were calculated from intraoperatively measured KAP. An average ET per procedure was 1.5±0.5 min for the manual injection technique (study A) and 1.4±0.4 min for the distance delivery technique (study B) in the AP plane, while 3.2±0.7 and 5.1±0.6 min in the lateral plane, respectively. ESD was estimated as an average of 0.10±0.06 Gy for study A and 0.13±0.13 Gy for study B in the AP or/and 0.59±0.46 and 1.05±0.36 Gy in the lateral view, respectively. The cumulative mean E was 1.9±1.0 mSv procedure(-1) for study A and 3.6±0.9 mSv procedure(-1) for study B. Patient radiation exposure and associated effective dose from KP may be considerable. The technique of distance cement delivery appears to be slower than the manual injection technique and it requires a more protracted fluoroscopic control in the lateral projection, so that this system entails a higher amount of dose to the patient.
Ajaxon, Ingrid; Acciaioli, Alice; Lionello, Giacomo; Ginebra, Maria-Pau; Öhman-Mägi, Caroline; Baleani, Massimiliano; Persson, Cecilia
2017-10-01
Calcium phosphate cements (CPCs) should ideally have mechanical properties similar to those of the bone tissue the material is used to replace or repair. Usually, the compressive strength of the CPCs is reported and, more rarely, the elastic modulus. Conversely, scarce or no data are available on Poisson's ratio and strain-to-crack-initiation. This is unfortunate, as data on the elastic response is key to, e.g., numerical model accuracy. In this study, the compressive behaviour of brushite, monetite and apatite cements was fully characterised. Measurement of the surface strains was done using a digital image correlation (DIC) technique, and compared to results obtained with the commonly used built-in displacement measurement of the materials testers. The collected data showed that the use of fixed compression platens, as opposed to spherically seated ones, may in some cases underestimate the compressive strength by up to 40%. Also, the built-in measurements may underestimate the elastic modulus by up to 62% as compared to DIC measurements. Using DIC, the brushite cement was found to be much stiffer (24.3 ± 2.3GPa) than the apatite (13.5 ± 1.6GPa) and monetite (7.1 ± 1.0GPa) cements, and elastic moduli were inversely related to the porosity of the materials. Poisson's ratio was determined to be 0.26 ± 0.02 for brushite, 0.21 ± 0.02 for apatite and 0.20 ± 0.03 for monetite. All investigated CPCs showed low strain-to-crack-initiation (0.17-0.19%). In summary, the elastic modulus of CPCs is substantially higher than previously reported and it is concluded that an accurate procedure is a prerequisite in order to properly compare the mechanical properties of different CPC formulations. It is recommended to use spherically seated platens and measuring the strain at a relevant resolution and on the specimen surface. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Qeblawi, Dana; Hill, Thomas; Chlosta, Kelly
2011-11-01
Endodontic access preparation through lithium disilicate ceramic restorations may damage the restoration and compromise its load-bearing capability. The purpose of this in vitro research was to investigate the effect of simulated endodontic access preparation through lithium disilicate glass-ceramic restorations on their load to failure. Sixty lithium disilicate glass-ceramic (IPS e.max CAD) complete-coverage restorations were milled and crystallized. Five coats of die relief were applied internally in the crown to provide a cement space approximately 60 μm in thickness. Composite resin dies were fabricated by backfilling each crown. The specimens were then stored at 37°C and 100% humidity for 30 days. The crowns with their respective dies were divided into 6 groups: Groups M-C, M-ZR, M-SC, and M-CRF were adhesively bonded with a resin cement (Multilink Implant), and Groups F-C and F-ZR were conventionally cemented with zinc phosphate cement (Fleck's). After storing all groups for 1 week, Groups M-C and F-C served as the intact controls for the 2 cementation techniques, while Groups M-ZR and F-ZR had an access prepared with a 126 μm grit-size diamond rotary instrument. For Groups M-SC and M-CRF, the endodontic access was prepared with 150 μm and 180 μm grit-size diamond rotary instruments, respectively. Access preparations were restored with composite resin. All specimens were stored at 37°C and 100% humidity for 1 week before they were loaded to failure with a universal loading apparatus (crosshead speed=1mm/min). The results were analyzed with a 1-way ANOVA followed by Tukey's HSD test (α=.05). The highest failure loads were achieved with Groups M-C (3316 N ±483) and M-ZR (3464 N ±645) Larger grit rotary instruments resulted in lower failure-loads in Groups M-SC (2915 N ±569) and M-CRF (2354 N ±476). Groups F-C (2242 N ±369) and F-ZR(1998 N ±448) had significantly lower failure loads than their adhesively bonded counterparts (P<.05). The use of 126 μm grit size did not significantly alter the failure loads of the restorations in either cementation technique. Adhesively bonded restorations sustained significantly higher loads to failure than those conventionally cemented. The use of a high efficiency, smaller-grit diamond rotary instrument for endodontic access preparation did not alter the load to failure of lithium disilicate restorations, regardless of the cement used. The use of a larger-grit rotary instrument did not improve the cutting efficiency and reduced the failure load of bonded restorations. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Snow wetness measurements for melt forecasting
NASA Technical Reports Server (NTRS)
Linlor, W. I.; Clapp, F. D.; Meier, M. F.; Smith, J. L.
1975-01-01
A microwave technique for directly measuring snow pack wetness in remote installations is described. The technique, which uses satellite telemetry for data gathering, is based on the attenuation of a microwave beam in transmission through snow.
Tribochemical Glass Ceramic Coating as a New Approach for Resin Adhesion to Zirconia.
Wandscher, Vinícius Felipe; Fraga, Sara; Pozzobon, João Luiz; Soares, Fabio Zovico Maxnuck; Foletto, Edson Luiz; May, Liliana Gressler; Valandro, Luiz Felipe
To investigate the effects of a novel tribochemical silica coating technique with powders made from feldspathic ceramic and leucite-based ceramic on the bond strength of zirconia to resin cement before and after aging. Zirconia blocks were divided into 3 groups according to the material used for airborne-particle abrasion: 1) SP (control): silica-coated alumina particles; 2) FP: feldspathic ceramic powder; 3) LP: leucite glass-ceramic powder. After silanization, composite resin cylinders were cemented on the zirconia surface using a dual-curing resin cement. Prior to the shear bond strength (SBS) test, half of the samples (n = 15) were stored in distilled water for 24 h; the other half (n = 15) were submitted to aging (10,000 thermocycles of 5°C to 55°C; 150 days of water storage). The bond strength data were analyzed using two-way ANOVA and Tukey's test (α = 0.05). Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction analysis were performed. The initial bond strengths did not differ significantly between the groups (p = 0.053). However, after aging procedures, airborne-particle abrasion with feldspathic ceramic powder (FP) resulted in higher values of bond strength (p = 0.0001). SEM and EDS indicated that all the treatments promoted silica deposition on the Y-TZP surface ceramic. Airborne-particle abrasion with FP and LP induced a lower percentage of the monoclinic phase. Airborne abrasion with fine feldspathic ceramic particles is a novel tribochemical technique and appears to be suitable for improving the bond strength between zirconia and resin cements.
Evaluation of composite pavement unbonded overlays : phase III.
DOT National Transportation Integrated Search
2007-08-01
In recent years, thin whitetopping has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavements. Numerous projects have been constructed and tested, allowing researchers to identify the important elements ...
NASA Astrophysics Data System (ADS)
Gao, Feng
The hot section components in gas turbines are subjected to a harsh environment with the temperature being increased continuously. The higher temperature has directly resulted in severe oxidation of these components. Monolithic coatings such as MCrAIY and aluminide have been traditionally used to protect the components from oxidation; however, increased operating temperature quickly deteriorates the coatings due to accelerated diffusion of aluminum in the coatings. To improve the oxidation resistance a group of multilayered coatings are developed in this study. The multilayered coatings consist of a Cr-Si co-deposited layer as the diffusion barrier, a plasma sprayed NiCrA1Y coating as the middle layer and an aluminized top layer. The Cr-Si and aluminized layers are fabricated using pack cementation processes and the NiCrA1Y coatings are produced using the Mettech Axial III(TM) System. All of the coating processes are optimized using the methodology of Design of Experiments (DOE) and the results are analyzed using statistical method. The optimal processes are adopted to fabricate the multilayered coatings for oxidation tests. The coatings are exposed in air at 1050°C and 1150°C for 1000 hr. The results indicate that a Cr layer and a silicon-rich barrier layer have formed on the interface between the Cr-Si coating and the NiCrA1Y coating. This barrier layer not only prevents aluminum and chromium from diffusing into the substrate, but also impedes the diffusion of other elements from the substrate into the coating. The results also reveal that, for optimal oxidation resistance at 1050°C, the top layer in a multilayered coating should have at least Al/Ni ratio of one; whereas the multilayered coating with the All Ni ratio of two in the top layer exhibits the best oxidation resistance at 1150°C. The DOE methodology provides an excellent means for process optimization and the selection of oxidation test matrix, and also offers a more thorough understanding of the effects of process parameters on the coating microstructure, and the effects of layers and their interactions on the oxidation behavior of the multilayered coatings.
[Progress of Masquelet technique to repair bone defect].
Yin, Qudong; Sun, Zhenzhong; Gu, Sanjun
2013-10-01
To summarize the progress of Masquelet technique to repair bone defect. The recent literature concerning the application of Masquelet technique to repair bone defect was extensively reviewed and summarized. Masquelet technique involves a two-step procedure. First, bone cement is used to fill the bone defect after a thorough debridement, and an induced membrane structure surrounding the spacer formed; then the bone cement is removed after 6-8 weeks, and rich cancellous bone is implanted into the induced membrane. Massive cortical bone defect is repaired by new bone forming and consolidation. Experiments show that the induced membrane has vascular system and is also rich in vascular endothelial growth factor, transforming growth factor beta1, bone morphogenetic protein 2, and bone progenitor cells, so it has osteoinductive property; satisfactory results have been achieved in clinical application of almost all parts of defects, various types of bone defect and massive defect up to 25 cm long. Compared with other repair methods, Masquelet technique has the advantages of reliable effect, easy to operate, few complications, low requirements for recipient site, and wide application. Masquelet technique is an effective method to repair bone defect and is suitable for various types of bone defect, especially for bone defects caused by infection and tumor resection.
Fechter, Dominik; Storch, Ilse
2014-01-01
Due to legislative protection, many species, including large carnivores, are currently recolonizing Europe. To address the impending human-wildlife conflicts in advance, predictive habitat models can be used to determine potentially suitable habitat and areas likely to be recolonized. As field data are often limited, quantitative rule based models or the extrapolation of results from other studies are often the techniques of choice. Using the wolf (Canis lupus) in Germany as a model for habitat generalists, we developed a habitat model based on the location and extent of twelve existing wolf home ranges in Eastern Germany, current knowledge on wolf biology, different habitat modeling techniques and various input data to analyze ten different input parameter sets and address the following questions: (1) How do a priori assumptions and different input data or habitat modeling techniques affect the abundance and distribution of potentially suitable wolf habitat and the number of wolf packs in Germany? (2) In a synthesis across input parameter sets, what areas are predicted to be most suitable? (3) Are existing wolf pack home ranges in Eastern Germany consistent with current knowledge on wolf biology and habitat relationships? Our results indicate that depending on which assumptions on habitat relationships are applied in the model and which modeling techniques are chosen, the amount of potentially suitable habitat estimated varies greatly. Depending on a priori assumptions, Germany could accommodate between 154 and 1769 wolf packs. The locations of the existing wolf pack home ranges in Eastern Germany indicate that wolves are able to adapt to areas densely populated by humans, but are limited to areas with low road densities. Our analysis suggests that predictive habitat maps in general, should be interpreted with caution and illustrates the risk for habitat modelers to concentrate on only one selection of habitat factors or modeling technique. PMID:25029506
Tian, Zhenghong; Bu, Jingwu
2014-01-01
The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed. PMID:25133257
Research on curing behavior of concrete with anti-frost admixtures at subzero temperature
NASA Astrophysics Data System (ADS)
Ionov, Yulian; Kramar, Ludmila; Kirsanova, Alena; Kolegova, Irina
2017-01-01
The purpose of this paper is research on curing behavior of cold-weather concrete with anti-frost admixtures. During the study derivative thermal and X-ray phase analyses were performed and tests were carried out according to the standard GOST technique. The research results obtained reveal the peculiarities of cement hydration and concrete curing at subzero temperatures. The influence of subzero temperatures and anti-frost admixtures on hydrated phases of hardened cement paste and concrete strength formation was studied. It is found that cold-weather concrete does not cure at subzero temperatures, but when defrosting it attains 80 to 85% of its grade strength by the 28th day. Concrete achieves its grade strength when curing in normal conditions in 60 days only. Freezing concrete with anti-frost admixtures results in increase of calcium hydroxide content in hardened cement paste immediately when produced and has increased tendency of concrete to carbonation.
Comparative Effect of Bio-waste Ashes on Strength Properties of Cement Mortar
NASA Astrophysics Data System (ADS)
Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad; Ahmed, Mohamed Anwar
Biomass fuels produce about 400 million tonnes of ashes as waste material. This paper discusses the pozzolanic character of bio-waste ashes obtained from dry tree leaves (AML), Korai grass (KRI) and Tifton grass (TFT). Ashes were obtained by control incineration of the wastes at 600°C for 5 hours and mortar specimens were prepared by substituting cement with 10, 20 and 30% ash. Strength development of ash-blended mortar specimens was evaluated by conducting destructive tests as well as non-destructive tests till 91 days. X-ray diffraction, scanning electron microscopic and thermo-gravimetric techniques were used to analyze the influence of ash substitution on strength properties of blended-mortar. Pozzolanic reactivity of AML- and KRI-ash was confirmed, but TFT-ash did not show enough reactivity. Overall results confirmed that up to 20% substitution of cement can be made with AML- or KRI-ash with strength approaching 90% of that of control.
Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures
NASA Astrophysics Data System (ADS)
Kara, P.; Csetényi, L. J.; Borosnyói, A.
2016-04-01
In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.
Tian, Zhenghong; Bu, Jingwu
2014-01-01
The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed.
Molecular characterization of organic electronic films.
DeLongchamp, Dean M; Kline, R Joseph; Fischer, Daniel A; Richter, Lee J; Toney, Michael F
2011-01-18
Organic electronics have emerged as a viable competitor to amorphous silicon for the active layer in low-cost electronics. The critical performance of organic electronic materials is closely related to their morphology and molecular packing. Unlike their inorganic counterparts, polymers combine complex repeat unit structure and crystalline disorder. This combination prevents any single technique from being able to uniquely solve the packing arrangement of the molecules. Here, a general methodology for combining multiple, complementary techniques that provide accurate unit cell dimensions and molecular orientation is described. The combination of measurements results in a nearly complete picture of the organic film morphology. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Longevity of bond strength of resin cements to root dentine after radiation therapy.
Yamin, P A; Pereira, R D; Lopes, F C; Queiroz, A M; Oliveira, H F; Saquy, P C; Sousa-Neto, M D
2018-05-04
To evaluate the bond strength and adhesive interface between several resin cements and root dentine immediately and 6 months after radiotherapy. Sixty maxillary canines were selected and randomly assigned to two groups (n = 30): one group was not irradiated and the other one was subjected to a cumulative radiation dose of 60 Gy. The teeth were sectioned to obtain roots 16 mm long and the canals were prepared with the Reciproc system (R50) and filled using a lateral condensation technique with an epoxy resin sealer. Each group was divided into three subgroups (n = 10) according to the resin cement used for fibreglass fibre post cementation: RelyX-U200, Panavia-F2.0 and RelyX ARC. The posts were cemented in accordance with the manufacturer's recommendations. Three 1-mm-thick dentine slices were then obtained from each root third. The first two slices in the crown-apex direction of each third were selected for the push-out test. The failure mode after debonding was determined with a stereo microscope. The third slice from each root third was selected for scanning electron microscopy (SEM) analyses to examine the resin cement-dentine interface with 100, 1000, 2000 and 4000× magnification. Bond strength data were analysed by anova and Tukey's test (α = 0.05). Significantly lower bond strength (P < 0.0001) was obtained after irradiation compared to nonirradiated teeth. RelyX-U200 cemented fibre posts had the higher bond strength (15.17 ± 5.89) compared with RelyX ARC (P < 0.001) and Panavia-F2.0 (P < 0.001). The evaluation after 6 months revealed lower bond strength values compared to the immediate values (P < 0.001) for irradiated and nonirradiated teeth. Cohesive failures occurred in the irradiated dentine. SEM revealed fractures, microfractures and fewer collagen fibres in irradiated root dentine. RelyX-U200 and Panavia-F2.0 were associated with a juxtaposed interface of the cement with the radicular dentine in irradiated and nonirradiated teeth, and for RelyX ARC, hybrid layer formation and tags were observed in both irradiated and nonirradiated teeth. Radiation was associated with a decrease in the push-out bond strength and with lower resin cement/root dentine interface adaptation. Self-adhesive resin cement was a better alternative for fibre post cementation in teeth subjected to radiation therapy. The bond strength decreased after 6 months. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Results of press-fit stems in revision knee arthroplasties.
Wood, Gavin C; Naudie, Douglas D R; MacDonald, Steven J; McCalden, Richard W; Bourne, Robert B
2009-03-01
The ideal method of stem fixation in revision knee arthroplasty is controversial with advantages and disadvantages for cemented and press-fit designs. Studies have suggested cemented revision knee stems may provide better long-term survival. The aim of this study was to report our experience with press-fit uncemented stems and metaphyseal cement fixation in a selected series of patients undergoing revision total knee arthroplasty. One hundred twenty-seven patients (135 knees) who underwent revision total knee arthroplasty using a press-fit technique (press-fit diaphyseal fixation and cemented metaphyseal fixation) were reviewed. Minimum followup was 2 years (mean, 5 years; range, 2-12 years). A Kaplan-Meier survivorship analysis using an end point of revision surgery or radiographic loosening was used to determine probability of survival at 5 and 10 years. Of the 127 patients (135 knees), 31 patients (36 knees) died and two patients (two knees) were lost to followup. Six patients (six knees) had revisions at a mean of 3.5 years (range, 1-8 years). Kaplan-Meier survivorship analysis revealed a probability of survival free of revision for aseptic loosening of 98% at 12 years. Survivorship of press-fit stems for revision knee arthroplasty is comparable to reported survivorship of cemented stem revision knee arthroplasty. Radiographic analysis has shown continued satisfactory appearances regardless of constraint, stem size, and augmentations.
Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties.
Sun, Hongfang; Li, Zishanshan; Bai, Jing; Memon, Shazim Ali; Dong, Biqin; Fang, Yuan; Xu, Weiting; Xing, Feng
2015-02-13
Calcium carbide residue (CCR) is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH)₂, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP). The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength) with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement) pastes was also examined through SEM (scanning electron microscope). Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills.
Guan, Yanpeng; Wang, Enzhi; Liu, Xiaoli; Wang, Sijing; Luan, Hebing
2017-08-03
We have attempted a multiscale and quantified characterization method of the contact in three-dimensional granular material made of spherical particles, particularly in cemented granular material. Particle contact is defined as a type of surface contact with voids in its surroundings, rather than a point contact. Macro contact is a particle contact set satisfying the restrictive condition of a two-dimensional manifold with a boundary. On the basis of graph theory, two dual geometrical systems are abstracted from the granular pack. The face and the face set, which satisfies the two-dimensional manifold with a boundary in the solid cell system, are extracted to characterize the particle contact and the macro contact, respectively. This characterization method is utilized to improve the post-processing in DEM (Discrete Element Method) from a micro perspective to describe the macro effect of the cemented granular material made of spherical particles. Since the crack has the same shape as its corresponding contact, this method is adopted to characterize the crack and realize its visualization. The integral failure route of the sample can be determined by a graph theory algorithm. The contact force is assigned to the weight value of the face characterizing the particle contact. Since the force vectors can be added, the macro contact force can be solved by adding the weight of its corresponding faces.
Caprai, V; Florea, M V A; Brouwers, H J H
2018-06-15
Despite numerous studies concerning the application of by-products in the construction field, municipal solid waste incineration (MSWI) residues are not widely used as secondary building materials. In some European countries, washing treatment to the full bottom ash (BA) fraction (0-32 mm) is applied, isolating more contaminated particles, smaller than 0.063 mm. Therefore, a MWSI sludge is produced, having a high moisture content, and thus a limited presence of soluble species. In order to enhance its performance as building material, here, dry mechanical activation is applied on MSWI sludge. Thereafter, a reactivity comparison between reference BA and untreated and treated MSWI sludge is provided, evaluating their behaviour in the presence of cement and their pozzolanic activity. Moreover, the mechanical performances, as 25% substitution of Portland cement (PC) are assessed, based on the EN 450. Mechanical activation enhances MSWI sludge physically due to the improved particle morphology and packing. Chemically, the hydration degree of PC is enhanced by the MSWI sludge by ≈25%. The milling treatment proved to be beneficial to the residues performances in the presence of PC, providing 32% higher strength than untreated sample. Environmentally, the compliance with the unshaped material legislation is successfully verified, according to the Soil Quality Decree. Copyright © 2017 Elsevier Ltd. All rights reserved.
Preventing Cauliflower Ear with a Modified Tie-Through Technique.
ERIC Educational Resources Information Center
Dimeff, Robert J.; Hough, David O.
1989-01-01
Describes a quick, simple tie-through suture technique (in which a collodion packing is secured to the auricle with two buttons) for preventing cauliflower ear following external ear trauma in wrestlers and boxers. The technique ensures constant compression; multiple treatments for fluid reaccumulation are rarely necessary. (SM)
General advancing front packing algorithm for the discrete element method
NASA Astrophysics Data System (ADS)
Morfa, Carlos A. Recarey; Pérez Morales, Irvin Pablo; de Farias, Márcio Muniz; de Navarra, Eugenio Oñate Ibañez; Valera, Roberto Roselló; Casañas, Harold Díaz-Guzmán
2018-01-01
A generic formulation of a new method for packing particles is presented. It is based on a constructive advancing front method, and uses Monte Carlo techniques for the generation of particle dimensions. The method can be used to obtain virtual dense packings of particles with several geometrical shapes. It employs continuous, discrete, and empirical statistical distributions in order to generate the dimensions of particles. The packing algorithm is very flexible and allows alternatives for: 1—the direction of the advancing front (inwards or outwards), 2—the selection of the local advancing front, 3—the method for placing a mobile particle in contact with others, and 4—the overlap checks. The algorithm also allows obtaining highly porous media when it is slightly modified. The use of the algorithm to generate real particle packings from grain size distribution curves, in order to carry out engineering applications, is illustrated. Finally, basic applications of the algorithm, which prove its effectiveness in the generation of a large number of particles, are carried out.
Evaluation of Fiber Reinforced Cement Using Digital Image Correlation
Melenka, Garrett W.; Carey, Jason P.
2015-01-01
The effect of short fiber reinforcements on the mechanical properties of cement has been examined using a splitting tensile – digital image correlation (DIC) measurement method. Three short fiber reinforcement materials have been used in this study: fiberglass, nylon, and polypropylene. The method outlined provides a simple experimental setup that can be used to evaluate the ultimate tensile strength of brittle materials as well as measure the full field strain across the surface of the splitting tensile test cylindrical specimen. Since the DIC measurement technique is a contact free measurement this method can be used to assess sample failure. PMID:26039590
Wasko, Marcin K.; Kaminski, Rafal
2015-01-01
Since the first description in 2002 by Paley and Herzenberg, antibiotic bone cement nails (ACNs) have become an effective tool in the orthopaedic trauma surgeons' hands. They simultaneously elute high amounts of antibiotics into medullary canal dead space and provide limited stability to the debrided long bone. In this paper, we perform a systematic review of current evidence on ACNs in orthopaedic trauma and provide an up-to-date review of the indications, operative technique, failure mechanisms, complications, outcomes, and outlooks for the ACNs use in long bone infection. PMID:26509153
[Early aseptic loosening of the CF 30 femoral stem].
Kovanda, M; Havlícek, V; Hudec, J
2007-02-01
The CF 30 stem in combination with a cementless acetabulum was used at the First Department of Orthopedic Surgery in Brno in the years 1994 to 1995. From the second year following implantation, aseptic stem loosening was recorded. In order to find explanation of this early loosening, the authors, in cooperation with the Institute of Solid Mechanics, Mechatronics and Biomechanics, carried out the stress-strain analysis in a model system. Eighty patients (31 men and 49 women) received a cemented CF30 femoral component in 1994. Of them, 16 patients underwent revision arthroplasty, three died of causes unrelated to the surgery, and four were lost to follow-up. The final clinical and radiographic check-up was carried out in 2001. The results of a comprehensive examination were available in 57 patients with a CF30 stem. The patients were evaluated on the basis of the Harris hip score and anteroposterior radiographs of the hip. X-ray films obtained immediately after surgery and those taken at regular intervals during follow-up were compared. The following characteristics were noted: translucent lines in individual zones along the stem at the cement-bone interface; osteolysis, i. e., non-linear translucent areas, at least 5 mm long, at the cement-bone interface; and subsidence of the femoral component, i. e., migration of the stem distal to the tip of the greater trochanter. The CF 30 stem survival curve showed that aseptic stem loosening occurred from post-implantation year 2, and increased during the following years. At 6 years and 6 months, a total of 16 patients underwent revision surgery, involving reimplantation in 14 and implant removal in 2 patients. Potential causes of aseptic loosening: Polyethylene wear.However, no acetabular loosening was found in this group, although acetabular components are reported to become loose more often than femoral components. By comparison of the stem survival curves for Poldi and CF 30 stems it appeared that, at 6 years and 6 months, the Poldi stem survival curve showed better results. Matt surface finish of the stem. However, the link between the CF 30 stem and cement was so strong that, in all 16 revised hips, the stem was removed together with nearly a complete cement mantle. The authors therefore dismiss this as a cause. Also, in the remaining cases of CF 30 aseptic loosening, which had not been revised, radiographic evidence suggested loosening between bone and cement. The authors did not find any movement of the CF stem in its cement mantle. The stem always fitted in with the cement mantle. Erroneous surgical technique or cementing was unlikely. The procedures were performed by experienced orthopedic surgeons who used the second-generation cementing technique. In patients with a Poldi stem, the first-generation cementing method was used and the proportion of aseptic loosening at 6 years of follow-up was only 4 %. In contrast, loosening in patients with the CF 30 stem was 20 % at 6 years and 6 months postoperatively. Shape of the CF 30 stem with the intention to find a relationship between stem shape and its early aseptic loosening, the authors started cooperation with the Institute of Solid Mechanics, Mechatronics and Biomechanics at the Faculty of Mechanical Engineering, Brno University of Technology. Using the method of finite elements, they carried out the stressstrain analysis in a model system. Stress at the cement-bone interface in the CF 30 stem was higher than in the Poldi stem, and this difference was statistically significant. The authors believe that the more frequent loosening found in patients with the CF 30 stem can be accounted for by its shape. The survival curve for the CF 30 femoral stem did not show good results, and therefore this stem is not recommended for implantation. The authors suggest that a more frequent early aseptic loosening of CF 30 stems may have been caused by its unsuitable shape.
NASA Astrophysics Data System (ADS)
Munin, Egberto; Lupato Conrado, Luis A.; Alves, Leandro P.; Zangaro, Renato A.
2004-05-01
The sealing cements used in endodontics are commonly of the type activated by chemical reactions. During polymerization, mechanical contractions are not uncommon, leading to non-perfect sealing or treatment failure. Photopolymerizable cements usually presents superior performance as compared to those chemically activated. However, difficulties in carrying-up the light to difficult-to-reach regions like the dental apex preclude those material of being accepted in the dental office routine. Recently, a novel technique for the light curing of photopolymerizable cements in endodontic applications has been proposed. Such a technique makes use of a polymeric light guide to deliver the curing light to the apex region, for a single step polymerization of the canal filler. For this work, a 28 mm long polymer light-guide, has been produced. The polymer surface was roughened to produce light scattering and allow the light to escape from the guide. The light scattering profile along the body of the guide is an important property for the proposed application. We used an integrating sphere to measure the irradiation profile for the proposed endodontic device. It was found that the experimental data for the amount of light coupled into the integrating sphere as a function of the length of the cone inside the sphere fits to a double exponential model.
Krüger, Antonio; Schmuck, Maya; Noriega, David C.; Ruchholtz, Steffen; Baroud, Gamal; Oberkircher, Ludwig
2015-01-01
Purpose. The treatment of vertebral burst fractures is still controversial. The aim of the study is to evaluate the purpose of additional percutaneous intravertebral reduction when combined with dorsal instrumentation. Methods. In this biomechanical cadaver study twenty-eight spine segments (T11-L3) were used (male donors, mean age 64.9 ± 6.5 years). Burst fractures of L1 were generated using a standardised protocol. After fracture all spines were allocated to four similar groups and randomised according to surgical techniques (posterior instrumentation; posterior instrumentation + intravertebral reduction device + cement augmentation; posterior instrumentation + intravertebral reduction device without cement; and intravertebral reduction device + cement augmentation). After treatment, 100000 cycles (100–600 N, 3 Hz) were applied using a servohydraulic loading frame. Results. Overall anatomical restoration was better in all groups where the intravertebral reduction device was used (p < 0.05). In particular, it was possible to restore central endplates (p > 0.05). All techniques decreased narrowing of the spinal canal. After loading, clearance could be maintained in all groups fitted with the intravertebral reduction device. Narrowing increased in the group treated with dorsal instrumentation. Conclusions. For height and anatomical restoration, the combination of an intravertebral reduction device with dorsal instrumentation showed significantly better results than sole dorsal instrumentation. PMID:26137481
The three-pin modified 'Harrington' procedure for advanced metastatic destruction of the acetabulum.
Tillman, R M; Myers, G J C; Abudu, A T; Carter, S R; Grimer, R J
2008-01-01
Pathological fractures due to metastasis with destruction of the acetabulum and central dislocation of the hip present a difficult surgical challenge. We describe a series using a single technique in which a stable and long-lasting reconstruction was obtained using standard primary hip replacement implants augmented by strong, fully-threaded steel rods with cement and steel mesh, where required. Between 1997 and 2006, 19 patients with a mean age of 66 years (48 to 83) were treated using a modified Harrington technique. Acetabular destruction was graded as Harrington class II in six cases and class III in 13. Reconstruction was achieved using three 6.5 mm rods inserted through a separate incision in the iliac crest followed by augmentation with cement and a conventional cemented Charnley or Exeter primary hip replacement. There were no peri-operative deaths. At the final follow-up (mean 25 months (5 to 110)) one rod had fractured and one construct required revision. Of the 18 patients who did not require revision, 13 had died. The mean time to death was 16 months (5 to 55). The mean follow-up of the five survivors was 31 months (18 to 47). There were no cases of dislocation, deep infection or injury to a nerve, the blood vessels or the bladder.
Sahin, C; Aras, H I
2015-08-01
This prospective, controlled study investigated the effect on patient anxiety of lidocaine infiltration into nasal packing following septoplasty. The study included 50 patients who underwent septoplasty operation. Patient anxiety levels were measured 24 hours pre-operatively; 48 hours post-operatively, before saline or lidocaine infiltration; and 15 minutes after lidocaine or saline infiltration into the packing. The patients were asked to mark their level of pain during pack removal on a visual analogue scale. Hamilton Anxiety Scale scores for lidocaine infiltration patients were: 15.1 ± 7.4 pre-operatively; 16 ±7.6 post-operatively, before infiltration; and 13.7 ± 6.6 at 15 minutes after infiltration. The scores for saline infiltration patients were: 16.3 ± 6.8 pre-operatively, 16.4 ± 5.5 before infiltration and 16.1 ± 6.1 after infiltration. The visual analogue scale pain score was 5.3 ± 2.0 in the lidocaine study group and 7.5 ± 1.8 in the control saline group. Infiltration of lidocaine into nasal packing significantly reduced patient pain. Patients developed mild to moderate anxiety before nasal packing removal. Use of techniques without nasal packing can be recommended after septoplasty to ease patient post-operative discomfort.
NASA Astrophysics Data System (ADS)
Safuan, N. S.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.
2017-09-01
In injection moulding process, it is important to keep the productivity increase constantly with least of waste produced such as warpage defect. Thus, this study is concerning on minimizing warpage defect on wheel caster part. Apart from eliminating product wastes, this project also giving out best optimization techniques using response surface methodology. This research studied on five parameters A-packing pressure, B-packing time, C-mold temperature, D-melting temperature and E-cooling time. The optimization showed that packing pressure is the most significant parameter. Warpage have been improved 42.64% from 0.6524 mm to 0.3742mm.
Shearing Low-frictional 3D Granular Materials
NASA Astrophysics Data System (ADS)
Chen, David; Zheng, Hu; Behringer, Robert
Shear jamming occurs in frictional particles over a range of packing fractions, from random loose to random dense. Simulations show shear jamming for frictionless spheres, but over a vanishing range as the system size grows. We use packings of submerged and diffractive index-matched hydrogel particles to determine the shear-induced microscopic response of 3D, low-frictional granular systems near jamming, bridging the gap between frictionless and low friction packings. We visualize the particles by a laser scanning technique, and we track particle motion along with their interparticle contact forces from its 3D-reconstructions. NSF-DMF-1206351, NASA NNX15AD38G, William M. Keck Foundation, and DARPA.
NASA Technical Reports Server (NTRS)
Witherow, William K. (Inventor)
1988-01-01
A Lambertian reference standard for uniformly scattering a beam of light is constructed of a plate having a planar surface with a layer of glue disposed on the surface. An evenly packed layer of monodisperse spheres is set in the layer, and when the standard is used for bi-directional (BRDF) measurements, the spheres are coated with a layer of highly relective substance, such as gold or silver. When the standard is used for bi-directional transmittance distribution function (BTDF) measurements, the spheres are of a transparent material and are provided with a roughened surface, as by acid etching. In this case, the layer of glue is an optical cement, and the plate is of glass, with the spheres, the layer, and the plate all possessing a similar refractive index.
Novel application of DEM to modelling comminution processes
NASA Astrophysics Data System (ADS)
Delaney, Gary W.; Cleary, Paul W.; Sinnott, Matt D.; Morrison, Rob D.
2010-06-01
Comminution processes in which grains are broken down into smaller and smaller sizes represent a critical component in many industries including mineral processing, cement production, food processing and pharmaceuticals. We present a novel DEM implementation capable of realistically modelling such comminution processes. This extends on a previous implementation of DEM particle breakage that utilized spherical particles. Our new extension uses super-quadric particles, where daughter fragments with realistic size and shape distributions are packed inside a bounding parent super-quadric. We demonstrate the flexibility of our approach in different particle breakage scenarios and examine the effect of the chosen minimum resolved particle size. This incorporation of the effect of particle shape in the breakage process allows for more realistic DEM simulations to be performed, that can provide additional fundamental insights into comminution processes and into the behaviour of individual pieces of industrial machinery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krakowiak, Konrad J.; Wilson, William; James, Simon
2015-01-15
A novel approach for the chemo-mechanical characterization of cement-based materials is presented, which combines the classical grid indentation technique with elemental mapping by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS). It is illustrated through application to an oil-well cement system with siliceous filler. The characteristic X-rays of major elements (silicon, calcium and aluminum) are measured over the indentation region and mapped back on the indentation points. Measured intensities together with indentation hardness and modulus are considered in a clustering analysis within the framework of Finite Mixture Models with Gaussian component density function. The method is able to successfully isolate themore » calcium-silica-hydrate gel at the indentation scale from its mixtures with other products of cement hydration and anhydrous phases; thus providing a convenient means to link mechanical response to the calcium-to-silicon ratio quantified independently via X-ray wavelength dispersive spectroscopy. A discussion of uncertainty quantification of the estimated chemo-mechanical properties and phase volume fractions, as well as the effect of chemical observables on phase assessment is also included.« less
Slump Flows inside Pipes: Numerical Results and Comparison with Experiments
NASA Astrophysics Data System (ADS)
Malekmohammadi, S.; Naccache, M. F.; Frigaard, I. A.; Martinez, D. M.
2008-07-01
In this work an analysis of the buoyancy-driven slumping flow inside a pipe is presented. This flow usually occurs when an oil well is sealed by a plug cementing process, where a cement plug is placed inside the pipe filled with a lower density fluid, displacing it towards the upper cylinder wall. Both the cement and the surrounding fluids have a non Newtonian behavior. The cement is viscoplastic and the surrounding fluid presents a shear thinning behavior. A numerical analysis was performed to evaluate the effects of some governing parameters on the slump length development. The conservation equations of mass and momentum were solved via a finite volume technique, using Fluent software (Ansys Inc.). The Volume of Fluid surface-tracking method was used to obtain the interface between the fluids and the slump length as a function of time. The results were obtained for different values of fluids densities differences, fluids rheology and pipe inclinations. The effects of these parameters on the interface shape and on the slump length versus time curve were analyzed. Moreover, the numerical results were compared to experimental ones, but some differences are observed, possibly due to chemical effects at the interface.
Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes
NASA Astrophysics Data System (ADS)
Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca
2010-10-01
Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.
NASA Astrophysics Data System (ADS)
Kim, Gun; Kim, Jin-Yeon; Kurtis, Kimberly E.; Jacobs, Laurence J.
2015-03-01
This research experimentally investigates the sensitivity of the acoustic nonlinearity parameter to microcracks in cement-based materials. Based on the second harmonic generation (SHG) technique, an experimental setup using non-contact, air-coupled detection is used to receive the consistent Rayleigh surface waves. To induce variations in the extent of microscale cracking in two types of specimens (concrete and mortar), shrinkage reducing admixture (SRA), is used in one set, while a companion specimen is prepared without SRA. A 50 kHz wedge transducer and a 100 kHz air-coupled transducer are implemented for the generation and detection of nonlinear Rayleigh waves. It is shown that the air-coupled detection method provides more repeatable fundamental and second harmonic amplitudes of the propagating Rayleigh waves. The obtained amplitudes are then used to calculate the relative nonlinearity parameter βre, the ratio of the second harmonic amplitude to the square of the fundamental amplitude. The experimental results clearly demonstrate that the nonlinearity parameter (βre) is highly sensitive to the microstructural changes in cement-based materials than the Rayleigh phase velocity and attenuation and that SRA has great potential to avoid shrinkage cracking in cement-based materials.
Combined Use of Shrinkage Reducing Admixture and CaO in Cement Based Materials
NASA Astrophysics Data System (ADS)
Tittarelli, Francesca; Giosuè, Chiara; Monosi, Saveria
2017-10-01
The combined addition of a Shrinkage-Reducing Admixture (SRA) with a CaO-based expansive agent (CaO) has been found to have a synergistic effect to improve the dimensional stability of cement based materials. In this work, aimed to further investigate the effect, mortar and self-compacting concrete specimens were prepared either without admixtures, as reference, or with SRA alone and/or CaO. Their performance was compared in terms of compressive strength and free shrinkage measurements. Results showed that the synergistic effect in reducing shrinkage is confirmed in the specimens manufactured with SRA and CaO. In order to clarify this phenomenon, the effect of SRA on the hydration of CaO as well as cement was evaluated through different techniques. The obtained results show that SRA induces a finer microstructure of the CaO hydration products and a retarding effect on the microstructure development of cement based materials. A more deformable mortar or concrete, due to the delay in microstructure development by SRA, coupled with a finer microstructure of CaO hydration products could allow higher early expansion, which might contribute in contrasting better the successive drying shrinkage.
Camargo, Samira Esteves Afonso; Valera, Marcia Carneiro; Camargo, Carlos Henrique Ribeiro; Gasparoto Mancini, Maria Nadir; Menezes, Marcia Maciel
2007-09-01
This study evaluated the pulp chamber penetration of peroxide bleaching agent in human and bovine teeth after office bleach technique. All the teeth were sectioned 3 mm apical of the cement-enamel junction and were divided into 2 groups, A (70 third human molars) and B (70 bovine lateral incisors), that were subdivided into A1 and B1 restored by using composite resin, A2 and B2 by using glass ionomer cement, and A3 and B3 by using resin-modified glass ionomer cement; A4, A5, B4, and B5 were not restored. Acetate buffer was placed in the pulp chamber, and the bleaching agent was applied for 40 minutes as follows: A1-A4 and B1-B4, 38% hydrogen peroxide exposure and A5 and B5, immersion into distilled water. The buffer solution was transferred to a glass tube in which leuco crystal violet and horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined by spectrophotometer and converted into microgram equivalents of hydrogen peroxide. Data were submitted to analysis of variance and Dunnett, Kruskal-Wallis, and Tukey tests (5%). A higher level of hydrogen peroxide penetrated into the pulp chamber in resin-modified glass ionomer cements in bovine (0.79 +/- 0.61 microg) and human (2.27 +/- 0.41 microg) groups. The bleaching agent penetration into the pulp chamber was higher in human teeth for any experimental situation. The penetration of the hydrogen peroxide depends on restorative materials, and under the conditions of this study human teeth are more susceptible to penetration of bleaching agent into the pulp chamber than bovine teeth.
Aboushelib, Moustafa Nabil; Elmahy, Waleed AbdelMeguid; Ghazy, Mohammed Hamed
2012-08-01
The aim of this study was to evaluate the internal adaptation and marginal properties of ceramic laminate veneers fabricated using pressable and machinable CAD/CAM techniques. 40 ceramic laminate veneers were fabricated by either milling ceramic blocks using a CAD/CAM system (group 1 n=20) or press-on veneering using lost wax technique (group 2 n=20). The veneers were acid etched using hydrofluoric acid, silanated, and cemented on their corresponding prepared teeth. All specimens were stored under water (37 °C) for 60 days, then received thermocycling (15,000 cycles between 5 and 55 °C and dwell time of 90 s) followed by cyclic loading (100,000 cycles between 50 and 100 N) before immersion in basic fuchsine dye for 24 h. Half of the specimens in each group were sectioned in labio-lingual direction and the rest were horizontally sectioned using precision cutting machine (n=10). Dye penetration, internal cement film thickness, and vertical and horizontal marginal gaps at the incisal and cervical regions were measured (α=0.05). Pressable ceramic veneers demonstrated significantly lower (F=8.916, P<0.005) vertical and horizontal marginal gaps at the cervical and incisal margins and lower cement film thickness (F=50.921, P<0.001) compared to machinable ceramic veneers. The inferior marginal properties of machinable ceramic veneers were associated with significantly higher microleakage values. Pressable ceramic laminate veneers produced higher marginal adaptation, homogenous and thinner cement film thickness, and improved resistance to microleakage compared to machinable ceramic veneers. The manufacturing process influences internal and marginal fit of ceramic veneers. Therefore, dentist and laboratory technicians should choose a manufacturing process with careful consideration. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yu, Bin-Sheng; Yang, Zhan-Kun; Li, Ze-Min; Zeng, Li-Wen; Wang, Li-Bing; Lu, William Weijia
2011-08-01
An in vitro biomechanical cadaver study. To evaluate the pull-out strength after 5000 cyclic loading among 4 revision techniques for the loosened iliac screw using corticocancellous bone, longer screw, traditional cement augmentation, and boring cement augmentation. Iliac screw loosening is still a clinical problem for lumbo-iliac fusion. Although many revision techniques using corticocancellous bone, larger screw, and polymethylmethacrylate (PMMA) augmentation were applied in repairing pedicle screw loosening, their biomechanical effects on the loosened iliac screw remain undetermined. Eight fresh human cadaver pelvises with the bone mineral density values ranging from 0.83 to 0.97 g/cm were adopted in this study. After testing the primary screw of 7.5 mm diameter and 70 mm length, 4 revision techniques were sequentially established and tested on the same pelvis as follows: corticocancellous bone, longer screw with 100 mm length, traditional PMMA augmentation, and boring PMMA augmentation. The difference of the boring technique from traditional PMMA augmentation is that PMMA was injected into the screw tract through 3 boring holes of outer cortical shell without removing the screw. On an MTS machine, after 5000 cyclic compressive loading of -200∼-500 N to the screw head, axial maximum pull-out strengths of the 5 screws were measured and analyzed. The pull-out strengths of the primary screw and 4 revised screws with corticocancellous bone, longer screw and traditional and boring PMMA augmentation were 1167 N, 361 N, 854 N, 1954 N, and 1820 N, respectively. Although longer screw method obtained significantly higher pull-out strength than corticocancellous bone (P<0.05), the revised screws using these 2 techniques exhibited notably lower pull-out strength than the primary screw and 2 PMMA-augmented screws (P<0.05). Either traditional or boring PMMA screw showed obviously higher pull-out strength than the primary screw (P<0.05); however, no significant difference of pull-out strength was detected between the 2 PMMA screws (P>0.05). Wadding corticocancellous bone and increasing screw length failed to provide sufficient anchoring strength for a loosened iliac screw; however, both traditional and boring PMMA-augmented techniques could effectively increase the fixation strength. On the basis of the viewpoint of minimal invasion, the boring PMMA augmentation may serve as a suitable salvage technique for iliac screw loosening.
Evaluation of the bond strength of resin cements used to lute ceramics on laser-etched dentin.
Giray, Figen Eren; Duzdar, Lale; Oksuz, Mustafa; Tanboga, Ilknur
2014-07-01
The purpose of this study was to investigate the shear bond strength (SBS) of two different adhesive resin cements used to lute ceramics on laser-etched dentin. Erbium, chromium: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation has been claimed to improve the adhesive properties of dentin, but results to date have been controversial, and its compatibility with existing adhesive resin cements has not been conclusively determined. Two adhesive cements, one "etch-and-rinse" [Variolink II (V)] and one "self-etch" [Clearfil Esthetic Cement (C)] luting cement, were used to lute ceramic blocks (Vita Celay Blanks, Vita) onto dentin surfaces. In total, 80 dentin specimens were distributed randomly into eight experimental groups according to the dentin surface-etching technique used Er,Cr:YSGG laser and Er:YAG laser: (1) 37% orthophosphoric acid+V (control group), (2) Er,Cr:YSGG laser+V, (3) Er,Cr:YSGG laser+acid+V, (4) Er:YAG laser+V, (5) Er:YAG laser+acid+V, (6) C, (7) Er,Cr:YSGG laser+C, and (8) Er:YAG laser+C. Following these applications, the ceramic discs were bonded to prepared surfaces and were shear loaded in a universal testing machine until fracture. SBS was recorded for each group in MPa. Shear test values were evaluated statistically using the Mann-Whitney U test. No statistically significant differences were evident between the control group and the other groups (p>0.05). The Er,Cr:YSGG laser+A+V group demonstrated significantly higher SBS than did the Er,Cr:YSGG laser+V group (p=0.034). The Er,Cr:YSGG laser+C and Er:YAG laser+C groups demonstrated significantly lower SBS than did the C group (p<0.05). Dentin surfaces prepared with lasers may provide comparable ceramic bond strengths, depending upon the adhesive cement used.
Mirhadi, Hossein; Moazzami, Fariborz; Rangani Jahromi, Saeed; Safarzade, Sareh
2016-03-01
Alkaline pH can affect the physical and chemical properties and sealing ability of apical plug material. Calcium hydroxide is used as an intracanal medication to complete disinfection of root canals. It raises the pH of environment to alkaline value. The aim of this in vitro study was to evaluate and compare the effect of alkaline pH on the sealing ability of calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA) apical plugs. Seventy single-rooted human maxillary anterior teeth were randomly divided to two experimental groups for Angelus MTA and CEM cement (n=30) and two control groups (n=5). Each group was divided into two subgroups of 15 for neutral and alkaline pH, and 1 negative and 1 positive control groups of 5. The root canals were cleaned and shaped by using ProTaper rotary system (Dentsply Maillefer; Ballaigues, Switzerland) and the terminal 3mm of the roots were resected. Then, MTA and CEM cement were condensed in apical region with 3mm thickness. The samples were exposed to two environments with different pH values of 13 and 7.4. The leakage was assessed by using the fluid filtration technique at 1, 7, 14, 30 days intervals. Data were analyzed by the repeated measures MANOVA. There was no statistically significant difference in the rate of microleakage between neutral and alkaline pH of CEM cement and MTA (p> 0.05). The sealing ability of MTA in an alkaline pH of 13 was significantly less than CEM cement in this pH (p< 0.05). An environment with alkaline pH had no adverse effect on the sealing ability of MTA and CEM cement used as apical plugs. CEM cement had better sealing ability in alkaline pH.
Microencapsulation of rifampicin: A technique to preserve the mechanical properties of bone cement.
Sanz-Ruiz, Pablo; Carbó-Laso, Esther; Del Real-Romero, Juan Carlos; Arán-Ais, Francisca; Ballesteros-Iglesias, Yolanda; Paz-Jiménez, Eva; Sánchez-Navarro, Magdalena; Pérez-Limiñana, María Ángeles; Vaquero-Martín, Javier
2018-01-01
Two-stage exchange with antibiotic-loaded bone cement spacers remains the gold standard for chronic periprosthetic joint infection (PJI). Rifampicin is highly efficient on stationary-phase staphylococci in biofilm; however, its addition to PMMA to manufacture spacers prevents polymerization and reduces mechanical properties. Isolation of rifampicin during polymerization by microencapsulation could allow manufacturing rifampicin-loaded bone cement maintaining elution and mechanical properties. Microcapsules of rifampicin with alginate, polyhydroxybutyratehydroxyvalerate (PHBV), ethylcellulose and stearic acid (SA) were synthesized. Alginate and PHBV microcapsules were added to bone cement and elution, compression, bending, hardness, setting time and microbiological tests were performed. Repeated measures ANOVA and Bonferroni post-hoc test were performed, considering a p < 0.05 as statistical significance. Bone cement specimens containing alginate microcapsules eluted more rifampicin than PHBV microcapsules or non-encapsulated rifampicin over time (p < 0.012). Microencapsulation of rifampicin allowed PMMA to preserve mechanical properties in compression and bending tests. Cement with alginate microcapsules showed similar behavior in hardness tests to control cement over the study period (73 ± 1.68H D ). PMMA with alginate microcapsules exhibited the largest zones of inhibition in microbiological tests. Statistically significant differences in mean diameters of zones of inhibition between PMMA loaded with alginate-rifampicin (p = 0.0001) and alginate-PHBV microcapsules (p = 0.0001) were detected. Rifampicin microencapsulation with alginate is the best choice to introduce rifampicin in PMMA preserving mechanical properties, setting time, elution, and antimicrobial properties. The main applicability of this study is the opportunity for obtaining rifampicin-loaded PMMA by microencapsulation of rifampicin in alginate microparticles, achieving high doses of rifampicin in infected tissues, increasing the successful of PJI treatment. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:459-466, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Henriques, Bruno; Fabris, Douglas; Mesquita-Guimarães, Joana; Sousa, Anne C; Hammes, Nathalia; Souza, Júlio C M; Silva, Filipe S; Fredel, Márcio C
2018-08-01
The aim of this study was to evaluate the influence of a surface conditioning technique using laser ablation and acid etching on PEEK substrate on its bonding strength to a resin cement. Cylindrical specimens of unfilled PEEK, 30% glass fiber reinforced PEEK and 30% carbon fiber reinforced PEEK were separated in four groups according to the following surface treatments: acid etching with H 2 SO 4 , laser ablation with 200 µm holes spaced 400 µm apart (D2E4), laser ablation with 200 µm holes spaced 600 µm apart (D2E6), and laser ablation (D2E4) followed by acid etching. A dual-curing resin cement (Allcem CORE) was then applied to the PEEK surface. Specimens were aged in distilled water at 37 °C for 24 h. Shear bond strength tests were performed to the fracture of the samples. Two-way ANOVA statistical analysis was performed with a significance level of 0.05. Scanning electron microscopy analysis was performed to analyse the conditioned and fracture surfaces. SEM images of the test interfaces showed that the resin cement could not flow in the holes designed by the laser ablation on the PEEK surface. The shear bond strength of PEEK to resin cement was not improved by the surface modification of the PEEK. Also, there was a statistically significant decrease in shear bond strength for unfilled PEEK specimens. On carbon or glass reinforced PEEK, the change was not significant. SEM images of the fracture surfaces revealed that the failure mode was mainly adhesive. Although laser ablation promoted the PEEK surface modification by the formation of retentive holes, the test resin cement could not thoroughly flow on the rough modified surfaces to establish an effective mechanical interlocking. That negatively affected the shear bonding strength of PEEK to the resin cement. Further studies should be carried out to increase the bonding between PEEK and resin cements. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lee, Byoung-Joo; Kyung, Hee-Soo; Yoon, Seong-Dae
2015-09-01
The purpose of this study was to determine the degree of infection control and postoperative function for new articulating metal-on-cement spacer. A retrospective study of 19 patients (20 cases), who underwent a two-stage revision arthroplasty using mobile cement prosthesis, were followed for a minimum of 2 years. This series consisted of 16 women and 3 men, having an overall mean age of 71 years. During the first stage of revision, the femoral implant and all the adherent cement was removed, after which it was autoclaved before replacement. The tibial component was removed and a doughy state, antibiotic-impregnated cement was inserted on the tibial side. To achieve joint congruency, intraoperative molding was performed by flexing and extending the knee joint. Each patient was evaluated clinically and radiologically. The clinical assessments included range of motion, and the patients were scored as per the Hospital for Special Surgery (HSS) and Knee Society (KS) criteria. The mean range of knee joint motion was 70° prior to the first stage operation and 72° prior to the second stage revision arthroplasty; following revision arthroplasty, it was 113° at the final follow-up. The mean HSS score and KS knee and function scores were 86, 82, and 54, respectively, at the final follow-up. The success rate in terms of infection eradication was 95% (19/20 knees). No patient experienced soft tissue contracture requiring a quadriceps snip. This novel technique provides excellent radiological and clinical outcomes. It offers a high surface area of antibiotic-impregnated cement, a good range of motion between first and second stage revision surgery for the treatment of chronic infection after total knee arthroplasty, and is of a reasonable cost.
Yang, Chen; Wang, Xiaoya; Ma, Bing; Zhu, Haibo; Huan, Zhiguang; Ma, Nan; Wu, Chengtie; Chang, Jiang
2017-02-22
Silicate bioactive materials have been widely studied for bone regeneration because of their eminent physicochemical properties and outstanding osteogenic bioactivity, and different methods have been developed to prepare porous silicate bioactive ceramics scaffolds for bone-tissue engineering applications. Among all of these methods, the 3D-printing technique is obviously the most efficient way to control the porous structure. However, 3D-printed bioceramic porous scaffolds need high-temperature sintering, which will cause volume shrinkage and reduce the controllability of the pore structure accuracy. Unlike silicate bioceramic, bioactive silicate cements such as tricalcium silicate (Ca 3 SiO 5 and C 3 S) can be self-set in water to obtain high mechanical strength under mild conditions. Another advantage of using C 3 S to prepare 3D scaffolds is the possibility of simultaneous drug loading. Herein, we, for the first time, demonstrated successful preparation of uniform 3D-printed C 3 S bone cement scaffolds with controllable 3D structure at room temperature. The scaffolds were loaded with two model drugs and showed a loading location controllable drug-release profile. In addition, we developed a surface modification process to create controllable nanotopography on the surface of pore wall of the scaffolds, which showed activity to enhance rat bone-marrow stem cells (rBMSCs) attachment, spreading, and ALP activities. The in vivo experiments revealed that the 3D-printed C 3 S bone cement scaffolds with nanoneedle-structured surfaces significantly improved bone regeneration, as compared to pure C 3 S bone cement scaffolds, suggesting that 3D-printed C 3 S bone cement scaffolds with controllable nanotopography surface are bioactive implantable biomaterials for bone repair.
Samiei, Mohammad; Janani, Maryam; Vahdati, Amin; Alemzadeh, Yalda; Bahari, Mahmoud
2017-01-01
The present study evaluated the element distribution in completely set calcium-enriched mixture (CEM) cement after application of 35% carbamide peroxide, 40% hydrogen peroxide and sodium perborate as commercial bleaching agents using an energy-dispersive x-ray microanalysis (EDX) system. The surface structure was also observed using the scanning electron microscope (SEM). Twenty completely set CEM cement samples, measuring 4×4 mm 2 , were prepared in the present in vitro study and randomly divided into 4 groups based on the preparation technique as follows: the control group; 35% carbamide peroxide group in contact for 30-60 min for 4 times; 40% hydrogen peroxide group with contact time of 15-20 min for 3 times; and sodium perborate group, where the powder and liquid were mixed and placed on CEM cement surface 4 times. Data were analyzed at a significance level of 0.05 through the one Way ANOVA and Tukey's post hoc tests. EDX showed similar element distribution of oxygen, sodium, calcium and carbon in CEM cement with the use of carbamide peroxide and hydroxide peroxide; however, the distribution of silicon was different ( P <0.05). In addition, these bleaching agents resulted in significantly higher levels of oxygen and carbon ( P <0.05) and a lower level of calcium ( P <0.05) compared to the control group. SEM of the control group showed plate-like and globular structure. Sodium perborate was similar to control group due to its weak oxidizing properties. Globular structures and numerous woodpecker holes were observed on the even surface on the carbamide peroxide group. The mean elemental distribution of completely set CEM cement was different when exposed to sodium perborate, carbamide peroxide and hydrogen peroxide.
Watson, Timothy F; Atmeh, Amre R; Sajini, Shara; Cook, Richard J; Festy, Frederic
2014-01-01
Since their introduction, calcium silicate cements have primarily found use as endodontic sealers, due to long setting times. While similar in chemistry, recent variations such as constituent proportions, purities and manufacturing processes mandate a critical understanding of service behavior differences of the new coronal restorative material variants. Of particular relevance to minimally invasive philosophies is the potential for ion supply, from initial hydration to mature set in dental cements. They may be capable of supporting repair and remineralization of dentin left after decay and cavity preparation, following the concepts of ion exchange from glass ionomers. This paper reviews the underlying chemistry and interactions of glass ionomer and calcium silicate cements, with dental tissues, concentrating on dentin-restoration interface reactions. We additionally demonstrate a new optical technique, based around high resolution deep tissue, two-photon fluorescence and lifetime imaging, which allows monitoring of undisturbed cement-dentin interface samples behavior over time. The local bioactivity of the calcium-silicate based materials has been shown to produce mineralization within the subjacent dentin substrate, extending deep within the tissues. This suggests that the local ion-rich alkaline environment may be more favorable to mineral repair and re-construction, compared with the acidic environs of comparable glass ionomer based materials. The advantages of this potential re-mineralization phenomenon for minimally invasive management of carious dentin are self-evident. There is a clear need to improve the bioactivity of restorative dental materials and these calcium silicate cement systems offer exciting possibilities in realizing this goal. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Hydroxyapatite cement cranioplasty in translabyrinthine acoustic neuroma surgery.
Arriaga, Moisês A; Chen, Douglas A
2002-05-01
Hydroxyapatite cement cranioplasty (HAC) after translabyrinthine resection of acoustic neuroma is a promising new technique for wound reconstruction. This study reviews the efficacy of HAC for the prevention of cerebrospinal fluid (CSF) leakage and the long-term wound outcomes of HAC versus abdominal fat graft (AFG) reconstruction. This retrospective study of l08 consecutive acoustic neuromas operated on by Pittsburgh Ear Associates uses chart review, telephone interview, and mail questionnaire data. Fifty-four patients received AFG dural repair, and 54 patients received HAC. Seven AFG patients (12.5%) had CSF leaks versus 2 (3.7%) of the overall group of 54 HAC patients. However, none (0%) of the 47 HAC patients had CSF leakage with current HAC techniques. HAC also produced significantly less postauricular wound depression and superior cosmetic results in comparison with AFG. Although HAC patients experienced less postoperative discomfort, wound complications requiring medical or surgical intervention were extremely uncommon in both groups. HAC offers significant CSF leakage control and long-term cosmetic and comfort advantages over AFG alone. We recommend HAC as the standard closure technique for translabyrinthine acoustic neuroma surgery.
An Evaluation of Installation Methods for STS-1 Seismometers
Holcomb, L. Gary; Hutt, Charles R.
1992-01-01
INTRODUCTION This report documents the results of a series of experiments conducted by the authors at the Albuquerque Seismological Laboratory (ASl) during the spring and summer of 1991; the object of these experiments was to obtain and document quantitative performance comparisons of three methods of installing STS-1 seismometers. Historically, ASL has installed STS-1 sensors by cementing their thick glass base plates to the concrete floor of the vault (see Peterson and Tilgner, 1985, p 44 and Figure 31, p 51 for the details of this installation technique). This installation technique proved to be fairly satisfactory for the China Digital Seismic Network and for several sets of STS-1 sensors installed in other locations since that time. However, the cementing operation is rather labor intensive and the concrete requires a lengthy (about 1 week) curing time during which the sensor installed on it is noisy. In addition it is difficult to assure that all air bubbles have been removed from the interface between the cement and the glass base plate. If air bubbles are present beneath the plate, horizontal sensors can be unacceptably noisy. Moving a sensor installed in this manner requires the purchase of a new glass base plate because the old plate normally can not be removed without breakage. Therefore, this study was undertaken with the aim of developing an improved method of installing STS-1's. The goals were to develop a method which requires less field site labor during the installation and assures a higher quality installation when finished. In addition, the improved installation technique should promote portability. Two alternate installation techniques were evaluated in this study. One method replaces the cement between the base plate and the vault floor with sand. This method has been used in the French Geoscope program and in several IRIS/IDA installations made by the University of California at San Diego (UCSD) and possibly others. It is easily implemented in the field and is quite cheap. The other method utilizes a so called warpless housing designed by E. Wielandt and implemented at ASL. This housing is quite similar to the case design of the STS-2 sensor system. It is designed to minimize the effects of atmospheric pressure variations on the sealed housing.
Diagenetic pathways in deposits of cool- and cold-water carbonate factories
NASA Astrophysics Data System (ADS)
Frank, T. D.; James, N. P.
2017-12-01
This investigation integrates sedimentological, petrographic, and geochemical observations from modern and ancient heterozoan carbonate deposits that formed at temperate to polar latitudes with the aim of evaluating diagenetic pathways characteristic of these systems. These factories operate under conditions distinct from those of photozoan counterparts. Lower temperatures, higher trophic resources, lower carbonate saturation states, and strong seasonality govern not only the nature of carbonate communities, but also how deposits translate into the rock record. In these settings, carbonate production is entirely biogenic, assemblages are of low diversity, and there are no significant calcareous phototrophs. Aragonitic taxa may be present in living communities, but allochems rapidly disappear via dissolution. Carbonate producers are not capable of building rigid frameworks, so their deposits accumulate as sands and gravels and are prone to winnowing and reworking. Low production rates lead to long seafloor residence times (1000s of years) for grains, which undergo physical reworking, dissolution, and repeated infestation by endolithic borers. Microborings remain empty, increasing grain susceptibility to disintegration. Intergranular cementation on the seafloor is rare and restricted to hardgrounds. Periods of subaerial exposure do not leave traces of meteoric alteration. Results show that the deposits of heterozoan carbonate factories tend enter the geologic record as taphonomic remnants, namely reworked, unconsolidated sands and gravels with low diagenetic potential. During burial, physical and chemical compaction produce limestones with tightly packed, grain-supported fabrics, often with grains in sutured contact. Significant cementation is associated with the deep burial realm. Results reveal a dramatically different diagenetic pathway than is typical for deposits of tropical photozoan factories, in which significant recrystallization and lithification occur on the seafloor and upon subaerial exposure. Interpretations of ancient deposits should take into account the potential for taphonomic loss of aragonitic allochems, modification of depositional textures via reworking and compaction, and grain alteration and cementation focused in the burial environment.
Dusane, Devendra H; Diamond, Scott M; Knecht, Cory S; Farrar, Nicholas R; Peters, Casey W; Howlin, Robert P; Swearingen, Matthew C; Calhoun, Jason H; Plaut, Roger D; Nocera, Tanya M; Granger, Jeffrey F; Stoodley, Paul
2017-02-28
Antibiotic loaded cement beads are commonly used for the treatment of biofilm related orthopaedic periprosthetic infections; however the effects of antibiotic loading and exposure of beads to body fluids on release kinetics are unclear. The purpose of this study was to determine the effects of (i) antibiotic loading density (ii) loading amount (iii) material type and (iv) exposure to body fluids (blood or synovial fluid) on release kinetics and efficacy of antibiotics against planktonic and lawn biofilm bacteria. Short-term release into an agar gel was evaluated using a fluorescent tracer (fluorescein) incorporated in the carrier materials calcium sulfate (CaSO 4 ) and poly methyl methacrylate (PMMA). Different fluorescein concentrations in CaSO 4 beads were evaluated. Mechanical properties of fluorescein-incorporated beads were analyzed. Efficacy of the antibiotics vancomycin (VAN) or tobramycin (TOB) alone and in combination was evaluated against lawn biofilms of bioluminescent strains of Staphylococcus aureus and Pseudomonas aeruginosa. Zones of inhibition of cultures (ZOI) were measured visually and using an in-vivo imaging system (IVIS). The influence of body fluids on release was assessed using CaSO 4 beads that contained fluorescein or antibiotics and were pre-coated with human blood or synovial fluid. The spread from the beads followed a square root of time relationship in all cases. The loading concentration had no influence on short-term fluorescein release and pre-coating of beads with body fluids did not affect short-term release or antibacterial activity. Compared to PMMA, CaSO 4 had a more rapid short term rate of elution and activity against planktonic and lawn biofilms. This study highlights the importance of considering antibiotic loading and packing density when investigating the clinical application of bone cements for infection management. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
[Fibrin glue for operative correction of septal deviations].
Boenisch, M; Nolst Trenité, G J
2004-11-01
The routine procedure after correction of septal deviations is the utilization of endonasal packing in order to avoid septal haematoma. However, the mechanical pressure of this packing damages the mucociliar activity of the mucosa and causes lymphoedema by blocking the lymphatic vessels. Besides it represents a foreign body within the nose causing pain and unpleasant feeling for the patient. In order to avoid these disadvantages, in 57 patients we used fibrin glue instead of nasal packing. After correction of the septal deviation the two mucoperichondrium blades where fixed together with Tissucol Duo Quick. This technique not only leads to haemostasis, but also provides fixation of the newly modeled septum. In only one patient we found a small unilateral septal haematoma, in all other cases the postoperative period showed no complications. Patients had a significant reduction of endonasal crusts and postoperative swelling. Patients comfort increased significant without the (standard) nasal packing.
Two-Dimensional Mathematical Modeling of the Pack Carburizing Process
NASA Astrophysics Data System (ADS)
Sarkar, S.; Gupta, G. S.
2008-10-01
Pack carburization is the oldest method among the case-hardening treatments, and sufficient attempts have not been made to understand this process in terms of heat and mass transfer, effect of alloying elements, dimensions of the sample, etc. Thus, a two-dimensional mathematical model in cylindrical coordinate is developed for simulating the pack carburization process for chromium-bearing steel in this study. Heat and mass balance equations are solved simultaneously, where the surface temperature of the sample varies with time, but the carbon potential at the surface during the process remains constant. The fully implicit finite volume technique is used to solve the governing equations. Good agreement has been found between the predicted and published data. The effect of temperature, carburizing time, dimensions of the sample, etc. on the pack carburizing process shows some interesting results. It is found that the two-dimensional model gives better insight into understanding the carburizing process.
Han, Jae-Woong; Jeon, Ji-Hong; Park, Chan-Gi
2015-01-01
We evaluated the strength and durability characteristics of latex-polymer-modified, pre-packed pavement repair concrete (LMPPRC) with a rapid-set binder. The rapid-set binder was a mixture of rapid-set cement and silica sand, where the fluidity was controlled using a latex polymer. The resulting mix exhibited a compressive strength of ≥21 MPa and a flexural strength of ≥3.5 MPa after 4 h of curing (i.e., the traffic opening term for emergency repairs of pavement). The ratio of latex polymer to rapid-set binder material was varied through 0.40, 0.33, 0.29, and 0.25. Mechanical characterization revealed that the mechanical performance, permeability, and impact resistance increased as the ratio of latex polymer to rapid-set binder decreased. The mixture exhibited a compressive strength of ≥21 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ≤0.29. The mixture exhibited a flexural strength of ≥3.5 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ≤0.33. The permeability resistance to chloride ions satisfied 2000 C after 7 days of curing for all ratios. The ratio of latex polymer to rapid-set binder material that satisfied all conditions for emergency pavement repair was ≤0.29. PMID:28793596
Han, Jae-Woong; Jeon, Ji-Hong; Park, Chan-Gi
2015-10-01
We evaluated the strength and durability characteristics of latex-polymer-modified, pre-packed pavement repair concrete (LMPPRC) with a rapid-set binder. The rapid-set binder was a mixture of rapid-set cement and silica sand, where the fluidity was controlled using a latex polymer. The resulting mix exhibited a compressive strength of ¥21 MPa and a flexural strength of ¥3.5 MPa after 4 h of curing (i.e., the traffic opening term for emergency repairs of pavement). The ratio of latex polymer to rapid-set binder material was varied through 0.40, 0.33, 0.29, and 0.25. Mechanical characterization revealed that the mechanical performance, permeability, and impact resistance increased as the ratio of latex polymer to rapid-set binder decreased. The mixture exhibited a compressive strength of ¥21 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ¤0.29. The mixture exhibited a flexural strength of ¥3.5 MPa after 4 h when the ratio of latex polymer to rapid-set binder material was ¤0.33. The permeability resistance to chloride ions satisfied 2000 C after 7 days of curing for all ratios. The ratio of latex polymer to rapid-set binder material that satisfied all conditions for emergency pavement repair was ¤0.29.
Partitioning and packing mathematical simulation models for calculation on parallel computers
NASA Technical Reports Server (NTRS)
Arpasi, D. J.; Milner, E. J.
1986-01-01
The development of multiprocessor simulations from a serial set of ordinary differential equations describing a physical system is described. Degrees of parallelism (i.e., coupling between the equations) and their impact on parallel processing are discussed. The problem of identifying computational parallelism within sets of closely coupled equations that require the exchange of current values of variables is described. A technique is presented for identifying this parallelism and for partitioning the equations for parallel solution on a multiprocessor. An algorithm which packs the equations into a minimum number of processors is also described. The results of the packing algorithm when applied to a turbojet engine model are presented in terms of processor utilization.
Recent research in snow hydrology
NASA Technical Reports Server (NTRS)
Dozier, Jeff
1987-01-01
Recent work on snow-pack energy exchange has involved detailed investigations on snow albedo and attempts to integrate energy-balance calculations over drainage basins. Along with a better understanding of the EM properties of snow, research in remote sensing has become more focused toward estimation of snow-pack properties. In snow metamorphism, analyses of the physical processes must now be coupled to better descriptions of the geometry of the snow microstructure. The dilution method now appears to be the best direct technique for measuring the liquid water content of snow; work on EM methods continues. Increasing attention to the chemistry of the snow pack has come with the general focus on acid precipitation in hydrology.
GaN microrod sidewall epitaxial lateral overgrowth on a close-packed microrod template
NASA Astrophysics Data System (ADS)
Duan, Xiaoling; Zhang, Jincheng; Xiao, Ming; Zhang, Jinfeng; Hao, Yue
2018-05-01
We demonstrate a GaN growth method using microrod sidewall epitaxial lateral overgrowth (MSELO) on a close-packed microrod template by a nonlithographic technique. The density and distribution of threading dislocations were determined by the density and distribution of microrods and the nucleation model. MSELO exhibited two different nucleation models determined by the direction and degree of substrate misorientation and the sidewall curvature: one-sidewall and three-sidewall nucleation, predicting the dislocation density values. As a result, the threading dislocation density was markedly decreased from 2 × 109 to 5 × 107 cm‑2 with a small coalescence thickness of ∼2 µm for the close-packed 3000 nm microrod sample.
GIS Based Multi-Criteria Decision Analysis For Cement Plant Site Selection For Cuddalore District
NASA Astrophysics Data System (ADS)
Chhabra, A.
2015-12-01
India's cement industry is a vital part of its economy, providing employment to more than a million people. On the back of growing demands, due to increased construction and infrastructural activities cement market in India is expected to grow at a compound annual growth rate (CAGR) of 8.96 percent during the period 2014-2019. In this study, GIS-based spatial Multi Criteria Decision Analysis (MCDA) is used to determine the optimum and alternative sites to setup a cement plant. This technique contains a set of evaluation criteria which are quantifiable indicators of the extent to which decision objectives are realized. In intersection with available GIS (Geographical Information System) and local ancillary data, the outputs of image analysis serves as input for the multi-criteria decision making system. Moreover, the following steps were performed so as to represent the criteria in GIS layers, which underwent the GIS analysis in order to get several potential sites. Satellite imagery from LANDSAT 8 and ASTER DEM were used for the analysis. Cuddalore District in Tamil Nadu was selected as the study site as limestone mining is already being carried out in that region which meets the criteria of raw material for cement production. Several other criteria considered were land use land cover (LULC) classification (built-up area, river, forest cover, wet land, barren land, harvest land and agriculture land), slope, proximity to road, railway and drainage networks.
Initial mechanical stability of cementless highly-porous titanium tibial components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Timothy Brandon; Amer, Luke D; Warren, Christopher P
Cementless fixation in total knee replacement has seen limited use since reports of early failure surfaced in the late 80s and early 90s. However the emergence of improved biomaterials, particularly porous titanium and tantalum, has led to a renewed interest in developing a cementless tibial component to enhance long-term survivorship of the implants. Cement is commonly employed to minimize micromotion in new implants but represents a weak interface between the implant and bone. The elimination of cement and application of these new biomaterials, which theoretically provide improved stability and ultimate osseointegration, would likely result in greater knee replacement success. Additionally,more » the removal of cement from the procedure would help minimize surgical durations and get rid of the time needed for curing, thereby the chance of infection. The purpose of this biomechanical study was twofold. The first goal was to assess whether vibration analysis techniques can be used to evaluate and characterize initial mechanical stability of cementless implants more accurately than the traditional method of micromotion determination, which employs linear variable differential transducers (LVDTs). Second, an evaluative study was performed to determine the comparative mechanical stability of five designs of cementless tibial components under mechanical loading designed to simulate in vivo forces. The test groups will include a cemented Triathlon Keeled baseplate control group, three different 2-peg cementless baseplates with smooth, mid, and high roughnesses and a 4-peg cement/ess baseplate with mid-roughness.« less
Calcium phosphate cements for bone engineering and their biological properties
Xu, Hockin HK; Wang, Ping; Wang, Lin; Bao, Chongyun; Chen, Qianming; Weir, Michael D; Chow, Laurence C; Zhao, Liang; Zhou, Xuedong; Reynolds, Mark A
2017-01-01
Calcium phosphate cements (CPCs) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports their increased application in bone tissue engineering. Much effort has been made to enhance the biological performance of CPCs, including their biocompatibility, osteoconductivity, osteoinductivity, biodegradability, bioactivity, and interactions with cells. This review article focuses on the major recent developments in CPCs, including 3D printing, injectability, stem cell delivery, growth factor and drug delivery, and pre-vascularization of CPC scaffolds via co-culture and tri-culture techniques to enhance angiogenesis and osteogenesis. PMID:29354304
Force production in the rugby union scrum.
Quarrie, K L; Wilson, B D
2000-04-01
In this study, we examined the relationship between anthropometric, strength and power characteristics of rugby forwards, their body position when scrummaging, and their ability to apply force when scrummaging. Force applied to an instrumented scrum machine was measured for 56 players, both individually and as scrum packs. Measurements of body position for individuals were made by digitizing videotape records of the trials. Forty players subsequently had their anthropometry assessed and completed several strength and power tests. Body mass, each component of somatotype, maximal anaerobic power developed on a cycle ergometer, and isokinetic knee extension strength correlated significantly with individual scrummaging force. A regression model (P < 0.001) including body mass, mesomorphy, maximal anaerobic power and hip angle while in the scrummaging position accounted for 45% of the variance in individual scrummaging force. The packs that produced the largest scrummaging forces were, in general, characterized by a greater pack force to sum of individual force ratio than the packs producing lower forces. Our results emphasize the need for a scrum pack to develop technique and coordination as a unit to maximize scrummaging force.
NASA Astrophysics Data System (ADS)
Bergado, D. T.; Long, P. V.; Chaiyaput, S.; Balasubramaniam, A. S.
2018-04-01
Soft ground improvement techniques have become most practical and popular methods to increase soil strength, soil stiffness and reduce soil compressibility including the soft Bangkok clay. This paper focuses on comparative performances of prefabricated vertical drain (PVD) using surcharge, vacuum and heat preloading as well as the cement-admixed clay of Deep Cement Mixing (DCM) and Stiffened DCM (SDCM) methods. The Vacuum-PVD can increase the horizontal coefficient of consolidation, Ch, resulting in faster rate of settlement at the same magnitudes of settlement compared to Conventional PVD. Several field methods of applying vacuum preloading are also compared. Moreover, the Thermal PVD and Thermal Vacuum PVD can increase further the coefficient of horizontal consolidation, Ch, with the associated reduction of kh/ks values by reducing the drainage retardation effects in the smear zone around the PVD which resulted in faster rates of consolidation and higher magnitudes of settlements. Furthermore, the equivalent smear effect due to non-uniform consolidation is also discussed in addition to the smear due to the mechanical installation of PVDs. In addition, a new kind of reinforced deep mixing method, namely Stiffened Deep Cement Mixing (SDCM) pile is introduced to improve the flexural resistance, improve the field quality control, and prevent unexpected failures of the Deep Cement Mixing (DCM) pile. The SDCM pile consists of DCM pile reinforced with the insertion of precast reinforced concrete (RC) core. The full scale test embankment on soft clay improved by SDCM and DCM piles was also analysed. Numerical simulations using the 3D PLAXIS Foundation finite element software have been done to understand the behavior of SDCM and DCM piles. The simulation results indicated that the surface settlements decreased with increasing lengths of the RC cores, and, at lesser extent, increasing sectional areas of the RC cores in the SDCM piles. In addition, the lateral movements decreased by increasing the lengths (longer than 4 m) and, the sectional areas of the RC cores in the SDCM piles. The results of the numerical simulations closely agreed with the observed data and successfully verified the parameters affecting the performances and behavior of both SDCM and DCM piles.
Investigation into improved pavement curing materials and techniques : part 1 (phases I and II).
DOT National Transportation Integrated Search
2002-04-01
Concrete curing is closely related to cement hydration, microstructure development, and concrete : performance. Application of a liquid membrane-forming curing compound is among the most widely : used curing methods for concrete pavements and bridge ...
Solid Phase Microextraction and Related Techniques for Drugs in Biological Samples
Moein, Mohammad Mahdi; Said, Rana; Bassyouni, Fatma
2014-01-01
In drug discovery and development, the quantification of drugs in biological samples is an important task for the determination of the physiological performance of the investigated drugs. After sampling, the next step in the analytical process is sample preparation. Because of the low concentration levels of drug in plasma and the variety of the metabolites, the selected extraction technique should be virtually exhaustive. Recent developments of sample handling techniques are directed, from one side, toward automatization and online coupling of sample preparation units. The primary objective of this review is to present the recent developments in microextraction sample preparation methods for analysis of drugs in biological fluids. Microextraction techniques allow for less consumption of solvent, reagents, and packing materials, and small sample volumes can be used. In this review the use of solid phase microextraction (SPME), microextraction in packed sorbent (MEPS), and stir-bar sorbtive extraction (SBSE) in drug analysis will be discussed. In addition, the use of new sorbents such as monoliths and molecularly imprinted polymers will be presented. PMID:24688797
Is it more dangerous to perform inadequate packing?
Aydin, Unal; Yazici, Pinar; Zeytunlu, Murat; Coker, Ahmet
2008-01-01
Peri-hepatic packing procedure, which is the basic damage control technique for the treatment of hepatic hemorrhage, is one of the cornerstones of the surgical strategy for abdominal trauma. The purpose of this study was to evaluate the efficacy of the perihepatic packing procedure by comparing the outcomes of appropriately and inappropriately performed interventions. Trauma patients with liver injury were retrospectively evaluated. The patients who had undergone adequate packing were classified as Group A, and the patients who had undergone inappropriate packing, as Group B. Over a five-year period, nineteen patients underwent perihepatic packing. Thirteen of these patients were referred by other hospitals. Of 13 patients, 9 with inappropriate packing procedure due to insertion of intraabdominal drainage catheter (n=4) and underpacking (n=5) were evaluated in Group B, and the others (n=10) with adequate packing were assessed in Group A. Mean 3 units of blood were transfused in Group A and unpacking procedure was performed in the 24th hour. Only 3 (30%) patients required segment resection with homeostasis, and the mortality rate was 20% (2/10 patients). In Group B, 4 patients required repacking in the first 6 hrs. Mean 8 units of blood were transfused until unpacking procedure. The mortality rate was 44% (4/9 patients). The length of intensive care unit stay and requirement of blood transfusion were statistically significantly lower in Group A (p < 0.05). The mortality rate of this group was also lower. However, the difference between the groups for mortality rates was not statistically significant. This study emphasizes that efficacy of the procedure is one of the determinants that affects the results, and inadequate or inappropriate packing may easily result in poor outcome. PMID:18194549
Radiopacity of Composite Luting Cements Using a Digital Technique.
Dukic, Walter
2017-01-10
The aim of this in vitro study was to evaluate the radiopacity of 20 common dental composite luting materials using a digital technique. A 1-mm-thick specimen of each material with a human tooth slice and aluminium step wedge were tested using digital radiographs under four combinations of exposure and voltage. The radiopacity in pixels was determined using computer software. The equivalent thickness of aluminium for each material was then calculated based on the calibration curve. All tested materials except one had higher radiopacity than dentin (p > α; α = 0.01), and 80% of the materials had radiopacity above enamel value (p > α; α = 0.01). Moreover, 40% of tested materials had radiopacity of three times above the minimal International Organization for Standardization (ISO) values for composite luting cements. At all exposure values, the highest radiopacity was for Solocem and Multilink groups of materials, at three to six times above dentin radiopacity. Only Variolink Veneer showed radiopacity below dentin and enamel. Composite luting materials should have radiopacity above ISO values or greater than the dentin or enamel equivalent. The highest radiopacity values were for the Solocem and Multilink family composite luting cements. Clinicians should choose materials with high radiopacity values, and manufacturers should be aware of the radiopacity values when introducing materials on the market. © 2017 by the American College of Prosthodontists.
Cicciu, Marco; Bramanti, Ennio; Matacena, Giada; Guglielmino, Eugenio; Risitano, Giacomo
2014-01-01
Prosthetic rehabilitation of partial or total edentulous patients is today a challenge for clinicians and dental practitioners. The application of dental implants in order to recover areas of missing teeth is going to be a predictable technique, however some important points about the implant angulation, the stress distribution over the bone tissue and prosthetic components should be well investigated for having final long term clinical results. Two different system of the prosthesis fixation are commonly used. The screw retained crown and the cemented retained one. All of the two restoration techniques give to the clinicians several advantages and some disadvantages. Aim of this work is to evaluate all the mechanical features of each system, through engineering systems of investigations like FEM and Von Mises analyses. The FEM is today a useful tool for the prediction of stress effect upon material and biomaterial under load or strengths. Specifically three different area has been evaluated through this study: the dental crown with the bone interface; the passant screw connection area; the occlusal surface of the two different type of crown. The elastic features of the materials used in the study have been taken from recent literature data. Results revealed an adequate response for both type of prostheses, although cemented retained one showed better results over the occlusal area. PMID:24955150
An Injectable Glass Polyalkenoate Cement Engineered for Fracture Fixation and Stabilization
Peel, Sean A. F.; Towler, Mark R.
2017-01-01
Glass polyalkenoate cements (GPCs) have potential as bio-adhesives due to their ease of application, appropriate mechanical properties, radiopacity and chemical adhesion to bone. Aluminium (Al)-free GPCs have been discussed in the literature, but have proven difficult to balance injectability with mechanical integrity. For example, zinc-based, Al-free GPCs reported compressive strengths of 63 MPa, but set in under 2 min. Here, the authors design injectable GPCs (IGPCs) based on zinc-containing, Al-free silicate compositions containing GeO2, substituted for ZnO at 3% increments through the series. The setting reactions, injectability and mechanical properties of these GPCs were evaluated using both a hand-mix (h) technique, using a spatula for sample preparation and application and an injection (i) technique, using a 16-gauge needle, post mixing, for application. GPCs ability to act as a carrier for bovine serum albumin (BSA) was also evaluated. Germanium (Ge) and BSA containing IGPCs were produced and reported to have working times between 26 and 44 min and setting times between 37 and 55 min; the extended handling properties being as a result of less Ge. The incorporation of BSA into the cement had no effect on the handling and mechanical properties, but the latter were found to have increased compression strength with the addition of Ge from between 27 and 37 MPa after 30 days maturation. PMID:28678157
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández-Cruz, Daniel; Hargis, Craig W.; Bae, Sungchul
2014-04-01
Together with a series of mechanical tests, the interactions and potential bonding between polymeric fibers and cementitious materials were studied using scanning transmission X-ray microscopy (STXM) and microtomography (lCT). Experimental results showed that these techniques have great potential to characterize the polymer fiber-hydrated cement-paste matrix interface, as well as differentiating the chemistry of the two components of a bi-polymer (hybrid) fiber the polypropylene core and the ethylene acrylic acid copolymer sheath. Similarly, chemical interactions between the hybrid fiber and the cement hydration products were observed, indicating the chemical bonding between the sheath and the hardened cement paste matrix. Microtomography allowedmore » visualization of the performance of the samples, and the distribution and orientation of the two types of fiber in mortar. Beam flexure tests confirmed improved tensile strength of mixes containing hybrid fibers, and expansion bar tests showed similar reductions in expansion for the polypropylene and hybrid fiber mortar bars.« less
Pereira, Jorge; Câmara, José S; Colmsjö, Anders; Abdel-Rehim, Mohamed
2014-06-01
Sample preparation is an important analytical step regarding the isolation and concentration of desired components from complex matrices and greatly influences their reliable and accurate analysis and data quality. It is the most labor-intensive and error-prone process in analytical methodology and, therefore, may influence the analytical performance of the target analytes quantification. Many conventional sample preparation methods are relatively complicated, involving time-consuming procedures and requiring large volumes of organic solvents. Recent trends in sample preparation include miniaturization, automation, high-throughput performance, on-line coupling with analytical instruments and low-cost operation through extremely low volume or no solvent consumption. Micro-extraction techniques, such as micro-extraction by packed sorbent (MEPS), have these advantages over the traditional techniques. This paper gives an overview of MEPS technique, including the role of sample preparation in bioanalysis, the MEPS description namely MEPS formats (on- and off-line), sorbents, experimental and protocols, factors that affect the MEPS performance, and the major advantages and limitations of MEPS compared with other sample preparation techniques. We also summarize MEPS recent applications in bioanalysis. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Imhoff, P. T.; Nakhli, S. A. A.; Mills, G.; Yudi, Y.; Abera, K.; Williams, R.; Manahiloh, K. N.; Willson, C. S.
2017-12-01
Biochar has been proposed as an amendment to stormwater infiltration media to enhance pollutant capture (metals, organics) or transformation (e.g., nitrate). Because stormwater media must maintain sufficient infiltration capacity, it is critical that biochar amendment not reduce saturated hydraulic conductivity. We present experimental measurements of saturated hydraulic conductivity for mixtures of wood biochar, sieved to various size fractions, and uniform sands or bioretention media (mixtures of sand, clay, and sawdust). While the influence of biochar on the inter particle pore volume of the mixtures explained most changes in hydraulic conductivity, for mixtures containing large biochar particles results were unexpected. For example, while large biochar particles (2 - 4.75 mm) increased inter particle porosity from 0.35 to 0.48 for a sand/biochar mixture, hydraulic conductivity decreased from 820 ± 90 cm/h to 323 ± 2 cm/h. To understand this and other unusual data, biochar was doped with 3% CsCl, mixed with uniform sand using different packing techniques, and analyzed with X-ray computed tomography to assess biochar distribution and pore structure. Depending on packing technique, biochar particles were either segregated or uniformly mixed, which influenced pore structure. Biochar content and inter particle pore volume determined from X-ray images were in excellent agreement with experimental data (< 5% difference). Grain-based algorithms were then used to generate physically-representative pore networks, and single-phase permeability models were employed to estimate saturated hydraulic conductivity of sand and biochar-amended sand packings for specimens prepared with different packing techniques. Results from these analyses will be presented and compared with experimental measurements to elucidate the mechanisms by which large biochar particles alter the saturated hydraulic conductivity of engineered media.
Performance of Diffusion Aluminide Coatings Applied on Alloy CF8C-Plus at 800oC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Deepak; Dryepondt, Sebastien N; Zhang, Ying
2012-01-01
High performance cast stainless steel, CF8C-Plus, is a low cost alloy with prospective applications ranging from covers and casings of small and medium size gas turbines to turbocharger housing and manifolds in internal combustion engines. Diffusion aluminide coatings were applied on this alloy as a potential strategy for improved oxidation resistance, particularly in wet air and steam. In this paper the performance of the aluminide coatings evaluated by cyclic oxidation experiments in air containing 10 vol.% H2O at 800 C and conventional tension-compression low-cycle-fatigue tests in air at 800 C with a strain range of 0.5% is presented. The resultsmore » show that specimens coated by a chemical vapor deposition process provide better oxidation resistance than those coated by an Al-slurry coating process. The application of a coating by pack cementation reduced the fatigue life by 15%.« less
Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers
Nuruddin, Muhammad Fadhil; Shafiq, Nasir
2014-01-01
The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers. PMID:24707202
Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.
Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina
2014-01-01
The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.
Treatment of giant cell tumor of bone: Current concepts.
Puri, Ajay; Agarwal, Manish
2007-04-01
Giant cell tumor (GCT) of bone though one of the commonest bone tumors encountered by an orthopedic surgeon continues to intrigue treating surgeons. Usually benign, they are locally aggressive and may occasionally undergo malignant transformation. The surgeon needs to strike a balance during treatment between reducing the incidence of local recurrence while preserving maximal function.Differing opinions pertaining to the use of adjuvants for extension of curettage, the relative role of bone graft or cement to pack the defect and the management of recurrent lesions are some of the issues that offer topics for eternal debate.Current literature suggests that intralesional curettage strikes the best balance between controlling disease and preserving optimum function in the majority of the cases though there may be occasions where the extent of the disease mandates resection to ensure adequate disease clearance.An accompanying treatment algorithm helps outline the management strategy in GCT.
Osterhoff, Georg; Dodd, Andrew E; Unno, Florence; Wong, Angus; Amiri, Shahram; Lefaivre, Kelly A; Guy, Pierre
2016-11-01
Sacroiliac screw fixation in elderly patients with pelvic fractures is prone to failure owing to impaired bone quality. Cement augmentation has been proposed as a possible solution, because in other anatomic areas this has been shown to reduce screw loosening. However, to our knowledge, this has not been evaluated for sacroiliac screws. We investigated the potential biomechanical benefit of cement augmentation of sacroiliac screw fixation in a cadaver model of osteoporotic bone, specifically with respect to screw loosening, construct survival, and fracture-site motion. Standardized complete sacral ala fractures with intact posterior ligaments in combination with ipsilateral upper and lower pubic rami fractures were created in osteoporotic cadaver pelves and stabilized by three fixation techniques: sacroiliac (n = 5) with sacroiliac screws in S1 and S2, cemented (n = 5) with addition of cement augmentation, and transsacral (n = 5) with a single transsacral screw in S1. A cyclic loading protocol was applied with torque (1.5 Nm) and increasing axial force (250-750 N). Screw loosening, construct survival, and sacral fracture-site motion were measured by optoelectric motion tracking. A sample-size calculation revealed five samples per group to be required to achieve a power of 0.80 to detect 50% reduction in screw loosening. Screw motion in relation to the sacrum during loading with 250 N/1.5 Nm was not different among the three groups (sacroiliac: 1.2 mm, range, 0.6-1.9; cemented: 0.7 mm, range, 0.5-1.3; transsacral: 1.1 mm, range, 0.6-2.3) (p = 0.940). Screw subsidence was less in the cemented group (3.0 mm, range, 1.2-3.7) compared with the sacroiliac (5.7 mm, range, 4.7-10.4) or transsacral group (5.6 mm, range, 3.8-10.5) (p = 0.031). There was no difference with the numbers available in the median number of cycles needed until failure; this was 2921 cycles (range, 2586-5450) in the cemented group, 2570 cycles (range, 2500-5107) for the sacroiliac specimens, and 2578 cycles (range, 2540-2623) in the transsacral group (p = 0.153). The cemented group absorbed more energy before failure (8.2 × 10 5 N*cycles; range, 6.6 × 10 5 -22.6 × 10 5 ) compared with the transsacral group (6.5 × 10 5 N*cycles; range, 6.4 × 10 5 -6.7 × 10 5 ) (p = 0.016). There was no difference with the numbers available in terms of fracture site motion (sacroiliac: 2.9 mm, range, 0.7-5.4; cemented: 1.2 mm, range, 0.6-1.9; transsacral: 2.1 mm, range, 1.2-4.8). Probability values for all between-group comparisons were greater than 0.05. The addition of cement to standard sacroiliac screw fixation seemed to change the mode and dynamics of failure in this cadaveric mechanical model. Although no advantages to cement were observed in terms of screw motion or cycles to failure among the different constructs, a cemented, two-screw sacroiliac screw construct resulted in less screw subsidence and greater energy absorbed to failure than an uncemented single transsacral screw. In osteoporotic bone, the addition of cement to sacroiliac screw fixation might improve screw anchorage. However, larger mechanical studies using these findings as pilot data should be performed before applying these preliminary findings clinically.
Packing of Fruit Fly Parasitoids for Augmentative Releases
Montoya, Pablo; Cancino, Jorge; Ruiz, Lía
2012-01-01
The successful application of Augmentative Biological Control (ABC) to control pest fruit flies (Diptera: Tephritidae) confronts two fundamental requirements: (1) the establishment of efficient mass rearing procedures for the species to be released, and (2) the development of methodologies for the packing and release of parasitoids that permit a uniform distribution and their optimal field performance under an area-wide approach. Parasitoid distributions have been performed by ground and by air with moderate results; both options face challenges that remain to be addressed. Different devices and strategies have been used for these purposes, including paper bags and the chilled adult technique, both of which are commonly used when releasing sterile flies. However, insect parasitoids have morphological and behavioral characteristics that render the application of such methodologies suboptimal. In this paper, we discuss an alternate strategy for the augmentative release of parasitoids and describe packing conditions that favor the rearing and emergence of adult parasitoids for increased field performance. We conclude that the use of ABC, including the packaging of parasitoids, requires ongoing development to ensure that this technology remains a viable and effective control technique for pest fruit flies. PMID:26466634
Hard sphere packings within cylinders.
Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick
2016-03-07
Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.
Vacuum Brazing of WC-8Co Cemented Carbides to Carbon Steel Using Pure Cu and Ag-28Cu as Filler Metal
NASA Astrophysics Data System (ADS)
Zhang, X. Z.; Liu, G. W.; Tao, J. N.; Shao, H. C.; Fu, H.; Pan, T. Z.; Qiao, G. J.
2017-02-01
The wetting and spreading behavior of commercial pure Cu and Ag-28Cu alloy on WC-8Co cemented carbide were investigated by the sessile drop technique. The contact angle of both systems obviously decreases with moderately increasing the wetting temperature. Vacuum brazing of the WC-8Co cemented carbide to SAE1045 steel using the pure Cu or Ag-28Cu as filler metal was further carried out based on the wetting results. The interfacial interactions and joint mechanical behavior involving microhardness, shear strength and fracture were analyzed and discussed. An obvious Fe-Cu-Co transition layer is detected at the WC-8Co/Cu interface, while no obvious reaction layer is observed at the whole WC-8Co/Ag-28Cu/SAE1045 brazing seam. The microhardness values of the two interlayers and the steel substrate near the two interlayers increase more or less, while those of WC-8Co cemented carbide substrates adjacent to the two interlayers decrease. The WC-8Co/SAE1045 joints using pure Cu and Ag-28Cu alloy as filler metals obtain average shear strength values of about 172 and 136 MPa, and both of the joint fractures occur in the interlayers.
Heavy metal removal capacity of individual components of permeable reactive concrete
NASA Astrophysics Data System (ADS)
Holmes, Ryan R.; Hart, Megan L.; Kevern, John T.
2017-01-01
Permeable reactive barriers (PRBs) are a well-known technique for groundwater remediation using industrialized reactive media such as zero-valent iron and activated carbon. Permeable reactive concrete (PRC) is an alternative reactive medium composed of relatively inexpensive materials such as cement and aggregate. A variety of multimodal, simultaneous processes drive remediation of metals from contaminated groundwater within PRC systems due to the complex heterogeneous matrix formed during cement hydration. This research investigated the influence coarse aggregate, portland cement, fly ash, and various combinations had on the removal of lead, cadmium, and zinc in solution. Absorption, adsorption, precipitation, co-precipitation, and internal diffusion of the metals are common mechanisms of removal in the hydrated cement matrix and independent of the aggregate. Local aggregates can be used as the permeable structure also possessing high metal removal capabilities, however calcareous sources of aggregate are preferred due to improved removal with low leachability. Individual adsorption isotherms were linear or curvilinear up, indicating a preferred removal process. For PRC samples, metal saturation was not reached over the range of concentrations tested. Results were then used to compare removal against activated carbon and aggregate-based PRBs by estimating material costs for the remediation of an example heavy metal contaminated Superfund site located in the Midwestern United States, Joplin, Missouri.
Characterization of cement-based materials using a reusable piezoelectric impedance-based sensor
NASA Astrophysics Data System (ADS)
Tawie, R.; Lee, H. K.
2011-08-01
This paper proposes a reusable sensor, which employs a piezoceramic (PZT) plate as an active sensing transducer, for non-destructive monitoring of cement-based materials based on the electromechanical impedance (EMI) sensing technique. The advantage of the sensor design is that the PZT can be easily removed from the set-up and re-used for repetitive tests. The applicability of the sensor was demonstrated for monitoring of the setting of cement mortar. EMI measurements were performed using an impedance analyzer and the transformation of the specimen from the plastic to solid state was monitored by automatically measuring the changes in the PZT conductance spectra with respect to curing time using the root mean square deviation (RMSD) algorithm. In another experiment, drying-induced moisture loss of a hardened mortar specimen at saturated surface dry (SSD) condition was measured, and monitored using the reusable sensor to establish a correlation between the RMSD values and moisture loss rate. The reusable sensor was also demonstrated for detecting progressive damages imparted on a mortar specimen attached with the sensor under several loading levels before allowing it to load to failure. Overall, the reusable sensor is an effective and efficient monitoring device that could possibly be used for field application in characterization of cement-based materials.
Kabilan, Senthil; Jung, Hun Bok; Kuprat, Andrew P; Beck, Anthon N; Varga, Tamas; Fernandez, Carlos A; Um, Wooyong
2016-06-21
X-ray microtomography (XMT) imaging combined with three-dimensional (3D) computational fluid dynamics (CFD) modeling technique was used to study the effect of geochemical and geomechanical processes on fracture permeability in composite Portland cement-basalt caprock core samples. The effect of fluid density and viscosity and two different pressure gradient conditions on fracture permeability was numerically studied by using fluids with varying density and viscosity and simulating two different pressure gradient conditions. After the application of geomechanical stress but before CO2-reaction, CFD revealed fluid flow increase, which resulted in increased fracture permeability. After CO2-reaction, XMT images displayed preferential precipitation of calcium carbonate within the fractures in the cement matrix and less precipitation in fractures located at the cement-basalt interface. CFD estimated changes in flow profile and differences in absolute values of flow velocity due to different pressure gradients. CFD was able to highlight the profound effect of fluid viscosity on velocity profile and fracture permeability. This study demonstrates the applicability of XMT imaging and CFD as powerful tools for characterizing the hydraulic properties of fractures in a number of applications like geologic carbon sequestration and storage, hydraulic fracturing for shale gas production, and enhanced geothermal systems.
Kabir, G; Madugu, A I
2010-01-01
In this study, environmental impact on air quality was evaluated for a typical Cement Industry in Nigeria. The air pollutants in the atmosphere around the cement plant and neighbouring settlements were determined using appropriate sampling techniques. Atmospheric dust and CO2 were prevalent pollutants during the sampling period; their concentrations were recorded to be in the range of 249-3,745 mg/m3 and 2,440-2,600 mg/m3, respectively. Besides atmospheric dust and CO2, the air pollutants such as NOx, SOx and CO were in trace concentrations, below the safe limits approved by FEPA that are 0.0062-0.093 mg/m3 NOx, 0.026 mg/m3 SOx and 114.3 mg/m3 CO, respectively. Some cost-effective mitigating measures were recommended that include the utilisation of readily available and low-cost pozzolans material to produce blended cement, not only could energy efficiency be improved, but carbon dioxide emission could also be minimised during clinker production; and the installation of an advance high-pressure grinding rolls (clinker-roller-press process) to maximise energy efficiency to above what is obtainable from the traditional ball mills and to minimise CO2 emission from the power plant.
DOT National Transportation Integrated Search
2010-01-18
This research demonstrated the application of gel permeation chromatography (GPC) as an analytical tool to : ascertain the amounts of polymer modifiers in polymer modified asphalt cements, which are soluble in eluting GPC : solvents. The technique wa...
DOT National Transportation Integrated Search
2010-01-18
This research demonstrated the application of gel permeation chromatography (GPC) as an analytical tool to ascertain the amounts of polymer modifiers in polymer modified asphalt cements, which are soluble in eluting GPC solvents. The technique was ap...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodd, J.R.; Brown, T.W.; Harris, C.D.
1990-05-01
Descriptions of carbonate eolianites of pre-Pleistocene age are rare. Based largely on sedimentary structures and facies associations, Hunter has recently identified eolian deposits in the middle Mississippian Ste. Genevieve Limestone near Corydon, Indiana. Eolianite grainstones contain a diverse assemblage of allochems, including a variety of skeletal grains, ooids (some broken and abraded), peloids, intraclasts, and abundant quartz silt. Carbonate grains, which rarely exceed 0.5 mm are usually more spherical than grains from associated marine unit. Eolian units contain cross-laminations that sometimes coarsen upward. No evidence for vadose cement was found in the eolianite units; the extensive solution packing suggest thatmore » cementation did not occur until burial to considerable depth. Marine grainstones, which probably formed on shallow shoals or an open platform, are common in the section. They contain a diverse assemblage of skeletal grain types as well as ooids, peloids, and intraclasts; however, one grain type (such as ooids) frequently dominates an individual unit. Detrital quartz grains are rare. Rounding of grains is usually good, but sphericity of skeletal grains which were not originally spherical is low. Fine laminations are uncommon, and no systematic grading is found on a thin-section scale. Grains and fossils in excess of 10 mm are common in the marine unit. Carbonate mud-rich rocks that probably formed in a shallow lagoonal setting also occur in the Ste. Genevieve section as do poorly developed exposure surfaces with pedogenic features.« less
On Characterizing Particle Shape
NASA Technical Reports Server (NTRS)
Ennis, Bryan J.; Rickman, Douglas; Rollins, A. Brent; Ennis, Brandon
2014-01-01
It is well known that particle shape affects flow characteristics of granular materials, as well as a variety of other solids processing issues such as compaction, rheology, filtration and other two-phase flow problems. The impact of shape crosses many diverse and commercially important applications, including pharmaceuticals, civil engineering, metallurgy, health, and food processing. Two applications studied here include the dry solids flow of lunar simulants (e.g. JSC-1, NU-LHT-2M, OB-1), and the flow properties of wet concrete, including final compressive strength. A multi-dimensional generalized, engineering method to quantitatively characterize particle shapes has been developed, applicable to both single particle orientation and multi-particle assemblies. The two-dimension, three dimension inversion problem is also treated, and the application of these methods to DEM model particles will be discussed. In the case of lunar simulants, flow properties of six lunar simulants have been measured, and the impact of particle shape on flowability - as characterized by the shape method developed here -- is discussed, especially in the context of three simulants of similar size range. In the context of concrete processing, concrete construction is a major contributor to greenhouse gas production, of which the major contributor is cement binding loading. Any optimization in concrete rheology and packing that can reduce cement loading and improve strength loading can also reduce currently required construction safety factors. The characterization approach here is also demonstrated for the impact of rock aggregate shape on concrete slump rheology and dry compressive strength.
Close-packed monolayer self-assembly of silica nanospheres assisted by infrared irradiation
NASA Astrophysics Data System (ADS)
Minh, Nguyen Van; Hue, Nguyen Thi; Lien, Nghiem Thi Ha; Hoang, Chu Manh
2018-01-01
In this paper, we report on a fast and cost-effective drop coating technique for the self-assembly of silica nano-spheres from a mono-dispersed colloidal suspension into close-packed monolayer (CMP) on hydrophilic single-crystal silicon substrate. The technique includes the self-assembly of silica nano-spheres on slanted silicon substrate and infrared irradiation during evaporation process of the coated droplet. The influence of the substrate slant angle and infrared irradiation on the formation of silica nano-sphere monolayer is investigated. This achievement is promising for various applications, such as a mask layer for nano-sphere lithography that is employed for producing fundamental elements in photonics, plasmonics, and solar cell. [Figure not available: see fulltext.
A Comparative Study of Inspection Techniques for Array Packages
NASA Technical Reports Server (NTRS)
Mohammed, Jelila; Green, Christopher
2008-01-01
This viewgraph presentation reviews the inspection techniques for Column Grid Array (CGA) packages. The CGA is a method of chip scale packaging using high temperature solder columns to attach part to board. It is becoming more popular over other techniques (i.e. quad flat pack (QFP) or ball grid array (BGA)). However there are environmental stresses and workmanship challenges that require good inspection techniques for these packages.
Aerts, Goele; Smits, Tim
2017-09-14
Persuasive on-pack marketing strategies, such as colourful images and games, affect children's preferences and requests. The purpose of this study was to describe the prevalence of these child-directed (i.e. aimed at children) strategies on food packages at a Belgian retailer. Although previous research already demonstrated the frequency of most of these techniques directed at children, this paper extends to food pricing and facing strategies (i.e. the number of items from the same product aligned next to each other in the supermarket shelves) which were unstudied till now. Moreover, the association between the use of these strategies, the products' (un)healthiness and their type of brand (national vs. private) is investigated. The content analysis found that 372 food products contained one or more child-directed marketing strategies on-pack, all these communications were coded; the products could be classified in 15 food categories. On average, 3.9 (Min = 1; Max = 8) food promotion techniques were used per package. Unhealthiness of products was rated according to Food Standards Agency (FSA) Nutrient Profile UK. We found that 89.2% of all products with child-directed strategies were considered to be unhealthy. The presence of marketing strategies was associated with higher product unhealthiness, but did not differ much between types of brand. Overall, these findings suggest that (unhealthy) foods aimed at children typically feature many on-pack persuasive communications, which implies that policy makers should (continue to) monitor this. These findings highlight the need for further research to investigate the impact of on-pack communications on children's consumption. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Broeckhoven, Ken; Desmet, Gert
2007-11-16
Using a combination of both analytical and numerical techniques, approximate analytical expressions have been established for the transient and long time limit band broadening, originating from the presence of a thin disturbed sidewall layer in liquid chromatography columns, including packed, monolithic as well as microfabricated columns. The established expressions can be used to compare the importance of a thin disturbed sidewall layer with that of other radial heterogeneity effects (such as transcolumn packing density variations due to the relief of packing stresses). The expressions are independent of the actual velocity profile inside the layer as long as the disturbed sidewall layer occupies less than 2.5% of the column width.
NASA Astrophysics Data System (ADS)
Watanabe, Ken; Watanabe, Koichi; Tohnai, Norimitsu; Itani, Hiromichi; Shimizu, Yo; Fujii, Akihiko; Ozaki, Masanori
2018-04-01
The charge carrier mobility of a solution-processable low-molecular-weight organic semiconductor material, i.e., 1,4,8,11,15,18,22,25-octahexylphthalocyanine copper complex (C6PcCu), was investigated by the time-of-flight technique. The anomalous ambipolar carrier mobility was discussed from the viewpoint of the molecular packing structure, which was clarified by single-crystal X-ray structure analysis. In the comparison between the molecular packing structures of C6PcCu and its metal-free-type homologue, it was found that the difference in carrier mobility originates from the rotation of the molecule, which is caused by the steric hindrance due to the introduction of a center metal and the interpenetration of the nonperipheral alkyl chains.
Ar-Ar dating techniques for terrestrial meteorite impacts
NASA Astrophysics Data System (ADS)
Kelley, S. P.
2003-04-01
The ages of the largest (>100 km) known impacts on Earth are now well characterised. However the ages of many intermediate sized craters (20-100 km) are still poorly known, often the only constraints are stratigraphic - the difference between the target rock age and the age of crater filling sediments. The largest impacts result in significant melt bodies which cool to form igneous rocks and can be dated using conventional radiometric techniques. Smaller impacts give rise to thin bands of melted rock or melt clasts intimately mixed with country rock clasts in breccia deposits, and present much more of a challenge to dating. The Ar-Ar dating technique can address a wide variety of complex and heterogeneous samples associated with meteorite impacts and obtain reasonable ages. Ar-Ar results will be presented from a series of terrestrial meteorite impact craters including Boltysh (65.17±0.64 Ma, Strangways (646±42 Ma), and St Martin (220±32 Ma) and a Late Triassic spherule bed, possibly representing distal deposits from Manicouagan (214±1 Ma) crater. Samples from the Boltysh and Strangways craters demonstrate the importance of rapid cooling upon the retention of old ages in glassy impact rocks. A Late Triassic spherule bed in SW England is cemented by both carbonate and K-feldspar cements allowing Ar-Ar dating of fine grained cement to place a mimimum age upon the age of the associated impact. An age of 214.7±2.5 Ma places the deposit with errors of the age of the Manicouagan impact, raising the possibility that it may represent a distal deposit (the deposit lay around 2000 km away from the site of the Manicouagan crater during the Late Triassic). Finally the limits of the technique will be demonstrated using an attempt to date melt rocks from the St Martin Crater in Canada.
ERIC Educational Resources Information Center
Brandvik, Mary Lou; McKnight, Katherine S.
2011-01-01
This unique time-saving book is packed with tested techniques and materials to assist new and experienced English teachers with virtually every phase of their job from lesson planning to effective discipline techniques. The book includes 175 easy-to-understand strategies, lessons, checklists, and forms for effective classroom management and over…
Automating the packing heuristic design process with genetic programming.
Burke, Edmund K; Hyde, Matthew R; Kendall, Graham; Woodward, John
2012-01-01
The literature shows that one-, two-, and three-dimensional bin packing and knapsack packing are difficult problems in operational research. Many techniques, including exact, heuristic, and metaheuristic approaches, have been investigated to solve these problems and it is often not clear which method to use when presented with a new instance. This paper presents an approach which is motivated by the goal of building computer systems which can design heuristic methods. The overall aim is to explore the possibilities for automating the heuristic design process. We present a genetic programming system to automatically generate a good quality heuristic for each instance. It is not necessary to change the methodology depending on the problem type (one-, two-, or three-dimensional knapsack and bin packing problems), and it therefore has a level of generality unmatched by other systems in the literature. We carry out an extensive suite of experiments and compare with the best human designed heuristics in the literature. Note that our heuristic design methodology uses the same parameters for all the experiments. The contribution of this paper is to present a more general packing methodology than those currently available, and to show that, by using this methodology, it is possible for a computer system to design heuristics which are competitive with the human designed heuristics from the literature. This represents the first packing algorithm in the literature able to claim human competitive results in such a wide variety of packing domains.
Povidone-iodine and hydrogen peroxide mixture soaked gauze pack: a novel hemostatic technique.
Arakeri, Gururaj; Brennan, Peter A
2013-11-01
Persistent oozing of blood is a common occurrence in maxillofacial surgery, and occasionally it hampers visibility and delays or even prevents continuation of the procedure. This report describes a novel method of controlling blood ooze using swabs soaked with povidone-iodine and hydrogen peroxide (PI-HP pack) that is particularly useful in relatively inaccessible areas of the maxillofacial region. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Kim, Dong-Ae; Abo-Mosallam, Hany; Lee, Hye-Young; Lee, Jung-Hwan; Kim, Hae-Won; Lee, Hae-Hyoung
2015-01-01
Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitrorat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC.Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs.Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials.
Watson, Timothy F.; Atmeh, Amre R.; Sajini, Shara; Cook, Richard J.; Festy, Frederic
2014-01-01
Objective Since their introduction, calcium silicate cements have primarily found use as endodontic sealers, due to long setting times. While similar in chemistry, recent variations such as constituent proportions, purities and manufacturing processes mandate a critical understanding of service behavior differences of the new coronal restorative material variants. Of particular relevance to minimally invasive philosophies is the potential for ion supply, from initial hydration to mature set in dental cements. They may be capable of supporting repair and remineralization of dentin left after decay and cavity preparation, following the concepts of ion exchange from glass ionomers. Methods This paper reviews the underlying chemistry and interactions of glass ionomer and calcium silicate cements, with dental tissues, concentrating on dentin–restoration interface reactions. We additionally demonstrate a new optical technique, based around high resolution deep tissue, two-photon fluorescence and lifetime imaging, which allows monitoring of undisturbed cement–dentin interface samples behavior over time. Results The local bioactivity of the calcium-silicate based materials has been shown to produce mineralization within the subjacent dentin substrate, extending deep within the tissues. This suggests that the local ion-rich alkaline environment may be more favorable to mineral repair and re-construction, compared with the acidic environs of comparable glass ionomer based materials. Significance The advantages of this potential re-mineralization phenomenon for minimally invasive management of carious dentin are self-evident. There is a clear need to improve the bioactivity of restorative dental materials and these calcium silicate cement systems offer exciting possibilities in realizing this goal. PMID:24113131
Soil mixing design methods and construction techniques for use in high organic soils : [summary].
DOT National Transportation Integrated Search
2015-10-01
The soils which serve as foundations for construction projects may be roughly classified as : inorganic or organic. Inorganic soils vary in firmness and suitability for construction. Soft : or loose inorganic soils may be stabilized using cement or s...
Torres, Érica Miranda De; Naldi, Luis Fernando; Bernades, Karina Oliveira; Carvalho, Alexandre Leite
2017-01-01
Tooth loss promotes bone and gingival tissue remodeling, thus breaking the harmony between the residual ridge and natural teeth. This is critical in the anterior region of the mouth, and the integration of several dental specialties is often essential to successful rehabilitation with implants. This article describes a multidisciplinary approach to implant-supported oral rehabilitation in the maxillary anterior region, presenting a new technique for optimizing esthetics in implants. A 19-year-old woman was missing her central and lateral incisors and had 2 dental implants in the lateral incisor sites. The patient exhibited deficient thickness of the alveolar edge, loss of lip support, and absence of gingival architecture, and the implants were improperly placed. A multidisciplinary team created a correct emergence profile through a polymethyl methacrylate-based bone cement graft along with connective tissue grafts. This technique may be a useful therapeutic adjunct in dental implantology, showing good predictability and regular healing procedures.
Outcomes of osteoporotic trochanteric fractures treated with cement-augmented dynamic hip screw
Gupta, Rakesh Kumar; Gupta, Vinay; Gupta, Navdeep
2012-01-01
Background: Dynamic hip screw (DHS) has been the standard treatment for stable trochanteric fracture patterns, but complications of lag screw cut out from a superior aspect, due to inadequate bone anchorage, occur frequently in elderly osteoporotic patients. Polymethylmethacrylate (PMMA) has been used as an augmentation tool to facilitate fixation stability in cadaveric femora for biomechanical studies and in pathological fractures. However, there are very few reports on the utilization of PMMA cement to prevent these complications in fresh intertrochanteric fractures. A prospective study was conducted to evaluate the outcome and efficacy of PMMA augmented DHS in elderly osteoporotic patients with intertrochanteric fractures. Materials and Methods: The study included 64 patients (AO type31-A2.1 in eight, A2.2 in 29, A2.3 in 17 patients, and 31-A3.1 in five, A3.2 in three, and A3.3 in two patients) with an average age of 72 years (60 – 94 years) of which 60 were available for final followup. PMMA augmentation of DHS was performed in all cases by injecting PMMA cement into the femoral head with a custommade gun designed by the authors. The clinical outcome was rated as per the Salvati and Wilson scoring system at the time of final followup of one year. Results were graded as excellent (score > 31), good (score 24 – 31), fair (score 16 – 23), and poor (score < 16). Results: Fracture united in all patients and the average time to union was 13.8 weeks (range 12 – 16 weeks). At an average followup of 18 months (range 12 – 24 months), no incidence of varus collapse or superior screw cut out was observed in any of the patients in spite of weightbearing ambulation from the early postoperative period. There was no incidence of avascular necrosis (AVN) or cement penetration into the joint in our series. Most of the patients were able to regain their prefracture mobility status with a mean hip pain score of 8.6. Conclusion: Cement augmentation of DHS appears to be an effective method of preventing osteoporosis related complications of fracture fixation in the trochanteric fractures. The technique used for cement augmentation in the present study is less likely to cause possible complications of cement augmentation like thermal necrosis, cement penetration into the joint, and AVN hip. PMID:23325965
CHEMICALLY BONDED CEMENTS FROM BOILER ASH AND SLUDGE WASTES. PHASE II REPORT, SEPT.1998-JULY 1999.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SUGAMA,T.YAGER,K.A.BLANKENHORN,D.
1999-08-01
Based upon the previous Phase I research program aimed at looking for ways of recycling the KeySpan-generated wastes, such as waste water treatment sludge (WWTS) and bottom ash (BA), into the potentially useful cementitious materials called chemically bonded cement (CBC) materials, the emphasis of this Phase II program done at Brookhaven National Laboratory, in a period of September 1998 through July 1999, was directed towards the two major subjects: One was to assess the technical feasibility of WWTS-based CBC material for use as Pb-exchange adsorbent (PEA) which remediates Pb-contaminated soils in the field; and the other was related to themore » establishment of the optimum-packaging storage system of dry BA-based CBC components that make it a promising matrix material for the steam-cured concrete products containing sand and coarse aggregate. To achieve the goal of the first subject, a small-scale field demonstration test was carried out. Using the PEA material consisting of 30 wt% WWTS, 13 wt% Type I cement and 57 wt% water, the PES slurry was prepared using a rotary shear concrete mixer, and then poured on the Pb-contaminated soil. The PEA-to-soil ratio by weight was a factor of 2.0. The placed PEA slurry was blended with soil using hand mixing tools such as claws and shovels. The wettability of soils with the PEA was very good, thereby facilitating the soil-PEA mix procedures. A very promising result was obtained from this field test; in fact, the mount of Pb leached out from the 25-day-aged PEA-treated soil specimen was only 0.74 mg/l, meeting the requirement for EPA safe regulation of < 5 mg/l. In contrast, a large amount (26.4 mg/l) of Pb was detected from the untreated soil of the same age. Thus, this finding demonstrated that the WWTS-based CBC has a potential for use as PEA material. Regarding the second subject, the dry-packed storage system consisting of 68.7 wt% BA, 13.0 wt% calcium aluminate cement (CAC), 13.0 wt% Type I portland cement and 5.3 wt% sodium polyphosphate (NaP), was designed in response to the identification of the most effective CBC formulation in strengthening the steam-cured concrete specimens. Using this storage system with the material cost of 6.32 cents/lb, the 80 C-20 hour-steam-cured concrete specimens displayed the compressive strength of 3980 psi, tensile splitting of 416 psi, flexural strength of 808 psi, and modulus of elasticity of 3.16 x 10{sup 6} psi. Furthermore, the specimens had a good resistance to acid erosion and a lower permeability of water, compared with those of the conventional Type I cement concrete specimens. Consequently, the cost-effective BA-based CBC gave the promise of being a potentially useful material for fabricating high-performance precast concrete products, such as building blocks, pipes, and slabs.« less
Kaleli, Necati; Saraç, Duygu
2017-05-01
Marginal adaptation plays an important role in the survival of metal-ceramic restorations. Porcelain firings and cementation may affect the adaptation of restorations. Moreover, conventional casting procedures and casting imperfections may cause deteriorations in the marginal adaptation of metal-ceramic restorations. The purpose of this in vitro study was to compare the marginal adaptation after fabrication of the framework, porcelain application, and cementation of metal-ceramic restorations prepared by using the conventional lost-wax technique, milling, direct metal laser sintering (DMLS), and LaserCUSING, a direct process powder-bed system. Alterations in the marginal adaptation of the metal frameworks during the fabrication stages and the precision of fabrication methods were evaluated. Forty-eight metal dies simulating prepared premolar and molar abutment teeth were fabricated to investigate marginal adaptation. They were divided into 4 groups (n=12) according to the fabrication method used (group C serving as the control group: lost-wax method; group M: milling method; group LS: DMLS method; group DP: direct process powder-bed method). Sixty marginal discrepancy measurements were recorded separately on each abutment tooth after fabrication of the framework, porcelain application, and cementation by using a stereomicroscope. Thereafter, each group was divided into 3 subgroups according to the measurements recorded in each fabrication stage: subgroup F (framework), subgroup P (porcelain application), and subgroup C (cementation). Data were statistically analyzed with univariate analysis of variance (followed by 1-way ANOVA and Tamhane T2 test (α=.05). The lowest marginal discrepancy values were observed in restorations prepared by using the direct process powder-bed method, and this was significantly different (P<.001) from the other methods. The highest marginal discrepancy values were recorded after the cementation procedure in all groups. The results showed that the direct process powder-bed method is quite successful in terms of marginal adaptation. The marginal discrepancy increased after porcelain application and cementation. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Thio-urethanes improve properties of dual-cured composite cements.
Bacchi, A; Dobson, A; Ferracane, J L; Consani, R; Pfeifer, C S
2014-12-01
This study aims at modifying dual-cure composite cements by adding thio-urethane oligomers to improve mechanical properties, especially fracture toughness, and reduce polymerization stress. Thiol-functionalized oligomers were synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene with trimethylol-tris-3-mercaptopropionate, at 1:2 isocyanate:thiol. Oligomer was added at 0, 10 or 20 wt% to BisGMA-UDMA-TEGDMA (5:3:2, with 25 wt% silanated inorganic fillers) or to one commercial composite cement (Relyx Ultimate, 3M Espe). Near-IR was used to measure methacrylate conversion after photoactivation (700 mW/cm(2) × 60s) and after 72 h. Flexural strength and modulus, toughness, and fracture toughness were evaluated in three-point bending. Polymerization stress was measured with the Bioman. The microtensile bond strength of an indirect composite and a glass ceramic to dentin was also evaluated. Results were analyzed with analysis of variance and Tukey's test (α = 0.05). For BisGMA-UDMA-TEGDMA cements, conversion values were not affected by the addition of thio-urethanes. Flexural strength/modulus increased significantly for both oligomer concentrations, with a 3-fold increase in toughness at 20 wt%. Fracture toughness increased over 2-fold for the thio-urethane modified groups. Contraction stress was reduced by 40% to 50% with the addition of thio-urethanes. The addition of thio-urethane to the commercial cement led to similar flexural strength, toughness, and conversion at 72h compared to the control. Flexural modulus decreased for the 20 wt% group, due to the dilution of the overall filler volume, which also led to decreased stress. However, fracture toughness increased by up to 50%. The microtensile bond strength increased for the experimental composite cement with 20 wt% thio-urethane bonding for both an indirect composite and a glass ceramic. Novel dual-cured composite cements containing thio-urethanes showed increased toughness, fracture toughness and bond strength to dentin while demonstrating reduced contraction stress. All of these benefits are derived without compromising the methacrylate conversion of the resin component. The modification does not require changing the operatory technique. © International & American Associations for Dental Research.
Isgró, G; Addison, O; Fleming, G J P
2011-05-01
The effect of heat-pressing and subsequent pre-cementation (acid-etching) and resin-cementation operative techniques on the development of transient and residual stresses in different thicknesses of a lithium disilicate glass-ceramic were characterised using profilometry prior to biaxial flexure strength (BFS) determination. 60 IPS e.max Press discs were pressed and divested under controlled conditions. The discs were polished on one surface to thicknesses of 0.61±0.05, 0.84±0.08, and 1.06±0.07 mm (Groups A-C, respectively). The mean of the maximum deflection (acid-etching and resin-coating was determined using high resolution profilometery prior to BFS testing. Paired sample t-tests were performed (p<0.05) on the 20 individual samples in each group (Groups A-C) for each comparison. Differences between the baseline quantification and resin-cement coating deflection values and BFS values for Groups A-C were determined using a one-way ANOVA with post hoc Tukey tests (p<0.05). Baseline quantification for Groups A-C identified no significant differences between the group means of the maximum deflection values (p=0.341). Following HF acid-etching, a significant increase in deflection for all groups (p<0.001) was identified compared with the baseline quantification. Additionally, resin-cement coating significantly increased deflection for Group A (p<0.001), Group B (p<0.001) and Group C (p=0.001) specimens for the individual groups. The increased deflection from baseline quantification to resin-cement coating was significantly different (p<0.001) for the three specimen thicknesses, although the BFS values were not. The lower reported baseline quantification range of the mean of the maximum deflection for the IPS e.max(®) Press specimens was predominantly the result of specimen polishing regime inducing a tensile stress state across the surface defect integral which accounted for the observed surface convexity. Acid-etching and resin-cementation had a significant impact on the development and magnitude of the transient and residual stresses in the lithium disilicate glass-ceramic investigated. Copyright © 2011 Elsevier Ltd. All rights reserved.
Thio-urethanes Improve Properties of Dual-cured Composite Cements
Bacchi, A.; Dobson, A.; Ferracane, J.L.; Consani, R.; Pfeifer, C.S.
2014-01-01
This study aims at modifying dual-cure composite cements by adding thio-urethane oligomers to improve mechanical properties, especially fracture toughness, and reduce polymerization stress. Thiol-functionalized oligomers were synthesized by combining 1,3-bis(1-isocyanato-1-methylethyl)benzene with trimethylol-tris-3-mercaptopropionate, at 1:2 isocyanate:thiol. Oligomer was added at 0, 10 or 20 wt% to BisGMA-UDMA-TEGDMA (5:3:2, with 25 wt% silanated inorganic fillers) or to one commercial composite cement (Relyx Ultimate, 3M Espe). Near-IR was used to measure methacrylate conversion after photoactivation (700 mW/cm2 × 60s) and after 72 h. Flexural strength and modulus, toughness, and fracture toughness were evaluated in three-point bending. Polymerization stress was measured with the Bioman. The microtensile bond strength of an indirect composite and a glass ceramic to dentin was also evaluated. Results were analyzed with analysis of variance and Tukey’s test (α = 0.05). For BisGMA-UDMA-TEGDMA cements, conversion values were not affected by the addition of thio-urethanes. Flexural strength/modulus increased significantly for both oligomer concentrations, with a 3-fold increase in toughness at 20 wt%. Fracture toughness increased over 2-fold for the thio-urethane modified groups. Contraction stress was reduced by 40% to 50% with the addition of thio-urethanes. The addition of thio-urethane to the commercial cement led to similar flexural strength, toughness, and conversion at 72h compared to the control. Flexural modulus decreased for the 20 wt% group, due to the dilution of the overall filler volume, which also led to decreased stress. However, fracture toughness increased by up to 50%. The microtensile bond strength increased for the experimental composite cement with 20 wt% thio-urethane bonding for both an indirect composite and a glass ceramic. Novel dual-cured composite cements containing thio-urethanes showed increased toughness, fracture toughness and bond strength to dentin while demonstrating reduced contraction stress. All of these benefits are derived without compromising the methacrylate conversion of the resin component. The modification does not require changing the operatory technique. PMID:25248610
Gieseler, Henning; Lee, Geoffrey
2008-02-01
To determine the effects of vial packing density in a laboratory freeze dryer on drying rate profiles of crystalline and amorphous formulations. The Christ freeze-drying balance measured cumulative water loss, m(t), and instantaneous drying rate, m(t), of water, mannitol, sucrose and sucrose/BSA formulations in commercial vials. Crystalline mannitol shows drying rate behaviour indicative of a largely homogeneous dried-product layer. The drying rate behaviour of amorphous sucrose indicates structural heterogeneity, postulated to come from shrinkage or microcollapse. Trehalose dries more slowly than sucrose. Addition of BSA to either disaccharide decreases primary drying time. Higher vial packing density greatly reduces drying rate because of effects of radiation heat transfer from chamber walls to test vial. Plots of m(t) versus radical t and m(t) versus layer thickness (either ice or dried-product) allow interpretation of changes in internal cake morphology during drying. Vial packing density greatly influences these profiles.
Kimizuka, Hajime; Kurokawa, Shu; Yamaguchi, Akihiro; Sakai, Akira; Ogata, Shigenobu
2014-01-01
Predicting the equilibrium ordered structures at internal interfaces, especially in the case of nanometer-scale chemical heterogeneities, is an ongoing challenge in materials science. In this study, we established an ab-initio coarse-grained modeling technique for describing the phase-like behavior of a close-packed stacking-fault-type interface containing solute nanoclusters, which undergo a two-dimensional disorder-order transition, depending on the temperature and composition. Notably, this approach can predict the two-dimensional medium-range ordering in the nanocluster arrays realized in Mg-based alloys, in a manner consistent with scanning tunneling microscopy-based measurements. We predicted that the repulsively interacting solute-cluster system undergoes a continuous evolution into a highly ordered densely packed morphology while maintaining a high degree of six-fold orientational order, which is attributable mainly to an entropic effect. The uncovered interaction-dependent ordering properties may be useful for the design of nanostructured materials utilizing the self-organization of two-dimensional nanocluster arrays in the close-packed interfaces. PMID:25471232
RT DDA: A hybrid method for predicting the scattering properties by densely packed media
NASA Astrophysics Data System (ADS)
Ramezan Pour, B.; Mackowski, D.
2017-12-01
The most accurate approaches to predicting the scattering properties of particulate media are based on exact solutions of the Maxwell's equations (MEs), such as the T-matrix and discrete dipole methods. Applying these techniques for optically thick targets is challenging problem due to the large-scale computations and are usually substituted by phenomenological radiative transfer (RT) methods. On the other hand, the RT technique is of questionable validity in media with large particle packing densities. In recent works, we used numerically exact ME solvers to examine the effects of particle concentration on the polarized reflection properties of plane parallel random media. The simulations were performed for plane parallel layers of wavelength-sized spherical particles, and results were compared with RT predictions. We have shown that RTE results monotonically converge to the exact solution as the particle volume fraction becomes smaller and one can observe a nearly perfect fit for packing densities of 2%-5%. This study describes the hybrid technique composed of exact and numerical scalar RT methods. The exact methodology in this work is the plane parallel discrete dipole approximation whereas the numerical method is based on the adding and doubling method. This approach not only decreases the computational time owing to the RT method but also includes the interference and multiple scattering effects, so it may be applicable to large particle density conditions.
Convection-diffusion effects in marathon race dynamics
NASA Astrophysics Data System (ADS)
Rodriguez, E.; Espinosa-Paredes, G.; Alvarez-Ramirez, J.
2014-01-01
In the face of the recent terrorist attack event on the 2013 Boston Marathon, the increasing participation of recreational runners in large marathon races has imposed important logistical and safety issues for organizers and city authorities. An accurate understanding of the dynamics of the marathon pack along the race course can provide important insights for improving safety and performance of these events. On the other hand, marathon races can be seen as a model of pedestrian movement under confined conditions. This work used data of the 2011 Chicago Marathon event for modeling the dynamics of the marathon pack from the corral zone to the finish line. By considering the marathon pack as a set of particles moving along the race course, the dynamics are modeled as a convection-diffusion partial differential equation with position-dependent mean velocity and diffusion coefficient. A least-squares problem is posed and solved with optimization techniques for fitting field data from the 2011 Chicago Marathon. It was obtained that the mean pack velocity decreases while the diffusion coefficient increases with distance. This means that the dispersion rate of the initially compact marathon pack increases as the marathon race evolves along the race course.
Wang, Wei-Wei; Dong, Bao-Cheng
2017-11-01
This systematic review applied meta-analytic procedures to evaluate the curative effect of trans-septal suturing versus nasal packing after septoplasty. Computerized search of the published literature in PubMed, EMBASE, CENTRAL, Cochrane Database of Systematic Reviews, WANFANG, CNKI databases. Randomized trials investigating trans-septal suturing versus nasal packing following septoplasty in patients with deviated nasal septum. Adhesion, septal hematoma, bleeding, septal perforation, infection, pain, headache, or residual septal deviation per randomized patients. 19 randomized controlled trials of 1845 subjects were included. Meta-analysis showed that postoperative pain, headache, and adhesion were significantly lower in trans-septal suturing group. Nasal packing and trans-septal suturing technique appear to be equivalent with regard to postoperative bleeding, hematoma, septal perforation, infection, and residual septal deviation. Trans-septal suturing technology is not only associated with less patient pain, headache, and lower occurrence rate of adhesion after septoplasty but it also relates to higher patient satisfaction and an improved quality of life. The suturing technology can be used as a substitute for traditional nasal packing of the first-line treatment. More well-designed studies are needed to confirm the effect of trans-septal suturing following septoplasty.
Basu, Debabrata
Wet pack after steam sterilization process that means there are surely obtain millions of microorganisms that can breed and multiply rapidly and objects are unsterile and can never be used for further procedure. There are many reasons behind the wet pack occurrences after autoclaving like poor quality of wrapping materials, faulty valves of rigid container, faulty loading and packaging technique, poor steam quality, sterilizer malfunction and may be design related problems in CSSD sterile storage area. Cause of wet pack after steam sterilization processes may occur severe problems because of wasted time and effort, increased work load, increased cost, potentially contaminated instruments, infection risk to the patient, poor patient outcomes and delayed or cancellation of procedures. But such wet pack scenario can be avoided by various methods by using good steam (water) quality, performing periodic maintenance of the Autoclaves, avoidance of sterilizer overloading, allowing adequate post sterilization time to cool down the materials to room temperature, using good quality wrapping materials, properly maintain temperature and humidity of sterile storage area etc. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2014-06-01
The objective of this project focused on the development of a hybrid nondestructive testing and evaluation (NDT&E) methodology that combines the benefits of microwave NDT and thermography into one new technique. In this way, unique features of both N...
DOT National Transportation Integrated Search
1989-01-01
When concrete deterioration begins to occur in highway pavement, : repairs become necessary to assure the rider safety, extend its : useful life and restore its riding qualities. One rehabilitation : technique used to restore the pavement to acceptab...
DOT National Transportation Integrated Search
2016-05-01
Internal curing is a relatively new technique being used to promote hydration of portland cement concretes. The fundamental concept is : to provide reservoirs of water within the matrix such that the water does not increase the initial water/cementit...
NASA Astrophysics Data System (ADS)
Trejos, Sorayda; Fredy Barrera, John; Torroba, Roberto
2015-08-01
We present for the first time an optical encrypting-decrypting protocol for recovering messages without speckle noise. This is a digital holographic technique using a 2f scheme to process QR codes entries. In the procedure, letters used to compose eventual messages are individually converted into a QR code, and then each QR code is divided into portions. Through a holographic technique, we store each processed portion. After filtering and repositioning, we add all processed data to create a single pack, thus simplifying the handling and recovery of multiple QR code images, representing the first multiplexing procedure applied to processed QR codes. All QR codes are recovered in a single step and in the same plane, showing neither cross-talk nor noise problems as in other methods. Experiments have been conducted using an interferometric configuration and comparisons between unprocessed and recovered QR codes have been performed, showing differences between them due to the involved processing. Recovered QR codes can be successfully scanned, thanks to their noise tolerance. Finally, the appropriate sequence in the scanning of the recovered QR codes brings a noiseless retrieved message. Additionally, to procure maximum security, the multiplexed pack could be multiplied by a digital diffuser as to encrypt it. The encrypted pack is easily decoded by multiplying the multiplexing with the complex conjugate of the diffuser. As it is a digital operation, no noise is added. Therefore, this technique is threefold robust, involving multiplexing, encryption, and the need of a sequence to retrieve the outcome.
Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brent Constantz; Randy Seeker; Martin Devenney
2010-06-30
Calera's innovative Mineralization via Aqueous Precipitation (MAP) technology for the capture and conversion of CO{sub 2} to useful materials for use in the built environment was further developed and proven in the Phase 1 Department of Energy Grant. The process was scaled to 300 gallon batch reactors and subsequently to Pilot Plant scale for the continuous production of product with the production of reactive calcium carbonate material that was evaluated as a supplementary cementitious material (SCM). The Calera SCM{trademark} was evaluated as a 20% replacement for ordinary portland cement and demonstrated to meet the industry specification ASTM 1157 which ismore » a standard performance specification for hydraulic cement. The performance of the 20% replacement material was comparable to the 100% ordinary portland cement control in terms of compressive strength and workability as measured by a variety of ASTM standard tests. In addition to the performance metrics, detailed characterization of the Calera SCM was performed using advanced analytical techniques to better understand the material interaction with the phases of ordinary portland cement. X-ray synchrotron diffraction studies at the Advanced Photon Source in Argonne National Lab confirmed the presence of an amorphous phase(s) in addition to the crystalline calcium carbonate phases in the reactive carbonate material. The presence of carboaluminate phases as a result of the interaction of the reactive carbonate materials with ordinary portland cement was also confirmed. A Life Cycle Assessment was completed for several cases based on different Calera process configurations and compared against the life cycle of ordinary portland cement. In addition to the materials development efforts, the Calera technology for the production of product using an innovative building materials demonstration plant was developed beyond conceptual engineering to a detailed design with a construction schedule and cost estimate.« less
Walschot, Lucas H B; Aquarius, René; Verdonschot, Nico; Buma, Pieter
2014-01-01
Background and purpose — The bone impaction grafting technique restores bone defects in total hip replacement. Porous titanium particles (TiPs) are deformable, like bone particles, and offer better primary stability. We addressed the following questions in this animal study: are impacted TiPs osteoconductive under loaded conditions; do released micro-particles accelerate wear; and are systemic titanium blood levels elevated after implantation of TiPs? Animals and methods — An AAOS type-III defect was created in the right acetabulum of 10 goats weighing 63 (SD 6) kg, and reconstructed with calcium phosphate-coated TiPs and a cemented polyethylene cup. A stem with a cobalt chrome head was cemented in the femur. The goats were killed after 15 weeks. Blood samples were taken pre- and postoperatively. Results — The TiP-graft layer measured 5.6 (SD 0.8) mm with a mean bone ingrowth distance of 2.8 (SD 0.8) mm. Cement penetrated 0.9 (0.3–1.9) mm into the TiPs. 1 reconstruction showed minimal cement penetration (0.3 mm) and failed at the cement-TiP interface. There were no signs of accelerated wear, metallic particle debris, or osteolysis. Median systemic titanium concentrations increased on a log-linear scale from 0.5 (0.3–1.1) parts per billion (ppb) to 0.9 (0.5–2.8) ppb (p = 0.01). Interpretation — Adequate cement pressurization is advocated for impaction grafting with TiPs. After implantation, calcium phosphate-coated TiPs were osteoconductive under loaded conditions and caused an increase in systemic titanium concentrations. However, absolute levels remained low. There were no signs of accelerated wear. A clinical pilot study should be performed to prove that application in humans is safe in the long term. PMID:25238431
NASA Astrophysics Data System (ADS)
Choo, Hyunwook; Nam, Hongyeop; Lee, Woojin
2017-12-01
The composition of naturally cemented deposits is very complicated; thus, estimating the maximum shear modulus (Gmax, or shear modulus at very small strains) of cemented sands using the previous empirical formulas is very difficult. The purpose of this experimental investigation is to evaluate the effects of particle size and cement type on the Gmax and unconfined compressive strength (qucs) of cemented sands, with the ultimate goal of estimating Gmax of cemented sands using qucs. Two sands were artificially cemented using Portland cement or gypsum under varying cement contents (2%-9%) and relative densities (30%-80%). Unconfined compression tests and bender element tests were performed, and the results from previous studies of two cemented sands were incorporated in this study. The results of this study demonstrate that the effect of particle size on the qucs and Gmax of four cemented sands is insignificant, and the variation of qucs and Gmax can be captured by the ratio between volume of void and volume of cement. qucs and Gmax of sand cemented with Portland cement are greater than those of sand cemented with gypsum. However, the relationship between qucs and Gmax of the cemented sand is not affected by the void ratio, cement type and cement content, revealing that Gmax of the complex naturally cemented soils with unknown in-situ void ratio, cement type and cement content can be estimated using qucs.
Directed Hidden-Code Extractor for Environment-Sensitive Malwares
NASA Astrophysics Data System (ADS)
Jia, Chunfu; Wang, Zhi; Lu, Kai; Liu, Xinhai; Liu, Xin
Malware writers often use packing technique to hide malicious payload. A number of dynamic unpacking tools are.designed in order to identify and extract the hidden code in the packed malware. However, such unpacking methods.are all based on a highly controlled environment that is vulnerable to various anti-unpacking techniques. If execution.environment is suspicious, malwares may stay inactive for a long time or stop execution immediately to evade.detection. In this paper, we proposed a novel approach that automatically reasons about the environment requirements.imposed by malware, then directs a unpacking tool to change the controlled environment to extract the hide code at.the new environment. The experimental results show that our approach significantly increases the resilience of the.traditional unpacking tools to environment-sensitive malware.
Bots, Pieter; Morris, Katherine; Hibberd, Rosemary; Law, Gareth T W; Mosselmans, J Frederick W; Brown, Andy P; Doutch, James; Smith, Andrew J; Shaw, Samuel
2014-12-09
The favored pathway for disposal of higher activity radioactive wastes is via deep geological disposal. Many geological disposal facility designs include cement in their engineering design. Over the long term, interaction of groundwater with the cement and waste will form a plume of a hyperalkaline leachate (pH 10-13), and the behavior of radionuclides needs to be constrained under these extreme conditions to minimize the environmental hazard from the wastes. For uranium, a key component of many radioactive wastes, thermodynamic modeling predicts that, at high pH, U(VI) solubility will be very low (nM or lower) and controlled by equilibrium with solid phase alkali and alkaline-earth uranates. However, the formation of U(VI) colloids could potentially enhance the mobility of U(VI) under these conditions, and characterizing the potential for formation and medium-term stability of U(VI) colloids is important in underpinning our understanding of U behavior in waste disposal. Reflecting this, we applied conventional geochemical and microscopy techniques combined with synchrotron based in situ and ex situ X-ray techniques (small-angle X-ray scattering and X-ray adsorption spectroscopy (XAS)) to characterize colloidal U(VI) nanoparticles in a synthetic cement leachate (pH > 13) containing 4.2-252 μM U(VI). The results show that in cement leachates with 42 μM U(VI), colloids formed within hours and remained stable for several years. The colloids consisted of 1.5-1.8 nm nanoparticles with a proportion forming 20-60 nm aggregates. Using XAS and electron microscopy, we were able to determine that the colloidal nanoparticles had a clarkeite (sodium-uranate)-type crystallographic structure. The presented results have clear and hitherto unrecognized implications for the mobility of U(VI) in cementitious environments, in particular those associated with the geological disposal of nuclear waste.
Joseph, Aneeta Mary; Snellings, Ruben; Van den Heede, Philip; Matthys, Stijn
2018-01-01
Huge amounts of waste are being generated, and even though the incineration process reduces the mass and volume of waste to a large extent, massive amounts of residues still remain. On average, out of 1.3 billion tons of municipal solid wastes generated per year, around 130 and 2.1 million tons are incinerated in the world and in Belgium, respectively. Around 400 kT of bottom ash residues are generated in Flanders, out of which only 102 kT are utilized here, and the rest is exported or landfilled due to non-conformity to environmental regulations. Landfilling makes the valuable resources in the residues unavailable and results in more primary raw materials being used, increasing mining and related hazards. Identifying and employing the right pre-treatment technique for the highest value application is the key to attaining a circular economy. We reviewed the present pre-treatment and utilization scenarios in Belgium, and the advancements in research around the world for realization of maximum utilization are reported in this paper. Uses of the material in the cement industry as a binder and cement raw meal replacement are identified as possible effective utilization options for large quantities of bottom ash. Pre-treatment techniques that could facilitate this use are also discussed. With all the research evidence available, there is now a need for combined efforts from incineration and the cement industry for technical and economic optimization of the process flow. PMID:29337887
White, Claire E.; Olds, Daniel P.; Hartl, Monika; ...
2017-02-01
The long-term durability of cement-based materials is influenced by the pore structure and associated permeability at the sub-micrometre length scale. With the emergence of new types of sustainable cements in recent decades, there is a pressing need to be able to predict the durability of these new materials, and therefore nondestructive experimental techniques capable of characterizing the evolution of the pore structure are increasingly crucial for investigating cement durability. Here, small-angle neutron scattering is used to analyze the evolution of the pore structure in alkali-activated materials over the initial 24 h of reaction in order to assess the characteristic poremore » sizes that emerge during these short time scales. By using a unified fitting approach for data modeling, information on the pore size and surface roughness is obtained for a variety of precursor chemistries and morphologies (metakaolin- and slag-based pastes). Furthermore, the impact of activator chemistry is elucidatedviathe analysis of pastes synthesized using hydroxide- and silicate-based activators. It is found that the main aspect influencing the size of pores that are accessible using small-angle neutron scattering analysis (approximately 10–500 Å in diameter) is the availability of free silica in the activating solution, which leads to a more refined pore structure with smaller average pore size. Furthermore, as the reaction progresses the gel pores visible using this scattering technique are seen to increase in size.« less
Chemical-mineralogical characterization of C&D waste recycled aggregates from São Paulo, Brazil.
Angulo, S C; Ulsen, C; John, V M; Kahn, H; Cincotto, M A
2009-02-01
This study presents a methodology for the characterization of construction and demolition (C&D) waste recycled aggregates based on a combination of analytical techniques (X-ray fluorescence (XRF), soluble ions, semi-quantitative X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTG) and hydrochloric acid (HCl) selective dissolution). These combined analytical techniques allow for the estimation of the amount of cement paste, its most important hydrated and carbonated phases, as well as the amount of clay and micas. Details of the methodology are presented here and the results of three representative C&D samples taken from the São Paulo region in Brazil are discussed. Chemical compositions of mixed C&D aggregate samples have mostly been influenced by particle size rather than the visual classification of C&D into red or grey and geographical origin. The amount of measured soluble salts in C&D aggregates (0.15-25.4mm) is lower than the usual limits for mortar and concrete production. The content of porous cement paste in the C&D aggregates is around 19.3% (w/w). However, this content is significantly lower than the 43% detected for the C&D powders (<0.15 mm). The clay content of the powders was also high, potentially resulting from soil intermixed with the C&D waste, as well as poorly burnt red ceramic. Since only about 50% of the measured CaO is combined with CO(2), the powders have potential use as raw materials for the cement industry.
Should I Pack My Umbrella? Clinical versus Statistical Prediction of Mental Health Decisions
ERIC Educational Resources Information Center
Aegisdottir, Stefania; Spengler, Paul M.; White, Michael J.
2006-01-01
In this rejoinder, the authors respond to the insightful commentary of Strohmer and Arm, Chwalisz, and Hilton, Harris, and Rice about the meta-analysis on statistical versus clinical prediction techniques for mental health judgments. The authors address issues including the availability of statistical prediction techniques for real-life psychology…
Breaking away from the Pack: Positioning the Marketing Discipline through a Triangular Analysis.
ERIC Educational Resources Information Center
Bonnici, Joseph L.; Reddy, Allan C.
1993-01-01
College and university marketing departments should use the technique of positioning to increase enrollments. The triangular approach to positioning uses close scrutiny of the student profile, the benefits marketing courses offer, and the competition the department faces within and outside the business school. The technique can also be used by…
Nanci, A
1999-06-30
The organic matrix of collagen-based calcified tissues consists of a supporting collagen meshwork and various noncollagenous matrix proteins (NCPs). Together, they contribute to determining the structure and biomechanical properties of the tissue. Their respective organization and interrelation can advantageously be examined by immunocytochemistry, an approach which allows correlation of composition with structure. The aim of this article is to review postembedding immuno- and lectin-gold-labeling data on the characterization of the noncollagenous compartment in rat and human bone and cementum, and on its relationship to collagen. The two major NCPs, bone sialoprotein and osteopontin, generally codistribute and accumulate in cement lines and in the spaces among the mineralized collagen fibrils. However, there are variations in their distribution and density of labeling throughout the tissue. Indeed, bone and cementum can form in environments that are either poor or enriched in NCPs. The amount of NCPs generally correlates with bone and cementum types and with speed of formation of the tissue and packing density of collagen fibrils. Taken together, the data suggest that production of both collagenous and noncollagenous constituents can be "modulated" during formation of collagen-based calcified tissues. It is concluded that, in addition to structural and compositional parameters, tissue dynamics must be taken into consideration in order to understand the significance of the apparent accumulation of NCPs at some sites and to determine the mechanisms of normal and pathological calcified tissue formation. Copyright 1999 Academic Press.
Winkler, Gary R.; McLean, Hugh; Plafker, George
1976-01-01
Petrographic examination of 74 outcrop samples of Paleocene through Pliocene age from the onshore Gulf of Alaska Tertiary Province indicates that sandstones of the province characteristically are texturally immature and mineralogically unstable. Diagenetic alteration of framework grains throughout the stratigraphic sequence has produced widespread zeolite cement or phyllosilicate grain coatings and pseudomatrix. Multiple deformation and deep burial of the older Tertiary sequence--the Orca Group, the shale of Haydon Peak, and the Kulthieth and Tokun Formations--caused extensive alteration and grain interpenetration, resulting in low porosity values. Less intense deformation and intermediate depth of burial of the younger Tertiary sequence--the Katalla, Poul Creek, Redwood, and Yakataga Formations--has resulted in a greater range in textural properties. Most sandstone samples in the younger Tertiary sequence are poorly sorted, tightly packed, and have strongly appressed framework grains, but some are less tightly packed and contain less matrix. Soft and mineralogically unstable framework grains have undergone considerable alteration, reducing pore space even in the youngest rocks. Measurements of porosity, permeability, grain density, and sonic velocity of outcrop samples of the younger Tertiary sequence indicate a modest up-section improvement in sandstone reservoir characteristics. Nonetheless porosity and permeability values typically are below 16 percent and 15 millidarcies respectively and grain densities are consistently high, about 2.7 gm/cc. Low permeability and porosity values, and high grain densities and sonic velocities appear to be typical of most outcrop areas throughout the onshore Gulf of Alaska Tertiary Province.
Togao, Osamu; Hiwatashi, Akio; Obara, Makoto; Yamashita, Koji; Momosaka, Daichi; Nishimura, Ataru; Arimura, Koichi; Hata, Nobuhiro; Yoshimoto, Koji; Iihara, Koji; Van Cauteren, Marc; Honda, Hiroshi
2018-05-08
To evaluate the performance of four-dimensional pseudo-continuous arterial spin labeling (4D-pCASL)-based angiography using CENTRA-keyhole and view sharing (4D-PACK) in the visualization of flow dynamics in distal cerebral arteries and leptomeningeal anastomosis (LMA) collaterals in moyamoya disease in comparison with contrast inherent inflow-enhanced multiphase angiography (CINEMA), with reference to digital subtraction angiography (DSA). Thirty-two cerebral hemispheres from 19 patients with moyamoya disease (mean age, 29.7 ± 19.6 years; five males, 14 females) underwent both 4D-MR angiography and DSA. Qualitative evaluations included the visualization of anterograde middle cerebral artery (MCA) flow and retrograde flow via LMA collaterals with reference to DSA. Quantitative evaluations included assessments of the contrast-to-noise ratio (CNR) on these vessels. The linear mixed-effect model was used to compare the 4D-PACK and CINEMA methods. The vessel visualization scores were significantly higher with 4D-PACK than with CINEMA in the visualization of anterograde flow for both Observer 1 (CINEMA, 3.53 ± 1.39; 4D-PACK, 4.53 ± 0.80; p < 0.0001) and Observer 2 (CINEMA, 3.50±1.39; 4D-PACK, 4.31 ± 0.86; p = 0.0009). The scores were higher with 4D-PACK than with CINEMA in the visualization of retrograde flow for both Observer 1 (CINEMA, 3.44 ± 1.05; 4D-PACK, 4.47 ± 0.88; p < 0.0001) and Observer 2 (CINEMA, 3.19 ± 1.20; 4D-PACK, 4.38 ± 0.91; p < 0.0001). The maximum CNR in the anterograde flow was higher in 4D-PACK (40.1 ± 16.1, p = 0.0001) than in CINEMA (27.0 ± 16.6). The maximum CNR in the retrograde flow was higher in 4D-PACK (36.1 ± 10.0, p < 0.0001) than in CINEMA (15.4 ± 8.0). The 4D-PACK provided better visualization and higher CNRs in distal cerebral arteries and LMA collaterals compared with CINEMA in patients with this disease. • The 4D-PACK enables good visualization of distal cerebral arteries in moyamoya disease. • The 4D-PACK enables direct visualization of leptomeningeal collateral vessels in moyamoya disease. • Vessel visualization by 4D-PACK can be useful in assessing cerebral hemodynamics.
Effect of different mixing methods on the bacterial microleakage of calcium-enriched mixture cement.
Shahi, Shahriar; Jeddi Khajeh, Soniya; Rahimi, Saeed; Yavari, Hamid R; Jafari, Farnaz; Samiei, Mohammad; Ghasemi, Negin; Milani, Amin S
2016-10-01
Calcium-enriched mixture (CEM) cement is used in the field of endodontics. It is similar to mineral trioxide aggregate in its main ingredients. The present study investigated the effect of different mixing methods on the bacterial microleakage of CEM cement. A total of 55 human single-rooted human permanent teeth were decoronated so that 14-mm-long samples were obtained and obturated with AH26 sealer and gutta-percha using lateral condensation technique. Three millimeters of the root end were cut off and randomly divided into 3 groups of 15 each (3 mixing methods of amalgamator, ultrasonic and conventional) and 2 negative and positive control groups (each containing 5 samples). BHI (brain-heart infusion agar) suspension containing Enterococcus faecalis was used for bacterial leakage assessment. Statistical analysis was carried out using descriptive statistics, Kaplan-Meier survival analysis with censored data and log rank test. Statistical significance was set at P<0.05. The survival means for conventional, amalgamator and ultrasonic methods were 62.13±12.44, 68.87±12.79 and 77.53±12.52 days, respectively. The log rank test showed no significant differences between the groups. Based on the results of the present study it can be concluded that different mixing methods had no significant effect on the bacterial microleakage of CEM cement.
Kim, Jung Eun; Choi, Sang Sik; Lee, Mi Kyoung; Lee, Dong Kyu; Cho, Seung Inn
2017-11-01
Kummell's disease, caused by osteonecrosis of the vertebral body, is a cause of vertebral collapse. In Kummell's disease, intravertebral instability from nonunion between the cement and bone after percutaneous vertebroplasty (PVP) can cause persistent severe pain and dysfunction. A 75-year-old woman presented with severe pain in the lower back, both buttocks, groin, and both posterior thighs for a period of 30 days. Lumbar radiographs and magnetic resonance images showed an acute compression fracture of the first lumbar vertebra with an intravertebral cleft filled with fluid. The patient underwent PVP for the L1 compression fracture; however, this failed to provide sufficient pain relief. The patient was re-evaluated with dynamic radiography, and intravertebral instability and bone cement displacement of the L1 vertebra were detected. Repeat PVP was performed. After the procedure, intravertebral instability was restored and her pain completely subsided. PVP is a good treatment choice for symptomatic Kummell's disease. However, there is no consensus on the best technique of injecting bone cement to achieve optimal results. It is important to inject more bone cement than the volume of the intravertebral cleft to prevent instability caused by nonunion in PVP for Kummell's disease. We report a case of failed PVP because of insufficient correction of intravertebral instability in Kummell's, along with a review of the literature. © 2017 World Institute of Pain.
Cement vertebroplasty combined with ethanol injection in the treatment of vertebral hemangioma.
Chen, Liang; Zhang, Chun-lin; Tang, Tian-si
2007-07-05
A number of methods have been used in the treatment of symptomatic and aggressive vertebral hemangioma, but none of them is optimal. Vertebral hemangioma treated with cement vertebroplasty or ethanol injection alone showed relatively good results despite their limitations. Between February 2002 and May 2004, twelve patients with vertebral hemangioma were subjected to combined cement vertebroplasty and ethanol injection, five of them were men and seven women, and aged from 26 to 54 years (mean, 41 years). The following levels of the spine were involved: T9: 1, T10: 3, T12: 2, L1: 1, L2: 2, L3: 2 and L4: 1. The clinical results and radiographic records of the patients were assessed after 2 years and 5 months of follow-up. The average score of back pain significantly decreased from 6.5 before operation to 1.7 one month after operation. No severe complications occurred during and after operation. During the period of follow-up, symptoms were not deteriorated. At the end of follow-up, neither radiographic sign of aggressive destruction nor collapse of the involved vertebra was observed. Significant improvement in the 12 patients was demonstrated on 7 of 8 SF-36 Health Scale except for mental health. Cement vertebroplasty combined with ethanol injection as a safe and effective technique is an alternative to the treatment of patients with vertebral hemangioma.
Kuhns, Craig A; Reiter, Michael; Pfeiffer, Ferris; Choma, Theodore J
2014-02-01
Study Design Biomechanical study of pedicle screw fixation in osteoporotic bone. Objective To investigate whether it is better to tap or not tap osteoporotic bone prior to placing a cement-augmented pedicle screw. Methods Initially, we evaluated load to failure of screws placed in cancellous bone blocks with or without prior tapping as well as after varying the depths of tapping prior to screw insertion. Then we evaluated load to failure of screws placed in bone block models with a straight-ahead screw trajectory as well as with screws having a 23-degree cephalad trajectory (toward the end plate). These techniques were tested with nonaugmented (NA) screws as well as with bioactive cement (BioC) augmentation prior to screw insertion. Results In the NA group, pretapping decreased fixation strength in a dose-dependent fashion. In the BioC group, the tapped screws had significantly greater loads to failure (p < 0.01). Comparing only the screw orientation, the screws oriented at 23 degrees cephalad had a significantly higher failure force than their respective counterparts at 0 degrees (p < 0.01). Conclusions Standard pedicle screw fixation is often inadequate in the osteoporotic spine, but this study suggests tapping prior to cement augmentation will substantially improve fixation when compared with not tapping. Angulating screws more cephalad also seems to enhance aging spine fixation.
NASA Astrophysics Data System (ADS)
Lalou, Claude; Fontugne, Michel; Lallemand, Serge E.; Lauriat-Rage, Agnès
1992-04-01
Calyptogena valves included in a carbonate-rich cement, and fragments of a carbonate-rich chimney, have been examined for their stable isotopic (C and O) composition,14C activity and uranium series disequilibrium. The fossil shells were formed essentially with seawater carbon and a negligible contribution of cold seepage organic carbon, as shown by theirδ13C values. This allows the14C method to be used to determine their age. A fairly good concordance between the14C and230Th234U ages of the youngest shells gives confidence in the dating of the older samples using the latter technique. Thus, theCalyptogena are dated at ca. 150,000 and 20,000 yrs B.P. They have been preserved from dissolution by rapid cementation by a supersaturated carbonate solution. The cement is especially rich in uranium (as high as 75 ppm), whose source is seawater; the enrichment is due to local reducing conditions brought about by the bacterial decomposition of the soft tissues of the bivalves shortly after death. TheCalyptogena that probably developed between these two events (the events of ca. 20,000 and 150,000 yrs) have not been preserved from dissolution because, as is presently the case, the cold seepages were undersaturated with calcium carbonate. The two events probably represent periods of intense fluid venting connected with tectonic activity.
NASA Astrophysics Data System (ADS)
Gordillo-Delgado, F.; Soto-Barrera, C. C.; Plazas-Saldaña, J.
2017-01-01
The increasing demand for equipment to remove organic compounds in industry and research activity has led to evaluate nanometric zinc oxide (ZnO). In this work, we present the ZnO nanoparticles synthesis for reusing of discarded columns, as a low-cost alternative. The compound was obtained by sol-gel technique using zinc chloride and sodium hydroxide as precursors and a drying temperature of 169°C. An X-ray diffractometer was used to estimate the average particle size at 20.3±0.2nm the adsorption capacity was 0.0144L/g and the chemical resistance was tested with HCl and NaOH. The ZnO nanopowder was packed with 100psi pressure in an empty C-18 column cavity. The column packing resolution was evaluated using a high performance liquid chromatographer (HPLC-Thermo Scientific Dionex UltiMate 3000); using a caffeine standard, the following parameters were established: solvent flow: 1.2mL/min, average column temperature: 40°C, running time: 10 minutes, mobile phase acetonitrile-water composition (9:1). These results validate the potential of ZnO nanopowder as a column packing material in HPLC technique.
Incommensurate growth of Co thin film on close-packed Ag(111) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barman, Sukanta, E-mail: sukanta.ac@gmail.com; Menon, Krishna Kumar S. R., E-mail: krishna.menon@saha.ac.in
2016-05-06
Growth of ultrathin Co layers on close-packed Ag(111)were investigated by means of Low Energy Electron Diffraction (LEED), X-ray Photoelectron Spectroscopy (XPS) and Angle-resolved Photoemission Spectroscopy(ARPES) techniques. The close-packed hexagonal face of Co(0001), exhibits a lattice misfit about 13% with Ag(111) surface which manipulates the growth to be incommensurate up to a certain thickness. The strain field causes aperiodic height undulation in the sub-angstrom regime of the film which was confirmed by p(1 × 1) LEED pattern along with a 6-fold moiré reconstruction pattern in the lower film thickness (up to ∼2ML). The evolution of the LEED pattern was studied withmore » increasing film coverage. Lattice strain was measured with respect to the relative positions of these double spots as a functionof film thickness. Almost a constant strain (∼13%) in the full range of film thickness explains the moiré pattern formation in order to stabilize the incommensurate growth. For higher film coverages, an epitaxial well-ordered commensurate growth was observed. Core level and valance band electronic structures of these films were studied by XPS and ARPES techniques.« less
An exposure chamber, the "clambox", was developed to measure ventilation rate, sediment processing rate, and efficiency of pollutant uptake byMacoma nasuta Conrad, a surface surface deposit-feeding clams. Clams, collected from Yaquina, Bay, Oregon, USA, were cemented into a hole ...
Stabilization techniques for reactive aggregate in soil-cement base course.
DOT National Transportation Integrated Search
2003-01-01
Anhydrite (CaSO4) beds occur as a cap rock on a salt dome in Winn Parish in north Louisiana. Locally known as Winn Rock, it has been quarried for gravel for road building. It has been used as a surface course for local parish and logging roads. Stabi...
The primary objective of this study was to evaluate the performance of two selected chemical stabilization and solidification (S/S) techniques to treat three types of arsenic-contaminated wastes 1) chromated copper arsenate (CCA) wood treater waste, 2) La Trinidad Mine tailings, ...
Maruyama, Masaaki; Wakabayashi, Shinji; Ota, Hiroshi; Tensho, Keiji
2017-02-01
Acetabular bone deficiency, especially proximal and lateral deficiency, is a difficult technical problem during primary total hip arthroplasty (THA) in developmental dysplasia of the hip (DDH). We report a new reconstruction method using a medial-reduced cemented socket and additional bulk bone in conjunction with impaction morselized bone grafting (additional bulk bone grafting method). In a population of patients with acetabular dysplasia undergoing THA using a medial-reduced cemented socket and additional bulk bone with impacted morselized bone grafting, we evaluated (1) the radiographic appearance of bone graft; (2) the proportion of cups that developed loosening and subsequent revision; and (3) clinical results (outcome scores and complications). Forty percent of 330 THAs for DDH performed at one center between 1999 and 2009 were defined as shallow dysplastic hips. The additional bulk bone grafting method was performed on 102 THAs with shallow acetabulum (31% for DDH) at one center between 1999 and 2009. We used this approach and technique for shallow acetabuli when a cup protruded from the lateral acetabular edge in preoperative templating. The other 132 dysplastic hips without bone grafting had THA performed at the same periods and served as a control. Acetabuli were defined as shallow when the depth was less than or equal to one-fifth of the pelvic height (cranial-caudal length on radiograph). The additional bulk bone grafting technique was as follows: the resected femoral head was sectioned at 1 to 2 cm thickness, and a suitable size of the bulk bone graft was placed on the lateral iliac cortex and fixed by poly-L-lactate absorbable screws. Autologous impaction morselized bone grafting, with or without hydroxyapatite granules, was performed along with the implantation of a medial-reduced cemented socket. We defined an "incorporated" graft as remodeling and trabeculation including rounding off of the protruding edge of a graft beyond the socket. Radiographic criteria used for determining loosening were migration or a continuous radiolucent zone between the prosthesis/bone cement and host bone. Clinical outcomes were assessed using the Japanese Orthopaedic Association (JOA) and the Merle d'Aubigne and Postel score; complications were tallied from chart review. The followup was 10 ± 3 years (range, 6-15 years). One acetabular component (1%) with severe shallow and steep acetabuli showed definite radiographic evidence of loosening and was revised. Clinically, the mean JOA score for the hips treated with additional bulk bone grafting THA in this study improved from 39 ± 10 points preoperatively to 95 ± 5 points postoperatively (p < 0.05, paired t-test). The mean Merle d'Aubigne and Postel score for the hips improved from 7 ± 2 points to 17 ± 1 points (p < 0.05, paired t-test). Complications included a Trendelenburg sign in one hip, dislocation in one, and transient partial sciatic nerve palsy in one. Within 3 years 6 months postoperatively, 101 of 102 additional bulk bone grafting cases showed successful bone remodeling and bone graft reorientation without collapse on radiographs. Partial resorption of the additional bone graft on the lateral side was observed in two hips (2%) with socket abduction angles of < 35°. Achieving stable acetabular fixation is often challenging in the dysplastic hip, especially shallow acetabulum, and a variety of techniques have been described. Early results of combining bulk graft with impaction of morselized graft are promising. Although each surgical technique was well established, further investigation for clinical results of a combination of these techniques might be necessary to confirm longer term outcomes. Level IV, therapeutic study.